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ABSTRACT

The use of nanotechnology to engineer drug delivery vehicles comprised of controlled release
polymers with targeting molecules has the potential to revolutionize cancer therapy, among other
diseases. Although a myriad of nanotherapeutics have been developed at the bench side, many of
them stay at the research stage due to their complexity and difficulty in their optimization. A key
challenge for optimization of nanoparticles (NPs) for drug delivery is the ability to
systematically and combinatorially create and screen libraries of NPs with distinct
physicochemical properties, from which promising formulations can be moved forward to pre-
clinical and clinical studies.

In this work, the development of a controlled method to synthesize libraries of NPs with distinct
properties is described. The procedure uses a microfluidic platform that rapidly mixes reagents
and provides homogeneous reaction environments, resulting in the reproducible, single-step
synthesis of NPs with well-defined properties and narrow size distributions. The microfluidic
system is composed of a mixing unit and a NP assembly unit. The mixing unit consists of a
multi-inlet, 2-layer mixer where different precursors such as polymers of different MW and
charge, ligand- and drug-conjugated polymers, free drugs, and solvents are mixed at different
ratios into a homogenous solution. In the assembly unit, the precursor solution is quickly mixed
with an anti-solvent (i.e. water) using 3D hydrodynamic flow focusing where NPs self-assemble
after complete mixing.

With the microfluidic platform, a library of 100 NPs with different sizes (15-200nm), charge (-30
to +30mV), surface chemistry (i.e. PEG coverage), surface ligand density (0-2.5105
ligands/ [m 2), and drug loading (0-5 w/w%) was producedd in a high-throughput manner by
simply varying the flow ratios of precursors entering the system. This library was implemented
for (i) screening for formulations (in vitro and in vivo) with optimal clinical properties for cancer
treatment and (ii) deepening the understanding of how NP properties affect their biological
behavior. The platform developed in this work would likely lead to better understanding of the
design parameters for polymeric NPs and their smoother transition to the clinic.

Thesis Supervisors: Institute Professor Robert Langer (Chemical Engineering, MIT)
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Professor Omid Farokhzad (BWH and Harvard Medical School)

Thesis Committee: Professor Michael Cima (Materials Science and Engineering, MIT)
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Chapter 0 - Outline of thesis

This work describes the development of a versatile microfluidic platform for the high-

throughput synthesis and optimization of targeted polymeric nanoparticles. The platform is

useful for the production of nanoparticle libraries, with which one can (i) rapidly screen for

nanoaparticles with promising clinical properties and (ii) obtain deeper understanding on how

nanoparticle properties affect their biological behavior. A schematic that summarizes this work

is shown in Figure 0.1. Chapter 1 starts with an overview of the field of nanomedicine, clearly

delineating how microfluidics can make an impact in the immediate and long term in the

acceleration of discovery and clinical translation of nanoparticles. Subsequently, three distinct

topics are discussed in chapters 2 to 5:

(1) Fabrication of microfluidic devices that can synthesize multifunctional polymeric and

lipid nanoparticles (chapters 2 and 3). The two main goals were to develop ways to synthesize a

variety of nanoparticles with potential for clinical translation (chapter 2) and to make them in a

device that minimizes fouling and batch-to-batch variations (chapter 3).

(2) Gain of deeper understanding on targeted nanoparticles. Specifically, understand how

the nature of the targeting ligand affects other particle properties as well as their biological
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behavior. This work has broader impact when it comes to choosing a targeting ligand for a

specific nanoparticle system.

(3) Development of ways of encapsulating multiple drugs in the same nanoparticle.

Specifically, the synthesis of a polymer-drug system is described, as well a robust method of

incorporating them inside nanoparticles in a precise and reproducible manner through

microfluidics.

Finally, with the devices developed in chapter 3, plus the knowledge learned in chapter 4,

and the materials synthesize in chapter 5, the microfluidic platform was assembled and tested

(chapter 6). With this system, a proof-of-concept nanoparticle library was produced, a high-

throughput screening was performed, and insightful in vivo studies were carried out. This thesis

closes with the description of three questions that are still unanswered in the field of

nanomedicine, and for which the microfluidic platform is well suited to be used as tool to answer

them (chapter 7).

Functionalized Polymeric

I CHAPTER 6

Figure 0.1 Schematic representation of the microfluidic platform developed and the thesis
outline.
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Chapter 1 - Introduction: Microfluidic Technologies

for Accelerating the Clinical Translation of

Nanoparticles

1.1. Promises and limitations in nanomedicine

Nanomedicine is the application of nanotechnology to medicine, specifically involving

the use of engineered nanomaterials for therapy and diagnosis of major diseases such as cancer,

cardiovascular, and infectious diseases'. The first generation of nanoparticles with applications

in medicine dates back to the 1970's, when drug-loaded nanoscale liposomes were developed to

deliver their cargo to diseased cells in a "Trojan horse" fashion2 . Since then a new generation of

targeted drug delivery vehicles (for example, polymeric nanoparticles) 3 , contrast agents (such as

iron oxide nanoparticles) 4, diagnostic tools5 , and antennas for photothermal therapy (for

example, gold nanoparticles) 6 have emerged. This is driven in part by further understanding of

the biology of diseased states, and by technological advances in imaging techniques and

synthesis of novel biocompatible and biodegradable materials7. Today, nanomedicine promises

the precise delivery of drugs to disease sites (such as tumors and atherosclerotic plaques) without

*This work has been published by P.M. Valencia et al, Nature Nanotechnology 2012. 12



off-target toxicities, and the early detection of diseases using selective contrast agents and

sensitive diagnostic tools.

Nanoparticles are attractive in medicine because their surfaces can be chemically

modified for targeting specific disease tissues, or for in vivo stability. For therapy, drugs can be

encapsulated inside nanoparticles and released in a controlled manner over time. For imaging,

nanoparticles can provide higher contrast (e.g. iron oxide nanoparticles for magnetic resonance

imaging, MRI) or higher brightness (e.g. QDs for fluorescence imaging) than conventional small

molecule agents9 . Despite these advantages and several decades of research, only a handful of

nanoparticles have received approval from the US Food and Drug Administration. Few examples

include Feridex and Resovist (iron oxide nanoparticles for magnetic resonance imaging, MRI,

Doxil (liposome encapsulating doxorubicin for chemotherapy) and Abraxane (protein-based

nanoparticle encapsulating paclitaxel for chemotherapy) 0.

In fact, translation of nanoparticles to the clinic has been slow compared to small-

molecule drugs, with the majority of nanoparticles not even reaching the point of in vivo

evaluation, and even fewer reaching clinical trials. This is due to a combination of factors. It

remains difficult to reproducibly synthesize batches of nanoparticles that have identical

properties and in sufficient quantities for clinical applications". Moreover, knowledge on the

fate of nanoparticles at the body-, organ- and cell-level remains limited 2 ; this makes rational

design of nanoparticles difficult and necessitates the use of screening-based approaches for

synthesis. Furthermore, there are few platforms that can rapidly evaluate the biological behavior

of nanoparticles in vitro under conditions that can be correlated with their performance in vivo".

For example, there is a need for high throughput methods for evaluating the binding and

internalization of nanoparticles by cells, the interaction of nanoparticles with plasma proteins and
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the immune system, among others. Finally, there is insufficient understanding of the

biophysicochemical interactions of nanoparticles with proteins, membranes, DNA, and

organelles. These interactions could have either beneficial or adverse outcomes'3 . It is expected

that technologies tackling some of these challenges could significantly accelerate the discovery

and clinical translation of nanomedicines.

Microfluidics, the science and technology of manipulating nanolitre volumes in

microscale fluidic channels, has impacted a range of applications including biological analysis,

chemical synthesis, single cell analysis, and tissue engineering1 4 . Building upon its origins in

semiconductor technology and chemical separations, the expansion of microfluidics has been

driven by its ability to process small sample volumes and access biologically relevant length

scales and microscale transport phenomena. This expansion has been largely facilitated by

techniques, such as soft lithography, that enable rapid design and prototyping of microfluidic

devices using a variety of materials14. Recent advances and innovations in microfluidics are

expected to improve the synthesis of nanoparticles and accelerate their transition to clinical

evaluation (Figure 1.1). Although many of these microfluidic systems are still being developed,

they have the potential to become widely adopted because they are economical, reproducible,

amenable to modifications, and can be integrated with other technologies. In the next sections,

we highlight some of these technologies and discuss their impact on accelerating the clinical

translation of nanoparticles.
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Figure 1.1. Nanoparticles in clinical development, steps for their translation and
microfluidic methods that could improve or complement current technologies.
Synthesis is carried out in large reaction flasks, whereas microfluidic synthesis is carried out at
micro and nano lengthscales that allow for improved control over reaction conditions.
Characterization often involves taking a small sample of nanoparticles and measuring their
properties offline, while nanopores embedded in microfluidic devices allow for real time, in-line
characterization. In vitro evaluation in plate wells produces a microenvironment far from that in
vivo, while continuous flow in microfluidic systems result in conditions closer to those in vivo.
In vivo evaluation in large animals is helpful for estimating the pharmacology of nanoparticles.
To complement these studies microfluidic systems could enable real-time tracking of
nanoparticles in large numbers of small organisms. Scale-up is generally carried out in reactor
vessels several times larger than bench top flasks, while parallelization of microfluidic channels
can increase the production rate of nanoparticles with properties identical to the one at bench
scale.

1.2. Well-controlled synthesis of nanoparticles

Amphiphilic molecules such as block copolymers and lipids can self-assemble into

nanoparticles when they experience a change in solvent quality (e.g. from organic solvent to

aqueous) (Figure 1.2a). A common and flexible way to accomplish a change in solvent quality is

15



by mixing the solvent with the anti-solvent, where mixing time directly influences the final size

and size distribution of the nanoparticles formed 6 . If the mixing timescale, tmx, is longer than

the characteristic timescale for chains to nucleate and grow (tagg, -10-100 ms depending on the

molecular weight of the chain), the nanoparticles begin to assemble under varying degrees of

solvent quality. This heterogeneous environment prevents effective stabilization of the

nanoparticles by the hydrophilic portion of the amphiphilic molecule and facilitates their

aggregation, leading to the formation of larger, polydisperse nanoparticles. However, if tmix <

tagg, particle self-assembly occurs primarily when the solvent change is complete, which presents

a homogeneous environment for nanoparticle assembly and facilitates effective stabilization of

the nanoparticles by the hydrophilic portion of the molecule, yielding smaller nanoparticles with

uniform size . While conventional bulk mixing occurs at the timescale of seconds, in

microfluidic devices the mixing time of solvents is controllable and tunable from millisecond to

microsecond scale (reaching tmix <tagg)16'"8 .

In recent years, several microfluidic systems that enable rapid mixing without the need of

external actuators such as stirrers or electric fields have been developed'. The most widely used

include flow focusing mixers20, droplet mixers21, and those with micromixing structures

embedded inside the channel22 . Flow focusing squeezes the solvent stream between two anti-

solvent streams, resulting in rapid solvent exchange via diffusion (Figure 1.2b). Droplets and 3D

microchannel geometries result in complex folding of fluid flows, which can completely mix two

or more streams within milliseconds (Figure 1.2b). The implementation of these mixing

techniques for the formation of organic nanoparticles in continuous flow has resulted in

polymeric and lipid nanoparticles with tunable nanoparticle size, narrower size distribution,

16



higher drug loadings, and greater batch-to-batch reproducibility relative to those made with

conventional bulk techniques2 3 (Figure 1.2c).

Similarly, inorganic nanoparticles comprised of transition metals such as gold, iron, and

cadmium, among others, undergo a self-assembly where metal solutes nucleate, grow, and

agglomerate into nanoclusters (Figure 1.2d)24 . Obtaining narrow particle size distribution

requires rapid nucleation followed by growth of nanoparticles to the desired size in the absence

of further nucleation, which can be accomplished by controlling the mixing time of reagents,

reaction temperature, and reaction time. In bulk, these parameters are difficult to control,

leading to uneven mixing, local temperature fluctuations, and uncontrolled reaction times. In

contrast, microfluidic devices allow for control over the mixing time by varying solvent flow

rates or channel geometry. Moreover, better heat transfer due to large surface areas enables better

temperature control, preventing the formation of large temperature gradients. Finally, since the

channel length directly corresponds to the time spent by the reactants flowing through it in

continuous flow synthesis, the reaction time can be controlled by tuning the channel length or by

adding reagents at precise downstream locations during the particle formation process to quench

the reaction26 .

Two-phase droplet mixers where reagents are encapsulated in droplets and separated by

inert fluids are commonly used for the synthesis of inorganic nanoparticles (Figure 1.2e)27 . In

this configuration, rapid mixing of the solutions occur inside the droplets, which serve as

identical microscale reactors providing homogeneous conditions for nanoparticle nucleation and

growth. Both droplet-based and single-phase systems have been used to synthesize quantum dots

exhibiting narrow size distributions that translates into sharper absorption peaks and better

luminescence qualities2 7 , and with control over size to tune the absorption spectra (Figure 1.2f)2 8 .
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Finally, similar systems have been implemented in the controlled synthesis of gold nanoparticles

of defined size and shape, iron oxide nanoparticles with higher magnetization, and QDs with

controlled size and biocompatible coatings29.

Over the past four years, several examples showing the use of microfluidics for the

synthesis of nanoparticles with different size, shape and surface compositions have emerged 0 .

Currently, there are microfluidic systems capable of characterizing the nanoparticle size and

stability following synthesis in a single platform' 3. Moreover, large numbers of distinct

nanoparticles can be obtained through combinatorial synthesis3 3 , and production rates of

identical nanoparticles can be increased through parallelization of the devices 3 4 , 3 . Similar to

high-throughput synthesis of libraries of small molecules, these advantages could potentially

enable screening and optimization of libraries of nanoparticles with distinct properties. One of

the challenges in gene therapy, for example, is finding the right formulation for delivering

nucleic acids to specific sites in the body. By mixing different precursors at varying ratios,

microfluidics systems have enabled a one-step combinatorial synthesis of libraries of polymeric

and lipid nanoparticles that encapsulate DNA and siRNA, respectively. Screening these libraries

of nanoparticles has helped identify superior formulations for gene transfection compared to

conventional transfection agents such as lipofectamine 2000. Furthermore, using this method,

potent lipid-based siRNA formulations for in vivo delivery to the liver have also been

discovered, 34
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Figure 1.2. Microfluidic synthesis of nanoparticles.
(a) Schematic of the self-assembly mechanism of organic nanoparticles 6 . Upon mixing with
anti-solvent, polymers (or lipids) are brought to the vicinity of each other (I) then nucleate (II),
subsequently aggregating into nanoparticles (III) (b) Schematic of microfluidic synthesis of
organic nanoparticles by rapid mixing through hydrodynamic flow focusing 8 (top) and
microvortices" (bottom). Red and dark blue indicate organic and aqueous streams, respectively,
while pink and light blue indicate their degree of mixing. (c) Size distribution of polymeric
nanoparticles (top) and liposomes (bottom) prepared in microfluidics compared to bulk
synthesis 1 . In both cases narrower particle size distribution were produced through
microfluidics. (d) Schematic of the self-assembly mechanism of inorganic nanoparticles24 .
Individual molecules first nucleate (I and II), followed by aggregation of nuclei into
nanoparticles (III). If the reaction is not quenched or stabilized, nanoparticles tend to
agglomerate into bulk material (IV). A refers to individual molecules forming the nanoparticle,
and A, and Am refer to nuclei formed of n and m number of A molecules, respectively. (e)
Microfluidic synthesis of inorganic nanoparticles by rapid mixing through two-phase flow where
reagents are embedded in fluid droplets carried by an inert fluid27 . (f) Sharp versus broad
absorption maximum of QDs synthesized in microchannels and bulk, respectively (top); control
in the absorption spectra of QDs as function of reaction time2 7'28 (bottom).
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1.3. Evaluation and screening of nanoparticles

Another challenge in nanoparticle development is the lack of in vitro models capable of

predicting in vivo behavior36. Conventionally, nanoparticles are evaluated in vitro using cells

cultured in well plates, which does not capture the complexity of nanoparticle-cell interactions in

vivo. For instance, a recent study showed that sedimentation of gold nanoparticles in well plates

could lead to misinterpretation of results such as increased nanoparticle uptake. Microfluidics

provides significant advantages over conventional methods for cell and tissue culture by

displaying structures and networks at relevant physiological length scales, and by incorporating

fluid flow and mechanical forces that bring the cell-based assays a step closer to mimicking the

in vivo microenvironment 8 (Figure 1.3a). This is especially advantageous, for instance, when

investigating the toxic effects related to the cell uptake of nanoparticles. A recently developed

microfluidic system for evaluating QD toxicity on mouse fibroblasts revealed increased cell

viability under flow conditions compared to static incubation, possibly due to the absence of QD

sedimentation39

Recently, researchers have focused on developing biomimetic microfluidic technologies

capable of portraying organ-level functions on a chip, such as those observed in the lung, liver,

and kidneys, among others3 8 , 40. For instance, microfluidic systems that reconstitute the critical

functional alveolar-capillary liquid-air interface of the human lung have been recently fabricated

by growing alveolar epithelial cells and microvascular endothelial cells on different sides of a

perforated silicone membrane. The membrane was pneumatically actuated to mimic the

physiological expansion-contraction motion due to breathing. It was found that cyclic

mechanical strain accentuates toxic and inflammatory responses in the lung when exposed to

silica nanoparticles, which could have not been observed with other conventional in vitro
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systems4' (Figure 1.3b). Using a similar design approach, a "gut-on-a-chip" was developed by

coating both sides of a membrane separating two microfluidic devices with extracellular matrix

and lined by human intestinal epithelial cells. It was demonstrated that by subjecting the

membrane to flow and cyclic strains similar to those encountered in the gut, villi-like structures

were formed and the co-culture of the intestinal microbes was made possible42 (Figure 1.3c).

Expansion of these technologies to other organs, for instance "liver-on-a-chip"43, could

lead to platforms for evaluating and screening nanoparticle toxicity in organs where

nanoparticles tend to accumulate and toxicity is likely to be a major concern (e.g. liver, spleen

and kidney). While nanoparticles would still need to be evaluated in animals, such microfluidic

systems could take in vitro nanoparticle screening to a new level of utility by selecting promising

candidates with higher probabilities of success from a large pool of nanoparticle formulations

and eliminating those that would otherwise have failed in larger animal studies. In addition,

coupling these technologies with microfluidic devices used for nanoparticle synthesis opens the

possibility of rapid combinatorial screening of a large number of different nanoparticles under

various conditions (e.g. concentrations, pH values, under the presence of specific proteins, etc.).

Nanoparticles exhibiting promising results in vitro are subsequently evaluated in vivo,

which is considerably more expensive and resource-intensive, especially in non-human primates.

While most of the parameters such as pharmacokinetics, biodistribution, and efficacy are

evaluated in mice and larger animals, tracking physiological effects of nanoparticles on animal

development could potentially be obtained using a large number of smaller organisms. The

zebrafish and C. elegans worms are well-known models for studying fundamental mechanisms

and progression of human diseases, and for drug screening44. For example, the zebrafish was

recently utilized as an in vivo model to develop a hazard ranking for engineered nanoparticles
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based on their impact on mortality rate, and morphological defects in zebrafish embryos exposed

to these materials 45. However, current methods for manipulating these organisms generally suffer

from low throughput, low automation and imprecise delivery of external stimuli 46. To solve these

challenges, engineered microfluidic systems with dimensions comparable to small organisms and

containing valves and suction points have been developed. These systems enable precise

manipulation of these organisms with respect to placement and orientation for high-throughput

screening (Figure 1.3d)46'. Other microfluidic systems are being developed that are capable of

imaging dynamic cellular processes in small organisms such as cell division and migration,

degeneration, aging and regeneration". With such technologies in place, it might be possible to

use real-time microscopy to track physiological responses to fluorescently labeled

nanotherapeutics and nano-imaging agents as well as assess the distribution and efficacy of

nanoparticles at both the organ and body level. In addition, real-time tracking of nanoparticle-

induced toxicity at different concentrations and conditions in small organisms could enable rapid

selection of nanoparticles (especially those made with novel synthetic materials) that are more

likely to be non-toxic in larger animals.
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Figure 1.3. Microfluidic systems for in vitro evaluation and screening of nanoparticles.
(a) Schematic of nanoparticle sedimentation in conventional plates, which could result in
misinterpretation of results. In contrast, flow conditions in microfluidics provide a more accurate
method for evaluating nanoparticles in vitro3 9 . (b) Schematic of the lung-on-a-chip that
reconstitutes the critical functional alveolar-capillary interface of the human lung through a
stretchable membrane containing an epithelium layer on one side and an endothelium layer on
the other4' (left). Photograph of actual device (right). (c) Schematic of the gut-on-a-chip made by
flexible, porous, ECM-coated membrane lined by gut epithelial cells42 (top). A photograph of the
gut-on-a-chip device made of PDMS elastomer (bottom). A syringe pump was used to perfuse
dyes for channel visualization. (d) Photograph of a dye-filled microfluidic system designed to
handle C. Elegans worms48 (left). Red, control valve layer; yellow, flow layer; blue,
immobilization layer. Scale bar: 1 mm. Schematic showing load, capture, orient, immobilization
and unload of the worm (right).
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1.4. Future prospects

Today, the field of microfluidics applied to nanomedicine is still in its infancy. Although

nanoparticles at present have a relatively small footprint in the pharmaceutical industry, it is

anticipated that as these products bring in revenue, industry-led research and development efforts

would likely adopt technologies, such as microfluidics, to accelerate their development.

Nevertheless, microfluidic technologies, such as organ-on-a-chip and small animal screening, are

likely to be adopted first for the screening of small molecule drug candidates, where the need for

such tools is evident.

There are a few key directions at the intersection of microfluidics and nanomedicine that

are likely to be pursued in the near future (Table 1). While the quantity of nanoparticles

synthesized by microfluidic devices is often in the microgram-milligram range, parallel and

stackable microfluidic systems could produce gram to kilogram scale of nanoparticles

continuously with the same properties as those prepared at the bench scale. Similarly, the use of

microfluidic platform technologies to reproducibly synthesize and screen libraries of

nanoparticles with different chemical compositions and/or physicochemical properties could

potentially advance nanoparticle discovery analogously to how the high-throughput screening of

small molecules in medicinal chemistry advanced small molecule discovery. With respect to the

design and development of novel nanoparticle constructs, the use of microfluidics could enable

the synthesis of nanoparticles with properties not accessible by conventional synthesis similar to

what has already occurred for microparticle synthesis49. Another avenue of future research will

be the integration of different steps of nanoparticle development into a single system (e.g.

nanoparticle synthesis characterization, and evaluation), together with feedback control through a

combination of microfluidics, robotics, and automation, thus significantly cutting the time and
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cost of nanoparticle development. Finally, mass-produced microfluidic devices and well-defined

nanoparticle precursors can aid in the synthesis of identical batches of nanoparticles with little to

no variations introduced by user handling. This could lead to the use and commercialization of

"nanoparticle synthesis kits" composed of calibrated devices that can reproducibly synthesize a

specific class of nanoparticle with well-defined properties for use as standards in conventional

toxicological assays. Considering the large number of nanoparticles being made of novel

synthetic materials or of unusual shapes, such standardization would be highly useful for

regulatory purposes, among others.

Microfluidic technologies are capable of accelerating the discovery and translation of

nanoparticles, and could serve as a tool for nanotherapeutics to reach a similar "tipping point"

reached by genome sequencing in the past decade after high-throughput sequencing technologies

were developed5 0 . Among all the microfluidic technologies, those developed for synthesis and in

vitro screening of nanoparticles have the highest probability of making an impact in the near

future (Table 1). Specifically, microfluidic synthesis may be adopted as a second generation

manufacturing technology after initial success of FDA-approved nanoparticles in cases where the

advantages of microfluidic synthesis are significant. Microfluidic synthesis may also be adopted

as a screening tool to identify optimal nanoparticles in academic and industrial research

laboratories. Alternatively, the impact of microfluidics might be observable in the medium- to

long-term future for nanoparticle characterization and in vivo evaluation. For nanoparticle

characterization, the use of microfluidics would likely increase once more advanced technologies

are developed to characterize several nanoparticle properties (e.g. size, charge, surface

composition, and stability) in a single system. Similarly, in vivo evaluation of nanoparticles in

microfluidics would likely mature once both easily adoptable microfluidic systems for
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manipulating small organisms and methods for translating data obtained from these organisms to

larger animals are developed.

Overall, the use of microfluidic technologies in nanomedicine brings exciting

opportunities to expand the body of knowledge in the field, advance the clinical translation of

nano-based therapeutics and imaging agents, and demonstrate innovative ways to develop other

classes of drugs.
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Table 1: Advantages, disadvantages/challenges, stage of development, and potential impact
of microfluidic systems on different steps in the clinical translation of nanoparticles.

Rank: Most advanced in development (*****) to least advanced in development (*), based on the
amount of research carried out on each category as well as the potential ease of adoption by industry.
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Chapter 2 - Microfluidic System for Synthesis of

Multifunctional Nanoparticles: 2D Flow Focusing with

Tesla Structures

2.1. Introduction

The development of smart multifunctional targeted nanoparticles (NPs) that can deliver

drugs at a sustained rate to specific cells and carry nanoscale imaging agents may provide better

efficacy, lower toxicity, and enhanced prognosis for treatment of multiple diseases-. Two

promising families of NPs that can encapsulate and deliver therapeutic agents are polymeric NPs

and liposomes. 1,2 Biocompatibility, biodegradability, reduced toxicity, and capacity for size and

surface manipulations are benefits that these NPs offer in comparison to other delivery systems.

Recently, it has been shown that hybrid lipid-polymeric NPs combine the desirable

characteristics of polymeric NPs and liposomes such as high drug encapsulation yield, slow drug

release, and high serum stability.3' 4 In addition, temporal controlled release of two different

therapeutic agents has been achieved with these hybrid NPs by entrapping one agent in the lipid

envelope and the other one in the polymeric core.5

This work has been published by P.M. Valencia et al, ACS Nano 2010
31



The development of novel nanosystems such as hybrid lipid-polymeric NPs for drug

delivery is necessary to advance the frontiers of drug delivery, but the ability to precisely control

and predict properties of these systems is critical for their success in clinical translation.6

Furthermore, it may be necessary to screen and select NPs with optimal properties for a certain

application, which demands reproducible synthesis of NPs with distinct size, charge, and ligand

density.7 Among some of the technologies developed to prepare polymeric and lipid NPs of well-

defined properties, continuous-flow microfluidic synthesis offers better control over NP

formation compared to conventional synthesis and has the potential to tune NP characteristics in

a reproducible manner, which is critical for identifying optimal NP formulations for any given

application.8-1' Continuous-flow microfluidics has been used to synthesize polymeric nano and

microparticles using controlled emulsification.1 2 and droplet formation through hydrodynamic

flow focusing. 13, 14 Recently, hydrodynamic flow focusing was used for the synthesis of

liposomes with sizes of less than 200 n15, 16, and PLGA-PEG NPs by nanoprecipitation (also

known as solvent-displacement method).9

However, conventional methods for synthesizing lipid-polymeric NPs are more

complex as compared to the preparation of liposomes or polymeric NPs. These methods involve

mixing of polymeric NPs with liposomes to form lipid-polymer complexes, in which a lipid

bilayer or lipid multilayer fuses on the surface of polymeric NPs. 17~19 These complexes usually

require a two-step formulation process: (i) development of polymeric NPs, and (ii) encapsulation

of polymeric NPs within liposomes, resulting in poor control over the final NP physicochemical

structure. Recently, our group developed a single step bulk hybrid lipid NP preparation in which

a solution of poly-(lactic-co-glycolic) acid (PLGA) in acetonitrile was added to an aqueous

solution of lecithin and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-
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[carboxy(polyethylene glycol)] (DSPE-PEG) resulting in the formation of hybrid lipid-polymeric

NPs.3' 4 Although this preparation yields sub-100 nm NPs and simplifies the synthesis,

intermediate steps such as heating, vortexing, and long incubation time does not make the

process easily amenable to combinatorial synthesis and can introduce variability in the properties

of the NPs. A single-step process for reproducible synthesis of hybrid lipid-polymer NPs would

enable preparation of libraries of NPs with distinct properties and allow for identification of

optimal NP properties for different applications.

In this work, we show that rapid mixing of polymer and lipid solutions using

continuous-flow microfluidics results in core-shell lipid-polymeric NPs in a single-step

nanoprecipitation process. These NPs are composed of PLGA, lecithin and DSPE-PEG. We

investigated the conditions under which stable hybrid NPs were formed and showed that by

simply changing the precursors, NPs with tunable size from 35-180 nm and tunable zeta

potential from -20 to 10 mV in PBS could be synthesized. Using the same microfluidic platform,

we prepared homogenous lipid-QD NPs composed of CdSe/ZnS QDs coated by a lecithin and

DSPE-PEG layer for potential imaging applications. Simplicity and reproducibility make this

technology suitable for the combinatorial synthesis and screening of NPs with different

properties without resorting to labor-intensive processing.

2.1. Microfluidic device and nanoparticle design.

Controlled nanoprecipitation of NPs can be obtained by minimizing the mixing time to

ensure homogeneous environment for nucleation and growth of the NPs.m One way to decrease

mixing time in microchannels is the use of micromixing structures, such as serpentine,

staggered-herringbone, and zig-zag structures.21 Here we used an in-plane micromixing structure
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called Tesla mixer2 2 that operates at Reynolds numbers greater than 20. These micromixing

structures show contributions from both diffusion and convection at high flow rates.

Figure 2.la shows a schematic of the microchannel used to synthesize the hybrid lipid-

polymeric NPs. An aqueous solution composed of lecithin and DSPE-PEG (lecithin:DSPE-PEG,

8.4:1.6 by mol) was mixed with an organic solution of PLGA dissolved in acetonitrile (1

mg/mL) at a volume ratio of 10:1. At the junction of the streams, the organic stream is

hydrodynamically focused and enhanced mixing occurs through the Tesla structures as the

focused streams flows along the channel. The hybrid NPs generated have PLGA-lecithin-PEG

core-shell structure and properties as those previously synthesized using bulk synthesis methods

(Figure 1b)' ,4. TEM imaging allowed qualitative assessment of the product stream including its

core-shell structure and monodispersity (Figure 2.1 c). The average NP size is 40 nm and its size

distribution by volume indicated that over 85% of the NPs have a size within 30-60 nm (Figure

2.1d). A fluorescent dye was used to observe the unfolding-folding flow pattern inside the

micromixer and used to illustrate the degree of mixing within the channel (Figure 2.le). From

this image, observation of complete mixing at a total flow rate of 50 pL/min occurs within the

fourth turn of the Tesla mixer on a timescale of 10 ms (see supporting information for

determination of mixing timescale in microchannel). This flow rate was fast enough to ensure

good mixing in the Tesla mixer, yet low enough to limit the pressure drop in the device and

hence prevent device failure.
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Figure 2.1. Nanoprecipitation of lipid-polymeric nanoparticles.
(a) A representative schematic of input and output streams within hybrid lipid-polymeric
nanoparticle formation in microchannels with Tesla structures (b) Illustrative figure of
microfluidic synthesized NP component layers (c) TEM image of uranyl acetate stained hybrid
NPs after synthesis which highlights differences in density of the core versus near the surface of
the NP potentially illustrating the lipid-PEG layer. Bar is labeled at 100 nm (d) Reproducible
average size distribution of hybrid NPs generated through microfluidics. Average size is 40 nm.
(e) Solvent mixing in the Tesla micromixing structures using fluorescent dye and water at 5
pL/min and 50 pL/min, respectively, shows complete mixing at the fourth turn in the channel
(scale bar: 100mm).

2.2. Characterization of PLGA-lipid NPs

The overall structure of the NPs synthesized was tested by multiple measures to ensure

that they were hybrid particles of both lipid and polymeric nature rather than a combination of

liposomes and unprotected PLGA NPs. Using different components in the input stream such as

polymer alone, lipid/ lipid-PEG alone, or a combination of both illustrated differences in size of

particles generated through the Tesla mixer (Figure 2.2a). When only polymer was present, NPs

formed with a size of 40-50 nm and experienced slow aggregation within a few hours of
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formation, resulting in sizes ranging from 50-100 nm. When only lipid and lipid-PEG were

added in the input streams, NPs obtained had a much larger size (-250 nm) and wider size

distribution, which is typical for liposomes. However, particles prepared with both polymer and

lipid had a size of 40 nm that did not significantly change over a long period of time (see figure

A2.2, appendix). This difference in size suggests that when both polymer and lipid are present in

the input streams, polymeric NPs formed are stabilized by a lipid coating that helps maintain a

size of 40 nm. Moreover, NPs generated with varying flow ratios of aqueous to organic stream

did not appear to have a significant influence on the NP size (Figure 2.2a).
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Figure 2.2. Characterization of Lipid-PLGA structure
(a) Comparison of average NP size from the product stream with aqueous : organic flow ratios of
10:1 and 5:1 respectively where the input organic stream is either PLGA, PLGA and lipid, or
lipid alone. (b) Determination-of lipid coverage of polymeric NPs. Zeta potential and size of NPs
as the ratio of lipid to PLGA (w/w) is decreased. (c) Size distributions in water and PBS of NPs
as the ratio of lipid to PLGA is changed. Complete lipid coverage of polymeric cores is observed
at a ratio of lipid to PLGA ratio of 1:10. Above this ratio, the remaining lipid forms other
nanostructures such as liposomes and below this ratio, NPs are not stable in PBS due to
inadequate lipid coverage.

To investigate the optimal amount of lipid needed to obtain a stable hybrid NP that do not

experience aggregation over time and under biological conditions, we first determined the extent
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of lipid coverage through measurements of NP zeta potential. A hybrid NP completely covered

by lipid and lipid-PEG-COOH had a zeta potential in PBS of approximately -20 mV while a NP

without lipid and only PLGA-OCH 3 had a zeta potential of -8 mV (Figure 2.2b). Therefore, by

decreasing the amount of lipid with respect to PLGA while keeping other conditions consistent,

one may expect to see an increase in zeta potential as the NP goes from complete lipid coverage

to no coverage. Variation of the amount of lipid to PLGA from 1:10 to 1:100 lead to an increase

in zeta potential without a significant change in size (Figure 2.2b) which suggests that complete

lipid surface coverage is not required to maintain NP size stability at 40 nm in water. In fact, a

lipid to polymer ratio of 1:1000 was sufficient to prevent aggregation of the NPs. When lipid was

absent, the size of the polymeric NP increased to that of PLGA NPs, similar to the trend

observed in Figure 2.2a. The size increase in the case of 1:1 lipid to PLGA indicates that there is

enough lipid to completely cover all PLGA NPs, and the excess lipid present results in an

increase in the average NP size either by addition of layers, or by the formation of liposomes.

To confirm this hypothesis, we obtained the size distributions by volume of NPs in water

as the amount of lipid introduced in the input stream was decreased. In addition, since PLGA

NPs covered by lipid are stable in PBS as opposed to those without lipid coverage, we obtained

the size distribution of the NPs in PBS as way to assay their stability (Figure 2.2c). Our studies

indicate that two populations of particles are formed at a lipid to PLGA ratio of 1:1 with sizes at

40 nm and 250 nm. The smaller particles correspond to hybrid NPs with full lipid coverage while

the larger particles correspond to liposomes similar to ones observed in Figure 2.la. For a lipid to

PLGA ratio of 1:10, a homogenous size distribution was observed in water and PBS. It must be

noted that a small shift of the average NP size peak is observed when the samples were measured

in water versus PBS. This peak shift could be explained by an aggregation of 2 or 3 NPs after
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immersion in PBS and it can be controlled by tuning the ratio of lipid to lipid-PEG in the

formulation (Figure S3, supporting information). For lipid to PLGA ratio of 1:100 and 1:1000,

there is enough lipid present to keep the NP at size of 40 nm in water, yet it is not enough to

avoid NPs aggregation in PBS. Our studies suggest that the optimal lipid coverage is obtained at

a lipid to PLGA ratio of approximately 1:10. In fact, NPs prepared at this ratio were stable for a

period of 24 hours in 10% BSA and 10% serum, which are surrogates for in vivo protein

adsorption and biofouling (Appendix, figure A2.2). 3 Considering the thickness and

hydrodynamic radius of a lecithin layer with DSPE-PEG, estimation of the amount of lecithin

and DSPE-PEG needed to completely cover NP core of 40 nm lead to a calculated ratio of 1.4:10

of lipid to PLGA. Although this calculation relies on several assumptions (e.g. all NPs are

spheres and monodisperse, constant ratio of lecithin to DSPE-PEG, full lipid coverage on surface

etc), it still offers an adequate approximation of the amount of lipid necessary to form a stable

hybrid lipid-polymeric NP.

At the same lipid to PLGA ratio, we found that there was no significant difference in the

size of NPs prepared at aqueous to organic flow ratios of 10:1 and 5:1 (see figure AL.1 in

appendix). Larger flow ratios (e.g. 20:1, aqueous to organic) resulted in pulsing of the flow due

to the syringe pumps, and required higher PLGA concentrations that made the device more

susceptible to fouling. On the contrary, lower flow ratios (e.g. 1:1, aqueous to organic) would

result in an inadequate environment for NP formation since for optimal nanoprecipitation a flow

ratio of aqueous to acetonitrile streams at least 3:1 is desired.9 Therefore, all the NPs prepared in

this work were obtained at a flow ratio of 10:1 or 5:1.
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2.3. Control of NP physicochemical properties: Size and surface

charge

After confirming the core-shell structure of the lipid-PLGA NPs, and knowing their range

of optimal lipid coverage, we investigated the possibility of controlling the NP's

physicochemical properties, mainly size and surface charge. Figure 2.3a illustrates a change in

zeta potential of the lipid-polymeric NPs when different end-functional groups of DSPE-PEG

were introduced in the input streams. The zeta potential of the NPs could be controlled from

positive to neutral to negative charge by utilizing -COOH, -CH 3 and -NH2 respectively, while the

size remained essentially unchanged. Specific values for zeta potentials of different modified end

groups agree with those previously published. These results not only show that the surface

charge of the NP can be finely tuned but they also confirm that lipid-PEG is on the surface of the

polymeric core. Finally, NP size was controlled by varying the inherent viscosity of the polymer

and the PLGA concentration while keeping other conditions such as organic and aqueous flow

rates and flow ratio the same. Decrease in inherent viscosity and increase in initial polymer

concentration lead to the generation of larger NPs as reported similarly in bulk synthesis of these

particles (Figure 2.3b)4. This illustrates that hybrid NPs made from microfluidics are similar in

nature to those made in bulk and their physicochemical properties such as size and charge can be

controlled.
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Figure 2.3. Control of nanoparticle physicochemical properties.
(a) Control of surface charge and lipid coverage of the hybrid NPs is elucidated by changes in
zeta potential of the NPs in PBS using DSPE-PEG with modified functional groups of carboxyl,
methyl, and amine (b) Control of NP size by varying PLGA viscosity and concentration in the
organic stream. Flow ratios of aqueous to organic streams and rate were kept constant at 10 : 1 at
a total flow rate of 50 pL/min.

2.4. Investigating the role of rapid mixing and mechanism of self-

assembly of the hybrid nanoparticles

To gain more insight into the role of rapid mixing in self-assembly of the NPs, we

compared the formation of NPs under rapid mixing conditions versus slow mixing conditions

obtained by pipetting the same volume of polymer solution used in the microfluidic device into a

lipid solution without sonication or heating. Figure 2.4a shows the size distributions in water and

in PBS of NPs prepared under rapid mixing with the microfluidic chip and slow mixing
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conditions. Under slow mixing conditions at a 1:1 ratio of lipid to PLGA, the formation of

liposomes is noted by the peak around 400 nm. A peak around 10 im in PBS, characteristic of

aggregates of polymeric NPs, indicates the formation of polymeric NPs. Finally some hybrid

lipid-polymeric NPs are formed since there is a stable peak around 100 nm in water and PBS.

The hybrid NPs formed under slow mixing are not homogenous, noted from the irregularity in

the peak around 100 nm. This observation suggests uneven distribution of lipid-PEG among the

polymeric NPs since lipid-PEG confers stability to the hybrid NPs through formation of the PEG

corona (Figure Al.3, appendix). Formation of polymeric NPs, lipid-polymeric NPs and

liposomes, was also observed for a lipid to a PLGA ratio of 1:10. However, the larger peaks in

water and PBS around 100-1000 nm are not as prominent as for the 1:1 case since the percentage

by volume of polymeric NPs formed is much higher than that of liposomes. Under rapid mixing

within the microfluidic channel, homogenous and stable hybrid NPs and liposomes are obtained

at a lipid to polymer ratio of 1:1 and only stable homogenous hybrid NPs are obtained at a lipid

to polymer ratio of 1:10, as inferred by the absence of larger aggregates upon addition of PBS. A

size distribution by intensity is shown in the supporting information where the formation of

distinct populations of NPs is clearly evident in the case of slow mixing of lipid and PLGA

solutions, but only a single population is seen in the case of rapid mixing of lipid and PLGA

solutions (Figure A1.4, appendix).
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Figure 2.4. Slow versus rapid mixing.
Comparison of NP size distribution in water and PBS for rapid and slow mixing of lipid and
PLGA solutions with lipid : PLGA ratios of 1:1 and 1:10. Under slow mixing conditions without
the input of any form of energy, aggregation upon addition of PBS indicates the presence of
heterogeneous NPs (i.e. polymeric, lipid, and lipid-polymeric). Under rapid mixing conditions,
absence of aggregation upon addition of PBS indicates that only homogenous hybrid lipid-
polymeric NPs are formed, except for the 1:1 ratio that results in homogeneous hybrid NPs and
liposomes.

These results give some insight into the role of rapid mixing in the self-assembly of

hybrid lipid NPs. Under rapid mixing, there is uniform lipid and lipid-PEG coverage around

polymeric cores resulting in the formation of homogenous hybrid lipid-polymeric NPs. In

contrast, under slow mixing, some lipid and lipid-PEG is deposited onto polymeric NPs while

the rest forms lipid structures leaving polymeric NPs with uneven or no coverage. The result is

the formation of a combination of liposomes, polymeric NPs, and hybrid-lipid NPs (Figure A1.4,

appendix). An input of energy to the system in the form sonication and/or raise in the

temperature as provided in the bulk methods of synthesis may assist in the disassembly of lipid

structures and their re-assembly around the polymeric cores forming homogenous lipid-

polymeric NPs. Integration of rapid mixing using microfluidics bypasses the intermediate steps

needed in slow mixing conditions in the preparation of homogenous lipid-polymeric NPs.
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While the above experiment suggests that rapid mixing plays an important role in

ensuring uniform lipid coverage on the NPs, it does not explain the invariance of NP size with

lipid concentration. Interestingly, even a 1:1000 lipid : PLGA ratio was sufficient to maintain the

hybrid NP at a size of 40 nm as opposed to NPs made with only PLGA, which increased in size

over a period of few hours. In addition, subsequent increase of the lipid : PLGA ratio by three

orders of magnitude did not affect the hybrid NP size (although some liposomes were formed in

the 1:1 case). To investigate the role of lipid in self-assembly of the NPs, we designed

experiments to elucidate to what extent the self-assembly of PLGA was affected by the presence

of the lipid component.

In these experiments, we prepared lipid-PLGA NPs using a 'two-stage' manner, where a

PLGA polymeric core of a specific size was formed first followed by deposition of the lipid onto

PLGA core by flowing the solutions through the microfluidic device for a second time. We then

compared the size and size distributions of these NPs with those prepared using the conventional

one-step method. First, a PLGA solution in acetonitrile and water were injected into the device.

These unprotected PLGA NPs (NP1) were washed and suspended in water at a concentration of

1 mg/mL. Next, NPl particles in water were immediately reintroduced into the center inlet of the

channel and the lipid solutions were introduced through the side channels. The size and size

distribution of the lipid-covered NPs (NP2) obtained at the outlet were measured. NP2 particles

were placed in PBS to test their stability in comparison to those NPs synthesized through

conventional one-step microfluidic method (i.e. mixing PLGA solution with the lipid solution)

(Figure 2.5). NP2 particles prepared using the two-stage manner had similar size distribution and

stability properties to the hybrid NPs prepared in the conventional one-step microfluidic method.

43



In other words, NPs made from a one-step method and NP2 particles had a uniform distribution

with an average size of 40 nm and remained stable when placed in PBS.
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Figure 2.5. NP formation to elucidate stepwise formation of hybrid lipid-polymer NPs
within microchannel.
(a) NP size distribution in water and PBS of particles formed in two-stage manner. PLGA NPs
were prepared in the microfluidic mixer, then washed and placed as an input along with lipid
aqueous stream resulting in the generation of hybrid lipid-PLGA NPs. (b) NP size distribution in
water and PBS formed through the current one-step microfluidic method.

These results suggest that self-assembly of the polymeric core of lipid-PLGA NPs in the

device was unaffected by the presence of the lipid component. It can be then rationalized that the

one-step method indeed involves the above two distinct stages in a very small timescale. The

Pclet number (Pe=V-w/D) in this case is over 1000, which indicates that convective transport

can enhance mixing of particles as long as the streams move laterally.24 25 The Tesla structures in

our mixing channel enforce such lateral movement of particles at their junctions. PLGA core

formation, the first assembly stage, requires that PLGA chains in the focused acetonitrile stream

encounter the anti-solvent, (i.e. water molecules), which results in conditions under which PLGA
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18can precipitate . Our microfluidic mixer ensures that complete solvent displacement of

acetonitrile by water (0.2-2 ms, see supporting information) occurs on a timescale that is shorter

than that of formation of PLGA cores. Furthermore, solvent displacement is almost complete

before a substantial amount of lipid approaches the PLGA cores. Lipid shell formation, the

second stage, then follows as soon as the lipid molecules are transported to the vicinity of

already-formed PLGA cores. Although the diffusion of lipid molecules is slower than that of

water molecules at least by an order of magnitude, embedded Tesla structures considerably

enhance particle mixing due to their convective effects. Such laterally dispersive transport

(combination of diffusion and convection) occurs on a mixing timescale of -10 ms (see

supporting information). It is worth noting that the minimal lipid coverage required to stabilize

the NPs in water occurs at a lipid : PLGA ratio of 1:1000 and is obtained on a sub-millisecond

timescale after sufficient amount of lipid has been transported near the core. In other words,

sufficient lipid coverage to prevent long-term aggregation is achieved on a sub-millisecond

timescale after complete mixing of solvent and anti-solvent. Thus, the formation of the lipid shell

is a transport-limited process since the timescale of coverage is limited by the timescale of

mixing. In cases of ratios of lipid : PLGA higher than 1:1000, partial mixing of lipid molecules

with acetonitrile would be sufficient for minimum lipid coverage of the PLGA cores. The lipid

shell forms on the timescale of 1 ms in the case of 1:1 ratio of lipid : PLGA. Therefore, the

timescales for self-assembly of the PLGA cores is on the same order of magnitude as the

timescale for minimum lipid coverage, at least for high lipid : PLGA ratios (see supporting

information). In contrast to this minimum coverage, complete coverage of the NP with lipid

requires complete mixing, which occurs on the timescales of >10 ms. The fact that hybrid NPs

could be prepared in two steps (i.e. by first forming PLGA NPs followed by mixing with lipid)
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indicates that the size of the NPs formed in the device is independent of the presence of the lipid

component on short timescales, and the differences in size of PLGA versus hybrid lipid-PLGA

NPs shown in Figure 2.2a occur over a longer timescale before measurement of the NP size.

Therefore, these results, along with the invariance of NP size with lipid ratio, show that the lipid

component does not play a significant role in the self-assembly of the polymeric NPs but rather it

stabilizes the NPs and prevents their aggregation on longer timescales. These results are further

supported by measuring the size and size distribution of PLGA NPs immediately upon synthesis,

which are in a similar range to hybrid NPs (Figure A1.2 and A1.4, supporting information).

2.5. Preparation of lipid-QD NPs

To demonstrate the versatility of our platform design, we examined the ability of rapid

mixing to synthesize hybrid quantum dot (QD) lipid NPs for imaging applications. QDs are

semiconducting nanocrystals that possess excellent optical properties that make them suitable to

be used as imaging probes. 26 However, the hydrophobicity and poor colloidal stability at

physiological conditions frequently renders them inappropriate for clinical use. 27 In the same

fashion as for hybrid lipid-polymeric NPs, it has been proposed and shown that lipid-coated QD

provide enhanced NP hydrophilicity, stability in plasma, and an overall improvement of in their

biocompatibility.2 s,29 Others have encapsulated other type of particles such as magnetic NPs30

and gold NPs 3 1 inside a lipid and polymeric envelope, respectively.

As a proof of concept to show that a similar microfluidic platform can be used to prepare

other NPs, we prepared hybrid NPs composed of QDs encapsulated by lecithin and DSPE-PEG

layer (Figure 2.6a). Lipophilic QDs where dissolved in THF

(0.5 mg/mL) and introduced in the middle input stream in place of the polymeric stream from the
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prior study. The lipid-QD NPs in the product stream showed a homogenous size distribution with

an average size of 60 nm and did not need further processing for in vitro and/or in vivo

experiments except for the removal of a small fraction of THF through filtration or evaporation

(Figure 2.6b). At an initial concentration of 0.5 mg/mL, TEM images show an average of four

quantum dots encapsulated per NP (Figure 2.6c). The number of QDs could be controlled by

varying the concentration of QDs in THF. To ensure that the images obtained from TEM are

QDs encapsulated on lipid NPs and not QDs adhered to the surface of a lipid matrix, images

were taken of the operating channels to study their formation. It was observed that before

encapsulation of QDs, some aggregation of QDs was visible inside the channel and after

encapsulation, the channel remained free of QD aggregates (Figure S6, supporting information).

These results clearly show that one can use the same microfluidic platform to synthesize distinct

types of hybrid NPs. The results suggest that by using this continuous-flow microfluidic

technology one can entrap other imaging agents such as gold NPs and/or magnetic NPs inside a

lipid or polymeric envelope to form multifunctional particles for use of various imaging

modalities. Through selection of appropriate solvents and concentration, therapeutic and imaging

agents can be introduced into the input stream to form a theranostic system.
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Figure 2.6. Preparation of hybrid lipid-QD NPs.
(a) Schematic of liposome formation in the Tesla mixer with quantum dots encapsulated within
the core (b) NP distribution of quantum dot encapsulated liposomes formed through the Tesla
mixer (c) TEM image of hybrid lipid-QD NPs stained with 1% phosphotungstic acid aqueous
solution showing monodisperse particles with a Z-average size of 60nm. Bar is labeled at 100 nm

2.6. Conclusion

In conclusion, we demonstrated that hybrid lipid-PLGA NPs can be prepared by rapid

mixing of a polymeric solution with a lipid solution in a microfluidic device. We identified an

optimal ratio of lipid : PLGA that resulted in stable and homogeneous NPs. The size and charge

of the NPs could be controlled by using PLGA of different viscosities (molecular weights) and

by using lipid molecules with different end groups, respectively. The experiments suggest that

the self-assembly of PLGA core occurs independent of the lipid component, but the lipid

component provides stability to the NP against aggregation over time and in the presence of high

salt concentrations. Furthermore, rapid mixing ensures formation of homogeneous NPs; in

contrast, slow mixing results in different populations of NPs that are not uniform in composition

and size. We also demonstrated that hybrid lipid-QD NPs could be formed in the same system.

Reproducible manufacture of monodisperse, stable NPs with the ability to control properties by
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varying concentrations of different precursors in a simple mixing step could greatly facilitate

combinatorial synthesis and prove to be useful in the emerging field of nanomedicine.

2.7. Experimental methods

Device fabrication and experimental setup. Microfluidic devices were fabricated with

poly(dimethylsiloxane) (PDMS) using a standard micromolding process. PDMS (Sylgard 184,

Dow Corning) monomer and curing agent were mixed in a ratio of 10:1 by weight, pored over

the silicon wafer mold, and degassed. After curing, PDMS was peeled off and inlet/outlet holes

were drilled using a 300 pm diameter drill bit. The PDMS component was then bonded to a 1" x

2" glass slide using air plasma. The resulting device had one inlet each for water and solvent

streams, and one outlet. The water stream was split into two in order to achieve two water

streams at the flow focusing junction. The mixing channel was 50 pm wide, 60 pm high and 2.5

mm long. One 500 pL syringe was mounted on a syringe pump (SP230IW, World Precision

Instruments) while the other syringe was mounted on another syringe pump (PHD 22/2000,

Harvard Apparatus) to control flow through the device. Water flow rate was maintained at 50

L/min, while the solvent flow rate was varied from 5 ptL/min to 10 pL/min.

Preparation of PLGA-lecithin-PEG NPs. A solution of PLGA (intrinsic viscosity 0.82 g/dL;

Lactel, Pelham, AL) was dissolved in acetonitrile (lmg/mL) and lipid solution composed of 4%

ethanol aqueous solution of lecithin (soybean, refined, molecular weight: -330 Da; Alfa Aesar,

Ward Hill, MA) and DSPE-PEG (molecular weight: -2850 Da; Avanti Polar Lipids, Alabaster,

AL) (lecithin/DPSE PEG, 8.4/1.6) were prepared independently for separate inlets and mixed

within the chip at fixed flow rates using syringe pumps. Lipid solution flow rate was fixed at 50
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pL/min while polymer solution flow rate was set at 10 gL/min for some experiments and

5pL/min for others. Lipid concentration was varied from 102 to 0.1 pg/mL at a constant flow rate

of 50 piL/min. To prepare NPs at slow mixing conditions, 100 pL of the lipid solution described

in the previous paragraph was mixed with 10 pL of PLGA solution in acetonitrile using pipette

tips. For the NP stability studies, 20 pL of lOx PBS were added to 60 pLL of the NP solution. Size

and zeta potential of NPs were immediately measured upon addition of PBS. For hybrid lipid-

PLGA NPs prepared with the microchannel, up to four consecutive additions of 20 PL of 1Ox

PBS were pipetted to 60 iL of the sample and its size was monitored for each addition. No

change in size was observed after the first addition of the buffer.

Preparation of QD-lecithin-PEG NPs. A solution of lipophilic quantum dots (TOP-coated

CdSe/ZnS QDs, Invitrogen, CA, USA) was dissolved in tetrahydrofuran (THF) (0.5 mg/mL) and

a lipid solution of 4% ethanol aqueous solution of lecithin and DSPE-PEG (lecithin/DPSE PEG,

8.4/1.6) at a concentration of 0.2 mg/mL were prepared independently for separate inlets and

mixed within the chip. Lipid solution flow rate was set at 50 pL/min while QD solution flow rate

was set at 5 pL/min. Both flow rates were controlled with syringe pumps.

Particle sizing and zeta potential measurements. Particle sizing was performed using dynamic

light scattering with Zetasizer Nano ZS (Malvern Instruments Ltd., U.K.). For each

measurement, 100 ptL or more volume of the sample was loaded in a disposable low-volume

cuvette. Three measurements were performed on each sample. We observed that the presence of

acetonitrile changed the NP size by less than 3 % when water-acetonitrile mixtures containing up

to 5 % acetonitrile were further diluted in water. All measurements were performed at

acetonitrile concentrations of less than 10 % acetonitrile to ensure that any observed variation in

particle size was not due to the solvent. The NP surface zeta potential was measured by using
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ZetaPALS (Brookhaven Instrument., U.S.A). For each measurement, particles were washed with

water three times and reconstituted in lmL of PBS (0.5mg/mL). The zeta potential was recorded

as the average of three measurements.

Transmission electron microscopy (TEM)

Lipid-polymeric NPs. TEM experiments were carried out on a JEOL JEM-200CX instrument at

an acceleration voltage of 200 kV. The TEM sample was prepared by depositing 10 PL of the

NP suspension (1.0 mg/mL) onto a 200-mesh carbon-coated copper grid. Samples were blotted

away after 30 min incubation and grids were negatively stained for 20 min at room temperature

with freshly prepared and sterile-filtered 2% (w/v) uranyl acetate aqueous solution. The grids

were then washed twice with distilled water and air dried prior to imaging.

Lipid-QD NPs TEM experiments were carried out on a JEOL JEM-2011 instrument at an

acceleration voltage of 200 kV. The TEM sample was prepared by depositing 10 pL of the NP

suspension (1.0 mg/mL) onto a 300-mesh formvar-coated copper grid. Samples were blotted

away after 30 min incubation and grids were negatively stained for 20 min at room temperature

with sterile-filtered 1% (w/v) phosphotungstic acid aqueous solution. The grids were then

washed twice with distilled water and air dried prior to imaging.
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Chapter 3 - Microfluidic System for Synthesis of

Multifunctional Nanoparticles: 3D Flow Focusing

3.1. Introduction

Recently, polymeric nanoparticles (NPs) have attracted enormous attention as targeted

drug delivery vehicles -. Especially, biodegradable and biocompatible polymeric NPs

comprised of poly(lactide-co-glycolide)-b-polyethyleneglycol (PLGA-PEG) block copolymers

exhibit optimal physicochemical characteristics such as the ability to incorporate various

targeting agents, enhanced immune evasion, controlled drug release, and high payload of drug

molecules 5,6. Targeted PLGA-PEG NPs have shown very promising in vivo results for treatment

of cancer 7~9 and they are now poised to enter clinical trials. Preparation of such targeted NPs in a

robust and reproducible manner has thus become very important for therapeutic applications

where precise control of the physicochemical properties of NPs is required to achieve optimal

biodistribution and therapeutic efficacy 1

While the conventional approach to synthesize polymeric NPs relies on 'bulk'

nanoprecipitation by solvent exchange 11, 12 our group recently reported a new reproducible

synthesis of highly uniform PLGA-PEG NPs using 2D hydrodynamic flow focusing (HFF) in

*This work has been published by Rhee and P.M. Valencia et al, Advanced Materials, 2011. 54



microfluidic channels 1314. In this method, the polymer stream in acetonitrile (ACN) horizontally

focused only by water sheath streams experiences rapid mixing with water with a characteristic

mixing time faster than the NP assembly time, resulting in homogeneous NPs 13, 15. However,

one of the challenges for optimal NP synthesis by 2D HFF is that NPs made from polymers with

a PLGA block of high molecular weight (MW) (> 45kDa) tend to aggregate on the channel walls,

resulting in clogging of the channels. Aggregation is caused by the adsorption of the

hydrophobic PLGA onto the hydrophobic walls of PDMS, which depends both on concentration

and molecular weight 16,17. This substantially reduces the robustness of operation - the ability to

synthesize NPs without device failure - and is a nontrivial drawback of the 2D HFF technique

because NPs made from high MW PLGA blocks tend to exhibit higher drug loading and tunable

drug release profile as the polymer MW is varied 12, 18, 19. Furthermore, aggregation of the

polymer on the channel walls frequently causes the device to irreversibly fail due to increased

internal pressure 20. Such channel fouling may be circumvented by modification of the channel

surface with Teflon-like materials 21. However, efficient surface modification requires laborious

silicon/glass fabrication or a separate deposition/curing step that is extremely demanding, and the

coating tends to degrade over time. For this application and many others, a preferred solution

would be to isolate the precipitating polymer from the channel walls by 3D focusing in both the

horizontal and the vertical dimensions, thereby preventing aggregation and clogging.

Over the past few years, several unique 3D HFF systems have been reported 22-31,

including intrinsic 3D structures such as horizontal nozzles 22,23 and vertical chimneys 24. Other

3D HFF systems with 3D channel network either with a single two-level layer 2,28 or with two

individual layers 29-3 1 have been also proposed. However, their construction requires high-level

expertise of fabrication, considerably high costs and limited reproducibility. More recently,
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'microfluidic drifting,' a methodology of 3D fluid manipulation in a single layer, has been also

introduced 25,26. Despite its fabrication simplicity, this method functions only at high Re numbers

and a relatively low sample flow rate, which may cause substantial dilution of the sample flow

and low throughput. Because of the complications with the previously proposed 3D HFF systems,

there is demand for a platform that is sufficiently versatile and simple for both fabrication and

operation.

In this work we present a simple design for 3D HFF composed of a monolithic single

layer with three sequential inlets for vertical focusing followed by a conventional cross junction

for horizontal focusing. We use this device for the synthesis of polymeric NPs at various

polymer concentrations and MWs -the assembly of some of them being significantly difficult

by 2D HFF or bulk nanoprecipitation. Optimal ranges of operational parameters are predicted by

mathematical modeling and geometric dimensions of channels and inlet holes are fine-tuned by

finite element simulations to ensure that the polymer stream is sufficiently exposed to the anti-

solvent (water) stream but is not in touch with channel walls. Using confocal microscopy, we

further confirm the presence, the position and the shape of the 3D focused polymer stream,

which is important for optimal nanoprecipitation of polymeric NPs.

3.2. Design of microfluidic device

Figure 3.la shows a schematic of our 3D focusing channel design for polymeric NP

synthesis. The polymer flow (Inlet B) containing polymer precursors dissolved in ACN is first

vertically focused by two vertical ACN sheath flows (Inlet A and C). The vertically arranged

stream is subsequently focused horizontally by the water sheath streams and the resulting solvent

exchange induces self-assembly of the nanoparticles. Thus, 3D focusing enables isolation of the

precipitating polymer from the channel walls. Using this microfluidic device, we synthesized
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various PLGA-PEG NPs at different polymer precursor concentrations and MWs to investigate

the robustness of nanoprecipitation by 3D HFF. In Figure 3.1b, TEM images of PLGA-PEG NPs

made from polymers with various MW and concentrations by 3D HFF show that this method

yields fairly monodisperse NPs with a range of sizes.

PLGAM-PEGm 10 mg/mi - PLGA4WMSK 30 mg/mI PLGA,.-PEG, 30 mg/mi

Figure 3.1. Device design and representative nanoparticles.
(a) Concept of device for 3D hydrodynamic focusing (not to scale) consisting of three sequential
inlets for vertical focusing and a separate inlet for side sheath flows (not shown). The cross-
sectional views in the inset show the vertically focused stream profile (left) and the
heterogeneous 3D hydrodynamic focusing where the sample flow is isolated both horizontally
and vertically (right). (b) TEM images of PLGA-PEG NPs obtained from PLGA27K-PEG 5K at 10
mg/mL in ACN (scale bar 100 nm), PLGA45K-PEG5K at 30 mg/mL in ACN (scale bar 100 nm)
and PLGA95K-PEG 5K at 30 mg/mL in ACN (scale bar 200 nm) using 3D HFF with the flow ratio
of Polymer:ACN = 3:7 and organic:water = 1:5. Average NP sizes are 33.8, 55.0, and 200 nm,
respectively.
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3.3. Comparison of 2D versus 3D flow focusing

For comparison between the conventional 2D HFF and 3D HFF, we also constructed 2D

HFF channel with identical geometry except for the absence of the two ACN sheath inlets in

Figure 3.1 a and we maintained all flow parameters such as net organic stream and water stream

flow rates, ensuring similar focused stream geometry and molecular residence time the same for

2D and 3D. When comparing nanoprecipitation using 2D versus 3D HFF (Figure 3.2a), we

found that only the 3D HFF method could successfully produce NPs with long-term operation

(>10 min) without channel fouling. Polymers with high MWs or high concentrations are usually

more susceptible to aggregation in microchannels. Such aggregation during 2D HFF occurred

unpredictably at random locations along the channel and thus resulted in poor reproducibility.

We also compared the size and monodispersity of NPs synthesized by 3D HFF to 2D HFF and

conventional bulk nanoprecipitation for various concentrations (10-50 mg/mL) and PLGA-PEG

MWs (27, 45, and 95kDa) to verify the quality of NPs prepared by this method (Figure 3.2b). 3D

HFF consistently yielded NPs with the smallest size and lowest polydispersity while 2D HFF and

bulk method sometimes produced distinctly larger NPs, or failed to produce NPs at all. NP

synthesis by 2D HFF was impossible for high MW and high concentration cases due to device

failure caused by aggregation. Figure 3.2c shows a comparison of the size distributions of NPs

made from PLGA95K-PEG5K precursors at low and high concentrations (1 0mg/mL and 50mg/mL,

respectively) using the three different methods. At high concentrations, NPs obtained by 2D HFF

and bulk method yielded highly polydisperse particles of extremely large size (>1000 nm), while

3D HFF consistently resulted in smaller NPs with relatively low polydispersity regardless of

polymer concentrations. These observations indicate that 2D HFF is comparable with 3D HFF
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only for small MW polymers or very low polymer concentrations where the channels are less

susceptible to fouling. Consequently, 3D HFF is the only method that enables the reproducible

synthesis of monodisperse NPs made from different PLGA MWs and at different concentrations

with average NP sizes ranging from 30 to 230 nm.

To identify conditions that enable robust nanoprecipitation in our 3D HFF device, we

assembled pure poly(lactic-co-glycolic acid) (PLGA) NPs that are especially prone to

aggregation due to the absence of the protective hydrophilic PEG chain as an extreme case

model of PLGA-PEG NPs without the PEG shell. Since the flow velocity is slow before

horizontal focusing by the water streams, diffusion of the vertically focused polymer stream to

the walls must be minimized to prevent isolation. We used a mathematical model to predict

optimal parameter ranges for reproducible synthesis of PLGA NPs without aggregation. These

parameters collectively define two phases to which the synthesis conditions correspond; the

conditions where good and predictable NPs are synthesized in the microfluidic rapid mixing

environment without aggregation (Phase I, Good NPs) and the conditions where aggregation

occurs (Phase II, Aggregation) (Figure 3.2d). We expressed the phase space in terms of two

parameters: i) the fraction of polymer flow rate and ii) the modified Piclet number (Pe*). First,

as the fraction of polymer flow rate in total organic (polymer + ACN) flow rate (f) increases, the

vertical sheath layer becomes thinner, and eventually the focusing profile approaches to 2D HFF

(f=1 for 2D HFF), where the system is more susceptible to aggregation. Second, Pe*, defined as

a product of the Peclet number (um-h/D, where um is the maximal flow velocity and D is the

diffusion coefficient of polymer precursors in ACN) and the ratio of channel height to focusing

length (h/L), takes into account the relative importance of convection to diffusion of the polymer

precursor. The solid green line in Figure 3.2d represents conditions where the focusing Piclet
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number, Pep= (1/3)*Pe* (1-f)2, is 10, which indicates that axial convection effectively dominates

over lateral diffusion. This dimensionless number not only describes the ratio of diffusive and

convective timescales but accounts for thickness of the sheath layer during flow focusing. For

low Pe*, precursor molecules in the focused stream rapidly diffuse from the center to the channel

wall. We then expect significant concentration of polymer at the wall, invalidating vertical

focusing. The condition where Pej=10 thus serves as a suggested boundary line between Phase I

and II. The polymer precursor concentration near the walls acts as a critical determinant of

aggregation. Based on the empirical observations that aggregation occurred only when the

polymer concentration exceeded a certain threshold (in case of 2D HFF), we defined a critical

wall concentration (1 mg/mL for PLGA70K) for 3D HFF, above which aggregation may be

expected. Conditions under which a wall concentration of 1 mg/mL is obtained from

mathematical modeling (dashed red line in Figure 3.2d) agree qualitatively with the line

corresponding to Pey=10, as is expected for the polymer concentration used in experiments.

Consequently, Figure 3.2d shows good agreement between experimental data and the calculated

phase diagram. These results suggest that diffusion of polymers into the vertical sheath flows,

governed by the polymer flow ratio (/) and the modified P clet number can explain regimes

where the 3D HFF device can successfully isolate the precipitating polymers from the channel

walls and operate without aggregation. Thus, we can mathematically predict optimal operating

conditions in our system that result in robust nanoprecipitation of NPs and prevent fouling of the

microchannel.
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Figure 3.2. Comparison of 3D HFF, 2D HFF, and bulk nanoprecipitation of PLGA-PEG
NPs under different conditions.
(a) Representative channel images of the device during synthesis of PLGA-PEG NPS by 3D 11FF
and 2D HFF for various MW precursors, showing aggregation in the case of 2D HFF. All
micrographs were captured after -500 s of operation (channel width 20 pm). (b) Effect of the
PLGA-PEG precursor concentration on the final NP sizes depending on the MW of the
precursors and the choice of a synthesis method. X = Clogging of channel within 3 minutes of
operation. * = Aggregation of polymer in channel observed after 5-10 minutes of operation. # =
Aggregation of polymer in channel observed after >10 minutes of operation. (c) Size
distributions by volume fraction of PLGA95K-PEG5K NPs prepared by microfluidic 3D HFF, 2D,
and bulk mixing methods for the precursor concentrations of 10 and 50 mg/mL, respectively.
Aggregated particles are found in the 1000-10,000 nm range. (d) Phase space of 3D HFF
operation parameters (Pe* and]) for synthesis of PLGA NPs from pure PLGA70K precursors (10
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mg/mL). Solid green line represents conditions where Pef*=10 and dashed red line represents
conditions under which the PLGA70 precursor reaches a critical wall concentration (1 mg/mL)
that results in aggregation. Both lines delineate conditions that result good synthesis of NPs
(Phase I) from those that are susceptible to aggregation (Phase II). Symbols indicate
experimental data for the synthesis of PLGA70 NPs. (0: reproducible, successful NP synthesis,
X: aggregation with microparticle formation, A: mild or occasional aggregation). Inset shows
simulated concentration profiles at the starting point of nanoprecipitation under the conditions
where flow rates (umax) are different but f is the same for Phase I (*) and Phase II (**),
respectively.

3.4 Effect of channel geometry on device performance

To elucidate the effect of inlet hole geometry on device performance, we performed finite

element simulations using COMSOL. The aspect ratio (width to height, w/h) of the channel

where vertical focusing occurs and the size and position of inlet holes are particularly important

design factors since they determine the shape of 3D focusing in the channel. The simulations

showed a strong influence of the aspect ratio (w/h) on the distribution of the polymer after

vertical focusing (Figure 3.3a). For the deep channel with w/h < 2, vertical lamination

successfully occurred with a flat concentration profile, whereas the channel with w/h > 2 resulted

in a 'banana-like' profile with long tails extending to the top wall, making this configuration

more susceptible to aggregation. The inlet hole diameter was also found to significantly

influence the concentration profile (Figure 3.3b) and the most uniform vertical focusing was

obtained for hole sizes slightly larger than the channel width. Smaller holes significantly

compromised vertical focusing, again resulting in a 'banana-like' polymer stream profile.

Likewise, the lateral position of inlet holes affected the shape of vertically focused polymer

stream. Off-centered inlets resulted in a tilted polymer stream (Figure 3.3c), which invalidates

vertical focusing since precipitating polymer would touch the channel wall. These simulations
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show that the best 3D focusing is obtained using deep, high aspect ratio channels with well-

centered holes of diameters slightly larger than the channel width.

Finally, we used confocal microscopy to verify the performance of 3D HFF by three

sequential inlets. We used a FITC (green) labeled stream as the focused stream, and a rhodamine

(red) labeled stream as the vertical sheath streams. The results in Figure 3.3d showed vertical and

horizontal hydrodynamic focusing with the three-sequential-inlet system. In accordance with

simulation results, we observed a biased distribution of the focused flow for off-center holes.

Similarly, with an inlet hole size smaller (~150 im) than the width (-200 pm) of the shallow

channel, 'banana-like' concentration profiles were observed as predicted with simulations.

However, such distortion in polymer distributions was avoided and successful 3D focusing was

obtained with a deep channel (low w/h). These observations by confocal microscopy, collectively,

are in good agreement with the previous simulations.

a ,.,.. b d d~
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Figure 3.3. Simulation and visualization of focused stream.
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(a) 3D simulations with different channel aspect ratios (w/h); 3.33 (left) and 0.83 (right),
respectively. Perspective views of the channel with the width of 200 pm and the inlet of 150 pIm.
Only the left halves about the symmetry plane are shown. (b) Simulated cross-sectional views for
two different inlet hole diameters at a fixed channel aspect ratio (w/h = 3.33). (c) 3D simulations
for a channel of w = 100 pm and h = 100 pm, showing off-centered inlet (left), well aligned inlet
(center), and slightly larger inlet (right). (d) Confocal micrographs showing cross-sectional views
of vertical focusing before (A) and after (B) horizontal focusing. The top panel shows a top-view
of the system near the lateral squeezing cross junction. In the bottom left panel, off-centered
holes directly compare with the left panel in (c). The bottom center panel shows vertical focusing
occurred in the channel of w/h = 3.33 while the sequential inlet hole size was slightly smaller.
The bottom right panel shows vertical focusing occurred in the channel of w/h = 1.0.

3.5. Conclusion

In summary, we presented a new yet simple method to isolate precipitating precursors in

microfluidic channels using 3D hydrodynamic focusing enabled by sequential inlets. This

approach was used to synthesize PLGA-PEG and PLGA NPs by nanoprecipitation under

conditions where monodisperse NPs could neither be synthesized by 2D HFF nor by bulk mixing

in a controlled manner. NPs synthesized by 3D HFF exhibited smaller sizes and improved

monodispersity compared to 2D HFF or bulk synthesis, keeping the NP size small enough for

optimal uptake (i.e. < 100 nm), which is desired in applications where a high MW PLGA block

is needed to obtain a specific release profile or where different hydrophobic polymers are mixed

32-34. More importantly, the monodispersity of the 3D HFF enables the fine-tuning of NP size by

carefully choosing PLGA block size of the polymer and the concentration in ACN. Mathematical

modeling, together with simulations and confocal microscopy verified the design validity for the

performance of the device and defined optimal device geometry and operating conditions for

robust 3D HFF. This simple yet versatile design can be easily adapted to microfluidic reactors

for synthesis of various materials where isolation of precipitating or reacting flow streams is

desirable to prevent fouling and increase robustness during operation3 1 '.

64



3.6. Materials and methods

Polymer Precursors. For PLGA NPs , a solution of PLGA (inherent viscosity 0.82 dL/g,

molecular weight ~ 70,000; Lactel, Pelham, AL) was dissolved in ACN at varying

concentrations from 0.5 to 10 mg/mL). For PLGA-PEG NPs, solutions of PLGA-PEG

(Boehringer Ingelheim GmbH, Germany) at molecular weights of PLGA27K-PEG5K, PLGA45K-

PEG5K, and PLGA95K-PEG 5K were dissolved in ACN at concentrations of 10-50 mg/mL.

Device Fabrication. The prototypical device was manufactured using the standard soft-

lithographic technique. The SU-8 (MicroChem) resist was spun on a bare 4" silicon wafer and

prebaked on a hot plate for 3 min at 65 *C and for 9 min subsequently at 95 *C. After exposure

to 365 nm UV light, the coated wafer was postbaked for 1 min at 65 *C and for 7 min

subsequently at 95 *C. The successive 4 min development resulted in the 60 pm thick mold.

PDMS (Sylgard 184, Dow Coming) monomer and curing agent were mixed in a ratio of 10:1 by

weight, poured over the silicon wafer mold, and degassed. After curing at 100 *C for 60 min, the

cured PDMS cast was carefully removed from the mold and diced into individual dies. For each

die, inlet/outlet holes were drilled by a 150 pm diameter drill bit. To prevent holes drilled at off-

center positions, a manual travel translation stage was used with a mechanical drill to define the

position precisely. The PDMS component was then bonded to a 1 in. x 2 in. glass slide using air

plasma. Typical channel dimensions used in the NP synthesis experiments had a width of 100

pm and a height of 60 pm for the vertical focusing part and had a width of 20 pm for the

horizontal focusing part, or precipitation channel.

Fluid Control and NP synthesis. For 3D HFF, A 2.500 mL syringe for water injection was

mounted on a syringe pump (SP1011, World Precision Instruments), two 500 pL syringes for

65



ACN injection were mounted on a different syringe pump (PHD 2000, Harvard Apparatus), and

finally a 250 pLL syringe for polymer solution injection was mounted on a syringe pump (PHD

ULTRA, Harvard Apparatus). Water and organic flow rates were maintained at 50 IL/min and

10 iL/min, respectively (60 ItL/min in total), while the fraction of polymer flow rates in the

organic flow were varied from 0.1 to 1. To prepare NPs by 2D HFF we used a channel design

previously published 5 and ran a polymer stream at different concentrations at an organic to

aqueous flow ratio of 1:10. For 3D and 2D, we used devices with the exactly same dimensions,

and all flow rates were also identical. The water flow rate was always 50 IL/min for both 3D and

2D, and the organic flow rate was always 10 IL/min for both 3D and 2D. For example, for 3D

HFF with polymeric stream 3 IL/min and total ACN sheath 7 pL/min (f= 0.3) for a net organic

flow rate ofl0 pL/min, the corresponding 2D HFF polymeric stream flow rate was 10 pL/min.

Consequently, the width of the organic stream focused by the water sheath streams, fluid

velocities, and residence times were the same for 3D and 2D. The average fluid velocity for the

vertical focusing region was approximately 0.028 m/s. The corresponding residence time for this

1.5 mm vertical focusing region was about 54 ms. The average fluid velocity in the following

precipitation channel was 0.83 m/s and the residence time for 4 mm long precipitation channel

was about 4.8 ms. The total residence time for polymeric molecules in the microfluidic channel

was -58.8 ms. Reynolds numbers for precipitation and vertical focusing channels were 16.6 and

3.5, respectively. In bulk, we mixed 200 mL of polymer precursor solution drop-wise with 2mL

of water during 1-2hrs. NPs were measured immediately after. It was also noticed that NPs size

did not varied significantly after washing NPs with water several times.

Particle Sizing. Particle sizing was performed using dynamic light scattering with Zetasizer

Nano ZS (Malvern Instruments Ltd., U.K.). For each measurement, 100 IL or more volume of
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the sample was loaded in a disposable low-volume cuvette. More than three measurements were

performed on each sample. All measurements were performed at ACN concentrations of less

than 10% ACN to ensure that any observed variation in particle size was not due to the solvent.

Transmission Electron Microscopy (TEM). TEM experiments were carried out on a JEOL

JEM-2011 instrument at an acceleration voltage of 200 kV. The TEM sample was prepared by

depositing 10 pL of the NP suspension (1.0 mg/mL) onto a 300-mesh carbon-coated copper grid.

Samples were blotted away after 30 min incubation and grids were negatively stained for 20 min

at the room temperature with sterile-filtered 3% (w/v) uranyl acetate aqueous solution. The grids

were then washed twice with distilled water and air dried prior to imaging.

Image Acquisition. For confocal imaging, a Zeiss LSM 510 Laser Scanning Confocal

microscope (Carl Zeiss MicroImaging, Inc., Thornwood, NY) was used. Microfluidic device was

mounted on a thin cover slip and with corresponding tubing for inlets and outlets. A FITC

solution was used for the focused stream at flow rates of 1-5 mL/min and a rhodamine solution

was used for the vertical sheath streams at flow rates of 5-9 mL/min. Water stream was not

labeled. For each combination of flow rates a z-stack of 165 images was taken at 0.76 mm per z-

sectioning step at different regions of the channel. Lasers at 488nm and 543nm wavelengths

were used together with 25x objective. For nanoparticle synthesis the experiments were

performed on the device oriented on a stage of a stereomicroscope (Nikon Eclipse TE 2000U).

Simulation Methods. Two-dimensional and three-dimensional simulations were performed using

COMSOL Multiphysics software, a commercial finite element package (COMSOL Inc.,

Burlington, MA). The flow rates at the bottom, polymer, and top inlets were 3.5, 3, and 3.5

pL/min, respectively, as were used in the experiments. After flow profiles in the channel were

obtained by solving the incompressible Navier-Stokes equation, concentration profiles were

67



separately calculated by solving the Convection and Diffusion equation. The diffusion

coefficient of the polymeric solute (PLGA70K) in ACN used in the simulations (D ~ 1.95 x 10-10

m2/s) was based on the value estimated from the Einstein-Stokes equation (ACN viscosity ~ 0.38

cp, radius of gyration of PLGA precursors ~ 4-5 nm) and further comparison with the data for

similar molecules.
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Chapter 4 - Understanding Targeted Nanoparticles:

Effects of Ligands with Different Water Solubilities on

Self-Assembly and Properties of Targeted

Nanoparticles

4.1. Introduction

Targeted nanoparticles (NPs), which have the capability of encapsulating different

therapeutic agents and preferentially delivering them to specific tissues and cells, hold the

promise of revolutionizing the treatment of many diseases including cancer, cardiovascular

diseases, and immunological disorders -. With respect to cancer, NPs able to encapsulate

chemotherapeutic drugs and directly deliver them to tumor cells can reduce systemic cytotoxicity

caused by these agents and improve their efficacy 5. Among the different classes of NPs,

polymeric nanoparticles have gained much attention due to several attractive properties,

including biodegradability and biocompatibility of materials, favorable synthesis conditions,

self-assembly in aqueous solution, and requirement of relatively little post-processing and

purification work 6. A central challenge, however, has been the development of methods to

reproducibly synthesize targeted NPs with well-characterized and optimized surface

compositions. Although there are examples showing the synthesis of targeted polymeric NPs
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with different targeting ligands such as the glycoprotein trasnferrin 7 , HER-2 antibody 8, RGD

peptide 9, and folic acid 10, it is common to see characterization and optimization of the surface

ligand density underemphasized. Due to the delicate balance between the amount of targeting

ligand to promote effective targeting and the protective shield (commonly conferred by

poly(ethylene glycol), PEG) to avoid immune detection ", methods that enable the prediction

and characterization of NP surface composition and the control of NP surface density become

essential for the clinical translation of these vehicles.

Conventional methods of synthesizing polymeric targeted NPs involve use of amphiphilic

block copolymers that self-assemble into drug-encapsulated NP in aqueous solution, followed by

chemical conjugation of the targeting ligands to the surface of the NP 12. Post-synthesis NP

surface modification often requires the addition of excess reactant to drive the chemical reaction,

and thus makes it difficult to adjust the density of TL on NP surface in a meaningfully

reproducible manner. Furthermore, the post-synthesis conjugation of TL to drug encapsulated

NPs is often done under aqueous condition during which there is an uncontrolled release of the

drug from NPs primarily through diffusion. Consequently, the post-synthesis particle-processing

methods offer limited ability to precisely engineer the NP surface properties in a robust and

reproducible manner, and the targeted NPs produced by such methods may have significant

batch-to-batch variations in their biophysicochemical properties. Our group recently developed a

pre-functionalized biopolymer composed of hydrophobic poly(lactide-co-glycolide) (PLGA)

that makes up the NP core, PEG that forms a corona-like 'stealth' shell, and A10 2-

fluoropyrimidine RNA aptamer (Apt), which binds to the prostate-specific membrane antigen

(PSMA) on the surface of prostate cancer (PCa) 13. This functionalized polymer possessed all
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required components for a targeted NP and enabled single step self-assembly of targeted

functional particles, simplifying the optimization and the potential manufacturing of the NPs 1.

Extension of this single-step self-assembly technology to other types of targeting

molecules, such as peptides and small molecules with distinct solubilities and modes of action, is

desired along with methods that enable the characterization and optimization of these ligands in

vitro before embarking on in vivo studies. Likewise, it is of interest to understand the effect of

some of the chemical properties of targeting ligands on the properties and performance of self-

assembled NPs. Currently, two of the most frequently employed targeting ligands are RGD

peptide, which has high water solubility (>50 mg/mL at neutral pH), and folic acid, which has a

relatively poor water solubility (0.0016 mg/mL at neutral pH) 15. RGD is a small peptide that

preferentially binds to integrin-anb3 receptor, which is often over-expressed in endothelial cells

and tumor neovasculature 16. There are reports showing preparation of NPs encapsulating drugs

and genes in which the RGD ligand enables preferential targeting of angiogenic tumor blood

vessels, thus producing an anticancer response 17. Folic acid is a small molecule that binds to the

folate receptor, which is over-expressed in some cancer cells including breast, lung, kidney,

ovary, brain, among others 18. Although there are a few examples of single-step preparation of

NPs using a polymer functionalized with either RGD or folic acid 9' 19, previous studies lack

investigation of the effects of varying ligand densities on the NP biophysichochemical properties

together with characterization and optimization of the NP surface composition.

This work presents a comparison of the surface composition and targeting specificity of

self-assembled RGD- and Folate-targeted NPs - two widely used TLs with different solubility
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profiles. Two different biofunctional polymers composed of PLGA-PEG-RGD (high water

solubility TL) and PLGA-PEG-Folate (low water solubility TL) were synthesized, and targeted

NPs with different ligand densities were prepared by controlling the ratios of TL-conjugated

polymers with non-conjugated PLGA-PEG lacking the TL in a nanoprecipitation process

(otherwise known as solvent displacement method) 20,21. The surface ligand densities of these

NPs were quantified and compared to the theoretical ligand densities estimated from their initial

concentrations. Finally, in vitro binding and uptake of these NPs against macrophages, HUVEC

cells (for NP-RGD), and KB cells (for NP-Folate) was investigated to determine an optimum

formulation window where NPs exhibit minimum uptake by macrophages and maximum uptake

by HUVEC cells or KB cells.

4.2. Synthesis of PLGA-PEG-RGD and PLGA-PEG-Folate

Figure 4.1A outlines the synthesis procedure of PLGA-PEG-RGD and PLGA-PEG-

Folate block co-polymers. The underlying principles of the synthesis of these two compounds are

the same: conjugation of an amine group (NH 2) with a succinimide group in the presence of a

base such a DIEA. The succinimide end group can be obtained from a carboxyl group (COOH)

in the presence of EDC, such as the conversion of PLGA-COOH to PLGA-NHS. For the case of

PLGA-PEG-RGD, the initial materials were the commercially available modified cyclic RGD

(cRGD-PEG 4-NH2) and tBOC-NH-PEG-NHS. For the case of PLGA-PEG-Folate, it is known

that the g-COOH group of folic acid is more reactive when derivatized and it allows folic acid to

maintain its binding properties with the folate receptor 22. Therefore, modification of the g-

COOH group of folic acid to NHS was the preferred strategy. Once folate-NHS was obtained, it

was reacted with commercially available tBOC-NH-PEG-NH 2. The chemistry presented here for
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the synthesis of PLGA-PEG-RGD and PLGA-PEG-Folate may allow for the conjugation of

many targeting ligands (e.g. peptides, proteins, aptamers, small molecules, etc..), provided there

is an available NH2 or COOH group to be conjugated to PEG, with the PEG conjugate

subsequently conjugated to PLGA.
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(A) Synthesis of PLGA-PEG-RGD and PLGA-PEG-Folate. (B) Preparation of targeted NPs with
different surface ligand densities by mixing PLGA-mPEG with functionalized PLGA-PEG-TL.

4.3. Synthesis of RGD- and folate-targeted NPs

RGD and folate-targeted NPs were formulated by dissolving PLGA-PEG-RGD or

PLGA-PEG-Folate copolymers with PLGA-mPEG in acetonitrile followed by precipitation in

water. Ligand density was varied by using different percentages of TL-conjugated polymers in

the total polymer formulation (Figure 4.1B). In principle, the resulting NPs are composed of a

PLGA hydrophobic core, in which hydrophobic drugs can be encapsulated, and a PEG

hydrophilic corona-like shell decorated with targeting moieties. The single-step synthesis

eliminates conjugation steps after particle preparation and enhances batch-to-batch

reproducibility. Prepared targeted NPs were characterized using DLS to measure size and

surface zeta potential, and TEM to observe NP morphology and confirm size.

For NP-RGD it was observed that as the amount of PLGA-PEG-RGD was increased in

the formulation, the surface zeta potential remained close to neutral, which was expected since

PLGA-mPEG has a charge-neutral methoxy end group and RGD in PLGA-PEG-RGD is also

neutral at a pH of 7.4 23 (Figure 4.2A). A similar effect was observed for NP-Folate (Figure

4.2B). From DLS measurements, NP-RGD had a constant size of-50 nm for formulations with

0%, 7%, and 22% PLGA-PEG-RGD. For formulations with 50%, and 74% of PLGA-PEG-RGD

a gradual size increase of the NP was observed to 66 nm and 73 nm, respectively (Figure 4.2C).

For NP-Folate, as the amount of PLGA-PEG-Folate was increased, size increase of NPs was

observed for each formulation: 50 nm at 0%, 60 nm at 7%, 76 nm at 22%, 96 nm at 50% and 122

nm at 74% of PLGA-PEG-Folate (Figure 4.2D). Considering that both functionalized polymers

PLGA-PEG-RGD and PLGA-PEG-Folate had the similar molecular weight according to GPC (
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Mn = 50,005 Da and 49,551 Da, respectively) and the PLGA-mPEG of same MW was used for

both NP formulations, this disparity in size for NP-Folate suggests that the effect is due to the

differences between folate and RGD (i.e. presence of folate affects self-assembly). TEM images

of both targeted NPs at a composition of 7% TL-conjugated polymer showed homogenous

populations of NPs with minimal particle-particle aggregation (Figure 4.2E for NP-RGD and

Figure 4.2F for NP-Folate).
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Figure 4.2 Characterization of targeted NP-RGD and NP-Folate.
Zeta Potential (A,B) Size (C, D) and TEM micrographs (E,F). Error bars represent standard
deviation of n= 3 samples.

4.4. NP-RGD and NP-Folate ligand densities

To investigate the effect of targeting ligand hydrophobicity on the surface composition of

NPs, we determined the percentage of the initial RGD or Folate in the form of PLGA-PEG-RGD
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and PLGA-PEG-folate present on the surface of the NP in solution. For the case of NP-RGD we

used the Lava Prep Peptide assay, a fluorescence-based method capable of detecting lysine,

arginine, and histidine on peptides. For NP-Folate we first incubated the NPs with folate

antibodies, followed by a washing step to remove excess antibody. Finally, we used Low BCA

protein assay to determine the amount of antibody (and hence the corresponding amount of

folate) on the NP surface. For the case of NP-RGD, all of the RGD present in the form of

PLGA-PEG-RGD was detected on the NP surface (Figure 4.3A). For the cases of 75% and 100%

RGD, the average fraction of starting RGD presented on the NP surface appeared to be 0.93 and

0.89, respectively. We believe that at large percentages of PLGA-PEG-RGD there might be an

overlap of RGD molecules that result on the NP surface which may limit the detection accuracy

of the assay, though for percentages of PLGA-PEG-RGD below 75% this ligand overlap may not

occur. In contrast, for NP-Folate a maximum of 21% of the folate in the form of PLGA-PEG-

Folate was detected on the NP surface for all formulations (Figure 4.3B). Although the accuracy

of this assay may be compromised at high concentrations of PLGA-PEG-Folate due to steric

hindrance of antibodies on the NP surface, results were found to be reliable for PLGA-PEG-

Folate percentages below 74% at the given NP sizes, since others have detected ~ 4 times the

number of antibodies we found on NPs of similar size 24

From these results, we hypothesize that the poor water solubility of folate ligands causes

interactions of folate and PLGA when PLGA-PEG-Folate self-assembles into a NP, resulting in a

significant fraction of folate buried in the core of the NP. Conversely, because RGD has high

water solubility, it interacts minimally with PLGA and has minimum thermodynamic drive to

enter the hydrophobic core of the NP. The hypothesis that a significant fraction of folate

molecules from PLGA-PEG-Folate result in the NP core, may explain the larger NP size
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observed for higher fractions of PLGA-PEG-Folate. The low water solubility of folate may

present a lower barrier to polymer and NP aggregation during self-assembly of the NPs, resulting

in larger NPs with cores that are more loosely packed due to inclusion of PEG-Folate blocks of

PLGA-PEG-Folate into the NP core. A similar increase size of NPs formed by nanoprecipitation

was observed previously when PLGA was added to PLGA-PEG prior to nanoprecipitation2 5 .

Knowing the size and size distribution of the targeted NPs and assuming an estimated NP

density of 1.27 mg/mL 26, we calculated the ligand density (number of ligands per mm2 of NP

surface) and the number of ligands per NP. Figures 4.3C and 4.3D show the theoretical, or

expected, ligand densities calculated assuming 100% of ligands used in NP formulation are

presented on the particle surface, as well as the experimentally determined amount of targeting

ligands detected on the particle surface. For the case of NP-RGD, as the amount of PLGA-PEG-

RGD was increased, the NP ligand density increased, and the observed ligand densities

correlated well with the theoretical calculations. For NP formulations with 5%, 10%, 16%, 22%,

50%, 76% and 100% of PLGA-PEG-RGD the average number of RGD molecules on the surface

of the NP were calculated to be 45, 97, 144, 230, 1030, 2270, and 3731, respectively (Figure

4.3E). Similarly, for the case of NP-Folate, as the amount of PLGA-PEG-Folate was increased,

the NP ligand density also increased but the theoretical ligand densities did not correlate well the

experimentally determined values. With 7%, 22%, 50%, and 74% of PLGA-PEG-Folate in the

initial formulations, NPs were expected to have 107, 632, 2707, and 12127 ligands on their

surface; however, only 23, 89, 368, and 1874 ligands, respectively, were detected on the surface

(Figure 4.3F). The reduced presence of folate on the surface of the particle may have potential

repercussions on the targeting capabilities of these NPs, which needs to be accounted for future

experimental design. These results highlight the importance of considering the chemical
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properties of targeting ligands, such as solubility, as factors that may affect the single-step self-

assembly of targeted NPs.
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Figure 4.3. Quantification of targeted NP surface composition.
(A) Fraction of initial RGD that resulted on the NP surface. (B) Fraction of initial folate that
resulted on the NP surface. (C) Estimated ligand Densities and (E) estimated number of ligands
per NP of NP-RGD as a function of the percentage of PLGA-PEG-RGD in formulation. (D)
Estimated ligand Densities and (F) estimated number of ligands per NP of NP-Folate as a
function of the percentage of PLGA-PEG-Folate in formulation. Theoretical (o) and
experimental (A). Error bars represent standard deviation in n = 8 samples for NP-RGD and n =

4 samples for NP-Folate.

4.5. Cellular binding and uptake of targeted nanoparticles

To examine the effect of ligand solubility on NP self-assembly and surface composition,

recognition of NPs by macrophages and their targeting capabilities to cell models with over-

expressed ligand receptors was investigated in vitro. Phagocytosis of NPs by macrophages

depends both on the size and the surface characteristics of the particle 27. For instance,

hydrophobic surfaces induce opsonization of NPs, which promotes NP phagocytosis 27 28.
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Conversely, PEG-functionalized and hydrophilic surfaces reduce NP uptake by macrophages 29

. We investigated the binding and uptake of RGD- and Folate-targeted NPs by macrophages as

the fraction of RGD or folate biofunctional copolymer was varied. Flow cytometry was used to

measure the association of NPs with macrophages, with 2.5% PLGA-Alexa488 added to the NP

formulations as a fluorescent reporter. In the case of NP-RGD, it was observed that as the

amount of PLGA-PEG-RGD was increased, there was no increase in uptake by macrophages

when compared to non-targeted (i.e. fully PEG-functionalized) NPs, with the exception of NPs

composed of 74% PLGA-PEG-RGD, which showed an almost 3-fold increase in uptake (Figure

4A). Although RGD is not known to be immunogenic 30, the disruption of the outer layer of the

PEG shell at high RGD surface densities might induce an increase in phagocytosis. In contrast,

for the case of NP-Folate, as the PLGA-PEG-Folate was increased, an augment in binding and

uptake by macrophages was observed. Specifically, for NPs composed of 7%, 22%, 50% and

74% PLGA-PEG-Folate, a 2.0, 3.8, 4.7, and 8.5-fold increase in phagocytosis was observed,

respectively (Figure 4.4B). It has been shown that NPs of larger size are more readily taken up

by macrophages 31, and hence the observed increase in macrophage uptake could be due an

increase in NP size. Alternatively, this increase in uptake may be due to the low hydrophilicity of

folate, which may induce opsonization of the NP surface. Finally, some reports have shown that

NP-Folate target activated macrophages since they have over-expressed folate receptors 2 .

We determined the targeting capabilities of the nanoparticles with RGD and folate at

different densities. We measured the binding and uptake of NP-RGD by HUVEC cells, which

was taken as a model cell line with integrin-anb3 receptor over-expressed on the cell membrane.

Similarly, binding and uptake of NP-Folate was investigated using KB cells, used as a model cell

line with folate receptor over-expressed on the cell membrane. Flow cytometry was used to
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measure the association of NPs with HUVEC and KB cells, with 2.5% PLGA-Alexa488 added to

the NP formulations as a fluorescent reporter. Increase in the amount of PLGA-PEG-RGD in the

NP formulation (which correlates with a higher number of RGD molecules per NP) resulted in a

corresponding increase in fluorescence associated with HUVEC cells up to -200-fold when

compared to non-targeted NPs (Figure 4.4C). The increase in RGD molecules on the NP surface

may induce multivalent interactions with the integrin receptors in HUVEC cells leading to

increased NP binding and uptake. On the other hand, for the case of NP-Folate, when the amount

of PLGA-PEG-Folate was increased from 0% to 7%, to 22%, only marginal increase in uptake

by KB cells was observed (Figure 4.4D). Only at 50% and 74% of PLGA-PEG-Folate was a

substantial increase in uptake observed, with increase in fluorescence associated with the cells of

approximately 4- and 9-fold, respectively, compared to non-targeted NPs. As mentioned before,

we hypothesize that during self-assembly of PLGA-PEG-Folate and PLGA-mPEG into a NP,

only -20% of the folate ends up on the NP surface (Figure 4.3B) and the rest is embedded in the

NP core due to interactions with PLGA. Thus, the amount of folate on the surface of the NPs

may not be sufficient to significantly increase the uptake by KB cells for formulations with 7%

and 22% of PLGA-PEG-Folate. The NP surface folate concentration was sufficient to elicit a

significant increase in uptake by KB cells only when > 50% PLGA-PEG-Folate was used in NP

formulation.

From these results one can determine optimal NP candidates for future experiments. For

the case of NP-RGD, formulations composed of up to 50% PLGA-PEG-RGD could be used

since they experienced marginal phagocytosis compared to non-targeted NPs and a -70-fold

increase in fluorescence when exposed to HUVEC cells. In contrast, for NP-Folate only those

formulations with -50% PLGA-PEG-Folate could be used since below this percentage only
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modest targeting effects were observed and above this percentage increased phagocytosis was

observed. Microscopy images presented in figures 4.4E and 4.4F show that non-targeted NPs do

not enter, or minimally enter, the cell while targeted NP-RGD and NP-Folate composed 50%

TL-conjugated polymer readily enter HUVEC cells and KB cells, respectively. NP formulations

with narrower ranges of the fraction of TL-conjugated biopolymer together with other in vitro

experiments that investigate complement activation 3 3 , cell cytotoxicity 34, among other factors 3,

could be carried out to narrow the window of optimal NP candidates for in vivo experiments.
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Figure 4.4. Cellular binding and uptake of targeted NPs as a function of % of
functionalized PLGA-PEG added in the NP formulation.
(A) RGD targeted PLGA-PEG NPs and (B) Folate-targeted PLGA-PEG NPs. (C) Association of
NP-RGD with HUVEC cells. (D) Association of NP-Folate with KB cells. (E) Representative
images of non-targeted and NP-RGD (at 50% of PLGA-PEG-RGD) uptake by HUVEC cells.
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(F) Representative images of non-targeted and NP-Folate (at 50% PLGA-PEG-Folate) uptake by
KB cells. Error bars represent standard deviation in n = 3 samples.

4.6. Conclusion

In conclusion, we synthesized PLGA-PEG copolymers functionalized with either folic

acid (a ligand with poor water solubility) or RGD peptide (a ligand with high water solubility),

for single-step preparation of targeted polymeric nanoparticles. By mixing PLGA-PEG-RGD or

PLGA-PEG-Folate with PLGA-mPEG at different ratios we were able to prepare NPs with

varying surface ligand densities. The surface of the targeted NPs was characterized,

demonstrating that all of the RGD included in the form of PLGA-PEG-RGD was present on the

surface of the NP-RGD while only -20% of the folate in the form PLGA-PEG-Folate was found

on the NP-Folate surface. Uptake of targeted NPs by macrophages was investigated showing that

NP-Folate was increasingly taken up as the amount of PLGA-PEG-Folate in the formulation was

increased, while NP-RGD experienced minimum phagocytosis even at 50% PLGA-PEG-RGD.

Finally, we studied the association of NP-RGD with HUVEC cells and NP-Folate with KB cells

showing that as the concentration of PLGA-PEG-RGD in the NP-RGD formulation was

increased a corresponding increase in uptake was observed, while NP-Folate only showed

significant targeting at -50% PLGA-PEG-Folate. These studies provide insight into the behavior

of targeted NPs prepared in a single-step with TLs of different solubilites and show an in vitro

experimental design for finding NPs with favorable targeting ligand density.
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4.7. Materials and methods

Materials: Poly(D,L-lactide-co-glycolide)-co-Poly(ethylene glycol) with terminal methoxy

groups (PLGA27K-mPEG 5K) was obtained from Boehringer Ingelheim (Ingelheim am Rhein,

Germany). Poly(D,L-lactide-co-glycolide) (50/50) with terminal carboxylate groups (PLGA,

inherent viscosity 0.67 dL/g, MW ~ 45 kDa) was obtained from Lactel (Pelham, AL, USA).

tBOC-NH-PEG-NH 2 (MW 5000) and tBOC-NH-PEG-NHS, (MW 5000) were purchased from

Laysan Bio, Inc (Arab, AL, USA). cRGD-PEG4 peptide was obtained from Peptides

International (Louisville, KY, USA) and Folic Acid from Sigma-Aldrich (St. Louis, MO, USA).

Molecular biology buffers and tissue culture reagents were purchased from Invitrogen (Carlsbad,

CA, USA). KB cell line was obtained from American Type Culture Collection (Manassas, VA,

USA), and HUVEC cell line together with its growth medium was purchased from Lonza, Inc

(Allendale, NJ, USA).

Synthesis of PLGA-PEG-RGD: The synthesis of PLGA 45K-PEG 5K-RGD was accomplished first

by the conjugation of a modified cyclic RGD to PEG followed by the conjugation of the resultant

RGD-PEG to PLGA. First, cRGD-PEG4 (Arg-Gly-Asp-D-Phe-Lys-PEG 4) (8 mg, 8.94 mmol)

was dissolved in 400 mL of dimethylformamide (DMF) and reacted with tBOC-NH-PEG-NHS

(22 mg, 4.47 mmol) and NN-Diisopropylethylamine (DIEA, 10 mL) for 12 h. The reaction

product was dialyzed 24 h in water to remove unreacted RGD. The resultant tBOC-PEG-RGD

was lyophilized and reconstituted in 400 mL of trifluoroacetic acid (TFA) to remove the

protecting group. After 4 h of reaction, product was dried under vacuum and dissolved in 200

mL of DMSO. Concurrently, PLGA-COOH (100 mg, 2.22 mmoL) was reacted with N-

hydroxysuccinimide (NHS) in the presence of 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide

(EDC) in dichloromethane (DCM) for 2 h. PLGA-NHS was dried under vacuum and dissolved
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in 300 mL of DMSO. Finally, PEG-RGD and PLGA-NHS in DMSO were mixed with DIEA,

allowed to react for 24 h, precipitated in ice cold methanol, and dried under vacuum. PLGA-

PEG-RGD was characterized with GPC to confirm the presence of the triblock PLGA-PEG-

RGD. To verify conjugation of PEG to RGD Maldi-TOF was used, and it showed that only PEG-

RGD was present while free RGD was absent (see supporting information).

Synthesis of PLGA-PEG-Folate. The synthesis of PLGA45K-PEG 5K-Folate was accomplished

first by the conjugation of an activated Folate-NHS to PEG followed by the conjugation of the

resultant Folate-PEG to PLGA. First, Folic acid (60 mg, 0.14 mmol) was dissolved in 2mL of

DMF and reacted with NHS in the presence of EDC for 12 h. Folate-NHS was precipitated in a

mixture of 30/70 acetone/diethyl ether and dried under vacuum. Dry Folate-NHS was dissolved

in 500 mL of DMSO and reacted with tBOC-NH-PEG-NH2 (92.4 mg, 28 mmol) for 12 h in the

presence of DIEA. The reaction product was then precipitated under cool ether, reconstituted in

an aqueous solution of NaOH and dialyzed for 48 h. The resultant tBOC-PEG-Folate was

lyophilized and reconstituted in 700 mL of TFA to remove the protecting group. After 4 h of

reaction, the solution was dried under vacuum and then dissolved in 500 mL of DMSO.

Concurrently, PLGA-COOH (420 mg, 9.33 mmoL) was reacted with NHS under the presence of

EDC in DCM for 2 h. PLGA-NHS was dried under vacuum and dissolved in 500 mL of DMSO.

Finally, PEG-folate and PLGA-NHS in DMSO were mixed and allowed to react for 24 h. The

final product was precipitated in ice cold methanol and dried under vacuum. PLGA-PEG-Folate

was characterized with NMR to verify the conjugation of PLGA to PEG, and GPC to confirn the

presence of PLGA-PEG-Folate. To verify conjugation of PEG to folate Maldi-TOF was used,

and it showed that only PEG-folate was present while free folate was absent. Finally to quantify

the amount of PLGA-PEG-Folate compared to PEG-folate, UV-VIS was used and it was found
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that 98% of the final reaction product was PLGA-PEG-Folate and 2% PEG-Folate (see appendix

3)

Synthesis of PLGA-Alexa-488. The synthesis of PLGA45K-Alexa488 was accomplished by the

conjugation of an activated PLGA-COOH with Alexa-488 Cadaverin through EDC/NHS

conjugation. First, 1mg of Alexa-488 was dissolved in 1 mL of DMF. Concurrently, PLGA-

COOH (50 mg, 1.1 mmol) was mixed with EDC and NHS in 500 mL of DMF. Finally, PLGA

solution was reacted with Alexa-488 solution for 16 h at room temperature. The reaction product

was precipitated in ice cold methanol and dried under vacuum.

Synthesis and Characterization of NPs. NPs were prepared by the nanoprecipitation method 2 0 ,

21. In brief, PLGA-mPEG was mixed with a predefined amount of PLGA-PEG-Folate or PLGA-

PEG-RGD and PLGA-Alexa488 in acetonitrile to a final polymer concentration of 10 mg/mL.

For all experiments the weight percent of PLGA-Alexa488 in the polymer mixture was fixed to

2.5%. At this concentration, PLGA-Alexa488 did not affect the size and zeta potential of the NPs

and was readily detected by FACS. For each NP formulation, 200 mL of the polymer mixture

was added drop-wise to water with constant stirring, giving a final NP concentration of 1 mg/ml.

The NPs were stirred for 2 h, and the remaining organic solvent was removed by washing the

NPs three times using an Amicon centrifugation filtration membrane. Particle sizing was

performed using dynamic light scattering (DLS) with a Zetasizer Nano ZS instrument (Malvern

Instruments Ltd., U.K.). For each measurement, 100 pL or more of the sample was loaded in a

disposable low-volume cuvette. The NP surface zeta potential was measured using the same

instrument used for the size measurements. For each measurement, particles were washed with

water and reconstituted in 1 mL of lx PBS (0.5 mg/mL). TEM experiments were carried out on a

JEOL 2011 instrument at an acceleration voltage of 200 kV. The TEM sample was prepared by
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depositing 10 pL of the NP suspension (1.0 mg/mL) onto a 200-mesh carbon-coated copper grid.

Samples were blotted away after 30 min incubation and grids were negatively stained for 20 min

at room temperature with sterile-filtered 2% (w/v) uranyl acetate aqueous solution.

Quantification of RGD and Folate on Nanoparticle Surface Detection and quantification of

RGD on the surface of the NP was accomplished using the Lava Prep Fluorescence-based

Peptide Quantification Kit (Gel Company Inc, San Francisco, CA, USA). Briefly, NP-RGD were

prepared and washed three times with DI water to a final concentration of lmg/mL. Then, 100

mL of NP solution was mixed with 100 mL of the assay working solution and incubated for 60

minutes under dark. Fluorescence of the resulting solution was measured using a PerkinElmer

plate reader VICTOR3 (Waltham, MA, USA) according to manufacturer's instructions. Using a

calibration curve of free cRGD-PEG 4, the amount of RGD present in solution was determined.

Each assay was repeated 3 times (each with n = 8 samples) and the average value was taken as

the representative.

Detection and quantification of folate on the NP surface was accomplished first by incubating

NP-Folate with folate antibodies and then determining the amount of antibody using the Low

Protein BCA Assay (Lamda Biotech Inc, St. Louis, MO, USA). Briefly, NP-Folate was prepared

and washed three times with DI water and re-suspended in PBS to a final concentration of 1

mg/mL. Then, 5 mL of NP solution was mixed with 95 mL of excess folate antibody in PBS,

and the resultant solution incubated for 2 h with slow shaking. After 2 h, excess antibody was

removed by washing the NP solution 3 times using a 300 kDa cutoff centrifugal filter. The final

product was re-suspended in 100 mL of PBS followed by the addition of 100 mL of BCA

working solution. The resultant solution was heated at 60 *C for 30 minutes and analyzed using a

UV spectrophotometer according to the manufacturer's instructions. Using a calibration curve of
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free folate antibody, the amount of folate present in the NP solution was determined. Each assay

was repeated 5 times (each with n = 4 samples) and the average value was taken as the

representative. Low BCA assays were done on free antibody solutions before and after

centrifugal filtration to verify that no antibody remained left on the filter and that the initial

amount was recovered after filtration.

NP Binding and Uptake by RA W264.7, KB and HUVEC cells RAW 264.7 cells were cultured

in DMEM medium with 10% fetal bovine serum, 50 units/mL penicillin and 50 mg/mL

streptomycin. KB cells were cultured in Folate-free RPMI medium with 10% fetal bovine serum,

50 units/mL penicillin and 50 mg/mL streptomycin. HUVEC cells were cultured in EGM-2

BulleKit medium. All cells were cultured at 37 *C and 5% CO 2. Cells were seeded at a density of

50,000 cells per well on a 24-well plate. After 24 h, the cell medium was removed and replaced

with NPs dissolved in the same medium at a concentration of 1 mg/mL. Cells and NPs were

incubated for 4 h for the case of RAW 264.7 and HiUVEC cells and 6 h for case of KB cells

followed by three washes with 1% BSA solution in PBS to remove excess NPs. RAW264.7 cells

were removed from the plate using a cell scraper and centrifuged, while KB and HUVEC cells

were treated with trypsin, removed from the plate, and centrifuged. The resultant cell pellets

were reconstituted in 250uL of PBS and placed on a 96-well plate for FACS analysis. Flow

cytometry analysis was performed on a BD Biosciences LSR II with High-Throughput sampler

(HTS) option, with 10,000 cells were collected for each measurement.

Microscopy of Cells. For fluorescence microscopy studies, KB or HUVEC cells were seeded on

a four-well chamber slide with 20,000 cells/well and incubated at 37*C and 5% CO2 for 24 h.

Next, the cells were incubated in fresh complete medium with NPs. After incubation, cells were

washed three times in PBS and fixed in 4% paraformaldehyde at room temperature. For imaging,
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slides were mounted with a coverslip using H-1000 Vectorshield mounting medium with DAPI.

Fluorescence imaging was carried out using a Zeiss Fluorescence Microscope.
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Chapter 5 - Next Generation Nanoparticles: Synthesis

of Nanoparticles Encapsulating Multiple Drugs.

5.1. Introduction

Combination chemotherapy has become a cornerstone in treating diverse types of cancer,

having proved to be more effective than single agents against both metastatic cancer and in

patients at high risk of relapse after primary surgical treatment 1. Several combination regimens

have been approved and adopted in the clinic with the aim of enhancing therapeutic efficacy,

decreasing dosage at equal or increased levels of efficacy, and reducing drug resistance 2 The

use of multiple drugs with different molecular targets can raise the molecular barriers that need

to be overcome for cancer cell resistance, thereby more effectively mitigating the cancer cell

survival. This line of reasoning has led to the development of curative combination

chemotherapy regimens (whereas single agent therapy was not) for germ cell tumors,

lymphomas and leukemias. In addition, the application of multiple drugs targeting the same

cellular pathways can function synergistically for higher therapeutic efficacy and target

.3selectivity
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Although the benefits of combination chemotherapy are very attractive, the reality is that

for the vast majority of drug combinations still suffer from several disadvantages, including (1)

dissimilar pharmacokinetics and tissue distribution of each drug arising from differences in their

disparate physicochemical properties, and (2) more serious side effects because each drug is

likely to a have different toxicity profile. These disadvantages make dosing and scheduling of

each component of the combination a challenging task. As a consequence, special efforts from

the scientific and medical communities have been focused on developing strategies to overcome

the disadvantages of combination chemotherapy while retaining the benefits to realize its full

potential- an example being the introduction into the clinic of the first liposomal formulations

containing combinations of different chemotherapeutic agents by Celator Pharmaceuticals 4.

Cisplatin and irinotecan are two established drugs routinely used for treating various

types of cancer. Cisplatin is a platinum-based drug that binds to and forms adducts with DNA,

ultimately triggering apoptosis 5-7. Irinotecan is semisynthetic drug of camptothecin that inhibits

topoisomerase I, ultimately blocking both DNA replication and transcription 8. The combination

of irinotecan and cisplatin (I&C) displays synergy or supra-additive effects when exposed to

cultured human tumor cells, human xenograft tumor models and cancer cells freshly isolated

from colorectal patients 9. In addition, an I&C combination in a Japanese based randomized

phase III trial in 2002 showed the regimen resulted in increased overall survival in small cell

lung cancer (SCLC) patients when compared to historical controls treated with the conventional

regimen of etoposide and cisplatin (E&P) 10. This study was stopped early due to the positive

results after an interim analysis of only 154 patients. In 2006, a phase III trial showed that I&C

combination (given in a slightly modified schedule with attenuated cisplatin doses to mitigate

toxicities) showed this regimen was as effective as E&P in SCLC 1 and was associated with less
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hematological toxicities but more diarrhea. As such a formulation which can provide the same

dose intensity as the Japanese study with less toxicity has great potential to show improved

efficacy compared with standard dose E&P. Recently, a preclinical study showed that not only

was the combination of irinotecan and cisplatin important for achieving enhanced cytotoxicity,

but the ratio in which they were administered also played a key role in determining therapeutic

efficacy 9. An optimal ratio of drugs resulted in greater synergy and that ratio varied depending

on cell type 9. Currently, two important aspects that need to be investigated for I&C combination

are (i) actively targeting the drug combination to a specific diseased cell type and (ii) delivering

both drugs on the same delivery vehicle to create an over-lapping pharmacological profile

mediated by the controlled release properties of the vehicle, while ensuring their entry into the

cell at a well-defined ratio. Because targeting combined with synchronized and sustained

delivery may potentiate the synergistic toxicity of I&C, an enabling technology is needed to test

this hypothesis.

Targeted polymeric nanoparticles (NPs) can encapsulate, traffic, and deliver

chemotherapeutic agents in a controlled fashion to specific diseased tissues, thereby providing a

tremendous potential in the fight against cancer 12 In different animal models and in humans,

such NPs have demonstrated improved drug pharmacokinetics, biodistribution, cell- or tissue-

specific targeting, and tolerability, resulting in an increase of the therapeutic index of several

drugs known to have limited efficacy and/or high toxicity 13-15 These advantages have driven

researchers to implement targeted NPs for the co-encapsulation and co-delivery of two or more

drugs in a single NP in order to match the pharmacokinetics and biodistribution of drugs having

different chemical and physical properties 16. Recently, we reported the co-encapsulation of

cisplatin and docetaxel, two drugs with quite different chemical properties, in PSMA-targeted
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polymeric NPs and demonstrated controlled release of both drugs to PSMA-expressing prostate

cancer cells 17. This task was accomplished by conjugating a hydrophilic cisplatin prodrug to the

backbone of polylactic acid (PLA) to facilitate its incorporation into the hydrophobic NP core 1

Extension of this technology to the co-encapsulation of cisplatin and irinotecan presents an

attractive option for targeting I&C therapy with controlled and synchronized delivery of each

drug for improved synergism.

In the present work we report poly(D,L-lactide-co-glycolide)-co-poly(ethylene glycol)

(PLGA-PEG)-based targeted NPs with both irinotecan and cisplatin encapsulated in the same

targeted NP. Incorporation of cisplatin into the NP core was accomplished by conjugating a

cisplatin prodrug to the backbone of PLA (PLA-cisplatin) while irinotecan was encapsulated

during the self-assembly process of the NP. These NPs were targeted to prostate cancer cells

over-expressing PSMA receptor using the small molecule S,S-2-[3-[5-amino-l-carboxypentyl]-

ureido]-pentanedioic acid (PSMA Ligand; LIG), previously reported to bind to PSMA receptors

and currently in clinical development as a component of a cancer-imaging agent 18, 19. The

targeted NPs were prepared in a single step by conjugating LIG to the end of PEG in PLGA-PEG

(PLGA-PEG-LIG), then mixing it with unmodified PLGA-PEG, PLA-cisplatin, and free

irinotecan followed by self-assembly through the nanoprecipitation method in microfluidic

devices 20,21 Targeted NPs were characterized with respect to size and drug encapsulation, and

selective uptake by PSMA-expressing cells was evaluated. Synergistic performance of the dual

drug targeted NPs in PSMA-expressing LNCaP cells was determined at a fixed drug ratio by

comparing the cytotoxicity of dual drug targeted NPs to that of NPs encapsulating the same

amount of single drugs. Finally, the combination index (CI) was used to quantify the extent of

synergism under such conditions.
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5.2. Irinotecan and cisplatin in targeted polymeric nanoparticles

The binding, uptake and synergistic mechanism of cellular cytotoxicity of targeted I&C

NPs is schematically presented (Figure 5.1). NPs comprise of a PLGA core in which both drugs

are incorporated and a PEG shell modified with LIG molecules that target PSMA. As NPs reach

the cell surface, multivalent interactions between LIG and the extracellular domain of over-

expressed PSMA receptors result in endocytosis 23. Through competition assays and microscopy,

previous studies have shown that endocytosis of LIG-targeted NPs is inhibited in the presence of

free LIG and that LIG- (and LIG analogs) targeted NPs localized both in the cytoplasm and cell

nucleus after being internalized 23-26. Once inside, NPs release both drugs in a controlled and

sustained fashion 17. In the nucleus, irinotecan inhibits DNA-topoisomerase I complexes, while

cisplatin forms DNA cross-links. The end result of both events is cell cycle arrest, transcription

inhibition ', and apoptosis 2. Several studies have suggested that irinotecan acts synergistically

with cisplatin by inducing an increase in the lifetime of Pt-DNA adducts resulting in enhanced

cytotoxicity 2 7 . However, the exact mechanism has not yet been determined.
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Figure 5.1. Strategy of co-encapsulation of irinotecan and cisplatin in a single nanoparticle
targeted to PSMA receptors in prostate cancer cells.
Once internalized, NPs co-deliver irinotecan and cisplatin to enable synergistic toxicity.

5.3 PLGA-PEG-LIG and PLA-Pt polymer synthesis

To minimize the number of steps in the synthesis of targeted NPs, we prepared a ligand-

conjugated PLGA-PEG copolymer (Figure 5.2A). LIG is a urea-based small molecule that is not

subject to supply, stability and analytical challenges associated with macromolecule-based

targeting ligands, such as aptamers or antibodies 28. It contains a free primary amine that can be
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used to anchor LIG to the NP surface without affecting the targeting capabilities of the molecule.

LIG was allowed to react with succinimide-modified tBOC-NH-PEG-NHS, which after

deprotection was conjugated to a succinimide-modified PLGA. The functionalized PLGA-PEG-

LIG contains necessary components for forming and targeting the NPs, enabling their single step

self-assembly and simplifying the optimization and potential scale up 29. To co-deliver irinotecan

and cisplatin, two therapeutic agents with different chemical properties (hydrophobic and

hydrophilic, respectively), we synthesized a modified PLA polymer with reactive hydroxyl

functional groups to enable conjugation of a platinum prodrug to the polymer backbone (Figure

5.2B). Previous work demonstrated that this platinum prodrug can be cleaved from the backbone

of the polymer and reduced to cisplatin intracellularly, which then forms the cis-

diammineplatinum(II) 1,2-d(GpG) cross-links on nuclear DNA, the principal adduct made by

cisplatin 17, 30. AAS of PLA-cisplatin confirmed that -2.5% by weight of platinum was

conjugated to the polymer.
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Figure 5.2. Polymer synthesis.
(A) Synthesis of PLGA-PEG-LIG. (B) Synthesis of PLA-cisplatin

5.4. Microfluidic synthesis of nanoparticles.

The targeted NPs presented here comprise four different components that self-assemble

in a single mixing step into a drug-loaded core-shell nanostructure containing targeting moieties

on the surface. These components are: (i) PLGA-PEG block copolymer that forms the core-shell

structure, (ii) PLGA-PEG-LIG that self-assembles together with PLGA-PEG and orients LIG

toward the NP surface, (iii) PLA-cisplatin prodrug that assembles in the hydrophobic NP core by

hydrophobic-hydrophobic interactions of PLGA and PLA, (iv) irinotecan, which partitions into

the hydrophobic core based on its physicochemical properties. NPs were prepared in
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microfluidic channels by a rapid mixing strategy called hydrodynamic flow focusing (HFF) 21,31

(Figure 5.3A). In this method, polymers and drugs are mixed in acetonitrile and run in a stream

that becomes horizontally focused into a very thin stream when it encounters two streams of

water running at a flow rate 10 times higher (Figure 5.3B). Upon focusing, nanoprecipitation

occurs through mixing of the aqueous and organic streams inducing NP self-assembly. This

method ensures controlled precipitation and rapid mixing, which results in reproducible,

monodisperse NPs with smaller size and higher drug loading than NPs prepared through

conventional bulk methods 21. Figure 5.3C shows the characterization of the NPs by DLS,

resulting in an average size of 55 nm and a polydispersity of 0.04, indicative of relatively

monodisperse particles. A TEM image of these NPs reveals an average size of -55 nm, which

matches that obtained from DLS (Figure 5.3D). By assuming both an average NP density of 1.27

g/mL32 and that all PLGA-PEG-LIG self-assembles into a NP with LIG molecules on the NP

29 tasurface , we compute that NPs with average diameter of 55 nm and comprising 25% by weight

of PLGA-PEG-LIG will have an average of 252 LIG molecules per NP.
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A Polymer + Drugs

Figure 5.3. Single-step synthesis of targeted nanoparticles in microfluidic devices using
hydrodynamic flow focusing.
(A) Schematic of nanoparticles synthesis. (B) Visualization of flow focusing in a microfluidic
channel during operation. Acetonitrile flow rate = 5 mL/min and water flow rate = 50 mL/min.
(C) Size distribution of targeted nanoparticles by volume. Average size = 55 nm. Polydispersity
index = 0.04. (D) TEM image of nanoparticles stained with 1% solution of uranyl acetate.
Average size = 55 nm.
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5.5. Characterization of nanoparticles encapsulating cisplatin and

irinotecan

To evaluate the effect on NP size of incorporating multiple drugs, we measured the size

and stability of NPs encapsulating only irinotecan (NP1), only cisplatin (NPc), and both

irinotecan and cisplatin (NPI&c) (Figure 5.4A and 5.4B). In addition, we determined the drug

loading, encapsulation efficiency (EE), and release kinetics of each drug in the NPs (Figure 5.4C

and 5.4D). Interestingly, the size of all three NPs was similar with average diameter of

approximately 55 + 4 nm, which remained stable for a period of 24 h. This consistency in NP

size is presumably a consequence of the rapid mixing environment enabled by the microfluidic

devices, which ensures complete mixing of precursors in water at a time scale smaller than the

NP self-assembly and results in the formation of a relatively uniform population of NPs .

Cisplatin was encapsulated with very high efficiency (>80%) owing to the hydrophobic-

hydrophobic interaction between PLGA and the PLA backbone. Irinotecan exhibited EE and

drug loading values of 10% and 0.5%, respectively, after self-assembly with PLGA-PEG.

However, when irinotecan was mixed with both PLGA-PEG and PLA-cisplatin, its EE and drug

loading increased to 44% and 2.2%, respectively (Figure 5.4C). This increase may be a

consequence of the increased hydrophobicity of the NP core due to the hydrophobic PLA

polymer that favors encapsulation of the hydrophobic irinotecan (as shown previously for a

similar system of free PLGA and docetaxel 21). This formulation resulted in an irinotecan to

cisplatin mol ratio of 1.5:1 and was used for the all experiments in this study. From the kinetics it

was found that encapsulated irinotecan was released at a faster rate than covalently conjugated

cisplatin prodrug, which is expected and agrees well with a previous report on a similar system

17. Through this NP platform the encapsulation and release rate of irinotecan or other
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encapsulated drugs can be modulated by varying the molecular weight of the PLGA in PLGA-

PEG, the concentration of PLGA-PEG in the organic solution and the initial loading wt.% of

irinotecan 20,3 4 , while for cisplatin variation of the MW of PLA in PLA-cisplatin, and the number

of cisplatin molecules in PLA-cisplatin allow for controlling its encapsulation and release.

Considering different types of cancer may benefit from different drug ratios and release rates 9,

the ability to control the encapsulation and release rate is an advantage that would potentially

allows for tuning the payload according to the therapeutic need of each type of cancer.
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Figure 5.4. Characterization of nanoparticles containing either irinotecan (NPI) or cisplatin
(NPc) prodrug or both (NPI&c).
(A) Size (B) Size stability over time in 10% serum (PLGA NPs were used as a positive control),
(C) Drug loading and encapsulation efficiency, and (D) drug release kinetics in PBS at 37"C.
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5.6. Cell targeting of nanoparticles decorated with LIG

Next we tested the targeting capabilities of the PSMA-targeted NPs in vitro. To enable

analysis of NP uptake by flow cytometry, 2.5% by weight of the fluorescent probe PLGA-Alexa

488 was added to the organic stream containing both drugs and polymers. In a previous work we

showed that this amount was low enough so as not to affect the NP physicochemical properties

but high enough to be detected readily by FACS at very low NP concentrations 29. To test the

targeting capabilities of our NPs, we incubated them with PSMA-overexpressing LNCaP cells

for 4 h, trypsinized them to remove any bound NPs on the cell surface, and measured the

fluorescence intensity of 10,000 cells (Figure 5.5A). Cells treated with PSMA-targeted NPs

exhibited 8-fold more fluorescence compared to those treated with non-targeted NPs. FACS

fluorescence histograms show that NP uptake by cells occurred uniformly across all the cells

rather than by a few cells engulfing most of NPs (Figure 5.5B). Previous studies have

demonstrated that LIG- (and LIG analogs) targeted nanoparticles enter the cell through

endocytosis and localize both in the cytoplasm and cell nucleus 23-25. It is therefore likely that

these NPs are escaping the endosome and reaching other cell compartments, including nucleus.

The exact mechanism will be explored in future studies. These results indicate that our dual-drug

targeted NPs can selectively target cells over-expressing PSMA receptors and that they can enter

the cells more readily than non-targeted NPs.
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Figure 5.5. Uptake of PSMA-targeted NPs in LNCaP cells overexpressing PSMA receptors
compared to non-targeted NPs.
The NPs contain the fluorescent reporter Alexa 488 conjugated to PLGA (PLGA-Alexa 488).
(A) Average fluorescence of 10,000 cells obtained by FACS. (B) FACS histograms of
fluorescence intensity.

5.7. Synergistic cytotoxicity of irinotecan-cisplatin nanoparticles

Finally, we carried out cytotoxicity studies in vitro to assess the synergy of cisplatin and

irinotecan in LNCaP cells. Targeted NP1, NPc, and NPi&c were exposed to LNCaP cells at

different concentrations while keeping the same incubation volumes. The cytotoxicities were

evaluated using 3-(4,5-dimethlylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.

Based on the concentration of drugs in each NP we created dose-response curves and determined

the IC 50 values for each NP formulation (Figure 5.6A). NPi&c was 3.6 times and 10.6 more toxic

than NPc, and NP1, respectively, after 12 h of exposure to LNCaP cells. Whereas these results

suggest that NPi&c is more cytotoxic than the single-drug NPs, it does not assess whether this

effect is synergistic or simply additive. To determine synergism of the dual-drug NPs, we used
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the Talay and Chou method 3 and calculated a combination index (CI) at ED8o, as previously

reported by others for a similar system 9. In this method a CI -1 indicates additivity, CI >1

indicates an antagonism and CI <1 indicates synergism. Remarkably, NPI&c had a CI of 0.20,

which falls in the range of strong synergism 35. These results demonstrate that PSMA-targeted

NPi&c exhibit synergistic cytotoxicity against prostate cancer cells under the investigated

experimental conditions. All previous work on cisplatin/irinotecan combinations was carried out

with either free drugs or each drug encapsulated in a separate liposome, the present investigation

being the first for this combination that has been evaluated (1) by encapsulating both agents in

the same vehicle and (2) with a nanoparticle targeted to a specific cell type. Finally, although the

initial drug ratio of irinotecan/cisplatin in the targeted NP was fixed at 1.5, differences in release

kinetics of each drug may alter the actual ratio that reaches the cell nucleus. In fact, investigating

the performance of targeted NPs containing different initial drug ratios and/or varying drug

release kinetics could potentially result in finding formulations with even greater synergism.
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Figure 5.6. Cytotoxicity of nanoparticles with irinotecan and cisplatin.
Cytotoxicity of I&C targeted NPs (NPI&c) in LNCaP cells compared irinotecan targeted NPs
(NPI) (A) and cisplatin targeted NPs (NPc) (B). Dual-drug NPs had an IC50 10.6 times and 3.6
times lower than cisplatin and irinotecan NPs, respectively. (C) Combination index determined
by Talay and Chou method at ED80 . According to the metric 0.20 corresponds to strong
synergism. The NPs used had a final irinotecan to cisplatin ratio of 1.5:1 by mole.

5.8. Conclusion

In summary, we have devised a novel strategy for trafficking and delivering irinotecan

and cisplatin to a specific cell population by encapsulating both drugs in one NP and targeting

the NPs to specific cells with a small molecule targeting agent. Although the two drugs have

different chemical and physical properties, they were successfully incorporated into the same NP

by conjugating the more hydrophilic drug, cisplatin, to the backbone of a PLA-based polymer

and encapsulating the more hydrophobic irinotecan in a conventional fashion through

nanoprecipitation. NPs prepared with the use of a single-step in microfluidic device exhibited an

average size of 55 ± 4 nm that remained essentially unchanged before and after the addition of

both drugs. The low polydispersity index of -0.04 is indicative of a relatively monodisperse

population, presumably arising from the rapid mixing environment offered by the microfluidic

devices. Specific uptake of targeted NPs by LNCaP cells overexpressing the PSMA receptor

was demonstrated by the 8-fold increase in fluorescence associated with targeted NPs compared

to non-targeted NPs. Finally synergistic cytotoxicity of irinotecan-cisplatin targeted NPs in

LNCaP cells was assessed by a CI of 0.20, which is characteristic of strong synergism. From

these results we anticipate that by implementing a two-drugs-in-one-NP strategy together with

active targeting to specific cell receptors, combination chemotherapy with irinotecan and

cisplatin could potentially be implemented, even in cancers that have traditionally exhibited poor
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therapy response, such as prostate cancer ". In addition, a single-step synthesis of NPs composed

of approved drugs and clinically validated biomaterials may accelerate translation of such novel

therapeutics to the clinic.

5.9. Materials and methods

Materials. Poly(D,L-lactide-co-glycolide)-co-Poly(ethylene glycol) was purchased from

Boehringer Ingelheim (Ingelheim am Rhein, Germany). Poly(D,L-lactide-co-glycolide) (50/50)

with terminal carboxylate groups (PLGA, inherent viscosity 0.67 dL/g, MW ~ 45 kDa) was

purchased from Lactel (Pelham, AL, USA) and tBOC-NH-PEG-NH2 (MW 5000) and tBOC-

NH-PEG-NHS, (MW 5000) were purchased from Laysan Bio, Inc (Arab, AL, USA). MTT

reagent was procured from Sigma-Aldrich (St. Louis, MO, USA). LNCaP cell line was obtained

from American Type Culture Collection (Manassas, VA, USA).

Synthesis of PLGA-PEG-LIG. The synthesis of PLGA-PEG-LIG (PLGA MW 45K and PEG

MW 5K) was achieved by first conjugating LIG to PEG followed by conjugation of the resultant

LIG-PEG to PLGA. LIG (3.9 mg, 8.9 pmol) was dissolved in 400 pL of dimethylformamide

(DMF) and allowed to react with tBOC-NH-PEG-NHS (22 mg, 4.5 pmol) in the presence of

N,N-diisopropylethylamine (DIEA, 10 ptL) for 12 h. The reaction product was dialyzed for 24 h

in water to remove unreacted LIG, then lyophilized, and finally resuspended in 400 tL of

trifluoroacetic acid (TFA) to remove tBOC. After 4 h, PEG-LIG was dried and dissolved in 200

gL of DMSO. In parallel, PLGA-COOH (100 mg, 2.2 pmoL) was allowed to react with N-

hydroxysuccinimide (NHS) in the presence of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide

(EDC) in dichloromethane (DCM) for 2 h. The resulting PLGA-NHS was dried and dissolved in

300 ptL of DMSO. Finally, PEG-LIG and PLGA-NHS in DMSO were mixed with DIEA,
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allowed to react for 24 h, precipitated in cold methanol, and dried under vacuum. PLGA-PEG-

LIG was characterized by gel permeation chromatography (GPC) to confirm the synthesis of

PLGA-PEG-LIG.

Synthesis of PL4-Cisplatin.. First, PLA-OBn was synthesized via ring opening polymerization

reaction by dissolving a toluene-functionalized cyclic lactide monomer and simple lactide

monomer in a toluene solution containing benzyl alcohol (initiator) and Tin catalyst. The

solution was refluxed at 120 *C for 10 h. Then, the hydroxyl functionalized biodegradable

polylactide polymer (PLA-OH) was obtained by benzyl deprotection using a Pd/C catalyst at 50

psi pressure for 8 h. Finally, succinic acid-derivative platinum (IV) (cisplatin prodrug) was

dissolved in anhydrous DMF and added with excess equivalents of N-hydroxybenzotriazole

(HOBt), N,N'-dicyclohexylcarbodiimide (DCC) and stirred at room temperature for 30 min. To

this reaction mixture a solution of PLA-OH polymer in dichloromethane was added and stirred at

room temperature for 12 hours, followed by precipitation in diethyl ether.

Synthesis and Characterization of NPs. NP synthesis was carried out in microfluidic devices

made of PDMS. The device had one inlet each for water and precursors streams, and one outlet.

The water stream was split into two in order to achieve two water streams at the flow focusing

junction. The mixing channel was 20 mm wide, 60 mm high and 1 cm long and formed

nanoparticles by focusing in two dimensions. The 2.5 mL and 0.5 mL gastight syringes used for

aqueous and organic streams, respectively, were mounted on syringe pumps to control flow

through the device. NPs were prepared by nanoprecipitation. Briefly, 250 mL of PLGA-PEG at

10 mg/mL in acetonitrile was mixed with 250 mL of PLGA-PEG-LIG and 500 mL of PLA-

cisplatin both at 10 mg/mL in acetonitrile. Irinotecan was mixed with the polymers to reach an

initial drug loading of 5%, corresponding to a concentration of 0.5 mg/mL. The organic stream
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(polymers and drugs) was run at 5 mL/min while maintaining a total aqueous flow rate of 50

mL/min. NPs were collected at the outlet stream and washed three times with water using

Amicon centrifugation filtration membrane to remove excess drugs and organic solvents.

Dynamic light scattering (DLS) was used to determine particle size and size distribution, using a

Zetasizer Nano ZS instrument (Malvem Instruments Ltd., U.K.). Particle visualization was

carried out through TEM (JEOL 2011 instrument at an acceleration voltage of 200 kV.) The

sample was prepared by depositing 10 ptL of the NP solution onto a 300-mesh carbon-coated

copper grid. After 30 min incubation samples were blotted away and grids were negatively

stained for 20 min with 1% (w/v) uranyl acetate aqueous solution. The stability of NPs was

evaluated by suspending freshly made NPs in a PBS solution containing 10% serum and

measuring the size of the particles at different time points over a period of 24 h. PLGA NPs were

used a control since they are known to aggregate over time 20. Drug loading and encapsulation

efficiency (EE) were determined by quantifying the amount of drug in NP. To evaluate drug

loading, NPs were dissolved in a 50/50 acetonitrile/water solution immediately after synthesis

and vortexed for several hours to induce NP dissociation. The amount of platinum inside the NPs

was quantitated by flameless atomic absorption spectroscopy (AAS), from which the load of

cisplatin was computed. Irinotecan was detected using spectrophotometry on a TECAN 1000

plate reader at a wavelength of 385 nm. A calibration curve with known concentrations of

irinotecan was prepared, and the amount of irinotecan encapsulated in the NPs was calculated

accordingly. In vitro release kinetics of irinotecan and cisplatin were determined by dialyzing

100 mL aliquots of NPs in mini dialysis cassettes with a MW cutoff of 10 kDa against a 4-liter

bath of PBS at 37*C. Three aliquots were removed at different time points over a period of 72
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hours and the amount of irinotecan and cisplatin remaining inside the NPs were measured as

described above.

NP Uptake by LNCaP cells. LNCaP cells were cultured in RPMI 1640 medium with 10% fetal

bovine serum, 50 units/mL of penicillin, and 50 mg/mL of streptomycin. Cells were seeded at a

density of 50,000 cells per well on a 24-well plate for 24 h. Subsequently, the cell medium was

replaced with NPs dissolved in the same medium at a concentration of 1 mg/mL and incubated

for 4 h followed by three washes with 1% BSA solution in PBS to remove excess NPs. LNCaP

cells were treated with trypsin, removed from the plate, centrifuged, and were reconstituted in

250 mL of PBS. Immediately after cells were analyzed through flow cytometry analysis on a BD

Biosciences LSR II with high-throughput sampler (HTS) option in a 96-well plate, with 10,000

cells collected for each measurement (n= 4 per formulation).

In vitro NP Cytotoxicity (MTT Assay). The cytotoxicity of NPs was investigated through the

MTT assay. First, cells were seeded on a 96-well plate in 100 ptL of cell medium and incubated

for 24 h. Then, the medium was replaced with NP suspension at varying concentrations and

incubated for 12 h at 37 *C. The medium was changed after 12 h, and the cells were incubated

for 48 h. Subsequently, 20 pL of MTT (5 mg/iL in PBS) were added to the cells and allowed for

incubation for 5 h. After removing the medium the cells were lysed by adding 100 IL of DMSO,

and the absorbance of the purple formazan was recorded at 550 nm using plate reader.
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Chapter 6 - Putting all together: Microfluidic

Platform for Combinatorial Synthesis and

Optimization of Targeted Nanoparticles for Cancer

Therapy

6.1. Introduction

Nanoparticles (NPs) able to encapsulate and deliver thousands of drug molecules per

particle hold tremendous potential for treating various diseases such as cancer, inflammation and

infectious diseases'. Despite the high level of activity and enthusiasm focused on the

development of NP therapeutics over the past 30 years, very few nanoparticle formulations have

reached clinical translation and human impact2 . In fact, while there are myriads of proof-of-

concept studies presenting novel NPs that target and kill cancer cells, there are significantly

fewer examples where the engineering and optimization is carried out to reach clinical

translation. This is due in part by the complexity of nanoparticle optimization, since for every

disease type one needs to find the optimal interplay of biophysicochemical parameters (e.g. size,

charge, surface composition, etc.) that simultaneously confer molecular targeting, immune
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evasion and controlled drug release . In addition, technology platforms for the rapid synthesis

of nanoparticles with a wide range of properties in a reproducible manner are only now starting

5-7to emerge

Microfluidics, the science and technology of manipulating nanoliter volumes in

microscale fluidic channels, has impacted a range of applications including biological analysis,

chemical synthesis, single cell analysis, and tissue engineering8. In nanomedicine, microfluidics

has enabled the synthesis of nanoparticles with narrower size distributions, improved batch-to-

batch reproducibility, and higher drug loadings9' 10. Some key advantages of microfluidics

include simplicity and reproducibility in fabrication; availability of various inexpensive materials

for fabrication such as PDMS; and lower cost of resources, since only few micrograms of

materials and few microliters of solvents are needed to obtain well-defined products. These

advantages make the use of microfluidics ideal for the development of a platform that enables

the rapid synthesis and optimization of nanoparticles".

In the present work, inspired by the combinatorial high-throughput synthesis of small

molecules' 2 ' 13 and novel biomaterials 4, we have developed a microfluidic platform for the

combinatorial high-throughput synthesis of nanoparticles. In this system a number of

nanoparticle precursors enter the system and a library of nanoparticles with distinct properties

exits it. First, we demonstrate that this system allows for the synthesis of nanoparticle with a

wide range of properties, with batch-to-batch reproducibility. Next, we show high-throughput

synthesis and screening capabilities by rapidly synthesizing 45 different formulations with

different sizes and PEG coverage, screening them for macrophage uptake in vitro, and

comparing the results with in vivo pharmacokinetic studies. Finally, with the aim of further

understanding the role of active targeting in nanoparticles, we use the microfluidic system to
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synthesize targeted and non-targeted NPs with similar biophysicochemical properties and

compare tumor accumulation in vivo. These studies have broad implications in nanomedicine,

where such a platform can be used to rapidly optimize promising novel lipid and polymeric

nanoparticles and move them quickly to pre-clinical studies.

6.2. Design and operation of microfluidic platform

Our microfluidic platform is composed of a multi-inlet mixing unit and a synthesis unit

(Figure 6.1A). In the former unit, a number of nanoparticle precursors dissolved in organic

solvent are placed in different inlets and efficiently mixed at various ratios in a 3D micromixer

(Figure 6.1B). In the latter unit each precursor combination is rapidly mixed with water using a

technique called 3D hydrodynamic flow focusing, where the nanoparticle precursors are

squeezed three-dimensionally to a thin stream that rapidly diffuses with water, resulting in self-

assembly of nanoparticles through the process of nanoprecipitation15 (Figure 6.lC and 1D). Each

micromixer inlet is connected to a syringe mounted on a programmable syringe pump, which

allows accurately flowing the precursors at specific ratios that ultimately defines the

physicochemical properties of the resulting NP. A photograph of the device is presented in figure

6.lE and a TEM micrograph of representative NPs obtained through these systems is shown in

figure 6.1F. To synthesize a diverse library of NPs, we used 15 different precursors based on

poly(lactic-co-glycolic) acid-co-polyethylene glycol (PLGA-PEG). These included, PLGA-PEG

with different end-functional groups (e.g. amine, carboxyl, methoxy), PLGA MWs (10k Da,

27kDa, 45kDa, and 95kDa), and PEG MWs (2kDa, 5kDa, and 1OkDa); PLGA-PEG

functionalized with a ligand (LIG) targeted to PSMA receptors overexpressed prostate cancer

cell 16 '17; and PLGA with different fluorescent probes for NP detection (Figure A4.1).
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Figure 6.1. Microfluidic platform for high-throughput synthesis of nanoparticles.
(A) Schematic of system where NP precursors enter a multi-inlet mixer at different ratios
producing a library of NPs upon self-assembly. (B) Mixer in operation showing complete mixing
of streams at the end of the mixer. (C) Image if hydrodynamic flow-focusing where NPs self-
assemble through nanoprecipitation. Scale bar = 20mm. (D) Image of vertical focusing of
organic streams with polymeric precursors by two acetonitrile sheath streams. Scale bar = 10mm.
(E) Image of microfluidic system with blue dye for visualization purposes. (F) Image of
representative NPs produced by the system. Scale bar = 50nm.

6.3. Synthesis of nanoparticle library

To demonstrate the versatility of the platform, we synthesized a number of NPs spanning

a wide range of physicochemical properties by strategically mixing ratios of different NP

precursors. For instance, to vary the NP size we mixed PLGA-PEG with different PLGA MW

ranging form 1 OkDa to 95kDa, resulting in sizes ranging from 25nm up to 200nm (Figure 6.2A).
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For varying surface charge, previous studies reported that NPs comprised of PLGA-PEG-NH 2

exhibited a zeta potential of +10 to 15 mV while NPs comprised of PLGA-PEG-COOH

exhibited a zeta potential of -10 to -15 mV, and those comprised of PLGA-PEG-OCH 3 remained

neutral18 ' 19. Therefore, by mixing polymers solutions containing, for instance, OCH3 and COOH

one can tune the surface charge from highly negative to neutral (Figure 6.2B). For varying

surface ligand density, we mixed PLGA-PEG-LIG with unmodified PLGA-PEG at different

ratios resulting in estimated ligand densities on the order of 103-10 5 ligands per micron square

(i.e. ~101-10 3 ligands per NP20) (Figure 6.2C). Finally, for varying the final drug loading of the

polymer, using docetaxel as model drug, we adjusted both the initial drug loading and the

polymer concentration in acetonitrile-factors that were previously published to affect drug

loading 2'. In this case, we had in one stream the drug, PLGA-PEG of a specific MW at

50mg/mL in another, and plain acetonitrile in the third one to modify the concentration from

50mg/mL down to 10mg/mL. Furthermore, other NP physicochemical properties that could be

varied with these precursors but not shown here include drug release kinetics (by using PLGA

with different ratios of LA:GA or different PLGA MW 22) and PEG density (by adding PLGA-

PEG with a PEG block of different lengths or by varying the ratio of PLGA-PEG and free

PLGA2 3 ). Finally, these NPs could be prepared with excellent batch-to-batch reproducibility and

much narrower size distributions compared to bulk synthesis (Figure A4.2). These results verify

that by combinatorially mixing a number of NP precursors, mostly based from the same polymer

PLGA-PEG, one can reproducibly produce a library of NPs spanning virtually the entire phase

space of NP properties.
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Figure 6.2. Synthesis of NPs with control over physicochemical properties.
(A) Variation of NP size by mixing polymers with different PLGA MW (from 1OKDa to 95kDa).
(B) Variation of NP surface charge by mixing polymers with different end functional group on
the PEG block. Carboxyl group (-COOH) is negatively charged while methoxy group (-OCH3)
is neutral.(C) Variation of targeting ligand density by mixing polymers functionalized with
targeting ligand together with unmodified polymer. (D). Variation of drug loading by mixing a
polymer at a high concentration (50mg/mL) with different ratios of drug (to vary initial drug
loading) and plain acetonitrile (to vary concentration). Legend: Blue block = PEG; Red block =
PLGA.
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6.4. High-throughput synthesis and screening of nanoparticles

Next, to show the utility of our system for high-throughput synthesis and screening of

NPs, we picked 7 polymers containing different PLGA and PEG MWs as well as free PLGA to

synthesize a library of NPs comprised of 45 different formulations with different size and PEG

coverage. For the screening, we used an established in vitro macrophage binding and uptake

assay20, in which the extent of interaction between macrophages and nanoparticles depends on

the NP phyisicochemical properties. In this assay, fluorescently labeled NPs were incubated with

macrophages in 96-wells plates and then analyzed with flow cytometry using a high-throughput

robotic sampler. Depending on the particle dosing per well and number of repeats per

formulation, the time to synthesize 45 formulations may take from minutes to hours. In our case,

the synthesis of 45 NP formulations that were dosed at 100mg of NPs per well at n=3, took close

to 70 minutes-whereas by conventional pipetting it could take up to 10 times longer7. Figure

6.3A shows, the fluorescence intensity associated with NP binding and uptake by macrophages

for the 45 formulations. For each formulation, we also measured NP size, estimated the PEG

weight %, and reported the average PEG length. These results, indicate that NP formulations of

small size (25-30nm), relatively high PEG wt. % (up to 33%) and longer PEG molecules (up to

1 OkDa) are the ones taken up least by macrophages, which agree with previous results reported

on PEGylated NPs 24, 25 . Additionally, it was observed that NP size was a key determinant in

macrophage association more so than PEG coverage. For instance, a 30nm NP with PEG length

of 5kDa was taken up less than a 50nm NP with length lOkDa. Again, coupling microfluidic
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high-throughput synthesis with conventional high-throughput screening methods, a large number

of NPs can be evaluated in a relative short amount of time.

In the body, NPs tend to be taken by the mononuclear phagocytic system (MPS) mostly

.26 NPpresent in the liver and the spleen, which directly affect their the circulation time . Thus, NP

association with macrophages generally provides an idea of pharmacokinetic behavior of NPs.

To evaluate this hypothesis, we selected 4 formulations showing different macrophage uptake

behaviors and investigated their pharmacokinetic profile in vivo. For this experiment we

increased the scale of production two orders of magnitude from hundreds of micrograms to tens

of milligrams by simply programming the microfluidic system to run for a longer period of time.

Interestingly, the NP properties remained essentially identical across batches of different scales,

which we consider it a key advantage of the system. Figure 6.3B shows the pharmacokinetic

profile of selected NP formulations that exhibited increasing macrophage uptake. Analysis of the

PK profile revealed that the NP formulation with lowest macrophage uptake had the longest half-

life (Figure 6.3C) and greatest area under the curve (AUC) (Figure 6.3D). These results confirm

the hypothesis that NPs with higher interactions with macrophages would tend to circulate in

blood for a shorter amount of time27 29. Consequently, our method to reproducibly synthesize

NPs together with the in vitro macrophage uptake assay might be useful for selecting promising

NP formulation for pre-clinical evaluation with respect to circulation time, as well as to identify

which formulations have a high probability of not working in vivo-which can save significant

amount of time and resources later on.
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Figure 6.3. Synthesis and in vitro and in vivo screening of 45 NPs with different sizes and
PEG coverage.
(A) Fluorescent intensity (FI) of macrophages associated with of Alexa-488-labeled NPs. Heat
map indicating extent of size, PEG weight % and average PEG length for each formulation. (B)
Pharmacokinetic profile measured by the relative fluorescence of Alexa-647-labeled NPs in
blood. (C) Circulation half-life and (D) area under the curve of selected formulations with
increasing macrophage binding and uptake.

6.5. Passive versus active nanoparticle targeting

Finally, we used the microfluidic system to obtain a deeper understanding of the

biological behavior of NPs in vivo, specifically to shed light on the effects of NP passive versus

active targeting on tumor accumulation. The existing paradigm behind passive targeting is that

NPs can selectively extravasate the leaky vasculature of the tumor via the so-called enhanced
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permeation and retention (EPR) effect simply by remaining in the circulation for sufficiently

long times30 . In contrast, the rationale behind active targeting is that decoration of the NPs with

homing molecules will confer them with more specificity for the cancer cells, and thus they will

preferentially distribute in the tumor tissues30 . However, many of the studies comparing passive

versus active targeting tend to focus on NPs whose physicochemical properties were modified

upon the addition of the targeting ligand (e.g. size and charge). This has led to mixed results

across studies where the role of active targeting is still debated. In the present work, we used

the microfluidic platform to synthesize an actively targeted NP (TNP) with similar properties as

its passively targeted counterpart (herein called non-targeted NP) with respect to size and charge,

which is difficult to do in bulk. First, we rapidly synthesized TNPs with different ligand

densities, followed by screening them in vitro against LNCaP cells overexpressing PSMA

receptors, as well as macrophages. The goal was to find TNPs with higher uptake by LNCaP

cells, yet similar macrophage uptake as the non-targeted NPs. Figure 6.4A and 6.4B show the

cancer cell and macrophage uptake, respectively, for five different formulations containing

increasing amounts of ligands on the NP surface. The results indicated that when adding up to 20

molar % of PLGA-PEG-LIG to the NP formulation, a significantly increase in fold uptake by

cancer cells was observed, yet there was only a small difference in macrophage uptake compared

to non-targeted NPs. In addition, the average size and charge of NPs with up to 20 molar % of

PLGA-PEG-LIG exhibited essentially the same size and charge as the one with just PLGA-PEG

(40 nm and -0.5 mV) (Figure A4.3). Thus, for subsequent in vivo studies we chose as TNP the

one comprised of 20 molar % which corresponds approximately to 200 ligands per NP. For the

in vivo studies, we implanted Ix10 7 LNCaP cells to the flank of the mouse and let the tumor

grow for 3-4 weeks until the tumor reached a size of close 100 mm3 . Non-targeted NPs and
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TNPs labeled with Alexa647 were injected via tail vein. After 24 hours the animals were

sacrificed and the fluorescence of the main organs was measured (Figure 6.4C). While the

fluorescent signal in most of the organs was similar for both formulations, the two main

differences were observed for the spleen and for the tumor, where TNP showed significantly

higher accumulation in tumor and less in the spleen versus the non-targeted one. In fact, the

signal accumulation of TNPs tumor was close to 3.5-fold that of the non-targeted NP (figure

6.4D). These results suggest that active targeting of NPs does make a significant impact in the

accumulation of NPs in the tumor when compared to non-targeted ones with similar

biophysicochemical properties. While further studies should be carried out to investigate the

kinetics of tumor accumulation, these preliminary results illustrate the importance of active

targeting and their benefits in tumor accumulation.
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Figure 6.4. Comparison of biodistribution and tumor accumulation of targeted and non-
targeted NPs with similar biophysicochemical properties.
(A) Fluorescent intensity of Alexa-488 labeled targeted NPs associated with macrophages. (B)
Fold-uptake of targeted NPs by LNCaP measured by the fluorescent signal of targeted NPs over
that of non-targeted NPs. (C) Biodistribution and (C) tumor accumulation of a targeted NP
composed of 20% molar PLGA-PEG-LIG compared to non-targeted NP.

6.6. Conclusion

We reported a new microfluidic platform for the combinatorial, high-throughput

synthesis of targeted polymeric nanoparticles. The system coupled with high-throughput

conventional multi-well plate assays has the potential to accelerate the engineering and

optimization of NPs against a specific target. It was first demonstrated that NPs with a wide

range of properties can be generated by making a small library comprised of NPs with size from

25-200nm, zeta potential from -20 to +20 mV, ligand density from 0 to ~105 ligands/mm2 , and

drug loading from 0 to 5%. Subsequently, we showed the high-throughput capabilities of the

system by rapidly synthesizing 45 NP formulations of different sizes and PEG coverage, and

screened them against macrophage uptake in vitro. Finally we performed both in vitro and in

vivo proof-of-concept screenings to investigate the relation of macrophage uptake in vitro with

pharmacokinetics in vivo (where low macrophage uptake correlates with longer circulation

time), as well as investigate the tumor accumulation of targeted NPs versus non-targeted NPs of

essentially identical biophysicochemical properties (where targeted NPs accumulate 3.5-fold in

tumor versus non-targeted ones). Three key advantages of our system over existing bulk

synthesis include (i) from a small set of NP precursors one can rapidly synthesize a NP library

with a wide range of distinct physicochemical properties; (ii) the NPs prepared have high batch-

to-batch reproducibility and lower polydispersity; (iii) NPs prepared at the microgram range have
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the exact same properties are those prepared at the milligram range. These advantages allow for

screenings both in vitro and in vivo with the goal of either accelerating the clinical translation of

a specific formulation or obtain deeper fundamental understanding on the correlation of NP

properties and biological behavior.

6.7. Materials and methods

Fabrication of Microfluidic System. The prototypical system was manufactured using the

standard soft-lithographic technique, described in previous work 3 . Briefly, SU-8 (MicroChem)

resist was spun on a bare 4" silicon wafer and prebaked on a hot plate. After exposure to 365 nm

UV light, the coated wafer was post-baked, resulting in the master mold. PDMS (Sylgard 184,

Dow Corning) monomer and curing agent were mixed in a ratio of 10:1 by weight, poured over

the silicon master mold, and degassed. After curing at 100 *C for 60 min, PDMS cast was

carefully removed from the mold. The multi-inlet mixing unit was composed of two layers that

were aligned and bonded together after placing each layer in plasma for 30 s. Inlets and outlet

holes were drilled followed by placing the PDMS glass slide using air plasma. NP synthesis unit

was composed of a single layer with inlet holes precisely drilled next to each other to achieve 3D

flow focusing1 5 . Typical channel dimensions used in the NP synthesis experiments had a width

of 100 pm and a height of 60 ptm for the vertical focusing part and had a width of 20 pm for the

horizontal focusing part, or precipitation channel. The outlet of the mixer unit was connected to

the middle inlets in the NP synthesis units while the side inlets were collected to syringes

containing acetonitrile.

Nanoparticle precursors. PLGA-PEG-LIG was synthesized as previously reported17 . Briefly,

LIG was dissolved in 400 pL of dimethylformamide (DMF) and allowed to react with tBOC-

NH-PEG-NHS in the presence of NN-diisopropylethylamine (DIEA). The reaction product was

128



dialyzed for 24 h in water to remove unreacted LIG, then lyophilized, and finally resuspended in

trifluoroacetic acid (TFA) to remove tBOC. Subsequently, PEG-LIG was dried and dissolved in

DMSO. In parallel, PLGA-COOH was allowed to react with N-hydroxysuccinimide (NHS) in

the presence of 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide (EDC) in dichloromethane

(DCM). The resulting PLGA-NHS was dried and dissolved in DMSO. Finally, PEG-LIG and

PLGA-NHS in DMSO were mixed with DIEA, allowed to react, precipitated in cold methanol,

and dried under vacuum.

Synthesis of PLGA-PEG was accomplished using EDC/NHS chemistry 2 1 . For PLGA-PEG with

PEG of different PEG MWs and PEG functional groups was accomplished by conjugation of

PLGA homopolymer with a carboxylate end-group to a monofucntional methoxy-PEGx-NH2,

where x indicates PEG MW (2k, 5k, and 10k). For PLGA-PEG functionalized with carboxyl and

amine groups, difunctional NH2-PEG-COOH and NH2-PEG-NH2 were used, respectively

(Laysan Bio, Arab, AL). Briefly, PLGA-Carboxylate was dissolved in DCM, followed by the

addition of NHS and EDC to the solution. After 2 h the resulting product, PLGA-NHS, was

precipitated in ethyl ether/methanol, collected by centrifugation, and drying under vacuum.

PLGA-NHS was dissolved in DCM followed by addition of monofuctional or difuenctional PEG

together with DIEA. The resulting PLGA-PEG block copolymer was precipitated with

ether/methanol washing solvent and washed with the same solvent to remove unreacted PEG.

The synthesis of PLGA-Alexa488 and PLGA-Alexa647 were accomplished by the conjugation

of an activated PLGA-COOH with Alexa-488/647 Cadaverin through EDC/NHS conjugation.

First, Alexa-488/647 was dissolved in 1 mL of DMF. Concurrently, PLGA-COOH (was mixed

with EDC and NHS in 500 mL of DMF. Finally, PLGA solution was reacted with Alexa-
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488/647 solution for 16 h at room temperature. The reaction product was precipitated in ice cold

methanol and dried under vacuum.

Finally, PLGA-PEG with PLGA MWs of 27kDa, 45kDa, and 95kDa were purchased from

Boehringer Ingelheim GmbH (Germany). PLGA-PEG with PLGA MW of 1OkDa was purchased

from Akina Inc (West Lafayette, IN). Unmodified PLGA with different MWs were purchased

from Lactel (Pelham, AL).

Nanoparticle Synthesis and Characterization. NPs were prepared by nanoprecipitation".

Briefly, the organic stream (polymers and drugs) was run at 7 mL/min, vertical sheath streams

(acetonitrile) were run at 3 mL/min while maintaining a total aqueous flow rate of 50 mL/min.

NPs were collected at the outlet stream and washed three times with water using Amicon

centrifugation filtration membrane to remove excess drugs and organic solvents. Dynamic light

scattering (DLS) was used to determine particle size and size distribution, using a Zetasizer Nano

ZS instrument (Malvern Instruments Ltd., U.K.). Particle visualization was carried out through

TEM (JEOL 2011 instrument at an acceleration voltage of 200 kV). Drug loading and

encapsulation efficiency (EE) were determined by quantifying the amount of docetaxel in the NP

by dissolving them in a 50/50 acetonitrile/water solution immediately after synthesis and

vortexed for several hours to induce NP dissociation. The amount of docetaxel inside the NPs

was quantitated by HPLC with a UV reader at a wavelength of 267 nm. A calibration curve with

known concentrations of docetaxel was prepared, and the amount of drug encapsulated in the

NPs was calculated accordingly.

Nanoparticle Binding and Uptake by RA W264.7 and LNCaP cells. RAW 264.7 cells were

cultured in DMEM medium with 10% fetal bovine serum, 50 units/mL penicillin and 50 mg/mL

streptomycin. LNCaP cells were cultured in RPMI medium with 10% fetal bovine serum, 50
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units/mL penicillin and 50 mg/mL streptomycin. Cells were seeded at a density of 50,000 cells

per well on a 24-well plate. After 24 h, the cell medium was removed and replaced with NPs

dissolved in the same medium at a concentration of 1 mg/mL. Cells and NPs were incubated for

4 h for the case of RAW 264.7 and LNCaP, followed by three washes with 1% BSA solution in

PBS to remove excess NPs. RAW264.7 cells were removed from the plate using a cell scraper

and centrifuged, while LNCaP cells were treated with trypsin, removed from the plate, and

centrifuged. The resultant cell pellets were reconstituted in 250[tL of PBS and placed on a 96-

well plate for FACS analysis. Flow cytometry analysis was performed on a BD Biosciences LSR

II with High-Throughput sampler (HTS) option, with 10,000 cells were collected for each

measurement.

Pharmacokinetics and Biodistribution Studies. All animal studies were conducted under the

supervision of MIT's Division of Comparative Medicine in compliance with the NIH's

Principles of Laboratory Animal Care. For Pharmacokinetic studies wild-type Balb/c mice

(Charles River Laboratories). Fluorescently labeled NPs (with Alexa-647) were injected via tail

vein in groups of 4 mice per formulation. At different time points, few microliters of blood were

sampled from the mouse and the fluorescence measured using IVIS imaging system. As a control,

blood from mice with no NPs injected were used and the background fluorescence was measured.

Plasma half-life was determined using the method described by H. Cabral et a 132, whereas area

under the curve was calculated by integrating the PK profile using the trapezoid method.

For biodistribution studies, the xenograft tumor-bearing mouse model was constructed by

inoculating 1x10 7 cells/0.2 mL freshly prepared from cell cultures and mixed with matrigel. The

cells employed will be luciferase-expressing LNCaP cells (LNCap-luc), which allow for

continuously monitoring the growth of the tumor by whole-animal luminescent imagining.
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Tumor was allowed to grow for 3-4 weeks until it reached a size of close 100 mm3 . NPs labeled

with Alexa-647 were injected via tail vein in groups of 5 per NP formulation. After 24 h the

animals were sacrificed, main organs were excised, weighted and their fluorescence was

measured using IVIS.
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Chapter 7 - Outlook: The Relationship Between

Nanoparticles Properties and Biological Behavior-a

Deep Dive.

7.1. Introduction.

Despite the advances in the field of NPs as drug carriers and thousands of related

publications in the last 30 years, only remarkably few have made it to the bedside. The wide gap

between bench discoveries and clinical translation can be partly explained by the lack of

fundamental understanding of the strengths and limitations of both targeted and non-targeted

NPs'. While there is wide knowledge on a myriad of NP systems made of different materials and

encapsulating a wide range of drugs against several model diseases, there is limited deep

understanding on what set of NP properties results in highly effective therapeutics with low off-

target toxicity. The goal would be to use the state-of-the art platform technology developed in

this work as a tool to deepen the current understanding of NPs at different levels of interactions,

mainly NP-proteins, NP-organs, and NP-body. We would aim to answer fundamental questions

that would help us to elucidate the phenomena happening at different levels and how they are

interrelated. Mainly we want to answer: 1) how do NP physicochemical properties and protein

135



adsorption patterns correlate to circulation and tissue distribution kinetics? 2) What are the main

NP characteristics affecting the accumulation of NPs in the tumor? 3) How does active targeting

and drug release rates from NPs affect the kinetics of drug accumulation in the tumor and how

does it compare to drug in its conventional dosage form?

7.2. What we have learned so far

Research in the last decades has cultivated a set of "rules of thumb" that guide scientists

when designing of nanoscale drug delivery systems for cancer therapy. For instance, with respect

to size, it is important to have a NP with a size >10 nm to avoid kidney filtration and <100-150

nm to minimize recognition by the organs of mononuclear phagocyte system (MPS) like the liver

and spleen2 . NPs with neutral surface charges are preferred to minimize protein adsorption and

activation of the complement system 3. With respect to surface hydrophilicity, protective

poly(ethylene glycol) (PEG) coatings are customary. PEG chains with a length of ~3000-10,000

endow NPs with a "stealth hydrophilic layer" that results in the increase of NP circulation time.

Usually, PEG coverage between 2-10% on the NP surface are sufficient to elicit this effect4 .

Finally, when targeting ligands are used, the optimal density on the surface is a balance between

sufficiently abundant to increase cellular uptake and sufficiently dilute to maintain the surface

properties and the stealth effect5 . Essentially, the exact number depends on the nature of the

ligand6 . Nevertheless, recent studies have indicated that there is much more to these rules

currently unknown and unexplored. For instance in some reports, negative charges on the NP

noticeably contribute to MPS capture and clearance from the bloodstream 7~9, while that effect is

not observed in other studies1 '~. Similarly while some studies demonstrated NP blood

circulation time varies with NP size4'14, recent studies have shown that NP size did not affect the

NP pharmacokinetics but only the biodistribution' 5 . Furthermore, while some studies have

136



shown that active targeting (i.e., having a targeting ligand on the NP surface) increases NP tumor

accumulation 16, others have shown that active targeting affects intracellular delivery but not

tumor accumulation 7 . This is a clear sign that these succinct design rules are simplistic in nature

and that further understanding is required. For instance, even though it is known that NPs with a

size between 10-100 nm can passively accumulate in tumors, within these limits, the size

sensitivity of the kinetics of liver and spleen distribution is not known. Similarly, the influence of

size and surface charge on the optimal PEG coverage (density and length) is not established

either. In summary, while there is empirical understanding of the effects of NP properties on

their biological behavior at a basic level, there is a lack of sufficiently comprehensive

understanding to determine key design criteria and to consistently bring NPs to the clinic in a

more effective way. Such knowledge would not only be useful to move current NP formulations

from bench side to bedside, but could also allow us to design truly improved therapeutics that

substantially increase the survival of cancer patients.

7.3. Three key research directions

Based on the aforementioned, we have identified three key problems that are very

important on their own and when studied in concert, and that could provide substantially deeper

understanding in the field: 1) Determining the relation of NP physicochemical properties to the

kinetics of NP interactions with proteins in biological fluids ex vivo, and in different organs in

vivo. 2) Understanding the impact of active targeting on the kinetics of tumor accumulation in a

rigorous and unbiased way. 3) Understanding the kinetics of tumor's exposure to total and free

drug with targeted and non-targeted NPs. These problems will be highlighted in more detail in

the next paragraphs.
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(1) The need for correlating NP physicochemical properties with ex vivo protein

adsorption, and in vivo pharmacokinetics and biodistribution in all relevant organs: In general,

pharmacokinetics and biodistribution of NPs directly relate to their physicochemical properties18-

2. Currently, the most common way to understand the effect of NP physicochemical properties

to in vivo behavior is to characterize the NP properties in aqueous non-biological fluids, and

correlate those properties to what is seen in vivo (e.g., circulation time, distribution to a specific

organ, and/or efficacy). However, there is currently a large "black box" regarding key aspects of

the NPs interactions with the body such as dynamic changes in NP properties upon contact with

biological fluids and non-specific distribution in tissues such as liver, spleen, kidneys and lungs

(Figure 7.1). Only focusing on blood circulation profiles or terminal tumor accumulation is

similar to trying to understand a complex chain of reactions by concentrating only on the final

yield of end-products. To achieve a clearer portrait, implementation of a "systems approach"

provides a more coherent and robust solution. In such method each "unit" is investigated both

independently and in relation with other units. Consequently, the relations between NP

properties and their biological performances could be addressed using a systems approach by

analyzing the influence of each NP characteristic (size, charge, surface composition, and ligand

density) on (i) the NP interaction with proteins in biological fluids ex vivo, and (ii) the effect of

these behaviors on blood circulation, and tissue accumulation kinetics for all relevant organs

(lungs, kidneys, liver, spleen)2 2 '23. Semi-empirical models would allow us to understand and

predict how a specific NP property changes when dissolved in blood, how these changes affect

other NP properties, and how they affect overall tissue distribution kinetics in vivo2 3 ,24. For

example, the rates at which the NPs accumulate or are cleared by different organs may be more

readily correlated with NP properties in vitro and ex vivo than the circulation half-life that is a
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combination of the resulting effects of individual organs. Through this approach, it may be

possible to determine the key NP attributes that result in long blood circulation times, and

minimal accumulation in the MPS.
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Figure 7.1. Questions to answer in future work.

(2) Impact of passive versus active targeting on the tumor accumulation kinetics: The

existing paradigm behind passive targeting is that the leaky vasculature in tumor possess pores

which size are between 10 to 2,000 nm, depending on the type of tumor25. Small NPs can

therefore passively extravasate and target tumor tissue via the so-called enhanced permeation and

retention (EPR) effect simply by remaining in the circulation for sufficiently long times26 I

contrast, the rationale behind active targeting is that decoration of the NPs with "homing"

molecules will confer them more specificity for the diseased cells, and thus that they will

preferentially distribute in the tumor tissues increasing NP tumor uptake and accumulation27.

However, when solely measuring the distribution of targeted NPs to a tumor, the distinctive
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effect of the ligand cannot be dissociated from the concomitant EPR effect. Furthermore,

because most targeting ligands alter the NPs' residence time in the bloodstream, comparative

studies between targeted and non-targeted formulations are biased by the inherent dissimilarities

in total blood exposition. As a result, questions remain on the pertinence of using targeting

ligands to enhance the specificity of NPs2s. While studying the NP behavior in vivo and ex vivo

in healthy animals would have answered whether the targeting alters the interactions with the

blood proteins and circulation properties of the NPs, our main focus here would be on providing

a bona fide evaluation of the impact of the active targeting on NP tumor deposition. Our

approach is to compare targeted and non-targeted NPs with similar circulation times and size

with their tumor accumulation kinetics. Based on these results, data-driven semi-empirical

models could be built to potentially increase further the understanding of the phenomena at

stake. From these studies the aim would be to develop a mechanistic understanding of the effects

of active targeting by matching pairs of targeted and non-targeted NPs with similar

biophysicochemical properties and clearly assessing their effect on NP tumor accumulation.

(3) Tumor exposure to free and encapsulated drug with targeted and non-targeted

nanoparticles versus the unformulated drug: Tumors offer a very heterogeneous environment

where a highly disorganized network of collagen and high interstitial pressure hinders diffusion

of NPs inside the hyperdense center of the tumor29. Today, the vast majority on NP tumor

accumulation, penetration and distribution studies focus on how deep a NP penetrates a tumor

and how it is distributed away from the blood vessels. However, there is limited information, if

any, on (i) how the drug released from the NP is distributed in the tumor, (ii) how this

distribution changes over time, and (iii) how it is affected by the release kinetics of the NP. This

leads to a bigger question on whether the concentration of drug released from the NP in the
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tumor is sufficient to exert its cytotoxic effect against cancer cells and prevent cancer cells to

develop resistance over time. While drug concentration kinetics in the tumor are frequently

studied during the development of small molecules, this has not been the case for the

development of NPs. The goal would be to develop an understanding of how NP properties

(including drug release rates) affect the tumor accumulation kinetics of a drug (both free and

encapsulated) and comparing it to non-encapsulated free drug, and how is this correlated to NP

efficacy. Building on the knowledge acquired in previous proposed studies and utilizing

formulations with comparable tumor deposition rates, one could focus on targeted and non-

targeted NPs as well as slow- and fast-releasing NPs. We believe that answering these questions

will be key for the future design of highly effective NP therapeutics, exploiting their full

potential.
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Appendix 1. Supporting information for chapter 2.

1. Comparing NPs with microfluidics vs. NP with previously published method
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Figure A1.1. Changes in average NP size dependency on lipid:polymer (wt/wt).
Average NP sizes at different lipid concentrations from NPs prepared using a prior method
described L. Zhang, et al., 2008, are also included for comparison purposes. From 1:1 all the way
to 1:100 lipid to PLGA ratio the NP size obtained from the microfluidic synthesis is smaller than
those prepared in "bulk." As shown in Figure 2.2a, changes in flow ratio does not seem to have a
significant effect on NP size.
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2. Change in size over
conditions
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Figure A1.2. Effect of time on NPs made with different precursors and at different
conditions.
(A) NPs in water made with polymer only initially had a size of 40-50 nm and then increase to a
size of 50-100nm within a few hours of formation. NPs made with both lipid and polymer had a
size of 40nm, which remained essentially unchanged within several hours. NPs made with only
lipid had a wide distribution of sizes ranging from 200-300nm but the sizes did not change
within several hours. (B) Hybrid Lipid-polymeric NPs were stable in both 10% BSA and 10%
Serum at 37"C. In contrast, PLGA NPs had a dramatic increase in size after they were incubated
in BSA and Serum.
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3. Investigating the effect of DSPE-PEG on lipid-PLGA NP stability
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Figure A1.3. Effect of DSPE-PEG in stability of lipid-PLGA NP.
When DSPE-PEG is absent, although there is a lipid layer around the polymeric core, the
resulting NP is not stable in PBS. When the amount of DSPE-PEG is increased to 3% a slight
increase in NP size is observed when NPs are suspended in PBS compared to water. A smaller
increase in NP size is observed for 6% of DSPE-PEG and an insignificant increase in size is
observed when only DSPE-PEG covers the polymeric core.

146



4. NPs made at slow mixing conditions
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Figure A1.4. Size distribution of hybrid NPs with different properties.
(a) Size distribution of NPs made at slow mixing conditions. (b) Size distribution of NPs made at
rapid mixing using microfluidic channels. Solid line: NPs obtained from a mixture of PLGA and
lipid at a lipid to polymer ratio of 1 : 10. Note that two distinct peaks are present at the
characteristic size of polymeric NPs (50nm) and liposomes (250nm). Dashed line: NPs obtained
when only PLGA is present. Dotted line: NPs obtained when only lipid is present. (c) SEM
image of NPs made from a mixture of PLGA and lipid at a lipid to polymer ratio of 10 : 1.
Because of the resolution limitations of SEM only NPs with size larger than about 150nm can be
observed. The NP sizes shown in this image are 170nm, 250nm, and 290nm, and are
characteristic of liposomes. Scale bar is 1 jim. Before imaging, NPs were sputtered with few
nanometers of gold. Acceleration voltage used was 15kV.
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5. Determining mixing time in channel

(a)

(b)

Figure A1.5 Determination of mixing time.
(a) Using fluorescent dye as the input in the organic solvent stream, complete mixing occurs at
1.4 cm in the Tesla channels. (b) Observation of fluorescent bead transport used to calculate
mixing time within the channel design. First the track length of the bead at a specific exposure
time is calculated from the image. From the track length and exposure time, the fluid velocity
was calculated. In this study the track length used to calculate the fluid velocity was the average
of 50 track lengths measured from 50 different images. In addition, other different fluid
velocities at different exposure times were measured and no significant variability was found.
The mixing time of -10 ms was determined by using the average fluid velocity times the
distance at which complete mixing was observed.

6. Self-assembly of lipid-QDs NPs inside microfluidic channel

Figure A1.6. Observation of self-assembly.
Light microscope screen capture of entire Tesla channel (60 pm x 20 jim) illustrating areas of
QD aggregation followed by lipid coverage in the formation of hybrid-QD NPs.
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Appendix 2 - Supporting information for chapter 3

Synthesis of PLGA and PLGA-PEG NPs

Figure A2.1 shows how PLGA particles easily grow and aggregate on the channel wall when
they encounter the anti-solvent (water) under the Phase II conditions (similar aggregation also
occurs in 2D HFF). 3D HFF under Phase I conditions, however, provided a robust and
predictable means to successfully synthesize PLGA nanoparticles at the equivalent condition
without any aggregation.

Figure A2.1. Synthesis of PLGA NPs.
Synthesis of PLGA NPS from pure PLGA70 precursors (10 mg/mL) by 3D HFF for varying
operation parameters. (a) Channel image at the conditions that result good synthesis of NPs and
(b) that are susceptible to aggregation. (c) Channel fouling due to long-term aggregation of
PLGA microparticles (bottom) (scale bars 20 pm).

PLGAm-PEGS

-- 3D 10 mg/mi
2D

-Bulk

PLGAa-PEG5K
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-3D 10 mg/mi
2D

-Bulk

1 10 100 1000 1 10 100 1000 10000
NP Size(nm)

1 10 100 1000 10000

Figure A2.2. Comparison of size distributions by volume fraction of PLGA-PEG NPs.
NPs prepared by microfluidic 3D HFF, 2D, and bulk mixing methods for the precursor
concentrations of 10 (low) and 50 mg/mL (high), respectively. Aggregated particles are found in
the 1000-10,000 nm range.
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Figure A2.2 shows the size distributions of NPs made from various MW polymer precursors at
low and high concentrations (10mg/mL and 50mg/mL, respectively) using the three different
methods. At high concentrations, NPs obtained by 2D HFF and bulk methods yielded highly
polydisperse particles of extremely large size (>1000 nm), while the implementation of 3D HFF
consistently resulted in smaller NPs with relatively low polydispersity regardless of polymer
concentrations. These observations indicate that 2D HFF is comparable with 3D HFF only for
small MW polymers or very low polymer concentrations where the channels are less susceptible
to fouling.

Aggregated particles are larger and thus reflect more light so that the solution with aggregated
particles can look opaque. Figure A3.3 shows direct visualization of collected sample solutions
that contain synthesized PLGA-PEG particles with various sizes.

a 0m/nd 10mwg 2URWnd SOME/mi

3D 2D Bulk 3 2D Bul 30 20 Buk 3D 2D Bu* 30 20 Bu* 3D 20 0u*

b 250I

1..
Cu
(0

C

C

10 mg/mi 30 mg/mi 50 mg/mi 10 mg/mi 20 mg/mi 50 mg/mi
PLGA4SK-PEGSK PLGA,-PEGK

Figure A2.3. Cloudiness of various PLGA-PEG NPs.
(a) Photos of NP solutions prepared by 3D HFF, 2D HFF, and bulk synthesis. Opacity of the
solution roughly indicates the average size of NPs in the solution. Clear solutions contain small
NPs (<-50 nm) and opaque solutions have large particles up to several microns. (b) Calculated
light intensity along the red dashed line in (a) to estimate the opacity of the solutions.
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Appendix 3 - Supporting information for chapter 4

Table A3.1. Gel Permeation Chromatography
conjugated PLGA-PEG copolymers

(GPC) on TL-conjugated

PEG 4,603 5,221 j 1.13

PLGA-PEG-Folate

Was

49,551

.5'

PEG

IA/V

PEG-RGD

Mass (m/z) Mass (m/z)

Figure A3.1 . MALDI-TOF to verify conjugation of PEG-RGD and PEG Folate.
Note: No free folate or free RGD was observed.
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300 350 400

Figure A3.2. UV-VIS to quantify
Yellow/green colors correspond to

FA

PLGA-PEG-FA

PLGA-PEG

-5uM FA Abs

--- 1uM FA Abs

-ISuM FA Abs

- 20uM FA Abs

-25uM FA Abs

- 30uM FAduplicate Abs

- 35uM FA Abs

- 40uM FA Abs

- 20.7uM PV-27

- 15.uM PV-27

-7.75uM PV-27

amount of folate present on PLGA-PEG-Folate
calibration points and red corresponds to PLGA-PEG-Folate.

Figure A3.3. 1H NMR on PLGA-PEG-Folate
Among other factors, PLGA-PEG-Folate and PLGA-PEG-RGD conjugation efficiencies might
affect the accuracy of the comparison of expected versus detected number of folate and RGD
molecules on the nanoparticle surface. However, EDC/NHS reactions are known to high
efficiencies up to 95% (Lee, S., MurthyN., Biochem and Biophys Res Comm., 360 p275-9,
2007).
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Appendix 4. Supporting information for chapter 6

Figure A4.1. NP precursors used for the synthesis
physicochemical properties.

of NP library with a wide range of
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Figure A4.2. Batch-to-batch reproducibility of targeted NPs prepared in the microfluidic
system.
Comparison of size distribution obtained by microfluidic synthesis versus bulk synthesis.
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Figure A4.3. Average size and zeta potential of non-targeted NPs (NT-NP) and targeted
NPs (TNP).
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