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Abstract

Today's multi-view 3D reconstruction techniques rely almost exclusively on depth
cues that come from multiple view geometry. While these cues can be used to pro-
duce highly accurate reconstructions, the resulting point clouds are often noisy and
incomplete. Due to these issues, it may also be difficult to answer higher-level ques-
tions about the geometry, such as whether two surfaces meet at a right angle or
whether a surface is planar. Furthermore, state-of-the-art reconstruction techniques
generally cannot learn from training data, so having the ground-truth geometry for
one scene does not aid in reconstructing similar scenes.

In this work, we make two contributions toward data-driven 3D reconstruction.
First, we present a dataset containing hundreds of RGBD videos that can be used
as a source of training data for reconstruction algorithms. Second, we introduce the
concept of the Shape Anchor, a region for which the combination of recognition and
multiple view geometry allows us to accurately predict the latent, dense point cloud.
We propose a technique to detect these regions and to predict their shapes, and we
demonstrate it on our dataset.
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Chapter 1

Introduction

In recent years, there has been exciting progress in building 3D models from multiple

images. In this area, state-of-the-art techniques almost exclusively use depth cues that

come from multiple view geometry and work by triangulating points that appear in

multiple images. While this produces good results in many cases, these geometric

depth cues have limitations, since the underlying problem of finding correspondences

between images is difficult. Consequently, the resulting point clouds are often noisy

and incomplete.

In this work, we describe a way to use techniques from recognition to overcome

some of these problems. Our ultimate goal is to take a point cloud that comes from

multi-view stereo [12] and then densify it in a few places where we can confidently

predict the latent geometry. We do this in a data-driven way, using a large database

of RGBD video sequences that we introduce.

In support of this goal, we introduce the idea of Shape Anchors. A Shape Anchor

is an image region for which the combination of recognition cues and multiple view

geometry allows us to confidently predict a dense, accurate point cloud. We formalize

what we mean by predict and accurate in Chapter 4.

Our goal is to find Shape Anchors in videos, and our problem formulation some-

what resembles an object detection problem, where Shape Anchors are the objects

that we are looking for, and a correct point-cloud prediction is analogous to a correct

object detection. Correct Shape Anchor detections provide information about geom-
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etry that is useful and complementary to the triangulated points that they are partly

derived from (although the depth estimates from Shape Anchor points are somewhat

less accurate than those of triangulated points). Points that come from Shape An-

chor predictions are dense compared to those generated by triangulation, such as

those that come from the multi-view stereo technique we use in our experiments [12].

Furthermore, Shape Anchors can be detected in low-texture regions, where densely

triangulating points is difficult. They can also provide qualitative information about

the geometry that may not be obvious from just a sparse point cloud, such as the

locations of occlusion boundaries and corners. In this way, Shape Anchors can po-

tentially help confirm that there really is a crisp, 90-degree corner between the wall

and the floor; whereas there is enough uncertainty in some sparse, multi-view point

clouds that one might have to reluctantly admit the possibility that the two surfaces

intersect in a more rounded way.

Our formulation is intended to be used in a high-precision, low-recall regime,

in which we predict the geometry for only small number of regions in a scene, but

when we do so, the geometry is likely to be accurate. This formulation can be used

with current recognition techniques, which are themselves best suited for predicting

with high precision and low recall. In this way, our approach is different from other

recognition-based reconstruction techniques, which formulate depth-estimation as a

regression problem and try to predict the depth of every pixel.

In this thesis, we describe a way of detecting Shape Anchors that involves searching

a large database of RGBD videos (Chapter 5), then removing proposals that disagree

with the sparse geometry provided by triangulated points. Finally, we describe how

to remove Shape Anchor detections that are inconsistent with each other in Chapter

6.

We ' also introduce a dataset (Chapter 3) that is useful for developing data-driven

reconstruction algorithms. Our dataset contains hundreds of RGBD videos, taken of

real-world, indoor scenes. The videos in this dataset are recorded in a systematic

way that allows for building dense, complete 3D reconstructions using RGBD-based

'Jianxiong Xiao is the lead author of the dataset work.
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structure-from-motion techniques. This reconstruction can then be used as ground

truth for techniques that do not have access to the depth data. We describe the

dataset construction procedure and provide statistics about the dataset but omit

information about the RGBD structure-from-motion algorithm in this thesis.

We apply the Shape Anchor-detection algorithm to this dataset (Chapter 7). In

some cases, these predictions occur often and correctly enough to get a qualitatively

correct, and fairly complete, reconstructions of some views. We also show many

visualizations of the predictions to demonstrate their qualitative correctness.
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Chapter 2

Related Work

2.1 Recognition-based 3D Reconstruction

3D reconstruction is a classic problem in computer vision, and recently recognition-

based techniques that use statistical techniques to build reconstructions of real-world

images from a single view have produced some impressive results. Early work in this

area focused on recovering a very coarse reconstruction of a scene. Torralba and Oliva

[37] recovered the mean depth of a scene from a single image, and in parallel lines

of work, Hoiem et al. and Saxena et al. created planar reconstructions of outdoor

scenes. Hoiem et al. estimate what they call qualitative aspects of a 3D scene [16] [17]

- the dominant surfaces, their surface orientations, and occlusion boundaries - from

which they construct a photo pop-up [18], a coarse piecewise-planar reconstruction

that resembles a pop-up book. Meanwhile, Saxena et al. estimated per-pixel depth

from a single image [28] in a Markov Random Field framework and in later work built

piecewise-planar reconstructions [29] with a system called Make3D.

While these early techniques achieved impressive results, they use parametric

models and are primarily limited to outdoor scenes with relatively simple geometry.

In response to these limitations, Karsch et al. [19] recently introduced an interesting

data-driven technique that involves transferring depth from similar-looking images

using a technique based on SIFT Flow [21]. Their data-driven approach is appealing,

because it may be better at capturing the variation in geometry of real-world scenes
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than previous approaches. Our approach is similar to theirs in that it works by trans-

ferring depth from a training set in a nonparametric way, but they transfer depth at

an image level, while we transfer it closer to the object level. Unfortunately, we ex-

pect image-level transfer (in the style of SIFT Flow) to have fundamental limitations,

especially when the goal is to reconstruct real-world indoor scenes with fine detail.

This is because the approach seems to require finding a pool of images to transfer

from that contains exactly the right set of objects in exactly the right locations

There has also been recent work that exploits the special structure of indoor

scenes. This line of work often makes heavy use of vanishing point cues, explicitly

models walls, and detects objects in a categorical way. Delage et al. [7] build piecewise-

planar reconstructions from a single image of a scene that obeys the Manhattan World

assumption. Yu [38] model a scene as a set of depth-ordered planes and recover it

in a bottom-up, edge-grouping framework. Hedau et al. [15] adapts the qualitative

geometry idea to indoor scenes, modeling the walls with a box and the surfaces with

a few coarse categories. Recently Satkin et al. [27] proposed a data-driven technique

for reconstructing indoor scenes. Their technique uses a large collection containing

thousands of synthetic 3D models that they obtain by searching for rooms categories

like "bedroom" and "living room".

In contrast to this line of work, we make no explicit assumptions about the overall

geometry of the room or the semantic categories of objects that it contains. Further-

more, our dataset contains real-world scenes where the assumptions they make may

not hold (e.g. images of non-rectangular rooms and up-close shots of objects).

We note that these recognition-based approaches all attempt to solve the very

difficult problem of building a 3D reconstruction solely from recognition cues, while

in our work we have access to multi-view information. In this way, our work is similar

to [10], which proposes an elegant model for reconstructing a Manhattan World from a

mixture of monocular and multiple-view cues. The goal of our work is very similar to

that of [30], which extends the model from [29] to include triangulation cues. However,

'In our experience, nearest-neighbor search using features like GIST [24] is difficult for indoor
scenes from our database, possibly for this same reason.
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their ultimate goal is to build a piecewise-planar reconstruction of the whole scene,

while ours is to recover a dense point cloud for a portion of the scene.

The approach that we use is similar to the "example-based" techniques of [11]

and [5]. These techniques interpret a 3D shape by breaking the image into patches,

searching for candidate shapes to fill each patch. They then, like us, use a Markov

Random Field to enforce that depth predictions agree with one another where the

patches overlap. Indeed, our work can be viewed as an adapation of this general idea

to to real images. One key difference is that ours is more of a detection problem.

They attempt to explain every patch in the image, while our goal is only to explain

a subset of the patches that we are very confident about: a concession that we think

makes sense for real images, where many patches are highly ambiguous.

There have been many recent papers in object detection that our work draws

from. First, the idea of finding image patches whose appearance is informative about

geometry is similar to that of poselets [3], visual patterns that are highly informative

about human pose. Similarly, [33] describes finds mid-level discriminative patches that

are in some way distinctive and representative of the visual world. This approach was

subsequently used to find patches that are highly discriminative of the city in which a

photo was taken [8]. Second, the idea of transferring meta-information from a training

set was explored recently in [23], as was the idea of using a sliding window detector

for image search [31]. Additionally, we use HOG [6] features and whiten them using

Linear Discriminant Analysis, as suggested by [14].

The goal of our work is very similar to that of multi-view stereo, and we use the

state-of-the-art system [12] as part of our approach. Our work is similar in spirit

to techniques that use appearance information to improve the shape estimates that

come from stereo [36] [1]. And while there are existing techniques that can be used

to densify point clouds, e.g. Poisson Surface Reconstruction [20], we are not aware of

any that do so in a data-driven way for real-world scenes.

Finally, in Chapter 3 we introduce a dataset that is similar to the NYU RGBD

Dataset [32], but our videos are recorded in a systematic way that makes it possible

to build full 3D reconstructions using structure from motion.

14



Chapter 3

Dataset

In this chapter, we describe a dataset that is useful for data-driven 3D reconstruction.

Our 1 dataset consists of full 3D models of indoor places (i.e. one or more adjacent

rooms that a person can walk through), as demonstrated in Figure 3-1. Places in the

dataset may be as small as a single bathroom or as large as an apartment. We collect

this dataset by capturing an RGBD video of each place (Section 3.1).

We analyze the dataset's statistics in Section 3.2 and describe its usage for data-

driven 3D reconstruction Section 3.3.

Our dataset has a number of desirable properties. First, it is very large, containing

hundreds of videos. The videos cover a wide variety of places, but there are also a

large number that come from the same or nearby buildings and consequently they

share common object and architectural styles. This subset of videos may be useful

for some applications, such as robotics. Second, our database is thorough: each place

(e.g. conference room, apartment, laboratory) is captured systematically: operators

try to make sure that the important viewpoints are well-represented and that the

sequence can easily be reconstructed using R.GBD-structure-from-motion techniques.

Third, our dataset is fully reconstructed: we apply an RGBD structure-from-motion

algorithm to the videos (not described here), the results of which can be used as

ground truth for R.GB-only reconstruction techniques, such as the one we describe in

'Jianxiong Xiao is the lead author of the dataset work.

15



apartment conf. room conf. hall restroom

57 ni
2  

47 m
2  

130 m
2  

23 m
2

A - W.

classroom dorm hotel room lab lounge office

109 m2 33 m2 41 m2 55 n
2  

124 m2 49 n
2

ga, 4

Figure 3-1: Examples from our database: each column contains four examples from

each place category. The numbers below the category names are the median example

areas for each place category.

the rest of this thesis.

3.1 Data Collection

Capturing procedure Each operator is told to capture the video mimicking hu-

man exploration of the space as much as possible. They are told to walk through

the entire place, thoroughly scanning each room, capturing each object, the floor,

and walls as completely as possible. The operators (five computer vision researchers)

took special care to make the scans easier to reconstruct using structure-from-motion

algorithms. Guidelines include walking slowly, keeping the sensor upright, avoiding

textureless shots of walls and floors, and walking carefully between rooms to avoid

reconstructions with disconnected components.

Capturing setup For the hardware, we tried the Microsoft Xbox Kinect sensor

and ASUS Xtion PRO LIVE sensor, both of which are available at low cost in the

digital consumer market. While the Kinect sensor has a slightly better RGB camera,
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corridor(5%) others conference room(1 9%)

restroom (5%)
classroom(6%)

office(6%) apartment(1 7%)
dorm(6%)
lounge(9%) hotel(9%) lab(9%)

Figure 3-2: Place category distribution.

we used the USB-powered Xtion sensor for most scans, because it is more portable,

and we can mount it to a laptop.

To make a database that closely matches the human visual experience, we want

the RGBD video taken at a height and viewing angle similar to that of a human.

Therefore, the operator carries the laptop with the Xtion sensor on his or her shoul-

der with a viewing angle roughly corresponding to a horizontal view slightly tilted

towards the ground. During recording, the operator sees a fullscreen R.GB image with

registered depth superimposed in real-time to provide immediate visual feedback. We

use OpenNI to record the video for both RGB and depth at 640 x 480 resolution with

30 frames per second. We use the default factory sensor calibration for the registra-

tion between the depth and image. The data is saved on disk without compression,

on a powerful laptop with fast disk access (which is necessary to capture at a high

frame rate). We scan only indoor places, because the RGBD cameras do not work

under direct sunlight.

3.2 Dataset Analysis

We have 389 sequences captured for 254 different places, in 41 different buildings.

Operators capture some places multiple times, at different times when possible. Ge-

ographically, the places scanned are mainly distributed across North America and

Europe.
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We manually group them into 16 place categories (Figure 3-2). Some examples

are shown in Figure 3-1, and the place category distribution is shown in Figure 3-2.

Figure 3-3 shows additional statistics of our dataset, where all the vertical axes

represents the percentage of our dataset. Figure 3-3 (a) and (b) show the distribu-

tion of sequence length and physical area of the space that was reconstructed in our

dataset. Figure 3-3 (c)--(f) show the distribution of camera viewing angle, height,

and the density of camera location in the space. From these statistics, we can see

that our captured sequences satisfy our requirement to mostly mimic human visual

experiences. Also Figure 3-3 (g) and (h) show that the camera was generally at least

2 meters away from the 3D scene, suggesting that our data seems to satisfy our ini-

tial objective of resembling natural exploration of the environment. Figure 3-3 (i)

illustrates the portion of area explored by the observer, by counting the number of

square meters the observer walked on, divided by the total area of the room. Typi-

cally, 25%-50% of the space is explored by the observer. Furthermore, one important

characteristic of our dataset is that the same objects are visible from many different

viewing angles. In Figure 3-3 (j) and (k), we plot the distribution of the coverage in

terms of view counts and view angles for the same place in space, which are repre-

sented as voxels of size 0.1 x 0.1 m2 on the floor. The view angle is quantized into

5-degree bins. Since the RGBD camera relies on projecting an infrared light pattern,

reflective objects and materials will sometimes return no depth. In Figure 3-3 (1), we

plot the proportion of invalid area in the depth maps, which also contains the missing

depth area due to the relative displacement of infrared projector and camera.

3.3 Dataset Usage

In the next chapters, we use this dataset to perform 3D reconstruction in a data-

driven way. We construct a training set of 152 sequences, which is used in Chapter

5 to perform a nearest-neighbor search. For the experiments in Chapter 7, we select

9 sequences from those remaining as a test set (10 with one long sequence failing to

complete in time). Note that there may be multiple videos of the same place in this
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Figure 3-3: Dataset statistics. Refer to Section 3.2 for explanation.

dataset, though we ensure that there are no places that appear in both the test set

and the training set.

In the test set, we use the depth provided by the RGBD sensor to reconstruct

the camera pose using a structure-from-motion algorithm for RGBD sequences. 2

Once we have the camera pose, we use the depth only for evaluation purposes, as the

ground truth.

2We intend to replace this step with a standard structure-from-motion algorithm, such as Bundler
[34], in future work.

19



Chapter 4

Problem Formulation

In this chapter, we introduce a new representation for appearance-based 3D recon-

struction.

4.1 Shape Anchors

We are motivated by the observation that there are some image patches that are

distinctive enough that a human can confidently predict their full 3D geometry. And

furthermore, there are image patches where the geometry is ambiguous, but where

knowing a few 3D points resolves this ambiguity. For example, the geometry of a

completely white patch is ambiguous. At best, we can tell that it is statistically likely

to be a planar region, possibly from a wall or a floor. But when we combine this

knowledge with a few 3D points, we can predict its geometry precisely (e.g. by fitting

the parameters of the plane). 1

In this work, we introduce the term Shape Anchor to refer to these kinds of patches.

A Shape Anchor is an image patch where multi-view geometry and recognition allows

us to predict the latent, dense point cloud. We use this name to suggest that these are

the patches whose shapes we can predict the most reliably; in other words "sturdy"

'In practice, our algorithm is unlikely to be successful at predicting the geometry of these no-
texture regions, because the recognition and 3D alignment are somewhat decoupled. The algorithm
will only propose a point cloud derived from the most similar-looking patch in the dataset, which is
unlikely to have the correct surface orientation.
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regions of our shape interpretation. We now define this idea more precisely.

Suppose I is an image patch and S is a sparse, noisy set of 3D points (e.g. obtained

using multi-view stereo) that are visible in I (i.e. they project inside the rectangle

containing I), and further suppose that the corresponding ground-truth point cloud

is P. Then I is a Shape Anchor if we can use the combination of I and S to estimate

a point cloud Q for which

#(P, Q) < T, (4.1)

where

#(X, Y) = max(#P(X, Y), $)(Y, X)), (4.2)

and

(X,Y)=1 x-minJ|x-y l . (4.3)
xx

We note that this error function is similar to the one minimized when aligning

points with ICP [2]. In our experiments, we set the maximum allowed error, T, to be

0.1 meters.

To further motivate the idea, we give some examples of Shape Anchors that our

Shape Anchor detection algorithm correctly detected (Figure 4-1).

4.2 Shape Anchor Detection

The problem of predicting depth from images is sometimes formulated (e.g. in [29]

[19]) as a regression problem, where the goal is to estimate the depth at each pixel,

and the error metric penalizes per-pixel predictions based on how much they deviate

from the ground truth. In contrast, our formulation of the problem has similarities

with object detection. Here, Shape Anchors are analogous to the objects that we are

trying to detect. A Shape Anchor-detection algorithm predicts the geometry for a

number of patches in an image: we call these Shape Anchor predictions, and they
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Figure 4-1: Example Shape Anchors. Each match is displayed as a 2 x 2 figure, whose

format is as follows. Upper left and bottom left: an image patch and its ground-truth

depth map. Upper right and bottom right: the image and depth map of an exemplar

patch with a similar shape (found by our algorithm). Please see Figure 7-4 for more

examples.

are analogous to object bounding-box predictions made by object detectors. Each

Shape Anchor prediction is then judged as either being right or wrong (i.e. not given

a continuous score).

In order to get the geometry, we assume that we are given the camera intrinsics

and pose (in meters). We then triangulate points to obtain a sparse point cloud

(details described in Section 5.2). Our goal is then to use these video sequences and

sparse point clouds to detect Shape Anchors. Each of these Shape Anchors gives us

a dense point cloud for a small region of the video sequence, and in Chapter 7 we

analyze these point-cloud predictions.
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Chapter 5

Detecting Shape Anchors

In the previous chapter, we defined Shape Anchors. In this chapter, we describe how

to detect them. We break the process down into two steps. The first step is based

solely on appearance: we search a large database for similar-looking image patches

and produce a candidate shape. In the second step, we use the 3D geometry to test

whether the candidate shape fits the point cloud well, and to estimate the shape's

absolute depth.

5.1 Proposing Shape Candidates

Given an image patch I, we propose a candidate shape, a point cloud that we hypoth-

esize is most similar to that of I. To obtain the candidate shape for a given patch,

we search a large RGBD database and find the most similar-looking example; that

example's point cloud then becomes the candidate shape 1.

Our procedure resembles that of [31]. We create sliding window detectors from

1We do not use any geometry in this stage, though doing so would likely improve results. In the
subsequent step, we will allow the shape candidate to translate, so conceptually we are searching for
a set of points Q that is most similar to the ground-truth P despite a translation. In other words,
we want

min 4(P, {t + xIx E Q}) (5.1)
tcT

to be small, where # is defined as in Equation (4.2) and T is a set of translations that is determined
by the image window location.
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patches extracted from the input image. We convolve these detectors with images

from the training set and choose the point cloud of the example with the highest

score.

In more detail, we downsample the input image, compute HOG [6] using the

implementation of [9], and extract every 8 x 8-cell template, each corresponding to a

170 x 170-pixel image patch. We whiten each patch with our implementation of Linear

Discriminant Analysis, as in [14] [13], which has been shown to improve discrimination

in an object detection task. We search at multiple scales to enable matching with

objects that are at a different absolute distance from the camera. To do this, we

convolve each template with the HOG feature pyramid of images (using 5 levels per

octave) in our training set, using only levels of the pyramid which result in detection

windows whose width is between 0.5 and 1.5 times as large as that of the original

(170 x 170) patches. We perform convolution as a matrix multiplication between a

matrix containing every image window and another containing every template, as in

the implementation of [23]. This data set consists of 152 sequences, and we sample

every 10 frames for speed; in total we search 67,845 images. In addition to the highest-

scoring example, we also retrieve the next four highest-scoring examples, requiring

each to be from a different sequence. These examples are used to help to remove

erroneous matches in Section 5.3.

5.2 Estimating Absolute Depth

Obtaining a point cloud In our experiments, we assume that the true camera

pose has been given (we use the pose provided by the dataset in Chapter 3). We then

generate a point cloud using the PMVS [12], a multi-view stereo system. To do this,

we sample 100 frames from at most 4 meters away from the image that we want to

reconstruct and pass them into PMVS as input. 2

2 Sometimes we want to use multiple frames from the same sequence. However, we still compute
the point cloud this way - as many small reconstructions centered around each camera - to simplify
the implementation. We can avoid having to process whole sequences (which can be thousands of
frames long), and the reconstructions can be done in parallel.
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Aligning the candidate with the point cloud Consider an image patch I, and

let v be the direction of the ray that passes between the center pixel of I and the

camera center 3. Let M be the set of points from the sparse point cloud that project

into the window of I. For a shape candidate C, we first center it on the origin by

subtracting the 3D point located at the center pixel of the detection window (we call

this point Xcenter). Then we try to shift C along v in a way that best explains the

points in M, minimizing the objective function

ac = arg min %c(M, {av - Xcenter + X X E C}), (5.2)
ae[1,5]

where %c(X, Y) is the number of points in X that are within 0.1 meters of some

point in Y. We optimize this objective by performing a grid search on a, sampling

with steps of size 0.025. From this, we compute the shifted shape, C' {aev -

Xcenter + X X E C}.

We experimented with more complex ways of aligning the candidate to the point

cloud, including techniques based on ICP, and with allowing more degrees of free-

dom (like rotation), but we found that these approaches did not significantly improve

results. This might be because the multi-view point cloud does not sample points

uniformly along the surface (e.g. high-texture regions may be over-represented), or be-

cause these approaches allow the point cloud to deform in complex ways to optimally

explain the data.

5.3 Verifying Shape Candidates

Once the shape candidate has been recentered, we use the sparse point cloud to

test whether the geometry is correct, throwing out shape candidates that do not

sufficiently explain the point cloud. We formulate this as a machine learning problem

and train a Random Forest classifier [4] [26] to categorize a given shape candidate

(using 300 trees as sub-estimators). Positive examples are shape candidates that

3 Specifically, if K is the camera intrinsics matrix and x is the center pixel in homogeneous
coordinates, then v = K~x. In other words, this is the ray on which every point projects to x.
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satisfy the conditions for being Shape Anchors, as defined in Equation (4.1). We

train the classifier using the patches that come from approximately one fourth of the

videos in the training set, sampling two frames from each.

We describe one representative type of feature that we use: histograms of nearest-

neighbor distances. For a more complete list, please refer to Appendix A. We define

Hd(X, Y) to be the histogram, computed over points x E X, of mingEy ||x - YlI. We

include as features Hd(M, C') and Hd(C', M), where C' is the recentered candidate

shape and M is the point cloud.
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Chapter 6

Reasoning Across Multiple Views

In this chapter, we describe how to detect Shape Anchors jointly across multiple views

in a sequence.

6.1 Jointly Detecting Shape Anchors

Detecting Shape Anchors independently can lead to a high false positive rate. Many

errors of this form can be detected by the fact that different Shape Anchors predict

different depths for the same pixel. We can reduce errors of this form by detecting

Shape Anchors jointly, choosing only a subset that agree with one another. We model

this as a Markov Random Field (MRF) and detect the Shape Anchors by estimating

its MAP using Loopy Belief Propagation [25]. We note that this formulation is similar

to other example-based shape interpretation techniques, such as ShapeCollage [5] and

VISTA [11].

In the MRF, we construct a node for every patch (i.e. aligned shape candidate)

that is labeled a positive example by the detector trained in Section 5.3 (which has a

high false-positive rate unless a more stringent confidence threshold is chosen). The

nodes take one of two labels: on or off. Nodes that are on after the optimization

become the final Shape Anchor proposals.

We add an edge between every pair of patches that contains a matching SIFT

[22] feature. To establish these correspondences, we match every pair of images
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that are within 4 meters of each other and remove matches that fail to satisfy an

epipolar constraint, using a ratio of 0.8 for the ratio test. We then form tracks, as is

standard practice in structure from motion [35] and remove inconsistent tracks. More

specifically, we create a feature-match graph whose nodes are features and edges are

matching features. Tracks are the connected components of this graph, and we remove

any track that contains two features that come from the same image.

Note that as a special case of the above procedure, any pair of patches that overlap

in the same image will have an edge between them (assuming there is a SIFT feature

in the overlapping region and that it does not get removed while forming tracks).

To do inference, we minimize the objective function for a pairwise MRF

U(xi) + V(xi, Xj), (6.1)
{i,j}EE

where xi E {0, 1} is a binary variable that says whether the patch will be detected

or not in the final result (i.e.off or on), and E is the set of edges in the graph.

The unary cost, U(xi), is meant to capture how well the patch agrees with the

point cloud. We simply use

U(xi) = (b - si)xi, (6.2)

where si is an estimate of the probability that the patch is a positive example, as

estimated by the Random Forest classifier in Section (5.3), and we set b = 0.7. Note

that when a patch has no edges, it will be labeled on if its score exceeds b.

For the binary potential, we use

V(xi, xj) = (c + weij)xizX, (6.3)

where eij is an estimate of the inconsistency between the two patches. For this, we

compute the distance between the 3D points for which there is a SIFT correspondence:

eij = min( 5Xk-X |, Td), (6.4)
k=1
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where there are n SIFT matches, X' and X' are the predictions of the 3D point

for SIFT correpondence k of image patches i and j respectively '. In other words, the

SIFT features give a pixel correspondence between the two patches; correct matches

ought to give the same 3D prediction for the corresponding pixels. We set c = -0.025

(to give slightly better scores to pairs of patches that agree than isolated patches with

few edges), w = 0.1, and rd = 2.

We compute the MAP of this MRF using Loopy Belief Propagation, run for 20

iterations with a sequential message passing scheme. The parameters in the MRF

(namely, b, c, and w) were set by grid search on a one-example training set, while

trying to maximize the total number of correct detections minus twice the number of

incorrect detections 2, where the correctness of detection is given by the criteria in

Equation 5.1.

1We limit the correspondences to be SIFT matches to avoid reasoning about occlusions. When
two features match, we assume that they are the same physical point and don't have to consider the
case where one occludes the other.

2 We choose to weigh mistakes slightly more than successes to encourage higher precision.
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Chapter 7

Results

In the previous chapter, we described an MRF-based approach for removing incorrect

Shape Anchor predictions. In this chapter, we analyze the results of this algorithm

on several videos.

7.1 Experiment Setup

Dataset We run the Shape Anchor prediction algorithm described in Chapter 6 on

each video of a test set containing 9 videos. We give each of these videos a name based

on its place category (Section 3.2), such as conference room or office. As described in

Section 5.2, we assume that the camera pose has been estimated correctly (using the

ground truth given by our dataset). We then use a multi-view stereo system, PMVS

[12], to obtain the initial, sparse point cloud. For each video, we used only one of

every 25 frames and truncated the videos at frame 6000.

Instance Similarity The videos in the training and test set are of different physical

rooms, but there are many similarities between them. Since some of the videos are

taken in different rooms of the same building, there are common architectural motifs,

and objects are often of the same model (e.g. the same type of table appears in many
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conference room videos). 1

In our experiments, videos that came from the conference room category in par-

ticular were very similar to the conference room videos in the training set (though to

our knowledge, they were not taken in the same physical rooms). 2 Note that the

presence of these sequences likely increases the accuracy of our predictions overall.

Performance We use a small test set because on the current, unoptimized imple-

mentation it takes a long time to process each video. It takes about 3-8 hours to

process each video on a cluster of 144 cores (12 machines), with most of the time

going into the nearest-neighbor search (which involves convolving up to 43,000 HOG

templates with a large database of images).

7.2 Transfer

Unlike some other nonparametric transfer techniques (e.g. SIFT Flow-based [21]), our

technique transfers a small amount of content from many different images that all, as

a whole, look very different from the input image. To illustrate this, we have shown

the Shape Anchor predictions for one image, prior to performing the MRF-based joint

inference (but after the geometric verification step), in Figure 7-1.

7.3 Accuracy

Shape Anchor Prediction Accuracy In Figure 7-2 (a), we analyze the accuracy

of the final Shape Anchor predictions on a per-prediction basis. More precisely, for

each Shape Anchor prediction, we test whether the predicted shape agrees (as in

Equation 4.1) with the ground-truth point cloud of the image it was detected in.

'There are also higher-level similarities, since many of the rooms are arranged the same way (e.g.
conference rooms with chairs - of different models - in similar locations). However, our approach
cannot exploit this kind of regularity (whereas a SIFT-flow-inspired technique like [19] might be
better able to).

2Also, the random sample of videos that we use in our test set contains a large fraction of
conference rooms.
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(a)

(b)

Figure 7-1: Match results and multi-view stereo example. (a) The source patch column

shows the original patch, and the matched patch column shows a match from the

dataset after the geometric verification step. Most predictions seem qualitatively

correct, despite the sparsity of the multi-view stereo point cloud (b).

Source patch Matched patch



Note also that many Shape Anchors overlap because either they come from the same

image or they appear in two images with similar viewpoints (please see Section 7.4

for detection examples).

Per-pixel Accuracy We also analyze the detections on a per-pixel basis in Figure

7-2 (b), which measures the disagreement between the ground-truth depth and the

predicted depth at each pixel.

More precisely, suppose Xest is a point that was predicted in image I and that Xest

projects to pixel x (i.e. x = PXest where P is the projection matrix of I). Further

suppose that Xgt is the ground-truth point at x. Then we estimate the error as

||Xgt - Xest |. 3 If two points project to the same pixel in the image, then we only

consider the closer one, effectively removing the farther point from the reconstruction

(modeling occlusion). We also ignore any point that projects to a pixel for which we

do not have ground-truth depth and any point that projects outside the image.

We note that per-pixel error - although commonly used in recognition-based re-

construction [29] - can be sensitive to tiny misalignments, For example, if the location

of a chair leg (or some other thin structure), is misestimated by a few centimeters,

this would result in very high per-pixel error.

We also compute the per-pixel statistics for the multi-view stereo points them-

selves, using the protocol above (Figure 7-3). We find that the multi-view stereo

points are more accurate than the predictions on average. We do not consider this to

be too surprising, given that the multi-view stereo points are used to predict the rest

of the geometry, and that the dense Shape Anchor-derived points fill locations that

(presumably) the multi-view stereo system was unable to triangulate.

Even though the depth error is worse compared to the multi-view results, we

see in the qualitative results (Section 7.4) that seemingly important features of the

geometry may be transferred that may not be obvious from the point cloud alone.

3 Ignoring discretization artifacts, the two points lie on the same ray entering the camera, so this
quantity is equal to the absolute value of IXgt - t -Xet - t where t is the location of the
camera center.
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(a) Shape Anchor predictions: each patch evaluated as a whole. Number of patch shapes that were

predicted correctly. Please see the text for more details.

Sequence Correct Incorrect Total Number of Images

All 5254 1146 6400 1306

officel 43 8 51 89

lounge 834 164 998 140

conference-room1 300 149 449 143

conference-room2 6 1 7 75

dormi 638 202 840 146

conference-room3 2196 332 2528 210

office2 189 122 311 206

conference-room4 167 18 185 57

dorm2 881 150 1031 240

(b) Per-pixel error. Histogram of pixel errors, in meters, computed over all sequences.

1.0

0.8

0.6

0.4

0.2

.0 0.1 0.2 0.3 0.4 0.5
Error (m)

Cumulative per-pixel error. Percent of pixels with error less than each threshold.
Sequence Median (m) 0.05m 0.1m 0.15m 0.2m 0.25m 0.3m 0.35m 0.4m 0.45m 0.5m

all 0.10 0.27 0.51 0.68 0.78 0.84 0.88 0.90 0.93 0.94 0.95

officel 0.09 0.32 0.54 0.69 0.78 0.83 0.87 0.89 0.91 0.93 0.93

lounge 0.09 0.28 0.54 0.72 0.82 0.87 0.90 0.93 0.94 0.96 0.96

conference-roon1 0.14 0.18 0.38 0.54 0.66 0.75 0.81 0.85 0.88 0.90 0.92

conference-roon2 0.08 0.35 0.56 0.76 0.88 0.92 0.95 0.98 0.99 1.00 1.00

dorm1 0.14 0.20 0.38 0.53 0.64 0.72 0.79 0.84 0.89 0.93 0.95

conference-roon3 0.09 0.31 0.56 0.73 0.82 0.87 0.90 0.92 0.93 0.94 0.95

office2 0.13 0.19 0.37 0.56 0.70 0.79 0.85 0.88 0.90 0.92 0.93

conference-room4 0.07 0.37 0.63 0.79 0.87 0.90 0.92 0.94 0.94 0.95 0.95

dorm2 0.09 0.29 0.54 0.72 0.81 0.86 0.90 0.93 0.95 0.96 0.97

Figure 7-2: Error estimates for the shape predictions. All results are for the MAP

solution of the inference procedure.



(a) Per-pixel error of the multi-view

1.01

0.8-

0.6-

0.1

0.

0.3 0.4 0.5
Error (m)

Sequence Median (m) 0.05m O.lm 0.15m 0.2n 0.25m 0.3m 0.35m 0.4m 0.45m 0.5m
all 0.04 0.54 0.76 0.83 0.88 0.91 0.93 0.94 0.95 0.96 0.97

officel 0.03 0.65 0.81 0.87 0.92 0.94 0.96 0.97 0.97 0.97 0.98

lounge 0.04 0.62 0.82 0.88 0.91 0.94 0.95 0.96 0.97 0.97 0.98

conference-room1 0.11 0.30 0.48 0.58 0.66 0.72 0.78 0.82 0.85 0.87 0.88

conference-room2 0.09 0.13 0.59 0.82 0.86 0.89 0.94 0.97 0.98 1.00 1.00

dorm 0.05 0.50 0.75 0.83 0.88 0.92 0.95 0.96 0.97 0.98 0.98

conference-room3 0.04 0.55 0.76 0,84 0.88 0.91 0.92 0.93 0.94 0.95 0.96

0ffice2 0.05 0.48 0.67 0.76 0.82 0.85 0.88 0.90 0.92 0.93 0.94

conference-room4 0.10 0.24 0.52 0.69 0.78 0.83 0.87 0.89 0.91 0.92 0.93

dorm2 0.04 0.61 0.80 0.86 0.89 0.92 0.94 0.95 0.96 0.97 0.98

Figure 7-3: Error of the multi-view stereo points
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7.4 Qualitative Results

We show a random sample of correct (Figure 7-4) and incorrect (Figure 7-5) Shape

Anchor predictions.

Many of the results that were marked as incorrect (and hence have an average

per-point error that exceeds some threshold) nonetheless are "almost" right. There

are some common reasons for these errors:

" In many cases, the multi-view point cloud contains errors, which leads to the

shape proposal becoming misaligned (Section 5.2). Note that these errors are

not obvious in Figure 7-5, since the multiple-view point cloud is not shown.

" The orientation of a large object is predicted slightly incorrectly (e.g. a floor

being predicted with a slight slant).

" A prediction contains two layers, e.g. the edge of a table and the ground. The

error metric requires both to be predicted correctly.

These shortcomings suggest that the error measure that we use may be too strict.

Reconstructions We show some point clouds derived from Shape Anchor predic-

tions in Figure 7-6. There are several notable examples where the Shape Anchors

provide qualitatively correct information that may not have been obvious from the

sparse point cloud alone. For example, the office2 example predicts the geometry of

the white wall correctly, but the point cloud seems to be sparse there (Figure 7-1

(b)). Similarly, the reconstruction at the edge of the door is reconstructed with fine

detail, but this level of detail does not seem to be present in the point cloud (on

inspection). Two of the conference rooms, conference-roor3 and conference-room4

have fairly accurate and complete reconstructions. This is because there are similar

(but not identical) rooms in the training set that we transfer the geometry from.

Finally, there are some notable failure cases. In conference-roomi, our algorithm

seems to correctly predict that there are chairs there (transferred from a similar

conference room), but the resulting reconstruction seems severely misaligned. The
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Sequence

officel

lounge

conference-room1

conference-room2

dorm1

conference-room3

Matches

U
,I[-

U
U

office2

conference-room4

dorm2

Figure 7-4: Random, correct Shape Anchor detections. Each match is displayed as a 2 x 2 figure,

whose format is as follows. Upper left and bottom left: original image patch and its ground-truth

depth map. Upper right and bottom right: image and depth map of the exemplar patch from which



dormi example transfers a wall that has the wrong surface orientation, and there

is an artifact on the left edge of the bookshelf. Furthermore, while the algorithm is

transferring geometry from other bookshelves (Figure 7-4), the alignment is incorrect,

or the shelves look similar but in fact have different geometry (e.g. a different shelf

pattern), making the resulting reconstruction look incorrect.
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Sequence Matches

office1

lounge

conference-room1

conference-room2

dorm1

conference-room3

office2

conference-room4

dorm2

Figure 7-5: Random, incorrect Shape Anchor detections. Please refer to Figure 7-4 for an expla-

nation of the format.
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Image Shape Predictions

lounge1

loungel

oicel

Figure 7-6: Shape Anchor predictions (1 of 3). We show a point cloud formed by taking the

union of all the shape predictions that for a given frame. To generate this diagram, we selected one

or two frames from each reconstruction that (qualitatively) looked accurate. Points are colored by

projecting them into the camera and using the color at that pixel. Note that the camera viewpoint

has been moved from the original location to better show the 3D structure.
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conference-rooml

conference-room2

b7

dorml

conference-room3

Figure 7-7: Shape Anchor predictions (2 of 3). Please see Figure 7-6 for an explanation
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Shape Predictions

-IL

office2

conference-room4

dorm2

Figure 7-8: Shape Anchor predictions (3 of 3)

Image

Please see Figure 7-6 for an explanation



Chapter 8

Conclusion

We have explored ways of improving multi-view 3D reconstruction by using a combi-

nation of multi-view geometry and recognition.

We introduce a large database of RGBD videos, along with their ground-truth 3D

reconstructions. These videos were recorded in a wide variety of locations and were

captured so as to cover each place as much as possible.

We use this dataset to perform a new reconstruction task. We propose that

there are elements of a scene, called Shape Anchors, for which the combination of

recognition and sparse multiple view geometry allows us to confidently predict the

underlying, dense point cloud with low error.

We then describe a data-driven way of detecting Shape Anchors in videos where

the camera pose has been estimated, and we have triangulated points. Given an image

patch, we search a database of RGBD videos for the most similar-looking image patch

(using only R.GB information), and then test whether the geometry of the retrieved

match agrees with the sparse points. Matches that pass this test becomes Shape

Anchor proposals, and we use an inference procedure that, jointly, distinguishes the

good and bad proposals. Finally, we transfer the point clouds from the resulting

Shape Anchor proposals into the scene, making a reconstruction that is denser in

these high-confidence regions.

We analyze the accuracy of the fully reconstructed scenes and find that the pro-

posed geometry has relatively low error (in the 0.1-meter range). Since the geometry
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that comes from these predictions is dense, it can potentially provide useful high-level

information that may not be as readily apparent from the point cloud alone.

We hope that in future work, we can use Shape Anchors to improve the metric

accuracy of the reconstructed geometry. We would also like to explore how we can

use Shape Anchors as the basis for growing a dense reconstruction, even in places

where there are no Shape Anchor predictions.
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Appendix A

Features used for Verifying Shape

Candidates

We include a list of features used to verify shape candidates, as described in Section

(5.3). We have omitted some features that were used in our experiments but which do

not seem to contribute much to the classifier's ability to discriminate between classes.

1. Convolution score.

2. Corig - Cdtn where crig is the center pixel of the rectangle containing the original

patch and Cdtn is that of the shape candidate's detection. This is to capture the

fact that the same object will look different depending on where in the image

it appears. We also include the ratio between the area of the patch's area (in

pixels) and the detection's area.

3. The number of points in the point cloud arid the number of quadrants of the

detection window that they cover.

4. An estimate of the matching error, using the point cloud as an estimate of the

ground-truth shape: #(M, C'), where M is the point cloud, C' is the recentered

candidate shape, and # is the error measure defined in Equation (4.2).

5. We define Hd(X, Y) to be the histogram, computed over points x E X, of

min |I x - y 11, using histogram bins separated by 0, .05, .1, .15, .2, .4, and oc
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meters. We include as features Hd(M, C') and Hd(C', M).

6. We include a histogram that measures the similarity between the shape candi-

date and the next two candidates with the highest convolution scores (restricted

to be from different sequences). jHd(C', C2) + !Hd(C', C3), where C2 and C3

are the next two candidates, aligned using the procedure described in Section

5.2. And the reverse: !Hd(C2, C') + !Hd(C3, C').

7. The magnitude of the vector representing the translation used to align the points

in Section (5.2).
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