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Abstract

The relationship between structure and function is a longstanding and central topic
in biology, evolution, and ecology. The importance of morphology is clearly visible
in the diverse forms taken by innumerable organisms in order to perform a myriad
of functions. Examining the great variety of morphological characteristics it would
seem that the overall principle of evolution is the only way to generalize the observed
diversity: given differences in environments and random biological variation a great
multitude of body plans have been invented as adaptations to many dynamic habitats
given specific evolutionary histories. In this thesis I will show how focusing on di-
verse organisms makes it possible to identify common first-order laws of evolutionary
organization. More specifically I will show how these common laws derive from a con-
nection between organism structure, physical limitations, environmental constraints,
and basic metabolic, biochemical, or energetic principles. Furthermore, I will show
how this top level of biological organization holds significant predictive power for
regional ecology and for interpreting the general trends of evolutionary history.

In Chapter 2 we begin by deriving a model for the growth of single cells and popu-
lations of cells. This model is based on the partitioning of metabolic resources and the
scaling relationship between metabolism and body size. We show that the growth of
diverse classes of organisms is connected by common unit energetics. However there
exist striking differences in the broad trends between growth rate and body size across
these different classes and we show that this is a consequence of major evolutionary
transitions which adjust the partitioning of metabolic resources. We interpret major
evolutionary transitions to occur in response to energetic limitations.

We also find that multicellular living for unicellular organisms provides a metabolic
and reproductive advantage. In Chapters 3 and 4 we further investigate these fea-
tures in microbial biofilms which exhibit rich spatial patterning. Using a mathemat-
ical model and experimentation we find that the tall vertical structures produced by
these biofilms have optimal geometry for resource uptake and the growth efficiency of
the entire colony. Our model allows us to predict the observed changes in feature ge-
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ometry given alterations to the environmental conditions that the biofilms are grown
in. Furthermore, we are able to show that the morphology of these structures is de-
pendent on single cell physiology. For example, single genetic knockouts of flagellar
motility radically alter the temporal dynamics of feature spacing. Our work high-
lights morphology as a central property in multicellular organisms which mediates
the interaction between environmental conditions and physiology.

In Chapter 5 we highlight the importance of morphology in complex multicellular
life where we develop a general model of tree architecture which we link to physio-
logical success within a given environment. Although this model is general, uses only
tree size as a governing parameter, and does not consider speciation we are able use
local resource availability to predict broad regional patterns in plant traits such as
maximum tree height.

Each of these chapters highlights the importance of structure and morphology at
multiple biological scales. In Chapter 6 we show how the importance of structure
extends to the genetic level where the specific encoding of a gene can have implicit
information and functionality beyond the basic translation of codons. We investigate
the observed implicit function of dramatic and frequent changes in the mutation
rate of an organism given the structure of the mutL gene. We show mathematically
that altering mutation rates is an evolutionarily advantageous strategy, and we show
bioinformatically that the specific genetic structure that gives rise to this trait is
under positive evolutionary selection.

Thesis Supervisor: Michael J. Follows
Title: Senior Research Scientist
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Chapter 1

Introduction

Abstract

The relationship between structure and function is a longstanding and central topic
in biology, evolution, and ecology. The importance of morphology is clearly visible
in the diverse forms taken by innumerable organisms in order to perform a myriad
of functions. Examining the great variety of morphological characteristics it would
seem that the overall principle of evolution is the only way to generalize the observed
diversity: given differences in environments and random biological variation a great
multitude of body plans have been invented as adaptations to many dynamic habitats
given specific evolutionary histories. In this thesis we show how focusing on diverse
organisms makes it possible to identify common first-principle laws of evolutionary
organization. More specifically we show how these common laws derive from a con-
nection between organism structure, physical limitations, environmental constraints,
and basic metabolic, biochemical, or energetic principles. Furthermore, we show how
this top level of biological organization holds significant predictive power for regional
ecology and for interpreting the general trends of evolutionary history.
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Since the time of the greek Alcmaeon we have been concerned with the connection

between biological form and function [240]. Aristotle was the first to consider a unity

of body plan [240] articulated later by Goethe as "Nature seems to operate always

according to an original and general plan, from which she departs with regret and

whose traces we come across everywhere" (quoted by ref. [240]). More recently

following the work of Wright 1932 we have come to view biological diversity as a

stochastic random walk through a dynamic fitness landscape which is defined by a

connection between the current environment and genetically determined organism

traits [74, 302, 54]. Out of these perspectives comes an important question: is the

amazing amount of observed biological diversity governed only by highly localized

environments and unique evolutionary trajectories or are there also, in the language

of physics, first-order or dominant constraints which are constant across all of life and

which manifest as obvious commonalities between organisms?

It has been recognized that in addition to the laws of chemistry, which constrain

internal physiological processes, the physical laws are important for regulating nu-

merous processes such as diffusion via body size and structure. Physical laws impose

hard limits and constraints on evolutionary possibilities [249]. For example it has

been noted that many classes of organisms share a fundamental similarity in terms

of common biochemical pathways (with some variation) and thus the major differ-

ences between species are those of the specific chemical interaction networks along

with body structure and size [45]. The scale and structure of organisms alter which

physical processes are important and the degree to which these laws have an effect

on physiology [45]. Thus there has been a great emphasis historically and recently

on using body size as a central property governing organism physiology and func-

tion [249, 45, 43]. Much of this work has had great success in describing the broad

trends of physiology and form across a vast diversity of organisms [43]. Examples

include a power-law relationship between body size and metabolic or growth rates

in numerous classes of organisms, the connection between average plant size and the

density of trees within forests, and the scaling between body size and genome length

in prokaryotes [43, 82, 83, 80, 69].
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It is quite challenging to connect the fundamental laws of physics with the highly

complex and diverse world of biology. Schr6dinger stated that in biology we would

likely find "other laws" of physics [250, 54]. There is much debate over the meaning of

this statement [54], but I interpret it as follows: biology, although entirely constrained

by the fundamental laws of physics, combines those laws in such a complex fashion

that the simplest descriptions are novel macroscopic "laws" derived from reasonable

and physically informed principles. This is similar to work in non-linear dynamics

where features such as chaos are derived from a set of assumptions which cannot

necessarily be traced back to something as fundamental as quantum mechanics but

which provide a foundation for mechanistically describing behavior. Thus in biology

we must look for new descriptions, we must identify the core principles from which

to derive our theory. For example, much recent work has shown that whole organism

metabolic rate can largely be derived from considerations of network architecture and

the challenges of resource distribution [292, 291, 14, 16, 246]. The rules of network

architecture and axioms of graph theory then become a fundamental constraint in

biology. Perhaps these principles are also alluded to in Goethes concept of a "general

plan".

In Dobzhanskys classic work "Genetics and the Origin of Species", which is ar-

gued to have inspired the modern evolutionary synthesis (e.g. [54]), he proposes that

evolutionary biology must connect the causal perspective, which he considers to be

genetic and chemical, with the "historical" perspective which he defines as the com-

parative study of organismal morphology [74]. Similarly, today I think the challenge

is to connect morphology to the environment on one end and to the underlying bio-

chemistry, chemical energetics, and genetics at the other, and to do this while still

maintaining a general perspective on the broad constraints which organize biology.

In this thesis we use several case studies to investigate the connection between

morphology and either environmental success or fundamental energetics and genetics.

In Chapter 2 we examine the connection between fundamental energetics, metabolism,

and the growth and reproductive success of microorganisms. Here we show how fo-

cusing on size and fundamental biophysical energetics leads to a remarkably powerful
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and general model which can unify the growth of single cells with the energetic pres-

sures for major evolutionary transitions. We show that body size is important only

up to a point: shifts in the general whole organism structure dramatically alters their

internal metabolic processes along with the basic limitations they face. The funda-

mental feature of growth and internal metabolic energetics is related to the packaging

of metabolic function. For example the transition from prokaryotes to eukaryotes is

most striking in terms of the dramatic shift in internal organization (e.g. the evolution

of mitochondria), and the evolution of multicellular eukaryotes involves a further evo-

lution of hierarchical structure with dramatic changes in the possibilities for growth

and metabolism [69, 131]. We find that the major evolutionary transitions in the

history of life are accompanied by shifts in both energetics and overall body organiza-

tion (e.g. the addition of mitochondria). Because metabolism and internal structure

are closely linked, the energetic limitations faced by organisms drives evolutionary

changes in body structure to overcome these limitations.

In our work on microbial energetics we found that the evolutionary transition to

multicellular life provides significant energetic and reproductive advantages to organ-

isms. We show that evolving more complex biological structure is advantageous at

given biological scales but this does not explain the process by which these transi-

tions are able to occur. For complex structure to evolve each incremental step must

have some immediate benefit. What are these intermediate benefits and how does

something as complex as multicellularity evolve? In chapter 3 we investigate micro-

bial biofilms as rudimentary multicellular organisms. We find that basic cooperation

within these communities leads to a benefit for the entire population while also pro-

ducing complex spatial morphology. Most striking is that the overall success of the

community is strongly connected with this morphology. The biofilm patterning is the

product of complicated collective cellular behavior and we are able to determine that

the resulting morphology of the biofilm is controlled in such a way that the interaction

with the external environment is optimized for resource acquisition- and the growth

of the colony. Furthermore, some of this morphology is not just the simple emergent

pattern from the feedback between resource availability and growth. Morphology is
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the product of both cellular physiology and response to the environmental situation.

The behavior has likely been selected for such that the emergent patterns resulting

from the feedback with the environment are optimal for the colony. In a sense this is

a rudimentary model for complex multicellular organisms, and provides a plausible

step along the trajectory towards complex multicellular life.

The biofilm itself may represent an evolutionary transition in which cells went from

planktonic and competitive living to the formation of structured communities with

at least minor cooperation. Understanding the mechanisms behind this transition

require us to determine how various cellular physiologies and responses combine to

produce emergent patterns and how these might be selected for in time to modify

community structure. In Chapter 4 we investigate the direct relationship between

physiology and biofilm morphology. Here we examine how an array of single genetic

knockouts leads to a spectrum of spatial patterning. We show that the basic temporal

dynamics of biofilm ridge spacing can be explained by the scales of diffusion and

resource supply. Our analysis of several genetic knockouts, particularly one that

decreases cellular motility, shows that physiology can radically alter the temporal

dynamics or patterning. These genetic knockouts demonstrate that a wide variety

of cellular processes combine to control patterning and form a complex "program"

of sorts for emergent morphology. In order to better uncover the key components of

this "program" we use graph theoretic metrics to analyze the entire spatial pattern

and to find key differences between genetic knockouts. We find that connectivity

and topology can vary significantly between genetic mutants and that colonies can

be partially categorized based on their similarity to a either a regular lattice or a

graph with random connections. Comparing the colony networks to an observed

distribution network (the power grid) we show that the colonies are much more similar

to a lattice. The regular spacing of features within a lattice suggests a dominant

spatial scale and this supports our finding that the processes of diffusion and resource

management are setting the specifics of spatial patterning. This also suggests that

the emergent networks are likely not serving any direct function, such as resource

distribution, beyond increasing the uptake of oxygen as described in Chapter 3. This
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work provides the foundations for a model system which can address long-standing

questions regarding how much of morphology is controlled by genetics opposed to

emergent dynamics.

For biofilms the organization of individual cells into morphologically rich com-

munities can confer significant advantages and it is likely that these communities

eventually evolved into complex multicellular life. Once a community of cells is en-

capsulated into a single complex organism the overall morphological structure then

becomes a central aspect of its evolutionary trajectory. This is because morphology

continues to be the key mediator between the environment and overall fitness. In

Chapter 5 we show this explicitly by developing a model which links the general ar-

chitecture of trees to metabolic success within a given environment. We show that

body size, generalized architecture, and energy budgets can be simply combined to

interpret regional environmental limitations and predict key plant traits such as max-

imum allowable tree height. Our model is relatively simple yet predicts features with

complicated dependencies highlighting that size and structure coupled with physical

processes are the dominant factors governing physiology.

Throughout this thesis we show how structure is important at various scales from

the internal architecture of microbes (Chapter 2) to the overall morphology of com-

munities and complex multicellular organisms. A concept that has been proposed

in the metabolic theory of ecology is a hierarchy of structures and processes which

regulate function at a continuum of physical scales [295, 69]. As highlighted by De-

long et al. [69] metabolism at different scales is likely controlled by the constraints

of different architectures: network driven resource distribution for complex multicel-

lular life opposed to the overall genome size for prokaryotes. Much of this thesis is

focused on intermediate or large-scale morphologies which modulate metabolism via

resource acquisition or supply. It is interesting to consider the constraints of struc-

ture at the most fundamental biological scales. In Chapter 6 we turn our attention

to considerations of the importance of structure at the scale of genome architecture.

We examine how the structure of the encoding for a gene can have embedded within

it implicit information beyond the basic translation of codons [52]. We investigate a
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specific implicit function which directly controls the rate of evolution and fitness of

an organism. Specifically, a repeated codon module in a gene controlling mutation

rate (mutL) leads to a situation where during genome replication the gene can easily

gain or lose a copy of the module. This process leads to a situation where the gene is

intermittently disabled and the corresponding mutation rate of the organism switches

between one of two rates separated by a factor of roughly 102. We show that this

mechanism is evolutionarily advantageous as it balances the ability for an organism

to search for novel physiologies with increased fitness (high mutation rate) while also

maintaining a stable population with the current fitness (low mutation rate). This

mechanism is conserved across many strains and bacterial species and we show that

it is likely under positive evolutionary selection.

In general, we show in this thesis that the continuing evolution of biological struc-

ture can be described by considering the dominant physical processes which connect

structure to function. We find that biological diversity is the product of both the

dominant physical laws and evolutionary diversification: for a given class of organ-

isms there exists a set of dominant physical constraints which lead to fundamental

commonalities, however these constraints shift across different biological scales and

environments and, as such, evolutionary innovations lead to diverse groups of organ-

isms with distinct shared commonalities.
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Chapter 2

Growth, metabolic partitioning,

and the size of microorganisms

Preface

In this chapter we show how connecting body size to basic principles of energetics

allows us to derive a general description of the growth of single cells and popula-

tions and anticipate, and interpret the implications of, major evolutionary life-history

transitions. Our work highlights how simple physical principles can be coupled with

structure to predict a wide variety of biological properties from the scale of single

cells to evolutionary occurrences across vastly different biological scales.

This chapter is a reproduction of the article "Growth, metabolic partitioning,

and the size of microorganisms" published by C.P. Kempes, S. Dutkiewicz, and M.J.

Follows in the Proceedings of the National Academy of Sciences [131] where I am the

corresponding author.

For this work I conceived the theoretical framework, compiled all of the data,

and carried out the analysis and writing. Mick Follows and Stephanie Dutkiewicz

contributed by providing guidance, discussion, and editing portions of the published

text.
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Abstract

Population growth rate is a fundamental ecological and evolutionary characteristic of
living organisms but individuals must balance the metabolism devoted to biosynthesis
and reproduction against the maintenance of existing structure, and other function-
ality. Here we present a mathematical model which relates metabolic partitioning to
the form of growth. The model captures the observed growth trajectory of single cells
and individuals for a variety of species and taxa spanning prokaryotes, unicellular eu-
karyotes, and small multicellular eukaryotes. We find significant variability in the
relationship between metabolism and body size both within a species and between
species of the same taxon. In contrast, our analysis suggests that the per unit costs
of biosynthesis and maintenance are conserved across prokaryotes and eukaryotes.
However, the relative metabolic expenditure on growth and maintenance of whole or-
ganisms clearly differentiates taxa: prokaryotes spend an increasing fraction of their
entire metabolism on growth with increasing cell size, while eukaryotes devote a di-
minishing fraction. These differences allow us to predict the minimum and maximum
size for each taxonomic group, anticipating observed evolutionary life-history transi-
tions. The framework provides energetic insights into taxonomic tradeoffs related to
growth and metabolism and constrains traits which are important for size-structured
modeling of microbial communities and their ecological and biogoechemical effects.

2.1 Introduction

Understanding the fundamental principles which underpin the rates of growth and

reproduction of organisms is of central ecological importance, ultimately affecting

long term evolutionary trajectories of populations and communities. The growth

of an individual, including single cells, depends on multiple metabolic, biochemical,

and physiological processes (e.g. [171, 282, 256, 279, 299, 229]). Microbes exhibit

a diversity of biochemical and metabolic strategies, making it difficult to evaluate

and synthesize the associated fitness tradeoffs between species. How do different

organisms allocate and manage internal metabolic resources in order to govern the

complicated process of reproduction? Here we combine basic cellular bioenergetics

with macro-ecological perspectives to produce a framework which is useful for exam-

ining and interpreting the growth trajectory of a single cell, and also provides insight

into major ecological patterns in population growth rates. It helps us to interpret

major evolutionary life-history transitions between micro-organisms from a bioener-

getic perspective. The model is general and can be applied across a broad spectrum of
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species spanning two of the three domains (Eukarya and Bacteria) and four kingdoms

(Bacteria, Fungi, Plantae, and Animalia).

2.2 Metabolic Perspectives

In general the growth and metabolism of organisms have been investigated at multiple

levels of organization. At one end of this spectrum, experimental techniques are

expanding our ability to track single cells through a division cycle revealing the growth

trajectories of individual organisms even at the microbial scale (Figure 2-1) [110, 231,

232, 201, 119, 281]. At the population scale, single-species culture studies have been

used to understand the relationship between resource use and growth rate [211, 92,

245, 254, 145, 33]. At the largest scale ecologists have looked across many species and

taxa of organisms to characterize general power law relationships between body size

and growth rate, metabolism or other traits (see for example [193, 140, 44]). Here we

present a model which combines these three perspectives in order to understand the

form for growth of single cells and populations of individuals for diverse organisms.

2.2.1 Community metabolism and energetics

We begin at the population scale where numerous continuous culture studies have

been used to characterize microbial energetics. Typically, they reveal a linear rela-

tionship between biomass weighted resource consumption and growth (dilution) rate

[211, 92, 245, 254, 145, 33]. The Pirt model [211] interprets this relationship in terms

of a partitioning between growth and maintenance:

Q=L P + P (2.1)
Y

where Q is a consumption rate per unit mass of a limiting resource (mol resource s-1

- g cells -1), p .is the specific growth rate (s-1), Y is a yield coefficient (g cells - mol

resource -1), and P is a maintenance term (mol resource - s-1 - g cells -) (for a list of

symbols see Table A.5). Maintenance metabolism is defined as the consumption rate
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at zero growth, or the minimal requirement for survival. The total consumption rate,

Q, can be measured by oxygen use [92, 245, 254], light absorption [145], prey ingestion

[33], or any other resource consumption rate which is assumed to be proportional to

the total metabolic rate of the organism.

This perspective of cellular energetics has broad ranging applications, from in-

terpreting the metabolic drivers of food or biofuel production efficiency, to under-

standing the energetics of human pathogens [48]. Here we will use the Pirt model to

phenomenologically motivate a relationship between single cell growth and metabolic

allocation, drawing analogies with population studies.

2.2.2 Interspecific Metabolism

In a complementary view power law relationships between body size and numerous or-

ganisms traits, including total metabolism, have been identified for organisms ranging

from microbes to mammals [193, 295, 140]. Recent theoretical work suggests mecha-

nisms which underpin these scalings for multicellular organisms (e.g. [44, 140, 15]).
Total metabolic rate, B (W), is typically measured over several orders of magnitude

and is expressed as

B = Bom", (2.2)

where Bo (W g-') is a parameter reflecting the size normalized metabolism and

accounts for metabolic differences between organisms that are not related to size,

including temperature dependence (see Appendix A.2). The exponent a describes

how quickly total metabolism changes with body mass. There has been much debate

over the value of the exponent of these scalings and its interpretation (e.g. [297, 179]).

Recent work shows that different broad groups of organisms follow characteristically

different power relationships [69, 179] with a ranging from 1.96 for prokaryotes to .79

for metazoans [69].
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Figure 2-1: Growth curves for (A) E. coli data from refs. [231, 232] (B) L. borealis
from ref. [201] (C) C. pacificus from ref. [281] (D) C. albicans from ref. [119]. Dots
indicate the cell mass as a function of time from the experiments in refs. [231, 232,
201, 281, 119]. The red lines are the best fit of Eq. 2.8. The values of a, y0 and b that
provide this best fit are given in Table A.4. For C. albicans (D) the red curve tracks
the fitted growth of the total budding complex of yeast (blue points), while the green
and orange points and curves represent the growth of individual daughter buds. The
orange and green curves are predictions assuming that all growth energy from the
entire complex is devoted to a bud as it forms (see Appendix A.7 for details). The
cyan points represent the growth of the mother cell which is identical to the total
complex until the formation of daughter buds. Data and model fits for additional
individual cells are provided in the Appendix (Figures A-4 through A-10).
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2.2.3 Growth trajectories of single cells and individuals

Models of cellular division have traditionally focused on the interconnected fluxes of

available resources into the cell and between different internal physiological processes

or partitions (e.g. [256, 299, 229]) or on the kinetics of regulatory proteins (e.g. [279]).

We consider a growth model for unicellular organisms that incorporates the basic

energetic partitioning of the Pirt model along with metabolic scaling principles. The

mass specific consumption rate (Eq. 3.1) from the Pirt model of an entire population

of cells can be related to the metabolic rate of an average single cell by

N dei
B = QfN = + PNM (2.3)

Y dt

where N is a conversion between resource use and energy production (J mol resource

-1). fn- and B are respectively the population average, per-cell mass and metabolic

rate. Eq. 2.3 implies that maintenance costs scale linearly with mass and that the

unit cost of biomass production is constant (consistent with refs. [293, 179, 106, 121]).

Let us also assume that the total metabolism of a single cell follows this relationship

and is divided between the growth of new biomass and the maintenance of existing

biomass leading to the following single-cell model of metabolic partitioning

B = Em dm + Bmm. (2.4)
dt

Here Bm (W g- 1) is the metabolic expenditure to support an existing unit of mass, Em

(J g- 1) is the metabolic energy needed to synthesize a new unit of biomass, m (g) is the

current mass of the organism, and dm/dt (g s- 1 ) is the growth rate of an individual.

When B follows a power law with mass (Eq. 2.2) and is combined with Eq. 2.4, this

set of assumptions is termed the Ontogenetic Growth Model (e.g.[293, 179, 106, 121])

which has previously been applied to multicellular organisms assuming a fixed value

of a. Here we will treat a as a free parameter which might differ between species.

Normalizing by B, this single cell budget can be expressed as the fraction of total
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metabolism being used for growth and maintenance

Emdm Bm
1 = + m (2.5)

B dt B

Substituting B from Eq. 2.2, we can define the time dependent fraction of metabolism

devoted to growth and maintenance respectively as

Em dm
E = (2.6)

Boma dt

and

B m m - . (2.7)
Bo

Rearranging for dm/dt and integrating, we can describe the growth trajectory of

an individual cell, with initial mass in, by

- 1/(1-a) ( 1/(1-a)
m (t) = 1 - yoel-"Nt m -o, (2.8)

(e.g. [24]) where b = B2/Em (s-) is the ratio of the maintenance metabolic rate

to biosynthetic cost, and -Yo =y (t = 0) = 1 B- Tm" is the fraction of metabolism

devoted to growth for a cell at this initial mass (see Appendix A.3 for details). Thus,

given an initial mass, the growth trajectory m (t) depends on only three parameters

lo, b, and a. These parameters simply combine the fundamental biological quantities

of Em, Bm, BO and a.

This solution for m (t) suggests a variety of possible forms for the growth trajectory

of an individual, as shown schematically in Figure 2-2 and for individual growth data

in Figure 2-1. The bioenergetic parameters a, b, and -yo exert a strong influence on the

growth of an individual to division. A shorter generation time (faster division rate)

is the result of increasing the metabolic scaling exponent a, increasing the initial

percentage of metabolism devoted to growth yo, or increasing b, the ratio of the

unit maintenance metabolism to the unit biosynthetic cost (illustrated in Figure 2-2

A and B). Increasing a yields a greater total metabolism and increasing the growth
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Figure 2-2: Schematic of the growth trajectories from our model. The growth tra-
jectories predicted by Eq. 2.8; the mass of an individual is plotted against time.
Division occurs when the mass of the organism crosses the division mass, md. The
relative contribution of the three metabolic parameters a, b, and -Yo to division time
are illustrated. In each panel species 1 (blue) is compared to a species (red) which is
identical except for a change to one of the three parameters. Organisms will divide
more quickly if the metabolic scaling exponent, a, or the ratio of the unit mainte-
nance metabolism to unit biosynthetic cost, b, are increased or if the initial percentage
maintenance, -yo is decreased. For a < 1 organisms grow towards an asymptotic mass,
while for a > 1 organisms do not.
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fraction y7o implies a greater fraction of metabolism devoted to biosynthesis. Similarly,

increasing b alone requires decreasing the biosynthetic cost Em (increasing Bm will

simultaneously decrease 'Yo) and this implies more efficient biosynthesis.

Previously, growth trajectories of single cells have been considered to follow either

an exponential or linear relationship (e.g. [110, 231, 232]). The model described

in Eq. 2.8 indicates additional forms for growth where an exponential is a special

case of Eq. 2.4 with a = 1. For a > 1 the growth rate of an individual, and the

fraction of metabolism devoted to biosynthesis, continues to increase with mass until

division. For a < 1 an organism will grow towards an asymptotic mass (Figure 2-2 A)

with growth rate initially increasing for young cells but decreasing as they approach

division, and with the biosynthesis fraction decreasing over the entire life cycle.

2.2.4 Growth of populations

A common measure of fitness in an ecosystem is the population growth rate, y, of a

species. The single cell (or single individual) model of Eq. 2.8 can be evaluated to

provide the generation time G [293], the time for one organism to reach reproductive

mass, MAd EmO,

G = In '-0 (2.9)
b(1 -a) 1 - e(1 (1 - yo)_

where for simple fission E 2. Following ref. [247] the population growth rate, P is

given by this generation time along with the average fecundity, f, and percentage of

the population to reach the age of reproduction, L:

y = In (Lf) /G. (2.10)

Considering simple fission one could assume that pma In (2) 7G.

2.3 Bioenergetics of species and taxa

Here we fit the framework outlined above to observed growth trajectories of single

cells (or single individuals) and to data relating population growth rate to body size.
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We compare the underlying bioenergetics of different species, as represented by the

parameters of our framework, using these fits along with separate estimates obtained

from growth-resource consumption data for populations of cells.

We compiled published measurements of the size of single cells as they grow

through a division cycle for five species including the heterotrophic bacteria E. coli

[231, 232] and B. subtilis [110], two photo-autotrophic marine diatoms (Thalassiosira

weissflogii and Lauderia borealis) [201], as well as budding yeast C. albicans [119]. In

addition, we used growth data for individuals from two small (sub-millimeter), mul-

ticellular marine copepods (Calanus pacificus and Pseudocalanus sp.) [281]. Fitting

model Eq. 2.8 to the time-changing size of each individual, we infer the values for b,

-yo and a (Table A.4). We used a least squares analogy and the Nelder-Mead simplex

method (please see Appendix A.9 for details and a discussion on curve fitting).

We found that Eq. 2.8 was able to accurately describe the growth trajectories of

unicellular and small multicellular individuals from two of the three domains (Eukarya

and Bacteria) and four kingdoms (Bacteria, Fungi, Plantae, and Animalia) (Figure

2-1, A-4 through A-10).

We were able to estimate a single interspecific value of a and the bioenergetic

parameters by fitting Eq. 2.10 to compiled measurements [69] of population growth

rate and body size. We also compiled continuous culture experiments in order to

estimate the bioenergetics of a single species at the population scale. Combining Eqs.

3.1, 2.3, and 2.4, the population average value for b can be evaluated from continuous

culture data as b = PY, summarizing all of the information of a standard "Pirt plot".

Similarly, the average fraction of metabolism devoted to growth is given by

1 1
7 _y I . (2.11)

1+ 1+ -

Here the fraction of metabolism devoted to growth has a simple meaning in terms of

the dimensionless parameter b/p = B, representing the ratio of maintenance and

biosynthesis rates per unit mass.
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2.3.1 Variation in a the metabolic exponent

Metabolic considerations of ecology often emphasize the scaling exponent a, with

macro-ecological compilations revealing relatively constant values for a over large

ranges of body size. Here, our evaluations of a from individuals reveal considerable

variation at both the species and single cell level (Figure 2-3 C, Table A.4). For

individual E. coli cells the exponent varies between 0.57 and ~ 3, though all have

have a similar form to their growth trajectory (Figure 2-1 A and A-4) due to the

short timescale for division.

The cell-to-cell variation in the exponent could be the result of a variety of phys-

iological effects at the individual scale including natural phenotypic variability, fine-

scale differences in experimental conditions, or the prior history of each cell. As well

as variation within a species we also find that the average exponent for a species often

deviates significantly from the interspecific value for each of the three major taxo-

nomic groups. For example, for the prokaryote B. subtilis a = 0.98 ± .30, significantly

different than the interspecific value of 1.96 t .18 based on a range of prokaryotes

found in ref. [69]. We thus illustrate that the general constraints which are hy-

pothesized to organize allometric scalings at the taxonomic level can be substantially

violated at the single species level. This is perhaps least surprising for prokaryotic

organisms (see Discussion) but it should be noted that deviations of this magnitude

may be significant when attempting to apply uniform scalings and parameterizations

in ecological models.

We also obtain an interspecific estimate of the metabolic exponent, a, by fitting

our population model (Eq. 2.10) to the data for growth rate against body size for

many species (see Appendix A.6). We find that that the fitted values of a agree with

the compiled data [69] for metabolic rates (we find 1.66 for prokaryotes and and .80

for eukaryotes). The fitted curves accurately capture the interspecific form for growth

(Figure 2-3 A) which is normally fit by a power law (also drawn in Figure 2-3 A).

The model fitted here is more complicated than a simple power law but it brings to

bear additional information in the form of fundamental bioenergetic constraints (i.e.

37



10A
100

0.01.

10 01

body mass (g)
1.0
0.8
0.6
0.4
0.2
0 0

10- 17 io -1 109
2.5 C
2.0
1.5
1.0
0.5
0.0

10-
10-4 D

, 10-1

10-8

10 ' io'1 10

1000 107

0.1 1000 10
7

9 1o 0.1 1000 107

Figure 2-3: (A) The interspecific plot of specific growth rate (day-') against size
along with the metabolic constants (B-D) inferred from fits of our model to indi-
vidual growth trajectories all plotted against organism mass. The prokaryotes are
colored red, the eukaryotes blue, and the small metazoans green. In each panel dia-
monds represent the results for single individuals while the points are estimates from
compiled population studies (ref. [69] for A, and our own compilation for C and
D). In (A) the colored curves represent the best fit of the framework to interspecific
growth using Eqs. 2.9 and 2.10 while the black curves are the best fit power law
relationships [69]. The asymptotes illustrate the size limitations of prokaryotes and
unicellular eukaryotes. (B) The average percentage of metabolism devoted to growth,
-7, illustrates the differences in metabolic partition across the three major taxonomic
groups (for prokaryotes there is a dense clustering of points near 1 that is not visi-
ble). The colored curves are predictions based on fits from (A). (C) the metabolic
scaling exponent, a, shows variation at the species and taxonomic levels where the
dashed line represents a = 1. (D) The maintenance to biosynthesis cost ratio, b, is on
average constant across species and major evolutionary transitions and the colored
curves represent the mean value for each taxon. The error bars represent the standard
deviation from the mean of each parameter.
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unit biosynthetic costs), discussed in detail below. The model approximates a simple

power-law over much of the size-range of the organisms under examination.

2.3.2 Common energetic costs

From the fits to individual cells we find that b, the ratio of the unit maintenance

metabolism to biosynthetic cost, ranges between ~ 10- and ~ 10- s-1 but exhibits

no trend with body size (Figure 2-3 D, Table A.4) nor any clear distinction between

the three major evolutionary life-history groups (prokaryotes, single-cell eukaryotes,

metazoans). Compiled population-based estimates, b, covering a variety of prokary-

otic and eukaryotic species also show no trend with size or taxonomic grouping (Figure

2-3 D) but have a greater variance (more than an order of magnitude) owing to the

range of culture conditions and growth on different substrates (Fig. A-1, Table A.2).

Though noisy, the relative constancy of b across cell size and between taxa suggests

a fundamental bioenergetic commonality (see Discussion).

2.3.3 Variations in metabolic partitioning

Given Eq. 2.7 the metabolic partitioning should follow a relationship which depends

on the size of an organism, the unit bioenergetic costs (represented by b), and the

value of a. Since b is on average constant this implies that we should see changes in

the partitioning across taxa based on changes in the metabolic scaling exponent a.

Using Eq. 2.11 and the interspecific fit for p (Figure 2-3 A) it is possible to predict the

interspecific dependence of 7y on mass for each species and taxa. In Figure 2-3 B we

provide the predicted curves for the metabolic partitioning of prokaryotes, unicellular

eukaryotes, and small multicellular organisms. For prokaryotes the percentage of

metabolism devoted to growth is constantly increasing with increasing body size while

for eukaryotes it is constantly decreasing. This is associated with the change in

the interspecific value of a which is larger than one for prokaryotes and less than

one for eukaryotes. The fits to single cell growth trajectories provide an estimate

for the average metabolic partitioning, y. These species-specific points generally
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follow the predicted curve (Figure 2-3 B). For population-based estimates we used

the compilation of continuous culture data to estimate ' for each species; these also

fall generally along the predicted curve.

This analysis reveals that large prokaryotes and small eukaryotes devote the high-

est fraction of total metabolism to growth and there is a size range where the two

classes have similar metabolic partitioning. Here we infer a tradeoff between devot-

ing resources to maintenance purposes and dividing quickly which is most easily seen

by normalizing each growth trajectory (see Appendix A.4). Figure A-2 illustrates

that as organisms live over longer normalized time-scales the fraction of metabolism

devoted to growth decreases and this corresponds to moving across the three major

life-history transitions.

2.3.4 Bioenergetic limitations and differing reproductive strate-

gies

Given a set of bioenergetic parameters, the model presented here predicts some general

limitations and constraints facing different classes of organism. First we note that a

viable organism must allocate metabolic resources to growth at its initial size, that

is, 'Yo > 0. This implies a limitation on the initial mass dependent on the metabolic

scaling: for a > 1,

mo > Bn(2.12)
(Bo

while for a < 1

mo < . (2.13)
BO

This gives a lower bound on size if a > 1 and an upper bound on size if a < 1. These

limitations appear as the asymptotes in Figure 2-3 A for our fitted population growth

equation. For prokaryotes this model predicts a lower bound on size of 1.59 x 10-14

g, which is close to the mass of the smallest observed prokaryotes, of the genus

Mycoplasma, which are between 1.2-4 x 10-14 g (the smaller estimated from ref. [180]

and the larger given by [69]). For unicellular eukaryotes we predict an upper bound
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on size at 3.89 x 10- which corresponds to the general scale at which there is a major

evolutionary life-history transition to multicellularity. Thus the model presented here

can anticipate evolutionary shifts based on underlying energetic considerations.

As prokaryotes grow larger, and as eukaryotes grow smaller, they move away

from the limit where all energy is devoted to maintenance. In doing so the fractional

allocation of metabolism devoted to growth approaches unity for large prokaryotes and

small eukaryotes (Figure 2-3 B) and this imposes a different limitation: at some point

the increasing biosynthetic rates cannot be sustained by the fundamental processes

of the cell (see Discussion). It should be noted that there is a size range where both

eukaryotes and prokaryotes devote nearly all of their resources to biosynthesis, and

it is within this range that the evolutionary transition between the two occurs. The

transition from prokaryotes to eukaryotes shifts the metabolic exponent such that the

unit biosynthesis rates begin to decrease with increasing body size allowing eukaryotes

to grow larger.

In summary, the minimum size for prokaryotes is bounded by the limit where

all energy is devoted to maintenance while the maximum size is bounded by the

demand for unsustainable biosynthesis rates. The transition to unicellular eukaryotes

is accompanied by shifts in physiology and metabolic scaling which allow them to

devote an increasing fraction of total metabolism to maintenance with increasing size.

Hence their lower size limit is bounded by unachievable biosynthesis rates, while the

largest unicellular eukaryotes face a limit where they cannot allocate any metabolic

energy to biosynthesis, setting the stage for the transition to multicellularity. Here

there is not a dramatic shift in the metabolic scaling, rather the more advanced

body plans of multicellular organisms afford more complicated reproductive strategies

such as internal gestation and individuals hatched from an egg, resulting in various

alterations to the generation time as represented by Eq. 2.9.

The importance of reproductive strategy in the eukaryotes is illustrated by the

budding yeast C. albicans which reproduces in a manner that differs from the standard

fission of unicellular eukaryotes. For a complex of budding yeast, as new buds form

other parts of the complex reach an asymptotic size (Figure 2-1 D) which would
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suggest that a < 1. Yet fits of the model (Eq. 2.8) to the entire complex yield

a = 1.14 t 0.07. The asymptotic size reached by each bud is not the result of a

metabolic limit but is rather due to the entire complex sharing metabolic resources.

The growth of the buds can be predicted by assuming that the bud is using all of the

growth energy of the entire complex (see Appendix A.7). Buds grow more rapidly

due to the assistance of the entire complex than if growing in isolation. We also

find that the resting phases of the autotrophic diatoms (e.g. T. weissflogii) alter

the apparent energetics found within our framework (see Appendix A.8) because

biosynthetic activities are not linked to changes in size [171]. Such reproductive

strategies explain how the upper bounds proposed by our model can be overcome and

how they could lead to the transition to multicellular life because of the corresponding

growth advantage.

2.4 Discussion

Population growth rate is a fundamental characteristic, critical in our understand-

ing and interpretation of cellular processes, from basic physiology to the ecology of

microbial communities. Simplified models of cellular growth and metabolism are

widely applied in laboratory and ecological contexts. Macro-ecological descriptions

generally capture broad trends across many species and highlight major patterns in

biology but often lack the ability to interpret differences between species or describe

detailed cellular processes. At the other end of the spectrum, explicit models of cell

division attempt to capture the interconnected dynamics of internal biochemistry,

external resources, and/or physiological regulation (e.g. [256, 279]). Recent advances

in genomics enable detailed metabolic reconstructions which can predict the growth

dynamics of a cell (e.g. [77, 229]). Here we have developed and applied a relatively

simple framework which combines macro-ecological and energetic perspectives. It

provides insight into single cell growth dynamics and is also useful for considering

interspecific and taxonomic trends in population growth. We have used the model to

show how organisms in different taxonomic groups are subject to different constraints
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on metabolic expenditure at the individual scale, allowing the model to anticipate

and interpret three major evolutionary life history transitions from a metabolic par-

titioning perspective.

Until recently, macro-ecological studies have found that the scaling exponent for

metabolism with body size, a, is approximately constant (the often used 2/3 or 3/4

power law) over many orders of magnitude in body size [44, 297]. A recent empirical

analysis has revealed that power law relationships exist for micro-organisms with

different values of a based on major taxonomic groupings[69].

In this study it was critical to allow a to be a free parameter in order to accurately

interpret the bioenergetics of individual microbial species (see Appendix A.9.1). We

find that a not only varies between taxa [69] but also between cells of an individ-

ual species and between species of the same taxonomic group. The averages over

many species and individuals (i.e. the interspecific values) of a reveal the broad

physiological organization of different taxa. Variation around these values illustrates

that individual species can modify their physiology away from the general constraints

facing a class of organisms.

In contrast to the taxonomic variations in a, we find that the average value of b

(the ratio of unit maintenance metabolism to biosynthesis cost) is unchanging across

major evolutionary transitions and has no significant trend with body mass within

or between taxa. This suggests that the basic, per unit mass costs of biosynthesis

and maintenance are common across broad taxonomic divides; these energetic costs

are likely related to highly conserved, common metabolic machinery and function

[86, 69]. This is consistent with the success of thermodynamic interpretations of the

yield, Y, which is a predictable function of the substrate in heterotrophic microbes

[284, 118]. Yet b also requires an understanding of the maintenance metabolism P

whose fundamental meaning still requires future investigation.

The framework developed here is broad and flexible and can capture the inter-

specific relationship between growth rate and body mass in micro-organisms using

the interspecific value of a for each taxon and a single average value of b. Since b

is, on average, a constant value the interspecific trend in metabolic partitioning (rep-
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resented by -y) is also dictated by body size and a (e.g. Eq. 2.11). By compiling

laboratory data within this framework, we have a vehicle to interpret and hypothesize

the taxon specific energetic limitations to population growth and its relationship to

body size (Figure 2-3 A, Eq. 2.9). We can anticipate the minimum and maximum

size of prokaryotes and eukaryotes, and suggest the body size where shifts between

evolutionary life histories occur.

Prokaryotes are bounded by a minimum size below which they are unable to

conduct biosynthesis since all metabolism must be devoted to maintenance. As they

become larger, growth rate continually increases up to a maximum size, where higher

biosynthesis rates are not achievable.

The smallest known prokaryotes are similar in size to the predicted lower bound

and also possess the smallest observed genomes, which are assumed to be close to

the minimum required to live alone in culture [180]. Our framework therefore sug-

gests that the minimal genome is connected to the limit where biosynthesis is just

viable and should consist of the required maintenance genome plus the smallest set

of additional genes needed to conduct essential biosynthesis. We hypothesize that

larger prokaryotic genomes allocate an increasing fraction of genes to biosynthesis

corresponding to an increase in the fraction of metabolism devoted to growth. This is

consistent with the argument that the interspecific scaling of prokaryotic metabolism

is due to a relationship between body size, genome length, the overall metabolic com-

plexity of prokaryotes and their ability to encode for a diverse set of enzymes [69].

Yet genome length does not change over the life cycle of an individual cell and thus it

is unclear what sets the scaling of metabolism at the single cell scale. The potential

link between genome length and the species specific value of the metabolic exponent

could be directly tested by pairing numerous existing prokaryote sequences with a

larger number of future estimates for a obtained from single cell growth trajectories

or population studies which track average cell size.

Many other factors may contribute to metabolic scaling at the single species level.

New techniques to track the transcriptional composition of a population have revealed

that prokaryotic cells can maximize growth rate by adjusting the partitioning of
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transcriptional resources between producing basic components for protein synthesis

(amino acids) or building more ribosomes to construct them [308]. Faster growing cells

are observed to allocate a greater proportion of promotor activity to ribosomes than

to metabolism [308]. Our finding that population growth rate increases as the fraction

of total metabolic resources devoted by individual to growth increases is consistent

with this observation (Eqs. 2.6 and 2.11). Further experiments could be designed to

seek correlations between transcriptional partitioning or the number of ribosomes and

variations in metabolic scaling, bioenergetic parameters, and metabolic partitioning

of particular prokaryotic species. Such a link would be important in underpinning

the fundamental drivers of metabolic scaling and the key differences between species

and taxa.

We hypothesize that the maximum size for prokaryotes is determined by a point

where the overall biosynthesis rates cannot be met by basic cellular processes. For

example prokaryotic genome length increases with body size following a power law

[69], while the generation time decreases with body size according to Eq. 2.9, and this

predicts that at some point the time to replicate the genome will be slower than the

generation time (e.g. the maximum nucleotide copying rate is insufficient). Another

possibility is that since biosynthesis rates scale more quickly than the overall volume of

a bacterium and at some point the number of ribosomes required for protein synthesis

cannot fit within the cell.

The framework developed here suggests that eukaryotes, in contrast to prokary-

otes, exhibit a decrease in metabolism and population growth rate with body size, also

consistent with [69]. Smaller eukaryotes allocate all of their metabolism to growth

(similar to the larger prokaryotes) and cannot be any smaller and still achieve the

required rate of biosynthesis (the genetic and synthesis arguments for prokaryotes

moving towards larger size should also apply for eukaryotes moving toward smaller

sizes). As cell-size increases, growth rate decreases and expenditure on maintenance

is enhanced. Eventually, the single-celled eukaryotes reach a size at which they are

devoting all metabolism to maintenance and, with no energy for biosynthesis, they

are no longer viable. Beyond this upper size limit, other strategies come into play,
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including multi-cellularity.

It appears that the transition between prokaryotes and eukaryotes is accompanied

by a fundamental shift in strategies for metabolic partitioning, consistent with signifi-

cant differences in their basic physiology. For example, the average number of proteins

made per mRNA is an order of magnitude higher in eukaryotes than in prokaryotes

[160] implying that eukaryotes are able to produce far more proteins for the same

amount of transcriptional resources. Eukaryotes are also able to expend an order of

magnitude greater metabolic power on each gene, regardless of function, compared

with prokaryotes [143] which may alleviate genome length or transcription related

constraints. The increased metabolic power for eukaryotes has been hypothesized to

be the result of the presence of mitochondria, which create a greater internal surface

area for ATP production [143]. Similarly, the metabolic exponent for unicellular eu-

karyotes is hypothesized to be the result of the linear scaling between mitochondrial

volume and overall cell volume [69]. These hypotheses could potentially be tested

by correlating the value of a estimated from single cell or continuous culture growth

data with concurrent measurements of the total mitochondrial volume in a cell.

Our framework suggests that the bioenergetic limitations of binary fission faced

by the simplest unicellular eukaryotes may be overcome by the development of more

complicated reproductive strategies. This is consistent with the transition to more

elaborate body plans and the increasing presence of internal distribution networks

which are argued to underpin the metabolic scaling (i.e. value of a) observed across

a vast range of multicellular body sizes [69]. Although the basic metabolic framework

outlined here can be expanded to account for altered reproductive strategies (e.g

budding yeast) certain reproductive strategies, such as resting or dormant phases,

highlight the limitations of this framework when trying to estimate metabolic scalings

from the growth trajectories of individuals alone (e.g. T. weissflogii). To better

constrain a and to test hypotheses concerning the role of multicellularity and other

strategies, simultaneous experimental determinations of the time evolution of body

size and resource consumption could provide critical information.
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2.5 Conclusion

We have developed a framework to characterize the growth and division of individ-

ual cells. We have used it to interpret the metabolic scaling, bulk bioenergetics,

and metabolic partitioning of diverse species using the growth trajectory of individ-

uals and laboratory populations. We find that the relative per unit metabolic costs

of biosynthesis and maintenance are the same for prokaryotes, unicellular eukary-

otes, and small metazoans, cutting across major evolutionary life history transitions.

In contrast, prokaryotes and eukaryotes have fundamentally different strategies and

limitations in the allocation of their metabolic resources which coincide with the

observed evolutionary transitions. The allocation of all metabolic resources to main-

tenance purposes limits the size of the smallest prokaryotes and largest unicellular

eukaryotes, while an inability to meet the ever increasing biosynthesis rates limits

the largest prokaryotes and smallest unicellular eukaryotes. Metabolic constraints for

larger eukaryotes are relieved by alternative reproductive strategies and multicellu-

larity.

The metabolic theory has traditionally focused on average values and general

principles across many species, here we illustrate strong variation of the metabolic

size-scaling exponent at the individual species level. This framework provides av-

enues for connecting metabolic scaling to cellular characterizations such as genome

length, or the partitioning of transcriptional resources, which may help to further

elucidate the fundamental factors driving the evolutionary shifts discussed in this

paper. This framework connects ecological fitness with basic bioenergetics and it

may provide a mechanistic strategy for incorporating taxonomic differences into size-

based approaches for modeling microbial systems (e.g. [12, 155]) in order to better

understand complex microbial communities and their role in biogeochemical cycles.
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Chapter 3

Biofilm features: environmental

response and optimization

Preface

In Chapter 2 we saw how major evolutionary transitions are accompanied by energetic

implications, including advantages which allow organisms to evolve greater size and

complexity. We found that single-celled organisms living in a communal context

gain significant energetic advantages by sharing metabolic resources. We also found

that complex multicellular life allows organisms to escape the limitation faced by

single-celled eukaryotes where all resources must be devoted to maintenance purposes.

Nevertheless, there is still much to understand in terms of the processes by which

complex multicellular life evolved, along with what specific metabolic advantages are

conferred by this transition. In this next chapter we study biofilms which exhibit

complex spatial patterning and which represent the possible beginnings of complex

multicellularity. We find that aspects of spatial patterning can largely be explained

by the metabolic dynamics within colony features and the effect that geometry has

on resource acquisition.

This Chapter is in the form of a mature draft of a manuscript "Biofilm features:

environmental response and optimization" by C.P. Kempes, C. Okegbe, Z. Mears-

Clarke, M.J. Follows, and L.Dietrich. I will be the co-corresponding author for this
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paper.

The work on biofilms stems from a close collaboration between theoretical de-

velopments and modeling, which I developed, and experimentation carried out by

LarsDietrich, Chinweike Okegbe, and Zwoisy Mears-Clarke. Our collaborative rela-

tionship has evolved into the continual feedback between experiments which inspire

theory and modeling predictions which suggest certain experiments or specific data

analyses. For example the video measurements of the colony show interesting tempo-

ral dynamics which inspired me to create a computer interface for manually extracting

the position of colony features. For this work I have derived many theoretical mod-

els and numerical simulations and conducted a variety of novel data extractions and

analyses.

Lars Dietrich and I have had many long discussions regarding the various processes

occurring within the biofilm system and the implications for complex multicellular

evolution. Many of the ideas in this thesis stem from those conversations.

Mick Follows provided discussion and feedback on the theoretical, modeling, and

ecological aspects of the work. Some of the early development of this work (along

with Chapter 4) occurred during a term project that I conducted for Roman Stocker's

course on microscale physical ecology. This course guided many of our concepts of

cellular response and diffusive processes.
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Abstract

A longstanding goal in biology is to understand the relationship between form and
function and to determine how multicellularity morphologies evolved and conferred
metabolic and fitness advantages to organisms. Here we show that bacterial biofilms
produce structures which maximize cellular growth and the potential reproductive
success of the colony. We develop a mathematical model of resource availability
and metabolic response which accurately predicts the measured oxygen distribution
within colony features. Using this model we demonstrate that the observed geometry
of the colony is optimal with respect to whole colony growth rate. Since our model is
based on resource dynamics we are also able to anticipate shifts in feature geometry
based on external oxygen availability.

3.1 Introduction

The growth of cells as part of a community is a common occurrence in natural sys-

tems ranging from bacterial biofilms in the lungs of cystic fibrosis patients [301] to

cyanobacterial colonies and mats in marshes, lakes, and oceans [264, 124]. Even

complex multicellular life, such as plants and animals, is in essence a diverse com-

munity of cells living within a highly structured and regulated environment where

survival is based on selection of the whole community and its properties. Commu-

nal living at multiple scales has been shown to provide various advantages. From a

resource perspective recent work has shown that simple cooperation within aqueous

microbial biofilms allow groups of genetically similar cells to grow tall mushroom-like

structures which reach beyond local depletion zones into areas of fresh resources (e.g.

[304, 305]). In a metabolic context other work has shown that basic colonial growth

(e.g. budding yeast) and the evolution of complex multicellular life is accompanied by

enhanced growth efficiency and several energetic advantages [131, 143, 295]. A central

question in each of these contexts is once community organization is established how

does the structure of and processes within that community evolve in time?

A key aspect of multicellularity is the organizational structure of and relation-

ship between a community of cells. For example, in mammals the metabolic rate

of individual cells living in vivo is regulated by the size of the whole organism

which confers greater efficiency, while those same cells will have dramatically elevated
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metabolic rates living as individuals in culture [295]. This regulation is considered to

be the natural consequence of resource supply within hierarchical vascular networks

[295, 292, 291, 14, 16, 246] highlighting the importance of morphology and structure

in dictating cellular behavior for multicellular systems.

For complex multicellular life variations in morphological structure provide a

wealth of information about speciation and environment given the inherent trade-

offs related to network structure. For the leaves of plants it has been shown that

the variation of venation patterns across species is fundamentally related to tradeoffs

associated with carbon and transpiration rates, water supply rates, and overall mass

investment [28]. The variation in network structure is important because of the way in

which resources are supplied to individual cells. In general the gradients of resources,

particularly oxygen, are similarly important in modulating the dynamic development

of embryos, lungs, and tumors (e.g. [258, 23]).

Thus one of the dominant effects of multicellularity is to alter the environment

experienced by the individual cell. For example, the formation of gradients of re-

sources is an obstacle to any multicellular organism. This points to broader biolog-

ical questions, namely what is the interconnected relationship between morphology,

metabolism, and environmental conditions and how do these features govern the fun-

damental benefits and tradeoffs of multicellularity? Understanding these connections

may also help us to understand the general trajectory by which simple and com-

plex multicellular life evolved and allow us to better identify, quantify, and interpret

potential paleobiological structures such as those discussed in Albani et. al [4].

Here we use microbial biofilms which exhibit spatial patterning [73, 223, 228] and

environmental sensitivity as a model system for exploring morphology as a metabolic

adaptation. In our biofilm system we can modify the environmental and biological

conditions and examine the resulting shifts in structure and metabolism. This allows

for a deeper understanding of how morphology organizes metabolism and could be

selected for and optimized.

The majority of mechanistic studies addressing biofilm development are performed

in a flow-cell system. Bacteria are grown on a glass slide and exposed to a continuous
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flow of nutrient-rich water. In this aqueous regime bacteria often forms mushroom-like

structures in response to external nutrient gradients (e.g. [68, 304, 209].) The Gram-

negative bacterium Pseudomonas aeuroginosa forms structurally diverse biofilms in

different environments. We have studied P. aeruginosa biofilms by spotting 10 [l of

a cell suspension onto an air-exposed agar plate and following the development of the

colony over multiple days. This assay has proven fruitful for mechanistic studies, as

genetic manipulation or changes in the environment result in morphological changes

of the colony that can be easily observed by eye. We recently showed that a class

of redox-active signaling molecules, so called phenazines, have dramatic effects on

community behavior. While a wild-type colony remains smooth for the first two

days of growth, a phenazine-null mutant (Aphz) undergoes a severe morphotypic

transformation [73]. At day 2 Aphz begins to spread over the surface of the agar

plate and forms wrinkles in the center of colony and spokes that radiate towards the

edge of the colony (both features are vertical structures; see Figure 3-1). While a wild

type colony also forms wrinkles in the center after three days of growth, a phenazine-

over producer remains smooth when monitored for six days, highlighting an inverse

correlation between an increased surface of the colony and phenazine production [73].

a. b.

Figure 3-1: The horizontal and vertical structure of the P. aeruginosa biofilm. The
colony is living on agar and exposed to the open atmosphere.
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Here we demonstrate that the morphological change is a strategy of the community

to increase oxygen uptake into the colony. Phenazines attenuate this mechanism,

presumably because these redox-active compounds function as electron shuttles that

allow cells in the anoxic parts of to balance their internal redox status by reducing

phenazines. We propose that reduced cellular redox status triggers a morphological

change on the community level. In favor of this model, addition of the electron

acceptor nitrate to the agar, or increasing oxygen concentrations (to 40%) prevents

spreading of the Aphz colony and discourages wrinkle and spoke formation. Decrease

of external oxygen (to 15%) increase wrinkle and spoke formation as well as spreading

of the colony.

Oxygen profiling of the colonies revealed that the Aphz mutant is well oxygenated

within wrinkles and spokes, suggesting that its morphotype is an adaptation for

optimal oxygen uptake. The sensitivity of colony morphology to oxygen availability

and/or the oxidative mediation of phenazines suggests a significant role for oxidative

capacity - specifically oxygen supply for Aphz types - in modulating morphology.

Here we develop a simple model, rooted in established physiological and physical

laws, which demonstrates and confirms this significance. Our work pairs quantitative

experiments with our model allowing us to concretely verify our methodology and to

make predictions and interpretations that would be infeasible using any single aspect.

We demonstrate that the geometry of the features represent an optimal structure in

terms of maximizing cellular growth within the biofilm.

3.2 Modeling biofilm metabolism and oxygen dy-

namics

To investigate the processes within the biofilm we develop a predictive mathematical

model which is based on the simplest hypothesis for feature regulation: the dynamic.

feedback between metabolism, resource availability, and physical diffusion. We rely on

some of the the most well-established, reproducible, and general cellular physiology:
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1.) the Pirt model of community metabolism [211] which is applicable to a broad range

of prokaryotic and eukaryotic species (see for example [211, 92, 245, 254, 145, 33] and

ref. [118] for a review of multiple unicellular species); 2.) the Monod model for the

dependence of population growth rate on a limiting resource [172] which has been

widely applied.

For organisms living in a continuous culture it has been demonstrated that many

species follow a linear relationship between their total metabolism and growth rate

[211, 92, 245, 254, 145, 33]. The classic Pirt model [211] describes this relationship

in terms of a metabolic partitioning between maintenance and growth:

Q = + P (3.1)

where Q is a consumption rate per unit mass of a limiting resource which provides

energy and/or structural material to the community of cells (mol resource - s-1

g cells 1), p is the specific growth rate (s- 1), Y is a yield coefficient (g cells

mol resource -1), and P is a maintenance term (mol resource - s- 1 . g cells -1).

Maintenance metabolism is defined as the consumption rate at zero growth, or the

minimal requirement for survival.

The metabolic activity of a population is dependent on the availability of oxygen.

We add this process to equation 3.1 by considering the dependence of growth rate on

the local oxygen concentration. For P. aeruginosa and many other species growth is

observed to saturate at increasing concentrations of many potentially limiting sub-

strates including oxygen (e.g. [3]). This sensitivity is often described using Monod

kinetics [172]:
[02]

pmax ks + [02] (3.2)

where pmax is the maximum growth rate approached as the substrate is taken to

infinity, and ks is the half-saturation constant. Substituting equation 3.2 into 3.1

gives oxygen consumption as a saturating function of available oxygen:

Q = max [ + P. (3.3)
Y ks+[0 2]
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Depletion of oxygen within the biofilm creates a gradient with the atmosphere

and drives a diffusive flux of oxygen into the colony. Thus the time dependent spatial

concentration of oxygen can be described by

= [02] DV2 [02] (imax 02] +P a (3.4)at Y k,+[02] /

where a is the density of cells in the colony (g cells - m 3 ). At steady state, the

diffusive supply of oxygen is maintained by the gradient in oxygen concentration,

and must balance the consumption associated with growth at each point within the

colony. It should also be noted that at zero oxygen concentration the cells either die

or become dormant and thus we take the maintenance term P to be zero for low

oxygen concentration. Equation 3.4 can be conveniently nondimensionalized:

8[02]* _ [02]*
a = - V 2 [021* - [02]* + g . (3.5)at* 1I + [02]

where temporal and the spatial scales have respectively been normalized by the factors

apmax aymax 1/2
tf kY , Xfac = ksYD ) (3.6)

oxygen concentrations have have been divided by ks, and the nondimensional main-

tenance term is g = YP/pmax. For steady state solutions our model only relies

on the concentration of oxygen at the colony surface, which is determined by the

atmospheric mixing ratio and pressure, and the two parameters Xfac and k,. We

determined the value for both parameters by first compiling published measurements

and then constructing the mean of every combination within this compilation (see

Appendix B.1).

3.3 Observations of internal oxygen distribution

In order to investigate how these mechanisms regulate morphology we study a single

feature or "ridge" (Figures 3-1 and 3-2) and the surrounding geometry.
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Figure 3-2: Schematic of the geometry of ridge and the surrounding area of the colony.
The height of the "base" is represented by b, the "ridge" width is given by w, and
the height of the ridge relative to the base is given by h.

The fundamental measurements that we make are oxygen profiles of the base (b in

Figure 3-2) of the colony. Here the geometry is simple and fairly uniform. We can use

the observed oxygen profiles to calibrate our model and examine our literature-based

estimates for the parameters of the model.
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Figure 3-3: Depth profiles of oxygen within the biofilm. (a) the base region and (b)
the ridge. Measured values are given by points and simulation are the solid curves.
We took many depth profile measurements and the two sets in each plot represent
the variation within the observed profiles.

Plots of oxygen concentration against depth into the colony exhibit a decay of

oxygen availability with increasing depth (Figure 3-3). There is some variation in the

decay rate and the depth at which oxygen can no longer be detected. Most of this
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observed variation can be accounted for by rescaling the depth axis by a simple factor

(see Appendix B.1). This highlights common overall biological behavior consistent

with the model but with variation in parameter values between colonies. Given our

definition of Xfac this variation could be due to differences in physiological parameters

such as maximum growth rate, though empirical evidence suggests that this is not

likely to differ greatly between clonal populations of cells (see refs. [231, 232] for

an example of growth rate variation), in which case variations in the oxygen decay

rate would be due to differences in the physical parameters of the colony. The colony

matrix may exhibit local and regional differences in the specific structure of the matrix

related to density, wetness, and overall diffusivity of oxygen. Either way we fit the

observed variation in vertical one dimensional profiles by varying xfac and solving

for the steady state oxygen concentration in our model for an isolated base geometry

while keeping k, fixed. Figure 3-3(b) shows that steady state solutions of our model

in the base captures the range of observed oxygen profiles. This range of profiles also

allows us to calibrate the range of xfac to between 5.1 x 104 and 1.0 x 105. We also

show a simulated oxygen profile which represents the median between the two profiles

for a parameter value of 6.7 x 104 which compares well with our estimate from the

literature of 6.8 x 104 (see Appendix B.1).

Experimentally, we find that oxygen penetrates much deeper in the ridge compared

to the base (Figure 3-3). This is likely the result of increased surface area for a reduced

cellular mass. To interpret this phenomena we use the calibrated model to simulate

the steady-state distribution of oxygen availability within an entire region of the

colony, including the ridge, and we do this for various geometries (Figure 3-4(a)).

Our model also captures the general decay rate and shape of these ridge profiles

using the mean value of the calibration and finding the best width of each ridge (it is

experimentally challenging to measure the width and oxygen profile simultaneously)

(Figure 3-3(b)). Our ability to anticipate the general shape and range of ridge profiles

gives us confidence in our calibration and the model's ability to make predictions.

Once these calibrations have been made all other results in this paper follow directly

as predictions.
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Figure 3-4: The modeled internal distribution of oxygen and growth rate within the
colony. (a) The modeled internal availability of oxygen along with (b) the spatial
distribution of growth rate within a biofilm for features of different size.

3.4 The impact of colony and feature geometry

The increased depth of oxygen penetration in the ridge region (Figure 3-3(b)) illus-

trates the importance of geometry in enhancing oxygen availability within the colony.

The question then becomes how changes in this geometry affects the oxygen availabil-

ity within the colony. Or why the geometry happens to be the one that is observed.

To explore these questions we simulate the simplest geometric variation where we pre-

serve the overall form of the ridge but vary the width of the ridge for a fixed height.

Figure 3-4 shows the distribution of oxygen within ridges of different widths. From

the internal oxygen distribution and equation 3.2 we can calculate the local growth

rate and we find that ridges generally have an enhanced growth rate relative to the

flatter regions (Figure 3-4(b)). This is due to the fact that thin tall features increase

the total surface area for a relatively small amount of biomass which enhances the

oxygen flux per total consumption as can be seen in the enhanced oxygen penetration.
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However, we also see in Figure 3-4 that as ridges grow wider the effect of enhanced

growth is diminished and the layer of growing cells within the ridge region becomes

very similar to that of the base regions.

This effect implies a tradeoff for community metabolism: for thin features oxygen

is able to penetrate the entire feature and cells grow incredibly quickly, but there are

not many cells growing due to the small size of the feature; for thick features there

are many more cells but the region of enhanced oxygen penetration and growth is

diminished. This tradeoff can be summarized as a return on mass investment for the

colony. We quantify this as the added growth per added mass given the the changing

ridge width: E = dGot~/dMtot where Got~ is the total growth of the ridge and Met, is

the mass of the region of interest.
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Figure 3-5: The relationship between the width of a ridge and the simulated efficiency,
E, the added growth per added mass of the colony. This plot illustrates that there is
a diminishing return on investment as widths grow larger. At a given width the total
growth of the colony is maximized and any further increasing in ridge width yields
a negative return on mass investment. This can be interpreted as the width which
optimizes the reproductive success of the colony.

We calculate the efficiency, E, for an ensemble of simulated features each with

different widths but fixed feature height (Figure 3-5). We find that E goes negative

for ridges wider than a specific value. This critical width represents the optimal for

efficient offspring production within the colony. More importantly the optimal width

found in our model accurately predicts the observed average width of colony features

along with the observed variation in widths (Figure 3-6). This prediction is made by

solving for the optimal width using the minimum, maximum and average parameter
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values from our calibration to base profiles.
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Figure 3-6: Predicted and observed ridge
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widths. (a) The average width of colony
are for colonies grown in 21% oxygen while

the blue points are for growth in 40% oxygen. The solid blue and red lines represent
our predictions for optimal ridge width and the dashed lines are our predictions for the
bounds of variation in ridge width given the calibrated experimental and biological
variation in parameters. (b) and (c) represent histograms of all of the measured ridge
widths in 21% and 40% oxygen respectively.
same meaning as in (a).

The solid and dashed lines have the

Similarly, for simulations of the base we find that E approaches zero when the

height of the base reaches the maximum depth at which oxygen is able to penetrate.

Thus, any additional height does not produce additional growth for the colony. Ex-

perimentally, we find that the average base thickness corresponds to the average depth

at which oxygen is no longer detectable.

The observed colony features are such that the efficiency, E, is close to zero
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but still positive which optimizes the total growth of the colony: If features grow

wider (or taller in the case of the base) than this optimum the colony has invested

a large amount of mass that will not grow quickly, if the features are smaller than

this optimum the colony has invested a small amount of mass but there will less

overall growth as a consequence. This raises the possibility that cellular behavior,

including possible cooperation, has been selected for such that the emergent geometry

of features maximally benefits the community.

It is surprising that in the top layer of cells growth seems to be arrested despite the

rich amounts of oxygen and capacity for further growth. This could be the result of

a rudimentary regulatory dynamic within the colony resulting in optimal community

growth efficiency.

3.4.1 Morphological response to oxygen availability

We have shown evidence of oxygen control driving the optimization of colony form.

Feature geometry is important because of the impact it has on the availability of

oxygen within the colony. Given this interconnection between geometry and oxygen

we would expect that changes in the external availability of oxygen would result

in shifts in colony form. To test this hypothesis we exposed colonies to elevated

concentrations of external oxygen (40% compared to the standard 21%).

In order to quantify these shifts we again calibrate the parameters of our model.

Although it is infeasible to measure full oxygen profiles in the oxygen chambers it

is possible measure the resulting base heights which we know correspond the depth

at which oxygen is no longer detectable. This is sufficient for calibrating xfac to the

40% oxygen conditions. We find that the bases height is much taller in the colonies

exposed to 40% and that the range of xfac values is between 4.5 x 104 and 7.7 x 104

with the expected value of 5.9 x 104. The fact that these values for Xfac are lower than

for the 21% experiments implies a shift in the physiological processes or the physical

properties and composition of the colony matrix in response to oxygen availability.

The observed widths in 40% are much wider than in 21%. Running our simulations

with 40% external oxygen, and the calibrated range of parameter values, we again
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successfully predict the mean, upper bound, and lower bound on observed ridge widths

(Figure 3-6). Through our model we interpret the wider widths as the result of deeper

oxygen penetration which extends the width at which a diminishing return on mass

investment occurs.

Simple predictions for the dependence of feature size on oxygen availability

The change in the width of the ridges is related to the optimization of growth as

regulated by the availability of oxygen. This is fundamentally related to how deep

into the colony oxygen is able to penetrate. It has been shown in ref. [266] that

an estimate for the penetration depth, d, of oxygen into the colony can be found by

considering the steady state balance between diffusion and a constant consumption

term for oxygen everywhere within the colony (instead of the reaction term used in

equation 3.4 which depends on the local concentration of oxygen). A key feature of

this estimate is that the penetration depth is related to the availability of oxygen

according to d ca So' 2 where So is the surface concentration of oxygen. This predicts

that changing the surface concentration of oxygen from 21% to 40% will alter the

penetration depth by a factor of (40/21)1/2 = 1.38. In our experimentation we find

that the mean ridge width is 169.5 ± 3.5 pm (standard error of the mean) in 21%

and in 40% the mean width is 261.1 3.9 pm which is a factor of 1.54 larger which

is comparable to what the simple estimate predicts. This suggests that features are

regulated by the penetration depth of oxygen. In this context, ridge width would

again be optimal given that any increases in width would cause cells to live within

regions without oxygen where growth is impossible.

3.5 Discussion

The study of biofilms has far reaching applications: for example as model ecologi-

cal systems to investigate the nature of cooperative and competitive behavior and

dynamics [304], or to understand evolutionary life-history by interpreting geological

structures which may represent microbial fossils [4, 208]. In each of these contexts it
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is critical to understand the connection between community structure and resource

availability.

One of the key findings of this paper is that the shape of features is such that

total growth and return on mass investment is optimized based on how the feature

interacts with the resource environment. As we have discussed the ridges maintain

a constant and fairly uniform width even as they grow taller. Previous studies have

shown that steady-state colony shape is the result of external resource limitations

and occur when the environment can no longer supply resources for further growth

(e.g. Refs. [304, 208, 209, 305]). Distinct from these previous findings our system

is exposed to the open atmosphere where external resources gradients are effectively

non-existent. Thus in our colonies the outermost layer of cells are not resource lim-

ited and do have the capacity for further growth as evidenced by the oxygen profiles

and the observation that the height continues to grow. The ridges have the capacity

for horizontal growth and any simple dynamic model driven solely by growth rate

would predict increasing ridge width in time. Thus there must be some mechanism

for maintaining constant widths which are advantageous to the overall colony. We

have experimented with simple genetic knockouts and found that single knockouts of

the pili motility leads to colonies with no ridges. This points to a complex interaction

of multiple physiological features which manifest as the dynamic regulation of opti-

mal feature formation. However, determining the precise system of interconnected

mechanisms remains the subject of much future work.

Here we demonstrate that prokaryotic biofilms can exhibit complex spatial pat-

terning at spatial scales which are comparable to possible microbial fossils. Previous

interpretations have suggested that what could be microbial fossils are likely eukary-

otic in nature [4], but our work shows that it could be hard to distinguish the difference

between prokaryotic and eukaryotic fossils on the basis of spatial structure alone. Our

model system, a wet substrate exposed to an oxygen rich atmosphere, corresponds

to conditions that are possible for the early earth. Albani et. al also suggest that

these biofilms could have lived in an oxygenated water column [4]. Our work shows

that these same spatial scales could also be in situations where the colony is exposed
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directly to the atmosphere in a moist environment.

Within our biofilm system we were able to directly test the effect of different

atmospheric oxygen concentrations where we find that the width of features changes

predictably. This opens up a variety of avenues for verifying microbial fossils and

using them as proxies for the ancient environment.

The P. aeruginosa biofilm has important medical applications as P. aeruginosa

is one of the most prevalent infections in patients who have the inherited disease

cystic fibrosis which among other symptoms causes patients to build up mucus in

the lungs. The nature of how P. aeruginosa is living in the lungs is not yet fully

understood, but the thick mucus layer beneath an open atmosphere [301] has a strong

correspondence with the P. aeruginosa biofilm system studied here. Here we find that

biofilms produce optimal structures in order to enhance growth. The success of the

colony depends on the ability to effectively build these optimal structures. We find

that colonies of single genetic knockouts targeting motility lead to colonies without

ridges. Targeting physiological aspects closely tied to colony morphology may open

up new avenues for treatment of biofilm infections and even in eradicating biofilms

from industrial and food systems.

Here we have shown that the geometry of these features is optimal for resource

acquisition and reproductive success and that this geometry is responsive to external

resource availability. Previous work has shown that simple cooperation in the form of

extracellular matrix production can lead to beneficial feature formation [304]. Moving

forward it will be important to understand the complex set of cellular behaviors that

are responsible for the emergent regulation of these features.

3.6 Methods

3.6.1 Bacterial Strains and Growth Conditions

The phenazine mutant (Aphz) was used for all experiments. Bacterial cultures of

Aphz were routinely grown at 37'C in Luria-Bertani (LB) broth overnight. For all

65



oxygen profiling experiments colony biofilms were grown on 1% tryptone/1% agar

plates amended with 20 pg/mL Coomasie Blue (EMD) and 40 pg/mL Congo Red

(EMD). Colony biofilms were grown at room temperature (22-25 C) and at high

humidity (> 95%). Sixty milliliters of the medium was poured per 10-cm square

plate (Simport, D210-16) and allowed to dry with closed lids at room temperature

for 24 hours. Ten microliters of the overnight culture was spotted on these agar plates

and colony biofilms were grown for 8 days.

Colony geometry measurements

We measured the width and height of spokes within the colony biofilm using a digital

microscope (Keyence VHX-1000).

3.6.2 Oxygen depth profiles

Oxygen profiling was done using a miniaturized Clark-type oxygen sensor (unisense;

10 pm tip diameter) on motorized micromanipulator (unisense) for depth control.

The electrode was connected to a picoampere amplifier multimeter (unisense) and

polarized at -800mV. The sensor was calibrated using a two-point calibration system

at atmospheric oxygen and zero oxygen. The atmospheric oxygen reading was ob-

tained by placing the electrode in a calibration chamber (unisense) that contained well

aerated deionized water. Complete aeration was achieved by constantly bubbling the

water with air. The zero reading was obtained by bubbling water in the calibration

chamber with ultra-high purity nitrogen gas (TechAir). All calibration readings and

profile measurements were obtained using SensorTrace pro 2.0 software (unisense).
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Chapter 4

Physical, genetic, and

environmental controls of biofilm

structure

Preface

In Chapter 3 we saw how features with a given geometry optimize the metabolism

for individual biofilm features. Part of this regulation involves maintaining a fixed

width as ridges grow taller. We still do not understand how this width is maintained

by cellular physiological processes which is the key to understanding the transition

to multicellularity. In this chapter we examine the connection between genetically

determined physiology, environments, and the behavior and benefits of spatial pat-

terning.

This chapter represents ongoing analyses and experimentation which we plan to

submit for publication in the spring under the working title "Genetic and environ-

mental control of the spatial organization of biofilm patterning" by C.P. Kempes, C.

Okegbe, and L.Dietrich, where I will be the corresponding author.- The colony mutant

library along with image time-series was produced by Lars Dietrich and Chinweike

Okegbe. I conducted all of the data extractions, analyses, and produced all of the
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mathematical models and simulations.
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4.1 Introduction

As we have discussed already, the morphology and architecture of multicellular sys-

tems is closely connected with function, physiology, and the ability of an organism

to cope with a given environment. At all scales of life morphology is, at its most

rudimentary, the dynamic emergence of spatial patterning. To understand the evo-

lutionary history of morphology it is important to first determine how patterning

evolved in unicellular communities and then how this may eventually have allowed

for the transition to complex multicellular life. For patterning in unicellular com-

munities there are two primary considerations: What are the mechanisms producing

patterning? What are the benefits of the emergent pattern?

In a two-dimensional system horizontal patterns can emerge from the simple inter-

play and feedback of diffusion, reaction, and production of substrates and/or chem-

ical signals as originally discussed by Turing [278]. Most previous efforts to model

biofilms focus on the interplay between the response of motile bacteria to chemical

gradients, and the production, consumption, diffusion and degradation of those chem-

icals [6, 84, 151] (see ref. [182] for a general treatment and ref. [276] for a review).

Previous studies have shown that these principles lead to spatial patterns manifested

in the direction in which cells are swimming in a two dimensional wet environment

for organisms as diverse as the prokaryote E. coli to the slime mould Dictyostelium

discoideum [6, 46, 248].

The simple physical treatments of these patterns, as originally conceived by Tur-

ing, have been criticized for lacking links to, or an understanding of, genetic control

[129]. Similar criticisms are also emerging in the field of metabolic ecology. The

metabolic theory of ecology begins with the observation that many properties of

organisms scale with one another in a systematic manner across diverse species of-

ten following simple power laws (see for example [193, 140, 44]). Recently several

mechanistic theories regarding the origin of these scalings laws have been developed

[140, 292, 291]. One of the most widely applied of these focuses on the internal

distribution (vascular) networks of plants and mammals [291, 292]. This model as-
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sumes that over time evolution will optimize these networks in order to minimize

the amount of energy expended to transport internal resources. In deriving the op-

timal distribution network the authors are able to show that the scalings of many

organism traits can be explained using a single framework. However natural histori-

ans have commented that there is no mechanism for evolution in these models. At

the foundation of this point is that these metabolic models do not have an explicit

role for genetics and there is no explicit link between the network structure and its

encoding within heredity or genetics. This poses a serious challenge for advancing

the metabolic theory because the genetic regulation of morphological development is

incredibly complicated in multicellular organisms.

More recent efforts in microbial colonies and embryonic development have linked

basic pattern formation to specific genetic regulation pathways along with the pro-

cesses of diffusion and reaction [248, 230, 5, 283, 276]. Yet much of this work is

concerned with explaining the detailed origin of some very specific phenomena. For

example embryos experience patterning as part of the development process and many

models focus on explaining this. But the phenomena is singular, there is one pat-

tern whose explanation is sought by means of increasingly accurate and sophisticated

models. In order to understand the evolution of a specific pattern or morphology in

response to a given set of selection pressures, say the spectrum of leaf venation pat-

terns observed across a range of tree species, we need a simple model system where

a variety of patterns can be created by systematic genetic knockouts and alterations

to external environmental conditions.

As we saw in Chapter 3 our biofilm system responds to both external resource

gradients and genetic manipulations. Given the rich spatial patterning exhibited by

these biofilms, and the diversity of patterning that results from genetic knockouts,

this system provides us with an ideal model system for exploring the evolution of

developmental morphology in multicellular organisms.

Our ultimate interest is. in understanding how the P. aeruginosa colonies evolved

the capacity to form rich spatial patterning, what function (if any) this serves, and

how this patterning is controlled by the evolved genetic and/or environmental regu-
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lation.

4.2 Mechanisms controlling horizontal pattern for-

mation

Our work on a single feature in Chapter 3 suggests that colonies regulate ridge width

in order to optimize growth. Yet this top level analysis does not describe the un-

derlying dynamics or physiological mechanisms which lead to maintaining a constant

ridge thickness. Similarly, our analysis of a single feature suggests that ridges grow

taller because they experience enhanced oxygen uptake and growth, but this does

not explain why regularly spaced features form nor what spacing should be expected

between ridges. In our biofilm system the colonies not only display rich horizon-

tal patterning but also complex temporal dynamics where individual ridges are lost

or added as the colony grows vertically and spreads horizontally. These temporal

dynamics allow us to uncover the underlying mechanisms of patterning.

(a) (b) (c)

Figure 4-1: The temporal evolution of the biofilm.

Figure 4-1 displays a colony at three points in time. It can be seen that the ridges

radiating outward from the center ring of the colony (referred to here as "spokes")

change in number as the biofilm matures. Initially there are many ridges densely

packed but in time many are lost. Over four days of growth roughly half of the

spokes disappear. We quantify this temporal dynamic by looking at the the change

in average spoke spacing as a function of time. The angular distance between two

spokes is the best metric for making this quantification as we are looking at spacing
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on a circle. We find that the mean of the angular distance between adjacent spokes

continually grows in time following a fairly smooth curve (Figure 4-2(a).)
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power law to the data where the value of the exponent is .52 consistent with diffusive
scaling. (c) The best fit of a general power law to the data excluding the first and last
time-points.The exponent is .50 and the fit is free from any systematic offsets except
for the the first and last time-points.(d) The predicted temporal dynamics of ridge
spacing given that ridges maintain a constant average metabolic rate while increasing
in size as described by equations 4.1-4.3. In each plot error bars representing the
standard error of the mean are shown but fall within the plotted points demonstrating
the regular spacing between neighboring ridges.

The continuous nature of this curve implies some set of dynamics which regulate

ridge spacing and smoothly evolve in time. Given previous work [278, 276, 6, 84, 151,

46, 248, 230, 5, 283] and our knowledge of the P. aeuriginosa biofilm (Chapter 3) the

mechanisms for controlling ridge spacing could include temporally evolving resource
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gradients, the dynamics of chemotaxis, or regulatory chemical production, diffusion,

and response. This provides a wide search space for detecting a specific mechanism

and so it becomes important to consider general analyses which might help us identify

and classify the general category of mechanisms we are dealing with.

Many of the possible mechanisms (e.g. signaling or resource gradients) would be

strongly connected to the details of diffusion within the biofilm. In general, diffusion is

characterized by a known relationship of how fundamental distances scale with time.

Diffusion, in any number of dimensions, is described by a distribution of random

processes wherein the root-mean-square displacement scales like d oc t1 / 2. For any

diffusive process the key length scales change with the square-root of time. The

measured angular distances are proportional to the linear distances. We find the

scaling between distances and time by fitting a general power, d = dote, to the data

in figure 4-2(a). The best fit gives an exponent of a = .52 which is very close to

the expected value of a = .5 for diffusive scaling. The best fit describes the data

well although there is some amount of deviation (Figure 4-2(b)). This offset could be

due to the fact that the resource supply, growth, and chemical consumption rates are

not in steady state over the development of the colony. These changing features add

second order temporal dynamics to the processes of diffusion. In addition, the offset

is mainly the result of the first and last data points.

Excluding the first and last timepoints gives a much better fit with a = .50

(Figure 4-2(c)). Excluding these points for the fit is justifiable because the late-

stage time-points are likely in a situation where resources from the agar are starting

to be diminished as evidenced by the suddenly decrease in vertical ridge growth.

Early-stage time-points may be characterized by ridges which have not reached their

mature width or by large resource gradient shifts. It should also be noted that there

is significant variation in the mean angular distance for each timepoint highlighting

the stochastic nature of the potential physiological-diffusive mechanisms regulating

ridge spacing.

The temporal data suggests that horizontal patterning may follow the scaling of

diffusive processes. If diffusion is involved in setting the temporal dynamics this
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raises two key questions: 1.) How can we uncover what colony processes are behav-

ing diffusively (e.g resource gradients or chemical signals) and how these are setting

ridge spacing given a potentially large number of interacting physiological and genetic

mechanisms? 2.) What purpose, if any, do the temporal dynamics for ridge spacing

serve? We address question 1 in section 4.3.1.

We found in Chapter 3 that the geometry of an individual ridge is related to the

optimization of resource acquisition and overall growth. Thus in order to address

question 1 it makes sense to consider how multiple ridges interact via the resource

environment. A longstanding concept for trees living in densely packed competitive

forests is the "self-thinning" rule (e.g refs. [306, 296, 294, 83]) which states that as

forests mature they become less dense. Recently a theory has been developed that

quantitatively predicts that the distribution of tree sizes within a forest is associated

with a specific average distance between trees [294, 83]. This result follows from

the observation that metabolism and resource use increase with tree size and thus,

given a fixed resource supply rate, larger average size implies that fewer trees can be

supported. Similarly, in a mature forest where all the supplied resources are consumed

the growth of any given tree implies the mortality of some other tree.

Our work in Chapter 3 suggests that the geometry of single features benefits entire

regions of the colony opposed to individual cells. Cells within the feature have the

capacity for horizontal ridge growth beyond the optimal width but this does not occur

suggesting that there is a basic cooperative regulatory dynamic governing the colony.

Given this observation we can think of each ridge as an "organ" or "individual" of

sorts. Similar to forests each ridge is drawing resources from a common reservoir

in competition with other ridges and this may have consequences for the spatial

structure.

To understand these resource dynamics we use a zero-dimensional model where

a common resource pool feeds a number of ridges and the total flux of resources is

divided between each ridge. In our model ridges actively grow and, since we know that

a constant width is maintained, all growth occurs vertically. The fixed width of ridges

also ensures that the average availability of oxygen within a ridge is approximately
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constant even as vertical growth occurs. Given that the oxygen concentration is fixed

within the colony there is no need to explicitly model geometric changes. Instead we

summarize growth by changes in the total mass which is proportional to height. In a

zero-dimensional model this is equivalent to modeling the density of cells a. Following

equation 3.4 This system can be modeled as follows:

8[ N] 1 AN] p' [N ]
= D (A)2- nr Mna - +PN a (4-1)

at nY YN kN+[N]

a p N] a (4.2)
at snxkN +[N])

where N is a limiting nutrient, kN, YN, and PN are respectively the half-saturation,

yield coefficient, and maintenance consumption rate for that resource, p'nax is the

maximum growth rate for a given concentration of oxygen, and nr is the number of

ridges in the system, and a is the density of cells.

The first term in equation 4.1 represents the diffusive flux of resources from the

common reservoir into each of the ridges. This is a "two box" model (reservoir and

ridge) and thus A[N] = [N]reservoir - [N] is the difference between the concentration

of nutrients in the reservoir and the colony. The 1/nr factor accounts for the even

division of resources between ridges. The second term in equation 4.1 is the consump-

tion of nutrients which consists of a growth and maintenance term. Equation 4.2 is

the growth of the colony as represented by the density of cells a.

Numerically simulating the dynamics of equations 4.1 and 4.2 with a fixed number

of ridges demonstrates that the ridges follow a standard sigmoidal growth curve and

resources decrease in a similar fashion. These dynamics illustrate that each ridge

is undergoing increasing resource stress over the course of its growth. In contrast,

within a forest system the competition for resources causes the density of trees to

decrease with increasing average tree size such that each tree experiences constant

resource stress and is able to meet its metabolic needs. Applying this analogy to the

colony we find the thinning rate of ridges which would allow each ridge to maintain a

constant metabolic rate per unit mass. Metabolic rate in the ridge is proportional to
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the nutrient consumption rate and a constant average metabolism is thus given by

p' [N] p' [N]
( ax kN PN r = ax [ + PN nr (4-3)

YN kN + [N] + (YN kN + [N] / A

We again numerically simulate the temporal dynamics from equations 4.1 and 4.2 and

use this condition to solve for the number of ridges at each point in time. The number

of ridges, r, must be adjusted as N declines to satisfy equation 4.3. This provides a

thinning rate and thus the temporal dynamics for the angular distance between ridges

which we find matches the general shape of the observations (Figure 4-2(d)). The

measured thinning rate of ridges is consistent with the ideal for maintaining constant

resource availability and average metabolism within each ridge.

Given that these dynamics are also consistent with a diffusive process, this ob-

servation provides for a couple of hypotheses about the dynamics of ridge spacing:

1.) ridges are sensitive to a critical resource supply rate. The competition for and

diffusion of resources causes certain ridges to be outcompeted by others and this

dynamically sets the spacing. 2.) The diffusive dynamics represent some chemical

signaling and cellular response which has been selected for to dynamically inhibit

some of the ridges thus allowing dominant features to maintain a constant average

metabolism and growth rate.

4.3 Genetic and physiological mechanisms of pat-

tern formation

As we have discussed, there could be numerous interacting physiological processes

which produce the spatial patterning observed in these biofilms. These interacting

mechanisms form a "program" for pattern formation and we would like to uncover

what that program is in order to understand how it evolved and how it is dynamically

modified to deal with a-variety of environmental contexts (Figure 4-3). To do this

we consider the patterns that result in colonies with various genetic knockouts of a

single gene. The basic pattern formation studied in Chapter 3 is already the result
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Figure 4-3: Schematic of the evolutionary process determining structure. Our con-
cept of colony patterning is that genetics dictate cellular behaviors. Those behaviors
combine through intricate interactions to produce colony structures. These structures
serve as the primary mediator between the environment and the colony (forming a
secondary or emergent physiology). As such, structure and environmental conditions
determine the fitness and survival likelihood of the colony and thus feedback on the
underlying genetics.

of a genetic knockout of the ability to produce phenazines. As we discussed this

likely increases redox stress within the colony and thus the basic pattern formation is

likely a response to environmental pressures. Many other genetic knockouts produce

a variety of spatial patterning as illustrated in figure 4-4. By examining the effect

of individual genes, and their physiological implications, on patterning we can begin

to understand how various cellular processes combine to control spatial pattern in

response to environmental stresses. In this section we develop various metrics that

allow us to identify similarities and differences between various colony patterns.

4.3.1 Diffusive differences amongst colony mutants

Given our findings regarding diffusive control and resource competition as likely

drivers of spatial patterning we first look at the time-series of patterning for a variety

77



(a) (b)

Figure 4-4: Sample of colony patterns produced by single genetic knockouts. (a) is
a knockout of an uncharacterized gene (b) is a knockout of fliC which is responsible
for making flagellin a filamentous protein of the flagella [161] (c) is a knockout of
the survival protein surE which is related to stress response [154]. The brightness
and contrast of these images has been altered for clarity, this does not change the
apparent structure of the colonies.

of mutants. Figure 4-4 depicts a sampling of mature colonies used for this analysis

which represent a diverse set of morphologies. The mutants depicted in figure 4-4

are the single genetic knockouts of fliC, a filamentous protein involved in flagella for-

mation [161], surE a protein related to survival in stationary phase (interpreted as

stress response) [154], and an uncharacterized protein. Comparing the time-series of

these mutants to Aphz we observe interesting similarities and differences as shown in

figure 4-5. The AsurE knockout is most similar to the Aphz colony in terms of the

scaling of angular distance with time. The exponent for AsurE is a = .62 where the

standard error is .29 and thus includes .5. This is again suggestive of a diffusively

controlled process. The exponent for uncharacterized mutant is also a = .62, but this

is only for the early portion of the data. It can be seen in figure 4-5 that for later

times this mutant deviates from this curve significantly and the best fit to the entire

time-series is greater than linear. Similarly, the best fit of AsurE excludes the first

data-point where superlinear scaling is also in play. This again suggests that there

may be time-sensitive temporal dynamics which start to affect ridge-spacing in the

late or early stages of colony development similar to what we observed for Aphz. It

is interesting that these two mutants deviate from diffusive scaling at different stages

of development (late vs. early) highlighting the importance of cellular physiology in
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the specific temporal dynamics of development.

The most radical example of physiology altering temporal morphology is for AfliC

where we find that ridges tend to fill open space, rather than thinning, as the colony

matures. The exponent for AfliC is a - .82. Here the effects of altered motility

overwhelm any diffusive dynamics. It is thus possible that the dynamics observed

in many other colonies are the effect of motility and chemotaxis which often leads

to diffusive behavior (e.g. refs. [63, 8]). This provides an alternative hypothesis to

resource diffusion for the mechanism responsible for ridge spacing.

It is interesting that ridges thin more quickly and to a greater extent for the

AsurE knockout compared to Aphz. This suggests that the elimination of this stress

response mechanism produces additional pressures for the colony which requires that

there be fewer ridges at any given resource supply rate.
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Figure 4-5: Differences in the relationship between time and the angular distance
between adjacent ridges. The red curve is for the standard Aphz mutant already
shown in figure 4-2, the green curve is for the AfliC knockout, the blue curve is the
AsurE knockout, and the black curve is for an uncharacterized genetic knockout. The
drawn curves are best fits of a general power law. For the blue and black curves this
is fit to the last and first three time-points respectively. The exponents are -. 82 for
the green curve, and .62 for both the blue and black curves.
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4.3.2 Network metrics for genetic categorization

It does seem that diffusive control, in the form of resource supply, the movement of

organism, or chemical signaling, is important in most mutant colonies, however certain

gene knockouts can radically shift these temporal dynamics highlighting that the

''program" controlling spatial patterning is a complicated intersection of physiology

and physics. In order to better uncover the various physiological dynamics at play

we need additional metrics which take advantages of the rich patterning beyond the

simple temporal change in spoke spacing. Here we consider that each of the spatial

patterns can be treated as a network of interconnected ridges. This patterning most

likely does not serve any direct function as a network (i.e. distribution), however it

is a morphological trait which we can use for categorization or classification. The

pattern of ridges does serve some function which perhaps we can uncover by using

graph theoretic metrics as a general tool for identifying patterning. The broad aim

is to develop a series of metrics which can be used to categorize mutants with similar

impact on colony morphology (figure 4-6). Ultimately, we can look at the similarity

of the genetic knockouts found within a given category and potentially gain insight

into the major physiological processes responsible for patterning. Since the colony

mutant library consists of over 1000 genetic knockouts this holds great potential for

discovering the interplay of numerous physiological processes.

We selected a set of colony mutants which represent a spectrum of patterning and

manually labelled the network of features observed in each of the mature patterns.

Figure 4-7 shows the mutants that we analyzed along with an overlay of the graph

which represents the spatial network. The mutants used are the basic Aphz mutant

encoded for the whole colony and the center region alone (Figures 4-7(a) and 4-7(c));

an oxygen sensing mutant which we will refer to as AO 2 (Figure 4-7(b)); an oxygen

and redox sensing PAS domain protein knockout which we will refer to as Aredox

(Figure 4-7(d)); a cytochrome oxidase subunit knockout which we will refer to as

Aoxidase (Figure 4-7(e)). It is interesting to note that these various knockouts pro-

duce visually distinct patterning even though all are involved in modulating redox
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Figure 4-6: Schematic of graph theoretic metrics being used to classify colony pat-

terns. Examples of possible key metrics are the average spacing between features, or

the connectivity of the various features in the network.

stress within the colony. This highlights the complicated connection between mor-

phology and redox stress and the complexity of the underlying "program" for spatial

development.

For comparison we have also included an analysis of a regular square lattice graph

(Figure 4-7(f)) which represents the highest level of regular structure and a graph

with randomized connectivity (Figure 4-7(g)). We also include an analysis of other

networks found in nature such as the electrical power grid of the United States [289]

(Figure 4-7(h)).

We first consider the basic connectivity and topology of these graphs. The degree

of a given node is defined as the number of other nodes that it is connected to and

the entire graph can be summarized by considering the probability that a node has

a given degree. Figure 4-8 shows this for the graphs analyzed on both linear and

logarithmic scales. The linear scale is useful for analyzing the degrees with strong

peaks for a given graph while the logarithmic scale is important because it shows the

scaling of the degree distribution. For many diverse networks the degree distribution

has been suggested to scale according to a power law with a negative exponent [17].

For the degree distribution a lattice has strong peaks at a small number of degrees
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Figure 4-7: The comparison of colony mutant networks along with synthetic and other
natural networks. (a) and (c) are the standard Aphz mutant where (a) represents
only the center portion. (b) is an oxygen sensing mutant which we refer to as A0 2.
(d) is an oxygen and redox sensing PAS domain protein knockout which we refer to as
Aredox. (e) is a cytochrome oxidase subunit knockout which we refer to as Aoxidase.
(f) is a regular lattice. (g) is a randomized graph. (h) is a network representing power
grid of the United States [289]. The color bars on the left represent the legend for
the plots in the following figures analyzing these colonies.

while random networks are more evenly distributed over many different degrees. We

find that the center of the Aphz mutant is very similar to the AO 2 mutant, and both

resemble a lattice with some amount of randomization. The A0 2 is more strongly

peaked than the Aphz mutant which deviates more strongly from a lattice implying

that there are more random connections. The entire Aphz colony is more evenly

distributed and this highlights the differences introduced by the spoke pattern at the

outside of the center pattern. Although the Aredox and Aoxidase mutants both have

strong peaks at degree 3 they are distinguished from AG 2 by the strong peak at

degree 1. The Aphz mutant is identified by the presence of a significant number of

nodes with degree greater than 4.

The scaling of the degree distribution in figures 4-8(c) and 4-8(d) shows that

generally the colony networks follow the trend of a lattice for small degree and a

random graph for large degree. This highlights the random-lattice structure of these

colonies. Each colony has a unique signature that is a combination of the small degree
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and large degree composition. For example Aoxidase is characterized by a relatively

large number of low degree nodes and few high degree nodes which corresponds to the

loosely connected spoke topology of this colony. In contrast A0 2 has a relatively low

percentage of both high and low degree nodes indicating the more lattice-like structure

of this colony. These unique signatures are the first step in linking physiology and

genetics to morphology.
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Figure 4-8: The degree distribution for various networks. The network can be identi-
fied by the color bars used in Figure 4-7. (a) and (b) use a linear scale while (c) and
(d) use a logarithmic scale. Plots (a) and (c) show the results for the colony networks
while plots (b) and (d) give the results for the power grid, random graph, and regular
lattice.
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Another metric for quantifying the overall connectivity of graphs is the between-

ness centrality which is defined as the number of shortest paths (considering all node

pairs) passing through a given node [186]. Distance is defined as the number of edges

between nodes that are traversed. A large betweenness centrality for a given node

represents that its hub-like nature while a low value corresponds to peripheral nodes.

The distribution thus quantifies how many nodes are highly connected hubs compared

to being peripheral.

Figure 4-9 gives the distribution of betweenness centrality for each of our networks.

For this metric IA0 2 and the center region of Aphz are nearly indistinguishable from

each other and very similar to the regular square lattice. However the entire colony of

Aphz is distinguishable from AO2 due to the relatively high percentage of nodes with

low betweenness centrality. Aphz, Aredox, and Aoxidase all have a larger number of

nodes with low betweenness centrality owing to the presence of spokes. This is distinct

from both the lattice and random graphs and provides a way to detect spokes in a

colony. The distribution of betweenness centrality decomposes our colonies into two

categories: lattice-like vs. hub and spoke, and moving forward this is an important

metric for grouping physiologies.

The colony patterns are distinctly different from the power-grid network and are

much more similar to either a regular lattice or random graph. The power grid is

designed, or self-organized, to minimize the energy lost in distributing electricity

between locations. We would thus expect this network to have very low average

betweenness centrality, which it does, as this describes the resistance between one

location and another. Low betweenness centrality should be the signature of a network

designed for distribution. In contrast a lattice has much larger average betweenness

centrality. The definition of a lattice is based on a dominant length scale which in

real networks could be set by any number of processes including diffusion. Thus the

observation that the colony networks look more similar to a lattice than a distribution

network is consistent with our findings that diffusion is likely setting the spacing

between features. The observation that the colonies are distinctly different from a

distribution network implies that the observed "network" of ridges in the colony most
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likely does not serve any direct function such as resource supply.

The function of the features in the colony are to gain access to oxygen as described

in Chapter 3, the spacing of features within an emergent pattern is likely the product

of diffusive dynamics and resource management. Thus the emergence of this network

is likely the result of raised features seeking greater access to oxygen with a spatial

organization related to resource competition and management.

Log Betweeness Centrality Log Betweeness Centrality Log Betweeness Centrality Log Betweeness Centrality

(a) (b) (c) (d)

. .1
Log Betweenes Centrality Log Betweeness Centrality Log Betweeness Centrality Log Betweeness Centrality

(e) (f) (g) (h)

Figure 4-9: The distribution of betweenness centrality. The colors again match Figure
4-7.

4.4 Summary and Conclusion

We have found that the temporal dynamics of spatial pattern formation within the

Aphz colonies follows a general diffusive process. This temporal dynamic is beneficial

to individual features as it allows them to maintain a resource flux that supports a

constant average metabolic rate. This complements our findings in Chapter 3 that

show that colony features maintain a constant width to optimize oxygen acquisition

and growth.

The underlying physiological structure of cells within the colony, as identified by

genetic knockouts, can significantly alter colony morphology and development. The

resulting colonies can have radically different temporal development, although, many
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colonies display what is likely diffusively driven development over some portion of

their growth. We find that disrupting motility eliminates the diffusive scaling of the

temporal development implying that chemotaxis may be a key factor in the standard

patterning and implied resource management.

In addition to motility we find that redox related functions are central to con-

trolling patterning as determined by several knockouts that we studied. Using graph

theoretic metics we found that several redox related knockouts give rise to distinct

network structures. In these structures we are able to detect spokes and lattice mo-

tifs. We were successful in both grouping similar networks and distinguishing between

subtly different networks. Moving forward it will be important to automate the appli-

cation of these metrics to a large number of genetic knockouts to uncover the interplay

of various physiological functions in producing patterning.

Once we uncover the key physiologies involved in this "program" we can then

proceed with targeted experiments to measure the chemical and physiological state

of the colony over the time-series of development. Two key techniques will be required

for experimentally verifying proposed mechanisms: 1.) developing a variety of probes

to measure the spatial and temporal state of key chemicals (other than oxygen) in the

colony (e.g. resources such as nitrate and any candidate chemicals that might be used

for signaling) 2.) tagging genes of interest with fluorescent proteins and monitoring

their expression both spatially and temporally.

One of our original questions was whether the overall patterning of colonies served

some complicated purpose such as distribution of resources through the network.

Our analysis of the betweenness centrality of colony networks suggests that they are

topologically different from distribution systems. The emergence of these networks

is likely explained by the fact that individual features provide an advantage to the

colony and the spatial arrangement of these features is the emergent feature of some

complicated physiological-physical dynamics such as resource competition. However,

whether the colony has. evolved physiologies that lead to optimal management of

resources between features remains an open question of much future interest.

In general, it is important to determine whether cellular traits have been selected
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for to manage colony morphology, such as maintaining a constant ridge width. The

connection between cellular physiology and the success of the colony can be deter-

mined by mixing together different genetic knockouts and simultaneously observing

the competitive dynamics, effect on morphology, and regional health of the colony

(measured in terms of resource availability and growth). Tracking the dynamic con-

nection between morphology and competitive exclusion of various strains may help

us to understand how physiology and morphology are co-selected by evolution and

the general processes by which community organization and multicellularity evolve

and are continually modified.
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Chapter 5

Predicting Maximum Tree Heights

and Other Traits from Allometric

Scaling and Resource Limitations

Preface

In Chapters 4 we have investigated the evolution of organisms towards complex mul-

ticellular organization where structure and morphology have important implications

for survival. Here we show how morphology continues to be of central importance

in complex multicellular organisms as it mediates the interaction with local environ-

ments. We show that a focus on structure and basic physical laws makes it possible

to predict regional trait variation from local resource availability.

This chapter is a reproduction of the article "Predicting maximum tree heights

and other traits from allometric scaling and resource limitations" by C.P. Kempes,

G.B. West, K. Crowell, and M. Girvan published in PLoS One [132]. I am the

corresponding author for this study in which I conceived of and derived the theoretical

framework and model calculations. I obtained the data and performed the predictive

modeling and analysis of the output, and wrote most of the paper. Michelle Girvan

and Geoffrey West acted as mentors and Kelly Crowell helped establish the geospatial
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database and provided feedback on the intricacies of the predictive modeling. This

work stemmed from an interest that grew in this topic through several undergraduate

research projects.
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Abstract

Terrestrial vegetation plays a central role in regulating the carbon and water cy-
cles, and adjusting planetary albedo. As such, a clear understanding and accurate
characterization of vegetation dynamics is critical to understanding and modeling
the broader climate system. Maximum tree height is an important feature of for-
est vegetation because it is directly related to the overall scale of many ecological
and environmental quantities and is an important indicator for understanding sev-
eral properties of plant communities, including total standing biomass and resource
use. We present a model that predicts local maximal tree height across the entire
continental United States, in good agreement with data. The model combines scaling
laws, which encode the average, base-line behavior of many tree characteristics, with
energy budgets constrained by local resource limitations, such as precipitation, tem-
perature and solar radiation. In addition to predicting maximum tree height in an
environment, our framework can be extended to predict how other tree traits, such as
stomatal density, depend on these resource constraints. Furthermore, it offers predic-
tions for the relationship between height and whole canopy albedo, which is important
for understanding the Earth's radiative budget, a critical component of the climate
system. Because our model focuses on dominant features, which are represented by a
small set of mechanisms, it can be easily integrated into more complicated ecological
or climate models.

5.1 Introduction

A critical component for understanding the earth system is determining the interplay

between biotic and abiotic factors, such as the interaction between forest charac-

teristics and local meteorology [56, 174, 219, 167, 175, 239, 31, 238, 213, 22, 220].

At present a range of ecological perspectives and techniques are used for interpret-

ing forest structure and dynamics at both the local and regional scale. Histori-

cal and ongoing modeling efforts have become increasingly accurate at describing

critical forest features such as standing biomass and dynamic transpiration rates

[176, 166, 167, 175, 268, 220, 221, 204, 47, 34, 61, 170]. Most of these models explic-

itly simulate the temporal and/or spatial dynamics of a forest and typically focus on

a detailed description of a variety of coupled plant processes including transpiration,

competition between trees, seedling dispersal, and mortality.

Another perspective for interpreting ecological features is the use of allometric

relationships as a means to characterize the general variation of plant traits across
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many species living in a variety of environments [187, 189, 43, 216]. These scaling

relationships show that, on the average, many of the dominant physiological traits

relevant to forest dynamics and structure are correlated with tree size following ap-

proximate power laws (e.g. [189, 190, 177, 191]). As such, size is viewed as the major

determinant of variation among trees setting the baseline from which variation due to

local, environmental, historical, geographical, and species related factors are consid-

ered secondary perturbations. Because of the relative simplicity of these relationships

many models rely on basic allometries as part of a more complicated description of

plant behavior (e.g. [176, 61]). Furthermore, there are conceptual frameworks from

which these scaling laws, at both the individual and community level, have been de-

rived (e.g. [292, 82, 187, 165]). On the other hand there is ongoing debate over the

exact value of the empirical exponents of each relationship and the range of tree sizes

over which they are valid, and, in general, it is not yet known what sets the dominant

variability of the data around a given scaling law (see [216] for a review). Thus, it is

unclear how useful the basic power-law relationships are in describing local variation

or how applicable they are to modeling endeavors.

Here we create a model of plant physiology that focuses almost entirely on these

scaling laws which we connect with an energy budget approach and couple to envi-

ronmental resources in order to calculate an important component of this variation.

In particular, we incorporate the relationships between basal metabolic rate, water

availability, incoming solar energy, heat loss and ambient temperature. Because the

underlying scaling laws represent the average tendencies across many species we apply

a single tree characterization to a variety of environments. In our framework plant

diversity is encapsulated according to the average trends across many species and the

scaling laws allow us to use a single parameter, tree size, to determine a range of phys-

iological traits. We show that this model successfully predicts the local and regional

variation of maximum tree heights from a small number of environmental parameters

(Figure 5-1). This coupling of various scaling laws also predicts more complicated

relationships for tree traits such as the sigmoidal decrease in canopy albedo with in-

creasing height. Our model can be extended to predict the variation of other plant
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Figure 5-1: Comparisons between observed and predicted maximum tree heights.
Maps of the continental United States comparing (A) observed and (B) predicted

maximum heights of trees. (C) Histogram showing the distribution of deviations of

the predicted maximum tree heights, hpred, from their measured values, hoeb, expressed

in terms of the dimensionless ratio (hobS - hpred) /hob,. The median of the entire

distribution is -. 013 and 20 values less than -3.0 were omitted from the histogram.

traits and we show how stomatal density depends on local mean annual temperature.

5.1.1 Previous modeling approaches

To understand the interplay between forest structure and local or regional climate it is

necessary to both understand the competitive dynamics of trees within a stand and to

couple tree physiology - at the individual or whole forest scale - to environmental

conditions. At the regional scale, a common approach has been to focus on vegetation

types coupled to atmospheric conditions. These models have successfully captured

the geographic distribution of vegetation types and net primary productivity as well
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as environmental processes such as moisture flux and runoff [97, 116, 117, 213, 31, 238,

287, 30]. For understanding fine-scale forest structure explicit temporal and spatial

modeling and simulation efforts are becoming increasingly accurate at capturing local

forest dynamics. Several models which aim to capture local phenomena focus on the

small-scale competition of trees represented either as components or patches (e.g. the

JABOWA model [34, 47]) or explicitly as individually trees (e.g. SORTIE [204, 61, 47]

and TASS [170]). These models predict the gap structure of the canopy [47, 34, 61],

the species composition and diversity of a stand [204, 61, 34], the standing biomass

[204, 47, 34, 61, 170], and the size distribution of trees [170] at the local scale. In

the case of SORTIE, the model tracks individual trees and simulates the coupled

dynamics of canopy spatial structure, crown competition, light availability, seedling

recruitment, growth, and tree mortality [204, 61].

The drawback of these models is that they are computationally expensive when

applied to larger regions. The more recent efforts of the perfect plasticity approxi-

mation (PPA) have used basic assumptions about the interaction of individual trees

to produce macroscopic equations (analogous to those found in statistical physics)

for features such as the equilibrium size distribution of trees [268]. This technique

captures the average interaction between competing trees without explicitly modeling

each individual and thus can be inexpensively applied to larger regions. For features

which represent the average of numerous trees (e.g. total density and average height)

the PPA produces very similar results to the models which explicitly track individual

trees [268]. The PPA also compares well with measurements for crown characteristics

such as depth and radius [220] and the temporal dynamics of stand structure, biomass

and successional patterns [221].

The models discussed thus far focus primarily on either the competition dynamics

within a stand or the regional coupling of environmental conditions to vegetation.

The ecosystem demography model (ED) connects these two approaches in an effort

to more accurately understand forest dynamics coupled to the environment at mul-

tiple scales [176]. ED relies on plant functional types as a means for capturing local

forest diversity and, similar to the PPA discussed above, relates an ensemble aver-
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age to the complex dynamics of individual trees including the stochastic processes of

mortality and succession. ED then couples this ensemble approach with numerous

environmental processes such as atmospheric conditions, fire, evapotranspiration, and

carbon sequestration. ED is able to capture important local and regional phenom-

ena such as carbon flux, standing biomass, the stock of soil carbon, or the response

of productivity to changing climate [176, 166, 167, 175]. Approaches like this hold

much future promise for understanding both small-scale forest structure and regional

vegetation patterns as they feedback with climate. However, these models require

explicit temporal simulation, and decisions about how to represent plant diversity

and physiology.

5.1.2 Steady-state allometric approach

Distinct from the models discussed above, the framework that we develop in this

paper consists of a steady-state analytic calculation rather than a temporally and/or

spatially explicit simulation. Our framework takes average local meteorology as an

input and numerically calculates maximum tree height as an output. In comparison

with the models discussed above our framework is not able to characterize detailed

local phenomena such as temporal dynamics or species composition, but it does allow

us to understand the average tendencies and constraints facing trees across different

environments and this provides a useful foundation for incorporating more compli-

cated processes.

We employ a single generalized tree across a range of environments without specific

knowledge of local plant functional types commonly used in previous models [213,

31, 238, 287, 30]. In doing so we sacrifice accuracy at the local scale but gain a

simple understanding of the average variations across environments. In the context of

resources our framework lends insight into the mechanisms underlying deviations from

the allometric scaling laws where, for example, we are able to show how different tree

traits are suited to a given environment and predict the temperature-based variation

of stomatal density (Figure 5-5). These variations in turn modify the size-based

scalings for an individual tree species (see Sections C.5.4 and C.5.5). Ongoing work
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is beginning to understand departures from the basic zeroth order allometric scaling

laws [191, 217, 216, 215], however, it should be noted that the zeroth order theory has

yet to be coupled with environments in order to test its predictive power. Our work

provides another means for expanding the basic allometric scaling laws to encompass

features that are relevant to more detailed modeling efforts.

5.1.3 Ecological relevance of tree height

We demonstrate the utility of our framework by predicting maximum tree height. We

choose to focus on tree height because size is a natural quantity within the allomet-

ric framework and because height is an important indicator of various consequential

features of a forest, such as its total resource use, biomass production rates, spatial dis-

tribution, and patterns of mortality and succession [81, 80, 181, 83, 82]. For example,

frequency distributions of trees follow characteristically similar relationships across

forests in different regions experiencing different resource environments [181, 83, 82].

These frequency distributions follow a power-law over a large range of the data with

a drop-off for the tallest trees [181, 83, 82]. This implies that the tallest trees can

be used to infer the size structure of forests. Given the significance of maximum tree

height our framework offers future extensions for understanding regional and global

energy budgets, water and carbon cycles, temperature feedbacks, and ecosystem dy-

namics in response to changing environmental factors from the perspective of average

physiology. It should be noted that our framework can be used to predict the varia-

tion of other plant features beyond maximum tree height such as the environmental

variation of stomatal density.

Beyond its importance as a predictor of forest demographics, tree height has been

shown to influence competition between individual trees for access to light [135, 89,

91, 90]. However, the advantage of being taller comes with the added costs of growth

and maintenance and this may set up a complicated evolutionary game between

individuals [89, 135]. Maximum height has various correlations and related tradeoffs

with other important plant traits [90, 91]. These include seed mass, overall growth

rate, leaf mass per area, and wood density, each with environmental consequences
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ranging from soil resource use, to biomass production rates, to competitive dynamics

within a community [90, 91]. Our framework provides insight into the environmental

and physical limitations of these evolutionary dynamics.

In general, tree height is constrained by the interplay between many competing

factors including resource limitations, internal metabolic constraints, overall growth

rate, maturation processes, the hydrodynamic flow through vascular tubes of the

branch network, its geometry and topology, and biomechanical and gravitational

forces [139, 91, 90, 194, 189, 241, 292, 191, 192, 194]. This complicated intersection

of constraints is not unique to height but is a standard characteristic of most tree

traits. Nevertheless, data on many properties of trees (Y) can be encapsulated and

summarized in phenomenological scaling laws which typically approximate a simple

power law form:

Y =YoM, (5.1)

where M is tree mass, Yo a normalization pre-factor, and b the scaling exponent.

Examples include tree heights (b = .264), respiration rates (b = .78 ±.04 or .81 ±.02),

overall growth rate (b = .66 t .01), the frequency distributions of individuals (b

-. 79 ± .02), and trunk radii (b ~ 3/8) [190, 177, 189, 191].

These scaling laws represent the average variation of a given evolved trait across

many species. Because trees have simultaneously negotiated the limitations imposed

by multiple physical constraints over their complicated evolutionary trajectory, these

scaling laws are likely the manifestation of multiple constraints. For example the

evolved canopy structure must be both mechanically stable and able to gather suffi-

cient solar resources in order for the tree to survive and compete. Thus considerations

of either or both of these limitations may anticipate an observed empirical scaling law.

By focusing on empirical scaling laws these constraints, whether known or unknown,

are then implicitly incorporated into our model without needing to specify which

limitations - or combination of limitations - are the most important. Both hy-

draulic (e.g. [139, 241]) and mechanical (e.g. [191, 194]) limitations are argued to

constrain maximum tree height and our model incorporates both of these via various
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scaling laws including the scaling of basal flow rates and the scaling of the canopy

geometry. Beyond the inherent limitations of hydraulics or mechanics, ultimately and

locally, maximum tree height is governed by the availability of resources. By connect-

ing scaling laws to an interaction with the local environment we are considering the

constraints of both resources and plant structure.

5.2 Results

5.2.1 Model framework

We investigate the survival of an idealized tree with features determined primarily by

its size. These features include the number of leaves, canopy shape and size, and the

root mass, all of which interact with the environment via the tree's requirements for

light and water (Figure 5-3). Trees rely on their phloem and xylem for the internal

distribution of nutrients and water. This circulation is a process of trees extracting

moisture from the soil and making it available for evaporation, which drives the flow

at the leaves. Accordingly, the rate of fluid flow through the vascular system has been

a long-standing focus of environmental tree physiology[51, 173].

Our strategy is to compare flow rates that are constrained by resource supply

with the flow rates that are required to sustain a tree of a given size in the absence of

resource limitations. Both of these types of flow are governed by overall tree height

according to scaling laws which relate various tree features to size. A basic assumption

of our framework is that the essential tree traits required for building our predictive

model scale with tree size according to approximate power laws (including isometric

relationships). For many traits this is well supported by existing data. However, it

should be noted that these power laws may break down for small trees where more

complicated relationships hold (e.g. [191]) and some scaling exponents are known to

have different values and confidence levels across different environments (e.g. [217]).

These variations are beyond the scope of our efforts here. We focus on power laws

because we are interested in the simplest construction of average behavior as a tool
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Figure 5-2: Schematics of the modeling framework. (A) The relationships between
the required flow rate, Qo, the evaporative flow rate, Qe, and the available flow rate,
Q,, and the factors which influence them. (B) Limitation Diagram. Red Curve:
the flow rate of available water, which is a function of precipitation and size, as
described in the text. Blue Curve: the required flow rate determined from allometric
scaling, which is a function of size but independent of environmental conditions.
Black Curve: the calculated evaporative flow rate, which is dependent on both size
and meteorological conditions. The intersection of the black curve with either of the
other two determines the maximum tree height.
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for predicting and understanding variation across species. Thus, we are testing the

predictive power of the zeroth order approximation, which in this case are the widely

used and studied power laws between body size and various plant traits. Future work

should consider the higher order behavior of more complicated trait models.

Scaling relationships quantify how the total required flow rate of water in a tree,

Qo, changes with overall body size in order to support its basal metabolism [80, 292,

291]. We examine two principle limitations to the flow rate in trees: available water

and energy (light and heat). Energy from the environment results in an evaporative

flow rate of water through the tree, Qe, which depends on both body size as well as

on meteorological conditions, including air temperature, pressure, relative humidity,

and solar radiation. This evaporative flow rate, which is the actual flow rate through

a tree, must be met by a sufficient available flow rate of water from precipitation

captured by the root mass, Q,, which is also dependent on body size. In addition,

Qe must be sufficient to support basal metabolic needs encapsulated by Qo. These

constraints can be summarized as follows:

Qo 5 Qe 5 Qp. (5.2)

Thus, Qo and Q, set the boundaries of acceptable flow. Maximum tree height can

then be predicted by finding the largest tree for which this relationship holds. In

other words, our strategy searches for trees that use energy from the environment to

meet their metabolic needs without exceeding their water resources. Figure 5-2 A

summarizes our model, highlighting the factors involved in calculating Qo, Qe, and

QP.

Graphically, Eq. C.4 implies that if we plot Qo (h) and Q, (h) as functions of tree

height, h, trees can only function in the region Q, > Qo (the green-colored region

of Figure 5-2 B). If we then plot a curve specific to a given environment, Qe (h), we

can determine which curve, Q, (h) or Qo (h), is first intersected by Qe (h) at lower h.

The value of h at this intersection specifies the height of the tallest possible tree. If

a tree were to grow larger than this in the given environment, then its evaporative
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flow rate would exceed the availability of some resource. In water-rich environments

lacking the appropriate incoming energy, Qe intersects Qo before it intersects Qp,
and this determines the maximum tree height. On the other hand, in water-limited

environments with ample solar radiation, the reverse is true.

In order to explicitly calculate maximum tree height, we need to relate these

various flow rates to tree height by invoking scaling relationships. Reference [292]

provides a convenient way to relate height to several other dimensions of trees.

5.2.2 Basal metabolic requirements of a plant (Qo)

The total basal volume flow rate of internal fluid is well approximated by

Qo = 031D 1
- /32h 11

2  (5.3)

where D is stem diameter, #1 and #2 are normalization constants, and T1 and 972 are

scaling exponents [80, 292]. Empirically, best fits to data give y1 = 1.8, 31 = 0.26 liter

day- 1 cm-7 1 with D in cm, T12 ~ 2.7 and 32 ~ 9.2 x 10- liter day- 1 cm-n 2 for h in

cm [80] (see Section C.2). In order to convert the empirical relationship in equation

C.9, which relates Qo to diameter, to a relationship concerning height we employ a

calculation which relates various tree dimensions such as height and diameter. For

large tree sizes it has been shown in [191] that h ~ D2/3 which agrees with our analysis

of /2 = T113/2 = 2.7 (see Section C.2. We rely on an analytic calculation to find 02

because the model in [191] includes a small tree correction to the basic power law

which is outside of the scope of our stated goal. When a direct empirical relationship

between two features, such as Qo and h, is not known we typically employ an analytic

calculation in order to avoid the propagation of error resulting from the combination

of two or more empirical relationships. In some situations this is not possible because

there are no known analytic derivations. Our overall framework, which is simply the

connection of specific set of scaling relationships, does not depend critically on these

analytic calculations. For future efforts one can employ our framework and replace any

given empirical or analytic scaling relationship with alternative data or calculations.
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Figure 5-3: The size-based resource gathering capabilities of a tree. The above-ground
canopy is shown in green and the below-ground root mass in blue. The essential
dimensions of the tree are indicated, where rean is the radius of the canopy, hcan is the
height of the canopy, and root is the radius of the root mass. Each of these features
scales with height, h, where rean oc h'" [83], hcan oc h and rroot c h. The number of
leaves scales as h3 [292]. The scaling of the canopy features determines the collection
of solar radiation and the heat exchange with the atmosphere, which can be used to
solve for Qe. The rate of moisture absorption, Q,, is related to the scaling of the
root system and incoming precipitation. Please see Sections C.2 through C.4 of the
appendices for a more detailed treatment of these scaling relationships along with
derivations for the associated tree physiology.
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All that is actually required are the phenomenological scaling relationships themselves

which are, or can be, constructed from data (all parameter symbols, definitions, and

values can be found in Table Si).

5.2.3 Available flow rate due to precipitation (Q,)

Given an incoming rate of precipitation, and ignoring hydrology (i.e. water due to

runoff, pooling, or subterranean flow and storage), the moisture available to a plant

is based on the capture area and capture efficiency of the root system. The capture

area for precipitation is defined by the lateral extent of the root system, which can

be determined from the geometric properties of the root architecture. From the data

and scaling relationships given in [189, 191, 242, 292] the radial extent of roots is

approximately given by

rroot - /31 4h (5.4)

with #3= 0.42 ± 0.02 (see Section C.3 for a detailed discussion). In our model, trees

have access to the total volume of precipitation that falls on the area of flat ground

directly above the root system, adjusted by the absorption efficiency of the roots.

This can be expressed as

Qp = 2pic, (5.5)

where Pinc (m year- 1 ) is the rate of precipitation, and -y is the root absorption effi-

ciency.

5.2.4 Evaporative flow rate (Qe)

Trees act as passive solar pumps with the rate of water escaping due to evaporation

equal to the internal flow rate. Hence, Qe is governed by incoming energy. The basic

physiological responses of tree canopies to local meteorology are well-established and

are typically summarized using an energy budget [51, 173]. Although an energy bud-

get formulation, which represents the overall conservation of energy, is conceptually

simple, each individual energy flux requires a careful calculation based on the physics
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relevant to the appropriate tree characteristics, such as the density of stomata on a leaf

and the geometry of the canopy. In Section C.4 we provide details of these calculations

which include considerations of both the tree size and environmental dependence of

evaporation, radiation and conductance in the leaf and canopy microclimate. These

are all governed by well-known physical laws, such as the Stefan-Boltzmann law for

radiation, whose parameters have been measured or, in the few cases where they are

not known, can be derived within our framework.

The basic energy budget requires that the total radiation absorption rate of a

canopy, Rabs, is the sum of the rates of emitted thermal radiation and the sensible

and evaporative heat losses:

Rabs = Lag + Haj + AEaf. (5.6)

Here, L, H, and AE are energy fluxes (W m- 2): L is the emitted thermal radiation,

H the sensible heat loss, and AE the latent heat loss with A being the latent heat

of vaporization for water and E the evaporative molar flux (mol m- 2 s- 1) [51, 173].

The coefficients ag, a3 , af are effective areas (M2 ) over which each heat flux occurrs

and are determined by considering how the canopy architecture affects the degree to

which each flux is coupled to the atmosphere.

In terms of the molar mass, pu (kg mol- 1), and density, pw (kg m- 3), of water,

the evaporative flow rate is related to E by

Qe = a E pw/pW. (5.7)

From Eq. 5.6, we observe that the dependence of E, and therefore Qe, on tree height

arises entirely from Rabs and the effective areas, af,g,j, since H, L, and A depend only

on meteorological conditions. Thus, we can write

Qe = f (Rabs (h) , af g,j (h) , {m}) , (5.8)

where {m} represents the set of meteorological variables.
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Each effective area for heat flux has a linear dependence on the total one-sided

leaf area of the canopy, aL, where aL oc h3 . The height dependence of Rabs can be

determined by noting that

Rabs acanPcanRinc, (5.9)

where Rinc (W M- 2 ) is the incoming radiation per unit area (normal to the ground),

acan is the absorption coefficient for the canopy, and Pcan is the projected area of the

canopy. Both acan and Pcan depend on tree height via the shape of the canopy and the

number and distribution of leaves within that canopy. For a given incoming radiation,

Rabs - ha for large trees, whereas, for smaller trees, a more complex, but derivable,

relation holds (please note that capital the "R" notation refers to absorbed radiation

and should not be confused with lower-case "r" which refers to root or canopy radii).

For the average tree whose features are encapsulated in the scaling relationships,

these derivations have predictive power beyond determining maximum height. For

example, our model predicts the specific form of the decrease in canopy albedo with

increasing tree height in excellent agreement with data, as illustrated in Figure 5-4

(please see Section C.4.2 for a derivation). Albedo plays a critical role in many ques-

tions related to the earth system and our model framework provides a quantitative

means for linking albedo to tree heights and thereby to local resources.

Because evaporation depends on many contributing meteorological variables (solar

radiation, air temperature, relative humidity, and wind-speed) and on multiple tree

traits (such as average leaf size and stomatal density) it is not possible to write a

simple scaling relationship for the evaporative flow rate, Qe(h). In determining Qe

we picked representative values for tree features that entered into the calculation and

used the same values across all locations. (A detailed treatment of Qe along with the

parameter values used can be found in Section C.4 and Table C.1.)

5.2.5 Predicting maximum tree height and other traits

To determine maximum tree heights across the continental United States, we com-

bined meteorological data sets (see Section 5.4) to calculate the functions Qe(h) and

105



0.30-

0.25-
0

0.20

, 0.15
0
C 0.10-
(U

0.05

1 10 100

Tree Height (m)

Figure 5-4: The relationship between tree height and the total albedo for the canopy
of a single tree. The red points are data [265], and the blue curve is our generalized
model for a tree using a soil reflection coefficient of .27 and a deep canopy reflection
coefficient of .06 [173] (Section C.4.2). We have not included error bars here because
ref. [265] does not provide them for every point.

Q,(h) for the conditions at each location with Qo(h) determined from Eq. C.9. As

discussed above, our predictions for maximum tree height are found from the first in-

tersection of Qe with either Qo or Q,. We find that Qe scales similarly to Qo (Figure

C-1) and that, in practice, the best predictions are achieved by searching for inter-

sections of Qe with Q, once the root absorption efficiency, -y, has been calibrated (see

Section C.3).

Because tree height spans nearly two orders of magnitude, we used the relative

error, Ihobs - hpredl / hobs|, to compare our predictions, hpred, with observations, hob,

of maximum tree height. As can be seen from the figures, our model gives good agree-

ment with observed maximum tree heights, suggesting that it does indeed capture the

essential features of environmental constraints and tree physiology. Figure 5-1 shows

a histogram of the relative error prior to taking absolute values ((hobs - hpred) Ihobs)

making it possible to determine over- and under-prediction. Error values are rela-

tively narrowly distributed and the center of the distribution is close to zero. (Please

see Section C.5.2 and Figure C-2 for a discussion of the slight bimodal nature of this
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distribution.)

We tend to over-predict maximum tree height in wet environments where there

are likely competitive factors limiting tree height. Under-prediction in our model gen-

erally occurs in arid environments where trees likely have developed specialized traits

which deviate from the average values we used. However, with different, more realistic

trait values, such as lower stomatal density in arid environments, we find that these

trees obey Eq. C.4. This is to be expected as different trait values are better suited

to different environments. We can expand our framework by allowing traits to vary in

order to optimize maximum height while still obeying Eq. C.4. For example, holding

all other tree parameters constant we can find the stomatal density which maximizes

the upper bound on tree height in a given environment. We observe in Figure 5-5

that the optimal stomatal density that we calculate decreases with increasing average

annual temperature consistent with observations [21]. We also calculated the optimal

leaf size in a similar fashion and found it to decrease with increasing temperature (not

shown), which is also a trend suggested by observations [237]. This type of analysis,

where the model is used as a point of departure for including sub-dominant effects,

including the covariation of other traits, is an important area of investigation. In Sec-

tion C.5.5 we conduct a similar analysis to determine the optimal allometric scaling

of two plant features which we initially took to be constant, the stomatal density and

root absorption efficiency. We show that incorporating these additional scaling rela-

tionships into our model can reduce the error between predictions and observations

(Figure C-5). Understanding the covariation and co-optimization of various plant

scalings is an important area of ongoing [217, 216, 215] and future research.

Finally, we explore the effects of environmental shifts on maximum tree heights

while holding plant traits constant. Applying the simplest case of a uniform change

in mean annual temperature across the United States of ±2 0C we can solve for the

maximum height in that environment. We chose this value because +2 0C compares

well with the conservative projections for temperature change over the next 100 years

according to the frequently cited scenarios summarized by the Intergovernmental

Panel on Climate Change (e.g. [138]). We find that for +2 'C the average maximum
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Figure 5-5: The change in the stomatal density as a function of environmental tem-
perature. The values presented are averaged over both sides of the leaf. The blue
points are predictions from our model for the optimal stomatal density in each envi-
ronment, holding all other traits at the average value. The red points are observations
from ref. [21]. The observations fall within the range predicted by the model.

height across the continental U.S. decreases by 11% while for -2 'C the average

maximum height increases by 13% (Figure C-3).

5.3 Discussion and Conclusions

It is noteworthy that our framework, which uses a general morphology and an aver-

age set of tree parameters, can consistently predict maximum tree height over a wide

range of environments and tree species. At the same time, it can be easily extended

to explore the specific resource tradeoffs associated with each tree trait, and thus

predict environment-dependent adaptation. Various plant traits such as stomatal

density and leaf size and shape have been suggested as proxies for reconstructing the

paleoclimate [21, 237]. Yet some of these traits depend on multiple climatic factors.

For example, stomatal density decreases with both increasing temperature and at-

mospheric CO 2 concentrations [21]. Accurate reconstruction of either temperature or

CO 2 concentrations requires disentangling how each factor independently contributes
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to stomatal density. Our model provides simple mechanisms for interpreting how sin-

gle plant traits are suited for different meteorological conditions and with this we can

predict optimal plant traits for a given environment. Future work that incorporates

the covariation of multiple traits may give insight into both paleo-records and the

observed modern geographic variation of plant traits.

Equally important for interpreting the paleo-world is the use of allometry to re-

construct the form of paleoflora where, for example, fossilized tree trunks have been

suggested as a means for reconstructing tree height [188]. Because our model makes

an explicit and simple connection between local meteorology and tree size this may

open up the possibility of supplementing existing proxies with trunk diameters in

order to reconstruct both paleoclimate and the structure of local flora.

With respect to present day, our model can be used to anticipate potential changes

in maximum tree height as a result of changes in meteorology. As maximum height

is connected to local demographics and standing biomass [81, 80, 83, 82] our model

may be extended to comment on how changing climate would affect these important

forest features.

In short, our model has important implications for understanding tree distribu-

tions and dynamics in forests from a resource perspective and presents the possibility

for understanding relationships between both paleo and modern climates and dynamic

ecology. As such, it has the potential to inform important environmental issues such

as migration, climate change, and carbon sequestration.

5.4 Materials and Methods

Scaling Laws For the empirical scaling laws used in this paper we have presented

the error associated with scaling constants and exponents when the original reference

provided this information.

Height and Meteorological Data For observed maximum tree heights we used

the United States Forest Service's Forest Inventory and Analysis (FIA) database,
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which records the height and location of individual trees [259, 122]. We are inter-

ested in predicting the largest tree in an area given local meteorology. The spatial

variation of meteorology can be significant over relatively short distances. Thus, it is

important to pair tree sites to meteorological stations which are geographically close

to one another. This ensures that the predictions are capturing the conditions expe-

rienced by the observed trees. We paired trees with meteorological stations from the

National Climatic Data Center (NCDC) [183] for purposes of using station or station

interpolate data. Tree-meteorology pairs were separated by no more than 100 m of

elevation and 4 km of radial distance. As a result of these stringent criteria we were

only able to use a small subset of trees from the FIA database.

We considered all meteorology in terms of long-term annual averages. For pre-

cipitation we used the Parameter-elevation Regression on Independent Slopes Model

(PRISM) [66, 218] 30-year average (1971-2000) sampled at the location of the mete-

orological stations. We constructed mean temperatures for individual stations using

data from the NCDC [183]. We calculated relative humidity from the PRISM 30-

year average [66, 218] for mean dewpoint temperature, minimum temperature and

maximum temperature using a method described in ref. [51]. For wind speeds we

used data from the National Centers for Environmental Prediction (NCEP) reanalysis

[127, 184]. Solar radiation data was obtained from the NREL national grid [64].

Tree Traits Because of our focus on size and its relationship to survival in an en-

vironment we chose a single set of plant traits representative of a wide variety of

tree species from different environments. This single set of traits was used across all

environments to calculate Qe. For each tree trait we examined the variation across

many species, plant sizes, and environments and picked values that were representa-

tive of that variation. For several traits we checked that our values compared well to

averages from the TRY database [67] which is a comprehensive collection of 65 trait

databases and is representative of a large number of species and geographical regions.

We picked traits that were appropriate for both angiosperms and gymnosperms, as

our model does not distinguish between the two. We checked that the traits we picked
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gave rise to related properties, such as LAI, that were similar to observations for both

angiosperms and gymnosperms. The values which we used can be found in Table S1

along with means from the TRY database.

Sensitivity analysis It should be noted that many empirical scaling exponents

come with associated error bounds and that these exponents can vary across different

environments (e.g. [217]). In addition, we have relied on several analytic derivations

to inform some of the scaled tree physiology. To deal with the potential variation

of exponents we have carried out a basic sensitivity analysis where we perturbed

individual exponents away from the value used for our predictions and examined the

shift in the median relative error between observations and the new predictions (see

Section C.5.4 and Figure C-4 for details).
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Chapter 6

The evolutionary consequences of

the structure of gene encoding

Preface

An important focus of this thesis is that structure controls function at multiple levels

of organization. In this Chapter we turn our attention to the fundamental level of

genetic structure where we show how the specific encoding of a gene has the ability

to confer implicit functions such as controlling the mutation rate of organisms.

The work in this chapter began with conversations that Ben Allen, a fellow grad-

uate student, and myself had while taking Martin Novak's evolutionary dynamics

course at Harvard. I was interested in how mutation rates have differing benefits

depending on the nature of the environment: in static environments with a clearly

dominant strain low mutation rates are useful for maintaining the best genotype, but

in situations with large environmental shifts organisms may need to mutate quickly

to escape extinction. I was interested in how organisms manage this benefit and Ben

was interested in the possibility of organisms which switch between different mutation

rates as an adaptive strategy. Out of these conversations came a collaboration and

two group projects which I spearheaded and wrote-up (I was officially taking the class

while Ben was sitting in). I proposed the key analyses for searching the parameter

space for interesting tradeoffs and evolutionary success.
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I did an early mathematical analysis which Ben later advanced into its current

state. Our collaboration has been very close, and most of this chapter appears in

Ben Allen's thesis from BU [7] where it is cited as co-work with myself. Scott Wylie

has been working on similar problems and following conversations with him in the

last year we added him as a collaborator (at the time he was a post-doc at Harvard).

These conversations have led to the bioinformatic analyses where Scott and I have

taken turns in investigating different possibilities and hypotheses using various tech-

niques. Scott conceived of using synonymous changes as a means to detect positive

evolutionary selection. I performed the first analyses on the synonymous changes

observed in E. coli, Scott added a consideration of the phylogenetic tree using the

PAML software, and I have analyzed the final output from his investigations.

This chapter represents a mature manuscript entitled "The evolutionary advantage

of variable evolvability: Mutator production as an adaptive strategy in bacteria" by

B. Allen, C.P. Kempes, and S. Wylie which we plan to submit shortly. B. Allen is

the corresponding author.
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Abstract

Populations of Escherichia coli and other bacteria often contain strains with point mu-
tation rate several orders of magnitude higher than the rest of the population. These
"mutator" strains face the negative effects of increased production of deleterious mu-
tations, increased mutational load, but have greater potential for adaptive mutations
than their wild-type (low-mutation rate) counterparts. We investigate the hypoth-
esis that evolution may select for the occasional production of mutator offspring, a
strategy that we call "mutageneration". We first explore the empirical evidence for
this hypothesis where we find that E. coli demonstrates a strategy where a strain
can switch between the high and low mutation rates. Using a bioinformatic analy-
sis we show that this strategy is a conserved trait across diverse strains and species
and is likely under positive selection. We next introduce a simple model of evolution
on a fitness landscape with beneficial and deleterious mutations. On this landscape,
we consider two competing strains: mutagenerators, who produce mutator offspring
with a certain fixed probability, and nonmutagenerators, whose offspring maintain
the wild-type mutation rate. Through mathematical analysis and simulation, we in-
vestigate the question of which strain is better able to acquire and maintain beneficial
mutations, using parameter values derived from empirical results relevant to E. coli.
We find that mutagenerator strains have a small but persistent advantage in adapting
to the fitness landscape, despite their increased mutational load. We show how the
extent of this advantage varies with the availability and strength of new adaptive
mutations, and with the rate of mutator production in mutagenerators.

6.1 Introduction

The evolution of mutation rates has emerged as an important topic in evolutionary

biology. Competitive organisms must manage a tradeoff between acquiring benefi-

cial mutations and avoiding mutational load, the accumulation of deleterious muta-

tions which make the strain less fit. The need to maintain a stable physiology sets

an apparent upper bound on mutation rates [75]. However, in novel or fluctuating

environments, strains with greatly increased mutation rate can out-compete their

wild-type counterparts. The appearance of these "mutator" strains is common (e.g.

[144, 164, 199, 200, 206, 298]) and the advantage of mutator strains arises from their

increased capacity to acquire beneficial mutations, upon which the mutator allele

may "hitchhike" to high abundance [146, 147, 125, 222, 136, 76, 9, 261]. This indirect

action of natural selection on mutation rates-by way of its action on the mutations

produced at these rates-is known as second-order selection [274].
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Second-order selection can be observed, for example, in Escherichia coli and other

bacteria. Populations of such bacteria often contain mutator strains with mutation

rates 2-4 orders of magnitude above those of their wild-type counterparts [144, 164,

199]. These mutator strains play an important role in diverse biological settings

ranging from human health [200] to biogeography [206]. For example it has been

shown that in patients with cystic fibrosis a large fraction (36 % ) of lung infections are

dominated by a mutator strain of Pseudomonas aeruginosa [200]. For P. aeruginosa

it has also been shown that these mutator strains have a decreased susceptibility to

antibiotics [298]. It has also been hypothesized that mutator strains have allowed the

ocean microbe Prochlorococcus to rapidly streamline its genome for increased survival

in low nutrient environments [206].

Mutator strains can arise due to mutations on genes involved in the methyl-

directed mismatch repair (MMR) system or other aspects of DNA replication and

maintenance. Mutator strains can be favored in novel or rapidly changing envi-

ronments, as experiments [55, 162, 263, 262, 108, 252, 300], computer simulations

[272, 275], and mathematical analysis [125, 303, 72] have shown. The evolutionary

trade-offs involved in the competition between mutators and wild-types have been

reviewed by [262], [109], [274], [71], and [261].

Given the importance of mutation we might consider that it is beneficial for organ-

isms to evolve any number of simple or advanced strategies for managing mutation

rate. For example mutations producing various mutator phenotypes may be the con-

sequence of unavoidable random errors from which the organisms with single best

mutation rate may be selected. Another possibility is loci that regulate the mutation

rate itself have an increased susceptibility to genetic alterations [234]. In the latter

case, the capacity to produce mutator offspring may itself be considered a selectable

trait, which we term "mutageneration". Selection for or against mutageneration

would represent a form of "third-order selection" [253]-selection acting on mecha-

nisms for varying the mutation rate. The idea of mutageneration arises frequently

in connection to the question of whether amplified mutation rates are a programmed

response to stress [26, 98, 236, 102]. However, it is also possible to consider mutagen-
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eration, even in low-stress environments, as an evolutionary strategy for discovering

beneficial mutations.

The proposed selectable trait of mutageneration consists of two components: a

mechanism for producing mutator offspring at an elevated rate, and a pathway for

eventual restoration of the wild-type mutation rate [206]. Fixation of this trait could

occur over one or more cycles in which:

(a) mutator offspring are produced

(b) a subpopulation of mutators acquires beneficial mutations and hitchhikes to high

abundance

(c) a subpopulation of these abundant mutators regains the wild-type mutation rate

(d) this subpopulation rises to high abundance due to its decreased rate of detrimental

mutations

Step (b) of this cycle is more likely to occur in novel or fluctuating environments,

whereas step (d) would be expected after the environment has stabilized and the

population is well-adapted. For this strategy to evolve, its essential features-the

genetic capacity for elevated production of mutator alleles and for subsequent wild-

type rate restoration-must be maintained through all phases and iterations of this

cycle. Step (c) is important because if an environment becomes static a low mutation

rate strain can out-compete a high mutation rate strain due to its increased mutational

load and this may mean the loss of the mutagenerator strategy if the wild-type rate

is not restored.

Previous work suggests that simple sequence repeats (SSRs) in MMR genes (e.g.

mutL, mutH, and mutS) and other genes may provide a genetic basis for this trait

in E. coli, Salmonella typhimurium and other bacteria. SSRs are short sequences of

base pairs repeated consecutively within a DNA sequence. SSRs are vulnerable to

mutation due to slipped-strand mis-pairing, which increases or decreases the number

of sequence repeats by one [152, 52]. Such changes in repeat number in certain genes
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can produce the mutator phenotype (step (a) above). The restoration of the wild-

type mutation rate (step (c)) can occur either through direct reversal of the change

in repeat number, or through recombination.

Evidence supporting this potential mechanism comes from a long-term experiment

in which 12 E. coli populations evolved independently [148, 149, 19]. Mutator alleles

fixed in three of these populations within 10,000 generations [263], and in a fourth

by 27,000 generations [19]. Two of these mutator alleles were caused by changes in

repeat number of a particular sequence at the same position in mutL. The ancestor

strain REL606 contains, starting from position 210, the sequence GAG CTG GCG

CTG GCG CTG GCG, coding for the amino acid sequence ELALALA. This sequence

contains three repeated copies of the motif CTG GCG, and also three copies of the

motif G CTG GC (obtained by shifting the frame by one base pair). The observed

mutator strains were caused by a change from three to four copies in one case, and

a change from three to two copies in another. Of the remaining two mutator strains,

one was caused by an increase in the number of a mononucleotide repeat in mutT,

from six Cs to seven [19]. The other was caused by a single base pair insertion in

mutS, in which no SSRs were involved [252].

Similarly, in archival strains of S. typhimurium that had been stocked in sealed

agar stabs at room temperature for several decades a mutator strain (LT7) grew to

dominance [156]. This strain possessed a change in repeat number of the motif G CTG

GC in mutL at a homologous location to the E. coli genome. Moreover, [112] and

[59] both observed cases in which the the wild-type mutation rate was regained via a

further slipped-strand mis-pairing that restored the original repeat number, and this

new wild-type strain rose to high abundance (steps (c) and (d) of the mutagenerator

cycle).

The threefold repetition of the G CTG GC motif important in each of these

contexts has been shown to be conserved across strains of E. coli and species of

Salmonella [58]. More generally, numerous other SSRs have been found in mutL, and

mutS [58], and it has been shown that mononucleotide repeats in the mutT gene of

E. coli K12 are more abundant than what would be expected from a randomized gene
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sequence [234]. Though this evidence cannot be regarded as conclusive, it suggests

that evolution may have selected for SSRs in MMR genes. These SSRs provide a

mechanism for the production of mutator offspring at an elevated rate. They also

provide a mechanism for restoration of the wild-type mutation rate, by reversal of

the slipped-strand mis-pairing that produced the mutator allele (as was observed in

the S. typhimurium studies described above).

It has also been proposed [262, 42, 109, 71] that mutators may regain MMR

functionality through recombination with wild-types. MMR-deficient mutators have,

compared to other mutator alleles, a high rate of recombination [226, 70]. Moreover,

the MMR gene mutS is itself a frequent target of recombination [70, 42]. It is also

worth noting that MMR mutators are observed more commonly than other heritable

mutator phenotypes. [71] suggest that evolution may have selected for MMR-deficient

mutators over other mutator alleles, in part because of the increased probability

(relative to other mutator alleles) of wild-type rate restoration through recombination.

The previous work reviewed here suggests that there is likely a "switch" in the

mutL gene producing high and low mutation strains, and we interpret other work

to suggest that this strategy may be under positive selection. However it has not

yet been explicitly shown that mutageneration is a strategy which is being positively

selected for, nor has it been understood why and in what contexts this trait has

an evolutionary advantage. Here we use bioinformatics to concretely demonstrate

the positive selection of this trait across diverse strains and species, and we us a

mathematical model to illustrate that mutageneration is a beneficial strategy for a

well-defined set of biological and environmental contexts. Our bioinformatic analysis

compares the expected likelihood of disrupting the repeated codon motif (responsible

for the mutation rate "switch") to what is observed across divergent strains. We find

that this genetic structure is likely under positive selection. Our mathematical model

considers two competing types: mutagenerators, who produce mutator offspring at a

fixed stochastic rate, and nonmutagenerators, who do not produce mutators. These

types evolve and compete on a fitness landscape which includes both beneficial and

deleterious mutations. Using this model, we analyze the question of which type is
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favored to achieve the first beneficial mutation that survives stochastic drift. This

corresponds to step (a) and the beginning of step (b) in the process outlined above.

We find that mutagenerators have a small but persistent advantage in this contest,

despite their increased mutational load. All parameter values in our model correspond

to empirically verified quantities regarding E. coli evolution. Our model also predicts

which parameter alterations would make mutageneration a detrimental strategy and

this provides avenues for experimentally testing our theory.

6.2 Bioinformatics analysis of mutagenerator se-

lection.

Our basic premise for the mutagenerator strategy is that there is an implicit function

[52] associated with the encoding of the mutL gene. The 6 nucleotide string which is

repeated 3 times (referred to here as the 3 x 6 repeat) allows the gene to easily add or

drop the repeated motif and in doing so either disrupt or restore the mismatch repair

function of mutL. This is an unusual structure (e.g. E. coli K-12 has only three genes

with a 3 x 6 repeat) which leads to a special mutational property. If this property

is beneficial then we should see selection for this specific genetic encoding opposed

to synonymous encodings of the same amino acid sequence in mutL. A simple test of

this is to consider the synonymous changes for all codons in mutL between various

strains of E. coli and determine what the likelihood is that that the 3 x 6 repeat is

preserved across all strains compared to what is observed. Comparing every strain of

E. coli from BLAST, for which mutL has been annotated, we find that of 40 genome

sequences only 1 does not contain the 3 x 6 repeat. This is interesting because it

demonstrates that losing the repeat motif is possible for a viable organism, but rare.

We compared each of these strains to K-12 as a reference sequence and calculated the

synonymous change rate over all of mutL. We then applied this synonymous change

rate to each sequence and asked how likely it would be for the 3 x 6 repeat to be

preserved. We found that across all species the average likelihood that the repeat
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Figure 6-1: The three windows with a 3 x 6 repeat along with the amino acid sequence
represented by these codons.

would be lost is 78% ± 13% compared to the observed value of 2.5%. This simple

analysis shows that the motif is lost in genomes much more infrequently than random

synonymous changes would suggest.

However this analysis is slightly flawed in that it does not account for the related-

ness of the strains involved. A simple example of why this could be problematic is to

consider a situation where a mutation occurred in an ancestor and was propagated

to all descendants, in which case analysis of how frequently a change occurred would

be much larger if this was not taken into consideration. In a more advanced analysis

we have first constructed a phylogenetic tree of all of the strains and increased our

search to include all genomes with the specific 3 x 6 repeat which includes species

other than E. coli (e.g. Salmonella typhimurium). We used the Phylogenetic Anal-

ysis by Maximum Likelihood (PAML) software to both construct phylogenetic trees

and to calculate the number of synonymous changes that occurred over the repeat

region. PAML's analysis of synonymous change likelihoods takes into consideration

many detailed features of the genome such as codon bias which is the observation

that in genomes certain synonymous codons are more likely to be used than others.

Using PAML we first calculate the expected number of synonymous changes that

should occur in the repeat region given its length and the synonymous change rate of

codons over the entire mutL gene. There are three windows Figure 6-1 (each separated
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by a distance of one nucleotide) which contain a 3 x 6 repeat. Using PAML, we find

that for the middle repeat window we would expect to have 25 synonymous changes

across 55 genomes, while we calculate the actual number of synonymous changes in

this region to be 15. This is much lower than expected and if we take synonymous

changes to be an independent random process we can use the Poisson distribution

to calculate the probability that we would see 15 changes or less given the expected

number. We find that the p-value for this situation is p = .03 demonstrating that it

is unlikely that the repeat is conserved only by chance. It is likely that the specific

structure of these codons is being conserved due to the related evolutionary function

that the repeat confers.

For the other two regions we find p = 3.01 x 10' (the expected number of

synonymous changes is 33 while the observed number is 8) and p = .73 respectively.

It is interesting that each window has a varying degree to which it is conserved across

all of the genomes. The first window is incredibly conserved while the last is likely not

being conserved. From the perspective of the mutational switch it is only necessary

to have a single repeat and thus it is not clear how or why multiple repeat windows

would be conserved to varying degrees.

6.3 Mathematical model development

Our bioinformatic analysis confirms that the 3 x 6 repeat motif in mutL is likely under

positive selection along with its function of a mutation rate "switch". However we

still do not understand why mutageneration is an effective strategy nor under what

conditions it will be successful. Here we develop a model which analyzes competition

between mutagenerators and strains with a single fixed mutation rate. We look at

the likelihood that a strain achieves the first beneficial mutation. Focusing on this

question avoids the combinatorial difficulties posed by modeling multiple mutations

and clonal interference (the long-term competition between strains with different

positive mutations).
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Fitness landscape In order to highlight the evolutionary tradeoffs of mutator pro-

duction within an analytically tractable framework, we consider a simple fitness land-

scape model with beneficial and deleterious mutations, illustrated in Figure 6-2. This

model has the advantage that each parameter value corresponds to an empirically

evaluated quantity.

In this fitness landscape model, genotypes are classified as neutral, advantageous,

or disadvantageous. Each mutation from a neutral genotype results in an advanta-

geous genotype with probability b, a disadvantageous genotype with probability d,

and otherwise another neutral genotype. Each mutation from an advantageous geno-

type results in a disadvantageous genotype with probability d and otherwise another

advantageous genotype of the same fitness. (Since our focus is on which type sus-

tains the first beneficial mutation, we do not consider beneficial mutations beyond

the first.) Mutations from disadvantageous genotypes result in other disadvantageous

genotypes. The implicit assumption that deleterious mutations cannot be reverted or

compensated for by evolution at other loci is reasonable for large genome sizes and

relatively stable environments [196].

Disadvantageous genotypes in our model have fitness 1 - 8 d. The assumption that

all disadvantageous genotypes have the same fitness has little effect on our results:

since disadvantageous genotypes are evolutionary dead ends in our model, their fitness

is relevant only to the question of determining their abundance in mutation-selection

equilibrium.

Advantageous genotypes have fitness 1 + sb, where the fitness effect sb is sampled

independently, each time a neutral-to-advantageous mutation occurs, from an expo-

nential distribution of mean (sb) = 3. The choice of an exponential distribution is

standard, motivated by results in extreme value theory [203].

Mutagenerators and nonmutagenerators On this fitness landscape, we con-

sider a population of fixed size N > 1, divided into mutagenerator and nonmutagen-

erator strains. The mutagenerator strain is itself subdivided into wild-types (standard

mutation rate) and mutators.
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Figure 6-2: The fitness landscape model. The arrows between genotype categories are
labeled with transition probabilities per genomic mutation. For example, if a single
mutation occurs in the replication of a neutral genotype, the result is an advantageous
genotype with probability b, a disadvantageous genotype with probability d, and
otherwise another neutral genotype.

Evolution proceeds according to an asexual Wright-Fisher process. Each new

offspring is born with a random number of mutations, u. This number is sampled from

a Poisson distribution, with mean um for offspring of nonmutagenerators or wild-type

mutagenerators, and mean um for offspring of mutators. Each of these mutations is

randomly designated as neutral, beneficial, or deleterious, and the resulting offspring

is then designated as neutral, advantageous, or disadvantageous, according to the

fitness landscape model described above.

We represent mutageneration by assuming that each offspring of a wild-type mu-

tagenerator has probability p of being born a mutator (and is otherwise another

wild-type mutagenerator). Nonmutagenerators only produce nonmutagenerator off-

spring.

We do not incorporate restoration of the wild-type mutation rate in our model.

Although such restoration is an essential component of the proposed mutagenerator

trait, its mechanisms and rates are not yet sufficiently well-understood to be modeled

[262, 71, 59]. In any case, the focus of our model is on the acquisition of the first
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beneficial mutation, and the restoration of wild-type rates is unlikely to be relevant

to this question.

6.3.1 Success criterion

We quantify evolutionary success in terms of probabilities of achieving adaptations.

We use the term "adaptation" as shorthand for "beneficial mutation that survives

stochastic drift". We focus on adaptations, rather than fixation or other measures

of evolutionary success, in order to avoid the complications that arise when multiple

adaptations occur in a single lineage, or in competing lineages (clonal interference).

Specifically, we consider the case of an initially rare mutagenerator strain invading

a population of nonmutagenerators. The initial frequency of mutagenerators, xg(0),

should satisfy 1 < Nxg(0) < N.

We quantify the success of mutagenerators in terms of the probability r9 that they

acquire an adaptation before nonmutagenerators do. We consider mutagenerators to

be favored if this first adaptation probability exceeds their initial frequency, 7rg >

Xg(0). This criterion is derived from the general fact that, in an evolving population,

a neutral substrain (identical to the rest of the population in fitness and mutation

rate) has first adaptation probability equal to its initial frequency. Thus rg > xg(0)

indicates that mutagenerators have an advantage in adaptation, relative to a neutral

invading strain.

6.3.2 Simulations

To gauge the effect of the approximations made in our analysis we performed an

exact simulation of our model. In this simulation, the state of the population at each

time step is represented by the number of individuals of each of eight types: neutral,

advantageous, and disadvantageous nonmutagenerators, neutral and advantageous

wild-type mutagenerators, neutral and advantageous mutators, and disadvantageous

mutagenerators of either subtype. At each time-step, the population is replaced by

an equal number of new individuals (offspring). The number of offspring produced
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Table 6.1: Default parameter values used in analysis and simulation

Symbol Description Default Value Reference
N Population size 2 x 106

uW Wild-type mutagenerator muta- 2.5 x 10-3 [75]
tion rate*

Um Mutator mutation rate* 2.5 x 10'
a Rate of mutator production 5 x 10-6 [29]
d Proportion of mutations that are 0.08 [133]

deleterious
sd Fitness effect of deleterious muta- 0.012 [133]

tion
b Proportion of mutations that are 8 x 10-3 [207]

beneficial
(Sb) Mean fitness effect of beneficial 0.013 [207]

mutation

Mutations rates are in mutations per replication per genome.

by each parental type is sampled from a multinomial distribution, where each type

is assigned a probability proportional to fitness times abundance. Once the number

of offspring of each type is determined, the numbers of mutations between types are

sampled from appropriate binomial distributions; from these sampled values the new

frequencies of the eight types are calculated. Using 2 x 105 trials per parameter

combination, we recorded the frequencies with which each type sustained the first

beneficial mutation. In general, these simulations agreed closely with the analytical

results which we present later.

6.3.3 Parameters

Table 6.1 gives the default parameter values that we use in analytical and simulation

results unless otherwise stated. All parameter values are derived from published

empirical results. The fraction d of mutations that are deleterious is derived from

the finding of [133] that deleterious mutations occur at a rate of 2 x 10-4 per genome

replication in wild-type E. coli; the equation

1 - e-und = 2 x 10-4
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yields d ~ 0.08. The fraction b of mutations that are beneficial comes from the result

of [207] that approximately 2 x 10-5 beneficial mutations occur per individual per

generation. Dividing by the overall mutation rate un yields the probability b = 0.008

that a random mutation is beneficial.

We note, however, that [207] consider only the first 2000 generations as an E.

coli population is adapting to a novel landscape. According to theory [202] and

experiment [149, 19], new beneficial mutations decrease in abundance and/or strength

as a population adapts to a landscape over time. Therefore, we consider the values

of b and (Sb) in table 6.1, adapted from [207], to be upper bounds, representing the

initial phase of adaptation. The typical b and (sb) values encountered by E. coli in

stable environments may be significantly smaller.

6.3.4 Dynamics of neutral and disadvantageous genotypes

We begin our analysis by considering the temporal dynamics of competition between

mutagenerators and strains with a single mutation rate. Ultimately we are interested

in how these dynamics lead to a probability that a given strain will fixate on the

first beneficial mutation and how this probability depends on the key parameters

summarized in Table 6.1.

We first consider the case b = 0 (no beneficial mutations available). To analyze

this case, we use a deterministic approximation to the Wright-Fisher process, which

is accurate for large population size. In this approximation, each subtype produces

a number of offspring per unit time equal to its abundance times fitness, mutations

between subtypes occur in proportion to their probability, and death affects all sub-

types equally at a rate equal to average population fitness. The dynamics of subtype

frequencies in this approximation can be described by quasispecies equation of [79],

and variants thereof.

We observe that for a subtype of mutation rate u, the probability of avoiding

deleterious mutation (i.e. the probability that an offspring of a neutral type will

again be neutral) is e"d. This arises from the fact that, in our fitness landscape

model, the number of total mutations per reproduction is Poisson-distributed with
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expected value u, and therefore the number of deleterious mutations is also Poisson-

distributed, with expected value ud. We use the notation q, - e~-ud and qm - e-umd

to denote these avoidance probabilities for to the wild-type and mutator mutation

rates, respectively.

We first compute the internal mutation-selection equilibria of the nonmutagenera-

tor and mutagenerator strains, and then discuss the dynamics of competition between

these strains.

Mutation-selection equilibrium for nonmutagenerators

For the nonmutagenerator strain, we describe the dynamics of fixation using a quasi-

species equation which is a deterministic approximation commonly used in theoretical

biology [197, 781. The quasi-species formulation considers the likelihood of a strain

mutating into another and the relative reproduction of each strain based on its fitness.

This can be described as
N

xi= I:x fj qj,i - $xi (6.1)
j=0

where xi is the proportion of the population composed of a given strain, qj,i is the

probability that strain j mutates into strain i, and fi is the relative fitness of a given

strain. The last term ensures a constant population size where # is the average fitness.

For our system the mutational probabilities are given by

q qw - qw(6.2)
0 1

and fitness by

f d(1 1-s) (6.3)

Thus equation 6.1 becomes

(2 qw 0 x0A x0n n n(6.4)
Xn 1qw 1-s xd -(nx-
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Above, x0 and x- denote the frequencies of neutral and disadvantageous genotypes,

respectively. # x + (1 - Sd)x- denotes the average population fitness (it should

again be noted that x' + x- = 1 as these are frequencies).

We now assume that q. > 1 - Sd: the fitness of the neutral genotype multiplied

by the probability of remaining in that genotype is greater than the fitness of the

disadvantageous genotype multiplied by the likelihood of remaining in that state. If

this assumption is violated then an "error catastrophe" [79, 196] occurs, in which

deleterious mutations are produced at such a high rate that the neutral genotypes

are evolutionarily lost.

The mutation-selection equilibrium in nonmutagenerators is given by the domi-

nant eigenvector of the matrix in (6.4), which under the above assumptions can be

calculated as
0 qu, -( -- sa)( ) = ( S ) (6.5)

Xn 
Sd

The corresponding eigenvalue is q., which gives the average fitness of the nonmuta-

generators at equilibrium.

Mutation-selection equilibrium for mutagenerators We now consider mu-

tagenerators alone. The deterministic approximation in this (again using the frame-

work of equation 6.1) is described by the equation

50m qw (1 - p1) 0 0 z0 A0

(70 = wy[ q 0 Am - (x). (6.6)

Here A, xm, and x- denote, respectively, the frequencies of neutral wild-types, neu-

tral mutators, and disadvantageous genotypes (of either subtype). # again denotes

average fitness, which is given in this case by x0 + 0 + (1 - Sd)X-.

We now assume (1 - p)qw > 1 - sd and (1 - y)qw > qm. If the first inequality is

violated, an error catastrophe occurs as described above. If the second inequality is
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violated, there is a "mutator catastrophe", in which the wild-type mutation rate is

lost to mutators.

As above, the mutation-selection balance in mutagenerators is given by the dom-

inant eigenvector of the matrix in (6.6), which under the given assumptions can be

calculated as

((1 -p)qw -qm) ((1-)qw+s- 1)

(W Sd(qw - qm)

Sqw ((I-s)qw - q -- 1 . (6.7)M Sd(qw - m)

Sd

The average fitness of mutagenerators at equilibrium is equal to the corresponding

eigenvalue, which is (1 - p)qw.

Dynamics of rare mutagenerators Still assuming no beneficial mutations

(b = 0), we now suppose that a population dominated by nonmutagenerators is

invaded by a strain of mutagenerators. We suppose the initial frequency of mutagen-

erators, xg(0) satisfies 1 < Nx(0) < N. We also suppose that the subtypes of the

mutagenerators are initially in mutation-selection equilibrium.

Comparing the average fitnesses of mutagenerators and nonmutagenerators, we

observe that mutagenerators have a selective disadvantage, with selection coefficient

-pqw, due to excess mutational load. Under the deterministic approximation (and

using the assumption 1 < Nx(0) < N), the frequency of the mutagenerator strain

declines exponentially through time:

X g(t) _ Xg(O)e-,Iqt.

The deterministic approximation further implies that the relative frequencies of the

subtypes within each strain are constant over time. Since the nonmutagenerators are

dominant, we approximate their frequency as 1.

This highlights, in the extreme, that mutageneration is not beneficial in the case
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where there are extremely rare positive mutations. In this situation mutageneration

simply accelerates the rate a which offspring with deleterious mutations are produced.

Probability of surviving stochastic drift We turn now to the case b > 0 in

which beneficial mutation is possible. When such a mutation appears, it may either

grow to sustainable abundance or disappear due to stochastic drift (organisms with

fitter genotypes are more likely, but not guaranteed, to survive). We apply the stan-

dard result that, for the haploid Wright-Fisher model with large population size, the

probability that a beneficial mutation escapes loss due to drift is approximately equal

to twice the mutation's selection coefficient s. This approximation is accurate for

1/N < s < 1 [115, 134].

The relevant selection coefficient in this case is not merely the fitness increase,

Sb, of advantageous genotypes relative to neutral genotypes. This is because the

beneficial mutation may be lost in one of two ways-by death or by mutation to

a deleterious genotype-and we must take both of these possibilities into account.

Thus the relevant selection coefficient is the rate at which advantageous genotypes

are faithfully reproduced, divided by the average population fitness, minus one. To

compute this, we note that advantageous genotypes are faithfully reproduced at rate

(1 + SO)q, where q equals q., q,(1 - a) or qm, depending on which strain has achieved

this mutation. Since nonmutagenerators are dominant, the average population fitness

is q,. Thus the selection coefficient is (1 +Sb)q/q, - 1, with q equal to the appropriate

probability of avoiding deleterious mutation.

Recalling that sb is exponentially distributed with mean #3, we compute the prob-

ability that a random beneficial mutation will survive stochastic drift as follows:

p = 0 (1 + SO) - 1 e-6b/3 dsb
M Jq./q-1 w (6.8)

2- q exp (q .
qw q
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Substituting the appropriate values of q and replacing 13 with (sb), we have

pn = 2(sb)

pw = 2(sb)(1 - a) exp a (6.9)
(sb)( - a)

pm = 2(sb) T exp (m -(1w
qw ( sb)m .

for nonmutagenerators, mutagenerators with the wild-type and mutator mutation

rates respectively. The probability that a beneficial mutation will survive stochastic

drift is proportional to the mean strength of beneficial mutations, (Sb), for nonmuta-

generators, while in mutagenerators this same success depends on the rate at which

the mutators are produced, a, and the relative likelihoods of avoiding deleterious

genotypes.

Probability of first adaptation We now compute adaptation probabilities. An

adaptation at time t is defined here as a beneficial mutation that arises at time t and

eventually survives stochastic drift.

For nonmutagenerators, the probability of acquiring an adaptation in the infinites-

imal time interval [t, t + dt) equals the number of offspring produced by neutral non-

mutagenerators in that time, NxO dt, times the probability of being born with an

advantageous genotype, buwqw, times the probability p, of eventually surviving drift.

This instantaneous probability can be written as

NxO buwqw pn dt.

To shorten this expression, we introduce the constant

an = x0 buwqw pn, (6.10)

which gives the average per-capita rate of adaptation in nonmutagenerators. Their

instantaneous probability of adaptation is then Nan dt. The probability that no

adaptation has occurred in nonmutagenerators by time t is e-Nant. Since nonmu-
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tagenerators are dominant in the population, this quantity also approximates the

probability that neither strain has acquired an adaptation by time t.

For mutagenerators, the instantaneous probability of adaptation in the interval

[t, t + dt) is given by

Nxg(t) buwwPw + *bumqmp/ dt.

The two terms above correspond to the adaptations by the two sub-populations of

wild-types and mutators, respectively. xg(t) is the total frequency of mutagenerators,

given by xg(t) = xg(O)e-aqt as described above. The ratios x4 /x, and x/9x refer to

the relative frequencies of wild-types and mutators, respectively, within the wild-type

strain. Introducing the constant

30 0
ag = * buwqwpw + butqmpm, (6.11 )

X9 Xg

we can rewrite the instantaneous probability of mutagenerators to a positive adapta-

tion as

Nx(0) e-aqt ag dt.

We are interested in the probability 9rg that mutagenerators acquire an adap-

tation before nonmutagenerators. We obtain this by integrating the instantaneous

adaptation probability Nxo (0) e-aqa a, dt for mutagenerators against the probability

e-Nant that no adaptation has occurred before this time. This yields

IrJg f Nxg(0) e-,q- ag e-Nant dt

Nzg(0) ag (6.12)
pqw + Nan

Recalling our success criterion lrg > Xg (0), we arrive at a simple yet powerful rule:

mutagenerators have an evolutionary advantage over nonmutagenerators if and only

if

Nog - pqw > Nan. (6.13)
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This rule can be rewritten as

Nag - (1 - (1 - p)qw) > Na - (1 -

so that each side has the form

population size x per-capita adaptation rate - mutational load.

This rule makes quantitatively clear that the success of mutation strategies depends on

the tradeoff between adaptation rate and mutational load (production of deleterious

mutations). The applicability of this rule to general evolvability strategies is the

subject of future exploration.

Dependence on strength and availability of beneficial mutations Having

derived condition (6.13) for the success of mutagenerators, we now investigate how

their success depends on the population size and the properties of beneficial mu-

tations. We first observe that, using (6.10), (6.11), and (6.12), the probability of

mutagenerators finding an adaptation before nonmutagenerators can be written as

,rg Nb ((x0o/x 9 ) ugpw + (x% /xg) umqmpm)

xg(0) pqw + Nb (x uwqwpn)

where we have rearranged the equation to normalize by the initial frequency of the

mutagenerator population. In this expression, N and b only appear together as a prod-

uct. Therefore, for the purposes of determining mutagenerator success, the product

Nb can therefore be considered as a single parameter. This product represents the

availability of beneficial mutations to the population as a whole.

Using this insight, we explore how the success of mutagenerators depends on the

strength, (Sb), and availability, Nb, of beneficial mutations (Figure 6-3). Not surpris-

ingly, mutagenerator success increases as beneficial mutations become stronger and

more plentiful. For the empirically-derived parameter set (Table 6.1), the probability

of mutagenerator adaptive success normalized by initial frequency, 7rg/xg(0), equals
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approximately 1.0004. This number is greater than one implying that mutagenerators

are expected to outcompete nonmutagenerators.

We parenthetically remark that it is not surprising to find values of 7rg/x,(0) very

close to 1 in Figure 6-3, considering that the mutagenerator population is composed

almost entirely of wild-types. Indeed, we observe from (6.7) that the fraction of

mutators within the mutagenerators is of order p = 5 x 10-6. Thus the vast majority of

the mutagenerator strain has the same mutation rate, u, as the nonmutagenerators.

It is only the mutator subtype, comprising a small fraction of the mutagenerators,

that gives mutagenerators an advantage in adaptation.

The plentiful and scarce regimes From (6.13) and (6.14) we observe that,

for Nb > pqw, the condition for mutagenerator success reduces to ag > an, or

equivalently,
x0 x0
* uwqwpw + 9 U'mqmpm > xnUmqwpn.

In other words, the load term -pq in (6.13) becomes dwarfed by the adaptation

rates Nag and Nan, and the factor Nb cancels from both sides. Intuitively, in this

regime, adaptation occurs on a faster timescale than decline due to load; thus the

probabilities of first adaptation depend only on the instantaneous adaptation rates.

Conversely, for Nb < pqw, condition (6.13) implies that mutagenerator success

is impossible. This is because, in this regime, decline due to load occurs on a faster

timescale than adaptation. Adaptation is unlikely to occur before the mutagenerator

strain is greatly diminished due to load.

Dependence on the rate of mutator production The rate p of mutation from

wild-type mutagenerator to mutator defines, in a sense, the mutagenerator strategy;

it is our hypothesis that this parameter may be acted upon by selection. Figure 6-4

shows that increasing p amplifies either the success or failure of the mutagenerator

type, depending on the fitness landscape.

We can also investigate the effect of increasing p on the success of the subtypes

within the mutagenerator strain. We denote by 7r, and -rm the probabilities that
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Figure 6-3: Mutagenerator success as a function of the expected strength, (sb), and
availability, Nb, of beneficial mutations. Success of mutagenerators is quantified by
the ratio wg/xg(0) = Nag/(pqw + Nan), derived in (6.12). A value larger than 1 indi-
cates that mutagenerators are favored to acquire the first adaptation. Mutagenerator
success increases with both the strength and availability of beneficial mutations. The
point * indicates the empirically-derived parameter values (Table 6.1).

wild-type mutagenerators and mutators, respectively, achieve the first adaptation in

the population. The ratios 7rw/xg(O) and 7rm/xg(O) can be obtained in similar fashion

to the derivation of (6.14), yielding

7W N (xO/xg) buIqxpw

xg(O) pqw + N buqwpnn (6.15)
7m N (xO/x) bumqmpm

xg(O) pqw + NxN0 buqw pn

Figure 6-5 explores the dependence of these quantities on P. We observe a tradeoff:

for fitness landscapes that favor mutagenerators, their success increases with P, but

this success comes from cases where the mutator subtype adapts. The probability

7rw that wild-types acquire the firs adaptation decreases with p. Since wild-types

have greater long-term evolutionary stability, this tradeoff may constrain the upward

evolution of p.
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Figure 6-4: Mutagenerator success, 7rg/xg(0), as a function of the mutator production

rate y and the availability of beneficial mutations, Nb. Values of Nb range from 1

(bottom line) to 10 4 (top line), in logarithmically spaced intervals. Increasing y

magnifies either the advantage or disadvantage to mutagenerators, depending on the

landscape. The "mutator catastrophe", in which the wild-type mutation rate is lost

to mutagenerators, occurs when y > 1 - qm/qw 0.02.
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Figure 6-5: First adaptation probabilities, in relation to initial mutagenerator abun-

dance, for the mutagenerator strain and its subtypes, as a function of the rate y of

mutator production. Other parameter values are as in Table 6.1. With increasing

p, the overall success of mutagenerators increases, but the likelihood of wild-type
fixation decreases.
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6.4 Discussion

Overview Our results show that mutageneration, as a selectable trait, is plausible

both mechanistically and evolutionarily in E. coli and related organisms.

On the mechanistic side, previous work has highlighted the role of SSRs in MMR

genes to act as switches between the wild-type and mutator alleles. In particular,

mononucleotide repeats in mutT and a 6pb motif repeated three times in mutL have

led to the production of mutator alleles in E. coli and S. typhimurium [253, 112, 19].

In particular, the repeated 6bp motif has been validated as a genetic switch for the

mutation rate, and spontaneous restoration of the wild-type mutation rate through

reverse mutation has been observed, in S. typhimurium [112, 59]. Our bioinformatic

analysis demonstrates that this repeated 6bp motif is not forced by the constraints

of the amino acid sequence and codon bias. Synonymous changes in the codons

are possible and do occur accross various strains. However synonymous changes

occur much more infrequently than would be expected highlighting that the specific

repeat structure is likely important for function and is possibly under positive selective

pressure.

Our analysis of the evolutionary model shows that this hypothesis is credible

from an evolutionary standpoint as well. Under conditions that are reasonable for E.

coli, mutagenerators are more likely than nonmutagenerators to achieve and sustain

the first beneficial mutation. Moreover, mutagenerators are able to out-compete

nonmutagenerators for conditions under which pure mutators would not be favored.

Thus, mutageneration is an effective hedge strategy, able to adapt when possible and

maintain stability when necessary.

Fixation of mutagenerators Our model focuses on the short-term question of

sustaining the first beneficial mutation. Moving to a longer time-scale, we can ask

how a mutagenerator strain might achieve fixation in a population initially dominated

by nonmutagenerators. The fixation of mutator alleles in the long-term E. coli ex-

periment [263, 19] suggests that mutagenerator fixation would most likely occur in a

single iteration of the four-step process outlined in the introduction, rather than mul-
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tiple iterations. Furthermore, analysis of this experiment by [252] and [18] suggests

that mutator selective sweeps (step (b)) are likely to occur on the basis of multiple

beneficial mutations, rather than just one.

For the evolution of mutageneration to be complete, the wild-type mutation rate

must be restored (steps (c) and (d)) through reverse mutation or recombination, as

described in the introduction. For reasons that are unclear, this did not occur in

the long-term E. coli experiment, even after the rate of adaptation in the mutator-

dominated populations had slowed significantly [253]. It did, however, occur in the

S. typhimurium experiments through spontaneous reverse mutation and subsequent

fixation of the wild-type [112, 59]. Further research is necessary to sort out the

mechanisms and rates of restoration of the wild-type rate, and to address why this

reversal did not occur in the E. coli populations.

Mathematical analysis of the full process of mutagenerator fixation would be com-

plicated by the effects of clonal interference, multiple mutations, and exhaustion of

the supply of beneficial mutations. However, this process could readily be investigated

through simulation.

It is also possible to address this question experimentally, by setting up compe-

tition between mutagenerator and nonmutagenerator strains of bacteria. Nonmuta-

generator strains could be obtained using the method of [58], who engineered non-

mutagenerator strains of S. typhimurium by disrupting SSRs through synonymous

nucleotide substitutions. These nonmutagenerator strains were verified to have a

lower population average mutation rate, likely due to the absence of mutator subpop-

ulations.

MMR-deficient mutators are also recombinators Strains with defects in the

MMR pathway have not only a high mutation rate, but also an increased rate of

homeologous recombination [226, 70]. Thus far, we have mentioned this increased

recombination rate only in terms of its potential to facilitate restoration of the wild-

type mutation rate. However, this increased recombination rate may have many

other effects on the evolution of MMR-deficient strains [70]. In particular, it may
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facilitate adaptation by mitigating the effects of clonal interference [93, 65]. It may

also guard against further, possibly untenable, increases in the mutation rate [104].

These effects may have important consequences for the evolution of MMR-mediated

mutageneration, which merit further study.

The rate of mutageneration If it is accepted that mutageneration is indeed a

selectable trait, the question then arises of how evolution has shaped the rate of

mutator production (parameter a in our model). There are several tradeoffs to be

considered here.

First, the benefits and drawbacks mutator production depend on the fitness land-

scape, as shown in figure 6-4. Rapid production of mutators magnifies both the

advantages (when beneficial mutations are plentiful) and disadvantages (when ben-

eficial mutations are scarce) of mutageneration. Thus the answer to this question

depends on the variety of environments and fitness landscapes faced by an organ-

ism over the course of its evolutionary history. Organisms facing greater variability

and harshness in their environments may evolve a higher rate of mutator production.

In this light, it is unsurprising that [58] found a number of SSRs in the mutL and

mutS genes of almost all common bacterial pathogens. An important open question

is whether pathogenic bacteria have a significantly greater number (in the statistical

sense) of SSRs in MMR genes than their non-pathogenic relatives.

Second, it is important to consider constraints imposed by the genetic basis for

mutageneration. If indeed SSRs in MMR genes are the primary genetic mechanism

for this trait, then the amino acid sequence restricts the possible number and length of

these repeats. Reversibility is also an important constraint: if a mutator acquires two

independent mutations in MMR genes, this mutator may become "locked" -unable

to produce wild-type offspring-since independent reversal of both of these mutations

may be highly unlikely. The need for reversibility may therefore constrain the number

of SSRs in MMR genes, and with it the rate of mutator production.
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Conclusions Here we have seen that mutageneration forms an evolutionary advan-

tageous strategy for organisms. The mechanism for mutator production is connected

with a special codon pattern within the mutL gene. We find that this pattern seems

to be under positive selection as synonymous changes to the repeat occur much less

frequently than expected.

The success of mutatagenerators is dependent on several key parameters including

the production rate of mutator strains, and the strength and availability of beneficial

mutations within the genetic landscape. Experimentally determined values of the key

parameters show that, for E. coli, mutageneration is a advantageous trait explaining

why mutators are often observed in natural populations [144, 164, 199]. However,

we also find that for certain reasonable parameter regimes mutageneration would be

disadvantageous and would likely be excluded. For example, if the there are few

beneficial mutations then mutageneration is not the best strategy.

One of our most fundamental results is the tradeoff associated with the mutator

production rate. This rate is set to compromise the relative benefits and disadvantages

of producing mutators dependent on the availability of beneficial mutations. Moving

forward it will be important to determing if, and how, this rate is being selected for

by evolution.

Understanding the rate of mutator production, or testing the effect of any im-

portant parameter, requires an experimental system where mutagenerators can be

directly competed against nonmutagenerators. To do this we would like to collab-

orate in the future with experimentalists to create a nonmutagenerator strain of E.

coli. This can be done by replacing the repeat in mutL with synonymous codons with

no repeat structure. We can then directly compete mutagenerators and nonmuta-

generators in a variety of contexts such as a situation where there are few beneficial

mutations. Such a situation can be imposed by selecting a growth medium that allows

for the survival of only a few well-defined genotypes. The challenge in these exper-

iments may be that the timescales for the competitive, adaptive and exclusionary

processes may be incredibly long, especially as mutators are produced slowly.

Mutators are quite successful in human infections and also are shown to have
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decreased antibiotic susceptibility [200, 298]. Thus understanding the general con-

straints faced by strains which produce mutators has implications for better treating

infections.

From an evolutionary perspective it is interesting that there are species which

produce mutators but do not use the same repeated codon mechanism found in E.

coli. For example, P. aeruginosa does not have the same codon repeat pattern in mutL

but this species frequently produces mutator strains [200, 298]. Moving forward we

are interested in investigating the variety of mechanisms which produce mutators in

a diversity of species and determining whether there are any universal similarities

amongst these mechanisms. This can be done by sequencing mutator strains in a

number of species and comparing them to the wild-type in order to determine how

the elevated mutation rate was produced. If we find that the mechanisms are all quite

different then this would suggest that mutageneration is important and that there are

a large number of ways to evolve this strategy. If the mechanisms are similar then

this implies common structural functions across diverse genomes.
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Chapter 7

Conclusion

In this thesis we have seen that the structure of organisms has wide reaching impli-

cations for biological function at scales ranging from the genetic encoding of genes

to the architecture of tree canopies. The evolution of life through various degrees

of complexity and across vastly different scales is accompanied by critical changes in

morphology. Indeed our work highlights that some of the major innovations of evolu-

tion are morphological whether those be the addition of mitochondria to unicellular

organisms, the formation of structured unicellular communities, or the optimization

of tree canopy shape. Structure is important because it both regulates the inter-

nal metabolic processes of organisms and mediates an interaction with the external

environment and resource supply.

By focusing on basic physical constraints and idealized structure we have devel-

oped and explored a series of first-order hypotheses and theories in a variety of case

studies where we are able to successful predict features ranging from regional speci-

ation to the dynamics driving mutation rate. Importantly, each is associated with a

set of testable predictions which can be used to guide future experimental work.

In our work on microbial energetics and evolution we proposed several testable

hypotheses. The model predicts the minimum size of prokaryotes. For the maximum

size of prokaryotes and the minimal size of eukaryotes it is important in the future to

examine the scaling of many features such as the total ribosomal and mitochondrial

volumes found within each of these classes of organisms as these may determine the
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observed limits. Our work suggests that metabolic scaling and partitioning may be

directly connected with both resource use of single cells and the partitioning of tran-

scriptional resources within that cell. Both of these possibilities could be examined

by tracking the growth of a single cell concurrently with its resource consumption

and internal transcriptional composition.

In our work on biofilms we saw how emergent raised structures lead to a metabolic

and growth advantage for the colony. We have shown how the structure of single fea-

tures can be explained by the effect that vertical geometry has on resource acquisition.

The spatial pattern formation results from the interplay between diffusive dynamics

and resource supply management. However, we interpret the vertical structure and

horizontal patterning mostly in terms of top-level resource supply considerations. We

still do not understand the specifics of how cellular physiologies regulate emergent

structure. For example, although we understand that a given ridge width is optimal

for resource acquisition and growth we do not know how this width is maintained

constant as the ridges grow taller. Various genetic knockouts reveal key physiological

process for pattern formation such as motility, and we have identified graph theoretic

metrics for categorizing mutants. A full mechanistic interpretation of pattern forma-

tion is still elusive. Moving forward we plan to automate analysis of the entire mutant

library in order to uncover the "program" which gives rise to patterning. Once we

uncover the key physiologies involved in this "program" we can then proceed with

targeted experiments to measure the chemical and physiological state of the colony

over the time-series of development. A key technique will be to tag a given gene

of interest with fluorescent proteins and.monitor its expression both spatially and

temporally.

Our work suggests that some aspects of the emergent patterns are optimal for

community metabolism. For this to be the case it is possible that cellular traits have

been selected for such that optimal features are produced. We suggest that the se-

lection of these traits can be verified via experimental competition between strains.

This can be done my mixing together two or more genetic knockouts and observing

the effects on patterning and the success of each strain within the community. It
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will be interesting to find out whether a single strain can outcompete another or

if coexistence is possible in this context. Given competition dynamics and possible

coexistence, it is also important to determine whether mixed strain colonies have char-

acteristically different patterning than observed for either strain growing in isolation.

Such experiments could provide much insight into the processes by which community

organization and multicellularity evolve and are continually modified.

Our model for tree structure and physiology is successful in its ability to predict

the regional variation in the important trait of maximum tree height. We suggested

that this maximum tree height, which represents an upper bound, is the key variable

in describing the overall structure of a forest. Recent theoretical work has shown the

concrete connection between plant size and the spacing of trees [294, 83]. This pro-

vides an avenue for us to link local resources to predict the distribution of trees and

standing biomass of a forest via our model for maximum tree height. Our model is

founded on a connection between size, canopy structure, and a radiative energy bal-

ance. As such once we have determined the overall standing biomass and distribution

of tree sizes we can also predict the albedo of an entire forest region which we can ver-

ify using existing remote sensing data. The connection between albedo and resources

is important for understanding the feedback between terrestrial vegetation and over-

all climate or local weather. We have begun to look at these dynamics by adding

our vegetation dynamics to climate models in order to determine the fundamental

feedback between vegetation and longterm climate trends.

Our work on mutagenerators showed that a mutational switch is advantageous to

populations of cells and that an observed mechanism for switching is highly conserved

across similar species. However, there are many other species, such Prochlorococcus or

Pseudomonas aeruginosa, which exhibit mutator strains but do not have any repeated

codon modules which resemble those found in E. coli. Thus there must be another

mechanism that is producing mutators and several questions stem from this: Are

these other mechanisms also switches? Across diverse species, what is the variety in

mechanisms for producing mutators and are there any universal similarities amongst

these mechanisms? These questions can be easily addressed by sequencing numerous
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mutator strains from diverse organisms and determining which portion, if any, of the

mutation genes (homogous genes to mutL or mutH, mutS, and mutL) are repeatedly

damaged to produce mutators. For any possible mutator mechanisms we can again

use our bioinformatic technique to test whether there is positive selection for the

ability to produce mutators. This has far reaching implications for understanding

how mutation rates are managed and how they perhaps form one of the most central

traits of an organism.

Moving forward it is important to consider how multiple levels of structure and

organization within an organism interact to form physiology and fitness and how this

package is dynamically selected by evolution (e.g. Figure 4-3). Within the biofilm

system we see a great potential for future study. The biofilm system represents most

clearly analogies for all of the distinct levels of organization prevalent in the biological

world: At the top level the cooperation and competition of cells and various strains

form an ecological system. At the intermediate level, the overall structure of the

biofilm represent the rudiments of complex multicellularity or cell differentiation, and

individual features may behave like individuals within a forest governed by resource

flow and individual metabolism. At the most fundamental level the rate of mutation

may control the overall rate of morphological adaptation and mutation may give rise

to divergent patterning in a given region which is analogous to cancer formation in

complex multicellular organisms. Biofilm morphology is governed by the key pro-

cesses of genetics, environmental control, and stochastic spatial dynamics and the

accessibility of this system to a variety of measurements along with easy modifica-

tions of environmental, structural, and genetic situations form an ideal model system

with far reaching implications.
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Appendix A

Appendix for Chapter 2

A.1 Metabolic partitioning, bioenergetic constants,

and chemostat measurements

In the main text we compared the energetics of a populations of cells with the pa-

rameter values that we obtained from fits of single-cell growth trajectories. Analyses

of populations rests on the Pirt model [211] which linearly relates the consumption

rate Q of a limiting resource to the specific growth rate yt of a population along with

its yield coefficient Y and maintenance metabolism P:

Q = A + P. (A. 1)
Y

Although the consumption rates measured in chemostat experiments may range from

glucose to oxygen to light absorption it is always possible to represent this relationship

in the normalized units of percentage growth and maintenance

[1 + - (A.2)
YQ Q

where this equation can be compared to the single cell analysis as represented by

equation 5 of the main text and discussed below. Equations 3 and 4 from the main

text detail the correspondence between the Pirt population model and the single cell
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framework. This allows us to interpret population based values as the averages of

single cell values and in particular we note that

N
Em = (A.3)

Y
Bm = PN (A.4)

and thus
B = PY (A.5)

Em

independent of the type of consumption being measured by Q. Here the bar notation

denotes average values over a population of cells.

Thus we can calculate b from information obtained from population experiments.

We first located those experiments that correspond to each of the individual species

analyzed in this paper. The resulting b values are useful for informing the initial

conditions of the single cell growth trajectory fits (see below), and for subsequent

comparison with the best fit value of b for each trajectory. For four species (E. coli,

B. subtilis, C. albicans, and T. weissflogii) we are able to directly compare our single

cell analysis to chemostat experiments. For the diatom Lauderia borealis (eukaryotic

autotroph) we used the value from T. weissflogii for comparison, and for Calanus

pacificus and Pseudocalanus sp., two species of copepods (multicellular heterotrophs),

we used chemostat results from the rotifer Brachionus calyciflorus. Table A.1 reports

Y, and P along with the calculated value of b for each experiment along with notes

on each of the sub-experiments that we used.

A.1.1 Compilation of b estimates from diverse species

In general, a large number of experiments exist where it is possible to calculate b for a

wide variety of species, and we have created a general compilation of b values from a

survey of the literature (this compilation is attached as a supplementary data file and

also as a PDF). Figure A-1 gives the distribution of b values for both prokaryotes and

eukaryotes. For both groups the b values are approximately log-normally distributed
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Species

Evolutionary
Life-
history
Grouping

Chemostat
Tempera-
ture Y P notes Refs.

Normalized
Raw Value to 20 0 C

1.22 x 10- 7
87.57 (dry g (mol glucose we used the wild
cells mol - s 1 - dry g 1.07 x 10- 2.90 x 10 6 type values for

B. subtilis Prokaryote 37 C glucose- 1) cells- 1) (s-1) (s-1) growth on glucose [273]

we used the glu-
cose experiment
to compare well

1.22x10- with the growth
59.7 (dry g cells (mol 02 - s 7.30X 10 3.33x 10- trajectories of

E. coli Prokaryote 30 0 C mol 02 ) dry g cells- 1) (s- 1) (s-1) refs. [231, 2321 [92]

we used the
measurements
for growth on

4.23 x 10 6 (g maltose to be
.40 (dry g cells maltose -s -1 1.68 x 10 6 7.66 x 10-7 most comparable

C. albicans Eukaryote 30 C g maltose- 1) dry g cells- 1) (s-1) (s- 1) to ref.[119] [254]

estimated from
16.70 (dry g 2.37x 10 - the reported

T. awiss- cells mol (mol 02 1 3.97x10 4.67x10- gross photosyn-
flogii Eukaryote 18 0 C 021) dry g cells- 1) (s- 1) (s- 1) thesis [85]

measurements are
given in specific
ingestion rates so
the units of Y and
P are unclear but

Brachionus 3.61 x 10 6 2.43 x 10 6 b can still be cal-
calyciflorus Metazoan 25 C (s-1) (s-1) culated [33]

Table A. 1: Chemostat growth energetics for various organisms spanning three major

evolutionary life-history transitions.
The units of consumption rate Q are the same as the maintenance term P.
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Figure A-1: The distribution of b values. The values have been normalized to 20' C for
both prokaryotes and eukaryotes. The median value for prokaryotes is b = 2.42 x 10-6

s-1 and for eukaryotes it is b = 1.84 x 10~6 s-1. The mean value for prokaryotes
is b = 5.79 ± 9.99 x 10-6 which is indistinguishable from the eukaryotic value of
b = 3.39 ± 3.17 x 10-6.

and have means that are indistinguishable from one another (b = 5.79±9.99 x 10-6 for

prokaryotes and b = 3.39 ± 3.17 x 10-6 for eukaryotes). We were able to pair many of

the compiled b estimates with measurements of cell size and estimates of body mass.

These are the data presented in Figure 2-3 D. Here we find that there is no obvious

relationship between b and body mass for both prokaryotes and eukaryotes.

In compiling experiments for estimating b we included a diverse set of growth

conditions in order to cover a large number of species and body sizes. These conditions

include growth on a range of substrates, in different experimental setups (chemostats,

batch culture time evolutions, and recycling fermenters), and at various temperatures.

These conditions contribute to the relatively large spread in the value of b. Some of

the growth condition deviations can be systematically eliminated, using, for example,

temperature normalization (see below), while others, such as growth on different

substrates or in different culture setups, are more complicated to standardize. For

example taking only chemostat experiments the prokaryotic mean becomes b = 4.23 ±

5.12 x 10-6, which is similar to the value listed above but with much less variance.

Similarly, growth on different-substrates contributes to the variation in b where, for

E. coli, ref. [92] uses the same experimental setup but alters the growth medium

(Table A.2) resulting in a value of b which ranges over a factor of about 2.
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P (mol 02 - S-1 dry g b (s-1) (Normalized to 20
Substrate Y (dry g cells mol 02 1) cells-1) 0 C)

Acetate 20.3 3.33 x 10- 3.09 x 10-6

Pyruvate 34.3 2.03 x 10 -7 3.18 x 10-6

Lactate 35 2.03 x 10-7 3.24 x 10- 6

Glucose 59.7 1.22 x 10-7 3.33 x 10 6

Glycerol 50.9 1.61X10-7 3.75 x10-6

Arabinose 57.8 1.78 x10 7 4.69 x10- 6

Fructose 56 1.97 x 10 7 5.05 X 10-6

Fumerate 40.4 3.14x10 7 5.79x10-6

Galactose 58.2 2.69 x 10-7 7.16 x 10-6

Table A.2: E. coli chemostat growth energetics for different substrates.
All data is from Ref. [92].

Many of the studies that we compiled do not report an estimate of Y and P and

in such cases we fit a linear relationship to digitized data of Q vs. p. For multiple

studies we fit only the early portion of the data (slow growth rates) where there is

a clear linear relationship between Q and y and the data agree with equation 1 of

the main text. At high growth rates nonlinearities, such as saturation or accelerating

consumption, can appear in the data which we do not consider in our framework or

data compilation. For one of the data points b has a negative value which is not

realistic. This is likely due to noise in the data or some unaccounted for physiological

response of the particular species.

Experiments which can be used to estimate b often measure multiple consumption

rates within a single experiment, for example substrate consumption and oxygen

consumption. For our purposes here it is important to measure a resource which is

directly proportional to the overall metabolic rate. In some cases it is essential to

measure the limiting resource. For example in ref. [254] the carbon source is the

limiting resource for growth and estimates of b using substrate consumption are an

order of magnitude smaller than estimates obtained from oxygen consumption. This

matters less in other studies where the two estimates can be nearly identical (e.g. ref.

[251]).

For species where the conversion N between consumption rate and metabolic
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energy production is known, then it is possible to directly calculate Em and Bmn.

For E. coli ref. [92] provides the number of moles of ATP produced per mole of

oxygen consumed, denoted here as n. Combining values of n with an understanding

of the ATP synthesis the energy production conversion is given by N = nAGpho,

where \GWh0o (J - mol ATP- 1 ) is the phosphorylation potential of ATP. From ref.

[277] for E. coli growing on glucose AGpho = 4.65 x 104 (J - mol ATP- 1), from ref.

[92] the aerobic energy conversion efficiency is n = 4.31 (mol ATP - mol 02 1), and

the E. coli value for Y can be found in Table A.1. Given these values we calculate

that Em = nAG/Y = 3345 (J - dry g-'). This value is comparable to values found

previously for multicellular organisms which range from Em = 800 to Em = 13000 (J

- dry g-') for embryos and juveniles of several species of birds, fish, and mammals

[179] (also see supplement of ref. [121]). This suggests that the commonality in the

unit energetics that we found in microbes may also extend to larger multicellular

organisms.

Similarly, the maintenance cost for E. coli is given by Bm = PAGphsfn = .025

(W - dry g cells -1) for the experiment in ref. [92] which is carried out at 30' C. We

mention the temperature of the experiment here because within the metabolic theory

there are well documented temperature effects and normalizations which we discuss

below.

A.1.2 Metabolic partitioning from individual cells and chemo-

stat populations

Using equation 11 from the main text it is possible to estimate i' given an estimate of

p for each species. We also compiled estimates of pmax for many of the species where

we have already estimated b. We use pmiax to calculate 7 because this represents a

limiting value and also compares well to the single cell growth trajectories where the

conditions are such that these individuals are often growing near their maximum rate.

The data presented in figure 2-3 B are the result of pairing b with measurements of

smax and cell size.
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A.2 Temperature normalization

Following refs. [105, 106, 247] temperature has been shown to affect the total metabolic

rate of an organism according to

B (T) = B (T0) eE(T-T)/kTT (A.6)

where it is assumed that this temperature dependence is carried by the normalization

constant as

Bo (T) = Bo (T0 ) eE(T -To)/kTTo

where E is an average activation energy for biochemical reactions, k is the Boltz-

mann constant, T is the operating temperature of an organism, and To is a standard

temperature of interest [105, 106, 247]. This has implications for several of the pa-

rameters that we use in our model which can be normalized to a common reference

temperature. Following equation 3 of the main text Qh7nN, and Bm = PN will have

the same temperature dependence as B while EM = N/Y will be independent of

temperature consistent with previous assumptions [106] (specific growth carries the

temperature dependence). These two relationships along with equation A.7 demon-

strate that the parameter b = Bn/Em from our model will depend on temperature

while p =Bm 1-- " and -y = 1 - p will not:

b (T) = b (T0 ) eE(T-To)/kTT (A.8)

p (T) = p (To) (A.9)

y (T) = y (To) . (A.10)

For those data where the operating temperature T is reported we use these nor-

malizations. In this paper we used E = .6 eV which has been shown to be the average

value across a diverse set of organisms [105]. The most important featu-re of the nor-

malization was that we consistently chose a common E and reference temperature

TO.
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A.3 Derivation of the growth trajectory

Typically the partitioning of equation 4 of the main text is rewritten as

dm
dt = am" - bm (A.11)

with a = Bo/Em (g1-a s- 1) and b = Bn/Em [293, 179]. The mass trajectory for a

free value of a can then be solved as

m (t) = [1 - - -m1-a e-b(1-a)t (a) A (A. 12)

Recognizing that b = B it follows that -/o = 1 - Tme-" and we can rewrite this

equation as
[ 1~ 1/(1-a) 1 ' 1/(1-a)

m (t) = [1 - 7oeb(l-)t mo-(A.13)

which is the form from the main text. This form is appealing because 'yo is a nondi-

mensional number bounded between zero and one, and the initial mass now appears

as a simple factor.

Both systems of parameters are useful in different contexts and each makes certain

interpretations of data more conceptually explicit (e.g. metabolic partitioning vs. unit

costs).

A.4 Normalized growth trajectories

Normalizing the lifespan, or rate of growth, reveals clearly the general shifts in the

metabolic partitioning between these taxa. Choosing the dimensionless time variable

T = b (1 - a) t - In (-o) Eq. A.13 becomes 7 = e-. The dimensionless temporal

parameter T accounts for differences in the overall metabolic and bioenergetic rates.

This relationship is plotted in Figure A-2 of the main text along with each of the 6170

datapoints from the individual growth trajectories. All of the data lie tightly along the

predicted curve reflecting an underlying commonality in the form of growth, and the

goodness of fit of the model simultaneously across diverse species. On this curve taxa
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Figure A-2: The universal metabolic partitioning curve for all of the individuals
analyzed in Chapter 2. Colors denote the three evolutionary life-history groups:
prokaryotes (red), eukaryotes (blue), and small metazoans (green). The insert shows
the two prokaryotic species with E. coli in red and B. subtilis in orange. The points in
this plot are from 45 individual growth trajectories. Not all of the 6170 datapoints are
individually distinguishable because of the tight clustering within this transformation.

are separated based on differences in the relative metabolic power devoted to growth,

-y. There is a constant decrease in 'y as we move to longer normalized timescales which

also corresponds to moving across the three evolutionary life-history transitions. This

view highlights that prokaryotes and small unicellular eukaryotes live over relatively

short normalized timescales while using almost all of their metabolism for growth;

they truly "live fast and divide young" (Figure A-2).

In previous work similar normalizations have been used where the plot in ref. [293]

can be interpreted as the fraction of metabolism devoted to maintenance (rather than

growth as in Figure A-2) for a fixed value of a = 3/4. Our free-a version accounts for

differences in growth trajectories between individuals related to the overall metabolic

scaling of an organism in addition to variation of the the unit bioenergetic costs.

A.5 Population Growth Rate

In the main text we discussed the population growth rate, y, of an organism which is

based on our derivation of the generation time, G, along with the fecundity, f, and
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percentage of the population to reach the age of reproduction, L. In most of the single

organism studies f and L are not measured in addition to the growth trajectory. In

order to deal with this issue, along with the differing reproductive strategies across

taxa, we introduce a "mass fecundity" where we consider the total mass production

over the life cycle of an organism. That is, we define population growth rate by

y= In (E) /G (A.14)

where E quantifies the factor change in body mass over a life-cycle, Md = emo. These

are the values reported in Figure 2-3 of the main text.

A.6 Fitting the interspecific relationships for the

population growth rate and the fraction of

metabolism devoted to growth

In the main text we present an interspecific fit for the dependence of population

growth rate on body mass and from this we are able to predict the fraction of

metabolism devoted to growth for both prokaryotes and eukaryotes. It is useful

to explicitly give the mass dependence of generation time which determines p. Using

equation A.12 we can rewrite equation 9 from the main text as

1 1~ -1-mo
G = Inb4l) n__ . (A.15)

b(I--a) 1 - (EMO) *

This form has the appealing features that the mass dependence is explicit and that

the parameter a is based on unit costs and thus should be constant across organisms

of different size similar to b and in contrast to lo which depends.,on the initial mass

of a cell. Using versions of the equations which depend on the parameter a is best

suited for interspecific fits.

In fitting the interspecific data for prokaryotes and eukaryotes we fix the value of
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b to the average for each group using our compilation (Figure A-1). We then find

the best fit values of a and a for the interspecific data using a reduced major axis

regression. The results for the best fit values of a are given in the main text.

We were unable to fit the interspecific data for the metazoans because it is unclear

how features such as fecundity or 6, the ratio of reproductive mass to initial mass,

change with body size. As discussed in the main text these alterations may be critical

for allowing metazoans to grow larger while avoiding the limit where the fraction of

energy devoted to biosynthesis goes to zero, as is the case for unicellular eukaryotes.

Similar to the generation time, the fraction of metabolism devoted to growth can

be written in terms of the parameter a and cell mass using equation 7 (or 6 and 8)

of the maintext:

"Y = 1 mI- = 1 - b mi-a. (A.16)
Bo a

Using the taxonomic average value of b and the best fit values of a and a from the

interspecific fit of population growth rate from above we are able to predict -y as a

function of body size for prokaryotes and eukaryotes and these are the curves drawn

in Figure 2-3 B of the main text.

As described above we cannot fit the interspecific data of growth rate for the

metazoans using our framework for G and p. In order to predict the interspecific

relationship of 'y we instead fit a power law to growth rate [69] and use equation 11

from the main text where we use the eukaryotic average for b.

A.7 The growth of buds within the yeast complex

Our hypothesis for the yeast complex is that when a new bud forms nearly all of the

growth energy from the entire complex is devoted to that bud. This is to say that

a bud grows with the metabolic energy of a much larger organism than its own size.

In order to test this hypothesis we first fit our growth model for m (t) to the entire

complex and we then use those fit parameters to describe the growth trajectory of

each bud in agreement with data. Fitting m (t) to any region of total complex will

give a prediction of the mass at any subsequent time and from this the total growth
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rate of the entire complex at any given time is given by

dm
d= amto (t)" - bmto (t) (A.17)

where it should be noted that a = ame" (see equation A.11) using mo of the entire

complex. If all growth energy is devoted to the bud then the growth dynamics of the

bud are described by
dmbud = amtot (t) - bmtot (t)

mtot (t) = mtot (tb) + mbd (A.18)

mbud (tb) = mn"u

or

mbud (t + At) = mbud (t) + At [amtot (t)" - bmtot (t)]

mto= mtot (tb) + mnbd (A.19)

mTnu (tb) = MOn

where tb is the time when a bud starts growing and mbud is its initial size. The bud

curves in Figure 2-1 D are the result of numerically integrating these dynamics for

each bud. Thus each bud trajectory is not a fit but a prediction based on the growth

dynamics of the entire complex. The fact that this agrees so well with the data for

each bud supports the hypothesis that all growth energy is being devoted to a newly

formed bud.

A.8 The reproductive strategy of diatoms

Another example of an altered reproductive strategy is that used by some diatoms

(including some of those discussed in [201]), which interrupt single cell growth with

long resting phases [201]. Such cell types could not be analyzed with our framework,

which only considers continuous growth. During a resting phase our model cannot

interpret the energetics of the cell because there are no changes in. size even though

biosynthesis may be continuing. The two diatom species that we did examine were

considered to grow continuously by ref. [201], yet we find here that an asymptotic
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mass just before division could signal a resting phase. Thus the low value of alpha

found for these species could be the result of a different reproductive strategy (resting)

rather than a metabolic constraint. Supporting this hypothesis, a terminal plateau

has been previously observed in plant cells, where following nuclear division and

separation of internal components by the cellular membrane the cell continues to

build the cell wall for final cleavage [171]. This could lead to the apparent asymptote

where biosynthesis is occurring but not being reflected by changes to the overall size

of the cell. This is similar to the daughter buds of the yeast complex which approach

an asymptote related to the dynamics of the entire complex rather than the value of

the metabolic exponent a.

However, it should be noted that the low value of alpha could instead be due to the

decrease in the ability for these organisms to harvest light resources with increasing

cell size based on the packaging of photosynthetic pigments [193]. Similarly, the

metabolic scaling exponent has been shown to significantly decrease in light-limited

growth conditions for phytoplankton [96]. There is not enough information yet to

decipher if either of these effects, resting phases or changes in photosynthetic capacity,

is leading to the low value of a.

A.9 Fitting routine for the growth trajectory

We considered a least squares analogy for each individual growth trajectory where

we minimize the sum

[mi - m (ti, 'Yo, b, a)]2  (A.20)

where mi is the measured mass at measured time ti, and m (ti, y'o, b, a) is given by

equation 8 of the main text.

For the fits presented in the main text we use three free parameters (a, b, and

yo). It should be noted that the statistical confidence in each -best fit parameter is

greatly increased by reducing the number of parameters fit. Below we discuss reduced

parameter fits which yield slightly different results.

159



The optimization of equation A.20 involves many local minima and for this reason

we employed a heuristic algorithm. We used the Nelder-Mead simplex algorithm as

implemented by the "NelderMead" method from the numerical minimization function

"NMinimize" of the Mathematica software. All of the options were set to the Mathe-

matica defaults. We seeded the algorithm with 48 distinct random initial values and

allowed the algorithm to minimize the function thus finding a local minimum. We

then compared each of these local minima and selected as the best fit the minimum

with the lowest sum of square residuals. In many cases the various random seeds

yielded very similar sets of parameters with only slightly different sums.

The method requires bounds to be set for each of the three parameters to be fit

(a, b, yo). By definition gamma is required to be between 0 and 1. For a we know the

experimental range across taxa from [69] and we take the bounds to be generously

larger than this for the search. For b we allowed the search to include values that

were two orders of magnitude larger and smaller than an initial guess. The initial

guess was based on chemostat experiments where we were able to find previously

published chemostat experiments under similar growth conditions as the single cell

experiments for E. coli [92], B. subtilis [245], C. albicans [254], and T. weissflogii [85].

We were unable to locate chemostat experiments for L. borealis where we instead

used T. weissglogii [85] as a guess; similarly for the two copepods we used Brachionus

calyciflorus [33]. The Nelder-Mead algorithm also requires that we choose a range

of parameter values in which to choose the initial points of the simplex. For each

parameter this range was the same as these bounds except for b. We found that if

b is sampled over too large a range then the fits are not tightly constrained. The

initial guesses should represent the relatively small variation in b that we observed in

the chemostat experiments between species or taxa (Table A.1), and various growth

conditions (Table A.2). For a species such as E. coli b was observed to vary by about

a factor of 2. Thus for those species where we have a chemostat estimate for b our

initial simplex sampling includes points that are 1.5 times larger or smaller than the

initial guess, leading to a sampling that covers a factor of roughly 2. When we do

not have a species estimate (diatoms and copepods) we allow more flexibility in b and
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sample initial points over an order of magnitude centered on the initial guess. As

the minimization runs the values of b are still allowed to range between the bounds

described above (over 4 orders of magnitude).

We used a fixed initial mass for each fit. For data where mass is given at t = 0 we

take this to be m, for instances where the initial time point is close to zero relative to

the length of the time series we use a linear fit to the first third of the data to estimate

no. For cases where the initial timepoint is not close to zero (Calanus pacificus) we

used an exponential fit to the first third of the data.

A.9.1 Reduced parameter fits.

Reducing the number of parameters in the model greatly increases the statistical

confidence of the best fit value for each parameter. Yet this comes with a decision

about which parameter to fix. In previous studies a is taken to be fixed [293, 179,

106, 121], but ref. [69] illustrates that this exponent varies between taxa and it is

thus reasonable to consider that it might also vary between species. The parameter

b can be estimated from population studies which allows us to examine the value

for a single species independent of the growth trajectory fits. This is not commonly

possible for a at present.

We first tested the effect of imposing a fixed value of a for each of the growth

trajectory fits. For each fit we choose the appropriate value of a based on taxonomy

(a = 1.96 for prokaryotes, a = 1.06 for eukaryotes, and a = .79 for metazoans [69]).

We found that these fixed-a fits can cause the best fit value of b to disagree with the

population estimates by an order of magnitude or more. For example in E. coli using

the free value of a yields an average b of 5.50 ± 2.31 x 10-6 which compares well with

chemostat estimates of b = 3.35 x 10-6 for cells growing under very similar conditions;

while using the fixed interspecific value of a = 1.96 gives b = 1.47 t 3.22 x 10- which

does not agree as closely with chemostat estimates and has greater variance in the

best fit values. These fits also have lower R2 value compared to the free a and fixed-b

(discussed below) fits.

Given that for most species we can estimate b from measurements of the same
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Figure A-3: Results from reduced parameter fits to the individual growth trajectories.
The best fit values for the metabolic scaling exponent, a, and the average fraction of
metabolism devoted to growth, y, are shown given b fixed to chemostat estimates for
each species. All other lines and data are the same as Figure 2-3.

species in a chemostat it perhaps makes more sense to treat these values as constant

in a reduced parameter fit. Here we explicitly fix b to chemostat estimates and fit

the growth trajectories using only a and -Yo. The resulting best-fit a and -7o values

are given in Figure A-3 where it can be seen that these fits are similar to those found

using a free value of b, but we find that the statistical confidence in each parameter is

much higher. We fixed the value of b to the population estimate for the same species

except for L. borealis where we instead used the value for T. weissglogii [85] and for

the two copepods we used Brachionus calyciflorus [33].

A.10 Conversions between measurements of size

In this study we considered all mass data in terms of dry mass. However, the original

sources presented their data in terms of many different units for measuring size: wet,

dry and carbon weights, cell volume, and bouyant mass. Here we present our method-

ology for converting between these quantities. These conversions are summarized in
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Table A.3: Allometric conversions

Relationship

Dry, mdry, and wet weight mwet

Volume, V, and dry weight mdry
E. coli
Bacteria

Carbon content C and cell volume,
V, and dry weight mdry

Buoyant mass mb and dry weight

mdry

Carbon content C and dry weight

mdry

/31 .22

mdry = 32V"
I, = .86 32 = 435 (dry fg sim- 71)

q1 = .91 #2 = 162 (dry fg pm-71)

C = 03 V2

q2 = .89 /3 = 224 (dry fg C ym-o2)

[37]

[157]
[195]

[159]

derived
from refs.
[159,
195]mdry = /32 (3)71/72

mdry = 31 rb
3

c

6c = 1.1 x 106 (g m- 3 )

157,

[37]

Table A.3.

We convert between volume and dry weight, mdry, using the relationship

mdry - #2V3 V (A.21)

where empirically, in the units of the original paper, T1 = .86 and /32 = 435 (dry fg

pm-n1) for E. coli [157] and T11 = .91 and #2 = 162 (dry fg sm- 71) for a variety of

bacteria [195].

The carbon content of a cell C has been shown to follow

C = 03yV2 (A.22)
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[159] which given the relationship for dry weight implies that

02(C )'l12
mdry = #2 -- / . (A.23)

#3

Empirically, r2 = .89 and #3 = 224 (dry fg C pm-n2) [159] and thus mdry r 2.33C.97

(fg).

We assume that dry weights scale isometrically with wet weight, met, such that

mdry = /3 1mwet. (A.24)

It is observed that an appropriate average for several species including E. coli and B.

subtilis is 13, = .22 [37] which agrees with other estimates (/13 .3) for E. coli and a

mammalian cell [53, 185, 38].

Bouyant mass mb is related to wet weight as

mb = mwet I - (A.25)

where 6f is the density of the fluid in which the cell is suspended, and 6c is the density

of the cell. The dry mass is then given by

mary = /Mb (A.26)
1 -6f1

We use a cell density of 6c = 1.1 x 106 (g m- 3) which is representative of several

bacterial species [37].

A.11 Data compilation for single-cell growth tra-

jectories

For the single cell analysis we obtained growth trajectories from- several previously

published sources [231, 232, 201, 119, 110, 281]. We were able to obtain the original

data and numerical values from the authors for E. coli from refs. [231, 232] and B.
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subtilis from ref. [110]. For the two species of diatoms (Thalassiosira weissflogii and

Lauderia borealis) given in ref. [201], C. albicans from ref. [119], and the two species

of copepods (Calanus pacificus, and Pseudocalanus sp.) from ref. [281] we obtained

values by digitizing the growth trajectory figures from each paper using the software

GraphClick. Below is a more detailed discussion of the growth data from each study.

We have included a data file summarizing all of the data used in this study including

the original units along with our conversions to mass.

A.11.1 Calculating mass for E. coli

For the analysis of a single E. coli cell we used the data presented in ref. [231, 232].

In order to calculate cell volume we employed the shape model from ref. [232] where

E. coli growth is divided into two periods: first, the cell is treated as cylinder with

two hemispherical caps, and new biomass results in the simple elongation of the cylin-

drical portion of the cell; second, the middle of the cell undergoes a constriction and

the relationship between biomass production and volume becomes more complicated,

where the constricted region can be treated as two intersecting hemispheres of equal

size to the caps [232]. The cylinder and the two caps are taken to have the same

radius. We obtained data from the authors for the cell length and relative "waist

width" time-series presented in ref. [231, 232] along with the noted onset of constric-

tion. From this we extracted the time series of cell volume given the reported average

diameter of d = .933 (pm) [231, 232]. We convert this to mass using the allometric

relationship in Table A.3.

A.11.2 Calculating mass for budding yeast

For the analysis of a budding yeast complex (Candida albicans) we used the data from

ref. [119]. These data relied on optical methods for tracking cell size. The yeast data

is reported in volume units and we convert to mass using the scaling law described

in Table A.3.
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A.11.3 Calculating mass for the diatoms

Data for single diatoms came from ref. [201] where changes in relative length were

measured optically. We first convert to volume using a cylindrical cell shape model

along with the constant diameter and initial length of the cell given in ref. [201].

We assume that each cell has the same initial length. We analyzed the two species

T. weissflogii and L. borealis. Our theory concerns the time required to produce a

unit of mass, and thus we did not analyze the three diatom species (S. turris, B.

aurita, and Coscinodiscus sp.) presented in ref. [201] because they have long periods

of dormancy which is not addressed in our model.

A.11.4 Calculating mass for B. subtilis

In Ref. [110] the buoyant mass of single B. subtilis cells are measured over the course

of life cycle with very high temporal resolution. The dry mass of the cell can be

calculated using equation A.26 where we approximate the fluid density with that of

water.

A.11.5 Copepod data mass

Two species of copepods are analyzed in ref. [281], C. pacificus and Pseudocalanus

sp.. The data represent the population average growth trajectory for the mass of a

single individual. This is distinct from tracking one individual through a growth cycle,

but represents the tracking many individuals and then averaging. Each of the curves

represents this average growth trajectory in different nutrient (prey) conditions. This

study varied the type of prey, prey size, and prey concentrations. We picked the

fastest growing curve from each set of prey conditions. The original study also varied

the growing temperature but we considered only those curves grown at a temperature

most similar to the unicellular studies (150 C).
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A.12 Parameter values from the individual growth

trajectories

Table A.4 provides the

trajectories. These are

described earlier in this

best fit parameter values for each of the individual growth

results from allowing a, b, and g7o to be free parameters as

appendix.

Species Type 'yO b

Number
of
cells Refs.

Metabolic
Initial per- Average per- cost ratio rate Metabolic
centage of centage of (Bm/Em) (s-1) scaling
metabolism metabolism normalized to expo-

Initial mass (dry g) for growth for growth 200 C nent

B. subtilis Prokaryote 4.5±0.41X10-13 0.978±0.006 0.977±0.005 3.08±0.76X10-6 0.97+0.31 3 [110]

[231,
E. coli Prokaryote 6.21±0.56 x 10- 13 0.963+0.018 0.966±0.014 5.5+2.31 x10 -6 1.43±0.67 30 232]

Unicellular
C. albicans eukaryote 8.7±1.x10- 12 0.947+0.001 0.955±0.004 9.49±0.55x10-7 1.35±0.1 2 [119]

Unicellular
T. wicssflogii eukaryote 1.91±0.02x10 1O 0.912±0.016 0.873±0.02 1.29±0.24x 10- 0.01±0.01 3 [201]

Unicellular
L. borcalis eukaryote 2.54±0.05x10-9 t 0.82±0.048 0.768±0.097 3.62±1.89X10-6 0.47±0.23 3 [201]

Pscudocalarus

sp. Metazoan 1.8±0.x10 6 0.471±0. 0.366±0. 5.95±0.xl10- 0.82±0. 1 [281]

C. pacificus Metazoan 4.95±0.98x10-6 0.265±0.022 0.139±0.008 2.42±0.01xlO-5 0.93±0. 4§ [281]

Multi-species
Population
Compilation:

Prokaryote aver- mass depen-
age No data dent 5.79i9.99x10-6 No data 138 see SI

Eukaryote aver- mass depen-
age No data dent 3.39±3.17x10-6 No data 52 see SI

t Data presented in ref. [201] are given in units of relative mass, these are based on the reported lower bound on size

This average is conducted across individuals living in different nutrient conditions.

Table A.4: The energetic constants obtained by fitting our model to single cell growth
trajectories.

A.13 Definition of symbols

Individual growth curves Here we present fits for each individual cell that we

examined. In each plot the dots represent the compiled data for cell. mass against

time, and the red line is the best fit of Eq. 8 (of the main text) to the growth

trajectory.
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Symbo NameUnit

b

B

BO

Ratio of the metabolic nor-
malization constant (Bo)
to the unit biosynthetic
cost (Em.)

Metabolic scaling expo-
nent

Ratio of the maintenance
metabolic rate (Bm,) to
the unit biosynthetic cost
(Em0 )

Total metabolic rate

Size-normalized metabolic
constant

Metabolic expenditure to
support a unit of mass

Ratio of division mass to
initial mass

Energy to synthesize a unit
of mass

Percentage of metabolism
devoted to growth

Percentage of metabolism
devoted to growth at the
initial size

Percentage of metabolism
devoted to growth aver-
aged over a population in
a chemostat

Percentage of metabolism
devoted to growth aver-
aged over the life-cycle of
an individual

Generation time

Phosphorylation potential

Mass of the cell at any
given time

Initial mass of the organ-
ism

Division mass of the or-
ganism

Specific growth rate

Conversion constant for re-
source use to metabolic
power production

ATP yield from oxygen

Maintenance requirement

Specific consumption rate

Percentage of metabolism
devoted to maintenance

Yield coefficient

(J mol resource -1)

Mol ATP - Mol 02-

(mol resource s-1
cells -1)

(mol resource s 1
cells -1)

g

Dimensionless

(g cells - mol resource 1)

Table A.5: Symbol Definitions.
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in- s 1

Dimensionless

s-1

W

(W g-4)

(W g-1)

Dimensionless

(J g-1)

Dimensionless

Dimensionless

Dimensionless

Dimensionless

s

(J - ATP-1)

g

g

g

s9

YO

G

AG

m

ma

N

n

P

Q

p

Y

Symbol Name Units
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Figure A-4: E. coli growth trajectories. Data from [231, 232].
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Figure A-5: T. weissflogii growth trajectories. Data from [201].
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Figure A-6: B. subtilis growth trajectories. Data from [110].
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Figure A-7: L. borealis growth trajectories. Data from [201].
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Figure A-9: C. pacificus growth trajectories. Data from [281].
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Figure A-10: Pseudocalanus sp. growth trajectories. Data from [281].
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A.14 Compiled estimates of b and 7y

In Table A.6 we provide our compilation for cell mass, b, and -Y. The -y values are

calculated from b and pmax. Temperature normalizations have been carried out for b

and pmax. A digital spreadsheet of Table A.6 is included as part of the supplementary

material of ref. [131] and it should be noted that this copy includes additional infor-

mation such as the calculated Y and P values, culture conditions, the temperature

of each reference, and notes on several of the calculations.

Table A.6: Compiled values for cell mass, b, and y
ref. ref.

ref. for for for
Species Name Mass (g) b (s-1) pAmax (s-

1
) i mass b pmax

maximum average
specific fraction of
growth rate metabolism

normalized normalized devoted to
to 200 C to 200 growth

Aeromonas punctata 3.52x10--
6  

[118]
Acromonas punctata 8.45x10~6 [118]
Arthrobacter globiformis 1.5x 10-

6  
[118]

Azotobacter chroococcum 1.2x10-
1

1 7.12x10-
6  

1.61x10-
4  

0.958 [69] [118] [69]
Azotobacter chroococcum 1.2x 10--

1 1  
6.56 x 10 

6  
1.61 x10-4 0.961 [69] [118] [69]

Azotobacter chroococcum 1.2x 10~11 2.03 X 10-
6  

1.61 x 10- 4 0.988 [69] [118] [69]
Azotobacter vinilandii 4.87x 10-

6  
[1181

Azotobacter vinilandii 8.74 x 10- 6 [118]
Bacillus amyloliquefaciens 1.62 x 10 6 [273]
Bacillus cereus 3.7 x 10-

1 2  
1.32x10~

6  
2.9 x 10-

4  
0.995 [69] [270] [69]

Bacillus cereus 3.7x 10-
1 2  

1.05 x 10-
6  

2.9 x 10- 
4  

0.996 [69] [35] [69]
Bacillus coagulans 2.53x 10-6 [118]
Bacillus licheniformis 8. x 10 

1 3  
4.58 x 10-

6  
4.73 x 10-

5  
0.912 [69] [99] [69]

Bacillus licheniformis 8.x10-
1 3  

6.88 x 10- 6 4.73 X 10-
5  

0.873 [69] [99] [69]
Bacillus licheniformis 8. x 10 -

1 3  
1.15 x 10-

6  
4.73 x 10 5 0.976 [69] [99 [69]

Bacillus licheniformis 8. x 10-13 4.7x 10-6 4.73 x 10~5 0.91 [69] [49] [69]
Bacillus licheniformis 8. x 10-13 4.23 x 10-

6  
4.73 x 10- 0.918 [69] [99] [69]

Bacillus licheniformis 8. x 10-13 4.23 x 10-
6  

4.73 x 10-
5  

0.918 [69] [100] [69]
Bacillus licheniformis 8. x 10-13 1.04 x 10-

6  
4.73x 10-

5  
0.979 [69] [100] [69]

Bacillus licheniformis 8. x 10-13 7.71 x 10-
6  

4.73 x 10-
5  

0.86 [69] [100] [69]
Bacillus licheniformis 8. x 10-1

3  
1.12x 10 

7  
4.73x 10-

5  
0.998 [69] [49 [69]

Bacillus licheniformis 8. x 10~
1 3  

1.09x10-
6  

4.73x 10-
5  

0.977 [69] [101] [69]
Bacillus licheniformis 8. x 10-

1 3  
1.03 x 10 

6  
4.73 x 10-5 0.979 [69] [101] [69]

Bacillus licheniformis 8. x10-
1 3  

9.64 x 10-
7  

'4.73 x 10-
5  

0.98 [69] [101] [69]
Bacillus licheniformis 8. x 10-

1 3  
8.99 x 10-

7  
4.73x 10-

5  
0.981 [69] [101] [69]

Bacillus licheniformis 8. x 10-
1 3  

8.17 x 10~
7  

4.73 x 10-
5  

0.983 [69] [101] [69]
Bacillus licheniformis 8. x 10-

1 3  
7.07x 10-

7  
4.73 x 10-5 0.985 [69] [101] [69]

Bacillus licheniformis 8. x 10-
1 3  

1.91 x 10-
6  

4.73 x 10-5 0.961 [69] [49] [69]
Bacillus licheniformis 8. x 10-1

3  
1.52 X 10 

6  
4.73 x 10~-

5  
0.969 [69] [100] [69]

Bacillus licheniformis 8. x 10--
1 3  

1.52 X 10-
6  

4.73 x 10-
5  

0.969 [69 [99] [69]
Bacillus licheniformis 8. x 10 13 2.62x 10 

6  
4.73X 10-5 0.947 [69 [49] [69]

Bacillus licheniformis 8. x 10-1
3  

9.62 x 10-
7  

4.73x 10-5 0.98 [69] [100] [69]
Bacillus licheniformis 8. x 10-13 1.57x 10 

6  
4.73x 10-

5  
0.968 [69] [101] [69]

Bacillus licheniformis 8. x10 -13 2.34x 10 6 4.73 x 10-
5  

0.953 [69] [101] [69]
Bacillus licheniformis 8. x 10-

1 3  
2.12 x 10 -6 4.73 x 10-5 0.957 [69 [101] [69]

Bacillus licheniformis 8. x 10-
1 3  

2.56 x 10-6 4.73 x 10-
5  

0.949 [69] [101] [69]
Bacillus licheniformis 8. x10-

1 3  
2.04 x 10-

6  
4.73 x 10-

5  
0.959 [69] [101] [69]

Bacillus licheniformis 8. x 10-
1 3  

1.94x 10-
6  

4.73x 10-5 0.961 [69] [101] [69]
Bacillus licheniformis 8. x 10 

1 3  
1.85 x 10-

6  
4.73x 10-5 0.962 [69] [101] [69]

Bacillus licheniformis 8. x 10-
1 3  

1.74X 10 -6 4.73 x 10-
5  

0.965 [69] [101] [69]
Bacillus licheniformis 8. x 10-1

3
2.21 X10-6 4.73 x 10-

5
0.955 [69] [101] [69]
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ref. ref.
ref. for for for

Species Name Mass (g) b (s-1) (s1) ;y mass b ymax

maximum average
specific fraction of
growth rate metabolism

normalized normalized devoted to
to 200 C to 200 growth

Bacillus licheniformis 8. x 10-13 1.46 x 10~6 4.73 x 10-5 0.97 [69] [101] [69]
Bacillus licheniformis 8. x 10-13 2.28 x 10-

6  
4.73 x 10-

5  
0.954 [69 [100] [69]

Bacillus licheniformis 8. x 10-13 2.14x 10-6 4.73 x 10-
5  

0.957 [69 [101] [69
Bacillus licheniformis 8. x 10-13 2.05 x 10-6 4.73 x 10-

5  
0.958 [69] [101] [69]

Bacillus licheniformis 8. X 10-13 1.07x 10-6 4.73 x 10-
5  

0.978 [69] [101] [69]
Bacillus licheniformis 8. X 10-13 1.96 x 10-6 4.73 x 10-

5  
0.96 [69] [101] [69]

Bacillus licheniformis 8.X10-13 1.85X110-6 4.73x10-5 0.962 [69] [101] [69]
Bacillus licheniformis 8. x 10-1

3  
1.65 x10-6 4.73 x 10-

5  
0.966 [69] [101] [69]

Bacillus licheniformis 8. X 10-13 1.58x 10-6 4.73 X 10-5 0.968 [69] [101] [69]
Bacillus licheniformis 8. X 10-13 1.67x 10-6 4.73 x 10-

5  
0.966 [69] [101] [69]

Bacillus licheniformis 8. x 10-
1 3  

1.69x 10-6 4.73 x 10- 5 0.966 [69] [101] [69]
Bacillus licheniformis 8. X10-13 1.21x10-6 4.73 x10-5 0.975 [69] [101] [69]
Bacillus licheniformis 8. x 10-

13  
1.74 x10-6 4.73 x 10-5 0.965 [69] [101] [69]

Bacillus licheniformis 8. x 10-
1 3  

1.74 x 10- 6 4.73 x 10-5 0.965 [69] [101] [69]
Bacillus licheniformis 8. x 10-

13  
3.31 x 10-6 4.73 x 10-5 0.935 [69] [273] [69]

Bacillus megaterium 2.28x10-1
2  

7.31x10-
6  

9.74x10-5 0.93 [269] [118] [225]
Bacillus megaterium 2.28 X 10-12 4.68 x 10-6 9.74 x 10-5 0.954 [269] [118] [225]
Bacillus pumilus 1.96 x10-6 [273]
Bacillus subtilis 6.3 x 10-13 8.61 x 10-6 1.19 X 10-4 0.933 [110 [245] [288]
Bacillus subtilis 6.3 X 10-13 1.14 x10-5 1.19 X 10- 4 0.912 [110 [245] [288]
Bacillus subtilis 6.3 X 10-13 2.33 x 10-

6  
1.19 X 10- 4 0.981 [110] [273] [288]

Bacillus subtilis 6.3 X 10-13 2.6 X 10-6 1.19 X 10-4 0.979 [110] [245] [288]
Bacillus subtilis 6.3 x 10-13 4.11 x10-6 1.19 x 10-

4  
0.967 [110] [245] [288]

Bacillus subtilis 6.3 x 10-13 3.58 x 10-6 1.19 x 10- 
4  

0.971 [110] [273] [288]
Bacillus subtilis 6.3 x 10-13 2.9 x 10-6 1.19 X 10-4 0.976 [110] [273] [288]
Beneckea natriegens 3.81 x 10-6 [118]
Beneckea natriegens 3.36 x 10-5 [118]
Cellulomonas LC-1O 3.24X 10-6 [270]
Corynebacterium glutamicum 6.19 x 10-13 2.4 x 10-6 7.23 x 10-5 0.968 [69] [62] [69]
Corynebacterium glutamicum 6.19 x 10-13 1.03 x 10-6 7.23 x 10-5 0.986 [69] [62] [69]
Escherichia coli 1.2X10-12 2.01 x10-6 4.17x10-4 0.995 [69] [118] [69]
Escherichia coli 1.2x 10-

1 2  
3.5 X 10-6 4.17 x 10-4 0.992 [69] [118] [69]

Escherichia coli 1.2x 10-
1 2  

3.65 x 10~
6  

4.17 x 10-4 0.991 [69] [118] [69]
Escherichia coli 1.2 X 10-12 8.31 X10~7 4.17 x 10-

4  
0.998 [69] [118] [69]

Escherichia coli 1.2x 10-12 2.81 x10-
5  

4.17 x 10-4 0.937 [69] [118] [69]
Escherichia coli 1.2 X 10- 12 9.29 X 10- 6 4.17 X10-4 0.978 [69] [118] [69]
Escherichia coli 1.2x 10-12 2.57x 10~6 4.17 x 10-4 0.994 [69] [118] [69]
Escherichia coli 1.2x 10-

1 2  
1.33x 10-6 4.17 x 10-4 0.997 [69] [118] [69]

Escherichia coli 1.2 x 10-12 3.62 x 10-
6  

4.17 x 10~
4  

0.991 [69] [118] [69]
Escherichia coli 1.2 x 10-12 1.47x 10-

5  
4.17 x 10-

4  
0.966 [69] [118] [69]

Escherichia coli 1.2 x 10-12 1.67x 10-
5  

4.17 x 10-
4  

0.962 [69] . [118 [69]
Escherichia coli 1.2 x10-12 2.05 x 10-5 4.17 x 10-

4  
0.953 [69] [118] [69]

Klebsiella aerogenes 3.49x10-6 [118]
Klebsiella aerogenes 3.13x 10-6 [118]
Klebsiella aerogenes 6.51X10-6 [118]
Klebsiella aerogenes 3.44x 10-

6  
[118]

Klebsiella aerogenes 3.44x 10-6 [118]
Klebsiella aerogenes 7.72x 10-6 [118]
Klebsiella aerogenes 4.28x 10-6 [118]
Lactobacillus casci 1.91X10-12 4.38 x10-7 1.37X 10-4 0.997 [69 [285] [69]
Lactococcus lactis 2. x 10-13 1.08 x 10-5 1.24X 10-4 0.92 [69] [142] [69]
Lactococcus lactis 2. x 10- 13 2.01 x 10-6 1.24x 10-4 0.984 [69] [142] [69]
Lactococcus lactis 2. x 10--13 7.54x 10-

5  
1.24x 10-

4  
0.622 [69] [142] [69]

Lactococcus lactis 2. x 10-13 3.69 x 10-5 1.24 x10-4 0.771 [69] [227) [69]
Lactococcus lactis 2. x 10--1

3  
3.48 x 10-5 1.24 X 10-4 0.781 [69] [227] [69]

Lactococcus lactis 2. X 10-13 3.72 X 10-5 1.24X 10-4 0.769 [69] [227 [69]
Lactococcus lactis 2. x 10-

1 3  
2.81 x 10-5 1.24 x 10-

4  
0.815 [69] [227 [69]

Lactococcus lactis 2. x 10-13 3.56 x 10-5 1.24X 10-4 0.777 [69] [227] [69]
Lactococcus lactis 2.x10~-1

3  
2.851X10 6 1.24X10-4 0.978 [69] [168] [69]

Methylcoccus sp. 1.63 x10-6 [118]
Methylcoccus sp. 8.89x 10-7 [118]
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ref. ref.
ref. for for for

Species Name Mass (g) b (s~
1

) ymax (s-) i mass b pmax

maximum average
specific fraction of
growth rate metabolism

normalized normalized devoted to
to 200 C to 200 growth

Metylmonas methanolica 1.2 x 10 -5 118]
Metylmonas methanolica 1.31x10-5 [118]
Micrococcus denitrificans 1.73x 10-6 [118]
Micrococcus denitrificans 2.32x10-6 [118]
Micrococcus denitrificans 6.41 x 10-7 [118]
Micrococcus denitrificans 1.27x10-7 [118]
Micrococcus denitrificans 3.94x10-

6  
[118]

Micrococcus denitripicans 5.52x 10-6 [118]
Micrococcus denitrificans 2.19 x 10-6 [118]
Micrococcus denitrificans 2.12x 10- 6 [118]
mixed bacterial culture 1.08x 10-6 [118
mixed bacterial culture 5.93 X 10-- [ 118]
mixed bacterial culture 4.86X 10- 6 [118]
mixed bacterial culture 4.71x 10-6 [118]
mixed culture bacterium 2.04x 10-6 [118]
mixed culture bacterium 2.44x 10-6 [118]
mixed culture bacterim 3.75 x 10-6 [118]
mixed culture bacterium 5.72 x 10-6 [118]
mixed culture bacterium 8.1 x 10-6 [118]
Neisseria meningitidisB 3. x 10-

1 3  
1.33 x 10-

6  
5.13 x 10-

5  
0.975 [69] [11] [69]

Pseudomonas 1 1.94x10-
6  

[118
Pseudomonas aeruginosa 6. x 10-1

3  
1.25 x 10-

6  
1.03 x 10- 

4  
0.988 [69] [60] [69]

Pseudomonas C 4.27x 10-
6  

[118]
Pseudomonas I 1.58x 10-

6  
[118]

Pseudomonas 135 2.83 x 10-
6  

[118]
Pseudomonas 135 2.85 X 10-

6  
[118]

Pseudomonas methyltropha 6.46x 10-6 [118]
Pseudomonas oxalaticus 7.58x 10-7 [118]
Pseudomonas oxalaticus 2.04x 10-6 [118]
Rhizobium leguminosarum 6.x10-

1 3  
3.71x10-

7  
2.4x10-

5  
0.985 [69] [224] [69

Rhizobium leguminosarum 6. x 10-1
3  

6.81 x 10-
7  

2.4 x 10-
5  

0.972 [69] [224] [69
Rhodopseudomonas sheperoides 8.37x 10-7 [118]
Rhodopseudomonas sheperoides 3.46 x 10-6 [118]
Streptococcus faecalis 1.x 10-12 3.78 x10-

6  
1.37x10-

4  
0.973 [69] [198] [69]

Streptococcus faecalis 1. x 10-1
2  

3.21 x 10-
6  

1.37x 10-
4  

0.977 [69] [198] [69]
Streptococcus faecalis 1. x 10-1

2  
4.1 X 10-

5  
1.37x 10-

4  
0.769 [69] [198] [69]

Candida Albicans 1.71 x 10- 
1
1 2.48 x 10-

7  
1.49x 10-

5  
0.984 [119] [254] [20]

Candida Albicans 1.71x10-
1 1  

7.66x10-
7  

1.49x10-
5  

0.951 [119] [254] [20]
Candida boidinii 4.22x10-

1 0  
1.63x10-

6  
1.65x10-

5  
0.91 [286] [118] [210]

Candida lipolytica 4.22x10-
1 0  

8.73x10-
7  

4.15x10-
5  

0.979 [158] [118] [244]
Candida lipolytica 4.22 x 10 -

1 0  
6.8 x 10-

6  
4.15 x 10-

5  
0.859 [158] [118] [244]

Candida lipolytica 4.22 x 10-1
0  

6.6 x 10 
6  

4.15 x 10-
5  

0.863 [158 [118] [244]
Candida lipolytica 4.22x 10-10 3.96 x 10-

6  
4.15 x 10-

5  
0.913 [158] [118] [244]

Candida lipolytica 4.22 x 10~
1 0  

1.08x 10-
6  

4.15 x 10-
5  

0.975 [158] [118] [244]
Candida lipolytica 4.22 x 10--

1 0  
7.99 x 10-

6  
4.15 x 10-

5  
0.838 [158] [118] [244

Candida lipolytica 4.22x10-10 1.23X10-
5  

4.15x10-
5  

0.772 [158] [118] [244]
Candida lipolytica 4.22x10-'0 1.21x10-

5  
4.15x10-

5  
0.775 [158] [118] [244]

Candida lipolytica 4.22x10~1
0  

7.2x10-
6  

4.15x10-
5  

0.852 [158] [118] [244]
Candida lipolytica 4.22 x 10--1

0  
1.11x 10-

5  
4.15 x 10-

5  
0.789 [158, [118] [244]

Candida utilis 1.x 10~ 1 2.09 x 10-
6  

4.46 x 10-
5  

0.955 [40, 50] [118] [50]
Candida utilis 1x 10~11 1.88 X 10-

6  
4.46 x 10-

5  
0.96 [40, 50] [118] [50]

Candida utilis 1. X 10~11 1.58 x 10-
6  

4.46 x 10-
5  

0.966 [40, 50] [118] [50]
Candida utilis 1.x10-

1
1 3.52x10-6 4.46 x10-

5  
0.927 [40, 50] [118] [50]

Candida utilis 1. x 10~11 2.5 x 10- 6 4.46 x 10-
5  

0.947 [40, 50] [118] [50]
Candida utilis 1.x10-11 5.44 x10- 6 4.46 x10-

5  
0.891 [40, 50] [118] [50]

Chlamydomonas rcinhardtii 3.69x10-
1

' 5.29x10~
7  

1.74X10-
5  

0.97 [36] [57] [290]
Chlamydomonas reinhardtii 3.69x10--

1 1  
1.41x10-

6  
1.74x10-

5  
0.925 [36] [137] [290]

Chlorella ellipsoidea 3.4x 10- 1 7.15 x 10-
7  

1.93x 10-
5  

0.964 [94] [113] [94

Chlorella pyrenoidosa 1.25x10-11 2.19x10-
6  

1.66x10-
5  

0.884 [114] [113] [111]
[123,

Chlorella regularis 5.22 x 1012 8.12 x 10-
7  

1.96 X 10-
5  

0.96 243] [118] [243]
Chlorella regularis 8.12x10- [118]
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ref. ref.
ref. for for for

Species Name Mass (g) b (s-') m (s
1

) j mass b ymax

maximum average
specific fraction of
growth rate metabolism

normalized normalized devoted to
to 200 C to 200 growth

[123,
Chlorella regularis 5.22 x 10-

1 2  
1.56 x 10-

6  
1.96 x 10-5 0.926 243] [118] [243]

Chlorella regularis 1.56x 10-
6  

[118]
Chlorella sorokiniana 2.65 x 10-

1 2  
1.52 x 10-

6  
1.87x 10-5 0.925 [178] [113] [178]

Chlorella vulgaris 4.68 x 10-
1 2  

4.2 x 10-
6  

1.55 x 10-5 0.787 [307] [145] [307
Dunaliella tertiolecta 2.13x10-

1 1  
6.3x10-

6  
[87] [87]

Hansenula polymorpha 2.65 x 10-
1 2  

1.27x 10-
6  

1.66 x 10-
5  

0.929 [280] [118] [150]
Hansenula polymorpha 2.65 x 10-

1 2  
1.2x 10-

6  
1.66x 10-5 0.932 [280] [118 [150]

Hansenula polymorpha 2.65 x 10-12 1.81 x 10- 6 1.66 X 10-5 0.902 [280] [118] [150]
Hansenula polymorpha 2.65 x 10-~

1 2  
2.57x 10-6 1.66 x 10-5 0.866 [280] [118] [150]

id 1.28x 10-
6  

8.55 x 10-
6  

0.87 [113] [113]
Isochrysis galbana 1.26x10-11 7.45x10-

7  
[85] [85]

Ochromonas sp. 1.56 X 10--
10  

5.09 x 10-
6  

5. x 10-5 0.908 [69] [95] [69]
Paecilomyces varioti 9.75 x 10-6 [118]
Pen. chrysogenum 1.74x10-

6  
[118]

Pen. chrysogenum 2.09 x 10-
6  

[118]
Pen. chrysogenum 6.42 x 10-

6  
[118]

Pen. chrysogenum 6.71 x 10-
6  

[118]
Prorocentrum micans 6.57x10-'0 5.31x10~

7  
[85] [85]

Saccharomyces cerevisiae 8.25 x 10-12 1.02 x 10-
6  

4.1 x 10-
5  

0.976 [126] [118] [27]
Saccharomyces cerevisiae 8.25x 10- 12 2.17 x 10-

6  
4.1x10-5- 0.95 [126] [118] [27]

Saccharomyces cerevisiae 8.25 x 10-12 6.08 x 10- 6 4.1 x 10-
5  

0.871 [126] [233] [27]
Scenedesmus obliquus 3.57x 10~

11  
1.64 x 10- 6 9.86 x 10-

6  
0.858 [257] [113] [163]

Skeletonema costatum 1.98x10-
1 1  

-1.26x10-6 [87] [87]
Thalassiosira weisflogii 2.25x10-

10  
4.67x10-

7  
1.01x 10-5 0.956 [85] [85] [271]

Trichoderma viride 2.16 x 10-
10  

8.93 x 10~
7  

1.43 x 10- 5 0.941 [235] [118 [41]
Trichoderma viride 2.16x 10-

1 0  
4.47 x 10~

6  
1.43x 10-5 0.762 [235] [118] [41]

Trichoderma viride 2.16 x 10-
1 0  

1.2x 10-
6  

1.43 x 10-5 0.923 [235] [118] [41]
Trichoderma viride 2.16x 10-

1 0  
5.96 x 10-

6  
1.43 x 10-5 0.706 [235] [118] [41]

Brachionus calycilorus 1.25 x 10-
7

2.87 x 10- 6 1.01 x 10-5 0.778 [33] [33] [33]
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Appendix B

Appendix for Chapter 3

B.1 Estimates of rescaled parameters

In Chapter 3 we present a model for the physical diffusion and biological consumption

of oxygen within the colony. We showed that this system is greatly simplified by

nondimensionalization. The key parameters in this nondimensionalization are

= apumax 
- ayumax 1 andtfac ksY , fac kYD) a k 8  (B.1)

where tfac rescales time, Xfac rescales space, and k, rescales the concentration of oxy-

gen. Once the system is rescaled there there is one free parameter which summarizes

the maintenance term: g = YP/pmax. The literature provides estimates for all of

these key parameters (Table B.1). We combined every combination of these parame-

ters for each of Xfac, k8, and g and use the mean or median value as a best estimate.

Doing this we find that the mean value of Xfac is 68,135 s-1 and the median is 50, 392

s-1. For k, the mean estimate is 0.29 g oxygen m- 3 and the median is 0.20 g oxygen

m-3 . The mean estimate for g is 0.043 and the median is 0.037. Note that tfac is not

critical to our analysis where we examine steady states, but it can be found easily

from the parameters presented here.
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Half Satura-
tion Constant k,

.25 g oxygen m-3 [153]

.045 g oxygen m-3 [267]

.4 g oxygen m-3 (bottom of range) [25]
1.18 g oxygen m- 3 (top of range) [25]

Maximum
growth rate ymax

1.11 x 10- 4 
s-1 [13]

7.89 x 10-5 s- [255]
2.78 x 10 5 s- [255]
6.11 x 10- 5 s-1 [267]
5.28 x 10-5 1 [25]
8.89 x 10-5 s- [25]
2.22 x 10- 4 s-

1  
[266]

Yield Coeffi-
cient Y

.65 g cells - g oxygen-1 [267]

.85 g cells - g oxygen-1 [266]

.635 g cells g oxygen-1 [25]
Maintenance
Coefficient P

3.89 x 10- g oxygen - g cells 1 s- [25]
Diffusivity D

1.76 x 10-9 m
2 

-1 [153]
1.53 x 10-9 m

2 
s- 1 [266]

Cell Density (g
cells - m--

3
) a

12000 g m-3 [266]

Table B.1: Values for key biological and physical parameters.
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Appendix C

Appendix for Chapter 5

C.1 Relationships within the height limitation frame-

work

Our framework for predicting height is based on a tree's ability to collect sufficient

water and sunlight to meet its basal metabolic needs without exceeding the availability

of these resources. These requirements can be summarized by inequalities relating

the required flow rate Qo, the potential evaporative flow rate Qe, and the available

flow rate Qp:

OP -- Qo > 0 (C. 1)

Qp - Qe > 0 (C.2)

Qe - Qo > 0 (C.3)

Eq. C.1 ensures that the tree must receive enough water to maintain its basal

metabolic flow. It is through this constraint that we couple size to water resources.

Eq. C.2 states that precipitation must meet or exceed evaporative flow. Eq. C.3

ensures that the energy a tree receives from its environment, which is translated into

evaporative flow, meets its basal metabolic needs. These statements are summarized

by a single condition:

Qp > Qe > Qo. (C.4)
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Thus, Qo and Q, set the boundaries of acceptable flow in an environment. Maximum

tree height can then be predicted by finding the largest tree for which this relationship

holds. That is, our strategy searches for trees that meet their metabolic needs without

exceeding their water or solar resources.

C.2 Scaling relationships

Recent work has described many allometric relationships in terms of the branching

architecture of trees [292, 291]. This work focuses on the hierarchy and hydrodynamic

optimization of branching bundles of vascular tubes, where the mass M of a tree

is related to the number of branching generations, N, by N oc In M [292]. This

framework also describes the scaling of branch lengths and radii which, along with

mass, allow for conversion between various observed allometric relationships. For a

tree of height h with n daughter branches at each branching generation, k, whose

radius and length are given by rk and 1k, respectively, it can be shown that

h ~~ 0 TN n(N-k)(a/2) and - (C.5)1 - n-1/3 rN 1N (rN

where, typically, n = 2, and a ~ 1 is the branching exponent [292]. For terminal units,

TN ~ 0.4 mm, and 1N ~ 4 cm [292]. Note that plant height can also be expressed as

nN/3lN
h ~ (C.6)

1 - 1/3

h oc N/3 (C.7)

Many observed allometric relationships are given in terms of the basal stem diameter,

D. In the relationships above D = 2ro, and thus D oc h3 /2, which agrees with the

findings of reference [191] (h oc D 2/3 for large trees). This allows us to re-write scaling

relationships for stem diameter in units of tree height. For example, the basal flow

rate of fluid through a tree given by

Qo = 31D1 (C.8)
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[80] becomes

Qo = #1 (2n Na/2 rN)n (C.9)

=02hn2 (C.10)

with 72 = 391a/ 2 - 2.7 and #2 = #1 [2N ( -1/3 3a/21 9.2 x 107 (liter day-

cm--n2 ; for h in cm), given the parameters shown in Table 1. It should be noted

that these values are found from measurements of trees in situ which may not be

operating at the absolute basal metabolism. Future work should focus on determining

the minimal requirement of a tree and this will likely adjust the value of #1 but not the

exponent 11. This branching architecture also defines several geometric characteristics

of the canopy and root systems required for calculating Q, and Qe.

C.3 Relationships governing the available flow Q,
The available flow rate is determined by the incoming rate of precipitation, pinc, along

with the capture area and efficiency, -y, of the roots. We define the capture area in

terms of the radial extent of the root system, rroot, so that

Q = 2rr p (C.11)

We find that on average Q, matches Qo for the tallest trees taking y = 1/3, that is,

solving for Qp (hmax) = Qo (hmax) yields a mean value of -7 = 1/3, and this is the

value that we use in our model. Calibrating -y in this way allows us to later solve

for height using only the single limitation of Q,. Adding variations in soil type and

hydrology to calculate -y locally is an important area of future research.

The root vascular system is assumed to obey similar constraints as the canopy ex-

cept that gravitational biomechanical limitations, important for canopy branches, are

not important for roots. Roots may exhibit a different architecture, or overall shape,

from that of the canopy, but, nevertheless, obey similar hydrodynamic and minimiza-

tion constraints as the above-ground branching network. Branches and stems grow

181



in diameter through a process of older vascular tubes becoming heartwood and new

vascular tubes forming new sapwood. Since vascular tubes run the entire length of

the tree, the above- and below-ground networks are not independent. As such, branch

tube formation and mortality (above-ground sapwood and heartwood formation) im-

pose constraints on root structure. This is supported by data which show that the

branching exponent a for the root system has a mean value close to unity at each

branching generation, similar to that for above-ground branches [242]; (our reanalysis

of data for the two species presented in Figure 1 of ref. [242] gives a = 1.03 ± .33 and

a = 1.12 i.45 for n = 2). Combining all of these constraints results in the scaling and

topology of the root system being essentially identical to that of the canopy, although

the detailed architectures may be different. Thus, the total mass of the roots MR

should scale isometrically with the mass of the stems Ms, a prediction supported by

the data: MR -3 3Ms where 03= 0.423 t 0.02 (dimensionless) [189, 191].

For optimal access to moisture the roots maximize the volume of soil occupied.

The radial extent of the roots should therefore be equal to the longest tubes found in

the root system. For stems, the length of a tube running from the base of the trunk

to the leaves is given by Ls = h =3 4M 1 4 [292] so, given the above argument for

roots, it follows that LR =rroot = 4MI/4 . Thus the radial extent of the roots is

given by

rroot = #3 'h. (C.12)

Later we relax these assumptions regarding the scaling of the root system with

overall tree height and show how optimizing the root scaling exponent can significantly

reduce the error between observed maximum tree height and our predictions.

C.4 Relationships governing the evaporative flow

Qe

Our relationship for the evaporative flow rate of a tree is determined by the interaction

of the canopy with the local meteorological conditions. Here we will analyze the
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energy budget of the canopy, and in doing so, determine how the allometric properties

of the canopy govern various heat fluxes.

C.4.1 Energy Budget

Our analysis of the energy budget follows ref. [51]. Conservation of energy requires:

Rabs - Lag - Haj - AEaf = 0 (C.13)

where Rabs is the total rate at which radiation is absorbed by the canopy (W) and

each of the other terms is an energy flux (W m-2 ) away from the canopy multiplied

by an effective area, ai~g,j,f, over which that flux occurs (the scaling of these areas

are described below). L is the emitted thermal radiation, H is the sensible heat loss,

AE is the latent heat loss with A being the latent heat of evaporation (J mol- 1 ) and

E the evaporative molar flux (mol m- 2 s-1). In the definitions below it can be seen

that each of the flux terms depends on the leaf temperature, TL (in degrees Celsius;

temperatures in degrees Kelvin will be denoted using boldface T). It is generally

desirable to eliminate TL from the system of equations in order to focus on common

measurements such as the local air temperature. The Penman-Monteith method gives

an approximation of TL by linearizing each component of the energy budget in terms

of AT = TA - TL and solving for TL, where TA is the air temperature.

Assuming AT << TL and AT << TA we can approximate the emitted thermal

radiation, as

L = ElJT4 (C.14)

~ elJT4 +cgr-(TL - TA) (C.15)

g2 + g 1 - (TL -TA) (C-16)

where E1 is the emmisivity of the leaf, a (W m- 2 K- 4) is the Stefan-Boltzmann

constant, c, (J mol-1 C- 1) is the specific heat of air, and g, = 4EjaT3/c, (mol m-2

1as-1) is the radiative conductance (we will discuss various conductances below).
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The sensible heat loss is similarly defined in terms of AT and is given by

H C,Ha (TL - TA) (C.17)

- i - (TL - TA) (C.18)

where gHa (mOl m- 2 s-1 ) is the heat conductance of air [51).

For the latent heat loss we make the approximation

AE = Ag, es (TL) ~ es(TA) (C.19)
Pa

1 de (TA) D
Age- (TL - TA) + A - (C.20)

Pa dTA Pa

Sfl -(TL -TA) + f 2  (C.21)

where gv (mol m- 2 s~ 1 ) is the vapor conductance, TD is the dew point temperature,

pa is the air pressure (kPa), and D, - e, (TA) - e, (TD) (kPa) is the vapor pressure

deficit, and

es (TA) = bi exp b2TA (C.22)
(b3 + TA)

is the Tetans formula for saturation vapor pressure (kPa) with b1 = .611 (kPa),

b2 = 17.502 (dimensionless), and b3 = 240.97 ('C) [51].

Solving this system of equations we obtain

TL - TA = Rabs - f 2 af - 92 ag
flaf + giag + j1aj(

which, using the approximation in Eq. C.21, leads to an equation for the evaporative

flux

E = fi Rabs - f 2af - g2ag + f2 (C.24)
A Iflaf + glag + jiaj A

The total volume flow rate, Qe, is obtained by multiplying Ecan by the area af, and

then converting from a molar rate to a volume flow rate. Thus Qe = af EpI/p, given

the molar mass, pW (kg mol-1), and density, pw (kg m- 3 ), of water. This can be
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written in full as

yW 'f1 Rabs - f 2af - g2ag f2
Qe = a \.AL flaf+glag + ajI + ). (C.25)

p. _fa;+ Ija A

C.4.2 Allometric canopy geometry and solar radiation

In this section we derive the rate of absorbed solar radiation, Rabs, a necessary com-

ponent of Qe. This absorption rate represents the relationship between available solar

resources, plant structure, and, ultimately, tree height.

The collection of solar radiation by a plant can be described by coefficients for

canopy transmission, T, canopy reflection, (c, and soil reflection (, all of which can

be encapsulated as the canopy absorption coefficient

acan = 1 - ( c - (1 -- (S) r- (C.26)

[173]. A commonly used model [51, 173], which we find connects easily to the branch-

ing architecture discussed above, assumes that leaves are uniformly distributed over

a spheroidal canopy of surface area, Scan, defined by the semi-axes h'an = hean/2 and

rcan. In that case, the transmission coefficient is given by a classic absorption formula

r = e-, raK(V,)LAI (.27

[51, 173], where a is leaf absorptivity and LAI is the leaf area index, a measure of the

total leaf area per unit ground below the canopy, which is given by

LAI = a N (C.28)
wrr 2

can

The extinction coefficient, K (0) = 2Pcan/Scan, describes the ratio of canopy projected

area, Pcan, to canopy surface area, Scan, and is a function of the solar zenith angle @.

Given a spheroidal canopy, it follows that

Pcan = rcan(rcan cos + h'an sin 0 tan -@), (C.29)
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and

rcan (h'an ) 2 arcsin ! 2 an a n

Scan = 27 r r22 + - c -n (C.30)
(can)- rcan

[120, 173] where 0 = arctan (-h'an/rcan tan @) is the angle defining the point of ray

tangency on the canopy surface and h'n = hcan/2.

The transmission coefficient, T, can be calculated by combining the above equa-

tions. The total solar radiation captured by the canopy is then given by

Rabs [1 - (c - (1 - (s) r] PcanRinc, (C.31)

where Rinc (W m- 2) is the incoming radiation per unit area (normal to the ground),

and (c and (, are described below.

C.4.3 Heat flux areas

Our canopy energy budget is derived by scaling up from the budget for a single leaf

whose properties are assumed invariant across trees of different size. In this picture,

changes in energy fluxes are predominantly due to allometric relationships for the

canopy shape and number of leaves. Leaves are assumed to act in parallel, and thus

the total area for sensible heat loss is a3 = 2 aL, where aL is the total one-sided area

of all the leaves on the tree, given by aL anN oc h3 c M 3/ 4 [292]. The evaporative

flux, on the other hand, occurs over the total area of the stomatal openings in the

leaves, af = 2 aL6 sas, where 6s is the density of stomata on a. leaf, and a, is the area

of a single stoma.

If L is the thermal radiative flux emanating from the tree, then a good approxima-

tion for the effective radiative surface area is the total one-sided leaf area, so ag ~ aL-

Since Scan h2 , whereas aL - h3 , leaves will overlap on the canopy surface for suffi-

ciently large trees so that the above approximation for ag becomes less accurate. We

tested other schemes for ag, such as using Scan, or the minimum of Scan and aL, and

found similar results to the ones presented here.
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C.4.4 Scaling of the canopy radius and height

In previous work, it has been shown that the canopy radius scales as rscan c re [192],

or

rean cx n N/3r 2/3 oc h (C.32)

which follow from Eqs. C.5 and C.6. The scaling with height is consistent with

empirical data where it has been shown that rcan = 05h , with T3  1.14 , and

35 = 35.24 (cm m--73 ; for h in meters) (see SI of ref. [83]).

Unlike rean, we were unable to locate data characterizing the scaling of hean with

total tree height, h. Following ref. [82], we assume that the canopy scales isometrically

so that hcan = 06h, where 36 is a constant. A lower bound for the canopy height can

be obtained from a configuration in which all of the branches of the tree emanate

directly upwards from the top of the trunk leading to hean > h - lo; clearly, an upper

bound is given by the total height of the tree: hcan < h. Since, h lo/ (1 - n- 1/3),

we obtain the bound

h > hean > n-1/3h _ 0.79 h (C.33)

or

1 ;> 36 > n-1/3 ~0.79 (C.34)

for n = 2. Note, further, that, from data the diameter of the canopy, dcan= 0.7h",

indicating that, generally speaking, canopy height exceeds canopy diameter, hcan >

dcan, suggesting that the canopy forms an approximate prolate spheroid. For the

discussion presented in the text, we took /36 1. Varying /36 between 0.8 and 1

slightly shifted the mean of the distribution in Figure 5-1.

C.4.5 Canopy Radiation Coefficients

Above, we discussed the derivation of T, which is one of the radiation coefficients

involved in calculating the total radiation absorbed by a canopy. The other two

coefficients correspond to the canopy and soil reflection, respectively, &c and (,. The

soil reflectivity can be taken as a constant value which is given in Table 1, but the
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canopy reflectivity is expected to change based on the size and scattering properties

of the canopy. It has been shown that the canopy reflection, as a function of the leaf

area index, LAI and extinction coefficient K (V)) is well approximated by

* + fe-2K($)LAI
c + *f e-2K(V))LAI, (C.35)

where

f -C (C.36)

and (c* is the deep canopy reflection coefficient, which is constant [173, 51]. For small

LAI, Eq. C.35 is approximately the ground reflectivity (s, and for large LAI, it is c.

Combining equations C.26, C.27, and C.35 it is possible to determine the total

absorption coefficient of the canopy and this is the calculation used to produce the

curve in Figure 5-4.

C.4.6 Canopy conductances

Each of the above terms depends on the conductances of heat, vapor, and radiation

which are described below. Assuming that the canopy surface is exposed to forced

laminar convection, the heat conductance in air is given by

0.664iaDH e 2Pr1/3
9Ha = d (mol m 2 S-1) (C.37)

where Rea = ud/lva is the dimensionless Reynolds number for air, Pra = va/DH

is the dimensionless Prandtl number for air, DH (M2 S- 1 ) is the heat diffusivity,

va (Ta) (m2 s- 1) is the kinematic viscosity of air, u (m s- 1) is the wind speed, d =

0.81 (2 (a,/7r)1/2) (m) is the characteristic dimension of a circular leaf of area a, (m),

and #& is the molar density of air given by the Boyle-Charles law as

Pa 273.15 (iol M 3 ) (C.38)
101.3 TA
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for Kelvin temperature TA and air pressure pa = 1 0 1 .3e-A/8200 (kPa) at altitude A

(m) [51].

We assume that the canopy is in series with the atmospheric boundary layer, so

gV = 1/ ( 1 + 1 ), where 9vL and 9va are, respectively, the vapor conductances

for the leaf and atmosphere. Assuming forced laminar convection, as before, the

boundary layer conductance is

0.664aDRe Sc1/ _2-
gva = (mol m 2 s 1), (C.39)

d

where SCa = - is the dimensionless Schmidt number, and Dv (m 2 s-1) is the diffu-

sivity for water vapor in air. The leaf conductance is calculated by considering the

stomata as acting in parallel. We model a single stoma as a cylinder of depth z, (M)

in which case Fick's law gives

s = 2Dv _ JaDv (mol M-2 s-1) (C.40)
a8 (0) fzo a.,(z) ~s

for the conductance of a single stoma. Summing over the entire leaf area, the leaf

conductance is given by

gvL gvsas 6 s (mol m- 2 -1), (C.41)

where a, (m 2 ) is the area of the opening of a single stoma, and 6, (stomata m-2) is

the stonatal density on a leaf.

C.4.7 Trait values

For each tree trait we examined the literature in order to gain a sense of the variation

of each trait across many species, plant sizes, and environments and we picked values

that were representative of that variation. For several of these values we were able to

check for agreement with means from the TRY database [67] which is a collection of

multiple databases containing global values for various plant traits across numerous

189



environments and species. For each trait there are several ways to analyze the distri-

bution of trait values produced by the TRY database. The first is to take the straight

mean, which we present in Table 1. The second is to recognize that most of these

traits appear to be lognormally distributed in which case it is possible to logarithmi-

cally transform the data, find the transformed mean, and then take the exponential

of that value. Formally this is the median assuming a lognormal distribution and

these values are also given in Table 1. These two analyses typically provide a range of

possible representative values for each trait, and the values that we used fall within

this range.

C.5 Detailed examination of predicted vs. observed

tree heights

C.5.1 Relationships between Qo, Qe, and Q, for observed

tallest trees

We tested the model by looking at observed maximum tree heights in different

environments to check whether they do indeed adhere to the given resource con-

straints governing the required, evaporative, and available flow rates Q, (hb,) >

Qe (hobs ) > Qo (hobs). We calculate each of these quantities using observed maxi-

mum heights and measured environmental conditions. For trees which have grown

to reach the upper bound on height in a given environment we would expect that

Qp (hmax) = Qe (hmax) = Qo (hmax). Figure C-1 A-C shows the resulting pair-wise

relationship between each of these quantities. The derived data generally fall along

the green line which represents equality between the two quantities being considered.

In each plot the scaling of the two flows is independent of the choice of 7y, but the

overall intercept will depend on this value.
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Figure C-1: Comparisons between each of the water fluxes. Each flux is calculated for
an observed tallest tree. In each of the scatter plots the green curve is the one-to-one
correspondence line. (A) The relationship between the available flow of water, QP,
and the calculated evaporation, QE. (B) The relationship between the theoretical
basal metabolism, Qo, and QE. (C) Qp vS. Qo.
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C.5.2 Systematic deviations within the model predictions

The error between predictions and observations, as shown in Figure 5-1 C of the

main text, is slightly bimodal with the secondary mode corresponding to situations

where we under-predict tree height. Most trees in the under-prediction mode are

found in mountainous regions (elevations greater than 1000m) where there is often

high spatial variability in precipitation. Thus the interpolated meteorology may not

be representative of the environment experienced at the tree location. We tested

this hypothesis by comparing precipitation estimates from the Parameter-elevation

Regression on Independent Slopes Model (PRISM) [66, 218] to estimates from the

North American Regional Reanalysis (NARR)[169, 10]. Large discrepancies between

the two databases may indicate either differences in the modeling approach used

to assimilate individual station data or high spatial variability in the meteorology.

Figure C-2 A shows the distribution of the discrepancies between the two analyses.

The two data-sets are typically in good agreement, with the PRISM data generally

being a little larger than the NARR data. When we removed locations where the

error between the two precipitation estimates was more than one standard deviation

away from the mean then the under-prediction mode was diminished (Figure C-2 B)

in the distribution of error between observations and predictions of maximum tree

height.

C.5.3 Temperature Shifts

A central question in ecology is how ecosystems respond to environmental shifts.

Temperature plays a dominant role in controlling evaporative rates in our framework

and here we investigate how our predictions for maximum tree height respond to

changes in mean annual temperature. We consider a fairly large change in mean

annual temperature of ±2 'C. The maps in Figures C-3 A and B illustrate the resulting

percentage change in predicted maximum height. Averaging over the entire continent

the maximum tree height decreases by 11% for a +2 'C shift while maximum height

increases by 13% for a -2 'C shift. For an increase in temperature nearly all predicted
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Figure C-2: The dependence of model error on precipitation estimates. (A) His-
togram of the distribution of the discrepancies between the PRISM and NARR data
for rates of precipitation. (B) Histogram of the distribution of the discrepancies be-
tween predicted and observed tree height. Pairs of trees and station data have been
removed when the error between the PRISM and NARR databases is more than 1
standard deviation from the mean resulting in a reduction of the slight bimodality of
the error distribution.
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maximum heights will decrease, although the percentage change varies regionally, and

for a decrease in temperature nearly all predicted heights will increase.

Looking across different environments we find that warmer environments are less

sensitive to a i2 'C shift than colder environments, hence the strong gradient in

percentage change with latitude and/or elevation. The northern and mountainous

regions are more sensitive to an absolute shift in temperature. However, it should be

noted that a ±2 'C shift in a colder environment represents a much larger percentage

change in mean annual temperature compared with a warmer environment. Another

analysis which accounts for this effect is to change temperature by t10% in every

environment. Doing this we find that warmer environments are more sensitive to

a constant percentage change than colder environments (Figure C-3 C and D). For

the +10% change in mean annual temperature we find that the average change in

maximum tree height is -8% across the entire continental United States. For the

-10% change maximum heights change by an average of +9%.

C.5.4 Parameter Sensitivity

It should be noted that the empirical exponents used in this study are fits to data and

are accompanied by some amount of error. In addition there are several assumptions

or derivations that we have made regarding the scaling of plant features for which

there is no data. An important question is how robust our model is to small devia-

tions in the values of these empirical or analytic exponents. Yet understanding the

covariation of all of the exponents such that they all are in agreement with data is an

interesting and complicated problem (see refs. [217, 216, 215]). For the suite of ex-

ponents involved in this paper the mechanisms of covariation are simply not known,

and we do not have data for each property. Thus a full-scale, empirically-realistic

sensitivity analysis to parameter combinations is not possible. Given these limita-

tions we can however examine the effects of perturbing each exponent independently

of the others. Figure C-4 shows changes in the median relative error, hobs pred

of our predictions given a percent change in the dominant exponents of our model

(including analytic assumptions or results). The dominant exponents are those which
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control water acquisition (the root radius scaling, Troot), and those which regulate the

canopy energy budget via its geometry and heat flux areas (canopy height, hcan, and

radius rcan, and the thermal, sensible, and latent heat flux areas, ag, aj, af respec-

tively). Our original assumption is that all heat flux areas scale according to the

scaling of leaf area (see above). In Figure C-4 we test changes to this leaf area scaling

as well as changes to the scaling of each heat flux area individually. In each plot

zero represents the parameter value used in our model, and it can be seen that for

each parameter there is a minimum in the median relative error (Figure C-4). This

minimum often does not occur at the value used for our original predictions, revealing

how our model could be optimized to more accurately predict data. In the future it

may be possible to optimize all exponents simultaneously in order to achieve greater

predictive power. However, our goal here is to test the zeroth order theory based on

the available observations.

For the canopy height and radius and the scaling of the total leaf area, small

changes to the exponents result in small changes to the median relative error. How-

ever, the median relative error is very sensitive to the scaling of the root radius which

directly affects moisture gathering, and to differences in the scaling of the heat flux

areas compared to the overall leaf area. The thermal and sensible heat flux areas con-

tain multiple minima in the relative error and these two parameters have competing

effects with one another illustrating the complicated connection between exponents

and the importance of parameter covariation for a true assessment of sensitivity. Each

heat flux exponent represents a physiological response to the environment, and given

the complicated connection of these exponents it is of future interest to test whether

our framework can be used to predict changes in exponents across environments as

observed by [217].

C.5.5 Improving predictions using parameter optimization

From Figure 5-1 C it is apparent that, despite overall good agreement with the model

predictions, there are significant outliers representing deviations between observations

and our predictions. This is hardly surprising, given the many potential sources of
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error such as a possible mismatch between meteorological measurements and the

actual conditions experienced by the observed trees (see discussion regarding Figure

C-2), and processes such as logging, mortality, and fire which are not included in the

scope of our analysis. Additionally, the measured tallest trees may not have reached

the environmentally-determined upper bound. As we have seen in Figure 5-5, our

model anticipates the observed environmental dependence of optimal plant traits and

this implies that using only a single set of plant traits across all environments may

also be a source of error. Finally, some of our assumptions regarding unmeasured

scaling relationships may be inaccurate and contribute to error within the predictions.

Our goal was to capture the central tendencies, or average behavior, given a set of

known (both observed and theoretically motivated) scaling relationships and average

plant traits. However, here we show how our predictions can be improved by finding

additional scaling relationships which optimize the model.

In the main text we solved for the stomatal density which maximized height at

a given location and set of environmental conditions (Figure 5-5). Looking across

all of the tree sites we found a relationship between stomatal density and temper-

ature. Similarly, we can solve for the stomatal density, 6, which gives Qp(hobs) =

QE(hobs, 3s, {m ) for every observed tallest tree (given the local meteorological condi-

tions {m}). Doing this we find that stomatal density should scale with tree height as

6, oc h--" (assuming a constant stomatal area). Incorporating this scaling into our

model then improves our predictions as illustrated in Figure C-5 B. In our model we

also use a constant value of the root absorption efficiency 7 and we can also optimize

the scaling of this trait alone where we find that 7 oc h-75 also reduces the error in

the predictions (Figure C-5 C). This demonstrates the potential utility of the model

in anticipating scaling laws for which measurements do not already exist. However,

it should be noted that these two analyses optimize scaling with respect to only a

single tree feature one at a time, and, for comparison with future data, it is likely

necessary to co-optimize all exponents of relevance. This analysis is an example to

illustrate that adding additional scalings to the model can improve predictability and

reduce the variance of the deviations; however finding the realistic set of exponents
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Figure C-5: Optimized scaling and model error.
tions given an optimization in the scaling of either

The change in the model predic-
(B) stomatal density or (C) root

absorption efficiency compared to (A) the original model. The red curve represents

the one-to-one line. The variance of the error (hob- hpred is reduced from .22 in (A)

to .10 in (B) and (C). For all three analyses tree sites have been removed when the
error between the PRISM and NARR precipitation estimates is more than 1 standard
deviation from the mean error similar to the analysis summarized by Fig. S2. In each
histogram error values less than -3.0 were omitted accounting for 19 values in (A)
and 3 values in (B) and (C).

subject to multiple limitations is a subject of ongoing research and requires a more

advanced optimization study
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Table C.1: Tree trait values, scaling parameters, and other model constants
Parameter Symbol Values Ref. TRY database

Theor. Empirical Mean Median n

n - r9091

a

rN

1
N

For #1

Branching Parameter

Branching Exponent

Terminal Branch (Petiole) Radius

Terminal Branch (Petiole) Length

Proportionality Constant
Metabolism

Exponent for Metabolism

Root to Stem Mass Proportionality

Root Absorption Efficiency

Average Leaf Area

Depth of a Stoma

Leaf Stomatal Density *

(averaged over both leaf sides)

Area of a Stoma*

Stomatal Area per Leaf Area*

1 -

0.4 mm

- 4 cm

-- 0.257

liter

2 1.788

- 0.423

1/3

13 cm 2

[292]

[292]

[292]

[80]

day-1

- 10 pm

- 220

stomata mm-2

235.1 Im 2

= 7r (17.9/2)2

- .051

[292, 80]

[189, 191]

this study

[237, 88,
2, 32, 39,
103, 260,
128, 214,
205]

[51]

[21, 130,
1, 141,
212, 107]

[1,
51]

[21,

62.10 11.76 77000
cm

2
cm

2

120

mm

107, 491

jtm
2

130, .059

101 363

2 -2

459

jLm 2

.047

2159

1, 141,
212, 107,
51]

(Stomatal Density x Area of a Stoma)

Leaf Absorptivity (full spectrum) a 0.50 [51, 173] - - -

Soil Reflection Coefficient (full spec- - 0.30 [51, 173] - -
trum)

Deep Canopy Reflection Coefficient - 0.22 [51, 173] - -
(full spectrum)

Proportionality Constant for Canopy 35 - 35.24 cm m-1 3  SI of [83] - -
Radius

Exponent for Canopy Radius 73 1 1.14 SI of [83] - - -

Leaf Emmisivity E - 0.95 [51, 173] - - -

*It should be noted that our model relies on the bulk property of "Stomatal Area per Leaf
Area" for calculations requiring an evaporative flux area af. Thus the sub-parameters a,
and 6, need not agree with the TRY database as long as the bulk property 6,a, does.
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