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Abstract

This thesis details the design of a transcranial Doppler (TCD) ultrasound system to
measure cerebral blood flow velocity (CBFV) at the middle cerebral artery (MCA).
TCD sonography has been clinically indicated in a variety of neurovascular diagnostic
applications. Acceptance of conventional TCD methods, however, has been primarily
impeded by several constraints, including restrictive system form factors, measure-
ment reliability concerns, and the need for a highly-skilled operator. The goal of this
work is to reduce the effects of such limitations through the development of a highly-
compact, wearable TCD ultrasound system for autonomous CBFV measurement.

A first-generation, eight channel printed circuit board prototype system has been
designed, fabricated, and experimentally tested. Characterization of the prototype
system using a Doppler flow phantom resulted in a normalized root-mean-square error
of < 3.5% over the range of expected in vivo MCA flow velocities. Extension of the
initial prototype to higher channel count systems and the development of phased
array beamformation and algorithmic vessel location are also examined in this work.
The emergence of simple, robust, and non-invasive neurovascular diagnostic methods
presents an enormous opportunity for the advancement of neurovascular monitoring,
particularly in applications where - due to restrictions in current diagnostic modalities
- standard monitoring procedures have not yet been established.
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Chapter 1

Introduction

1.1 Background

The brain, due to its high metabolic rate, is vitally dependent on continually at-

taining sufficient oxygenation. A complex autoregulatory system within the cerebral

vasculature enables stable perfusion across a wide range of cerebral perfusion pres-

sures (CPPs). Regulation is achieved by closely matching oxygen supply to demand

in brain tissue through the constriction and dilation of cerebral arteries and arteri-

oles [1, 2]. However, under extremely hypertensive - or hypotensive - conditions and

certain cerebrovascular pathologies, these regulation mechanisms become impaired

and the body can no longer support adequate cerebral blood flow (CBF). Neuro-

logical symptoms appear within seconds of brain tissue ischemia and, if conditions

persist, a high risk of irreversible brain damage exists [3].

The central objective of critical care for patients affected by neurotrauma, cere-

brovascular accident (i.e., stroke), and other neurovascular pathologies is to monitor

patient state and provide suitable medical intervention to mitigate secondary injury

and aid in recovery [3]. While several non-invasive cerebrovascular diagnostic modal-

ities exist, including positron emission tomography (PET) and magnetic resonance

angiography (MRA), the use of transcranial Doppler (TCD) sonography is highly

compelling for certain diagnostic needs due to its safety in prolonged studies, high

temporal resolution, and relative portability [4,5].
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TCD sonography is a specialized Doppler ultrasound technique that enables the

measurement of blood flow velocities from the basal intracerebral vessels. Clinically

relevant parameters, including peak-systolic and end-diastolic flow velocities, time-

averaged flow velocity, and pulsatility index, are extracted from time-varying cerebral

blood flow velocity (CBFV) measurements. TCD sonography is primarily used clin-

ically in the identification of intracranial vasospasm and stenosis, cerebral embolism

detection, intra-operative monitoring, and assessment of cerebrovascular autoregula-

tion.

Intracranial vasospasm is a delayed contraction of the cerebral vessels and is a

major cause of mortality following aneurysmal subarachnoid hemorrhage (SAH) [2].

Spasm, which results in stenosis and a consequent increase in CBFV, is induced by

sustained contact between blood products and the cerebral vessel wall. The onset

of cerebral vasospasm, if experienced following SAH, generally occurs roughly three

days after hemorrhaging and may be episodic in nature [6]. Continuous monitor-

ing of the cerebral vasculature is desired as intermittent measurements may exclude

significant transients and subsequently lead to misdiagnoses or delays in medical in-

tervention [2]. Studies have demonstrated a high sensitivity and positive predictive

value in the identification of vasospasm using TCD measurements of CBFV in these

patient populations [7-9]. Other causes of intracranial stenosis, such as atheromatous

disease and sickle cell anemia, are more persistent and require repeated measurements

throughout the course of therapy. In the case of sickle cell anemia, periodic evalu-

ation of stenosis severity using TCD and subsequent treatment, where appropriate,

can significantly reduce the occurrence of stroke in children with the disease [10,111.

Among non-invasive diagnostic methods, TCD is uniquely capable of detecting

both gaseous and solid circulating cerebral emboli [4]. Embolus dimensions are ap-

proximately the same magnitude as acoustic wavelengths used in diagnostic ultra-

sound. The presence of an embolus within the volume of insonation therefore results

in specular reflection of acoustic energy, which appears as a high intensity transient

in the Doppler sonogram. In patients with symptomatic carotid artery stenosis, de-

tection of cerebral emboli has been shown to be an independent predictor of risk for
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transient ischemic attack (TIA) and embolic stroke [12]. Monitoring of cerebral em-

boli may also prove useful in assessing patient response to antithrombotic agents [13].

TCD is well-suited for intra-operative monitoring due to its minimal restrictions

on environmental surroundings and relatively unobtrusive measurement procedure.

In patients with inadequate collateral cerebral routes undergoing carotid endarterec-

tomy, impaired collateral flow is identified by markedly diminished CBFV in the ipsi-

lateral middle cerebral artery (MCA) during cross-clamping of the carotid artery. If

CBFV measurements fall below prescribed thresholds during the procedure, surgical

intervention (e.g., insertion of a temporary intraluminal shunt) can reduce the risk of

cerebral ischemia [14]. In addition, TCD is commonly used to detect cerebral emboli

during carotid endarterectomy and cardiopulmonary bypass surgery, which may aid

the surgeon in locating the embolic origin and reducing their occurrence [5,15,16].

The high temporal resolution of TCD is necessary for evaluation of cerebral hemo-

dynamics. Cerebral autoregulatory function can be assessed directly, by inducing a

rapid disturbance in arterial blood pressure (ABP), or indirectly, through carbon diox-

ide reactivity testing. In direct evaluation, simultaneous measurements of CBFV via

TCD and instantaneous ABP - non-invasively via Portapres unit (Finapres Medical

Systems, Amsterdam, NL) or minimally-invasively via arterial line - are required. A

step decrease in ABP is achieved by rapid deflation of a thigh cuff. When unimpaired,

cerebral autoregulatory mechanisms cause CBFV to return to its baseline value more

rapidly than ABP. The rates of return to homeostasis for CBFV and ABP can be used

to derive an index of cerebral autoregulatory function [4]. Diminished cerebral au-

toregulation is common following head injury and is associated with trauma severity

and increased mortality. Cerebral autoregulatory evaluation may therefore be useful

in the management of therapy for patients under neurocritical care [2,17].

An exciting, but evolving, application of TCD velocimetry is the real-time as-

sessment of intracranial pressure (ICP). ICP is the pressure of cerebrospinal fluid

(CSF) within the cranial vault and is a key factor in neurocritical monitoring and

subsequent therapeutic guidance. Recent developments in model-based physiological

signal processing have shown great promise in non-invasive estimation of ICP using
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simultaneous CBFV and ABP measurements [3,181. Elevated ICP, known as intracra-

nial hypertension, is frequently found in cases of severe traumatic brain injury (TBI)

and is directly correlated with poor patient outcome [19]. TBI occurs when an exter-

nal force acts to injure the brain, resulting in disrupted brain function, and is a major

cause of morbidity and mortality in the developed world, occurring annually in an

estimated 1.7 million persons in the United States alone [2,20]. Early identification of

TBI severity, along with continuous ICP monitoring and proper medical intervention,

can greatly lower the risk of secondary injury and improve patient outcome [21].

TCD evaluation has also been clinically indicated for determination of prognosis

following acute stroke, identification of arteriovenous malformations, and confirmation

of brain death. A comprehensive review of clinical TCD sonography applications and

an evidence-based assessment of diagnostic merit for each application can be found

in [22].

1.2 Motivation

Despite a number of proposed advantages and a growing list of potential diagnostic

applications (e.g., functional TCD and intracranial pressure estimation), use of TCD

sonography is often confined to highly-specific clinical environments (e.g., neurocriti-

cal care units and vascular laboratories) and the reliability of TCD velocimetry data

has not been generally accepted by the medical community [23,24]. Several notable

constraints have impeded the extension of current TCD ultrasound techniques to a

wider variety of contexts. These limitations include the need for an experienced TCD

sonographer, operator dependent measurement results, the lack of a patent acoustic

window in significant portions of the patient population, and inadequate TCD system

architecture and form factor in certain emerging applications.

Conventional TCD ultrasound systems employ a single element transducer that

must be manually steered by a skilled TCD sonographer, requiring fine manual dex-

terity, proficient knowledge of the underlying cerebral anatomy and characteristic

Doppler waveforms, and extensive training (with a recommended 25 to 50 supervised
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TCD examinations) [14,23,25]. Even in environments where such expertise is acces-

sible, there can be critical delays in the administration of TCD examination and the

availability of measurement results, thus often excluding the use of TCD sonography

by emergency medical personnel for rapid diagnosis of time-sensitive disorders. Dur-

ing prolonged TCD monitoring, a headframe can be employed to hold the transducer

in position after an acceptable Doppler signal is obtained for the vessel of interest.

Patient movement and environment dynamics can, however, cause probe misalign-

ment and a consequent loss of signal fidelity. The frequency of probe displacement

effects is highly dependent on measurement application, being more problematic in

prolonged evaluation of non-comatose patients. The operator (i.e., sonographer) must

therefore assess measurement results during the course of TCD monitoring, ensuring

adequate signal quality and suitable probe placement [24].

The integration of power motion-mode Doppler (PMD), which uses multi-gate

sampling to provide flow signal intensity and direction across a broad range of in-

tracranial depths, into conventional TCD ultrasound systems facilitates cranial win-

dow location and beam alignment [26]. Visualization of flow in TCD systems via

PMD intensity imaging allows the operator to manually steer the transducer solely

through visual feedback rather than by traditional auditory Doppler cues [27]. Devel-

opments in transcranial color-coded duplex sonography (TCCS) also expedite vessel

location procedures by incorporating color flow imaging (CFI) capabilities into TCD

ultrasound systems. Transcranial ultrasound imaging of flow velocity via CFI, how-

ever, suffers from exceedingly poor spatial resolution due primarily to distortion of

the ultrasound beam through cranial bone [28].

CFI can be advantageous in gaining a general impression of hemodynamics within

a region of interest and identifying several specific pathologies (e.g., arteriovenous

malformation, aneurysm), but yields less accurate CBFV measurements than con-

ventional TCD techniques. Therefore, when quantitative CBFV data is required,

CFI can be employed to spatially locate the vessel and conventional TCD is used

for velocimetry [28]. While technological developments such as PMD and TCCS are

beneficial in providing a richer set of information regarding the cerebral vasculature
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and improving the usability of TCD hardware, a qualified sonographer is still decid-

edly necessary throughout the extent of transcranial ultrasound examination. Such

expertise is unavailable or impractical in many circumstances where the diagnostic

capabilities of TCD sonography would otherwise be appropriate and advantageous.

General acceptance of TCD sonography as a clinically relevant medical diagnos-

tic is confounded by critical deficiencies in measurement accuracy and reproducibil-

ity [29]. In practice, Doppler ultrasound velocimetry is a highly operator depen-

dent technology. TCD sonography is especially reliant on operator technique due

to pronounced signal attenuation and acoustic reflection caused by cranial bone and

severely diminished, if any, imaging capabilities. TCD velocimetry measurements are

predominately affected by operator proficiency in acoustic window location, vessel

identification (including anatomic variations), probe angulation, region of insonation

placement within the vessel of interest, and to a lesser degree, selection of sample

volume extent, pulse repetition frequency, acoustic transmit power, Doppler filtering

parameters, and receiver gain.

Measurement accuracy is principally related to operator experience, with mea-

surement error being lowest in highly-trained, well-practiced sonographers [23]. The

level of measurement error that is clinically acceptable for TCD velocimetry measure-

ments, however, is unknown and greatly dependent on clinical application. Among

expert technologists within an accredited vascular laboratory, Doppler measurements

exhibited significant inter-operator variability (for peak systolic velocities in the ex-

tracranial internal carotid), leading to difficulties in evaluating the progression of

stenosis beyond broad categorization (i.e., < 50%, 50% - 70%, and > 70% diameter

reduction) [30].

Similar conclusions were reached in a TCD study, where moderate variability

was found among experienced users resulting in a mean inter-operator difference

of 1.8 cm/s (with 95% limits of agreement at ±22.1 cm/s) for mean CBFV in the

MCA [29]. Aberrant results in several examinations, however, led the authors to con-

clude that caution should be used when interpreting isolated MCA velocity measure-

ments and that serial CBFV data must be combined with other clinical parameters

20



prior to the evaluation treatment options (with angiography - an invasive method

- being the only reliable means of detecting intracranial vasospasm) [29,31]. CBFV

measurement error is not confined solely to operator competence, but is also influ-

enced by TCD system design considerations (e.g., Doppler processing algorithms)

and physical limitations (e.g., variability of acoustic propagation velocity within tis-

sue). Technological developments that enhance TCD signal processing capabilities

and lessen the reliance on operator participation and expertise to achieve accurate

transcranial velocimetry data promise to bring rapid and definitive diagnoses for a

wide variety of neurological conditions and to greatly expand the acceptance and use

of TCD sonography across a broad range of clinical environments.

A recurrent challenge associated with the use of TCD sonography remains the

lack of a patent acoustic window (i.e., no detectable receive Doppler signal) in ap-

proximately 5 - 10% of subjects [4,5]. Absence of a patent temporal acoustic window

(TAW) - the sole location from which the MCA can be insonated - was observed

in 8.2% of individuals [32]. Lack of a satisfactory TAW is principally related to in-

creased thickness of the temporal bone squama and is markedly more prevalent in

non-white races, females, and patients aged 65 and older [32]. Because a majority of

patients with cerebrovascular disease are elderly, age dependent effectiveness creates

a substantial concern for the clinical acceptance of TCD sonography.

Ultrasonic contrast agents can generally be used to diminish TAW patency effects

by considerably enhancing the effective scattering coefficient of blood and therefore

greatly increasing the intensity of the received backscatter signal [33]. However, ad-

ministration of contrast agents requires intravenous injection, making the examination

an invasive procedure and notably complicating its administration.

Experimental studies reveal that transmission of ultrasound through cranial bone

also leads to substantial and irregular acoustic refraction, thereby severely distorting

acoustic beam shape, further reducing peak intensity within the sample volume, and

greatly increasing the intensity of secondary lobes [34,35]. Refraction effects can be

mitigated in phased array based TCD systems through the use of phase-correction.

The development of phase-correction algorithms for low-frequency (i.e., 0.74 MHz)

21



transcranial focused ultrasound has demonstrated success in restoring beam shape and

acoustic intensity for transmission through ex vivo cranial bone - increasing peak focal

intensities by a factor of 2.5 or more compared to the uncorrected measurement [36].

Refinements to phase-correction methods and their application to TCD sonography

will lead to substantial increases in acoustic intensity at the vessel of interest while

maintaining fixed acoustic output power. Such advancements are essential to further

acceptance of TCD sonography by clinicians, as they are expected to improve TAW

patency rates without a corresponding increase in the thermal cranial index (TIC)

- a quantity that characterizes changes in tissue temperature, which is the relevant

safety metric in most applications of transcranial ultrasound [28].

Although traditional cart-based TCD systems are fairly compact and inexpensive

relative to other cerebrovascular diagnostic modalities, the use of TCD sonography in

unconventional and emerging applications can be prohibitively constrained by system

integration and architecture decisions (e.g., form factor, operator interface, electrical

connectivity, cost). A notable limitation of standard TCD examinations is the severe

restriction on patient movement throughout the procedure, making extended TCD

evaluations in non-comatose patients remarkably challenging [24]. The development

of wearable systems for ambulatory TCD recordings of cerebral emboli has, to a

degree, overcome this concern and achieved prolonged monitoring in patients with

carotid stenosis - an essential requirement in determining temporal variability in

embolization [13, 37]. Such systems, however, provide reduced capabilities beyond

their intended application (e.g., lack of real-time measurement data, need for manual

signal quality assessment and probe adjustment throughout the monitoring period).

Advances in wearable TCD systems that allow real-time data processing and elim-

ination of operator engagement during the course of measurement (i.e., autonomous

operation) will be extremely useful in the application of TCD based ICP estimation.

Current ICP measurement modalities are highly invasive, relying on surgical pene-

tration of the skull and placement of an intracranial transducer. Consequently, ICP

measurements are typically withheld except in cases where evidence of severe TBI

can justify the risks of infection and surgical complications inherent in conventional
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ICP measurement techniques. Cases of TBI that appear to be mild or moderate in

severity are thus evaluated solely by indirect means, such as neurological examina-

tion and medical imaging. While these methods can provide useful information to

clinicians, they at best determine a patient's state at a fixed point in time and prove

ineffective in capturing the transitory behavior associated with secondary injury that

continuous ICP monitoring can provide. Therefore, an alternate means of measuring

ICP - over the course of hours or several days - without penetration of the skull will

yield a significant benefit to TBI patients, especially in cases where the use of inva-

sive procedures may be avoidable. The realization of a reliable, easy to use method

for non-invasive ICP monitoring will be a crucial development in the diagnosis and

treatment of brain trauma and various neurological disorders (e.g., hydrocephalus,

brain tumor, repeated concussion, intracranial hematoma) [3].

TCD is rapidly evolving from a simple screening tool to a diagnostic modality with

a broad spectrum of clinical applications and a direct impact on patient management

[27]. Enabling technological advancements and a changing atmosphere toward point-

of-care testing and mobile health paradigms has stimulated a renewed interest in

portable, non-invasive, and highly usable tools for cerebrovascular monitoring and

diagnostics.

1.3 Approach

This work details the development of a highly-compact, wearable TCD ultrasound

system for prolonged, autonomous measurement of CBFV in support of neurovascular

monitoring.

The use of a two-dimensional (2D) ultrasound transducer array and beam steering

algorithm allows for autonomous vessel location and tracking. Automated mechan-

ical steering - via servo control - has been previously investigated and successfully

demonstrated for TCD vessel tracking, but is considerably limited by the single al-

lowable steering direction of a transducer element [13,37]. A phased array approach,

in contrast, can establish multiple concurrent focal regions and thereby achieve back-
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ground vessel tracking and focal point optimization during (i.e., without interruption

to) flow velocity measurements. Phased array implementations - in addition to beam

steering - enable dynamic beam focusing, which yields a significant increase in acous-

tic intensity at the region of interest than can be achieved, for a fixed acoustic output

power, from the planar (i.e., unfocused) single element transducers commonly used

in TCD instrumentation [27,37]. Additionally, phased array beamformation permits

the application of phase-correction techniques to further improve energy focusing and

mitigate the effects of refraction and focal aberrations [34,35].

Recent advances in ultrasound electronics and system architectures have led to

substantial reductions in ultrasound instrumentation dimensions (e.g., GE Vscan,

Siemens ACUSON P10). This work extends such reductions in system dimensions to

a wearable form factor by identifying the anatomical, physiological, and algorithmic

constraints particular to portable TCD sonography.

To facilitate development and limit system complexity, this work concentrates on

unilateral TAW insonation of the MCA for velocimetry applications. Although this

decision generally restricts the clinical utility of the system, it proves sufficient for a

number of TCD applications - particularly non-invasive ICP estimation, a primary

motivation for this research. Of the major cerebral vessels, insonation and spectral

Doppler (i.e., non-imaging) identification of the MCA through the TAW is gener-

ally the most straightforward due to favorable anatomical structure. The MCA is a

high flow velocity, relatively large diameter cerebral vessel with approximately lat-

eral course (i.e., normal to skull surface). TAW insonation of the ipsilateral MCA

thereby typically results in moderate steering angle magnitude (< 150 in azimuth and

elevation planes), negligible Doppler angle, and moderate insonation depths (30 - 60

mm). Further efforts to expand insonation capabilities to additional cerebral vessels

(e.g., anterior and posterior cerebral arteries) will not be discussed; the majority of

analyses and designs presented in this work, however, remain valid.

Ultrasound field solvers, particularly Field II, are used extensively in the eval-

uation and refinement of transducer array designs and Doppler processing algo-

rithms [38,39]. Although such simulation tools do not provide a suitable treatment
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of noise effects, nonlinearities, and bulk inhomogeneities, they are useful in validat-

ing functionality and comparing design performance metrics - especially relative to

existing TCD systems - using simplifying assumptions.

To expedite development, initial system architecture configurations for this work

leverage commercially available discrete electronic components. Because access to in-

ternal nodes within discrete components is restricted and device operation is generally

predefined, this decision severely limits the extent of realizable architectures. For this

work, a fully digital phased array, with dedicated transmit and receive electronics for

each array element, was selected due to its fully software defined configurability and

ease of implementation when utilizing existing commercial electronics. Although this

approach is somewhat excessive in terms of electronic hardware, power dissipation,

and intermediate data rates - as compared to more elegant mixed-signal architectures

- it provides a reasonable means of determining the viability of wearable TCD sonog-

raphy, typical underlying signal levels, and algorithm performance for practical in

vivo measurements. Following concept validation - but beyond the scope of this cur-

rent work - significant reductions in system size and power dissipation can be realized

through the effective design and implementation of integrated circuit electronics.

This work describes the design and evaluation of a prototype TCD system and

examines expansion to higher channel count systems. The prototype system, referred

to as Prototype I in this work, was designed, fabricated, and experimentally tested.

Prototype I is an eight channel system employing single element transducers and was

developed to validate transmit and receive electronics, processor system control, and

Doppler signal processing methods. The Prototype I transmit and receive signal paths

were tested electrically and Doppler velocimetry was experimentally validated using a

flow phantom. Clinical in vivo validation of Prototype I for CBFV measurements at

the MCA will also be investigated by comparing velocimetry data to measurements

from a commercial TCD system, but has not yet been completed.

Future designs leverage the system architecture and Doppler signal processing

methods found in Prototype I, but extend the system to 64 channel operation. A

custom transducer matrix (i.e., 2D array) has been designed for these systems and it's
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simulated characteristics are examined. With the addition of a phased array capable

transducer, electronic beam steering algorithms for vessel location and tracking can

be developed and experimentally refined.

1.4 Thesis Organization

This thesis begins with a general description of acoustic wave theory, transducer

characterization, Doppler velocity estimation, and other concepts applicable to the

functionality of TCD instrumentation in Chapter 2. Following an explanation of fun-

damental TCD principles of operation, Chapter 3 presents an overview of the relevant

cerebrovascular anatomy, expected relationships between physiological variables and

acoustic waveforms, and conventional techniques for TCD examination.

From recognition of the salient system parameters for TCD velocimetry applica-

tions, the system architecture, hardware design, and prototype TCD system imple-

mentation are defined in Chapter 3. Chapter 4 presents the results from electrical

testing of the Prototype I system. Validation of the velocity estimation procedures

is performed experimentally for the Prototype I system using a flow phantom under

realistic flow velocities and vessel dimensions.

Lastly, this work is summarized in Chapter 5. Functionality and performance of

the devised system architectures, as well as extensions to more capable systems for

general TCD applications, are discussed. Necessary future work and the identification

of practical enhancements to subsequent system implementations are also presented.
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Chapter 2

Theory of Operation

2.1 General Ultrasound Principles

Ultrasound is a cyclic acoustic disturbance at frequencies above the limit of human

hearing (> 20 kHz). Acoustic energy perturbs the particles composing a propagat-

ing medium, causing them to oscillate about their equilibrium positions with no net

displacement and producing local fluctuations in pressure. Because fluids continually

deform under shear stress, a fluid medium can only support longitudinal acoustic

waves, thereby confining particle motion along the direction of propagation. Human

tissue is predominately an elastic solid comprised of complex structural formations

and nonuniform interfaces. Due to its high water content, tissue is often approxi-

mated as a fluid acoustic medium. This simplification is less appropriate for highly

anisotropic (e.g., striated muscle) and particularly dense (e.g., bone) structures, but

allows reasonably tractable analysis of ultrasonic radiation through basic tissue for-

mations.

Acoustic waves, like all physical processes, are fundamentally nonlinear. Finite

pressure amplitudes cause variations in wave velocity, resulting in progressive wave-

form distortion and harmonic frequency generation [40]. Nonlinearities also lead to

a phenomenon known as acoustic saturation, where pressure amplitudes asymptoti-

cally approach a material dependent maximum as source output power increases [41].

Nonlinear effects are exploited in certain uses of medical ultrasound (e.g., harmonic
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imaging, therapeutic ultrasound). Diagnostic applications, however, typically involve

low to moderate acoustic output power with significant attenuation through tissue

and linear propagation is generally assumed. In practice, pressure amplitudes can

become a considerable fraction of static pressure and the linear assumption is often

not strictly valid [42]. Nonetheless, the use of linear acoustic models for diagnostic

ultrasound applications is normally justified as they capture most salient features of

propagation and provide valuable insight into underlying phenomena without exces-

sively complicating analysis. An in-depth discussion of elastic waves in solids and

nonlinear acoustics are beyond the scope of this thesis and are described fully in [40].

A fluid acoustic medium and linear wave propagation are appropriate for most uses

in diagnostic sonography and will be assumed for the remainder of this work, unless

explicitly stated.

Consequently, vibrations in Cartesian space can be described by the linear wave

equation:
(92 a2 02 ' 7 1 2 U(x, y, z, t) (2.1)
ka _2 + = 21t2

where u denotes the magnitude of instantaneous particle velocity (i.e., u = |ll),

(x, y, z, t) are spatiotemporal Eulerian coordinates, and c is the velocity of propa-

gation. The wave equation can, in general, express multiple modes of propagation.

However, because a fluid medium is assumed, longitudinal mode vibration is implied.

Propagation velocity (c) and wavelength (A) are influenced by the mechanical

properties of a medium. Although velocity is strictly dependent on wave amplitude,

use of the linear propagation assumption yields a single value within a given medium

- assuming negligible dispersion effects.

c = 1(2.2)

A (2.3)
f f FP-o r

where f is the frequency of oscillation (related to angular frequency W by f = ), po

is mean density, and r. is the adiabatic compressibility of the material [43].
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Pressure variations (p) - referenced to static pressure - and particle velocity mag-

nitude are related by the characteristic acoustic impedance Z. In general, the relation-

ship between p and u may vary with position and exhibit non-zero phase. However, Z

is normally assumed to be purely real and solely dependent on the acoustic medium:

Z = - = poc (2.4)
U

The characteristic acoustic impedance is typically given in units of rayls (1 rayl =

1 kg - s- 1 
. m-2) and is particularly significant at the interface of dissimilar media due

to reflection effects [40].

Attenuation in tissue arises from several complex phenomena and is exceedingly

difficult to precisely derive from fundamental principles. Thermo-viscous effects in

physical media result in absorption, which is typically the dominant cause of atten-

uation in medical ultrasound applications, accounting for 85 - 90% of attenuative

losses in macroscopically homogeneous tissue [40]. Scattering and mode-conversion

also contribute to attenuation, although often nominally within a given material.

Simple phenomenological models are generally used to combine these distinct sources

of energy loss by employing a single frequency-dependent attenuation factor a(f):

a(f) = ao + alf (2.5)

where the offset term is commonly neglected (aO~ 0), a 1 is determined empirically for

a specific tissue type, and a is often expressed in Np-cm-'. Because both are based on

the logarithmic scale, the Neper can be easily converted to decibels (1 Np = 8.686 dB)

when needed. Attenuation has significant influence on the design and use of medical

ultrasound instrumentation. As acoustic frequency increases, resolution increases

(related to wavelength) while depth of penetration decreases (related to attenuation

and acceptable signal to noise ratio). The appropriate magnitude of these opposing

factors is therefore highly dependent on application specific constraints.

Approximate acoustic parameters are given for media relevant to transcranial

Doppler (TCD) applications in Table 2.1. For biological media, acoustic properties are
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highly influenced by myriad factors (e.g., blood hematocrit, tissue water content, bone

density) and can differ appreciably between specimen and in varying environmental

conditions.

Table 2.1: Acoustic parameters for selected media [28,44].

Medium Phase Velocity, c Impedance, Z Atten. Coefficient, a,

[m/s] [Mrayl] [Np/ (cm -MHz)]

Air 333 0.0004 -

Water 1480 1.48 0.0002

Soft Tissue 1540 1.63 0.08

Blood 1580 1.67 0.02

Brain 1460 1.50 0.06

Cranial Bone 2770 4.80 2.5

While the general wave equation is suitable for full-wave numerical simulations,

it affords limited intuitive and analytical utility. Particular solutions to the general

wave equation under bounded domains facilitate the study of several relevant geome-

tries. The spherical wave equation, which describes the harmonic emission of acoustic

energy from an infinitesimal radiator within a homogeneous medium, is fundamental

to the analysis of acoustic fields. Using Huygens' principle, any finite radiator can

be accurately characterized by an equivalent set of exceedingly small (< A) sources,

each radiating a spherical wave. For a monochromatic radiator at the origin, the

pressure of an outwardly propagating spherical wave can be expressed as:

p (r, t) = e(f) sin(27rft - kr) (2.6)
r

where r = |r = I (r,r, r,) | is the magnitude of the spatial vector from the origin

to the field observation point P, p, is an amplitude scale factor, and k is the angular

wavenumber given by k = A [43]. At extremely short distances from the radiator,

where r -+ 0, the spherical wave equation no longer adequately represents physical
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reality since the linear approximations used in its derivation become invalid as pres-

sure increases without bound. For medical ultrasound applications, radial distances

of interest (i.e., r > A) typically exceed such regimes and use of the spherical wave

equation remains justified.

At sufficiently far distances from an acoustic source, the resulting pressure field

can be approximated as a plane wave over short transverse distances. In this re-

gion, known as the far-field of the source (r > A for an infinitesimal radiator), spatial

variations in pressure amplitude are markedly reduced, allowing reliable field measure-

ments for source characterization. In addition to being particularly mathematically

tractable, plane waves can be used in conjunction with the spatial Fourier transform

to synthesize the far-field beam pattern of a transducer geometry. At depth z, the

pressure of a harmonic plane wave propagating in the +z direction can be expressed

as:

p(z, t) = po e-4fZ sin (27rft - kz) (2.7)

where po is the pressure amplitude at z = 0.

For analysis of acoustic fields, it is often convenient to define a plane wave existing

over a limited transverse extent, referred to as a plane wave region. A harmonic plane

wave region propagating in the +z direction is expressed as:

p(xYyz7t) fpo e-'(f)z sin (27rft - kz), x, y E S(28)
0, otherwise

where S. is a planar region perpendicular to the direction of propagation that defines

the transverse extent of the plane wave.

Acoustic intensity (I), known also as power density, is the instantaneous flux of

acoustic power across a unit area normal to the direction of propagation. Intensity

has a spatiotemporal dependence and is expressed as:

prj t )2
I(F, t) = p(, t) -u(i, t) = ' = u(F,t)2 - Z (2.9)

where I is often given in units of mW - cm 2 for medical ultrasound applications.
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Time averaged intensity (I)t is useful in representing acoustic fields for pulsed

ultrasound architectures as it removes temporal dependence:

TPRP

(I ?)t I (r, t) dt (2.10)

0

where TPRP is the pulse repetition period (i.e., the time between successive pulses).

Acoustic intensity is highly relevant in characterizing safe use and regulatory

limitations of ultrasound systems. Several derived variants, notably spatial-peak-

temporal-peak intensity (IsPTP) and spatial-peak-temporal-averaged intensity (ISPTA),

allow the strength of a complicated acoustic field to be quantified by a single value:

ISPTP = max {I( ,t)} (2.11)

TPRP

ISPTA = TPRP I(max, t) dt (2.12)

0

where max {-} denotes the maximum value across all valid inputs (i.e., 0 < t < TPRP

and r, > 0) and r'm, is the position of maximum intensity.

2.1.1 Acoustic Scattering

Scattering is the underlying physical phenomena that enables the use of ultrasound for

diagnostic purposes. Neglecting non-idealities, an ultrasound B-mode image simply

characterizes the magnitude of a backscattered signal as a function of the spatial

position of insonation. In Doppler sonography, backscattered energy from a collection

of scatterers is utilized to determine particle velocities.

Scattering of ultrasound energy occurs due to deviations in acoustic properties

(e.g., density, compressibility) of the propagating medium. The behavior of acoustic

waves upon encountering a scatterer (i.e., region with distinct acoustic properties) is

highly affected by the dimensions of the scatterer relative to acoustic wavelength. Bi-

ological media contains structure over a wide range of length scales (e.g., molecules,
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cells, organs). In general, scattering effects can be separated into three dimension

dependent categories: specular scattering, diffusive scattering, and diffractive scat-

tering [40].

Specular Scattering

Specular scattering, known simply as reflection, occurs for scatterer boundaries much

larger than acoustic wavelength and can be accurately analyzed using basic ray the-

ory. Reflection mechanisms are independent of acoustic frequency, but are markedly

influenced by boundary shape. A planar surface (i.e., flat boundary between dissim-

ilar media) acts as a specular scatterer when min {l,} > , where min {l} is the

smallest dimension of the surface. Certain organ boundaries and interfaces between

bone and soft tissue can be approximated as planar surfaces over a restricted trans-

verse extent. Although of limited utility in the precise analysis of acoustic propagation

within physical tissues structures, insight into the basic principles of reflection greatly

aid in recognizing the function and inherent limitations of diagnostic sonography.

In the specular regime, the interaction of an incident plane wave with a planar

surface yields both reflected and transmitted plane waves, as shown in Figure 2-

1, where Z 1 and Z 2 are the acoustic characteristic impedances of the incident and

transmit media, respectively.

Reflected
Wave Z., Z2

Transmitted
Wave

Incident
Wave

Figure 2-1: Specular scattering at a planar surface.

The relationship between the angles of incidence (0j), reflection (0,), and trans-
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mission (Ot) are determined using Snell's law [45].

Or = Oi (2.13)

sin Ct - ct 
(2.14)

sinC, c,

where ci and ct are the propagation velocities within the incident and transmitted

media, respectively. The resulting variation between the angle of incidence and angle

of transmission is known as refraction. Recall from Table 2.1 that acoustic propaga-

tion velocity remains nearly constant for all soft tissue types, but diverges markedly

in bone. Refraction effects are therefore most pronounced at interfaces between bone

and soft tissue, particularly at oblique angles of incidence. For TCD applications, re-

fraction due to cranial bone can lead to considerable beam pattern distortion, further

complicating intracranial examination [34,35].

The reflection coefficient (F) and transmission coefficient (T) describe the ratio

between pressure wave magnitudes at the reflecting boundary. Assuming plane wave

propagation:

Fp r Z2 cos Ci -ZoC (2.15)
p Z2cosOi+Z1cos t

p= 2Z 2 cosCO (2.16)
p Z2 cosO+Z 1cosCO

where pj, pr, and pt are the amplitudes of the incident, reflected, and transmitted

pressure plane waves at the material interface, respectively.

Similarly, reflectivity (Tr) and transmissivity (TI) characterize the relationship

between acoustic plane wave intensities at the reflecting boundary [43]:

Ir =2 (Z 2 cosC-Zcos Ot' 2
Ii Z2 cos ±i + Z1 cos (1

It = -2 Z1 4Z1 Z2cos 2 0 (2.18)
Ii Z 2  (Z 2 cos 0i + Z cos Ot) 2

where a planar reflecting surface larger than the insonated surface is assumed and Ii,

Ir, and It are the acoustic intensities of the incident, reflected, and transmitted plane
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waves at the material interface, respectively.

The concept of acoustic reflection highlights another notable challenge associated

with TCD sonography. Using characteristic impedance values for cranial bone and

soft tissue from Table 2.1 - and approximating the cranial bone surface near the

transducer as planar - yields a transmissivity of T, = 0.76 for normal incidence. This

suggests a significant decrease in the acoustic power transmitted through the skull

due solely to characteristic impedance mismatch, in addition to beam refraction and

increased attenuation through bone. Degradation of acoustic intensity due to reflec-

tion is further exacerbated by the pulse-echo nature of sonography, where acoustic

propagation to and returning from the cerebral vessels encounters four distinct inter-

faces between bone and soft tissue. Although the preceding analysis of intracranial

applications is overly simplistic, neglecting the formation of standing wave patterns

and the stratified internal structure of cranial bone, it illustrates a major limitation

of transtemporal insonation and indicates a potential necessity for increased acoustic

output power in TCD applications.

Reflection yields scattered wavefronts similar to the scatterer surface. For a spher-

ical scatterer of diameter ds, specular scattering occurs when d, >> m and results in a

scattered spherical wave sector (i.e., spherical wave existing only for the sector defined

by the insonated surface) as represented in Figure 2-2. A transmitted wave is also

physically present, but not shown for clarity.

Incident
Wave Osco

Reflected
Wave /

Figure 2-2: Specular scattering at a spherical scatterer.

35



In the specular regime, a plane wave - having a circular extent of diameter dpw -

normally incident on a spherical scatterer results in a reflected intensity characterized

by the spherical reflectivity FI,sphere [40]:

I, (r, Or) 1r2 g ,s6\&6ector
rJ,sphere (r, Or) = 1r O) otherwise (2.19)

where r is the distance from scatterer center to the point of observation, O, is the angle

between plane wave incidence and the outward vector normal to the sphere surface

(i.e., direction of reflected ray), and 2Osector is the cone angle defining the insonated

sphere surface.

Diffusive Scattering

In contrast to reflection, diffusive scattering - known also as Rayleigh scattering - oc-

curs when scatterer dimensions are much smaller than acoustic wavelength. Rayleigh

scattering is highly dependent on frequency, but ideally independent of scatterer shape

and roughness features. For a spherical scatterer of diameter ds, Rayleigh scatter-

ing occurs when d, < ) and results in the emission of an approximately spherical

scattered wave.

For an individual scatterer, the differential scattering cross-section Gds (0) defines

the ratio of power scattered in a given direction dp,(0) to the differential solid angle

dQ and incident intensity Ij, where 0 is the angle between the observation vector and

the incident ray (i.e., z-axis in Figure 2-3). The differential scattering cross-section

indicates the strength of scattering and is determined by both geometric (e.g., volume)

and mechanical (e.g., density, compressibility) properties of the scatterer. Parameters

relevant to the analysis of diffusive scattering are depicted in Figure 2-3.

dps(O)
-ds (0) = dpI (2.20)

d21Is
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Scattered Y
Wave

Incident
Wave

dQ g

Figure 2-3: Diffusive scattering at a spherical scatterer.

For ideal diffusive scattering, the process is completely isotropic and UdS(O) is

constant across all angles, as expected for a spherical wave. In general, however,

scattered intensity I, from a single diffusive scatterer is dependent on both r and 0

(neglecting attenuation effects):

1, (r, 0) _ ads(0) (2.21)
I, r 2

Although diffusive scatterers cannot be individually resolved, scattering in this regime

has important implications in sonography as tissue can often be modeled as an ag-

gregate of sub-wavelength point scatterers. In medical Doppler ultrasound, diffusive

scattering from blood is the fundamental mechanism that enables measurement of

blood flow velocity. The evaluation of blood as a scatterer is therefore critically

important for a realistic understanding of Doppler ultrasound functionality.

Blood is not a homogeneous liquid but rather a suspension of cells and other

particles within plasma. Erythrocyte (i.e., red blood cells or R.BCs) are flexible bi-

concave discs approximately 7 pum in diameter by 2 pm in thickness. Whole (i.e.,

unmodified) human blood contains approximately 5 million erythrocytes per micro-

liter [40]. Erythrocytes make up roughly 45% of total blood volume, a value known as

hematocrit (Ht). Scattering of ultrasound by blood is believed to be almost entirely

due to erythrocytes [46]. Empirical measurements have established, however, that
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physical scattering of blood and other tissue structures remains partially anisotropic,

even within the diffusive scattering regime [47].

Neglecting structural complexities, a single erythrocyte can be accurately modeled

as a spherical scatterer of equivalent volume, corresponding to a diameter of ~ 6 pam.

Considerable agreement between analytical and experimental results is achieved by

representing the differential scattering cross-section of an erythrocyte as a function

of angle between the incident ray and the observation vector (i.e., 0 as shown in

Figure 2-3) [42,48].

e22 Ke - K5 3 ( pe -- p5) 2ds (0) =K + p + pf cos 0 (2.22)

where V is erythrocyte volume, e, Pe are erythrocyte compressibility and density,

and Kf, pf are the compressibility and density of the surrounding fluid, respectively.

A scattered wave emanates from each erythrocyte within the region of insonation,

yielding a Gaussian distribution of individual scattered wave intensities (I.) that is

therefore fully characterized by its mean and variance. This distribution arises mainly

due to slight differences in the volume, compressibility, and density of each erythro-

cyte from the ensemble mean. In addition to amplitude deviations, every scattered

waveform originates from an erythrocyte with a unique spatial position within the

volume of insonation. Appreciable phase offsets between scatterers thereby results in

interference between scattered wavefronts. The preceding effects lead to the forma-

tion of a complex speckle pattern that, although often characterized using statistical

terms, is deterministically related to the underlying tissue microstructure and acous-

tic instrumentation characteristics. An equivalent speckle pattern will therefore be

observed (in theory, when neglecting noise effects) when insonating a stationary tissue

volume.

Diffusive scattering from a collection of point scatterers is characterized by the

differential scattering coefficient pds (0), which is the average power received from a

volume of scatterers per steradian when insonified by a unit amplitude plane wave.

The differential scattering coefficient - in the absence of multiple scattering - can

38



thereby be expressed as the accumulative contribution for all scatterers:

pds (9) = fds (ri) Ods,i (0) (2.23)

where fds (ri) is a scaling function between -1 and 1 accounting for position (i.e., fi)

dependent phase interference effects and OYds,i is the differential scattering cross-section

of an individual scatterer.

The nature of blood scattering, as evidenced in Equation 2.22, contains both

isotropic (due to compressibility variation) and anisotropic (due to density variation)

scattering contributions. A consequence of these combined scattering mechanisms is

a degree of anisotropy that is dependent on tissue characteristics. For erythrocytes,

the relative scattering coefficient is maximal for scattering toward the incident source

(i.e., ~ 7r) [42,47]:
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Figure 2-4: Differential scattering coefficient pd., angular dependence. Data from [42]

at 6 MHz.

Because transmit and receive apertures are coincident in most modern ultrasound

systems, the backscatter cross-section Ubs and backscatter coefficient ptbs, which char-

acterize the power scattered in the direction of the incident source (i.e., 9 = 7r), are

typically of primary importance.

Ubs = ids (7) (2.24)
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Pbs = Pds (,r)

The quartic dependence of the backscatter coefficient on frequency (recall f oc j),
as suggested by Equation 2.22, has been verified experimentally for diluted human

blood across a range of hematocrits as shown in Figure 2-5.
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Figure 2-5: Erythrocyte backscatter coefficient A, frequency dependence. Data from
[49] for Ht = 26%.

For media with no measureable spatial correlation in scattering properties, the

scattering processing is incoherent and backscatter intensity is proportional to the

number of insonated scatterers. At artificially low erythrocyte concentrations (Ht <

8%), blood can be approximated as incoherent and the backscatter coefficient is ap-

proximately linearly proportional to the number of erythrocytes present within the

volume of insonation [48]. At higher erythrocyte concentrations, the scattering pro-

cess becomes exceedingly convoluted - likely resulting from multiple scattering effects

and a progressive reduction in the incoherence of erythrocytes, which no longer behave

as a random distribution of point scatterers. For in vivo erythrocyte concentrations

(i.e, Ht ~ 40 - 45%), the distance between scatterers becomes a modest fraction of

erythrocyte diameter and therefore the position and motion of individual scatterers

is highly dependent on surrounding erythrocytes [48].

The effect of hematocrit on the backscatter coefficient of human blood can be
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expressed by the following empirical relationship [50]:

Ht(1 - Ht)' a,, (2.26)1-1bs - 2 V226
(1+ 2Ht) Ve

Experimental results for porcine erythrocyte suspensions of varied hematocrit,

which have been shown to behave similarly to human erythrocytes, demonstrate

reasonable agreement with the preceding analytical backscatter coefficient expres-

sion [50]. Maximal backscatter coefficient is achieved for hematocrit ~ 14%.
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Figure 2-6: Porcine erythrocyte backscatter coefficient As hematocrit dependence

under laminar flow. Data from [50] at 7.5 MHz

Under low shear rates, blood has a tendency to aggregate due to the presence

of certain macromolecules within plasma (e.g., fibrinogen) [51]. The aggregation of

erythrocytes into multi-cellular structures, known as rouleaux, significantly raises

backscatter intensity (according to Uds Oc V 2 ), further increases the degree of scat-

tering anisotropy, and potentially yields scatterer dimensions outside the diffusive

regime. Experimental results from stationary blood yield backscatter intensities a

factor of ten or more greater than from laminar flow measurements [50]. Because

scattering is shear rate dependent, backscatter intensity is thereby a function of flow

rate and the spatial position of erythrocytes within the vessel. For arterial blood flow,

sufficiently high shear rates tend to disrupt aggregation such that erythrocytes are
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primarily monodispersed [48]. Increased echogenicity has, however, been observed in

venous blood due to erythrocyte aggregation. Turbulent flow has also been shown

to considerably increase backscatter intensity, although the exact mechanism is not

fully understood [52].

In practice, most insonation volumes for blood flow velocity estimation contain

both erythrocytes and stationary tissue scatterers, which can have a substantial effect

on the accuracy of Doppler ultrasound. For a given volume, stationary tissues (e.g.,

vascular wall structure) typically yield a substantial increase - by a factor of one to

three orders of magnitude - in backscatter intensity when compared to erythrocyte

scattering alone [43]. Although scattered power from stationary tissues, often referred

to as clutter, can be highly attenuated via high pass filtering during Doppler signal

processing, the increased signal levels place considerable constraints on system dy-

namic range, clutter filter complexity, and transducer beamwidth to ensure functional

Doppler operation.

Diffractive Scattering

For scatterers with intermediate dimensions (l ~), a process known as diffractive-

scattering occurs. Diffractive scattering is observed in TCD sonography for cerebral

emboli, which are ~ 0.5 - 3 mm in maximum dimension (recall that A ~~ 0.77 mm

for 2 MHz acoustic vibrations in tissue) [53]. The presence of a circulating gaseous

or solid embolus within the region of insonation results in increased Doppler (i.e.,

non-stationary) backscatter power when compared to erythrocyte scattering alone.

Embolus detection is thereby attained when backscatter power transiently increases

beyond a given threshold (typically > 7 dB) above the average background level [12].

In the diffractive regime, scattered waves can, to first order, be considered to

originate from scatterer surfaces, which act as secondary sources [40]. In general,

the shape of scattered waves is not, however, similar to media boundaries and is in-

stead highly dependent on the relationship between scatterer dimensions and acoustic

wavelength. The Born approximation can be used to obtain the differential scattering
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cross-section for a spherical diffractive scatterer cds,sphere (0) [40,47]:

U ds,sphere (0 6 ( (7t + 7p cos 0] sin - cos ( 2

l67rsin3 (9/2) (2AJ 9A8  A
(2.27)

where A, = , 7, = "" , y, = Pe"~ , and the relevant geometry is equivalent

to that shown in Figure 2-3.

2.1.2 Tissue Inhomogeneities

The presence of rigid cranial bone between the ultrasonic transducer and cerebral

arteries of interest has profound effects on the performance and operation of TCD

ultrasound systems. Although soft tissue can be approximated as a fluid acoustic

medium, transmission through bone further complicates propagation. In general,

a longitudinal wave incident on the surface of bone, or any elastic solid, creates

both longitudinal and shear transmitted waves [54]. Mode conversion is, however,

highly dependent on the angle of incidence and numerical studies suggest that shear

wave generation can be effectively neglected for the small incidence angles typically

encountered in TCD evaluations (0% < 200) [55,56].

Transmission through bone leads to several other significant phenomena. The

large difference in phase velocities between bone and soft tissue creates refraction

in acoustic wave transmissions, which can substantially alter transducer beam pat-

terns [35]. As discussed previously, the large mismatch in characteristic acoustic

impedance at the interface between bone and soft tissue yields considerable reduc-

tions in transmitted wave intensity due to reflection effects. Also, cranial bone is

an extremely absorptive medium and its high attenuation factor further decreases

wave intensity during propagation through the skull. The extent to which these pre-

ceding mechanisms influence acoustic propagation primarily determines the patency

of acoustic windows (i.e., whether or not a receive Doppler signal is detectable) in

patients undergoing TCD evaluation.

A detailed numerical analysis of acoustic wave propagation through realistic cra-

nial geometries would yield marginal insight into the various design considerations
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associated with the development TCD instrumentation. Such an approach also pro-

vides limited appreciation of effects due to anatomical disparities across the patient

population. This work therefore incorporates basic homogeneous propagation mod-

els to guide system design choices. Experimental data from ex vivo cranial bone is

utilized to evaluate the salient features of tissue inhomogeneities, which are treated

primarily as simple attenuative elements (see Section 3.1.2).

2.2 Ultrasound Transducer Characterization

Transducer geometry and electromechanical properties are a critical design aspect of

ultrasound systems and are highly dependent on application requirements. TCD ul-

trasound systems often employ a single manually steered circular transducer element,

although imaging capable TCD systems (i.e., transcranial color-coded duplex sonog-

raphy, referred to as TCCS) require transducer arrays for electronic beam steering.

The single element transducer will be considered first, due to its relative simplicity.

Results from this basic analysis will subsequently be used to characterize transducer

arrays.

At the most fundamental level, an ultrasonic transducer simply converts energy be-

tween the electrical and acoustic (i.e., mechanical) domains. Subtleties related to this

conversion process, however, have an enormous impact on system performance and

functionality. The ultimate axial and lateral resolution of ultrasound instrumentation

is determined by the electrical excitation, geometric, and material properties of the

transducer. Transducer elements are traditionally fabricated from a variety of piezo-

electric materials, including lead zirconate titanate (referred to as PZT), modified

lead titanate (PbTiO 3), and PZT 1-3 composites [42,57]. Developments in emerging

non-piezoelectric transducer technologies, such as capacitive micromachined ultra-

sonic transducers (CMUTs), have shown promise in achieving high channel count

integration with front-end electronics at potentially greatly reduced unit costs [58].

Irrespective of their underlying technology, transducers should be evaluated by a

consistent set of performance metrics (e.g., bandwidth, efficiency, beam pattern for-
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mation). The physical dimensions and equivalent circuit models used in this work,

however, imply piezoelectric construction.

2.2.1 Transducer Impulse Response and Quality Factor

For acoustic transmission, an electrical signal (typically a driven voltage, which will

be assumed throughout this work) at the electrical port of the transducer induces

acoustic vibrations at the front and back surfaces of the transducer. The relation-

ship between the electrical driving signal and the transducer front surface velocity

u (t) is characterized by the electroacoustic conversion impulse response 9T (t) of the

transducer [40]. A notional transducer electroacoustic conversion impulse response is

shown in Figure 2-7.
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Figure 2-7: Transmit electroacoustic conversion impulse response of a 2 MHz trans-

ducer with a quality factor of 4.

It is important to note that 9T (t) is not constant for a specific physical trans-

ducer geometry, but is instead highly dependent on the load impedance at each

port. In most cases of interest for medical ultrasound, the front transducer sur-

face is loaded by acoustic matching layers constructed within the element housing

(to reduce impedance mismatch effects) and soft tissue, while the back transducer

surface is loaded by air or a fixed backing material. Because the acoustic properties

of soft tissue are fairly constant and the back transducer surface is embedded within
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the element case, loading and therefore transducer characteristics are assumed to be

effectively constant for a given transducer element over all relevant circumstances.

A primary characteristic of the electroacoustic conversion impulse response is

transducer quality factor (Q), defined as:

Q = 21. energy stored
energy lost per cycle

Quality factor is inversely related to the impulse response decay constant through

the relation [44]:

-fgprt
Env {9T (t)} = uoe Q (2.29)

where Env {-} denotes the envelope function, uo is a velocity scaling factor, and fo is

the resonant frequency transducer.

The transducer frequency response is computed as the Fourier transform of 9 (t).

For a given half-power bandwidth (Af), the quality factor of the transducer is deter-

mined by:

Q = fo (2.30)
Af

The range of suitable transducer quality factors is dependent on desired appli-

cation. Axial resolution (AR) represents the ability of an ultrasound instrument to

differentiate closely spaced scatterers in the axial dimension (i.e., depth). For imag-

ing purposes, low axial resolution is desired for improved image resolution. Both

transducer quality factor and the excitation waveform influence axial resolution, with

minimal axial resolution ARmin occurring for impulse excitations [44]. The quality

factor of a transducer used for imaging is often intentionally lowered by placing ultra-

sound absorber at the back transducer surface to introduce additional losses. Doppler

applications, in contrast, do not require fine axial resolution and therefore can use

higher Q transducers, which yield increased transducer efficiency.

ARmin ~ -- (2.31)
4

In practice, second order effects such as frequency dependent tissue absorption, known
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as dispersive absorption, effectively lengthen the pulse and result in larger axial res-

olutions than analytically predicted.

2.2.2 Transducer Excitation

Electrical transducer driving signals fall under two general classes, continuous wave

(CW) and pulsed wave (PW) excitations. Ultrasound imaging systems operate solely

in the PW regime due to spatial resolution requirements. Doppler ultrasound instru-

mentation, however, can employ CW or PW excitations. Although CW operation is

less common in modern ultrasound systems, continuous analysis is relatively straight-

forward and often yields significant insight into PW functionality.

For CW excitation, the transducer is driven by a periodic waveform eTcw (t) -

typically a sinusoid or square wave - with an excitation frequency fe at or near the

resonant frequency of the transducer (fo).

eT,Cw (t) = eperiodic (t, Te) (2.32)

where Te = g is the fundamental period of eperiodic (t, Te), such that eperiodic (t, Te) =fe

eperiodic (t + Te, Te) Vt.

PW excitation employs a gated periodic function to drive the transducer. The

basis function of pulsed excitation eTo (t) can be expressed as:

eTo (t) = (TeIt eperiic (t, Te) (2.33)

where M is the number of cycles (of period Te) within a single gate and the gat-

ing function J[ (t-tft is a shifted, time-scaled rect function with interval

[tshift, tshift+tON]) written as:

t - tshift 1 1, tshift < t < tshift + tpN (2.34)

tON 2) 0, otherwise
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The basis function eTo (t) can therefore be alternately expressed as:

ero(t) = I T - eperiodic (t, Te) =
Te M 2 )

eperiodic (t, Te) ,

0,

0 < t < TeM

otherwise

Because PW excitations typically are used to drive transducers with high fractional

bandwidths (> 50%), the periodic excitation frequency fe does not necessarily need

to be near the resonant frequency of the transducer fo, but within the transducer

bandwidth (i.e., fo t i).

The PW driving waveform can then be synthesized as a combination of time-

shifted basis functions:

00

eT,pw (t) = eTO (t - nTpRp)
n=O

(2.36)

where n corresponds to the pulse repetition number and TPRP is the pulse repetition

period. Another meaningful parameter often used to characterize pulsed operation is

the pulse repetition frequency fPRF = 1/TPRP-

A notional PW excitation waveform is shown in Figure 2-8.
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Figure 2-8: Pulsed wave excitation waveform for M = 2, Te = 1.0ps, and TPRP = 5ts.

Note that an artificially low TPRP is used for illustration clarity. A realistic pulse

repetition period is typically TPRP ~ 0.1 - 0.2 ms for medical ultrasound applications.
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2.2.3 Equivalent Circuit Transducer Model

Although useful for a basic understanding of transducer operation, the preceding anal-

ysis is often overly simplistic in assuming a second-order transducer model. Trans-

ducer characteristics - for a dominant resonant mode - can be well described by an

equivalent circuit model. Transducer circuit models are useful for simulated verifi-

cation of electronic hardware within the ultrasound system under realistic loading

conditions. The KLM model, developed by Krimholtz, Leedom, and Matthaei, is of-

ten used in the design and characterization of ultrasound transducers and is depicted

in Figure 2-9.
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Figure 2-9: KLM equivalent circuit transducer model. Adapted from [59]

In the KLM model, an electrical port is coupled to the acoustic domain at the

center junction of the resonant transducer dimension (lc) through a transformer,

with electroacoustic transformer ratio nea. The piezoelectric crystal is modeled by

transmission lines of length 1c/2, phase velocity cc, and specific acoustic impedance

Zc = AcPcc. Note that the specific acoustic impedance differs from characteristic

acoustic impedance in that it accounts for the cross-sectional area (Ac) of the piezo-

electric crystal. The front acoustic port is connected to an impedance defined by

matching layers and soft tissue, while the back acoustic port is often connected to a

backing material.

Resonance occurs when the resonant transducer dimension le is odd multiples of

A/2. The fundamental transducer resonant frequency can therefore be expressed as

fo = cc/2lc. It is critical that the resonant dimension lc is sufficiently different from
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other transducer dimensions, such that multi-resonant effects can be neglected and

the equivalent KLM model remains valid. Further expansion of the KLM model for

various transducer geometries and physical insight into its lumped element param-

eters can be found in [40]. Although individual elements within the KLM model

can be derived from mechanical principles, higher-order effects - especially for array

element geometries - often greatly degrade the integrity of analytical models. Numer-

ical methods, such as finite element analysis (FEA), are therefore generally used to

accurately determine transducer response and extract equivalent model parameters.

The previous analysis has focused on utilizing the transducer for acoustic transmis-

sion (i.e., transforming electrical energy to mechanical energy). Due to the reciprocity

principle, the equivalent circuit models used to characterize acoustic transmission are

also valid for electrical reception (i.e., transforming mechanical energy into electrical

energy). Formally, a transducer represented as an ABCD matrix with an input at the

electrical port is described by a DCBA matrix with an input at the acoustic port [40].

2.2.4 Continuous Transducer Beam Patterns

The beam pattern of a rigidly mounted transducer radiating into a homogeneous fluid

can be found by dividing the transducer surface into a collection of infinitesimal ra-

diators of surface area dS. This framework is presented in Figure 2-10 and, although

illustrated for a circular transducer, is valid for any arbitrary planar transducer sur-

face.

y

Transducer
Surface X

z
r'

Figure 2-10: Coordinate system for analysis of planar transducer beam patterns.
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For a transducer surface vibrating uniformly with velocity u (t) = uo cos (27rft)

normal to the surface (i.e., along the z-axis in Figure 2-10), the pressure contribution

dp from each infinitesimal radiator, neglecting attenuative losses, is given as [44]:

dp = Zcos 27eft - kr'+ - dS (2.37)
Ar' "(2

where r' is the distance from the elemental radiator to the observation point P.

Note that because a single harmonic velocity waveform is used, CW excitation is

implied. Due to their relative amenability, transducer radiation patterns will first

be developed for continuous excitations and will then be extended into pulsed fields.

Although pulsed operation yields excitation dependent beam patterns, CW analysis

can provide a practical starting point for transducer design since general approximate

relationships between aperture dimensions and energy boundaries typically persist in

the PW regime.

Using Huygens' principle, the resultant pressure field from a transducer surface is

evaluated by the superposition of spherical waves from each radiator.

r noZ cos (27rft - kr' +.2)
p (,t)= dp A, 2 dS (2.38)

s A sr

where S denotes the transducer surface. The preceding expression, known as the

Rayleigh integral for continuous wave excitation, does not yield a general solution

and often must be solved numerically.

For unfocused planar transducers, the progression from the near-field (i.e., Fresnel

region) to the far-field (i.e., Fraunhofer region) occurs at the transition distance z,

referred to as the natural focus of the transducer [44].

z.max = t 2  (2.39)
= 4A

where max{lt} is the largest dimension of the transducer surface (e.g., diameter of a

circular transducer).
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Circular Transducer

Due to symmetry, the pressure field of a circular transducer for observation points

along the axial dimension (i.e., z-axis) can be found analytically as [44]:

p (z,t) = Zuo cos (27rft - kz) -cos 21r ft - k + Z2 (2.40)

where D is transducer diameter.

Obtaining the envelope of the preceding spatiotemporal function yields a more

useful representation of pressure variation [40]:

7rzD 2

Penv (z) = 2Zuo sin - 1+ (- - 1 (2.41)
A 2z

For circular transducers, the depth of the last axial maximum (zlam) is equal to

the transition distance (z,) and is therefore the boundary between near-field and far-

field. For non-planar radiating surfaces and transducers without radial symmetry

(e.g., rectangular sources), however, the value of z 1am is less meaningful.

As shown in Figure 2-11, the pressure envelope of a circular transducer varies

dramatically in the near-field. These pressure irregularities are produced by con-

structive and destructive interference between spherical wavefronts originating from

distinct spatial positions on the transducer surface. Beyond the transition distance Zr,

the phase difference between individual wavefronts is no longer sufficient to achieve

maximal destructive interference and axial pressure variation is thereby substantially

reduced.
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Figure 2-11: Analytical variation of on-axis pressure envelope for a 13 mm diame-

ter circular transducer operating at 2 MHz. Values are normalized to the pressure

magnitude at the transducer surface.

The off-axis beam pattern of a circular transducer cannot be expressed analytically

for the near-field, but is readily computed using an acoustic field solver, as shown in

Figure 2-12 [38,39]. Field solvers can also incorporate attenuation effects, but such

effects are neglected here to yield consistency with analytical models. Attenuation is

not used when showing transducer beam patterns unless explicitly noted in this work.
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(a) Intensity variation in the xz-plane

at y = 0 mm.
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(b) Intensity variation in the xy-plane

at z = 60 mm.

Figure 2-12: Simulated intensity beam pattern for a 13 mm diameter circular trans-

ducer operating at 2 MHz.
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Rectangular Transducer

Beamformation for rectangular transducers is of particular interest for medical ap-

plications as they are commonly used in linear and phased arrays for imaging and

Doppler applications. Unlike the circular transducer, the beam pattern of a rectan-

gular transducer is determined by two orthogonal dimensions, transducer height (LY)

and width (L.).

Under continuous excitation the pressure field envelope of a rectangular transducer

for observation points along the axial dimension is expressed as [40]:

Penv (z) = 2ZuOIm F (IL) F e ) } (2.42)

where F (x) is the Fresnel integral, given by F (x) = fJ e-t/dt.

Due to diminished symmetry, modulation of the near-field pressure envelope is

much less exaggerated for rectangular radiating surfaces than for circular transducers,

as illustrated in Figure 2-13.
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Figure 2-13: Analytical variation of on-axis pressure envelope for a rectangular trans-
ducer (Lx = 12 mm, LY = 12 mm) operating at 2 MHz. Values are normalized to the
pressure magnitude at the transducer surface.

Figure 2-14 characterizes the simulated single frequency beam pattern in a lossless,

homogeneous medium for a rectangular transducer in the xy and xy-planes [38,39.
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Figure 2-14: Simulated intensity beam pattern for a rectangular transducer (Lx = 12

mm, LY = 12 mm) operating at 2 MHz.

2.2.5 Far-Field Transducer Beam Patterns

Within the near-field region of an unfocused transducer, acoustic energy is mostly

confined to the transverse extent of the transducer. As the beam propagates into the

far-field, a single main lobe is established and acoustic energy diverges transversely

with a roughly constant angle, known as the divergence half-angle 6 d, as depicted in

Figure 2-15.

Y Transducer
Surface

D Z

Near-Field Far-Field

Figure 2-15: Approximate beam shape and far-field divergence for an unfocused trans-

ducer. Adapted from [44].

For observation points in the far-field of the transducer, the acoustic waveform

is less irregular and the off-axis beam pattern can be expressed analytically for both

circular and rectangular transducers.
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Circular Transducer

Acoustic pressure in the far-field of a continuously driven circular transducer - with

uniform surface velocity u (t) = uo cos (27rf t) - is expressed as [44]:

kD 2 ZuO ir 2J (Din
p (0, r, t) = cos (27rft - kr + - [ 2 s (2.43)

4r 2) -61 sin 0

where J1 (-) denotes a Bessel function of the first kind with order one, D is the

radiating surface diameter, and 6 is the angle between the z-axis and the observation

vector r

From Equation 2.43, the angular dependence of acoustic pressure is determined

by the transducer directivity factor He (6):

2Ji (kDsn0
He (0) 2.2 (44)

- sin0

For a given observation radius (i.e., fixed r), the directivity factor is often visually

represented using a polar radiation plot, as shown in Figure 2-16.

-300, 300

0=0

Figure 2-16: Analytical far-field directivity pattern for a 4 mm diameter circular
transducer operating at 2 MHz.

The divergence angle 2
0d is defined as the angle between the first zeros of the

main lobe and is expressed for a circular transducer as:

2= 2sin- 1 1.22A) (2.45)
(D
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The half-power angle (2O3dB), known also as the angular full width to half max-

imum (FWHM), is defined as the angle between the half-power values of the main

lobe. For a circular transducer, the half-power angle is expressed as:

2 63dB = 2sin- 1 (0.51A) (2.46)
D

Within the far-field region, main lobe width increases linearly with axial distance.

Full beamwidth w (z) (i.e., lateral spatial extent of the main lobe) and half-power

beamwidth W3dB (z) are therefore determined at a given far-field depth z as:

w (z) = 2z tan (0d) (2.47)

W3dB (z) = 2z tan (9 3dB) (2.48)

Rectangular Transducer

For a sinusoidally driven rectangular transducer - of width L, and height Ly - acoustic

pressure in the far-field is computed as [44]:

p (#, #,, r, t) = LcI 1 IZuo Cos (27rft - kr + -sinc (Lxksinme) sinc (L ksin )

(2.49)

where the sinc function is defined as:

sinc (x) =sin (rx) (2.50)
7rX

As illustrated in Figure 2-17, the azimuth angle #x is the angle between the z-axis

and the projection of F on the xz-plane. The elevation angle #ky is the angle between

the z-axis and the projection of F in the yz-plane.
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Figure 2-17: Coordinate system for analysis of planar rectangular transducer beam
patterns.

The directivity factor of a rectangular transducer H, (#x, #y) is thereby dependent

on directivity in two orthogonal planes, the xz-plane (i.e., azimuth plane) and the

yz-plane (i.e., elevation plane):

Hr (OX Y) = = H .sinc Lxk sinOx sinc (Lyk sin #y (2.51)
27r )I27r )

A polar directivity plot therefore exists for both the azimuth plane, primarily

dependent on Lx dimension, and the elevation plane, primarily dependent on LY

dimension. Figure 2-18 shows the directivity of a square transducer element, which

has an equivalent directivity pattern in both the azimuth (i.e., Hx) and elevation

(i.e., Hy) planes due to transducer symmetry. The observed sidelobe levels for a

rectangular transducer element are markedly higher than for a circular transducer of

similar dimensions.

= -90-] = 0o

-3& W

Figure 2-18: Analytical far-field directivity pattern in the azimuth plane for rectan-
gular transducer (Lx = 4 mm, Ly = 4 mm) operating at 2 MHz.
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As in the circular transducer case, the divergence angle (26d) and half-power

angle (2O3dB) can be defined from the main lobe characteristics. For the rectangular

transducer, however, these parameters exist for both orthogonal directivity planes.

2 0,,d = 2sin-1 ( )

2 6x,3dB = 2sin- 1 (.44A)

26,,d= 2sin-, ( A)

2 6y,3dB = 2sin~1 0.44A)

Full beamwidth w (z) and half-power beamwidth W3dB (z) can be computed for a

given far-field depth z:

wX (z) = 2z tan (Ox,d) ,

Wx,3dB (z) = 2z tan (6 x,3dB) ,

Wy (z) = 2z tan (0y,d)

Wy,3dB (z) = 2z tan (6y,3dB)

Arbitrary Planar Transducer

For elements with aperture dimensions on the order of a wavelength, the directivity

pattern can be approximated by the inverse Fourier transform of the spatial aperture

functions in each transducer dimension [40].

+00 +00

H (x, y, z) Ax (Xo) e
2

rxo(x/Az)dxo j A, (yo) 2 yo(Y/z)dyo

-00 -00

(2.56)

where Ax (x) and A, (y) are the aperture functions of the transducer element in the

x and y dimensions.

For a rectangular element, the aperture function is simply a scaled rect function:

A2 (x) = J (x/L2), A, (y) = f (y/Ly) (2.57)
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2.2.6 Transducer Arrays

Transducer arrays are found in the majority of modern ultrasound imaging systems.

Although most array transducers are one-dimensional (1D) arrays, advances in trans-

ducer fabrication and electronic interconnects have greatly facilitated the development

of two-dimensional (2D) transducer arrays. The intention of this work is to utilize

electronic steering of acoustic energy to accurately locate a specific cerebral vessel

(i.e., MCA) within a designated spatial volume. This task necessitates the use of a

2D transducer array, which will therefore be examined specifically.

A piezoelectric transducer matrix is typically composed of rectangular radiating

elements spatially offset by the element pitch in each dimension (pitch, and pitchy),

as shown in Figure 2-19. Other parameters relevant to the array geometry are the

lateral dimensions of individual elements (L. and Ly), the number of elements along

each dimension (N, and Ny), and the spacing between adjacent element edges (kerf,

and kerfy).

Z

x pitch, kerf, L,

'I

1~,1

Impedance
Matching Layers

Piezoelectric
Crystal

Backing
Material

Figure 2-19: Configuration of partial 2D transducer array structure.

Ultrasound arrays are configured into two basic functional modes, linear operation

and phased array operation, as depicted in Figure 2-20.
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Transducer

Imaging
Window Imaging

Window

(a) Linear operation of 1D trans- (b) Phased array operation of 1D

ducer array. transducer array.

Figure 2-20: Basic transducer array operating modes. Adapted from [42].

Linear operation utilizes a limited subset of transducer elements during each pulse

emission, with adjacent element groups excited sequentially, to achieve lateral reso-

lution. Because only a limited number of elements are employed simultaneously in

linear operation, total acoustic output power is markedly reduced for a given excita-

tion amplitude. For TCD applications, however, the presence of cranial bone leads

to significantly increased acoustic output power requirements. Also, beam focusing

capabilities are severely degraded for linear operation due to a reduced instantaneous

aperture, thus additionally decreasing the acoustic pressure attainable within the

region of interest. Linear array excitation is therefore not suitable for transcranial

velocimetry measurements and will not be considered further.

To first order, a 2D phased array can be estimated as an equivalent mechanically

steered solid aperture with variable focal length. The effective dimensions of this

equivalent aperture are approximated as L,eq N - pitch, and L,eq ~N - pitchy.

This analogy is overly simplistic in that electronic steering of the phased array can

create focal patterns that are not physically realizable in a focused element. Also,

additional complexities are observed in the phased array beam pattern due to the
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segmentation of the transducer surface into array elements.

Unlike single element transducers, array apertures are formed electronically through

delay mechanisms rather than by physical form. Such electrically defined apertures

are advantageous in that both transmit and receive apertures can be defined inde-

pendently, aperture characteristics (e.g., steering angle, focal region) can be directly

altered, and - for certain system architectures - multiple receive apertures can be de-

fined post hoc via post-processing. For TCD applications, the ability to rapidly steer

electronically facilitates the development of vessel location and tracking algorithms.

Additionally, utilization of multiple receive beams enables simultaneous velocimetry

measurement and uninterrupted vessel tracking throughout the evaluation period.

A transducer array cannot be accurately analyzed as a coherent set of infinitesimal

isotropic radiators, as is done for a single element transducer. Instead, the transducer

array is a collection of individual radiating elements with appreciable dimensions,

relative to A, and therefore an anisotropic directivity pattern. The beam pattern of

a phased array is dependent on both the relative excitation delay between elements

and the radiation pattern of the elements themselves. Figure 2-21 presents the beam

patterns of two square array elements with dimensions on the order of A (i.e., 0.5mm =

0.65A and 1.2mm = 1.6A for 2 MHz acoustic vibrations in soft tissue).

401.

(a) Intensity variation for element with di- (b) Intensity variation for element with di-

mensions L, = 0.5 mm, LY = 0.5 mm. mensions L, = 1.2 mm, L = 1.2 mm.

Figure 2-21: Analytical far-field directivity pattern in the azimuth plane for a square

array element operating at 2 MHz.

Although smaller element dimensions yield more favorable element directivity pat-

terns (i.e., approaching isotropic), practical transducer array designs introduce several
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conflicting aims. As described in Section 2.2.8, the equivalent aperture dimensions of

a transducer array must increase when focusing is required at greater tissue depths.

As individual element dimensions decrease, the total number of elements required

to obtain a given aperture area rises quadratically. The corresponding addition of

electrical hardware and element interconnects leads to greater fabrication difficulty,

system complexity, cost, and power dissipation. However, as transducer element

dimensions increase - especially greater than A - the range of realizable steering

angles for the phased array system is limited due to element directivity effects.

Due to the discrete structure of a transducer array, a variety of secondary factors -

including element variation, cross coupling between elements, time delay quantization,

and apodization amplitude quantization - can influence beam pattern formation.

Quantization effects, which tend to predominately affect sidelobe levels, are tolerable

in most applications for quantization errors < 10% of the underlying signal period

(i.e., Te) and can be readily assessed using acoustic field solvers [60]. The result of

element variation and electromagnetic cross coupling between elements, however, is

typically assessed using multiphysics FEA or, more practically, through experimental

acoustic field characterization.

An added complexity related to the radiation pattern of transducer arrays is the

emergence of grating lobes. Grating lobes occur at specific angles in which acoustic

waves emerging from two neighboring elements are exactly in phase for a certain angle

(referred to as the grating angle), creating constructive interference and substantial

acoustic intensity outside the main beam. In ultrasound imaging, the presence of

grating lobes leads to confounding receive echoes since acoustic energy is no longer

confined along the main beam direction. The presence of grating lobes can also de-

grade Doppler ultrasound measurements, even when no appreciable flow exists within

grating lobes, by markedly increasing stationary backscattered power and thereby de-

grading the minimum detectable signal for a given system dynamic range. Grating

lobes are typically stronger than sidelobes and can yield intensities on the order of

main lobe intensities. The grating angle differs for both the azimuth and elevation
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planes and is given by:

#,,n= sin- 1 .c (2.58)
pitch(

6,gn sin-, .A (2.59)
pitchy

where n is an integer value, although typically the fundamental (i.e., n = 1) is of

primary interest. Solutions resulting in |I#2,, > 900 or |0,,nl > 90' are non-physical

and therefore invalid.

To avoid grating lobe formation, element pitch must satisfy the following condi-

tions:

pitch, < , pitchy < 2 (2.60)

where, due to an inverse relationship between wavelength and frequency, Amin cor-

responds to the highest frequency component in the emitted signal. The preceding

inequality can be viewed as a consequence of the Nyquist sampling theorem in the

spatial domain, where the presence of grating lobes are an indication spatial aliasing.

Grating lobe effects can be reduced through PW excitation and for angles #5f that

occur beyond the element directivity main lobe.

As observed for element directivity, grating lobe limitations can lead to element

sizing that results in an impractical number of elements for the aperture dimensions

required. Ultrasound system architectures must therefore balance the conflicting

objectives of performance and complexity in consideration of target applications.

2.2.7 Apodization

Amplitude weighting across an acoustic aperture is known as apodization. Apodiza-

tion can be achieved during acoustic transmission via radially non-uniform single el-

ement transducer structures or, in transducer arrays, through scaled driving voltages

and scaled receiver gains for individual transducer elements. Single element transduc-

ers attain equivalent apodization during signal reception due to transducer reciprocity.

Because apodization mechanisms differ on transmit and receive for transducer arrays,

apodization of the transmit and receive apertures is independent. Recognition that

64



a Fourier relationship exists between spatial aperture geometries and their far-field

directivity patterns is essential in understanding the objective of apodization. As

observed for the far-field beam pattern of a rectangular transducer element in Equa-

tion 2.49, the rect and sinc functions form a Fourier transform pair.

Sidelobes are local maxima of the far-field directivity pattern outside the main

lobe. The presence of sidelobes in a transducer beam pattern can interfere with

the assessment of tissue structures within the main beam, especially when a strong

reflector is located within the sidelobe. Although similar in effect to grating lobes,

sidelobes are a distinct phenomena, occurring in both single element and transducer

arrays, and are a resulting function of the total equivalent transducer aperture.

A rectangular aperture is particularly unfavorable for low sidelobe beamforma-

tion as its first sidelobe is only 13 dB below main lobe intensity. Using insights from

Fourier analysis, applying an acceptable weighting function to the rectangular aper-

ture will significantly suppress sidelobe levels. As presented in Figure 2-22, applying a

Hamming weighting function to the rectangular aperture results in a drastic decrease

in peak sidelobe level from -13 dB to -42 dB, relative to main lobe intensity [61].

The use of apodization is not, however, without inherent limitations. For Hamming

weighted apertures, a reduction in main lobe acoustic power (by a factor of ~ 5) and

significant broadening of main lobe beamwidth (by a factor of ~ 2) are observed.

Both effects are in most applications undesirable, but not necessarily unacceptable

and are encountered, to some degree, in all apodization weighting functions.

-20 -10 0 10 20
Lateral Ofset, mm

Figure 2-22: Effect of aperture apodization on normalized acoustic intensity.
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2.2.8 Focused Transducers

Acoustic focusing, which converges a radiating beam into a spot at the focal plane, is

often employed in medical ultrasound to improve lateral resolution and increase the

maximum attainable intensity for a given driving signal amplitude. Focusing is phys-

ically realized by a lens or curved transducer surface. In transducer arrays, focusing

is achieved by time (or phase) shifting the waveform associated with each transducer

element to produce an equivalent lens. Figure 2-23 depicts the approximate extent of

appreciable acoustic energy in a notional focused transducer, where 1f is focal length

and w, and w, are the spot widths in the x and y dimensions, respectively.

Focused
Y Transducer

.. .-.

n I

I

Focal
Region

Focal Length l

Figure 2-23: Approximate beam shape of a focused transducer. Adapted from [441.

It is convention to define 1f as the length at which the beam intensity is maximal

(i.e., acoustic focus), which can differ from geometric focal length [42].

The on-axis pressure envelope for a focused and unfocused square transducer aper-

ture (with equivalent dimensions, driving signal, and transducer impulse response) is

shown in Figure 2-24.
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Figure 2-24: Simulated variation of on-axis pressure envelope for focused and un-

focused rectangular transducer. Values are normalized to the maximum pressure

magnitude of the unfocused transducer.

As expected, the focused transducer achieves significantly higher pressure at its

focal region relative to the unfocused transducer maximum. Acoustic energy, however,

cannot be focused beyond an aperture dependent maximum focal length lf,ma [44]:

lfax = D 4 ZR (2.61)
2.44A

where a circular transducer is assumed, but can be extended to other geometries by

using the transition distance (ZR) of the aperture. Therefore, to achieve focusing for

greater insonation depths, a larger transducer aperture must be employed.

At the focal plane, the focused spot width (i.e., lateral distance between main lobe

nulls) is expressed for a circular transducer as:

2.44Alf
wc = (2.62)

D

For a rectangular aperture, spot width is determined for each lateral axis:

wX = 2A, Iw = 2Mf (2.63)
Lx LY

The minimum lateral spacing at which two point scatterers are resolvable, known as

lateral resolution (LR), is reasonably estimated by spot width.
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Focused half-power spot width is expressed for the circular transducer as:

Wc,3dB D.2Alf (2.64)
D

and for the rectangular transducer as:

W0,3dB = .88Alf 0.88Alf (2.65)
m2,3ds ~ L W y,3dB = L(.5

For simplicity, acoustic intensity within the half-power spot width is often assumed

to be relatively uniform.

From Figure 2-24, it is apparent that pressure amplitudes near the focal region

decrease more rapidly than pressure amplitudes near the axial maximum of the unfo-

cused transducer. The axial distance over which the beam remains focused is known

as the depth of focus ldof. As energy becomes more concentrated in the lateral dimen-

sions (i.e., smaller spot width), depth of focus decreases. For a circular transducer,

this is expressed by the relation [441:

w2
idof (2.66)

The relationship between ldof and transducer dimensions is less straightforward for

non-radially symmetric geometries, but is primarily influenced by the largest trans-

ducer dimension.

Narrow depth of focus is a critical limitation of fixed focus sonography systems.

Focusing is highly advantageous in TCD systems due to considerable increases in

local pressure amplitude at the region of interest. TCD sonography, however, requires

velocimetry measurements over a range of insonation depths (~ 30 - 80 mm), which

is well beyond the depth of focus for a single transducer element. Although lenses

can be interchanged to alter focal length, this procedure is exceedingly inconvenient

in TCD evaluations since measurements throughout a vessel course are necessary.

Phased array architectures, which enable dynamic focal length variation, are therefore

suitable for focused TCD sonography.
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2.2.9 Pulsed Transducer Beam Patterns

The classic treatment of acoustic fields is based on continuous wave solutions. Al-

though analytical beam pattern expressions from CW derivations are useful in ob-

taining insight into PW functionality, such results do not yield a precise description

of PW beam pattern formation (especially for short pulses where M < 6) [42]. Be-

cause pulsed operation is achieved through time gating, time domain expressions are

amenable for PW analysis.

A widely used method, first developed by Tupholme and Stepanishen and further

refined by Jensen, employs the transducer spatial impulse response to compute radi-

ation patterns for an arbitrary excitation waveform [62-64]. The coordinate system

used in planar transducer beam pattern analysis is shown in Figure 2-10, which is

repeated here as Figure 2-25 for convenience.

y

Transducer
Surface X

z
, r'

r

Figure 2-25: Coordinate system for analysis of planar transducer beam patterns.

Assuming an infinite rigid transducer baffle and a homogeneous propagating medium,

the pressure variation at point P is expressed by a general form of the Rayleigh inte-

gral [43]:

PO at r t, 'c)
p(Mt)- dS (2.67)

where S denotes the transducer surface and u (r~, t) is the time dependent velocity

normal to the transducer surface at dS (i.e., r; is a vector from the origin to dS).

Separation of the transducer spatial impulse response h (f, t), which characterizes

the three-dimensional field due to impulse excitation, from the Rayleigh integral is
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used to facilitate radiation pattern calculations. Assuming uniform velocity across

the transducer surface, h (F, t) can be expressed as [64]:

hj(,t) = f '7 ' dS (2.68)

where 5 (-) denotes the Dirac delta function. Effects due to attenuation and non-

uniform surface velocity - caused by media absorption and apodization, respectively

- can be incorporated into this analysis framework through direct modification of the

spatial impulse response.

For transducer arrays, an equivalent spatial impulse response harray (F, t) is defined

by combining the spatial impulse responses of individual transducer elements:

N N

harray (F, t) = hn (Fn, tn) = [ hei (F Foiset,n, t - tdelay,n) (2.69)
n=1 n=1

where hei (F, t) is the spatial impulse response for an element at the origin, N is the

number of array elements, Toffset,n is a vector from the origin to the nth transducer

element center, and tdelay,n is the excitation delay for the nth transducer element.

Equation 2.69 assumes equivalent transducer elements and simple time delays between

element excitations. Apodization can be achieved through scaling of the individual

element spatial impulse responses hn (r~n, tn) within the summation term.

Because the spatial impulse technique separates transducer geometry effects from

the excitation waveform, modifications to the driving signal - such as timing delays in

phased array systems - do not require repeated integration to determine h (F, t) and

therefore often result in more efficient computation. As pulse length expands (i.e., M

increases), the resulting field pattern converges to the continuous wave solution. The

resultant pressure field for a given excitation is expressed as [64]:

p ( *)Oh =po t) (2.70)
where *) d tmpt ct

where * denotes temporal convolution.
t
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Analytical solutions for the spatial impulse response can be computed for a number

of basic transducer geometries, as described in [43,65]. The method is often solved

numerically by field solvers, such as the Field II ultrasound simulator developed by

Jensen [38,39]. Figure 2-26 displays the effect of pulse length on the pulse intensity

profile.
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Figure 2-26: Simulated intensity envelope

operating at 2 MHz.
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x dimension for M = 10

for a 13 mm diameter circular transducer

Using the concept of time averaged intensity, the beam pattern for pulsed excita-

tion apertures can also be computed using field solvers, as shown in Figure 2-27.
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Figure 2-27: Simulated time averaged intensity for a 13 mm diameter circular trans-

ducer operating at 2 MHz for M = 2.
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Comparison of Figure 2-27 to CW simulations for an equivalent transducer, as

shown in Figure 2-12, highlights the significant effect of PW operation on beam

pattern formation. Pulsed excitations, as a result of their considerable bandwidth,

tend to produce less abrupt beam patterns (i.e., lower spatial derivatives) and lower

sidelobe levels than observed in monochromatic CW operation. This effect is most

pronounced in the near-field region, where CW operation leads to high intensity

variability.

2.2.10 Pulse-Echo Operation

The spatial impulse response method developed in Section 2.2.9 can be extended to

analysis of the pulse-echo process for point scattering (i.e., exceedingly small inho-

mogeneities).

Figure 2-28 presents the fundamental components of a pulse-echo ultrasound sys-

tem.

Transducer Transmit . Receive Transducer
Response Diffraction Scattering Diffraction Response

eT(t) h-PgyPeRU
Electrical Electrical
Excitation Reception

Figure 2-28: Block diagram representation of a pulse-echo ultrasound system.
Adapted from [65].

During transmission, the electrical excitation signal eT (t), denoted epw (t) in

Section 2.2.2 for a PW excitation signal, yields a transmit velocity UT (t) at the

transducer surface. Using the transmit electroacoustic conversion impulse response

gr (t), transmit surface velocity is expressed as:

UT (t) = eT (t) * 9T (t) (2.71)

Transmit and receive electroacoustic conversion impulse responses - gr (t) and gR (t),

respectively - can be determined from an equivalent circuit transducer model, as

discussed in Section 2.2.3.
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The transmit (i.e., incident) pressure field pT (F, t) can thereby be computed as:

ahr(F7 t) ahr ( 7t)
PT (rt) = POUT (t) * = pOeT (t)* 9T (t) * (2.72)t at t t at

where hT (F, t) is the transmit aperture spatial impulse response.

Inhomogeneities are treated as point scatterers using the scattering field function

s (f), defined as [43]:

S ( = -) 2  
(2.73)

Po CO

where po and co are the average density and velocity of propagation within the

medium, respectively. Functions Lp (r-) and Ac (r) contain perturbations in acoustic

properties and thereby produce scattering.

For a finite number of point scatterers (Nscatterers), functions Lp (r) and Ac (F) are

expressed as:
Nscatterers

Ap (M) = (p - po) 3 (F - Fr) (2.74)
n=1

Nscatterers

Ac () = (c - co) (r- F) (2.75)
n=1

where pn and c, indicate the density and acoustic velocity of perturbations (i.e.,

discrete scatterers), respectively, and F, denotes the position vector of the nth scatterer

with respect to transducer origin.

The electrical receive signal eR (t) can thereby be computed completely in terms

of the electrical excitation, transducer impulse responses, aperture spatial impulse

responses, and the scattering field function. Assuming coincident transmit and receive

apertures - such that the origin remains common - eR (t) is expressed as [40,64]:

1 &hT(F,t) ahR(Ft)
eR (t) = eT(t)* gT (t) * gR (t) * AT * at ) (2.76)

where hR (F, t) is the receive aperture spatial impulse response and 9R (t) is the receive

electroacoustic conversion impulse response, which is necessary to convert between
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receive velocity UR (t) and the receive voltage waveform eR (t):

eR (t) = UR (t) * 9R (t) (2.77)

The point spread function (PSF), a common measure of resolution capability in

ultrasound systems, can be obtained using the convolution based field analysis meth-

ods described. A single perturbation in the scattering field function is first defined.

Receive signal magnitude across a set of spatial locations adjacent to the perturbation

yields the PSF. An acoustic floor of the PSF is established by the sidelobe levels of

the transmit and receive apertures. In general, the PSF is dependent on scatterer

location within the field of view.

The preceding analysis of pulse-echo operation assumes linearity, time-invariance,

and point single scattering (i.e., scattering at discrete points due solely to incident

radiation). This method can, in principal, be modified to account for anisotropic

point scattering via the differential scattering cross-section as (9), as discussed in

Section 2.1.1. Bulk inhomogeneities, however, cannot be modeled under the previ-

ous formulation and require alternative approaches, such as modified angular spread

methods, finite-difference time-domain (FDTD) methods, and FEA [66].

2.3 Phased Array Beam Steering and Focusing

Phased array beamformation is based on the coherent summation of related wave-

forms. An acoustic beam pattern can be electronically formed through the con-

trol of time delays and amplitude scale factors for each element in the transducer

array. Beamformation is comprised of beam steering (i.e., modification of main

beam direction, referred to as the steering angle) and beam focusing (i.e., conver-

gence of main beam energy at a particular depth, referred to as the focal length).

Phased array beamformation is achieved during both pulse transmit and echo receive,

creating an effective pulse-echo spatial impulse response expressed by hPE (F, t)

hR (F,t)* hT (F,t).
t
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In transmit beamforming, the excitation pulse for each element is a time-delayed

version of the periodic basis function, defined by the transmit beamformer. Excitation

amplitude scaling is also often applied to realize apodization of the transmit aperture.

Following transduction, the delayed acoustic waveforms define a surface within the

propagating media of approximately equal phase near the transducer elements, known

as the equiphase surface. For a single element transducer, the transducer surface -

driven by a common excitation - forms the equiphase surface. A phased array beam

pattern is therefore comparable to the beam pattern of a single element transducer

defined by the equiphase surface. The planar component of the equiphase surface

determines the steering angle (i.e., beam steering), while surface curvature defines

the focal length (i.e., beam focusing). The process of transmit beamformation is

presented in Figure 2-29.

Transducer
Array Equiphase

Surface

--- --- -- --- -- --- -- Focal
Region

Time Shifted
Transmit Pulses

Figure 2-29: Transmit phased array beamformation.

Similarly, receive beamformation is achieved through control of time delays and

amplitude scaling as defined by the receive beamformer. However, because receive

waveforms are manipulated subsequent to transduction, receive beamformer designs

are less restricted by implementation constraints (e.g., interfacing with high-voltage

pulse signals) and are therefore often more configurable.

Electronic beamformation is utilized in the TCD applications of this work for

two primary functions: to steer the main beam direction for location of the vessel

of interest and to increase acoustic intensity - for a given acoustic output power -
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at the vessel of interest via focusing, thereby potentially improving acoustic window

patency.

The coordinate framework for basic analysis of phased array beam steering and

aperture focusing in a homogeneous acoustic medium is presented in Figure 2-30.

y
x.

yi

x

r r
r % p

P

Figure 2-30: Coordinate system for analysis of electronic phased array beam steering

and focusing.

To achieve beam steering along the r direction with a focal region at point P, the

time delay required for a transducer element in the ith row and jth column - denoted

Ati, - is expressed as:

r - r r - (r -X) 2 + (rYy)2,+r+ (2.78)
c C

where r = |r|= I (rry,rz) , to is a constant delay term ensuring causality (i.e.,

Ati, 3 > 0 V i,j), and xz and yj are the element center offsets from the origin in the

x and y dimensions, respectively. Amplitude scaling is defined by discretizing an

amplitude weighting function, as discussed in Section 2.2.7, at the element center

offsets. Additional complexities related to phased array beamformation - such as

grating lobes and element directivity effects - are discussed in Section 2.2.6.

Tissue inhomogeneities act to distort the focal region, leading to spreading of

acoustic energy and reductions in focal intensities. The phased array beam steering

expression described in Equation 2.78 assumes a homogeneous medium and thus a
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constant propagation velocity c. Because changes in propagation velocity are marginal

for a variety of soft tissue types, this assumption yields tolerable effects in most

medical ultrasound applications. As presented in Table 2.1, the propagation velocity

through cranial bone, however, is markedly distinct from soft tissue.

For transcranial sonography applications, differences in path length through bone,

due to skull thickness variations across the aperture and differences in r 3 angle, cause

diminished coherence at the focal region - a phenomena referred to as focal aberration.

Differences in acoustic propagation velocity at the interface between bone and soft

tissue yield refraction effects, as discussed in Section 2.1.1, which alters wave direction

and thereby produces beam pattern distortions [35]. These nonidealities are a primary

reason for poor image quality in transcranial ultrasound imaging modalities, such as

TCCS.

By modifying delay timings, beam pattern distortion effects due to focal aber-

ration and refraction can be significantly mitigated and the focal region restored to

its intended position. Such methods, referred to as phase-correction techniques, can-

not be achieved using physical focusing mechanisms (e.g., curved transducer surfaces,

lenses) - due to inadequate reconfigurability and mechanical realizability - and are

thereby exclusive to phased array apertures. Phase-correction algorithms are dis-

cussed further in Section 3.1.2.

2.4 Doppler Ultrasound and Velocity Estimation

In a majority of TCD applications, the true clinical parameter of interest is cere-

bral blood flow (CBF). Doppler methods, however, yield flow velocities and - due

to anatomical constraints - diameter of the cerebral arteries cannot be measured via

acoustic means with sufficient accuracy to obtain absolute volume flow [67]. Nonethe-

less, Doppler ultrasound can provide a phenomenal representation of the dynamic pro-

gression of in vivo blood through the cerebrovasculature, which cannot be acquired

from any other non-invasive modality.

Although absolute CBF cannot be accurately measured in TCD applications with-
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out reliable vessel dimensions, relative changes in CBFV can be used as a surrogate

marker for CBF variation when changes in vessel lumen diameter are small (or other-

wise predictable). The MCA - and other major basal cerebral arteries - serve mainly

as conductance channels and are not significantly involved in the active regulation of

blood flow. MCA diameter does not change appreciably for moderate variations in

arterial carbon dioxide partial pressure [68-70.

Studies have shown that CBF, measured at the internal carotid artery via elec-

tromagnetic flowmetry, and CBFV envelope (discussed in Section 2.4.2), measured

at the MCA via TCD, are highly correlated for moderate changes in ABP [67,71].

However, administration of certain chemical - such as nitroglycerin - result in signif-

icant vasodilation of the basal intracranial arteries and can thereby confound TCD

measurements [72].

Certain applications of TCD - notably embolus detection and vasospasm monitor-

ing - do not rely on the assumption of constant vessel diameter, but instead depend

on CBFV parameters directly as indications of pathology. Recognition of the under-

lying assumptions required by specific TCD applications is therefore essential for the

proper interpretation of measurement data.

The use of Doppler ultrasound to quantify blood flow velocity was first described

in 1960 by Satomura and Kaneko [73]. It was not until 1981 that Aaslid adapted

Doppler techniques for transcranial examination of the cerebral vessels [74]. Due

to relatively simple hardware implementations, early Doppler sonography utilized

CW operation. All CW receive samples, however, correspond to the entire depth

of insonation, leading to range ambiguity. Because CW excitation is uninterrupted,

physically separate transmit and receive transducers must be employed. Limited axial

discrimination can be obtained via partial overlapping of transmit and receive beam

patterns, but degrades as depth increases and further complicates vessel location.

By contrast, PW operation exploits time encoding of scatterer spatial position.

In TCD sonography, exceedingly large amplitude reflections, due to the presence of

cranial bone and other axially distant stationary scatterers, can be neglected by time

gating the receive signal about the depth of interest. PW excitation enables superior
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axial resolution than can be achieved solely through focal beamformation methods.

Because receiver electronics must simultaneously detect low-level signals from mobile

scatterers and high-level scattering from stationary tissue, PW operation greatly re-

duces system dynamic range requirements by eliminating scatterer reflections outside

the sample volume. Further analysis of TCD velocimetry applications in this work

will therefore concentrate on PW excitation.

2.4.1 Velocity Estimation for a Single Scatterer

At a basic level, scatterer velocity is determined by repeated pulse emissions and com-

parison of received time shifts between adjacent pulses. The PW velocity estimation

algorithm is first described for a single scatterer within a highly simplified framework

and then extended to an ensemble of scatterers. As shown in Figure 2-31, a scat-

terer starts at depth zo - relative to the ultrasound transducer surface - and moves

with a constant velocity vector V', where 6 D is the angle between i and the z-axis,

v2 = V cos OD represents the velocity component normal to the transducer surface,

and the scatterer is assumed to be along or sufficiently near the z-axis. The angle 9D

is generally referred to as the Doppler angle.

Transducer
Surface X

zoz

Acoustic
Scatterer

Figure 2-31: Coordinate system for analysis of PW velocity estimation.

Plane wave propagation of the incident and scattered waveforms, although not

indicated in Figure 2-31, is initially assumed for analytical tractability. Transmit

and receive transducer apertures, as well as transducer impulse response effects, are
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therefore implicitly neglected. This highly reduced model will initially be analyzed,

then further developed within a realistic acoustic context.

In medical Doppler sonography, M (i.e., number of cycles within the periodic

basis function) is typically a moderate value (i.e., < 20) corresponding to a range

gate length 19 of several millimeters:

Mc
19 = 2f (2.79)

The range gate length characterizes the possible scatterer depths over which the

electrical receive signal is influenced.

The sample offset T, is defined as the time delay between pulse emission and

sampling of the electrical receive signal. The sample depth z, is thereby expressed as:

Tsc
Z = 2 (2.80)

where the sample depth z, is selected to correspond to the depth of interest (e.g., zo

in this simplified geometry, aperture focal length in typical focused Doppler applica-

tions).

Sampling of the electrical receive signal eR (t) at sample offset time T, is therefore

only affected by scatterers contained within the sample volume depth z,,:

zs [Z - , zS + " (2.81)
2 2

A single acoustic pulse emission eTo (t) - the pulsed excitation basis function

described in Section 2.2.2 - is initiated at time teo and travels outward from the

transducer with propagation velocity c. Scatterer and pulse front depth along the

z-axis are expressed as:

Zscatterer (t) = zo + t |j cos D= zo -+ Vzt (2-82)

Zpulse (t) = c (t - teo) Hstep (t - teo) (2.83)
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where Htep (t) is the Heaviside step function, given by:

Hstep (t) 0, t < 0 (2.84)
1, t ;> 0

The scatterer and pulse front are spatiotemporally coincident at the interaction

time tio, which results in the emission of a scattered acoustic wave. The interaction

time is calculated as:

zo C
Zscatterer (ti 0 ) Zpulse (ti 0 ) - i 0 - c CteO (2.85)

c - V c -vz

Beginning at time trO, a backscattered wave is received at the transducer. The

time delay between pulse emission and interaction is equivalent to the time delay

between interaction and pulse reception, leading to the relation [43]:

c - v 230
trO = teO + 2 (tio ~ teo) + teO = trO (2.86)

c-1vz c+vz

For a single pulse emission, the received electrical waveform eRo (t) can therefore be

described as a time-scaled and delayed version of the pulsed excitation basis function

eTO (t):

eRo (t) = AReTO t CO (2.87)

where AR is an amplitude scaling coefficient (related to the reflection coefficient F for

plane wave scattering).

As discussed in Section 2.2.2, the PW transmit excitation waveform eT (t) can be

synthesized by combining time-shifted versions of the basis function erm (t):

eTn (t) = eTo (t - nTPRP) (2.88)

00 00

eT (t) = en (t) = eTo (t - nTPRP) (2.89)
n=O n=O

A notional PW transmit excitation waveform eT (t) is shown in Figure 2-8 and is
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repeated here as Figure 2-32 for convenience, where waveform labels eTe (t) indicate

the nonzero segment of each time-shifted representation of the basis function.

e(t) e" (t) eT(t)

0.5

E
< 0-

-0.5
Z

0 2 4 6 8 10 12
Time, ps

Figure 2-32: Pulsed wave excitation waveform (M = 2, Te = 1.0ps, and TPRP= 5pts).

The windowing function ][ (M - is fairly narrow in time. Therefore, the

PW transmit excitation eT (t) has considerable half-power bandwidth BWT,3dB:

BWT,3dB - fe
M

(2.90)

The frequency spectrum of a realistic PW excitation waveform eT (t) is given in

Figure 2-33. The spectral content of eT (t) is characterized by a main tone at the

excitation frequency fe. Secondary tones occur at integer offsets of the pulse repeti-

tion frequency fPRF from the main tone and are shaped by the transmit excitation

bandwidth BWT,3dB:

0.8

M

0.6

T 0.4

Z 0.2

1.5 1.75 2.0 2.25 2.5
Frequency, MHz

Figure 2-33: Notional pulsed transmit excitation spectrum for M
and TPRP = 0.ps.

10, Te = 0.5ps,
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The time-space relationship between a constant velocity scatterer and the periodic

transmit waveform is depicted in Figure 2-34.

Scatterer
Interaction Position

.... . ................. ........ ................... ................ ~ ....... ..

-C Scattered 1
Emitted Pulse

G Pulse

teO tiO t, tO t t t t t te3

Time

Figure 2-34: Time-space diagram of scatterer and pulse interaction.

Adapted from [43].

Due to periodic replication of the emitted pulse, a single pulse receive waveform

can be written in terms of the emitted pulse from the preceding pulse repetition:

c+v z (c - vz 2zo PP

eRn (t) AReTn ( C - 2z = AReT(n-1) t C - TPRP

(2.91)

By recursion to the initial pulse emission, the single pulse receive waveform due to

the n'h pulse repetition can described in terms of the pulsed excitation basis function:

eRn (t) = AReTO t C - - nTPRP (2-92)
(c+vz C +Vz

Summation of the single pulse receive waveforms over all pulse repetitions yields

the electrical receive signal eR (t):

00

eR (t) = eRn (t) (2.93)
n=o

Sampling eR (t) at the pulse repetition frequency (i.e., one sample per pulse period)

with a constant sample offset time T, - corresponding to the desired sampling depth
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z, - yields a discrete-time receive sequence x [n]:

x [n] = eR (nTPRP - T,) (2.94)

To avoid time aliasing, the pulse repetition frequency must be selected such that

received signals from adjacent pulse repetitions do not overlap in time. Under this

fPRF requirement, the nth sample is determined solely by the nth single pulse receive

waveform:

x [n] = eRn(nTPRP - Ts) (2.95)

Without loss of generality, the pulsed excitation basis function is expressed as a

gated sinusoid to facilitate spectral analysis of the receive sequence x [n]:

t - 1 sin (27rfet), 0 < t <TM (2.96)ero(t) = fl TeM 2) sin (27rfet) = (.6
S eM 21 0, otherwise

Using the basis function expression, the receive sequence can be solved for explic-

itly.

x [n] = AReTO nTPRP - TRP 2z - TC (2.97)
C+vz c+vz c+vz/

Defining a constant phase term e:

e = 27rfe + T V (2.98)
(C+ vz c +vz)

yields a reduced form of the expression:

x [n] = -A sin (4rfTPRPvz + e (2.99)
c + vz

Therefore, under the simplified framework presented, sampling the electrical re-

ceive signal eR (t) at the pulse repetition frequency yields a frequency spectrum with

energy concentrated at the Doppler frequency fd:

2feVz 2fevz
fd = i ~ i (2.100)
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The preceding velocity estimation procedure is primarily founded on methods

introduced by Bonnefous and Pesque, which were later refined and advocated by

Jensen [64, 75]. Alternative velocity estimation methods are also commonly used,

including the phase and cross-correlation based estimators presented in [40].

It should be noted that use of the term Doppler in PW systems is somewhat of

a misnomer. The relative shift in scatterer position between pulse emissions is the

underlying phenomena measured in PW operation. The Doppler effect, in contrast,

yields frequency shifts induced by instantaneous scatterer velocities. Although the

distinction may appear subtle, the sizeable bandwidths used in PW operation make it

exceedingly difficult to measure modest Doppler frequency variations through media

with frequency dependent attenuation characteristics [43]. Nevertheless, the term

Doppler, although formally incorrect, is widely established for pulsed excitation and

will be used throughout this work when referring to PW velocity estimation methods.

Equation 2.100 - although referring to Doppler frequency - has been specifically

derived for PW operation and remains valid despite this incongruity in nomenclature.

2.4.2 Velocity Estimation for an Ensemble of Scatterers

The velocity estimation methods initially presented for a single scatterer can be ex-

panded to practical acoustic contexts for a collection of scatterers.

Recall from Equation 2.76 that accurate calculation of the electrical receive signal

eR (t) is founded on convolution of the PW transmit excitation waveform eT (t) with

physical system characteristics - notably transmit and receive transducer impulse

responses g (t) and spatial impulse responses h (t). Because the convolution operation

is time invariant, the receive waveform from stationary scatterer and time-shifted

pulse emissions will be exactly identical (neglecting noise effects).

If the effective pulse-echo spatial impulse response hPE (', t) is relatively constant

in magnitude for the range of scatterer positions, then scatterer waveforms can be

approximated solely by time delays - as presented in the previous section - with

no appreciable change in amplitude. For scatterers confined to the sample volume

depth range z,, and within a nearly constant magnitude region of the main beam
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of the pulse-echo beam pattern, the velocity estimation procedure remains valid. As

scatterers move away from the z-axis, the use of a single Doppler angle OD becomes less

valid due to angle approximation errors and velocity estimation accuracy is degraded.

Such angle variation errors, however, are fairly negligible in TCD insonation of the

MCA, since the scatterers are confined to a roughly 3 mm diameter vessel at a sample

depth of ~ 40 mm.

For transducer arrays, where beam steering enables the main lobe to be offset from

the vector normal to the transducer surface, the coordinate system can be transformed

such that the z-axis corresponds to the beam steering angle, and OD is defined between

the steering direction and the scatterer velocity vector, thus approximating the phased

array as an equivalent steered element.

Because a linear system is assumed, velocity estimation analysis can be applied

to an ensemble of scatterers defined by a dynamic scattering field s (r, t), where

each scatterer position is approximated using a scatterer velocity vector and previous

scatterer position:

rn (t) = lin r (t - At) + v, (t) At (2.101)
At-+0

One practical inconsistency with the velocity estimation analysis presented in Sec-

tion 2.4.1 is that constant scatterer velocity is maintained over all pulse repetitions,

but scatterers must remain confined to the sample volume depth range z,,, and a

constant magnitude region of the pulse-echo beam pattern. These analytical limita-

tions present two major discrepancies. First, blood flow within major arteries is a

highly pulsatile phenomenon. Scatterer velocity is therefore grossly misrepresented by

a constant velocity approximation. Blood flow velocity can, however, be accurately

characterized as constant over a time interval of several milliseconds [76]. Second,

after sufficient time all scatterers with non-zero velocity will not be confined to the

sample volume depth range or a constant magnitude region of the pulse-echo beam

pattern.

These concerns can be mitigated by use of the spectrogram, known in the context

of ultrasound as the sonogram, which provides a time-varying spectral representa-
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tion of the receive sequence x [n] through computation of the time-dependent Fourier

transform [61]. To determine the spectral content of x [n] for a particular sample in-

terval - corresponding to a time interval in eR (t) - the receive sequence is multiplied

by a window sequence, as described in Section 3.4. For a sufficiently short window

(i.e., on the order of several milliseconds in duration), flow velocity and the pulse-echo

spatial impulse response magnitude (across the length traveled by a scatterer) can be

approximated as constant. For an ensemble of erythrocytes at in vivo concentrations

and flow velocities, there will still be a large number of scatterers entering and exiting

the sample volume depth range. From each pulse repetition, however, this number

is a slight fraction of the total scatterers within the sample volume and can typically

be neglected.

Pulse repetition frequency limits exist in order to ensure aliasing is prevented

throughout the velocity estimation procedure. To avoid aliasing in the frequency do-

main, a minimum pulse repetition frequency fPRFmin is determined by the maximum

scatterer velocity magnitude.

fPRF,min ~ 4fvax (2.102)
c

This restriction permits scatterer velocity to vary within [-Vmax, Vmax] without risk of

frequency aliasing. A priori knowledge of scatterer velocity (e.g., absence of negative

flow) can be used to extend acceptable flow velocities to larger values without ac-

curacy degradation. Pathological blood flow is, however, often notably distinct from

normal flow patterns, which cannot generally be presumed. In TCD applications, flow

direction is highly dependent on anatomical factors (e.g., transtemporal insonation

typically yields positive flow velocities for the ipsilateral MCA and negative flow ve-

locities for the ipsilateral anterior cerebral artery).

As sampling depth z. increases, scattered energy from the sample volume takes ad-

ditional time to reach the transducer surface and therefore the rate of pulse emissions
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(i.e., fPRF) must decrease to avoid time domain aliasing:

C
fPRF,max = 2z +19 (2.103)

The spectral content of x [n] for arterial blood flow - even when utilizing short

window sequences - contains a wide distribution of frequencies, a result of radial de-

pendent erythrocyte velocity. Within the circulatory system, blood flow is generally

laminar (i.e., Reynolds number < 2000) and evidence of turbulence is often an indi-

cation of pathology (e.g., stenotic vessel). A notional scatterer velocity distribution

for laminar flow is depicted in Figure 2-35.

RI _

R r v(r)

Figure 2-35: Laminar flow velocity in a long, rigid tube. Adapted from [43].

The scatterer velocity profile for steady (i.e., non-pulsatile) laminar flow in a rigid

tube can be described by the Poiseuille relation, given by [43]:

v (r) = vo,max 1 - (2.104)
1 R

where r is radial position, R is tube radius, VO,max is maximum scatterer velocity, and

po is velocity profile order. Near an inlet, entrance effects tend to dominate thereby

yielding a flat velocity profile (po -+ oo). For long tubes, viscosity effects establish

parabolic flow (po -+ 2). As indicated by Equation 2.104, a linear relationship exists

between vo,max and mean flow velocity.

In practice, blood vessels are elastic structures, rather than rigid tubes, and blood

flow is pulsatile, rather than steady. Scatterer velocity is therefore radially and tem-

porally influenced. Using Fourier decomposition, scatterer velocities throughout pul-

satile flow can be analyzed from a set of Womersley equations, but require a number
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of vessel specific parameters not generally available in a clinical setting [77,78].

Ideally, the spectral power at a particular Doppler frequency is proportional to the

number of erythrocytes within the sample volume moving at the corresponding axial

velocity. Formally, since the backscatter coefficient of blood is nonmonotonic with

hematocrit, this relationship is not valid for erythrocyte scattering (as described in

Section 2.1.1). However, because hematocrit is constant through the sample volume

and rouleaux formation is negligible in arterial flow, the proportionality assumption

is approximately valid. Therefore, calculation of spectral mean Doppler frequency

can theoretically yield an accurate representation of mean flow velocity V [In].

Spectral mean Doppler frequency d [n] is computed by power-weighting the spec-

tral content of the time-dependent discrete Fourier transform (TDDFT) of x [n]:

27r

f AIX [n, A)|2 dA

fd [n] = 0 (2.105)

f IX [n, A)|2 dA
0

where X [In, A) is the TDDFT of x [In] [61]. Recall that n is a sequence index corre-

sponding to continuous time sampling at t, = n - TPRP + Ts-

Doppler estimated mean flow velocity [In] is thereby expressed as:

Id [n] cf [n] = 2f c (2.106)
2fe COS OD

Volumetric flow (e.g., CBF through the MCA) can be obtained by utilizing mea-

sured vessel diameter d, [n]:

7rOv [n] d 2 [n] 7rc fd [n] d 2 n
q [n] = V (2.107)

4 8fecos OD

Finally, if vessel diameter is constant over the cardiac cycle, volumetric blood

flow through the vessel can be estimated to within a constant scale factor (i.e., q0).

For a constant vessel diameter, the linear relationship between volumetric blood flow

and V [n] allows changes in blood flow through the vessel of interest to be directly
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monitored using CBFV measurements.

7rcfd [n] d24[n] - fi [ -= qofd [n] (2.108)
8 fe COS 0

Equations 2.107 and 2.108 are not generally useful for clinical TCD evaluations,

since accurate vessel diameter measurements are typically unavailable for TCD ap-

plications. However, tube diameter is accurately determined for experimental flow

phantom testing and 4 [n] can be used to validate TCD velocimetry data against

conventional in-line flowmetry techniques.

The spectral mean Doppler frequency fd [n] was established in the analysis of

velocity estimation as a primary variable of interest. However, use of fd [n] is only

formally valid under a narrow set of demanding conditions [67]:

1. There are no vascular bruits or vessel wall movements.

2. The signal to noise ratio is sufficiently high.

3. The sample volume is centered on a straight segment of the artery.

4. There are no branches or adjacent small vessels within the sample volume.

5. There is minimal beam pattern variation over the cross-section of the vessel.

In a clinical setting, most of these conditions are violated and the accuracy of

velocity measurements is therefore severely degraded. Most TCD instrument designs

and a majority of TCD researchers have chosen to use the Doppler spectral envelope

fd,m.a - the maximum frequency peak of the Doppler spectrum - as the relevant

measurement parameter for a majority of TCD applications. The Doppler spectral

envelope, and the related velocity envelope Vma., generally corresponds to the velocity

in the lumen centerline and, under laminar flow, is proportional to mean flow velocity.

As previously noted, arterial blood flow is pulsatile in nature and is not entirely

described by the Poiseuille relation. However, the small diameter of the cerebral

vessels - relative to other major arteries - has a stabilizing effect on the velocity
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profile and experimental results have validated the laminar flow approximation in the

MCA [67].

Use of the Doppler spectral envelope markedly improves measurement accuracy

as it is a less sensitive, more robust parameter than fd [n]. As long as some portion

of the sample volume contains the location of maximal flow velocity for the vessel

of interest and no other regions within the sample volume contain a scatterer axial

velocity component greater than vmax (i.e., vessel of interest is the source of the

largest velocity scatterers within the volume of insonation), velocity estimation using

the spectral envelope remains accurate (assuming a known Doppler angle OD).

A hardware implementation of the velocity estimation procedure, and further

practical challenges related to the method, can be found in Section 3.4.
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Chapter 3

Transcranial Doppler Ultrasound

System Design

The intended use of an ultrasound system places considerable constraints on sys-

tem design aspects. This work addresses the development of transcranial Doppler

(TCD) sonography instrumentation, particularly for middle cerebral artery (MCA)

insonation. The design of electrical hardware and transducer geometries must there-

fore consider factors relevant to TCD velocimetry, specifically vascular anatomy, cra-

nial windows, typical blood flow velocities, TCD examination and vessel identification

techniques, spectral analysis, and signal processing limitations.

3.1 Anatomical and Physiological Considerations

3.1.1 Cerebral Vasculature

Brain tissue is fundamentally reliant on uninterrupted and sufficient oxygenation.

Blood flow requirements for the brain, relative to other organs, are considerable.

Under resting conditions, the brain accounts for almost 20% of bodily oxygen demands

[3,79]. The cerebrovascular anatomy is composed of multiple redundancies, known

as collaterals, such that adequate perfusion can many times be maintained in the

event of inadequate flow through a single vascular route (e.g., due to blockage or
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stenosis) [80].

The main anatomical structure of the

as depicted in Figure 3-1:

cerebrovasculature is the Circle of Willis,

Anterior
communicating

artery %,~

Figure 3-1: Anatomical structure of the cerebrovasculature [81]

The Circle of Willis is composed of the left and right branch pairs of the ante-

rior cerebral artery (ACA), terminal internal carotid artery (TICA), posterior cere-

bral artery (PCA), posterior communicating artery (PCoA), middle cerebral artery

(MCA), and the non-paired anterior communicating artery (ACoA), and basilar

artery (BA). The TICA is the distal segment of the supraclinoid internal carotid

artery (ICA) just proximal to its bifurcation into the ACA and MCA. For each cere-

bral hemisphere, under standard anatomic configurations and non-pathologic condi-

tions, the MCA and ACA are supplied by the ipsilateral ICA. The left and right PCAs

are supplied by the BA and flow through the communicating vessels (i.e., ACoA and

PCoA) is generally minimal. Anatomic variation of the cerebral vasculature is, how-

ever, extremely common and considerable. Studies have shown that a "normal" Circle

of Willis occurs in only 18% to 54% of individuals [67,82,83]. Such anatomic variation

- including vessel caliber, course, and origin - and knowledge of the most frequent

deviations - must be recognized when identifying vessels during TCD evaluation.

The left and right MCAs - the primary vessels of interest for this work - supply
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blood to the lateral surface of each cerebral hemisphere and carry the vast majority

of blood leaving the Circle of Willis (~ 80%) [84]. From its origin as a continuation

of the left or right TICA, the ipsilateral MCA courses laterally (i.e., away from the

cerebral midline) and slightly anteriorly [67]. The proximal portion of the MCA,

known as the M1 or sphenoidal segment, gives rise to numerous small lenticulostriate

perforators and has a normal mean diameter of 2.5 to 3.8 mm and a mean length

of 16.2 mm [85,86]. The distal M1 segment furcates - typically a bi- or trifurcation

- into the MCA M2 branches, which course 900 superiorly and posteriorly into the

Sylvian fissure [67].

Cerebral blood flow velocity (CBFV) measurements are generally characterized

by a set of clinically relevant parameters, particularly peak systolic velocity (PSV),

end diastolic velocity (EDV), and time mean velocity (MV), as defined for a notional

CBFV waveform in Figure 3-2. The time mean velocity carries the highest physio-

logical significance as it most closely correlates with cerebral perfusion. Certain TCD

applications - particularly intracranial pressure (ICP) estimation and assessment of

cerebrovascular autoregulation - rely, however, on the complete time domain veloc-

ity waveform for adequate temporal resolution of cerebral hemodynamics. As noted

in Section 2.4.2, flow velocity measurements in TCD sonography are typically refer-

enced to the velocity envelope. Spectral distribution characteristics are sometimes

used during the detection of turbulent flow [67].

E
E

100 PSV

50

EDV

25-

00 0.25 0.5 0.75 1
Time, s

Figure 3-2: Velocity parameters PSV, EDV, and MV for notional CBFV waveform.
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Table 3.1 gives typical dimension and flow velocity values for the M1 segment of

the MCA in adult subjects.

Table 3.1: Summary of normal adult anatomical values and flow velocities for the M1
segment of the MCA [57,85,87].

Insonation Segment Diameter MV k uYv PSVkopsv EDV±UEDv

Depth [mm] Length [mm] [mm] [cm/sec] [cm/sec] [cm/sec]

30-60 16.2 2.5-3.8 65 + 17 94 + 23 46 + 12

Other derived parameters, such as pulsatility, have been examined in a variety of

potential clinical uses. Pulsatility is a term used to describe the degree of variability in

flow velocities throughout the cardiac cycle and is largely dependent, for a given vessel

segment, on the resistance of more distal cerebral vessels. The Gosling pulsatility

index (PI) is defined as:
P 1 -PSV - EDV (3.1)

MV

Although PI can offer a degree of insight into the underlying vasculature and has been

demonstrated as a rough indicator of ICP, cerebral perfusion pressure (CPP), and

stenosis, it is often a poor clinical parameter for quantitative indication of pathology

due to several confounding factors and is not sufficient for any particular diagnosis

[88-90]. Within the M1 segment of the MCA, PI is normally in the range of 0.5 -

1.1 [67].

3.1.2 Cranial Acoustic Windows

Acoustic access to the intracranial cerebral vessels is facilitated by the occurrence of

anatomical features - relative thinning of cranial bone or natural foramina - known

as cranial acoustic windows [32]. In general, three primary cranial acoustic windows

are used in TCD sonography: the transtemporal, transorbital, and transforaminal

acoustic windows. Insonation of the MCA is normally accomplished through the

transtemporal acoustic window (TAW), which will be considered in detail.
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The TAW is located near the temple region and exists due to regions of thinning in

the suprazygomatic portion of the temporal bone, which allows favorable transmission

of acoustic energy at reduced attenuation. Despite the relative thinness of temporal

bone within the TAW, considerable signal attenuation does occur, with attenuation

extent being largely dependent on bone thickness. A patent TAW allows insonation of

the ipsilateral TICA, ACA, MCA, PCA, ACoA, and PCoA under favorable anatomic

conditions [91]. The TAW is further subdivided into four regions, known as the

posterior, middle, anterior, and frontal temporal acoustic windows, as illustrated in

Figure 3-3.

AA .

PP

(a) Relative position of the transtemporal (b) Window dependent transducer angulation.

acoustic windows sideview.

Figure 3-3: Topview depiction of the location of the posterior (P), middle (M), ante-

rior (A), and frontal (F) temporal acoustic window regions. From [67].

Significant variation occurs in the precise placement of patent TAW regions, there-

fore approximate locations as given. The posterior TAW, the TAW region with highest

patency rates and the largest spatial separation of the anterior and posterior circu-

lations, lies directly anterior to the external auditory meatus and slightly superior

to the zygomatic arch [67]. The anterior TAW is roughly 3.0 cm anterior to the

posterior TAW and slightly posterior to the frontal process of the zygomatic bone.
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A middle TAW is located approximately midway between the posterior and anterior

windows. Rarely, a frontal TAW - located just anterior to the pterion - is also used

for transtemporal insonation [67]. Patent acoustic window regions are often fairly

small and lateral movement of the transducer by a few millimeters can greatly de-

grade received Doppler signal levels [57]. The middle and anterior TAWs can generally

achieve insonation of the MCA with the transducer lying relatively flat against the

skin surface and result in a Doppler angle OD of nearly 00. The posterior TAW often

requires anterior and superior beam angulation to achieve insonation of the MCA.

The transmission of focused acoustic propagation through temporal bone has been

studied experimentally by Grolimund in ex vivo skulls [57]. Although analytical

propagation models are beneficial in understanding opposing design goals within an

ultrasound system, experimentation is the only suitable means of obtaining an accu-

rate depiction of tissue propagation losses due to a wide variability in cranial bone

properties. The Grolimund experiments employed a 16 mm diameter circular trans-

ducer operating at 2 MHz and used hydrophone measurements to determine receive

intensities and beam distortions following transmission through ex vivo skulls at the

optimal temporal window (defined by the thinnest section of temporal bone). Receive

intensities and beam patterns were compared to transmission characteristics in the

absence of inhomogenieties (i.e., homogeneous water medium). The degree of beam

distortion due to refraction was shown to depend highly on the variation of thickness

within the cranial bone adjacent to the transducer. Due to irregular thickness varia-

tions, observed refraction effects cannot be corrected by physical transducer surfaces

or lens structures. In the presence of cranial bone, the mean change in intensity of the

transmitted acoustic wave at the thinnest temporal bone section was -7 dB (i.e., 80%

intensity reduction). Pulse-echo operation is therefore expected to attain a reduction

on the order of 14 to 20 dB in acoustic intensity due to the attenuative, reflective,

and refractive effects of cranial bone.

A primary obstacle associated with TCD examination is the inability to obtain

a detectable received Doppler signal in approximately 5 - 10% of patients due to

the lack of a patent acoustic window, unusual vessel position, or excessive vessel
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tortuosity [4,5]. The absence of a suitable TAW for MCA insonation was observed in

8.2% of individuals in a validation study (occurring in 5.0% of subjects monolaterally

and 3.2% of subjects bilaterally) [32]. Lack of a satisfactory TAW is inherently related

to increased temporal squama thickness, which has a mean value of 3.5 mm at its

thinnest region, and is notably more prevalent in non-white races and females (12.1%

TAW absence in females, 5.6% TAW absence in males) [92].

TAW patency is further affected by a number of bone pathologies, including hy-

perostosis, which causes localized increases in cranial bone density and thickness [67].

Age has also been shown to have a significant influence on TAW patency, with 5.1% of

patients under the age 65 lacking an acceptable TAW, as opposed to 14.1% of patients

age 65 and older [32]. Age dependent effectiveness is a major concern for the clinical

use of TCD sonography as rates of cerebrovascular disease increase in elderly popula-

tions. Ultrasonic contrast agents can be used to improve TAW patency by enhancing

the effective scattering coefficient of blood, but invasive administration - requiring

intravenous injection - and significantly lower cavitational thresholds thereby com-

plicate the evaluation process and create additional safety concerns [28,33]. The use

of ultrasonic contrast agents is not considered for this work.

Transducer arrays, by employing timing delays, can dynamically achieve non-

physically realizable apertures and are thereby well suited for phase-correction tech-

niques, which are used to restore coherence at the focal point following refraction and

aberration induced beam degradation [93]. By utilizing hydrophone-assisted phase-

correction (i.e., adjustment of excitation phases based on hydrophone measurements

when inhomogenieties are present) on ex vivo skulls for a phased array operating at

an excitation frequency of 0.74 MHz, Clement and Hynynen were able to attain pro-

nounced improvements to beam pattern definition and focal intensity as compared to

uncalibrated focusing for the same acoustic output power [36].

Although hydrophone-assisted techniques are not applicable for in vivo measure-

ments, they validate the utility of phase-correction methods. For pulse-echo opera-

tion, phase-correction techniques can conceivably incorporate received Doppler signal

strength - and other acoustically measured parameters - into phase-correction algo-
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rithms to achieve in vivo focal restoration using iterative optimization procedures or

machine learning methods. Such developments will be considered in future extensions

of this work, but are not presently discussed further.

3.2 TCD Examination Techniques

Although this work seeks to achieve autonomous measurement of CBFV in the MCA,

a discussion of conventional manually steered TCD examination techniques is critical

to recognizing the subtleties associated with clinical TCD evaluation. Developments

in transcranial sonography have enabled transcranial ultrasound imaging (e.g., tran-

scranial color-coded duplex sonography), which allow some delineation of intracranial

structure, but - due to the distortion effects of cranial bone - generally result in poor

resolution and limited clinical imaging utility [4]. Although imaging modalities can

facilitate vessel location, significant knowledge of the cerebral anatomy and limita-

tions of velocimetry are still necessary to obtain accurate CBFV measurements. The

traditional "blind" (i.e., non-imaging) approach to TCD examination will therefore

be presented.

Conventional TCD examination techniques are initially difficult to learn and can

often be demanding to perform, even for experienced operators. Challenges associ-

ated with TCD evaluation are further exaggerated in subjects with marginal acoustic

windows and in pathological conditions in which the assumption of normal flow ve-

locities and directions may no longer be valid. The experienced sonographer must

rely on proficient examination techniques to spatially position and angle the trans-

ducer, adjust the sample gate depth, and identify the source Doppler spectra (i.e.,

intracranial vessel identification).

The reliability of TCD velocimetry data is highly operator dependent. Measure-

ment accuracy is primarily related to operator experience, with measurement error

being lowest in highly-trained, well-practiced sonographers [23]. Accurate TCD ex-

aminations require considerable training, manual dexterity, and adequate knowledge

of the underlying cerebral anatomy. The addition of technological innovations and
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usability enhancements to TCD systems - including automatic vessel tracking and

power motion-mode Doppler (PMD) operation - seeks to reduce necessary operator

expertise and improve measurement reliability.

The TCD examination methods discussed initially in this work apply to a single

element, manually steered transducer. These approaches will be extended to incorpo-

rate the use of transducer arrays, electronic beam steering, and other characteristics

of the wearable TCD systems under development. Clinical TCD evaluations are

generally thorough in nature and include flow velocity measurements for the entire

cerebrovasculature through all acoustic windows. For this work, however, insonation

of the left and right MCAs through the TAWs is considered exclusively.

3.2.1 Examination Procedure

The TCD examination procedure introduced by Aaslid has been adopted by re-

searchers as the standard method for CBFV measurements at the basal cerebral

arteries [2,57]. The introduction of PMD has considerably altered the TCD examina-

tion procedure, which is presented here in modified form [26,27,94]. PMD facilitates

localization of cranial windows and guides the selection of range gate depth. PMD

simultaneously displays flow signal intensity and direction over a wide range of in-

sonation depths and expedites vessel location through visualization rather than via

the auditory Doppler cues required by earlier TCD systems [27]. PMD also enables

improved vessel identification by enabling a visual display of vessel depth extent.

Figure 3-4 depicts measured TCD sonography data from a commercial TCD sys-

tem (ST3 PMD150, Spencer Technologies, Seattle, WA), where the power motion-

mode data is presented in the upper half of the display and the Doppler sonogram

(described in Section 3.4) is presented in the lower half. Within the PMD display,

red indicates flow toward the transducer, while blue indicates flow away from the

transducer. Color intensity characterizes the extent of moving scatterers at a partic-

ular depth within the insonation region, corresponding to the number of insonated

erythrocytes. PMD data is displayed relative to time (i.e., x-axis of PMD display),

which enables transient scattering phenomena - particularly circulating cerebral em-
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boli - to be captured visually. The Doppler range gate depth is shown in Figure 3-4

as a yellow horizontal line positioned at an insonation depth of 50 mm.

A

S-0001

Figure 3-4: Examination of the cerebral vessels with PMD during right transtemporal
insonation: right M2 MCA (A); right M1 MCA (B); right ACA (C).

Conventional single element and imaging TCD evaluations must be performed

on stationary patients in a supine or sitting position, with adequate time allowed

for stabilization of the subject's heart rate and blood pressure. To ensure sufficient

acoustical coupling to tissue, an ample amount of ultrasound gel should be applied to

the transducer surface prior to contact with the subject. A PMD insonation range of

~ 20 to 70 mm and moderate output power, < 50% maximum power or equivalently

ISPTA < 250 mW/cm2 , should be selected. The transducer is then applied to the

posterior TAW region, maintaining slightly upward and anterior probe angulation.

Minimal force should be used to position and angle the transducer since sub-

stantial forces may cause patient discomfort and drive ultrasound gel away from the

transducer surface. If no flow signals appear within the PMD display, the transducer

is advanced in slow circular movements toward the anterior TAW region, changing

probe angulation throughout the motion. All three common TAW regions (i.e., poste-

rior, middle, and anterior TAWs) should be explored. For insonation of the MCA, the
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transducer should be maneuvered until a maximal extent of PMD display intensities

between approximate depths of 30 - 60 mm is achieved, corresponding to a relatively

straight section of the MCA M1 segment. If no Doppler signal is attainable or if

the signal remains faint upon positioning optimization, the acoustic output power

setting can be incrementally increased until an adequate Doppler signal is obtained

or the maximum output power level is reached. If a Doppler signal is still absent at

maximum output power, the patient is said to have a nonpatent temporal acoustic

window.

Once the optimal TAW region has been identified, the operator attempts to maxi-

mize PMD intensity for the expected range of MCA depths through utilization of fine

motor skills to incrementally adjust transducer position and angle. Transducer posi-

tioning must often be continually optimized throughout the measurement process due

to slight misalignments cause by subject or operator movement. The Doppler range

gate depth is then adjusted to the center of a contiguous, high intensity PMD seg-

ment within the MCA depth range to achieve Doppler velocimetry information [26].

Following TAW examination and the detection of Doppler flow velocities, emphasis

of the TCD examination shifts toward identifying the Doppler signal source (i.e., the

insonated vessel).

3.2.2 Vessel Identification

In addition to operator inexperience, a primary obstacle in accurate vessel identifica-

tion is vast anatomical variance in cerebrovasculature structure, including variations

in vessel caliber, course, and even origin.

For transtemporal insonation, five salient measurement features are typically em-

ployed during vessel identification [67]:

1. Sample volume depth and angulation.

2. Direction of flow.

3. Spatial relation of sample volume to intracranial landmarks (e.g., bifurcation of

the TICA into the ACA and MCA).
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4. Relative flow velocity, with highest flow velocities typically observed in the MCA

and ACA.

5. Response to ipsilateral common carotid artery compression or oscillations.

The MCA - along with its branches - is normally the only vessel perceptible from

the TAW using TCD sonography between insonation depths of 25-50 mm [57]. Flow

direction of the ipsilateral MCA is generally toward the transducer, which is also

observed for the PCA. To distinguish the MCA from the PCA, it is useful to trace

the MCA extent with increasing depth to the TICA bifurcation, which is identified

by bidirectional flow at an insonation depth of 55-65 mm. MCA flow velocities are

typically slightly larger than those obtained at the ACA and are generally at least 25%

larger than PCA flow velocities. Finally, upon compression of the ipsilateral common

carotid artery under normal cerebrovascular anatomy, flow in the MCA and ACA

is temporarily obliterated or severely diminished while flow in the PCA is relatively

unaffected.

The PCoA and ACoA are not generally detectable using TCD sonography unless

a pathological condition exists, resulting in significant collateral flow. Vessel identifi-

cation features are summarized for the major intracranial vessels in Table 3.2. The

reliability of vessel identification techniques varies among the intracranial vessels,

with the highest accuracy of identification occurring for the ipsilateral MCA.

It is customary to assume that Doppler angle OD ~ 0' when performing non-

imaging TCD examinations because the exact angle between the ultrasound beam

and intracranial vessel segment is unknown. For MCA insonation, the Doppler angle

OD is generally < 20, resulting in a maximum underestimation of ~ 6%. For clinical

applications, it is therefore generally not necessary to account for Doppler angle in

transtemporal MCA insonation because it is sufficiently small to permit determination

of absolute flow velocity.

104



Table 3.2: Summary of vessel identification criteria. Adapted from [57,67].

Sample Volume

Depth [mm]

30-60

Flow

Direction

Toward

MV ± uyMV

[cm/sec]

65 + 17

Compression

Response

Obliteration,

Diminishment

ACA [Al] 60-80 Away 50 + 11 Obliteration,

Diminishment,

Reversal

PCA [P1] 60-70 Toward 36 t 10 No Change

PCA [P2] 60-70 Away 40 t 10 No Change

TICA 55-65 Toward 39 t 9 Obliteration,

Reversal

TCD examinations commonly include bilateral evaluation. The methods described

above are valid for left and right transtemporal insonation. Although the cerebrovas-

culature is ostensibly equivalent from either side, moderate differences in velocimetry

data for the contralateral vessel often occur, especially in the presence of pathology.

Differences from the left and right hemispheres should not be considered abnormal

unless they exceed 30% [95].

During prolonged TCD monitoring, a headframe can be employed to hold the

transducer in position after an acceptable Doppler signal is obtained. Patient move-

ment and environment dynamics can, however, cause probe misalignment and a con-

sequent degradation in Doppler signal strength. The frequency of probe displacement

effects is highly dependent on measurement application, being more problematic in

prolonged evaluation of non-comatose patients. The transducer position and an-

gulation must therefore be regularly optimized to ensure adequate alignment and

measurement accuracy [24].
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3.3 Safety Considerations

Although diagnostic ultrasound is a generally safe measurement modality, analysis of

acoustic bioeffects should be considered to ensure safe and effective use. Various gov-

ernmental and professional standards, particularly from the United States Food and

Drug Administration (FDA), American Institute of Ultrasound in Medicine (AIUM),

and British Medical Ultrasound Society (BMUS), have been established to quantify

safe operating regimes and thereby limit the potential of patient harm [96-98].

Safety guidelines are particularly meaningful for the continuous TCD monitoring

applications of this work, due to prolonged examination duration, high acoustic ab-

sorption in bone, and the relatively high acoustic output powers necessary (in some

cases) to achieve adequate insonation of the intracranial vessels. Ultrasound induced

bioeffects can be broadly divided into thermal and non-thermal categories. Specific

limits exist for each phenomenon and potential for tissue damage is expected only

when ultrasound exposure thresholds are exceeded.

Thermal effects (i.e., tissue heating) are related to the conversion of acoustic

energy into heat and are therefore dependent on time averaged intensity measures

and tissue absorption factors. The thermal index is used to predict the rise of tissue

temperature in 'C under worst case conditions. For transcranial applications, the

relevant thermal parameter is the thermal cranial index TIC, since there is bone at

the tissue surface [28]. Heating of cranial bone due to absorption can potentially lead

to secondary heating of adjacent brain tissue via head conduction. The AIUM and

BMUS recommend limiting TIC < 2.0 [37].

The TIC is directly related to acoustic power and can be expressed as:

TIC = (3.2)
80 Aap

where Wo is time averaged acoustic source power (measured in W) and Aap is the

active aperture area (measured in m 2 ).

Neglecting apodization, time averaged acoustic output power W can be deter-
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mined for a given excitation waveform by the expression:

p2 MT
Wo = Aa "0-(3.3)

"2Z TPRP

where po is the surface pressure amplitude (assuming gated sinusoidal excitation).

Nonthermal effects - primarily cavitation (i.e., collapse of gas bubbles within the

medium) and acoustic streaming (i.e., steady fluid current due to nonlinear absorp-

tion) - are influenced by peak rarefaction pressures within the acoustic field. Non-

thermal effects are characterized by a mechanical index (MI), an attempt to indicate

the probability of mechanical damage in a non-thermal process, is given by [96]:

MI = Prar,max (3.4)
iooov

where Prar,max is the derated (i.e., accounting for soft tissue attenuation) spatiotem-

poral peak rarefactional pressure (measured in Pa) and fe is the excitation frequency

(measured in Hz). Safety guidelines suggest, in the absence of ultrasound contrast

agents (not considered in this work), that MI < 1.9 [96]. Using a typical 2 MHz

excitation frequency, this results in a maximum rarefactional pressure of 2.7 MPa (ne-

glecting derating). For most TCD applications, TIC is a more restricting limitation

and operational MI values are considerably below their threshold values. Because the

MI is computed without accounting for the significant attenuating effects of cranial

bone, in situ MI values can be expected in practice to be considerably reduced.

FDA guidelines also limit the spatial peak temporal averaged intensity ISPTA

(as defined in Section 2.1) for diagnostic ultrasound uses to < 720mW/cm 2 (for

devices following the output display standard) [96]. The ISPTA is dependent on

spatial speak pressures - influenced primarily by transducer characteristics and HV

supply levels - and also by relative temporal extent of the excitation waveform to the

pulse repetition period. As with MI, I'SPTA constraints are not typically a limiting

factor for diagnostic operation.

A basis of ultrasound safety is prudent use of the ALARA principle (i.e., "as low

as reasonably achievable"). This principle states that acoustic output power should
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always be the minimal level necessary to achieve optimal diagnostic information. The

ALARA principle is utilized in TCD evaluations by the initial use of moderate power

levels during cranial window location. If adequate Doppler signals cannot be obtained,

the operator increases acoustic output power levels toward their limiting values and

repeats the vessel location procedure. In accordance with the ALARA principle,

once the optimal cranial window is localized and a sufficient Doppler signal obtained

during examination, acoustic output power should be reduced to the minimal level

achievable without discernible degradation to Doppler signal fidelity.

The safety index models described here do not account for duration of exposure.

As ultrasound monitoring paradigms shift - especially with the development of wear-

able ultrasound systems for prolonged monitoring - exposure standards may adapt

to account for modified use cases. Because ultrasound exposure guidelines do not yet

exist for extended monitoring, a conservative interpretation of the current standards

will instead be accepted. Such interpretation is commiserate with existing commercial

TCD systems, which can be used in nonambulatory continuous monitoring [94].

Maximum acoustic index values for the prototype TCD systems developed in this

work are given in Table 3.3.

Table 3.3: Prototype TCD system maximum global acoustic indices.

Parameter Accepted Safe Limit Prototype Device Limit

TIC < 2.0 < 1.5

MI < 1.9 < 0.7

ISPTA < 720 mW/cm2 < 500 mW/cm2

3.4 Doppler Processing Algorithm

Signal processing is necessary to condition the received radio frequency (RF) wave-

form and transform it into meaningful velocimetry data. Early PW Doppler systems

utilized considerable analog circuitry to achieve signal processing [99]. Developments
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in digital electronics and signal processing, however, have enabled the practical real-

ization of robust and configurable processing schemes, primarily based in software.

The velocity estimation procedure presented in Section 2.4.2 was highly simplified

for analytical tractability - neglecting absolute signal levels, noise effects, analog-

to-digital conversion, and Fourier transform implementation. A practical velocity

estimation signal processing scheme used throughout this work is presented in Fig-

ure 3-5, where GAFE is the analog front end (AFE) amplifier gain, TADC is the

analog-to-digital converter (ADC) sampling period, w [n] is a windowing sequence,

M is a decimation factor, and FFT is the fast Fourier transform operation. Alter-

native velocity estimation methods are often used, especially in distinct applications

like color flow imaging, and are described in [40,43].

GAFE.(t) ADC Hilbert M X[r,k]
I ~~Band-Pass Filter TrarisformH P ->

T,. w[ n

Figure 3-5: Velocity estimation signal processing block diagram.

The windowing sequence w [n] is used to segment the sampled data into fixed

length sequences. A decrease in window sequence length results in finer temporal

resolution, but also yields spreading of the Doppler spectrum - a phenomenon known

as spectral broadening. By evaluating expected time-variation and frequency content

in realistic CBFV waveforms, a sufficient balance between time and spectral resolution

can be achieved through selection of w [n] length, denoted N,.

Matched filtering is used subsequent to windowing to limit out of band noise

and interferers, thereby increasing the signal-to-noise ratio (SNR). The SNR of the

received signal after filtering is theoretically maximized when the filter transfer func-

tion is matched to the spectral content of the received signal. An optimal matched

filter can be implemented by defining the filter impulse response hbp[n] as the under-

lying pulse excitation basis function eTo (t) sampled at TADC. Neglecting frequency

dependent attenuation and transducer bandwidth effects, the spectral envelope of the
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received signal is therefore approximately equivalent to the band-pass filter transfer

function and SNR is maximal.

Use of the Hilbert transform is necessary in Doppler processing to generate an

analytic signal (i.e., a complex valued signal composed of in-phase and quadrature

data) from the real valued receive sequence. In general, the spectral content of an

analytic signal no longer results in a symmetric distribution about the frequency axis

and thereby enables differentiation between forward and reverse flow velocities.

Formally, the Hilbert transform is defined in the time domain as [61]:

2 sin 2 (rn/2) n f 0
hHT [n] = r ' n " (3.5)

0, n = 0

The frequency domain definition of the Hilbert transform, however, generally offers

additional insight:

een,/2, -7r < W < 0

HHT e-/ 2  0<W<7 (3.6)

0, W = -7r, 0, 7r

The Hilbert transform in effect implements a 90' phase shift to achieve in-phase

yi [n] (i.e., original real valued signal) and quadrature yQ [n] = y' [n] * hHT [n] signals.

The analytic signal output of the Hilbert transform processing block is then formed

as YHT [n] = yi [n] + JyQ [n] -

The obscuring of flow direction can be seen in Figure 3-6, where a receive signal due

to forward flow (i.e., toward the transducer) results in a dual-sided spectrum in the

left plot prior to complex manipulation and a single-sided spectrum - corresponding

only to forward flow - in the right plot after generation of the analytic signal via

Hilbert transform.
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Figure 3-6: The effects of analytic signal generation on the differentiation of receive
signal flow directions.

The baseband signal x [n] is obtained via decimation by M = I . Due to theTADC'

decimation factor relationship, the receive signal is consequently sampled at TPRP.

Because energy still exists over a wide spectral range, significant aliasing occurs during

decimation. Such aliasing does not, however, degrade the baseband signal as it results

in reinforcement of the main tone - and corresponding Doppler information - by the

secondary tones and equivalent Doppler content. Prior to decimation, the sequence

should be shifted by the sample offset T, such that the baseband samples correspond

to scatterer interactions within the sample volume, centered at the sample depth z, -

The FFT is used to implement the discrete Fourier transform, which allows com-

putation of the processed receive sequence spectral content - and therefore the ve-

locity distribution of the scatterer ensemble. Characteristics of the frequency spectra

are highly influenced by window sequence length and an N-point FFT is generally

taken to compute spectral content - since, beyond N., higher-order transforms do

not improve spectral resolution. A 64-point transform yields < 2% full-scale velocity

resolution, which is generally adequate for clinical TCD applications. Temporal res-

olution can be improved to a degree by overlapping data segments, rather than using

adjacent segments.

Time varying spectral information is visually presented using the sonogram, which
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depicts the Doppler spectral power within individual frequency bins - nominally the

relative number of scatterers traveling at a corresponding velocity range - for a each

time segment by a gray scale intensity (or color). Assuming uniform insonation of

the vessel cross-section, the approximate spatial distribution of velocities across the

vessel lumen can therefore be visualized as shown in Figure 3-7.
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Figure 3-7: Sonogram display of a notional Doppler signal.

Using an ultrasound field solver (Field II, Technical University of Denmark, Lyn-

gby, Denmark) to obtain RF receive data from a time-varying distribution of scatter-

ers, the velocity estimation algorithm can be implemented in MATLAB (MathWorks,

Natick, MA) for validation and parameter evaluation [38,39. The simulation of a

realistic CBFV waveform - shown in Figure 3-8 - demonstrates excellent agreement

between the estimated and actual mean scatterer velocity, resulting in a normal-

ized root-mean-square error of < 5%. From simulation data, a 128-point FFT (i.e.,

N, = 128) using 87.5% overlap was found to yield the highest accuracy velocity

estimates, which will be used for TCD hardware implementation.

Although simulated velocity estimation yielded outstanding results, it is impor-

tant to note that several critical physical effects are not present. Excessive acoustic

absorption within the cranial bone results in a highly attenuated receive signal and

therefore noise is a critical aspect in the design and operation of TCD instrumentation.

As indicated in Section 2.1.1, scattering from stationary tissue tends to dominate the
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Figure 3-8: Comparison of simulated velocity estimation and simulation scatterer

velocity parameter.

receive signal spectrum. Practical systems therefore also need to incorporate sharp

high-pass filtering of the baseband signal, often referred to as the wall or clutter filter,

to attenuate the high amplitude stationary reflections (i.e., spectral content at or near

DC) prior to computation of the FFT.

PMD operation is simply accomplished by computing an array of decimated wave-

forms at finely spaced sample depths (e.g., 2 mm) across a range of depths. Each

resulting waveform must then be passed through a clutter filter to remove effects

from stationary scatterers. The total integrated Doppler energy at each sample depth

thereby corresponds to the PMD intensity, with predominately negative Doppler fre-

quency content resulting in blue colored regions and predominately positive Doppler

frequency content resulting in red colored regions.

3.5 System Architecture

The hardware developments within this work utilize discrete, commercially-available

circuit components. This approach places considerable restrictions on feasible system

architectures, since access to internal nodes and diversity in component configurations

is minimal. A capable and robust system architecture is presented in Figure 3-9. The
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selected architecture is, however, considerably hardware inefficient, which leads to

increased power dissipation, system dimensions, and complexity.

HV PULSER

ANALOG FRONT END

--- W LNA VGA ADC PRCING S

2D TRANSDUCER
ARRAY

Figure 3-9: System architecture block diagram for prototype TCD instrumentation.

Pulse excitation waveforms are generated in the processing unit and are relayed

to each independent high-voltage (HV) pulser channel. The HV pulsers transform

digital excitation waveforms into HV transmit pulses. Within the transducer array,

each element is connected to a HV pulser channel. The piezoelectric transducer

elements convert the HV transmit pulses into acoustic energy, which is radiated into

the propagating medium. During transmit, the HV transmit/receive (T/R) switches

- one per transducer element - are open to protect sensitive receive electronics from

HV signals.

During receive mode, acoustic energy is converted into a low-level electrical signal

at each transducer element. The HV T/R switches close, providing a path to the

low noise amplifier (LNA) of the AFE, with one AFE per transducer element. A

variable gain amplifier (VGA) further amplifies the receive signals such that signal

levels are within the ADC operating range. An anti-aliasing filter (AAF) is used to

low-pass filter the signal so that spectral content beyond the Nyquist frequency does

result in aliasing. The analog signals are then digitized and the resulting bitstreams

are sent to the processing unit. Receive beamforming is achieved in post-processing

through simple delay and sum methods (i.e., time delaying each channel and adding

the resulting outputs). Data can be further manipulated within the processing unit

to obtain velocity estimation, stored to memory, or transferred to a computer via
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USB for data collection and further analysis.

3.6 Electrical Hardware Implementation

This work describes the design of a first-generation prototype TCD system. Prototype

I is an eight channel system that has been fabricated and experimentally tested and is

described in detail below. Although the Prototype I system allows for multi-channel

operation, it has only been tested with a single element transducer since a transducer

array was not yet available. The design of a 64 channel (i.e., 8x8 elements) transducer

array for future higher channel count TCD system implementations is presented in

Section 3.7.

The Prototype I printed circuit board (PCB) device consists of interconnected

circuit components, which can be classified as:

" Power management circuits

" Field programmable gate array (FPGA)

" Universal serial bus (USB) to universal asynchronous receiver transmitter (UART)

controller

" High voltage (HV) pulsers

" Transmit/receive (T/R) switches

" Analog front end (AFE) circuits

" Clock generation circuits

A block diagram of the electrical hardware implementation is given in Figure 3-10.
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Figure 3-10: Block diagram of the electrical hardware implementation.

The power management circuits consist of a set of linear and switching regula-

tors. The linear regulators - LT1761 and LT1964 (Linear Technologies, Milpitas,

CA), TPS79650DCQR, TPS79618DCQR, and TPS79633DCQR (Texas Instruments,

Dallas, TX) - are used to provide a constant operating voltage to electrical compo-

nents. Separate adjustable linear regulators - TPS79601DCQR (Texas Instruments,

Dallas, TX) - are employed on the FPGA input/output supplies to allow adjustment

of FPGA output voltages, which are initially required to drive peripheral debugging

circuitry.

Switching regulators - LT3467 and LT1617 (Linear Technologies, Milpitas, CA)

and LM2853 (Texas Instruments, Dallas, TX) - are utilized to increase supply volt-

ages, invert supply voltages, and power-efficiently convert to low supply voltages,

respectively. All regulators are powered from a 5.5V supply rail using an external

DC power supply. The HV power supply output voltage levels (i.e., HVP, HVFP,

HVN, HVFN) are set using external DC power supplies. Irrespective of transducer

dependencies, the HV supply voltage levels are limited to HVP < 60V, HVPF < 50V,

HVN < -60V, HVNF < -50V.

The FPGA (XC6SLX45-2FGG484C, Xilinx, San Jose, CA) acts as an embedded

processing and control unit within the TCD ultrasound system and configures op-
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erating parameters for the HV pulsers, T/R switches, and AFEs. Pulse excitation

waveforms are generated in the FPGA and relayed to the HV pulsers. Digital echo

data is received by the FPGA, which deserializes, digitally filters, and stores echo

data. Data alignment of the deserializers is achieved on start-up using a calibration

sequence for the AFE. The FPGA transmits captured echo data via USB - utiliz-

ing a USB/UART controller (CP2103-GM, Silicon Laboratories, Austin, TX) and

mini-USB connector (1734035-2, TE Connectivity, Berwyn, PA) - to a computer for

further data processing and analysis. A Joint Test Action Group - known commonly

as JTAG - connector (87832-1420, Molex, Lisle, IL) interfaces the FPGA to an exter-

nal computer based programming file for configuration of the FPGA hardware. High

level control of the FPGA time sequencing is achieved by implementing a Picoblaze

microcontroller within the FPGA fabric. The use of a microcontroller allows the

abstraction of FPGA tasks into an assembly language.

The HV pulsers (HV748, Supertex, Sunnyvale, CA) level shift digital excitation

pulses from low-voltage FPGA outputs to the HV supply rails (i.e., HVP and HVN)

for each transducer element. The driving strength (i.e., maximum output current, of

the HV pulsers is set through configuration bits via the FPGA. Because all HV pulser

channels operate at common HV rails (i.e., HVP and HVN), transmit apodization

cannot be accomplished using this architecture.

A T/R switch component (MAX4937, Maxim Integrated, San Jose, CA) protects

sensitive receive electronics from high level transmit voltages, since both the HV

pulser and AFE are connected to the same transducer line. The FPGA uses a serial

peripheral interface bus (SPI) to control T/R switch gating to synchronize switch

operation with the other system components.

The AFE (AFE5808, Texas Instruments, Dallas, TX) includes analog LNA, vari-

able attenuation, programmable gain, AAF, and ADC circuit blocks. The gain, fil-

tering, and ADC parameters are configured for application specific functionality via

an SPI interface from the FPGA. Analog gain blocks help to limit noise contributions

and achieve sufficient signal levels prior to digitization. Programmable analog gain

control enables a wide range of achievable system gains, from -4 to +54 dB.
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Low-pass filtering - via AAF blocks - attenuates high frequency interferers such

that frequency aliasing is minimized during data conversion. Apodization can be

achieved on receive under this hardware architecture through adjustment of ana-

log gains or by scaling of individual channel data prior to summation. The ADC

transforms the analog signal into a 14-bit, serialized low-voltage differential signaling

(LVDS) waveform for each channel. The LVDS bitstream is transferred to the FPGA,

which deserializes the bitstream for further processing.

The clock generation circuits consist primarily of the 100MHz FPGA oscillator

(ECS-3953M-1000, ECS, Olathe, KS) and the 20MHz AFE sampling oscillator (ECS-

3953M-200, ECS, Olathe, KS). Both oscillators provide a digital clock for timing

of synchronous logic within each component. Additional clocks (e.g., SPI interface

clock) are generated at lower speeds within the FPGA using clock divider logic and

are therefore referenced to the FPGA clock. The FPGA and AFE clock domains are

connected using a first-in, first-out (FIFO) memory structure with separate input and

output clock domains within the FPGA.

Figure 3-11 shows the Prototype I PCB electrical hardware.

7.5"

5.59"

Figure 3-11: A picture of the electrical hardware of the Prototype I PCB.

The purpose of Prototype I is to validate the transmit and receive electronics,

processor system control, and velocity estimation methods. A transducer array is not

defined for the Prototype I system and instead a single element transducer is utilized
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during operation. Throughout experimental validation of the Prototype I system,

a 0.25" 6.4 mm diameter flat circular transducer (C323-SU, Olympus, Waltham,

MA) was used.

Figure 3-12 shows the complete Prototype I TCD ultrasound system, including

all necessary peripherals for pulse-echo velocimetry operation.

USB JTAG
'Cona~lonConnection

Figure 3-12: A picture of the operable Prototype I TCD ultrasound system.

3.7 Transducer Array Design

This section describes the 2D transducer array design for a future 64-channel (i.e., 8x8)

TCD sonography system. Significant aperture constraints are necessary to achieve

focusing at the required depths of interest for MCA insonation (30 - 60 mm). These

aperture requirements can be achieved using larger transducer element dimensions.

As elements become larger, however, directivity degrades and the formation of grating

lobes can become problematic. For transtemporal insonation of the MCA, a required

steering angle magnitude < 15' is assumed (for both azimuth and elevation angles).

Using expressions from Section 2.2.4, suitable transducer element dimensions are

computed as L. = Lu = 1.6mm, kerf, = kerfy = 0.1mm, resulting in equivalent

aperture dimensions Lx,eq = Ly,eq =13.5 mm. Using equivalent aperture dimensions,
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maximum focal length and maximum focused half-power spot width are determined:

L 2

1f,max x,eq = 99.6 mm (3.7)
2.44A

Wx,3dB = Wy,3dB = O.8 8A\fmax = 4.9 mm (3.8)
Lx,eq

Analysis of the transducer array design indicates a maximum focal length well in ex-

cess of the required 60 mm maximum depth of interest for MCA insonation. Although

not imperative for the velocity envelope (i.e., vmx) method described in Section 2.4.2,

relatively uniform vessel insonation is generally desired in velocimetry applications.

A calculated half-power spot width of 4.9 mm is consistent with the expected MCA

diameter of ~ 3 mm.

Validation of this transducer array design is achieved by comparing simulated

focal intensities for phased array operation to a single element transducer design

(13 mm diameter, planar circular transducer) commonly used in commercial TCD

instrumentation, for a constant output power [13,27].

Figures 3-13 and 3-14 depict the axial intensity dependence for the unfocused

single element transducer and the phased array at focal depths of 30 mm and 60

mm, respectively. Acoustic intensity is normalized to the last axial maximum of the

unfocused transducer.
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Figure 3-13: Comparison of acoustic intensity for single element and phased array

transducers at a focal depth of 30 mm.
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Figure 3-14: Comparison of acoustic intensity for single element and phased array

transducers at a focal depth of 60 mm.

In the absence of steering, the phased array design achieves much higher on-axis

acoustic intensities - via focusing - over the range expected insonation depths.

In cases where beam steering is required, the single element is manually angled

and acoustic intensity along its steering axis is unaffected. By contrast, the phased

array employs electronic beamformation to achieve steering, which yields reduced

intensities for non-zero steering angles - due mainly to the limited directivity of

its relatively large transducer elements. However, even at the most extreme expected

steering angle (150) and focal length (60 mm), the phased array still achieves increased

acoustic intensity when compared to the manually steered, unfocused single element

transducer, as shown in Figure 3-15.
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Figure 3-15: Comparison of acoustic intensity for single element and phased array

transducers at a focal depth of 60mm and steering angle of 15'.
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Therefore, for transtemporal insonation of the MCA, the 2D transducer array

design of this work is expected to provide adequate acoustic intensities at all applicable

insonation regions.

The designed transducer array dimensions do not satisfy the grating lobe inequal-

ities given in Equations 2.58 and 2.59. Therefore, the emergence of grating lobes

is anticipated, as observed in the simulated results presented in Figure 3-16. How-

ever, because the velocity envelope method is used for Doppler velocity estimation,

the presence of grating lobes should not affect velocimetry results unless high flow

regions are observed outside the vessel of interest (i.e., MCA for this work). Such

nonidealities in phased array beamformation will, nonetheless, increase system dy-

namic range and clutter filter requirements - due to additional receive energy from

stationary scatterers.
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Figure 3-16: Simulated intensity beam pattern in the xz-plane at y = 0 mm for an
8x8 transducer array (Lx = LY = 1.6mm, kerfX = kerfy 0.1mm) with a desired
focal region at (10, 0, 60) mm.
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Chapter 4

Experimental Characterization

Although theoretical analysis and simulation are vital during the design process,

experimentation is needed to characterize and validate the electrical and acoustic

performance of prototype TCD instrumentation. Specifically, the Prototype I system

described in Section 3.6 will be experimentally evaluated. The transmit and receive

signal paths are initially assessed separately. Functionality and accuracy of the TCD

sonography system are then characterized for pulse-echo operation by employing a

Doppler flow phantom.

4.1 Transmitter Characterization

Transmission properties of the TCD ultrasound system are first characterized electri-

cally. Logic inputs into each channel of the HV pulser (i.e., HV748) are level shifted

to the HV supply rails as shown in Figure 4-1. Under realistic loading conditions (i.e.,

C323-SU transducer element load), a propagation delay of ~ 35 ns exists between the

digital inputs and HV output of the pulser.
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Figure 4-1: Logical inputs and HV output of an HV pulser channel under C323-SU
transducer loading. For this measurement, t20 V HV supply rails and low current
drive mode (MCO= 0, MC1= 0) pulser settings are used.

From Figure 4-1, it is apparent that, under practical driving loads, the transmit

excitation signal is not an ideal square waveform, as assumed in previous analyses.

This nonideality is created by the interaction between the power supply and HV

pulser impedances with the resonant characteristics of the ultrasound transducer and

cable parasitics. These interactions lead to ringing in the HV transmit signal and

an effective reduction in HV supply rail amplitude - thereby resulting in decreased

acoustic output power. Figure 4-2 shows the excitation step response of the unloaded

and transducer loaded HV pulser. Ringing is only appreciable in the case of the

loaded transducer.
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Figure 4-2: HV pulser positive step response for unloaded and C323-SU transducer
loaded signal line. For this measurement, ±20 V HV supply rails and low current
drive mode (MCO= 0, MC1= 0) pulser settings are used.

124



By employing a hydrophone (HNC-0400, ONDA, Sunnyvale, CA), the acoustic

pressure due to a driven ultrasound transducer can be measured. The hydrophone

and preamplifier (AH-2010, ONDA, Sunnyvale, CA) yield an output voltage wave-

form that, by accounting for the calibrated hydrophone and preamplifier transfer

functions, yields an experimentally measured pressure waveform for the correspond-

ing hydrophone location. Figure 4-3 presents the preamplifier output for an on-axis

measurement at the last axial maximum in a water medium. Although the transmit

excitation is a square waveform, a sinusoidal output is observed due to the bandpass

filtering response of the acoustic transducer.
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Figure 4-3: Hydrophone preamplifier output for an on-axis measurement ~~ 12 mm

from the C323-SU transducer surface in a water medium using ±20 V HV supply

rails.
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Figure 4-4: Maximum output pressure linearized dependence on HV voltage rail

amplitude for the C323-SU transducer.
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Assuming linearity for transduction and acoustic propagation, the maximum out-

put pressure amplitude for the unfocused C323-SU transducer can be determined for

a range of voltage rail amplitudes using Figure 4-4.

Recall from Equation 2.40, that the pressure at the last axial maximum Plam

for a circular transducer is twice the acoustic pressure at the transducer surface

(assuming no apodization and neglecting attenuation effects, which are minimal in

water). Maximum acoustic output power Wmax is therefore computed as:

2 ~~D 2
Wmax 8Z (4.1)

8Z

where D is the transducer element diameter. For the C323-SU transducer excited

at ±20 V HV power supply rails, this yields a maximum acoustic output power of

Wmax = 0.84 W.

4.2 Receiver Characterization

The receiver front end is characterized by inputting a low-level electrical tone at the

electrical input/output port of each channel and determining the spectral content and

gain characteristics of the receiver system for a variety of amplifier and ADC settings.

Figure 4-5 shows the receive spectrum for a 7 mV amplitude, 2.0 MHz frequency

sinusoid input. Measured output amplitude of 0.91 V was obtained, resulting in 42.2

dB of receiver gain. This measurement closely matches the expected 42 dB receiver

gain (i.e., LNA gain: 24 dB, Attenuator gain: -6 dB, PGA gain: 24 (B).

From Figure 4-5, it is obvious that a substantial number of interferers exist, espe-

cially below 1.5 MHz. This is due mainly to a number of switching power supplies,

which operate at various switching frequencies and can couple to the receiver input

nodes. The fundamental and harmonic power supply switching frequencies were se-

lected such that they do not occur at or near the desired 2.0 MHz operating frequency.

Other potential sources of signal pickup - such as AM broadcast radio - may also be

present in the receive spectrum.
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Frequency, MHz

Figure 4-5: Receiver Nyquist-band frequency spectrum for

MHz frequency sinusoidal input.

a 7 mV amplitude, 2.0

Although the presence of interferers can be detrimental to Doppler velocimetry

accuracy, interferers occurring outside the bandwidth of the bandpass matched filter

are highly attenuated and - assuming receiver saturation is avoided - have minimal

effect on SNR. The bandpass RF filter impulse response can be modified to further

attenuate interferers by realizing higher order filtering.
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Figure 4-6: Receiver frequency spectrum over the

amplitude, 2.0 MHz frequency sinusoidal input.
RF filter bandwidth for a 7 mV

The receive signal spectrum is given in Figure 4-6 over the frequency range of

interest (i.e., bandpass RF filter bandwidth), which presents no discernible interferers
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and is therefore noise limited. An excitation frequency of 2.0 MHz with a ten cycle

gate period (i.e., M = 10), results in a matched RF filter bandwidth of BW3dB =

L = 200 kHz. Integration of noise and distortion power over the bandpass RF filter

bandwidth yields a signal-to-noise and distortion ratio (SNDR) greater than 80 dB,

which has been established as adequate in commercial TCD sonography systems [27].

4.3 Flow Velocity Measurement

Pulse echo characteristics of the system - in addition to the Doppler processing al-

gorithm - can be experimentally validated via flow phantom velocity measurements.

The experimental flow phantom setup is presented in Figure 4-7. Blood mimicking

fluid is utilized within the flow phantom to emulate the acoustic scattering proper-

ties of blood and is composed of water and 30 pm diameter alumina powder particles

(AP300-1, South Bay Technology, San Clemente, CA). The vessel phantom is con-

structed from 6.35 mm inner diameter vinyl tubing (i.e., the available tubing diameter

nearest to MCA diameter). A pump motor (C55JXGTS-3835, Emerson, St. Louis,

MO) drives the blood mimicking fluid from the fluid reservoir through the flow phan-

tom. A flow regulator is used to control the volumetric fluid flow, which is measured

by an in-line flow meter (751021A08, King Instrument Company, Garden Grove, CA).

It should be noted that - because the fluid reservoir and pump motor are open air

systems and the blood mimicking fluid is not degassed - the flow phantom creates a

substantial number of air bubbles, which are likely the dominant scattering mecha-

nism. Therefore, due to a lack of skull bone and increased scattering, receive signal

levels from the flow phantom setup are significantly higher than would be expected

for in vivo measurements. Nonetheless, the flow phantom is suitable for demonstrat-

ing successful pulse echo operation of the ultrasound system and validating Doppler

velocity estimation techniques.
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Figure 4-7: Experimental flow phantom setup for evaluation of ultrasound velocimetry

instrumentation.

The vessel phantom and manually aligned ultrasound transducer are depicted

within the experimental water tank setup in Figure 4-8. Because the vessel phantom

can be insonated uniformly - due to visible transducer alignment and controlled

vessel phantom course - and the Doppler angle and vessel phantom diameter can

be accurately measured, the volumetric flow rate - or equivalently the mean flow

velocity - can be used to determine the accuracy of the TCD velocimetry system

from flow meter measurements. Although in vivo blood flow is pulsatile in nature,

the flow phantom setup of this work generates steady flow and thus does not allow

the dynamic measurement capabilities of the prototype TCD velocimetry system to

be evaluated.

Figure 4-8: Alignment of the ultrasound transducer to the vessel phantom within the

experimental flow phantom.

Figure 4-9 presents the Doppler spectrum of a single velocity measurement. Mean

flow velocity and volumetric flow rate are computed using the Doppler angle, vessel

diameter, and experimental Doppler spectrum as discussed in Section 2.4.2. A mean
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flow velocity of -1.34 m/s (i.e., away from the transducer) is obtained via Doppler

estimation, when accounting for a measured Doppler angle of 300.

Frequency, kHz
5

Figure 4-9: Experimental Doppler spectrum using flow phantom setup.

To validate the accuracy of the prototype TCD system, Doppler estimated mean

flow velocities are compared to flow meter measurements over the range of antici-

pated in vivo flow velocities in the MCA. From Figure 4-10, it is visually evident

that Doppler mean velocity estimations are highly correlated to inline flow meter

measurements, which have been converted to mean velocities using known physical

dimensions. A 1 2 th order Chebyshev high-pass filter is used for clutter rejection with

a stopband frequency corresponding to a scatterer velocity of 6 cm/s.
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Figure 4-10: Comparison of Doppler estimated and flow meter measured mean flow

velocities for expected in vivo values in the MCA.
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Normalized root-mean-square error (NRMSE) analysis is employed to assess es-

timator performance over the complete experimental data set, as given by:

n

1 est,i - Vobs,i)

NRMSE = (4.2)
Vobs,max Vobs,min

where 'est is the Doppler estimated mean velocity at each data point, 'obs is the

observed mean velocity obtained from flow meter measurements, and n is the number

of experimental data points. For the given data set, NRMSE is computed as < 3.5%.

Alternately, Doppler velocity estimation accuracy can be characterized using the

difference parameter Ai = Vest,i - %bs,i. For the given data set, a difference mean

of -0.44 cm/s and difference standard deviation of 3.11 cm/s were achieved. This

realized degree of measurement accuracy suggests the potential for clinically accept-

able blood flow velocity measurements obtained using the prototype TCD velocimetry

instrumentation of this work.

131



132



Chapter 5

Conclusion

5.1 Summary

Monitoring of cerebrovascular state is an essential element in the clinical care of pa-

tients affected by neurovascular pathologies. Transcranial Doppler (TCD) sonography

is a non-invasive method that enables the measurement of blood flow velocities from

the basal intracerebral vessels and is clinically indicated in a variety of diagnostic

and prognostic neurovascular applications [22]. Although TCD sonography provides

several considerable advantages when compared to other measurement modalities -

notably safety in prolonged studies, relatively modest system dimensions and equip-

ment costs, and high temporal resolution - the widespread clinical acceptance and

adoption of TCD sonography in both conventional (e.g., identification of intracranial

vasospasm and stenosis, cerebral embolism detection) and emerging (e.g., intracranial

pressure estimation) applications has been hindered by numerous limitations [23,24].

Among these impediments are the need for an experienced operator, velocimetry ac-

curacy and variation concerns, the absence of a patent acoustic window in certain

patients, and restrictive measurement techniques and system form factors for certain

applications.

In an effort to mitigate these constraints, this work details the development of

a highly-compact, wearable TCD ultrasound system for autonomous and continuous

measurement of cerebral blood flow velocity (CBFV). To facilitate development, this
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work concentrates on unilateral insonation of the middle cerebral artery (MCA).

Relevant theoretical considerations and design of the Prototype I system were

presented in Chapters 2 and 3. The eight channel Prototype I system was then

characterized and validated using a flow phantom in Chapter 4, which demonstrated

a high level of agreement when compared to flow meter measurements under realistic

in vivo flow velocities.

5.2 Future Work

The following items are anticipated next steps of this project and will be part of

subsequent research:

* Clinical testing of the Prototype I system

Despite successful validation of the Prototype I system using a Doppler flow

phantom, the acoustic context is significantly different from in vivo conditions.

The presence of cranial bone significantly complicates measurements, due to

acoustic beam distortion and substantial attenuation. Additionally, the flow

phantom of this work does not capture the pulsatile nature of blood velocities

and therefore characterization of the Prototype I system during measurement

of dynamic velocities cannot be performed using the flow phantom. Clinical

testing of the Prototype I system is therefore needed, which will compare the

systolic, diastolic, and time-averaged flow velocities of the prototype system

to data measured using a commercial TCD ultrasound system under similar

physiological conditions.

" Development of increased channel count discrete prototype system

Although the Prototype I is a multi-channel system, the operable system uses

single element transducers - since a transducer array is not yet available. Addi-

tionally, under the proposed architecture of this work, the eight channel electron-

ics are insufficient for beamformation using a 2D transducer array. Extension of

the Prototype I system architecture to higher channel count (i.e., 64 channels)
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and incorporation with a 2D transducer array, will enable acceptable phased ar-

ray operation. To achieve untethered operation, additional high voltage power

supply generation from a single battery and system memory for data storage

are also required.

" Development of phased array algorithms

The need for operator interaction, particularly for manual transducer steering

and alignment, can be substantially reduced through developments in vessel lo-

cation and tracking algorithms. Also, acoustic window patency considerations

can be potentially mitigated through the implementation of phase-correction

algorithms, which restore acoustic pressures within the focal region in the pres-

ence of beam distortion. These techniques require an operational phased array

platform for electronic beam steering and therefore cannot be tested or refined

prior to the development of a functional phased array system.

" Use case refinement

Further exploration into potential use cases of autonomous TCD sonography

may lead to system level modifications in future system developments. Such

revisions may include the need for bilateral insonation modes, extension to in-

sonation of additional cerebral vessels, modification of the operator interface and

mechanical construction, and inclusion of radio-based data transmission. Input

from clinicians, sonographer technologists, and potential users will be sought.

" Development of integrated circuit electronics

Transitioning from discrete commercially available components to integrated

circuit based designs leads to a much broader set of realizable system architec-

tures. After the system requirements have been sufficiently defined using discrete

components, an application specific integrated circuit (ASIC) can be designed

to significantly reduce both system dimensions - due to increased device den-

sity, smaller routing dimensions, and reduced electrical component count - and

power dissipation - due to mixed signal architectural approaches, reductions in

intermediate data rates, and power efficient design implementations. Following
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circuit integration, the realization of a truly untethered and wearable system

form factor for TCD sonography will be increasingly viable.

The successful execution of our current objectives and future work has the po-

tential to profoundly alter the current clinical approach to neurovascular diagnostics,

especially in cases where the role of diagnostic tools has not been clearly established

(e.g., emergency assessment of head trauma and stroke, ambulatory intracranial pres-

sure monitoring for cases of moderate traumatic brain injury, home monitoring of

hydrocephalus shunt function, long-term monitoring cerebral embolization).
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