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Abstract

A towed underwater vehicle equipped with a bio-inspired artificial lateral line (ALL)
was constructed and tested with the goal of active detection and correction of the
vehicle's yaw angle. Preliminary experiments demonstrate that a low number of
sensors are sufficient to enable the discrimination between different orientations, and
that a basic proportional controller is capable of keeping the vehicle aligned with the
direction of flow. We propose that a model based controller could be developed to
improve system response. Toward this, we derive a vehicle model based on a first-order
3D Rankine Source Panel Method, which is shown to be competent in estimating the
pressure field in the region of interest during motion at constant angles, and during
execution of dynamic maneuvers. To solve the inverse problem of estimating the
vehicle orientation given specific pressure measurements, an Unscented Kalman Filter
is developed around the model. It is shown to provide a close estimation of the vehicle
state using experimentally collected pressure measurements. This demonstrates that
an artificial lateral line is a promising technology for dynamically mediating the angle
of a body relative to the oncoming flow.
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Title: Professor of Mechanical and Ocean Engineering
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Chapter 1

Introduction

Figure 1-1: Fish swimming in the ocean and dolphins breaching the water demon-
strate the strength and versatility of marine animals (source: National Geographic).

Over millions of years, the bodies and brains of fish have evolved in many ways

to achieve the objectives which render them capable of survival in the diverse and

hostile environments of the oceans, rivers and seas. Extensive study and research

have shone light on the incredible grace with which fish are able to maneuver, using

their both sensitive and streamlined bodies to exploit the fluid mechanics of the water

around them in a way that ocean engineers dream of emulating. A few of the most

difficult objectives, which engineers and roboticists have striven to achieve for under-

water vehicles and robotic fish in recent years, include station keeping under large

perturbations, rapid maneuvering, power-efficient endurance swimming, and trajec-

tory planning and tracking [7]. These challenges must be addressed through careful

consideration and implementation of sensory capabilities, actuation, and control and

planning mechanisms.

While research in actuation has yielded many underwater vehicles that are capable

of high speeds and/or fast turns [1,8,19,25], the successful application of these tech-

nologies will require faster and more precise underwater sensory systems. Without
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high resolution sensors capable of fast data output, high performance in the obstacle-

filled and unpredictable oceanic and littoral enviroments would be near impossible.

In recognition of this need, we draw inspiration from nature to develop a new sensing

technology based on a fish organ, the lateral line. As sensitive as a human's hearing

system and directly integrated with the nervous system, it provides powerful local

sensing which equips fish with the reflex-like qualities required for many behaviours,
such as escape from predation and schooling. Despite the advantages that it clearly

offers marine animals, engineers have yet to develop a technology like this for ap-

plication on underwater vehicles. Such a technology could be transformative to the

world of underwater robotics, by offering a fast and instinctive way to sense nearby

flow structures and obstacles - a sense of touch at a distance. For the realization

of such a sensor, much work remains to be done in understanding the nature of the

flow in various scenarios, relating these hydrodynamic insights to theoretical pressure

measurements, and developing control systems which are capable of utilizing the new

knowledge.

Our work here focuses on one scenario and demonstrates the potential of an artifi-

cial lateral line within its capacity. In implementing the technology, we study the flow

around a basic underwater vehicle, develop simulations which use that understanding

to generate expected pressure measurements, and conclude with the development of

a control system which uses artificial lateral line feedback to improve performance in

the scenario.

1.1 Biological Inspiration: the Blind Cavefish

Figure 1-2: Left: An underwater cave in the Yucatan Peninsula, Mexico where blind
cavefish reside (source: National Geographic). Right: Blind cavefish in their natural
environment (source: OpenCage Photography).

18



The Mexican Blind Cavefish, Astyanax mexicanus, lives in the deep and beautiful

underwater caves of Central America (Fig. 1-2), and it is famous for its lack of eyes.

Given the mazelike stalagmite and stalagcite formations in the caves, researchers

have been drawn to study them, asking the question of "how do these fish survive

without eyes?" They found that in the absence of vision, the fish were forced to rely

more heavily on their other senses, and as a result, those senses exhibited enhanced

sensitivity. In particular, the fish were clearly able to sense the presence of nearby

objects by detecting the change in flow surrounding their bodies, using an organ

known as the lateral line.

1.1.1 The Lateral Line: Structure and Function

While the blind cavefish best demonstrates the aptitude of the lateral line, all fish

possess this sensor in addition to their visual, olfactory, acoustic and tactile sensors.

The lateral line consists of tens or even hundreds of hair cell sensors called neuromasts

distributed over the body of the fish, and can be divided into two subsystems: the

superficial lateral line system and the canal lateral line system. The superficial lateral

line consists of neuromasts located on the surface of the skin, and detects the velocity

of the flow. The canal lateral line system consists of neuromasts within subdermal

canals (Fig. 1-3).

Figure 1-3: A photograph of a blind cavefish, overlaid with the approximate location
of the canal lateral line and neuromasts within it.

Each neuromast consists of hair cells which are enclosed by a flexible, jellylike

cupula, and acts as a mechanoreceptive organ which allows for the sensation of any

movement [14]. While the neuromast is the functional unit of both subsystems, the

morphology of the neuromast central to each is very different, in both size and shape

(Fig. 1-4). This is largely due to function. The hundreds of superficial neuromasts

on the fish surface interact directly with the flow, and are responsible for deflecting
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as a result of small velocity changes. As a result, they are elongated and act as low

pass filters to primarily to detect steady flow.

Superficial neuromast

Boundary
layer

Self-generated flow

Canal neuromast

Cupula

am10 smn

Stimulus source -
Canal

Environmental Cupula r=100 pm
flow .___________A____

Figure 1-4: Diagram of flow stimuli sources and the the lateral line system, with
enlarged views of the superficial and canal neuromasts [45].

In contrast to this, the neuromasts of the canal subsystem are fewer, larger and

flatter. Each neuromast is enclosed within a canal, where there typically exists one

neuromast between each set of regularly spaced pores. As water flows across the

surface of the fish, pressure gradients are induced between the pores, which these

canal neuromasts respond to [13]. As such, they act to detect changes in pressure.

These pressure changes result from flow induced by variation of the current, movement

of the body, the convergence of an object, or wake structures left by other animals [46].

In contast to the superficial neuromasts, the canal neuromasts are not subject to

the boundary layer of the body. As a result, while the fluid inertia within the canals

still causes the system to act as a low pass filter, the neuromasts are less affected by

the fluid velocity, allowing the system to be sensitive to a range of different stimuli.

In addition, it has been shown that the canals act to tune to specific frequencies

of perturbations [41]. Widened canals are most sensitive to lower frequencies (under

60 Hz), such as those produced by movements of crustacean prey. While they tend

to be more sensitive, they also respond more slowly due to the increased fluid inertia

within the canals [14].

The canal lateral line system can be further divided into two canals - the trunk

canal and the cephalic canal. The trunk canal typically consists of one linear canal

which runs laterally down each side of the fish body, while the cephalic canal is more

20



B C

Figure 1-5: A - Cephalic lateral line system, displaying both the canal and superficial
subsystems. B - Diagram of a canal neuromast, highlighting the composing elements.
C - Photograph of a canal neuromast, within the canal. (source: Lab of Fish &
Shellfish Pathology, Pukyong National University)

complex and forms a three-dimensional pattern around the head (Fig. 1-5), which

varies between different species of fish. This allows for specialization of the cephalic

lateral line to various tasks, such as mating and prey detection [40,41].

1.1.2 Behaviors Aided by the Lateral Line

The lateral line has been shown to be fundamental to many fish behaviors, including

object detection [11], the localization of moving prey and predators [11,22,41], and

environmental mapping [5]. Although these applications are aided by other senses

such as vision and smell, the lateral line is crucial to the speed and precision of be-

haviors such as the escape response [32]. In addition, in blind fish such as Astyanax

mexicanus, the lateral line is solely responsible for navigation through complex envi-

ronments, response to dangers and prey detection [35,46].

However, while it is easiest to recognize the importance of the lateral line for fish

which are blind or are most active at night, this sensor aids in many responses for

which other sensors (such as vision) do not provide any feedback. These activities

include schooling [38], rheotaxis [34], and analysis of surface waves [3].

Most commonly, to test the influence of the lateral line, behavior is observed

before and after anesthetization of the lateral line. With this technique, Coombs

et. al. show that the mottled sculpin uses its lateral line to detect the vibration of

mechanical dipoles, which were meant to simulate live prey [10]. Schwalbe et. al.

used this technique to demonstrate that the peacock cichlid uses its lateral line to

detect prey in the dark, thus reducing the competition and danger of feeding during

the day [41]. Baker anesthetizes the lateral line in Antarctic fish to determine the

responsiveness of the superficial and canal subsystems to various stimuli [2].

In one sense, the lateral line on a fish allows it to generate a local hydrodynamic
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Figure 1-6: A sketch shows some capabilities enabled by the lateral line.

image of its surroundings. In order to understand how fish use this sensor to image
its surroundings, it is important to study the nature of the flow field around the fish,
and how this field changes as it is subject to different flows and perturbations. By
developing a generalized theory surrounding this, it will then be possible to determine
how the fish is able to detect the shape of the flow, and decode the patterns to sense
the presence of objects, other fish, predators, and prey.

1.2 Relevant Work

1.2.1 Artificial Lateral Line Technology

Toward the creation of an artificial lateral line, several past studies have centered

on the development of microelectromechanical systems (MEMS) technology for the

creation of an artificial lateral line. The majority of these focus on developing pillar-

like mechanical structures which mimic the superficial neuromasts of the lateral line

[15,28,31,47]. In these, a pillar is used to simulate the cupula of the neuromast, and

various types of strain gauges are typically used to measure the deflection of the pillar
as it is subjected to different cross-flows. In some, the mechanical pillar is additionally

capped with a hydrogel or similar material to simulate the mechanical properties of
biological neuromasts. This was shown to significantly decrease the lower threshold
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limit of flow detection and expand the dynamic range of operation due to suppression

of background noise [31,39].

Figure 1-7: Left: the hydrocapped biomimetic superficial neuromasts manufactured
by McConney et. al. [31]. Right: the SU-8 pillar superficial neuromast constructed
by Kottapalli et. al. [28].

The canal neuromasts have the more general function of detecting pressure, which

many commercialized sensors are already capable of doing. As a result of this, a fewer

number of studies have aimed to construct sensors which mimic the canal neuromasts

of fish. In the ones that do, the majority implement off-the-shelf pressure sensors,

which they incorporate into arrays. Hsieh et. al. constructed a sensor array from a

high efficiency and low cost piezoelectric material, Polyvinylidene Fluoride (PVDF),

which generates an electric potential or electric field in response to applied stress [24].

Kottapalli et. al. developed a MEMS pressure sensor comprised of a liquid crystal

polymer (LCP) membrane which encased thin film gold piezoresistors [28]. One study

aimed to develop geometrically simplistic and low-cost flexible pressure sensors [48].

These consisted of patterns of conductive carbon black encased in LCP. By detecting

the change in resistance of the carbon black as the the sensor deflected, the pressure

surrounding the sensor could be deduced.

Figure 1-8: Left: the LCP and carbon black sensors constructed by Yaul [48]. Center
and Right: Kottapalli et. al's LCP piezoresistive pressure sensors [28].
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1.2.2 Hydrodynamics of Lateral Line Stimuli

Numerous studies have been performed to study the various stimuli to the lateral

line, and the flow structures which are produced by them. It is crucial to develop a
strong understanding of these effects in realizing the lateral line technology. While

different flows and pressures may be detected by increasingly accurate and sensitive

MEMS pressure sensor arrays, this information possesses very little value without a

methodical way to interpret it. As such, many groups have studied the response of

the lateral line to dynamic vibrations, nearby objects, and vortices.

Vibrations are characteristic of nearby prey, and many groups have studied the

sensitivity of the lateral line to this stimulus in order to understand its structure and

effective range. By far, most studies which are concerned with this use a mechanical

dipole oscillating in the range of 50 Hz. to produce the vibrations [6, 9, 12]. These

studies have isolated the detection of vibration to the canal lateral line system, and

have found that the range of detection is typically about 1.5 times the body length [9].
Another stimuli that has been widely studied is the vortex. Vortices are generated

in many scenarios, including in the wake behind a bluff body such as a cylinder, and in

the wake of a swimming fish. Fish in the wild often swim in the wake behind objects

to save energy (Karman gaiting), and it is thought that the lateral line may help

them mediate their position while doing so [29]. Given this, mathematical theories

have been formulated to explain how vortices stimulate the canal lateral line [17], and

numerous experiments have been conducted to test the effect of vortices passing by
real or artificial lateral line systems [16,17,42].

Studies have also been performed to study the role of the lateral line in detection

of solid objects. Although it is a passive sensor, the lateral line is capable of detecting

the presence of solid, unmoving objects as a fish swims by them. This is due to the

flow which is induced by the motion of the fish, which is distorted when objects are

present. As such, the lateral line plays an important role in obstacle detection and

collision avoidance. Experiments have been performed to study the ability of fish to

detect such objects [20, 33], and experiments have also been performed to test the

ability of artificial lateral line systems to detect and identify passive objects [30].

1.2.3 Lateral Line Feedback in Algorithm Development

Some groups have attempted to develop algorithms for use with MEMS artificial

lateral-line sensors. Pandya et. al. have studied multisensor processing algorithms

for underwater dipole localization [37]. Using an artificial lateral line composed of hot-
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wire flow sensors, they developed a minimum mean-squared error (MMSE) estimator

in conjunction with hydrodynamic theory based on a general acoustic dipole model.

The algorithm was shown to determine the location of a dipole source positioned

about 1 cm away with less than 5% error.

Algorithms have also been developed which focus on the localization and charac-

terization of vortices and objects [16,18,30]. The work completed by these researchers

typically demonstrate that capability to localize a vortex or object to within 5-10%

of its true location. Characterization is typically a harder problem, though Maertens

has demonstrated the ability to use an ALL mounted on an underwater foil to localize

and determine the approximate size of a cylinder that it passes [30].

No projects known to the author have resulted in the development of full control

systems which utilize artificial lateral line technology. All of the work mentioned

demonstrates the feasibility of the artificial lateral line, but also highlighted the com-

plexity of the inherent hydrodynamics, which must be mathematically defined, for

development of appropriate control systems.

1.3 Research Motivation

In light of the previous work accomplished upon this topic, the focus of this project

lies not within developing a microelectromechanical systems (MEMS) pressure sensor

array for use as an artificial lateral line or in creating new methods of simulating flow

and pressure surrounding an underwater body, but rather in applying hydrodynamic

theory in developing the control algorithms necessary for using an ALL effectively to

navigate underwater.

The majority of AUVs today use sonar and vision for imaging and navigation.

However, these sensing systems are limited by blind zones, dark and murky environ-

ments, and processing speed. For this reason, they are very powerful when used on

large vehicles for the illumination of a global environment, but they face the short-

comings of being difficult and time-consuming to intepret, incapable of operating in

all environments, and occasionally too slow to sense dangers in time. This, in turn,

limits the environments and speeds at which AUVs may operate. In contrast, an

artifical lateral line would be constructed from an array of pressure sensors which

is small, lightweight, low-cost, and requires extremely low bandwidth and power. A

vehicle equipped with an ALL would have the ability to sense its local environment

quickly and with high precision, allowing for fast and reflexive responses to dangers

or obstacles (Fig. 1-9).
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Figure 1-9: An artist's rendition of a submarine equipped with an artificial lateral
line, exhibiting its ability to detect a school of fish swimming by (source: Chang Liu,
University of Illinois).

In particular, an artificial lateral line system concentrated in the frontal region of

an AUV could provide important information about incoming obstacles or changing

flows. As previously described, the cephalic lateral line system on fish is a com-

plex system of canals encircling the head. While the trunk lateral line only pro-

vides 2-dimensional information, the morphology of the cephalic system allows for

3-dimensional sensory capabilities which give rise to a diverse range of functions, in-

cluding shoaling, prey detection and obstacle avoidance [44]. Given the importance

of this system in spatial orientation and movement decisions, we focus solely on de-

veloping an artificial cephalic lateral line system in this project, and explore one of

its functions - that of mediating the yaw angle of an underwater vehicle.

Mediating the yaw angle of an underwater vehicle is a useful function, as it allows

for the vehicle to travel with the current instead of at an angle, reducing energy

loss due to crossflows and minimizing control effort that would be used in fighting the

strong munk moment that arises from traveling at angles. Furthermore, traveling with

the current results in less drift and therefore less uncertainty in the vehicle position

over time. Yaw angle detection can also serve as an additional feedback mechanism

for state estimation, aiding in the task of vehicle localization.

The overarching goal of our work here is to develop a theoretical basis for un-

derstanding the surface pressure that results from different flows over the body of

an underwater vehicle. With such an understanding, we can work toward the de-
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velopment and implementation of control algorithms which are capable of using the

feedback from an ALL effectively to detect and control a vehicle's orientation relative

to a current. By showing that a small number of pressure sensors can be used to

accurately detect the angle and used as feedback to return the vehicle to zero degrees

relative to the flow, we provide a proof of concept that this technology can serve as

a low-bandwidth sensor for a simple application. In addition, this project provides

a framework for more complex applications, such as the control of an underwater

vehicle in turbulent flow or in the wake of an object. In summary, it brings us one

step closer to equipping modern-AUV's with a mechanosensory underwater system

which would be able to sense and utilize underwater flows and currents in a similar

fashion to fish in nature.

1.4 Chapter Preview

In Chapter 2, the basic governing equations for this problem are presented, from a

fluid dynamics perspective. Potential flow theory is introduced, and we comment on

its qualities which make it an ideal modeling tool for this application. The concept

of using elementary solutions to Laplace's equation as elements of a solid body is

introduced, and the governing equations derived.

In Chapter 3, the experimental test setup and underwater vehicle are described.

Several brief notes are included on the shape of the vehicle, and designing for reduc-

tion of mechanical and electrical noise. The experiments conducted are summarized

and their most relevant results are presented. These include a set of static towing ex-

periments, experiments conducted with a basic proportional controller implemented,

and experiments conducted to test the dynamic response of the vehicle. Regarding

the last, added mass effects are discussed, and their relevance to the problem is ana-

lyzed. Finally, the concept of a model based controller is introduced to address the

issues brought up.

In Chapter 4, we develop the first component of a model-based controller: the

model. Various computational fluid dynamics approaches are compared, and we mo-

tivate the choice of a panel method for modeling the vehicle. A 3D Rankine source

panel method is chosen and developed. The boundary value problem is described,

and we discuss how the panel method is used to solve the problem. Results from

the final model are presented for simulations conducted at static yaw angles, and for

dynamic maneuvers. For both, the simulated results are compared with previously

collected experimental data, and there is good correlation.
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In Chapter 5, we develop the second component of a model-based controller: the

observer. Some background on state estimation and Kalman Filtering is first pre-

sented, followed by an introduction to the Unscented Kalman Filter. We describe

how the UKF is used to predict the states of the vehicle, and discuss the key param-

eters. A few results from implementation of the UKF are presented, and are shown

to produce much improved estimates, compared with the controller which operated

on an estimate generated from comparisons against static pressure measurements.

Finally, in Chapters 6 and 7, the project is summarized and conclusions drawn,
and a few recommendations for future work are provided.
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Chapter 2

Hydrodynamic Background

This chapter will provide an overview of the general hydrodynamic theory which

describes the flow around a 3D body.

2.1 Governing Equations

Within the fluid, we have conservation of mass:

(PO1 dV = 0

Which simplifies when we assume the fluid is incompressible:

V -V= 0

Conservation of momentum can be written:

(2.1)

(2.2)

pD = pDt 8 t
+ - vi = F + V- T

Where T represents the stress tensor. This can be easily rewritten as Navier-Stokes

equation:

p aOt7 +-V = -Vp+ pV2u+f (2.4)

In our case, viscosity is neglected, an assumption which will be justified at a later

point. Setting viscosity to zero and rewriting the first term using the velocity poten-
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tial, equation (2.4) becomes:

P(at + V = -Vp + f (2.5)

2.2 Modeling Pressure within the Fluid

The primary variable of interest is pressure, which is defined by Bernoulli's unsteady

pressure law. This can be derived from equation (2.5) by expanding the second term

on the left hand side and replacing the force vector f with gravitational force. The

cross product of the velocity and vorticity is:

i6 xx Vx 6 (2.6)

V 6-VV--V (2-6 (2.7)

For a potential flow, vorticity is zero, and so the left hand side of equation (2.6) is

zero. Substituting the result into equation (2.5) and integrating out all the spacial

derivatives, this yields Bernoulli's Unsteady Pressure law:

P - (0 1 72+gz (2.8)

Where p is the water density, # is the velocity potential at the point of interest, g
is the gravitational acceleration constant, and z is the current water depth. It is

important to note that this is defined in the inertial frame of reference, and when we

are concerned with the pressure at a material point (e.g. a point on the surface of a

moving body), the equation must be rewritten to account for the material derivative:

P = -p Do V# + 1|V#|2+gz (2.9)(Dt u ± 2Iw Fz

To solve, we must first analytically define $.

2.3 Potential Flow

In hydrodynamics, potential flow describes the velocity field as the gradient of a scalar

function.

Y=V# (2.10)
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This allows for clear and analytical functions to be derived which represent various

flows. Potential flow is limited to applications in which vorticity and turbulence are

minimal, because the flow is assumed to be inviscid, incompressible and irrotational.

As a result, it is best applied in high Reynolds number regimes, but when applied

properly is capable of estimating the flow around complex geometries with high accu-

racy. For simulation of complex geometries, the elementary solutions of the potential

flow problem may be distributed in a manner that satisfies the appropriate boundary

conditions.

The mathematical problem can be illustrated by Figure 2-1. Here, we have rep-

Saw

Figure 2-1: Nomenclature used to define the potential flow problem (adapted from

Low Speed Aerodynamics [27]).

resented an arbitrary volume of fluid V in which we wish to solve for the flow char-

acteristics. A body SB within the fluid posesses a wake Sw. A designated point of

interest is P, and the normal vector h' is defined to point outside of the region of

interest. Where G is Green's function (the potential of a source) and # represents

the potential of the flow of interest (both scalar functions of position), the divergence

theorem gives:

J(GV# - #VG) -&dS = f (GV 2 0 - OV 2G)dV = 0 (2.11)

In the case where P is outside of the fluid volume of interest, both G and # satisfy

Laplace's equation, so the right hand side of the equation goes to zero. To extract P

from V, we enclose it in a small circle of radius e. Rewriting equation 2.6, this yields:

(GV# - #VG) -ndS (2.12)
JS±sphere E
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Substituting in the definition of Green's function, G = 1/r, and expanding:

J (r r r dS jV- dS = 0 (2.13)
spheree c ( y 1 2 +

Integration around the surface of the sphere gives fSphere dS = 47e 2 , and assuming

&q#/Or ~ 0 because 4 is likely a well-behaved function that will not vary much in the

tiny sphere, the first term becomes:

- + ) dS = - dS = -4,r#(P) (2.14)

Finally, we substitute this back into equation 2.8 for a formula that provides the

velocity potential at any point P, given the values of # and O#/On on the boundary

S:

#(P) = j V#~ - #V V -dS (2.15)
47r - fs 47 r r)

As a result, the problem is now reduced to finding these values on the boundary.

As previously stated, to solve for the flow surrounding a complex shape, elementary

solutions are distributed in a manner that satisfies the appropriate boundary condi-

tions. The elementary solutions most commonly used in this context are the doublet

(p) and source(o-), where a doublet embodies the difference in potential between the

inside and outside of a boundary, and a source represents the difference between the

normal derivative of the inside and outside potentials:

P = -(# - #1) (2.16)

- (00-001(2.17)
On On

The potential at point P can now be rewritten in terms of these elementary solutions:

$(P) = o- -[,(1 - p (1)] dS +#Ow + #00(P) (2.18)
4 s r On r_

#w denotes the potential of a wake, in the case that the user wishes to define it for

increased accuracy, and #,,(P) denotes a constant potential in the region, which may

be added for specific scenarios such as moving reference frames. This is the general

form for the potential at a point P within a volume of interest, provided a known

distribution of sources and/or dipoles over the surface of any bodies present within
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the volume.

2.4 Superposition Principle

Up to this point, it has been implied that the total potential at any point can be found

by summing individual contributions, or integrating over a contributing surface. This

principle of superposition can be proven through the following example. If:

VrI = and Vr 2 = (by definition) (2.19)
Dr Dr

then Vrl + Vr 2 = + (2.20)
Dr or

provided the boundary conditions are linear, which is the case for rigid non-moving

walls or infinite space. Equivalently, if we let# = #1 + #2,

r (1 + 2) = 1+ 02 (2.21)
Or Or Dr Or

This linear property means that if the velocity potential is known for two different

flows, then the sum of the two flows will also be a solution to Laplace's equation.

This indicates that a complex flow can be formulated by summing any number of

elementary solutions.

While this concept seems straightforward, it is this idea which makes potential flow

theory so powerful, because it allows for the formulation of complex 3-dimensional

flow problems as linear problems. This eliminates the need to solve the governing

differential equations for each fluid element, which would be a lengthy and computa-

tionally taxing process. Therefore, if a flow problem can be modeled using potential

theory, finding its solution becomes a far faster and more manageable process.

2.5 Application Within This Project

Within this project, the problem description involves a 3D body which moves through

a fluid volume, translating and rotating over time. We aim to calculate the potential

on the surface of the body, provided the state of the vehicle (position and velocity

of each point). Given the potential, the surface velocity and surface pressure can

then be obtained. To solve for these parameters, we require a discretization of the

body geometry, definition of source and/or dipole locations and strengths over the

body. Panel methods are a well-studied approach for this type of problem, and its
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application within this context will be covered in Chapter 4.
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Chapter 3

Testbed Construction and

Experiments

A testbed was constructed to investigate the feasibility of using an artificial lateral line

system for yaw angle feedback within a control system. The setup allows for testing

to occur in a more controlled environment, where parameters such as flow speed and

angle can be precisely dictated, and the dynamics of a vehicle with thrusters and

control fins does not have to be considered. To address the goal of estimating and

correcting a vehicle's angle of attack, sensors mounted on the experimental vehicle

act as a simplistic replica of the fish's cranial lateral line system. This subsystem

was chosen as the focus because its location imparts upon it exceptional sensitivity

to pressure fluctuations resultant of changes in orientation.

3.1 Vehicle Design

The setup consists of a towed underwater vehicle (measuring 0.7 m long by 0.15 m

diameter) with five off-the-shelf pressure sensors (Freescale MPXV7007) mounted at

the head (Fig. 3-1). The MPXV7007 sensors are monolithic silicon piezoresistive

transducers in a thermoplastic (PPS) surface mount package. They feature a range

of -7 to 7 kPa and 5% maximum error over 0' to 85'C, and are internally amplified

to output a signal between 0.5 and 4.5 V. The analog signals are read by an NI USB-

6009 data acquisition unit, and processed using code written in LabVIEW (National

Instruments, Austin, TX).

The shape of the vehicle was chosen such that the nosecone resembles a 3D Rankine

body, for which an analytical solution to the flow disturbance within a steady uniform

oncoming stream is readily available (Fig. 3-2). The pressure ports are chosen to be
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Figure 3-1: A computer-generated rendering of the vehicle constructed for experi-
ments.
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Figure 3-2: Analytical solution
steady uniform oncoming flow.
marked in psi).

for pressure field surrounding a Rankine body in
The contours are equal-pressure lines (pressure

laterally spaced 0.88 inches apart. Interior channels within the nosecone act to bridge

the pressure ports to the sensors mounted within the body. In this way, the sensors are

not directly exposed to water (MPXV7007 sensors are not compatible with water). In

addition, this structure is easier to construct, because it eliminates the need to mount

the sensors to the inside of the curved nosecone. Due to manufacturing constraints,
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the channels were constructed to be wider near the inside and narrower at the surface.

Calculations were performed to ensure that the narrow region was sufficiently long to

prevent water from entering the wide channel. A drawing of the nosecone architecture

is presented in Figure 3-3.

.750 -
-1.874

Figure 3-3: Frontal view and top view of nosecone, depicting the outlines of the
channels cut to bridge the pressure ports and the pressure sensors. All measurements
are in inches.

The tail section tapers to a point, streamlining the vehicle. This acts to reduce

flow separation. While separation would likely not affect pressure measurements at

the front of the vehicle, reducing separation acts to reduce oscillatory body forces

which would result in greater mechanical vibration.

Both the nosecone and tail section were manufactured by CNC lathe from high

density polyethylene (HDPE). The material provided a smooth finish when turned

with a high speed steel (HSS) cutting tool. The main body, or pressure vessel, is

constructed from a 0.25 inch thick acrylic tube, sealed at both ends with Buna-N

0-rings inserted into rectangular grooves cut into the nosecone and tail section. Two

steel shafts are allowed to rotate in bushings, and the supporting rods are directly

threaded into them. The rotation allows for pitching maneuvers of the vehicle, which

were unexplored within this project but could be a direction for future work.

3.2 Experimental Setup

The experiments were carried out in the MIT Towing Tank, a 33 m long pool that

is approximately 2.6 m wide and 1.2 m deep (Fig. 3-4). The testbed is mounted

to a carriage which is driven down the length of the tank by a simple drive system.
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Figure 3-4: The towing tank facility in which the experiments were conducted.

To produce carriage motion, a Compumotor brushless DC servomotor drives a pulley

system. The vehicle is mounted to the carriage via two steel rods, which are enclosed

in streamlined aluminum tubing struts to minimize mechanical vibrations that would

occur as the result of separation of the flow surrounding the rods. The carriage is

towed at a fixed rate of 1 m/s for all experiments. A Copley STA2510 direct drive

motor mounted to the carriage actuates the vehicle in yaw, to achieve or maintain

various angles of attack. A position sensor within the motor allows for angular po-

sition feedback. A computer and other supporting hardware are also located on the

carriage for vehicle control and data processing (Fig. 3-5). Pressure measurements

were logged at a sampling rate of 1000 Hz.

3.3 Reduction of Noise in Experiments

Mechanical and electrical noise were nontrivial problems within this project. Several

measures were taken to reduce each.

Mechanical noise was reduced by mounting the vehicle with two struts as opposed

to one. Above the motor, a triangular strut mounts the assembly to the carriage,

which further stabilizes the system. Within the vehicle, vibration of tubes can cause

fluctuations in the measurements, and this was reduced by drilling channels directly

into the nosecone, and connecting them to the sensors with extremely short tubes.

Additionally, the vehicle was streamlined to reduce separation and vortex-induced

vibrations (VIV), and the supporting rods were surrounded by streamlined tubing

which rotated with the flow. This acted to reduce VIV from the supporting rods.
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Figure 3-5: A diagram of the experimental setup.

Even with these precautions, some mechanical vibrations were still present. It could

be possible to further reduce the vibrations by adding a third supporting rod to the

assembly.

A large amount of electrical noise was present when the yawing motor was switched

on. As the STA2510 is a powerful direct-drive motor, it is likely that it produces a

large amount of electromagnetic interference. To reduce this, the motor drive was

grounded to the metal carriage, and separate power supplies were used to power the

sensors and the motor hardware. Shielded wires were used to transmit the sensor

signals, and RC filters were installed between the cables and the DAQ to filter out

high frequency noise. Furthermore, as the motor drive unit is powered through the

wall outlet, there may be increased noise from the AC signal. To reduce this, an

isolation transformer was placed between the wall outlet and units it supplied (motor

drive, power supply).

3.4 Preliminary Experiments

The preliminary tests consisted of 33 constant yaw angle experiments - 3 tests each

at two degree intervals between 0 and 20 degrees, in order to observe the relationship

between yaw angle and pressure at the five sensor locations. These experiments
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demonstrated the existence of a strong relationship between the angle of the vehicle

and the pressure difference between the left and right sides of the vehicle (hereby

referred to as the differential pressure). Averaged results from these experiments are

presented in Figure 3-6. In this figure, the relationship between angle and pressure

600 Sensor
Location:

400 -Left 2
i :- -Left 1

200 -Center
-Right 1

U)0 -Right 20-

-200

-400 -0 5 10 15 20
Angle (degrees)

Figure 3-6: Summary of 33 constant yaw angle experiments, showing a roughly linear
relationship between change in angle and the pressure measured at each port. Error
bars show the standard deviation in each experiment set.

is roughly linear for all five ports. The data is very consistent within experiment

sets, with an average standard deviation of 10.48 Pa for an average angle standard

deviation of 0.13 degrees per experiment set (hard to align the vehicle at specific

angles - there is some mechanical error which is recorded). The standard deviation

for small angles is somewhat higher, possibly because the the relative angle deviation

is higher, and for small angles the pressure is more sensitive to slight changes in angle.

There is a small discrepancy in the data for the second sensor on the right. This is

likely due to mechanical error. Due to the fast starts and stops of the carriage during

experiments, some water may have entered the concerned channel. This would result

in an increased pressure baseline, as the air in the channel cannot escape, and would

be more compressed. Since the preliminary experiments were not intended to inform

a control system, the experiments were not repeated.

The linear relationship between angle and pressure suggested that a Braitenberg

type controller [4] might be able to regulate the angle of the vehicle by simply apply-

ing a proportional gain to the differential pressure observed. Braitenberg controllers

were a concept introduced by Valentino Braitenberg in 1984 as a simple way to rep-

resent behavior based artificial intelligence. The premise is that a vehicle may posess

a number of primitive sensors which are directly connected to effectors, such that a

sensed signal immediately produces a particular motion. Depending on the architec-

ture of the sensor-effector connections, the vehicle can be made to seem intelligent,
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striving to achieve certain scenarios and avoid others. This type of controller ap-

peared intuitively relevant to this problem, because it is easy to imagine that our

vehicle might want to turn away from, or toward, higher pressure on one side. In the

case of correcting an angle of attack, the vehicle would generally turn toward higher

pressure, in order to minimize the pressure differential between its sides. Additional

functions applied to the sensor outputs can create even more complex behaviors. For

instance, a proportional controller applied to the pressure differential can create a

smooth range of motion.

3.5 Basic Controller Implementation

A second set of experiments was conducted to test this concept. A proportional

controller was developed in LabVIEW and implemented on the system, with the goal

of returning the vehicle to zero degrees following any perturbations and maintaining

that orientation. First, to determine an appropriate gain for the controller, a test was

conducted in which the vehicle was sinusoidally yawed between -20 and +20 degrees,

and the average pressure differential between the left and right sensors was recorded.

The required gain was calcuated by dividing the average differential pressure by the

angle, and was found to be 16877 Pa/deg. By dividing the recorded differential

pressure by this gain, it was found that the angle of attack could be recovered with

high accuracy over the entire angle range (Fig. 3-7). The gain is likely to be highly

dependent on oncoming flow velocity, so for different towing velocities, it would need

to be adjusted. However, for small deviations, and for the altered apparent velocity

at each port due to yawing and pitching, using a constant gain may be sufficient.

Implementing the Braitenberg controller with proportional gain, the vehicle was

found to accomplish the goal of returning to zero degrees following perturbations

(Fig. 3-8), but with a varying time lag. Furthermore, at higher gains, the system

became unstable (Fig. 3-9, 3-10). This demonstrated the shortcomings of the Brait-

enberg controller, and suggested that a more complex, model-based controller would

be required for improved system response.

3.6 Dynamic Response

To investigate the pressure fluctuation during dynamic maneuvers, a final set of ex-

periments was conducted in which the vehicle was commanded to turn sharply from 0

to 20 degrees while being towed forward at 1 m/s. The differential pressure measured
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Figure 3-7: A proportional gain applied to the differential pressure is shown to predict

the angle of the vehicle with high accuracy.
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Figure 3-8: A Braitenberg controller aligns the vehicle with the flow following three
large perturbations, which can be seen as variations of the dotted line, the actual
angular position. The blue line represents the averaged differential pressure, which
the proportional gain is applied to.

in one experiment is shown in Fig. 3-11. Here, we have focused in on the turning

region so that the response can be clearly seen. These experiments revealed that

when the vehicle turned from one static angle to another, the differential pressure re-

sponse exhibited initial undershoot, a characteristic often seen in non-minimum phase

(NMP) systems, which are generally challenging to control due to additional phase
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Figure 3-9: When a higher gain is applied, it can be seen that the controller overshoots
zero degrees as it tries to correct the angle following a perturbation. The angle
experiences decaying oscillations as it settles to zero degrees, but is still stable.
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Figure 3-10: For an even higher gain, the system is critically stable. The angle never
stabilizes to the desired zero degrees.

lag and limited achievable closed-loop bandwidth. The response observed causes time

lag within the system, which can result in instability if it is too high.

Additional experiments were conducted to test the effect of different turning rates

on the initial undershoot in sensor response. The response seen for two extreme cases,

a fast turn and a slow turn, are shown in Figures 3-12 and 3-13, respectively.

The similarities between the response of an NMP system and the response of

this system suggest that while a generic controller may be capable of maintaining the

vehicle at zero degrees, a nonlinear model-based controller would be ideal, allowing for

faster performance, robustness, and the ability to control turning to specific angles.
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Figure 3-11: The NMP-like response seen in the sensor output when the vehicle turns.

This results in initial angle correction in the wrong direction with the P controller,
which is a cause of delayed response and possible instability.
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Figure 3-12: The two differential pressures measured over a fast turn from 0 to 16

degrees and back to 0 degrees. The dotted line represents the motion profile.

3.7 Physical Interpretation - Added Mass Effects

In mechanical systems, non-minimum phase behavior typically arises as a result of

noncolocation, a physical separation of sensing and actuation. In this system, the

separation between the yawing axis and the sensor port locations coupled with certain

hydrodynamic effects likely cause this undesirable response. In particular, added

mass, or virtual mass, accounts for high forces upon accelerating underwater. It can

be thought of as the additional water mass that must be moved aside when a body

pushes its way through water. This pushing results in higher pressures on the surfaces
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Figure 3-13: The two differential pressures measured over a slow turn from 0 to 16

degrees and back to 0 degrees. The dotted line represents the motion profile.

performing the pushing, and a suction effect on the opposite surfaces. While these

effects are most often studied as body forces, the total force exerted on the body

is a direct result of the pressure integrated over the surface of the body, where the

pressure can be calculated from Bernoulli's unsteady pressure law. This relationship

in the yawing direction, which produces a moment about the z axis, is:

M2 Ji--p(|4 - x fdS (3.1)

-Uim6i - E3klUiQkmI+3,i - E3kIUiUkmii (3.2)

In the above formula, the term within the integral is the dynamic pressure from added

mass effects, which is integrated over the body. # is the velocity potential at points

on the body, n' is the normal vector pointing out of the fluid, and IF is the vector from

the rotation center to each point on the body. The second formula is the formula

for the moment about the z axis, in index notation, given the geometrical added

mass coefficients of the body. Typically, these coefficients are unknown for complex

geometries and must be calcuated through numerical methods or experiments.

Physically, one could visualize the origin of the non-minimum-phase-like response

by imagining a body which suddenly yaws left in the presence of oncoming flow.

Initially, at zero degrees, the pressure on each side is roughly equal. As it executes

a sharp turn, the pressure rises on the side the body turns toward, as the water is

pushed out of the way. Then, as the body reaches its final angle, the high pressure

region settles near the stagnation point, on the opposite side of the body. As a result,
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any sensors placed on the left side would experience a pressure spike followed by a
drop to a lower steady state pressure, and sensors on the right side would experience

a pressure drop followed by a rise to a higher steady state pressure.

Added mass effects exist only in the presence of acceleration, so the sensors will

measure a pressure transient during any unsteady linear or rotational maneuvers.

Given that noncolocation contributes to the response, and the size of the transient is

a function of the acceleration at the point of interest, one can expect that the initial

undershoot observed would be smaller closer to the point of rotation and larger away

from it. However, underwater vehicles typically turn about a point close to the center

of mass, so high added mass effects can be expected near the head.

It is important to point out that while linear acceleration and rotational acceler-

ation both engender added mass effects, the initial undershoot is only observed for

rotational maneuvers. For linear acceleration the pressure transient occurs in the

same direction as the overall steady state pressure change. The implication of this is
that this effect is much more dangerous for turning maneuvers, where it can result

in instability if the closed-loop system is forced to turn too quickly without accurate

state estimation.

3.8 Concept of a Model Based Controller

Previously, it was hypothesized that experiments could be conducted to generate a
lookup table that would provide the relationship between the yaw angle of the vehicle
and the pressures measured at the sensor ports. This lookup table could then be

used to estimate the angle of the vehicle and inform a control system that could

correct the angle. However, it was found that in the presence of dynamic maneuvers

or external flows, added mass effects result in pressure transients that invalidate
the static angle estimates. Even in the presence of a steady flow, the maneuvering

of a feedback-controlled vehicle would induce added mass effects that would cause

erroneous feedback and possible instability. This effect was previously seen in Figures

3-9 and 3-10, where high gains caused oscillatory responses in the angle of the vehicle.

Therefore, where fast and stable response is desired, a more complex controller must

be used, which is capable of predicting added mass effects and factoring them into the

angle estimate. Since added mass is a function of the vehicle geometry and motion, a

model must be created to predict its effect. The model can then be used as the basis

for a controller which accurately estimates the vehicle state and corrects it.
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Chapter 4

Panel Method Forward Modeling

A model of the system should be capable of outputting relevant pressures (the pres-

sures at each of the five sensor ports), provided the system state over time. As

previously mentioned, the primary purpose of this model is to serve to estimate the

added mass effects during maneuvers, which are geometry and state dependent. The

nonlinearities in the problem and the infinite-dimensionality of the water suggest that

a computational fluid dynamics (CFD) approach would be necessary for accurate re-

sults.

4.1 Comparison of Numerical Methods

Several different types of CFD were investigated, including panel methods, finite

difference methods (FDM) and finite element methods (FEM). For FDM and FEM,

the entire fluid volume surrounding the vehicle must be discretized into cells, which

must be refined in the regions where the flow is expected to change rapidly. Each

cell has a set of boundary conditions, and the Navier-Stokes equation must be solved

within each cell. As a result, a complex set of of nonlinear equations is produced,

and solving the system numerically can be very difficult and time-consuming. There

are generally a large number of gridpoints, as they must span 3 dimensions, and the

order of the system is O[N'], where N is the number of elements in each dimension.

The solution produced is generally very accurate, since these methods are complete

Navier-Stokes solvers, meaning they take into account viscosity and compressibility

effects.

In contrast, panel methods are a type of Boundary Element Method (BEM), where

only body surfaces need to be discretized into a surface mesh to find a solution to the

problem. The surfaces are modeled as panels with some distribution of singularities
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Table 4.1: Comparison between FDM and panel methods.

FDM Panel Methods
Grid Generation fluid domain body surfaces
Unknowns Node values Panel singularities
Number of unknowns N' N 2

Order of system N6  N 4

Equation in domain Approx. Exact
Boundary conditions Approx. Approx.

over each. This works on the intuition that the flow is already defined in the entirety

of the fluid domain, with the exception of the disturbance caused by the presence of a

body. Therefore, to solve the problem, only the nature and strength of the disturbance

must be determined. By assuming that the body can be modeled by elementary

solutions (singularities), which are only present on the body surface, we can solve for

the entire flow by finding the strengths of the singularities on the body. Since the

use of singularities as a model assumes potential flow, these methods generally do not

take viscosity and compressibility effects into account.

Panel methods originated in 1952-1953, in studying the flow about nonlifting

bodies of revolution. Since their introduction, many advanced panel codes have been

developed, such as PAN AIR, VSAERO, and HISS, which are widely used in industry.

More complex codes typically involve higher order panels, nonuniform distributions of

singularities over each panel, and corrections that allow for computation of viscous and

compressibility effects. Even with these elements, panel methods are often simpler to

program and faster than finite difference and finite element methods. Since the only

unknowns are the singularity strengths on the body surfaces, panel methods reduce

the 3D problem to a 2D problem, drastically reducing the number of calculations. As

a result, there are O[N 2] panels and the order of the system is O[N 4 ], N being the

number of panels in one dimension.

Once these influence coefficients for the problem are found, it reduces to a linear

problem, which can be solved relatively quickly. It should be noted that panel meth-

ods are only applicable to problems for which Green's function can be calculated,
which are typically only cases where the flow field is linear and homogeneous. There-

fore, the problem should be studied carefully to determine if using a panel method is

the correct approach. To summarize, Table 4.1 compares FDM and panel methods.

A panel method was ultimately chosen to model this system for its flexibility,
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speed, and simplicity. While a number of complex panel codes are commericially

available, a method was written which would be specific to this application, based

on the procedure outlined by Hess [21]. Due to the simplifying assumptions of in-

compressibility, inviscid flow, and irrotationality, the code can be vastly streamlined.

This allows for faster computation time, which is a critical condition for real-time

control.

4.2 3D Rankine Source Panel Method

For this application, the vehicle is modeled using a first-order 3D Rankine Source

Panel Method, a well-studied method of simulating incompressible potential flow

[21, 27]. This classification implies that each panel is modeled as a flat (first-order)

construct with continuous source strength which is constant over the area of the panel

at each instant in time. This panel discretization will be clarified further at a later

time.

The assumptions made in this work are that the flow is incompressible, inviscid,

irrotational, and can therefore be completely defined by a hydrodynamic potential #.
This is a highly accurate assumption because for the region of concern (the front of

the vehicle) in oncoming flow, the pressure gradient is extremely favorable, indicating

that the flow is likely to be fully attached. The Reynolds number is approximately

150,000, indicating that inertial effects are high in comparison to viscous effects.

Within this regime, panel methods are generally very accurate because the inviscid

assumption is close to true.

With the panel method, the potential at any point due to each panel is obtained

by integrating over the panel, and the final potential at a point Y comes from summing

the influences of each individual panel. The formulation of this method was described

in greater detail in Chapter 2, where equation 2.18 was derived, giving the potential

of a body consisting of sources and dipoles. Here, we simplify the formulation by

using only sources, and assuming the effect of the wake is negligible in the region of

concern. In integral form, the equation is thus rewritten:

#(X, t) = o( , t)G(x, - t)dS (4.1)

Where # is the vehicle disturbance potential, o represents the source strength of

some point on the body surface S, is the vector to that point on the body, and G is

Green's Function (the velocity potential of a point source). Constant strength source
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panels were selected over dipole panels for their ability to generate smoother results,
and the lack of necessity for simulating vorticity.

4.2.1 Boundary value problem

The integral equation (4.1) may be regarded as an exact solution to the governing

Navier-Stokes equations. The panel method attempts to solve for the values of the

source strengths a within this equation, such that the boundary conditions of the

problem are satisfied. The specific solution of velocity or pressure is then calculated

through a secondary set of equations.

The boundary value problem (BVP) is summarized as follows:

In the fluid, continuity yields:

V24 = 0 and V 2 # = 0 (4.2)

Where 4 is the total fluid potential, given as:

-( t) = -Ux + #(?, t) (4.3)

U is the vehicle velocity in the inertially fixed x direction. On the surface of the body,
the no-flux condition yields:

am
On (X t)= (, n) -x~ t) (4.4)

Where n' is the vector normal to the surface of the body at some point of interest,
and V' is the water velocity at the same point. Finally, substituting the boundary
conditions into the source panel method formuation (4.1) gives the final boundary

value equation for the problem:

o-( , t) (Y, , t) dS = (zj t) = Unx (z, t) - -(X-, t) - n (Y, t) (4.5)

This condition is solved numerically by discretizing the body geometry into 620 pan-

els, assuming constant singularity strength over each panel, integrating over each to

calculate its effect, and summing the contributions of each panel to solve for the

hydrodynamic potential at a point of interest.

In defining the coordinates, we have chosen a reference frame which is fixed to the

rotational center of the vehicle, but which maintains a fixed angular position with
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reference to the inertial frame. This allows for a simplified transformation to panel-

fixed coordinates, a step which is necessary in determining the influence of each panel

through integration.

4.2.2 Vehicle model

Choice of how to discretize the vehicle into panels is very important, as the bound-

ary condition is enforced only at the centroid of each panel. Therefore, a greater

number of panels should be placed in regions of higher body curvature (where there

is greater expected change of flow). The discretization of the vehicle, which is an

axisymmetric body of revolution, is fairly simple to calculate. A grid of 32 points

along the longitudinal (x) axis of the body was first constructed, allowing for more

points in the front and back, where the curvature is higher. The points were spaced

to allow for the known positions of the sensor ports to fall on panel centroids. Each

circular cross-section was then divided into 20 equal segments. Corner points were

then defined as the intersection of the y - z planes along the discretized x axis, the

surface of the vehicle, arid the angular cross-section divisions, as shown in Figure 4-1.

In this case, the panel collocation points (also known as control points) were defined

as the average of the four corners (the centroid), following simulations which showed

that this definition yielded more accurate results than others (such as using the panel

null point).

0.0.6

0

0.4
0.3

0.05 0.2

y (meters) -0.05 0 x (meters)

Figure 4-1: Diagram of the discretized vehicle. The circular vehicle cross-sections are

highlighted, and each point represents a corner point. The panels can be visualized

as the space between any four points.
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4.2.3 Integration over source panels

Having defined the body discretization, the next step is to calculate the influence

of each panel at every other panel's control point. These terms are known as the

influence coefficients. It is clear that the exact influence of each panel cannot be cal-

culated without knowledge of the source strength, which is of yet unknown. However,
since the source strength over each panel is constant, it can be factored out of the

integral equation, and the exact influence of each panel can be linearly scaled with

source strength. As a result, the influence coefficients are defined as the influence

of each panel, given a source strength o- = 1. With this definition, a straightfor-

ward matrix equation is formed which allows for the calculation of the actual source

strengths. These actual strengths can later be multiplied by the influence coefficients

to determine the contribution of each panel to the velocity potential or field.

The potential at an arbitrary point P(x, y, z) due to a single panel can be given

as:

<D(X, y, z) = -(4.6)
4irs s/ Xzo)2 + (y - yo)2 + Z2

This integration step requires some extra care, because each panel is fundamentally

a 2D construct. As a result, the coordinates of each panel, and the point of interest,
must be transformed into a panel-centered frame of reference for each set of calcula-

tions, with the following transformation matrix:

U 1 U2 U3

A 0 i 02 03

_ ni n 2 n 3 _

Where n1,2 ,3 are the components of one of the panel diagonals (normalized vector

from one corner to the opposite corner), ni,2,3 is the unit vector normal to the surface,
and 01,2,3 is the transverse unit vector (the cross product of U' and n').

Therefore in (4.6), the coordinates x, y, and z are the transformed coordinates

of the point of interest, and xO and yo represent the transformed coordinates of the

panel's control point (typically (0, 0)). This geometry is illustrated in Figure 4-2.

Integration over the panel requires a lengthy process which is summarized by Hess

and Smith [21]. Their derivation reduces the integral into a set of lengthy but closed
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Figure 4-2: Diagram of the panel-centered frame of reference fixed to a quadrilateral

constant-strength source element. The corners reflect the transformed coordinates of

the corners (note that z=O), and P represents a point of interest. (adapted from Low

Speed Aerodynamics, [27].

form equations for the induced potential at each control point due to each panel:

-o- (X - X1)(y2 -

47T

(X - X2)(Y3 -

(X - X3)(y4 -

Yi) - (Y - Y1)(X2

d12

Y2) - (y - Y2)(X3

d 2 3

Y3) - (Y - Y3)(X4

- X4)(Y1 - Y4) - (Y - Y4)(X1

d41

+z _tan1 m12 ei - hi -

+ tan i 2 3 C2 ;h 2 )
ZT2 /

+tan' (-n 34 e3- h3

ZTa3n

+ tan-a 1 m41e4 - h4 -tan_1'
ZT4

- Xi) In ' + r + d 1 2

r1 + T2 - d12

- X2) In T 2 + T3 + d2 3

T 2 + r3 - d23

- X3) r 3 + 74 + d34

T3 + T4 - d34

- X4) In T4 + Ti + d41

r 4 + F1 - d4 1

-tan- (m12e2- h2
ZTr2

tan-1 m23e3 - h3

-tani m34e4- h4

iZT4

M41e CI- hi
ZT1 I
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where

d12 -T- 2 - 12 + (Y2 ~y 2 (48)

d23 -X 2 )
2 + (y3 Y2) 2  (4.9)

d34 V(X4 x 3 )2 + (y 4 y 3 )2 (4.10)

d41 = (Xi x 4)2 + (y1 y 4)2 (4.11)

and

mi = (4.12)
.T2 ~- X1

M 23 = Y3 - Y2 (4.13)
X3 - 2

M34 Y4-Y 4.14)
X4 - X3

M41 Y - Y4 (4.15)
-1 - 4

and

r f(x - Xk)2 + (y yk)2+ z2 k 1, 2,3,4 (4.16)

ek (X - Xk)2 + Z 2  k = 1, 2,3,4 (4.17)

hk (X - ok)(y - yk) k = 1, 2, 3, 4 (4.18)

The velocity influence coefficients (not to be confused with the potential influence

coefficients) are given as:

S[Y2 - Y1 In r1 + r 2 - d12 + Y3 - Y2 In r2 + ra - d23

47r d12  ri + r 2 + d 12  d23 r 2 + r 3 + d 23

+ Y4 -3 Ir + r4 - d34 +1 - Y4 r4 + r - d41 (4.19)
d34 r-3 + r4 + d34 d41 r4 + r-1 + d41

_ 0x1 - x2 I r1 + r2 -d12 X2 - X3 I r2 + r3 - d23
47r d12 ri + r2 + d12 d23 r2 + r3 + d23

+ X3 - X 4 n r3 + r 4 - d3 4 + X4 - X 1 I r4 + ri - d4 (4.20)
d34 r3 + r4 + d34 d41 r4 + r1 + d41_
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2- L 1 (m1 2ei - hi _1 (m 2 e 2 - 12
w= tan- -tan-

47r zT1 zT2

+ tan_' m 23e2 - h2 - tan- (m 23e3 - h3

ZT2  zr 3  J

-1 m 34e3 - 3 tan- 1 (m 34e4 - 14

zT3 /\ zT4 / _

+ tan_ Im 41e4 -h 4  - tan_ 1 m 41e1 - hi (4.21)
zT4 zr1 /

Following the calculation of the velocity coefficients, they must be transformed

back into the inertial frame of reference. Typically, depending on the boundary

condition enforced, only the potential influence coefficients or the velocity influence

coefficients need to be calculated. For Dirichlet conditions, we calculate the first, and

for the Neumann boundary condition we calculate the second.

4.2.4 Far-field approximation

The set of equations previously given are lengthy, and are generally completed at high

computation cost. For improved computational speed, it is logical to implement an

approximation when the point of interest P is far from the affecting panel. When the

point of interest is approximately 3-5 panel lengths away from the panel, the panel

can be accurately approximated as a single point source. With this, the potential

influence is given as:

<(x, y,z) - (4.22)
4r -/( - X0 )2 + (y - yo)2 + z2

and the velocity influences are given as:

u(X, y, z)

v(xy z) =-

w(x, y, z) =-

uA(z - xo)

47[(x - Xo) 2 + (y - yo) 2 + z 2]3/ 2

o-A(y - yo)

47[(x - xo) 2 + (y - yo) 2 + z2]3/ 2

oA(z - zo)

47[(x - Xo) 2 + (y - yo) 2 + z2 ]3/ 2

4.2.5 Reduction to linear problem and solution

Once the influence coefficients are calculated, they can be substituted back into the

boundary value equation (4.5), providing an explicit equation to solve for the panel

55

(4.23)

(4.24)

(4.25)



source strengths. The boundary value equation can be rewritten, where the right hand

side (giving normal velocities at panel control points) is represented as the matrix Bi,
for i = 1, 2... N (where N = 620 panels):

t - _ G(i,, t) dS(, t) = Bi (4.26)Es "On (x, t)j=1

The integral term in the left hand side represents the influence coefficients (of each

panel j at each control point i), and we hereby represent it as the matrix Pi, the

influence coefficient matrix. This results in the final discretized matrix equation:
N

E o- Pi = Bi (4.27)
j=1

which is solved to obtain the source strengths of each panel, o-. These values are sub-

sequently substituted back into equations (4.19) - (4.21) to solve for the fluid velocity

at each control point, and into equation (4.17) to solve for the velocity potential at

each control point. These terms can then be used in Bernoulli's unsteady pressure

law to solve for the surface pressure:

P=-p (i+ IV|2gz2 ) (4.28)
Ot 2

In (4.28), p is the water density, g is the gravitational acceleration constant, and z is

the water depth at the point of interest.

While this method is straightforward to implement, special care must be taken

in the case of rotating bodies or flows. In these cases, regardless of the reference

frame chosen, it is required to update the surface normal velocity at each instant,
which is a function of the oncoming flow and the body motion. In addition, for a

dynamic system such as this one, the first term of Bernoulli's equation can no longer

be ignored. It must be expanded to include the material derivative (because the

points that we are interested in are on the surface of the vehicle, a material surface),
and numerically computed for each timestep.

4.3 Simulated Results

4.3.1 Model verification

First, the source panel method was implemented on a 400 panel solid sphere in uniform

flow, for which the analytical solution through potential flow is readily available:
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cp = U"os 0 r + (4.29)

vo -U,, sin 0 r + (4.30)
2r2

= - sin when a=r (4.31)
2

The analytical solution to the velocity potential, and the comparison between

the velocities calculated analytically and through the panel method over the surface

of the sphere are shown in Figure 4-3. This serves to verify the accuracy of the

simulation for a basic, static problem. Since there are no analytic solutions available

for nonsymmetric rotating bodies, verfiication for the dynamic case must be performed

by comparing simulated results to experimental data.

Velocity potential
1.5 1.5

05 0.5 1

-0.5 0.5

0.0

-0.5 -05 0-1.5 01

y -1 0 0.5 1 1.5 theta 2 2.5 3 3.5

Figure 4-3: Left: The velocity potential calculated and plotted over the surface of a
400 panel sphere. Right: comparison between the analytical solution of velocity over
the surface of the sphere and that calculated by the panel method.

4.3.2 Static pressure simulations

A number of simulations were performed to compute the pressure at the experimen-

tal sensor locations, for static tests (tests in which there is no acceleration of the

vehicle). The computed surface pressures for these simulations was compared with

experimental data collected previously (see Section 3.4). The results were addition-

ally compared with a constant doublet panel method which was developed for the

same vehicle. These comparisons show strong alignment between the source panel

simulation and the experimental data (Figures 4-4, 4-5).
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Figure 4-4: Comparison between the surface pressure simulated using the source
panel method and the doublet panel method, compared with experimentally measured
pressures.
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Figure 4-5: Comparison between the surface pressure simulated using the source
panel method and the doublet panel method, compared with experimentally measured
pressures.
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They additionally show the superiority of the source panel simulation over the

doublet panel simulation. Recall from equation 2.18 that the potential at any point

of interest can be written in terms of two elementary solutions, the source and the

doublet. Since the solution is not unique when both of these terms are included,
the formulation may be split into formulations involving only one or both of those

elements. However, the doublet panel method formulation involves an extra order

of derivation of Green's function. Since Green's function goes as 1/r, its second

derivative goes as 1/ra, which becomes an increasingly small term as the size of the

panels is reduced. These small terms result in very poor conditioning of the influence

coefficient matrix, which in turn causes some computational error when the panels are

small, or the size of the panels changes suddenly. Since the size of the panels decreases

near the nose of the vehicle, the error is much higher for the doublet panel method in

this region. The solutions they yield are also less smooth than those produced by the

source panel method, for the same reasons. However, for points of interest farther

back from the nose, the doublet panel method may be more accurate.

However, since the region of interest is the front of the vehicle, the source panel

method was chosen for its higher accuracy and smoothness in this region.

4.3.3 Dynamic pressure simulations

Following this verification that the panel method was capable of simulating exper-

imental pressures measured at static angles, several simulations were performed to
visualize the pressure field over the surface of the vehicle during a high speed turn.

For these simulations, it became extremely important to ensure that a) the dynamic

boundary conditions were met, since the surface velocity is now a function of both the

oncoming velocity and the velocity induced from turning, and b) Bernoulli's equa-

tion was properly implemented to account for the appropriate velocity and potential

terms.

With these conditions ensured, the pressure field throughout several high speed

turns was simulated. The results of one of these simulations is displayed in Fig. 4-6.

In Figure 4-6, red indicates high pressure and blue indicates low pressure. In

particular, note how the high pressure region shifts first to one side and finally settles

on the other side at the front of the vehicle. This initial shift of the high pressure

region is exactly the pressure undershoot that we previously saw in the experimentally

measured pressure traces during maneuvers. These simulations aided in visualization

of the added mass effects which arise during vehicle maneuvers.
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Figure 4-6: The pressure field over the surface of the vehicle as it turns from 0 to 20
degrees, with the profile of the turn shown in the lower left hand plot. The diagonal
lines in the background show the direction of the oncoming flow.

By collapsing the simulation data over an entire turn into one plot, the pressure

over the entire vehicle, over time, can be visualized and compared more effectively for

different turns. To illustrate this, Figure 4-7 shows the vehicle pressure profiles for

a) a turn performed at constant velocity, b) a turn performed with slow acceleration,

and c) a turn performed with faster acceleration.

In Figure 4-7, the lower panel numbers correspond to panels at the front of the

vehicle, and higher numbers correspond to the panels near the end. Each chord on

the vehicle contains 20 panels, so the first 20 panels are at the same longitudinal

position, the second 20 panels are at the same longitudinal position, and so on. This

results in the ridge-like appearance of the map. The peaks in the ridges correspond to

the sensor points along the plane of turning (on the left and right sides of the vehicle,

in this case). The turn itself occurs around 0.5 seconds, and so the greatest changes

in pressure along the entire vehicle occur around the center of the time axis.

From these plots, it can be seen that for certain panels on the vehicle, the NMP-

like response during turning maneuvers is much more evident. This indicates that

placing pressure sensors on different sections of the vehicle could act to provide very

different kinds of information. Sensors near the peak in the front of the vehicle

may provide more information on the angle of flow, while sensors placed just behind

them may provide the most information on yawing acceleration. It also becomes

clear that the sensors located along the plane of turning will experience the greatest

pressure changes, so in a 3D environment, placing sensors in a ring around the vehicle

would allow for a simple way of detecting the direction of turning. To analyze the fast

acceleration case a little more closely, the pressure which would be expected at a static

angle of attack was subtracted from the pressure map. The remainder is then the
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Figure 4-7: Pressure plotted against time and space (panel of the vehicle) for a) static
pressure only (no turning), b) a constant velocity turn, c) a slowly accelerating turn,
and d) a faster turn.

dynamic pressure alone, which is the component which is dependent on acceleration

and therefore a result of added mass effects. This is plotted for only the left and right

sensors in Figure 4-8.

In this figure, the effect of the accelerating turn at various longitudinal positions

of the vehicle is clear. Due to the slight lateral offset of the rotational center, the

map is not as symmetric as one would expect. Visualizing the dynamic pressure in

this way allows for analysis of sensor locations for ideal feedback. For this particular

turn, sensors located between chords 6 and 15 would be well placed. This happens

to correlate well with the sensor locations in our physical model, which are at chords

4 and 9. For implementation on a physical system, these types of simulations could

help to inform choice of sensor placement, which could be based on expectations of
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Figure 4-8: Pressure plotted against time and space for the fast turn. a) pressure
outline for both sides of the vehicle during the turn. b) dynamic pressure outline for
both sides of the vehicle during the turn. c) dynamic pressure measured at only the
left sensors. d) dynamic pressure measure at only the right sensors.

turning rate and the expected frequency of changes in surrounding flow.
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4.3.4 Dynamic pressure verification

As previously shown, simulations conducted at static angles of attack and constant

oncoming flow velocity (1 m/s) matched experimental data very well. However, the

more interesting case is that of the vehicle executing dynamic maneuvers, and to val-

idate the model for these cases, a set of experiments and simulations were conducted

with the vehicle performing turns at varying rates. Fig. 4-9 shows the strong con-

sistency between the experimental and simulated pressure measurements for a turn

to 16 degrees and back to 0 degrees. The nonlinear pressure fluctuations during the

turns are well captured by the simulation. The oscillations seen in the measurements

are a result of mechanical vibrations during the experiment. The full set of these sim-

ulations (additional examples available in Appendix A) served to sufficiently validate

the accuracy of the system model, a requirement for good observer and controller

performance.

5100 5450

5200

4800 5250
5000 5000

404 4 6 8 10 4 4 6e 8 16 1 4 6 8 10

Figure 4-9: Simulated (green) and experimentally measured (blue) pressure observed
at 4 pressure sensors during a turn from 0 to 16 degrees and back to 0 degrees.
Pressure (Pa) is plotted against time (s). The blue arrow represents the direction of
oncoming flow.

64



Chapter 5

Kalman Filter Inverse Modeling

While we now have a model which is capable of calculating the surface pressure values

that would be expected for specific states or scenarios, this cannot be directly incor-

porated into a control system. A classical control system operates on the difference

between a desired state and the current state, and this is as yet unknown. However,

given the input and output of the real system, a state observer can reproduce the

system's internal states. Within this system, the primary state of interest is the yaw

angle, the inputs are any torques produced by the vehicle, and the outputs are the

pressure measurements.

5.1 The Kalman Filter

The Kalman Filter is an optimal observer, which recursively estimates the state of a

system or process in a way that minimizes the mean squared error. It is unique among

filters in being a purely time-domain filter, requiring only the previous state estimate

and the current measurement at each time step. The standard Kalman Filter requires

the state transition and observation models of the system, which must be represented

in linear matrix form.

Estimation for nonlinear systems is much more difficult. The optimal solution

requires propagation of the full probability density function, which cannot generally

be described using a finite number of parameters. As a result, approximations must

be made, and the choice of the correct approximation is not always simple. Many

different approximations have been developed, but most are complex and limited to

very specific types of systems. The Kalman Filter, on the other hand, only uses the

first two moments of the state in its update rule, which is a comparatively simple

representation. However, this well bounded representation has a number of benefits
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which makes the KF a very powerful and versatile tool for nonlinear estimation as
well as linear estimation.

For nonlinear systems, a few modifications must be made to the standard Kalman

Filter to allow for its use with nonlinear equations which do not possess a constant

state transition matrix. In the Extended Kalman Filter (EKF), Jacobian matrices are

produced as a linearized representation of the non-linear functions around the current

estimate. These Jacobian matrices can then be used in place of the linear transfor-

mations of the standard KF. However, this approach suffers a number of drawbacks.

First, the linearized transformations only work well when the error propagation can

be well approximated by a linear function. For instance, if the relationship between

state and output is extremely nonlinear or discontinuous, a small error in the state

could cause a massive error in the output. In this scenario, the EKF would be a poor
estimator, because the estimate could diverge completely. Secondly, the necessity for

calculating Jacobian matrices implies that the nonlinear functions must be be smooth.

As a result, for any functions that are discontinous at any points, an EKF would not

work. Finally, the calculation of Jacobian matrices can be a difficult process that

is computationally taxing and error-prone. This makes it difficult to program and

difficult to debug.

An alternative to the EKF is the Unscented Kalman Filter (UKF). The UKF uses

a deterministic sampling technique known as the unscented transform, which operates

on the idea that a probability distribution is easier to approximate than an arbitrary

nonlinear function [26]. In contrast to the EKF, which applies an approximation to

the nonlinear function and uses that to operate on partial distribution information

(mean and covariance), the UT uses the exact nonlinear function to operate on an

approximating probability distribution.

Within this approach, a number of sigma points which encode the known mean

and covariance are first selected around the estimated state. These sigma points are

then each propagated through the exact nonlinear state transition and observation

functions, to yield a transformed ensemble with some new mean and covariance. By
using the exact nonlinear transformation on a set of points with a given distribution,
we can capture a set of known statistics of an unknown distribution. This allows for

the propagation of mean and covariance information, resulting in greater accuracy and

ease of implementation, with the same order of calculations as the EKF. In addition,
by eliminating the need for linearization, the UKF is capable of being used on any

nonlinear function, including discontinuous ones.
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Figure 5-1: A diagram illustrating the principle of the unscented transformation.
Instead of propagating a single state estimate through a linearized function, a set of
sigma points are propagated through the exact nonlinear function.

5.2 Applying the UKF to Estimate Yaw Angle

Within this application, an Unscented Kalman Filter is used to estimate the system

states (yaw angle 0 and yaw rate 0), given four pressure measurements from the

surface of the vehicle. The generalized state transition model is written as:

Xk+1 f [Xk, 7 k] + W'k (5.1)

Where i' is the vehicle state, k is a discrete timestep, f is the nonlinear state transition

function, u is the control input, and W is the process noise associated with the system.

For this system, the explicit state transition model is:

X1,k+1 - X1,k + X2,k - dt (5.2)

T X2,k
X2,k+1 = X2,k + Un 66 cos X1,k

J + me6 J + M6 6

- ± ('1 2 2 - rnr ) sin 2xk) dt (5.3)
2(J+ m 66 )

Where x1 is the yaw angle 0, x 2 is the yaw rate , is the model abstraction

representing the amount of torque output by deliberate vehicle actuation, and dt is

the time elapsed since the last measurement update. J, n6 6 , in 1 1, and mn2 2 are the
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inertial and added mass vehicle parameters estimated as:

ml, = 0.927 kg

M22 = 9.12 kg

M6 6 = 7.17. 10-2 kg -m 2

J = 0.627 kg -m 2

These are estimated from the vehicle geometry and the slender body approximation,
as defined by Newman [36].

As such, this model accounts for motions resulting from a known control effort,
as well as added mass effects from known vehicle motion, but it does not account for

the unknown disturbances to vehicle angle or external current. A slightly improved

model which also takes into account the dynamics of helical vortices that form at the

back of the vehicle during turns can be formulated as described by Hoerner [23].
The generalized observation equation is:

Z= g Xk ] +k (5.4)

Where Z is the vector of the pressure measurements, g is some nonlinear transforma-

tion, and V' is the vector of associated measurement noises. The explicit observation

model is more complex; it incorporates the panel method system model previously

derived, which produces a set of pressure measurements, given the system state and

relevant parameters. Presently, the importance of an accurate system model becomes

apparent. Since the state transition model is incapable of modeling disturbances to

the system, the measurements will be fully responsible for capturing their effect, and
the panel method model must then accurately decipher the pressure measurements

in producing a corrected estimate.

The following UKF procedure is adapted from Julier [26].
First, a symmetric set of 2N sigma points with mean 2t and covariance P is

generated, which we denote x:

Xi =2+ (VNx Px)i i =0, ..., n (5.5)

xiun = - (V NxPx) i = 0,..-.,n (5.6)

Where each point has even weight:

W =_ 1/2Nx (5.7)

The second term in equation (5.5) represents the ith row or column of the matrix

square root of NxPx, the original covariance matrix multiplied by the number of

dimensions.
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Different formulations for generation of the sigma points is available, depending

on the properties of the true distribution. In general, if the skew of the distribution

is zero, then a symmetric set, such as the set of 2N points, is more accurate because

the odd moments will be zero. If the skew of the true distribution is nonzero, then

another set, such as the simplex set [26], may produce better results.

Once a set of sigma points is generated, each of the sigma points is then in-

stantiated through the process model (5.1) and observation model (5.4), using the

standard unscented transformation. This produces the a priori state estimate Xk and

the estimated measurement Zk.

The innovation covariance (covariance of predicted measurements) is calculated

as:
p

P - W3 w( -- Zk)(z - Zk)T (5.8)
i-0

Where p is the number of sigma points and W( represents the weight of each. The

a priori state covariance matrix is:
p

Pk -~ i ( -x ) - T (5.9)
i=0

And the cross covariance matrix is given as:
p

Pxz = T (2 - sk)(z - Zk) (5.10)

i=0

These are used to update the state using the normal Kalman filter update equation:

Xk = 4 + Kk(zk - Z) (5.11)

Where Zk is the vector of actual measurements, and Kk is the Kalman gain matrix,

given by:

Kk = Pkz(Pk 1 (5.12)

The a posteriori covariance matrix is:

Pk Pk - KkP Kk (5.13)

The state estimate (5.11) and the covariance (5.13) are updated at each timestep,

given the new set of pressure measurements. In this manner, the UKF is run recur-

sively to constantly update the state estimate, provided new measurement informa-

tion.

In applying this filter, we make the assumption that the oncoming flow velocity is

a constant 1 m/s, to reduce the order of the system at hand. However, the Kalman
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Filter could easily be extended to estimate flow velocity and acceleration as additional

states.

5.3 Results from UKF Implementation

A key balance exists between the process and measurement noise covariance matrices

in the UKF. Fundamentally, the Kalman Filter attempts to optimize its dependence

on the state transition model and the measurement model based on the estimated

noise covariance in each. As a result, the values of these matrices largely drive the

convergence of the system. Simulations were conducted to test the effect of varying

these parameters, and the results of these are shown in Appendix B.

For the final filter, the process (Q) and measurement (R) noise covariance matrices

used were:

Q 0.5 0 deg, deg/s (5.14)
0 0.25

3 0 0 0

R 0300 Pascals (5.15)
0 0 3 0

-0 0 0 31

The measurement noise covariance matrix was chosen to closely reflect the amount

of measurement noise observed in experiments. However, as there is not a good way
to estimate the magnitude of process noise in the system, various.values were tried,
and the final values were chosen based on desired observer response. Changing these

parameters can affect the UKF performance substantially. Typically, overestimation

of the measurement noise results in less oscillation of the estimate, but more delay

in convergence. When the estimated process noise is inaccurate, the estimated angle

experiences some delay or simply does not converge to the actual angle.

The application of the UKF with the parameters shown yields a reasonably accu-

rate estimate, with oscillations about the actual state on the order of the measurement

noise, as predicted (Fig. 5-2). These oscillations could be filtered out to some extent

with an additional low-pass filter for a smoother overall estimate. A smoother esti-

mate would improve robustness and stability when the estimate is used in conjunction

with a PID controller for system control.

Fig. 5-2 shows a comparison between the estimate the UKF is capable of producing

and the estimate which was used with the Braitenberg controller described previously.
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Figure 5-2: A comparison between the actual angle the vehicle is at during an ex-

periment, the estimated angle as produced by the Unscented Kalman Filter, and the
estimated angle as produced by the proportional estimator.

Due to the nonlinear nature of the system, the gain which must be applied to the

system at a static yaw angles varies with the angle. As the angle increases, the

gain must increase as well. This results in higher deviations of the estimate as the

yaw angle grows larger. Furthermore, with the proportional estimator, the dynamic

responses observed in the pressure during sudden turns results in an initial undershoot

behavior, as can be seen. The UKF is able to resolve both of these issues.
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Figure 5-3: A comparison between the actual angle the vehicle is at during an ex-

periment, the estimated angle as produced by the Unscented Kalman Filter, and the

estimated angle as produced by the proportional estimator.
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Fig. 5-3 shows a simulation conducted with a different set of parameters:

Q = deg, deg/s (5.16)0 1

3 0 0 0

R 0300 Pascals (5.17)
0 0 3 0

0O 0 0 31

In addition, a higher gain was applied to the estimate from the Braitenberg controller.

With this higher estimate of process noise covariance, it can be seen that oscillation

of the estimate is largely reduced, but a large time lag is also introduced, and the

estimate does not completely converge to the actual state. The time lag is on the order

of the lag introduced by the proportional estimate. However, the UKF estimate here

contains far less noise, and eliminates the undershoot behavior observed previously.

This shows that the use of this observer in a model-based controller would improve

the stability of the system, even if it were not able to eliminate the lag in response.

Through additional simulations, we also demonstrate that the noise in the estimate
can be reduced by the use of additional sensors, as is expected.
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Chapter 6

Summary and Conclusions

In this work, we have drawn inspiration from nature's blind cavefish to develop an

underwater sensor which could supplement traditional vision and sonar systems to aid

AUVs, particularly in dark or murky environments. This project has demonstrated

one application, the active detection and correction of a vehicle's yaw angle. We

have shown that potential flow can be used to simulate the flow field around the

head of an underwater vehicle accurately, and moreover, we have demonstrated the

application of this basic and well-studied method of simulation as the basis for a

state estimator which can accurately assess the vehicle's current yaw angle, despite

dynamic manuevering and changes in flow. This state estimator is critical to the

development of a control system which would be capable of maintaining the vehicle

orientation at some desired value.

In the first phase, a towed underwater vehicle was constructed and equipped

with 5 frontal pressure sensors. A number of experiments were conducted at static

sideslip angles in order to inform a lookup table which could be used in control system

development. However, it was quickly noted that dynamic changes in the flow, due to

vehicle maneuvers or outside disturbances, caused added mass effects which produced

large and unexpected undershoot behavior in the pressure signals. This NMP-like

behavior was observed to cause delays in system response, as well as instability when

high gains were applied within a proportional feedback control system. As a result,

it was determined that a model-based controller would be necessary for improved

response.

A model-based controller is constructed from two parts: a system model which

can accurately simulate surface pressure given the system state, and an inverse model

which can accurately estimate system state provided several pressure measurements.

The first element was developed using a first-order 3D Rankine source panel method,
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in which the vehicle was simulated as a construct of 620 constant source panels.

Simulations were first conducted to show that the model accurately simulated the 5
relevant pressure measurements for the static angle experiments previously conducted.

Then, additional simulations were conducted to demonstrate that the model was

capable of accurately predicting the pressure traces measured during turns at various

speeds. These simulations exhibited the ability of the model to simulate both static

and dynamic surface pressure, provided the system state.

The second element of the model-based controller was constructed using an Un-

scented Kalman Filter. The UKF is an optimal estimator which uses the system

model to estimate the expected pressures given an estimated state. It then compares

the estimated pressures with the actual measured pressures and uses a least-squares

technique to correct the state estimate. This inverse model was found to be capable

of estimating the state with much higher accuracy than an estimator based on only

the relationship between static angle and pressure. However, the oscillations in the

estimate are high - on the order of the measurement noise within the system. This

is expected, because the state transition model within the UKF does not account for

disturbances, which are unpredictable. However, the oscillations can be reduced by
the installation of a greater number of sensors.

The final state estimation algorithm requires solving the system model at every

timestep, which is a lengthy process due to the order of the panel method simula-

tion. As a result, it was not able to be incorporated into a real-time control system.

However, there are several measures which could be taken to reduce to the compu-

tation time necessary, and these are discussed in Chapter 7. However, the basic idea
of using a panel method to inform a control system is very powerful, and with the

necessary corrections, could be the basis for a feedback control system which is capa-

ble of responding to highly nonlinear and unpredictable state changes. An enhanced

control system developed around this concept would be faster and more robust to

disturbances in flow and dynamic maneuvers.

This project has demonstrated the feasibility of using an ALL in one application -
the detection and correction of a vehicle's yaw angle. In particular, it has shown that

an exceptionally simplistic and low-cost sensing system inspired by a fish's cranial

lateral line is capable of producing fast feedback, which can be used, with an under-

standing of hydrodynamics, to control an underwater vehicle. Additional research in

the hydrodynamic theory surrounding fluid motion around objects, in wakes, and in

dynamic environments can be used to inform control systems for a variety of tasks

for future AUVs.
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Chapter 7

Recommendations for future work

There are several key areas for improvement within this project. The biggest obstacle

lies in solving the system model faster. In fluid dynamics, the structure and character-

istics of the flow are governed by a complex set of equations which are fundamentally

nonlinear and very difficult to solve. Even the most advanced computational meth-

ods are generally slow, and there is a high tradeoff between speed and accuracy. For

control of an underwater system, speed is required for both real-time operation and

stability, but accuracy is also required for good estimation and stability. Within this

project, it has been shown that even for a system model which implements a num-

ber of simplifying assumptions, and reduces the system to a 2-dimensional system to

solve, the solution is still obtained too slow for real-time operation. However, there

are a number of ideas to try in improving the speed of computation.

7.1 Optimization of the panel method

As the goal of this project was to construct a methodology for development of a

control system, as opposed to optimizing the parameters at each step, many of the

parameters used could still be optimized. First, the number of panels chosen to repre-

sent the vehicle (620) was chosen arbitrarily with the goal of producing a reasonably

smooth representation, which it did. However, reduction in the panel number can

drastically reduce the number of computations to be performed at each timestep,

since the number of calculations goes as O[N2] (where N is the total number of pan-

els). Experiments could be conducted to determine the tradeoff between accuracy of

the pressure simulated at the relevant locations and the number of panels used. Since

the region of interest is the front of the vehicle, modeling the back with fewer panels

would likely cause minimal error to the solution.
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Secondly, due to the smooth and simplistic geometry of the vehicle, it is possible

that modeling the system as a 2D system would still provide a good basis for the

UKF. This would reduce the problem to a ID problem and reduce the number of

calculations even further. Simulations could be conducted to determine if this is a

possible alternative.

7.2 Physics-based learning model

Another way to improve the speed of state estimation for implementation in a real-

time control system is to use a physics-based learning model (PBLM) [43]. A physics-

based learning model provides a framework in which intermediate models are used to

capture important physical aspects of the problem, and these aspects are incorporated

into generic learning models. This hybrid of a pure physics-based model (which

is what was used in this project) and a learning-based model results in a model

which is capable of producing solutions quickly and relatively accurately. Its use has

been successfully demonstrated on ship hydrodynamics problems, and was shown to

possess higher prediction accuracy than generic learning models, and to be orders

of magnitude faster than high-resolution CFD. This may be a promising avenue to

explore for real-time control systems pertaining to fluid flows.

7.3 Development of real-time control system

Finally, if the state estimator can be improved to operate in real-time, a control system

could be developed for implementation on a physical system. Important aspects

to test would be robustness of the system to disturbances or turbulent flows, and

operation of the system in environments with changing flows, such as in the wake of

an object in oncoming flow.
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Appendix

Additional Dynamic

Simulations

77

A

Pressure



Figure A-1: Simulated (cyan) and experimentally measured (blue) pressure observed
at 4 pressure sensors during a turn from 0 to 16 degrees and back to 0 degrees, with
maximum acceleration of 13 deg/s 2 . Pressure (Pa) is plotted against time (s). The
blue arrow represents the direction of oncoming flow.
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Figure A-2: Simulated (cyan) and experimentally measured (blue) pressure observed
at 4 pressure sensors during a turn from 0 to 16 degrees and back to 0 degrees, with
maximum acceleration of 46 deg/s 2 . Pressure (Pa) is plotted against time (s). The
blue arrow represents the direction of oncoming flow.
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Figure A-3: Simulated (cyan) and experimentally measured (blue) pressure observed
at 4 pressure sensors during a turn from 0 to 16 degrees and back to 0 degrees, with
maximum acceleration of 65 deg/s 2 . Pressure (Pa) is plotted against time (s). The
blue arrow represents the direction of oncoming flow.
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Figure A-4: Simulated (cyan) and experimentally measured (blue) pressure observed
at 4 pressure sensors during a turn from 0 to 16 degrees and back to 0 degrees, with
maximum acceleration of 100 deg/s 2 . Pressure (Pa) is plotted against time (s). The
blue arrow represents the direction of oncoming flow.
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Appendix B

Results from Various UKF

Parameter Settings
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Figure B-1: Setting the measurement noise covariance to 10x the actual measurement
noise reduces estimate oscillation, but increases the time delay, as shown in this
simulation.
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Figure B-2: Setting the process noise covariance of yaw rate to 1/10th the noise
covariance in yaw angle is shown to cause undershoot behavior which follows that
in the measurement. This indicates some relationship between allowable unmodeled
state change and estimated process noise.
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Figure B-3: UKF angle estimation produced by a simulated system with 4 sensors.
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Figure B-4: UKF angle estimation produced by a simulated system with 8 sensors.
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Figure B-5: UKF angle estimation produced by a simulated system with 18 sensors.
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Figure B-6: An experimental profile was provided to a simulated system capable
of outputting model-accurate pressure measurements. The result demonstrates the
dependence of convergence rate on the estimated measurement noise covariance (here,
R-70).
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Figure B-7: Simulation with an estimated measurement noise covariance of R-20.
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Figure B-8: Simulation with an estimated measurement noise covariance of R=3. This

case demonstrates the accuracy of the UKF state estimate when the measurement

noise in the system is negligible. However, for the cases applied to experimental data,
the high measurement noise introduces more oscillation of the estimate.
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