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A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE
PARAMETRIZED REDUCED BASIS METHOD

A. Buffa1, Y. Maday2, A.T. Patera3, C. Prud’homme4 and G. Turinici5

Abstract. The convergence and efficiency of the reduced basis method used for the approximation
of the solutions to a class of problems written as a parametrized PDE depends heavily on the choice of
the elements that constitute the “reduced basis”. The purpose of this paper is to analyze the a priori
convergence for one of the approaches used for the selection of these elements, the greedy algorithm.
Under natural hypothesis on the set of all solutions to the problem obtained when the parameter varies,
we prove that three greedy algorithms converge; the last algorithm, based on the use of an a posteriori
estimator, is the approach actually employed in the calculations.

Résumé. La convergence et l’efficacité de la méthode des bases réduites pour l’approximation de la
solution d’une classe de problèmes écrits sous la forme d’une EDP paramétrique dépendent fortement
du choix des éléments qui constituent la “base réduite”. Ce travail est une contribution à l’analyse de
la convergence a priori de l’algorithme glouton qui est l’une des approches utilisées pour la sélection
de ces éléments. On démontre, sous des hypothèses naturelles sur l’ensemble des solutions du problème
lorsque le paramètre varie, que trois algorithmes gloutons convergent, le dernier, basé sur l’utilisation
d’un estimateur a posteriori, étant celui effectivement mis en oeuvre dans les calculs.
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Introduction

The reduced basis method is a discretization approach for the approximation of the solutions of parameter

dependent partial differential equations. Some solutions are assumed to be known (or at least very well approx-

imated by a classical discretization method) for certain, well chosen, parameters from a preliminary (offline)
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step; these solutions constitute the basis of the reduced basis method. The solution for (a large number of) new

parameters is then approximated as a linear combination of the elements of this basis. Most often, this approxi-

mation is based on the variational equivalent formulation of the problem, the reduced basis approximation then

being defined through a Galerkin process. In previous works [3, 4] exponential convergence with respect to the

number N of basis functions is proved for a one-dimensional parameter case, and numerical experiments [7–9]

illustrate the same behavior (or even faster) even in situations where the dimension of the parameter space P

is larger. This is the case only when the elements of the basis — i.e. the parameters in the offline process —

are sufficiently well chosen. The offline selection of these parameters is critical and various methods have been

proposed for this purpose. These methods differ in their essence, in their efficiency both in the offline stage

and in the online stage, and in whether they rely on random arguments or deterministic frameworks such as

principal component analysis or greedy algorithms.

The aim of this paper is to provide an analysis of the greedy algorithm that is very commonly used in practice.

Note that the concept of reduced basis approximation implies some structure on the set of all solutions of the

parameter dependent partial differential equation under consideration. There is no reason why a reduced basis

approach should be a viable alternative to classical discretizations such as finite element, finite volume or spectral

methods in the most general case where the solutions do not depend smoothly with respect to the parameter.

We thus start by making precise the feature that the set of all solutions must satisfy.

Let us first introduce the notations: u(x,µ) is the solution of a parameter dependent partial differential

equation (PDE) set on a bounded spatial domain Ω ⊂ IRd and on a closed parametric domain D ⊂ IRP . For

each µ the solution u(·,µ) belongs to X ⊂ L2(Ω), a functional space adapted to the PDE, e.g. X = H1
0 (Ω)

or X = L2(Ω). We will assume D to be compact, but we make no further hypothesis on Ω other than those

required by the PDE itself.

The weak form of our partial differential equation reads: given µ ∈ D, find u(µ) ∈ X which satisfies

A(u(µ), v; µ) = g(v), ∀v ∈ X , (1)

where the form A(·, ·; µ) : X ×X → IR encodes the description of the PDE and g is an element of X ′. We assume

that the bilinear form A(·, ·; µ) is continuous and coercive on X , uniformly with respect to the parameters µ:
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there exists two positive constants M and αcoer (independent of the parameters µ) such that

∀µ ∈ D, A(u, v; µ) ≤M‖u‖X ‖v‖X ∀u , v ∈ X ;

∀µ ∈ D, A(u, u; µ) ≥ αcoer‖u‖2X ∀u ∈ X .
(2)

For simplicity, we shall also assume that A is symmetric, A(u, v; µ) = A(v, u; µ), ∀ u, v ∈ X , although this

hypothesis is not central to the results of the paper.

The reduced basis method consists in approximating the solution u(µ) of the parameter dependent problem

(1) by a linear combination of appropriate, pre-computed, solutions u(µi) for well chosen parameters µi, i =

1, . . . , N . The approximation method of choice is a Galerkin procedure that reads: given µ ∈ D, find uN (µ) ∈

XN = Span{u(µi), i = 1, .., N} such that

A(uN (µ), vN ; µ) = g(vN ), ∀vN ∈ XN . (3)

Cea’s lemma provides the following bound

‖u(µ)− uN (µ)‖X ≤ c inf
vN∈XN

‖u(µ)− vN‖X , (4)

where in fact c =
√
M/αcoer.

The rationale for this approach relies on the fact that the right-hand side of the bound (4) is very small,

at least in many cases of importance. This, in turns, follows from the fact that the set S(D) = {u(µ) of all

solutions to (1) when µ ∈ D} behaves well. In order to comprehend in which sense the good behavior of S(D)

should be understood, it is helpful to introduce the notion of n-width following Kolmogorov [2] (see also [6])

Definition 1. Let F be a subset of X and Yn be a generic n-dimensional subspace of X . The angle between

F and Yn is

E(F ;Yn) := sup
x∈F

inf
y∈Yn

‖x− y‖X .

The Kolmogorov n-width of F in X is given by

dn(F,X ) := inf{E(F ;Yn) : Yn a n-dimensional subspace of X}

= inf
Yn

sup
x∈F

inf
y∈Yn

‖x− y‖X . (5)
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The n-width of F thus measures the extent to which F may be approximated by an n-dimensional subspace

of X . These concepts have been used to analyze the effectiveness of hp-finite elements in [5]. There are many

reasons why this n-width may go to zero rapidly as n goes to infinity. In our case, where F = S(D), we can refer

to regularity of the solutions u(µ) with respect to the parameter µ, or even to analyticity. Indeed, an upper

bound for the asymptotic rate at which the n-width tends to zero is provided by the example from Kolmogorov

stating that dn(B̃(r)
2 ;L2) = O(n−r) where B̃(r)

2 is the unit ball in the Sobolev space of all 2π-periodic, real

valued, (r − 1)-times differentiable functions whose (r − 1)st derivative is absolutely continuous and whose

rth derivative belongs to L2(IR). In fact, exponential convergence is achieved when analyticity exists in the

parameter dependency.

The knowledge of the n-width of F is not sufficient: of theoretical interest is the determination of an optimal

finite dimensional space Yn that realizes the infimum in dn (provided it exists) or that is “close enough” to dn.

For practical reasons, we shall restrict ourselves to finite dimensional spaces that are spanned by elements of

S(D). The greedy algorithms, a first definition of which is presented below, permit to construct such a space

with good approximation properties.

Let us assume that the subset F in X is compact (consistent with the fact that D is assumed to be compact).

In the general setting, the greedy algorithm is defined as follows:

• f1 := argmax ‖f‖X

• Assume f1, . . . , fi−1 are defined, consider Fi−1 := Span{f1, . . . , fi−1}

• fi := argmax ‖f − PFi−1(f)‖X

where PFi−1 denotes the orthogonal projection on Fi−1 for the scalar product in X .

1. Analysis of the approximation properties of Fk.

Assume that the construction of fi does not end (which is equivalent to the fact that Span(F ) is an infinite

dimensional space). We start by orthogonalizing the elements provided by the algorithm, hence define

• ξ1 = f1

• ξi = fi − PFi−1(fi).
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It is an easy matter to check that the expression of PFi
(f), for any f ∈ X, is facilitated in this basis; indeed

∀f ∈ X, PFi(f) =
i∑

`=1

α`(f)ξ` (6)

with

α`(f) =
〈f, ξ`〉X
‖ξ`‖2X

. (7)

Due to the orthogonality of ξ` with F`−1, we deduce that

|α`(f)| =
|〈f − PF`−1f, ξ`〉X |

‖ξ`‖2X

≤
‖f − PF`−1f‖X

‖ξ`‖X
=
‖f − PF`−1f‖X
‖f` − PF`−1f`‖X

,

and hence from the maximization definition of f` we conclude that

∀f ∈ F, |α`(f)| ≤ 1. (8)

In what follows we denote by αj` := α`(fj).

With this notation, we can write

ξ2 = f2 − α2
1f1

ξ3 = f3 − α3
1f1 − α3

2(f2 − α2
1f1)

ξ4 = f4 − α4
1f1 − α4

2(f2 − α2
1f1)− α4

3(f3 − α3
1f1 − α3

2(f2 − α2
1f1))

ξ5 = . . .

and thus

ξj =
j∑
`=1

βj`f` (9)

with

βjj = 1

βj` = −
j−1∑
i=`

αjiβ
i
`.
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This, combined with (8), allows us to derive by induction that, for j ≥ `,

βj` ≤ 2j−` . (10)

Let now k be given. From the definition of the Kolmogorov n-width we know that, for any given λ > 1, there

exists a finite dimensional space Yk such that E(F ;Yk) ≤ λdk(F ;X ). This means that for any ` ≤ k, there

exists a v` ∈ Yk such that

‖f` − v`‖X ≤ λdk(F ;X ) . (11)

Let us now set

ζj =
j∑
`=1

βj`v`, (12)

which are elements in Yk; these elements satisfy

‖ξ` − ζ`‖X ≤ 2`λdk(F ;X ) . (13)

Let us now consider the family ζi for i = 1, . . . , k + 1. Since these k + 1 vector belong to Yk, which is

k-dimensional, we deduce that there exist γi, ‖γ‖`2 = 1, such that
∑k+1
i=1 γiζi = 0. We then know that∥∥∥∥∥

k+1∑
i=1

γiξi

∥∥∥∥∥
X

=

∥∥∥∥∥
k+1∑
i=1

γi(ξi − ζi)

∥∥∥∥∥
X

≤ 2k+1
√
k + 1λdk(F ;X ) . (14)

We know that there exists a j such that γj > 1/
√
k + 1. Thus,∥∥∥∥∥∥ξj + γ−1

j

∑
i<j

γiξi + γ−1
j

∑
i>j

γiξi

∥∥∥∥∥∥
X

≤ 2k+1(k + 1)λdk(F ;X ) .

Now, since the functions ξi are orthogonal, we obtain

‖ξj‖X ≤ 2k+1(k + 1)λdk(F ;X ) .

Recalling the very definition of ξj , we have that, for all f ∈ F ,

‖f − PFj−1f‖X ≤ ‖fj − PFj−1fj‖X = ‖ξj‖X ≤ 2k+1(k + 1)λdk(F ;X ) .

Hence, for any given λ > 1

‖f − PFk
f‖X ≤ ‖f − PFj−1f‖X ≤ 2k+1(k + 1)λdk(F ;X ) .
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We have thus proven

Theorem 1. Assume that the set F has an exponentially small Kolmogorov n-width dk(F ;X ) ≤ ce−αk with α >

log 2, then there exists β > 0 such that the set Fk yielded by the greedy algorithm has exponential approximation

properties in the sense that

‖f − PFk
f‖X ≤ Ce−βk .

Remark 1. It is instructive to exhibit examples that prove that the loss of the factor 2n between the best choice

indicated by the Kolmogorov n-width and the choice resulting from the greedy algorithm can be realized. Indeed,

we have the following statement : For any n > 0, there exists a set En+1 = {v1, v2, ..., vn+1} of vectors in IRn+1

such that

• Regarding the choice of the greedy algorithm : for any k, 1 ≤ k ≤ n

Fk = Span{v1, v2, ..., vk},

• Regarding the approximation properties

‖vn+1 − PFnvn+1‖IRn+1 ' 2ndn(En+1, IRn+1).

An example of such a set is as follows : let e1, e2, .., en+1 be the canonical basis of IRn+1, ε > 0 be small enough,

and 0 ≤ δ1 ≤ δ2 << εn (δ2 > 0) then the above statement holds for the choice

v1 = (1 + nε2)e1 + δ1en+1

v2 = (1 + (n− 1)ε2)(e1 + εe2)− δ1en+1

v3 = (1 + (n− 2)ε2)(e1 − εe2 + ε2e3)− δ1en+1

v4 = (1 + (n− 3)ε2)(e1 − εe2 − ε2e3 + ε3e4)− δ1en+1

..........

vn = (1 + ε2)(e1 − εe2 − ε2e3 − ....− εn−2en−1 + εn−1en)− δ1en+1

vn+1 = (e1 − εe2 − ε2e3 − ....− εn−1en)− δ2en+1

First, it is obvious that dn(En+1, IRn+1) ≤ Oδ2, since δ2 is the angle between En+1 and Span{e1, e2, ..., en}.
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Second, the prefactor (1 + kε2) is responsible for the order in which the greedy algorithm selects the elements

and explains the first item above. This fact is obvious in the case when δ1 = 0 and remains true by continuity

for δ1 > 0, small enough; indeed, if δ1 = 0, the norm of v1 is equal to 1 + nε2 and the norm of v2 is, provided

ε is small enough, of the order of 1 + (n− 1/2)ε2. This proves in particular that

Fn = Span{v1, v2, ..., vn}. (15)

Lastly, in order to understand the second item, it suffices again to analyze first the case where δ1 = 0.

Indeed, in this situation, due to (15), we can demonstrate that the best approximation of vn+1 in Fn is realized

by PFnvn+1 = 2n−1 v1
1+nε2 − 2n−2 v2

1+(n−1)ε2 ....− 2 vn−1
1+2ε2 −

vn

1+ε2 . This remains the case, with slight modifications

of the coefficients, so that even if δ1 ≤ δ2 << εn

vn+1 − PFnvn+1 ' 2nδ2en+1,

this concludes the statement.

2. The greedy algorithm for the reduced basis method

Let us focus here on the case where F is the set of all solutions S(D) = {u(µ),µ ∈ D} to (1). (In actual

practice, remember that we consider Sh(D) = {uh(µ),µ ∈ D}, where Xh ⊂ X is a suitably fine finite element

approximation.) The greedy selection of the parameters varies slightly due to the natural variational framework

of the problem:

Algorithm 1

i: The first parameter is defined as previously

µ1 = arg sup
µ∈D
‖u(µ; ·)‖X .

(Again, in actual practice, u is replaced by uh.)

ii: Given i−1 samples in the parameters set, µ1, ...,µi−1, we construct Ui−1 = Span{u(µ1; ·), . . . , u(µi−1; ·)},

and we denote by Πµ
i−1 : X → Ui−1 the elliptic (Galerkin) projection onto the space Ui−1 :

A(Πµ
i−1u, v; µ) = A(u, v; µ), ∀ v ∈ Ui−1 .
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The next parameters are defined as follows

µi = arg sup
µ∈D
‖u(µ; ·)−Πµ

i−1u(µ; ·)‖X ,

iii: Iterate until arg supµ∈D ‖u(µ; · )−Πµ
nu(µ; · )‖X < tol.

Note that, from (1) and (3) we have ∀µ ∈ D and ∀m, Πµ
mu(µ) = um(µ).

The basis so generated is now orthogonalized with respect to the X scalar product, and we denote by

{ξ1, . . . , ξn} the resulting basis.

Note that in the orthogonalization process, we cannot use Πµ
n since this operator depends on µ: this is why,

in what follows, the orthogonalization is performed through the X -topology. We denote by PUi
: X → Ui the

orthogonal projection with respect to the X topology (which thus differs from Πµ
i ). The orthogonalization

process gives:

ξ1 = u(µ1; · ), ξi = u(µi; · )− PUi−1u(µi; · ), i = 2, . . . , n . (16)

In particular PUi
u(µ; · ) =

∑i
`=1 α`(µ)ξ`, with

α`(µ) =
〈u(µ; · ), ξ`〉X
‖ξ`‖2X

,

where we recall that 〈 · , · 〉X denotes the scalar product in X . We then have

|α`(µ)| =
|〈(u(µ; · )−Πµ

`−1u(µ; · ), ξ`)〉X |
‖ξ`‖2X

because of the orthogonality of ξ` and ξ1, . . . , ξ`−1. We thus obtain

|α`(µ)| ≤
‖u(µ; · )−Πµ

`−1u(µ; · )‖X
‖u(µ`; · )− PU`−1u(µ`; · )‖X

≤
‖u(µ`; · )−Πµ`

`−1u(µ`; · )‖X
‖u(µ`; · )− PU`−1u(µ`; · )‖X

since µ` is the parameter value in D attaining the maximum. Finally, we conclude that

|α`(µ)| ≤
√

M

αcoer

(17)

thanks to the Galerkin type estimate (4)

‖u(µ`; · )−Πµ
`−1u(µ`; · )‖X ≤

√
M

αcoer
‖u(µ`; · )− PU`−1u(µ`; · )‖X .
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The convergence analysis from the above estimate compared to (8) leads to a deteriorated bound

βj` ≤

(
1 +

√
M

αcoer

)j−`
. (18)

instead of (10) and the conclusion is then given in

Theorem 2. Assume that the set of all solutions S(D) = {u(µ),µ ∈ D} to (1) has an exponentially small

Kolmogorov n-width dk(S(D),X ) ≤ ce−αk with α > log
(

1 +
√

M
αcoer

)
; then the reduced basis method converges

exponentially in the sense that there exists β > 0 such that

∀ µ ∈ D, ‖u(µ)− uN (µ)‖X ≤ Ce−β N . (19)

3. A computable greedy algorithm via a posteriori error bounds

In practice, the optimization of Step ii of Algorithm 1 is very computationally intensive. In practice we

first replace the sup over D with a sup over a very fine sample in D; this nevertheless still requires many

expensive evaluations. In order to construct a computable algorithm, we need in addition to replace Step ii

with a relatively inexpensive procedure that maintains the performance stated in the estimate (19). We thus

replace Step ii with

ii′:

µi = arg sup
µ∈D

∆i−1(µ)

where ∆i−1(µ) is an inexpensive a posteriori error estimator of the quantity arg supµ∈D ‖u(µ; ·)−Πµ
i−1u(µ; ·)‖X .

We briefly introduce such an estimator and refer to [7] for further details. To begin, we define the residual

ri(v; µ) = f(v)−A(Πµ
i u(µ), v; µ), ∀ v ∈ X ,

associated with equation (1). Then ∆i(µ) is defined by

∆i(µ) =
‖ri( · ,µ)‖X′

αLB
coer

,

where αLB
coer is a positive lower bound for the coercitivity constant αcoer introduced in (2). We can then

demonstrate that

‖u(µ)−Πµ
i u(µ)‖X ≤ ∆i(µ) ≤ M

αLB
coer

‖u(µ)−Πµ
i u(µ)‖X ,
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which proves that ∆i(µ) is a valid error estimator. Note that this result is valid for every i and µ ∈ D, and

does not require any hypotheses about regularity or a priori convergence.

It readily follows that

‖u(µ; ·)−Πµ
`−1 u(µ; ·)‖X ≤ ∆`−1(µ)

≤ ∆`−1(µ`)

≤ M

αLB
coer

‖u(µ`; ·)−Πµ`

`−1 u(µ`; ·)‖X

≤ M

αLB
coer

(
M

αcoer

)1/2

‖u(µ`; ·)− PU`−1 u(µ`; ·)‖X ; (20)

hence, for Step ii′, we obtain a slight modification to (17),

|αi`(µ)| ≤ M

αLB
coer

(
M

αcoer

)1/2

. (21)

(Note that, typically, αLB
coer is quite close to αcoer.)

We can thus obtain

Corollary 3. Theorem 2 applies to the Greedy algorithm with error bounds (Step ii′ in place of ii) if we

strengthen our requirement on the exponent α to α > log(1 + (M/αLB
coer)

√
M/αcoer).

4. Conclusion

The results proven in this paper provide a first a priori analysis of the greedy algorithm for the selection of

the elements used in the reduced basis for the approximation of parameter dependent PDE’s. It is proven that

the approximation properties of such a basis lead to an error that is distant from the best possible choice (given

by the definition of the Kolmogorov n-width) by an exponential factor (see e.g. theorem 1). In the case in which

the n-width is going to zero exponentially fast, the greedy maintains a exponential convergence in the reduced

basis approximation.

Three comments are in order :

(1) We first report that in many cases that we have encountered, the convergence of the reduced basis

method holds with a rate faster than exponential indicating that the assumed exponential decay of the
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Kolmogorov n-width is conservative. In these cases, the loss of an exponential factor does not affect

much the optimal rate.

(2) We have exhibited an example where the maximal loss predicted by our analysis is actually obtained

when the convergence rate with a basis of dimension n is compared to the Kolmogorov n-width

(3) A very recent contribution [1] reports another comparison between the convergence rate obtained with

a basis of dimension m and the Kolmogorov n-width with n < m. The loss is then different and much

weaker if the Kolmogorov n-width has a polynomial decay. Nevertheless for faster decays — in particular

those that we observe in our computations — this new analysis [1] provides a weaker convergence rate

for the a priori analysis.
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