
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2013-010 May 24, 2013

Organon: A Symbolic Constraint
Framework & Solver
Isaac Evans and Joseph Lynch

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/16519943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Organon
Symbolic Constraint Framework & Solver

Isaac Evans and Joseph Lynch

May 16, 2013

1

Contents

1 Introduction 3

2 Problem 3

3 Organon Library Framework 3
3.1 Forms . 3
3.2 Constraints . 4
3.3 Solvers . 5

3.3.1 Solver 1: Exhaustive . 6
3.3.2 Solver 2: Annealing . 6

4 Example Uses of Organon 7
4.1 Ladder . 7
4.2 Big Bang . 8
4.3 Laffer Curve . 9
4.4 Graph Coloring . 10

5 Future Work & Conclusions: 12

A Appendix A - Library 13
A.1 forms.scm . 13
A.2 constraints.scm . 14
A.3 solver.scm . 16
A.4 util.scm . 20
A.5 opengl-stream.scm . 22

B Appendix B - Demos 25
B.1 ladder.scm . 25
B.2 big-bang.scm . 27
B.3 laffer.scm . 29
B.4 node-coloring.scm . 30
B.5 harder-coloring.scm . 31

2

1 Introduction

Organon is an open source system for expressing and solving complex symbolic constraints
between generic entities. It has three main components:

1. Forms: Abstract representations of the entities to be constrained

2. Constraints: Functions that symbolically express requirements on the relation-
ships between forms as well as provide information a solver can use to improve the
constraint’s satisfaction

3. Solvers : Functions which inspect instantiations of forms and manipulate them in
an attempt to satisfy a set of objective constraints

Organon is designed to be very generic, which is why it ships with four demonstrations
in entirely different domains. The design avoids restricting the programmer’s ability to
phrase constraints; Organon acts purely as a framework that defines and holds together
the key concepts of forms, constraints, and solvers.

2 Problem

The inspiration for Organon was a challenge faced during development work on MIT’s
entry to the third DARPA Robotics Challenge (DRC). The action authoring system
under development for the DRC needed a way to express constraints between the robot
and real-world objects. Ideally, these constraints would be specified symbolically, rather
than as fully defined 3D pose offsets. These symbolic constraints could express high-level
intents such as “these hands grasp the ladder rung at a point not so close to the edge
that it cannot be reached, but not so close to the center that the hands are more than
a shoulder-width apart.” In our system, once such a constraint function is expressed,
it is applicable to any object (for example, stairs instead of ladder rung) which has
the properties required by the constraint function (such as a “major axis” and “width”
property).

Our completed system accommodates this concept of symbolic constraints and is
generic enough to allow a host of other constraint expressions that are completely unre-
lated to 3D concepts.

3 Organon Library Framework

The main Organon library provides functions needed to create, manipulate, and constrain
forms, as well as two basic implementations of solvers that can iteratively improve form
bindings such that constraints become more satisfied.

3.1 Forms

Forms represent a symbolic and straightforward way to represent the world. Forms have
properties, and possibly values associated with those properties. Internally these are
represented by eq-property lists so that we can store completely arbitrary properties.
To make working with forms easier, Organon provides a basic typing system that allows
the programmer to alias “types” to a set of properties. For example, one can declare

3

the form type ’sphere to have the properties of ’center and ’radius with the following
code:

;; Declare type ’sphere to have a ’center and a ’radius
(declare-form-type ’sphere (list ’center ’radius))

It is important to note that this declaration does not limit the programmer to partic-
ular data types, ’center can be a vector just as easily as it can be an integer. Once a
type is declared, it is trivial to instantiate forms with all of the properties present in the
form type declaration:

;; Declare a form ’ball that has all types in the type ’sphere (i.e.
’center and ’radius)

(declare-form ’ball ’sphere)

Additionally, Organon provides basic type inheritance, which allows the programmer
to specify that a particular form has all the properties associated with another form.
This is useful because it means that programmers can reuse common property definitions
(such as those of a 3d-object). To inform the system about a type inheritance, one uses
the declare-type-inherits function to tell the system that one form type should have all
properties of another type. For example, spheres are 3d-objects made up of vertices, so
it would be prudent to give spheres all the properties of 3d-objects:

;; Declare that ’sphere inherits all properties of ’3d-objects
(declare-type-inherits ’sphere ’3d-objects)

Once a form is declared, it becomes available for the programmer to get and set
properties.

;; Return the property of form , or #f if there has been no binding
(get-property form property)

;; Set the property of form to be value
(set-property form property value)

It is important to note that nothing about Organon’s type system limits the program-
mers ability to set and get arbitrary properties, it just makes it easier for constraints to
check that supplied forms have various properties.

3.2 Constraints

Constraints represent an abstraction that allow a programmers to specify how “satisfied”
they are with the state of the world. Organon presents two types of constraints: basic
and compound. The former expresses constraints over forms, and the latter over other
constraints. These two types ought be sufficient to express the vast majority of real world
constraints, but Organon allows the constraint system to be extended if needed.

To create a constraint the programmer must provide two or optionally a third piece
of information:

1. operands: N operands of the constraint, a.k.a “dependencies” of that constraint.

2. constraint-function: A function of N arguments that when applied to operands
yields a value between 0.0 and 1.0, where 0.0 is completely unsatisfied and 1.0 is
completely satisfied.

4

3. (optional) hint-function: A function of N arguments that when applied to
operands yields a set of potential new bindings for forms that would improve the
constraint’s satisfaction. Typically this is only provided for basic forms.

Both basic and compound constraints share the same basic method signature:

(make-constraint type operands constraint-function #! optional
hint-function)

For convenience, Organon supplies make-compound-constraint and make-basic-constraint
that automatically bind type to the correct entity. One can think of a constraint made
in this fashion to be a node in a constraint graph, where edges connect that node to all
depended forms or constraints. Nodes can be “dirty” or “clean” depending on whether
their dependencies have changed since the last evaluation. Organon tracks this informa-
tion for the programmer and automatically marks nodes as clean and dirty as needed.
For example, when a form binding is changed, Organon automatically marks basic con-
straints dependent on that form as dirty so that the next time they are evaluated they
will use the new binding of that form.

Internally, make-constraint creates a scheme entity that in addition to storing the
clean/dirty state, has the following calling convention:

;; Applies constraint-function to operands if the node is ‘‘dirty ’’,
otherwise returns the last known value

(constraint)

;; Applies the hint-function to operands
(constraint ’hint)

;; Returns the operands
(constraint ’children)

;; Applies constraint-function to alternative-arguments
(constraint ’eval alternative-arguments)

;; Returns the type of operands expected (’form or ’constraint)
(constraint ’type)

;; Forces application of constraint-function to operands regardless of the
cleanliness of the constraint.

(constraint ’force)

The constraint system was architected to be highly generic, and to that end it is very
easy to extend with additional types of constraints, e.g. those operating not over forms or
other constraints. All state is maintained in the mit-scheme entity, and the vast majority
of state is provided by the closure over the entity.

3.3 Solvers

All solvers conform to a common interface by convention. A solver takes as arguments the
forms that represent the world state, and the objective constraints from the constraint
network that the solver will attempt to satisfy. The solvers operate by use of “hint”
functions provided by the constraints. The solver can apply a constraint’s hint function
to improve constraint satisfaction; applying a hint from one constraint, however, might
decrease the satisfaction of any number of other constraints. Thus the solver acts as
an optimizer, exploring the possible hint applications in the hopes of finding either a

5

perfect satisfaction result or a result closest to fully satisfied. Since hints are full-fledged
functions, not static recommendations, they may change as the solver runs since they can
depend on the current form bindings. This gives an enormous amount of power to the
author of the constraint to guide solvers into specific solutions.

The solver library also provides a collection of utility functions to minimize the code
required to write a specific solvers. Most notable is the iteratively-score-hints func-
tion, which takes a scoring function and a visualizer function as input and calls each of
them after having applied one of the hints given to the world state. We developed two in-
dependent solvers for Organon, an iterative exhaustive solver, and an iterative annealing
solver.

3.3.1 Solver 1: Exhaustive

(define (basic-iterative-solver forms objective-constraints)

The first is an exhaustive solver. Given the objective constraints, it explores the
set of all possible subsets of the set of hints attached to the children of those objective
constraints. For each subset, it applies the bindings given by the hint function, which
automatically triggers all of the constraint values to be recomputed. On each iteration,
the exponential solver returns a listing mapping each subset to its score (as determined
by the provided scoring function, which may take into account weights on the objective
constraints).

The exhaustive solver is exponential in complexity. For the set of bindings given by a
hint, each binding is applied one at a time, and thus the constraint network updates after
each individual binding. Each iteration of the exhaustive solver takes, in the worst case
O(2h · h · n)) time, where h is the number of hints and n is the number of constraints. In
the typical case where the height of the constraint tree is logarithmic in n, the complexity
is O(2h · h · log(n)).

3.3.2 Solver 2: Annealing

(define (basic-annealing-solver forms objective-constraints iterations)

The second solver is an “annealing” solver. This solver takes the set of all hints and
then randomly chooses a subset of those hints to apply. The interface to the annealing
solver is identical, with an added parameter for the number of iterations to perform.
Each iteration is O(h · log(n)) in typical complexity and O(h ·n) in worst case complexity,
where h is the number of hints generated and n is the size of the constraint graph. The
intuition behind this solver is that there is no way to know which combination of hints
lead to a solution state, but the hints recompute every iteration, so we can always escape
from wrong choices later by taking a different set of hints. The annealing comes from
decreasing this probability with time, which guarantees that after a certain amount of
time we will settle at some state, even if that state is not globally optimal.

The annealing solver does not provably find a solution state, it instead relies on the
hint functions to return good hints that move the state of the system quickly towards a
solution. It is important to note that the hints are local as generally there is no knowledge
of global state accessible to constraints. While this may make many computer scientists
and mathematicians nervous because we cannot guarantee or prove much, in the real
world this solver is often sufficient to find goal states and does so very quickly. In partic-
ular, this solver is useful because while it may not return a globally optimal solution, it

6

does return a locally optimal solution, and those tend to be sufficient. For example, we
implemented graph coloring with the annealing solver and while it can theoretically not
find a solution, it usually quickly finds a decent solution and in all cases we tested it on,
it found a correct coloring.

4 Example Uses of Organon

As the purpose of Organon was to provide a general framework to reason about con-
straints, we present four demonstrations of its capabilities in three different problem
domains: engineering, economics, and mathematics.

For visualization purposes, we wrote opengl-streamer.scm, which makes a socket
connection to a multithreaded C++ server, which parses the incoming message and con-
verts it to OpenGL objects. The message protocol supports OpenGL primitives (box,
sphere, cylinder) as well as raw vertex lists. This allows us to visualize constraint appli-
cation in real time.

We also wrote a simplified REPL for loading and running demo programs.

4.1 Ladder

The ladder demo (ladder.scm) defines two constraints, hands-far-away and hands-end-of-rung.
These constraints provide hints which move the hands incrementally farther away from
each other and incrementally towards the end of the rung, respectively.

(define hands-far-away
(make-basic-constraint

’(left-hand right-hand desired-distance)
;; lots of calls in between to extract the 3D components of

interest
(make-binding-list

(make-binding
left-hand
(list ’frame (make-frame (add-vector left-hand-vector

left-hand-inverted)
left-hand-quat)))

;; right hand is symmetric , omitted for brevity

Finally, the demo uses the compound constraint hands-on-ladder to wrap both of the
subconstraints. The satisfaction of hands-on-ladder is the average of the satisfactions
of the subconstraints.

(define hands-on-ladder
(make-compound-constraint

(list hands-far-away hands-end-of-rung)
...

When run with the exponential solver, the ladder demo rapidly explores the space
of hinted hand positions and finally settles on a final binding that puts the hands on
opposite ends of the rung, as intended. This can be seen in Figure 1.

7

Figure 1: Hands Correctly Spread on Ladder Rung

4.2 Big Bang

This demo (big-bang.scm) defines one hundred “star” forms, each of which have a center
and radius. The forms begin at the origin, and there is a single basic constraint: the
universe, which calculates center of mass of the universe and hints each star to move
slightly away from that center of mass.

(define (universe-constraint d . forms)
...
(define (score-single form)

(let* ((pos (get-property form ’center))
(dis (distance center-of-mass pos)))

(min 1.0 (/ dis (get-value d)))))
(/ (apply + (map score-single forms)) (length forms))))

The annealing solver is used to run this demo; obviously, the exponential solver would
perform poorly with a 2100 search space. On each iteration, the annealing solver randomly
moves the “star” forms further away. When the network-visualizer function is passed to
the solver, the resulting universe expansion can be visualized in OpenGL as is seen in
Figure 2.

8

Figure 2: Big Bang Expansion

4.3 Laffer Curve

This demo (laffer.scm) defines one hundred “tax-payer” forms, each of which have
plausible weekly wage rates, maximum number of hours they are willing to work, and
their liberalness (how willing they are to work given taxation). The forms are bound by
a single constraint, the laffer constraint. This expresses that the government attempts to
maximize tax revenue from taxpayers who work fewer hours based on the given tax rate:

;; constraint returns a value in range [0.0, 1.0] is (revenue at tax-rate /
;; maximum possible revenue)
(define (laffer-constraint tax-rate . taxpayers)

(/ (apply + (map (lambda (ith-taxpayer)
;; (1 - tˆl) * maximum hours = number of hours worked
;; * hourly wages = output of this person
;; * tax rate = taxes collected by the government
(* (- 1.0 (expt (get-value tax-rate) (get-property

ith-taxpayer ’liberalness)))
(get-property ith-taxpayer ’max-hours-worked)
(get-property ith-taxpayer ’hourly-wage)
(get-value tax-rate)))

taxpayers))
(apply + (map (lambda (ith-taxpayer)

;; Maximum possible output of the economy
(* (get-property ith-taxpayer ’max-hours-worked)

(get-property ith-taxpayer ’hourly-wage)))
taxpayers))))

This constraint hints that taxes should decrease by 1 percent, and since taxation
starts at 100%, this has the effect of causing the solver to explore the entire taxation rate
from 100% down to 0%. The annealing solver is again used, and we can use the outputs

9

of the solver to construct the laffer curve as seen in Figure 3

Figure 3: Simulated Laffer Curve

With this simplistic model, an effective government tax rate of 71% would mean
maximum government revenue. Note that this is not the same as maximizing societal
welfare or happiness, and an interesting addition would be to add another constraint that
considers happiness, then combine the two with a compound constraint and see how the
model changes.

4.4 Graph Coloring

This demo (hard-coloring.scm) defines node forms with a color and constraints for each
edge between two nodes, such that the classic Peterson Graph is constructed as seen in
Figure 4. The annealing solver then finds a potential coloring, often completing within
100-120 iterations.

Figure 4: Peterson Graph with Valid 3-Coloring

10

All of the graph coloring demos use the same basic constraint and hint defined on any
two nodes

;; Neighboring Nodes must be colored differently
(define (Node-constraint x y)

(if (not (eq? (get-property x ’color) (get-property y ’color)))
1.0
0.0))

;; If two nodes are different colors , with high probability stay the same
;; otherwise switch one of them to another viable coloring
;;
;; If two nodes are the same color , change one of them to be a different
;; color
(define (Node-hint x y)

(let ((x-color (get-property x ’color))
(y-color (get-property y ’color)))

(if (null? x-color)
(make-binding-list

(make-binding x (list ’color (car (get-value ’colors)))))
(cond

;; Different colors already? with high probability hint at nothing
((and (eq? x-color y-color) (> (random 5) 2))
(make-binding-list))

(else
;; Hint at a randomly chosen alternative for y
(make-binding-list

(random-choice
(map (lambda (color)

(make-binding y (list ’color color)))
(filter (lambda (z) (not (eq? z x-color))) (get-value

’colors))))))))))

This relies on local swaps with probabilistic transitions to color the graph. This is not
provably correct, but in all of the demonstration graphs provided, it works very quickly
(and finds an acceptable answer within 1 or 2 iterations). While this isn’t particularly
useful for proving that a graph is n-colorable, it is very useful for situations where coloring
need only be approximate and you know the number of available colors, such as register
allocation within a compiler.

5 Future Work & Conclusions:

Organon’s provided solvers are sufficient for many problems, but the most difficult con-
straint optimization and satisfaction problems require techniques far more advanced than
those presented here. An interesting avenue of research would therefore be to explore
additional optimization techniques such as complete simulated annealing with variable
probabilistic transitions, hill climbing, particle swarm optimization, etc.

The main disadvantage to Organon’s powerful constraint system is that the constraint
functions–though often simple in concept–are not readable except to a reasonably sophis-
ticated expert. In the future, we might build a dedicated constraint language to eliminate
much of the verbosity of that is currently involved in ensuring that the forms passed to
a constraint function are of the appropriate type and extracting and manipulating their
properties.

11

Organon presents a powerful and generic way for programmers to specify constraints
in real world problems as well as easily build solvers to explore those constraint domains.
It relies on numerous concepts learned in 6.945 such as generic operations, propagators,
and the idea that flexibility is sometimes more important than correctness. Although we
cannot prove its usefulness, and we cannot prove its correctness, if there is one thing that
6.945 teaches, it is that nobody really can. Organon focuses on being generally useful
and on allowing the end users to use the system in the ways that they see fit instead of
forcing rigid concepts on them.

Organon’s code is released under the MIT license at https://github.com/jolynch/organon.

12

A Appendix A - Library

A.1 forms.scm

(define (has-property? form property)
(if (get-property form property) #t #f))

(define (get-property form property)
(eq-get form property))

;; TODO - decide whether to convert this to a continuation form rather
than calling update-form immediately

(define (set-property form property value #! optional update)
(let ((val (eq-put! form property value)))

(if (default-object? update)
(update-form form))

val))

(define (capture-bindings form)
(eq-plist-simple form))

(define (apply-bindings form bindings)
(for-each (lambda (binding)

(set-property form (car binding) (cdr binding))) bindings))

(define (same-type? form-a form-b)
(equal? (eq-ordered-plist form-a) (eq-ordered-plist form-b)))

;; Tells if a form implements the interface provided by type
(define (is-type? form type)

(define (implements? form type)
(if (eq-get ’form-types type)

(let ((desired-properties (eq-get ’form-types type)))
(reduce (lambda (x y) (and x y)) #t

(map (lambda (x) (has-property? form x))
desired-properties)))

#f))
(reduce (lambda (x y) (and x y)) #t

(map (lambda (x) (implements? form x)) (all-parents type))))

;; Gets all parent types for a given type
(define (all-parents type)

(let find-parents ((result (list type))
(ntype type))

(if (eq-get ’form-inherits ntype)
(find-parents (cons (eq-get ’form-inherits ntype) result) (eq-get

’form-inherits ntype))
result)))

;; Check if a form is many types
(define (is-multiple-type? form types)

(reduce (lambda (x y) (and x y)) #t
(map (lambda (x) (is-type? form x)) types)))

(define (pp-form form) (pp (capture-bindings form)))

13

;; TODO
;;(define (sub-type? form-a form-b)
;;
;;)

;; makes a form from a properties-and-values , a list of tuples (name ,
value)

(define (make-form-by-properties name properties-and-values)
(for-each (lambda (x)

(let ((property-name (first x)) (property-value (second x)))
(eq-put! name property-name property-value)
)) properties-and-values))

;; declare-form-by-properties - declares the form and initializes all the
;; properties to null (ie the empty list)
(define (declare-form-by-properties name properties)
(make-form-by-properties name (map (lambda (x) (list x ’())) properties)))

;; register a type with a list of properties
(define (declare-form-type type properties) (eq-put! ’form-types type

properties))

(define (make-form name type properties)
(make-form-by-properties name (zip (eq-get ’form-types type)

properties)))

;; declaring a form creates its superclass properties. making a form does
not.

(define (declare-form name type)
(if (not (equal? #f type))

(let ((parent-type (eq-get ’form-inherits type))
(my-type (eq-get ’form-types type)))

(if (not (equal? parent-type #f)) (declare-form name parent-type))
(declare-form-by-properties name my-type))))

(define (declare-type-inherits type-a type-b)
(eq-put! ’form-inherits type-a type-b))

A.2 constraints.scm

(define *debug* #f)

;; Mapping of forms to dependent constraints
(define *forms* (make-eq-hash-table))
;; Mapping of constrains to dependent constraints
(define *constraints* (make-eq-hash-table))

;; Convenience methods to deal with constraint entity state
(define (dirty? entity)

(eq? (car (entity-extra entity)) ’dirty))

(define (make-dirty entity)
(set-entity-extra! entity ’(dirty)))

(define (make-clean entity value)
(set-entity-extra! entity (cons ’clean value)))

(define (get-cached entity)

14

(cdr (entity-extra entity)))

;; Methods to cause propagation
(define (update-form form)

(let ((constraints (eq-get *forms* form)))
(propagate-to ’() constraints)))

;; Causes all dependent constraints to fire
(define (propagate constraint)

(let ((constraints (eq-get *constraints* constraint)))
(propagate-to constraint constraints)))

;; Actually call the dependent constraints
;; TODO: pass list of calling dependencies to detect loops
(define (propagate-to orig-constraint constraints)

(if constraints
(for-each (lambda (constraint)

(if (not (eq? orig-constraint constraint))
(make-dirty constraint))

(constraint))
constraints)))

(define (show-form-mapping)
(pp (cdr (eq-plist *forms*))))

(define (register-with node name item)
(let ((val (eq-get node item)))

(cond (val (eq-put! node item (cons name val)))
(else (eq-put! node item (list name))))))

(define (register-form name form)
(register-with *forms* name form))

(define (register-constraint name constraint)
(register-with *constraints* name constraint))

;; Constraints have the following calling convention
;; (constraint) -> if the node is dirty , it will evaluate the constraint ,
;; otherwise it will use the value last returned. This results in a float
;; between 0 and 1
;;
;; (constraint ’hint) -> Returns a list of hints where hints are an assoc

list
;; of form (symbol) -> list of bindings (assoc list), which provides

suggested
;; improvements to the bindings
;;
;; (constraint ’children) -> Returns a list of the constraints that are
;; children of this constraint
;;
;; (constraint ’eval arg1 arg2 ,,,) -> Returns the result of applying func

to
;; the supplied arguments
;;
;; (constraint ’type) -> Returns the type of the constraint , currently just
;; basic and compound are supported
;;

15

;; (constraint ’force) -> Force an evaluation of the function ,
disregarding the

;; cached value and dirty status of the node
;;
;; (constraint ’leaf?) -> Tests whether this is a leaf node , used by the

solver
;; to select nodes dependent on forms

(define (dispatch-constraint type self args operands func hint-func)
;; Allows dispatch on suplied type
(define (test-args pattern)

(and (not (null? args)) (symbol? (car args)) (eq? (car args) pattern)))

;; We should allow people to use hint as a form
(cond

((test-args ’hint)
(apply hint-func operands))

((test-args ’children)
operands)

((test-args ’eval)
(apply func (cdr args)))

((test-args ’type)
type)

((test-args ’leaf?)
(eq? type ’form))

((test-args ’force)
(apply func operands))

((dirty? self)
(if *debug* (pp "Evaluating constraint"))
(let ((value (apply func operands)))

(make-clean self value)
(propagate self)
value))

(else
(if *debug* (begin (display "Using cached value for ")(write

self)(newline)))
(get-cached self))))

(define (make-basic-constraint forms func #! optional hint-func)
(make-constraint ’form forms func hint-func))

(define (make-compound-constraint constraints func #! optional hint-func)
(make-constraint ’constraint constraints func hint-func))

(define (make-constraint type operands func #! optional hint-func)
(define me

(make-entity
(lambda (self . args)

(dispatch-constraint type self args operands func hint-func))
’(dirty)))

(let ((register-function (eval (symbol ’register- type)
user-initial-environment)))

(for-each (lambda (operand) (register-function me operand)) operands))
me)

A.3 solver.scm

(define *solver-debug* #f)

16

;; pretty print debug
(define (ppd . x) (if (or *debug* *solver-debug*) (apply pp x)))
;; pretty print debug short (no newline)
(define (ppds . x) (if (or *debug* *solver-debug*) (apply display x)))

;; Iteratively apply constraints to the objects in the world. The action
taken

;; when a constraint fails is implementation/mode specific. Rely on
constraint

;; propagation to actually propagate changes through the network.
Backtracking ,

;; if needed , will occur at the constraint level.
(define (iteratively-score-hints list-of-hints scoring-function

visualizer-function)
;; forms-to-hints is an assoc list mapping a form to an list of hints
(ppds "list-of-hints is ") (ppd list-of-hints)
(map (lambda (form-bindings-pair)

(ppds "form -> bindings assoc list is ") (ppd form-bindings-pair)
(let ((form (car form-bindings-pair)) (bindings (car (cdr

form-bindings-pair))))
(ppds "binding are") (ppds bindings)
(ppds "examining form: ") (ppd form)
(apply-bindings form bindings)
(display "bound form: ") (display form) (pp-form form) (newline)
(visualizer-function)
(scoring-function)

)
) list-of-hints))

;; given a single objective , returns an list of leaf constraints (which may
;; include the objective constraint , if it is a leaf)
;; TODO: convert to a set so we don ’t have duplicate leafs included
(define (get-constraint-leaves objective-constraint)

(if (objective-constraint ’leaf?)
(list objective-constraint)
(map (lambda (x) (car (get-constraint-leaves x)))

(objective-constraint ’children))))

(define (get-hints target-constraint)
(target-constraint ’hint))

(define (join-lists list-of-lists)
(fold-right (lambda (a b) (append a b)) ’() list-of-lists))

(define (network-visualizer all-forms)
(if *use-network-visualizer*

(write-forms all-forms)))

;; iterate recursively over the objective constraints , descending into
their

;; children (not implemented yet) and calling the hint-iterator on each of
them

;; with the passed scoring-function.
(define (iterative-solver forms objective-constraints scoring-function)

(let* ((root-bindings (map capture-bindings forms))
(restore-root-bindings (lambda () (apply-bindings forms

root-bindings)))

17

(all-constraint-leaves (car (map get-constraint-leaves
objective-constraints)))

(all-hints (join-lists (map get-hints all-constraint-leaves))))

(display "all-constraint-leaves ") (pp all-constraint-leaves)
(display "all hints") (pp all-hints)
(display "all susbsets of hints") (pp (non-empty-subsets all-hints))

;; generate the set of all possible subsets of hints , then compute
their scores

(let* ((all-hints-subsets (non-empty-subsets all-hints))

(accumulated-hint-scores (map (lambda (hint-subset)
(restore-root-bindings)
(iteratively-score-hints

hint-subset scoring-function
(lambda ()

(network-visualizer
forms)))

) all-hints-subsets)))
(restore-root-bindings)
(pp accumulated-hint-scores)

)))

;;
;; BEGIN ANNEALING SOLVER
;;
;;

;; Choose hints to apply
(define (anneal-choose hints iteration prob)

(let ((chosen-hints
(let loop ((result ’())

(remaining hints))
(if (null? remaining) result

(let ((value (car remaining)))
(if (< (random 1.0) prob)

(loop (cons value result) (cdr remaining))
(loop result (cdr remaining))))))))

(better-bindings chosen-hints)))

;; Takes bindings of the following form and applies them:
;; ((form property value) ...)
(define (apply-better-bindings chosen-bindings)

(for-each
(lambda (binding)

(set-property (first binding) (second binding) (third binding)))
chosen-bindings))

;; PPrints the state so you can see what ’s going on
(define (show-state forms)

(for-each (lambda (form)
(display "Form: ")(write form)(newline)

(display "Bindings:")(pp-form form)) forms))

;; The annealing solver , which tries to maximize the scoring function ,
cooling

18

;; down over time and making fewer transitions. If we hit iterations then
we

;; stop and return the best answer so far
(define (annealing-solver o-forms objectives scoring temperature

iterations)
(let solve ((best-binding (map capture-bindings o-forms))

(best-value (scoring))
(forms o-forms)
(objective-constraints objectives)
(scoring-function scoring)
(temp temperature)
(iter iterations))

(let* ((all-constraint-leaves (car (listify (map get-constraint-leaves
objective-constraints))))

(all-hints (join-lists (map get-hints all-constraint-leaves)))
(converted-hints (filter (lambda (result) (not (null? result)))

(map (lambda (hint)
(better-bindings (list hint)))

all-hints)))
(all-bindings (remove-dups converted-hints)))

;; generate the set of all possible hints then apply them randomly
;; based on the temperature
(let ((chosen-bindings (anneal-choose all-hints 0 temp)))

(apply-better-bindings chosen-bindings)
(network-visualizer forms)
(let ((score (scoring-function)))

(cond
((< iter 0)
(pp "Exceeded maximum iterations , best answer is:")
(for-each (lambda (binding)

(apply-bindings (car binding) (cdr binding)))
best-binding)

(show-state forms)
(display "Got top score: ")(display best-value)(newline))

((> score .98)
(display "Found solution state with score |")
(display score)(display "| after #")(display (- iterations

iter))
(display " iterations.")(newline)
(show-state forms))

(else
(display "Trying again ")(write score)(display " is not good

enough! with temp ")
(write temp)(newline)
(if (> score best-value)

(begin
(solve (map (lambda (form) (cons form (tree-copy

(capture-bindings form)))) forms)
score
forms objective-constraints scoring-function (*

.9999 temp) (- iter 1)))
(solve best-binding

best-value
forms objective-constraints scoring-function (*

.9999 temp) (- iter 1))))))))))

;; Scoring functions
(define (simple-scoring-func objective-constraints

19

objective-constraint-weights)
(lambda ()

(let* ((scores (map (lambda (x) (x)) objective-constraints))
(weights-and-scores (zip scores objective-constraint-weights))

)
(apply + (map (lambda (x) (apply * x)) weights-and-scores))
)))

;; wrapper to create a solver with a basic scoring function
(define (basic-iterative-solver forms objective-constraints)

(iterative-solver forms objective-constraints
(simple-scoring-func objective-constraints (make-list

(length objective-constraints) 1))))

(define (weighted-iterative-solver forms objective-constraint
objective-constraint-weights)

(iterative-solver forms objective-constraints
(simple-scoring-func objective-constraints

objective-constraint-weights)))

(define (basic-annealing-solver forms objective-constraints iterations)
(pp "Initial state:")
(show-state forms)
(newline)
(annealing-solver forms objective-constraints

(simple-scoring-func objective-constraints (make-list
(length objective-constraints) 1)) 1 iterations))

(define (weighted-annealing-solver forms objective-constraints
objective-constraint-weights iterations)

(pp "Initial state:")
(show-state forms)
(newline)
(annealing-solver forms objective-constraints

(simple-scoring-func objective-constraints
objective-constraint-weights) 1 iterations))

;; we will have two initial solver implementations

;; hill-climber - tries to maximize a weighted sum of objective-constraint
;; satisfaction ratings by examining all of the various constraint hints
;; (perhaps using simulated annealing)

;; absolute-solver - if it is discovered that all objective-constraints
have

;; been satisfied (are rated 1.0), terminate immediately. if it is
discovered

;; that one constraint cannot be satisfied (is rated < 1.0), give up
;; immediately.

A.4 util.scm

;; Make nodes a list if it’s not a list
(define (listify nodes)

(cond
((list? nodes) nodes)
(else (list nodes))))

20

;; subsets based on
http://pages.cs.wisc.edu/˜fischer/cs538.s08/lectures/Lecture13.4up.pdf

(define (subset-extend L E)
(append L (subset-distrib L E)))

(define (subset-distrib L E)
(if (null? L)

()
(cons (cons E (car L)) (subset-distrib (cdr L) E))))

(define (subsets L)
(if (null? L)

(list ())
(subset-extend (subsets (cdr L)) (car L))))

(define (non-empty-subsets L)
(filter (lambda (x) (not (null? x))) (subsets L)))

(define (assert expression)
(if (not (expression)) (error (string-append "assertion failed for

expression: " expression))))

;; Binding convenience methods so that we don ’t have to constantly do list
;; constructions in the hint functions
;;
;; Bindings are of the form:
;; ((property . binding-value) (property . binding-value) ...)
;;
;; Binding-values are of the form
;; ((form . binding) (form . binding) ...
;;

(define (make-binding-list . bindings)
bindings)

(define (make-property-binding property value)
(cons property value))

(define (make-binding form . property-bindings)
(cons form

(list (map (lambda (pb) (make-property-binding (car pb) (cadr pb)))
property-bindings))))

(define (bindings-for bindings form)
(assoc-get form bindings))

(define (binding-form binding)
(car binding))

(define (binding-properties binding)
(sort (map car (cadr binding)) symbol< ?))

(define (assoc-get object alist)
(let ((value (assoc object alist)))

(cond
((eq? value #f) #f)
((list? value) (cadr value))

21

((pair? value) (cdr value))
(else #f))))

(define (better-bindings bindings)
(remove-duplicates (convert-bindings bindings)))

;; Takes a list of bindings and converts them to a list of
;; (form property value)
(define (convert-bindings bindings)

(map
(lambda (triple)

(list (car triple) (cadr triple) (cddr triple)))
(join-lists (map

(lambda (binding)
(map (lambda (var) (cons (binding-form binding) var))

(cadr binding))) bindings))))

;; Says if a particular form , property tuple is present in a given list of
triples

(define (fp-present? lst form property)
(if (null? lst) #f

(let ((item (car lst)))
(or (and (equal? (car item) form)

(equal? (cadr item) property))
(fp-present? (cdr lst) form property)))))

;; Remove duplicate assignments
(define (remove-duplicates triples)

(let accum ((result ’())
(remaining triples))

(if (null? remaining) result
(let ((value (car remaining)))

(if (fp-present? result (car value) (cadr value))
(accum result (cdr remaining))
(accum (cons value result) (cdr remaining)))))))

;; Remove duplicates in general
(define (remove-dups lst)

(let accum ((result ’())
(remaining lst))

(if (null? remaining) result
(let ((value (car remaining)))

(if (member value result)
(accum result (cdr remaining))
(accum (cons value result) (cdr remaining)))))))

;; Take a random choice from a list
(define (random-choice lst)

(let ((v (list- >vector lst)))
(vector-ref v (random (length lst)))))

A.5 opengl-stream.scm

;; reference
;; outputs:

http://web.mit.edu/scheme_v9.0.1/doc/mit-scheme-ref/Output-Procedures.html
;; ports:

http://www.gnu.org/software/mit-scheme/documentation/mit-scheme-ref/Ports.html

22

;; tcp:
http://web.mit.edu/scheme_v9.0.1/doc/mit-scheme-ref/TCP-Sockets.html

;; Call this to start:
;; > (make-connection)
;;
;; When you want to render a scene , call:
;; > (write-forms *your-forms-here*)
;; This will clear the screen and redraw all of the forms
;;
;; > (close-connection)
;; When you ’re done

;; (load "util")
(define hostname "128.30.31.85")
(define port-number 1337)

(define clear-screen-marker "(CLS)")
(define connection ’())

(define (frame- >packet frame)
(write-to-string frame))

;; "xyz(q1,q2,q3,q4)")

(define (vertices- >packet vertex-list)
(write-to-string vertex-list))

;; "(v1 ,v2,v3)(v4,v5,v6")

(define (form- >packet form)
;; write out the frame , then the vertex lists
(assert (lambda () is-type? form ’3D-form))

(let* ((frame (cond ((is-type? form ’star)
(make-frame (get-property form ’center)

(make-identity-quaternion)))
(else (get-property form ’frame))))

(vertex-list (get-property form ’vertices))
(packet (cond ((is-type? form ’cylinder-form)

(write-to-string (list (list "cylinder")
(list (get-property form

’radius)
(get-property form

’length)))))
((is-type? form ’sphere-form)

(write-to-string (list (list "sphere")
(list (get-property form

’radius)))))
((is-type? form ’box-form)

(write-to-string (list (list "box")
(list (get-property form

’height)
(get-property form

’width)
(get-property form

’length)))))
((is-type? form ’star)

(write-to-string (list (list "sphere")
(list (get-property form

23

’radius)))))
(else (vertices- >packet vertex-list)))))

(string-append "(" (frame- >packet frame) packet ")")
))

(define (forms- >packet forms)
(assert (lambda () (not (null? connection))))
(string-append clear-screen-marker (fold-right string-append "" (map

form- >packet forms))))

(define (write-clear-screen)
(write-line clear-screen-marker connection))

(define (write-forms forms)
(write-line (forms- >packet forms) connection))

(define (close-connection)
(close-port connection))

(define (make-connection)
(set! connection (open-tcp-stream-socket hostname port-number)))

24

B Appendix B - Demos

B.1 ladder.scm

(define *demo-debug* #t)
(define *debug* #f)
(define *use-network-visualizer* #f)

(declare-form ’left-hand ’3D-hand-form)
(declare-form ’right-hand ’3D-hand-form)
(declare-form ’rung ’3D-rung)
(declare-form ’desired-distance ’basic)
(declare-form ’desired-closeness ’basic)
(declare-form ’axis ’basic)

;; Set up the initial conditions

(set-property ’left-hand ’vertices (list (make-vertex -2 -1 0)
(make-vertex -2 1 0)
(make-vertex 0 1 0)
(make-vertex 0 -1 0)))

(set-property ’left-hand ’frame
(make-frame (make-vertex -1 0 1) (make-identity-quaternion)))

(set-property ’right-hand ’vertices (list (make-vertex 2 -1 0)
(make-vertex 2 1 0)
(make-vertex 0 1 0)
(make-vertex 0 -1 0)))

(set-property ’right-hand ’frame
(make-frame (make-vertex 1 0 1) (make-identity-quaternion)))

(set-property ’rung ’frame
(make-frame (make-vertex 0 0 0) (make-quaternion 0 0.707 0

0.707)))
(set-property ’rung ’left-rung (make-vertex -10 0 0))
(set-property ’rung ’right-rung (make-vertex 10 0 0))
(set-property ’rung ’length 20.0)
(set-property ’rung ’radius 1.0)

(set-property ’desired-distance ’value 5)
(set-property ’axis ’value (make-vector 1 0 0))
(set-property ’desired-closeness ’value .5)

(define hands-far-away
(make-basic-constraint

’(left-hand right-hand desired-distance)
(lambda (left-hand right-hand d)

(cond ((and (is-type? left-hand ’3D-hand-form)
(is-type? right-hand ’3D-hand-form)
(is-type? d ’basic))

(let* ((left-origin (car (get-property left-hand ’frame)))
(right-origin (car (get-property right-hand ’frame)))
(dis (distance left-origin right-origin)))

(min 1.0 (/ dis (get-value d)))))
(else 0.0)))

25

(lambda (left-hand right-hand d)
(let* ((left-hand-old (get-property left-hand ’frame))

(right-hand-old (get-property right-hand ’frame))
(left-hand-vector (frame-vector left-hand-old))
(right-hand-vector (frame-vector right-hand-old))
(left-hand-quat (frame-quat left-hand-old))
(right-hand-quat (frame-quat right-hand-old))
(left-hand-inverted (scale-vector

(unit
(sub-vector right-hand-vector

left-hand-vector))
-1))

(right-hand-inverted (scale-vector
(unit

(sub-vector left-hand-vector
right-hand-vector))

-1)))
(make-binding-list

(make-binding
left-hand
(list ’frame (make-frame (add-vector left-hand-vector

left-hand-inverted)
left-hand-quat)))

(make-binding
right-hand
(list ’frame (make-frame (add-vector right-hand-vector

right-hand-inverted)
right-hand-quat))))))))

(define hands-end-of-rung
(make-basic-constraint

’(left-hand right-hand desired-closeness rung)
;; Constraint is that the left hand should be near the left rung goal
;; and the right hand should be near the right rung goal
(lambda (left-hand right-hand d rung)

(cond
((and (is-type? left-hand ’3D-hand-form)

(is-type? right-hand ’3D-hand-form)
(is-type? d ’basic)
(is-type? rung ’cylinder-form))

(let* ((left-origin (car (get-property left-hand ’frame)))
(right-origin (car (get-property right-hand ’frame)))
(left-rung (get-property rung ’left-rung))
(right-rung (get-property rung ’right-rung))
(disl (distance left-origin left-rung))
(disr (distance right-origin right-rung)))

(min
1.0
(+ (/ (min 1.0 (/ (get-value d) disl)) 2.0)

(/ (min 1.0 (/ (get-value d) disr)) 2.0)))))
(else 0.0)))

;; Hint generates four possible solution points between each hand and
;; the goal rung
(lambda (left-hand right-hand d rung)

(let* ((left-hand-old (get-property left-hand ’frame))
(right-hand-old (get-property right-hand ’frame))
(left-hand-quat (frame-quat left-hand-old))
(right-hand-quat (frame-quat right-hand-old))

26

(left-hand-vector (frame-vector left-hand-old))
(right-hand-vector (frame-vector right-hand-old))
(left-hand-rung (get-property rung ’left-rung))
(right-hand-rung (get-property rung ’right-rung))
(left-hand-goal (interpolate left-hand-vector left-hand-rung

2))
(right-hand-goal (interpolate right-hand-vector

right-hand-rung 2))
(left-hand-goal-frame

(map (lambda (goal)
(list ’frame (make-frame goal left-hand-quat)))

left-hand-goal))
(right-hand-goal-frame

(map (lambda (goal)
(list ’frame (make-frame goal right-hand-quat)))

right-hand-goal)))
(join-lists (list (apply make-binding-list

(map (lambda (goal)
(make-binding left-hand goal))

left-hand-goal-frame))
(apply make-binding-list

(map (lambda (goal)
(make-binding right-hand goal))

right-hand-goal-frame))))))))

(define hands-on-ladder
(make-compound-constraint

(list hands-far-away hands-end-of-rung)
(lambda (hfa heor)

(let ((h1 (hfa))
(h2 (heor)))

(/ (+ h1 h2) 2.0)))))

(pp "Final hands-on-ladder value:")(write (hands-on-ladder))(newline)

(if *use-network-visualizer* (begin (pp "making connection")
(make-connection)))

(basic-iterative-solver ’(rung left-hand right-hand) (list
hands-on-ladder))

(if *use-network-visualizer* (close-connection))

;;(iterative-solver ’(left-hand right-hand) ’(hands-on-ladder))

;; Two constraints , each with two hints - 4 hints total. 2ˆ4 = 16 subsets.
And

;; indeed , we see 16 output scores. Each score is a list that shows the
score we

;; got from applying to first form that was in the hint , then the first two
;; forms that were in the hint , then the first three forms , etc.

B.2 big-bang.scm

(define *use-network-visualizer* #f)
(define *demo-debug* #t)
(define *debug* #f)

27

(declare-form ’desired-distance ’basic)
(set-property ’desired-distance ’value 10)

(for-each (lambda (i) (declare-form (symbol ’star- i) ’star)) (range 0
100))

(declare-form ’goal-star ’star)
(set-property ’goal-star ’center (make-vertex 0 0 0))
(set-property ’goal-star ’radius (get-value ’desired-distance))

;; Set up the initial conditions

(for-each (lambda (i)
(set-property (symbol ’star- i) ’radius 1)) (range 0 100))

(for-each (lambda (i)
(set-property (symbol ’star- i)

’center
(make-vertex (random 1.0)

(random 1.0)
(random 1.0)))) (range 0 100))

(define (universe-constraint d . forms)
(let* ((avgx (/ (apply + (map (lambda (f) (vx (get-property f ’center)))

forms))
(length forms)))

(avgy (/ (apply + (map (lambda (f) (vy (get-property f ’center)))
forms))

(length forms)))
(avgz (/ (apply + (map (lambda (f) (vz (get-property f ’center)))

forms))
(length forms)))

(center-of-mass (make-vector avgx avgy avgz)))
(define (score-single form)

(let* ((pos (get-property form ’center))
(dis (distance center-of-mass pos)))

(min 1.0 (/ dis (get-value d)))))
(/ (apply + (map score-single forms)) (length forms))))

(define (universe-hint d . forms)
(let* ((avgx (/ (apply + (map (lambda (f) (vx (get-property f ’center)))

forms))
(length forms)))

(avgy (/ (apply + (map (lambda (f) (vy (get-property f ’center)))
forms))

(length forms)))
(avgz (/ (apply + (map (lambda (f) (vz (get-property f ’center)))

forms))
(length forms)))

(center-of-mass (make-vector avgx avgy avgz)))
(define (hint-single form)

(let* ((pos (get-property form ’center))
(pos-inverted (unit (sub-vector pos center-of-mass))))

(make-binding form (list ’center (add-vector pos pos-inverted)))))
(map hint-single forms)))

(define universe-exploded
(make-basic-constraint

28

(cons ’desired-distance (map (lambda (i) (symbol ’star- i)) (range 0
100)))

universe-constraint
universe-hint))

(if *use-network-visualizer* (begin (pp "making connection")
(make-connection)))

(basic-annealing-solver (cons ’goal-star (map (lambda (i) (symbol ’star-
i)) (range 0 100)))

(list universe-exploded)
100)

(if *use-network-visualizer* (close-connection))

;;(iterative-solver ’(left-hand right-hand) ’(hands-on-ladder))

;; Two constraints , each with two hints - 4 hints total. 2ˆ4 = 16 subsets.
And

;; indeed , we see 16 output scores. Each score is a list that shows the
score we

;; got from applying to first form that was in the hint , then the first two
;; forms that were in the hint , then the first three forms , etc.

B.3 laffer.scm

(define *use-network-visualizer* #f)
(define num-taxpayers 100)
(define exponent 10)

(declare-form ’govt-tax-rate ’basic)
(set-property ’govt-tax-rate ’value 1.00)

(declare-form-type ’taxpayer (list ’max-hours-worked ’hourly-wage
’liberalness))

(for-each (lambda (i) (declare-form (symbol ’taxpayer- i) ’taxpayer))
(range 0 num-taxpayers))

;; each taxpayer earns a random amount between $0/ hour and $60/ hour
(for-each (lambda (i)

(set-property (symbol ’taxpayer- i) ’hourly-wage (* 60 (random 1.0)))
(set-property (symbol ’taxpayer- i) ’liberalness (+ 1 (random 10.0))))

(range 0 num-taxpayers))

;; each taxpayer has a different linear work function that maps their tax
;; rate to the number of hours they are willing to work
(for-each (lambda (i)

(set-property (symbol ’taxpayer- i) ’max-hours-worked (* 40 (+ 1 (random
1.0))))) (range 0 num-taxpayers))

;; constraint returns a value in range [0.0, 1.0] is (revenue at tax-rate /
;; maximum possible revenue)
(define (laffer-constraint tax-rate . taxpayers)

(/ (apply + (map (lambda (ith-taxpayer)
;; (1 - tˆl) * maximum hours = number of hours worked

29

;; * hourly wages = output of this person
;; * tax rate = taxes collected by the government
(* (- 1.0 (expt (get-value tax-rate) (get-property

ith-taxpayer ’liberalness)))
(get-property ith-taxpayer ’max-hours-worked)
(get-property ith-taxpayer ’hourly-wage)
(get-value tax-rate)))

taxpayers))
(apply + (map (lambda (ith-taxpayer)

;; Maximum possible output of the economy
(* (get-property ith-taxpayer ’max-hours-worked)

(get-property ith-taxpayer ’hourly-wage)))
taxpayers))))

;; TODO: if the hints allow base-hours worked to change , this version of
the

;; constraint will consider the overall gov ’t revenue as well as the
hapiness of

;; the citizens (presumably happiness will decrease as max-hours-worked
goes up)

;; four hints: + tax rate , - tax rate , + max-hours-worked , -
max-hours-worked

(define (laffer-hint tax-rate . taxypayers)
;; Everyone wants lower taxes!
(make-binding-list (make-binding tax-rate (list ’value (max 0.01 (-

(get-value tax-rate) 0.01))))))

(define laffer-curve
(make-basic-constraint

(cons ’govt-tax-rate (map (lambda (i) (symbol ’taxpayer- i)) (range 0
num-taxpayers)))

laffer-constraint
laffer-hint))

(pp "starting")

;;(iterative-solver (map (lambda (i) (symbol ’taxpayer- i)) (range 0
num-taxpayers)) (list laffer-curve))

;; maximimize govt revenue as a percentage of GDP
(basic-annealing-solver (cons ’govt-tax-rate (map (lambda (i) (symbol

’taxpayer- i)) (range 0 num-taxpayers))) (list laffer-curve) 100)

(display "tax rate settled at ")
(pp (get-value ’govt-tax-rate))

B.4 node-coloring.scm

(define *use-network-visualizer* #f)

(declare-form-type ’node (list ’color))
(declare-form ’colors ’basic)
(set-property ’colors ’value ’(red blue green))

(declare-form ’A ’node)
(declare-form ’B ’node)
(declare-form ’C ’node)

30

(declare-form ’D ’node)

(define (Node-constraint x y)
(if (not (eq? (get-property x ’color) (get-property y ’color)))

1.0
0.0))

(define (Node-hint x y)
(let ((x-color (get-property x ’color))

(y-color (get-property y ’color)))
(if (null? x-color)

(make-binding-list
(make-binding x (list ’color (car (get-value ’colors)))))

(cond
((and (eq? x-color y-color) (> (random 5) 2))
(make-binding-list))

(else
(make-binding-list

(random-choice
(map (lambda (color)

(make-binding y (list ’color color)))
(filter (lambda (z) (not (eq? z x-color))) (get-value

’colors))))))))))

;; Graph of the form
;; A
;; |\
;; | C -- D
;; |/
;; B
;;
;; Need to define a constraint for each pair of nodes
(define AB (make-basic-constraint ’(A B) Node-constraint Node-hint))
(define AC (make-basic-constraint ’(A C) Node-constraint Node-hint))
(define BC (make-basic-constraint ’(B C) Node-constraint Node-hint))
(define CD (make-basic-constraint ’(C D) Node-constraint Node-hint))

(define all-colored
(make-compound-constraint

(list AB AC BC CD)
(lambda (one two three four)

(let ((c1 (one))
(c2 (two))
(c3 (three))
(c4 (four)))

(/ (+ c1 c2 c3 c4) 4.0)))))

(basic-annealing-solver ’(A B C D) (list all-colored) 1000)

B.5 harder-coloring.scm

(define *use-network-visualizer* #f)

(declare-form-type ’node (list ’color))
(declare-form ’colors ’basic)
(set-property ’colors ’value ’(red blue green))

31

(declare-form ’A ’node)
(declare-form ’B ’node)
(declare-form ’C ’node)
(declare-form ’D ’node)
(declare-form ’E ’node)
(declare-form ’F ’node)
(declare-form ’G ’node)
(declare-form ’H ’node)
(declare-form ’I ’node)
(declare-form ’J ’node)

;; Neighboring Nodes must be colored differently
(define (Node-constraint x y)

(if (not (eq? (get-property x ’color) (get-property y ’color)))
1.0
0.0))

;; If two nodes are different colors , with high probability stay the same
;; otherwise switch one of them to another viable coloring
;;
;; If two nodes are the same color , change one of them to be a different
;; color
(define (Node-hint x y)

(let ((x-color (get-property x ’color))
(y-color (get-property y ’color)))

(if (null? x-color)
(make-binding-list

(make-binding x (list ’color (car (get-value ’colors)))))
(cond

;; Different colors already? with high probability hint at nothing
((and (eq? x-color y-color) (> (random 5) 2))
(make-binding-list))

(else
;; Hint at a randomly chosen alternative for y
(make-binding-list

(random-choice
(map (lambda (color)

(make-binding y (list ’color color)))
(filter (lambda (z) (not (eq? z x-color))) (get-value

’colors))))))))))

;;
;; Peterson graph , uh, this is hard to do in ascii art
;; A
;; / | \
;; / F \
;; / * \
;; B--G ***** H--E
;; \ * * /
;; \ I J /
;; \ / \ /
;; C-------D
;;
;; The *** section really isn ’t fully connected , see
;; http://goo.gl/6R0hm
;;
;; for a better idea of what it looks like

32

(define AB (make-basic-constraint ’(A B) Node-constraint Node-hint))
(define BC (make-basic-constraint ’(B C) Node-constraint Node-hint))
(define CD (make-basic-constraint ’(C D) Node-constraint Node-hint))
(define DE (make-basic-constraint ’(D E) Node-constraint Node-hint))
(define EA (make-basic-constraint ’(E A) Node-constraint Node-hint))
(define BG (make-basic-constraint ’(B G) Node-constraint Node-hint))
(define AF (make-basic-constraint ’(A F) Node-constraint Node-hint))
(define HE (make-basic-constraint ’(H E) Node-constraint Node-hint))
(define DJ (make-basic-constraint ’(D J) Node-constraint Node-hint))
(define IC (make-basic-constraint ’(I C) Node-constraint Node-hint))
(define GH (make-basic-constraint ’(G H) Node-constraint Node-hint))
(define GJ (make-basic-constraint ’(G J) Node-constraint Node-hint))
(define FI (make-basic-constraint ’(F I) Node-constraint Node-hint))
(define FJ (make-basic-constraint ’(F J) Node-constraint Node-hint))
(define IH (make-basic-constraint ’(I H) Node-constraint Node-hint))

(define (coloring-constraint . edges)
(let ((const (map apply edges)))

(/ (apply + const) (length const))))

(define all-colored
(make-compound-constraint

(list AB BC CD DE EA BG AF HE DJ IC GH GJ FI FJ IH)
coloring-constraint))

(basic-annealing-solver ’(A B C D E F G H I J)
(list all-colored) 1000)

33

