
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-009 May 22, 2013

BigBand: GHz-Wide Sensing and
Decoding on Commodity Radios
Haitham Hassanieh, Lixin Shi, Omid Abari,
Ezzeldine Hamed, and Dina Katabi

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/16519944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

BigBand: GHz-Wide Sensing and Decoding on Commodity Radios

Haitham Hassanieh Lixin Shi Omid Abari Ezzeldine Hamed Dina Katabi
Massachusetts Institute of Technology

{haitham, lixin, abari, ezz, dina}@csail.mit.edu

Abstract– The goal of this paper is to make sensing and decod-
ing GHz of spectrum simple, cheap, and low power. Our thesis is
simple: if we can build a technology that captures GHz of spec-
trum using commodity Wi-Fi radios, it will have the right cost and
power budget to enable a variety of new applications such as GHz-
wide dynamic access and concurrent decoding of diverse technolo-
gies. This vision will change today’s situation where only expensive
power-hungry spectrum analyzers can capture GHz-wide spectrum.

Towards this goal, the paper harnesses the sparse Fourier trans-
form to compute the frequency representation of a sparse signal
without sampling it at full bandwidth. The paper makes the fol-
lowing contributions. First, it presents BigBand, a receiver that can
sense and decode a sparse spectrum wider than its own digital band-
width. Second, it builds a prototype of its design using 3 USRPs
that each samples the spectrum at 50 MHz, producing a device that
captures 0.9 GHz — i.e., 6× larger bandwidth than the three US-
RPs combined. Finally, it extends its algorithm to enable spectrum
sensing in scenarios where the spectrum is not sparse.

Keywords Spectrum Sensing, Sparse Fourier Transform, Wire-
less, ADC, Software Radios

1. INTRODUCTION

The rising popularity of wireless communication and the poten-
tial of a spectrum shortage have motivated the FCC to take steps
towards releasing multiple bands for dynamic spectrum sharing [9].
Last July, the President’s Council of Advisors on Science and Tech-
nology (PCAST) recommended the immediate release of 100 MHz
of spectrum for sharing, and advocated a plan for further releas-
ing one GHz of government-held spectrum [26]. Within just a few
months, the FCC began the process of opening up 100 MHz be-
tween 3.5-3.6 GHz [8]. Dynamic sharing is a key pillar of the FCC’s
vision for these new spectrum bands, and is motivated by the fact
that actual utilization of the spectrum is sparse in practice. For in-
stance, Fig. 1 from the Microsoft Spectrum Observatory [20] shows
that, even in urban areas, large swaths of the spectrum remain un-
derutilized. The 2012 PCAST report advocates dynamic sharing
of much of the currently under-utilized spectrum, creating GHz-
wide spectrum superhighways “that can be shared by many differ-
ent types of wireless services, just as vehicles share a superhighway
by moving from one lane to another.”
Motivated by this vision, this paper explores the potential for

GHz-wide spectrum sensing and reception on low-power inexpen-
sive devices. Making GHz-wide sensing (i.e. the ability to detect
occupancy) and reception (i.e. the ability to decode) available on
commodity radios enables multiple applications:

• Realtime Spectrum Monitoring: Cheap GHz sensing enables
spreading thousands of small devices in a metropolitan area for
large-scale realtime spectrum monitoring. Today, the only way to
monitor GHz of spectrum in realtime is to use expensive, power
hungry spectrum analyzers. Commercial devices rely on sequen-
tial sensing, hopping from one channel to the next, acquiring only

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

O
c
c
u

p
a

n
c
y
 %

Frequency (GHz)

Microsoft Observatory Seattle Monday 01/14/2013 10-11am

 0

 20

 40

 60

 80

 100

 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

O
c
c
u

p
a

n
c
y
 %

Frequency (GHz)

Figure 1—Spectrum Occupancy: The figure shows the average
(top) and maximum (bottom) spectrum occupancy at the Microsoft
spectrum observatory in Seattle on Monday January 14, 2013 dur-
ing the hour between 10 am and 11 am. The figure shows that be-
tween 1 GHz and 6 GHz, the spectrum is sparsely occupied.

tens of MHz at a time [24, 23]. Sequentially scanning one GHz
of spectrum means each band is monitored for only 1% to 2%
of the time, and hence it is fairly easy to miss short lived signals
(e.g., radar).

• GHz-wide Dynamic Access: Realtime GHz sensing enables
truly dynamic spectrum access, where secondary users can detect
short spectrum vacancies and leverage them, increasing overall
spectrum efficiency [4].

• Concurrent Decoding of Diverse Technologies: Beyond sens-
ing, the ability to decode signals in a GHz-wide spectrum on
low-power cheap devices can enable new forms of communica-
tions. A single receiver may decode many concurrent transmis-
sions occurring simultaneously in diverse parts of the spectrum.
For example, a GHz receiver can concurrently receive Bluetooth
at 2.4 GHz, GSM at 1.9 GHz, and CDMA at 1.7 GHz. Alterna-
tively, it may receive Wi-Fi at 5 GHz and WiMax at 5.8 GHz.
Ideally, it would do so with the same cost and power consump-
tion of a narrowband Wi-Fi receiver.

But how hard is it to build a GHz receiver? The key difficulty in
providing low-power cheap GHz sensing or receiving stems from
the need for very high-speed ADCs, which are both costly and
power hungry. To acquire GHz of bandwidth, the ADC needs a
sampling rate higher than Giga sample per second (GS/s). An off-
the-shelf 1 GS/s ADC costs 100’s of dollars and consumes more
than 2 watts [25, 6]. In contrast, a 50 MS/s ADC, like in Wi-Fi re-

1

ceivers, costs about $2, and consumes an order of magnitude less
power [6].
Our goal is to build a technology that uses the same hardware as

a Wi-Fi radio, which typically captures only tens of MHz of digital
bandwidth, and adapt it to capture a GHz-wide bandwidth. Given
the size, power, and cost of Wi-Fi hardware, such a technology can
enable GHz sensing and reception capabilities for small embedded
and mobile devices.
To achieve our goal, we harness recent advances in sparse recov-

ery, which permit signals whose frequency domain representation
is sparse to be recovered using only a small subset of their samples.
One may use compressive sensing to acquire GHz of sparsely uti-
lized spectrum without sampling at GS/s [16, 22, 27]. Compressive
sensing however does not work with low-power commodity hard-
ware because it requires custom hardware that can perform complex
analog matrix multiplications and analog mixing at GHz speeds. As
a result, compressive sensing may consume as much power as (and
sometimes more than) high-speed ADCs [2, 1]. In contrast, we ex-
ploit the sparse FFT algorithm [13, 12, 11], which both provides
sparse recovery and outputs the frequency domain signal, eliminat-
ing the need for additional processing.

Contributions: This paper makes contributions in the following
two areas:
GHz-wide Sensing: The paper introduces BigBand, a technol-

ogy that can sense GHz of spectrum, using a few (3 or 4) off-the-
shelf low-speed ADCs. Furthermore, it can do so whether the spec-
trum is sparse or not. As such, the paper makes two contributions
in the sensing domain. First, it introduces a new sparse FFT al-
gorithm tailored for spectrum acquisition. Specifically, past sparse
FFT algorithms use a sub-sampling pattern that picks samples that
are spaced by the inverse of the signal bandwidth. Thus, applying
those algorithms to spectrum sensing would still require a high-
speed ADC that samples the signal at GS/s. Instead, BigBand intro-
duces a new sparse FFT algorithm that uses only uniform samples
obtained from a few low-speed ADCs. We analytically prove that
by using low-speed ADCs whose sampling rates are co-prime, Big-
Band achieves the same running time as the original sparse FFT,
and uses the same number of samples in expectation.
Our second sensing contribution extends BigBand to deal with

scenarios in which the spectrum is not sparse. The basic idea is
simple: instead of taking the FFT over the time signal, we take the
FFT over changes in the time signal. Since only a small fraction of
the spectrum is likely to change its occupancy over short intervals
of a few milliseconds, the FFT of “changes” is sparse and we can
apply our algorithm to it.1

GHz-wide Receiving: BigBand can do more than spectrum
sensing – the action of detecting occupied bands. It can also de-
code the signal. BigBand presents the first receiver that decodes a
sparse signal whose bandwidth is wider than its own digital band-
width, using commodity low-rate ADCs, without using any high
speed sampling or mixing. This is in contrast to recent attempts to
build sparse recovery receivers using compressive sensing, which
need custom ADCs with complex analog hardware and GHz ana-
log mixing [27, 16].

Implementation and Results: We have built a working prototype
of BigBand using USRP radios. Our prototype uses three USRPs,
each of which can capture 50 MHz bandwidth to produce a device
that captures 0.9 GHz –i.e., 6× larger bandwidth than the digital
bandwidth of the three USRPs combined. An empirical evaluation
of this prototype provides the following results:

1The above gives the intuition. However, technically, we compute
changes in the signal power, not the actual signal(see §5 for details).

• BigBand can sense a sparse 0.9 GHz frequency band in real time.
It can identify occupied frequencies with an error rate less than
2% for SNRs larger than 3 dB, and an error rate less than 0.5%
for SNR larger than 10 dB. For sparsity of 5%, its false positive
rate is 2% and its false negative rate is 0.2%.
• We use BigBand to sense the spectrum between 2 GHz and

2.9 GHz, a one-GHz stretch used by diverse technologies [20].
Our outdoor measurements reveal that, in our metropolitan area,2

the above band has an occupancy of 2–5%. These results are
in sync with similar measurements conducted at other loca-
tions [20].
• BigBand’s extended version can identify changes in occupancy

of non-sparse spectrum. For any spectrum occupancy up to 95%,
BigBand can discover the changes in spectrum occupancy and
find unoccupied frequencies with less than 1% false negatives
and 2% false positives, as long as at most 1% of the spectrum
changes its occupancy every millisecond.
• BigBand can correctly decode sparse signals in a 0.9 GHz band.

Specifically, it can decode up to 30 transmitters that are simul-
taneously frequency hopping in a 900 MHz band with less than
3.5% packet loss.

2. RELATED WORK

Related work falls in the following areas.

Spectrum Sensing: Most of the earlier work on spectrum sens-
ing focuses on narrowband sensing [30, 3, 21]. Narrowband sens-
ing techniques include detecting the signal’s energy [3], its wave-
form [30], its cyclostationality [14], or its power variation [21]. In
contrast, our work focuses on wideband spectrum sensing, where
the challenge is the need for high speed ADCs.
A recent work on wideband sensing called QuickSense [29] rec-

ognizes it is inefficient to sequentially scan a wideband. To speed
up the scanning process, QuickSense moves the scanning to the
analog domain using cheap analog filters and energy detectors. It
then uses a hierarchical search algorithm to minimize the number
of scans. BigBand differs fromQuickSense in two main ways: First,
BigBand can decode the signal (obtain the I and Q components) as
opposed to only detecting spectrum occupancy. Second, for highly
utilized spectrum (i.e. not sparse), QuickSense converges to sequen-
tially scanning the spectrum whereas BigBand’s differential algo-
rithm provides a fast sensing mechanism for non-sparse spectrum.
BigBand also complements the geo-location database required

by the FCC for identifying the bands occupied by primary users
(e.g., the TV stations in the white spaces). The database, however,
has no information about frequencies occupied by secondary and
unlicensed users in the area. Also, due to the complexity of pre-
dicting propagation models, the database provides only long-term
predictions, and can be inaccurate, particularly with dynamic ac-
cess patterns [9, 4].
Also related to our work are past measurement studies of spec-

trum occupancy [20, 19, 5]. The resulting data reveals that apart
from the bands below 1 GHz and few bands around 2.4 GHz,
the spectrum is sparsely utilized. Bands proposed for re-purposing
and spectrum sharing are typically highly under-utilized, like those
around 3.5 GHz, above 4.2 GHz, and between 1675 MHz and
1850 MHz [8, 26]. Despite these attempts at measuring the spec-
trum, the data is fairly scarce. In an attempt to address the problem,
a past proposal advocated that researchers in universities and re-
search labs volunteer time-slots on their spectrum analyzers, which
could be coordinated and used for real-time spectrum monitor-
ing [15]. BigBand shares the objective of enabling large scale spec-

2Place name is removed for anonymity.

2

Subsample

1 2 3 4 5 7 8 9 106

1 2 3 4 5

Alias

FFT

FFT

Time Frequency

Figure 2—The correspondence of sub-sampling and aliasing:
Sub-sampling the time domain signal in the top left to half the num-
ber of samples results in the signal in the bottom left. In the Fourier
domain, the FFT of the sub-sampled signal is an aliased (folded)
version of the FFT of the initial signal; namely, samples 1 and 6 in
the top right signal add into sample 1 in the aliased signal in the
bottom right, samples 2 and 7 into sample 2, etc.

trummeasurements. However it addresses the issue by making GHz
sensing cheaper and more accessible.

Sparse Recovery: The closest solutions to our work are wideband
sparse recovery techniques based on compressive sensing [16, 22,
27, 28]. However, since compressive sensing requires random pro-
jections, these techniques end up using complex analog hardware
to avoid using an ADC that samples at Nyquist rate. This includes
custom hardware that can perform analog matrix multiplication and
analog mixing at Nyquist rates [16, 27]. Further, some of these
hardware implementations end up consuming as much power as an
ADC that samples at Nyquist rate [2, 1].
Finally, our work builds on earlier theoretical work on sparse

Fourier transform [13, 12, 11]. However, as explained in §1, the
original sparse FFT algorithms require random sampling and are
not suitable for cheap low power spectrum sensing and signal re-
covery.

3. ILLUSTRATIVE EXAMPLES

We start with two illustrative examples that give an intuition of
how BigBand’s sparse FFT algorithm works. In these examples and
throughout the paper, we will refer to the value of a frequency
by Xf , and its position in the spectrum by f . Also, for clarity, in
these examples we assume the value of unused frequencies is zero,
i.e., we ignore the noise (Our results in §8 naturally include signal
noise). We can then refer to the used frequencies as the non-zero
frequencies.
Before introducing our sampling algorithm, we remind the reader

of a basic property of the Fourier transform that we rely on in our
design: Sub-sampling a signal in the time domain causes aliasing

in the frequency domain. Fig. 2 illustrates this property.

3.1 One Non-Zero Frequency

Let us consider a very simple case where we have a signal of size
N but only one frequency f has a non-zero value Xf , as shown in
Fig. 3(a). For simplicity, we chose N = 28 and f = 11. In general,
to compute the frequency representation of this signal, one would
take an FFT over N time samples –i.e., one needs an ADC that
can take N = 28 samples per time unit.3 Say however that we are
allowed only a low-speed ADC that takes 4 samples every time unit.
How can we correctly compute the full spectrum of size N = 28?

3Throughout this paper when we refer to a sample, we mean a com-
plex sample that is both I and Q. Thus, the Nyquist criterion implies
that a bandwidth of N Hz requires N complex samples per second
(real and imaginary samples).

The low-speed ADC sub-samples the signal in the time do-
main. As described earlier, this causes aliasing in the frequency do-
main [18]. We will refer to aliasing as Bucketization, since taking
the FFT over the 4 time samples returned by our low-speed ADC
causes the 28 frequencies to hash into 4 buckets, such that the value
of each bucket is the sum of the 7 frequencies that hash to that
bucket, i.e., frequency f hashes to bucket i = f mod 4, as shown in
Fig. 3(b).
Now, lets try to reconstruct the 28-point spectrum from the

4 buckets. Non-zero frequency f = 11 hashes to bucket i =
11 mod 4 = 3, and hence only this bucket will have a non-zero
value as shown in Fig. 3(b). Further, the value of this bucket bi will
be equal to the value of the non-zero frequency Xf since all other
frequencies that hash to this bucket are zero. Thus, by computing
the values of 4 buckets, we can find the value of the non-zero fre-
quency.
Although bucketization allows us to find the value of the non-

zero frequency, we still do not know its frequency position f , since
there are multiple frequencies mapped to the same bucket. To com-
pute f , we leverage the phase-rotation property of the Fourier trans-
form, which states that a shift in time translates into phase rotation
in the frequency domain [18]. Specifically, say that we repeat the
whole process of bucketization, after shifting the input signal by τ
samples. Then, the phase of Xf , and consequently the phase of the
bucket it hashes to, is going to change by:

∆φ =
2π · f · τ

N
, and hence f =

∆φ · N
2πτ

. (1)

Thus, we can figure out the position f of the non-zero frequency by
looking at how much its value rotates after a time shift as shown in
Fig. 3(c). We refer to the process of finding the positions of non-
zero frequencies as the Estimation step.
The example above outlines the basic ideas underlying Big-

Band’s approach for computing a wideband sparse spectrum using
low-speed ADCs. Namely, we alias the spectrum into a small num-
ber of buckets, ignore the empty buckets (buckets whose value is
close to zero) and then estimate the frequencies in the non-empty
buckets by exploiting the phase rotation rule in Eq. 1. The above
approach works if we have no collisions, i.e., no two non-zero fre-
quencies fall into the same bucket. The next example provides the
basic idea for resolving collisions.

3.2 Three Non-Zero Frequencies

Let us now consider a slightly more complex case, where we
have three non-zero frequencies, f1 = 11, f2 = 19, and f3 = 25,
as shown in Fig. 4. In this case, if we perform the above bucke-
tization, frequencies f1 and f2 will hash to the same bucket since
11 mod 4 = 19 mod 4 = 3. We refer to this as a collision of non-
zero frequencies. A collision prevents us from finding the value of
each of the non-zero frequencies. It also prevents us from estimat-
ing the positions of the two frequencies f1 and f2 since the phase ro-
tation of the bucket is no longer proportional to f1 or f2. Of course,
we can still find the position and value of f3 using the above method
because this frequency does not suffer from a collision.4 However
to reconstruct the full spectrum, we need to resolve the collision.
So, how can we resolve collisions?
To resolve the collision, we need to repeat the bucketization in

a way that guarantees that the colliding frequencies do not collide
again. Say that we are given a second low-speed ADC, which takes
7 samples per time unit. We can repeat the above bucketization but

4Note that we need to be able to detect which buckets have a col-
lision and which don’t so that we can estimate the frequencies that
do not collide. In §4.3, we describe how to detect collisions.

3

�Ù

r E=3

�Ù

�0 L
t�è�B�ì

tz
�Bucketize Estimate

(a)�tz-Point Frequency Spectrum: �
(1 non-zero frequency B L ss)

(b)�v Frequency Buckets:

B L ss hashes to bucket E L u

(c) Estimation of frequency

position B using phase rotation

�Ù

B L ss tyr

Figure 3—Estimating one non-zero frequency: (a) Sub-sampling the time signal using a low rate ADC to get 4 samples and taking the
4-point FFT bucketizes the 28 frequencies to 4 buckets. (b) Non-zero frequency 11 is hashed to bucket 3 = 11 mod 4 which allows us to
estimate its value Xf (c) Repeating the bucketization with a time shift τ , rotates the phase of Xf by 2πf τ/N which allows us to estimate f .

B7=25

�ÙÚ E �ÙÛ

�Ù.

B6=19r

Bucketize

(a)�tz-Point Frequency Spectrum: �
(3 non-zero frequencies)

(b)�v Buckets:

B5 and B6 collide

�ÙÚ

B5=11

r

(c)�y Buckets

B5 and B7 collide

�ÙÛ

ty

r 3�Ù/

�Ù/

�ÙÚ E �ÙÜ

6

Bucketize

Figure 4—Estimating 3 non-zero frequencies: (a) Frequencies
f1, f2, f3 are occupied. (b) Hashing into 4 buckets results in f1 and f2
colliding the same bucket which prevents us from estimating their
values and positions. We can estimate f3. (c) Hashing into 7 buckets,
f1 and f3 collide but not f2. We can estimate f2 and subtract it from
the bucket where it collided with f1 which allows us to estimate f1.

this time we bucketize into 7 buckets and a frequency f is hashed
into the bucket f mod 7. In this case, non-zero frequency f1 = 11
will hash to bucket 4, f2 = 19 to bucket 5, and f3 = 25 to bucket
4. This time, f1 and f3 collide, but f2 does not collide, as shown in
Fig. 4(c).
Now, we have two sets of buckets (shown in the second column

of Fig. 4), which are the 4 buckets generated by taking an FFT
over the output of the first low-speed ADC, and the 7 buckets gen-
erated by taking an FFT over the output of the second low-speed
ADC. Each set of buckets has a collision. Yet together the two sets
of buckets can be used to resolve both collisions. Specifically, we
compute the value and position of frequency f3 from the first buck-
etization, where it does not collide (using the same approach we
used above when we had only one non-zero frequency). Similarly,
we compute the value and position of frequency f2 from the second
bucketization, where it does not collide. After resolving f2, we go
back to the first bucketization and subtract its value Xf2 from the
bucket 3 where it collides.5 This leaves only frequency f1 in bucket
3, which can now be resolved. Thus, the combination of the two
bucketizations using two low-speed ADCs allows us to reconstruct
the full spectrum.
But how do we guarantee that the same pair of frequencies that

collided in the first bucketization does not collide again in the sec-
ond bucketization? We can do so because the numbers of buck-
ets across bucketizations (4 and 7) are co-prime. We know from
modular arithmetic that for any two integers f1 and f2, we have,
f1 mod 7 = f2 mod 7 and f1 mod 4 = f2 mod 4 if and only if

5Note that we subtract Xf2 from the bucket and Xf2e
i2πf2τ/N from

the time shifted version of the bucket.

f1 mod 28 = f2 mod 28. Hence, using these co-prime bucketiza-
tions, two distinct frequencies in an N-wide spectrum will never
collide twice.
These examples give an intuition of how we can find the val-

ues and positions of non-zero frequencies. In the next section, we
generalize these ideas to any number of non-zero frequencies and
show how these ideas can be implemented efficiently on off-the-
shelf hardware.

4. BIGBAND

BigBand is a receiver that can capture a sparse spectrum wider
than its own bandwidth, i.e., it can recover a sparse signal with a
significantly lower sampling rate than the Nyquist criterion. Thus,
BigBand can do more than spectrum sensing – the action of detect-
ing occupied bands. BigBand provides the details of the signals in
those bands (I’s and Q’s of wireless symbols), which enables de-
coding those signals.
BigBand presents a new sparse FFT algorithm tailored for spec-

trum acquisition using low speed ADCs. In this section, we describe
in details BigBand’s sparse FFT algorithm and in §6 we outline its
similarities and differences to the original sparse FFT algorithm.
At a high-level, BigBand operates in two key steps: bucketization

and estimation. In the bucketization step, BigBand hashes the fre-
quencies in the spectrum into buckets. Since the spectrum is sparse,
many buckets will be empty and can be discarded. BigBand then
focuses on the non-empty buckets, and computes the values of the
frequencies in those buckets in what we call the estimation step.
Below we describe both steps in detail.

4.1 Frequency Bucketization with Co-prime Aliasing

Bucketization has to satisfy the following requirements:

1. It needs to hash the frequencies into buckets, i.e., every bucket
has the same number of frequencies, every frequency falls in a
unique bucket, and the value of the bucket is the sum of the values
of frequencies that hash to it.

2. It should admit sub-Nyquist sampling, i.e., it should operate on a
small number of time samples, such that the number of samples
per second is proportional to the number of occupied frequencies
not the total bandwidth.

3. It should be possible to implement sub-sampling with purely
low-rate ADCs.

4. It should be possible to repeat the bucketization but with differ-
ent frequencies sharing the same bucket so that we can resolve
collisions.

BigBand uses a bucketization scheme based on co-prime alias-
ing filters which satisfy the above requirements. Below we explain
how aliasing filters satisfy requirements 1, 2, 3 and how making the
filters co-prime satisfies requirement 4.
So what are aliasing filters? Recall the following basic property

of the Fourier transform: sub-sampling in the time domain causes

4

aliasing in the frequency domain. Formally, let x be a discrete time
signal of length N, and X its frequency representation. Let x′ be
a subsampled version of x, where x′i = xi×N/B and B divides N.
Then, X′, the FFT of x′ is an aliased version of X, i.e.:

X
′
f =

N/B−1
∑

j=0

Xf+jB. (2)

Thus, aliasing is a form of bucketization in which frequencies
equally spaced by an interval B end up in the same bucket, i.e.,
frequency f will hash to bucket i = f mod B. Further, the value in
each bucket is the sum of the values of the frequencies that hash to
the bucket as shown in Eq. 2.
Aliasing directly satisfies requirements 1, 2, and 3. The only

tricky part is to satisfy requirement 4, which translates to iden-
tifying different aliasing filters that randomize how frequencies
hash into buckets. To do so, we use aliasing filters with different
sampling intervals. In this case, each bucketization requires sub-
sampling at a different rate, which can be accomplished with mul-
tiple low-rate ADCs.
So how should we choose the different sampling intervals of the

aliasing filters? As we have seen in the example in §3.2, choosing
sampling intervals which are co-prime (4 and 7) randomizes the
bucketization and prevents the same frequencies from colliding in
both filters. Therefore, the best choice is co-prime aliasing filters.
Said differently, the filters have B1 = N/p1 and B2 = N/p2 buck-
ets where p1 and p2 are co-prime. In the Appendix, we prove the
following lemma:

LEMMA 4.1. Given two aliasing filters with B1 = N/p1 and

B2 = N/p2 buckets such that p1 and p2 are co-prime integers that

divide N, then for any two frequencies f 6= f ′, we have: f ′ = f

mod B1 → f ′ 6= f mod B2.

The lemma states that given the above aliasing filters, any two fre-
quencies that collide in the first bucketization will not collide in the
second bucketization and hence this choice of bucketization satis-
fies requirement number 4. Hence, co-prime aliasing filters satisfy
our four requirements.
Two important points are worth clarifying:

• The number of frequencies that hash to each bucket needs to be
co-prime and not the total number of buckets, i.e. p1 and p2 must
be co-prime but not necessarily B1 and B2. In the example in §3.2,
it happens that B1 = 4 and B2 = 7 are co-prime and p1 = 7 and
p2 = 4 are also co-prime since N = 28.
• How does this translate into ADC sampling rates? The best

choice of aliasing filters suggests that for a bandwidth BW, we
should use two ADCs that sample at rates BW/p1 and BW/p2
where p1 and p2 are co-prime. Of course, ADCs might be not
readily available at any sampling rate. However, one can always
find a variety of off-the-shelf ADCs that can recover a bandwidth
slightly higher but close enough to the desired bandwidth. For
example, to recover a 1 GHz bandwidth, we can use a 42 MHz
ADC [6] along with a 50 MHz ADC. The combination of these
two ADCs can capture a bandwidth of 1.05 GHz. This is because
42 MHz = 1.05 GHz/25 and 50 MHz = 1.05 GHz/21 where 21
and 25 are co-prime.

4.2 Frequency Estimation with Phase Rotation

The bucketization step allows us to separate the occupied fre-
quencies into their own buckets with the potential of some buckets
having frequency collisions. In the next section, we will present a
mechanism to detect buckets with collisions. For the time being, let

Term Definition

BW total GHz bandwidth we wish to reconstruct
T total sampling time of the signal, FFT window time
N size of the FFT, N = T × BW
K sparsity : number of non-zero frequency coefficients
B number of buckets
p number of frequencies that hash to a bucket, p = N/B
f frequency index (0 ≤ f < N)
τ time shift of the signal in number of samples
x time signal of length N sampled at a rate of BW
X frequency domain signal, X = FFT(x)

Table 1—Terms used in the description of BigBand.

us focus on the buckets that do not have collisions and estimate the
value and the position of the occupied frequency, i.e., Xf and the
corresponding f .
In the absence of a collision, the value of the occupied frequency

is the value of the bucket. Since many frequencies fall into the
bucket, it is not clear which frequency f is associated with this
value. However, as explained in the example in §3.1, we can es-
timate the position of the frequency using phase rotation. Specifi-
cally, we repeat the bucketization after a time shift τ . Since a shift
in time translates into phase rotation in the frequency domain, the
value of the bucket of interest changes from Xf to Xf · ei2π·f ·τ/N .
Hence, using the change in the phase of the bucket, we can esti-
mate our frequency of interest and we can do this for all buckets
that do not have collisions. This implies that for each of the two
co-prime sampling rates, the system needs to use two ADCs one of
which is sampling after a time shift of τ , i.e. BigBand uses 4 ADCs
in total. Note however that the two co-prime ADCs and their shifted
versions need not have the same shift τ .
To be able to implement the above frequency estimation, we need

to answer the following two questions:

1. How can we sample the signal with a shift? This is fairly sim-
ple as we can connect the antenna to the two ADCs using different
delay lines (which is what we do in our implementation). Alterna-
tively, we can use different delay lines to connect the clock to the
two versions of the ADC.

2. What values of τ are suitable? It is important to note that not all
values of τ will allow us to uniquely estimate multiple frequency
positions. This is because the phase wraps around every 2π. For
example, say that we use a shift of τ = 2 samples out of N where
N is the size of the sparse FFT, and consider two frequencies f and
f ′ = f +N/2. After a shift by τ , the phase rotation of f is ∆φ(f) =
2π·f ·2/N. The phase rotation of f ′ is∆φ(f ′) = 2π·(f+N/2)·2/N
mod 2π = 2π · f · 2/N. Thus, with a time shift of 2 samples, the
phase shifts observed for two frequencies f and f ′ separated by N/2
are the same, and BigBand will be unable to disambiguate between
them. BigBand can use a shift of τ = 3 to disambiguate between f

and f+N/2, but this does not address the situation completely since
a shift of τ = 3 will be unable to disambiguate frequencies separated
by N/3. In general, we need to pick a τ that gives a unique mapping
between the phase rotation and the frequencies, independent of the
separation between the frequencies. Formally, for all separations s
between the frequencies (1 ≤ s ≤ N-1), we need to ensure that
sτ/N is not an integer. We can ensure this property for either τ =1,
or any τ invertible modulo N.

4.3 Detecting Frequency Collisions

So far we have assumed that we know which buckets have a sin-
gle occupied frequency and which buckets have a collision. How-
ever, we need to be able to detect collisions in order to avoid esti-
mation errors.

5

1 Pseudocode for BigBand

PROCEDURE: BIGBAND(x)
X← 0
B1 ← N/p1
B2 ← N/p2
✄ Bucketization: FFT of sub-sampled and shifted signal

b1 ← FFT(x[0], x[p1], · · · , x[N − p1])
b2 ← FFT(x[0], x[p2], · · · , x[N − p2])

b̃1 ← FFT(x[τ1], x[τ1 + p1], · · · , x[τ1 + N − p1])

b̃2 ← FFT(x[τ2], x[τ2 + p2], · · · , x[τ2 + N − p2])
✄ Estimation: Iterate between filters
repeat

for u ∈ {1, 2} do
for non-empty bu

i do
if no collision then

f ← (∠b̃u
i − ∠bu

i) · N/(2π · τu)
Xf ← bu

i

Subtract Xf from b1, b̃1, b2, b̃2

until all buckets are empty or log(K) iterations
return X

BigBand uses the phase rotation property of the Fourier trans-
form to determine if a collision has occurred. Specifically, if there
is no collision and the only occupied frequency is f , then the values
b and b(τ) of a bucket in the two time-shifted bucketizations are
related as b(τ) = bei2π·fτ/N . In particular, these values only dif-
fer by a phase shift, and their magnitudes are equal. On the other
hand, consider the case where there is a collision between, say, two
frequencies f and f ′. Then the value, b, in the bucket before time-
shifting can be written as Xf + Xf ′ . After time-shifting by τ , the

value of the bucket, b(τ) = Xf · ei2π·fτ/N + Xf ′ · ei2π·f ′τ/N . As
described in §4.2, the two phase shifts for f and f ′ are different by
choice of τ , and hence the magnitudes of b and b(τ) are different.
Thus, we can determine whether there is a collision or not by com-
paring the magnitudes of the buckets before and after time-shifting,
and verifying whether they are the same or not.

4.4 BigBand’s Sparse FFT Algorithm

To put the pieces together, Algorithm 1 provides a pseudocode
for BigBand’s sparse FFT algorithm. BigBand proceeds as follows:
after bucketization, it estimates the occupied frequencies that did
not collide in the first bucketization. It then subtracts the values of
these frequencies from the buckets they hashed to in all 4 bucke-
tizations and estimates the remaining frequencies from the second
bucketization. BigBand iterates between the two bucketizations un-
til all frequencies have been recovered. In the Appendix, we prove
the following theorem about the algorithm.

THEOREM 4.2. For sparsity K = c
√
N and p1, p2 = Θ(

√
N),

BIGBAND runs in time O(K logN), uses O(K) samples and returns
the correct result with probability at least 1−O(α) for some small
enough constants α and c.

4.5 Sparsity Range

Since BigBand is a sparse FFT algorithm, it is natural to ask what
sparsity range it works for. BigBand uses only two aliasing filters,
there is a small probability that it fails to resolve collisions, and this
limits the sparsity that it can handle.
BigBand will fail to resolve a collision when there is a deadlock,

i.e., during the estimation step in Algorithm 1, it fails to find any
non-empty bucket without a collision. For example, say we have
four frequencies (f1, f2, f3, f4) such that in the first aliasing filter f1
collides with f2 and f3 collides with f4 whereas in the second aliasing
filter f1 collides with f3 and f2 collides with f4. Then, we will not

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100P
e

rc
e

n
ta

g
e

 o
f

N
o

n
-z

e
ro

 F
re

q
.

 i
n

 D
e

a
d

lo
c
k

Percentage of Spectrum Usage (Sparsity)

2 Co-prime filters
3 Co-prime filters
4 Co-prime filters

Figure 5—BigBand’s Sparsity Range: We ran a simulation to
check the percentage of frequencies which are in a deadlock and
hence will not be recovered by BigBand versus the sparsity. The
figure shows that with each additional co-prime filter we can signif-
icantly reduce the frequencies in deadlock and increase the sparsity
range for which BigBand can recover all frequencies.

be able to resolve these collisions. The probability that a deadlock
occurs depends on how sparse the spectrum is.
In order to support a denser spectrum, we need to add a third

aliasing filter that is co-prime with the first two. This will allow us
to resolve deadlocks of size 4. However, with 3 aliasing filters, one
can have deadlocks of size 8 or larger, and more generally, with m

aliasing filters, one can have deadlocks of size 2m or greater. Thus,
intuitively, the likelihood of a deadlock reduces with the number
of co-prime filters, as the deadlock needs to involve exponentially
more frequencies.
Fig. 5 shows the results of a simulation that reports the fraction

of occupied frequencies in a deadlock as a function of the sparsity
of the spectrum for two, three or four co-prime aliasing filters. As
the figure shows, for a fixed number of aliasing filters, increasing
the sparsity reduces the likelihood that the occupied frequencies are
in a deadlock. The figure also shows that each additional co-prime
aliasing filter can significantly reduce the number of frequencies in
a deadlock and allow BigBand to support higher spectrum usage.

5. SENSING NON-SPARSE SPECTRUM

In this section, we extend BigBand’s algorithm to deal with sens-
ing a non-sparse spectrum. The key idea is that although the spec-
trum might not be sparse, the changes in spectrum usage are sparse
i.e. over short intervals, only few frequencies are freed up or be-
come occupied. We refer to this as differential sparsity. To see how
differential sparsity allows D-BigBand to sense a non-sparse spec-
trum we will start with an example.

5.1 Illustrative Example

In this example, we are going to assume that the state of any fre-
quency can either be occupied or empty. However, if a frequency
is occupied, its value does not change over time. We will later ex-
plain how to deal with the fact that values of occupied frequencies
change over time. Let us consider the case where one frequency
f = 12 which was occupied becomes unoccupied after time TW as
shown in Fig. 6(a,b). Now if we bucketize the spectrum, all buckets
will be non-empty and will have collisions. Hence, we cannot use
the previous algorithm. However, since frequency f = 12 became
empty after time TW, the power in the bucket it hashes to will be-
come lower after time TW. Further, since it is the only frequency
that changed state, only the power of that bucket changes. Hence
if we subtract the bucketization at time TW from that at time 0,

6

B=12

B=12r ty

r ty

(a)�Spectrum at time P L r

(b)�Spectrum at time P L 69

Bucketize

Bucketize

r 3 r 6

(c)�Bucketize with co-prime aliasing filters and subtract

r 6r 3

F

L

Vote

f 1 2 Vote

0 1

1 0

2 0

3 0

4 1

5 1

6 0

7 0

8 1

9 0

10 0

11 0

12 2

13 0

14 0

15 0

16 1

17 0

18 0

19 1

20 1

21 0

22 0

23 0

24 1

25 0

26 1

27 0

(d)�Voting Table

r 3 r 6

F

Figure 6—Sensing one change in non-sparse spectrum: (a) f=12 is occupied at t = 0. (b) f=12 is empty at t = TW. (c) Bucketize the
spectrum at t = 0 and t = TW using co-prime aliasing filters and subtract the two bucketizations to discover changing buckets. Changes are
sparse. (d) Each co-prime filter votes for the frequencies that hash to a changing bucket. Only f=12 gets two votes.

we can find which buckets have frequencies that changed state as
shown in Fig. 6(c).
Subtracting the bucketizations, allowed us to bucketize the

“changes” in the spectrum. However, we still need to estimate
which frequency is the one that changed state out of the frequen-
cies that hash to the bucket. To do this, we introduce a new estima-
tion procedure based on voting and co-prime aliasing filters. Both at
time 0 and time TW, we perform two bucketizations; one using an
aliasing filter with four buckets and another using an aliasing filter
with seven buckets as shown in Fig. 6(c). Now every frequency that
is hashed into a bucket that changed gets a vote. However, since the
filters are co-prime, frequencies that hash to the same bucket as f
in the first filter and get a vote, will hash to a different bucket in the
second filter and will not get a second vote. Hence, only frequency
f = 12 will get two votes which allows us to estimate its position
as shown in Fig. 6(d).
The above example gives an intuition of how we can leverage

the sparsity of changes in the spectrum to discover which frequen-
cies become occupied and which become empty. However, to be
able to generalize the above approach, we need to first address the
following issues:

• Since the values of the occupied frequencies change after a time
TW, the values of the buckets will change even if the state of the
frequencies that hash to them did not change. Hence, we cannot
simply subtract the two bucketizations. However, since FCC
typically requires wireless transmissions to be whitened over
time, the average power of a bucket will not change if the state
of frequencies that hash to it does not change. To estimate the
average power over a time window TW, D-BigBand performs
the bucketization multiple times and averages the power of the
buckets. The longer the time window TW, the better the estimate
of the average power of each bucket. However, the longer the
time window, the more frequencies change their state. In §8,
we show that a time window TW = 1 ms allows us to properly
detect changes in the buckets.

• If there is more than one change in the spectrum, we will need
to use more than two co-prime aliasing filters. For example, 4
filters allow D-BigBand to support a differential sparsity of Kd =
o(
√
N) where Kd is the number of frequencies whose state has

changed.6

6This is because, given four aliasing filters with number of buck-

5.2 D-BigBand

D-BigBand’s algorithm works as follows. Over a time window
TW, D-BigBand bucketizes the signal multiple times7 for each of
the four co-prime aliasing filters and calculates the average power
in the bucket over this time window. It then repeats these buck-
etizations over the next time window and subtracts the average
power of the buckets in the first time window from that in the sec-
ond time window. After that each filter votes for frequencies that
hash to buckets where the power changed. Frequencies that get four
votes are picked as the frequencies whose state has changed. Hence,
based on our knowledge of the spectrum occupancy during the first
time window, we can discover the spectrum occupancy during the
second time window.
As with any differential system, we need to initialize the state

of spectrum occupancy. However, an interesting property of D-
BigBand is that we can initialize the occupancy of each frequency
in the spectrum to unknown. This is because, when we take the
difference in power we can tell whether the frequency became oc-
cupied or it became empty. Hence, once the occupancy of a fre-
quency changes, we can tell its current state irrespective of its pre-
vious state. This avoids the need for initialization and prevents error
propagation.

6. BIGBAND VS SFFT

In this section, we describe the differences between BigBand and
the sparse FFT algorithm (sFFT) in [12, 13].
BigBand is designed and proved for the typical case of spectrum

usage where the occupied frequencies are randomly distributed
(with sparsity K = O(

√
N)), whereas sFFT is proved for a worst

case distribution of occupied frequencies (with sparsity K = o(N)).
Since BigBand is designed under fewer constraints than sFFT, it

can be implemented much more efficiently than sFFT. Most impor-
tantly, BigBand works with off-the-shelf low speed ADCs. In con-
trast, sFFT, similar to compressed sensing, requires custom ADCs
that can randomly sub-sample the signal with inter-sample spacing
as small as the inverse of the signal bandwidth. Additionally, Big-
Band performs the bucketization step only 4 times, whereas sFFT
needs to perform O(logK) bucketizations. Finally, BigBand’s dif-

ets N/p1,N/p2,N/p3,N/p4 where p1, p2, p3, p4 are co-prime, the

probability that voting makes a mistake is bounded by K4
d/N

2.
7The number of times D-BigBand can average is = TW/T where T
is the FFT window time.

7

Mixer

4
0
 M

H
z

L
P

F

5
0
 M

H
z

L
P

F

4 GHz
100MHz

ADC
DigitalAmp

900MHz Bandwidth

Figure 7—SBX Daughterboard Schematic: The board can tune
to any frequency between 0.4 GHz to 4.4 GHz. After down-
conversion, the signal passes through a 40 MHz low pass filter
(LPF), an amplifier, and a 50 MHz LPF before the 100 MHz ADC.
The baseband circuit bandwidth is about 900 MHz. BigBand by-
passes both the 40 and 50 MHz LPFs to allow the baseband cir-
cuitry to receive 900 MHz.

ferential scheme, D-BigBand, enables the detection of occupied and
empty frequencies for any level of spectrum usage, whereas sFFT
is designed for a sparse spectrum.

7. A USRP-BASED IMPLEMENTATION

We build a prototype of BigBand using USRP software ra-
dios [7]. We use three USRP N210 radios with the SBX daugh-
terboards, which can operate in the 400 MHz to 4.4 GHz range.
The clocks of the three USRPs are synchronized using an external
GPSDO clock [17]. In order to sample the same signal using the
the three USRPs, we connect the USRPs to the same antenna using
a power splitter.
To be able to implement BigBand however, we had to address

the following USRP limitations:

• RF Frontend: The RF frontend of the SBX daughterboard is
designed to provide 40 MHz of bandwidth to a low rate ADC.
However, the goal of BigBand is to use RF frontends that can
pass a much larger bandwidth to the low rate ADC. We achieve
this by modifying the SBX RF receive chain, whose architecture
is shown in the schematic in Fig. 7. In particular, we bypass the
40 MHz and 50 MHz filters shown in the schematic. This allows
the USRP’s ADC to receive the entire bandwidth that its analog
front-end circuitry is designed for. The ADC circuitry can receive
at most 0.9 GHz. Once we bypass the filters, BigBand can use
the SBX to sense 900 MHz, which will be aliased to the 50 MHz
bandwidth of the USRPs.
• Sampling rate: The USRP ADC has a sampling rate of

100 MHz. However, the USRP digital processing chain cannot
support 100 MS/s; the highest sampling rate it can support is
50 MS/s.8 Further, the USRP has digital filters but these can only
produce sampling rates which are integer dividers of 100 MS/s
(i.e. 100/2, 100/3, 100/4, etc.). Hence, for 0.9 GHz bandwidth, it
is not possible with USRPs to get two aliasing filters that sample
at 0.9/p1 and 0.9/p2 where p1 and p2 are co-prime. We can im-
plement the co-prime aliasing filters using commodity ADCs [6]
as explained in §4.1. However, this would require building a new
receiver that uses these ADCs. Instead, we implement BigBand
using three USRPs, all of which use 50 MS/s aliasing filters.
Our implementation of BigBand is more constrained than our
description in §4 since it does not incorporate co-prime aliasing
filters. However, we can still use it to resolve some collisions as
we describe below.

7.1 Resolving Collisions without Co-prime Filters

Ideally, co-prime filters will allow us to resolve collisions. How-
ever, three aliasing filters sampling at the same rate with different

8We use UHD to configure the USRP to transmit 16-bit ADC sam-
ples (8 bits each for I and Q) to the host so that we can receive 50
MS/s without saturating the Gigabit Ethernet.

time shifts allows us to solve collisions of two frequencies. To see
how, notice that in the 50 MHz aliasing filters in our implemen-
tation, 18 frequencies (900/50) will hash together in one bucket
since we are sensing a 900 MHz spectrum. Thus, two occupied fre-
quencies f and f ′ that collide in the same bucket can be one of
(

18

2

)

= 153 possibilities. For each of these possibilities, we have
two unknowns which are the values (Xf and Xf ′) of the two fre-
quencies. However, these values combine with a different phase ro-
tation in each of the three filters to give us three different values of
the same bucket:

b
1
j = Xf + Xf ′

b
2
j = Xf · ei2πfτ1/N + Xf ′ · ei2πf ′τ1/N

b
3
j = Xf · ei2πfτ2/N + Xf ′ · ei2πf ′τ2/N

(3)

where τ1 and τ2 are the time shifts of the second and third fil-
ters relative to the first filter. Hence, for each possible pair (f , f ′),
we get an over-determined system with three linear equations and
two unknowns (Xf , Xf ′). This system will have a solution only for
the correct pair. Hence, by testing all possibilities we can find the
correct positions of f and f ′.
The previous discussion assumes that only two frequencies col-

lide in the two buckets. If more than 2 frequencies collide, the equa-
tions above are extremely unlikely to have any pairs (f , f ′) that will
satisfy them. Thus, this system also allows us to check for colli-
sions, similar to the BigBand scheme described in §4.3.9

Once we discover a collision of more than two frequencies which
we cannot solve, we set all frequencies that hash to the bucket as
occupied. This increases the number of false positive errors (i.e.,
unoccupied frequencies which are reported as occupied) by at most
15 for each of these collisions. However, this avoids false nega-
tive errors (i.e., occupied frequencies which are reported as unoccu-
pied). In the context of spectrum sensing, false negatives are more
problematic since they can result in interfering with ongoing trans-
missions.

7.2 Estimating the Channel and the Time Shifts

The earlier description of BigBand assumes that the values of the
frequencies are scaled similarly on all three USRPs. Although the
signals received at the three USRPs experience the same wireless
channel since they come from the same antenna, they experience
different channels on the hardware and hence they are scaled dif-
ferently. Specifically, if an occupied frequency f whose value is Xf

hashes to bucket j and does not collide, then the value of bucket j at
each of the USRPs can be written as:

b
1
j = hw(f) · h1(f) · Xf

b
2
j = hw(f) · h2(f) · Xf · ei2πfτ1/N

b
3
j = hw(f) · h3(f) · Xf · ei2πfτ2/N

(4)

where hw(f) is the wireless channel coefficient, h1(f), h2(f), h3(f)
are the hardware channels on each of the USRPs, and ·(f) indicates
that these parameters are frequency dependent. hw(f) cancels out
once we take the ratios, b2

j /b
1
j and b3

j /b
1
j of the buckets. However,

the hardware channels are different and if we do not estimate and
compensate for them, we cannot perform frequency estimation or
detect collisions and solve them. In addition, we also need to esti-
mate the time shifts τ1, τ2 in order to perform frequency estimation
based on phase rotation.

9Again, similar to the scheme in §4.3, we can solve for collisions
of three frequencies by adding a fourth filter. We will then have a
system of four equations and three unknowns, and so on.

8

-3

-2

-1

 0

 1

 2

 3

 4

 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

U
n

w
ra

p
e

d
 P

h
a

s
e

Frequency Range in GHz

∆φ1-2
∆φ1-3

Figure 8—Phase rotation vs frequency: The figure shows that the
phase rotation between the 3 USRPs is linear across the 900 MHz
frequency spectrum and can be used to estimate the time shifts.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 3 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4

M
a

g
n

it
u

d
e

Frequency Range in GHz

|h1/h2|
|h1/h3|

Figure 9—Hardware channel magnitude: The relative channel
magnitudes |h1(f)/h2(f)| and |h1(f)/h3(f)| are not equal to 1 and
are not flat across the frequency spectrum. Hence, we need to com-
pensate for these estimates to be able to detect and solve collisions.

To estimate the channels and the time shifts, we divide the
900 MHz spectrum into 18 consecutive chunks of size 50 MHz.
We then transmit a known signal in each chunk, one by one. Since
we only transmit in one chunk at a time, there are no collisions at
the receiver after aliasing. We then use Eq. 4 to estimate the ratios
h2(f) · ei2πfτ1/N/h1(f) and h3(f) · ei2πfτ2/N/h1(f) for each f in the
900 MHz spectrum.
Now that we have the ratios, we need to compute h2(f)/h1(f) for

each frequency f , and the delay τ . We can estimate this as follows:
Both the magnitude and phase of the hardware channel ratio will
be different for different frequencies. The magnitude differs with
frequency because different frequencies experience different atten-
uation in the hardware. The phase varies linearly with frequency
because all frequencies experience the same delay τ , and the phase
rotation of a frequency f is simply 2πf τ/N. We can therefore plot
the phase of the ratio as a function of frequency, and compute the
delay τ from the slope of the resulting line.
Fig. 8 shows the phase result of this estimation. As expected,

the phase is linear across the entire 900 MHz. Hence, by fitting
the points in Fig. 8 to a line we can estimate the shifts τ1, τ2 and
the relative phases of the hardware channels. Fig. 9 also shows
the relative magnitudes of the hardware channels on the USRPs
(i.e. |h1(f)/h2(f)| and |h1(f)/h3(f)|) over the 900 MHz between
3.05 GHz and 3.95 GHz. These hardware channels and time shifts
are stable. We estimated them only once at the set up time of the
implementation.

7.3 Implementing D-BigBand

D-BigBand’s frequency estimation relies on different co-prime
filters to vote on which frequency positions have changed occu-
pancy and hence we cannot implement D-BigBand without co-
prime ADCs. To verify that D-BigBand can sense a non-sparse

 0.0001

 0.001

 0.01

 0.1

 1

 10

 0 5 10 15 20 25 30P
e
rc

e
n
ta

g
e
 o

f
W

ro
n
g
 E

s
ti
m

a
te

s

SNR per Bucket (SNR in dB)

Figure 10—The accuracy of BigBand’s frequency estimation:
The error is less than than 2% for signals 3dB above the noise floor
of each bucket. The error decreases to smaller than 0.5% if the SNR
per bucket is larger than 10dB.

spectrum, we use multiple USRPs sampling adjacent narrowband
chunks to capture a full 1 GHz of spectrum. However, since our
testbed has only 20 USRPs, we divide them into 10 receivers and
10 transmitters and capture 250 MHz at a time. We repeat this 4
times at center frequencies that are 250 MHz apart and stitch them
together in the frequency domain to capture the full 1 GHz spec-
trum. We then perform the inverse FFT to obtain a time signal sam-
pled at 1 GHz. We now subsample this time domain signal using
co-prime aliasing filters with the following sampling rates: 1/21,
1/20, 1/23 GHz, and run D-BigBand on these subsampled versions
of the signal.

8. EMPIRICAL RESULTS

In this section, we will evaluate the performance of BigBand and
show that it can be used both for sensing and receiving (i.e., de-
coding) sparse wideband signals. We also evaluate D-BigBand and
show that it can be used for sensing even if the spectrum is not
sparse.

8.1 Frequency Estimation as a Function of SNR

BigBand’s basic primitive is the estimation of the frequency cor-
responding to a non-zero bucket by using the phase rotation prop-
erty. Such an estimate of the phase is susceptible to sample noise.
However, BigBand has two mechanisms that enhance its robustness
to noise: averaging across samples obtained from multiple ADCs,
and rounding the obtained frequency estimate to the nearest inte-
ger.10 In this experiment, we verify the robustness of BigBand’s
frequency estimation as a function of SNR.

Method:We transmit signals in random frequency bins in the range
3.05-3.95 GHz. We set the sparsity to 1% and the FFT window to
1 ms. We vary the location of the receiver to get a range of SNR per
bucket between 3 dB and 30 dB.

Results: Fig. 10 shows the percentage of frequencies that are es-
timated incorrectly as a function of the SNR in each bucket. The
figure shows that the error is less than 2% for SNR larger than 3 dB
and less than 0.5% for SNR larger than 10 dB. This shows that fre-
quency estimation using phase rotation works across a large SNR
range with little errors.

10Frequency f estimated in bucket i must satisfy f = i mod B
where B is the number of buckets.

9

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 2 4 6 8 10P
e

rc
e

n
ta

g
e

 o
f

F
a

ls
e

 N
e

g
a

ti
v
e

s

Percentage of Spectrum Usage (Sparsity)

Figure 11—False negatives as a function of spectrum sparsity:
BigBand has an extremely low rate of false negatives. Its false neg-
ative rate is less than 0.2% with less than 6% spectrum occupancy,
and stays around 0.3% even when the spectrum occupancy grows
as large as 10%.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 2 4 6 8 10P
e

rc
e

n
ta

g
e

 o
f

F
a

ls
e

 P
o

s
it
iv

e
s

Percentage of Spectrum Usage (Sparsity)

Figure 12—False positives as a function of spectrum sparsity:
BigBand has a false positive rate of around 2% with 5% spectrum
occupancy, and stays below 14% even when spectrum occupancy
grows as large as 10%.

8.2 Evaluation of BigBand Spectrum Sensing

The primary motivation of BigBand is to be able to sense sparse
spectrum. In this section, we verify the range of sparsity for which
BigBand works.

Method: We vary the sparsity in the 3.05 GHz to 3.95 GHz range
between 1% and 10% by transmitting from 5 different USRPs. Each
USRP transmits a signal whose bandwidth is at least 1 MHz and at
most 20 MHz. We randomize the bandwidth and the center fre-
quencies of the signals transmitted by the USRPs. For each sparsity
level, we repeat the experiment 100 times with different random
choices of bandwidth and center frequencies. We run BigBand over
a 1 ms FFT window. We use two metrics:

• False Negatives: The fraction of occupied frequencies that Big-
Band incorrectly reports as empty.
• False Positives: The fraction of empty frequencies that BigBand

incorrectly reports as occupied.

Results: Fig. 11 shows that BigBand has an extremely low rate of
false negatives, below 0.2% when the spectrum occupancy is less
than 5%; it stays below 0.3% even when the spectrum occupancy
goes up to 10%. The false negatives increase with spectrum occu-
pancy since collision increases and it becomes more probable that
BigBand fails to detect a collision. Compare this with today’s se-
quential scanning techniques (e.g., RFeye [23]) which sense any
particular frequency for only 2% of the time and hence do not mea-
sure that frequency for 98% of the time. As a result, they can miss
a significant percent of occupied frequencies.

 0

 20

 40

 60

 80

 100

 2 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3

O
c
c
u

p
a

n
c
y
 %

Frequency (GHz)

Occupancy from 2GHz to 3GHz (10 ms FFT window)

Figure 13—Spectrum Occupancy: The figure shows the aver-
age spectrum occupancy at our geographical location on Friday
01/15/2013 between 1-2pm:, as viewed at a 10 ms granularity. It
shows that the spectrum is sparsely occupied.

Fig. 12 shows that the percentage of false positives of BigBand
is less than 2% when the spectrum usage is below 5%. The num-
ber of false positives increases as the spectrum usage increases, but
stays below 14% even for spectrum usage as large as 10%. Big-
Band’s false positives increase as spectrum usage increases because
it takes a conservative approach that errs in favor of false positives
rather than false negatives. In particular, for each collision of 3 or
more which BigBand cannot decode, it sets all 18 frequencies that
hash to the bucket as occupied, which results in 15 additional false
positives.
We note a few points: First, real-world spectrum measurements,

for instance, in the Microsoft observatory, and in this paper, reveal
that actual spectrum usage is 2–5%, in which regime BigBand’s
false positives would be less than 2%. Second, if the occupancy is
high, causing the false positives to exceed the desired threshold,
one may use D-BigBand, which deals with high occupancies (see
results in §8.7.)

8.3 Outdoor Spectrum Measurements

This experiment shows that BigBand works in a real setting, in
particular, measuring outdoor spectrum usage.

Method: We collect outdoor measurements in a metropolitan area
from the roof top of a 24 floor building. We collect measurements
between 2 GHz and 2.9 GHz. Measurements are collected using
BigBand every 10 ms over a 30 min period, i.e., we reconstruct
the spectrum over an FFT window of 10 ms. We then calculate the
percentage of 10 ms windows during which each frequency was
occupied.

Results: Our results show that in our geographical area, between
2 GHz and 2.9 GHz, the spectrum usage is around 5%. These re-
sults were confirmed using a spectrum analyzer. Fig. 13 shows the
fraction of time that each chunk of spectrum between 2 GHz and
2.9 GHz is occupied, as recovered by BigBand. The figure shows
that the spectrum is sparsely occupied and that most of the occupied
frequencies have 100% occupancy over the 30 min period, when
viewed at a 10 ms granularity.
However, if we zoom in and perform the sparse FFT every 100 µs

(or more frequently) instead of every 10 ms over the same period
of 30 min, the spectrum occupancy changes. Table 2 examines this
phenomenon further by showing the occupancy of some frequency
bands for various FFT measurement windows. The occupancy of
most frequencies drops, as compared to the 10 ms window. This
shows that while these frequencies are occupied for some fraction
of every 10 ms interval, there is a large number of shorter windows
during these larger intervals where these frequencies are not occu-
pied. This implies that the spectrum is sparser at finer time intervals,

10

FFT Window 2635-2640 MHz 2520-2530 MHz 2130-2140 MHz

10 µs 20% 64% 89%
100 µs 72% 78% 98%
1 ms 98% 87% 99%
10 ms 100% 100% 100%

Table 2—Occupancy vs FFT Measurement Window: Even fre-
quencies that seem always occupied over longer measurement win-
dows, are often likely to be detected as unoccupied when viewed
over shorter windows. This motivates the need for real-time spec-
trum sensing to take advantage of short term vacancies.

FFT Window BigBand 3 USRP Seq. Scan RFeye Scan
(900 MHz) (150 MHz) (20 MHz)

1 µs 1 µs 48 ms 22.5 ms
10 µs 10 µs 48 ms 22.5 ms
100 µs 100 µs 48 ms —
1 ms 1 ms 54 ms —
10 ms 10 ms 114 ms —

Table 3—Scanning time: BigBand is multiple orders of magnitude
faster than other technologies. This allows it to perform real-time
sensing to take advantage of even short term spectrum vacancies.

and provides more opportunities for fine-grained spectrum reuse.
Further, it motivates the need for fast spectrum sensing schemes to
exploit these short-term vacancies.

8.4 BigBand vs. Spectrum Scanning

A key advantage of BigBand’s ability to use low-speed ADCs
for a wide band is that it can recover the band in one shot, and does
not have to sequentially scan it in narrowband chunks. Hence, it re-
ports spectrum occupancy in real time and does not miss spectrum
chunks that are occupied only briefly. In this experiment, we com-
pare the times taken by different techniques to capture a 0.9 GHz
wide spectrum.

Method: Most of today’s spectrum sensing equipment relies on
scanning. Even expensive, power hungry spectrum analyzers typ-
ically capture a 100 MHz bandwidth in one shot, and end up scan-
ning to capture a larger spectrum [24]. The performance of sequen-
tially scanning the spectrum relies mainly on how fast the device
can scan a GHz of bandwidth. Here, we compare how fast it would
take to scan the 900 MHz bandwidth using three techniques: state-
of-the-art spectrum monitors like the RFeye [23], which is used in
the Microsoft spectrum observatory, 3 USRPs sequentially scan-
ning the 900 MHz, or 3 USRPs using BigBand.

Results: Table 3 shows the results for different FFT window sizes.
In all cases, BigBand takes exactly the time of the FFT window
to acquire the 900 MHz spectrum. The 3 USRPs combined can
scan 150 MHz at a time and hence need to scan 6 times to ac-
quire the full 900 MHz. For FFT window sizes lower than 10 ms,
the scanning time is about 48 ms. Hence, the USRPs spend very
little time actually sensing the spectrum, which will lead to a lot of
missed signals. Of course, state of the art spectrum monitors can
do much better. The RFeye Node has a fast scanning mode of 40
GHz/second [23]. It scans in chunks of 20 MHz and therefore will
take 22.5 ms to scan 900 MHz. Note that the RFeye has a maxi-
mum resolution bandwidth of 20 KHz, and hence cannot support
any FFT windows larger than 50 µs.
Thus, in all cases, BigBand, which uses off-the-shelf compo-

nents, is several orders of magnitude faster than even expensive
scanning based solutions, allowing it to detect short-term spectrum
vacancies.

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

1

 0 2 4 6 8 10 12 14

B
it
 E

rr
o

r
R

a
te

Signal to Noise Ratio (dB)

BPSK

4QAM

Narrowband Receiver
BigBand Receiver

Figure 14—BigBand’s Decoding Performance: BigBand’s wide-
band receiver can decode sparse signals as efficiently as a narrow-
band receiver tuned to the transmitted signal across.

8.5 Decoding Performance as a Function of SNR

The key metric of a receiver is its decoding efficiency as a func-
tion of SNR. In this section, we compare the performance of Big-
Band’s wideband receiver with a narrowband receiver that is tuned
to the transmitter.

Method:We use our wideband receiver consisting of 3 USRPs that
are all centered at 3.5 GHz and receive 50 MS/s. We transmit a
sparse wideband signal by using 4 USRPs to transmit 4 20 MHz
OFDM signals. The 4 transmitter USRPs are centered at the fol-
lowing frequencies: 3.215, 3.715, 3.44, and 3.84 GHz. Note that the
total occupied bandwidth of the combined transmitted signal from
all USRPs is 645 MHz. Similar to Wi-Fi, the transmitted OFDM
symbols use 64 sub-carriers and a cyclic prefix of 16 samples.
Since each receiver USRP can sample a maximum of 50 MHz,

the three receiver USRPs together cannot sense or decode the com-
plete received signal in the absence of BigBand. With the BigBand
receiver, the 645 MHz is aliased into the 50 MHz. We vary the lo-
cation of the BigBand receiver to obtain different SNRs and in each
location we transmit and decode 25 × 106 OFDM symbols. We
compare the performance of BigBand with a traditional narrow-
band receiver that can decode the signals from a single narrowband
transmitter.

Results: Fig. 14 shows the BER vs. SNR curve that BigBand
achieves for both BPSK and 4-QAM modulation. The figure also
shows the curve for a standard narrowband receiver with one trans-
mitter. The BER vs SNR curve for BigBand matches that of the nar-
rowband receiver. This shows that BigBand can decode wideband
sparse signals at comparable performance to a traditional narrow-
band receiver.

8.6 Decoding Multiple Transmitters using BigBand

In this section, we verify that BigBand can decode a large num-
ber of transmitters. All the transmitters in our implementation use
the same technology, but the result naturally generalizes to trans-
mitters using different technologies.

Method: We use 10 USRPs to emulate up to 30 devices hopping
in a spectrum of 0.9 GHz. At any given time instant, each device
uses 1 MHz of spectrum to transmit a BPSK signal. Similar to the
Bluetooth frequency hopping standard, we assume that there is a
master that assigns a hopping sequence to each device that ensures
that no two devices hop to the same frequency at the same time in-
stant. Note however, that the hopping sequence for different devices
might allow them to hop to frequencies that get aliased to the same
bucket at a particular time instant, and hence collide in BigBand’s

11

10
-4

10
-3

10
-2

10
-1

 0 5 10 15 20 25 30

P
a

c
k
e

t
L

o
s
s
 R

a
te

Number of Sensors

Figure 15—BigBand’s Packet Loss as a function of the number
of simultaneous transmitters: BigBand can decode as many as
30 simultaneous transmitters spread across a 900 MHz wide band,
while keeping the packet loss less than 3.5%.

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80 90 100

P
e

rc
e

n
ta

g
e

 E
rr

o
r

Percentage of Spectrum Usage (Sparsity)

False Negative
False Positive

Figure 16—D-BigBand’s effectiveness as a function of Spec-
trum Sparsity: Over a band of 1 GHz, D-BigBandcan reliably de-
tect changes in spectrum occupancy even when the spectrum is 95%
occupied, as long as the change in spectrum occupancy is less than
1% every ms.

50 MHz filter. Like in Bluetooth, each device hops 1, 3, or 5 times
per packet, depending on the length of the packet.

Result: Fig. 15 shows the packet loss rate versus the number of
devices hopping in the spectrum. The figure shows that BigBand
can decode the packets from 30 devices spanning a bandwidth of
900 MHz with a packet loss rate less than 3.5%. Decoding all these
sensors without using BigBand would either require a wideband
0.9 GHz receiver, or a receiver with 30 RF frontends both of which
would be significantly more costly and power-hungry.

8.7 Evaluation of D-BigBand

In this section, we evaluate D-BigBand’s ability to sense changes
in spectrum occupancy independent of sparsity.

Method: We implement D-BigBandas described in §7.3. We vary
the percentage of total occupied frequencies in the spectrum be-
tween 1% (sparse) to 95% (almost fully occupied). We then change
the number of frequencies that change occupancy every 1 ms by up
to 1% (i.e., 10 MHz), and evaluate D-BigBand’s accuracy in iden-
tifying the frequencies that change occupancy.

Results: As a function of spectrum occupancy, Fig. 16 shows the
percentage of false positives (i.e., frequencies whose occupancy has
not changed, but BigBand erroneously declared as changed) and
false negatives (i.e., frequencies whose occupancy has changed, but
BigBand erroneously declares as unchanged). We see that BigBand
can robustly identify changes correctly even in a densely occupied
network, with both false positives and false negatives remaining
under 2% even at 95% occupancy.

9. CONCLUSION

This paper presents BigBand, a cheap system that enables GHz-
wide sensing and decoding using off-the-shelf hardware. Empirical
evaluation demonstrated that BigBand is able to sense the spec-
trum stably and dynamically under different sparsity levels; we also
demonstrate BigBand’s effectiveness as a receiver to decode GHz-
wide sparse signals. We believe that BigBand enables multiple ap-
plications that would otherwise require expensive and power hun-
gry devices, e.g. realtime spectrum monitoring, dynamic spectrum
access, concurrent decoding of diverse techniques.

10. REFERENCES
[1] O. Abari, F. Lim, F. Chen, and V. Stojanovic. Why

analog-to-information converters suffer in high-bandwidth
sparse signal applications. IEEE Transactions on Circuits

and Systems I, 2013.
[2] O. Abari et al. Performance trade-offs and design limitations

of analog-to-information converter front-ends. In ICASSP,
2012.

[3] P. Bahl, R. Chandra, T. Moscibroda, R. Murty, and M. Welsh.
White space networking with wi-fi like connectivity. In ACM

SIGCOMM, 2009.
[4] T. Baykas et al. Developing a standard for TV white space

coexistence. Wireless Comm, IEEE, 19(1), 2012.
[5] D. Chen, S. Yin, Q. Zhang, M. Liu, and S. Li. Mining

spectrum usage data: a large-scale spectrum measurement
study. InMobicom, 2009.

[6] DigiKey, ADCs. http://www.digikey.com/.
[7] Ettus. Inc. USRP. http://ettus.com.
[8] FCC: NPRM (FCC 12-148). http://hraunfoss.fcc.gov/edocs_

public/attachmatch/FCC-12-148A1.pdf.
[9] FCC, Second Memorandum Opinion & Order 10-174.
[10] B. Ghazi, H. Hassanieh, P. Indyk, D. Katabi, E. Price, and

L. Shi. Sample-Optimal Average-Case Sparse Fourier
Transform in Two Dimensions. arXiv:1303.1209, 2013.

[11] A. Gilbert, M. Muthukrishnan, and M. Strauss. Improved
time bounds for near-optimal space fourier representations.
In SPIE, 2005.

[12] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly
optimal sparse fourier transform. In STOC, 2012.

[13] H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Simple and
practical algorithm for sparse FFT. In SODA, 2012.

[14] S. S. Hong and S. R. Katti. DOF: a local wireless information
plane. In ACM SIGCOMM, 2011.

[15] A. P. Iyer, K. Chintalapudi, V. Navda, R. Ramjee, V. N.
Padmanabhan, and C. R. Murthy. SpecNet: spectrum sensing
sans frontières. In NSDI, 2011.

[16] J. Laska, W. Bradley, T. Rondeau, K. Nolan, B. Vigoda.
Compressive sensing for dynamic spectrum access networks:
Techniques tradeoffs. DySPAN, 2011.

[17] Jackson Labs, Fury GPSDO. http://jackson-labs.com/.
[18] R. Lyons. Digital Signal Processing. 1996.
[19] M. A. McHenry. NSF spectrum occupancy measurement

project summary, 2005.
[20] Microsoft Spectrum Observatory. http://spectrum-observator

y.cloudapp.net.
[21] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat.

Learning to Share: Narrowband-Friendly Wideband
Networks. In ACM SIGCOMM, 2008.

[22] M. Rashidi, K. Haghighi, A. Panahi, and M. Viberg. A NLLS
based sub-nyquist rate spectrum sensing for wideband
cognitive radio. In DySPAN, 2011.

[23] RFeye Node. http://media.crfs.com/uploads/files/2/crfs-md0
0011-c00-rfeye-node.pdf.

12

[24] Tektronix Spectrum Analyzer. http://tek.com.
[25] Texas Instruments, “12-bit, 1000 MSPS ADC with analog

input buffer.”. http://www.ti.com/.
[26] PCAST: Realizing the full potential of government held

spectrum to spur economic growth, 2012.
[27] J. Yoo, S. Becker, M. Loh, M. Monge, E. Candès, and

A. E-Neyestanak. A 100MHz–2GHz 12.5x subNyquist rate
receiver in 90nm CMOS. In IEEE RFIC, 2012.

[28] J. Yoo et al. A compressed sensing parameter extraction
platform for radar pulse signal acquisition. JETCAS, 2012.

[29] S. Yoon, L. E. Li, S. Liew, R. R. Choudhury, K. Tan, and
I. Rhee. Quicksense: Fast and energy-efficient channel
sensing for dynamic spectrum access wireless networks. In
IEEE INFOCOM, 2013.

[30] T. Yucek and H. Arslan. A survey of spectrum sensing
algorithms for cognitive radio applications. Communications
Surveys Tutorials, IEEE, 11(1), 2009.

APPENDIX

A. PROOFS

Preliminaries: We use x and X to denote the time signal and its
frequency domain. In particular, we assume X has i.i.d. Bernoulli
distribution where for each i ∈ {0, . . . ,N − 1}, Xi ∈ {0, ai} such
that the sparsity is E[|‖X‖0)|] = K. We also assume there exists
two co-prime integers p1 and p2 that divide N such that p1 = Θ(p2)
and N/p1 = O(K).
The proofs follow immediately from the proofs for the 2 dimen-

sional sparse Fourier transform presented in [10]. Here, we will
provide a proof for the noiseless case with K = c

√
N. The proofs

for the noisy case and for K < c
√
N can be found in [10].

LEMMA A.1. Given two aliasing filters with B1 = N/p1 and

B2 = N/p2 buckets such that p1 and p2 are co-prime integers that

divide N, then for any two frequencies f 6= f ′, we have: f ′ = f

mod B1 → f ′ 6= f mod B2.

PROOF. Assume f ′ 6= f mod N, but they are equal both
modulo B1 and B2. Consequently, they are equal modulo the
least common multiple: lcm(B1,B2). Note that lcm(B1,B2) =
lcm(N/p1,N/p2) = N since p1, p2 are co-prime, which is a con-
tradiction.

LEMMA A.2. The probability that any of the collision detection

tests invoked by BigBand is incorrect is at most O(1/N(a−5)/2) for
some constant a > 5.

PROOF. The proof of this lemma is found in [10] (proof of
lemma 3.2). The idea is to show that the probability that a colli-
sion is mistaken for a single frequency is very small and then take
the union bound over

√
N logN collision tests.

LEMMA A.3. For, any constant α, assuming that all collision

detection tests are correct, the algorithm reports the correct output

with probability at least 1− O(α).

PROOF. Given Lemma A.1, the algorithm fails if there is a
sequence of occupied frequencies f1, g1, f2, g2 . . . ft that forms a
“deadlock” i.e. for each i ≥ 1, fi and gi collide in the first buck-
etization (i.e. fi = gi mod B1), while gi and fi+1 collide in the
second bucketization (i.e. gi = fi+1 mod B2). Moreover, it must
be the case that either the sequence “loops around”, i.e., f1 = ft,
or t > tmax, where tmax = C logN is the number of iterations.
We focus on the first case, the second one is similar. Define Et

as the event that such sequence exists. The number of such se-

quences is at most
√
N

2(t−1)
, while the probability that the en-

tries corresponding to a specific sequence are non-zero is at most

(K/N)2(t−1) = (c/
√
N)2(t−1). Thus the probability of Et is at most

c2(t−1). Therefore, the probability that one of the events E1 . . .Etmax

holds is at most
∑∞

t=3 c
2(t−1) = c4/(1− c2), which is smaller than

α for c small enough.

THEOREM A.4. For K = c
√
N and p1, p2 = Θ(

√
N), the algo-

rithm BIGBAND runs in time O(K logN), uses O(K) samples and
returns the correct result with probablility at least 1−O(α) as long
as c is a small enough constant.

PROOF. From Lemma A.3 and Lemma A.2, the algorithm re-
turns the correct vector X with probability at least 1 − O(α) −
O(N−(a−5)/2) = 1 − O(α) for a > 5. The algorithm uses only
O(B1 +B2) = O(K) samples of x. The running time is bounded by
the time needed to perform O(1) bucketizations (i.e. FFT of sizes
B1 and B2), and O(logN) invocations of the estimation. Both com-
ponents take time O(K logN).

13

