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Abstract
In this thesis, we study approaches for detecting anomalous regions in brain connectiv-
ity networks estimated from resting state fMRI. We are motivated by the problem of
localizing diseased regions to be resected in pre-surgical epilepsy patients. Our goal is
to investigate the potential of these non-invasive connectivity approaches to augment
and even replace the clinical gold standard for localization, which requires invasive im-
plantation of electrodes onto the surface of the brain. We focus on adapting an existing
method that detects anomalies from a small set of large candidate regions in a popula-
tion of patients. The main contribution of the work is to develop this method for our
application, so that it can efficiently identify anomalies from a large set of small candi-
date regions in a single epilepsy patient. We find that standard statistical approaches
identify regions that overlap reasonably well with electrode recordings of abnormal
activity, but are sensitive to manual parameter selection. Our method matches this
performance, but has the advantage of automatically determining its corresponding pa-
rameters. While localization is not generally accurate enough to consider replacement
of invasive electrode implantation, the method discovers potentially diseased regions
that may better guide electrode placement.

Thesis Supervisor: Polina Golland
Title: Associate Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

In this chapter, we introduce the application and scope of this thesis. In Section 1.1, we

briefly describe epilepsy as a disorder, the importance of surgical resection of epilepto-

genic areas and how these areas are imaged for surgical planning. We then clarify the

goals of the research in Section 1.2, and provide an outline of the thesis in Section 1.3.

M 1.1 Epilepsy & The Epileptogenic Zone

Epilepsy is a chronic disorder symptomatically characterized by seizures. These seizures

can be defined as transient manifestations of abnormally excessive neuronal activity,

or spiking, in the gray matter of the cerebral cortex [19]. The International League

Against Epilepsy defines two main categories of seizure: generalized seizures, which

begin simultaneously across the cortex; and partial seizures, which begin in one or

a few focal regions and spread to affect a larger areas of the brain [26]. While the

basic mechanisms of these seizures are understood to include molecular and cellular

abnormalities, it is clear that epilepsy is a function of large populations of synchronously

active neurons and abnormalities in widespread brain networks [23, 25].

Epilepsy is a relatively common neurological disorder with a prevalence rate of

around 0.5% [19]. Initial treatment involves prescription of anticonvulsant medication,

which prevents seizures for around 80% of patients [11]. When medication is ineffective

and the patient experiences partial seziures, the most appropriate course of action is

surgical resection of the area causing the seizures, which is known as the epileptogenic

1
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- - - - epileptogenic zone

epileptogenic lesion

onset zone

potential onset zone

irritative zone

symptomatogenic zone

Figure 1.1: The epileptogenic zone is characterized by several regions. The most im-
portant are the epileptogenic lesion, when it is observable, and the seizure onset zone.
Resection of these regions may not always eliminate seizures because of other poten-
tial onset zones. The irritative zone may include these potential onset zones, but may
also include other non-epileptogenic regions. The symptomatogenic zone is the area of
eloquent cortex that the seizure activity spreads to first and typically does not overlap
with the epileptogenic zone.

zone [12]. Accurate localization of this area promises to reduce the amount of tissue to

be removed, thus limiting potential damage to brain function.

The epileptogenic zone is specifically defined as the minimal area of cortex that must

be resected or completely disconnected to eliminate seizures [28]. During presurgical

evaluation, it is characterized by several areas, which are illustrated in Figure 1.1.

In some patients, the epileptogenic zone is fully characterized by the epileptogenic

lesion, which is a macroscopic lesion either caused by a proximal epileptogenic region or

is epileptogenic itself. This is convenient because magnetic resonance imaging (MRI) is

non-invasive and can be used to obtain a high resolution scan of the lesion.

Although a lesion is almost always present, it may be microscopic and not observable

from conventional MRI [28]. In these difficult cases, functional measurements of the

brain are used to identify regions that exhibit the abnormal spiking behavior indicative

of seizure activity. This spiking may be ictal, occurring at the onset of a seizure, or

2



interictal, occurring between seizures.

The onset zone is the area of cortex that exhibits the initial ictal spiking of a seizure.

In some cases, this is identical to the epileptogenic zone. However, complete resection

of the onset zone does not always eliminate seizures, due to the suspected presence of

potential onset zones that continue to initiate seizures after surgery. The onset zone

can be coarsely localized using scalp electroencephalography (sEEG), which is non-

invasive, but only detects spiking that synchronizes over a relatively large area of the

cortex [1]. Intracranial EEG (iEEG), where electrodes are implanted directly onto or

into the brain, can refine this localization, but requires invasive surgery that increases

risk to the patient's health.

The irritative zone is the area of cortex that exhibits interictal spiking and is usually

more extensive than the epileptogenic zone. It may include potential seizure onset zones

that are not observable from ictal measurements, but it may also include areas that are

only peripherally related to seizure events. Only magnetoencephalography (MEG),

sEEG and iEEG have the necessary temporal resolution to reliably detect interictal

spiking, but these modalities are limited by their relatively low spatial resolution [28].

Functional MRI (fMRI), which has a lower temporal resolution, but higher spatial

resolution, may also be used to localize the irritative and onset zones, but its reliability

is unclear [33].

Finally, the symptomatogenic zone is the area of eloquent cortex that, when acti-

vated, produces the initial ictal symptoms. For example, a patient may initially exhibit

seizure related tremors in their left arm, indicating that the symptomatogenic zone is

contained within the right motor cortex. Typically, the symptomatogenic zone does not

overlap with the epileptogenic zone, but is simply the area of eloquent cortex that the

seizure activity spreads to first.

3Sec. 1.1. Epilepsy & The Epileptogenic Zone



N 1.2 Scope of the Research

Our goal is to investigate the accuracy of using brain connectivity anomalies derived

from resting state fMRI for localization of epileptogenic regions. The proposed approach

offers two potential advantages for surgical planning in epilepsy. First, fMRI may

provide additional information alongside sEEG and MEG for coarse localization, which

is used to determine where iEEG electrodes should be placed. If connectivity analysis

reliably detects regions that overlap with neural spiking, then other detected areas may

be suitable candidate locations for electrodes. Second, non-invasive localization using

fMRI has the potential to ultimately replace the invasive procedure of iEEG.

Most resting state fMRI studies are exploratory in nature, and are rarely compared

against anything resembling ground truth. By contrast, we evaluate results with respect

to iEEG spiking labels and design a principled approach to such evaluation. Further-

more, existing connectivity analysis techniques typically restrict attention to a small

number of large regions. But since epileptogenic regions may be small, we must adapt

existing methods to scale well with large numbers of small regions.

N 1.3 Outline of the Thesis

The remainder of this thesis is organized as follows. In Chapter 2, we introduce the

measurements used in this work and review existing approaches of brain connectivity

analysis, taking special consideration of methods that detect anomalous connections

and regions in patients with neurological disorders. In Chapter 3, we adapt a previ-

ously demonstrated model of anomalous region detection in a population of patients to

the problem of anomaly detection in a single patient and present efficient inference al-

gorithms that scale well as the number of regions grows. In Chapter 4, we compare the

algorithms on synthetic data to evaluate performance and empirical run time, and also

compare detection accuracy on clinical data with existing approaches. In Chapter 5,

we highlight the contributions of the thesis and suggest future research directions that

may help to improve epileptogenic zone localization.

4 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In this chapter, we introduce the measurements, typical pre-processing steps and brain

connectivity analysis techniques. In Section 2.1, we present intracranial EEG as the gold

standard for epileptogenic zone localization and the challenges associated with using it

for validation of anomaly detection in the cerebral cortex. In Section 2.2, we introduce

resting state fMRI as a measurement of brain connectivity and discuss pre-processing

steps. Furthermore, we review analysis techniques that discover regions associated with

deviations from healthy brain connectivity in patients with neurological disorders.

* 2.1 Intracranial EEG

EEG Electrodes can be used to measure electrical activity in the brain caused by voltage

fluctuations [35]. These electrodes are typically placed on the scalp and provide a noisy

measurement of neural activity. For pre-surgical evaluation of some epilepsy patients,

sEEG measurements are used to provide a coarse localization of the onset zone. In order

to refine this localization, a craniotomy is performed and iEEG electrodes are implanted

onto the surface of the brain. Due to the location of these electrodes, iEEG measures

electrical activity in the cortical gray matter more accurately than scalp EEG or MEG,

especially in regions far from the exterior of the head, such as the inferior temporal and

frontal lobes [8]. However, for similar reasons, even iEEG provides poor measurement

of subcortical activity. The measurements also have a limited spatial resolution, with

a typical distance between electrodes of around 10mm.
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* ictal & interictal

00000000
00000
0..

00000000
100000000

- epileptogenic zone

ME= epileptogenic lesion
onset zone
potential onset zone
irritative zone

symptomatogenic zone

Figure 2.1: In iEEG, electrode arrays and strips are placed over a limited area of the
cortical surface that is suspected to contain the onset zone. An epileptologist labels
electrodes that exhibit abnormal ictal and interictal neural spiking.

Electrical activity in epilepsy patients is recorded for roughly one week, during which

a patient typically experiences a few seizures. An epileptologist studies the observed

activity and labels electrodes that exhibit abnormal ictal and interictal neural spiking,

as shown in Figure 2.1.

Typical presurgical planning involves acquisition of a post-implantation CT volume,

which is used to identify the actual location of the implanted electrodes. Modern

electrodes produce a CT intensity higher than brain, bone and most connector wires,

so can be localized with relative ease. As the number of electrodes is typically less than

one hundred, manual localization is a practical approach. A semi-automated method

for electrode localization has been previously demonstrated [48], but it still requires

manual identification of a few electrodes and also requires a post-implantation TI MRI

volume, which is not always available.

Our goal is to evaluate the accuracy of epileptogenic zone localization in the cortex

of the brain. The cortex can be extracted from a pre-implantation T1 MRI volume using

the Freesurfer software package [15]. Initially, the post-implantation electrode locations

need to be transferred to the pre-implantation TI volume. Despite the displacement

of tissue and bone due to the craniotomy, and the presence of the electrode arrays,

there is usually enough structural overlap for accurate rigid alignment between the

6 CHAPTER 2. BACKGROUND



Sec. 2.2. Resting State fMRI 7

CT and MRI volumes. As the image intensity of bone is relatively high in CT, but

relatively low in T1 MRI, a mutual information cost criterion is typically used to drive

the alignment [46].

Unfortunately, the craniotomy and electrode implantations may cause significant

deformation of the brain [24], which cannot be accounted for by rigid alignment of the

CT and MRI volumes. Standard volume based non-rigid alignment methods are not a

viable option due to the presence of the electrodes in the CT volume.

However, we know that the electrodes must lie on the cortical surface of the brain.

As the electrodes are configured in grids and strips, they strictly lie on the hull that

envelops the pial surface, rather than in sulcal folds. We refer to this hull as the dural

surface and can approximate it by smoothing the extracted pial surface [38]. A simple

way to correct for post-implantation brain deformation is to project each electrode

location to the closest point on the dural surface. A more complex approach [10] also

attempts to minimize the distortion of the electrode array configuration.

* 2.2 Resting State fMRI

Clinical iEEG is the gold standard for identifying the onset and irritative zones, but

only covers a limited area of the cortex and has a coarse spatial resolution. By contrast,

fMRI has a spatial resolution of around 2mm and allows measurement, albeit indirect, of

neural activity across the entire brain. This indirect measure is captured by the BOLD

contrast, which measures local changes in blood oxygenation [36]. As brain regions are

activated, energy requirements force oxygen metabolism to increase, thereby linking the

BOLD contrast to neural activity [18].

Resting state fMRI probes brain activity in the absence of any particular stimu-

lus. The measured BOLD time series capture fluctuations in functional activity that

the subject happened to be undergoing at the time of acquisition, as illustrated in

Figure 2.2. These measurements are of interest because they reveal the intrinsic func-

tional connectivity between regions of the brain, unbiased by a specific task or stimu-
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Figure 2.2: In resting state fMRI an interictal BOLD time series is observed at each
voxel. The temporal resolution is too coarse to accurately detect abnormal spiking.
Instead, correlations between the time series are used to infer the functional connectiv-
ity between voxels. Connections associated with epileptogenic regions are thought to
exhibit a deviation from those of healthy controls.

lus [4]. A functional connection in this context does not necessarily correspond to an

anatomical tract of white matter directly connecting two regions. Instead, it simply

indicates that two regions exhibit functional synchrony through the correlation of their

time series. However, multiple studies have found that functional and anatomical con-

nections tend to co-occur [22, 40], suggesting that functional connections capture the

underlying brain network. Epilepsy is thought to be strongly related to brain network

disorganization [23, 25]. Resting state fMRI studies have found significant differences

between the functional connectivity of epilepsy patients and those of a healthy popula-

tion [30, 32, 37]. In some cases, these differences have been found to stem from regions

in the vicinity of the epileptogenic zone [3, 41].

In order to find the functional connectivity differences between a patient and a group

of healthy subjects, we must first pre-process the raw sequence of fMRI volumes so that

confounds specific to the acquisition of each subject are removed. These confounds may

be caused by differences in the shape and size of the subjects' brains, subject motion

in the scanner and biological processes not directly linked to brain activity, such as the

8 CHAPTER 2. BACKGROUND



respiratory and cardiac cycles [29].

A detailed study on the effects of these confounds and robust ways to remove them

can be found in [42]. For each acquisition, the first four volumes are discarded to

allow for TI equilibration effects. As fMRI scans typically employ an echo planar

imaging protocol, each slice within a single volume is acquired at a different time. To

correct for this, the slices are temporally aligned by shifting the time series accordingly.

Furthermore, each volume in the sequence is rigidly aligned to the first volume to

account for patient motion in the scanner [20]. Since functional correlations are most

consistently produced by BOLD fluctuations in the frequency range of 0.01-0.08Hz [4],

bandpass filtering is applied to the time series to remove any signal outside of this

range. Finally, a few confounding signals are removed from the time series using linear

regression. These consist of the mean time series across the whole brain, which likely

accounts for the signal induced by breathing; that of the deep cerebral white matter,

which carries no regionally specific functional signal; and that of the lateral ventricles,

which carries no functional signal at all. Regressors are also formed from translation

and rotation parameter values estimated from motion correction, as subject motion

induces signal in the acquisition. Additionally, derivatives of all regressors are included

to remove temporally shifted versions of the signals.

The pre-processing pipeline also includes spatial normalization. The anatomy of the

brain is variable in size and shape, even across subjects in a healthy population. Spatial

normalization translates, rotates and smoothly deforms each subject's anatomy into a

common anatomical template, so that locations in the brain can be directly compared

across subjects. This template may be a specific subject, an average brain [13] or

a probabilistic atlas of healthy brains [31]. There are inevitable normalization errors

because the brains of different subjects cannot be smoothly and exactly transformed to

one another. This misalignment can be ameliorated by applying spatial smoothing, so

that each voxel contains a weighted average of its neighbors' time series. While this step

effectively reduces the spatial resolution of the data, it typically increases the statistical

Sec. 2.2. Resting State fMRI 9



compute compute
mean pair-wise I
time correla- o
series tions

Figure 2.3: The brain can be parcelated into a relatively small number of regions of
anatomical and functional interest. Correlations between their associated mean time
series are used as manageable observations of functional connectivity in the brain.

power of comparison across a group of subjects.

The functional connectivity between two voxels can be measured by computing the

Pearson correlation coefficient between their fMRI time series. Assuming the brain cov-

ers N voxels, the functional connectivity of the entire brain can be characterized by the

N x N symmetric positive semi-definite matrix, where a large positive element suggests

the presence of a functional connection. Large negative elements may indicate the pres-

ence of an antagonistic functional connection [34], but should be treated with caution

as the neurophysiological basis of such negative correlations is not well understood [47].

Our goal is to automatically identify salient regions and networks in the brain from

this matrix. However, the number of gray matter voxels in an isotropic 2mm brain is

roughly N = 2 x 105, which makes computation with this matrix impractical. One

way to overcome this computational problem is to partition the whole brain into a

smaller number of relatively large regions, and associate each with its mean time course.

Correlations between these mean time courses can then be calculated to produce a

smaller matrix, as shown in Figure 2.3, enabling efficient analysis. For example, the

FreeSurfer software package [14] automatically partitions the brain into N = 150 cortical

parcels of anatomical and functional interest [9]. Alternatively, smaller regions can be

defined by uniformally subdividing the cortical surface, producing as many as N - 1175

10 CHAPTER 2. BACKGROUND



regions to analyze [49].

U 2.2.1 Statistics of Functional Correlations

In resting state fMRI, each correlation is an observation of functional connectivity

between two regions. We aim to discover whether such a correlation observed in an

epilepsy patient deviates from the corresponding correlations observed in a healthy

population of subjects, as illustrated in Figure 2.4. Alternatively, we can declare a null

hypothesis that this correlation does not deviate from the healthy population. The

associated Normal null distribution over this correlation is completely defined by its

mean and variance, which can be estimated from a sample of H healthy subjects as

1H H

Am =H bnm, i nm H - 1 Z(bnmh - pnm)2 ,
h=1 h=1

where bnmh is the correlation between regions n and m of healthy subject h.

The correlation bnmu in an epilepsy patient u can then associated with a z-score

that takes on higher magnitudes as it deviates from the mean of the null distribution:

bnmu - Pnm
znmu=.

Unm

We aim to detect both abnormally low and high correlations, and therefore choose

the absolute value of Znmu as our connection statistic. This approach has been applied

to studies of epilepsy [3, 30] and other neurological disorders [7], and typically highlights

many connections associated with correlations that significantly deviate from normality.

By setting a threshold a, the abnormal connectivity associated with a region can

be summarized by calculating the proportion of significantly different correlations:

pnu(a) = N- 1 1 1  1(Iz'muI > a). (2.1)

where 1(-) is equal to one when its argument is true and zero otherwise.

11Sec. 2.2. Resting State fMRI



healthy subjects patient

B 1  BH Bu

estimate correlation compute correlation
mean and variance z-score

0

0p 2 Z" = I

compute region statistic

NIEZUl > a

Figure 2.4: One approach to identifying anomalous regions is to compute a z-score
for each element of the correlation matrix B, of patient u. This represents the devia-
tion from corresponding correlations of a sample of H healthy subjects. A statistic is
computed for a region by counting the proportion of correlations over a threshold a.

U 2.2.2 Statistics of Graph Theoretical Features

A general limitation of correlation statistics is that it is unclear how to summarize

the resulting statistics for each region. Instead, we can treat the functional brain

network as a graph, where nodes correspond to brain regions and the presence of edges

is determined by whether the correlation between two regions is above a pre-selected

threshold [6, 17]. Graph theory can be used to compute features of the nodes, which

are scalar values that characterize some notion of importance or centrality in the graph.

For example, the degree centrality d,. associated with region n of patient u is the

12 CHAPTER 2. BACKGROUND



Sec. 2.2. Resting State fMRI

proportion of other regions that region n is connected to:

dan(#)= N I 1(bnmu> ),
m=An

where # is a threshold that determines whether a correlation corresponds to a functional

connection. We aim to detect those regions that exhibit significantly different degrees

in patient u compared to those in a healthy population, as illustrated in Figure 2.5.

This property is captured by the absolute value of the degree z-score:

z(/) das(#3) - pu,7(#3)
z() , (2.2)

where pn(#) and un(#) denote the mean and variance of the healthy degree and are

estimated as

H H

pf() =dh(), ol(#3) = H-i 1Z(dh(3) - p(#3))2.
h=1 h=1

In functional connectivity analysis, the degree centrality can be restricted to local

or distal regions of the brain to produce different characterizations [39]. These showed

promise for localization of epileptogenic regions in a recent study of pre-surgical epilepsy

patients [41]. Another feature is betweenness centrality, which is the number of shortest

paths between all pairs of nodes a particular node lies on. This measure represents how

important a particular node is for efficient communication in a graph. Nodes with high

betweenness centrality were found to be reproducible across healthy subjects, and were

found to correlate with regions of the brain that exhibited high amyloid-# deposits in

a study of Alzheimer's patients [5]. When the number of nodes in the graph is large,

computing the betweenness centrality becomes impractical, but can be approximated

in brain networks with the more easily computable eigenvector centrality [27].

13
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Figure 2.5: We can construct a binary graph of functional connectivity by thresholding
the correlation matrix Bu of patient u with a threshold 3. In this graph, nodes cor-
respond to regions. Graph theory can be used to compute features of these nodes in
the patient, such as the degree centrality, and compute the deviation of corresponding
features in H healthy subjects.

0 2.2.3 Generative Models of Functional Connectivity

Using discriminative statistics is by far the most common approach in connectivity

studies of neurological disorders. Rather than searching for a sensitive statistic of the

observed correlations, we can instead attempt to build a probabilistic generative model

of them. This approach has found widespread use and success in computer vision due
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Figure 2.6: The generative model of anomalous regions proposed by [44]. Here, la-
tent random variables represent anomalous regions ru and connections T,. The model
captures the probabilistic relationship between these latent variables and the observed
correlations. By designing a suitable algorithm, the latent anomalous regions can be
recovered from the observed correlations without the need for parameter selection.

to its robustness and interpretability. However, generative models have seen far less use

in resting state fMRI connectivity analysis.

A notable exception is a random effects model of symmetric positive definite ma-

trices, which is used to define a Normal distribution of correlation matrices in healthy

subjects [43]. This method uses a tangent space parameterization of symmetric positive

U
0
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definite matrices, which allows the parameterized elements to be treated as indepen-

dent, while maintaining the dependency structure in the underlying correlation matrix.

Non-parametric sampling of the healthy subject distribution is used to define a null dis-

tribution of healthy deviations away from the mean correlation matrix, which is then

used to perform a statistical test on the deviations observed in stroke patients. The

method is similar in spirit to the approach of performing statistical tests on correlations

and also requires an adhoc summary of the correlation statistics for each region.

Another approach proposes a generative model of functional and anatomical brain

connectivity in a healthy population and of the deviations from this in a schizophrenia

patient population [45]. The model uses latent discrete random variables to represent

different states of functional connectivity. Given a connectivity state, a correlation is

generated from a corresponding Normal distribution that is shared across subjects and

patients. In contrast to standard graph theoretic approaches, continuous correlations

are softly assigned to connections without the need to choose a threshold. This model

can also be extended to describe how anomalous regions give rise to anomalous con-

nections shared across an unhealthy population [44]. The basic idea is illustrated in

Figure 2.6.

Given the anomalous state of two regions, an anomalous connection is drawn from a

Bernoulli distribution defined such that anomalous regions are associated with a large

number of anomalous connections. In contrast to correlation statistic approaches, this

number is automatically determined from the data. The goal is to invert the generative

process and estimate the posterior probability of each region being anomalous, given

the observed correlations of healthy subjects and patients. The current approach uses

a combination of Gibbs sampling [16] and a variational approximation [21] to perform

this estimation. In the application of the model, the number of regions N = 70 is small.

However, for the large number of regions required in our application, Gibbs sampling

is computationally impractical. In the next chapter, we adapt this method for anomaly

detection in epilepsy patients.
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Chapter 3

Methods

We start this chapter by describing our generative model of anomalous regions in Sec-

tion 3.1. This construction builds on the generative model described in [44]. In contrast

to the previously proposed method, the anomalous regions in our model are not shared

across patients, which is appropriate for application to epilepsy patients. However,

we do allow for parameters associated with anomalies to be shared across subjects.

In other words, the characteristics of change are common across patients, but can be

located in different regions. We present two mean field variational algorithms for pos-

terior estimation that scale well as the number of regions grows. The first algorithm,

described in Section 3.2, approximates posteriors over all purely latent variables. The

second, described in Section 3.3, marginalizes some of the latent variables to improve

the accuracy of the estimation.

* 3.1 Generative Model of Anomalous Regions

Let R,, be a Bernoulli random variable indicating that region n of patient u is anoma-

lous. Rnu is drawn from the distribution

p(rnu; 7r) = 7rrnu(1 - 7r)1-rnu, (3.1)

where 7r E (0, 1) is the parameter of a Bernoulli distribution.

Let Tnmu be a Bernoulli random variable indicating that the connection between

regions n and m of patient u is anomalous. Tnmu is dependent on the anomalous state

17



of the regions at either end of the connection, and is drawn from the distribution

[I (tnm) if ru = rmu = 0,

p(tnmu~rnu, rm;) = 6(1 - tnm) if ru =rmu = 1, (3.2)

1mtninu(i - 77)1-t-mu if ran -4 rmu,

where 6 is the Dirac delta function and q C (0, 1) is the parameter of a Bernoulli dis-

tribution. Tnmu is deterministic if the anomalous state of regions n and m in patient

u is the same, and is a Bernoulli random variable with parameter q if they are differ-

ent. This distribution encourages anomalous networks containing cliques of anomalous

nodes, where larger values of 77 allow more edges outside of cliques to be affected.

Let Fnm be a multinomial random variable indicating the state of healthy connec-

tivity between regions n and m. We use three states of connectivity: fnm[-1] = 1

denotes a negative connection; fnm[0] = 1 denotes no connection; and fnm[1] = 1 de-

notes a positive connection. Exactly one component of fnm must be equal to one. Fnm

is drawn from the distribution

1

p(fnm; 7) = ]7 7km[k] (3.3)
k=-1

where y = (7-1,yo, 71) is the parameter vector of a Multinomial distribution such that

yk E (0,1) and $ __Yk 1.

Let Fnmu be a multinomial random variable indicating the state of connectivity

between regions n and m of patient u. Fnmu is dependent on Tnmu, the anomalous

state of the connection between regions n and m of patient u, and on Fnm, the healthy

connectivity state between regions n and m. Fnmu is drawn from the distribution

(1 - e)fnTm/nmu g)1-fnjnm" if tnmu = 0,
p(fnmulfnm, tnmu; E) = T (3.4)1fnijTmnmnu .1- famnmu if tnmu = 1

18 CHAPTER 3. METHODS



where c E (0, 1) is the parameter of a Bernoulli distribution. If the connection between

regions n and m of patient u is anomalous, the connectivity state is perturbed from the

healthy template with high probability 1 - e. Conversely, if the connection is normal,

the connectivity state is perturbed with small probability E.

Let Bnmh be the random correlation coefficient between the time series of regions n

and m of healthy subject h. Bnmh is dependent on the healthy connectivity state, and

is drawn from a mixture of Normal distributions:

1

p(bnmhlfnm; [, a) = .N(bnmh; pk, Ok)fnm[k], (3.5)
k=-1

where yJ= (p_1,Ipo,fpi), a = (a-1, ao, i) and K(-;Ipho) is a Normal distribution

with mean Ak and variance a.

Similarly, let Bnmu denote the random correlation coefficient between the time series

of regions n and m of patient u. Bnmu is dependent on the connectivity state of the

patient, and is drawn from the same mixture of Normal distributions as the healthy

correlations:

1

p(bnmulfnmu; t, C) = .IV(bnmu; pk, 0k)fnmu[k]. (3.6)
k=-1

We assume independence between all healthy subjects and patients, independence

between healthy connections and independence between regions, and thus obtain the

full joint distribution:

p(f, b, r, t, f, 6; 6) = p(f; ')p(blf; yt, g)p(r; 7r)p(tlr; r/)p(f If, t; E)p(blf; y, a)

N H

= l r p (fnm; 7y) l p (bnmh lfnm; P, Or) (3.7)
n=1 m>n h=1

N UJ7J p(rnu; 7r) fJ p(tnmuIrnu, rmu; r/)p(fnmulfIAm, tnmu; E)p(bnmulfnmu; A 7) )
n=1 u=1 m>n
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CHAPTER 3. METHODS

Figure 3.1: The directed graph that represents the interaction between the random
variables and parameters in the probabilistic model we use for anomalous region detec-
tion. Circles correspond to random variables, and squares correspond to parameters.
Shaded circles indicate observed values.

where 6 = (7r, , 7, E, y, a-

We summarize this generative model with the graphical model shown in Figure 3.1.

The interaction between the region label R., and the edge Twmu is detailed in the

graphical model shown in Figure 3.2.
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Sec. 3.2. Mean Field T-Algorithm

Figure 3.2: The directed graph that represents the interaction between anomalous
regions {R,, : n - 1 ... N} and connectivity states {Tnmu : n = 1 ... N, m > n} for
patient u. Parameters are omitted for clarity.

* 3.2 Mean Field T-Algorithm

Our goal is to compute the posterior probability p(ra1 |Ib, b; 9) for all regions n E {1,. . ., Nj

in all patients u E {1,... , U}. This requires marginalizing out all latent random vari-

ables in the model to compute the partition function p(b, b; 9).

We can easily sum over T to obtain

- e)f/imfnmu ()1f ' .fn...

p(fnmuIfnm, rnu, rmu; z7, e) = ef2mnmu (.La)1-fjmfnm"u

[cf m2m a() 1-, JnMU
i (2 )

if ru = rmu = 0,

if r = rmu - 1, (3.8)

if nu rmu,
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where e1 = 7e + (1 - 7)(1 - 6).

Now, the full joint distribution is of the form

p(f, b, r, f, 6; 0) = p(f; 'y)p(bff; p, o)p(r; r)p(f f, r; i, e)p(blf; p, o)

N H

= (T> p(fnm;7) f p(bnmhIfnm; A, o) (3.9)
n=1 m>n h=1

N U

I rl p(rnu; 7r) H p(fnmulfnm, rnu, rmu; )p(nmulfnmu; i 0)-
n=1 u=1 m>n

Due to the dependence of Fnmu on Ran and Rmu, marginalizing out R requires a

summation over all possible binary vectors of length N representing possible values of

the anomalous region vector ru for each patient. There are 0( 2 N) such vectors, making

this sum computationally intractible. We choose to approximate the sum by estimating

a mean field variational factorization of the posterior probability distribution, which

gives us a lower bound on the partition function [21].

Computing the posterior p(rnul6, b; 0) also requires an estimate of the parameter

vector 0. Here, we choose the variational EM algorithm for this estimation [2], which is

described in Algorithm 1. This algorithm also requires the posteriors p(fnm| , b; 6) and

p(fnmIulb, b; 6), which the mean field factorization provides. The factorization takes the

form

p(f, r, f1b, b; 6) ~~ q(f, r, f) = qF(f)qR(r)qj(f) (3.10)
(N \ N U 1 1

= 1 E (qFam[k])ffm[kj L[ n(q ) ] fi (qpu[k)Inmu[k|
n=1 m>n (n=1 u=1 1=0 m>n k=-1

We update the factors q = { qFa, qRn.,qp } by minimizing the variational free

22 CHAPTER 3. METHODS



Data: Correlation coefficients of healthy subjects b and patients 6.
Result: Posterior probability estimates q and parameter estimates 6.
initialize q(0) as uniform distributions
initialize 6(0) randomly from uniform distributions

C(0) <- o
C1) +- E(q(O), 6(0); b,

while (E(s) - E(s+l))/g(s)| > 10~4) do
s+-s+11
t +- 0
gC(s,o) _OC)

q(8) +- q(s-1)
while (e(st) - g(s,t+1)) 1gE(s,t)| > 10-4) do

t <-t+1
q(8) <-- update(q(s) , 0(8-1),7 bb)
en(st+1) d- E(q(t+1), 0(s-1- b, 6)

end

0(*) +- update(q(s) ,6(s-1),I b, 6

end

return q(s), (s)

Algorithm 1: The high level structure of the variational EM inference algorithm. For
each iterative update of the parameters 6 in the outer loop, we must iteratively update
the posterior probability estimates q in the inner loop.

energy E(q, 6; b, b) for fixed observations (b, b) and parameters 6:

E(q, 6; b, b) = -Eq[logp(F, b, R, F, b; 6)] + Eq[log q(R, F, F)]

= -EqF [log p(F; y)] - EqF [logp(blF; p, a)] - Eq,[log p(R; 7r)]

- EqFqRq, [logp(FjF, R; e, 77)] - Eq,[log p(b|F; y, o)]

+ EqR [log qR(R)] + Eq [log qF(F)] + Eq,[log qp(P)]. (3.11)

The factors are initialized as uniform distributions and are iteratively updated to

minimize the energy according to the following update equations.

Assuming the number of healthy subjects is substantially larger than the number of

Sec. 3.2. Mean Field T-Algorithm 23



CHAPTER 3. METHODS

patients, the update for the healthy connectivity factor is mostly driven by the Normal

likelihoods of the correlations in the healthy subjects:

H

log qFnm [k] - log-yk + Elog (bnmh; p4, 9k)+
h=1

U 
2e2(1- e)2

E Fnrnmu [k] (qR,. [0] qR± [0| log +
u=1

(qRu [1| Rmu[0|+ qRnu[0] qRl[1]) log 1 + const. (3.12)

This estimate is only influenced by a patient when their corresponding connectivity

posterior probability is high. In this case, a high probability of healthy regions at either

end of the connection increases the estimate and a high probability of unhealthy regions

decreases it.

Updates for the connectivity posterior of patient u are similar:

logqp = logN(bnmu; Pk,)+

( ~ 2(1 - e) 2e_
qFnm[k] qRnu[0|Ru[0] o + qRnu [1] qRmu[1] log 1 +

(qRnu[1]qRmu[0] + qRnu[0|qRmu[1]) log 2E1 + const. (3.13)

This update is affected by the Normal likelihood of the unhealthy correlation, and is

also affected by the subject's region label posterior probability as for qFnm[k] when the

corresponding healthy connectivity posterior probability is high.

Updates for qRn [1J take on relatively high values compared to qRn [0] when qFq
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has a low value for most connections from region n:

logqRn.[O1 = log(1 - 7r) + E qRm [0] q nmqpnmu log(1 - c) + (1 - mqpm) log +

m#n

(R[11 n nmu loge 61 ±(1 qnqp) lo 61+ const., (3.14)

logqR 1= logir + ( q [1 log 6+ (1 - qm qp ) log 1 ) +
mon

Rmu[] pnmu log 61 + (1 - q qp ) log 6 )+ const. (3.15)

A low value of qn qp_ occurs when the connectivity states associated with region

n of patient u differs greatly from that of the healthy population. This is accentuated

when the regions associated with differing connectivity also have a high chance of being

anomalous.

We iteratively update these posterior probability estimates in the order provided

above until there is little decrease in the variational energy. Specifically, we continue

iterating while (,(s) - g(s+1))/g(t)I > 10-4.

After convergence, the posterior probability estimates are fixed and we estimate

the parameters that minimize the variational energy. The parameters are randomly

initialized from uniform distributions, such that 7r E [0.01, 0.1], 7-1, 71 E [0.1, 0.3], 7o =

1 - -1 -l, p-1 E [-0.5, -0.2], i E [0.2,0.5], o' E [0.01,0.1]Vk, q E [0.1,0.5] and

c E [0.01, 0.05]. We initialize yo = 0 and keep this value fixed throughout the algorithm.

The other parameters are updated as described below.

The Bernoulli parameter 7r of an anomalous region is determined by the correspond-

ing average posterior probability:

1U N

1 S Ra[1]- (3.16)
u=1 n=1

The multinomial parameter vector of the prior over connectivity states is determined



in a similar way:

N

'Yk S E qFm[k] + cOnst. (3.17)
n=1 m>n

The Normal parameters are updated in a Maximum-Likelihood fashion and pooled

over healthy subjects and patients:

1n=1 Zm>n h=1 qEn[k]bnmh + U=i n[k]nmu)
Ak = E, (3.18)

n~=1 Zm>& (z' qFnm,,[k] + ZUi p

EN (EH 1 ~n,, =1] (bnk u=1 qpna..[k]b2

2 n=1 m>n h=1 qFnm[k](bnmh - Ik)
2 + =1 5nm[k] nmu - Ak)2

Ok Y: = p"[] 3-19)
n=1 Zm>n (zh=1 qFnm[k] + =1 Fnm[k])

where each correlation is weighted by the appropriate posterior probability.

The Bernoulli parameters q and E are inherently coupled. That is, the derivatives

of the variational energy with respect to q and e contain both parameters. Therefore,

we iteratively estimate optimal parameter values using a Gauss-Newton type descent

method. Specifically, we use the trust-region reflective algorithm implemented in MAT-

LAB and iteratively update E and q until the relative decrease in the variational energy

is less than 10-4. The asymptotic algorithmic complexity of computing the update

rules above and the required derivatives is 0(N 2 ).

E 3.3 Mean Field TP-Algorithm

In the existing model, we approximate the posterior distribution over R, F and F

because summing over all possible values of r is intractible. However, summing over all

possible values of f and f is much easier. Here, we marginalize out P, as the posterior

over this variable must be approximated for each patient and is therefore likely to be

more poorly estimated than F, which is estimated by pooling over observations from
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many subjects. Marginalizing out F provides

p(bnmulfnm, rnu, rmu; ) = p(fnmulfAm, rnu, rmu; r,)p(nmulIfnmu; A, o)

inmu

1

f= M 0 (&nmu; O)fnm[k]rnurmI1k (6nmu; g)f.m[k](1-rnu)(1-rmu)

k=-1

M (bnmu; 6 )fnm[k](rnu(1--rmu)+(1-rnu)rmu) (3.20)

where

M (bnm; 0) = (1 - E)Ar(nmu; Ak, O) -±- A (bnm; , 0), (3.21)
lk

U)+1 - ,
Mk1(6nmu;O) =eN(6nmu;JpkOk) +1 2 A Z (bnmu; Al, ol), (3.22)

I0k

M (6nmu; 0) = E1A(bnmu; 1-k, ok) + 1 1Z bmu; Ph 0c 2) (3.23)
10k

As e is assumed to be small, MO is dominated by the likelihood of the correlation

being drawn from the kth Normal distribution, whereas M1 is dominated by the likeli-

hoods of the correlation being drawn from the other Normal distributions. As Ei > E,

MO is an interpolation between these two terms as the value of r changes.

Now we can construct the joint probability distribution over all remaining random

variables as

p(f, b, r, b; 0) =p(f; -y)p(blf; p, o)p(r; 7)p(blf, r; 0)

N H

= I f p(fnm;iy) fl p(bnmh lfnmIi ,7)
n=1 m>n h=1

U N

111 p(rnu; 7r)p(.nmu Inm, rn, rmu; r1, E, p, o) (3.24)
A=1 n=1

As we have marginalized out P exactly, the variational factorization no longer ac-
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counts for it and takes the form

p(r, f Ib, b; 0) ~ q(r, f) = qR(r)qF (f)

(N 1

fj fj fj qFnm, [k]
n=1 m>n k=-1

The resulting variational free energy is

E(q, 0; b, b) -Eq[log p(F, R, b, b; 0)] + Eq[log q(F, R)]

= -EqF [log p(F; y)] - EqF [log p(blF; y, a)] - Eq,[log p(R; 7r)] (3.26)

- EqFqR [log p(b|F, R; E,r, p, a)] + EqR[log qR(R)] + EqF [log qF(F)].

As in Section 3.2, we update the posterior probability estimates to minimize this

variational energy, but according to the following equations.

The healthy connectivity state posterior probability is updated in a similar fashion

as in the T-algorithm:

H

logqF, [k] = log N + 1 log AN(bnmh; yk, 9k)
h=1

U

+ qRn,[O]gRm[0] log M (6nmu; 0) + qRnu[1]qRm[1 log Mk(bnmu; 0)
U==1

+ (qRnu [11qRml. [0] + qRnu[o]qRmu [1]) nmu; 0) + const. (3.27)

The anomalous region state posterior probability update is also similar to the T-

(3.25)

U N 1

)fnm [k] H j(Rnu [11 -n

) u=1 n=1 1=0
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algorithm:

logqR ,[0] = log(1 - 7r) (3.28)

1

+ qFnm1 [k] (qpRm[0 log A(6nmu; 0) + qRmu[1] log M (bnmu; 0) + const,
m n k=-1

logqRnu[1 = log(7r) (3.29)

+ Z qF[k] (qRmu[1] log M bnmu; 0) + qRm[0] log M (bnmu; 0) + const.
m#n k=-1

By fixing the posterior probability estimates, the updates for the parameters 7r

and y are unchanged from Equations 3.16 and 3.17, as the energy terms dependent

on these parameters do not change. However, by marginalizing over P, we introduce

a new dependence between (e, 77) and (p, a). Therefore, we use the derivatives of

the variational energy with respect to all these parameters to perform minimization

of the energy using the same trust-region reflective optimization method as in the T-

algorithm. Computing these derivatives is more computationally demanding than those

in the T-algorithm, and convergence is slower due to increased dimensionality of the

domain. Therefore, this optimization becomes the bottleneck of the TF-algorithm. The

asymptotic algorithmic complexity of computing the updates and required derivatives

is still O(N 2 ).

We can ease the computational demand of these updates by ignoring this depen-

dence. We can simply update p and a as in Equations 3.18 and 3.19, but ignore the

contributions of correlations from patients, as we no longer have estimates of the cor-

responding connectivity posterior probabilities. This relaxation assumes that we can

accurately estimate the Normal distribution parameters accurately from the correlations

of healthy subjects alone, and may not hold in real data where correlations of patients

may be distributed differently. We then update only (e, 7) using the trust-region reflec-

tive optimization method. While these are updates not guaranteed to reduce the overall

energy, they do minimize the terms with the largest contribution to that energy, and
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we find that minimization is stable in practice. We refer to this variant of the algorithm

as the TPH-algorithm.

* 3.4 Summary of the Algorithms

In summary, we propose three different algorithms for posterior probability and pa-

rameter estimation with respect to our model of anomalous region detection. These

algorithms have the same high level structure common to the variational EM algo-

rithm, which is described in Algorithm 1.

The T-algorithm marginalizes out the latent variable T that represents a binary

graph of connection anomalies and approximates posterior probabilites of all other la-

tent variables using a mean field factorization. All posterior probability and parameter

updates have closed form solutions, except for c and r, which are jointly optimized

using an iterative descent method. The TF-algorithm additionally marginalizes out

the latent variable F, which may be poorly approximated in the T-algorithm. This

marginalization introduces a dependence between the parameters (e, r) and the param-

eters (it, o), all of which must be jointly optimized using the iterative descent method.

The TPH-algorithm relaxes this dependence by estimating (p, a) from healthy subjects

only, and by optimizing (e, r/) separately using the iterative descent method.

These three variants of our inference algorithms are likely to have performance

and efficiency tradeoffs, which we explore in the following chapter by applying them

to synthetic data, generated from the model. We then apply the most appropriate

algorithms to real data from a clinical study of epilepsy patients.
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Chapter 4

Experiments

In this chapter, we evaluate the algorithms derived in the previous chapter on synthetic

and real data from fMRI scans of epilepsy patients. In Section 4.1, we sample synthetic

data from our generative model described in the previous chapter and evaluate the

detection performance of the corresponding inference algorithms. In Section 4.2, we

compare the detection performance of the most appropriate algorithms with some of the

existing methods reviewed in Chapter 2, when applied to a group of epilepsy patients.

* 4.1 Synthetic Experiments

We create synthetic data by generating samples of the latent and observed random vari-

ables from the model introduced in the previous chapter. Estimating model parameters

from such data enables us to evaluate the proposed inference algorithms, and to identify

how and when they fail. We also measure and compare the empirical computation time

of the algorithms. For reference, we implement the algorithms in MATLAB and run

them on a machine with 6 x 2.8GHz Intel Xeon X5660 processor cores.

* 4.1.1 Data

Our main interest is investigating the quality of inference for different values of the

parameters c and q. In clinical populations, these parameters may vary for differ-

ent disorders and even for different patients with the same disorder. As e increases,

the number of noisy abnormal connections between healthy regions increases. As q
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Figure 4.1: The two mixtures of Normal distributions (red) used for synthetic exper-
iments with sample observations binned into histograms (blue). The ideal configura-
tion (left) separates negative and positive connections from noise. The real configura-
tion (right) uses parameter values estimated from epilepsy data, where connections are
harder to distinguish.

decreases, the number of abnormal connections from unhealthy regions to healthy

regions decreases, making unhealthy regions easier to miss. Ideally, we require an

inference algorithm that performs well for relatively high values of e and relatively

low values of q. Here we generate data for pairs of these parameter values (e, 7) E

{0.01, 0.02, ... ,0.05} x {0.1, 0.2,. . .,0.5}.

The other parameters roughly describe how well we distinguish between differ-

ent types of connections and unhealthy regions. Here we consider two configura-

tions of (7r, -/, y, o). The ideal configuration corresponds to values of these parameters

where the Gaussian components are clearly separated, in that y = (-0.4,0,0.4) and

- (0.04,0.04,0.04). Connections and anomalous regions are fairly frequent, in that

(0.3,0.4,0.3) and 7r = 0.1. The real configuration corresponds to values of these

parameters estimated from real epilepsy data. Here, the Gaussian components overlap

considerably, in that y = (-0.15, 0, 0.35) and o- (0.025,0.035,0.05). Connections and

anomalous regions are less common, in that y= (0.4,0.4,0.2) and 7r = 0.05. We show

these mixtures of Normal distributions with example observations in Figure 4.1. For

each parameter configuration, we generate 10 samples of latent and observed random

variables. We set N = 148, H = 38 and U = 6, which corresponds to the number of
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regions, healthy subjects and patients in the real epilepsy dataset.

* 4.1.2 Evaluation

For each sample, each inference algorithm produces a set of estimated parameters and

posterior probabilities. We perform inference using the T-algorithm, TP-algorithm and

TPH-algorithm, first, by treating each patient individually, and second, by pooling

patients together for parameter estimation. For each algorithm, we perform estimation

with five different random parameter value initializations and choose the solution that

corresponds to the lowest final variational energy. For evaluation purposes, we compare

the MAP prediction of the estimated region anomaly posterior probability, q . [1] > 0.5,

with the sample r, for all regions n E {1, 2, ... , N} and patients u E {1, 2,... , U}. We

count the number of false positives and negatives to assess detection performance for

different values of the parameters e and 7, and average these across patients.

* 4.1.3 Results

Detection performance for the ideal configuration is summarized in Figure 4.2. The

T-algorithm performs poorly. As 7r = 0.1, we expect around 15 anomalous regions.

Yet, for a low value of 77 = 0.1 this algorithm misses almost half of these. Grouping

patients for parameter estimation has little effect on and may even degrade performance.

By comparison, the TP-algorithm is almost faultless, making fewer than 0.2 region

detection errors, of either type, on average for all values of (e, 7). Grouping patients for

parameter estimation decreases the average number of false negatives for small values

of 6 = 0.01, but the effect is small. The TPH-algorithm performs almost identically,

with results omitted for brevity.

Detection performance on the real configuration is summarized in Figure 4.3. Here,

the T-algorithm makes a large number of false positive errors, especially when grouping

unhealthy subjects for parameter estimation. As 7r = 0.05, the expected number of

anomalous regions is around 7. Thus, the number of false negative errors is also high,

especially for low values of q, but decreases when grouping patients. The TF-algorithm
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Figure 4.2: Detection performance of inference algorithms on ideal synthetic data. For

combinations of e and q, we show the mean number of false positives (left) and false

negatives (right) per subject, for the T-algorithm (top), the TP-algorithm (bottom).

generally makes few false positive errors across all values of (, j), and makes few false

negative errors except for low values of q ; 0.2. Higher values of e increase the number

of false negatives and positives for these low values of 71. The TPH-algorithm performs

similarly, making slightly more false positive errors and slightly fewer false negative

errors.

In summary, the TP-algorithm clearly outperforms the T-algorithm for both the

ideal configuration of synthetic data and, more importantly, the real configuration. This

performance comes at the cost of empirical run time, as the T-algorithm takes around 4s

per initialization, whereas the TF-algorithm takes around 60s per initialization. The

TFH-algorithm effectively matches the performance of the TF-algorithm, but is far
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Figure 4.3: Detection performance of inference algorithms on real synthetic data. For

combinations of e and 7, we show the mean number of false positives (left) and false

negatives (right) per subject, for the T-algorithm (top), the TP-algorithm (middle) and

the TPII-algorithm (top).

more computationally efficient, taking around 2.5s per initialization. Assuming the

model holds in the epilepsy data, performance on the real configuration lets us know

that the TP-algorithm and TPH-algorithms are more likely to miss anomalous regions
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than raise false alarms for healthy regions. In general, grouping the patients improves

performance a little, but only for low values of r.

* 4.2 Epilepsy Experiments

* 4.2.1 Data & Pre-processing

We thank Steve Stufflebeam, Naoro Tanaka and Hesheng Liu for providing data of

six epilepsy patients undergoing pre-surgical planning. For each patient, we obtain a

pre-implantation 1mm isotropic MPRAGE T1 MRI volume, a single post-implantation

CT volume with an isotropic in-plane resolution of 0.5mm and a slice thickness of

2.5mm, electrode spiking labels, and two to six runs of 2mm isotropic resting state

BOLD fMRI volumes, each with 76 frames sampled every 5 seconds. For patient 5,

the post-implantation CT volume has a slice thickness of 5mm instead of 2.5mm. We

thank Randy Buckner for providing data of 38 subjects from a healthy population

using the same MRI acquisition protocols. For each subject, we are provided with a

pre-implantation 1mm isotropic MPRAGE T1 MRI volume, and three to four runs of

2mm isotropic resting state BOLD fMRI volumes each with 76 frames sampled every 5

seconds.

For each fMRI run, we perform the steps of the pre-processing pipeline discussed in

Section 2.2, spatially normalize each fMRI volume to the MNI152 2mm template, and

perform Gaussian spatial smoothing with a full-width half-maximum of 6mm. As the

multiple fMRI runs of a single subject are aligned to the same template, we concatenate

the time series at each voxel to produce a single sequence for each subject.

We use FreeSurfer [14] to produce a coarse parcelation of the cortex into 150 anatom-

ical regions [9], from which we select N = 148 common regions of functional interest

across subjects. We also subdivide the Freesurfer cortical surface template uniformly

into N = 1153 cortical regions. The parcelations are illustrated in Figure 4.4. We align

both parcelations to the MNI152 2mm template, so that they can be used to extract

mean time series from the aligned fMRI sequence of each subject. Pearson correla-

36 CHAPTER 4. EXPERIMENTS



Sec. 4.2. Epilepsy Experiments

N = 148
anatomically defined
regions on template

inflated surface

4

37

N = 1153
geometrically defined
regions on template

inflated surface

visualize on pial
surface

transfer regions to
subject surfaces

Coarse

4

Fin

Fine

Figure 4.4: The coarse parcelation of 148 anatomically defined regions (left) and the

fine parcelation into 1153 geometrically defined regions. Regions are defined on the
Freesurfer template surface and then transferred to each subject's surface. Colors are
randomly assigned to denote regions' identities.

tion coefficients are computed between the mean time series of the regions to provide

observed correlations for each subject.

The post-implantation CT volume is rigidly registered to the MPRAGE TI MRI

volume using FSL's FLIRT [20] with a normalized mutual information similarity mea-

sure. We find that registration is generally accurate, as exemplified by the results of a

single subject shown in Figure 4.5. We manually identify the electrode centers on each

grid and strip, and correct for brain shift by simply projecting each electrode center to

the closest point on the dural surface extracted using the method described in [38].

0 4.2.2 Evaluation

For each electrode of each patient, we obtain a spiking label that represents one of

the four possible observations: no spiking; interictal spiking only; ictal spiking only;
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-500

Figure 4.5: An axial, sagittal and coronal slice of the pre-implantation MPRAGE T1
MRI volume of a patient overlaid with the rigidly registered post-implantation CT
volume. The CT overlay colors correspond to Hounsfield unit (HU) values. Registration
is generally accurate, with the skull in both modalities closely aligned. However, due
to brain shift deformation, the electrodes sometimes appear inside the cortical surface
of the MRI volume.

and both interictal and ictal spiking. For this work, the last two labels are treated

identically as indicators of the onset zone. For visualization purposes, electrode labels

are transferred onto the dural surface by propagating them to all vertices within a

5mm radius of the corresponding corrected center. Detected anomalous regions in the

cortical ribbon are also projected onto each vertex of the dural surface, by computing

the maximum probability of anomaly along the vertex's normal from the dural surface

to 20mm inside the brain, as illustrated in Figure 4.6. A maximum is used because

spiking activity measured on the dural surface could be caused by a small epileptogenic

region in the cortical ribbon.

0 4.2.3 Coarse Parcelation Results

First, we use the coarse parcelation to generate a 148 x 148 correlation matrix for each

subject. We run the TP-algorithm and TPH-algorithm for each patient individually

and for the group of patients. For each variant of the algorithm, we repeat the estimation

procedure with 20 different random parameter initializations and choose the solution

with the lowest final variational energy. We find little difference in the resulting posterior

probabilities, as illustrated for a single patient in Figure 4.7. Parameter estimates lie in
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O none
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dural surface

Figure 4.6: Our representation of the data means that results are associated with regions
in the cortical ribbon. However, we wish to evaluate these results with electrode spiking
labels on the dural surface that envelops the cortex. We associated each vertex on the
dural surface with the maximum value along its normal vector 20mm inside the cortex.
This allows us to visualize anomalous regions buried deep inside sulcal folds.

the following ranges across all patients: ir E [0.04, 0.16], 'j E [0.2, 0.4], y m [0.4, 0.4, 0.2],

e [0.001,0.1], y p [-0.15,0,0.35], o2  , [0.025,0.035,0.05]. With the exception of

patient 1, where E a 0.1, parameter values fall in the ranges where we expect the

algorithms to perform well.

For baseline comparison, we also apply the two statistical approaches described in

Sections 2.2.1 and 2.2.2. As a reminder, the region correlation statistic pnu(ca), defined

in Equation 2.1, is the proportion of correlation z-scores whose absolute value is above a

threshold a. The region degree statistic zes(#), defined in Equation 2.2, is the absolute

z-score of the proportion of correlations above a threshold /. We compute each statistic

with a range of thresholds, a E {1, 1.5, ... , 5} and # E {0.2, 0.3,0.4, 0.5}, and find that

both statistics are sensitive to the choice of threshold, as illustrated for a single patient

Sec. 4.2. Epilepsy Experiments 39
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Figure 4.7: Coarse parcelation results for Patient 2 when sweeping the threshold 3
on the degree statistic, the threshold a on the correlation statistic (middle) and the
variants of our algorithm (bottom).

in Figure 4.7.

Across all patients, we find that the optimal correlation statistic p'nu(a - 2) gen-

erally produces better results than the optimal degree statistic zs(# = 0.5) when

visually evaluated with respect to the electrode labels. We compare this optimal cor-

relation statistic with the posterior probabilities of the TF-algorithm for individual
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patients in Figure 4.8. In general, we observe that the correlation statistic detects

regions that overlap with almost all electrodes that exhibit ictal spiking, except in pa-

tient 5. However, detections also overlap with many electrodes that exhibit no spiking

and performance is far from ideal. For example, almost all regions are detected in

Patient 1. Detections occasionally overlap with interictal spiking, but the relationship

is unclear. The posterior probabilities of the TP-algorithm are typically binary, and

effectively select a subset of the regions with high correlation statistics. However, we

can see that this selection is poor with respect to the electrode labels. For example,

ictal spiking regions detected by the correlation statistic in patients 3 and 6 are not

detected by the algorithm.

Poor performance of the algorithm could be due a number of reasons. The actual

value of correlation may be informative for detection of the epileptogenic zone. The

correlation statistic can distinguish between a correlation of high value, say 0.5, and

very high value, say 0.7, whereas the model assumes both these correlations are almost

certainly observations of the same underlying connected state. Additionally, the model

assumes that anomalous regions tend to form cliques in the abnormal graph T, which

may not be a valid assumption for epileptogenic networks in the coarse parcelation. We

explore this latter possibility in the following section by using a finer parcelation.
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Figure 4.8: The coarse regional correlation statistic (left) and the posterior probabilities
of the TP-algorithm (right), projected to the dural surface of each patient. Electrode
spiking labels are also shown as 5mm radius circles on the surface. Only views with
electrode coverage are shown.
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U 4.2.4 Fine Parcelation Results

In order to explore whether the resolution of the coarse parcelation is limiting the per-

formance of localization, we use the fine parcelation to generate a 1153 x 1153 correlation

matrix for each subject. We run the same algorithms as described in Section 4.2.3. We

find that resulting posterior probability estimates are similar across algorithms with

some small differences, as illustrated for a single patient in Figure 4.9. We also gen-

erate the same statistics as described in Section 4.2.3, and find that they are again

sensitive to the choice of threshold, as illustrated for a single patient in Figure 4.9.

Across all patients, we find that the optimal correlation statistic pan(a = 2) gen-

erally produces better results than the optimal degree statistic zon(,3 = 0.5) when

visually evaluated with respect to the electrode labels. We also find that the Tp-

algorithm applied to individual patients produces the best results of our algorithm

variants. Grouping the patients together for parameter estimation reduces the num-

ber of regions detected, and misses one or two spiking regions as a result. Parameter

estimates for the individual TP-algorithm lie in the following ranges: 7r E [0.04,0.22],

- ; [0.3,0.5, 0.2], 7 E [0.18,0.52], E E [0.001, 0.05], p-1 E [-0.17, -0.1], si E [0.22, 0.29]

o . [0.025, 0.025,0.05]. Although the values for 7r, y and E fall in the range where we

expect the algorithms to perform well, the values of p and 'y are untested in synthetic

experiments and may make posterior recovery more difficult.

We compare these two results in Figure 4.10. Here, we see that the fine parcelation

allows the correlation statistic to detect some epileptogenic regions that were undetected

from the coarse parcelation. For example, two of the ictal spiking electrodes in patient

5 are now detected. However, this small improvement in sensitivity to ictal spiking

regions comes at the expense of a lack of specificity, as even more regions are found in the

vicinity of electrodes that exhibit no spiking. Again, we see that posterior probabilities

estimated by our algorithm are typically binary and mostly select a subset of the regions

with high correlation statistics. If we concentrate on areas of the surface with electrode

coverage, we see that the model removes many of the false positive detections detected
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Figure 4.9: Fine parcelation results for Patient 2 when sweeping the threshold # on the
degree statistic, the threshold a on the correlation statistic (middle) and the variants
of our algorithm (bottom).

by the correlation statistic. However, it also makes some false negative errors, missing

detections around ictal spiking electrodes. For example, in patient 6, the algorithm fails

to select a spiking region that is detected by the correlation statistic.

Both approaches also detect regions where there is no electrode coverage. Although

we can only speculate about whether these regions are epileptogenic, they may be
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suitable candidate positions for electrodes. In this case, one potential advantage of the

algorithm is that it detects a relatively small number of coherent regions, whereas the

correlation statistic detects more regions that are scattered across the cortex.

E 4.3 Summary

By using our generate model to produce synthetic data, we find that the TF-algorithm

clearly outperforms the T-algorithm, but requires significantly more computation time.

The TPH-algorithm effectively matches the performance of the TP-algorithm, but is

far more computationally efficient. When applied to data from epilepsy patients, we

observe that using the geometrically defined fine parcelation instead of the anatomically

defined coarse parcelation improves the detection of ictal spiking regions, both for the

baseline statistical approaches and for our algorithms. The improved performance is

characterized by higher sensitivity to these regions, but comes at the cost of reduced

specificity, especially in the case of correlation statistics. We observe that our algorithm

produces close to binary posterior probabilities and effectively selects a relatively small

subset of the regions with high correlation statistics. In the next chapter, we clarify

the contributions of the thesis with respect to the results and the original goals of the

work. We also propose further work to address some of the limitations illustrated by

the results.
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spiking labels are also shown as 5mm radius circles on the surface. Only views with
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Chapter 5

Discussion

In this chapter, we summarize the contributions of this thesis and connect these back

to the original goals of the work. Based on the limitations of these contributions and

insights from this project, we propose avenues of investigation for future work.

* 5.1 Contributions

The main contribution of this thesis is the adaptation of the method described in [44]

so that it can be efficiently run when the number of regions of interest is large. This

is important because we find our method produces much better results on epilepsy

data for the fine parcelation than when applied to the coarse parcelation. For the fine

parcelation, we find that the method frequently detects onset zone regions where iEEG

electrodes exhibit ictal spiking. While baseline statistical approaches at least match

the performance of the method, they require manual selection of threshold parameters,

which would not be optimal without the electrode labels. By contrast, our method

determines all its parameters automatically. However, performance is far from ideal

and clearly the method could not be used to replace iEEG for onset zone localization in

clinical practice. Yet, the proposed algorithm shows some promise as a coarse localizer

that could be used to improve the placement of iEEG electrodes. Not only does it

detect regions in the vicinity of almost all ictal spiking electrodes, but it also identifies

a relatively small number of other regions that are not covered by electrodes and may

potentially contain other epileptogenic areas.
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* 5.2 Limitations & Future Work

Even though the electrode spiking labels are effectively used as a ground truth, we

limit our evaluation of results to qualitative visual comparison rather than compute any

quantitative measure of overlap. This is largely because iEEG electrodes are located

on the dural surface of the brain, whereas the epileptogenic source regions that cause

abnormal spiking observed in the electrodes' time series can be located anywhere in the

cortex. Localizing the cortical source of abnormal neural spiking from the dural iEEG

measurements is a difficult challenge in itself and is worthy of further work.

Even so, our qualitative evaluation of the results suggests that proposed method has

some limitations. In its existing form, our method estimates posterior probabilities and

parameter values using a number of different random initializations of the parameter

values, and chooses the solution with the lowest final variational energy. The TF-

algorithm, which exhibits the best performance in our evaluation, produces solutions

with slightly different estimates of the posterior probabilities, all of which tend to have

similar variational energies. Therefore, taking the solution with the lowest energy may

be somewhat arbitrary. Instead, we could produce a consensus result of the posterior

probabilities across all solutions. For example, simply computing the arithmetic mean

posterior probabilities seems to improve the performance of the algorithm in some cases,

as illustrated in Figure 4.10. Here, we identify the ictal spiking region in Patient 6, which

is missed the current approach.

This result suggests that our model does not entirely account for the data we ob-

serve in epilepsy patients. One limitation of the model is that the template of healthy

connectivity between two regions is assumed to be entirely captured by the multinomial

random variable F. This means that we cannot account for variability of a connection

across the healthy population. The correlation statistic does account for this variabil-

ity, which may explain why it exhibits better performance in some patients. Another

way to address this limitation is to perform permutation tests with healthy subjects

to create a null distribution of region posterior probabilities. This construction would
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allow us to capture the probability of detecting each region by chance, and use it to

evaluate the significance of each patient's anomalous region posterior probability value.

We can also consider alternative pre-processing strategies that may improve epilep-

togenic zone localization. In this work, we only consider cortical regions. However,

subcortical structures, such as the hippocampus, thalamus and basal ganglia, also con-

tain functional signals that may better capture the network abnormalities associated

with epileptogenic regions. Note that due to their location, iEEG spiking labels could

not be used to evaluate detections in these subcortical regions. For the coarse parcela-

tion, we have experimented with including these subcortical regions, but found worse

performance. For the fine parcelation, it is unclear how to segment these subcortical

regions into parcels of a similar size.

In this work, we find that grouping epilepsy patients has little effect on the per-

formance for synthetic or epilepsy data. Instead, if we consider an individual patient,

we may be able to improve localization by biasing pre-processing to that patient. For

example, instead of aligning the patient and all healthy subjects to the MNI152 tem-

plate, we could align the healthy subjects to the patient. Furthermore, we could define

a parcelation based the resting state fMRI signals of the patient and propagate the

parcelation to the aligned healthy subjects. Each region would then correspond to a

discrete functional unit of the patient of interest, rather than a shared anatomically or

geometrically defined area.
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