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A B S T R A C T

This dissertation demonstrates how flexibility in hourly electricity op-
erations can impact long-term planning and analysis for future power
systems, particularly those with substantial variable renewables (e.g.,
wind) or strict carbon policies. Operational flexibility describes a power
system’s ability to respond to predictable and unexpected changes in
generation or demand. Planning and policy models have traditionally
not directly captured the technical operating constraints that deter-
mine operational flexibility. However, as demonstrated in this disser-
tation, this capability becomes increasingly important with the greater
flexibility required by significant renewables (>=20%) and the decreased
flexibility inherent in some low-carbon generation technologies. Incor-
porating flexibility can significantly change optimal generation and en-
ergy mixes, lower system costs, improve policy impact estimates, and
enable system designs capable of meeting strict regulatory targets.

Methodologically, this work presents a new clustered formulation
that tractably combines a range of normally distinct power system
models, from hourly unit-commitment operations to long-term genera-
tion planning. This formulation groups similar generators into clusters
to reduce problem size, while still retaining the individual unit con-
straints required to accurately capture operating reserves and other
flexibility drivers. In comparisons against traditional unit commitment
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formulations, errors were generally less than 1% while run times de-
creased by several orders of magnitude (e.g., 5000x). Extensive numeric
simulations, using a realistic Texas-based power system show that ig-
noring flexibility can underestimate carbon emissions by 50% or result
in significant load and wind shedding to meet environmental regula-
tions.

Contributions of this dissertation include:

1. Demonstrating that operational flexibility can have an important
impact on power system planning, and describing when and how
these impacts occur;

2. Demonstrating that a failure to account for operational flexibility
can result in undesirable outcomes for both utility planners and
policy analysts; and

3. Extending the state of the art for electric power system models
by introducing a tractable method for incorporating unit commit-
ment based operational flexibility at full 8760 hourly resolution
directly into planning optimization.

Together these results encourage and offer a new flexibility-aware ap-
proach for capacity planning and accompanying policy design that can
enable cleaner, less expensive electric power systems for the future.

Thesis Supervisor: Mort Webster
Title: Assistant Professor of Engineering Systems
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1
I N T R O D U C T I O N

1.1 summary

This dissertation explores the impacts of operational flexibility on elec-
tricity generation planning. It seeks to demonstrate when and how flex-
ibility impacts planning and to explain why these impacts occur. This
chapter motivates this work, defines operational flexibility, provides
a brief introduction to power systems and associated modeling, and
describes relevant work from the literature.

Operational flexibility describes a power system’s ability to respond
to predictable and unexpected changes in generation or demand. It
is of growing concern in power systems today due to 1) the addi-
tional flexibility required by high penetrations of variable renewables
and 2) the potentially reduced operational flexibility available from
low-carbon plants (e.g., traditional nuclear, geothermal, or coal with
carbon capture). Previous studies have demonstrated important opera-
tions changes in flexibility-challenged scenarios, particularly with sig-
nificant variable renewables. These studies also postulate that opera-
tional flexibility should, therefore, also impact the optimal generation
mix during expansion planning.

Yet, few studies to date have looked directly at the combined flexibility-
planning problem, let alone demonstrated how operational flexibility
impacts of planning or explained why such differences occur. Available
operational flexibility is determined by technical unit-level operating
parameters—such as minimum power output, startup costs, minimum
up and down time, ramp rates, and reserve capabilities. These param-
eters are typically ignored or highly simplified in the initial phase of
traditional planning processes.

In utility power system planning flexibility considerations may only
captured later, during detailed simulations used to estimate power
generation and associated production costs. This opens the possibility
of selecting a suboptimal generation mix during the initial planning
phase and then carrying this error through subsequent detailed simu-
lations and eventually into the generation plan. Moreover, if flexibility
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challenges are encountered, planners must manually adjust capacity to
correct them.

In policy analysis the second detailed simulation stage is typically
omitted, meaning that operational flexibility may be omitted entirely
or only considered using simplified representations that may not cap-
ture realistic dynamics. This can lead to misrepresentations of policy
impacts or suboptimal policy design.

In either case, if additional operating constraints can be included
initially, when first evaluating investments, one might expect to de-
sign generation mixes and policies better able to cope with operational
flexibility challenges. However the large size and long run times re-
quired to simulate flexibility in operations have traditionally made the
required combined model intractable. So the key methodological con-
tribution of this thesis is a new modeling approach that effectively
merges flexibility-aware operations simulations, previously only avail-
able through production costing tools, directly into early phase gener-
ation investment optimization.

Taken together the results of this dissertation should be useful to
stakeholders from across the electric power system, including:

power systems planners , who stand to benefit both from 1) im-
proved recognition and intuitive understanding of operational
flexibility impacts on planning, and 2) new modeling methods
for capturing operational flexibility within planning. By directly
including flexibility within planning, these methods enable opti-
mizing for flexibility when identifying configurations to simulate
in-depth. Such flexibility screening can produce generation mixes
that are lower cost and/or more reliable in actual operations,
even though they might have been eliminated as sub-optimal us-
ing today’s simpler screening tools. In the end, this reduces the
system cost and improves reliability for the generators that are
actually built;

energy and environmental policy analysts , who typically omit
detailed operations simulations and therefore may miss flexibility
challenges resulting in suboptimal policy designs. Ignoring flexi-
bility can potentially grossly under-estimate the emission reduc-
tions from a carbon tax or identify the wrong set of technologies
to incentivize. Understanding the need to and then incorporating
a rich set of operating technical constraints will enable setting ef-
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fective taxes, incentives, and other policy measures for modern
power systems;

emerging technology developers whose products derive
value from providing operational flexibility (e.g., energy stor-
age, demand response, thermal plant retrofits). Such devel-
opers need to understand when their products will have the
most value. They can use these methods to quickly and ac-
curately assess technical and economic outcomes of deploy-
ment scenarios and to understand competition from other
sources of flexibility;

renewable integration researchers , who currently do not have
an efficient way to identify the non-renewable generation resources
for future scenarios and hence may spend considerable effort ana-
lyzing renewable impacts with a sub-optimal non-renewable bal-
ance of system. This may also cause over or under estimates of
reserve needs, energy adequacy, and costs for variable renewable
integration; and

power system flexibility researchers , who are attempting to
develop metrics for operational flexibility, but are currently faced
with deciding between quick to compute but inaccurate estimates
and very data and computationally expensive full operations anal-
ysis. My methods enable a middle ground where rich operations
analysis can be tractably used to provide good estimates for these
metrics. Moreover, a better understanding of how flexibility im-
pacts planning can lead to more refined metrics and possibly
identify missing dimensions worthy of inclusion.

At a broader level, society stands to benefit from new power system Society
stands to
benefit from...
a cleaner, less
expensive
electric power
system

infrastructure and corresponding policies that provide a cleaner, less
expensive electric power system better able to meet the energy needs of
future generations, to incorporate advanced technologies, and to meet
the challenges of a carbon-constrained future.

1.2 2050 climate targets start now

Scientists overwhelming suggest a need to reduce greenhouse gas emis-
sions, particularly carbon dioxide (CO2), to avoid the worst impacts of
global climate change [1, 2]. As one of the largest sources of green-
house gas emissions, our entire energy system, and the electric power
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production in particular,1 will require important changes to achieve
these reductions. As a result, three recent high level roadmap exercises
from Europe, the US, and California have produced similarly ambi-
tious targets for the year 2050. Despite other differences, the European
Union “Energy Roadmap 2050” [4, 5], the NREL RE Futures Study for
the US [6], and the work of Williams, et al. for California [7] all sug-
gest that significant reductions in economy-wide carbon emissions (e.g.
80% below 1990 levels) will involve:

• Aggressive energy efficiency,

• Significant electrification of transportation,

• An electric power system that produces near zero carbon emis-
sions, and

• Well over 50% of electricity from renewable sources.

Each of these alone represents a radical departure from today’s energy
system. Together they will require a fundamental change in the world-
wide economy.

For the electric power system, perhaps the most urgent message of
these reports is the recognition that we are one investment cycle away
from 2050. Given the 40+ year lifetimes of electric power facilities, the
power generation planned today and built tomorrow will still be oper-
ational in 2050. Hence, any generation investments today must be able
to interact with future technology deployments as part of a carbon-
constrained power system, or risk being stranded as expensive, but
under-used, investments.

This thesis focusses on planning for a very low carbon power system
with significant generation from renewable sources, including semi-
dispatchable variable sources such as wind and solar. As described
below, this combination requires new methods for representing tech-
nology interactions in operations and the resulting impacts on plan-
ning. Even without the pressures of climate change, the tremendous
transformations already underway in the electric power system may
also require similar changes to operations and planning.

1 In the US, electricity production accounted for approximately 40% of nation-wide
carbon dioxide emissions [3]
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1.3 power systems in transition

The current power systems closely resembles those built by Westing-
house and others in the early part of the 20th century. Fossil fuel
fired generation provides the bulk of electricity worldwide, and for
the most part, this electricity flows outward from transmission linked
centralized generation for distribution to passive consumers. However,
current environmental, technical, economic, and political factors are
driving a worldwide transition to advanced electric power systems, in-
creasingly characterized by:

• Intermittent renewable generation—e.g., wind & solar photovoltaic
[8];

• Distributed generation—e.g. co-generation, solar photovoltaic [9];

• Active demand resources—e.g., high-performance buildings, dis-
tributed generation, and demand response [10]; and

• Novel storage technologies—e.g., electric drive vehicles and ther-
mal storage [11, 12, 13].

Simultaneously, structural changes in recent decades have shifted a
growing amount (currently about half) of power systems away from
centralized regulated monopolies to deregulated competitive markets,
and ubiquitous communication/computing promises a forthcoming
“Smart Grid.” Figure 1.1 shows a conceptual picture of this transition.

These changes introduce new dynamics across multiple timescales,
forcing power systems planners and policy makers to revisit the long-
standing question of how much operational detail must be captured
to adequately assess long-term planning options. In the short term,
these new technologies each increase uncertainty and variability in
the hour-to-hour operational dynamics. Designing the power system
that can manage this uncertainty and integrate these emerging tech-
nologies with the still evolving mix of traditional generation requires
new paradigms for capacity expansion planning [14, 15, 16]. In par-
ticular, these technologies are all inextricably linked to operational
“flexibility”—the ability of a power system to respond to changes in
operations at timescales from sub-second to hourly, daily, and longer
due to predictable and unexpected variations in demand and vari-
able renewable generation, outages of generation plants, other network
induced disturbances or environmental constraints [17]. This thesis
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Figure 1.1: A power system in transition. Showing a shift from (a) central-
ized, largely fossil generation with passive consumers to (b) a dis-
tributed “smart grid” with bi-directional power and data flows.

Icon sources: PT = PoweredTemplates, RMI = Rocky Mountain Institute, UniS =http:
//science.uniserve.edu.au/school/sciweek/2005/
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presents a novel way of integrating flexibility directly into capacity
planning models.

1.4 operational flexibility

1.4.1 The electricity balancing act

The need for operational flexibility2 in the power system begins with
the fact that electricity cannot easily be stored in bulk which in turn
requires generation to match demand at all times. As a result, gen-
eration must increase and decrease with every flick of a light switch
or start/stop of an aluminum smelter. Conveniently, when aggregated
across an entire power system - which typically span a scale from cities
to multiple states or even multiple nations - the resulting fluctuations
are both slowly varying and predictable to within a few percent [25].

On the supply side, generators increase or decrease their outputs,
primarily3 in response to an Automatic Generation Control (AGC) sig-
nal from the system operator. However, technical constraints may limit
a generators ability to respond to these changes. These technology and
facility specific constraints include: minimum and maximum stable
output power; ramp limits, which restrict the rate of output change;
and startup/shutdown constraints such as minimum up (and down)
time to ensure plants run (and stay off) long enough to avoid excessive
thermal stresses.

Traditionally, these operating constraints are seldom limiting due to
the combination of slow, predictable changes in demand and a corre-
lation of operational flexibility with the natural plant dispatch “merit
order:” The least flexible units - nuclear, geothermal, and coal - also
have the lowest operating costs and hence run nearly all the time as

2 Note that in this thesis, and currently in the power systems community [18, 19, 17,
20, 21], the term “flexibility” considers the operational flexibility described in this
section. This usage is distinct from the concept of designing for expansion or recon-
figuration that has also been called flexibility by the real-options/engineering-design
community [22]. Confusingly, such design flexibility has also been used in the past
for power systems [23, 24]. For clarity, I have tried to specifically specify “operational
flexibility” throughout this thesis.

3 Smaller plants, many renewables, and co-generation currently do not receive such
signals. They produce whatever power they can as long as their local sensors see
the power grid is operating normally. In addition large thermal plants also use a
combination of rotating inertia and “droop” control to respond to faster changes
(less than a few seconds) [26]
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“baseload” units, thereby largely avoiding operations limits. At the
other extreme, the most flexible units - aero-derivative natural gas tur-
bines and internal combustion generators fueled by oil or natural gas
- are also most expensive and hence they are used as “peakers” that
only run for brief times during the highest demand periods. This high
cycling regime with frequent ramps is well matched to peakers higher
operational flexibility.

1.4.2 Challenges of variable renewables

Increased use of variable renewable sources - wind and solar - in-
creases both the variability and uncertainty in the “net load.” The net
load is defined as consumer demand minus generation by variable re-
newables and represents the power that must be generated by other
units on the system. The existing power system is already designed
to handle some variability and uncertainty in (net) demand and hence
can readily accommodate moderate4 amounts of variable renewables
with little to no changes [27]. However, as illustrated schematically in
Figure 1.2 at higher penetration levels, these dynamics and uncertainty
can cause operational flexibility challenges such as those described in
the following three examples:

1 . minimum output limits Increased variable renewable capacity
can meet most or all of demand during some time periods, caus-
ing baseload coal, geothermal, and particularly nuclear plants to
reach minimum output constraints, which can be as high as 50 or
90% of their maximum output [28]. Further reductions beyond
these levels requires shutting down. And after shutdown, the
large thermal mass of these units can require hours (combined
cycle), days (large steam plants) or even weeks (nuclear) of min-
imum down time before the the facility can again be restarted.
Such cycling is also costly in terms of fuel, manpower, and in-
creased maintenance. Moreover, once a unit restarts it may en-
counter minimum up time constraints and be unable to shut-
down during the next dip in net load. More flexible units are able
to lower their outputs further and can be started and stopped
sooner and at lower cost.

4 The meaning of “moderate” varies by power system ranging from about 5-20%
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2 . increased ramping requirements The increase in magnitude
of hour-to-hour net load changes and related sub-hourly dynam-
ics require increased ramping by the rest of the system, poten-
tially forcing thermal plants, particularly steam units, up against
their ramp rate limits. This can require the increased operation
of more flexible combined cycle and combustion turbine units to
accommodate ramping needs.

3 . increased reserve needs Uncertainty in demand and in avail-
ability of supply is largely managed with reserves. Reserves are
the extra capacity maintained to account for the possibility that
there may be insufficient generating capability when demand is
higher than expected or if some generation is unexpectedly un-
available. Concepts of reserves span timescales from years - plan-
ning reserves for unexpected load growth - down to seconds -
regulating reserves that adjust for the inherent stochasticity in us-
age over short time scales. In operations, electricity’s traditional
lack of bulk storage can also require downward reserves to ac-
count for unexpected decreases in generating requirements. At
high penetrations of renewable generation, the uncertainty in net
load due to imperfect renewable forecasting can increase reserve
requirements for the system. In addition, the ability of a generat-
ing unit to provide reserves is a function of its ramping capability
over the corresponding timeframe. This further complicates the
ramp limit challenges described in the previous example.

1.4.3 Challenges of emission limits, particularly carbon

Binding limits on pollutant emissions - or equivalently emission taxes
or other costs [29] - can impact the operational flexibility of power sys-
tems. Such limits for Sulfur Oxides (SOx) and Nitrogen Oxides (NOx)
have existed in the US since 1990s due to the Environmental Protec-
tion Agency (EPA) Acid Rain Program [30] and NOx Budget Trading
Program [31]. And similar markets for carbon dioxide and other green-
house gases have been established (e.g. Europe [32], California [33]) or
proposed (e.g. US [34]) in efforts to limit the extent of global climate
change. For simplicity, this thesis focuses on the impacts from limits
on carbon emissions on operational flexibility across a number of time
frames. Exploring the impact of other environmental constraints is left
for future research.
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In the short term, carbon emissions limits or carbon prices can alter
the marginal cost based merit order, reducing the relative cost of gen-
eration from lower carbon intensity Natural Gas fired Combined Cycle
Gas Turbine (NG-CC) plants and raising the relative cost of generating
from coal steam as baseload. Such a swap would improve system-wide
ramping capability since NG-CC output can change more rapidly. How-
ever during peak periods when coal must also run to meet demand, the
altered merit order could impact reserves. This is because coal steam
plants are now the marginal generator, but they have lower ramping,
and hence reserve, capability. Coal steam units as marginal genera-
tors create additional challenges for operating dynamics, because they
cannot start and stop frequently to meet the daily demand cycles. As
a result, startup and shutdown constraints may require consideration
when assessing carbon policy impacts.

In the long-term, carbon restrictions will encourage investment shifts
toward low-carbon baseload technologies such as nuclear, geothermal,
and Carbon Capture and Sequestration (CCS). Many existing and pro-
posed configurations5 for such facilities have limited operational flex-
ibility due to high minimum output levels and limited ramping rates
[36, 28]. This decrease in operational flexibility can be particularly prob-
lematic in combination with variable renewables - whose increased
adoption is also encouraged by emission limits of all kinds. As de-
scribed in the previous section, high penetrations of variable renew-
ables require more, not less, flexibility to account for increased vari-
ability and uncertainty. The least cost generation mix with low carbon
emissions, if determined without considering operational constraints,
would be unable to meet a realistic pattern of demand.

1.4.4 Other sources of operational flexibility

In addition to adjusting thermal plant output, non-thermal generation,
storage, and demand side resources can provide operational flexibility
as described below:

5 Operational flexibility of CCS is unknown given limited experience for power genera-
tion. Some suggest the carbon capture equipment itself may require steady operation
to be effective [28], while others have suggested that the ability to throttle the CCS
equipment might increase operational flexibility by enabling a reduction the plant’s
internal load and hence an increase its output [35]. In addition Integrated Gasifica-
tion Combined Cycle (IGCC) could allow coal plants to use more operationally flexible
Combined Cycle Gas Turbine (CCGT) technology.
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hydropower turbines can ramp rapidly and have few technical startup
and shutdown constraints making the inherent energy stored by
hydropower reservoirs a potentially large source of operational
flexibility. However, such systems are not as flexible as they first
seem. Large hydro systems such as those of the pacific north-
west and Brazil consist of interlinked cascades of dams with min-
imal storage in intervening reservoirs such that water entering
the upper part of the system must continue on to the end. Some
short-term variations such as the seconds to minutes changes of
regulation are possible, if facilities are so equipped, but large
hour-to-hour changes to adjust for uncertainty are not always
possible. More importantly, agriculture, recreation, and environ-
mental habitat considerations6 can force hydro to follow a rigid
pre-planned operating schedule, potentially eliminating any con-
tribution to operational flexibility [38].

wind curtailment, or “shedding,” can be used when wind lev-
els are higher than forecast or demand is lower than anticipated.
In addition to correcting day ahead forecast errors, curtailment
can also be used to reduce the rate of thermal plant ramp down
in the event of rapid increases in available wind.7 However, cur-
tailment only helps for these downward flexibility requirements.
Other sources of upward operations flexibility are still required.
Furthermore, regulations in many regions prioritize wind, pre-
venting wind shedding. Furthermore, in market environments,
wind incentives enable wind producers to bid negative prices for
extra wind output in short term balancing markets, making such
curtailment financially unattractive.

demand response—the ability for demand to respond to signals
from the power grid - provides operational flexibility by adjust-
ing the other side of the energy balance equation. Historically,
demand response involves large customers who receive lower
electricity rates in exchange for the system’s ability to cut power

6 For example, the Pacific Northwest’s hydro dominated Bonneville Power Adminis-
tration (bpa) was forced to shed wind output in order to run more water through its
hydro turbines in the springs of 2011 and 2012. Both were high snowmelt years and
despite rules giving dispatch priority to wind, the water needed to run through the
turbines since diverting it through the spillway would introduce unhealthy levels of
nitrogen for fish populations [37].

7 For example, limits to renewable ramping are imposed by the grid codes in Hawaii
[39].
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when required by the grid, such as following a generator loss.
Today, a large number of variations exist including price-based
programs run by operators [40], and companies that offer reserve
services by aggregating mid-sized customers who are linked with
manual and automated energy control systems [41]. Most exist-
ing demand response programs provide the equivalent of up-
ward operations flexibility provided by generators by lowering
net load needs. In addition, large customers may also bid di-
rectly into energy markets, including the 5-15min balancing mar-
kets, thereby offering some bi-directional flexibility. In the fu-
ture, real-time pricing, enabled by smart-grid communication,
could extend this to all customer classes, potentially providing bi-
directional operations flexibility to compensate for outages or re-
newable forecast errors in the minutes to hours timescale. Faster
reserve classes might be provided by locally sensed frequency8

responsive loads [42]. However, particularly with price based pro-
grams, uncertainty in customer responses, the need to coordinate
across large areas, and the potential for rebound and oscillations
will require care if the power system relies on large-scale demand
response for operational flexibility.

energy storage could offer a solution to many of the power sys-
tems challenges discussed here, if only it were not so expensive.
Within its power and energy capacity limits, energy storage can
readily provide bi-directional operational flexibility across a wide
range of timescales from sub-second to days and longer. Today,
pumped hydro storage operates in some power systems to help
smooth daily demand cycles by pumping water uphill during pe-
riods of low demand and running as a traditional hydro facility
during peak hours. Just like traditional hydro, such systems can
also provide operational flexibility. Moreover, pumped storage fa-
cilities are typically less constrained by political and environmen-
tal limits. In addition, emerging technologies including flywheels,
stationary batteries, and plug-in electric vehicles not only are ca-
pable of providing operations flexibility, but may partially rely
on providing reserve services for supplemental income [43, 44].

In addition, the physical and regulatory structure of a power system
can also impact available flexibility. For example, transmission con-

8 Deviations in the grid’s frequency provide the first indicator to supply-demand mis-
matches
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straints can limit the ability of resources in one region of a power
system to provide power or reserves to another, thereby restricting
operational flexibility. In contrast, transmission inter-connections may
enable one power system to share operational flexibility resources with
its neighbors. On the regulatory side, the timing of market closing can
have a large impact on the amount of operational flexibility required
by a system. The closer to operating time that market bids are due, the
more accurate are the forecasts for variable renewables and load . As a
result, markets which accept bids more frequently and closer to times
of operation offer a form of operational flexibility by reducing the total
quantity of flexibility required from generators or other resources.

1.4.5 Quantifying Flexibility

Growing awareness of the need to consider operations flexibility has
sparked an interest in developing metrics to quantify it [38, 45]. For
example, Lannoye, et al.’s proposed Insufficient Ramp Resource Ex-
pectation (IRRE) metric [46] estimates the expected percentage of ramp-
ing events during a year that exceed a power system’s capabilities.
These deviations are then plotted as a function of time for horizons
from 0 to 24 hours to identify short versus long term flexibility needs.
The International Energy Agency (IEA)’s Flexibility ASsessmenT (FAST)
method [36] uses simple accounting to estimating the maximum ramp-
ing capabilities for a system from a variety of sources, and relies on
system-specific judgement to qualitatively assess how much of this
maximum is actually available.

These efforts point out the difficulty of accurately computing the
operational flexibility for a power system. The FAST method falls back
on qualitative methods for assessing system flexibility adequacy due
to data and modeling limitations that prevent accounting for all the
constraints, such as startup effects, that impact flexibility. With IRRE,
Lannoye, et al. show examples where simplified methods that do not
include relevant operating constraints can mis-represent system flexi-
bility by a factor of 3x [46] and argue for the importance of conducting
fully detailed operations modeling to adequately assess power system
operations flexibility [45].

This thesis addresses this need by presenting a computationally effi-
cient method for computing complex operations within capacity plan-
ning. Specifically, it integrates the basic power systems models of unit
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Figure 1.3: Electricity Modeling Types: different model types cover overlap-
ping timeframes from milli-seconds to years, but there is a trade-
off with the feasible level of modeling detail.

commitment-based operations, maintenance scheduling, and capacity
planning into a single optimization model. These basic model types
are described in more detail in the following section.

1.5 overview of power systems models

1.5.1 Basic model types

Given the scale and complexity of the electric power system, a wide
range of model types have evolved to address basic system needs.
Figure 1.3 shows a cascading chain of these models working across
a range of timescales from milliseconds to years with an associated
trade-off in the level of engineering detail captured. As the overlap-
ping bubbles suggest, the boundary between types is not precise and
many sub-types and variations exist. Moreover, when working up the
model chain, ever simpler versions of each model serve as sub-models
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for the larger types that cover longer time-frames at lower technical
resolution.

protection/stability : At the fastest timeframes, engineering mod-
els are used to ensure reliable system operation during normal
operations and in the fractions of a second following a distur-
bance. For example models are used to design set points for cir-
cuit breaker relays as part of over-voltage and line/phase trip
protection schemes. Other models examine the precise stability
of control systems for individual controls and generators and for
wide-area coordination [47].

load flow, or power flow, captures many of the unique challenges
of the power system. It not only checks the instantaneous balance
of supply and demand (see section 1.4.1) but also models the key
fact that, unlike water flowing in pipes, electricity flows through
the power grid cannot be directly controlled9. Rather, the flow
depends on the physics of the lines and components as described
by Kirchhoff’s and Ohm’s laws [26].

economic dispatch attempts to find the least cost combination of
generator power output levels to meet the load. This combina-
tion of economics and engineering enters into the realm of socio-
technical modeling as required by all later model types. The im-
portant sub-type of Optimal Powerflow (OPF) explicitly combines
economic dispatch with load flow to find the least cost dispatch
considering power system losses and respecting transmission con-
straints. In many market based systems, OPF provides location-
based energy price based on the marginal value10 of power de-
mand at each transmission node/bus [48].

unit commitment looks ahead a few hours to a few days to de-
termine which generators to turn on and have available for out-
put. This requires considering a large number of technical con-

9 There are some limited exceptions to this lack of controllability. Input power can
be controlled for the small fraction of transmission lines that use steady Direct cur-
rent (DC) power rather than sinusoidal Alternating current (AC) power. Also in recent
decades there has been growing academic interest and some limited utility deploy-
ment of Flexible Alternating Current Transmission System (FACTS) devices that use
power electronics to exert control over how power flows on the system.

10 These marginal values, also known as dual variables for linear formulations, repre-
sent the change in overall system cost per unit change in power input/output at each
point in the system.
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straints on generators leading to a challenging optimization prob-
lem. This difficulty combined with the potential for large cost
savings from even minor improvements in optimality has encour-
aged extensive research in unit commitment methods [49, 50, 51,
52, 53] as described in more detail in Section 2.2. In many market
based power systems, unit commitment is used to clear the day
ahead market. Unit commitment plays a central role in this thesis
because its ability to capture the full range of generator technical
constraints makes it the best tool for accurately modeling the op-
erating flexibility of power systems.

maintenance : Thermal generators typically require from one to five
weeks of scheduled maintenance per year during which time they
are unavailable to provide power or reserves. Typically mainte-
nance is scheduled during periods of low demand, to keep plants
available during peak periods, but even during low demand pe-
riods, sufficient capacity must be available to provide energy and
reserves. Maintenance optimization must therefore balance sys-
tem reliability with other constraints such as maintenance crew
availability [54].

hydro-thermal coordination Typically, traditional hydropower
resources are not limited by peak power capacity but by water
availability. As a result, water usage is allocated over the year
to ensure its availability for both energy and other uses during
dryer seasons. Given the uncertainty in future weather and the
topological complexity of many hydropower systems, the chal-
lenging hydro-thermal coordination problem has spawned exten-
sive research [55] and even development of new optimization al-
gorithms [56].

production cost As the timeframe extends beyond weeks and out
to a full year (8760 hours), modeling enters into the realm of
production costing and the mid-term considerations of mainte-
nance and hydro-thermal coordination must be included along
with shorter-term economic dispatch and unit commitment. Typ-
ically the objective of production cost models is to determine the
expected cost of operating the power system for an extended pe-
riod of time [57].
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Figure 1.4: Modeling types integrated by the methods of this thesis. Some
other common classes of combined models are shown for compar-
ison.

capacity planning attempts to optimize investments to provide
the least cost power system while maintaining reliability and
meeting environmental and other constraints. There are two inter-
linked sub-types: transmission and generation planning, which
are historically kept separate due to computational complexity
[58, 59]. Capacity planning is described in more detail in the next
section (1.6).

1.5.2 This thesis

In order to capture operations flexibility directly within capacity plan-
ning models, this thesis combines unit commitment-based methods
and capacity planning optimization. In addition, as seen in Figure 1.4,
the full range of power systems models from economic dispatch to
capacity planning is included . This is in contrast to most national
energy planning models that cover a comparable span of power sys-
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tems models11, but typically omit unit commitment, maintenance, and
hydro-thermal coordination issues.

1.6 role of planning and planning models

1.6.1 How planning fits in

Centrally planed systems

Beginning in the mid-1900s most electricity was provided by large
state-owned or heavily regulated monopoly utilities. These utilities
used capacity planning to determine the type, size, and technology of
generation plants to build. Although these utilities had to justify their
decisions to regulators and/or customers, the question of who was in
charge of planning was fairly straight-forward since the utilities owned
and operated all of the facilities. For the US, things changed somewhat
with the Public Utilities Regulatory Act (PURPA) of 1978 [60], that en-
abled small independent power producers to provide power the grid.
More importantly, starting in the late-1990s the deregulation of the
electricity sector meant that some or all of generation was no longer
controlled—or planned—by central utilities, as described in the next
paragraph. However, even today, the role of centralized planning re-
mains largely unchanged in those utilities that remain regulated mo-
nopolies.

Markets and planning

The advent of markets for electric power over the past few decades
has made the role of planning less clear. Theoretically in an ideal-
ized energy market that correctly prices non-served energy, marginal-
cost-based market clearing12 will enable all generators to recover their
fixed costs. This will, in turn, provide adequate signals to investors
to build an identical generation mix to that under a centrally planned

11 In addition, national energy planning and related models typically cover multiple-
energy sectors, a dimension not shown on this graphic and not covered by the meth-
ods of this thesis. Conceptually, the methods of this thesis could be used as part of a
multi-sector combined model. This extension is left as an area for future research.

12 Marginal-cost-based market clearing sets the energy price equal to the bid of the most
expensive unit that is actually used to meet demand. All generators who operate in
the same time period are paid this energy price. Technically, there are also some
price variations based on location due to transmission constraints and non-linear
components of generator cost functions.
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system [61]. However, in reality this has not been the case [62]. . Price
caps, system specific combinations of environment/social considera-
tions (economic externalities), imperfect information, market power,
mis-matched risk profiles, and even generator technical constraints
can individually or together prevent socially “optimal” investments
[63, 64].

Planning and policy

As a result, there has been growing need for indicative planning con-
ducted by system operators and/or regulators. Indicative planning
uses a planning process from a centralized perspective to inform the
design of incentives and/or supplemental markets [65]. Such planning
can target Renewable Portfolio Standard (RPS) or forward capacity mar-
ket13 design..

But, perhaps more importantly, policy makers also directly or in-
directly consider electricity planning when analyzing broader energy
and/or climate policy. In this setting, capacity planning is used to es-
timate the electricity infrastructure investments and their costs that
result from potential policy changes. In this setting, shortcomings in
the planning-for-policy process can be particularly problematic. Often
electricity is but one of many sectors under consideration, encourag-
ing the use of (highly) simplified representations of the power system.
Such simplifications may miss key interactions that can drive actual
power system behavior. Furthermore, as described next, policy ana-
lysts may only consider the “initial” planning phase—one that histor-
ically lacks operational flexibility considerations—potentially leading
to sub-optimal policy design. An important component of this disserta-
tion is illustrating and describing such problems and offering methods
for capturing operational flexibility when conduction planning for pol-
icy.

1.6.2 Modeling for planning

The resource planning problem consists of two primary components:
(1) Investment decisions to determine what types of power plants and
demand resources to deploy and when; and (2) a rich operations sub-
problem that determines the cost and other impacts that result from

13 In a forward capacity market generators bid into an auction years in advance and
are paid to supply firm capacity to the system
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a given resource mix. Given this complexity, planning methodologies
traditionally apply one of two model types:

1. Exploring a rich planning decision (investment) space using highly
simplified operations models, e.g. [66, 67, 68, 69];or

2. Capturing detailed operating dynamics for a limited set (e.g. 1 to
3) of pre-determined capacity mixes, e.g.[70, 71].

In practice, energy planners may use both approaches sequentially.
Simplified type-1 models are used to screen for promising results to
study in detail using type-2 models (e.g., [72]). However, as shown
later in this thesis, when designing advanced power systems, the in-
teractions among dynamics, uncertainties and constraints from both
the planning decisions and detailed operations may need to be exam-
ined simultaneously. The assumptions exploited by traditional plan-
ning models in order to decouple operations from planning no longer
hold. For instance, type-1 planning models typically simplify opera-
tions using non-sequential, highly aggregated demand distributions
called load-duration curves [73, 57, 74, 75]. This simplification ignores
operational flexibility by implicitly relying on the fact that, historically,
demand varied smoothly and predictably at a rate slower than the
response time of most power plants. But, as described in the Opera-
tional Flexibility section above, interactions among intermittent renew-
ables, demand-side resources, and storage occur at these faster operat-
ing timescales requiring consideration of the sequence of energy and
demand variations , their weather dependent correlation [76, 70], and
operating constraints for the complimentary traditional thermal gen-
eration such as ramping limits & startup costs of traditional thermal
plants [77, 78]. Neglecting these faster dynamics and constraints in
longer term planning may misrepresent the true cost and performance
of a particular generation mix and result in solutions that are subopti-
mal or infeasible.

1.6.3 Planning and Flexibility

As described in Section 1.4, operational flexibility can have important
implications in the operating timeframe. Not surprisingly, operational
flexibility can in turn impact capacity planning decisions. This section
describes a few such interactions to increase intuition about opera-
tional flexibility impacts on planning:
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• Nuclear power facilities typically are designed to run at a nearly
constant output level and hence have very high minimum out-
put levels. Stopping and restarting these plants can literally take
weeks so is typically avoided, except for scheduled maintenance.
As a result, the total capacity of nuclear facilities is effectively lim-
ited to be less than the minimum net load. This creates a potential
conflict as strict carbon policy may encourage increased nuclear
investment, while increased variable renewable generation simul-
taneously reduces the minimum net load. As a result, operational
flexibility concerns could limit the optimal investment in nuclear.

• This scenario and related challenges with inflexible generation,
such as those based on coal, are further complicated when op-
erating reserves are considered. If the inflexible baseload units
are unable to provide sufficient quantities of reserves, it becomes
necessary to supplement flexibility by running alternative, flex-
ible units all the time. This causes a reduction in the run-time
and/or energy output for the baseload plants to the point that
operating revenues may no longer offset high up-front construc-
tion costs. This phenomenon may exist in the future even for
systems where baseload is able to provide sufficient low demand
period reserves today, since high penetrations of variable renew-
ables will increase reserve requirements. As a result, investments
in more reserve capable units will displace less flexible baseload
if operational flexibility is considered during planing.

• Partially counteracting this shift is the fact that less flexible units
(e.g. coal) may still be required to meet daily peak loads. Even
though high carbon prices might restrict operation to peak peri-
ods, the more limited start-up flexibility of these units may re-
quire running the units throughout the entire peak season, rather
than just for the peak hours. This out of merit order operation
would decrease the run-time, revenues, and hence installed ca-
pacity of intermediate units (e.g. NG-CC).

• Even maintenance can represent an important dimension for op-
erational flexibility impacts on capacity planning. Maintenance
causes a temporary reduction in available capacity and thereby
reduces available reserves and hence system reliability. As a re-
sult, capacity planning tools that consider both maintenance and
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reserves may favor investment in technologies with less demand-
ing maintenance schedules.

These interactions are not captured by traditional capacity planning
models, particularly those used for the first screening phase and those
used by policy makers. This thesis uses numeric modeling to confirm
these intuitive interactions by mapping out some situations where op-
erations flexibility can drive planning decisions. In addition, this the-
sis describes methods for tractably including operational flexibility di-
rectly into early planning decision tools.

1.7 literature review : planning and flexibility

This section reviews the literature related to power systems planning
and operations flexibility. It adds to the references presented already in
this introduction. In addition, literature reviews for specific subtopics
are incorporated into corresponding sections elsewhere in the thesis.
Specifically:

• Section 1.4 introduces operational flexibility in power systems
and Section 1.4.5 describes recent efforts to define and measure
it,

• Section 2.2 describes the unit commitment problem formulation
and optimization technique literature, and

• Section 2.4.2 reviews past work in clustered unit commitment
formulations.

1.7.1 A Brief History of Least Cost Electric Generation Planning

Even without the complexity of capturing operational flexibility, elec-
tricity generation capacity investment planning represents a challeng-
ing optimization problem. The full problem is a stochastic, multi-period
decision problem with lumpy (integer) investments [79]. Because of the
large scope of the problem, typically only a subset of these attributes
are included as required by the application. This subsection highlights
key developments in the long and rich history of least cost electricity
generation planning. These developments describe the long-standing
tension between simulating realistic operations and tractably optimiz-
ing investment decisions. As described in Sections 1.5 and 1.6, this
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tension results in the use of two different styles of models for plan-
ning: investment optimization models, with simplified representations
of operations, and production cost models, that simulate more sophisti-
cated operations for a fixed generation mix. Developments in both are
intermingled in this discussion. Furthermore, even though awareness
of the need to capture additional system aspects during planning typ-
ically precedes modeling/computational ability; it is often the model
advances themselves that get published. As a result, much of this his-
tory refers to model developments in which a new algorithmic insight
allowed the inclusion of an additional dimension of the planning prob-
lem. For interested readers, the combination of reviews by Anderson
[73], Nakamura [80], Hobbs [79], and Kagiannas, et al. [81], each pub-
lished about a decade apart, provide additional detail for different
stages in the history of electricity capacity planning and associated
models.

Early History: 1940s, 50s, and 60s

In the 1940s and 50s researchers and planners began to formalize meth-
ods for optimizing least cost investment plans in electric power. Al-
though methodologies ranged from graphical methods (e.g. [82, 83])
to formalized mathematical optimization problems (e.g. [84]), all of
these methods solved the same core problem of minimizing the sum
of investment and operations costs—one that is relevant today. Ander-
son [73] provides an in-depth review and summary of at these first
three decades of electricity planning while Sasson and Merrill [85]
puts these planning optimizations in context with other contemporary
electricity optimization approaches including discussing the difficulty
long-term operations optimization for production costing. Early work
also established the distinction between detailed operations simulation
and investment optimization described in Section 1.6.2, with graphical
methods dominating for operation simulation and mathematical pro-
gramming (or heuristics) for investments [73].

In 1957, Massè and Gibrat presented perhaps the first representation
of capacity planning investments as a Linear Program (LP) [84]. This
model was soon solved via computer, corrected to account for the key
role of time varying demand, and expanded for use in helping plan the
French power system [86]. Though limited by the scope of computers
at the time, this marked the beginning of a trend that continues today
where rapidly advancing algorithms and computers are used to solve
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ever more complex electricity investment planning problems. In the
1960s solving practical problems first used interactive semi-automated
heuristics (e.g. [87]) but later was replaced with non-linear optimiza-
tion models such as [86] that included hydropower and simple spatial
detail, yet captured operation costs with only two time periods per
year.

The Load Duration Curve

Of the early graphical methods, those built around the Load Duration
Curve (LDC) became the most widely used and today still continue
to evolve and provide valuable intuition into production costing. In
1955, Kirchmeyer, et al. used LDCs to explain the economic value of
having a distinct type of low capital cost, high operating cost thermal
plants—known as peaking units or “peakers” today—that only run
during the highest ten to hundred hours of the year to supplement
other “baseload” units with higher capital cost but lower operating
costs [82]. Five years later, Galloway, et al. extended this analysis to
include a third “intermediate” plant type and use the intuition from
the LDC as the basis for a heuristic computer model [88]. During the
same time, Marsh and Wright introduced angled availability in the LDC
method to partially adjust for the fact that maintenance occurs during
non-peak periods [89] while Schroeder and Wilson introduced addi-
tional simple operating considerations including partial unit loading
through multi-segment cost curves. Later, Jacoby presented a system-
atic method to include hydro in the LDC [90] (as detailed in [73])

In 1972, a landmark paper by Booth [91] popularized a technique
published (in French) five years earlier by Baleriaux, et al. [92] for LDC
based probabilistic production costing. This approach recognized the
LDC as a cumulative distribution function and convolved it with gen-
erator outage distributions to estimate system reliability, while also
allocating energy production to generators. Ten years later, Caramanis
extended Booth and Baleriaux’s work for use with non-dispatchable re-
sources (e.g. wind) by using Gram-Schmidt Orthogonalization to mod-
ify the net LDC and account for correlations between these resources
and demand [93, 76].

More recently, Ramos, et al. use the LDC as a basis for non-linear
investment optimization with storage [94]. Ramos, et al.’s work also
highlights the value of 1) single period expansion results for provid-
ing insight into capacity planning dynamics and 2) using commercial
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general purpose solvers to decouple the problem formulation from the
optimization algorithm. Both of these approaches are adopted in this
dissertation. Today, improvements in computing power have largely
replaced these direct uses of LDC with mathematically equivalent con-
straints embedded in optimization problems14. However, the LDC is
still widely used as a tool for illustrating concepts.

Modern methods: 1970s and 80s

By the mid 1970s and early 1980s computers had evolved sufficiently
to afford greater temporal resolution in operations, ushering in the
modern style of capacity planning models. Evolved forms of some of
these tools are still in use today. These tools co-optimize investment
decisions and mathematical representations of the LDC for operations
thereby capturing variations in daily, weekly, and seasonal electric de-
mand in a non-sequential manner. These models use a variety of algo-
rithmic approaches including LP (e.g., MARKAL [66]), Bender’s decom-
position (e.g., [96, 97]) and Dynamic Programming (DP) (e.g., WASP
[98]; EGEAS [99, 100]).

MARKAL extended the capacity planning problem to include na-
tional scale, multi-sector energy systems, while maintaining a fairly
simple (e.g. 12 periods/year) representation of operations [66, 101].
MARKAL itself [102], and similar national energy planning tools, are
actively used today by analysts for assessing policy impacts and iden-
tifying optimal energy pathways.

For utilities, EGEAS represented a major advance by providing a
compatible suite of separate tools for both investment planning and
more detailed operations simulation, EGEAS use the Fourier transform
of the LDC to capture unprecedented temporal resolution directly in the
initial investment planning phase [99]. Moreover, EGEAS’s use of DP
enabled directly capturing discrete investment choices. And its inclu-
sion of Caramanis’s LDC adjustments [93, 76] made it suitable for opti-
mizing investment in low to moderate quantities of non-dispatchable
resources (e.g. wind). Today, evolved forms of EGEAS are still used for
capacity planning [72] and in renewable integration analysis [70].

14 Recent work by Batlle and Rodilla[95] may present a modern revival of graphically
derived approaches for modern planning problems. It uses the results of an extended
LDC analysis as the basis for developing computationally efficient heuristics to ap-
proximate cycling and ramping behaviors that result from renewable variations.
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Extensions: 1990s through today

The forward-looking 1995 review by Hobbs [79] both summarizes and
foreshadows the primary developments in electricity planning in re-
cent decades. These represent extensions the the core methods de-
scribed above and include:

• Demand resources as alternatives to supply, through Demand
Side Management (dsm) programs [103, 104] or more holistic
Integrated Resources Planning (irp) [105]. Advances are still be-
ing made in this area, including De Jonghe, et al.’s current work
[106, 107] that extends a traditional LP-based model to include
price-elastic demand15 along with a small subset of operational
flexibility constraints;

• Markets and competition, which require moving away from cen-
tralized least cost planning to consider the impacts of market
dynamics on capacity mix. Cazalet [108] and Lucas and Taylor
[109] represent early efforts in this area that have since continued
in tools such as WILMAR [110] and research by Botterud [111];
Graves, et al. [59]; and many others, including those reviewed in
Ventosa [112];

• Transmission expansion which ideally would be co-optimized
with generation, but doing still remains computationally prohibitive
for large power systems. Wenyuan and Billinton [113] represents
early work in this area, while Latorre, et al. [58] describe and
categorize more recent developments;

• Multiple decision criteria to recognize that cost is but one of
many competing objectives that also include environmental im-
pacts, reliability, and siting. Hobbs and Meier’s earlier work [114]
compared a number of different multi-criteria approaches in a
case study with Seattle City Light. More recently, multiple deci-
sion criteria are included in the NETPLAN model [115] and work
by Tekiner [116]; and

• Uncertainty in both the operational and planning time scales.
Hirst and Schweitzer [117] describe how by 1990 many utilities

15 This extension makes the problem an Mixed Complementary Problem (MCP) that
can also be solved as a Quadratic Program (QP) or with iterative procedures.
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were already using scenarios, sensitivity analysis, and probabilis-
tic methods such as decision trees to analyze long-term uncer-
tainties. Later, Kanudia and Loulou [118] used the stochastic pro-
gramming16 version of MARKAL to describe potential responses
to uncertainty in climate policy. More recently Powell, et al.’s
SMART model [119] demonstrates how Approximate Dynamic
Programming (ADP) can significantly speed computations com-
pared to MARKAL’s LP formulation for stochastic resource plan-
ning with a high (hourly) temporal resolution, and simplified,
merit order operations.

Each of these extensions required associated algorithmic advances. In
addition, the difficulty of the capacity planning problem continued
to attract the application of emerging large-scale optimization tech-
niques that promise to speed calculations. These included expert sys-
tems, fuzzy logic, and neural networks [120]. In particular, modern
evolutionary metaheuristics, such as genetic algorithms, have seen sig-
nificant research attention (e.g., [121, 122, 123]). However, as commer-
cial solvers for LPs, Mixed Integer Linear Programs (MILPs), and Non-
Linear Programs (nlp) have continually improved, increasing num-
bers of researchers, planners, and analysts are turning to such tools
e.g. [94, 66, 19, 124, 125, 107]. As a result, the focus for capacity plan-
ning has increasingly shifted to problem formulation, higher-level al-
gorithm development, and the resulting insights rather than low-level
optimization methods .

But, most relevant to our discussion is that nearly all of these tech-
niques use highly simplify operating constraints during the investment
optimization phase of planning17. The next section reviews some ex-
ceptions and describes examples and tools of how flexibility has been
incorporated into planning. A major thrust of this research is to ad-
dress this gap by exploring the impacts of operational flexibility within
initial planning.

16 Deterministic equivalent formulated as a larger LP
17 That is not to say operating constraints are entirely ignored in planning... they come

at a later stage in the multi-phase planning process and hence may not be well re-
flected in the generation mixes chosen for additional study.
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1.7.2 Operations Flexibility in Planning

Growing Awareness

A number of recent reports and articles have identified the importance
for systems to have sufficient operational flexibility when managing
relatively large quantities of variable renewables; yet, these reports
highlight the inability of current planning tools to adequately capture
flexibility effects. For example, the the North American Electric Re-
liability Corporation (NERC) Integration of Variable Generation Task
Force (ivgtf) describes how increased system variability will signifi-
cantly alter operations and states “planning approaches must consider
needed system flexibility” [15]. The International Energy Agency (IEA)
describes flexibility and how it “empowers” variable renewables, yet
continues to point out that flexibility is only “indirectly” included in
current planning [14]. Lannoye, et al. [17] look specifically at flexibility
in planning and effectively articulate many basic flexibility concepts.
They also succinctly state that “to date, no method exists to determine “To date, no

method exists
to determine...
flexibl[ity]...
in long term
planning...” –
Lannoye, et al.
2011

the degree to which a system is [operationally] flexible or inflexible in
a long term planning context.” ([17] p1). In the past two years, each of
these teams have introduced metrics for assessing flexibility [38, 36, 46],
yet have stopped short of integrating flexibility directly into the plan-
ning problem or associated tools. Furthermore, little previous work has
been done to consider the complimentary flexibility-supply reductions
due to inflexible, low-carbon baseload units18. Perhaps most impor-
tantly, to the author’s knowledge, the hypothesis that operational flex-
ibility will impact optimal generation mixes during planning—though
intuitively compelling—has not been carefully tested. Nor, have there
been systematic attempts to understand when or how such planning
impacts occur. This research addresses these gaps.

Production Cost Tools

In the current multi-step planning process (Section 1.6.2) operations-
only production cost tools are the primary method used for assess-
ing flexibility. As described above (Section 1.5), these large simulation
models capture tremendous detail about the power system, including

18 An important exception is the Western Wind Integration and Solar Study (wwis)
[126] that performed a sensitivity analysis on minimum output levels of coal from
40% to 70% and found that the increased minimum output levels caused increased
operating costs.
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complex generator operating details, transmission constraints, power
flows, and the daily decision/market processes of operators. Given the
complexity of the required simulation, many planning processes use
commercial products such as Ventyx’s PROMOD [127], ABB’s Grid-
View [128], or GE Energy’s MAPS [129]. However these tools have a
number of short comings. They are expensive—in financial, person-
nel, and computational terms. They require tremendous amounts of
data, much of which is proprietary. And, while these tools are quite
adapt at modeling the nuances of todays power systems, their struc-
ture can make it difficult to adequately model the large-scale adoption
of new technologies—including renewables, storage, and demand-side
technologies—that may form the foundation of future power systems.

To overcome these difficulties, researchers have recently developed
production costing tools that simplify data requirements, while also
more readily incorporating advanced technologies at scale. For exam-
ple, Ramos’s ROM model (described in [130] and used in e.g. [125])
and Meibom, et al.’s WILMAR model (described in [131] and used
in e.g. [132, 20]) both provide chronologic annual simulations based
on rolling unit commitment. In this structure, for each simulation day
generators are first committed using a forecast-based stochastic unit
commitment, and then dispatched based on simulated “actual” events.
This approach effectively captures operational flexibility and other con-
siderations for advanced technologies.

Still, these research efforts only address part of the challenge. They
have partially overcome the shortcomings of proprietary data, tool ac-
cess, and long solution times. But they only consider the operations
portion of the planning process. They still require an external process
to select generation expansion plans, and typically these tools do not
consider operational flexibility. Furthermore, attempting to directly in-
corporate the production costing models described here directly into a
planning tool, remains impractical due to resulting prohibitively long
run times. Moreover, production cost tools are typically not used at
all by policy analysts, meaning that operational flexibility considera-
tions are not included or are highly simplified in policy design. This
dissertation addresses this methodological gap.



1.7 literature review : planning and flexibility 55

Renewable Integration Studies

A number of recent research efforts have looked explicitly at the inte-
gration of renewables into the US electric power system19. All highlight
the importance of operational flexibility for renewables using detailed
production costing. Yet, flexibility is highly simplified in correspond-
ing capacity planning.

• The Western Wind and Solar Integration Study (WWSIS) [126, 133]
explored the impacts of 35% renewables (30% wind plus 5% so-
lar) in the Western US. Its main finding is that with reasonable
system changes it is possible to accommodate this 35% pene-
tration level. It also suggests that increased variable renewables
might push the generation mix to be more operationally flexi-
ble, but “WWSIS is an operations study” [133, p6] that does not
consider planning decisions. Its analysis uses the MAPS produc-
tion cost tool for detailed operations simulations and assumes
existing non-renewable generation mixes. It also specifically high-
lights the need for future research that characterizes the capabil-
ities of non-renewable generation, includes technical operating
constraints, and looks at changes in the non-renewable genera-
tion portfolio.

• The complementary Eastern Wind Integration and Transmission
Study (EWITS) [70] explored similar impacts for the Eastern US.
Its findings are similar, although additional emphasis is placed
on the role of transmission to transport renewable energy to load
centers. In contrast to WWSIS, EWITS does explicitly model genera-
tion capacity expansions using EGEAS. EGEAS does not directly
capture operational flexibility. Operational simulations to capture
flexibility are instead modeled using PROMOD.

• Most recently, the NREL Renewable Electricity Futures (RE Futures)
study [134, 6] looked at the potential for moderate to high renew-
able penetrations (30-90% energy) in the US by 2050. It focusses
in depth on a range of 80% renewable cases. It found that such
high percentages of renewables are possible and would rely on
a diverse mix of renewable sources, flexible generation, sufficient
transmission, extensive storage, and other plausible changes. Un-
like the previous studies—or this thesis—dispatchable renewable

19 Additional studies have been done for Europe and other locations.
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sources such as biomass and geothermal are included. Still, vari-
able renewables (e.g. wind and solar) provide about 50% of the
2050 supply in the core 80% scenario. The NREL ReEDs model
[124] (described below) was used for planning expansion of both
generation and transmission. RE Futures also highlights the im-
portance of operational flexibility in operations. Production cost
simulations with ABB’s GridView reveal the value of flexibility
from storage, and highlight the difficulty of operations during
low net demand periods. Interestingly, GridView’s rolling simu-
lation horizon does not allow an the renewable target fraction to
be enforced. As a result, renewables supply only 75% of energy
during simulation for the 80% target case. 20

ReEDS [124] is a recursive dynamic (rolling) long-term national
electricity model with 2-year decision stages each implemented
as a large LP. ReEDS has an extensive set of capabilities including
energy balance for hundreds of nodes and approximated trans-
mission flows. However, it relies on a highly stylized representa-
tion of operations by using only 17 annual time slices—four sea-
sonally representative days with four sub-periods each plus a su-
per peak. Several operating reserve classes are included, but the
lack of integer on/off decisions means these estimates are based
on power output, rather than committed capacity As described
later (Section 4.7.1), this can over estimate available reserves. Min-
imum output levels are also used for baseload, but again without
commitment these are likely overly restrictive. Inter-period con-
straints such as startup and ramping are not included.

All of these studies describe the critical roll of operational flexibility
with renewables; yet in the capacity planning phase of these studies,
flexibility is either ignored (EWITS) or roughly approximated (RE Futures).
As a result, the additional, in-depth analysis of renewable impacts may
be based on a sub-optimal generation mix. This dissertation begins to
address this gap by integrating flexibility considerations directly into
planning through unit-commitment.

20 As described in Section 4.7.1, this shortcoming could also have resulted from ReEDS’
optimistic assessment of operating reserve requirements.
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Integrated Flexibility and Planning

Despite the widespread awareness of operational flexibility and oper-
ations simulations just described, little previous literature exists that
directly considers the impacts of operational flexibility on planning.
Rosekrans, et al. offer a rare and early (1999) exception in [135]. This
work compares results from WASP [67, 98], which uses merit order eco-
nomic dispatch operations, with the Environmental Defense Fund’s
(edf’s) ELFIN planning tool that heuristically captures unit commit-
ment constraints. The paper finds important differences between the
investment plans proposed by typical planning tools, represented by
WASP, that ignore operational flexibility; and the plan proposed by
ELFIN. ELFIN uses an iterative non-optimal heuristic to estimate dis-
crete unit commitment and capture operating reserves, minimum up
times, and minimum output constraints. In a Philippines based case
study, considering operational flexibility shifts the generation mix par-
tially away from coal to more flexible NG-CC and Natural Gas fired
Combustion Gas Turbine (NG-GT). The paper also qualitatively de-
scribes how in some situations it may be more efficient to run a high
marginal cost peaker during a daily peak, rather than starting up a low
marginal cost baseload unit that would have to run for extra hours due
to minimum run times. However, the paper’s analysis does not con-
sider impacts with renewables. The model’s ability to do so is some-
what limited by its relatively coarse time blocks (14 periods per week).
It also does not look at CO2 or nuclear. This dissertation verifies this
early work and expands it significantly by considering renewables, a
larger power system, a richer thermal technology set, additional tech-
nical constraints, a provably optimal solver, a finer-grained time series,
and wider range of scenarios21.

A few years, later Deng and Oren [136] looked at the impact of re-
alistic operating constraints on a different planning-scale question: the
real option valuation of a single plant facing stochastic prices. Though
not capacity planning, it is interesting to note that they compared un-
constrained versus constrained operations across a full year at a daily
resolution. They found that inefficient plants faced a larger cost in-
crease (7-8% vs 1-2%) for detailed operations over simpler operations.

21 Note that the work in this thesis was developed independently from ELFIN, largely
since the ELFIN model remains relatively unknown, In fact,his work is not cited by
any of the other references in this thesis and was only available by special request
from the library
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In the example, startup costs and startup delays had a bigger impact
than small variations in output efficiency. They used stochastic DP with
multinomial lattice prices. The discrete nature of this method limited
the model time resolution and required the use of stylized daily oper-
ations with only 3 output levels: off, minimum, and maximum.

More recently, Shortt and O’Malley [137] explore the impact of vari-
able renewables—and hence increased operational flexibility need—on
generation planning. They primarily motivate the need for special con-
sideration of the resulting uncertainty and variation within generation
planning. It also presents a heuristic production cost approach with
special emphasis on minimum output constraints and maintenance.
With this approach, the model horizon (e.g. a year) is first divided
between periods (e.g. hours) where units that avoid starts (baseload)
are marginal, and those where max output (peakers) must also oper-
ate. The minimum output portion of the baseload units is dispatched
first, using the maximum number of units able to stay on-line during
the subsequent demand trough (to avoid shutdowns/startups). The re-
maining capacity of on-line baseload units plus any required peakers
is then dispatched to meet residual net demand. For maintenance a
reliability based Monte Carlo method is used to iteratively schedule
maintenance during periods of expected minimum output. Though
an interesting heuristic for production costing, the associated capac-
ity planning “approach,” hardly qualifies as it simply suggests manu-
ally adjusting the capacity iteratively based on the production costing
output—no further guidance is offered.

Other efforts have accepted the qualitative reasoning that operational
flexibility can impact planning and attempted to incorporate it. For ex-
ample, NETPLAN and the model by De Jonghe both join ReEDS in
heuristically estimating reserves and a limited set of additional con-
straints within an LP optimization. Specifically, the Iowa State NET-
PLAN model, under development by McCalley, et al. [115] for inte-
grated planning of the transportation and energy systems, captures
a similar set of reserve classes and fixed minimum output levels as
ReEDs. It it is partially built to over come the shortcomings of the
MARKAL family of models by integrating a more detailed power sys-
tem representation. At its core, the model uses a network flow opti-
mization structure that can also be solved by LP modeling tools. In
addition, NETPLAN can automate multi-objective runs to compare
trade-offs among competing stakeholder concerns using the NSGA-II
genetic algorithm [123]. Similarly, De Jonghe, et. al present a model
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[106, 18, 107] that further simplifies the heuristic reserves into two
groups, up and down, and adds ramping constraints while maintain-
ing the LP structure. For all of these models, the LP structure is at-
tractive since enables the use of very powerful commercial solvers for
large scale problems but as described by De Jonghe, “unit commit-
ment constraints, such as startup-costs, minimum up and down times,
and minimum output levels require the use of integer variables” [106,
p11]. This prompts the questions of if and when this LP approximation
is sufficient, both of which are addressed later in this dissertation.

A more comprehensive attempt to capture operational flexibility within
planning is presented by Kirschen and Ma, et al. [19, 138]. This effort
along with my own paper presented with Webster at the same con-
ference [139] demonstrate the first known efforts to incorporate opti-
mal long duration unit commitment and capacity planning without
decomposition. Kirschen and Ma, et al. use a priority order to speed
unit commitment and apply it to a small test system, with a limited
time resolution. Their work compares the results of simple prototypi-
cal wind patterns: flat vs time varying to demonstrate how increased
variability encourages investment in more peaking generation. In con-
trast Palmintier and Webster study a larger power system at full 8760

hour time resolution using an early version of the clustered, combined
unit commitment and capacity planning model described in this disser-
tation. With it, we show that not only can renewable-driven operational
flexibility prompt important changes to the capacity and energy mixes,
but also 1) that these are a function of carbon policy and 2) that ignor-
ing flexibility may lead to large emission errors or infeasible generation
mixes. This dissertation presents many extensions to this preliminary
work including explaining at the causes of these impacts; demonstrat-
ing when these impacts are most important; comparing clustering to
other approaches including Kirschen and Ma, et al’s priority list; and
adding maintenance, minimum up and down time, and other technical
constraints.

1.8 readers guide

The remainder of this thesis is organized as follows: Chapter 2 de-
scribes a novel model formulation that uses clustered unit commitment
modeling to capturing operational flexibility during capacity planning
optimization. It also provides additional background information and
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literature review. Chapter 3 looks at the trade-offs between errors and
computational savings associated with clustering in the operations-
only context. Chapter 4 uses the full model to examine the interaction
between operational flexibility and planning results. It characterizes
when operational flexibility does and does not impact investment de-
cisions and which aspects of flexibility drive the decisions. Chapter 5

discusses the results, suggests areas of further research, and offers con-
clusions. The Appendixes include additional figures, data tables, and
selected model code listings.



2
M O D E L F O R M U L AT I O N - C A PA C I T Y P L A N N I N G
W I T H U N I T C O M M I T M E N T

2.1 introduction

This chapter introduces a new model formulation that tractably cap-
tures operational flexibility within capacity planning optimization and
thereby enables the analyses of flexibility impacts presented later in
this dissertation. It simply would not have been practical to conduct
the analyses presented later without this key methodological advance.

The formulation presented here uses unit clustering to tractably co-
optimize three interlinked power systems decision models:

1. Capacity planning,

2. Production costing with maintenance scheduling, and

3. Unit commitment operations.

As described in the introduction, combined flexibility and plan-
ning analysis would have previously required resorting to a two step
process. In the first step, investment decisions are made using sim-
plified operations. The second step would then simulate operational
flexibility with unit-commitment-based production costing. This for-
mulation enables modeling operational flexibility impacts on capacity
planning in a single, monolithic optimization problem.

The use of optimization models to solve the investment, production
costing, or operations problems alone is well established (e.g. [85, 57,
75]), but no known previous works have combined integer optimal
unit commitment directly into capacity planning, let alone integrated
all three subproblems. The integrated model described here leverages
the fact that all three problems share a similar structure that can be
readily modeled as a Mixed Integer Linear Program (MILP), a mathe-
matical optimization problem with linear and discrete variables and
constraints. As described below, MILP’s ability to represent individ-
ual, discrete units enables link the model components using simple
inequality constraints. However, a straightforward binary implementa-
tion of this approach would be computationally prohibitive, due to the

61
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combinatorial explosion of the large number of binary variables and
constraints on them. Instead, this formulation uses clustering to com-
bine similar, but not identical, units into groups that use 0 to n integer
variables to represent decisions and dynamics at the unit level while
drastically reducing the problem size.

This chapter reviews the traditional binary formulations of each of
these problems, and presents the alternative clustered formulation for
each. Additional sections describe important considerations, including
operating reserves, additional planning constraints, and software im-
plementation. It then presents the formulation for the combined prob-
lem, including capacity expansion, maintenance, and operations. The
final section describes details of the implementation.

2.2 unit commitment background

2.2.1 What is Unit Commitment?

Unit commitment represents one of the fundamental optimization prob-
lems in power systems. Its importance goes far beyond simply deter-
mining which generating units to commit (run) by also including im-
portant technical and reliability constraints necessary for successful
power systems operations. Historically, vertically integrated utilities
and market operators have used unit commitment models to plan the
next 24 to 72 hours of operations. And unit commitment is used to
clear the power markets based on complex bids (e.g. ISO New Eng-
land (ISO-NE), PJM, Ireland). Recently, however, there has been growing
interest in power systems models that represent detailed unit commit-
ment constraints for mid to long-term planning by considering time
horizons of a few weeks up to a year or more. In this context, unit com-
mitment can provide improved strategies for managing constrained
resources over time, such as allocating emissions under a cap, mainte-
nance scheduling, and hydrothermal coordination. During investment
planning and policy analysis, unit commitment enables more accurate
assessment of systems with operational flexibility challenges such as
significant penetrations of variable renewables, emissions caps, or less
flexible generating units including traditional nuclear designs and po-
tentially carbon sequestering plants.

However, even for short time horizons, the unit commitment prob-
lem is inherently difficult to solve because of the combination of the
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large number of discrete decisions – one for each generator for each
time period – and the number and complexity of the constraints. The
increased problem size for long-term optimal unit commitment alone
can make traditional formulations computationally intractable for re-
alistically sized systems and attempting to also include mid to long
term decisions compounds the combinatorial challenge. As a result,
planners have historically separated the mid to long term decisions or
used simplifications to the unit commitment operations problem that
could lead to suboptimal designs .

2.2.2 Modeling Approaches to Unit Commitment

In the operational context, extensive studies of the unit commitment
problem have been motivated by the fact that even small improvements
in the quality of the solution (e.g. ~1%) can result in huge operational
cost savings (millions of dollars). This section presents highlights from
this broad literature.Interested readers are refered to [49, 51, 53] for
additional reviews.

In the early days of electric power , unit commitment was handled
by a combination of operator judgment and simplified non-optimal
heuristics such as a merit order startup lists [140, 141]. In the 1960’s,
growing access to computers, larger more complex power systems, and
increased financial pressures drove efforts to optimize unit scheduling
[142, 143, 144]. Over the following decade, advances lead to improv-
ing commitment solutions for larger power systems with increasingly
detailed constraints [85, 145]. The combined practical importance and
theoretical complexity lead the optimization and power systems com-
munities to use the latest optimization techniques and to refine existing
techniques, including dynamic programming [146], branch-and-bound
[147], genetic algorithms [148], and meta-heuristics such as ant colony
and tabu search [149, 150]. However, in practice, Lagrange relaxation
methods [57, 50, 151] have dominated utility and market operator im-
plementations of unit commitment until recently. Today there is a grow-
ing trend toward implementing unit commitment as a MILP that is then
passed to a general-purpose commercial solver [152, 153, 154, 155]. In
addition to reducing computation times, MILP also greatly simplifies
formulating and adding additional constraints, a task that requires sig-
nificant effort with Lagrange relaxation.
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2.2.3 Mixed-Integer Linear Programming (MILP) for Unit Commitment

MILP was first proposed for unit commitment in the 1960’s by Garver
[156] and later demonstrated and further refined by Muckstadt & Wil-
son [157] and Dillan & Egan [147]. Early MILP implementations used
the branch-and-bound approach, in which integer variables are or-
dered into a tree that is explored and pruned to find the optimum. At
each node, bounds on the upper and lower limits for the sub-branches
are found using the Linear Program (LP) relaxation and the LP-dual re-
spectively. These bounds enable pruning portions of the tree that can’t
possibly offer the optimum. However this approach was not practi-
cal at the time for full-sized unit commitment. Today’s shift to MILP
was partially enabled by advances in available computer hardware,
but more importantly by algorithmic advances [158], notably branch-
and-cut approaches that use cutting planes to guide the solver toward
feasible integer solutions before (and during) the branch-and-bound
optimization.

With the use of state-of-the-art, general-purpose commercial solvers,
modelers now largely rely on these packages to implement the latest
algorithm developments and instead improve performance through
solver option tuning, parallelization, and/or software/hardware up-
grades. In addition dramatic improvements can sometimes be made
by adjusting the problem formulation itself [159]. Generically, such re-
formulations have one or more of three objectives:

tightening the relaxed integer (linear) equations to more closely
approximate the non-convexities inherent in MILP problems. Ide-
ally, the relaxed equations form the convex hull, the linearly con-
strained representation of the problem that minimally contains
the feasible integer solution space, such that the LP vertices fall
at integer solutions. With such a representation the LP closely
matches the MILP allowing for more efficient branch-and-cut tree
pruning by the solver;

reducing integer variables to take advantage of the significantly
more powerful (faster) algorithms available for continuous equa-
tions with purely linear variables (LP) relative to those with dis-
crete variables (e.g. MILP)1; and

1 Note: as described below, recent research suggests that in some cases fewer integers
can lead to longer solution times. This can occur when the additional integers pro-
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reducing overall problem size by reducing the total number
of variables and equations required to be solved in the prob-
lem. Not surprisingly, overall problem size reductions can di-
rectly speedup solution times since all known classes of LP al-
gorithms - including both Dantzig’s simplex method [160] and
interior-point barrier methods (starting with Karmarkar [161]) -
scale with at least polynomial time as a function of problem di-
mension [162].

Each of these techniques have been used for unit commitment. Ra-
jan & Takriti [163] and Hedman, et al. [164] demonstrate constraint
tightening to approach the convex hull for minimum up and down
time formulations. Carrion & Arroyo [165] demonstrate improved per-
formance by reducing the number of integer variables in unit com-
mitment, although recent work by Ostrowski, et al. [166] demonstrate
the surprising result that modern MILP solvers can actually solve unit
commitment problems faster when the full set of integer variables are
included. Many researchers rely on various simplifications to reduce
overall problem size.out of computational necessity. For example pure
unit commitment research studies are often limited to small demon-
stration power systems [167, 168, 166] or use only a sub-set of weeks
for production cost models with unit commitment (e.g.[19]). As out-
lined below, the clustering formulations described below for unit com-
mitment, maintenance, and capacity planning; employ all three refor-
mulations, but most importantly rely on reducing the problem size
through clustering to speed up performance.

2.2.4 Distinguishing similar MILP solutions

The literature also describes a number of solution tuning approaches
aimed at the difficult challenge of distinguishing very similar, near-
optimal solutions. Such similar solutions are common in the unit com-
mitment problem, because many units in a large system have similar
(or identical) operating characteristics. This can cause MILP branch-and-
cut (and other combinatorial optimization), to waste considerable time
finding and attempting to improve on such (nearly) equivalent solu-
tions. As a result, a number of heuristics to distinguish similar solu-
tions have been employed:

vide additional structure of the branch-and-bound tree that helps eliminate more
branches than it adds.
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• In the branch-and-bound phase of branch-and-cut algorithms,
the ε-optimal heuristic, informally known as “cheat,” can im-
prove solution times by only considering branches of the node
tree that have the potential to improve the solution by more than
a tunable parameter, ε; [169]

• For truly identical units, perturbing key parameters (variable cost)
can introduce small artificial differences; and

• To help structure the problem, a merit order priority list may be
imposed to ensure that certain units always start before others,
unless it would violate other constraints. [19]

However, the sophisticated algorithms employed by modern solvers
reduce the gain from such heuristics. More importantly, while these
approaches may reduce computation time by an order of magnitude
in the best cases, unit commitment for long time horizons remains
intractable.

2.3 traditional unit commitment formulation

2.3.1 Core model

The generic unit commitment problem finds the minimum cost com-
bination of generator commitment and power output to meet demand
over time. This section linearizes and adapts the standard basic for-
mulation [57, 50], for a thermal-only system and simultaneously intro-
duces the nomenclature used in this dissertation. The resulting opti-
mization problem is a large MILP that can then be solved by powerful
commercial solvers as is done by a growing number of power system
operators [152]. For clarity, uppercase is used for variables, bold upper-
case for sets, and lowercase for parameters and set elements.

the objective function minimizes total operations costs:

Ctotal = min ∑
g∈G

∑
t∈T

(
Cvar

g,t + Cstart
g,t

)
(2.1)

computed as the sum of variable costs, Cvar
g,t , and startup costs,

Cstart
g,t , for all units, g, and time periods, t.
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the variable costs , Cvar
g,t include fuel costs, cfuel

g,t , and variable oper-
ations and maintenance (O&M) costs, cvarO&M

g :

Cvar
g,t = Fg,t(Pg,t) cfuel

g + Pg,tcvarO&M
g,t Pg,t ≥ 0, Fg,t ≥ 0 (2.2)

Where Fg,t(Pg,t)g,t is the fuel usage as a function of the instan-
taneous power output, Pg,t. Startup costs are treated separately
below.

startup and shutdown events , Sg,t and Dg,t, are computed us-
ing the state equation:

Ug,t = Ug,t−1 + Sg,t − Dg,t (2.3)
with Ug,t, Sg,t, Dg,t ∈ {0, 1} (2.4)

Where Ug,t represents the commitment (on/off) state of each unit
and is set to 1 when the unit is running. This formulation there-
fore sets Sg,t (or Dg,t) to 1 only during time periods when the
unit starts up (or shuts down). Some state equation formulations
relax the integral constraints on Sg,t and Dg,t in (2.4) because the
binary restriction on Ug,tforces them to take only take binary val-
ues [165]; however, with modern solvers, enforcing the binary
constraints for all three variables can provide considerable com-
putational speed up in practice [166]. In numeric testing for this
thesis, I observed approximately five times faster runtimes with
all three variables constrained to discrete values.

startup costs , Cstart
g,t , assume a constant fuel use per startup, f start

g

and include an additional fixed cost per start, cfix start
g to include

maintenance and personnel costs:

Cstart
g,t = Sg,t ·

(
f start
g cfuel

g + cfix start
g

)
(2.5)

Note that this formulation uses fixed values for c f uel
g and c f ixstart

g
and therefor deviates from startup formulations that distinguish
warm and cold startup costs, e.g. [57]. This constant startup cost
simplification is commonly used for this class of long-term unit
commitment problem [19, 170, 168].

a piecewise linear fuel usage function, Fg,t(Pg,t)g,t, captures the
non-linear relationship between fuel usage and power output,
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represented using a unit-specific convex piecewise linear approx-
imation with segments, Xg:

Fg,t(Pg,t)g,t ≥ hg,xPg,t + Ug,t f P=0
g,x ∀x ∈ Xg (2.6)

For each piecewise linear segment, x, the slope, hg,x, represents
the incremental heat rate and the intercept, f P=0

g,x , indicates the
projected fuel use if hypothetically running at zero power. Since
fuel has a positive cost, the optimizer will minimize fuel usage
forcing the inequality to equality for the highest piecewise seg-
ment. When a unit is not running, the commitment variable, Ug,t,
brings fuel use to zero.

the system balance constraint ensures that the sum of instan-
taneous power, Pg,t, equals total load, Lt, at all times2:

∑
g∈G

Pg,t = Lt ∀t ∈ T (2.7)

unit minimum and maximum output constraints use the bi-
nary commitment variable to imply that each generating unit is
either off and outputting zero power (when Ug,t = 0), or on and
running within its operating limits, from its minimum output
level, pmin

g , up to its maximum, pmax
g (t) (when Ug,t = 1):

Ug,t pmin
g ≤ Pg,t ≤ Ug,t pmax

g (t) (2.8)

Note that the maximum power, pmax
g (t), is a function of time.

This is enables capturing the time varying resource availability
for renewable generators3 and enables exogenous maintenance
scheduling.

2 This relation is updated later to allow for non-served energy.
3 To be precise, as described later, variable renewables typically do not have an asso-

ciated unit commitment variable since their minimum output is zero. This is equiv-
alent to treating Ug,t as always equal to one; however, the concept of time varying
maximum power still applies.
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2.3.2 Additional Constraints

A more realistic model includes additional cost components and gen-
erator and system reliability imposed technical constraints [50]. I focus
on the most common extensions:

ramping limits capture limitations on how fast thermal units can
adjust their output power:

Pg,t−1 − Pg,t ≤ Ug,t∆pdownmax
g

+max(pmin
g , ∆pdownmax

g )Dg,t (2.9)

Pg,t − Pg,t−1 ≤ Ug,t∆pupmax
g

+max(pmin
g , ∆pupmax

g )Sg,t (2.10)

where the ∆p’s are the ramp limits up or down. The right-hand
sizes enforce the simple ramp rates during normal operations,
but enable higher up/down ramps during startup/shutdown events
if the ramp rates would otherwise be too low.

minimum up and down times are represented using the formu-
lation found to be most efficient by [163] [164] and [166]. This for-
mulation sums startup (shutdown) events to allow at most one
startup (or shutdown) during the preceding minimum up (down)
time interval if the unit is running (stopped):

Ug,t ≥
t

∑
τ=t−aminup

g

Sg,τ (2.11)

1−Ug,t ≥
t

∑
τ=t−amindown

g

Dg,τ (2.12)

Where aminup
g and amindown

g are the minimum up and down times,
respectively.

2.3.3 Operating Reserves

Because power generated on the grid must match demand instanta-
neously, a number of operating reserves are maintained by allowing
slack between generator output levels and corresponding limits. Re-
serves provide on-line capacity that can rapidly increase (or decrease)
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in order to compensate for generation or transmission outages, forecast
errors, etc.:

primary reserves operate on a timescale of a few seconds to com-
pensate for rapid changes:

∑
g∈G

Rprimaryup
g,t ≥ rregup(Lt) (2.13)

∑
g∈G

Rprimarydown
g,t ≥ rregdown(Lt) (2.14)

Where Rprimaryup
g,t and Rprimarydown

g,t are the quantity of primary re-
serve supplied by unit g in time period t. The totals of which
must exceed the exogenously determined system-level frequency
reserve requirements, rregup and rregdown.

secondary reserves operate on a timescale of a few minutes for
contingencies (spinning reserves) and for load following. I allow
a fraction of the reserve-up supply, knosync, to be supplied by non-
synchronized resources such as offline quick starting units or de-
mand response:

∑
g∈G

Rsecondaryup
g,t ≥

(
rl f up(Lt) + routage

)
(1− knosync)(2.15)

∑
g∈G

Rsecondarydown
g,t ≥ rl f down(Lt) (2.16)

The Rg,t’s are the quantity of on-line secondary reserves supplied
by each unit. rl f up(Lt) and rl f down(Lt) are the system load follow-
ing requirements, a function of load/wind forecast error. routage

is the additional reserve required for contingencies, typically set
to the largest unit or transmission tie capacity.

tertiary or quick start reserves are off-line but ready to run
units that can be brought on-line quickly when needed:

∑
g∈G

Rtertiary
g,t + Rsecondaryup

g,t ≥ rlfup(Lt) + routage + rreplace (2.17)

The left-hand side includes both tertiary and secondary up re-
serves to both capture the fraction of the secondary reserve al-
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lowed by (2.15) from off-line units, and to enable tertiary reserves
to be met by on-line units when appropriate.

unit reserve capabilities are dictated by a unit’s ability to pro-
vide each type of reserve, aρ

g:

Rρ
g,t ≤ Ug,ta

ρ
g pmax

g

∀ρ ∈ {primarydown,secondarydown,primaryup,secondaryup} (2.18)

For tertiary reserves, quick start capable units can only be drawn
from the pool of non-active units:

Rtertiary
g,t ≤

(
1−Ug,t

)
aquickstart

g pmax
g (2.19)

where aquickstart
g represents the fraction of the unit capacity, pmax

g ,
that can be deployed fast enough.

updated unit output constraints capture the need for a unit
to run below maximum for upward and above minimum for
downward reserves. These supplement4 (2.8) with the pair:

Pg,t ≥ Ug,t pmin
g + Rprimarydown

g,t + Rsecondarydown
g,t (2.20)

Ug,t pmax
g,t ≥ Pg,t + Rprimaryup

g,t + Rprimarydown
g,t (2.21)

2.4 clustered unit commitment

2.4.1 The Concept of Clustering

For problems with simplified or non-binding transmission constraints,
it is possible to combine similar generating units into clusters. As seen
in Figure 2.1, this replaces the large set of binary commitment deci-
sions, one for each unit, with a smaller set of integer commitment
states, one for each cluster. The distinction between binary and inte-
ger variables is important: in traditional binary unit commitment, each
unit is either on or off. With clustering, the integer commitment state
varies from zero to the number of units in the cluster, nĝ. In this way,
clustering still captures commitment decisions and associated relations

4 Both sets of equations are maintained to prevent the optimizer from attempting to
supply non-quickstart reserves from a unit that is off.
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at the individual plant level. All of the other variables – such as power
output level, reserves contribution, etc. – and constraints are then ag-
gregated for the entire cluster.

...On
Off

Unĝ,tU1,t U2,t U3,t

(a)

0

Units on-line, Ûĝ,t

nĝ

(b)

Figure 2.1: Conceptual comparison between traditional and clustered unit
commitment for a single type of unit in a single time period. In
the traditional formulation (a), each unit has a separate binary
commitment variable, Ug,t. With clustering (b), the entire cluster
of nĝ units has only a single integer commitment variable, Ûĝ,t.

Computationally, the integer variables provide structure that both
reduces the dimensionality of and guides the search through the com-
binatorial commitment state space by eliminating a large number of
identical or very similar permutations of binary commitment decisions.
The number of possible discrete combinations of commitment vari-
ables with the traditional formulation scales exponentially with the
number of units: 2nĝ . Clustering dramatically reduces this dimension-
ality to the product of the cluster sizes: ∏ nĝ. For example in a system
with 100 units clustered into three groups as 10/70/20 this reduces the
number of discrete combinations5 in each time period from ≈ 1030 to
≈104.

At least as importantly, clustering also reduces the number of contin-
uous equations and variables, since the unit commitment constraints
now apply over the smaller number of clusters rather than the full set

5 Modern MILP solvers use sophisticated branch-and-cut algorithms to explore only a
tiny fraction of this combinatorial space. Still, the speedup with reduced dimension-
ality can be dramatic.
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of individual units. In our example, this reduces the problem size by
97%. This savings applies to both the full, discrete MILP solution and
the relaxed LP equivalent. A faster LP equivalent implies faster MILP
solutions by speeding both the root-node solution and the sub-nodes
of the branch-and-cut tree. Moreover, in some situations, the LP equiva-
lent formulation can be used directly, provided it sufficiently captures
operational constraints and dynamics.

2.4.2 Clustering Literature Review

The concept of aggregating units is not new. As early as 1966, pioneer-
ing studies in computer based unit commitment, grouped generators
together to illustrate simple solution techniques with limited computer
hardware [142]. More recently, examples of combining identical units
has also appeared in the literature. For example, Gollmer, et al. [151]
also use grouped integer commitment for identical thermal plants and
Garcia-Gonzalez, et al. [171] use a grouped integer on/off state when
modeling banks of identical hydro turbines for optimal combined bid-
ding with wind. It is likely that other implementations have also clus-
tered identical units, but remain unpublished since the computational
advantages of binary aggregation to integers is well recognized in the
operations research community [159]. For example in his dissertation,
Cerisola describes homogeneous aggregation into “generalized” units
with integer commitment variables [172], yet this formulation is not de-
scribed in related journal articles [173]. Clustering identical, co-located
units can provide identical solutions in faster times.

The formulation used hereextends this aggregation so that similar,
but not identical, units are clustered together and assigned an inte-
ger commitment state. Conceptually, this approach is similar to that
of Sen & Kothari [174], who also group units. However, their treat-
ment assumes a binary commitment state for the entire group: all
on or all off. This is computationally helpful, but is much less flexi-
ble and less realistic than an integer formulation that allows some of
the generators within a group to run while others are off. The all or
none approach also prevents properly computing startup costs, mini-
mum output levels, and reserve capability. Recent work on heteroge-
neous clustering, including that by the author, has demonstrated ef-
ficient unit-commitment-based computations over long time horizons



74 model formulation-capacity planning with unit commitment

(e.g. full year as 8760 sequential hours) as part of price estimation [175]
and planning studies [139].

These two types of clustering serve subtly different purposes. Clus-
tering identical units causes little to no loss of fidelity and in most cases
will produce identical results6 in less time by avoiding unnecessary, du-
plicate computations. In contrast, clustering similar, but not identical,
units is an approximation that assumes all of the units in the resulting
cluster have identical technical characteristics. This also speeds com-
putation, but introduces some approximation error. For capacity plan-
ning, both types of clustering may occur simultaneously. Clustering
existing generation will most typically involve grouping similar, but
not identical, units. In contrast, candidate new units for each technol-
ogy are typically assumed to have identical technical characteristics,
such that clustering can provide identical results to separate units.

2.4.3 Clustering Formulation

Mathematically, clustering introduces fairly simple changes to the tra-
ditional formulation. Clustering replaces the individual unit index, g,
with the cluster identifier, ĝ, and uses a corresponding expanded range
for the commitment, startup, and shutdown variables replacing (2.4)
with:

Ûĝ, Ŝĝ, D̂ĝ ∈ {0, 1, · · · , nĝ} ∀ĝ (2.22)

In all cases the clustered variables are distinguished by a hat, “ ˆ “.

Relations With No Change Needed

Beyond the above substitutions, no further changes are required for the
objective (2.1), variable costs (2.2), commitment state (2.3), startup costs
(2.5), piecewise linear fuel use (2.6), system balance (2.7), unit output
constraints (2.8), (2.20), & (2.21), minimum up time (2.11), system re-
serve requirements (2.13) – (2.17), and non-tertiary reserve capabilities
(2.18). The relations requiring additional modification are described
below.

6 At least in most cases. For units with highly non-linear fuel cost functions, identical
clustering still introduces the approximation that all units in the cluster are operating
on the same piecewise linear segment.
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Updates for Clusters

ramping limits require the most extensive changes since hour-to-
hour output for the entire cluster must account for unit start up,
Ŝĝ,t, and shut down, D̂ĝ,t. The ramp rates for on-line generators
also scale by the number of on-line units within the cluster, Ûĝ,t.
These modify (2.9) & (2.10) to:

Pĝ,t−1 − Pĝ,t ≤
(
Ûĝ,t − Ŝĝ,t

)
∆pdownmax

ĝ

−pmin
ĝ Ŝĝ,t

+min(pmax
ĝ (t), max(pmin

ĝ , ∆pdownmax
ĝ ))D̂ĝ,t (2.23)

Pĝ,t − Pĝ,t−1 ≤
(
Ûĝ,t − Ŝĝ,t

)
∆pupmax

ĝ

+min(pmax
ĝ (t), max(pmin

ĝ , ∆pupmax
ĝ , pquickstart

ĝ ))Ŝĝ,t

−pmin
ĝ D̂ĝ,t (2.24)

where pquickstart
ĝ ≡ aquickstart

g pmax
g .

the minimum down time requires finding the number of units cur-
rently off as the difference between nĝ (as opposed to one) and
the current commitment state, Ûĝ,t, replacing(2.12) with:

nĝ − Ûĝ,t ≥
t

∑
τ=t−mmindown

ĝ

D̂ĝ,τ (2.25)

tertiary reserve capabilities change similarly replacing (2.19)
with:

Rtertiary
ĝ,t ≤

(
nĝ − Ûĝ,t

)
aquickstart

ĝ pmax
ĝ (2.26)

2.4.4 Clustering Methodology

With the heterogeneity of existing generation units in real systems, the
exact basis for clustering is a decision with important tradeoffs7. This
thesis considers four different approaches to aggregation:

7 As described in Section 2.4.2, during capacity planning, candidate new units for each
technology are typically assumed to be identical, and clustering does not introduces
minimal approximation. There is no approximation, if the fuel cost curve has a single
segment.
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1. Separate units – no clustering. This is the traditional formulation
with binary commitment decisions for each unit and is used as
the baseline for comparison.

2. Full clustering by unit type only – In this case all units with the
same combination of fuel type and prime mover (e.g., coal steam,
open cycle gas turbine, natural gas combined cycle) are combined
into clusters.

3. Clustering by type and additional characteristics. This clustering
approach sub-divides full clusters using an additional character-
istic. For example, Section 3.4.3separately compares sub-dividing
by size, age, and efficiency (heat rate). Cluster membership can
be determined manually to provide roughly equal distributions
of units between sub-clusters (as was done here), or by using a
formal clustering algorithm, such as k-means [176].

4. Clustering by plant. This approach clusters all units of the same
type at the facility or plant level. Often, but not always, such units
are identical.

For all clustering approaches, the representative unit for each cluster
is assumed to have a size (nameplate capacity) equal to the average
of cluster members. Technical characteristics such as heat rate, ramp
rates, minimum output, etc., are taken as the size-weighted average.
This representative plant is effectively duplicated such that the number
of units in the cluster, nĝ, matches the original number of individual
units.

2.4.5 Key Assumptions

In general, clustering assumes homogeneity of units within a cluster.
When clusters consist of identical units with constant incremental heat
rates – i.e., only a single piecewise linear segment – the clustered solu-
tion exactly matches the traditional solution. For similar, but not iden-
tical, generators in the same cluster, they are assumed to have uniform
technical characteristics such as minimum and maximum output lev-
els, ramp rates, etc. In addition, power output levels for all of the units
in the cluster are assumed to lie on the same piecewise-linear segment
for fuel usage. This assumption is always met with constant incremen-
tal heat rates – i.e., a simple affine (linear with offset) fuel use function
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– or under the somewhat stricter assumption that all units operate with
the same power output.

2.4.6 Additional Assumptions

wrap-around commitment The unit commitment problem requires
establishing the initial conditions for commitment state and elapsed
up and down times. To simplify this complication, this research
assumes that for each operations time block (e.g., week or year)
the first hour follows the last hour and enforces ramping and min-
imum up and down times accordingly. This assumption implies
that the initial sub-periods (e.g., hours) in the subsequent block
are effectively the same as the initial hours in the current block. In
data selection, this also requires care to prevent a sudden jump in
demand between the last and first hours that might violate ramp
rate limits. In all simulations described in this work, time series
data was selected such that the difference in demand between the
last and first demand periods is= of the same magnitude as the
differences already observed between adjacent operating hours
in the data.

constant incremental heat rate with offset This assump-
tion replaces the piecewise linear fuel usage with a single affine
(linear with offset) constraint for each generator or cluster. This is
equivalent to assuming a constant incremental heat rate with an
offset for projected fuel usage at hypothetical zero power output.
This shrinks the problem by reducing the number of constraint
equations. For many units, this assumption is fairly mild since
fuel use is typically close to collinear. Section 3.4.3 compares this
assumption with the full piecewise linear results.

2.5 additional speed-up strategies

In addition to clustering, this research explores other strategies for
speeding up long-term unit commitment computations. These strate-
gies fall into two categories: generic MILP heuristics, described earlier
in Section 2.2.4, and problem-specific simplifications, described below.
Both categories can be used with either traditional or clustered formu-
lations and therefore offer comparisons of clustering with other strate-
gies and methods to further speed up very large problems.
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2.5.1 Relax integer constraints for units with low minimum outputs

In MILP optimization, the number of discrete variables has a much
larger impact on solution time than the number of continuous vari-
ables since continuous linear programming solvers are far more power-
ful than the combinatorial solvers required for discrete variables. Any
discrete variables that can be treated as continuous typically reduce
the computation time. Such a relaxation is obvious with commitment
variables for units, such as wind turbines, that are modeled with a
minimum output levels of zero and no fuel use at minimum power. For
these units, a fractional commitment state causes no loss of fidelity. But
for long-term unit commitment, one can extend this concept further to
eliminate integer decisions for units with small non-zero minimum
output levels. For example, in many systems, there are a considerable
number of peaking units with small size and even smaller minimum
output such that extending the relaxation to small minimum output
units can considerably decrease the solution time. These relaxed con-
straints also apply to the corresponding startup and shutdown vari-
ables.

2.5.2 Combined Reserves

Computing the multiple separate classes of reserves introduces a large
number of equations for each unit (or cluster) in each time period. With
the five classes of reserves described above, system requirements and
unit capability for each reserve class result in ten types of equations for
each time period. However, the major driver for both system reserve
requirements and unit reserve capability is ramp limits. Therefore, this
approximation explores combining the reserves into three classes: off-
line (tertiary), flexibility up, and flexibility down (both sums of the
primary & secondary), thereby reducing the total number of reserve
equation types to six.

2.5.3 Limit start-ups per time

Minimum up and down time constraints also require a large number of
equations: two per unit (or cluster) for each time period. Furthermore,
they are some of the most computationally difficult constraints since
they link decisions across as many time periods as the minimum up
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and down time durations. As an alternative, this approximation limits
the total number of startups allowed for each unit or cluster. This re-
places a large number of multi-period constraints, one per time period,
with a single larger constraint for each generator that sums across all
time periods.

2.6 operating reserves : managing short-term uncertainty

Power systems must manage a wide range of uncertainties during op-
eration including:

• Load short-term variations and forecast errors,

• Renewable generation short-term variations and forecast errors,
and

• Thermal generator inability to respond to rapidly changing con-
trol signals,

• Contingencies including unexpected generation or transmission
outages.

These uncertainties are managed using a range of operating “reserves”
that correspond to different time horizons [177]. Reserves are some-
times used interchangeably with the larger concept of ancillary ser-
vices [178, 179], which includes all non-energy services necessary to op-
erate the power system including reserves along with generator control
signals, market operation, etc. As described in Section 2.3.3 reserves are
divided into types based on time horizon and are generally provided
by nominally operating generation below its maximum output level to
enable increasing output as required to meet routine and contingency
“up” reserve requirements. Similarly, some units are kept above their
minimum output levels to provide complementary “down” reserves.
In addition, off-line units that can be started on short notice, such as
load shedding or storage, can also provide certain classes of reserves.

A complete discussion of power system reserves is far beyond the
scope of this thesis; instead this section seeks only to motivate and
describe the simplified reserve assumptions used in this formulation
and analysis. A recent report by Ela, et al. [177] provides an excellent
in-depth discussion and extensive reference list for readers interested
in more information.
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2.6.1 Reserve requirements

Power systems use a wide range of methods to calculate the required
operating reserve levels for each reserve type [177]. Historically, this in-
volved rule-of-thumb metrics and operator judgement that have proven
in practice to meet the reliability targets set out by reliability organi-
zations such as the North American Electric Reliability Corporation
(NERC).

For instance, at the fastest time scale of seconds to minutes , each
of the major Independent System Operator (ISO)s has a distinct ap-
proach to quantifying the required reserves, despite being governed
by the same requirements: Control Performance Standard (CPS) 1 and
CPS-2. Specifically, PJM (the ISO for Pennsylvania, New Jersey, Mary-
land, and ten other eastern states) simply requires 1% of maximum
and minimum loads for on-peak and off-peak regulation respectively.
In contrast, ISO-NE and California ISO (CAISO) use formulas based on
the month, day of the week, and hour of the day; while the Electric
Reliability Council of Texas (ERCOT) uses the 98.8 percentile of historic
reserve deployments over the past 30 days [177].

By analyzing the CAISO ancillary service market data at an hourly
resolution for all of 2006, I obtained a estimate of the average capacity
required for each class of reserves [180]. The load following “reserve”
is based on the average volume of trades in the 5-minute balancing
market. As seen in Table 2.1, these results match PJM’s rule of thumb
guideline of 1% of load for regulating reserves. As described below,
they also approximately equal the zero wind intercept for the 80% con-
fidence curve fit of wind net load and the proposed Western Electricity
Coordinating Council (WECC) guideline of 3% of the load for contin-
gency reserves.

2.6.2 Reserves for Wind

The question of how increased variable renewables impact reserve re-
quirements has received considerable attention in the literature. A re-
cent search on IEEE Xplore found over 100 articles for “operating re-
serves for wind” alone and this does not include countless reports by
consultants, from national labs, and in non-IEEE-indexed publications.
In summary, the increased variability and uncertainty require addi-
tions of all types of reserves; however, the smoothing effects of aggre-
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service percent of on-line generation

Regulation (Up& Down) 1.3%
Load Follow 4.0%

Spin-Reserves 3.0%
Non-Spin 3.0%

Total Reserves 11.3%
Energy 88.7%

Table 2.1: Approximate ancillary service requirements. Source: analysis of
CAISO 2006 hourly average ancillary service and balancing markets.

gation and spatial diversity reduce the increase in variability compared
to linearly scaling a single renewable plant. In general, reserve require-
ments with moderate amounts of renewables (10-15% of energy) are
comparable to those already maintained by the power system for con-
tingencies and load uncertainty [177, 27, 181, 182, 183, 184, 77, 185].

Regulation

For regulation, it was once argued that output variations between geo-
graphically scattered wind farms canceled each other out, so that wind
required no increase in regulation reserves [186]. However, a recent re-
port by GE Energy that analyzed ERCOT’s ancillary serves needs with
increased wind shows on average a slight increase of 3.58MW for reg-
ulation up and 3.21MW for regulation down per GW of additional
wind capacity [187]. Although these figures vary on monthly and di-
urnal cycles, for simplicity and without loss of formulation generality,
this analysis takes them as constant.

Spinning/Net Load Following Reserve

At the operational timescale of a few minutes, wind uncertainty com-
bines with load uncertainty and generator outages to produce stochas-
tic variations in net demand. Wind has three primary reserve drivers in
this timeframe, two related to forecast errors (uncertainty) and a third
that captures the increased ramping (dynamics) even with perfect fore-
casting. In practice, the reserve requirements procured in the ancillary
service market can be reduced through the routine operations of short-
term (5 minute) balancing markets; however, the hourly time step used



82 model formulation-capacity planning with unit commitment

y	  =	  0.0973x	  +	  154.25	  
R²	  =	  0.99419	  

0.6	  
0.8	  
1	  

1.2	  
1.4	  
1.6	  
1.8	  

0	   5	   10	   15	   20	  

St
dd

ev
	  F
or
ec
as
t	  E

rr
or
	  (G

W
)	  

Installed	  Wind	  Capacity	  (GW)	  

Wind	  Only	  

Figure 2.2: Variation in average wind forecast error for ERCOT showing the
linear relation between standard deviation and installed capacity.
Data from [187]

in this analysis hides these details. Even if the economic transactions
are settled in a balancing market, the commitment generation mix still
must have sufficient operational flexibility to meet the associated out-
put changes. As a result, this analysis requires the full forecast error
and 10-minute dynamics be met with reserves.

forecast error as a function of wind capacity Conceptually
the purpose of reserves is to keep the probability of an under (or
over) generation event low. Doherty & O’Malley [188, 189] make
this probabilistic connection explicit by pointing out that the stan-
dard deviation, σ, of variability at the corresponding timescale
provides a good starting point for reserve calculations. If the
distributions are (approximately) Gaussian, a value of 3σ corre-
sponds to a 99.7% of the variability. In practice, a range of 2-5σ

has been used in studies [190]. As seen in Figure 2.2, the same GE
Energy report on wind on ancillary services in ERCOT [187] de-
scribes a linear relation between the standard deviation of wind
forecast error σwind and installed wind capacity. However, the rel-
evant uncertainty for load following reserves also includes de-
mand forecast errors. If wind and load are assumed to be uncor-
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Figure 2.3: Extrapolation of combined wind & load forecast standard devi-
ation, σtotal , showing near linear trend for higher wind penetra-
tion levels. Load following reserve requirements can be estimated
based on the desired multiple of σ.

related, their combined variances, σ2, can be added resulting in
the following relation for the combined standard deviation [190]:

σtotal =
√

σ2
load + σ2

wind (2.27)

This assumption is consistent with the very low correlation be-
tween wind and load observed in ERCOT [187]. Using the re-
ported standard deviation for load-only forecast of 1755MW and
assuming that the standard deviation of wind follows a linear
function of installed capacity described above, it is possible to
extrapolate the combined standard deviation as a function of in-
stalled wind capacity beyond the 5 to 15GW range studied in
the GE Energy report.8 As seen in Figure 2.3, for higher penetra-
tions of wind, the combined standard deviation, σtotal becomes
dominated by the wind component and can be reasonably ap-
proximated with another linear fit. For comparison, the “actual”
standard deviation for combined wind and load from the GE
simulations is also shown. Note that an installed wind capacity
of 24GW corresponds to a 20% energy penetration of wind at
2008 demand levels. Also, even though it only corresponds to
a single standard deviation, 1 σ, the intercept value of 1163MW

8 Note I have some trepidation about such large extrapolations, but without better data
for higher wind penetrations, they are used here as an illustrative placeholder.
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Figure 2.4: Conceptual relation between wind speed forecast error distribu-
tions (normal) and corresponding wind power error distributions
(skewed) due to the highly non-linear wind turbine production
curve. Enercon E-82 production curve [192] shown in solid black.
Based on [191] figure 2.1.

represents 3.3% of the average load for 2008, a value consistent
with the 2006 CAISO data (4%) and WECC rule of thumb (3%) de-
scribed above. In this analysis, this linear fit is combined with the
estimate of forecast uncertainty as a function of power described
below to capture the reserve requirements as a function of wind
capacity and load.

forecast error as a function of wind power The (in)accuracy
of wind forecasts, and hence requirements for reserves, are also
known to be a function of the wind power. As described by Pin-
son, et al. [191] the forecast error for wind speed tends to be nor-
mally distributed, but because wind power increases with the
cube of windspeed, the resulting distributions of wind power fore-
cast error are no longer normal. As shown in Figure 2.4, the re-
lation is further complicated by actual wind turbine production
curves that level-off at the maximum capacity of the generator
equipment at high wind speeds. Using this idea and the pub-
licly available production curves for an Enercon E-82 2GW wind
turbine [192], I estimated the 80% confidence interval of wind
speed forecast errors assuming wind speed errors are normally
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Figure 2.5: Eighty percent (80%) confidence interval for wind power forecasts
showing asymmetry due to non-linear production function and
near linear fits for lower output forecasts.

distributed with mean zero and standard deviation of 0.5m/s.
As seen in Figure 2.5, the up and down forecast errors are not
symmetric, but can be separately fit to a linear approximation
for forecasts up to about 80% of the turbine rating. I assume a
similar relationship holds for a collection of wind farms rather
than a single turbine to approximate the forecast component of
reserve up requirements. The limited range (0-80% power) of this
approximation is partially justified by the observation that the
ERCOT system-wide wind production from 2007-2010 was always
below 80% of the installed capacity (Historic data from [193] and
similar). This is a conservative estimate, since individual turbines
may frequently operate near 100% outputs, even though the ag-
gregated wind production never exceeds 80%.

10-minute wind ramp dynamics Since the uncertainty requirements
of the reserve down service can be provided by curtailing wind if
required, the load following reserve requirement is based on the
less stringent 10-min ramping dynamics assuming a perfect fore-
cast. The capacity normalized average standard deviation of 10-
minute step power changes from 2006-2009 as reported by Wan
[194] is σwind10min = 0.709%, which, assuming a normal distribu-
tion of changes provides a 99.5% confidence interval (2.8σ) with
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2% of wind capacity for reserves. This value is used for reserve
down requirements.

2.6.3 Reserve Capabilities

A generation unit’s maximum ramp rate largely determines its ability
to provide reserves, with each class of reserve having an associated
ramp duration. Spinning reserves must reach full deployment in un-
der 10min, and hence a generators spinning reserve capability is based
on its maximum 10min ramp rate [177]. The faster regulating reserves
are computed differently. Although regulation is designed to deal with
~1min variations, longer period ramp rates from 5-15min are used in
practice [195]. This implies that the total cumulative excursions for reg-
ulation are larger than the minute-to-minute variations. However, inde-
pendent of ramp rate, not all types of generation are capable of provid-
ing reserves. For example, current US nuclear reactors and renewable
generation are not capable of providing reserves, though technically
both could be configured to do so, albeit with a decrease in efficiency
and increase in up-front costs.

2.6.4 Summary of Reserve Assumptions

Although the test system used in this thesis is loosely based on ERCOT,
for the sake of simplicity and data availability, some reserve assump-
tions are adopted from CAISO, PJM, and WECC as described in Table
2.2.

The Reserve capabilities of generators are provided in Table 2.3

2.7 clustered production costing

2.7.1 Introduction

Because the simulation time horizon extends beyond weeks to as much
as a full year (8760 hours), production costing and a number of mid-
term considerations become important. Again, clustering can simplify
model formulation. As described in section Section 1.5.1 this thesis
only considers maintenance scheduling. Extensions for hydro schedul-
ing, reserve deployment and other considerations are left for future
work.
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Table 2.2: Reserve requirements used in this thesis

Type Requirement Source

Reg. Up 1% of load +
3.58MW/GWwind

PJM guideline [177] +
ERCOT annual avg. for

wind [187]
Reg. Down 1% of load +

3.21MW/GWwind

Outage 2.3 GW Loss of two largest
generators [187]

Net Load Up 3.3% of load + 7.95% wind
capacity + 13.9% wind

power

See discussion.

Net Load

Down

3.3% of load + 2% of wind
capacity

See discussion.

QuickStart 50% of Secondary can be
met by off-line

WECC guideline [177]

Replacement 1.28 GW Replacement reserves for
largest generator

Table 2.3: Basis for reserve capabilities of generators

Type Actual Duration Ramp Rate Basis

Regulation 1sec-1min 5min
Spinning/Load-follow 10min-2hr 10min

Quick Start 10min Only NG-GT Aero &
Internal Combustion
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2.7.2 Hierarchical time indices

Dividing the operating time period into a hierarchy of time periods -
such as years, weeks, hours – can make the model more efficient in
two ways:

1. Enabling a reduced number of time periods (e.g., 14 weeks to
represent a year) while still maintaining high temporal resolution
(hourly), and

2. Simplifying the formulation of mid-term decisions for produc-
tion costing by limiting the decision domain to mid- or high-
level time dimensions. (e.g. decide maintenance at a weekly reso-
lution)

Mathematically, this simply requires expanding the indexing for all
time varying variables and parameters to include not only time periods
(e.g., hours) with subscript t, but also time blocks (e.g., weeks) indexed
with, b. For example the objective function (2.1) becomes

Ctotal = min ∑
ĝ∈G

∑
b∈B

lduration
b ∑

t∈T

(
Cvar

ĝ,b,t + Cstart
ĝ,b,t

)
(2.28)

where the block duration (in weeks), lduration
b , recognizes that time

blocks, b, may be scaled to represent multiple weeks and enable rep-
resentative seasonal, monthly, etc. blocks to replace an entire annual
sequence of (e.g. hourly) subperiods. For intra-period constraints such
as unit commitment state, ramping, and minimum up and down time
constraints, the wrap-around commitment assumption described in
section 2.4.6 applies to each time block.

2.7.3 Maintenance Scheduling

The full generator maintenance scheduling problem considers a large
number of constraints on both power system reliability and mainte-
nance logistics - such as work crew availability, probabilistic generator
outages, shared fuel constraints, etc. - and quickly becomes a challeng-
ing optimization problem in itself [54]. To balance tractability and ac-
curacy, I use a simplified formulation to capture the most important
constraints as described below. As with unit commitment, clustering
enables replacing individual maintenance decisions and schedules for
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each unit with a decision on the number of units in each cluster under
maintenance for each time block. The clustered maintenance schedul-
ing formulation includes:

unit availability A unit on scheduled maintenance is not avail-
able for commitment/dispatch. Conceptually this introduces a
additional limit to the committed number of units for each clus-
ter as seen in Figure 2.6.
Mathematically this becomes:

0

Units on-line, Ûĝ,b,t

nĝ
Units on maintenance, Mĝ,b

Figure 2.6: Conceptual diagram of clustered maintenance for a single type of
unit in a single time block.

0 ≤ Ûĝ,b,t ≤ nĝ −Mĝ,b (2.29)

where Mĝ,b represents the number of units within the cluster un-
der going maintenance in time block, b.

maintenance sufficiency ensures that each unit undergoes the
required maintenance by ensuring the sum-product of block du-
ration, lduration

b , and units on maintenance, Mĝ,b meet or exceed
the annual maintenance required per unit, amaint

ĝ , times the num-
ber units in the cluster, nĝ:

∑
b∈B

Mĝ,blduration
b ≥ amaint

ĝ nĝ (2.30)

where the block duration (in weeks), lduration
b , recognizes that tak-

ing a unit down for maintenance during block, b, may allow for
more than a single week of maintenance. For example, if a type
of generation requires two weeks of annual maintenance per unit
(amaint

g = 2), a four week time block - or a representative week
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from a 4 week month - (lduration
b = 4) can support the back-to-

back maintenance of two of the units in the cluster while only
keeping a single unit off-line at any given time (Mĝ,b = 1).

maintenance cost updates the objective function, 2.28, with an ad-
ditional maintenance term:

Ctotal = min ∑
ĝ∈G

∑
b∈B

[
Cmaint

ĝ,b + lduration
b ∑

t∈T

(
Cvar

ĝ,b,t + Cstart
ĝ,b,t

)]
(2.31)

where the maintenance cost, Cmaint
ĝ,b for each technology cluster, ĝ,

for time block, b, is given by

Cmaint
ĝ,b = Mĝ,b

c f ixO&M
ĝ aMaintFractO f O&M

ĝ

amaint
ĝ

lduration
b (2.32)

contiguous maintenance ensures that once a unit begins sched-
uled maintenance, it remains off-line until the maintenance is
complete. This constraint is analogous to the minimum up time
constraint from unit commitment and may be captured similarly
using both 1) a maintenance state equation:

Mĝ,b = Mĝ,b−1 + Mbegin
ĝ,b −Mend

ĝ,b (2.33)

with Mĝ,b, Mbegin
ĝ,b , Mend

ĝ,b ∈ {0, 1, · · · , nĝ} (2.34)

Where Mbegin
ĝ,b and Mend

ĝ,b represent the number of units in the clus-
ter that begin and end maintenance respectively in time block b.
And 2) a minimum maintenance duration constraint:

Mĝ,b ≥ ∑
b−amaint

g ≤β≤b

Mbegin
ĝ,β (2.35)

As with commitment states, all three of the maintenance state
variables are constrained to take integer values for improved per-
formance (see discussion under Startup and Shutdown Events on
page 67).

crew limits recognize that there are a finite number of maintenance
crews and equipment capable of maintaining each plant type. As
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a result, only a fraction, wmaint f ract
ĝ of each facility type can un-

dergo maintenance at a time:

Mĝ,b < wmaint f ract
ĝ nĝ (2.36)

2.8 traditional capacity planning

2.8.1 Basic Generation Expansion Planning

This section describes the generation expansion problem and the tradi-
tional formulation used. Centralized generation expansion planning at-
tempts to minimize the total lifecycle cost of the entire generation fleet
while still maintaining sufficient capacity to reliably supply the de-
mand. These costs are a combination of investment plus discounted op-
erations costs. Traditionally, unit commitment constraints are ignored
and for a given capacity mix, the facilities with the lowest operating
costs are used first. This simple operations model is sometimes called
“merit order” or economic dispatch based operations costs.

For a single decision period, this generation expansion problem with
simple operations can be solved graphically using “screening curves”
[74]. These curves illustrate how a mix of generation types provides
the lowest total cost for meeting a non-constant demand. Specifically,
expensive to build and cheap to operate “baseload” facilities run most
to all of the time, while less capital intensive, but more expensive to
operate, “intermediate” and “peaker” plants run only during higher
demand periods. In a screening curve analysis each generator’s costs
are plotted as straight lines of total annualized cost versus number of
operating hours. Each line has a slope equal to the sum of variable
operating costs, cvar

g , and intercept equal to the sum of fixed costs (an-

nualized investment, O&M, etc.), c f ix
g . The intersection of these lines

for different technologies correspond to the transition points where it
is more cost effective to use a higher fixed cost generator due to savings
in operating costs. These intersections are then projected onto a cumu-
lative distribution function of demand, or “load duration curve,” to
determine the optimal capacity investment as illustrated in Figure 2.7.
Although significantly more sophisticated formulations looking at re-
liability, multiple time-periods, multi-criteria objectives, etc. have been
developed, the humble load duration curve (or its numeric equivalent)
remains at the heart of most large capacity planning models including
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Figure 2.7: Example of Screening Curve Approach to Capacity Planning

MARKAL [66], EGEAS [100], etc. that despite having been initially de-
veloped 30 years ago, have updated versions that are still considered
state-of-the-art and remain in active use today [102, 70, 196].

The same results can be obtained using a Linear Program (LP), which
is easier to extend to include additional operating constraints. The sim-
plest form of the objective function for the LP formulation is:

Ctotal = min ∑
g∈G

(
Igc f ix

g + ∑
t∈T

Pg,tcvar
g

)
(2.37)

Where Ig represents the capacity investment and, as before, Pg,t, is
the power output of generator, g, in time period, t. This simple opti-
mization is subject to generator output constraints:

0 ≤ Pg,t ≤ Ig ∀t ∈ T , g ∈ G (2.38)

which limit production to be less than the installed capacity. It is also
subject to a requirement to meet the demand through a system balance
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constraint, which is identical to that from unit commitment (2.7). This
equation is duplicated here for completeness:

∑
g∈G

Pg,t = Lt ∀t ∈ T

2.8.2 Annualized Capital Cost

Generation facilities are highly capital intensive and require decades
of operation to amortize the total investment. They are typically fi-
nanced through a combination of debt and equity that translates into
a percentage weighted effective interest rate known as the Weighted
Average Cost of Capital (WACC). For single period capacity planning,
capital costs are annualized using a capital recovery factor [74] that
captures the capital costs and interest payments over the economic life-
time, ali f e

g , of the facility:

aCRF
g =

WACC

1−
(

1
1+WACC

)ali f e
g

(2.39)

This enables computing fixed cost as a function of its components us-
ing:

c f ix
g = aCRF

g ccapital
g + c f ixO&M

g (2.40)

2.8.3 Availability, Derating, Firm Capacity and Planning Reserves

Derating

Simply because a GW of capacity is built does not mean it will be avail-
able to meet demand. For example, in the unit commitment discussion
above, some generating capacity is held in reserve to accommodate
unexpected changes in the load, generator output or outages. In addi-
tion, large centralized plants may be unavailable due to maintenance
or unforeseen breakdowns known as “forced outages.” For these rea-
sons, simplified capacity planning typically “derates” the production
of facilities by replacing (2.38) with:

0 ≤ Pg,t ≤ Igaderate
g ∀t ∈ T , g ∈ G (2.41)
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Below, I will incorporate these constraints using an integrated unit
commitment and capacity planning model, such that derating will no
longer be necessary.

Planning Reserve Margin

Of particular concern is the availability of a generation mix to meet
demand with minimal loss of load. Probabilistic methods exist for
planning based on reliability metrics such as Loss of Load Probabil-
ity (LOLP) and Loss of Load Expectation (LOLE); but, the simplest ap-
proach requires a “planning reserve,” aPlanReserve, of “firm” capacity to
be built beyond that required by the peak demand:

∑
g∈G

a f irm
g Ig ≥ (1 + aPlanReserve)max

t∈T
Lt (2.42)

The planning reserve accounts for both the peak period operating re-
serve requirements and uncertainty in load growth projections. The
firm capacity ratio, a f irm

g , represents the fraction of installed capacity
that can be counted on to reliably provide energy during the peak. For
thermal plants the firm capacity is taken as 100% minus the Effective
Forced Outage Rate (EFOR). Conceptually, firm capacity is similar to
derating in that both adjust the installed capacity to account for times
the unit is not available. The difference is that derating considers the
average unavailability throughout the year, including planned (main-
tenance) and unplanned outages, and reserve provisions. But since
planned maintenance is typically not scheduled during the peak, firm
capacity is typically higher.

Variable Renewable Availability

For most variable renewables - e.g. wind or solar PV - even central-
ized facilities are composed of a large number of small units - wind
turbines or solar arrays. As a result, maintenance and forced outages -
which occur at the individual unit level - only take a small fraction of
generation off-line at any time. However, variability of the renewable
resource limits the power generation potential at each hour based on
the “availability” of the renewable resource. This updates the power
limit (2.38) for renewables to

0 ≤ Pg,t ≤ Igaavail
g (t) ∀t ∈ T , g ∈ Grenew (2.43)
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For firm capacity, the probabilistic nature of resource availability co-
incident with the peak must be considered when computing the plan-
ning margin. There has been considerable research into methods for
estimating this “capacity credit” for wind and other renewables. See
the excellent pair of reviews by Milligan and Porter [197, 198]. These
values are highly dependent on the existing generation mix and the
correlation between renewable output and load. In this analysis the ca-
pacity credit for wind is taken as 10.5%, based on the average of two
recent studies of the Effective Load Carrying Capacity (ELCC) for wind
in ERCOT [199].9

2.8.4 Additional Planning Constraints

A number of additional long-term capacity planning considerations
are sometimes included:

existing generation is readily included without any formulation
changes by allowing Ig to capture the total installed capacity for
each generator type:

Ig = Iexist
g + Inew

g (2.44)

with Iexist
g , Inew

g ≥ 0

retirement is captured by updating (2.44) to include the retirement
of a simple fraction of existing generation:

Ig = (1− aretire
g )Iexist

g + Inew
g (2.45)

renewable portfolio standards (rps) require that a minimum
fraction of generation, aRPS, must come from renewable energy
sources:

∑
g∈Grenew

∑
t∈T

1 · Pg,t ≥ aRPS ∑
g∈G

∑
t∈T

1 · Pg,t (2.46)

9 The capacity credit for wind is a function of wind capacity and is both controversial
and system specific. ELCC is the preferred method [200], but this metric depends on
both the other generation on the system and the correlation of wind and load. The
most recent ERCOT study (2010) found a wind capacity credit of 12.2%, while the
older (2007) study found only 8.7% using similar methods. Both results are reported
in [199]. However, the controversial nature was underscored by votes of both the
ERCOT Board and Technical Advisory Committee to continue using the old value
(8.7%) until a more detailed analysis could be conducted.
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In this relation, the set, Grenew, only includes renewable sources
such as wind, solar, etc. The factor 1 recognizes the need for unit
scaling from units of power (e.g. GW) to energy (e.g. GWh). With
hourly time periods and Pg,t defined to express the average power
output per time period, only a unity conversion factor is required.

discrete units The traditional expansion planning model assumes
continuous capacity investment decisions; however, it is not pos-
sible to construct arbitrary capacity for each generation type. In-
stead, facilities consist of a number of discrete generating units
each with a discrete size determined by the prime mover and
fuel type. Although a small range of off-the-shelf options exist for
each unit type, for simplicity, this analysis assumes a single rep-
resentative unit size for each type of new generation unit, thereby
requiring investment decisions to take discrete values:

Inew
g ∈ {0, asize

g , 2asize
g , · · · , nmax

g asize
g } (2.47)

This naturally leads to clustering in the capacity planning model,
and enables integrating unit commitment and operations as de-
scribed in the next section.

2.9 clustered expansion planning

Although clustering provides considerable performance improvements
for long-term unit commitment optimization, perhaps its greatest ad-
vantage is for capacity planning with integrated flexibility analysis. AsA key

contribution...
is using

clustering to
directly...

integrate unit
commitment

operations
into capacity

expansion
optimization

models

described in the introduction, such analyses in the past have re-
lied on either highly simplified models or a two-step approach where
investments were first optimized using simple operations and later an-
alyzed using sophisticated production cost tools. A key contribution
of this thesis is using clustering to directly and tractably integrate unit
commitment operations into capacity expansion optimization models.

Conceptually, this adds a third clustered variable that captures in-
vestment decisions to the clustered combination of unit commitment
and maintenance as seen in Figure 2.8.

Mathematically this updates the clustering relation (2.29) to include
the number of units actually built:

0 ≤ Ûĝ,b,t ≤ Nĝ −Mĝ,b ≤ Nĝ ≤ nmax
ĝ (2.48)
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0
Units on-line, Ûĝ,b,t

nĝ

Units on maintenance, Mĝ,b
Units built, Nĝ

max

Figure 2.8: Conceptual diagram of clustered capacity planning with inte-
grated unit commitment and maintenance for a single type of unit
in a single time block.

where the number of units built for each cluster, Nĝ, relates to clustered
capacity investment decisions, Iĝ, via the representative plant size, asize

g :

Nĝ =
Iĝ

asize
ĝ

(2.49)

The combined objective function integrates the capacity planning
objective (2.37) with that from the combined maintenance/unit com-
mitment (2.31) to give:

Ctotal = min ∑
ĝ∈G

(
Nĝasize

ĝ + ∑
b∈B

[
Cmaint

ĝ,b + lduration
b ∑

t∈T

(
Cvar

ĝ,b,t + Cstart
ĝ,b,t

)])
(2.50)

Since all three components of this combined model - unit commit-
ment, maintenance, and capacity planning - were developed above
using clustering, minimal additional changes are required. The only
required changes are to correct for the accounting of maximum units
in minimum down time replacing (2.25) with:

(
Nĝ −Mĝ,b

)
− Ûĝ,t ≥

t

∑
τ=t−mmindown

ĝ

D̂ĝ,τ (2.51)

and tertiary reserve capabilities replacing (2.26) with:

Rtertiary
ĝ,t ≤

[(
Nĝ −Mĝ,b

)
−ĝ −Ûĝ,t

]
aquickstart

ĝ pmax
ĝ (2.52)
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2.10 additional relations

2.10.1 Carbon Policy

Simplified representation of the two primary types of carbon policies
under consideration, taxes and caps, are included by computing the

quantity of carbon dioxide equivalent emissions, Q
CO2eq
f , for each fuel

type, f , by multiplying the fuel-specific emissions rate, aCO2rate
f , by the

sum of fuel use in operation and fuel use for startup by generator for
each time period, t, in each time block, b, scaled by block duration,
lduration
b :

Q
CO2eq
f = aCO2rate

f ∑
g: f=a f uel

g

∑
b∈B

lduration
b ∑

t∈T

(
Fg,b,t(Pg,b,t) + Sg,b,t f start

g

)
(2.53)

This quantity can then be limited to enforce a sector-wide carbon cap,

q
CO2eq
max :

∑
f∈F

Q
CO2eq
f ≤ q

CO2eq
max (2.54)

and/or added to the objective function to compute carbon tax costs as
described in Section 2.10.3.

2.10.2 Penalty Functions

Penalty functions provide an alternative to some of the energy and
reserve related constraints by allowing violations of the constraints at
relatively high costs to more realistically capture the market and regu-
latory structure of modern power systems. The costs must be set high
enough that violations are reserved for rare or extreme events. The
added costs are included in the updated objective function described
in Section 2.10.3. Each penalty function also updates a constraint as
follows:

non-served energy allows shedding some load if more economic
than investing in additional capacity. This updates the system
balance equation (2.7) to allow non-served energy, EnonServe

t :

∑
g∈G

1 · Pg,b,t + EnonServe
b,t = 1 · Lb,t ∀t ∈ T , b ∈ B (2.55)
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In this relation, the factor 1 recognizes the need for unit scaling
from units of power (e.g. GW) to energy (e.g. GWh). With hourly
time periods and Pg,t defined to express the average power out-
put per time period, only a unity conversion factor is required.

unmet (planning) reserves provides an economic alternative to
the planning reserves by expanding (2.42) to include unmet re-
serves, Runmet:

∑
g∈G

a f irm
g Ig + Runmet ≥ (1 + aPlanReserve) max

b∈B,t∈T
Lb,t (2.56)

rps non-compliance mimics the actual design of many Renewable
Portfolio Standard (RPS) regulations by providing a penalty for
not meeting the standard [8]. This updates the RPS requirement
(2.46) to include unmet renewable energy,ErpsUnmet:

ErpsUnmet + ∑
g∈Grenew

∑
b∈B

∑
t∈T

1 · Pg,b,t ≥ aRPS ∑
g∈G

∑
b∈B

∑
t∈T

1 · Pg,b,t

(2.57)

2.10.3 Updated Objective Function

To account for these additions the objective function must be updated
to include penalty and carbon costs:

Ctotal = min

{
cCO2eq ∑

f∈F
Q

CO2eq
f + cnonServe ∑

b∈B
∑
t∈T

EnonServe
b,t

+ ∑
ĝ∈G

(
Nĝasize

ĝ + ∑
b∈B

[
Cmaint

ĝ,b + lduration
b ∑

t∈T

(
Cvar

ĝ,b,t + Cstart
ĝ,b,t

)])
+ cplanUnmetRunmet + crpsUnmetErpsUnmet

}
(2.58)

2.11 software implementation

2.11.1 Structure & Environment

For this thesis, the author developed the Advanced Power family of
models from scratch using the General Algebraic Modeling System
(GAMS) [201]. Advanced Power is a modular suite of highly config-
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urable models including UnitCommit for unit commitment and Static-
CapPlan for capacity planning. The configurability comes from a com-
bination of a rich set of command-line options, and the separation of
data into include files distinct from the model files.

Each model consists of the core model, helper utilities, and a col-
lection of “shared” model pieces. The files are structured to minimize
duplication and share code (and hence enhancements, bug fixes, and
documentation) as much as possible. For example, the UnitCommit
model can either be used standalone for operations and production
cost modeling or it can be called as the operations submodel by Stat-
icCapPlan. Both models also share identical data sets, input functions
and output reporting functions.

Command line options control pre-compile flags to use different
data, model simplifications and solver configurations. For example,
these options allow the same UnitCommit model to be used at a range
of fidelity levels from simple economic dispatch up to full unit commit-
ment production costing including startup, minimum up/down times,
ramping, operating reserves, optimized maintenance, minimum out-
put levels, piecewise linear fuel costs, and more. This same range of
constraints can in-turn be used within capacity planning with Stat-
icCapPlan since it relies on UnitCommit for operations. A complete
listing of these model files is included in Appendix D.

The resulting problems are then solved using the state-of-the-art
CPLEX 12.310 LP/MILP solver [202]. The high-performance barrier solver
was used for all11 LP, MIP root node relaxation, and MIP final solu-
tions. In testing for this thesis (not reported) barrier provided generally
faster, sometimes dramatically so, solutions to this class of problem.
The solver was instructed to conserve memory when possible (memo-
ryemphasis=1) to prevent out-of-memory errors for the large problems
considered here. The LP tolerance (epopt) was tightened to 1e-9 to en-
sure that the final LP solve matches the MILP branch-and-cut solution.
Except as noted, all model runs were conducted as a single thread run-
ning on a single 64-bit core (Intel Nehalem) at 2.67GHz clock speed. Up
to 6-10 runs were run in parallel as sub-tasks of exclusive jobs on iden-

10 In some cases a different version of CPLEX is used. This variation are noted in the
text.

11 As noted in the text, a few runs employed the parallel features of CPLEX. These
runs used the default behavior of racing barrier against the dual and primal sim-
plex solvers, using any spare cores for multi-threaded barrier and taking the fastest
solution method.
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tical 8-12core machines (keeping 2+ cores idle) with 24-48GB of shared
RAM. Although run on a high performance cluster, the resulting re-
sources allocated to each process are roughly equivalent to a modern
personal computer.

2.11.2 Additional Model Strategies

The full integrated model formulation described above is included
with some adjustments and extensions to streamline the software im-
plementation. These adjustments are carefully selected to maintain
identical solutions, while removing extraneous relations. Adjustments
include:

selective integer relaxation to allow some or all of the inte-
ger constraints to relax and take on continuous variables. When
all integers are relaxed (ignore_integer=1) the problem becomes
a Relaxed Mixed Integer Linear Program (RMILP) directly solv-
able as an LP. This can greatly reduce computation times while
still maintaining some aspects of the full unit commitment prob-
lem - notably capacity available for reserves - in ways not possi-
ble without commitment variables. As an in-between, only units
with small, but non-zero, minimum output levels can use relaxed
commitment variables (uc_int_unit_min > 0).

sub-sets to capture the fact that not all constraints are relevant for
all generation units. For example, units with zero minimum out-
put levels, pmin

g = 0, such as renewables, are typically not sub-
ject to unit commitment constraints (uc_ignore_int=0) because
the optimal solution is equivalent to involve keeping them com-
mitted/on at all times (except for maintenance). This is because
unlike most facilities which must consume fuel to run at a non-
zero minimum output level, there is no operational cost penalty
for zero minimum units to run all the time.

Subsets used in the formulation include GUC, generators subject
to unit commitment; GUCint, generators subject to integer unit
commitment; Grps, generators that contribute to the rps; GPWLcost,
generators using piecewise-linear fuel usage functions; etc. In ad-
dition virtual subsets only create constraint equations for gener-
ation units that meet certain criteria. For example, minimum up
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time constraints are only considered for units with minimum up
times greater than one hour.

modular equations to include only appropriate portions of equa-
tions such as the objective function and min/max output con-
straints. The additional terms introduced in these equations as
the formulation unfolded in the discussion above exist inside
conditional statements ($if and $ifthen) and only become active
when required.

scaling to improve numerical performance of the solver by present-
ing relations closer to 1.0 in magnitude. In general the model uses
units of GW for power, capacity, and demand; TWh for energy;
$million for costs; and Mt for emissions.

data calculations manipulate the standardized data files for scal-
ing, unit conversion, default values for generator parameters based
on fuel type, etc. In particular, these calculations allow generator
data specified in engineering terms such as fuel type, heatrate,
emission rate, startup fuel use, variable operations and mainte-
nance (O&M) costs, etc. to be mapped into variable costs, total
emissions, and other factors as required.

scenarios Although not used in this thesis, all of the model code
includes an additional index in all parameters, variables, and
equations to enable scenarios for multi-year and stochastic anal-
ysis. Mathematically this simply implies that all time period, t,
and timeblock, b, indexed variables and relationships also have
the scenario index, s. The scenario index enables stochastic unit
commitment - by fixing commitment decisions across scenarios -
and stochastic static planning - with fixed investments across sce-
narios - with no software changes. These capabilities are demon-
strated in the StocUC and StocCapPlan models.



3
P E R F O R M A N C E O F C L U S T E R E D U N I T
C O M M I T M E N T

3.1 overview and contribution

This chapter seeks to validate the clustering approach by comparing it
to both traditional, full (binary) unit commitment and alternative sim-
plification strategies. To do so, operations-only comparisons are made
among binary, clustered, and alternative unit commitment optimiza-
tion models. The chapter also explores the trade-off between accuracy
and run-time for different levels of aggregation used in clustering1. For
objective comparison, a set of performance metrics applicable to wide
range of decision objectives are also introduced. In addition, the perfor-
mance of the other simplifying long-term UC assumptions described
in Section 2.5 are included in the comparison with and without clus-
tering.

To the author’s knowledge this is the first side-by-side comparison of
clustering to full separate unit formulations for power systems, the first
attempt to compare methodologies for aggregating units into clusters,
and the first to compare clustering to other simplifying heuristics.

3.2 experimental setup

3.2.1 Metrics of comparison

Unit commitment can be used to inform a range of policy and planning
questions. Depending on the application, some solution outcomes may
be more important than others. To provide results relevant to a range
of applications, multiple comparison metrics are computed, one for
each outcome of potential interest. In all cases, these metrics compare

1 In contrast to traditional separate unit formulations, clustering groups similar units
into clusters and assigns an integer, rather than binary, commitment decision to the
group. As described in more detail in Section 2.4, clustering allows capturing full unit
commitment constraints – including ramping, start up costs, minimum output levels,
piecewise linear fuel usage and minimum up and down times – at an individual unit
level under the key assumption that all units within a cluster are identical.

103
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experimental runs to the full traditional binary unit commitment for-
mulation, indicated with subscript “baseline”:

total cost is the objective function value for the optimization and
includes all operations costs. For comparison, a scalar percent
difference is computed using:

∆Ctotal =
Ctotal − Ctotal

baseline

Ctotal
baseline

(3.1)

co2e emissions : carbon dioxide (CO2) equivalent emission are com-
puted system-wide based on fuel usage for both power genera-
tion and startup. A scalar percent difference is computed in the
same manner as total cost.

energy mix is based on total annual production by generator class
divided in the same way as for clustering. The energy mix for
each class is computed by summing the product of power output
and duration for all time periods and dividing by the total system
energy production:

Ê f raction
ĝ =

∑t∈T P̂ĝ,t · 1hr

∑ĝ∈Ĝ ∑t∈T P̂ĝ,t · 1hr
(3.2)

The mean absolute difference of this vector provides a scalar com-
parison metric:

∆Emix = mean
ĝ∈G

∣∣∣Ê f raction
ĝ − Ê f raction

ĝ

∣∣∣
baseline

∣∣∣ (3.3)

commitment plan differences are first computed as an array of dif-
ferences with one element for each time period for each group of
units aggregated to the cluster level. Two scalar comparisons are
then made: a) The total count of differences between plans, com-
puted as the number of non-zero elements in this array and b)
the normalized mean absolute difference where commitment dif-
ference values for each time are normalized based on the total
number of units committed for that time period in the baseline:

∆U = mean
ĝ∈G,t∈T

∣∣∣∣∣∣ Ûĝ,t − Ûĝ,t
∣∣
baseline

∑ĝ∈G

(
Ûĝ,t

∣∣
baseline

)
∣∣∣∣∣∣ (3.4)
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hourly power output differences are computed identically to com-
mitment, except that for the count of differences, power levels are
first rounded to the nearest 0.5MW.

computation time is reported as total solver (CPLEX) run time
and excludes model setup and output processing by GAMS.

3.2.2 Implementation Notes

As further described in Section 2.11, all runs were conducted with the
highly configurable “UnitCommit” model from my Advanced Power
toolset. UnitCommit is implemented in the General Algebraic Mod-
eling System (GAMS) [201] and run using the state-of-the-art CPLEX
12.22 Linear Program (LP)/Mixed Integer Linear Program (MILP) solver
[203].

These results are also based on a slightly older version of UnitCom-
mit with the following formulation differences:

• The use of relaxed (non-integer) startup and shut-down variables,
and

• Maintenance not included

• Different reserve requirements than those reported in Table 2.2.
The exact values used are included in the corresponding test sys-
tem description.

3.3 test system #1 : ieee reliability test system

3.3.1 System description

The Institute of Electrical and Electronics Engineers (IEEE) Reliability
Test System (RTS) was initially defined in 1979 [204], updated in 1986

[205], and again in 1996 [206]. It includes detailed unit data for ten
types of generators, with between one and six units of each type, to
describe a basic system with 32 total units. The dataset includes tables
for demand dynamics up to a full year at an hourly resolution.

This analysis uses the 1996 revision [206] for demand data and most
unit data including heat rates, minimum up/down times, cycling, ramp-

2 Note: the use of a slightly older version of CPLEX in this chapter
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ing, emissions, and startup fuel usage. For each unit, the baseline for-
mulation uses a three segment piecewise linear fuel use function with
intersections at each of the provided net heat rate data points. Unit
cost data is only reported in the 1979 definition [204].

System reserve requirements were taken as 1% of the load for regu-
lation up and down, and 2% of load for load following up and down
plus spinning reserves equal to the largest single unit, 400MW. Quick
start reserves are not used.

The system was simplified by ignoring transmission and assuming
all units are located at a single node. The six hydro units were re-
moved, leaving 26 units of eight different types. To compensate for
the removed hydro, demand data was scaled uniformly by 92%, the
annual ratio of hydro energy to total demand. Runs were conducted
using data for the week of peak demand.

3.3.2 Clustering Approach

The inherent duplication of identical units in the IEEE RTS system
provides straightforward clustering by grouping identical units. For
perturbed runs, each unit’s variable operations and maintenance costs
are adjusted slightly (up to 0.01%).

3.3.3 Results

Mixed Integer Heuristics

As seen in Figure 3.1, most of the heuristics for streamlining similar
MILP results can provide some computational speedup, but only clus-
tering provides speed up in all cases. Clustering is also significantly
more effective than the other techniques, providing 100-10,000 times
faster performance than the next closest heuristic. In all cases, the ag-
gregate errors are minimal: below 0.1% for most metrics, with the only
exception of approximately 0.3% errors for separate units with a 0.1%
relative cheat3.

Unit Commitment Simplifications

As seen in Figure 3.2, most of the unit commitment simplifications also

3 “Cheat” refers to the ε-optimal MILP heuristic described in Section 2.2.4.
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Figure 3.1: Mixed integer heuristic comparison for IEEE Reliability Test Sys-
tem 1996 (a) shows solver run times for different heuristic combi-
nations (note logarithmic time axis). (b) Shows key error metrics.
“Cheat” refers to the ε-optimal MILP heuristic described in Section
2.2.4. In all cases, the “Separate, 0% MIP gap, No Cheat” configu-
ration was used as a baseline.
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Figure 3.2: Unit Commitment simplification comparison for IEEE Reliability
Test System 1996 (a) Shows solver run times for different simplifi-
cations. Note logarithmic time axis. And (b) shows key error met-
rics. In all cases, the full problem with separate units was used as
a baseline. All runs used a MIP gap of 0.1% with ε or “cheat” set
to 0 for the ε-optimal MILP heuristic.
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provide some speed up to the problem, with reasonably small aggre-
gate errors, but none are as effective as clustering alone, which is about
20 times faster than any other approximation technique. Furthermore,
the combination of clustering with the other simplifications provided
additional speed-ups of 20 to over 250 times, while still maintaining
small errors. With all simplifications, the aggregate errors are all less
than 1.5%, and most are below 0.25% with the exception of normalized
commitment errors from 0.75% to 1.5% for combined reserves and runs
without minimum up and down times. And total cost errors around
0.6% for runs without minimum up/down times.

Complete result tables for these and other figures, as well as addi-
tional run configurations are provided in Appendix B.

3.4 test system #2 : ercot

3.4.1 System Description

To test the impact of clustering on a more realistic system, the Electric
Reliability Council of Texas (ERCOT) balancing area was modeled using
hourly historic demand and wind data from 2007. This system includes
the entire Texas Interconnect, which covers the majority of the state of
Texas and has negligible power exchange with other systems. ERCOT
had a 2007 peak load of 62GW [193] supplied by a total of 92.5GW of
generation capacity from 672 units [207].

To simplify the problem, following unit types are ignored:

• Non-dispatchable combined heat and power facilities (15GW in
204 units)

• Hydro (an additional 0.5GW in 41 units)

• Units with uncommon fuel types (an additional 0.1GW in 72

units), and

• Units with less than 50MW nameplate capacity (1GW in 56units).

In addition, combined cycle facilities were modeled as 36 groups in-
stead of 115 individual combustion and steam turbines. This resulted
in a total of 205 units in our model system.

For wind, expansion during the year was ignored by assuming a
fixed wind capacity equal to the final 2007 capacity of 3.7GW. Since
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Table 3.1: Additional Reserve Assumptions used in this chapter (updated as-
sumptions used in other chapters)

Reserve Type Additional Quantity

Up for forecast 12.5% of wind power
Up for capacity 6.5% of wind capacity

Down for forecast 8.75% of wind power
Down for capacity 6.25% of wind capacity

wind shedding is allowed, the wind dispatch is treated as a decision
variable, rather than using net Load Duration Curve (LDC). Hourly
wind production was taken as this capacity times the actual percent
production based on the installed capacity in each time period. Historic
hourly wind production and demand data from 2007 was obtained
from ERCOT [193].

The week of Saturday Mar 17, 2007 was used for 1-week (168hr) anal-
yses. This week contains both the peak wind and minimum demand.
Thirteen week data includes this peak week plus one week for each
month.

Plant-level heat rate and unit nameplate (maximum) capacity data
was taken from eGrid 2010 v1.1 [207], which contains 2007 emission
and plant data. Since only average heat rate information is available
in eGrid, piecewise linear fuel use functions are not used. Additional
generator technical parameters were taken from the Sixth Northwest
Power Plan appendix I [208] for corresponding plant types.

Fuel costs were based on EIA 2007 data for south central west elec-
tric power sector use [209]. Reserve requirements were taken as 1%
of load for regulation up and down, 1350MW for spinning reserves,
and 2% of load for load following up and down. As a simple proxy
for additional reserves required for wind uncertainty, load following
requirements were increased as a function of both installed capacity
and wind production using the factors in [18]. These values are sum-
marized in Up to 50% of the spinning reserve and load following up
requirements can be met by quick start open cycle natural gas units.

Complete generator data tables are provided in Appendix A. Hourly
demand and wind profile data is available by request from ERCOT.
Based on the RTS results, these experiments used a 0.1% MIP gap and
did not use the ε-optimal MILP heuristic. for all ERCOT runs and focus
our comparisons on unit commitment simplifications.
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Table 3.2: Problem Size and Runtimes For 1-week (168 Hr) ERCOT Operations

Problem Size (before CPLEX pre-solve)

Aggregation clusters equations variables discretes non-zeros Time (sec)

Separate 205 446,394 349,960 34,272 2,068,949 4517.2
By plant 90 197,922 151,048 14,952 943,685 435.3
By size 17 37,650 27,400 2,688 186,173 10.2

Full cluster 7 14,802 10,264 1,008 74,957 2.2

3.4.2 Clustering Approach

Units were clustered using the range of approaches as described in
Section 2.4.4 and summarized below:

separate : no clustering used;

full cluster : units are aggregated by type based on fuel and of
prime-mover combination alone;

type & additional characteristic : the following additional char-
acteristics are used (one at a time) in addition to fuel/prime-
mover combination:

• Unit size: nameplate capacity,

• Unit age: first year in service, and

• Unit efficiency: the heatrate of the units; and

by plant : units of the same type are aggregated.

Appendix A provides complete details on clustering, including result-
ing cluster lists and cut-off ranges for size, age, and efficiency. Table 3.2
compares the resulting number of clusters and corresponding problem
sizes and run times for each of clustering approaches. The problem size
for each of the intermediate, type and additional characteristic, clusters
matches that for “By size.”

3.4.3 Results

Unit Commitment simplifications

As seen in Figure 3.3, the unit commitment simplifications provide
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Figure 3.3: Unit Commitment simplification comparison for ERCOT 2007 (a)
Shows solver run times for different simplifications. Note logarith-
mic time axis. And (b) shows key error metrics. The full problem
with separate units was used as a baseline. All runs used a MIP
gap of 0.1% without the ε-optimal heuristic.
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some performance improvement, although less dramatically than for
the RTS system. With separate units, combined reserves and constrain-
ing the number of startups - rather than using the minimum up and
down time - provided the most significant speed-up of around 10

times faster calculation. But, as before, none of the simplifications were
as effective as clustering alone, which was 200 times faster than any
other simplification. In all cases, clustering further reduced computa-
tion time by a factor of between 350 to more than 2000.

Errors were still minimal, below 0.5% for separate units and near or
below 1% for clusters. The only exception was with separate units and
combined reserves where normalized commitment error rose to 2.3%.
In contrast to the RTS system, the observed errors are larger with clus-
tering, due to the heterogeneity of units with each cluster. This hetero-
geneity is also likely the cause of relatively large (~1.25%) errors in CO2

emissions with full clustering. The CO2 errors are notably reduced with
less aggregated clustering (next section) and longer model periods (see
Appendix B).

Comparison of Cluster Strategies

Figure 3.4 shows how most sub-clustering schemes result in small er-
rors (around or below 1%) with the exception of clustering by age,
which had larger errors (2.3-4.5%) for all metrics except CO2 emissions.
Clustering by efficiency resulted in the lowest errors among the 17-
cluster runs, for all other metrics, often close to or slightly better than
the larger clustering by plant formulation (90 units). Clustering Error
Comparison (ERCOT 1week)

Cluster Scaling

Figure 3.5 shows how the total solver time is greatly reduced by cluster-
ing, enabling tractable computation of a full year, 8760 hour, optimal
unit commitment for both 17 clusters (under 3 hours) and 7 clusters
(130 seconds). The primary driver for these speed-ups is a drastic re-
duction in the numbers of variables and equations which both scale
roughly proportionally to the number of clusters.

Complete result tables for these and other figures, as well as addi-
tional run configurations are provided in Appendix B.
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Figure 3.4: Level of clustering comparison for ERCOT 2007 (a) Shows solver
run times for different clustering levels. Note logarithmic time axis.
And (b) shows key error metrics. In all cases, the full problem with
separate units was used as a baseline. All runs used a MIP gap of
0.1% without the ε-optimal heuristic.



3.5 summary 115

0.0 

0.1 

1.0 

10.0 

100.0 

1000.0 

10000.0 

100000.0 

10 100 1000 10000 

So
lv

e 
Ti

m
e 

(s
ec

) 

Commitment Time Horizon (hours) 

Solve Time vs Commitment Horizon (ERCOT) 
All runs individually commit 205 units 

Separate (205) 90 Clusters 17 Clusters (Size) 7 Clusters 

Missing solutions or MIP gap >5% not shown  

10hr Timeout 

Figure 3.5: Impact of clustering and model time horizon on solution time.
Note both axes are logarithmic. All runs conducted with a 0.1%
MIP gap without the ε-optimal heuristic. Due to data limitations,
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used.

3.5 summary

The experiments here show the effectiveness of clustering for unit com-
mitment operations. In comparison to traditional separate unit formu-
lations, clustering provides orders of magnitude faster computation –
10 to over 1000 times faster depending on configuration with small
errors for a wide range of metrics. The numeric examples with both
the IEEE Reliability Test System (RTS) and an ERCOT-based 205-unit
system show that careful aggregation (17 clusters) introduces errors
of 0.05-0.2% for total cost, co2 emissions, energy mix, and dispatch
schedule while providing several orders of magnitude faster solution
times (400x) compared to traditional binary formulations. The unit
commitment metric showed higher errors around 0.9%. More aggres-
sive aggregation (seven clusters) increases errors slightly (~2x) with
further speedup (2000x). The results also demonstrate a full year (8760

hour) unit commitment for the 205-unit system in less than three min-
utes with personal computer hardware. Additional unit commitment
simplifications – notably combining reserves and relaxing integer con-
straints for units with small minimum output levels – are also com-
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pared. These additional simplifications can provide an additional order
of magnitude speed-up for some problems.



4
I N T E G R AT E D O P T I M I Z AT I O N O F U N I T
C O M M I T M E N T A N D P L A N N I N G

4.1 overview and contributions

This chapter highlights the importance of capturing operational flex-
ibility during generation capacity planning for strict carbon policies
and/or moderate-to-high Renewable Portfolio Standard (RPS) levels.
The chapter considers the perspectives of both policy analysts and util-
ities in an extended set of examples with a high carbon dioxide (CO2)
price and moderate RPS level. These examples compare the results of
capturing versus ignoring operational flexibility and walk through ex-
planations of how ignoring flexibility can produce poor forecasts or
difficult/expensive to operate capacity plans. With this motivation, the
chapter explores the impact of flexibility for other carbon & renewable
scenarios to produce a map of which combinations are most influenced
by operational flexibility. The chapter closes by demonstrating how the
clustering-based methods1 proposed in Chapter 2 capture operational
flexibility more realistically than alternative formulations in the litera-
ture.

Each of these components represents a contribution to the literature,
specifically:

1. Demonstrating that operational flexibility has an important im-
pact on planning;

2. Mapping when and to what extent operational flexibility changes
planning results;

3. Presenting a side-by-side comparison of different approaches for
capturing operational flexibility within planning models; and

1 Clustering groups similar units into clusters and assigns each group an integer, rather
than binary, decision variables for investment, maintenance, and unit-commitment-
operations. As described in more detail in Section 2.4, clustering allows capturing
full unit commitment operations constraints at an individual unit level under the
key assumption that all units within a cluster are identical. For production costing
with maintenance (section 2.7) and capacity planning (section 2.9) the same clustering
approach enables tractably combining the problems into a single optimization model.

117
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4. Demonstrating that Unit Commitment (UC) details can be tractably
incorporated directly into capacity planning optimization mod-
els. This chapter’s very existence underscores this point: Without
the clustering approaches presented in this thesis, the analyses in
this chapter would not have been practical due to computational
expense.

4.2 experimental setup

4.2.1 Test System

All of the simulations in this chapter use a test system based on the
Electric Reliability Council of Texas (ERCOT). The base system is largely
the same as the ERCOT test system from Section 3.4, but it has been
adapted for system expansion planning. All of the runs in this chapter
model a static (single period) deterministic future year assumed to be
a few decades in the future. Since only a single year of operations
is considered, the capital investment costs are annualized using the
capital recovery factor described in Section 2.8.2 using Equation (2.39).
The Weighted Average Cost of Capital (WACC) was assumed to be 9%
to match the ERCOT reported interest rate [210].

For demand, the test system assumes aggressive energy efficiency
programs have kept load growth to 0% and that the savings from
energy efficiency are distributed such that the load shape remains
unchanged and still matches that of 2007. Effects of different load
shapes and emerging technologies such as electric vehicles are left
for future research. In order to introduce maintenance, the single se-
quential 8760 hour demand time series is broken up into 52 week-
long time blocks (see Section 2.7.2) each with a full set of 168 hours.
This still simulates the full year at an hourly resolution; however, since
52wks× 7days = 364days, I remove December 31st and scale the result-
ing total operations costs up by a factor of 365/364 ≈ 1.00275. This
captures the year as 8736 hours, rather than 8760.

For generators, half of the existing simplified set of 204 thermal
units2 are assumed to have retired, such that despite the constant de-
mand, significant additional capacity must be built. These generators
are clustered by fuel and prime mover (full clustering). Existing gen-

2 The 205 units reported in Section 3.4 include an additional combined “unit” for all
of the wind capacity.
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erators and candidate new generators are assumed to have different
technical characteristics and are therefore kept in separate clusters. The
baseline wind capacity has been scaled up to the 2010 installed capac-
ity of 9.4GW, of which 50% is assumed to have retired by the analysis
year leaving 4.7GW of existing wind capacity. Only wind and six types
of thermal units are eligible for investment. The complete set of tech-
nologies available for investment includes:

wind : Assumed to to follow the same power production profile as
the aggregated actual wind production from 2007. Using actual
power production as a reference implicitly assumes the future
mix of turbine types will be similar to that of today. It also con-
servatively over-estimates the amount of variability in power out-
put for high RPS cases since spatial diversity has been shown
to reduce variability since wind conditions typically vary across
larger geographic areas [27]. For simplicity, wind investments are
assumed to occur in 200MW increments. Since wind investment
in the case studies are on the order of tens of GW, this assumption
results in negligible loss of fidelity.

new coal fired steam : Supercritical pulverized coal units using
sub-bituminous fuel. These high capital cost, low variable cost
plants have moderate efficiency and low to moderate operational
flexibility. Similar plants provide much of the baseload genera-
tion in the US today. Their very high carbon intensity greatly
increases the effective variable costs under carbon policies;

new coal with ccs : Assumed to be similar to the new pulverized
coal units but with a post combustion Carbon Capture and Se-
questration (CCS) system3. The carbon capture rate is 90%. The
CCS system increases capital costs and decreases efficiency rela-
tive to the non-CCS coal units, but generator technical constraints
that determine flexibility are assumed to remain the same4. Only

3 This pulverized coal based CCS plant was chosen instead of a coal Integrated Gasi-
fication Combined Cycle (IGCC) facility because the Energy Information Adminis-
tration (EIA) estimated capital costs for the IGCC facility were significantly higher
($5.35/W vs $4.58/W), such that other low carbon technologies, including both
Natural Gas fired Combined Cycle Gas Turbine (NG-CC) with CCS ($2.06/W) or even
Nuclear ($5.34/W) would always be preferable on a capital cost basis IGCC.

4 The impact of CCS on operating constraints remains uncertain. Some sources suggest
that the additional equipment will restrict operational flexibility [208] while others
suggest it can enable new modes of operational flexibility by turning CCS equipment
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demonstration plants of this type exist today, but the technology
represents an option for continuing to use inexpensive coal as a
fuel in a carbon constrained future.

new ng-cc : Natural gas fired combined cycle gas turbine units, some-
times referred to as CCGT. Similar units provide a majority of in-
termediate generation in the US today and low natural gas prices
have prompted significant recent investments in this type of plant.
The combined-cycle system enables very high thermal efficiency
since the heat from the combustion products of a gas turbine are
re-used to drive a conventional steam turbine. Such units provide
a moderate to high level of operational flexibility, and their com-
bination of high efficiency and lower carbon fuel (compared to
coal) provide a moderate carbon intensity.

new ng-cc with ccs : Similar to the new NG-CC units, but with a
90% capture post combustion CCS system. Such units are not in
operation today, but have been receiving growing attention as
an option for a carbon constrained future. As with coal, the CCS
system raises capital costs and lowers thermal efficiency, while
flexibility is assumed to remain at the same moderate to high
level as the NG-CC units without CCS.

new ng-gt : Natural gas fired aero-derivative simple cycle combus-
tion turbines. Such units are common in the power system today.
Of the new generation considered in this analysis, these gener-
ators have the lowest capital cost and the highest non-carbon
operating costs making them the “peakers” that may only run
during a small number of the highest demand hours5. Their jet
engine heritage also enables very high operational flexibility mak-
ing them especially suited for providing large operating reserves.
They are also assumed to be the only generator type capable
of providing quick start off-line replacement reserves. However,
their lower thermal efficiency and hence higher carbon intensity
can make them less attractive than NG-CC under strict carbon
policies.

down/off — increasing CO2 emissions — or delaying processing[35]. Using non-CCS
technical constraints, as done here, represents a middle ground between these ex-
tremes.

5 For simplicity other peaking units such as reciprocating diesel units are not included
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new nuclear : Assumed to be generation III+ (Advanced) pressur-
ized light water reactors. All currently operating US nuclear plants
began construction before 1979[211] and hence use older tech-
nologies. But nuclear’s effectively zero carbon emissions in op-
eration has increased interest in the technology and this more
advanced class of reactor has been proposed in most of the re-
cent US nuclear applications [212]. As built in the US, nuclear
power plants have strict technical operating constraints making
them the least flexible of all generation types6. Nuclear power
does pose some significant challenges with accidents, such as
the recent events at Japan’s Fukishima; non-proliferation; and
waste disposal. As a result, exploring the operational flexibility
impacts of low-carbon systems in the event public opinion pre-
vents nuclear investment represents an important line of follow-
on research.

New generator capital costs, operations and maintenance (O&M) costs,
and efficiencies (heatrates) are taken from [213]. Where applicable, the
lower costs for dual co-located units are used. As before, generator
unit commitment and other technical data are taken from [208]. Com-
plete clustering information and generation data tables can be found
in Appendix A.

4.2.2 Metrics

As described in Section 1.6, the capacity planning model can be used
to inform a range of policy and planning questions. Depending on the
application, some solution outcomes may be more important than oth-
ers. Therefore, as was done in Chapter 3, multiple comparison metrics
are computed, one for each outcome of potential interest.

When comparing predicted to actual results, the predicted results
are used as a baseline. In all other cases, the capacity planning results

6 Nuclear power is not inherently inflexible, as evidenced by the special design of
some nuclear power facilities in France to have high ramp rates. These units, along
with pumped hydro storage and transmission interconnection with Germany enable
France to obtain 75% of its power from nuclear. The navy also operates ships and
submarines that use highly throtable nuclear-electric power sources. However, this
operational flexibility requires re-engineering some key plant components, further
increases the already high capital costs, and has not yet been licensed in the US.
Exploring the impacts of flexible nuclear is left as an area of future research.
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based on full, clustered unit commitment operations were used as the
baseline.

Metrics shared with Operations

Many of the metrics from the operations-only comparisons are also
useful for capacity planning:

total cost is the objective function value for the optimization and
includes all operations and investment costs. A scalar percent
difference is computed for comparison.

co2 emissions : CO2 equivalent emissions, also written as CO2e, are
computed system-wide based on fuel usage for both power gen-
eration and startup. A scalar percent difference is computed for
comparison.

energy mix is based on total annual production by generator cluster.
In this chapter, the Root Mean Square (RMS) difference of the
energy production — rather than its mean average difference of
energy fraction— is used as a scalar comparison metric replacing
(3.3) with:

∆Emix =

√
mean

ĝ∈G

(
Êĝ − Êĝ

∣∣
baseline

)2

mean
ĝ∈G

Êĝ
∣∣
baseline

(4.1)

computation time is reported as total solver (CPLEX) run time
and excludes model setup and output processing by GAMS.

Refer to Section 3.2.1 for additional equations and further explanation.

Basic Capacity Planning Metrics

In addition, this chapter uses the following capacity planning specific
metric:

normalized new capacity mix presents a normalized estimate of
the similarity of the new capacity additions between two plan-
ning models. This value is taken as the coefficient of variation
of the RMS difference in capacity. The coefficient of deviation is
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normalized based on the average baseline investment in new ca-
pacity by type:

∆InormalizedMix =

√
mean

ĝ∈G

(
Îĝ − Îĝ,baseline

)2

mean
ĝ∈G

Îĝ,baseline
(4.2)

4.2.3 Implementation notes

As further described in Section 2.11, all runs were conducted with the
highly configurable “StaticCapPlan” and “UnitCommit” models from
the Advanced Power toolset. These models are implemented in the
General Algebraic Modeling System (GAMS) [201] and run using the
state-of-the-art CPLEX 12.3 Linear Program (LP)/Mixed Integer Linear
Program (MILP) solver [203]. All runs were conducted with a target
MILP tolerance or “MIP gap” of 0.1%; however some planning model
runs did not reach this tolerance before timeouts of 60 hours for plan-
ning runs and 24 hours for operations-only runs. In such cases MIP
gaps below 1.5% were considered solved. Larger MIP gaps were re-
run using longer timeouts and/or the CPLEX parallel facilities7 to
achieve acceptable tolerances. Since the unit commitment enabled ca-
pacity planning model results were also used as the simulation of “ac-
tual” power system operations (see Section 4.3.1), once the capacity
was determined, an additional operations-only run was conducted to
optimize dispatch, commitment, and maintenance decisions.

In addition, the following modeling assumptions are used:

• Maintenance is included in all operations simulations and in unit
commitment based planning using the formulation described in
Section 2.7.3. All other planning models derate generator output
power to account for maintenance unavailability.

• Generators with minimum outputs below 80MW — which in-
cludes only Natural Gas fired Combustion Gas Turbine (NG-GT)
units — use relaxed (non-integer) unit commitment variables to
speed computation. Unit commitment and related constraints,
such as startup and reserves, are still captured, but the corre-
sponding commitment state can take a fractional value. Such frac-

7 Surprisingly, in some cases longer runs using a single thread outperformed parallel
runs, even when the parallel runs had equally long timeouts.
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tional states are not physically possible, but the results in Chapter
3 show that the resulting errors are small for these highly flexible
units.

4.3 a carbon policy example

4.3.1 Example setup

This section considers the impacts of capturing operational flexibility
when using a capacity planning model to estimate the the outcomes
of proposed carbon policies8. In this example, a policy analyst uses an
expansion planning model to estimate a future year’s electric-sector
CO2 emissions for a given carbon tax. A planning model, rather than
an operations-only one, is used to capture electric sector generation
capacity investments during the intervening years between the time of
the estimate and actual operations.

The example then compares the accuracy of the policy analyst’s es-
timate depending on whether or not operational flexibility is captured
by the model. To do so two planning models are compared:

standard (std) A standard capacity planning model that uses sim-
ple merit order economic dispatch for operations and does not
capture operational flexibility, and

advanced (adv) An advanced planning model that uses clustering
to include Unit Commitment (UC) operations, including the full
set of generator constraints described in Chapter 2, and thereby
captures operational flexibility.

The “actual” power system operations assume that the electric utility9

builds the optimal generation mix considering unit commitment with

8 This section updates and expands on an earlier version of this analysis that appeared
in Palmintier & Webster (2011) [139]. Important assumption changes in this analysis
include allowing non-served energy, revised operating reserves requirements, an ex-
panded set of generators, and updated costs. This analysis also uses an a significantly
evolved version of the StaticCapPlan and UnitCommit models that includes mainte-
nance, minimum up and down time constraints, and many other enhancements. Still
the overall message is the same.

9 For simplicity, these examples assumes a centrally planned utility. As described in
Section 1.6, in a competitive electricity market, a similar role might be played by the
electricity regulator who could then use the results to design regulatory instruments,
such as forward capacity markets, to achieve the same or similar generation mixes.
Such use would involve further analysis of the capacity impacts of these regulations
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Standard Advanced

Maintenance

Derated Generator
Output

Optimal Schedule
by Week

Unit Commitment None Integer

Startup Costs - Yes

Minimum up/down times - Yes

Operating Reserves 1) Regulation Up&Down

Extra capacity from
planning margin

2) Load/Renewable
Follow Up/Down

3) Contingency Reserves
4)Quick-Start Reserves

Minimum Output - Yes

Table 4.1: Operations sub-model assumptions used in this chapter. Dashes in-
dicate that the corresponding technical constraint is not included in
the Standard model.

the Advanced model with full knowledge of the carbon tax level. In
this setup, since the Advanced capacity planning model is able to cap-
ture the full set of generator operating constraints, these “actual” oper-
ations are the same as those computed using the Advanced planning
model. As a result, only a single Advanced model result is reported
and it corresponds to both the UC-planning model predictions and
the corresponding “actual” operations10.

Table 4.1 compares the operations sub-model assumptions for the
two models.

and of the resulting market based operation of the electric system. Such analysis is
left for future research.

10 Further testing to compare the results of both models to an independent operations
simulation using a commercial production cost tool represents an important area of
future work. Such a tool was not available for this research.
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Figure 4.1: CO2 emissions prediction using the Standard (Std), merit order op-
erations based, planning model in comparison to the predicted—
and equivalently simulated “actual”—emissions from the Ad-
vanced (Adv) unit commitment based, planning model.

4.3.2 Emissions Level for $90/ton CO2 tax

The first example assumes the policy analyst wants to estimate the
electric sector carbon emissions for a $90/ton CO2 tax. It compares the
quality of the estimates from the Standard model to the results of the
flexibility-aware Advanced, UC based model. The comparison assumes
the following sequence of events:

1. The carbon policy analyst uses one of the two electricity gener-
ation capacity planning models, Standard or Advanced, to esti-
mate the carbon emissions resulting from the $90/ton CO2 tax.

2. The electric power sector plans and builds generation to meet
this $90/ton CO2 tax on a least cost basis. The required additional
generation capacity is assumed to be selected with a planning
process that considers operational flexibility as simulated using
the Advanced model.

3. The generator capacity is then operated, subject to the $90/ton
carbon tax, and the resulting carbon emissions are evaluated.

Figure 4.1 shows that the Standard planning model underestimates the
CO2 emissions by over 50%. This error is due to operational flexibility.
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Figure 4.2: (a) Capacity additions, (b) energy mix, and (c) CO2 emis-
sions predicted using the Standard, merit-order based, planning
model in comparison to the Advanced, unit commitment based
, predictions—and equivalent simulated “actual” results, for a
$90/ton CO2 cost.
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As seen in Figure 4.2(a), when operating constraints are omitted in the
Standard model, the predicted capacity includes significantly more in-
flexible nuclear while the Advanced model recognizes the need to pro-
vide additional operational flexibility by replacing some of the nuclear
with highly flexible NG-GT units.

Figure 4.2(b) shows how the new NG-GT plants only contribute a
small amount of the total energy in the Advanced model; but, as de-
scribed in the next section, their presence is critical to providing the re-
quired operational flexibility. Figure 4.2(b) also shows a small increase
in power generation by old coal facilities when operating constraints
are included in Advanced model. As is also described in the next sub-
section, this increase comes from the inability of these coal units to
shutdown between those daily peaks when their output is required to
meet the demand.

Figure 4.2(c) shows how these differences in predicted energy pro-
duction between the Standard and Advanced model result in the large
differences in total carbon emissions seen above. The carbon emissions
by source appear different than the energy mix due to variations in gen-
eration carbon intensity. The energy contributions by carbon-free wind
and nuclear do not create any CO2 emissions. In contrast, the relatively
inefficient NG-GT and carbon intensive coal units together contribute
over 15% of the emissions, despite a combined energy contribution of
under 4%.

4.3.3 Flexibility Impacts

As described in Section 1.6.3 operational flexibility impacts operations,
which can in turn impact planning. This section explores the impact of
operational flexibility on the capacity and energy mix for the $90/ton
Carbon Policy example to help further explain how actual emissions
exceed those predicted by the Standard model.

Annual Net Load Duration Curve

Figure 4.3 illustrates many of the impacts of operational flexibility by
comparing the net load duration curves between the Standard and
Advanced models. In the net load duration curve, the hours of the year
are re-arranged in order of decreasing “net load,” the demand minus
wind production. It is analogous to a rotated cumulative distribution
function showing the probability, in number of hours, that the net load
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Figure 4.3: Net load duration curves and associated power production for (a)
merit order operations (Standard) and (b) unit commitment oper-
ations (Advanced). Differences in generation mix explain the dif-
ferences in maximum power for nuclear, NG-CC with CCS, and to
a lesser extent, NG-CC without CCS, but other variations are due to
operations constraints associated with flexibility.
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exceeds a given level along the smooth curve at the base of the wind
block. The inclusion of wind generation above net load results in the
jagged upper surface. The area of each shaded region correspond to
the total energy production seen in Figure 4.2(b).

In Figure 4.3(a), the banded structure with Standard operations re-
sults from not capturing the generator technical constraints that drive
operational flexibility. Instead, the model follows a “merit order” where
the units with the lowest variable operations costs are dispatched fully
until exhausted before moving on to the next most expensive gener-
ation type. Coal breaks this banded structure since it is shown in its
traditional baseload location, yet the high carbon price increases its
variable costs of operation above that of the NG-CC facilities, causing it
to behave like a peaker and only run during a small number of hours
of the year.

As seen in Figure 4.3(b), operational flexibility constraints create
more complex patterns that begin to explain the differences in pre-
dicted energy mix between the two models. During the periods of low-
est net demand, the Advanced model continues to operate NG-GT and
NG-CC units and maintain the operating reserves required to compen-
sate for wind forecast errors. This reduces the total nuclear output
during these times which in turn impacts the optimal nuclear capacity.
The lower nuclear capacity using the Advanced model comes partially
from technical operating constraints that limit the minimum output
from nuclear and partially from economic factors that recognize that
with even $90/ton CO2, nuclear needs to run for over about 8000 hours
each year to offset its high capital costs. With standard merit order
operations, it appears that around 14GW of nuclear would run suf-
ficiently long, but with advanced UC based operations, the additional
NG-GT and NG-CC operation for reserves mean that only about 10GW of
nuclear are economic. These changes increase carbon emissions since
the zero carbon nuclear energy is partially replaced by carbon emitting,
natural gas.

In addition to emission increases due to less nuclear, Figure 4.3(b)
also shows an increase the annual run times for carbon intensive coal
units and NG-GT peakers. The increased use of NG-GT appears as a
thin red line over the entire year, while increased coal use is variable
across the net load duration curve as evident by the presence of brown
in the noisy region between nuclear and NG-CC. These increased run
times further increase total carbon emissions because they have higher
carbon emissions than the sources they displace: carbon-free nuclear
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and more efficient NG-CC. To understand the cause of these increases
it is helpful to look at a single week of operations, as described in the
next section.

One week time series

Figure 4.4 shows the impact of flexibility driven operations constraints
during the week beginning just after midnight on August 14th. As seen
in Figure 4.4(a) and (b), the demand peaks in the late afternoon of each
of the seven days before falling to a daily minimum in the very early
hours of the morning. In both cases, most of this change is handled
by ramping or cycling NG-CC facilities. The first differences between
the models can be seen in the nuances of these adjustments. In the
Standard model, the older, less efficient NG-CC facilities, shown with
cross-hatching on a blue background, only run when the net load is
greater than about 33GW. However, the Advanced model recognizes
that such cycling incurs a cost with each startup and instead keeps
some of these older facilities running at/near their minimum output
levels through the low nighttime demand periods during the first four
days. This increases carbon emissions because the older facilities are
less efficient and hence burn more fuel than if the newer facilities were
run instead. Furthermore, during the last two demand troughs, the
high wind output reduces the net load enough that the Standard model
cycles all of the NG-CC, while the Advanced model maintains some of
the new NG-CC plus some NG-GT at all times. This change by the Ad-
vanced model avoids startup costs, and maintains operating reserves
as described below. The resulting shift away from the very low carbon
NG-CC with CCS and Nuclear facilities to more carbon intensive NG-CC
(without CCS) and NG-GT units further increases carbon emissions.

A similar increase in Coal operations under the realistic constraints
of the Advanced model explains an even larger increase in carbon
emissions. Understanding how, first requires a some additional back-
ground. Today, coal facilities run (almost) all the time as baseload
generation due to their low variable operating costs. However, at a
$90/ton CO2 price, the variable operating costs for carbon-intensive
coal increase dramatically, making them nearly as expensive to run as
the peaking units and precluding baseload operation. In combination
with high capital costs, this prevents any new coal construction, but
since they have already been built, the remaining legacy units can still
be useful during peak periods.
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Figure 4.4: Comparison of one week of operations in August as modeled us-
ing (a) Standard, merit order operations versus (b) Advanced, unit
commitment based, operations. (c) shows the corresponding sec-
ondary reserve up capacity.
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In this example week, both models use legacy coal facilities during
the peak periods of the first four days, but differences in operating con-
straints create very different dispatch profiles. As seen in Figure 4.4(a),
the Standard operations model assumes coal acts like a peaker because
coal’s carbon-adjusted variable output costs are higher than those of
NG-CC. However, Figure 4.4(b) shows how the Advanced model cap-
tures the realistic situation that coal’s minimum up and down time
constraints of 24 and 12 hours respectively prevent this peaker-like
cycling behavior. Instead the coal units needed during the peaks con-
tinue to run at or near their minimum stable output level during the
nighttime low net load periods. This additional coal displaces the far
less carbon intensive NG-CC facilities resulting in an increase in carbon
emissions. A similar phenomena occurs with the inefficient and hence
relatively carbon intense legacy natural gas steam facilities that are
also used to meet the even higher peaks of the first two days. Similar
to coal steam, the realistic operations of the Advanced model captures
how the units must continue to run at night thereby displacing addi-
tional NG-CC and further increasing carbon emissions.

Operating Reserves

An additional source of increased carbon emissions captured by the
Advanced model comes from the need to maintain operating reserves
to compensate for unexpected outages and errors in load and wind
forecasts. As described in Section 2.6, operating reserves fall into a
number of different categories depending on their required deploy-
ment time and their direction of compensation: up or down. For illus-
tration, this section examines the impact of only one of these classes
of reserves: secondary up reserves, which includes both spinning re-
serves to compensate for unexpected outages and (net) load following
up reserves to compensate for load and wind forecast errors. The other
reserve classes have similar, though somewhat smaller, impacts.

Figure 4.4(c) shows the quantity and source of the total secondary
up reserves for the same week of operations described above. Early
in the week, the influence of load on total reserve required is seen in
the daily reserve peaks corresponding to demand. The peak to valley
ratio is smaller than for power because of the constant requirements to
maintain 2.3GW for the largest contingency and to match just under
8% of the installed wind capacity. Later in the week, the increased wind
output (and forecast) — which is assumed to require 13.9% reserves —
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increases total reserve requirements enough to mask the diurnal load
influence. The sub-figure also shows how up to 50% of the secondary
reserve can be provided by off-line quick start aero-derivative natural
gas combustion turbines. Since this is an inequality constraint, the off-
line eligible portion of reserves are instead met by on-line spinning
generation whenever excess capacity exists, such as when the NG-CC
units are kept operating at low output levels during nighttime troughs
to avoid incurring startup costs during the morning pickup11.

Unlike power generation, the upward reserve capacity shown in Fig-
ure 4.4(c) does not create any direct emissions. However, in order to
provide upward reserves, a unit must 1) be running at or above its min-
imum stable output, 2) maintain enough headroom between its current
and maximum power output to provide the reserve if needed and 3)
have sufficient ramping speed to change output to meet the reserve in
the required time horizon: 10 minutes for secondary reserves. The first
requirement can drive out of merit order operation by keeping flexi-
ble, but potentially higher carbon emitting, units running solely for re-
serves, while the other two requirements favor the most operationally
flexible units — those with the lowest minimum output and fastest
ramping capability — for providing these reserves. In this test system,
the most flexible units are the new aero-derivative NG-GT which have
higher carbon emissions than the NG-CC they typically displace. This
impact is evident during the night time lows later in the week when
NG-GT units output increase slightly at night to use their very high
reserve capabilities to meet the increased reserve needs of the high
wind output levels. This nighttime NG-GT operation increases carbon
emissions by displacing lower carbon NG-CC and Nuclear.

During the highest peaks on the first two days, reserve requirements
again increase carbon emissions. During these periods, merit order dis-
patch for the Advanced generation mix would choose to max out the
NG-GT before operating the less efficient legacy natural gas steam units.
However, the need to maintain operating reserves requires reducing
the NG-GT output which in turn uses more natural gas steam and cre-
ates higher CO2 emissions.

11 These units also are kept running to provide downward reserves to handle situations
when the actual net demand is lower than forecast. This use requires maintaining
output sufficiently above the minimum stable load to be able to reduce output if
required.
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4.3.4 Summary

This example demonstrates the importance of capturing operational
flexibility when assessing carbon policy impacts for moderately high
carbon costs. In these examples using a Standard planning model that
ignores operational flexibility created large errors in the estimated car-
bon emissions for a $90/ton carbon tax (51% error). In contrast, the
clustered unit commitment based planning model proposed in this
thesis is able to directly include the complex operating constraints im-
portant for flexibility constrained operations and produce realistic esti-
mates for the emissions. In addition, a detailed look at the correspond-
ing output patterns (Section 4.3.3) examines exactly how the operating
constraints that drive flexibility impact operations and planning and
thereby increase carbon emissions.

Looking ahead, Section 4.5 explores how important operational flex-
ibility is when estimating the impacts of other carbon tax levels. But
first, the next section examines the utility perspective of flexibility im-
pacts on planning for the same $90/ton CO2 policy.

4.4 the utility perspective

4.4.1 Introduction

Operational flexibility can also impact the utility capacity planning
problem, particularly under a strict carbon policy. Analogous to the
policy maker perspective above, this section explores the impacts of in-
cluding or ignoring operational flexibility during the utility planning
process. As before, the utility can also choose between two types of
planning models: one based on merit order operations (Standard) that
implicitly ignores operational flexibility and the other that uses the
clustered combined unit commitment, maintenance and capacity plan-
ning formulation presented in Chapter 2 (Advanced).

However, unlike the policy analyst, the utility uses these planning
models to decide what types of generation to actually build. As a result
this example assumes the utility is less interested in predicting carbon
emissions or prices and more interested in minimizing total operations
cost and the ability to reliably provide energy to meet demand while
still complying with RPS and carbon policies.
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This example revisits the $90/ton CO2 case from the utility perspec-
tive assuming the following steps:

1. The utility plans and builds generation to meet the $90/ton CO2

tax on a least cost basis using one of the two electricity generation
capacity planning models, Standard or Advanced. These model
runs make predictions of the total costs, anticipated non-served
energy, and required wind shedding for the system.

2. The “actual” operations for the two generation mixes are then
simulated under a $90/ton carbon tax using realistic, unit commit-
ment–based operating constraints. As before, the “actual” oper-
ations match the Advanced model predictions so only a single
Advanced result is presented. For the Standard model, the result-
ing actual costs, non-served energy, and required wind shedding
are compared to the predictions from step 1.

4.4.2 Results

Figure 4.5(a) shows that the generation mix proposed by the Standard
model is predicted to be slightly less expensive than that from the Ad-
vanced model; but, if built, the Standard model’s mix would actually
be considerably more expensive than the Advanced model’s mix. The
other sub-figures begin to explain the Standard model discrepancy: in
actual operations, the Standard generation plan results in large quan-
tities of both non-served energy (b) and wind shedding (c). The very
high costs for the Standard model actual operations come from the
high penalty cost for non-served energy12, while the large quantity of
shed wind suggests a flexibility problem.

Indeed, as seen in the last section and repeated in Figure 4.6(a), the
Standard model includes significantly more inflexible nuclear capacity
while the Advanced model recognizes the need to provide additional
operational flexibility by replacing some of the nuclear with highly
flexible NG-GT units. However, unlike the policy analyst example, it is
assumed that the results of the capacity planning model are used di-
rectly for capacity expansion decisions. As illustrated in Figure 4.6(b)
the Standard model omission of operational flexibility causes large dif-
ferences between predicted and actual energy mixes. More importantly,

12 The non-served energy cost is set to $50k/MWh
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Figure 4.5: Predicted versus actual (a) costs, (b) non-served energy, and (c)
wind shedding for Advanced, unit commitment based and Stan-
dard planning models. Note logarithmic y-axes. Total costs in-
clude annualized capital payments for existing and new genera-
tion plus annual operating expenses including fuel, startup, O&M,
carbon cost and costs of non-served energy. The total annual
Standard-Actual non-served energy represents over one fifth of
the annual energy demand of just over 300TWh, and unacceptably
high fraction for modern utilities.

the quantity of non-served demand in the Standard-Actual case would
be unacceptably high for any modern electric utility.

With the Standard generation mix, it is not possible to simultane-
ously meet demand and RPS. Instead, the total energy output is re-
duced to meet the RPS and corresponding reserve requirements. The
lost load results from a chain-reaction that begins with insufficient
operational flexibility. In practice, the utility would likely keep the
lights on and instead miss the RPS requirement. But for the sake of
illustration, consider what would happen if the RPS was truly bind-
ing: Without the highly flexible NG-GTs to provide upward reserves
for wind, the Standard generation mix must instead back-off NG-CC
output. The legacy NG-Steam and coal units are also brought on-line
to help replace the lost generation and to provide additional reserves
during high demand periods. However, these steam units have high



138 integrated optimization of unit commitment and planning

0	  

10	  

20	  

30	  

40	  

50	  

60	  

A
dv
an
ce
d	  

St
an
da
rd
	  

N
ew

	  C
ap

ac
it
y	  
(G
W
)	  

New	  Capacity:	  $90/ton	  CO2,	  20%	  RPS	  

Wind	  

NG-‐CT	  

NG-‐CCGT	  

NG-‐CCGT	  w/	  CCS	  

Coal	  

Coal	  w/	  CCS	  

Nuclear	  

(a)

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

A
dv
an
ce
d	  

(&
	  A
ct
ua
l)	  

Pr
ed

ic
t	  

A
ct
ua
l	  

En
er
gy
	  P
ro
du

c-
on

	  (T
W
h)
	  

Energy:	  $90/ton	  CO2,	  20%	  RPS	  (U-lity)	  
Wind	  
Old	  NG-‐Steam	  
Old	  NG-‐CT	  
New	  NG-‐CT	  
Old	  NG-‐CCGT	  
New	  NG-‐CCGT	  
New	  NG-‐CCGT	  w/	  CCS	  
Old	  Coal	  Lignite	  
Old	  Coal	  SubBit.	  
New	  Nuclear	  
Old	  Nuclear	  

Standard	  

(b)

Figure 4.6: (a) Capacity additions, and (b) energy mix using unit commitment
based (Advanced) or standard merit order based (Standard) plan-
ning models in comparison to the simulated actual results for a
$90/ton carbon price. Note that unlike the policy analyst exam-
ples, the Standard generation mix is assumed to have been actu-
ally built for the Standard Actual case, resulting in unacceptably
high levels of lost load.
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minimum output levels and long minimum up/down time constraints
such that they must be kept running with significant power production
even during night time lows. This in turn, means that when high wind
production coincides with these low demand periods, the significant
minimum thermal output plus available wind power is greater than
demand. As a result, some of the available wind must be shed (i.e. go
unused). The wind shedding helps slightly by reducing the required
operating reserves, but because the Standard model’s wind capacity
was built assuming all of the wind could be used, this wind shed-
ding causes problems in relation to the RPS. Since the RPS standard
requires 20% of the annual energy to come from renewables (i.e. wind
in this example) shedding some of the available wind means that the
only way to meet the RPS is to also reduce the total energy. And lower
total energy causes a feedback loop that further squeezes the ability
of the system to simultaneously provide reserves, meet minimum out-
put and up/down time constraints and utilize available wind, causing
more wind shedding and loss of load.

While this downward spiral of loss-of-load ensues, the Standard
planning model’s nuclear generation capacity goes underutilized due
to its low operational flexibility. Traditional nuclear’s minimum out-
put and up/down constraints are even stricter than the legacy natural
gas and steam facilities. This reduced flexibility means that the nuclear
facilities can no longer operate during many of the nighttime lows be-
cause the minimum thermal output from the NG-CC and steam units
is already causing wind shedding. With its very long minimum cycle
times13 nuclear can only provide output power during the few long-
lasting periods of high demand and low wind.

The Standard generation mix requires more operational flexibility
in order to make more effective use of its nuclear facilities, reduce
wind shedding, curb the loss of load, and reduce operating costs. The
next section explores the potential of adjusting the planning margin to
increase operational flexibility with the Standard model.

4.4.3 Planning margin adjustments

As described in section 2.8.3, the planning reserve increases the total
firm capacity investment to account for uncertainty in the peak de-
mand. When standard, merit-order operations are used for planning,

13 assumed to be 48hr up and 24hr down, see Appendix A
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Planning Margin

Minimum Constraint Effective Actual

Advanced 13.75% 17.26%
Standard 13.75% 14.12%

Adjusted-Standard 17.26% 17.99%

Table 4.2: Minimum required and actual planning margin for the Advanced,
Standard, and Adjusted-Standard models. The Adjusted Standard
model minimum is forced to match the UC actual margin to test if
planning margin adjustments could fix the Standard model’s oper-
ational flexibility shortage.

the planning reserve also ensures sufficient capacity to provide operat-
ing reserves during the peak period. As a result, if the planning reserve
is set too low, the Standard model may not build sufficient capacity to
meet reserves, potentially resulting in the challenges described in the
last section.

In both the Advanced and Standard model runs, the planning mar-
gin was set to 13.75%, the current value used by ERCOT planners [199];
however, as seen in Table 4.2, the actual effective planning margin from
the Advanced capacity expansion plan was 17.3%. The additional ca-
pacity was added by the Advanced model as a result of operational
flexibility restrictions. Could it be that the planning margin alone is
responsible for the shortage of operational flexibility in the Standard
model mix? With the Standard model’s merit order operations assump-
tion, increasing the planning margin will invest in low capital cost tech-
nologies. By fortunate coincidence, low capital cost technologies tend
to be highly flexible natural gas units. As a result, the increased plan-
ning margin should help the Standard model’s operational flexibility
problem.

This example tests this hypothesis using the heuristic of adjusting
the minimum planning margin for the Standard model to match the
effective planning margin built by the Advanced model14. Figure 4.7
shows that the increased planning margin of the Adjusted Standard

14 The example ignores the chicken and egg problem of this heuristic. After all, if the
results of the Advanced model were available it would be possible to use its complete
results rather than just the firm capacity. However, as described below, this is a moot
point, since the adjusted planning margin is not enough to compensate for ignoring
operational flexibility.



4.4 the utility perspective 141

0	  

10	  

20	  

30	  

40	  

50	  

60	  

A
dv
an
ce
d	  

St
an
da
rd
	  

St
d-‐
A
dj
	  

N
ew

	  C
ap

ac
it
y	  
(G
W
)	  

New	  Capacity:	  $90/ton	  CO2,	  20%	  RPS	  

Wind	  

NG-‐CT	  

NG-‐CCGT	  

NG-‐CCGT	  w/	  CCS	  

Coal	  

Coal	  w/	  CCS	  

Nuclear	  

(a)

0	  

50	  

100	  

150	  

200	  

250	  

300	  

350	  

A
dv
an
ce
d	  

(&
	  A
ct
ua
l)	  

Pr
ed

ic
t	  

A
ct
ua
l	  

Pr
ed

ic
t	  

A
ct
ua
l	  

En
er
gy
	  P
ro
du

c-
on

	  (T
W
h)
	  

Energy:	  $90/ton	  CO2,	  20%	  RPS	  (U-lity)	  

Wind	  
Old	  NG-‐Steam	  
Old	  NG-‐CT	  
New	  NG-‐CT	  
Old	  NG-‐CCGT	  
New	  NG-‐CCGT	  
New	  NG-‐CCGT	  w/	  CCS	  
Old	  Coal	  Lignite	  
Old	  Coal	  SubBit.	  
New	  Nuclear	  
Old	  Nuclear	  

Standard	   Std-‐Adj	  

(b)
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the Advanced and non-adjusted Standard planning models for a
$90/ton carbon price.
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Total System Cost Non-Served Energy Wind Shedding

($Billions) (GWh) (GWh)
Predict Actual Predict Actual Predict Actual

Advanced $39.0 1.7 0.5
Standard $37.2 $3,367.2 0 66461.4 0 13.8

Adjusted Standard $37.4 $2,187.2 0 42848.1 0 9.1

Table 4.3: Cost, non-served energy, and wind shedding for the Advanced,
Standard, and Adjusted Standard models.

planning model run increases the quantity of NG-CC built, which in-
creases the overall system flexibility and decreases the loss of load rel-
ative to the non-adjusted Standard operations. As seen in Table 4.3, this
in turn reduces the total annual costs and wind shedding. However, de-
spite the improvements, the system remains relatively inflexible mak-
ing the total costs for the Standard operations based planning model
with adjusted planning margin still unacceptably high and quite differ-
ent than predicted. Apparently the heuristic of adjusting the planning
margin, though helpful, is not enough to ensure sufficient operational
flexibility. In this scenario, the Advanced model, which does capture
operational flexibility, still does a much better job of designing the sys-
tem.

4.5 when does operational flexibility impact planning?

4.5.1 Experiment Setup

Motivated by the examples above, the next two sections further map
out when operational flexibility impacts planning. Two additional di-
mensions are considered:

strictness of carbon policy, in terms of either carbon price or
emission limits. As described in Section 1.6.3, the strict carbon
policies can prompt a shift toward inflexible low-carbon baseload
generation (e.g. traditional nuclear) if operational flexibility is ig-
nored. This potentially leaves the system without the operational
flexibility required to manage the uncertainty and variability of
wind; and,
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quantity of renewables , captured by adjusting the RPS. Higher
levels of variable renewables require increased operational flexi-
bility from the system. Hence, failing to capture operational flex-
ibility in planning models could suggest a generation mix in-
capable of providing the necessary operating reserves, and/or
could assume that optimistically low levels of renewables are re-
quired, resulting in difficulty meeting the RPS without shedding
demand.

In the first set of experiments, Section 4.5.2 looks at only variations
in carbon policy by examining the sensitivity of errors in the policy
analyst’s forecasts as a function of carbon price. This first set of experi-
ments also explains how the generation mix and energy mix alone can
be used as proxies for concerns of both the policy analyst and the util-
ity. With this background, Section 4.6, looks at capacity mix and energy
differences as a function of both renewable quantity and carbon policy,
this time in the form of electric sector emission limits.

4.5.2 Sensitivity to CO2 price

Carbon emission estimates

The previous examples showed how ignoring operational flexibility
by using a standard, merit order based operations based capacity plan-
ning model can produce undesired results for both policy analysts and
utilities in the case of a $90/ton CO2 price. In both examples, capturing
operational flexibility using a unit commitment based model provided
much better results. This section explores whether or not the same
problems exist for other CO2 prices, and identifies the regions where
the errors from the Standard model would be large.

Figure 4.8 and Table 4.4 shows that for prices up to and including
$60/ton, the Standard merit order based model provides good esti-
mates of the resulting CO2 emissions, with errors ranging from 0-4%.
At and above $75/ton, however the Standard model creates significant
errors of up to 51%.

Interestingly, the emissions forecast errors for the Standard, merit
order based model are greatest around $90/ton and then begin to fall,
dropping to 10% at $120/ton. Figure 4.9(a) shows how this pattern
can be partially explained by the mix of new capacity additions, par-
ticularly differences in carbon emission intensities. In all cases, both
models build 22GW of wind to meet the RPS. Up to $60, both the
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Figure 4.8: Variation in CO2 emissions forecast errors as a function of carbon
price. Policy maker predictions from Standard merit order opera-
tions and Advanced unit commitment based planning models are
compared to simulated actual emissions for a system built using
the Advanced generation mix.

Table 4.4: Carbon emissions predictions for Standard operations versus the
more realistic Advanced planning model that captures the “actual”
emissions.

Carbon	  Price	  
($/ton)

0
15
30
45
60
75
90

105
120

Emissions	  (Mt	  CO2e)

Advanced	  
(&	  Actual)

Standard	  
Predict

127 126
126 126
121 126
87 86
82 80
76 64
62 41
38 28
19 21

Emissions	  (Mt	  CO2e)
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Standard and Advanced models also build similar mixes of NG-CC and
NG-GT, resulting in only minor differences in emission forecasts. At
and above $75/ton, both models also include nuclear, but in different
quantities and augmented by different technologies. The largest emis-
sions forecast errors occur for $75-$105/ton CO2 where the Standard
model predicts significantly more nuclear, while the Advanced model
restricts nuclear investment due to nuclear’s operational inflexibility.
The emissions estimate errors result from replacing the zero carbon
nuclear with carbon emitting natural gas. At $120/ton, the Standard
model still builds significantly more nuclear, but here the high carbon
price prompts the Advanced model to add CCS to the NG-CC facilities,
thereby bring their carbon emissions down considerably and reducing
the difference between the Standard forecast and actual emissions.

The policy analyst perspective in terms of Capacity & Energy

In addition to the carbon emissions estimates, the policy analyst is also
interested in predicting these capacity mixes and the corresponding en-
ergy production by source. These results are important for understand-
ing the wider impacts on the energy supply chain and overall economy.
For the policy analyst perspective, this thesis assumes the “actual” ca-
pacity mix will be built by the utility using the Advanced model, and
that the “actual” emissions correspond to the Advanced results. Thus,
for capacity, as seen in Figure 4.9(a), the analyst is interested in whether
or not the Standard merit order based model reasonably matches the
Advanced model mix. As described above, the Standard model does an
acceptable job at estimating capacity up to $60/ton, but at and above
$75/ton the models diverge considerably. Unlike for carbon emissions
forecasts, the accuracy of capacity mix forecasts gets continually worse
with higher carbon prices.

For accuracy of predicting energy mixes, the policy analyst is con-
cerned with the comparison between the first 2 bars in each subplot
in Figure 4.9(b). These compare the Advanced model results with the
predictions from the Simp model. Here again, the Standard model pre-
dictions (2nd column) do a reasonable job of matching the “actual”
Advanced results (1st column) up to $60/ton but begin to steadily di-
verge for CO2 prices of $75/ton and above.
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Figure 4.10: Variation in annual total costs (capacity payments plus opera-
tions) as a function of carbon price. Results assume the utility
builds new capacity based on the output of the Standard or Ad-
vanced planning models. The corresponding mix is then simu-
lated using a unit commitment based operations only model to
estimate “actual” operating costs. Note logarithmic y-axis.

The Utility Perspective

Returning to the utility perspective, the scenario and metrics are dif-
ferent, but again the Standard, merit order based capacity planning
model does poorly for stricter carbon policies as anticipated by the dif-
ferences in capacity and energy mix. Figure 4.10 shows that for carbon
prices up to $45/ton, the total annual cost for the systems designed by
the Standard operations and Advanced UC-based capacity planning
models are indistinguishable. But, at and above $60/ton the Standard
model produces unsatisfactory generation mixes that if built and op-
erated in compliance with the RPS requirements would result in ex-
tremely high costs. As described in Section 4.4 these problems with
the Standard generation mix result from insufficient operational flex-
ibility that cause a cascade of problems resulting in loss of load and
associated expensive penalty costs.

These problems from the utility perspective can be seen in the ca-
pacity and energy differences between the Standard and Advanced
models in Figure 4.9. Sub-figure (a) shows that the Standard model’s
omission of operational flexibility causes an underinvestment in total
new capacity at $60/ton and above. This in turn forces the system to
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shed load in order to provide reserves and meet the RPS. This loss of
load appears as a drop in the total quantity of energy produced for the
Simp-Actual cases (3rd bar of each subplot) in sub-figure (b).

As described in Section 4.4.3, these flexibility driven problems could
partially be alleviated by increasing the planning reserve used with
the Standard model beyond the current requirement of 13.75% to meet
the higher effective reserve levels built by the Advanced model. For
the $60/ton case this heuristic might work since the resulting increase
in either NG-CC or NG-GT would likely provide enough operational
flexibility to overcome the observed loss of load that is driving the
high total costs. But as is was seen in Section 4.4.3, the heuristic of
increasing the planning margin fails when the Standard generation
mix relies on significant quantities of inflexible nuclear generation, as
is the case for $75/ton and higher carbon costs.

4.6 renewables and carbon policy

This section expands the carbon sensitivity analysis by considering
both sides of the operationally flexibility balance: carbon policy that
can restrict available flexibility and renewables that demand increased
flexibility. Specifically this section compares all combinations of five
RPS levels - 0%15, 20%, 40%, 60%, and 80% - with four carbon emission
limits - No limit, 141Mt, 94Mt, 47Mt. These emissions limits were cho-
sen based on a policy-free baseline with no carbon policy and no RPS.
The baseline emissions were 188Mt CO2, such that these four carbon
caps correspond to 100%, 75%, 50%, and 25% of the baseline emissions.

4.6.1 Capacity and Energy

Figure 4.11 compares the capacity mix suggested by both the Standard
and Advanced models across this array of RPS and CO2 limits. There
is a lot if information in this chart so let us begin with the most fa-
miliar. The second column (20% RPS) is analogous to the sensitivity
analysis preformed in the last section under varying CO2 prices. As be-
fore, the two models produce very similar capacity mixes for relatively

15 Even at 0% RPS, there is still some wind on the system. As described in Section 4.2.1,
50% of the 2010 installed wind is assumed to be still operational, resulting in an
installed capacity of 4.7GW which, if fully utilized, corresponds to 3.5% of the total
annual energy demand.
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loose carbon policies. At 20% RPS, the Advanced and Standard capac-
ity mixes only diverge for the 47Mt CO2 limit. As before, the differences
result from operational flexibility: The Advanced model recognizes the
need to balance the inflexible nuclear generation with NG-GT. This is
not surprising considering the duality of carbon limits and prices. Ac-
cording to the earlier results reported in Table 4.4, an emissions level
of 47Mt (at 20% RPS) falls between $90/ton and $105/ton CO2, and not
surprisingly comparing Figure 4.9(a) with Figure 4.11 the generation
mixes are similar. Analogously, the 94Mt limit at 20% RPS corresponds
to under $45/ton, a point at which as is evident here only minor dif-
ferences are observed in capacity between the Advanced and Standard
models.

Moving laterally to the 0% and 40% RPS levels reveals similar pat-
terns, with the operational flexibility of the Advanced model again
drives an increase in highly flexibility NG-GT under strict carbon limits.
These additional facilities balance the inflexible nuclear capacity in the
0% RPS case or the increased flexibility required by the extra wind in
the 40% RPS case.

In addition, at 0% RPS with the 94Mt CO2 limit, both models build
some nuclear capacity, a technology that was previously only seen un-
der the stricter 47Mt carbon limit with the 20% (or higher) RPS. This
additional need for carbon-free generation results directly from the
lower RPS. By definition, under the 20% RPS, 20% of the annual energy
must come from carbon-free renewable sources (wind in this test sys-
tem). Hence, without the RPS, additional low/no-carbon sources are
required to stay under the carbon emissions limit. And again, opera-
tional flexibility causes a difference in the resulting capacity mix. The
Advanced model builds significantly greater amounts of highly flexi-
ble NG-GT to more easily provide the reserves required by the system.

Interestingly, even without an RPS constraint, the reduced opera-
tional flexibility of the Standard generation mixes for the 47Mt-0% and
94Mt-0% cases still cause a loss of load similar to that seen in the
strict carbon policy 20% cases, including 47Mt-20%. The reasoning is
similar to that from Section 4.3.3: with insufficient operational flexibil-
ity, the Standard model’s generation mix must shed load in order to
provide adequate reserves and honor generator technical constraints.
These cases can be seen16 in Figure 4.12, , which compares the pre-

16 The comparatively small quantity (1.9TWh) of lost load for 94Mt-0% is not dis-
cernible in the graphs b/c it represents less than 1% of the total energy demand.
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dicted and actually Standard model energy mixes with the Advanced
model results across this array of RPS and CO2 limits.

The situation is even worse for higher RPS levels, where the lack of
flexibility from the Standard model makes the generation mix infeasible
to operate for RPS levels of 40% and above under the 47Mt limit. In
these situations, it is not possible to simultaneously meet the carbon
limit and RPS requirement while still providing adequate reserves and
complying with generator technical constraints17. In contrast, the mix
suggested by the Advanced model complies with both the carbon and
RPS policies.

4.6.2 Flexibility and Renewable Capacity

Returning to the capacity mix in Figure 4.11, shows that total renew-
able capacity presents another significant difference for high RPSs. In all
of the 40% and 60% cases, and the 47Mt-20% case, the Standard gen-
eration planning model installs significantly less wind capacity than
the Advanced model. As seen in Figure 4.12, this results in consider-
able loss of load or infeasible operations. At this high penetration of
wind, the total available wind power exceeds demand for over 1/3

of the year. Without storage to redistribute this extra energy to other
times18, the system must over-invest in wind capacity to compensate
for this wind shedding by providing extra wind at other times. Both
models recognize this, but by not capturing operational flexibility, the
Standard model fails to recognize that even more wind must be shed
during these high wind periods since some non-renewable capacity
must be kept on-line to provide operating reserves, making periods of
100% wind impossible.

17 Again, in practice, the utility and policy makers would likely find a way to keep the
lights on, likely by ignoring the RPS or carbon requirements. However, neither of
these results are desirable, and more importantly can be avoided if an operational-
flexibility-aware planning process is used.

18 Exploring the impacts of storage on these results represents a promising area of fu-
ture research. In these situations storage could help in two ways: 1) saving wind en-
ergy for use at other times, thereby requiring less investment in underutilized wind
capacity; and 2) serving as a highly operationally flexible supply resource capable
of providing operating reserves, potentially requiring less investment in thermal ca-
pacity while also reducing thermal operations associated costs and emissions. The
combination of these three cost savings could provide a revenue source large enough
to justify the comparatively high capital cost of storage.
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The Standard model’s problems with lost load and infeasible oper-
ations come from simply not having enough installed wind capacity
to accommodate the additional wind shedding required for reserves
while still complying with the RPS. Figure 4.13 shows this effect by
comparing the predicted annual net load duration curve with actual
“simulated” operations for the Standard model under a 141Mt carbon
limit with 60% RPS. In Figure 4.13(a) standard, flexibility-ignorant oper-
ations predict many hours of 100% renewables; however, as seen in (b),
significant thermal capacity must be kept on-line at all times to provide
reserves. The additional non-renewable generation for reserves causes
significant reserve shedding, making the minimally overbuilt wind ca-
pacity unable to provide the 60% RPS without the system shedding
load.

Furthermore, the increased thermal operations to provide reserves
increase carbon emissions. With the 141 Mt CO2 limit these increases
are still acceptable, but as seen in Figure 4.12 with the 60% and the
strict 47Mt carbon limit, the added carbon emissions from providing
these reserves make it infeasible to stay below the CO2 limit while com-
plying with the RPS and providing reserves.

In contrast, as seen in Figure 4.13(c), the Advanced model alleviates
these problems in two ways: 1) the overbuilt wind capacity is able
to provide sufficient renewable energy to meet both demand and the
RPS, and 2) the highly flexible NG-GT plants in the Advanced mix can
provide sufficient operating reserves while running at lower output
levels, thereby requiring less wind shedding and easing the need to
overbuild wind.

In the 80% RPS scenarios, the Advanced model counterintuitively
builds less wind capacity than the Standard model because even the
highly flexible NG-GT can no longer provide sufficient reserves without
shedding demand. Instead, as seen in Figure 4.14 the system operates
almost exclusively as a combination of wind with NG-GT for reserves.
In these scenarios, the Standard model builds more wind, with the
expectation that it can all be used toward the load; however, with only a
small addition of flexible NG-GT, the resulting system proves infeasible
in operations, as seen in Figure 4.12.

At 80% RPS, operating the system without loss of load requires addi-
tional options for flexibility beyond the set of thermal generation con-
sidered here. This could include non-thermal options such as highly
operationally flexible hydro, storage, or demand response. Alterna-
tively, the additional flexibility could come from an expanded set of
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Figure 4.13: Comparison of (a) Standard model predicted net load duration
curve vs (b) simulated actual operations of the Standard model’s
mix for 141Mt CO2 limit and 60% RPS. “Actual” operations of (c)
the Advanced model mix included for comparison.
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Figure 4.14: Net load duration curve for “Actual” operations of the Advanced
model at 80% RPS. The 141Mt case shown is identical to that for
all tested CO2 limits from no limit down to 47Mt.

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 47 47 47 47 25
94 94 94 94 63 25

141 141 127 97 63 25
None 163 127 97 63 25

Actual	  (Advanced)	  -‐	  Carbon	  Emissions	  (Mt	  CO2e)

Table 4.5: “Actual” CO2 emissions for Advanced model. Scenarios where the
RPS alone drives CO2 emissions below that required by the carbon
policy are highlighted in green.

thermal generators that includes more operationally flexible but higher
cost versions of the fundamental generation types. Such flexibility en-
hancement would otherwise seem prohibitively expensive and hence
would not be built when flexibility is not captured by the capacity plan-
ning model. Exploring these alternative sources of flexibility is left for
future research.

4.6.3 RPS and Carbon Emissions

Another interesting observation about the 80% RPS cases is that, as
seen in Figure 4.11, the different generation mixes by the Standard and
Advanced model are identical across all CO2 limits. Table 4.5, shows
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how this similarity is simply because the carbon limits are never bind-
ing under the 80% RPS. In all cases, the 80% RPS requirement alone is
enough to force the CO2 emissions level to 25Mt. This is expected since
if 80% of generation is supplied by carbon-free renewables, carbon-
emitting generation will only provide 20% of the energy. Even if this
20% of non-renewable energy had the same carbon intensity as the
baseline system, the 80% RPS would represent an 80% reduction in
total emissions. But, since sufficient operational flexibility is required
to provide reserves, this remaining non-renewable generation will be
biased toward the most flexible NG-GT units, which have a lower car-
bon intensity than the baseline system, resulting in further emissions
reductions.

The ability of the RPS to lower emissions creates a diagonal in Table
4.5 below which imposing the RPS requirement alone meets or exceeds
the policy imposed carbon limit. As seen in Figure 4.11 and Figure
4.12 respectively, this effect also implies that the generation and energy
mixes below the diagonal will be dictated by RPS alone, independent
of the carbon limit imposed.

4.6.4 Utility Perspective

The operational differences described above clearly indicated the im-
portance of capturing operational flexibility within the utility planning
process in order to prevent lost load (or policy non-compliance) for
high RPS levels or strict carbon policies; however, it would also be
useful to know if and when the standard merit order based planning
model is sufficient, even if the generation mixes are slightly different
than those from the Advanced model. Table 4.6 shows that the stan-
dard, merit order based capacity planning model provides good re-
sults for the No limit and 141Mt CO2 limit policies at and below a 20%
RPS as well as the 94Mt-20% case. In these situations, which include
the current states of nearly all operating power systems, capturing only
merit order operations with a standard capacity planning model may
be sufficient and only results in small cost increases. For all other cases
with this test system, capturing operational flexibility, such as using
an advanced UC-based model, is essential to avoiding infeasible oper-
ations and the non-served energy that drives the observed excessive
price increases.
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CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 1362 2720 Infeasible Infeasible Infeasible
94 97 0.0 1256 4850 Infeasible

141 0.0 0.0 847 4833 Infeasible
None 0.0 0.0 848 4844 Infeasible

Standard	  -‐	  Cost	  Increase	  over	  Advanced	  ($Billions)

(a)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 32 35 41 71 3188
94 28 31 38 69 3188

141 26 30 38 69 3188
None 26 30 38 69 3188

Advanced	  -‐	  Total	  Annual	  System	  Cost	  ($Billions)

(b) Advanced Baseline

Table 4.6: (a) Increase in total annual cost — including capital and operations
— for the Standard generation mix compared to that built consid-
ering operational flexibility with the Advanced model. Scenarios
costs differ substantially are highlighted in red. The corresponding
costs for the Advanced mix are shown in (b).
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In practice, the second simulation stage of the modern planning pro-
cess described in Section 1.6.2, would likely catch the Standard model’s
shortcomings before physical hardware is actually built; however, since
the initial capacity mix for consideration is produced by a flexibility-
ignorant Standard operations model, planners would be left with ad
hoc adjustments to correct the problem. As a result the detailed anal-
ysis phase, and later construction, could very likely be based on a
sub-optimal generation mix. If a flexibility aware, advanced UC-based
model was used instead for the initial screening stage, an optimized,
lower cost and/or higher reliability system can be carefully analyzed
and built.

4.6.5 Policy Analyst Perspective

The potential to (over)analyze the wrong generation mix as a result of
ignoring operational flexibility could easily afflict policy analysts and
renewable integration researchers. In the later case, the most advanced
researchers follow a multi-step planning process similar to the utility,
such that a standard merit order based screening phase could result
in a sub-optimal generation mix for further analysis, unless ad-hoc
adjustments are made. However, other researchers and most policy
analysts, use only a single phase approach to capacity planning, such
that the initial capacity expansion model is the only chance to capture
the impacts of operational flexibility.

To illustrate the potential shortcomings of the standard, flexibility-
ignorant capacity planning models for the policy analyst, Table 4.8
compares the error in energy mix predictions for the Advanced and
Standard planning models. The energy mix is used, rather than the
emissions errors used previously for the policy analyst perspective be-
cause the emission limits are dictated by carbon policies under test.
These differences are computed using the normalized RMS energy er-
ror from Equation (4.1). As before, the “actual” emissions are assumed
to result from the utility building and operating a generation mix sug-
gested by theAdvanced model.

These mappings show how the Standard model has significant fore-
cast errors for higher RPS levels and/or strict CO2 policies. The most
significant Standard model differences (>20% for the E-mix metric)
correspond to similar pattern as the cost increases seen from the util-
ity perspective. In these cases, operational flexibility needs to be cap-
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CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 92% 68% 97% 44% 101%
94 32% 15% 25% 50% 101%

141 4% 16% 20% 54% 101%
None 90% 14% 22% 56% 101%

Standard	  -‐	  Policy:	  Energy	  Forecast	  Error	  (Normalized	  RMS)

Table 4.7

Table 4.8: Energy mix prediction errors from the policy maker perspective
for the Standard planning model. Errors are relative to a baseline of
operations simulations from the Advanced model. Increasing error
levels are highlighted with a spectrum changing from white (no
error) to yellow to red (very poor estimates).

tured to accurately estimate the energy mix. Additionally, the Stan-
dard model also has significant forecast errors for the baseline case of
0% RPS and no carbon policy. Again, this results from not consider-
ing operational flexibility. As seen in Figure 4.11, the Standard model
suggests a larger capital investment in relatively inflexible coal, rather
than natural gas. For the utility, this mix can be built and operated with
minimal added cost, but for the policy analyst interested in the energy
mix and associated carbon emissions, the increased coal capacity and
hence increased predicted coal emissions can be important.

In this No Limit-0%RPS case, the standard merit order based plan-
ning model over estimates the carbon emissions by 5%. While this dis-
crepancy would be conservative in terms of future emissions impacts,
it could produce unintended effects if used as the basis for policy. For
example, overestimates of carbon emissions could produce windfall
profits if used for allocating emissions permits or result in the collapse
of an emissions trading market prices if used as a basis for a cap and
trade system19.

19 For this and other reasons, most proposals for both policy schemes rely on historic
emissions rather than projections to avoid this particular issue.



160 integrated optimization of unit commitment and planning

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 110% 54% 68% 65% 57%
94 36% 6% 32% 68% 57%

141 10% 19% 26% 68% 58%
None 69% 16% 28% 68% 58%

Standard	  -‐	  Capacity	  Difference	  (Normalized	  RMS	  relative	  to	  UC)

Table 4.9: New capacity mix prediction errors for the merit order based plan-
ning model (Standard) relative to the baseline Advanced generation
mix. Increasing error levels are highlighted with a spectrum chang-
ing from white (little difference) to yellow to red (large differences).

4.6.6 Capacity Revisited

The color highlighted table format seen in the last subsection provides
a concise way to summarize the differences between the Advanced and
Standard model results. Looking forward to the next section which
adds additional model types to this already high dimensional compar-
ison, its helpful to consider a similar mapping for the capacity differ-
ences to see if can capture the key results from Figure 4.11.

Table 4.9 maps out the normalized, RMS capacity difference for the
Standard model. The fill patterns do correspond to capacity mix dif-
ferences described above and further highlight how the Standard plan-
ning model diverges from the Advanced model’s full-UC optimum for
3 distinct regions as described in detail earlier: 1) high RPS for all CO2,
2) low-mod RPS/mid-strict CO2 limits, and to a lesser extent 3) low
RPS/Unlimited CO2.

4.6.7 System Dependence

It is important to remember, that these mappings of when operational
flexibility, as captured by the Advanced model, impact planning are
highly system specific. A system with more flexible existing genera-
tion, such as extensive hydro, might be able to use standard merit order
operations for a larger subset of cases. In contrast, systems with more
inflexible legacy generators, including retirement rates lower than the
50% considered here, could require capturing operational flexibility
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for more, if not all scenarios. Moreover, if technologies that derive sig-
nificant value from providing operational flexibility — including stor-
age, demand response, or flexibility-augmented thermal generation —
are considered as expansion candidates, operational flexibility should
be considered earlier in order to properly compare these technologies
value streams.

4.6.8 Summary

This section demonstrates how the impact of operational flexibility de-
pends on the carbon policy and RPS scenario. When operational flexi-
bility is not challenged, merit-order operations based models can pro-
duce good expansion plans for utilities and good impact estimates for
policy analysts. However when carbon policy encourage investment
in less flexible generation or large quantities of renewables require in-
creased operational flexibility, the use of simplified models can pro-
duce bad expansion plans for utilities or poor estimates of policy im-
pacts for analysts.

Additional figures and tables can be found in Appendix C.

4.7 approaches for capturing operational flexibility in

planning

4.7.1 Operational Flexibility Approaches Compared

With the motivation that operational flexibility is important to capture
during the planning process, this section explores a few alternative
methods of modeling flexibility during planning model optimization.
If successful, these simpler methods could provide faster, simpler ways
to capture operational flexibility without resorting to the full clustered
integer UC approach used by the full Advanced model. In order of
increasing complexity the complete set of operations types compared
are:

merit order operations (standard): As seen before, this ap-
proach ignores operational flexibility and will dispatch genera-
tion in order of increasing variable cost to meet the demand;

merit order with “flexibility” reserves (mtoflex): This ap-
proach is similar to that used by de Jonghe, et al. [18] and the
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NETPLAN20 model [214]. MtoFlex recognizes the importance of
operating reserves for operational flexibility by adding two classes
of combined operating reserves (as described in Section 2.5.2)
to the Standard formulation: 1) “Flexibility up” to capture the
need to maintain some generation below its maximum output
such that it can be increased if needed to account for forecast
errors or contingencies, and 2) “Flexibility down” which anal-
ogously requires sufficient generation to be on-line such that
it can be reduced if needed to account for forecast errors. To
compute reserve needs and generator capabilities, the separate
reserve classes used in the full Advanced model are divided
between “up” and “down” and summed. Without information
about which units are running, the mtoFlex formulation assumes
that all operating generation can be used for reserve down while
upward reserves are restricted the the difference between installed
capacity and current output. Furthermore, since reserve constraints
are also strongly limited by ramping rates, additional restrictions
are placed on reserve capabilities; however, without information
about which units are currently on-line, these ramp-based re-
serve limits are based on the total installed capacity rather than
only committed units. This can overestimate available reserves –
and hence underestimate flexibility challenges and correspond-
ing costs. To partially account for this, I use de Jonghe, et al.’s
heuristic that reduces reserve capability of “off-line” generators
to 60%21. Since there are no commitment variables, this off-line
capacity is estimated as the difference in total capacity and cur-
rent output production [18].

unit commitment with relaxed integers (uclp): This approach
uses all of the same relations as the full clustered unit commit-
ment operations sub-model, but relaxes the integer constraint for
unit commitment state, startup, and shutdown variables. Instead,
these variables can take on any value over the continuous interval
from zero to the maximum number of generators, nmax

ĝ .

20 NETPLAN maintains separate reserve classes but the other assumptions are compa-
rable.

21 For reference, NETPLAN assumes 100% of offline generation can provide reserves,
which would result in even larger differences compared to unit commitment based
reserves.
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full clustered unit commitment (advanced): This is the com-
plete, integer based unit commitment model for operations de-
scribed in Chapter 2 and used in the previous analyses of this
chapter.

For all of the approaches the overall model is still classified as a MILP
since investment decisions are always modeled as discrete. The op-
erations portion of theAdvanced model is also a MILP; however, the
operations portions of the Standard, mtoFlex and UcLp are captured
as LPs. With the Standard and mtoFlex approaches, maintenance is not
explicitly optimized during planning, rather the maximum output for
each unit is derated by the fraction of the year spent on scheduled
maintenance. For UcLp and Advanced, the maintenance constraints
are modeled with discrete variables.

4.7.2 Results

Capacity and Energy

The two intermediate approaches for capturing operational flexibility,
mtoFlex and UcLp, produce improvements over the Standard model in
most cases, but UcLp provides substantially better results and nearly
matches the full Advanced model for almost all cases including higher
RPS levels (>= 60%) and strict carbon policies (47Mt CO2 limit). Table
4.10 shows the patterns for the capacity difference metric for the Stan-
dard, mtoFlex, and UcLp models relative to the full Advanced model.
Full bar charts and tables the capacity and energy mixes can be found
in Appendix C.

Compared to the Standard model, the mtoFlex capacity mixes are
noticeably closer to the full Advanced optimal, with improvements of
10% to nearly 40% for the capacity metric, except for the No Limit-0%
and 141Mt-0% cases where mtoFlex does poorly. However, the mtoFlex
model does worse than the UcLp model in all but two cases.

The relaxed integer unit commitment model (UcLp) provides nearly
identical results to the full Advanced model in all but a few cases.
The few exception occur with the 47Mt cap and 0-40% RPS, where the
UcLp model fails to recognize the need fully adapt capacity to com-
pensate for baseload (in)flexibility. For example, the UcLp model may
underbuild wind capacity since it doesn’t capture the full inflexibil-
ity of the nuclear baseload, or may fail to invest sufficiently in highly
flexible NG-GT units. As explored more thoroughly in the next section,
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CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 110% 54% 68% 65% 57%
94 36% 6% 32% 68% 57%

141 10% 19% 26% 68% 58%
None 69% 16% 28% 68% 58%

Standard	  -‐	  Capacity	  Difference	  (Normalized	  RMS	  relative	  to	  UC)

(a)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 77% 33% 47% 51% 44%
94 6% 11% 7% 52% 44%

141 2% 10% 7% 52% 43%
None 69% 12% 7% 52% 43%

mtoFlex	  -‐	  Capacity	  Difference	  (Normalized	  RMS	  relative	  to	  UC)

(b)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 41% 10% 22% 9% 1%
94 9% 3% 2% 3% 0%

141 10% 5% 1% 1% 1%
None 11% 3% 3% 1% 1%

UcLp	  -‐	  Capacity	  Difference	  (Normalized	  RMS	  relative	  to	  UC)

(c)

Table 4.10: New capacity mix differences for the (a) Standard merit or-
der operations-based, (b) merit order with flexibility reserves
(mtoFlex), and (c) unit commitment with relaxed integer commit-
ment (UcLp) planning models relative to the baseline Advanced,
UC-based generation mix. Increasing error levels are highlighted
with a spectrum changing from white (little difference) to yellow
to red (large differences).
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the challenge comes from UcLp’s failure to fully consider minimum
output and minimum up and down time constraints, since it’s relaxed
formulation allows fractional commitment states. Section 4.7.3 explains
the drivers behind these differences in more detail.

Policy analyst perspective

From the policy analyst perspective, Table 4.11 shows how the pre-
dicted energy mix follows a similar pattern, but further emphasizes
how mtoFlex provides only a minor improvement over the Standard
operations based model for energy estimates. In contrast, the UcLp
model provides energy mix estimation errors near or below the ap-
proximately 20% accuracy threshold for this metric for all cases except
47Mt-0% and 47Mt-60%. Section 4.7.3 explains the drivers behind these
differences in more detail.

Utility perspective

From the utility perspective, the total annual cost, Table 4.12 shows
how the mtoFlex approach expands the region of minimal22 cost in-
creases beyond that of the Standard model to include most of the 40%
RPS cases, except 47Mt-40%, and suggests a reasonable mix for the
94Mt-0% cases. However, the mtoFlex model still produces infeasible
mixes for all 80% cases and loss of load still causes very high operating
costs for all other strict carbon policy (47Mt) cases.

Here the UcLp simplification does extremely well, producing gen-
eration mixes that cost essentially23 the same as those from the full
Advanced model for all cases, including those that had some larger
variations in energy and capacity. The next section explains the drivers
behind these differences in more detail.

22 Though an increase of 0.2 still corresponds to $200Million, so the improvements from
the UcLp and full Advanced model would still important in practice.

23 The slightly lower costs observed for the UcLp model are likely due to small discrep-
ancies in MILP convergence during the initial planning phase. In most cases these are
simply rounding differences, but in some they may correspond to places where the
simpler UcLp model was actually able to achieve a small improvement over the full
Advanced model before reaching the run time limit. Further study of this possibility
is left for future research.
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CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 92% 68% 97% 44% 101%
94 32% 15% 25% 50% 101%

141 4% 16% 20% 54% 101%
None 90% 14% 22% 56% 101%

Standard	  -‐	  Policy:	  Energy	  Forecast	  Error	  (Normalized	  RMS)

(a)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 73% 60% 89% 41% 97%
94 10% 15% 16% 50% 97%

141 2% 10% 17% 55% 97%
None 90% 8% 19% 56% 97%

mtoFlex	  -‐	  Policy:	  Energy	  Forecast	  Error	  (Normalized	  RMS)

(b)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 41% 14% 40% 23% 0%
94 10% 1% 2% 7% 0%

141 3% 5% 2% 2% 0%
None 10% 2% 2% 2% 0%

UcLp	  -‐	  Policy:	  Energy	  Forecast	  Error	  (Normalized	  RMS)

(c)

Table 4.11: Energy mix prediction errors from the policy maker perspective
for the (a) Standard, (b) mtoFlex, and (c) UcLp planning mod-
els relative to a baseline of operations-only simulations for the
Advanced generation mix. Increasing error levels are highlighted
with a spectrum changing from white (no error) to yellow to red
(very poor estimates).
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CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 1362 2720 Infeasible Infeasible Infeasible
94 97 0.0 1256 4850 Infeasible

141 0.0 0.0 847 4833 Infeasible
None 0.0 0.0 848 4844 Infeasible

Standard	  -‐	  Cost	  Increase	  over	  Advanced	  ($Billions)

(a)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 101 89 233 954 Infeasible
94 -‐0.1 0.2 0.2 946 Infeasible

141 0.0 0.2 0.2 946 Infeasible
None 0.0 0.2 0.2 946 Infeasible

mtoFlex	  -‐	  Cost	  Increase	  over	  Advanced	  ($Billions)

(b)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 -‐0.1 -‐0.1 -‐0.2 -‐0.1 0.1
94 0.0 0.0 0.0 0.0 0.0

141 0.0 0.0 0.0 0.0 0.1
None 0.0 0.0 0.0 -‐0.1 -‐0.2

UcLp	  -‐	  Cost	  Increase	  over	  Advanced	  ($Billions)

(c)

CO
2	  
Li
m
it

(M
t)

0%	  RPS 20%	  RPS 40%	  RPS 60%	  RPS 80%	  RPS
47 32 35 41 71 3188
94 28 31 38 69 3188

141 26 30 38 69 3188
None 26 30 38 69 3188

Advanced	  -‐	  Total	  Annual	  System	  Cost	  ($Billions)

(d) Advanced Baseline

Table 4.12: Increase in total annual cost — including capital and operations —
for the (a) Standard, (b) mtoFlex, and (c) UcLp planned generation
mixes compared to that built considering operational flexibility
with the Advanced model. Scenarios costs differ substantially are
highlighted in red. The corresponding costs for the Advanced mix
are shown in (d).
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Figure 4.15: Comparison of capacity additions for each of the capacity plan-
ning model types for a 47Mt CO2 limit and 20% RPS.

4.7.3 A closer look

To better understand how the different operating models impact the
planning results, this section explores the 47Mt-20% case in greater
detail. As seen in Table 4.10, this is the one case where all of the model
approaches do a poor job of approximating the full Advanced results.
In other scenarios, one or more approximate models do a good job of
estimating the full Advanced results, making comparisons difficult.

Capacity and Energy

Figure 4.15 compares the new capacity mix across the models. All of
the approximate model types underinvest in wind capacity, leaving
minimal margin for any possible wind shedding. In addition, Stan-
dard and mtoFlex both build more inflexible nuclear. As seen in Fig-
ure 4.16 this combination causes the generation mix from Standard
and mtoFlex to have substantial non-served energy in order to simul-
taneously meet the RPS, CO2 limit, provide reserves, and comply with
operating constraints. The UcLp model, despite under building wind,
has sufficient operational flexibility from the very low carbon NG-CC
with CCS, enabling actual operations without loss of load.

Net Load Duration Curve

The predicted net load duration curves, shown in Figure 4.17 , high-
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light how differences in the planning models’ approaches to capturing
operating reserves drive these results. WIthout any operating reserves,
the Standard model produces the simple banded structure from merit
order economic dispatch seen in Section 4.3.3. The mtoFlex model rec-
ognizes the need for operating reserves as evident by the thin strip
of NG-GT operation extending out nearly 1000 hours beyond the peak.
Similarly, during the lower demand hours, mtoFlex operates a small
quantity of NG-CC with and without CCS to provide reserves for the
less flexible nuclear generation. The UcLp and Advanced models use
even more out-of-merit operation to provide operating reserves. Both
UC models (UcLp and Advanced) operate a small quantity of highly
flexible NG-GT at all times and use significantly more NG-CC with CCS
to augment nuclear during the low demand periods. This need for
additional reserves is what drives the mtoFlex, UcLp and Advanced
models to invest in the highly flexible NG-GT units.

The smaller reserve-driven operations for mtoFlex, seen by com-
paring Figure 4.17(b) and (d),result directly from the approximation
that all non-running capacity24 can still provide reserves at a reduced
level25. As a result the added mtoFlex operation of NG-GT and NG-CC
units is only enough to provide the much smaller downward reserve
requirements that by definition require some output power that can be
reduced if required. As a result the mtoFlex model considerably un-
derestimates the operation of these flexible natural gas units required
to provide reserves. Furthermore, the mtoFlex model does not capture
unit minimum output constraints and therefore underestimates even
the required downward reserves. It assumes that the entire operating
power, limited only by ramp rate, can be turned off if needed to re-
duce system generation if needed. In actuality, real thermal units can
only provide reserves down to their minimum stable output, requir-
ing additional output such that operation for downward reserves is
in addition to the required minimum output. As a result, the mtoFlex
model builds more nuclear and fewer flexible NG-GT and NG-CC with
CCS units than the UcLp and full Advanced models.

24 Recall that since mtoFlex ignores commitment constraints, non-running capacity is
approximated as the installed capacity minus the current power output.

25 Note that if this assumption is removed and only running capacity is allowed to
provide reserves, the mtoFlex results are much further off. In unreported trial runs
conducted as part of model testing, allowing reserves based on power output greatly
overestimated flexibility challenges resulting in very poor results.
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The more subtle differences between the UcLp and Advanced mod-
els is also evident by comparing the very lowest demand hours of Fig-
ure 4.17(c) and (d) where the thermal output for the UcLp model falls
under 7GW, producing a rounded end, while the Advanced model al-
ways keeps thermal output above about 10GW, making a more blunt
end. This is due to the UcLp’s model acceptance of fractional, rather
than purely integer, commitment states. Though it is physically impos-
sible to run, for example, a nuclear plant halfway on, this assumption
by the UcLp model partially avoids the impact of minimum output
levels, and thereby enables the UcLp model to assume that most of the
wind production can actually be used, rather than shed. Additional
regions of greater wind shedding with full UC operations are evident
in the altered shape of the net load duration curve for 5000 to 8000

hours. As a result, the UcLp model builds less new wind capacity,
even though the rest of its generation mix effectively matches the full
Advanced model.

The mtoFlex, like the Standard model, also does not capture mini-
mum up and downtime constraints, resulting in unrealistic under op-
eration of the operationally inflexible legacy coal units, as described
before in Section 4.3.3. This is evident by the abrupt end in coal oper-
ations before 1000 hours in contrast to the scattered operation of coal
out beyond 7000 hours as suggested by the jagged border between nu-
clear and NG-CC with CCS. To better understand this effect it is helpful
to look at a single week of operations as seen in the next section.

One week time series

Figure 4.18 shows the impact of flexibility driven operations constraints
during the week beginning just after midnight August 14. The lack of
minimum up and down time constraints in the mtoFlex and Standard
models is evident by the operationally impossible isolated blocks of
coal operation during the peaks of the first four days. In contrast, both
the UcLp and Advanced models capture the need to keep these units
running during nighttime lows to avoid coal startup costs and comply
with the combination of minimum output and minimum up/down
time constraints. As seen in 4.16, this difference explains the larger
share of coal energy production predicted by the UcLp and Advanced
models, which in turn motivates a UcLp and Advanced to increase the
portion of NG-CC investment that has CCS as seen in 4.15.
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The additional operation of flexible generation to provide reserves is
best seen during the sixth nighttime low. During this period, the Stan-
dard model does not deviate from its simple merit order, the mtoFlex
maintains a small amount of additional NG-CC, while both the UcLp
and Advanced models maintain a sizable quantity of NG-GT and NG-CC
with CCS for reserves, even though it requires reducing nuclear output.
As described above, these difference motivate the investment in flexible
NG-GT for the mtoFlex, UcLp, and Advanced models and the increased
investment in NG-CC with CCS for the UcLp and Advanced models.

4.7.4 Summary

This section shows that relaxing the integer constraints in unit commit-
ment (UcLp) provides a significantly more accurate simplification for
capturing operational flexibility during planning than the reserve-only
approximation found in the literature (mtoFlex). The UcLp simplifica-
tion produces capacity mixes that very nearly match the full Advanced
model in all cases except those with strict CO2 limits (47Mt with 0%-
60% RPS). In these cases UcLp still provides a significantly improve-
ment over other simplifications for all accuracy metrics including ca-
pacity difference, energy mix difference, energy forecast accuracy, and
increase in total operating costs. Moreover, even where UcLp capacity
mixes differ from the full Advanced optimal, from the utility perspec-
tive, the total costs match those from the more complex full Advanced
model.

The mtoFlex approximation, which is similar to that used in [18]
and [214], does provide noticeable improvement over the ignoring op-
erational flexibility in the Standard, merit order model. In particular,
from both the policy analyst and utility perspective, mtoFlex provides
more accurate emissions predictions and lower cost generation mixes
than the Standard approach in almost all situations.

Complete results and additional figures and tables can be found in
Appendix C.



5
C O N C L U S I O N S

5.1 summary

This dissertation has shown the important role that operational flexibility—
the ability of a power system to respond to changes in generation re-
quirements due to predictable and unexpected variations in demand
and supply—plays in planning and analyzing future power systems,
particularly those with substantial variable renewable energy produc-
tion (e.g. wind and solar) or strict carbon policies. Including opera-
tional flexibility is shown to lower system costs, improve policy impact
estimates, and enable system designs capable of meeting strict regula-
tory targets. Moreover, this work explains some general principles as
to when and how operational flexibility is of particular concern for
planning. These can guide future power system designs and inform
associated regulations. All of this analysis relies on, and thereby show-
cases, a new clustered combined unit commitment/maintenance/ca-
pacity planning formulation that tractably combines these problem
types while also capturing the operating constraints that drive flexi-
bility.

5.1.1 How flexibility is a driver

Fundamentally, operational flexibility balances the system’s technical
operating constraints with its need to respond to both predictable and
unexpected variations in supply and demand. As a result, operational
flexibility is most influential in scenarios with high flexibility need,
such as the increased uncertainty from extensive variable renewables,
and/or scenarios with low flexibility available, such as with techni-
cally constrained baseload technologies including coal steam, geother-
mal, and traditional nuclear. The precise scenarios where operational
flexibility impacts planning and the extent of these impacts are system-
specific; however, some general observations are possible, at least for
thermally dominated power systems, as described below.
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With moderate to large quantities of variable renewables (>20% on
an energy basis) inherently imprecise forecasting requires additional
reserves. This in turn encourages increased investment in and opera-
tion of highly flexible resources such as open-cycle natural gas com-
bustion turbines, storage, or demand response. As renewable increase,
these flexible assets may be allocated (nearly) all the time to provide
the necessary reserves.

On the other side of this balance, strict carbon policies and low to
moderate Renewable Portfolio Standard (RPS) levels make low-carbon,
but operationally inflexible, baseload technologies, such as geother-
mal, traditional nuclear, or coal steam with carbon capture, attractive
for reducing carbon emissions. However, the combined flexibility chal-
lenges of these technologies as currently built make such generation
mixes impractical, even without any flexibility demands from variable
renewables. This is because inflexible baseload units have high min-
imum output levels, long minimum up/down time constraints, and
high startup-costs that can make it difficult or impossible to provide
sufficient reserves or to cycle off during low thermal output periods.
In these situations, including flexibility shifts investment toward more
operationally flexible alternatives, including potentially more carbon
intensive natural gas combined-cycle units with and without carbon
capture and sequestration.

Strict carbon policies also create difficult operating environments for
legacy coal steam units. Without carbon limits these units operate as
(nearly) always-on baseload. But strict carbon polices drive effective
variable costs high enough that economics alone would push coal gen-
erators to act as peaking units by running only during the highest (net)
demand periods. However, technical operating constraints such as min-
imum up and down times alter this behavior, forcing the units to run
between peaks, thereby increasing carbon emissions, altering the op-
erations of other units, or encountering the same issues described for
low-carbon baseload above.

At high RPS levels, ignoring operational flexibility can also incor-
rectly reduce investment in renewable capacity and/or require ad-
ditional renewable shedding due to reserve-driven operational chal-
lenges. In these cases, when operational flexibility is ignored during
planning, meeting a strictly enforced RPS could require shedding sig-
nificant load. In extreme cases, generation mixes built without consid-
ering operational flexibility are simply infeasible to operate in compli-
ance with regulations.
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5.1.2 Results Summary

Example results from an Electric Reliability Council of Texas (ERCOT)-
based test system, over a range of carbon policies and RPS levels, val-
idate these trends. These results also demonstrate that capturing op-
erational flexibility during expansion planning can ensure sufficiently
flexible generation mixes and prevent negative consequences. Specifi-
cally capturing operational flexibility during planning:

• Reduces errors in projected impacts of carbon emissions policies,

• Decreases total costs of the generation built and operated by a
utility,

• Decreases wind shedding,

• Enables the system to meet RPS and carbon policy requirements
without shedding demand, and,

• In the most difficult cases, enables the system to be operated at
all.

At lower RPS levels (<=20%) and looser carbon policies (<=$45/ton
carbon dioxide (CO2) or <25% CO2 reductions in this test system) the
impact of operational flexibility was small but noticeable. Including
flexibility resulted in generally 0-20% improvements for a range of
metrics that cover generation mix, energy mix, costs, and correspond-
ing prediction errors. However, at higher RPS levels and stricter carbon
policies, including operational flexibility provided substantial improve-
ments, generally 30-100% improvement for the same metrics.

5.1.3 Modeling flexibility

Another major component of this work was identifying a new model
formulation that overcomes the large computational burden of accu-
rately including operational flexibility within the capacity planning
problem. This formulation uses clustering to tractably combine unit
commitment, maintenance, and investment planning into a single Mixed
Integer Linear Program (MILP). Clustering is a procedure that groups
similar but non-identical units into clusters that are assigned integer
rather than binary variables to maintain individual unit decisions and
constraints.
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Side-by-side comparisons show significant improvements in solu-
tion quality for operational flexibility constrained scenarios, using this
clustering approach, compared to the leading alternative for flexibility-
aware planning in the literature. This alternative, economic dispatch
with “flexibility” reserves, did provide improvements over ignoring
flexibility, slightly expanding the range where faster non-unit-commitment-
based methods result in only moderate loss of fidelity. However, the
clustered unit commitment approach still provided the largest improve-
ments in all cases and was the only method to produce satisfactory re-
sults with higher RPS and/or stricter carbon policies. These more realis-
tic clustered unit commitment operations do require increased compu-
tation time due to larger problem size and additional discrete variables;
however, relaxing the integer commitment constraints in the clustered
formulation is shown to decrease run times considerably while main-
taining most of the accuracy advantages.

Moreover, the clustering approach makes it possible to capture the
true unit-level commitment and other constraints that drive opera-
tional flexibility within planning optimization. Without clustering, cap-
turing accurate reserve capabilities, minimum up/down time constraints,
and minimum output constraints would require a much larger tra-
ditional binary unit commitment model which would be computa-
tionally prohibitive to include within planning optimization. In direct
operations-only comparisons, the clustering technique kept errors for
a range of metrics that cover total cost, CO2, commitment, power and
energy to generally less than 1% while decreasing run times by orders
of magnitude (e.g. 5000x) relative to the traditional approach. Errors
could be further reduced, at the expense of somewhat increased com-
putation time, by adjusting the clustering aggregation method. These
same trials also explored alternative speedup strategies for unit com-
mitment and found that while none are as effective as clustering alone,
some can be used in combination with clustering for even faster com-
putations.

5.1.4 Implications

Awareness of the need to consider operational flexibility and avail-
ability of tools to do so can enable power systems to achieve carbon
reduction targets and/or operate successfully with large fractions of
renewable energy. For utility planners and renewable integration re-
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searchers, the methods of this thesis allow capturing flexibility during
the initial screening phase, rather than discovering problems later dur-
ing detailed analysis. This provides operationally optimized genera-
tion mixes directly, even with carbon constraints and renewables, and
eliminates the need for ad hoc adjustments later. Flexibility-aware plan-
ning also enables policy analysts to make more realistic impact fore-
casts and design improved policies capable of achieving targets. Taken
together, these results encourage and offer a new flexibility-aware ap-
proach to capacity planning that can enable a cleaner, less expensive
electric power system in the future.

Specific recommendations for decision makers can be found in Sec-
tion 5.4.

5.2 contributions

This research enhances our understanding of how constraints at the
hourly operations timescale can impact long-term planning decisions
at the scale of years. It also extends state of the art for electric power
system generation expansion planning to tractably embed operational
flexibility into planning optimization models. Specifically, the primary
contributions of this work are:

1. Demonstrating that operational flexibility can have an important
impact on power system planning, and providing insights as to
when endogenous operating flexibility impacts investment deci-
sions, and how generator technical constraints drive these im-
pacts;

2. Demonstrating that a failure to account for operational flexibil-
ity can result in undesirable outcomes for both utility planners
and policy analysts. These include significantly increased system
costs, reduced system reliability, inability to comply with RPS and
carbon requirements, underestimating emissions reductions, sub-
optimal generation mixes, and unrealistic energy mix predictions;
and

3. Presenting a new combined unit commitment and capacity plan-
ning model formulation that makes capturing operational flex-
ibility within planning optimization computationally tractable.
This research further demonstrates the use of this formulation for
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a large test system (hundreds of generators) at hourly time resolu-
tions (8760 hours) using modern solvers on a personal computer.
A similar approach for production costing incorporates simpli-
fied maintenance scheduling into the same mixed-integer linear
optimization model without decomposition.

Additionally, this dissertation further contributes to the electric power
systems literature by comparing among this new formulation and al-
ternative operations and planning simplifications from the literature.
These comparisons demonstrate the accuracy and efficiency of the clus-
tered formulation and show trade-offs between accuracy and run-time
for various approaches to generator clustering. These results can also
guide future selection of power system models and appropriate sim-
plifications while the analysis metrics used can be applied to future
power system model comparisons.

5.3 limitations and future research

Overall, this research will serve as a base for future planning exer-
cises and as a foundation for future studies of operational flexibility.
The current work also has a number of important limitations, each of
which motivates further research. Furthermore, the methods presented
here can enable new lines of inquiry including appropriate valuation
of technologies that derive value from operational flexibility and cap-
turing realistic operations within other complex energy models. This
section highlights these potentials along with other other specific areas
for further exploration.

Most of this dissertation focussed on a single ERCOT-based test sys-
tem, and though ERCOT is generally representative of large, thermally
dominated power systems, it has very limited hydro resources and
minimal power exchange with surrounding areas. Further research
is needed to explore how results vary in other power systems and
with such alternative sources of operational flexibility. Specifically, dif-
ferences in existing generation mixes, seasonal and daily wind and
demand patterns, interchange with other systems, and other system-
specific attributes could make including operational flexibility more
or less important and/or alter the patterns of when it has significant
impact.

Furthermore, due to data limitations, this research relied on a simpli-
fied representation of the ERCOT system and used the same operations



5.3 limitations and future research 181

model for both optimization and “actual” simulation. It would be in-
teresting to cross-check these results using a commercial operations
simulation model and/or simulating operations with more complete
unit data.

Additionally, the current approach treats operations deterministi-
cally and only requires sufficient reserves, but stops short of deploying
these reserves to estimate the impacts of forecasts errors or unplanned
outages. Some of these impacts may average out over long time peri-
ods when the same unit types provide both upward and downward
reserves thereby allowing up & down fluctuations, such as wind fore-
cast errors, to partially cancel. But, since upward reserves tend to be
larger than downward and reserves may be provided by different types
of unit across time, reserve deployment may also shift some energy
production to those units that provide reserves and away from vari-
able renewables and thermal units with high forced outage rates. This
suggests further research into stochastic simulation or statistical esti-
mates for reserve deployment and corresponding impacts. Of partic-
ular interest is the incorporation of recent developments in stochastic
unit commitment for both dynamic reserve allocation and probabilis-
tic simulation. For such analysis, the clustering approach could help by
reducing the combinatorial set of outcomes to consider thereby easing
sampling requirements or possibly enabling a multinomial-like ana-
lytic approach.

Another notable limitation with this research results from ignoring
transmission constraints and implicitly assuming an optimized trans-
mission system. Congestion can alter the dispatch order of generation
and limit the extent to which reserves can be shared across a large
geographic region, thereby impacting operational flexibility. Further-
more, the transmission system limits the number of units that can be
successfully grouped using the clustering formulation. This research
has shown that clustering into more groups with fewer units each can
still provide significant performance benefit. Additionally, it is well
known that only a small number of transmission constraints are typi-
cally binding. Together these facts suggest multiple research directions
including exploring how transmission further impacts planning with
operational flexibility, developing methods for clustering with trans-
mission constraints, and incorporating operational flexibility into inte-
greated generation and transmission expansion planning.

This research also only considers the operational flexibility avail-
able from thermal power plants and only considers renewable energy
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from wind, making the addition of other technologies a ripe area for
further research. Some emerging technologies, such as responsive de-
mand and grid-scale storage, could help the system flexibility balance
by providing additional sources of operational flexibility; while others,
such as electric vehicles and solar power could help or hurt flexibil-
ity depending on the power system and deployment strategy. Further-
more, additional thermal generation technologies including flexibility-
enhanced, but more expensive, versions of those considered here could
be explored. Evaluating these technologies and the corresponding ex-
tensions to the methods presented here represent promising future re-
search areas.

Also, although the significant speed improvements of clustering en-
able capturing operational flexibility within planning optimization, the
combined models still remain computationally demanding. Further re-
search could explore additional approaches for faster performance. A
starting point would be to use the well established approach of reduc-
ing the number of simulation weeks to only a carefully selected repre-
sentative subset, perhaps using one week per month plus peak demand
and wind weeks. Research remains in this area on the best methods
for selecting this subset, particularly because of the need to capture de-
mand and wind variations along with their correlation. In some ways
the complete 52 (or more) week record implicitly sample from multiple
wind and weather regimes, requiring care to duplicate with less data.
Furthermore, the success of relaxing integer commitment constraints
hints at the potential of further speed improvements by carefully an-
alyzing which operating constraints are most important to accurately
model operational flexibility. It is likely that the relevance of different
constraints will be a function of the system and the scenario, such that
additional characterization of which constraints to consider and when
could offer a large area for future research. Such work could also lead
to an improved understanding of the relevant dimensions to include in
flexibility metrics, or even a generalized closed-form theory of which,
when, and how operating constraints impact planning.

Additional areas for future research include exploring the impact of
operational flexibility within multi-period, multi-sector, multi-agent—
including market based,and/or stochastic problems. For such work,
general speed improvements would be welcome, but more importantly
each new model attribute might afford an additional, problem specific
methodology advance. For example, work carried out by the author in
parallel with this dissertation suggests that the modeling framework
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of Approximate Dynamic Programming (ADP) represents a promising
foundation for the case of stochastic, multi-period capacity planning.
ADP uses function approximation, careful Monte Carlo sampling, and
machine learning to overcome the “curse-of-dimensionality” inherent
in traditional Dynamic Programming (DP). However, existing ADP ap-
proaches still require large numbers of sub-model runs—a full year of
unit commitment modeling in this case—making practical sized prob-
lems difficult to solve even with clustered unit commitment. This diffi-
culty has prompted the development of promising new techniques to
further reduce the time spent in the sub-model including reducing the
need for sub-model runs using contribution function approximation
and multi-fidelity operations modeling that uses ever richer models as
the ADP algorithm narrows in on the most promising options. Addi-
tional details of this work-in-progress can be found in [215].

5.4 recommendations for decision makers

This dissertation has demonstrated the important role that operational
flexibility plays in future power systems; and hence, the importance of
including it when making capacity investment decisions and analyzing
policy outcomes for the electric power system. Specific recommenda-
tions for decision makers include:

design for operational flexibility Operational flexibility has
always been required to provide reliable electric power, but his-
torically was not a explicit design goal. In the past, flexibility in-
herent in generation has been sufficient; however, increased use
of variable renewables and of low-carbon baseload technologies
can exceed the inherent flexibility of the rest of system. Further-
more, regulations, such as carbon policies, can prevent the full
use of any inherent flexibility. In such cases, sufficient flexibility
must be designed-in. Additional flexibility could be provided by
a combination of natural gas technologies, storage, fuel cells, fly-
wheels, hydro where available, and demand response systems.
Alternatively, flexibility requirements could be reduced through
improved renewable forecasting, more flexible thermal plant de-
signs, and flexibility-aware market procedures.

include operational flexibility in analysis Ignoring opera-
tional flexibility during system planning or policy analysis can
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lead to underperforming or infeasible generation mixes and/or
potentially large errors in estimated energy mix and carbon emis-
sions, particularly with large quantities of variable renewables
(e.g. wind) or under strict carbon regulations. Moreover, given
the long lifetimes of power sector assets it is important to con-
sider not just current operational flexibility needs, but also those
of potentially very different futures. In particular, new genera-
tion built today will still be operating in 2050 and hence may be
subject to ambitious low-carbon and renewable targets.

consider markets and flexibility This research demonstrated
how flexibility challenges can be avoided through careful design.
In modern, market-based systems, there is an additional chal-
lenge to ensure that the market mechanisms sufficiently incen-
tivize operational flexibility so that the required investments will
actually occur.

develop holistic regulations Challenges with operational flex-
ibility expose the potential for piece-meal regulation of the power
system to result in very poor dynamics and undesirable out-
comes. For example, combinations of renewable standards, car-
bon policies, and inflexible power systems can create a down-
ward spiral of operations constraints that results in significant
renewable shedding or non-served energy. To avoid such chal-
lenges, regulations and associated market designs need to be de-
veloped and refined synergistically.

use clustered unit commitment For flexibility constrained sys-
tems, accurate assessments of flexibility—and hence optimal gen-
eration plans and accurate estimates of policy outcomes—require
capturing unit commitment based constraints, which can greatly
increase the computational burden. Clustering generators by type
and using the formulation introduced by this dissertation, can
speed up unit commitment based modeling by orders of magni-
tude while still maintaining small errors. Furthermore, the lead-
ing alternative for capturing flexibility by including heuristic re-
serves within standard merit order economic dispatch is shown
in many cases to only provide a small improvement over ignoring
flexibility and in other cases can be completely inadequate.
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learn when flexibility is not a driver In some low RPS and
loose carbon policy cases, operational flexibility does not have a
large impact on planning, and hence standard merit order based
operations with or without heuristic reserves will provide good
results with less computational effort. However, the relevance of
flexibility is system specific, so some exploration, similar to that
performed here, of when flexibility is and is not a decision driver
is necessary for each power system.
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A
T E S T S Y S T E M D ATA

This appendix includes additional test system data used in Chapter 3

and Chapter 4.

a.1 ieee reliability test system (additional data)

Complete system data for the IEEE Reliability Test System (RTS) is con-
tained in [204, 205, 206]; however, only point information is provided
for heat rates. The corresponding piecewise linear approximation used
in Chapter 3 is included in Table A.1.

Table A.1: Piecewise linear fit of IEEE RTS (1996) fuel use based on data in
[206]

Segment 1 Segment 2 Segment 3

Slope Intercept Slope Intercept Slope Intercept

Plant Type MMBTU/MWh MMBTU MMBTU/MWh MMBTU MMBTU/MWh MMBTU

Oil_St_12MW 10.155 14.068 10.900 9.600 12.400 -4.800

Oil_CT_20MW 10.023 79.632 12.395 41.684 14.400 1.980

Coal_St_76MW 9.657 113.240 10.672 74.683 12.400 -30.400

Oil_St_100MW 8.401 114.950 9.065 81.733 9.652 34.800

Coal_St_155MW 8.386 155.068 8.713 124.620 9.128 73.160

Oil_St_197MW 8.590 148.932 9.026 97.397 9.424 34.672

Coal_St_350MW 8.640 218.400 9.067 121.333 9.500 0

Nuke_400MW 8.899 385.200 9.078 349.333 9.320 272.000

189
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a.2 ercot-based test system

a.2.1 Generator Technical Parameters

Generator technical data was taken from a combination of sources.
The Energy Information Administration (EIA)’s Annual Energy Out-
look (AEO) 2011 is used for cost assumptions. Specifically, generator
cost and performance parameters are used from [213], while fuel costs
are based on electricity sector fuel prices for 2007 (in 2008 dollars) for
the south central west region (which includes Texas) reported in [209].
EIA does not report fuel cost for uranium, so data from the Royal
Academy of Engineering [216] is used to derive estimated uranium
costs. Fuel specific carbon dioxide (CO2) emission rates are based on
EIA Voluntary Greenhouse Gas Reporting Program data from [217].
Generator technical data for unit commitment operating constraints
are adapted from The Sixth Northwest Power Plan, Appendix I [208].

Additional data is provided for some generator types not used in
this dissertation to aid future analyses.

Table A.2: Unit Type name cross-reference by source

Unit	  Type EIA	  AEO2011	  (NEMS)	  Name NW	  Power	  Plan	  (for	  non-‐cost	  data)

Coal_ST Dual	  Unit	  Advanced	  PC Supercritical	  pulverized	  coal

Coal	  IGCC Dual	  Unit	  Coal	  IGCC
Coal-‐fired	  Gasification	  Combined-‐

cycle

NG_CC Advanced	  NGCC Combined	  Cycle	  NG

NG_GT Advanced	  CT	  (F-‐class) Heavy	  Duty	  Frame	  Gas	  Turbine

NG_GT_AERO Advanced	  CT	  (F-‐class) Aeroderivative	  Gas	  Turbine

NG_ST Average	  of	  Coal	  &	  NGCT Average	  of	  Coal	  &	  NGCT

U235_ST Dual	  Unit	  Nuclear Gen	  III+	  (Advanced)	  LWR

Wind On-‐shore	  Wind Wind

PV_Util Photovoltaic	  (150MW	  plant)
Utility-‐scale	  Photovoltaic	  (Si-‐flat	  

plate,	  single	  axis	  track)

Coal_ST	  w/	  CCS
Dual	  Unit	  Advanced	  PC	  with	  

CCS
Super	  critical	  pulverized	  coal	  with	  

90%	  CCS

NG_CC	  w/	  CCS Advanced	  NGCC	  with	  CCS
Use	  ratios	  from	  coal	  w/	  and	  w/o	  
CCS	  applied	  to	  CCGT	  baseline

Coal	  IGCC	  w/CCS Single	  Unit	  Coal	  IGCC
Coal-‐fired	  Gasification	  Combined-‐

cycle	  with	  CCS

Wind_off Off-‐shore	  Wind N/A

PV_Dist Photovoltaic	  (7MW	  plant) N/A
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Table
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Table A.5: Fuel cost and emission assumptions

cost CO2

Fuel code $/MMBTU t/MMBTU

Enriched Uranium u235 0.766 0

(Generic) Coal coal 1.956 0.0965

Coal Bituminous coal_bit 1.956 0.0933

Coal-Sub-bituminous coal_sub 1.956 0.0965

Coal-Lignite coal_lig 1.956 0.0977

Natural Gas ng 6.840 0.0531

Wind wind 0 0

Water water 0 0
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a.2.2 ERCOT 2007 (simplified) Clustering Information

Cluster Parameters

Table A.6: ERCOT 2007 Clustering Parameters

Type Fuel Use	  Clusters old midAge new small med large hiEff avgEff loEff
coal_lig_st coal_lig TRUE 0 1975 1985 0 500 650 0 10.5 12
coal_sub_st coal_sub TRUE 0 1980 1985 0 500 650 0 10.2 12
ng_cc ng TRUE 0 2000 2005 0 300 600 0 7.5 9
ng_gt ng TRUE 0 1980 2000 0 75 100 0 10 13
ng_st ng TRUE 0 1960 1970 0 150 300 0 11.5 13
u235_st u235 FALSE
wind wind FALSE

Size	  (Cap	  >=	  X	  MW) Efficiency	  (HR	  >=	  X	  MMBTU/MWh)Age	  (year	  in	  service)

Cluster by Type Only (Full Clustering)

Cluster	  Name	  Code #	  units

Weighted	  Average	  
Heat	  Rate	  

(MMBTU/MWh)

Average	  
Capacity	  
(GW)

Total	  
Capacity	  
(GW)

coal_lig_st 14
coal_sub_st 14

ng_cc 46
ng_gt 52
ng_st 74
u235_st 4
wind 1

10.730 0.62471 8.74594
10.897 0.60566 8.47924
7.551 0.50089 23.04094
11.969 0.07893 4.10436
12.340 0.30934 22.89116
10.400 1.28465 5.13860
1.000 3.71050 3.71050
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Cluster by Type and Age
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u235_st	   ng_st	  
ng_gt	   ng_cc	  
coal_sub_st	   coal_lig_st	  
u235_st_cluster	   ng_st_cluster	  
ng_gt_cluster	   ng_cc_cluster	  
coal_sub_st_cluster	   coal_lig_st_cluster	  

Cluster	  Name	  Code #	  units
coal_lig_st_old 3

coal_lig_st_midAge 7
coal_lig_st_new 4
coal_sub_st_old 5

coal_sub_st_midAge 5
coal_sub_st_new 4

ng_cc_old 3
ng_cc_midAge 38
ng_cc_new 5
ng_gt_old 12

ng_gt_midAge 24
ng_gt_new 16
ng_st_old 18

ng_st_midAge 27
ng_st_new 29
u235_st 4
wind 1

Weighted	  Average	  
Heat	  Rate	  

(MMBTU/MWh)

Average	  
Capacity	  
(GW)

Total	  
Capacity	  
(GW)

10.770 0.59340 1.78020
11.139 0.68097 4.76679
9.810 0.54975 2.19900
11.584 0.60304 3.01520
10.330 0.57962 2.89810
10.729 0.64150 2.56600
9.711 0.24447 0.73341
7.459 0.54048 20.53824
7.723 0.35384 1.76920
11.891 0.07850 0.94200
13.071 0.08499 2.03976
10.031 0.07018 1.12288
12.347 0.14534 2.61612
12.624 0.30353 8.19531
12.146 0.41655 12.07995
10.400 1.28465 5.13860
1.000 3.71050 3.71050
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Cluster by Type and Efficiency
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u235_st	   ng_st	  
ng_gt	   ng_cc	  
coal_sub_st	   coal_lig_st	  
u235_st_cluster	   ng_st_cluster	  
ng_gt_cluster	   ng_cc_cluster	  
coal_sub_st_cluster	   coal_lig_st_cluster	  

Cluster	  Name	  Code #	  units

Weighted	  Average	  
Heat	  Rate	  

(MMBTU/MWh)

Average	  
Capacity	  
(GW)

Total	  
Capacity	  
(GW)

coal_lig_st_hiEff 2
coal_lig_st_avgEff 11
coal_lig_st_loEff 1
coal_sub_st_hiEff 2
coal_sub_st_avgEff 10
coal_sub_st_loEff 2

ng_cc_hiEff 29
ng_cc_avgEff 13
ng_cc_loEff 4
ng_gt_hiEff 12
ng_gt_avgEff 20
ng_gt_loEff 20
ng_st_hiEff 20
ng_st_avgEff 29
ng_st_loEff 25
u235_st 4
wind 1

9.612 0.92490 1.84980
10.959 0.58965 6.48615
12.148 0.41000 0.41000
10.066 0.52695 1.05390
10.575 0.64934 6.49340
14.073 0.46600 0.93200
7.331 0.51626 14.97154
7.746 0.54972 7.14636
9.595 0.23075 0.92300
8.518 0.08530 1.02360
12.069 0.07053 1.41060
13.998 0.08353 1.67060
10.976 0.35009 7.00180
12.028 0.27965 8.10985
13.892 0.31120 7.78000
10.400 1.28465 5.13860
1.000 3.71050 3.71050
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Cluster by Type and Size
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u235_st	   ng_st	  
ng_gt	   ng_cc	  
coal_sub_st	   coal_lig_st	  
u235_st_cluster	   ng_st_cluster	  
ng_gt_cluster	   ng_cc_cluster	  
coal_sub_st_cluster	   coal_lig_st_cluster	  

Cluster	  Name	  Code #	  units

Weighted	  Average	  
Heat	  Rate	  

(MMBTU/MWh)

Average	  
Capacity	  
(GW)

Total	  
Capacity	  
(GW)

coal_lig_st_small 3
coal_lig_st_med 5
coal_lig_st_large 6
coal_sub_st_small 4
coal_sub_st_med 6
coal_sub_st_large 4

ng_cc_small 16
ng_cc_med 17
ng_cc_large 13
ng_gt_small 23
ng_gt_med 25
ng_gt_large 4
ng_st_small 21
ng_st_med 20
ng_st_large 33
u235_st 4
wind 1

11.556 0.25307 0.75921
10.878 0.59284 2.96420
10.518 0.83710 5.02260
12.221 0.46138 1.84552
10.510 0.60427 3.62562
10.550 0.75205 3.00820
7.681 0.25799 4.12784
7.651 0.50482 8.58194
7.415 0.79472 10.33136
12.042 0.05957 1.37011
12.456 0.08755 2.18875
9.828 0.13640 0.54560
13.323 0.09697 2.03637
12.171 0.20713 4.14260
12.262 0.50644 16.71252
10.400 1.28465 5.13860
1.000 3.71050 3.71050
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a.2.3 Individual ERCOT 2007 (simplified) Unit Data

Table A.7: Individual Unit data for (simplified) ERCOT test system adapted from 2007

data in eGrid 2010 v1.1 [207]
Capacity Heatrate

Unit Name Unit Type (MW) Fuel (MBTU/MWh)

Arthur_Von_Rosenberg_Combined ng_cc 550 ng 7.499

Barney_M_Davis_1 ng_st 352 ng 11.415

Barney_M_Davis_2 ng_st 351 ng 11.415

Bastrop_Combined ng_cc 727.8 ng 7.845

Big_Brown_1 coal_lig_st 593.4 coal_lig 10.698

Big_Brown_2 coal_lig_st 593.4 coal_lig 10.698

Bosque_County_Peaking_GT_1 ng_gt 154 ng 7.639

Bosque_County_Peaking_GT_2 ng_gt 154 ng 7.639

Bosque_County_Peaking_Units3to5_Combined ng_cc 499 ng 7.639

Brazoz_Valley_Generating_Facility_Combined ng_cc 675.6 ng 7.462

Bryan_6 ng_st 54 ng 21.683

Cedar_Bayou_1 ng_st 765 ng 10.729

Cedar_Bayou_2 ng_st 765 ng 10.729

Coleto_Creek_1 coal_sub_st 600.4 coal_sub 10.133

Colorado_Bend_Energy_Center_Combined_1 ng_cc 278.1 ng 7.386

Colorado_Bend_Energy_Center_Combined_2 ng_cc 278.1 ng 7.386

Comanche_Peak_1 u235_st 1215 u235 10.400

Comanche_Peak_2 u235_st 1215 u235 10.400

Dansby_1 ng_st 105 ng 11.288

Decker_Creek_1 ng_st 321 ng 11.002

Decker_Creek_2 ng_st 405 ng 11.002

Decker_Creek_GT1 ng_gt 51.5 ng 11.002

Decker_Creek_GT2 ng_gt 51.5 ng 11.002

Decker_Creek_GT3 ng_gt 51.5 ng 11.002

Decker_Creek_GT4 ng_gt 51.5 ng 11.002

DeCordova_Steam_Electric_Station_1 ng_st 799.2 ng 12.147

DeCordova_Steam_Electric_Station_CT1 ng_gt 89.4 ng 12.147

DeCordova_Steam_Electric_Station_CT2 ng_gt 89.4 ng 12.147

DeCordova_Steam_Electric_Station_CT3 ng_gt 89.4 ng 12.147

DeCordova_Steam_Electric_Station_CT4 ng_gt 89.4 ng 12.147

Ennis_Power_Company_Combined ng_cc 418 ng 7.361

Exelon_LaPorte_Generating_Station_GT1 ng_gt 59 ng 12.676

Exelon_LaPorte_Generating_Station_GT2 ng_gt 59 ng 12.676

Exelon_LaPorte_Generating_Station_GT3 ng_gt 59 ng 12.676

Exelon_LaPorte_Generating_Station_GT4 ng_gt 59 ng 12.676

Fayette_Power_Project_1 coal_sub_st 615 coal_sub 10.679

Fayette_Power_Project_2 coal_sub_st 615 coal_sub 10.679

Fayette_Power_Project_3 coal_sub_st 460 coal_sub 10.679
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Simplified ERCOT 2007 individual unit data (continued)

Capacity Heatrate

Unit Name Unit Type (MW) Fuel (MBTU/MWh)

Forney_Energy_Center_Combined_1 ng_cc 891.9 ng 7.351

Forney_Energy_Center_Combined_2 ng_cc 891.9 ng 7.351

Freestone_Power_Generation_LP_Combined_1 ng_cc 518 ng 7.522

Freestone_Power_Generation_LP_Combined_2 ng_cc 518 ng 7.522

Frontera_Energy_Center_Combined ng_cc 529 ng 7.535

Gibbons_Creek_1 coal_sub_st 453.5 coal_sub 9.977

Graham_1 ng_st 247.7 ng 11.947

Graham_2 ng_st 387 ng 11.947

Greens_Bayou_5 ng_st 446.4 ng 14.681

Greens_Bayou_73 ng_gt 72 ng 14.681

Greens_Bayou_74 ng_gt 72 ng 14.681

Greens_Bayou_81 ng_gt 72 ng 14.681

Greens_Bayou_82 ng_gt 72 ng 14.681

Greens_Bayou_83 ng_gt 72 ng 14.681

Greens_Bayou_84 ng_gt 72 ng 14.681

Guadalupe_Generating_Station_Combined_1 ng_cc 571.1 ng 7.423

Guadalupe_Generating_Station_Combined_2 ng_cc 571.1 ng 7.423

Handley_2 ng_st 74.8 ng 13.823

Handley_3 ng_st 404.8 ng 13.823

Handley_4 ng_st 455 ng 13.823

Handley_5 ng_st 455 ng 13.823

Hays_Energy_Project_U1 ng_cc 241.7 ng 7.158

Hays_Energy_Project_U2 ng_cc 241.7 ng 7.158

Hays_Energy_Project_U3 ng_cc 252.8 ng 7.158

Hays_Energy_Project_U4 ng_cc 252.8 ng 7.158

Hidalgo_Energy_Center_Combined ng_cc 551.3 ng 7.219

J_K_Spruce_1 coal_sub_st 566 coal_sub 10.822

J_K_Spruce_2 coal_sub_st 820 coal_sub 10.822

J_T_Deely_1 coal_sub_st 486 coal_sub 14.073

J_T_Deely_2 coal_sub_st 446 coal_sub 14.073

Jack_County_Combined ng_cc 640 ng 7.284

Kiamichi_Energy_Facility_Combined_1 ng_cc 685 ng 7.397

Kiamichi_Energy_Facility_Combined_2 ng_cc 685 ng 7.397

Lake_Creek_ST1 ng_st 79.6 ng 14.369

Lake_Creek_ST2 ng_st 236 ng 14.369

Lake_Hubbard_1 ng_st 396.5 ng 12.159

Lake_Hubbard_2 ng_st 531 ng 12.159

Lamar_Power_Project_Combined_1 ng_cc 545.4 ng 7.768

Lamar_Power_Project_Combined_2 ng_cc 545.4 ng 7.768

Laredo_3 ng_st 115.2 ng 11.592

Leon_Creek_3 ng_st 75 ng 11.834

Leon_Creek_4 ng_st 113.7 ng 11.834
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Simplified ERCOT 2007 individual unit data (continued)

Capacity Heatrate

Unit Name Unit Type (MW) Fuel (MBTU/MWh)

Leon_Creek_CGT1 ng_gt 57.4 ng 11.834

Leon_Creek_CGT2 ng_gt 57.4 ng 11.834

Leon_Creek_CGT3 ng_gt 57.4 ng 11.834

Leon_Creek_CGT4 ng_gt 57.4 ng 11.834

Limestone_1 coal_lig_st 893 coal_lig 9.612

Limestone_2 coal_lig_st 956.8 coal_lig 9.612

Lost_Pines_1_Power_Project_Combined ng_cc 595 ng 7.217

Magic_Valley_Generating_Station_Combined ng_cc 801 ng 7.275

Martin_Lake_1 coal_lig_st 793.2 coal_lig 11.090

Martin_Lake_2 coal_lig_st 793.2 coal_lig 11.090

Martin_Lake_3 coal_lig_st 793.2 coal_lig 11.090

Midlothian_Energy_Facility_STK1 ng_cc 289 ng 7.460

Midlothian_Energy_Facility_STK2 ng_cc 289 ng 7.460

Midlothian_Energy_Facility_STK3 ng_cc 289 ng 7.460

Midlothian_Energy_Facility_STK4 ng_cc 289 ng 7.460

Midlothian_Energy_Facility_STK5 ng_cc 289 ng 7.460

Midlothian_Energy_Facility_STK6 ng_cc 289 ng 7.460

Monticello_1 coal_lig_st 593.4 coal_lig 10.916

Monticello_2 coal_lig_st 593.4 coal_lig 10.916

Monticello_3 coal_lig_st 793.2 coal_lig 10.916

Morgan_Creek_5 ng_st 170.4 ng 13.844

Morgan_Creek_6 ng_st 517.5 ng 13.844

Morgan_Creek_CT1 ng_gt 89.4 ng 13.844

Morgan_Creek_CT2 ng_gt 89.4 ng 13.844

Morgan_Creek_CT3 ng_gt 89.4 ng 13.844

Morgan_Creek_CT4 ng_gt 89.4 ng 13.844

Morgan_Creek_CT5 ng_gt 89.4 ng 13.844

Morgan_Creek_CT6 ng_gt 89.4 ng 13.844

Mountain_Creek_3 ng_st 74.9 ng 12.481

Mountain_Creek_6 ng_st 135.7 ng 12.481

Mountain_Creek_7 ng_st 136 ng 12.481

Mountain_Creek_8 ng_st 580.5 ng 12.481

Newgulf_Cogen_GEN1 ng_gt 78.7 ng 13.784

North_Lake_1 ng_st 176.8 ng 11.651

North_Lake_2 ng_st 170.4 ng 11.651

North_Lake_3 ng_st 361.3 ng 11.651

O_W_Sommers_1 ng_st 446 ng 12.109

O_W_Sommers_2 ng_st 446 ng 12.109

Odessa_Ector_Generating_Station_Combined_1 ng_cc 567.6 ng 7.604

Odessa_Ector_Generating_Station_Combined_2 ng_cc 567.6 ng 7.604

Oklaunion_1 coal_sub_st 720 coal_sub 10.582

P_H_Robinson_1 ng_st 484.5 ng 13.008



A.2 ercot-based test system 201

Simplified ERCOT 2007 individual unit data (continued)

Capacity Heatrate

Unit Name Unit Type (MW) Fuel (MBTU/MWh)

P_H_Robinson_2 ng_st 484.5 ng 13.008

P_H_Robinson_3 ng_st 580.5 ng 13.008

P_H_Robinson_4 ng_st 765 ng 13.008

Permian_Basin_5 ng_st 114.9 ng 13.750

Permian_Basin_6 ng_st 535.5 ng 13.750

Permian_Basin_CT1 ng_gt 89.4 ng 13.750

Permian_Basin_CT2 ng_gt 89.4 ng 13.750

Permian_Basin_CT3 ng_gt 89.4 ng 13.750

Permian_Basin_CT4 ng_gt 89.4 ng 13.750

Permian_Basin_CT5 ng_gt 89.4 ng 13.750

Quail_Run_Energy_Center_Combined_1 ng_cc 298 ng 8.540

Quail_Run_Energy_Center_Combined_2 ng_cc 275 ng 8.540

R_W_Miller_1 ng_st 66 ng 12.666

R_W_Miller_2 ng_st 100 ng 12.666

R_W_Miller_3 ng_st 200 ng 12.666

R_W_Miller_4 ng_gt 118.8 ng 12.666

R_W_Miller_5 ng_gt 118.8 ng 12.666

Ray_Olinger_1 ng_st 75 ng 12.326

Ray_Olinger_2 ng_st 113.4 ng 12.326

Ray_Olinger_3 ng_st 156.6 ng 12.326

Ray_Olinger_4 ng_gt 82.7 ng 12.326

Rio_Nogales_Power_Project_Combined ng_cc 898.2 ng 7.298

Sam_Bertron_3 ng_st 225.3 ng 11.572

Sam_Bertron_4 ng_st 225.3 ng 11.572

Sam_Bertron_ST1 ng_st 187.8 ng 11.572

Sam_Bertron_ST2 ng_st 187.8 ng 11.572

Sam_Rayburn_Units7to10_Combined ng_cc 189.6 ng 9.147

San_Jacinto_Steam_Electric_Station_1 ng_gt 88.2 ng 13.516

San_Jacinto_Steam_Electric_Station_2 ng_gt 88.2 ng 13.516

San_Miguel_1 coal_lig_st 410 coal_lig 12.148

Sand_Hill_5Combined ng_cc 388 ng 7.328

Sand_Hill_SH1 ng_gt 51.4 ng 7.328

Sand_Hill_SH2 ng_gt 51.4 ng 7.328

Sand_Hill_SH3 ng_gt 51.4 ng 7.328

Sand_Hill_SH4 ng_gt 51.4 ng 7.328

Sandow_No_4_4 coal_lig_st 590.6 coal_lig 11.163

Silas_Ray_10 ng_gt 61 ng 11.083

Silas_Ray_Units6and9_Combined ng_cc 86 ng 11.083

Sim_Gideon_1 ng_st 144 ng 11.456

Sim_Gideon_2 ng_st 144 ng 11.456

Sim_Gideon_3 ng_st 351 ng 11.456

South_Texas_Project_1 u235_st 1354.3 u235 10.400
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Simplified ERCOT 2007 individual unit data (continued)

Capacity Heatrate

Unit Name Unit Type (MW) Fuel (MBTU/MWh)

South_Texas_Project_2 u235_st 1354.3 u235 10.400

Spencer_4 ng_st 61.1 ng 16.622

Spencer_5 ng_st 65.4 ng 16.622

Stryker_Creek_ST1 ng_st 176.8 ng 11.375

Stryker_Creek_ST2 ng_st 526.6 ng 11.375

T_H_Wharton_3Combined ng_cc 318.3 ng 9.529

T_H_Wharton_4Combined ng_cc 329.1 ng 9.529

T_H_Wharton_51 ng_gt 85 ng 9.529

T_H_Wharton_52 ng_gt 85 ng 9.529

T_H_Wharton_53 ng_gt 85 ng 9.529

T_H_Wharton_54 ng_gt 85 ng 9.529

T_H_Wharton_55 ng_gt 85 ng 9.529

T_H_Wharton_56 ng_gt 85 ng 9.529

Tenaska_Frontier_Generation_Station_Combined ng_cc 939.7 ng 6.901

Tenaska_Gateway_Generation_Station_Combined ng_cc 939.6 ng 7.475

Thomas_C_Ferguson_1 ng_st 446 ng 10.994

Tradinghouse_1 ng_st 580.5 ng 11.838

Tradinghouse_2 ng_st 799.2 ng 11.838

Trinidad_6 ng_st 239.3 ng 13.508

Twin_Oaks_Power_One_1 coal_lig_st 174.6 coal_lig 10.860

Twin_Oaks_Power_One_2 coal_lig_st 174.6 coal_lig 10.860

V_H_Braunig_1 ng_st 225 ng 11.161

V_H_Braunig_2 ng_st 252 ng 11.161

V_H_Braunig_3 ng_st 417 ng 11.161

Valley_1 ng_st 198.9 ng 13.664

Valley_2 ng_st 580.5 ng 13.664

Valley_3 ng_st 396 ng 13.664

W_A_Parish_1 ng_st 187.8 ng 10.382

W_A_Parish_2 ng_st 187.8 ng 10.382

W_A_Parish_3 ng_st 299.2 ng 10.382

W_A_Parish_4 ng_st 580.5 ng 10.382

W_A_Parish_5 coal_sub_st 734.1 coal_sub 10.382

W_A_Parish_6 coal_sub_st 734.1 coal_sub 10.382

W_A_Parish_7 coal_sub_st 614.6 coal_sub 10.382

W_A_Parish_8 coal_sub_st 614.6 coal_sub 10.382

W_B_Tuttle_1 ng_st 75 ng 17.474

W_B_Tuttle_3 ng_st 113.6 ng 17.474

W_B_Tuttle_4 ng_st 191.7 ng 17.474

Wind wind 3710.5 wind 1.000

Wise_County_Power_LP_Combined ng_cc 746 ng 7.609

Wolf_Hollow_I_LP_Combined ng_cc 809.6 ng 7.882
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This appendix contains complete result tables from Chapter 3. These
large tables start on the next page.
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Table B.1: Complete IEEE RTS MIP Heuristics Results

System #	  gens #	  clust #	  hrs units cheat target actual $M %	  diff Mt %	  diff
1	  day,	  1x	  scaling,	  Baseline=Optimal
IEEE	  RTS96 26 26 24 separate 0 0 0 0.72 NA 0.0 0.000%
IEEE	  RTS96 26 26 24 perturbed 0 0 0 0.72 0.000% 0.0 0.000%
IEEE	  RTS96 26 8 24 clustered 0 0 0 0.72 0.000% 0.0 0.000%
IEEE	  RTS96 26 26 24 separate 0 0.10% 0.09% 0.72 0.000% 0.0 0.000%
IEEE	  RTS96 26 26 24 perturbed 0 0.10% 0.10% 0.72 0.000% 0.0 0.000%
IEEE	  RTS96 26 8 24 clustered 0 0.10% 0.10% 0.72 0.000% 0.0 0.000%
1	  day,	  10x	  scaling,	  Baseline=Optimal
IEEE	  RTS96 260 260 24 separate 0 0 0.018% 6.74 NA 0.3 0.000%
IEEE	  RTS96 260 260 24 perturbed 0 0 0.016% 6.74 0.000% 0.3 -‐0.114%
IEEE	  RTS96 260 8 24 clustered 0 0 0 6.73 -‐0.233% 0.3 -‐0.458%
IEEE	  RTS96 260 260 24 separate 0.001 0 0 6.74 0.031% 0.3 0.012%
IEEE	  RTS96 260 260 24 perturbed 0.001 0 0.105% 6.75 0.088% 0.3 -‐0.245%
IEEE	  RTS96 260 8 24 clustered 0.001 0 0 6.73 -‐0.208% 0.3 -‐0.459%
IEEE	  RTS96 260 260 24 separate 0 0.10% 0.09% 6.74 0.031% 0.3 0.012%
IEEE	  RTS96 260 260 24 perturbed 0 0.10% 0.08% 6.74 0.037% 0.3 -‐0.223%
IEEE	  RTS96 260 8 24 clustered 0 0.10% 0.05% 6.73 -‐0.208% 0.3 -‐0.459%
IEEE	  RTS96 260 260 24 separate 0.001 0.10% 0.00% 6.74 0.031% 0.3 0.012%
IEEE	  RTS96 260 260 24 perturbed 0.001 0.10% 0.10% 6.75 0.088% 0.3 -‐0.245%
IEEE	  RTS96 260 8 24 clustered 0.001 0.10% 0.00% 6.73 -‐0.208% 0.3 -‐0.459%
1	  day,	  10x	  scaling,	  Baseline=0.1%	  MIP	  gap
IEEE	  RTS96 260 260 24 separate 0 0.10% 0.09% 6.74 NA 0.3 0.000%
IEEE	  RTS96 260 260 24 perturbed 0 0.10% 0.08% 6.74 0.006% 0.3 -‐0.235%
IEEE	  RTS96 260 8 24 clustered 0 0.10% 0.05% 6.73 -‐0.240% 0.3 -‐0.471%
IEEE	  RTS96 260 260 24 separate 0.001 0.10% 0.00% 6.74 0.000% 0.3 0.000%
IEEE	  RTS96 260 260 24 perturbed 0.001 0.10% 0.10% 6.75 0.057% 0.3 -‐0.257%
IEEE	  RTS96 260 8 24 clustered 0.001 0.10% 0.00% 6.73 -‐0.240% 0.3 -‐0.471%
7	  day,	  1x	  scaling,	  Baseline=Optimal
IEEE	  RTS96 26 26 168 separate 0 0 0.044% 4.29 NA 0.2 0.000%
IEEE	  RTS96 26 26 168 perturbed 0 0 0.075% 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 26 168 priority	  list 0 0 0.000579 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 8 168 clustered 0 0 0 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 26 168 separate 0.001 0 0.000% 4.30 0.055% 0.2 0.001%
IEEE	  RTS96 26 26 168 perturbed 0.001 0 0.001034 4.29 0.030% 0.2 0.046%
IEEE	  RTS96 26 26 168 priority	  list 0.001 0 0.00% 4.29 0.034% 0.2 0.017%
IEEE	  RTS96 26 8 168 clustered 0.001 0 0.00% 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 26 168 separate 0 0.10% 0.10% 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 26 168 perturbed 0 0.10% 0.10% 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 26 168 priority	  list 0 0.10% 0.10% 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 8 168 clustered 0 0.10% 0.10% 4.29 0.023% 0.2 0.015%
IEEE	  RTS96 26 26 168 separate 0.001 0.10% 0.00% 4.30 0.055% 0.2 0.001%
IEEE	  RTS96 26 26 168 perturbed 0.001 0.10% 0.00% 4.29 0.030% 0.2 0.046%
IEEE	  RTS96 26 26 168 priority	  list 0.001 0.10% 0.00% 4.29 0.034% 0.2 0.017%
IEEE	  RTS96 26 8 168 clustered 0.001 0.10% 0.00% 4.29 0.000% 0.2 0.000%
7	  day,	  1x	  scaling,	  Baseline=0.1%	  MIP	  gap
IEEE	  RTS96 26 260 168 separate 0 0.10% 0.10% 4.29 NA 0.2 0.000%
IEEE	  RTS96 26 260 168 perturbed 0 0.10% 0.10% 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 8 168 priority	  list 0 0.10% 0.10% 4.29 0.000% 0.2 0.000%
IEEE	  RTS96 26 260 168 clustered 0 0.10% 0.10% 4.29 0.023% 0.2 0.015%
IEEE	  RTS96 26 8 168 separate 0.001 0.10% 0.00% 4.30 0.055% 0.2 0.001%
IEEE	  RTS96 26 260 168 perturbed 0.001 0.10% 0.00% 4.29 0.030% 0.2 0.046%
IEEE	  RTS96 26 260 168 priority	  list 0.001 0.10% 0.00% 4.29 0.034% 0.2 0.017%
IEEE	  RTS96 26 8 168 clustered 0.001 0.10% 0.00% 4.29 0.000% 0.2 0.000%
7	  day,	  3x	  scaling,	  Baseline=Optimal
IEEE	  RTS96 78 78 168 separate 0 0 0.085% 12.16 NA 0.6 0.000%
IEEE	  RTS96 78 78 168 perturbed 0 0 0.086% 12.16 0.002% 0.6 0.064%
IEEE	  RTS96 78 78 168 priority	  list 0 0 0.002924 12.19 0.208% 0.6 -‐0.021%
IEEE	  RTS96 78 8 168 clustered 0 0 0.000195 12.16 -‐0.028% 0.6 0.045%
IEEE	  RTS96 78 78 168 separate 0.001 0 0.176% 12.17 0.091% 0.6 0.125%
IEEE	  RTS96 78 78 168 perturbed 0.001 0 0.001737 12.17 0.088% 0.6 0.133%
IEEE	  RTS96 78 78 168 priority	  list 0.001 0.00% 0.25% 12.18 0.166% 0.6 0.041%
IEEE	  RTS96 78 8 168 clustered 0.001 0.00% 0.00% 12.16 -‐0.027% 0.6 0.017%
IEEE	  RTS96 78 78 168 separate 0 0.10% 0.10% 12.16 0.010% 0.6 0.053%
IEEE	  RTS96 78 78 168 perturbed 0 0.10% 0.09% 12.16 0.007% 0.6 0.030%
IEEE	  RTS96 78 78 168 priority	  list 0 0.10% 0.29% 12.19 0.208% 0.6 -‐0.021%
IEEE	  RTS96 78 8 168 clustered 0 0.10% 0.10% 12.17 0.039% 0.6 -‐0.036%
IEEE	  RTS96 78 78 168 separate 0.001 0.10% 0.18% 12.17 0.091% 0.6 0.125%
IEEE	  RTS96 78 78 168 perturbed 0.001 0.10% 0.17% 12.17 0.088% 0.6 0.133%
IEEE	  RTS96 78 78 168 priority	  list 0.001 0.10% 0.25% 12.18 0.166% 0.6 0.041%
IEEE	  RTS96 78 8 168 clustered 0.001 0.10% 0.00% 12.16 -‐0.027% 0.6 0.017%
7	  day,	  3x	  scaling,	  Baseline=0.1%	  MIP	  gap
IEEE	  RTS96 78 260 168 separate 0 0.10% 0.10% 12.16 NA 0.6 0.000%
IEEE	  RTS96 78 260 168 perturbed 0 0.10% 0.09% 12.16 -‐0.002% 0.6 -‐0.023%
IEEE	  RTS96 78 8 168 priority	  list 0 0.10% 0.29% 12.19 0.199% 0.6 -‐0.074%
IEEE	  RTS96 78 260 168 clustered 0 0.10% 0.10% 12.17 0.029% 0.6 -‐0.089%
IEEE	  RTS96 78 8 168 separate 0.001 0.10% 0.18% 12.17 0.082% 0.6 0.072%
IEEE	  RTS96 78 260 168 perturbed 0.001 0.10% 0.17% 12.17 0.079% 0.6 0.080%
IEEE	  RTS96 78 260 168 priority	  list 0.001 0.10% 0.25% 12.18 0.156% 0.6 -‐0.012%
IEEE	  RTS96 78 8 168 clustered 0.001 0.10% 0.00% 12.16 -‐0.037% 0.6 -‐0.035%

mip	  gap Total	  Cost CO2 energy	  mix
avg	  diff #	  diff avg	  |diff| #	  diff avg	  |diff| sec speed-‐up

12.1 1
0.000% 0 0.000% 0 0.000% 7.0 1.7
0.000% 0 0.000% 2 0.000% 0.2 63
0.000% 0 0.000% 0 0.000% 3.2 4
0.000% 0 0.000% 0 0.000% 2.1 6
0.000% 0 0.000% 2 0.000% 0.2 69

36000.7 1
0.022% 9 0.182% 18 0.030% 36000.7 1
0.675% 49 1.136% 80 0.612% 5.6 6416
0.106% 37 0.215% 64 0.099% 517.4 70
0.852% 46 1.508% 80 0.750% 36000.7 1
0.678% 45 1.137% 79 0.615% 0.2 167445
0.106% 37 0.215% 64 0.099% 254.2 142
0.717% 39 1.042% 60 0.628% 338.2 106
0.678% 45 1.137% 79 0.615% 0.2 174761
0.106% 37 0.215% 64 0.099% 546.1 66
0.852% 46 1.508% 80 0.750% 36000.6 1
0.678% 45 1.137% 79 0.615% 0.2 169017

254.2 1
0.616% 44 0.933% 71 0.542% 338.2 1
0.579% 44 1.057% 77 0.531% 0.2 1234
0.000% 0 0.000% 0 0.000% 546.1 0.5
0.749% 35 1.327% 60 0.651% 36000.6 0
0.579% 44 1.057% 77 0.531% 0.2 1193

36004.4 1
0.000% 0 0.000% 0 0.000% 36030.8 1
0.000% 0 0.000% 1 0.000% 36001.3 1
0.000% 0 0.000% 1 0.000% 41.7 864
0.022% 56 0.286% 124 0.035% 23589.9 2
0.014% 18 0.082% 46 0.026% 36003.1 1
0.005% 9 0.035% 21 0.008% 1859.9 19
0.000% 0 0.000% 1 0.000% 27.6 1306
0.000% 0 0.000% 0 0.000% 2543.7 14
0.000% 0 0.000% 0 0.000% 11029.7 3
0.000% 0 0.000% 1 0.000% 4892.5 7
0.014% 7 0.024% 17 0.016% 9.3 3891
0.022% 56 0.286% 124 0.035% 19717.8 2
0.014% 18 0.082% 46 0.026% 33672.2 1
0.005% 9 0.035% 21 0.008% 1918.2 19
0.000% 0 0.000% 1 0.000% 23.7 1519

2543.7 1
0.000% 0 0.000% 0 0.000% 11029.7 0
0.000% 0 0.000% 1 0.000% 4892.5 1
0.014% 7 0.024% 17 0.016% 9.3 274.9
0.022% 56 0.286% 124 0.035% 19717.8 0
0.014% 18 0.082% 46 0.026% 33672.2 0.1
0.005% 9 0.035% 21 0.008% 1918.2 1
0.000% 0 0.000% 1 0.000% 23.7 107

36032.8 1
0.035% 123 0.334% 247 0.082% 36028.4 1
0.060% 211 0.605% 396 0.155% 36012.4 1
0.026% 141 0.416% 318 0.075% 36001.1 1
0.080% 129 0.736% 278 0.166% 36002.2 1
0.091% 172 0.516% 323 0.156% 36035.0 1
0.067% 218 0.643% 410 0.138% 36012.4 1
0.022% 98 0.279% 238 0.063% 6426.4 6
0.018% 102 0.329% 228 0.052% 5980.8 6
0.008% 85 0.327% 197 0.038% 23367.1 2
0.060% 211 0.605% 396 0.155% 36012.4 1
0.053% 172 0.462% 341 0.129% 42.0 857
0.080% 129 0.736% 278 0.166% 36001.8 1
0.091% 172 0.516% 323 0.156% 36011.7 1
0.067% 218 0.643% 410 0.138% 36012.4 1
0.022% 98 0.279% 238 0.063% 4912.1 7

5980.8 1
0.011% 93 0.397% 188 0.048% 23367.1 0
0.065% 192 0.602% 358 0.148% 36012.4 0
0.060% 173 0.516% 319 0.130% 42.0 142.3
0.074% 135 0.735% 275 0.175% 36001.8 0
0.074% 168 0.509% 316 0.143% 36011.7 0.2
0.084% 197 0.609% 367 0.119% 36012.4 0
0.034% 95 0.280% 202 0.055% 4912.1 1

Time

Baseline

Baseline

Baseline

powerenergy	  mix commitment

Baseline

Baseline

Baseline

Baseline
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A D D I T I O N A L I N T E G R AT E D U N I T C O M M I T M E N T
A N D P L A N N I N G R E S U LT S

This appendix contains complete result tables and additional figures
from Chapter 4.

c.1 complete carbon price results tables

Table C.1: New Capacity for Carbon Costs from $0 to $120/ton CO2 for Stan-
dard and Advanced planning models.

Run	  Type RPS Ca
rb
on

	  C
os
t

($
/t
on

	  C
O
2)

Ca
rb
on

	  E
m
is
si
on

s
M
t	  C

O
2e

Wind NG-‐CT NG-‐CCGT
NG-‐CCGT	  
w/	  CCS Coal

	  Coal	  w/	  
CCS	   Nuclear 	  E
ff
ec
ti
ve
	  

Pl
an

ni
ng
	  M

ar
gi
n	  

New	  Installed	  Capacity	  (GW)

Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted
Advanced	  (&	  Actual)
Standard	  Predicted

20% 0 126.8 22.26 12.18 21.20 0.00 0.00 0.00 0.00 13.9%
20% 0 125.9 22.26 9.87 23.60 0.00 0.00 0.00 0.00 14.2%
20% 15 126 22.26 11.13 22.40 0.00 0.00 0.00 0.00 14.2%
20% 15 125.7 22.26 9.03 24.40 0.00 0.00 0.00 0.00 14.2%
20% 30 120.9 22.26 9.66 23.60 0.00 0.00 0.00 0.00 13.9%
20% 30 125.5 22.26 8.19 25.20 0.00 0.00 0.00 0.00 14.2%
20% 45 87.05 22.26 6.30 28.00 0.00 0.00 0.00 0.00 15.8%
20% 45 85.66 22.26 2.73 30.40 0.00 0.00 0.00 0.00 14.2%
20% 60 82.39 22.26 4.20 32.80 0.00 0.00 0.00 0.00 20.4%
20% 60 79.58 22.26 0.63 32.40 0.00 0.00 0.00 0.00 14.2%
20% 75 76.14 22.26 6.09 29.60 0.00 0.00 0.00 2.24 21.6%
20% 75 64.09 22.26 0.21 27.20 0.00 0.00 0.00 5.59 13.9%
20% 90 62.3 22.26 7.35 19.60 0.77 0.00 0.00 7.83 17.3%
20% 90 41.06 22.26 0.00 18.80 2.31 0.00 0.00 12.30 14.1%
20% 105 39.26 22.26 8.61 10.80 10.78 0.00 0.00 7.83 21.1%
20% 105 27.56 22.26 0.21 11.60 9.24 0.00 0.00 12.30 14.0%
20% 120 19.71 22.26 7.56 4.80 23.10 0.00 0.00 6.71 28.0%
20% 120 21.26 22.26 0.00 8.00 11.94 0.00 0.00 13.42 14.0%
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c.2 additional $90/ton, 20% rps operations figures

c.2.1 Annual Time series
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Figure C.1: Comparison of sequential hourly power production by generator
type for (a) Standard, merit order operations and (b) Advanced
UC-based operations. Baseload maintenance (coal & nuclear) can
be seen as multi-week-long reductions in otherwise nearly flat
output.
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c.2.2 As built Weekly Operations
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Figure C.2: Comparing 1-week of sequential hourly power production if gen-
eration mix proposed by the (a) Standard or (b) Advanced models
were actually built.
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c.3 co2 limit, rps , and flexibility formulation result ta-
bles

Table C.3: New Installed Capacity for No CO2 limit and 141Mt CO2 limit across
0-80% RPS with all flexibility formulations.

Run	  Type RPS Ca
rb
on

	  L
im

it
($
/t
on

	  C
O
2e
)

Ca
rb
on

	  E
m
is
si
on

s
M
t	  C

O
2e

Wind NG-‐CT NG-‐CCGT
NG-‐CCGT	  
w/	  CCS Coal

	  Coal	  w/	  
CCS	   Nuclear 	  R

eq
ui
re
d	  

Pl
an

ni
ng
	  M

ar
gi
n	  

	  E
ff
ec
ti
ve
	  

Pl
an

ni
ng
	  M

ar
gi
n	  

New	  Installed	  Capacity	  (GW)

Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp

0% Inf 162.8 0.00 9.45 22.00 0.00 4.55 0.00 0.00 13.75% 14.04%
0% Inf 190.6 0.00 8.82 16.00 0.00 11.70 0.00 0.00 13.75% 14.13%
0% Inf 190.7 0.00 8.82 16.00 0.00 11.70 0.00 0.00 13.75% 14.13%
0% Inf 160 0.00 8.82 23.20 0.00 3.90 0.00 0.00 13.75% 14.04%
20% Inf 126.8 22.26 12.18 21.20 0.00 0.00 0.00 0.00 5.00% 13.88%
20% Inf 125.9 22.26 9.87 23.60 0.00 0.00 0.00 0.00 13.75% 14.21%
20% Inf 126.2 22.26 14.49 22.00 0.00 0.00 0.00 0.00 5.00% 18.71%
20% Inf 126.7 22.26 11.76 21.60 0.00 0.00 0.00 0.00 5.00% 13.88%
40% Inf 97.06 55.66 18.48 16.80 0.00 0.00 0.00 0.00 5.00% 22.09%
40% Inf 96.31 51.95 10.08 20.00 0.00 0.00 0.00 0.00 13.75% 13.76%
40% Inf 93.75 55.66 19.53 18.80 0.00 0.00 0.00 0.00 5.00% 26.93%
40% Inf 96.95 55.66 17.64 17.20 0.00 0.00 0.00 0.00 5.00% 21.45%
60% Inf 63.51 163.26 35.28 10.80 0.00 0.00 0.00 0.00 5.00% 56.39%
60% Inf 65.06 115.03 11.97 14.00 0.00 0.00 0.00 0.00 13.75% 17.66%
60% Inf 64.96 122.45 28.14 13.60 0.00 0.00 0.00 0.00 5.00% 43.05%
60% Inf 63.64 163.26 35.07 10.40 0.00 0.00 0.00 0.00 5.00% 55.42%
80% Inf 25.38 237.47 40.74 0.00 0.00 0.00 0.00 0.00 5.00% 59.90%
80% Inf 33.98 282.00 0.00 5.60 0.00 0.00 0.00 0.00 13.75% 14.04%
80% Inf 34.61 282.00 49.77 0.00 0.00 0.00 0.00 0.00 5.00% 81.28%
80% Inf 25.38 237.47 39.27 0.00 0.00 0.00 0.00 0.00 5.00% 57.65%
0% 141 141 0.00 8.19 27.60 0.00 0.00 0.00 0.00 13.75% 14.32%
0% 141 141 0.00 7.14 28.40 0.00 0.00 0.00 0.00 13.75% 14.00%
0% 141 141 0.00 8.40 27.60 0.00 0.00 0.00 0.00 5.00% 14.64%
0% 141 141 0.00 7.14 28.40 0.00 0.00 0.00 0.00 13.75% 14.00%
20% 141 126.9 22.26 12.81 20.80 0.00 0.00 0.00 0.00 5.00% 14.20%
20% 141 125.9 22.26 9.87 23.60 0.00 0.00 0.00 0.00 13.75% 14.21%
20% 141 126.2 22.26 14.49 22.00 0.00 0.00 0.00 0.00 5.00% 18.71%
20% 141 126.6 22.26 11.97 21.60 0.00 0.00 0.00 0.00 5.00% 14.20%
40% 141 95.62 55.66 17.64 17.20 0.00 0.00 0.00 0.00 5.00% 21.45%
40% 141 96.31 51.95 10.08 20.00 0.00 0.00 0.00 0.00 13.75% 13.76%
40% 141 93.75 55.66 19.53 18.80 0.00 0.00 0.00 0.00 5.00% 26.93%
40% 141 97.09 55.66 17.64 16.80 0.00 0.00 0.00 0.00 5.00% 20.81%
60% 141 63.48 163.26 35.07 10.80 0.00 0.00 0.00 0.00 5.00% 56.07%
60% 141 65.06 115.03 11.97 14.00 0.00 0.00 0.00 0.00 13.75% 17.66%
60% 141 64.96 122.45 28.14 13.60 0.00 0.00 0.00 0.00 5.00% 43.05%
60% 141 63.67 163.26 35.07 10.40 0.00 0.00 0.00 0.00 5.00% 55.42%
80% 141 25.38 237.47 42.00 0.00 0.00 0.00 0.00 0.00 5.00% 61.83%
80% 141 33.98 282.00 0.00 5.60 0.00 0.00 0.00 0.00 13.75% 14.04%
80% 141 34.61 282.00 49.77 0.00 0.00 0.00 0.00 0.00 5.00% 81.28%
80% 141 25.38 237.47 40.74 0.00 0.00 0.00 0.00 0.00 5.00% 59.90%
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Table C.4: New Installed Capacity for 94Mt and 47Mt CO2 limits across 0-80%
RPS with all flexibility formulations.
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	  M
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New	  Installed	  Capacity	  (GW)

Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp
Adv
Std
mtoFlex
UcLp

0% 94 94 0.00 3.15 30.40 0.00 0.00 0.65 2.24 13.75% 15.55%
0% 94 94 0.00 0.00 34.00 0.00 0.00 0.00 1.12 13.75% 13.82%
0% 94 94 0.00 3.57 30.00 0.00 0.00 0.00 2.24 5.00% 14.57%
0% 94 94 0.00 2.52 31.20 0.00 0.00 0.00 2.24 13.75% 14.90%
20% 94 94 22.26 7.14 26.80 0.00 0.00 0.00 0.00 5.00% 15.19%
20% 94 94 22.26 5.88 27.20 0.00 0.00 0.00 0.00 13.75% 13.91%
20% 94 94 22.26 9.45 27.20 0.00 0.00 0.00 0.00 5.00% 19.38%
20% 94 94 22.26 6.51 26.80 0.00 0.00 0.00 0.00 5.00% 14.23%
40% 94 94 55.66 17.43 17.60 0.00 0.00 0.00 0.00 5.00% 21.78%
40% 94 94 51.95 8.19 22.00 0.00 0.00 0.00 0.00 13.75% 14.08%
40% 94 93.75 55.66 19.53 18.80 0.00 0.00 0.00 0.00 5.00% 26.93%
40% 94 94 55.66 16.80 18.00 0.00 0.00 0.00 0.00 5.00% 21.46%
60% 94 61.56 163.26 36.54 12.00 0.00 0.00 0.00 0.00 5.00% 60.25%
60% 94 65.06 115.03 11.97 14.00 0.00 0.00 0.00 0.00 13.75% 17.66%
60% 94 64.96 122.45 28.14 13.60 0.00 0.00 0.00 0.00 5.00% 43.05%
60% 94 63.65 163.26 35.07 10.40 0.00 0.00 0.00 0.00 5.00% 55.42%
80% 94 25.38 237.47 39.27 0.00 0.00 0.00 0.00 0.00 5.00% 57.65%
80% 94 33.98 282.00 0.00 5.60 0.00 0.00 0.00 0.00 13.75% 14.04%
80% 94 34.61 282.00 49.77 0.00 0.00 0.00 0.00 0.00 5.00% 81.28%
80% 94 25.38 237.47 39.27 0.00 0.00 0.00 0.00 0.00 5.00% 57.65%
0% 47 47 0.00 6.51 5.60 0.00 0.00 0.00 22.36 5.00% 10.88%
0% 47 47 0.00 0.00 17.60 0.39 0.00 0.00 17.89 13.75% 13.96%
0% 47 47 0.00 2.94 14.40 0.00 0.00 0.00 19.01 5.00% 14.41%
0% 47 47 0.00 5.67 10.40 0.00 0.00 0.00 20.12 5.00% 13.88%
20% 47 47 22.26 8.40 13.60 8.09 0.00 0.00 7.83 5.00% 20.99%
20% 47 47 22.26 0.42 20.40 2.31 0.00 0.00 10.06 13.75% 13.88%
20% 47 47 22.26 6.51 18.00 2.70 0.00 0.00 10.06 5.00% 19.96%
20% 47 47 22.26 7.35 11.60 7.70 0.00 0.00 7.83 5.00% 15.53%
40% 47 47 55.66 15.54 7.60 13.09 0.00 0.00 0.00 5.00% 23.86%
40% 47 47 51.95 0.00 23.60 6.16 0.00 0.00 0.00 13.75% 14.05%
40% 47 47 55.66 11.34 21.60 6.16 0.00 0.00 0.00 5.00% 28.83%
40% 47 47 55.66 14.70 14.40 9.63 0.00 0.00 0.00 5.00% 27.96%
60% 47 47 163.26 29.19 24.00 1.16 0.00 0.00 0.00 5.00% 70.21%
60% 47 47 115.03 5.67 20.40 0.00 0.00 0.00 0.00 13.75% 18.33%
60% 47 47 122.45 24.57 17.20 0.00 0.00 0.00 0.00 5.00% 43.39%
60% 47 47 163.26 30.45 16.80 2.70 0.00 0.00 0.00 5.00% 63.01%
80% 47 25.38 237.47 39.27 0.00 0.00 0.00 0.00 0.00 5.00% 57.65%
80% 47 33.98 282.00 0.00 5.60 0.00 0.00 0.00 0.00 13.75% 14.04%
80% 47 34.61 282.00 49.77 0.00 0.00 0.00 0.00 0.00 5.00% 81.28%
80% 47 25.38 237.47 38.43 0.00 0.00 0.00 0.00 0.00 5.00% 56.36%
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c.4 flexibility formulation comparison figures

These large tables begin on the next page.
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U
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0%
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0.09%
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1
10.81

0.55
2.06
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19.07

152.40
0.00

33.40
34.46

30.73
0.00

0.00
20.72

-‐
	  	  	  

-‐
	  	  	  	  

A
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O
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0%
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44.2
1

10.81
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2.10
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0.00
33.28

34.45
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0.00
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0

	  	  	  	  	  	  	  
-‐
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O
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45.3
1

10.81
0.47

2.51
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0.00
32.59

34.28
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0.00
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1
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30.73

0.00
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126.40
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61.87
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218 additional integrated unit commitment and planning results
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Table C.9: Summary of model run times and problem sizes. Only the twenty
runs of each type reported in summary tables are used for these
statistics

Run	  Type
Standard
mtoFlex
UcLp
Advanced
ADoes	  not	  include	  cases	  when	  re-‐runs	  required
BMax	  time	  of	  3600	  min	  (60hr)	  used	  if	  re-‐run	  required

Re
ru
ns
	  

Re
qu

ir
ed

A
ve
ra
ge
	  M

IP
	  

G
ap

A

A
ve
ra
ge
	  

So
lv
er
	  T
im

e	  
(m

in
)B

	  E
qu

at
io
ns
	  

	  V
ar
ia
bl
es
	  

	  D
is
cr
et
e	  

Va
ri
ab

le
s	  

	  N
on

-‐Z
er
os
	  

0 0.02% 1 349,518	  	  	  	  	   235,947	  	  	  	  	   7	  	  	  	  	  	  	  	  	  	  	  	  	  	   1,009,932	  	  	  	  
0 0.02% 9 594,126	  	  	  	  	   463,083	  	  	  	  	   7	  	  	  	  	  	  	  	  	  	  	  	  	  	   2,075,724	  	  	  	  
2 0.03% 1710 1,478,348	   1,050,321	   1,879	  	  	  	  	  	  	   8,373,668	  	  	  	  
8 0.29% 2603 1,740,428	   1,312,401	   263,959	  	   8,897,828	  	  	  	  

ADoes	  not	  include	  cases	  when	  re-‐runs	  required
BMax	  time	  of	  3600	  min	  (60hr)	  used	  if	  re-‐run	  required

Problem	  Size





D
S E L E C T E D M O D E L C O D E

This appendix contains listings for the core model files used in this
analysis. As described in Section 2.11, the Advanced Power family of
models, including StaticCapPlan and UnitCommit, are implemented
in GAMS and solved using CPLEX. The models are designed to be
modular and very configurable. For example, the StaticCapPlan model
only contains the planning specific code and relies on UnitCommit for
all operations-related code. UnitCommit can also be run by itself for
operations-only modeling. UnitCommit, in turn, relies on shared in-
clude files for specialized constraints such as reserves, minimum up
and down time, etc. that are also shared by other models in the suite.
The high level of configurability allows individually selecting the oper-
ating constraints to include, data file selection, and more. This enables
the same models to be used for all of the levels of operational detail
considered in this dissertation from relatively simple merit order dis-
patch up to full clustered unit commitment and everything in between.
The dozens of command line configuration options for StaticCapPlan
are itemized in its extended initial comments. UnitCommit shares all
these options, except those specific to capacity planning. The initial
comments for UnitCommit and the other include files are omitted for
brevity. Also not shown are the extensive collection of shared output
formatting include files.
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2
2
6ListingD.1: StaticCapPlan.gms: the top level capacity planning model, relies on UnitCommit for operations.

$ontext
----------------------------------------------------
Static Capacity Planning model
----------------------------------------------------
A deterministic static (aka single period) electricity generation capacity planning
model with discrete or continuous build decisions.

Command Line Options (defaults shown):
======================================
Data
Primary data setup file:
--sys=test_sys.inc System parameters include file. This file references all data for a model

run. Typically single value data such as: cost of carbon, WACC, etc. are
included directly, while larger tables are in separate sub-include files.
The standard sub-include files are:

fuel.inc Fuel names, prices, and emissions
gens.inc Generator set, operating parameters, and availability
demand.inc Demand block set, duration, and power levels

Files used to override values set or referenced in sys and sub-includes (assumed to to be
located in data_dir, except as noted):
--fuel=(from sys) Fuel prices and emissions
--gens=(from sys) Generation set & tables of parameters & availability/renewable output.
--gparams=(OPTIONAL from sys) Default generator parameters to use for any missing values.
--avail=(from sys) Generation availability/renewable output
--demand=(from sys) Demand include file that defines demand blocks, levels, and duration
--update=NONE An optional final include file to override selected settings from other

include files. Does not override any explicit command-line values. The
path for update file is relative to the model (not data_dir).
IMPORTANT: the update file works in S space, so most parameters must
be indexed by S and you must use the scenario dependent
parameters: pFuel, pDemand, pGen, and pGenAvail. Changes to the
p*Data parameters (pGenData, pDemandData, etc) will NOT be used.

--scen=NONE For multiple scenario problems (multi-period or stochastic) specifies
the list of scenarios (populates the S set) and their associated
weight/probability table, pScenWeight(S).

Specific Value Overrides (take precedence over all values defined in data files. Use for
sensitivity analysis, etc.) IMPORTANT, these values are used for ALL scenarios, use an update
for changing these on a by scenario basis.
--co2cost=# Cost of CO2 in $/t-co2e (default: use sys or update value)
--demscale=# Factor to uniformly scale demand (default: use sys or update value)
--rps=# Renewable Portfolio Standard (default: use sys or update value)
--co2cap=# Carbon Emission Cap (Mt-co2e) (default: use sys or update value)

Model Setup Flags (by default these are not set. Set to any number, including zero, to enable)
--startup=(off) Compute startup costs (also enables unit_commit) (default: ignore)
--unit_commit=(off) Compute unit commitment constraints (default: ignore)
--ramp=(off) Flag to limit inter period ramp rates (default: ignore)
--ignore_integer=(off) Flag to ignore integer constraints in new capacity investments,

(eg allow 1MW nuclear plants) and in Unit Commitment if enabled (unit is
either committed or not) (default: use integer constraints)

--avg_avail=(off) Flag to use the average rather than time dependent availabilities. Using
averages is OK for thermal units, but highly simplifies time varying
renewables. This simplification is made in the analytic version of the
model, but not generally a good idea for numeric estimates. (default: use
complete time varying information.)

--ignore_cap_credit=(off) Flag to ignore the distinction between capacity credit and availability
When set, the capacity credit parameter is set equal to the time weighted
average of availability. (default: use cap_credit value from GenParams)

--uc_ignore_unit_min=(0) Threshold for unit_min to ignore integer commitment decisions in unit
commitment. Gens with unit_min less than or equal to this value will be
treated as continuous to speed performance

--uc_int_unit_min=(0) Threshold for unit_min to ignore INTEGER commitment
decisions & constraints. Gens with unit_min less than or equal to
this value will still have commitment variables, but their valid
range is relaxed to be continous. The same equations are used
as for those units with integer constraints.

--uc_lp=(0) Ignore integer constraints on all UC variables (& startup/shutdown)
--adj_rsrv_for_nse=(off) Adjust reserves for non-served energy. This uses actual power

production rather than total desired demand for setting reserve requirements.
This distinction is only significant if there is non-served energy. When
enabled (old default for SVN=479-480), then non-served energy provides a way
to reduce reserve requirements. [Default= use total non-adjusted demand]

--rsrv=(none) Specify Type of reserve calculation. Options are:
=separate Enforce separate reserve requirements based on "classic" ancillary

services plus additions for renewable uncertainty. This includes Reg Up,
Reg Down, Spin Up, & Quick Start

=flex Use combined "flexibility" reserves grouped simply into flex up and flex down
=both Compute both separate and flexibility reserves
=(none) If not set, no reserve limits are computed

--non_uc_rsrv_up_offline=0 For non-unit commitment generators, the fraction of non-running
generation capacity to use toward UP reserves. This parameter has no
effect on UC generators. deJonge assumes 0.6, NETPLAN assumes 1.0,
(default=0).

--non_uc_rsrv_down_offline=0 For non-unit commitment generators, the fraction of non-running
generation capacity to use toward DOWN reserves. This parameter has no
effect on UC generators. deJonge assumes 0.6, NETPLAN assumes 1.0,
(default=0).

--no_quick_st=(off) Flag to zero out quickstart reserve contribution to spinning/flex up
reserves. Useful when non_uc_rsrv... > 0

--no_nse=(off) Don’t allow non-served energy
--force_renewables=(off) Force all renewable output to be used. This is only feasible until

the point where load and op_reserves dictate a max. (until we add storage).
When used with cap_fix, it is a bit more widely useful b/c we can limit
output to the level of demand. (this is NLP when capacity is a decision)

--fix_cap=(off) Fix capacity to cap_cur by not allowing additions or retirements
--max_start=(off) Enforce maximum number of startups (default: ignore)
--force_gen_size=(off) Force all plant sizes to equal the specified value (in GW)
--min_gen_size=(off) Force small plant sizes to be larger than specified value (in GW)
--derate=(off) Use simple derating of power output, typically for non-reserves
--from_scratch=(off) Zero out existing capacity and build new system from scratch
--no_cap_limit=(off) Allow unlimited expansion of all generators (useful with from_scratch)
--basic_pmin=(off) Enforce non-UC based minimum output levels for each generator type.

This can be useful for baseload plants with simple (non-UC) operations.
--no_capital=(off) Ignore capital costs, used for operations models to only compute non

capital costs. Not recommended for planning models. [default: include
capital costs]

--renew_lim=(avg) Technique for limiting renewable expansion:
=avg Limit Avg to demand peak:

average power < peak*(1+renew_overbuild) [default]
=firm Limit base on firm capacity (typically way to high):

cap_credit < peak*(1+plan_margin)*(1+renew_overbuild)
=rps Limit expansion to that required to meet the RPS (maybe too low for high rps):

rps*(1+renew_overbuild)
=norm Treat As Normal Gen (uses general overbuild, not renew_specific):



2
2
7

(1+overbuild)*max(avg < peak*(1+plan), cap_credit < peak(1+plan))
--overbuild=0.2 Amount (a fraction) over the planning margin to limit the maximum

number of plants for each type. Also used with the heuristic capacity
limit described below.

--renew_overbuild=0.2 Amount (a fraction) over the peak/rps energy requirements for
renewables.

--skip_cap_limit=(off) Do not enforce the heuristic capacity limit equation that can greatly
speed MIP tree searches by ignoring capacity combinations, such as
maxing out all gens, that exceed the tougher of the planning margin
or operating reserve requirements by more than the overbuild factor.
In rare cases, with few generator types, strange availability patterns,
etc. this heuristic may be overly restrictive.

--no_loop=(off) Do not loop around demand periods for inter-period constraints
such as ramping, min_up_down. (default= assume looping)

--maint=(off) Compute Maintenance schedule (default = use avail data, typically
assumes full availability for thermal plants)

--maint_lp=(off) Relax integer constraints on maintenance decisions (default: use integers)
--maint_om_fract=0.5 If maintenance planning enabled, the default fraction of total fixed

O&M costs to divide among the required weeks of maintenance.
--plan_margin=(off) Enforce the planning margin. Set to 1 to enable and use the problem

defined pPlanReserve (typically in sys.inc). Alternatively can set
to a value < 1 that then is used for pPlanReserve overriding other
definitions.

--plan_margin_penalty=(off) Allow planning margin to be not met and define associated penalty
[$/MW-firm] (default= must meet planning margin)

--rps_penalty=(off) Allow planning margin to be not met and define associated penalty
[$/MWh] (default= must meet rps)

--retire=(0) Fraction of current capacity to retire. Max capacity is also adjusted
down accordingly (value 0 to 1)

--derate_to_maint=(off) Override gen datafile derating value and derate based on
the maintenance value only.

Additional Model Components & Related
--calc_water=(off) Compute water use and limits

Related options (see shared_dir/WaterEquations for complete details)
--h2o_limit=(Inf) System wide maximum water use [Tgal]. Only computed for gens

with specified water usage (h2o_withdraw_var)
--h2o_cost=(0) System wide water cost [$/kgal]. Only computed for gens

with specified water usage (h2o_withdraw_var)

Solver Options
--debug=(off) Print out extra material in the *.lst file (timing, variables, equations,

etc)
--max_solve_time=10800 Maximum number of seconds to let the solver run. (Default = 3hrs)
--mip_gap=0.001 max MIP gap to treat as valid solution
--par_threads=1 Number of parallel threads to use. Specify 0 to use one thread per core

(Default = use only 1 thread)
--par_mode=1 CPLEX parallel mode 1=deterministic & repeatable, 0=automatic,

-1=Opportunistic, but not repeatable (Default = determinstic)
--lp_method=4 CPLEX code for lp_method to use for pure root node, LP, RMIP, and

final MIP solve. Options: 0=automatic, 2=Dual Simplex, 4=barrier,
6=concurrent (a race between dual simplex and barrier in parallel)
(Default = 4, barrier) Use 6 if running in parallel

--cheat=(off) use epsilon-optimal branch & bound by removing solutions that are
not "cheat" better than the current best. This can speed up the
MIP search, but may miss the true optimal solution. Note that this
value is specified in absolute terms of the objective function.

--rel_cheat=(off) Similar to cheat, but specified in relative percentage of objective
this works in CPLEX only

--probe=0 CPLEX code for probing, a technique to more fully examine a MIP
problem before starting branch-and-cut. Can sometimes dramatically
reduce run times. Options: 0=automatic, 1=limited, 2=more, 3=full,

-1=off. (default = 0, automatic). Probe time also limited to 5min.
--priority=off Use branching priorities for Branch & Bound tree, set to anything

other than off to enable.

File Locations (Note, on Windows & DOS, \’s are used for defaults)
--data_dir=../data/ Relative path to data file includes
--out_dir=out/ Relative path to output csv files
--util_dir=../util/ Relative path to csv printing and other utilities
--shared_dir=../shared/ Relative path to shared model components
--out_prefix=SCP_ Prefix for all our our output data files

Output Control Flags (by default these are not set. Set to any number, including zero, to enable)
--debug=(off) Print out extra material in the *.lst file (timing, variables,

equations, etc)
--debug_avail=(off) Display full availability table in *.lst file for debugging
--no_csv=(off) Flag to suppress creation of csv output files (default: create csv output)
--summary_only=(off) Only create output summary data (default: create additional tables)
--summary_and_power_only=(off) Create only summary & power table outputs (Default: all files)
--out_gen_params=(off) Create output file listing generator parameter input data (Default: skip)
--out_gen_avail=(off) Create output file listing generator availability input data (Default: skip)
--memo=(none) Free-form text field added to the summary table NO COMMAS (Default: none)
--gdx=(off) Export the entire solved model to a gdx file in the out_dir (Default: no gdx

file)
--debug_off_maint=(off) Create table of capacity off maintenance

Supports:
- multiple operations model modes:

+ simple economic dispatch
+ ramp (up & down) constrained economic dispatch
+ integer unit commitment:

- minimum output for committed generators
- startup costs (optional)
- ramp (up & down) constraints (optional)

- arbitrary number of generation technologies/units with
+ availability factors (separate from capacity credit, see below)
+ maximum installed capacity by unit
+ minimum power for baseload units
+ existing installed capacity, with ability to not fully use
+ discrete plant sizes (can ignore)
+ technology specific operating reserve capabilities

- features designed explicitly for proper wind support:
+ RPS (minimum wind energy penetration %)
+ Non-unity capacity credits (how much does each generator help the peak?)
+ time varying wind availability/output

- (optional) endogenous operating reserves during each time block (hourly for 8760) including:
+ Spinning Reserves
+ Quick Start Reserves (effectively non-spin)
+ Regulation Up & Down

- planning reserves (during peak block only)
- arbitrary number of demand blocks of varying duration
- heat rates + separate fuel costs for easy scenario analysis
- carbon intensity

+ imbedded carbon from construction
+ carbon content of fuels

- carbon constraint (carbon cap)
- carbon tax
- non-served energy
- ability to mothball plants to save fixed O&M costs (still pay capital costs)

Outputs
- Summary, Power, Commitment, New capacity, #startups, emissions, wind shedding, cost breakdown.
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Additional Features:
- loading of data from include files to allow an unchanging core model.

- These file names can be optionally specified at the command line.
- A final, optional "update" file to allow for adjusting parameters for easy sensitivity
analysis or to change the values for a model run without changing the default values

- internal annualizing of capital costs (requires definition of WACC)
- ability to scale demand
- ability to ignore integer constraints
- automatically estimates max integer # of plants based on gen_size
- Force wind mode to require using all wind production with no shedding (only valid for small %wind)

Performance enhancements:
- ignores unit commitment for plants with no/low unit minimum output such as renewables and
peakers. This threshold is tunable with --unit_min

Assumptions:
- Ramping and Startup "loop" such that the state at the endo of the year must match the
beginning of year. This prevents turning off baseload in anticipation of the "end of the world"

ToDo:

* Decouple ops into blocks for faster UC?

* Add hydro
? compute fixed and var cost by gen
- compute required market based incentives to achieve same results
- automatic scaling of demand blocks based on year, baseline, & growth rate

Originally Coded in GAMS by:
Bryan Palmintier, MIT
March 2010

Version History
Ver Date Time Who What
--- ---------- ----- -------------- ---------------------------------
1 2010-05-20 23:30 bpalmintier Original version merged: ToyCapPlan v7 + DemoCapPlanWind v4
2 2010-05-21 04:00 bpalmintier Expanded & Improved features for MATLAB integration
3 2010-05-21 10:30 bpalmintier Added support for lumpy (integer plant) investments
4 2010-05-21 10:50 bpalmintier Made existing capacity also pay capital costs (no change to

solution by "grandma’s theorem")
5 2010-07-31 08:40 bpalmintier Added flag (no_csv) to suppress output of csv files.
6 2010-08-02 00:40 bpalmintier Fixed MAJOR bug: derate power output by availability
7 2010-09-06 22:00 bpalmintier Added total energy to summary output
8 2010-09-06 23:45 bpalmintier - Made include paths platform independent

- Moved data includes to ../data directory
- Fix no_csv default
- explicitly compute total capacity

9 2010-09-07 20:23 bpalmintier Separated pGenAvail for time varying availability
10 2010-09-07 23:00 bpalmintier Added flag to use averages for availability
11 2010-09-07 18:30 bpalmintier Converted to single sys.inc with subincludes. Updated comments
12 2010-09-08 23:55 bpalmintier Added ramp_limits (optional) for ramp constrained dispatch
13 2010-09-09 17:35 bpalmintier Adjusted solve parameters for more realistic runtimes
14 2010-09-09 19:35 bpalmintier Made key solution parameters available on the command line
15 2010-09-11 20:00 bpalmintier Minor tweaks and bug fixes:

- loop around for ramp constraints to prevent start from 0
- use RMIP for ignore_integer (also fix related $if bugs)
- renamed --limit_ramps to --ramp
- renamed --mip_tol to --mip_gap

16 2010-09-17 12:15 bpalmintier Added option to use avg avail for cap_credit (traditional approach
)

17 2010-10-24 01:00 bpalmintier Added calculation of energy production mix
18 2010-10-26 13:00 bpalmintier Major rework to ignore integer unit commitment for unit_min=0

Result is 10-300x speed up for MIP (startup) solutions!!!

Also:
- improved comments
- Expanded RPS to include a subset based on fuel type (not name)

19 2010-11-xx bpalmintier made unit_min a tunable parameter (default = 0)
20 2010-11-13 23:00 bpalmintier Key Update to include both up & down ramping
21 2010-11-14 10:30 bpalmintier Additional features:

- debug mode to print more complete *.lst file
- More realistic ramping for unit commitment that considers
the on-line generator fleet rather than the total fleet

22 2010-11-14 18:30 bpalmintier Added hourly reserves (finally!) including Spin, QuickStart,
RegUp, and RegDown.

23 2010-11-14 22:30 bpalmintier Added non-served energy & some solution helpers
24 2010-11-15 02:30 bpalmintier New features:

- Ability to restart from a saved solution (should help initial
LP only)

- Command line switches for non-served, op_reserves, etc.
- Reworked equations so unit_commit dictated by $G_UC(G)

25 2010-11-16 09:00 bpalmintier BUG FIX: corrected ramp limits for UC
26 2010-11-16 09:00 bpalmintier Tweaks:

- Only compute ramp for units with ramp_max < 1
- Consider availability in ramp for non-UC
- Shortened command line options to no_nse & no_op_rsrv

27 2010-11-16 23:59 bpalmintier Report Startup Data
30 2010-11-18 03:00 bpalmintier Added max_start
31 2010-11-19 bpalmintier FIXED major bug in op reserve: loophole for spin_rsv, etc = 0
32 2010-11-20 11:00 bpalmintier FIXED major bug where startup did not actually turn on UC
33 2010-11-22 10:30 bpalmintier Added fix_cap mode
34 2010-11-23 20:50 bpalmintier Added & renamed output for use with StaticCapPlanScripter.m
35 2010-11-24 11:15 bpalmintier Added carbon price and marginal emissions
36 2011-01-11 20:00 bpalmintier Added command-line parameter checks
37 2011-05-26 20:00 bpalmintier Added startup cost to summary
38 2011-06-18 03:15 bpalmintier Added --avail option to fix bug with inconsitant gen availability

files
39 2011-06-20 12:15 bpalmintier change update file path to relative to the model (not data_dir)
40 2011-07-08 02:15 bpalmintier Added ability to force plant (bin) sizes to a specified value
41 2011-07-15 10:15 bpalmintier move output summary to shared include file
42 2011-07-20 03:00 bpalmintier re-arrange data includes for sys definition of avail file
43 2011-07-20 15:00 bpalmintier Added support for parallel processing with par_threads
44 2011-07-21 03:00 bpalmintier Added --memo, set cap_max=0 integer limit to zero
45 2011-07-21 03:30 bpalmintier Added --co2cap
46 2011-07-22 14:55 bpalmintier Added combined Flexibility reserves (from OpsLp v5)
47 2011-07-24 01:00 bpalmintier Added max_cap_factor and derate, cleaned up flex vs separate

reserves
48 2011-07-24 01:15 bpalmintier Remove down req’t for wind when shedding OK, Added --from_scratch
49 2011-07-24 08:30 bpalmintier Replace availability CSV with GAMS table format
50 2011-07-24 11:30 bpalmintier Corrected (again) double counting for separate & flex reserves
51 2011-07-24 19:30 bpalmintier User configurable --out_prefix
52 2011-07-26 16:30 bpalmintier Made support of p_min optional with --basic_pmin
53 2011-08-02 17:00 bpalmintier Made planning margin optional with --plan_margin
54 2011-08-02 17:30 bpalmintier More flexible force_renewables with min of demand and renew output

(borrow from OpsLp)
55 2011-08-02 21:30 bpalmintier Corrections based on OpsLp:

- only G_WIND used for reserves since req’t are tech specific
- cleaned up ramping limit equations

56 2011-08-03 00:10 bpalmintier BUG FIX: pPlanRserve use for non fix_cap settings
57 2011-08-03 00:40 bpalmintier Added support for water limits via include file
58 2011-08-05 01:40 bpalmintier TWEAKED solver option file to use barrier algorithm
59 2011-08-05 11:30 bpalmintier Increased output precision to 5 after decimal
60 2011-08-06 16:15 bpalmintier Further refinement of solver to use concurrent optimization
61 2011-08-17 15:55 bpalmintier Added water cost
62 2011-08-19 10:35 bpalmintier Force renewables on system-wide, rather than per gen, basis
63 2011-09-21 17:00 bpalmintier Comments & other updates from UnitCommit extraction
64 2011-10-11 14:15 bpalmintier Renamed plant_size to gen_size (also related flags)
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65 2011-10-14 09:55 bpalmintier BUGFIX: corrected scaling for co2_cap passed from command line
66 2011-11-06 13:15 bpalmintier Updated to use AdvPwrSetup and AdvPwrDataRead
67 2011-11-07 15:25 bpalmintier Corrected comments re: sys.inc
68 2011-11-10 12:15 bpalmintier Added no_capital option
69 2012-01-26 11:05 bpalmintier Search and replace to partially match UnitCommit scenario overhaul

(v26)
70 2012-01-28 02:45 bpalmintier Modularize to call UnitCommit for operations
71 2012-01-29 00:10 bpalmintier Removed "helper" lower bound on new cap b/c causing errors
72 2012-02-03 15:15 bpalmintier MAJOR

-- scaling: MW to GW, Capital costs to M$/GW
-- Default to using barrier for LP solver (typically faster,

especially for LPs)
-- Cleaned-up Capacity limit equations

73 2012-02-21 15:15 bpalmintier Stricter capacity limits for renewables. Added renew_overbuild and
renew_to_rps

74 2012-03-07 11:35 bpalmintier Added support for partial period simulation through B_SIM
75 2012-05-02 12:40 bpalmintier Separate demand (D) into blocks (B) and time sub-periods (T)
76 2012-06-14 05:10 bpalmintier Added no_cap_limit option
77 2012-06-14 15:05 bpalmintier Added rps & planning margin penalties (via UnitCommit)
78 2012-08-21 16:05 bpalmintier Updated comments, prevent negative max for rps gens with low rps &

renew_to_rps
79 2012-08-22 00:15 bpalmintier Shortened file names, no more "out_"
80 2012-08-22 15:05 bpalmintier Added priority (B&B tree) option
81 2012-08-23 14:05 bpalmintier BUGFIX: ignore integers for startup/shutdown when ignoring uc

integers, publish uc_lp option
82 2012-08-25 09:05 bpalmintier BUGFIX: correct renew_to_rps logic (previously reversed).
83 2012-08-25 11:10 bpalmintier Replace renew_to_rps with more flexible renew_lim
84 2012-08-29 17:45 bpalmintier Update to set integer bounds for all except uclp
85 2012-08-31 00:35 bpalmintier Allow non-served energy to reduce reserve needs (old behavior with

--rsrv_use_tot_demand=1)
86 2012-08-31 07:15 bpalmintier UPDATE: default to rsrv to demand (without nse). Flag renamed to

adj_rsrv_for_nse
87 2012-09-02 17:05 bpalmintier BUGFIX: Correct maintenance by preventing mismatch between local &

global values of capacity_G, Ergh!
88 2012-09-02 17:08 bpalmintier Replace all $set with $setglobal (to prevent other possible

troubles)
89 2012-09-03 07:08 bpalmintier Add derate_to_maint & debug_off_maint

-----------------------------------------------------
$offtext

*================================*
* Setup *
*================================*

* First define the shared directory

* ====== Platform Specific Adjustments

* Setup the file separator to use for relative pathnames
$iftheni %system.filesys% == DOS $setglobal filesep "\"
$elseifi %system.filesys% == MS95 $setglobal filesep "\"
$elseifi %system.filesys% == MSNT $setglobal filesep "\"
$else $setglobal filesep "/"
$endif

* By default look for shared components in sibling directory "shared"
$if not set shared_dir $setglobal shared_dir ..%filesep%shared%filesep%

* Enable $ variables from include file to propagate back to this master file
$onglobal

* Include common setup definitions including:

* -- Platform specific path adjustments

* -- GAMS options

* -- debug settings

* -- standardized AdvPower directories
$include %shared_dir%AdvPwrSetup

* Disable influence of $ settings from include files
$offglobal

* ====== Additional setup

* == Identify if we are the master calling model
$ifthen.we_are_main NOT set model_name

*Establish the title
$Title "Static Capacity Planning model"

*If so set it
$setglobal model_name StaticCapPlan

* == And we want to idenfify whether or not we are using a mixed integer solution
$ifthen.mip set ignore_integer
$setglobal use_mip no
$else.mip
$setglobal use_mip yes
$endif.mip

$endif.we_are_main

* == Default to UnitCommit based operations
$if not set ops_model $setglobal ops_model UnitCommit

* Setup output prefix
$if NOT set out_prefix $setglobal out_prefix SCP_

* ====== Handle some initial command line parameters

*Additional factor for capacity/unit commitment upper limits
$if not set overbuild $setglobal overbuild .2
$if not set renew_overbuild $setglobal renew_overbuild .2
$if not set renew_lim $setglobal renew_lim avg

*================================*
* Declarations *
*================================*

* ====== Bypass Declarations & Model if doing a restart
$if defined StaticCapPlan $goto skip_redef

* ====== Declare all sets so can use in equations

* Note: be sure to quote descriptions otherwise "/" can not be used in a description.

sets

* Sets for table parameters

DEM_PARAMS "demand block table parameters from load duration curve"
/dur "duration of block [hrs]"
power "average power demand during block [GW]"
/

GEN_PARAMS "generation table parameters"
/
cap_credit "Capacity Credit during peak block [p.u.]"
c_cap "total capital cost [$/GW]"
life "economic lifetime for unit [yr]"
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cap_cur "Current installed capacity for generation [GW]"
cap_max "Maximum installed capacity for generation [GW]"
lead_time "Delay from construction to operation [yr]"
gen_size "typical discrete plant size [GW]"
derate "Derating factor for simple (non-reserves) cap planning [p.u.]"
/

* Sets for data, actual definitions can be found in include files
G "generation types (or generator list)"
S "scenarios for multi-period and stochastic problems"
B "Demand blocks (e.g. weeks or ldc)"
T "Demand time sub-periods (e.g. hours or ldc sub-blocks)"

B_SIM(B) "demand blocks used in simulation"

* Subsets for special purposes

* ====== Declare the data parameters. Actual data imported from include files
parameters

* Data Tables
pGen (G, GEN_PARAMS, S) "table of generator data"

* Post Processing Results Parameters
pGenAvgAvail (G, S) "average availability (max capacity factor)"

* Additional Parameters
pScenWeight(S) "Scenario weighting for cost calcs. Use for probability or time discounting"
pCRF (G) "capital recovery factors [/yr]"
pDemandMax (S) "Maximum demand level [GW]"

scalars
pWACC "weighted average cost of capital (utility investment discount rate) [p.u.]"

*Include operating reserves in total capacity limits only if they are used
$ifthen.skip_lim not set skip_cap_limit
$ifthen.fix_cap not set fix_cap
$ifthen.plan_marg set plan_margin
$ifthen.rsrv set rsrv

pSpinReserveLoadFract "addition Fraction of load for spin reserves [p.u.]"
pRegUpLoadFract "additional Fraction of load for regulation up [p.u.]"
pRegDownLoadFract "Fraction of load over unit minimums for regulation down [p.u.]"
pSpinReserveMinGW "Additional spinning reserve for max contingency [GW]"
pReplaceReserveGW "Offline replacement reserve to replace deployed spinning [GW]"

$endif.rsrv
$endif.plan_marg
$endif.fix_cap
$endif.skip_lim

$ifthen set plan_margin
pPlanReserve "planning reserve [p.u.]"

$endif

* ====== Declare Variables
variables

vObjective "Objective: scenario weighted average (EV or discounted ops cost) [M$]"
vTotalCost (S) "total system cost for scenario [M$]"
vOpsCost (S) "system operations cost in target year [M$]"
vCapitalCost (S) "annualized capital costs of new capacity [M$]"

* Specify integer variables. If ignore_integer flag is specified these are treated as continous by

* GAMS by using the RMIP solution type.
integer variables

vNumNewPlants(G, S) "number of discrete new plants to construct [integer]"

positive variables

vCapInUse ( G, S) "total installed capacity that is used [GW]"

vNewCapacity( G, S) "new capacity constructed [GW]"

* ====== Declare Equations
equations
$ifthen %model_name% == StaticCapPlan

eObjective "Objective function: scenario weighted average (EV or discounted ops cost) [M$]"
eTotalCost (S) "total cost = ops + capital cos [M$]"

$endif
eCapitalCost (S) "annualized capital cost of new capacity [M$]"

$ifthen not set fix_cap
ePositiveNew(G, S) "prevent negative net new capacities w slack variable."
eInstCap ( G, S) "installed capacity [GW]"

$endif

$ifthen.skip_lim not set skip_cap_limit
$ifthen.fix_cap not set fix_cap
$ifthen set plan_margin

eLimitTotalCap (S) "Set a rough upper bound on total capacity to aid MIP solver"
$endif
$endif.fix_cap
$endif.skip_lim

$ifthen not set fix_cap
eNewPlants (G, S) "integer constraints on new capacity investment"

$endif
;

*================================*
* Additional Model Formulation *
*================================*
* Note: this must be included between declarations & equations so that the included file

* has access to our declarations, and any objective function additions can be used.

* Enable $ variables from included model(s) to propagate back to this master file
$onglobal

* Include operations model, which greatly expands the parameter, variable, and equation set
$include ../ops/%ops_model%

* Include Planning Margin if required
$if set plan_margin $include %shared_dir%PlanMarginEquations

* Water equations included in operations model

* Disable influence of $ settings from include files
$offglobal

*================================*
* The Actual Model *
*================================*
*====== objective function and components

* == Objective (eObjective)

*
* The standard objective is total cost (see below for alternative objective options). We use

* our definition of this equation whenever we are the main model. Otherwise we expect our caller

* to define a similar objective function.

*
$ifthen.we_are_main %model_name% == StaticCapPlan
$if not set obj_var $setglobal obj_var vTotalCost

eObjective .. vObjective =e= sum[(S), pScenWeight(S) * %obj_var%(S)];
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* Allows uniform use of total cost for both operations and planning models
eTotalCost (S) .. vTotalCost (S) =e= vOpsCost (S) + vCapitalCost (S);

$endif.we_are_main

* == Total Capital Costs (eCapitalCost)

*capital cost = existing+new capacity*annualized cost of capital using capital recovery factor

*
*Note: We can’t use %capacity_G% here because we still want to pay the capital costs on old

* capacity even if it is not used.

* Scaling:

* 1x pGen(c_cap) M$/GW

* 1x vCapCost M$
eCapitalCost(S) .. vCapitalCost(S) =e= sum[(G), pCRF(G)*(
$ifthen not set fix_cap

vNewCapacity(G, S)+
$endif

pGen(G,’cap_cur’, S))*pGen(G,’c_cap’, S)]

* pFractionOfYear(S);

*====== Intermediate Calculations
$ifthen not set fix_cap

*introduce a slack variable so we don’t get a credit for unused plants which will have negative net

*capacities because vCapInUse < current capacity
ePositiveNew(G, S) .. vNewCapacity(G, S) =e= vCapInUse(G, S)-pGen(G,’cap_cur’,S)

* + vCapSlack(G,S)
;

*Constrain new capacity to integer numbers of plants
eNewPlants(G,S) .. vNewCapacity(G,S) =e= vNumNewPlants(G,S) * pGen(G, ’gen_size’,S);

$endif

$ifthen not set fix_cap
eInstCap(G,S) .. vCapInUse(G,S) =l= pGen(G,’cap_max’,S);

$endif

*====== Additional Constraints

*====== Integer Solution helpers (to speed up MIP searching)
$ifthen.skip_lim not set skip_cap_limit
$ifthen.fix_cap not set fix_cap
$ifthen.plan_marg set plan_margin

eLimitTotalCap (S) .. sum[(G), vCapInUse(G,S)*pGen(G,’cap_credit’,S)] =l=
(1+%overbuild%)*

$ifthen.rsrv set rsrv
max(

* Existing capacity if overbuilt
sum[(G), pGen(G,’cap_cur’,S)*pGen(G,’cap_credit’,S)]
,

* Operating reserve based limits
(1+ pSpinReserveLoadFract + pRegUpLoadFract)* pDemandMax(S)

+ pSpinReserveMinGW + pReplaceReserveGW
,

$else.rsrv
(

$endif.rsrv

* Traditional Planning Reserve limits
(1 + pPlanReserve) * pDemandMax(S)

);
$endif.plan_marg
$endif.fix_cap
$endif.skip_lim

*Skip ahead to here on restart
$label skip_redef

*================================*
* Handle The Data *
*================================*

* Data read in by operations model

* ====== Additional Calculations...

*Clear out existing capacity when building from scratch
$ifthen set from_scratch

pGen(G, ’cap_cur’, S) = 0;
$endif
$ifthen set no_cap_limit

pGen(G, ’cap_max’, S) = Inf;
$endif

* ====== Compute max integer number of plants & unit_commitment states

*Note: by default GAMS restricts to the range 0 to 100 so this provides two features:

* 1) allowing for higher integer numbers for small plant types as required for a valid solution

* 2) Restricting the integer search space for larger plants
parameter
pMaxNumPlants(G,S)
;

* Only compute pMax for non-zero cap_max.
pMaxNumPlants(G,S)$(pGen(G, ’cap_max’, S)) =

round((1+%overbuild%)

*min(

*bound by max capacity
floor( pGen(G, ’cap_max’,S)/pGen(G, ’gen_size’,S) ),

*and use looser of
max(

*peak period cap credit
ceil( (pDemandMax(S)

$ifthen set plan_margin

* (1 + pPlanReserve)
$endif

)/ (pGen(G, ’gen_size’,S) * pGen(G, ’cap_credit’,S) )
),

*and average availability vs peak demand
ceil( pDemandMax(S)/ (pGen(G, ’gen_size’,S) * min(pGenAvgAvail(G,S), pGen(G, ’

derate’,S) ) )
)

)
)

);

* Adjust max number of plants for variable renewables (assumed to apply to all renewables)

* By default, assume renewables may compete on their own and supply power for economic reasons
$ifthen.re_lim set renew_lim
$ifthen.lim_type %renew_lim%==avg

* In this case, we limit new capacity to that capable of supplying the peak demand based on the greater
of

* capacity factor and average availability
pMaxNumPlants(G,S)$G_RPS(G) =

round((1+%renew_overbuild%)

* ceil( pDemandMax(S)
/ ( pGen(G, ’gen_size’,S) * max(pGen(G, ’cap_credit’,S), pGenAvgAvail(G,

S)) )
)
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);
$elseif.lim_type %renew_lim%==rps

* But if indicated, instead limit renewable expansion to the RPS level (plus renew_overbuild)
pMaxNumPlants(G,S)$G_RPS(G) =

max[0,
round((1+%renew_overbuild%)

* ceil( pDemandAvg(S)*pRPS(S)
/ ( pGen(G, ’gen_size’,S) * pGenAvgAvail(G,S) )

)
)

];
$elseif.lim_type %renew_lim%==firm

* But if indicated, instead limit renewable expansion to the RPS level (plus renew_overbuild)
pMaxNumPlants(G,S)$G_RPS(G) =

max[0,
round((1+%renew_overbuild%)

* ceil( (pDemandMax(S)
$ifthen set plan_margin

* (1 + pPlanReserve)
$endif

)/ (pGen(G, ’gen_size’,S) * pGen(G, ’cap_credit’,S) )
)

)
];

$endif.lim_type
$endif.re_lim

*list max plant numbers in *.lst file
display pMaxNumPlants;

*Compute Max new plants by subtracting off existing capacity
vNumNewPlants.up(G,S)$(pGen(G, ’cap_max’,S)) = max[0, pMaxNumPlants(G,S) - floor(pGen(G, ’cap_cur’,S)/

pGen(G, ’gen_size’,S))];

*For units that the current capacity is greater than max, no new plants (prevent negatives)
vNumNewPlants.fx(G,S)$(pGen(G, ’cap_cur’,S)-pGen(G, ’cap_max’,S)>=0) = 0;

$ifthen set unit_commit
vUcInt.up(B_SIM, T, G_UC, S) = pMaxNumPlants(G_UC, S);

$endif

$ifthen not set uc_lp
vStartInt.up(B_SIM, T, G_UC, S) = pMaxNumPlants(G_UC, S);
vShutInt.up(B_SIM, T, G_UC, S) = pMaxNumPlants(G_UC, S);

$endif

$ifthen set maint
vOnMaint.up(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) = ceil(%max_maint% * pMaxNumPlants(G, S));
vMaintBegin.up(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) = ceil(%max_maint% * pMaxNumPlants(G, S));
vMaintEnd.up(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) = ceil(%max_maint% * pMaxNumPlants(G, S));

*Fix maintenance at zero if maintenance not required
vOnMaint.fx(B, G, S)$(pGen(G, ’maint_wks’, S) = 0) = 0;

vMaintBegin.fx(B, G, S)$(pGen(G, ’maint_wks’, S) = 0) = 0;
vMaintEnd.fx(B, G, S)$(pGen(G, ’maint_wks’, S) = 0) = 0;

$endif

* ===== Take some initial guesses =====
if (sum(G_RPS,1) > 0) then

vNewCapacity.l(’wind’,S) = sum[(B_SIM, T), pDemand(B_SIM, T, ’power’,S)*pDemand(B_SIM, T, ’dur’,S)]*
pRPS(S) - pGen(’wind’,’cap_cur’,S);

endif;

* ===== Fix any values we can
$ifthen set fix_cap

vCapInUse.fx(G,S) = pGen(G,’cap_cur’,S);

vNumNewPlants.fx(G,S) = 0;
vNewCapacity.fx(G,S) = 0;

$endif

*================================*
* Additional Data Processing *
*================================*

* Enable $ variables from included model(s) to propagate back to this master file
$onglobal

* Include water limiting equations and associated parameters and variables
$if set calc_water $include %shared_dir%WaterDataSetup

* Disable influence of $ settings from sub-models
$offglobal

*================================*
* Solve & Related *
*================================*
*Only run the rest of this file if we are the main function.
$ifthen.we_are_main %model_name% == StaticCapPlan

* ====== Setup the model

* Skip this definition if we are doing a restart
$ifthen.scp_model not defined StaticCapPlan

model StaticCapPlan /all/;

* ====== Adjust Solver parameters

* Enable/Disable Parallel processing

*By default, use only one thread, since this is often faster for small problems
$if not set par_threads $setglobal par_threads 1

*Default to barrier b/c typically faster
$if not set lp_method $setglobal lp_method 4

*Use default probing
$if not set probe $setglobal probe 0

*Create a solver option file
$onecho > cplex.opt

* Note: the number of threads can either be specified explicitly or using "0" for use all cores
threads %par_threads%

*Parallel mode. Options:

* 1=deterministic & repeatable, 0=automatic, -1=opportunistic & non-repeatable
parallelmode %par_mode%

* Conserve memory when possible... hopefully avoid crashes b/c of memory
memoryemphasis 1

* Declare solution method for pure LP, RMIP, and final MIP solve.

* Options: 0=automatic, 2=Dual Simplex, 4=barrier, 6=concurrent (a race between

* dual simplex and barrier in parallel)

*
* Sometimes barrier is notably faster for operations problems, but more often dual simplex wins

* Barrier is often better for planning problems
LPmethod %lp_method%

* Solution method for solving the root MIP node. See description and options for LPmethod above
startalg %lp_method%

* Solution method for solving sub MIP nodes. See description and options for LPmethod above

* For some reason, the default (usually dual simplex) is typically better here.

*subalg %lp_method%

* Tighten LP tolerance (default 1e-6). For problems with objective values close to 1, this
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* may be necessary to find the true optimal. In particular, with MILP, using the default can

* cause the final LP solve to stop short of finding the best node from the MILP branch-and-cut

* Surprisingly, a tighter tolerance can also achieve FASTER run times for MILP, presumably

* because the nodes can be compared more carefully.
epopt 1e-9

* Stay with barrier until the optimal solution is found rather than crossing over to simplex

* This can run much faster for these problems, because the final simplex iterations can be

* slow and b/c the cross-over itself takes a good bit of time. However, the approach is not

* robust and can fail or be slower than the default behavior. Not recommended with barrier

* alone (LPmethod = 4) b/c may not converge. Consider for concurrent optimization.

*barcrossalg -1

* Ignore small (dual) infeasibilities in the final LP solve. Without this setting, occasionally

* CPLEX will get unhappy with an infeasibility on the order of 1e-6
relaxfixedinfeas 1

* Probing: a technique to more fully examine a MIP problem before starting branch-and-cut. Can

* sometimes dramatically reduce run times. Options: 0=automatic, 1=limited, 2=more, 3=full,

* -1=off.
probe %probe%

* Limit the probe time to 5min, experience shows the default is typically <=1 sec, so this

* Will seldom be a big driver
probetime 300

*enable relative epsilon optimal (cheat) parameter

*This value is not used if cheat is defined
relobjdif %rel_cheat%

$offecho

*Tell GAMS to use this option file
StaticCapPlan.optfile = 1;

* ====== Tune performance with some initial guesses and settings to speed up the solution
$ifthen.prior_set set priority
$ifthen.prior_on not %priority%==off

*Setup branching priorities to prioritize capacity decisions
StaticCapPlan.prioropt = 1 ;

vNumNewPlants.prior(G,S) = 1 ;

* And then maintenance decisions
$if set maint vOnMaint.prior(B, G, S) = 2 ;
$if set maint vMaintBegin.prior(B, G, S) = 2 ;
$if set maint vMaintEnd.prior(B, G, S) = 2 ;

$endif.prior_on
$endif.prior_set

*Note: the following endif is for the $ifthen not the $if
$endif.scp_model

* ====== Check command line options

* Check spelling of command line -- options

* Notes:

* - all command line options have to have either been used already or be listed

* here to avoid an error. We place it here right before the solve statment such that

* if there is an error, we don’t wait till post solution to report the problem
$setddlist ignore_integer summary_only summary_and_power_only memo gdx out_gen_params out_gen_avail

out_gen_simple debug_off_maint

* ====== Actually solve the model
$ifthen set ignore_integer

solve %model_name% using RMIP minimizing vObjective;
$else

solve %model_name% using MIP minimizing vObjective;
$endif

*================================*
* Postprocessing *
*================================*

*-- Suppress CSV output if no_csv flag is set
$if "no_csv = 1" $ontext

* ====== Post processing computations

* Most of these calculations are standardized in ../shared/calcSummary.gms
$include %shared_dir%calcSummary.gms

* ====== Write Standard Results to CSV files
$include %shared_dir%writeResults.gms

$if set summary_and_power_only $goto skip_non_summary

*-- [3] Output List of Total installed generation by type
$batinclude %util_dir%put2csv "%out_dir%%out_prefix%tot_cap.csv" "table" pCapTotal(G,S) G S

*-- [4] Output List of New plants by type
$batinclude %util_dir%put2csv "%out_dir%%out_prefix%new_plants.csv" "table" vNumNewPlants.l(G,S) G S

*-- [5] Output List of New capacity by type
$batinclude %util_dir%put2csv "%out_dir%%out_prefix%new_cap.csv" "table" vNewCapacity.l(G,S) G S

$label skip_non_summary

*-- end of output suppression when no_csv flag is set
$if "no_csv = 1" $offtext

$if set gdx execute_unload ’%out_dir%%out_prefix%solve.gdx’

* Write value of all control variables to the list file (search for Environment Report)
$show

$endif.we_are_main
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4ListingD.2: UnitCommit.gms: the core, highly configurable clustered unit commitment model. It can be used standalone
or included into larger planning models model. It relies on shared include files for many model features. Note: the initial

help text is removed since it is nearly identical to that from StaticCapPlan.gms

*================================*
* Setup *
*================================*

* First define the shared directory

* ====== Platform Specific Adjustments

* Setup the file separator to use for relative pathnames
$iftheni %system.filesys% == DOS $setglobal filesep "\"
$elseifi %system.filesys% == MS95 $setglobal filesep "\"
$elseifi %system.filesys% == MSNT $setglobal filesep "\"
$else $setglobal filesep "/"
$endif

* By default look for shared components in sibling directory "shared"
$if not set shared_dir $setglobal shared_dir ..%filesep%shared%filesep%

* Enable $ variables from include file to propagate back to this master file
$onglobal

* Include common setup definitions including:

* -- Platform specific path adjustments

* -- GAMS options

* -- debug settings

* -- standardized AdvPower directories
$include %shared_dir%AdvPwrSetup

* Disable influence of $ settings from include files
$offglobal

* ====== Additional setup

* == Identify if we are the master calling model
$ifthen.we_are_main NOT set model_name

*Establish the title
$Title "Flexible Unit Commitment Model"

*If so set it
$setglobal model_name UnitCommit

*In this case, we also know the capacity is fixed so skip all of the capacity expansion terms
$setglobal fix_cap

*And we want to default to using unit-commitment
$if not set unit_commit $setglobal unit_commit on

* == And we want to identify whether or not we are using a mixed integer solution
$ifthen.mip set ignore_integer
$setglobal use_mip no
$else.mip
$setglobal use_mip yes
$endif.mip

$endif.we_are_main

* == Setup short hand alias for total capacity to use as a control variable
$ifthen.fix_cap set fix_cap
$setglobal capacity_G pGen(G,’cap_cur’, S)

$else.fix_cap
$setglobal capacity_G vCapInUse(G, S)
$endif.fix_cap

$setglobal cap_for_plan_margin %capacity_G%

$ifthen.maint set maint
$setglobal capacity_G vCapOffMaint(B, T, G, S)
$endif.maint

*Set Maximum Capacity for Fixed O&M costs & computing vCapOffMaint
$ifthen.fix_cap set fix_cap
$setglobal max_cap_G pGen(G,’cap_cur’, S)
$else.fix_cap
$setglobal max_cap_G vCapInUse(G, S)
$endif.fix_cap

* Setup output prefix
$if NOT set out_prefix $setglobal out_prefix UC_

* Make sure unit_commit is set if startup is set
$if set startup $setglobal unit_commit 1

* Make sure we compute startup & shutdown variables if we need them
$if set startup $setglobal compute_state 1
$if set max_start $setglobal compute_state 1
$if set min_up_down $setglobal compute_state 1

* Assign the power point for p0_fuel recovery for non-uc generators
$if not set p0_recover $setglobal p0_recover 0.85

*================================*
* Declarations *
*================================*

* ====== Declare all sets so can use in equations

* Note: be sure to quote descriptions otherwise "/" can not be used in a description.

sets

* Sets for table parameters

DEM_PARAMS "demand block table parameters from load duration curve"
/
dur "duration of block [hrs]"
power "average power demand during block [GW]"
/

GEN_PARAMS "generation table parameters"
/
c_var_om "variable O&M cost [$/MWh]"
c_fix_om "fixed O&M cost [M$/GW-yr]"
heatrate "heatrate for generator (inverse efficiency) [MMBTU/MWh = BTUe9/GWh]"
p0_fuel "fuel use at zero power out (heatrate intercept) [BTUe9/hr]"
fuel "name of fuel used [name]"
cap_cur "Current installed capacity for generation [GW]"
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co2_ccs "Fraction of carbon capture & sequestration [p.u.]"
co2_embed "CO2_eq emissions from plant construction [Mt/GW]"
p_min "minimum power output (for baseload) [p.u.]"
gen_size "typical discrete plant size [GW]"
ramp_max "Maximum hourly ramp rate [fract/hr]"
unit_min "Minimum power output per committed unit [GW]"
c_start_fix "Fixed cost to start up a unit [K$/start]"
fuel_start "Fuel usage to start up a unit [BTUe9/start]"
quick_start "Fraction of capacity avail for non-spin reserves [p.u.]"
reg_up "Fraction of capacity avail for regulation up reserves [p.u.]"
reg_down "Fraction of capacity avail for regulation down reserves [p.u.]"
spin_rsv "Fraction of capacity avail for spinning reserves [p.u.]"
max_start "Maximum number of startups per plant per year [starts/unit/yr]"
max_cap_fact "Maximum capacity factor, use for maintanence [p.u.]"
derate "Derating factor for simple (non-reserves) cap planning [p.u.]"
/

FUEL_PARAMS "fuel table parameters"
/
name "The name as a string (acronym) for comparison [name]"
cost "Unit fuel cost [$/MMBTU = $K/BTUe9]"
co2 "Carbon Dioxide (eq) emitted [t/MMBTU = Kt/BTUe9]"
/

* Sets for data, actual definitions can be found in include files
G "generation types (or generator list)"

/
wind
/

B "Demand blocks (e.g. weeks or ldc)"
T "Demand time sub-periods (e.g. hours or ldc sub-blocks)"

B_SIM(B) "demand blocks used in simulation"
F "fuel types"
S "scenarios for multi-period and stochastic problems"

* Sets associated with piecewise linear cost (fuel) functions
HR_SEG "piece-wise linear fuel use segments (slope=heatrate)"

* (Note only define the first segment here, assume other segs defined in data files as needed
/seg1/

PWL_COEF "Coefficients for piecewise linear representation"
/
slope
intercept
/

* Sets for mapping between other sets
GEN_FUEL_MAP(G, F) "map for generator fuel types"

* Subsets for special purposes
G_UC(G) "Generators to compute continuous or discrete unit commitment state and constraints"
G_UC_INT(G) "Generators with integer on/off values for unit commitment"
G_RPS(G) "Generators included in the Renewable Portfolio Standard"
G_WIND(G) "Wind generators (for reserve requirements)"
G_RAMP(G) "Generators for which to enforce ramping limits"
G_PWL_COST(G) "Generators for which to use multi-segment piecewise linear fuel use"
PWL_COST_SEG(G, HR_SEG) "Valid piece-wise linear segments"

* ====== Declare the data parameters. Actual data imported from include files
parameters

* Data Tables
pDemand (B, T, DEM_PARAMS, S) "table of demand data"

pGen (G, GEN_PARAMS, S) "table of generator data"
pGenAvail (B, T, G, S) "table of time dependent generator availability"
pFuel (F, FUEL_PARAMS, S) "table of fuel data"

$ifthen set pwl_cost
pGenHrSegments(G, HR_SEG, PWL_COEF) "Piecewise Linear Fuel use Table (slope=heatrate)"

$endif

* Additional Parameters
pScenWeight(S) "Scenario weighting for cost calcs. Use for probability or time discounting"

pCostCO2 (S) "cost of carbon (in terms of CO2 equivalent) [$/t-CO2eq
= M$/Mt]"

pRPS (S) "fraction of energy from wind [p.u.]"
pCarbonCap (S) "max annual CO2 emissions [Mt CO2e]"
pDemandScale (S) "factor by which to scale demand"
pFractionOfYear(S) "fraction of year covered by the simulation"

pMaxNumPlants(G, S) "upper bound on number of plants for unit commitment"

scalars
pWACC "weighted average cost of capital (utility investment discount rate) [p.u.]"
pPriceNonServed "Cost of non-served energy [$/MWh]"

* ====== Declare Variables
variables

vObjective "Objective: scenario weighted average (EV or discounted ops cost) [M$]"
vTotalCost (S) "total system cost for scenario [M$]"
vOpsCost (S) "system operations cost in target year [M$]"
vFixedOMCost (S) "fixed O&M costs in target year [M$]"
vVariableOMCost (S) "variable O&M costs in target year [M$]"
vFuelCost (S) "total fuel costs in target year [M$]"
vCarbonCost (S) "cost of all carbon emissions [M$]"
vPenaltyCost (S) "rps and plan_margin penalty costs [M$]"

$ifthen set startup
vStartupCost (S) "total startup (fixed) costs, not including fuel & carbon [M$]"

$endif
$ifthen not set no_nse

vNonServedCost (S) "total cost of non-served energy [M$]"
$endif

vCarbonEmissions(G, S) "carbon from operations + fraction embedded [Mt-CO2e]"

* See below for integerization
positive variables

vUnitCommit(B, T, G, S) "number of units of each gen type on-line during period [continuous]"
vStartUp (B, T, G, S) "number of units of each type that starts up during each period [continuous

]"
vShutDown (B, T, G, S) "number of units of each type that shuts down during each period [

continuous]"

* Specify integer variables. If ignore_integer flag is specified these are treated as continous by

* GAMS by using the RMIP solution type.
$ifthen not set uc_lp
integer variables
$endif

vUCInt(B, T,G,S) "integer match to vUnitCommit for members of G_INT_UC [integer]"

* Previously, we made vStartup and vShutDown continuous since the unit commitment constraint (eState)

* forces them to integers since vUnitCommit is an integer. This trick reduces the number

* integer variables, BUT in testing and as is described in [1] with modern solvers, this

* actually takes longer to run.

* [1] J. Ostrowski, M. F. Anjos, and A. Vannelli,

* "Tight Mixed Integer Linear Programming Formulations for the Unit Commitment Problem,"
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* IEEE Transactions on Power Systems, vol. 27, no. 1, pp. 39-46, Feb. 2012.

vStartInt (B, T, G, S) "integer match to vStartUp for members of G_INT_UC [integer]"
vShutInt (B, T, G, S) "integer match to vShutDown for members of G_INT_UC [integer]"
;

positive variables
vInstantFuel(B, T, G, S) "instantaneous fuel use by gen per period [BTUe9/hr]"
vFuelUse (F, G, S) "fuel usage by generator & type [BTUe12]"
vPwrOut (B, T, G, S) "production of the unit [GW]"
vNonServed(B, T , S) "non-served demand [GW]"

$ifthen set plan_margin_penalty
vUnderPlanReserve(S) "Firm capacity below required planning reserve [GW]"

$endif
$ifthen set rps_penalty

vUnderRPS(S) "Energy below that required by the RPS [GWh]"
$endif

;

* ====== Declare Equations
equations
$ifthen %model_name% == UnitCommit

eObjective "Objective function: scenario weighted average (EV or discounted ops cost) [M$]"
eTotalCost (S) "total cost = ops [M$]"

$endif
eOpsCost (S) "system operations cost for one year of operation [M$]"
eFixedOMCost(S) "system fixed O&Mcosts for one year [M$]"
eVarOMCost (S) "system variable O&M costs for one year [M$]"
eFuelCost (S) "system fuel costs for one year [M$]"
eCarbonCost (S) "cost of all carbon emissions [M$]"

$ifthen set startup
eStartupCost(S) "compute syste-wide unit startup costs [M$]"

$endif
$ifthen not set no_nse

eNonServedCost (S) "total cost of non-served energy [M$]"
$endif

ePenaltyCost(S) "rps and plan_margin penalty costs [M$]"

eCarbonEmissions(G, S) "carbon from operations + fraction embedded [Mt-CO2e]"
eInstantFuelByGen (B, T, G, S) "fuel use by gen and demand period [BTUe9/hr]"

$ifthen set pwl_cost
ePiecewiseFuelByGen (B, T, G, HR_SEG, S) "fuel use for gens with piecewise fuel use [BTUe9/hr]"

$endif
eFuelUse (F, G, S) "fuel usage by type [quad = BTUe15]"

$ifthen NOT set rsrv
ePwrMax (B, T, G, S) "output w/o reserves lower than available max [GW]"
ePwrMin (B, T, G, S) "output w/o reserves greater than installed min [GW]"
ePwrMaxUC (B, T, G, S) "output w/o reserves lower than committed max [GW]"
ePwrMinUC (B, T, G, S) "output w/o reserves greater than committed min [GW]"

$endif

eDemand (B, T , S) "output must equal demand [GW]"

eRPS (S) "RPS Standard: minimum energy percent from renewables [p.u.]"
eCarbonCap(S) "Limit total emissions [Mt-CO2e]"

$ifthen set force_renewables
$if set fix_cap eForceRenewables (B, T, S) "force the use of all renewable output (up to 100% of load)

[GW]"
$if not set fix_cap eForceRenewables (B, T, G, S) "force the use of all renewable output (up to 100%

of load) [GW]"

$endif

$ifthen set ramp
eRampUpLimitUC (B, T, G, S) "Limit period to period ramp up rates for integer commited plants"
eRampDownLimitUC(B, T, G, S) "Limit period to period ramp down for integer commited plants"
eRampUpLimit (B, T, G, S) "Limit period to period ramp up rates"
eRampDownLimit (B, T, G, S) "Limit period to period ramp down rates"

$endif

eUnitCommit(B, T, G, S) "can only commit up to the installed number of units [continous]"
$ifthen not set uc_lp

*(possibly) Mixed Integer Equations
eUnitCommitInteger(B, T, G, S) "Integerization for unit commitment"
eStartUpInteger(B, T, G, S) "Integerization for unit startup"
eShutDownInteger(B, T, G, S) "Integerization for unit shutdown"

$endif

$ifthen set compute_state
eState (B, T, G, S) "compute unit commitment startup and shutdowns [integer]"

$endif

$ifthen set max_start
eMaxStart(G, S) "enforce maximum number of startups per year [start/yr]"

$endif
;

*================================*
* Additional Model Formulation *
*================================*
* Note: this must be included between declarations & equations so that the included file

* has access to our declarations, and any objective function additions can be used.

* Enable $ variables from included model(s) to propagate back to this master file
$onglobal

* Include Reserve constraints if required
$if set maint $include %shared_dir%MaintenanceEquations

* Include Planning Margin if required & we are the main function (CapPlan models include

* these equations directly
$if %model_name%==UnitCommit $if set plan_margin $include %shared_dir%PlanMarginEquations

* Include Reserve constraints if required
$if set rsrv $include %shared_dir%ReserveEquations

* Include Minimum Up and Down time formulation if required
$if set min_up_down $include %shared_dir%MinUpDownEquations

* Include water limiting equations and associated parameters and variables
$if set calc_water $include %shared_dir%WaterEquations

* Disable influence of $ settings from sub-models
$offglobal

*================================*
* The Actual Model *
*================================*
*====== objective function and components

* == Objective (eObjective)

*
* The standard objective is total cost (see below for alternative objective options). We use

* our definition of this equation whenever we are the main model. Otherwise we expect our caller
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* to define a similar objective function.

*
$ifthen.we_are_main %model_name% == UnitCommit
$if not set obj_var $setglobal obj_var vOpsCost

eObjective .. vObjective =e= sum[(S), pScenWeight(S) * %obj_var%(S)];

* Allows uniform use of total cost for both operations and planning models
eTotalCost (S) .. vTotalCost (S) =e= vOpsCost (S);

$endif.we_are_main

* == Operations Cost (eOpsCost)

* In this equation, A number of terms are always included:

* -- fixed O&M cost

* -- variable O&M costs

* -- Fuel Costs

* -- Carbon Costs

* In addition, other terms are added if needed based on command-line settings:

* -- Startup Costs

* -- Non served energy costs

* -- Water costs

* -- Maintenance costs

*
* Units:

* all M$ unless otherwise noted
eOpsCost(S) .. vOpsCost(S) =e= vFixedOMCost(S)

+ vVariableOMCost(S)
+ vFuelCost(S)
+ vCarbonCost(S)
+ vPenaltyCost(S)

$ifthen set startup
+ vStartupCost(S)

$endif
$ifthen not set no_nse

+ vNonServedCost(S)
$endif
$ifthen set calc_water

* Note scaling from Mgal (vH2oWithdrawPerGen) to kgal (pH2oCost), and usd (pH20Cost) to Musd (totals)
+ sum[ (G_H2O_LIMIT), vH2oWithdrawPerGen(G_H2O_LIMIT, S) * pH2oCost(S)

/1e3 ]
$endif
$ifthen set maint

+ vMaintCost(S)
$endif

;

* == Fixed Operations and Maintenance Costs (eFixedOMCost)

*
* Units & Scaling:

* 1x c_fix_om M$/GW-yr
eFixedOMCost(S) .. vFixedOMCost(S) =e= sum[( G), pGen(G,’c_fix_om’, S)*(%max_cap_G%)]

* pFractionOfYear(S);

* == Variable Operations and Maintenance Costs (eVarOMCost)

*
* Units & Scaling: external this eq.

* 1000x vVarOMCost M$ k$

* 1x c_var_om $/MWh to k$/GWh

* 1x vPwrOut GW

* 1x Demand(dur) hr

eVarOMCost(S) .. vVariableOMCost(S)*1e3 =e= sum[(B_SIM, T, G), pGen(G,’c_var_om’, S)*vPwrOut(B_SIM, T
, G, S)*pDemand(B_SIM, T, ’dur’, S)];

* == Total Fuel Costs (eFuelCost)

*
* Units & Scaling: external this eq.

* 1x vFuelCost M$ to M$

* 1x Fuel(cost) $/MMBTU to M$/BTUe12

* 1x vFuelUse BTUe12
eFuelCost(S) .. vFuelCost(S) =e= sum[(GEN_FUEL_MAP(G,F)), pFuel(F,’cost’, S)*vFuelUse(F, G, S)];

* == Carbon Emision Costs (eCarbonCost)

*carbon cost = carbon price * carbon emissions

* Units & Scaling: external this eq.

* 1x vCarbonCost M$

* 1x pCostCO2 $/t to M$/MT

* 1x vCarbonEmmit kT
eCarbonCost(S) .. vCarbonCost(S) =e= pCostCO2(S) * sum[(G), vCarbonEmissions(G,S)];

* == Startup Costs (eStartupCost)

* Includes only fixed costs for startup. Costs associated with startup fuel use is captured

* as part of the total fuel use by generator. Hence startup fuel and carbon costs are computed

* as part of fuel and carbon costs respectively

*
* Units & Scaling: external this eq.

* 1000x vStartCost Musd to Kusd

* 1x c_start_fix Kusd/start
$ifthen set startup

eStartupCost(S) .. vStartupCost(S)*1e3 =e=
sum[(B_SIM, T,G_UC),

vStartup(B_SIM, T, G_UC, S)

* ( pGen(G_UC, ’c_start_fix’, S) )
];

*Note: fuel use included elsewhere
$endif

* == Total non-served energy costs (eNonServedCost)

* Units & Scaling: external this eq.

* 1x vNonServedCost M$

* 1/1000x pPriceNonServe $/MWh to M$/GWh

* 1x vNonServed GWh
$ifthen not set no_nse

eNonServedCost(S) .. vNonServedCost(S) =e=
sum[(B_SIM, T), vNonServed(B_SIM, T, S)*pPriceNonServed*pDemand(B_SIM, T

, ’dur’, S)]/1e3;
$endif

* == Penalty costs (ePenaltyCost)

* Units & Scaling: external this eq.

* 1x vPenaltyCost M$

* 1x vUnderPlanReserve GW-firm

* 1/1000x plan_margin_penalty $/MW-firm to M$/GW-firm

* 1x vUnderRPS GWh

* 1/1000x vNonServed $/MWh to M$/GWh
ePenaltyCost(S) .. vPenaltyCost(S) =e= 0

$ifthen set plan_margin_penalty
+ vUnderPlanReserve(S) * %plan_margin_penalty% / 1000

$endif
$ifthen set rps_penalty

+ vUnderRPS(S) * %rps_penalty% / 1000
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$endif
;

*====== Intermediate Calculations

* == Carbon Emissions (eCarbonEmissions) by generator

* carbon emissions (Mt) = (fuel use - ccs) * carbon intensity + embedded carbon * new capacity

*
* Notes:

* -- we assume that the CCS system is operational during startup and apply ccs rate to

* all fuel usage

*
* Units & Scaling: external this eq.

* 1x pFuel(co2) t/MMBTU to Mt/BTUe12

* 1x vCarbonEm Mt

* 1x vFuelUse BTUe12

* 1x vNewCapacity GW

* 1x co2_embed Mt/GW
eCarbonEmissions(G, S) .. vCarbonEmissions(G, S) =e=

sum[(GEN_FUEL_MAP(G,F)),
vFuelUse(F,G,S) *pFuel(F,’co2’, S)*(1-pGen(G,’co2_ccs’, S))
]

$ifthen not set fix_cap
+ vNewCapacity(G, S)*pGen(G,’co2_embed’, S)

$endif
;

* == Fuel Consumption by generator for each period (eInstantFuelByGen)

* This equation implements an afine approximation (linear + intercept) for fuel use as a

* function of power output. This equation is suppressed and replaced with multiple heatrate

* segments for generators with piece-wise linear fuel use.

*
* Units & Scaling: external this eq.

* 1x vInstantFuel BTUe9/hr to BTUe9/hr

* 1x heatrate MMBTU/MWh to BTUe9/GWh

* 1x p0_fuel BTUe9/hr

* 1x vPwrOut GW

* 1x vUnitCommit integer (no units)
eInstantFuelByGen(B, T, G, S)$( B_SIM(B)

and (pGen(G,’gen_size’, S) > 0 and not G_PWL_COST(G)) ) ..
vInstantFuel(B, T, G, S) =e= pGen(G,’heatrate’, S)*vPwrOut(B, T,G,S)

+ pGen(G, ’p0_fuel’, S)*vUnitCommit(B, T,G,S)$G_UC(G)

* For units not under unit commitment, divide up the p0 fuel usage such that it is fully

* accounted for at the p0_recover output level (typically 85%).
+ pGen(G, ’p0_fuel’, S)/pGen(G,’gen_size’, S)/%p0_recover%

*vPwrOut(B, T,G,S)$(not G_UC(G))
;

$ifthen set pwl_cost

* Units & Scaling: external this eq.

* 1x vInstantFuel BTUe9/hr to BTUe9/hr

* 1x slope MMBTU/MWh to BTUe9/GWh

* 1x intercept BTUe9/hr

* 1x vPwrOut GW

* 1x vUnitCommit integer (no units)
ePiecewiseFuelByGen (B, T, G, HR_SEG, S)$( B_SIM(B)

and ( PWL_COST_SEG(G, HR_SEG) and pGen(G,’gen_size’, S) > 0) )
..

vInstantFuel(B, T, G, S) =g= pGenHrSegments (G, HR_SEG, ’slope’)*vPwrOut(B, T,G,S)
+ pGenHrSegments (G, HR_SEG, ’intercept’)*vUnitCommit(B, T,G,S)$G_UC(G)

* For units not under unit commitment, divide up the p0 fuel usage such that it is fully

* accounted for at the p0_recover output level (typically 85%).

+ pGenHrSegments (G, HR_SEG, ’intercept’)/pGen(G,’gen_size’,S)/%p0_recover%

*vPwrOut(B, T,G,S)$(not G_UC(G))
;

$endif

* == Total Fuel Consuption by Generator (eFuelUse)

* Includes both startup and instantaneous use

*
* Units & Scaling: external this eq.

* 1000x vFuelUse BTUe12 to BTUe9

* 1x vInstantFuel BTUe9/hr

* 1x Demand(dur) hr

* 1x fuel_start BTUe9/start
eFuelUse(F,G,S)$(GEN_FUEL_MAP(G,F)) .. vFuelUse(F,G,S)*1000 =e= sum[(B_SIM, T),

vInstantFuel(B_SIM, T, G, S)*pDemand(B_SIM, T, ’dur’, S)
$ifthen set startup

+ vStartup(B_SIM, T, G, S)$(G_UC(G)) * pGen(G, ’
fuel_start’, S)

$endif
];

*====== Constraints

* == Supply/Demand Balance (eDemand)

* It is important to use equality here, since we are interested in effects of minimum output limits, etc
.

*
* Note: reserves are enforced in separate equations below

*
* Units & Scaling: external this eq.

* all in GW
eDemand (B, T,S)$B_SIM(B) .. sum[(G), vPwrOut(B, T, G,S)]
$ifthen not set no_nse

+ vNonServed(B, T,S)
$endif

=e= pDemand(B, T,’power’,S);

$ifthen.no_rsrv NOT set rsrv

*====== Generation output less than upper limit(s)

* Here we only worry about non-reserve limits. With reserves these equations will be

* replaced with expanded versions from the shared file AdvPwrReserves. Still there are

* multiple cases of interest:

*
* 1) Simplest (ePwrMax) is power out < installed capacity, with adjustments described below

* 2) For generation subject to unit commitment, things change slightly since we now only output

* power up to the number of units that are turned on (ePwrMaxUC)

* Furthermore, we might choose to derate the power output of the plant separately from

* availability (typically for simple models), this can be done by taking the minimum of availability

* and the derate factor. Since both are parameters, this is a valid (MI)LP formulation. Note that

* this derating is already taken into account for in eUnitCommit for the UC equations.

* == Output must be below the generator upper limits (ePwrMax)

*Note: the $subset(setname) format only defines the equation for members of G that are also in G_UC

*Note: Availability is handled in eState for unit commitment constrained generators

*
* Units & Scaling:

* vPwrOut & capacity GW

* derate & pGenAvail p.u.
ePwrMax (B, T, G, S)$( B_SIM(B)

and (not G_UC(G)) ) ..
vPwrOut(B, T, G, S) =l= %capacity_G% *
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$ifthen set derate
min( pGen(G, ’derate’, S),

$else
(

$endif
pGenAvail(B, T, G, S)

);

* == Output Upper Limit for UnitCommitment Gens (ePwrMaxUC)

*
* Units & Scaling:

* vPwrOut & gen_size GW

* vUnitCommit integer
ePwrMaxUC (B, T, G, S)$( B_SIM(B)

and G_UC(G)
and pGen(G, ’gen_size’, S) ) ..

vUnitCommit(B, T,G,S) * pGen(G, ’gen_size’, S) =g= vPwrOut(B, T, G, S);

*====== Generation output greater than lower limit(s)

* Here we find a complementary situation to the PwrMax equations described above

* (Still only included if no reserves defined)

* == Power greater than lower limits (ePwrMin)

* For simple models we might use a "technology minimum output" as a proxy for

* baseload plants. This lower limit is applied to entire generator category and is ignored by

* using p_min=0 or not defining p_min (unspecified parameters default to zero).

*
* Units & Scaling:

* vPwrOut & capacity GW

* p_min p.u.
ePwrMin (B, T, G, S)$B_SIM(B) .. vPwrOut(B, T, G, S) =g= %capacity_G% * pGen(G,’p_min’, S);

* == Power greater than lower limits for Unit Commitment (ePwrMinUC)

* Minimum power output for commitment generators under UC

*Note: the $subset(setname) format only defines the equation for members of G that are also in G_UC

*
* Units & Scaling:

* vPwrOut & unit_min GW

* vUnitCOmmit #units
ePwrMinUC (B, T, G, S)$( B_SIM(B)

and G_UC(G) )
.. vPwrOut(B, T, G, S) =g= vUnitCommit(B, T,G,S) * pGen(G, ’unit_min’,S);

$endif.no_rsrv

*====== Additional Constraints

* == Renewable Portfolio Standard (eRPS)

* renewable energy / total energy > RPS

*
* Units & Scaling:

* vPwrOut GW

* Demand(dur) hr

* pRPS p.u.
eRPS(S) .. sum[(B_SIM, T, G_RPS), vPwrOut(B_SIM, T, G_RPS,S)*pDemand(B_SIM, T, ’dur’,S)]
$ifthen set rps_penalty

+ vUnderRPS(S)
$endif

=g=

pRPS(S)*sum[(G, B_SIM, T), vPwrOut(B_SIM, T,G,S)*pDemand(B_SIM, T, ’dur’, S)];

* == Carbon Limit (eCarbonCap)

* Units & Scaling:

* all in Mt CO2(e)
eCarbonCap(S) .. sum[(G), vCarbonEmissions(G, S)] =l= pCarbonCap(S);

* == Force use of renewables if required (eForceRenewables)

*force the use of all renewable output (up to 100% of load)
$ifthen.force_re set force_renewables
$ifthen.fix_cap set fix_cap

* Units & Scaling:

* vPwrOut, cap_cur, pDemand(power) GW

* pGenAvail p.u.

* If capacity if fixed, we can use minimum of available power and demand (both parameters)
eForceRenewables(B, T, S)$(B_SIM(B)) .. sum[(G)$G_RPS(G), vPwrOut(B, T, G, S)] =e=

min( sum[(G)$G_RPS(G), pGen(G,’cap_cur’, S)*pGenAvail(B, T,G,S)], pDemand(B, T, ’
power’, S) );

$else.fix_cap

* But if capacity is a decision variable, it is non-linear to use in the min, so we simply

* take all power. This will break if we have instant renewable power out > demand.

*
* Units & Scaling:

* vPwrOut, cap_cur, vNewCapacity GW

* pGenAvail p.u.
eForceRenewables(B, T, G, S)$( B_SIM(B)

and G_RPS(G) )
.. vPwrOut(B, T, G, S) =e=

(pGen(G,’cap_cur’,S) + vNewCapacity(G,S)) * pGenAvail(B, T,G,S);
$endif.fix_cap
$endif.force_re

*====== Unit Commitment Constraints

* == Limit commitments to available capacity (eUnitCommit)

*Note: the $subset(setname) format only defines the equation for members of G that are also in G_UC

* Units & Scaling:

* vUnitCommit #units (# of gens)

* gen_size GW/unit

* capacity_G GW

* pGenAvail, derate p.u.
eUnitCommit(B, T,G,S)$( B_SIM(B)

and G_UC(G) )
.. vUnitCommit(B, T,G,S)

=l=
%capacity_G% / pGen(G, ’gen_size’,S) *

$ifthen set derate
min( pGen(G, ’derate’,S),

$else
(

$endif
pGenAvail(B, T, G, S)
);

* == Integerization for required gens (eUnitCommitInteger)

* This simple equation works since vUcInt is defined as an integer variable, and hence the

* otherwise continuous vUnitCommit will take on integer values as well for all members of the

* G_UC_INT subset. The redundant continuous variable should be removed during (MI)LP pre-solve
$ifthen.not_uc_lp not set uc_lp
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eUnitCommitInteger(B, T,G,S)$(B_SIM(B) and G_UC_INT(G) ) .. vUnitCommit(B, T,G,S) =e= vUcInt(B, T,G,S
);

eStartUpInteger(B, T, G, S)$(B_SIM(B) and G_UC_INT(G) ) .. vStartUp(B,T,G,S) =e= vStartInt(B,T,G,S);
eShutDownInteger(B, T, G, S)$(B_SIM(B) and G_UC_INT(G) ) .. vShutDown(B,T,G,S) =e= vShutInt(B,T,G,S);

$endif.not_uc_lp

* == If startup costs or restrictions in use, compute startup & shutdowns (eState)
$ifthen set compute_state

*Note: the $subset(setname) format only defines the equation for members of G that are also in G_UC
eState (B, T,G,S)$(B_SIM(B) and G_UC(G)) ..

vUnitCommit(B, T,G,S)
=e= vUnitCommit(B, mDemShift(T,1),G,S) + vStartUp(B, T,G,S) - vShutDown(B, T,G,S);

$endif

* == Limit the total number of startups per generator group (eMaxStart)

* Note: pGen(max_start) already scaled from starts/yr to starts/model_timeframe by AdvPwrDataRead

*
* Units & Scaling:

* vStartUp starts, summed over all demand periods.

* gen_size GW/unit

* capacity_G GW

* max_start starts/unit/model_duration
$ifthen set max_start

eMaxStart(G,S)$( (pGen(G,’gen_size’,S) > 0) and (pGen(G, ’max_start’,S) < Inf) ) ..
sum[(B_SIM, T), vStartUp(B_SIM, T,G,S)] =l= %capacity_G% / pGen(G,’gen_size’,S) * pGen(G, ’

max_start’,S);
$endif

*====== Ramping Constraints ======
$ifthen.ramp_eq set ramp

* ===== Ramping for Clusters

* In this case, we restrict ramping to the limits of plants that are on-line for both this period

* and last period + the unit minimums for any units that startup or shutdown. Using the unit

* minimums is logical for startup, but conservative for shutdown because it forces units to ramp

* down before shutting off. It is tempting to use gen_size of shutdowns for ramp down, but this

* is likely incorrect because the plant is probably not running at full output power.

*
* Note: this constraint is made trickier by our use of lumped integer commitment since we don’t know

* output levels for individual units.

* == Upward Ramp Limits with Unit Commitment (eRampUpLimitUC)

* Use these integer based limits for technologies with integer unit_commitments

* For UC ramp-up = ramp rate for committed units + startups

* with startups limited either by min_out or by ramp_rate for new units

*
* Note: We ignore demand block durations and impose this limit between blocks

*
* Units & Scaling:

* vPwrOut, unit_min GW

* gen_size GW/unit

* ramp_max p.u./hr

* vUnitCommit, vStartup #units

eRampUpLimitUC(B, T,G,S)$( B_SIM(B)
and G_UC(G)
and G_RAMP(G) )

.. vPwrOut(B, T, G, S) - vPwrOut(B, mDemShift(T,1), G, S)
=l=
pGen(G, ’ramp_max’, S)*pGen(G, ’gen_size’, S)

* (vUnitCommit(B,T,G,S) - vStartup(B,T,G,S))
+ min(pGen(G, ’gen_size’, S),

max(pGen(G, ’unit_min’, S),

pGen(G, ’quick_start’, S)*pGen(G, ’gen_size’, S),
pGen(G, ’ramp_max’, S)*pGen(G, ’gen_size’, S)
)

)*vStartup(B,T,G,S)
- pGen(G, ’unit_min’, S)*vShutdown(B,T,G,S);

* == Downward Ramp Limits with Unit Commitment (eRampDownLimitUC)

* For UC ramp-down = ramp rate for committed units + shutdowns

* with shutdowns limited either by min_out or by ramp_rate for new units

*
* Note: We ignore demand block durations and impose this limit between blocks

*
* Units & Scaling:

* vPwrOut, unit_min GW

* gen_size GW/unit

* ramp_max p.u./hr

* vUnitCommit, vShutDown #units
eRampDownLimitUC(B, T,G,S)$( B_SIM(B)

and G_UC(G)
and G_RAMP(G))

..
vPwrOut(B, mDemShift(T,1), G, S) - vPwrOut(B, T, G, S)
=l=
pGen(G, ’ramp_max’, S)*pGen(G, ’gen_size’, S)

* (vUnitCommit(B,T,G,S) - vStartup(B,T,G,S))
- pGen(G, ’unit_min’, S)*vStartup(B,T,G,S)
+ min(pGen(G, ’gen_size’, S),

max(pGen(G, ’unit_min’, S),
pGen(G, ’ramp_max’, S)*pGen(G, ’gen_size’, S)
)

)*vShutDown(B,T,G,S);

* == Upward Ramp Limits for non-Unit-Commitment generators (eRampUpLimit)

* Use total capacity based limits for everything else

* Rather than using the De Jonghe, et al 2011 ramping formulation based on FlexUp and FlexDown

* we use explicit ramping limit relations. We do this b/c FlexUp and FlexDown try to capture

* flexibility _within_ the hour, rather than between hours as in ramping

*
* This equation replaces eq 14 in De Jonghe, et al 2011. Here we simply assume that

* all capacity can contribute to ramping, since a given power out level could be from units

* running under full capacity. This limit exactly matches the UC limit if we assume all non-UC

* units are always running. It can over & under estimate with startup/shutdown.

*
* Note: We ignore demand block durations and impose this limit between blocks

*
* Units & Scaling:

* vPwrOut, capacity GW

* ramp_max, quick_start p.u./hr

* pGenAvail p.u.

eRampUpLimit(B, T,G,S)$( B_SIM(B)
and G_RAMP(G)
and not G_UC(G) ) ..

vPwrOut(B, mDemShift(T,1), G, S) - vPwrOut(B, T, G, S)
=l=
max(pGen(G, ’ramp_max’, S), pGen(G, ’quick_start’, S))

* ( %capacity_G% *pGenAvail(B, T, G, S));

* == Downward Ramp Limits for non-Unit-Commitment generators (eRampDownLimit)

* Likewise, this equation replaces eq 15 in De Jonghe, et al 2011. Here we simply assume that

* all capacity can contribute to ramping, since a given power out level could be from units
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* running under full capacity. This limit exactly matches the UC limit if we assume all non-UC

* units are always running. It can over & under estimate with startup/shutdown.

*
* Units & Scaling:

* vPwrOut, capacity GW

* ramp_max p.u./hr

* pGenAvail p.u.

eRampDownLimit(B, T,G,S)$( B_SIM(B)
and G_RAMP(G)
and not G_UC(G) ) ..

vPwrOut(B, mDemShift(T,1), G, S) - vPwrOut(B, T, G, S)
=l=
pGen(G, ’ramp_max’, S) * (%capacity_G%*pGenAvail(B,T,G,S));

$endif.ramp_eq

*================================*
* Handle The Data *
*================================*

* Read in standard data file set & handle command-line overrides. Including

* -- sys, gens, demand, fuel, & avail data

* -- update file

* -- command-line overrides including: demscale, rps, co2cost, co2cap

* -- additional options including: force_gen_size, min_gen_size, basic_pmin,

* uc_ignore_unit_min, avg_avail

* Also computes sub-sets for G_UC, G_RPS, G_WIND, G_RAMP
$include %shared_dir%AdvPwrDataRead

* ====== Additional Calculations...

* == Identify generators for piecewise linear approximations

* Start by excluding all generators, which also sets thing properly for the non-pwl_cost case
G_PWL_COST(G) = no;

* Then if pwl_cost is set, we include any generator’s that have a non-zero slope or intercept

* for the first segment, and include any segments with non-zero slope or intercepts
$ifthen set pwl_cost

G_PWL_COST(G)$( (pGenHrSegments (G, ’seg1’, ’slope’) <> 0)
or (pGenHrSegments (G, ’seg1’, ’intercept’)) ) = yes;

PWL_COST_SEG(G, HR_SEG)$( (pGenHrSegments (G, HR_SEG, ’slope’) <> 0)
or (pGenHrSegments (G, HR_SEG, ’intercept’) <> 0) ) = yes;

$endif

* == Compute max integers for unit_commitment states

*Note: by default GAMS restricts to the range 0 to 100 so this provides two features:

* 1) allowing for higher integer numbers for small plant types as required for a valid solution

* 2) Restricting the integer search space for larger plants

*Important: For capacity expansion problems, this parameter MUST be changed to account for new plants

$ifthen.max_plants %model_name% == UnitCommit

*Here we simply use the current capacity divided by the plant size.
pMaxNumPlants(G, S)$pGen(G, ’gen_size’, S) = ceil(pGen(G, ’cap_cur’, S)/pGen(G, ’gen_size’, S));

$ifthen set unit_commit
vUcInt.up(B_SIM, T, G_UC, S) = pMaxNumPlants(G_UC, S);

$endif

$ifthen not set uc_lp
vStartInt.up(B_SIM, T, G_UC, S) = pMaxNumPlants(G_UC, S);
vShutInt.up(B_SIM, T, G_UC, S) = pMaxNumPlants(G_UC, S);

$endif

$ifthen set maint
vOnMaint.up(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) = ceil(%max_maint% * pMaxNumPlants(G, S));
vMaintBegin.up(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) = ceil(%max_maint% * pMaxNumPlants(G, S));
vMaintEnd.up(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) = ceil(%max_maint% * pMaxNumPlants(G, S));

*Fix maintenance at zero if maintenance not required
vOnMaint.fx(B, G, S)$(pGen(G, ’maint_wks’, S) = 0) = 0;

vMaintBegin.fx(B, G, S)$(pGen(G, ’maint_wks’, S) = 0) = 0;
vMaintEnd.fx(B, G, S)$(pGen(G, ’maint_wks’, S) = 0) = 0;

$endif

$endif.max_plants

* ===== Take some initial guesses =====
vNonServed.l(B_SIM, T, S) = 0;

*================================*
* Additional Data Processing *
*================================*

* Enable $ variables from included model(s) to propagate back to this master file
$onglobal

* Include water limiting equations and associated parameters and variables
$if set calc_water $include %shared_dir%WaterDataSetup

* Disable influence of $ settings from sub-models
$offglobal

*================================*
* Solve & Related *
*================================*
*Only run the rest of this file if we are the main function.
$ifthen.we_are_main %model_name% == UnitCommit

* ====== Setup the model

* Skip this definition if we are doing a restart
model %model_name% /all/;

* ====== Adjust Solver parameters

* Enable/Disable Parallel processing
$if not set par_threads $setglobal par_threads 1
$if not set lp_method $setglobal lp_method 4

*Create a solver option file
$onecho > cplex.opt

* Note: the number of threads can either be specified explicitly or using "0" for use all cores
threads %par_threads%

*Parallel mode. Options:

* 1=deterministic & repeatable, 0=automatic, -1=opportunistic & non-repeatable
parallelmode %par_mode%

* Conserve memory when possible... hopefully avoid crashes b/c of memory
memoryemphasis 1

* Declare solution method for pure LP, RMIP, and final MIP solve.

* Options: 0=automatic, 2=Dual Simplex, 4=barrier, 6=concurrent (a race between

* dual simplex and barrier in parallel)

*
* Sometimes barrier is notably faster for operations problems, but more often dual simplex wins

* Barrier is often better for planning problems
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LPmethod %lp_method%

* Solution method for solving the root MIP node. See description and options for LPmethod above
startalg %lp_method%

* Solution method for solving sub MIP nodes. See description and options for LPmethod above

* subalg %lp_method%

* Tighten LP tolerance (default 1e-6). For problems with objective values close to 1, this

* may be necessary to find the true optimal. In particular, with MILP, using the default can

* cause the final LP solve to stop short of finding the best node from the MILP branch-and-cut

* Surprisingly, a tighter tolerance can also achieve FASTER run times for MILP, presumably

* because the nodes can be compared more carefully.
epopt 1e-9

* Stay with barrier until the optimal solution is found rather than crossing over to simplex

* This can run much faster for these problems, because the final simplex iterations can be

* slow and b/c the cross-over itself takes a good bit of time. However, the approach is not

* robust and can fail or be slower than the default behavior. Not recommended with barrier

* alone (LPmethod = 4) b/c may not converge. Consider for concurrent optimization.

*barcrossalg -1

* Ignore small (dual) infeasibilities in the final LP solve. Without this setting, occasionally

* CPLEX will get unhappy with an infeasibility on the order of 1e-6
relaxfixedinfeas 1

*enable relative epsilon optimal (cheat) parameter

*This value is not used if cheat is defined
relobjdif %rel_cheat%

$offecho

*Tell GAMS to use this option file
%model_name%.optfile = 1;

* ====== Tune performance with some initial guesses and settings to speed up the solution
$if set cheat %model_name%.cheat = %cheat%;

* ====== Check command line options

* Check spelling of command line -- options

* Notes:

* - all command line options have to have either been used already or be listed

* here to avoid an error. We place it here right before the solve statment such that

* if there is an error, we don’t wait till post solution to report the problem
$setddlist ignore_integer summary_only summary_and_power_only memo gdx out_gen_params out_gen_avail

out_gen_simple p2c_debug debug_off_maint

* ====== Actually solve the model
$ifthen set ignore_integer

solve %model_name% using RMIP minimizing vObjective;
$else

solve %model_name% using MIP minimizing vObjective;
$endif

*================================*
* Postprocessing *
*================================*

* ====== Post processing computations

* Most of these calculations are standardized in ../shared/calcSummary.gms
$include %shared_dir%calcSummary.gms

* ====== Write Standard Results to CSV files

*-- Suppress CSV output if no_csv flag is set
$if "no_csv = 1" $ontext
$include %shared_dir%writeResults.gms

*-- end of output suppression when no_csv flag is set
$if "no_csv = 1" $offtext

$if set gdx execute_unload ’%out_dir%%out_prefix%solve.gdx’

* Write value of all control variables to the list file (search for Environment Report)
$show

$endif.we_are_main

ListingD.3: AdvPwrDataRead.gms: shared include file to read and pre-process data files.

*================================*
* Handle The Data *
*================================*

* ====== Include Data files

* ---- Big picture problem setup

* Read in the scenario list first, if defined, so that we can properly populate the S set

* during subsequent data file reads
$ifthen set scen
$include %data_dir%%scen%

* If no scenario list is defined, establish a baseline default with only one scenario
$else
set
S "scenario for multi-period and stochastic problems"

/onlyS/
;

pScenWeight(’onlyS’) = 1;
$endif

* By default use test_sys.inc if not not passed at the command line
$if NOT set sys $setglobal sys test_sys.inc

* Actually do include the system data definition file

* Note: often includes defaults for fuel, demand, gens, gparams, and/or avail
$include %data_dir%%sys%

* ---- Read-in scenario independent data tables

* Initially read in complete, baseline data from data files (not scenario differentiated)

* using the p*Data set of parameters that are not indexed by S
$if set fuel $include %data_dir%%fuel%
$if set demand $include %data_dir%%demand%

* Note: include demand before gens, so can use the demand levels for time varying availabiilty
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$if set gens $include %data_dir%%gens%

* Use default generator parameters when needed
$ifthen set gparams

* First read in the data
$include %data_dir%%gparams%

* Then for any generator parameter that has a zero value, fill in the missing data

* from the corresponding default value.

*
* We do this before reading in availability data since the availability data might rely on

* information provided by the Gparams table

*
* Note: in this case the smax function is used to pull out a single matching data item. It

* is expected that there is only one match in the pGenDefaults table.
pGenData(G,GEN_PARAMS)$(not pGenData(G,GEN_PARAMS))

= smax[(GEN_TYPE)$( pGenData(G,’type’)=pGenDefaults(GEN_TYPE,’type’) ),
pGenDefaults(GEN_TYPE, GEN_PARAMS)];

* Summary data expresses minimum output in per unit. So here we convert to a power output level.
pGenData(G,’unit_min’)$(not pGenData(G,’unit_min’))

= pGenData(G,’unit_min_pu’) * pGenData(G,’gen_size’);
$endif

* Divide out maintenance cost per week from O&M for any entries with maint req’d & no

* specific maintenance cost set (a zero value for c_maint_wk implies no specific cost set)
$ifthen set maint
$if not set maint_om_fract $setglobal maint_om_fract 0.5

set
G_OM_Maint(G) "Subset of gens to divide fixed O&M costs among maint_wks"
;

G_OM_Maint(G)$(pGenData(G, ’maint_wks’) > 0 and pGenData(G, ’c_maint_wk’) = 0) = yes;

pGenData(G, ’c_maint_wk’)$G_OM_Maint(G)
= %maint_om_fract% * pGenData(G, ’c_fix_om’) / (pGenData(G, ’maint_wks’));

pGenData(G, ’c_fix_om’)$G_OM_Maint(G)
= (1-%maint_om_fract%) * pGenData(G, ’c_fix_om’);

$endif

*Handle retirements
$ifthen set retire

*Setup a parameter so we can subtract from both cap_cur and cap_max
parameter

pCapToRetire(G) "Current capacity to retire GW"
;
pCapToRetire(G) = %retire% * pGenData(G, ’cap_cur’);
pGenData(G, ’cap_cur’) = pGenData(G, ’cap_cur’) - pCapToRetire(G);
pGenData(G, ’cap_max’) = pGenData(G, ’cap_max’) - pCapToRetire(G);

$endif

*Read in availability data. If not specified, assume 100% availability for all
$ifthen set avail
$include %data_dir%%avail%
$else

pGenAvail(B, T,G,S) = 1;
$endif

* ---- Match our scenario independent p*Data with the corresponding scenario indexed parameter
pFuel(F, FUEL_PARAMS, S) = pFuelData(F, FUEL_PARAMS);
pDemand(B, T, DEM_PARAMS, S) = pDemandData(B, T, DEM_PARAMS);
pGen(G, GEN_PARAMS, S) = pGenData(G, GEN_PARAMS);

*If we have an availability matching demand set (D_AVAIL)

$ifthen.d_avail defined D_AVAIL

*Pull out the subset of availability data that matches our in-use demand periods

* Note: the mapping takes a few seconds for large data sets, consider a dedicated pGenAvail

* for commonly used large data sets

* The mapping set was ~4x faster than attempting to put the conditional directly in the smax[]
set

AVAIL_MAP(B, T, D_AVAIL)
;
AVAIL_MAP(B,T,D_AVAIL)$(pDemandData(B,T,’avail_idx’) = ord(D_AVAIL)) = yes;

$ifthen defined pGenAvailDataByScen
pGenAvail(B, T, G, S) = smax[(D_AVAIL)$AVAIL_MAP(B, T, D_AVAIL), pGenAvailDataByScen(D_AVAIL, G, S)

];
$elseif defined pGenAvailData

pGenAvail(B, T, G, S) = smax[(D_AVAIL)$AVAIL_MAP(B, T, D_AVAIL), pGenAvailData(D_AVAIL, G)];

$endif
$else.d_avail

*Otherwise, assume matching B, T set membership and copy to all scenarios
$ifthen defined pGenAvailDataByScen

pGenAvail(B, T, G, S) = pGenAvailDataByScen(B, T, G, S);
$elseif defined pGenAvailData

pGenAvail(B, T, G, S) = pGenAvailData(B, T, G);
$endif
$endif.d_avail

* ---- Process Scenario Value file

*
* Note this file works in S space, so most parameters must be indexed by S and the

* scenario dependent parameters: pFuel, pDemand, pGen, and pGenAvail should be used. Changes

* to the p*Data parameters (pGen, pDemand, etc) will NOT be used
$if set scen_val $include %data_dir%%scen_val%

* ---- Process update file.

* Now allow for updates to any of the parameters for easier interfacing to external programs

* by loading this file after all of the core data, we can update the actual values used in the

* optimization. (Note: only possible b/c $onmulti used)

*
* Note the update file works in S space, so most parameters must be indexed by S and the

* scenario dependent parameters: pFuel, pDemand, pGen, and pGenAvail should be used. Changes

* to the p*Data parameters (pGenData, pDemandData, etc) will NOT be used
$if set update $include %update%

*Return to listing in the output file
$if not set debug $onlisting

* ===== Additional Command Line Parameters

*override CO2 price with command line setting if provided
$if set co2cost pCostCO2(S)=%co2cost%;

*override Demand scaling with command line setting if provided
$if set demscale pDemandScale(S)=%demscale%;

*override RPS level with command line setting if provided
$if set rps pRPS(S)=%rps%;

*override Carbon Cap (Kt) with command line setting if provided
$if set co2cap pCarbonCap(S)=%co2cap%;

*override planning margin value if provided a fraction < 100% (no spaces allowed)
$if set plan_margin $if not "%plan_margin%"=="on" $if not "%plan_margin%"=="off" $ife %plan_margin%<1

pPlanReserve=%plan_margin%;
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*allow user to specify a uniform gen_size
$if set force_gen_size pGen(G,’gen_size’, S) = %force_gen_size%;

*and minimum plant size
$if set min_gen_size pGen(G,’gen_size’, S) = max(pGen(G,’gen_size’, S), %min_gen_size%);

*remove p_min value if not used
$if not set basic_pmin pGen(G, ’p_min’, S) = 0;

*Zero out capital costs if not used
$if set no_capital pGen(G, ’c_cap’, S) = 0;

*Set derating for maintenance only if requested
$if set derate_to_maint pGen(G, ’derate’, S) = 1-pGen(G, ’maint_wks’, S)/52;

*Zero out quickstart fraction of spin/flex reserves when disabled
$if set no_quick_st pQuickStSpinSubFract = 0;

*================================*
* Additional Calculations *
*================================*
* ====== Calculate subsets

*only include elements where the generator fuel name parameter matches the fuel name parameter
GEN_FUEL_MAP(G, F)$(pGenData(G,’fuel’) = pFuelData(F,’name’)) = yes;

*only solve unit commitment for plants with non-zero minimum outputs
$if NOT set uc_ignore_unit_min $setglobal uc_ignore_unit_min 0
$if NOT set uc_int_unit_min $setglobal uc_int_unit_min 0

** Assign gens to unit commitment sets

*start by setting all to not included
G_UC(G) = no;
G_UC_INT(G) = no;

*then add in if needed, note duplicate code b/c $ifthen doesn’t like or
$if set unit_commit $setglobal unit_commit %unit_commit%
$ifthen.uc_set set unit_commit
$ifthen.uc_on "%unit_commit% test" == "on test"

G_UC(G)$(pGenData(G,’unit_min’) > %uc_ignore_unit_min%) = yes;
G_UC_INT(G)$(G_UC(G) and (pGenData(G,’unit_min’) > %uc_int_unit_min%)) = yes;

$elseif.uc_on %unit_commit% == 1
G_UC(G)$(pGenData(G,’unit_min’) > %uc_ignore_unit_min%) = yes;
G_UC_INT(G)$(G_UC(G) and (pGenData(G,’unit_min’) > %uc_int_unit_min%)) = yes;

$endif.uc_on
$endif.uc_set

*include all wind, solar, and geotherm plants in the RPS standard
acronyms wind, solar, geotherm;
G_RPS(G)$(pGenData(G,’fuel’) = wind) = yes;
G_RPS(G)$(pGenData(G,’fuel’) = solar) = yes;
G_RPS(G)$(pGenData(G,’fuel’) = geotherm) = yes;

*create set for wind generators (for increased reserve requirements)
G_WIND(G)$(pGenData(G,’fuel’) = wind) = yes;

*Only worry about ramping for plants with ramp limits < 1
G_RAMP(G)$(pGenData(G,’ramp_max’) < 1) = yes;

*Handle time/demand subsets

* Note: for simple demand subsets to work, three control variables must be defined:

* d_subset: flag to use subsets, rather than all demand periods

* d_start: first demand block to include (an integer)

* d_end: last demand block to include (an integer)

$ifthen.d_subset set d_subset
$ifthen.d_start set d_start
$ifthen.d_end set d_end

B_SIM(B)$( ord(B) >= %d_start% and ord(B) <= %d_end% ) = yes;
$endif.d_end
$endif.d_start
$else.d_subset

B_SIM(B) = yes;
$endif.d_subset

* ====== Calculate parameters

*Scale demand
pDemand(B, T,’power’, S) = pDemandScale(S) * pDemand(B, T,’power’, S);

*compute capital recovery factor (annualized payment for capital investment)
$if declared pCRF
pCRF(G)$(pGenData(G, ’cap_max’)) = pWACC/(1-1/( (1 + pWACC)**pGenData(G,’life’) ));

*Remove Wind driven Flex Down constraints if we allow wind shedding. b/c rather than

*ramping thermal down, we could simply shed wind
$ifthen.rsrv set rsrv
$ifthen not set force_renewables

pWindFlexDownForecast = 0;
pWindFlexDownCapacity = 0;

$endif
$endif.rsrv

* -- Use piecewise linear data for affine parameters if requested
$ifthen set pwl2afine

* If the generator has a defined first segment, extract & use the segment with the highest

* slope which b/c we assume concave, will be the last segment
pGen(G,’heatrate’, S)$(pGenHrSegments(G,’seg1’,’slope’))

= smax[(HR_SEG), pGenHrSegments(G,HR_SEG, ’slope’)];

* If the generator has a defined first segment, extract & use the segment with the lowest

* intercept that also has a positive slope which b/c we assume concave, will be the last segment
pGen(G,’p0_fuel’, S)$(pGenHrSegments(G,’seg1’,’slope’))

= smin[(HR_SEG)$(pGenHrSegments(G,HR_SEG, ’slope’) > 0),
pGenHrSegments(G,HR_SEG, ’intercept’)];

$endif

*Assign +INF to the cost of non served energy if it is not allowed
$if set no_nse pPriceNonServed = +inf;

display "Generator Data Table after AdvPwrDataRead...";
display pGen;

$ifthen.debug_avail set debug_avail
$ifthen defined pGenAvailData

display "Raw Availability Data";
display pGenAvailData;

$endif
$ifthen defined pGenAvailDataByScen

display "Raw Availability Data by Scenario";
display pGenAvailDataByScen;

$endif
display "Availability Table after demand period matching";
display pGenAvail;

$endif.debug_avail

* ====== Demand period based parameters
parameters
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* Additional Parameters that may not have been defined
pGenAvgAvail (G, S) "average availability (max capacity factor)"

pTotalDurationHr(S) "the total time for the demand data in hrs"
pFractionOfYear (S) "fraction of year covered by the simulation"
pDemandMax(S) "maximum demand for scenario [GW]"
pDemandAvg(S) "average demand for scenario [GW]"
pBlockDurWk(B, S) "duration for each block in weeks"

;

pTotalDurationHr(S) = sum[(B, T), pDemand(B, T, ’dur’, S)];
pFractionOfYear(S) = pTotalDurationHr(S)/8760;
pBlockDurWk(B, S) = sum[(T), pDemand(B, T, ’dur’, S)] / 168;

$ifthen set debug_block_dur
display "Block durations in weeks";
display pBlockDurWk;

$endif

*Find resulting max demand

pDemandMax(S) = smax[(B, T), pDemand(B, T, ’power’, S)];

*And resulting average demand
pDemandAvg(S) = sum[(B, T), pDemand(B, T, ’power’, S)*pDemand(B, T, ’dur’, S)] / pTotalDurationHr(S);

*Compute average availability for each generator
pGenAvgAvail(G, S) = sum[(B, T), pGenAvail(B, T, G, S)*pDemand(B, T, ’dur’, S)] / pTotalDurationHr(S);

*Convert time varying to average availabilities if desired
$ifthen set avg_avail

pGenAvail(B, T,G,S) = pGenAvgAvail(G,S);
$endif

* -- Scale annual values based on total simulation time

* max_num of startups
$ifthen set max_start

pGen(G, ’max_start’, S) = round(pGen(G, ’max_start’, S) * pFractionOfYear(S));
$endif

$setglobal data_has_been_read
$label label_skip_data_read

ListingD.4: AdvPwrSetup.gms: shared include file to setup GAMS options, directories, and macros.

*================================*
* Setup *
*================================*

* ====== GAMS Options

*display $dollar commands in lst file (for easier pre-compiler debugging)
$ondollar

* Allow declaration of empty sets & variables
$onempty

* Allow additions to set elements with multiple set definitions
$onmulti

* Include symbol list in LST file
$onsymlist

*Enable alternate loop syntax using end* rather than ()’s
$onend

*get a more precise MIP solution (optcr is relative convergence). GAMS default is only 10%
$if not set mip_gap $setglobal mip_gap 0.001
option optcr=%mip_gap%

*Allow for extra execution time. units are seconds of execution (needed to extend the GAMS default

* of only 1000 to successfully solve larger problems)
$if not set max_solve_time $setglobal max_solve_time 10800
option reslim = %max_solve_time%;

*Default to not using a relative cheat parameter
$if NOT set rel_cheat $setglobal rel_cheat 0

*Default to deterministic parallel mode
$if NOT set par_mode $setglobal par_mode 1

* Reduce the size of the LST file

* Turn off equation listing, (unless debug on) see below

* Note: limrow specifies the number of cases for each equation type that are included in the output
option limrow = 0;

* Turn off variable listing, (unless debug on) see below

* Note: limrow specifies the number of cases for each equation type that are included in the output
option limcol = 0;

*=== Solution Output options

* Enable csv output by default
$if NOT set no_csv $setglobal no_csv 0

* Turn off solution printing unless csv output is disabled
$ifthen %no_csv% == 1

option solprint = on ;
$else

option Solprint = off ;
$endif

*=== Debug options

*enable additional debugging information
$ifthen set debug

* include 10 example equation of each type
option limrow = 10;

* inlude 10 example variables of each type
option limcol = 10;

* Include solver output information
option sysout = on;

* Print the solution (seems to happen even if turned off 11/2010 -BSP)
option solprint = on;

* Include symbol cross-reference in LST file
$onsymxref

* Include summary execution times to identify slow assignments, etc.
option profile = 1;
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* Limit profile statements to those that take longer than 10msec
option profiletol = 0.01;

$endif

* ====== Setup directories

* By default look for data in the sibling directory "data"
$if NOT set data_dir $setglobal data_dir ..%filesep%data%filesep%

* By default store output in the sub-directory "out"
$if NOT set out_dir $setglobal out_dir out%filesep%

* By default look for utilities in sibling directory "util"
$if NOT set util_dir $setglobal util_dir ..%filesep%util%filesep%

* ====== Define Macros

* mDemShift, this is a general replacement for the set - and -- operators that allows

* the user to control whether or inter-demand period constraints loop"

$ifthen not set no_loop
$macro mDemShift(d_set, shift) d_set -- shift
$else
$macro mDemShift(d_set, shift) d_set - shift
$endif

* mDelFile, Delete an operating system file (quietly)

* Choose appropriate system delete function using filesep as a proxy for Unix-like vs Windows

* Note that both forms, quietly ignore any missing files
$ifthen %filesep% == "/"
$macro mDelFile(fname) execute "=rm -f &&fname"
$else
$macro mDelFile(fname) execute "=if exist &&fname del &&fname"
$endif

$setglobal setup_complete
$label label_skip_setup

ListingD.5: MaintenanceEquations.gms: shared include file for clustered maintenance.

*================================*
* Declarations *
*================================*
* ====== Declare Control Variables

* Default to 15% of capacity maximum on maintenance (plus 1, so always feasible)
$if not set max_maint $setglobal max_maint 0.15

* ====== Declare Parameters
parameter

pBlockDurWk(B, S) "duration for each block in weeks"
;

* ====== Declare Sets
set

GEN_PARAMS
/
maint_wks "Annual weeks of maintenance [wk/yr]"
c_maint_wk "Cost per week of maintenance [M$/wk]"
/

;

* ====== Declare Variables
positive variables

vMaintCost(S) "Total maintenance cost for scenario"
vCapOffMaint(B, T, G, S) "Quantity of capacity available off maintenance [GW]"

$ifthen not set maint_lp
integer variables
$endif

* Note taking a queue from Ostrowski (2012) the extra integers actually help with modern

* solvers. See UnitCommitment for more
vOnMaint(B, G, S) "Number of units on maintenance in a block"
vMaintBegin(B, G, S) "Number of units starting maintenance during the block [integer]"
vMaintEnd(B, G, S) "Number of units finishing maintenance during the block [integer]"
;

* ====== Declare Equations
equations

eMaintCost(S) "Compute total maintenance cost for scenario"
eMaintState(B, G, S) "Compute maintenance begin and end"
eMaintTime (B, G, S) "Sum total maintenance over the time horizon"
eTotalMaint(G, S) "Sum total maintenance over the time horizon"
eCapOffMaint(B, T, G, S) "Compute resulting capacity available for dispatch"
eMaintMax(B, G, S) "Limit quantity of each gen type on maintenance simultaneously"
;

*================================*
* The Actual Equations *
*================================*
* Important: we must be included into a larger model, so no objective function defined

* == Compute total maintenance cost (eMaintState)

* Note: this formulation is the same as the unit commitment state formulation
eMaintCost(S) ..

vMaintCost(S)
=e= sum[(B, G)$(pGen(G, ’maint_wks’, S) > 0), vOnMaint(B, G, S) * pGen(G, ’c_maint_wk’, S) *

pBlockDurWk(B, S)];

* == Compute maintenance begin and end (eMaintState)

* Note: this formulation is the same as the unit commitment state formulation
eMaintState (B, G, S)$(pGen(G, ’maint_wks’, S) > 0) ..

vOnMaint(B, G, S)
=e= vOnMaint(B--1, G, S) + vMaintBegin(B, G, S) - vMaintEnd(B, G, S);

* == Need to have sufficient Maintenance (scaled by time horizon) (eTotalMaint)
eTotalMaint(G, S)$(pGen(G, ’maint_wks’, S) > 0) ..

sum[(B), vOnMaint(B, G, S) * pBlockDurWk(B, S)]
=g= pGen(G, ’maint_wks’, S) * %max_cap_G% / pGen(G, ’gen_size’, S) * pFractionOfYear(S);

* == Compute resulting capacity available for dispatch (eCapOffMaint)

* Note: must include for all generators, even without maintenance to ensure there is a

* reasonable upper limit on their dispatch
eCapOffMaint(B, T, G, S) ..

vCapOffMaint(B, T, G, S) =e= %max_cap_G% - vOnMaint(B, G, S) * pGen(G, ’gen_size’, S);

* == Limit quantity of each gen type on maintenance simultaneously (MaintMax)
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eMaintMax(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) ..
vOnMaint(B, G, S) =l= 1 + %max_maint% * %max_cap_G% / pGen(G, ’gen_size’, S);

* == Once started, must take full time for maintanence (eMaintTime)

* Note: this formulation is basically the same as the min up/down time formulation

* the primary difference is that we sum over block duration to allow reasonable maintenance

* plans for partial year time periods
eMaintTime(B, G, S)$(pGen(G, ’maint_wks’, S) > 0) ..

vOnMaint(B, G, S)
=g=
vMaintBegin(B, G, S)
+ vMaintBegin(B--1, G, S)$(pGen(G, ’maint_wks’, S)

> pBlockDurWk(B, S) )
+ vMaintBegin(B--2, G, S)$(pGen(G, ’maint_wks’, S)

> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) )
+ vMaintBegin(B--3, G, S)$(pGen(G, ’maint_wks’, S)

> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) + pBlockDurWk(B--2, S) )
+ vMaintBegin(B--4, G, S)$(pGen(G, ’maint_wks’, S)

> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) + pBlockDurWk(B--2, S)
+ pBlockDurWk(B--3, S) )

+ vMaintBegin(B--5, G, S)$(pGen(G, ’maint_wks’, S)

> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) + pBlockDurWk(B--2, S)
+ pBlockDurWk(B--3, S) + pBlockDurWk(B--4, S) )

+ vMaintBegin(B--6, G, S)$(pGen(G, ’maint_wks’, S)
> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) + pBlockDurWk(B--2, S)

+ pBlockDurWk(B--3, S) + pBlockDurWk(B--4, S)
+ pBlockDurWk(B--5, S) )

+ vMaintBegin(B--7, G, S)$(pGen(G, ’maint_wks’, S)
> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) + pBlockDurWk(B--2, S)

+ pBlockDurWk(B--3, S) + pBlockDurWk(B--4, S)
+ pBlockDurWk(B--5, S) + pBlockDurWk(B--6, S) )

+ vMaintBegin(B--8, G, S)$(pGen(G, ’maint_wks’, S)
> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) + pBlockDurWk(B--2, S)

+ pBlockDurWk(B--3, S) + pBlockDurWk(B--4, S)
+ pBlockDurWk(B--5, S) + pBlockDurWk(B--6, S)
+ pBlockDurWk(B--7, S) )

+ vMaintBegin(B--9, G, S)$(pGen(G, ’maint_wks’, S)
> pBlockDurWk(B, S) + pBlockDurWk(B--1, S) + pBlockDurWk(B--2, S)

+ pBlockDurWk(B--3, S) + pBlockDurWk(B--4, S)
+ pBlockDurWk(B--5, S) + pBlockDurWk(B--6, S)
+ pBlockDurWk(B--7, S) + pBlockDurWk(B--8, S) )

;

ListingD.6: MinUpDownEquations.gms: shared include file for minimum up and down time constraints.

*================================*
* Declarations *
*================================*
set
GEN_PARAMS

/
min_up
min_down
/

;

* ====== Declare Variables

* ====== Declare Equations
equations

eMinUpTime(B, T, G, S)
eMinDownTime(B, T, G, S)
;

*================================*
* The Actual Equations *
*================================*
* Important: we must be included into a larger model, so no objective function defined

* == Once on, a generator must remain on for specified number of periods (eMinUpTime)
eMinUpTime(B, T, G, S)$( B_SIM(B)

and G_UC(G)
and pGen(G, ’min_up’, S) > 1
and pGen(G,’gen_size’, S) <> 0 ) ..

vUnitCommit(B, T, G, S)
=g=
vStartup(B, T, G, S)
+ vStartup(B, mDemShift(T,1), G, S)$(pGen(G, ’min_up’, S) > 1)
+ vStartup(B, mDemShift(T,2), G, S)$(pGen(G, ’min_up’, S) > 2)

+ vStartup(B, mDemShift(T,3), G, S)$(pGen(G, ’min_up’, S) > 3)
+ vStartup(B, mDemShift(T,4), G, S)$(pGen(G, ’min_up’, S) > 4)
+ vStartup(B, mDemShift(T,5), G, S)$(pGen(G, ’min_up’, S) > 5)
+ vStartup(B, mDemShift(T,6), G, S)$(pGen(G, ’min_up’, S) > 6)
+ vStartup(B, mDemShift(T,7), G, S)$(pGen(G, ’min_up’, S) > 7)
+ vStartup(B, mDemShift(T,8), G, S)$(pGen(G, ’min_up’, S) > 8)
+ vStartup(B, mDemShift(T,9), G, S)$(pGen(G, ’min_up’, S) > 9)
+ vStartup(B, mDemShift(T,10), G, S)$(pGen(G, ’min_up’, S) > 10)
+ vStartup(B, mDemShift(T,11), G, S)$(pGen(G, ’min_up’, S) > 11)
+ vStartup(B, mDemShift(T,12), G, S)$(pGen(G, ’min_up’, S) > 12)
+ vStartup(B, mDemShift(T,13), G, S)$(pGen(G, ’min_up’, S) > 13)
+ vStartup(B, mDemShift(T,14), G, S)$(pGen(G, ’min_up’, S) > 14)
+ vStartup(B, mDemShift(T,15), G, S)$(pGen(G, ’min_up’, S) > 15)
+ vStartup(B, mDemShift(T,16), G, S)$(pGen(G, ’min_up’, S) > 16)
+ vStartup(B, mDemShift(T,17), G, S)$(pGen(G, ’min_up’, S) > 17)
+ vStartup(B, mDemShift(T,18), G, S)$(pGen(G, ’min_up’, S) > 18)
+ vStartup(B, mDemShift(T,19), G, S)$(pGen(G, ’min_up’, S) > 19)
+ vStartup(B, mDemShift(T,20), G, S)$(pGen(G, ’min_up’, S) > 20)
+ vStartup(B, mDemShift(T,21), G, S)$(pGen(G, ’min_up’, S) > 21)
+ vStartup(B, mDemShift(T,22), G, S)$(pGen(G, ’min_up’, S) > 22)
+ vStartup(B, mDemShift(T,23), G, S)$(pGen(G, ’min_up’, S) > 23)
+ vStartup(B, mDemShift(T,24), G, S)$(pGen(G, ’min_up’, S) > 24)
+ vStartup(B, mDemShift(T,25), G, S)$(pGen(G, ’min_up’, S) > 25)
+ vStartup(B, mDemShift(T,26), G, S)$(pGen(G, ’min_up’, S) > 26)
+ vStartup(B, mDemShift(T,27), G, S)$(pGen(G, ’min_up’, S) > 27)
+ vStartup(B, mDemShift(T,28), G, S)$(pGen(G, ’min_up’, S) > 28)
+ vStartup(B, mDemShift(T,29), G, S)$(pGen(G, ’min_up’, S) > 29)
+ vStartup(B, mDemShift(T,30), G, S)$(pGen(G, ’min_up’, S) > 30)
+ vStartup(B, mDemShift(T,31), G, S)$(pGen(G, ’min_up’, S) > 31)
+ vStartup(B, mDemShift(T,32), G, S)$(pGen(G, ’min_up’, S) > 32)
+ vStartup(B, mDemShift(T,33), G, S)$(pGen(G, ’min_up’, S) > 33)
+ vStartup(B, mDemShift(T,34), G, S)$(pGen(G, ’min_up’, S) > 34)
+ vStartup(B, mDemShift(T,35), G, S)$(pGen(G, ’min_up’, S) > 35)
+ vStartup(B, mDemShift(T,36), G, S)$(pGen(G, ’min_up’, S) > 36)
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+ vStartup(B, mDemShift(T,37), G, S)$(pGen(G, ’min_up’, S) > 37)
+ vStartup(B, mDemShift(T,38), G, S)$(pGen(G, ’min_up’, S) > 38)
+ vStartup(B, mDemShift(T,39), G, S)$(pGen(G, ’min_up’, S) > 39)
+ vStartup(B, mDemShift(T,40), G, S)$(pGen(G, ’min_up’, S) > 40)
+ vStartup(B, mDemShift(T,41), G, S)$(pGen(G, ’min_up’, S) > 41)
+ vStartup(B, mDemShift(T,42), G, S)$(pGen(G, ’min_up’, S) > 42)
+ vStartup(B, mDemShift(T,43), G, S)$(pGen(G, ’min_up’, S) > 43)
+ vStartup(B, mDemShift(T,44), G, S)$(pGen(G, ’min_up’, S) > 44)
+ vStartup(B, mDemShift(T,45), G, S)$(pGen(G, ’min_up’, S) > 45)
+ vStartup(B, mDemShift(T,46), G, S)$(pGen(G, ’min_up’, S) > 46)
+ vStartup(B, mDemShift(T,47), G, S)$(pGen(G, ’min_up’, S) > 47)
+ vStartup(B, mDemShift(T,48), G, S)$(pGen(G, ’min_up’, S) > 48)
+ vStartup(B, mDemShift(T,49), G, S)$(pGen(G, ’min_up’, S) > 49)
;

eMinDownTime(B, T, G, S)$( B_SIM(B)
and G_UC(G)
and pGen(G, ’min_down’, S) > 1
and pGen(G,’gen_size’, S) <> 0 ) ..

(%capacity_G% / pGen(G,’gen_size’, S) - vUnitCommit(B, T, G, S))
=g=
vShutdown(B, T, G, S)
+ vShutDown(B, mDemShift(T,1), G, S)$(pGen(G, ’min_down’, S) > 1)
+ vShutDown(B, mDemShift(T,2), G, S)$(pGen(G, ’min_down’, S) > 2)
+ vShutDown(B, mDemShift(T,3), G, S)$(pGen(G, ’min_down’, S) > 3)
+ vShutDown(B, mDemShift(T,4), G, S)$(pGen(G, ’min_down’, S) > 4)
+ vShutDown(B, mDemShift(T,5), G, S)$(pGen(G, ’min_down’, S) > 5)
+ vShutDown(B, mDemShift(T,6), G, S)$(pGen(G, ’min_down’, S) > 6)
+ vShutDown(B, mDemShift(T,7), G, S)$(pGen(G, ’min_down’, S) > 7)
+ vShutDown(B, mDemShift(T,8), G, S)$(pGen(G, ’min_down’, S) > 8)
+ vShutDown(B, mDemShift(T,9), G, S)$(pGen(G, ’min_down’, S) > 9)
+ vShutDown(B, mDemShift(T,10), G, S)$(pGen(G, ’min_down’, S) > 10)
+ vShutDown(B, mDemShift(T,11), G, S)$(pGen(G, ’min_down’, S) > 11)
+ vShutDown(B, mDemShift(T,12), G, S)$(pGen(G, ’min_down’, S) > 12)
+ vShutDown(B, mDemShift(T,13), G, S)$(pGen(G, ’min_down’, S) > 13)
+ vShutDown(B, mDemShift(T,14), G, S)$(pGen(G, ’min_down’, S) > 14)

+ vShutDown(B, mDemShift(T,15), G, S)$(pGen(G, ’min_down’, S) > 15)
+ vShutDown(B, mDemShift(T,16), G, S)$(pGen(G, ’min_down’, S) > 16)
+ vShutDown(B, mDemShift(T,17), G, S)$(pGen(G, ’min_down’, S) > 17)
+ vShutDown(B, mDemShift(T,18), G, S)$(pGen(G, ’min_down’, S) > 18)
+ vShutDown(B, mDemShift(T,19), G, S)$(pGen(G, ’min_down’, S) > 19)
+ vShutDown(B, mDemShift(T,20), G, S)$(pGen(G, ’min_down’, S) > 20)
+ vShutDown(B, mDemShift(T,21), G, S)$(pGen(G, ’min_down’, S) > 21)
+ vShutDown(B, mDemShift(T,22), G, S)$(pGen(G, ’min_down’, S) > 22)
+ vShutDown(B, mDemShift(T,23), G, S)$(pGen(G, ’min_down’, S) > 23)
+ vShutDown(B, mDemShift(T,24), G, S)$(pGen(G, ’min_down’, S) > 24)
+ vShutDown(B, mDemShift(T,25), G, S)$(pGen(G, ’min_down’, S) > 25)
+ vShutDown(B, mDemShift(T,26), G, S)$(pGen(G, ’min_down’, S) > 26)
+ vShutDown(B, mDemShift(T,27), G, S)$(pGen(G, ’min_down’, S) > 27)
+ vShutDown(B, mDemShift(T,28), G, S)$(pGen(G, ’min_down’, S) > 28)
+ vShutDown(B, mDemShift(T,29), G, S)$(pGen(G, ’min_down’, S) > 29)
+ vShutDown(B, mDemShift(T,30), G, S)$(pGen(G, ’min_down’, S) > 30)
+ vShutDown(B, mDemShift(T,31), G, S)$(pGen(G, ’min_down’, S) > 31)
+ vShutDown(B, mDemShift(T,32), G, S)$(pGen(G, ’min_down’, S) > 32)
+ vShutDown(B, mDemShift(T,33), G, S)$(pGen(G, ’min_down’, S) > 33)
+ vShutDown(B, mDemShift(T,34), G, S)$(pGen(G, ’min_down’, S) > 34)
+ vShutDown(B, mDemShift(T,35), G, S)$(pGen(G, ’min_down’, S) > 35)
+ vShutDown(B, mDemShift(T,36), G, S)$(pGen(G, ’min_down’, S) > 36)
+ vShutDown(B, mDemShift(T,37), G, S)$(pGen(G, ’min_down’, S) > 37)
+ vShutDown(B, mDemShift(T,38), G, S)$(pGen(G, ’min_down’, S) > 38)
+ vShutDown(B, mDemShift(T,39), G, S)$(pGen(G, ’min_down’, S) > 39)
+ vShutDown(B, mDemShift(T,40), G, S)$(pGen(G, ’min_down’, S) > 40)
+ vShutDown(B, mDemShift(T,41), G, S)$(pGen(G, ’min_down’, S) > 41)
+ vShutDown(B, mDemShift(T,42), G, S)$(pGen(G, ’min_down’, S) > 42)
+ vShutDown(B, mDemShift(T,43), G, S)$(pGen(G, ’min_down’, S) > 43)
+ vShutDown(B, mDemShift(T,44), G, S)$(pGen(G, ’min_down’, S) > 44)
+ vShutDown(B, mDemShift(T,45), G, S)$(pGen(G, ’min_down’, S) > 45)
+ vShutDown(B, mDemShift(T,46), G, S)$(pGen(G, ’min_down’, S) > 46)
+ vShutDown(B, mDemShift(T,47), G, S)$(pGen(G, ’min_down’, S) > 47)
+ vShutDown(B, mDemShift(T,48), G, S)$(pGen(G, ’min_down’, S) > 48)
+ vShutDown(B, mDemShift(T,49), G, S)$(pGen(G, ’min_down’, S) > 49)
;

ListingD.7: PlanMarginEquations.gms: shared include file for planning margin.

*================================*
* Additional Control Variables *
*================================*

$if NOT set capacity_G $setglobal capacity_G pGen(G,’cap_cur’,S)

*================================*
* Declarations *
*================================*

* ====== Declare the data parameters. Actual data imported from include files
sets

* Sets for table parameters

GEN_PARAMS "generation table parameters"
/
cap_credit "Capacity Credit during peak block [p.u.]"
/

* Sets for data, actual definitions can be found in include files
G "generation types (or generator list)"
S "scenarios for multi-period and stochastic problems"

parameters

* Data Tables
pGen (G, GEN_PARAMS, S) "table of generator data"

* Additional Parameters
pDemandMax (S) "Maximum demand level [GW]"

scalars
pPlanReserve "planning reserve [p.u.]"
;

$ifthen set plan_margin_penalty
positive variables

vUnderPlanReserve(S) "Firm capacity below required planning reserve [GW]"
$endif
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* ====== Declare Equations
equations

ePlanMargin(S) "Planning margin to ensure adequate capacity during peak [p.u.]"
;

*================================*
* The Actual Equations *
*================================*
* Important: we must be included into a larger model, so no objective function defined

*====== Planning Reserve Margin (peak period only)
ePlanMargin(S) .. sum[(G), %cap_for_plan_margin%*pGen(G,’cap_credit’,S)]
$ifthen set plan_margin_penalty

+ vUnderPlanReserve(S)
$endif

=g=
(1 + pPlanReserve)*pDemandMax(S);

ListingD.8: ReserveEquations.gms: shared include file for all types of reserves. (shared/ReserveEquations.gms)

*================================*
* Additional Control Variables *
*================================*
$ifthen.any_rsrv set rsrv
$if %rsrv% == flex $setglobal flex_rsrv
$if %rsrv% == separate $setglobal separate_rsrv
$ifthen %rsrv% == both
$setglobal flex_rsrv
$setglobal separate_rsrv
$endif
$endif.any_rsrv

*Default to NOT adjusting reserves for non-served energy (faster?)
$if NOT set adj_rsrv_for_nse $setglobal adj_rsrv_for_nse off

$ifthen.ar4n NOT adj_rsrv_for_nse==off
$ifthen not set no_nse
$setglobal load_for_rsrv (pDemand(B,T,’power’, S) - vNonServed(B, T,S))
$else
$setglobal load_for_rsrv pDemand(B,T,’power’, S)
$endif
$else.ar4n
$setglobal load_for_rsrv pDemand(B,T,’power’, S)
$endif.ar4n

$if NOT set capacity_G $setglobal capacity_G pGen(G, ’cap_cur’, S)

$if not set non_uc_rsrv_up_offline $setglobal non_uc_rsrv_up_offline 0
$if not set non_uc_rsrv_down_offline $setglobal non_uc_rsrv_down_offline 0

*================================*
* Declarations *
*================================*

* ====== Declare the data parameters. Actual data imported from include files
scalars

* pWindForecastError "forecast error as a fraction of wind capacity for quick start reserves [p.u.]"

* pSpinResponseTime "Response time for Spinning Reserves [minutes]"

* pQuickStartLoadFract "addition Fraction of load for non-spin reserves [p.u.]"
pSpinReserveLoadFract "addition Fraction of load for spin reserves [p.u.]"
pSpinReserveMinGW "minimum spining reserve [GW]"
pReplaceReserveGW "offline replacement reserves to fill-in if spinning reserves are called

[GW]"
pRegUpLoadFract "additional Fraction of load for regulation up [p.u.]"
pRegDownLoadFract "Fraction of load over unit minimums for regulation down [p.u.]"

pQuickStSpinSubFract "Fraction of Spinning Reserves that can be supplied by off-line
generators [p.u.]"

*Additional Reserves for Wind see (De Jonghe, et al 2011)

* pWindFlexUpForecast=A_POS, pWindFlexUpCapacity=B_POS, pWindFlexDownForecast=A_NEG,
pWindFlexDownCapacity=B_NEG

pWindFlexUpForecast "Additional up reserves based on wind power output (forecast) [fraction of
PwrOur]"

pWindFlexUpCapacity "Additional up reserves based on installed wind capacity [fraction of Wind
capacity]"

pWindFlexDownForecast "Additional down reserves based on wind power output (forecast) [fraction
of PwrOur]"

pWindFlexDownCapacity "Additional down reserves based on installed wind capacity [fraction of Wind
capacity]"

* ====== Declare Variables
positive variables

$ifthen set separate_rsrv
vSpinReserve (B,T,G,S) "Contingency Spinning reserves service provision by generator class [GW

]"
vNetLoadFollowDown(B,T,G,S) "Load follow down reserves service provision by generator class [GW]"
vRegUp (B,T,G,S) "Regulation up reserves service provision by generator class [GW]"
vRegDown (B,T,G,S) "Regulation down reserves service provision by generator class [GW]"

$ifthen.no_qs not set no_quick_st
vQuickStart (B,T,G,S) "Non-spin reserves service provision by generator class [GW]"

$endif.no_qs
$endif

$ifthen set flex_rsrv
vFlexUp (B,T,G,S) "Flexibility up (Spinning + QuickStart + RegUp + Renewable Up) reserves [GW]"
vFlexDown (B,T,G,S) "Flexibility down (RegDown + Renewable Down) reserves [GW]"

$endif
;

* ====== Declare Equations
equations
$ifthen set flex_rsrv

ePwrMaxFlexRsrv (B,T, G, S) "output w/ reserves lower than available max [GW]"
ePwrMinFlexRsrv (B,T, G, S) "output w/ reserves greater than installed min [GW]"
ePwrMaxFlexRsrvUC (B,T, G, S) "output w/ reserves lower than committed max [GW]"
ePwrMinFlexRsrvUC (B,T, G, S) "output w/ reserves greater than committed min [GW]"

eFlexUp (B,T, S) "Provide required flexibility up reserves (aka Positive Balance) [GW]"
eFlexDown (B,T, S) "Provide required flexibility down reserves (aka Negative Balance) [GW]"
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eFlexUpMaxOnLine (B,T,G,S) "Ensure that only some of the flex reserves come from off-line (quick
start) gens [GW]"

$ifthen.no_qs not set no_quick_st
eFlexUpMax (B,T,G,S) "Stay below max spinning reserves on-line generators of each class can

supply [GW]"
$endif.no_qs

eFlexDownMax (B,T,G,S) "Stay below max regulation up reserves on-line generators of each class
can supply [GW]"

$endif

$ifthen set separate_rsrv
ePwrMaxSepRsrv (B,T, G, S) "output w/ reserves lower than available max [GW]"
ePwrMinSepRsrv (B,T, G, S) "output w/ reserves greater than installed min [GW]"
ePwrMaxSepRsrvUC (B,T, G, S) "output w/ reserves lower than committed max [GW]"
ePwrMinSepRsrvUC (B,T, G, S) "output w/ reserves greater than committed min [GW]"

eSpinReserve (B,T, S) "Provide required spinning reserves [GW]"
eNetLoadFollowDown(B,T, S) "Provide required load following down reserves [GW]"
eRegUp (B,T, S) "Provide required regulation up reserves [GW]"
eRegDown (B,T, S) "Provide required regulation down reserves [GW]"

$ifthen.no_qs not set no_quick_st
eQuickStart (B,T, S) "Provide required non-spinning reserves [GW]"

$endif.no_qs

eSpinReserveMax (B,T,G,S) "Stay below max spinning reserves on-line generators of each class
can supply [GW]"

eNetLoadFollowDownMax(B,T,G,S) "Stay below max load following down on-line generators of each
class can supply [GW]"

eRegUpMax (B,T,G,S) "Stay below max regulation up reserves on-line generators of each
class can supply [GW]"

eRegDownMax (B,T,G,S) "Stay below max regulation down on-line generators of each class can
supply [GW]"

$ifthen.no_qs not set no_quick_st
eQuickStartMax (B,T,G,S) "Stay below max non-spin reserves off-line generators of each class

can supply [GW]"
$endif.no_qs
$endif

;

*================================*
* The Actual Equations *
*================================*
* Important: we must be included into a larger model, so no objective function defined

*====== Generation output less than upper limit(s)

* There are multiple limits here for different circumstances

* 1) Simplest (ePwrMaxFlexRsrv) is power out < installed capacity. But here there are twists since we

* allow time varing availability, and for some capacity to be moth-balled and hence not in

* active use. In addition, we also need to ensure headroom for reserves up.

* 2) For generation subject to unit commitment, things change slightly since we now only output

* power up to the number of units that are turned on (ePwrMaxFlexRsrvUC)

* 3) If separate reserves are computed, they should not be simply added to the flexibility

* reserves, but rather we want to take max(FlexUp, sum(other up reserves). In LP we do this

* by adding an additional equation for the sum(other up reserves) term. (ePwrMaxSepRsrv)

* Furthermore, we might choose to derate the power output of the plant separately from

* availability (typically for simple models), this can be done by taking the minimum of availability

* and the derate factor. Since both arer parameters, this is a valid (MI)LP formulation. Note that

* this derating is already taken into account for in eUnitCommit for the UC equations.

*====================================*
* Combined (Flexibility) Reserves *
*====================================*
* == Output (& Flex Reserves) must be below the generator upper limits (ePwrMaxFlexRsrv)

* These equations are used for the no reserves case and for combined (Flexibility) reserves

* they are also active when separate reserves are used as described in #3 above.

*
*Note: the $subset(setname) format only defines the equation for members of G that are also in G_UC

*Note: Availability is handled in eState for unit commitment constrained generators
$ifthen.flex set flex_rsrv
ePwrMaxFlexRsrv (B,T, G, S)$( B_SIM(B)

and not G_UC(G) ) ..
vPwrOut(B,T, G, S) + vFlexUp(B,T,G, S) =l= %capacity_G% *

$ifthen set derate
min( pGen(G, ’derate’, S),

$else
(

$endif
pGenAvail(B,T, G, S)
);

* == Output Upper Limit for UnitCommitment Gens (ePwrMaxFlexRsrvUC)

* Note: we only include the flexible up output if it can’t be provided by quick start units.
ePwrMaxFlexRsrvUC (B,T, G, S)$( B_SIM(B)

and G_UC(G) ) ..
vPwrOut(B,T, G, S)
+ vFlexUp(B,T,G,S)$(pGen(G, ’quick_start’, S) = 0)
=l= vUnitCommit(B,T,G,S) * pGen(G, ’gen_size’, S);

*====== Generation output greater than lower limit(s)

* Here we find a complementary situation to the PwrMax equations described above

* == Power greater than lower limits (ePwrMinFlexRsrv)

* For simple models we might use a "technology minimum output" as a proxy for

* baseload plants. This lower limit is applied to entire generator category and is ignored by

* using p_min=0 or not defining p_min (unspecified parameters default to zero).

*
* Note: we keep this active for G_UC to enforce p_min if required
ePwrMinFlexRsrv (B,T, G, S)$B_SIM(B) .. vPwrOut(B,T, G, S) =g= %capacity_G% * pGen(G,’p_min’, S)

+ vFlexDown(B,T,G,S);

* == Power greater than lower limits for Unit Commitment (ePwrMinFlexRsrvUC)

* Minimum power output for commitment generators under UC

*Note: the $subset(setname) format only defines the equation for members of G that are also in G_UC
ePwrMinFlexRsrvUC (B,T, G, S)$( B_SIM(B)

and G_UC(G) ) .. vPwrOut(B,T, G, S)
=g=
vUnitCommit(B,T,G,S) * pGen(G, ’unit_min’, S)
+ vFlexDown(B,T,G,S);

*=== Combined Flexibility Reserves including additional reserves as a function of Renewables

* These reserves combine all upward reserve requirements (Spin, Load Follow Up, Regulation Up,

* Renewable Flexibility Up) into FlexUp and all downward reserve requirements (Load Follow Down,

* Regulation Down, Renewable Follow Up

*Equivalent to (De Jonghe, et al 2011) eq 16 & 18 with BP addition of baseline (non-wind)

*requirement to meet Spin Reserve + Reg Up
eFlexUp (B,T, S)$B_SIM(B) .. sum[(G), vFlexUp(B,T, G, S)] =g=

%load_for_rsrv% * (pSpinReserveLoadFract + pRegUpLoadFract)
+ pSpinReserveMinGW
+ pWindFlexUpForecast * sum[(G)$G_WIND(G), vPwrOut(B,T, G, S)]
+ pWindFlexUpCapacity * sum[(G)$G_WIND(G), %capacity_G%];

eFlexDown (B,T, S)$B_SIM(B) .. sum[(G), vFlexDown(B,T, G, S)] =g=
%load_for_rsrv% * (pSpinReserveLoadFract + pRegDownLoadFract)
+ pWindFlexDownForecast * sum[(G)$G_WIND(G), vPwrOut(B,T, G, S)]
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+ pWindFlexDownCapacity * sum[(G)$G_WIND(G), %capacity_G%];

* Compute the maximum reserves per generator as a function of capabilities.

* Note: ePwrMaxFlexRsrv and ePwrMinFlexRsrv ensure that we do not double count capacity

eFlexUpMaxOnLine (B,T,G,S)$B_SIM(B) .. (1 - pQuickStSpinSubFract) * vFlexUp(B,T,G,S) =l=
(pGen(G, ’spin_rsv’, S) + pGen(G, ’reg_up’, S))

*(
(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S)

+ %non_uc_rsrv_up_offline%

* (%capacity_G% - vPwrOut(B,T, G, S))
)$(not G_UC(G))

);

$ifthen not set no_quick_st
eFlexUpMax (B,T,G,S)$B_SIM(B) .. vFlexUp(B,T,G,S) =l=

(pGen(G, ’spin_rsv’, S) + pGen(G, ’reg_up’, S))

*(
(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S))$(not G_UC(G))

)
+ pGen(G, ’quick_start’, S)*( %capacity_G%

- (
(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S)

+ %non_uc_rsrv_up_offline%

* (%capacity_G% - vPwrOut(B,T, G, S))
)$(not G_UC(G))

)
);

$endif

*Equivalent to (De Jonghe, et al 2011) eq 12 with the BP correction that off-line generators can’t

*be used to provide downward flexibility, using BP field names and assuming the spin_rsv and

*reg_up limits are additive
eFlexDownMax (B,T,G,S)$B_SIM(B) .. vFlexDown(B,T,G,S) =l=

(pGen(G, ’spin_rsv’, S) + pGen(G, ’reg_down’, S))*(
(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S)

+ %non_uc_rsrv_down_offline%

* (%capacity_G% - vPwrOut(B,T, G, S))
)$(not G_UC(G))

);
$endif.flex

*======================*
* Separate Reserves *
*======================*
* == Output + Individual Reserves must be below the generator upper limits (ePwrMaxSepRsrv)

* These equations are used for the separate reserves case
$ifthen.sep_rsrv set separate_rsrv
ePwrMaxSepRsrv (B,T, G, S)$( B_SIM(B)

and not G_UC(G) ) ..
%capacity_G% *

$ifthen set derate
min( pGen(G, ’derate’, S),

$else
(

$endif
pGenAvail(B,T, G, S)

) =g=
vPwrOut(B,T, G, S)

+ vSpinReserve(B,T, G, S)$(pGen(G, ’spin_rsv’, S))
+ vRegUp(B,T, G, S)$(pGen(G, ’reg_up’, S))
;

* == Output Upper Limit for UnitCommitment Gens with Separate Reserves (ePwrMaxSepRsrvUC)
ePwrMaxSepRsrvUC (B,T, G, S)$( B_SIM(B)

and G_UC(G) ) .. vUnitCommit(B,T,G,S) * pGen(G, ’gen_size’, S)
=g=
vPwrOut(B,T, G, S)
+ vSpinReserve(B,T, G, S)$(pGen(G, ’spin_rsv’, S))
+ vRegUp(B,T, G, S)$(pGen(G, ’reg_up’, S))
;

* == Output + Individual Reserves must be above the generator lower limits (ePwrMinSepRsrv)

* These equations are used for the separate reserves case
ePwrMinSepRsrv (B,T, G, S)$B_SIM(B) .. vPwrOut(B,T, G, S) =g= %capacity_G% * pGen(G,’p_min’, S)

+ vRegDown(B,T,G,S)$(pGen(G, ’reg_down’, S))
+ vNetLoadFollowDown(B,T, G, S);

* == Output + Individual Reserves above the lower limits for Unit Commitment(ePwrMinSepRsrvUC)
ePwrMinSepRsrvUC (B,T, G, S)$( B_SIM(B)

and G_UC(G) ) .. vPwrOut(B,T, G, S)
=g=
vUnitCommit(B,T,G,S) * pGen(G, ’unit_min’, S)
+ vRegDown(B,T,G,S)$(pGen(G, ’reg_down’, S))
+ vNetLoadFollowDown(B,T, G, S);

*=== Separate Ancillary Services

*=== Ensure we have enough reserves for each operating period

* == Spinning Reserves (eSpinReserve) aka secondary reserves

* Focus on contingencies (ie outages or failures) only. Here we compute the required

* level as the greater of the specified minimum (typically set to the largest on-line plant

* or transmission tie)
eSpinReserve (B,T, S)$B_SIM(B) .. sum[(G)$(pGen(G, ’spin_rsv’, S)), vSpinReserve(B,T, G, S)]

=g= (1 - pQuickStSpinSubFract)

* ( pSpinReserveMinGW
+ %load_for_rsrv% * pSpinReserveLoadFract
+ pWindFlexUpForecast * sum[(G)$G_WIND(G), vPwrOut(B,T, G, S)]
+ pWindFlexUpCapacity * sum[(G)$G_WIND(G), %capacity_G%]

);

* == Quick Start Reserves (eQuickStart) aka tertiary reserves

* Allow QuickStart units (off-line or demand) to substitute for a fraction of secondary reserves
$ifthen.no_qs not set no_quick_st

eQuickStart (B,T, S)$B_SIM(B) .. sum[(G)$(pGen(G, ’quick_start’, S)), vQuickStart(B,T, G, S)]
+ sum[(G)$(pGen(G, ’spin_rsv’, S)), vSpinReserve(B,T, G, S)]
=g=
pReplaceReserveGW
+ pSpinReserveMinGW
+ %load_for_rsrv% * pSpinReserveLoadFract
+ pWindFlexUpForecast * sum[(G)$G_WIND(G), vPwrOut(B,T, G, S)]
+ pWindFlexUpCapacity * sum[(G)$G_WIND(G), %capacity_G%]
;

$endif.no_qs

* == Load Follow Down (eNetLoadFollowDown) aka secondary reserves

* Handles second to second variations. Computed as a specified fraction of the load.
eNetLoadFollowDown (B,T, S)$B_SIM(B) .. sum[(G)$(pGen(G, ’spin_rsv’, S)), vNetLoadFollowDown(B,T, G,

S)]
=g= %load_for_rsrv% * pSpinReserveLoadFract

+ pWindFlexDownForecast * sum[(G)$G_WIND(G), vPwrOut(B,T, G, S)]
+ pWindFlexDownCapacity * sum[(G)$G_WIND(G), %capacity_G%];
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;

* == Regulation Up (eRegUp) aka primary reserves

* Handles second to second variations. Computed as a specified fraction of the load.
eRegUp (B,T, S)$B_SIM(B) .. sum[(G)$(pGen(G, ’reg_up’, S)), vRegUp(B,T, G, S)] =g=

%load_for_rsrv% * pRegUpLoadFract;

* == Regulation Down (eRegDown) aka primary reserves

* Handles second to second variations. Computed as a specified fraction of the load.
eRegDown (B,T, S)$B_SIM(B) .. sum[(G)$(pGen(G, ’reg_down’, S)), vRegDown(B,T, G, S)] =g=

%load_for_rsrv% * pRegDownLoadFract;

*=== Reserve Capability by reserve class and unit

* Compute the maximum reserves per generator as a function of capabilities.

* Note: ePwrMaxFlexRsrv and ePwrMinFlexRsrv (above) ensure that we do not double count capacity

* These equations are only created for generators capable of supplying the specified service

* == Generator limits on Spinning Reserves (eSpinReserveMax) aka secondary reserves

* Based on commitment state if available. For non-UC plants, we use output power as a proxy

* for quantity/amount of committed generation
eSpinReserveMax (B,T,G,S)$( B_SIM(B)

and pGen(G, ’spin_rsv’, S) ) ..
vSpinReserve(B,T,G,S)
=l=
pGen(G, ’spin_rsv’, S)*(

(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S)

+ %non_uc_rsrv_up_offline%

* (%capacity_G% - vPwrOut(B,T, G, S))
)$(not G_UC(G))

);

* == Generator limits on Load Following Down (eNetLoadDownMax) aka primary reserves

* Based on commitment state if available. For non-UC plants, we use output power as a proxy

* for quantity/amount of committed generation
eNetLoadFollowDownMax(B,T,G,S)$( B_SIM(B)

and pGen(G, ’spin_rsv’, S) ) ..
vNetLoadFollowDown(B,T,G,S)
=l=
pGen(G, ’spin_rsv’, S)*(

(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S)

+ %non_uc_rsrv_down_offline%

* (%capacity_G% - vPwrOut(B,T, G, S))
)$(not G_UC(G))

);

* == Generator limits on Regulation Up (eRegUpMax) aka primary reserves

* Based on commitment state if available. For non-UC plants, we use output power as a proxy

* for quantity/amount of committed generation
eRegUpMax(B,T,G,S)$( B_SIM(B)

and pGen(G, ’reg_up’, S) ) ..
vRegUp(B,T,G,S)

=l=
pGen(G, ’reg_up’, S)*(

(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S)

+ %non_uc_rsrv_up_offline%

* (%capacity_G% - vPwrOut(B,T, G, S))
)$(not G_UC(G))

);

* == Generator limits on Regulation Down (eRegDownMax) aka primary reserves

* Based on commitment state if available. For non-UC plants, we use output power as a proxy

* for quantity/amount of committed generation
eRegDownMax(B,T,G,S)$( B_SIM(B)

and pGen(G, ’reg_down’, S) ) ..
vRegDown(B,T,G,S)
=l=
pGen(G, ’reg_down’, S)*(

(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S)

+ %non_uc_rsrv_down_offline%

* (%capacity_G% - vPwrOut(B,T, G, S))
)$(not G_UC(G))

);

* == Generator limits on Quick Start (eQuickStartMax) aka tertiary reserves

* Here we care about the number of units that are OFF (rather than on as for other reserves). So

* we base the limit on available capacity minus that which is on-line. On-line quantity is based

* on commitment state if available. For non-UC plants, we use output power as a proxy

* for quantity/amount of committed generation.
$ifthen.no_qs not set no_quick_st

eQuickStartMax(B,T,G,S)$( B_SIM(B)
and pGen(G, ’quick_start’, S) ) ..
vQuickStart(B,T,G,S)
=l=

* Quick start capability times
pGen(G, ’quick_start’, S)

*(

* Total available capacity
%capacity_G% *

$ifthen set derate
min( pGen(G, ’derate’, S),

$else
(

$endif
pGenAvail(B,T, G, S)

)

* Minus capacity already in use
- (

(vUnitCommit(B,T, G, S)*pGen(G, ’gen_size’, S))$G_UC(G) +
(vPwrOut(B,T, G, S))$(not G_UC(G))

)
);

$endif.no_qs
$endif.sep_rsrv
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