
SPACE, TIME AND ACOUSTICS

by

Philip R. Z. Thompson

Bachelor of Arts
University of California at Berkeley

Berkeley, California
1984

SUBMITTED TO THE DEPARTMENT OF
ARCHITECTURE IN PARTIAL FULFILiMENT OF

THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF ARCHITECTURE

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 1988

Copyright (c) 1988 Philip R. Thompson

The Author hereby grants to M.I.T. permission
to reproduce and to distribute publicly copies
of this thesis document in whole or in part.

Signature of Author ____ __

Department *'f Architecture
February 9, 1988

Certified by
James A. Anderson

Thesis Supervisor

Accepted by
William Hubbard

Chairman, Departmental Committee for Graduate Students
INSTfUpT

4 UN ~ 1988

UBRAR'ES

MITLibraries
Document Services

Room 14-0551
77 Massachusetts Avenue
Cambridge, MA 02139
Ph: 617.253.2800
Email: docs@mit.edu
http://Iibraries.mit.eduldocs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are unavoidable
flaws in this reproduction. We have made every effort possible to
provide you with the best copy available. If you are dissatisfied with
this product and find it unusable, please contact Document Services as
soon as possible.

Thank you.

The images contained in this document are of
the best quality available.

SPACE, TIME AND ACOUSTICS

by

Philip R. Z. Thompson

Submitted to the Department of Architecture on February 9, 1988 in
partial fulfillment of the requirements for the degree of Master of

Architecture.

Abstract

This thesis describes the development of new concepts in acoustical analysis
from their inception to implementation as a computer design tool. Research is
focused on a computer program which aids the designer to visually conceive the
interactions of acoustics within a geometrically defined environment by syn-
thesizing the propagation of sound in a three dimensional space over time. In-
formation is communicated through a unique use of images that are better
suited for interfacing with the design process.

The first part of this thesis describes the concepts behind the development of a
graphic acoustical rendering program to a working level. This involves the
development of a computer ray tracing prototype that is sufficiently powerful to
explore the issues facing this new design and analysis methodology. The
second part uses this program to evaluate existing performance spaces in order
to establish qualitative criteria in a new visual format. Representational
issues relating to the visual perception of acoustic spaces are also explored. In
the third part, the program is integrated into the design process. I apply this
acoustical tool to an actual design situation by remodeling a large performance
hall in Medford, Massachusetts. Chevalier Auditorium is a real project, com-
missioned by the city of Medford, whose program requirements closely match
my intentions in scope, scale and nature of a design for exploring this new
acoustical analysis and design methodology. Finally, I summarize this
program's effectiveness and discuss its potential in more sophisticated future
design environments.

Thesis Supervisor: James A. Anderson
Title: Lecturer in Architecture

2

Preface

I have always had a special interest in the interdisciplinary aspect of ar-

chitecture and issues of visual perception. This thesis has given me the oppor-

tunity to present the analogies that I have explored in the fields of computer

graphics, acoustic and design methods.

Given the interdisciplinary nature of this topic, this thesis can neither af-

ford to cover in detail nor provide a complete lesson of all three topics. This

reading is primarily intended for architects, although, acoustical engineers and

graphics programmers has also been kept in mind.

Finally, I would like to thank for their support: James Anderson, Carl

Rosenberg, the Computer Resource Laboratory and the Robert B. Newman Fel-

lowship Committee.

Philip R. Thompson

3

Table of Contents

Abstract 2
Table of Contents 4
List of Figures 5

1. Introduction 7
1.1 A lace in the working environment 9
1.2 A Ahort History 11
1.3 The acoustical image 13
1.4 Issues of Interpretation 16
1.5 A Need for a New Methodology 19

2. Program Development 22
2.1 Limitations 26
2.2 Recursive Ray Tracing 27
2.3 The Acoustical Model 29
2.4 Time Analysis 33
2.5 Directions to be further explored 35
2.6 Implementation 36

3. Evaluation of Program Results 41
3.1 Understanding an Image 41
3.2 Boston Symphony Hall 46
3.3 Variations on Symphony Hall 56
3.4 Conclusion 58

4. Design Contexts for the Program 60
4.1 Chevalier Hall 61
4.2 Analysis 69
4.3 Design Changes 73
4.4 Empirical Experience 77

5. An Idealized Environment 80
5.1 Immediate Improvements 81
5.2 Future Applications 85
5.3 Knowledgeable Environments 85
5.4 Conclusion 87

Appendix A. Technical Notes and Listing 89
A.1 Source Code 90

Appendix B. Geometric Spatial Databases 137
Bibliography 156

4

List of Figures

Figure 1-1: "A place for preaching in" by Leonardo Da Vinci c.
1488-9. The speaker's platform is atop the column in the cen-
ter.

Figure 1-2: Sabin's photographs of two dimensional sound fields.
Figure 1-3: The realism rendered using visual ray tracing tech-

niques.
Figure 1-4: Common acoustical design faults: 1) excessive room

height; 2) poor sound treatment 3) parallelism between sur-
faces at the source; 3) level audience; 4) curved rear wall; 5) ex-
cessive balcony.

Figure 2-1: A traditional ray diagram of the direct and several
reflected sound waves in a concert hall. Reflections also occur
from balcony faces, rear wall, niches, and any other reflecting
surfaces.

Figure 2-2: Diagram of the rays emitted from the viewer.
Figure 2-3: Diagram of the reflections of a single ray in an enclosed

space and its respective ray tree.
Figure 2-4: Progressive reflection of a single sound wave in an

enclosed space.
Figure 2-5: Local Specular and diffuse reflection components for the

intensity model.
Figure 2-6: Time frames showing all of the incident sound at 10

milliseconds intervals. View from the audience looking towards
the stage.

Figure 2-7: Components needed to use the program.
Figure 2-8: Measured directivity patterns for a typical direct-

radiator speaker coverage of a typical speaker. DI is the decibel
index and CPS is the cycles per second. Note variations with
frequency.

Figure 3-1: Directivity response patterns showing the sound energy
incident on a listener.

Figure 3-2: Reflection patterns along the time axis. Sound arrives
from the performer first, and after a gap, reflections from the
walls, ceiling and other reflective surfaces arrive in rapid suc-
cession.

Figure 3-3: Symphony Hall - First and Second floor half-plans.
Figure 3-4: Symphony Hall - Section.
Figure 3-5: Symphony Hall - Interior photo views.
Figure 3-6: Symphony Hall - a time sequence at 10 millisecond in-

tervals with views in the front and back directions.
Figure 3-7: Symphony Hall - Time sequence from balcony.
Figure 3-8: Symphony Hall - Time intervals from the rear side

corner.
Figure 3-9: Symphony Hall - Side from under Balcony.
Figure 3-10: Square stage enclosure modifications.
Figure 3-11: A variation with smooth upper walls and ceiling.
Figure 4-1: Exterior front and side elevation photograph.

8

12
14

16

22

24
25

28

30

34

36
39

44

45

48
49
50
51

54
55

56
57
58
61

5

Figure 4-2: First floor plan of Chevalier auditorium 63
Figure 4-3: Second floor plan 64
Figure 4-4: Section - Chevalier Hall 65
Figure 4-5: Interior views - Chevalier auditorium 66
Figure 4-6: Preliminary design - center seating analysis 68
Figure 4-7: Chevalier Hall - Additional views. Note the top rear 70

view with similar ray traced viewpoint in figure 4-5.
Figure 4-8: Initial attempt at enclosing a stage 71
Figure 4-9: Sloped stage enclosure and larger opening. 72
Figure 4-10: Views from the side and rear audience under the bal- 73

cony.
Figure 4-11: Modified stage enclosure with the extended stage. Note 74

the larger area in shadow in front of the stage.
Figure 4-12: Modifications with the new stepped walls. 75
Figure 4-13: Cumulative specular reflections only. Before and after 76

modifications.
Figure 4-14: Perspective views allowing for preliminary and selec- 79

tive viewing of the database. top: Chevalier Hall plan top and
bottom: Symphony Hall Section.

Figure 5-1: A possible display interface for displaying and interact- 84
ing with additional information.

6

Chapter 1

Introduction

As a requisite to improving man's environment, architects have always

sought to represent an understanding of their environment. The design

process is, in fact, devoted to the identification and satisfaction of criteria

within a particular framework of many technological and social constraints.

This identification and satisfaction process is a recursive step of the design

process. At the outset, only a certain number of criteria are known. As the

process progresses, new issues arise. Architectural design is a heuristic

process, wherein the acquisition of knowledge of what does and does not work

is slow, empirical and subject to creativity (resourcefulness, inquisitiveness).

The continual reinterpretation of the environment and the redefinition of its

character necessitates a greater sophistication for coping with more com-

prehensive issues in building performance. In order to increase our insight into

the environment, a new acoustical working methodology is proposed. This

thesis posits a new approach in acoustical analysis and synthesis that is more

responsive to the architectural context by extending our visual sensibilities,

and hence understanding, to cover an otherwise intangible aspect of design.

Our understanding of the environment is primarily a visual one. The

design for a lecture hall in figure 1-1, while boldly addressing the visual

criteria of presentation space, is most unacceptable acoustically. The architec-

tural rendering embodies only information that is usually visually perceived.

It does not show the acoustical and thermal properties of hat space. The

graphic representation of sound poses many new cognitive issues. A rendering

7

* IRS

4 . .

Figure 1-1: "A place for preaching in" by Leonardo Da Vinci c. 1488-9.
The speaker's platform is atop the column in the center.

of non-visual properties provides the designer a more comprehensive under-

standing of the interrelationships of these properties. Realism need not be

limited to the visual sense, but can extend to other perceptual modalities. It is

impractical, if not impossible, to communicate certain aspects of a design

directly through their respective sensory modalities (i.e. feel the temperature or

hear the acoustics). While the direct perception of a space's properties may be

the goal of realistic simulations, it is probably not the most effective way of

presenting acoustical information for design purposes. There are often just as

8

many reasons why a space sounds the way it does as there are critics listening

to it. Acoustics, whether it is heard or interpreted from a graph, lacks an ac-

countability that the designer can use effectively. This research presents the

new concepts for presenting acoustical information in a visual format that can

provide an experiential understanding as a function of analogous sensory ex-

perience. It requires a very well trained ear to decipher a spatial description

from auditory perceptions only. People who are blind often have such an acute

auditory sensitivity that they can perceive a room's features such as size,

material, scale, etc... However, even with a finely developed sensitivity, a per-

son cannot derive the exact acoustical features to correlate the exact effects of

building elements with performance. If the architect is to shape the space that

shapes the sound, then he needs to establish a precise correlation between the

acoustical properties and the visual medium of drawing in which they work.

1.1 A place in the working environment

In partial response to the increased knowledge requirements of ar-

chitects, computers have opened the newest frontiers in what is known as Com-

puter Aided Design, or Drafting (CAD). I am careful to distinguish the ter-

minology used in this rapidly growing field of computers in architecture. Few

computer tools, I believe, qualify as design aids and should not be confused

with such production tools as drafting or word processing programs that only

serve to record that which has already been decided. For a program to in-

fluence a design it must produce information which guides the designer in es-

tablishing and satisfying specific criteria. I note here that a drafting system

can aid the draftsman who is concerned with drawing layout and production.

Better designs do not come from computer drafting systems any more than bet-

ter novels are written on text formatting programs.

9

The differences between production and design aids is significant in

terms of approach and intended clientele. Design aids are the subject of much

attention in artificial intelligence research. The goals of such knowledgeable

systems will be to optimize the decision making process, by assessing qualita-

tive rather than quantitative properties. Once an acoustical response has been

synthesized, it can then be evaluated for appropriateness to its intended pur-

poses and what aspects of this response might improved to make it a "better"

space. Someday, computers will be able to make qualitative assessments as to

whether our treatment of a particular topic is good or bad, in architecture as in

literature. However, such a complex system will not be possible without the

development of low level routines through which it can operate and derive an

understanding of the environment.

Before any decisions can be made by either a designer or a program, a

thorough understanding of the many repercussions of decisions must be made

explicit. The placement of walls is not only an arbitrary aesthetic judgment,

but also one that responds to a host of usage, climate, structural, cost and so-

cial issues, to name a few. A comprehensive and responsible understanding of

the interrelationships of various criteria is not possible until effective al-

gorithms are developed to model them individually.

Today there is a need for rule based, additive and explicit models of design
knowledge, if designed objects are to mark and not to litter the ascent of
man. Today concepts like analogy, typology, or memory need to be made
precise enough to be computable. Only then computers will be to architec-
ture, what instruments are to music. [Wojtowicz 86, p. 19]

In order to generate solutions, architects, like programs, need to apply produc-

tion rules. When artificial intelligence is developed in the form of an expert

system, production rules can either be explicitly coded into a very large

program or semi-dynamically generated by a more specific sub-program. By

10

semi-dynamically, I mean rules that are generated by a program which by

definition is also a set of rules.

The comprehensive nature of the analysis presented here will, I hope,

elucidate the production and construction rules as they relate to acoustics for

meeting this criteria. The pictorial information produced in this program

provides means for more effective exploration of memory and analogy issues in

acoustics. It provides not only for sensory analogies to be made, but also for

references and comparisons to other performing spaces.

The program used here provides a fundamental step in denoting and

satisfying acoustical constraints in the architectural environment. The con-

cepts of this acoustical model will serve as a platform in developing a specific

design tool in architecture. The graphic media and interface developed here

will, I hope, someday be applicable in modeling other non-acoustical properties

of the environment.

1.2 A Short History

"Acoustics is entering a new age of precision and engineering. One

hundred years ago acoustics was an art. For measuring instruments, engineers

primarily used their ears. Microphones consisted of a diaphragm connected to

a mechanical scratching device. About that time the names of Rayleigh,

Stokes, Thomson, Lamb, Helmotz, and others appeared on important published

papers. The first major publication in acoustics was Lord Rayleigh's two-

volume treatise, Theory of Sound in 1877-78. Architectural acoustics was not

advanced to the status of a science until W.C. Sabin's work and papers 1900-15.

The greatest progress in the field followed the developments in electronic cir-

11

cuitry and radio-broadcasting in the 1920's. It became feasible to build

measuring instruments that were compact and rugged. Architectural acoustics

received much attention in the experiments and theories coming out of Harvard

University, Massachusetts Institute of Technology, University of Southern Cal-

ifornia, and the several research centers in England and Germany. In this

period, sound decay in rectangular rooms was explained in detail, along with

the computation of sound attenuation of materials and ducts. The advantages

of skewed walls were demonstrated and a wide variety of acoustical materials

and treatments came on the market.

Figure 1-2: Sabin's photographs of two dimensional sound fields.

"Today, acoustics is passing from being a tool of the communication in-

dustry, the military, and a few enlightened architects into the concern of the

daily lives of nearly every person. Workers are demanding safe and comfort-

able environments. The recent proliferation of performance halls, especially in

12

small communities that cannot afford a variety of specialized spaces, is creat-

ing a demand for multi-purpose, larger, more expensive and technically

demanding designs. As a result of this, architects are in rapidly increasing

numbers hiring the services of acoustical engineers as a routine part of the

design of buildings." [Beranek 86, p. 1-2]

1.3 The acoustical image

This program communicates its information through images that are new

concepts in acoustical analysis. These images raise new issues as to their sig-

nificance in visual representation. "An image is a representation of something,

but what sets it aside from other representations is that an image represents

something else always in virtue of having at least one quality or characteristic

of shape, form or color in common with what it represents." [Dennett 81, p. 52]

The information here "resembles what it represents and not merely represents

it by playing a role - symbolic, conventional or functional - in some system."

This visual information is the result of a significantly more powerful acoustical

synthesis model.

The visual nature of plans, renderings, site visits, and photographs from

which information is derived by architects is important to the way solutions are

conceived. An understanding of acoustics in a format that is more analogous to

our temporal and spatial perception should be more effective in producing sen-

sitive designs. Sound has very distinct spatial qualities which, until now, had

no analogous means of expression. Acoustical information has traditionally

been presented in the form of numbers, which are fairly abstracted represen-

tations of sound. Many other fields of science have developed image based

representations, because graphic presentation methods are more effective

13

means of conveying spatial and temporal information. Images are now

produced through ultra-sound, seismology, radar, thermal infrared photog-

raphy and other non-visual physical properties. The new sound-image denota-

tions presented here raise several new issues of representation, namely its in-

creased effectiveness in communicating properties and the way it may be used.

An image does not require a tacit knowledge of conventions because of its spa-

tially and temporally experiential nature. For information to be communicated

effectively across a range of users and architects who may have little ex-

perience in acoustics, the image relies on a more intrinsic understanding of a

three dimensional depiction of space and time. The simulated three dimen-

sional nature in which the propagation of sound is denoted provides a more

analogous medium than traditional numbers and graphs, and less subject to

misinterpretation.

Figure 1-3: The realism rendered using visual ray tracing techniques.

Architects communicate primarily through buildings or pictorial

14

representations of buildings and less through numerical or written annota-

tions. Designs are the products of drawings and models rather than wordy

descriptions of intentions. Buildings are seen through their "visible" and tac-

tile properties such as color and texture. The exact role of perception, imagery,

and graphic media used in expressing ideas is the subject of much cognitive

research. I will assume though, that the visual perception of architectural

properties is suited to developing and expressing ideas. The goal of these

images is to extend the architect's perception of his design's properties in ways

that integrate with this working process. For example, an auditorium is no

longer seen only through its visual properties but also in terms of its acoustical

properties.

Architects and consultants alike are not able to visualize the often com-

plex three dimensional interactions within enclosures. Mental and manual ray

tracing quickly become difficult after the first reflections. There are no physi-

cal analogies to serve as experience on which to base the propagation of sound.

In order to understand this physical phenomenon, one seeks to see it. Sound

cannot be marked with smoke, like the flow of air, nor are its effects directly

visible like waves in water. To understand this phenomenon one then tries to

build a model of it, of which ray tracing is generally a favorite. This is probably

due more to its visible nature than to its accuracy.

As laymen to acoustics, most architects exhibit little control over it in

practice. A space that is concerned with acoustics ought to embody these con-

trol features and not treat them on as afterthoughts, as accessory sound reflec-

tors and diffusers. A clear understanding of acoustics in visual rather than

numerical terms will allow the designer to better integrate solutions into the

design product.

15

SECTION

Figure 1-4: Common acoustical design faults: 1) excessive room
height; 2) poor sound treatment 3) parallelism

between surfaces at the source; 3) level audience;
4) curved rear wall; 5) excessive balcony.

1.4 Issues of Interpretation

Computers are finally gaining enough power to express data in very ef-

fective and graphic ways. This program communicates through renderings

which are not only new in acoustics but also in a host of applications. As seen

in figure 1-3, state of the art architectural renderings provide a wealth of infor-

mation, leaving little to subjective interpretation.

16

Materials are described with an uncanny and irrefutable precision. The

image establishes a direct correspondence between the many properties of that

space through our principal mode of perception, that is by seeing. We under-

stand a space through its properties, especially those which lend themselves to

visual representation (such as materials and lighting), without having to inter-

pret verbal or tactile descriptions. The way in which images denote the infor-

mation is quite easily understood by most, and does not draw on the tacit

knowledge of acoustics or the ability to make inferences from its conventions.

I believe there is a more implicit understanding of spatial and temporal

change when visual analogies are used in place of numerical abstractions. One

must be careful when speaking of abstractions.

As far as I can tell there is no uniform construal in the literature of the
label "abstract." It is used in a variety of ways, many of which apply to all
systems or no systems (e.g. need to do not need interpretation), some of
which apply equally to various pictorial and analog graphic systems (e.g. can
convey information about the general and non-observable), and others which,
if applicable, would make it impossible for the symbols of the system to be
realized physically in psychological states of the relevant sort (e.g. the sym-
bols are Platonistically abstract objects). [Schwartz 81, p. 127-8]

By not drawing on an abstracted representation of traditional acoustical con-

ventions, such as decibels and decay graphs, the acoustical information can be

understood by analog and direct physical references to brightness and time,

respectively. A bright light represents a loud source and a quiet room is seen

as a dark room. This is more effective than a number, which necessitates a

scale to give it meaning (ie. nine out of ten). Some interpretation skills for this

new medium must be developed, and the exact significance of these images is

yet to be determined.

Although there are various conceptions of what analog processing is, I
suspect the other senses are actually derivative from the sense I am adopt-
ing. Thus, for instance, any process can be made to go through an ap-
propriate sequence of intermediate states, and even do so in very small
(quasi-continuous) steps - even a purely verbal process. ...Thus we would

17

count the process as analogue if its going through particular intermediate
states were a necessary consequence of intrinsic properties of the mechanism
or medium, rather than simply being a stipulated restriction that we ar-
bitrarily imposed on a mechanism that could carry out the task in a quite
different way. [Pylyshyn 81, p. 158]

The nature and value of images is often the subject of bitter debate in the

cognitive sciences. It is important to note however, that if one wants to make

predictable changes to properties displayed then he will still need some

knowledge of ray tracing as an acoustical concept. One must not assume that

images require a cognitive mode of information processing that involves no in-

terpretation at all. Pictures, like many linguistic modes of communication, also

require interpretation when they are serving to represent. It is unlikely that a

satisfactory account of pictorial understanding can be based on unqualified no-

tions of resemblance, similarity, or one to one correspondence between an im-

age and what it represents. It is possible for almost anyone to look at the

screen and understand that a certain sound arrives from a certain direction at

a certain time. As a result it is fairly successful as a simple analysis tool for

providing answers but not solutions. In the future, by coupling a constraint

based system with this analysis program an understanding of ray concepts will

be possible and, in turn, be able to offer solutions.

An architect does not draw lines but rather draws walls and surfaces

with specific properties. Lines, however, can be subject to misinterpretation by

others and even the designer himself. The realism with which these properties

are depicted is a powerful aid that not only helps to communicate but also to

store ideas more effectively. It also helps in determining whether a design

functions properly aesthetically and functionally.' The architect can look at a

image and immediately see if lighting levels are adequate, materials comple-

ment each other or if the scale is correct. Acoustical information has tradition-

18

ally been delivered in the form of numbers or a variety two and three dimen-

sional graphs that are easily understood but limited in the amount of infor-

mation that they can show at once. The simultaneous manner with which

realism can display all of this information helps to assure the cohesiveness of a

design.

1.5 A Need for a New Methodology

It has been said that a person doesn't really understand something until he
teaches it to someone else. Actually a person doesn't really understand
something until he can teach it to a computer, ie. express it as an
algorithm... The attempt to formalize things as algorithms leads to a much
deeper understanding than if we try understand things in the traditional
way. [Knuth 75]

The inability to synthesize and compute acoustics precisely has in itself

plagued our understanding of it. Analyses which are singularly based on math-

ematical formulae, graphs, plots or simple ray diagramming techniques cannot

provide a sufficient understanding of the many spatial interactions of sound.

The three-dimensional, temporal and invisible nature of sound is very difficult

to express accurately and comprehensively. The numbers and graphs that are

produced by traditional analysis methods depict only a small aspect of its na-

ture. For example, one formula will produce reverberation time, a simple ray

tracing model will locate reflections, and yet another formula may calculate the

reflected energy from that reflection. The three methods alone will produce a

graph, a diagram and a number. Yet for acoustics to be understood precisely a

much more comprehensive or global description of the space must be made and

detailed.

Recent advances in technology are allowing for more sophisticated

methods of recording and analyzing existing spaces. The analysis and syn-

19

thesis are two separate processes. An analysis denotes the behavior of a sound

field condition. It is usually performed on data recorded from existing spaces,

but can also denote the data from synthesized acoustical responses. Advanced

recording technology can store a great deal of information for later recreating

the listening experience, and for accurate analysis. The high performance

Monoraul and Single Point Quad Mikingi recording techniques are allowing

engineers to understand and develop a vocabulary to express the properties

precisely. These recording and analysis techniques, however, do not lend them-

selves directly to synthesis models useful for the evaluation of designs yet to be

built. While many scale-modeling and mathematical modeling techniques for

synthesizing design performance do exist, few are readily used by designers

and consultants. Scale-modeling techniques are generally regarded as too slow

and expensive while mathematical models, even those implemented on com-

puters [Borish 84, Wayman 80, Benedetto 851, possess limited power and infor-

mation, and lack usable interfaces. Those techniques presently available have

not kept pace with the many acoustics applications outside of architecture.

Several methods may be combined to form a more complete description,

but the disparate range in which information is delivered makes it a time con-

suming and difficult process. As a result, consultants often limit their analyses

to only a few methods and rely a great deal on their previous design experience

and on references to other halls. This is not a suitable solution for the architect

who is concerned with the design of complex or unique spatial configurations.

Furthermore, the comparisons against other performance spaces that are pos-

sible today by critics and users places additional. demands for a thorough un-

1This is used by the Yamaha DSP-1 stereo component that can recreate a variety of listening
environments from small jazz clubs to famous large cathedrals.

20

derstanding of acoustical properties in order to insure a successful design.

With the present tendencies toward increasingly larger and more polyvalent

performance spaces seating 3,000 or more, the designer can ill afford a hit or

miss approach.

Leo Beranek summarizes a designers responsibilities in the quote:
In performance spaces the sound emanates from the orchestra, actors, lec-

turers and loudspeakers; located on the stage, in the pit, and above or at the
sides of the proscenium. The architect's job is to get it to the paying cus-
tomers no matter where they sit without distortion or appreciable loss of in-
tensity. A good space consists of having getting the sound energy there at a
uniform intensity and time, then having it die away at a predetermined rate
so as not to interfere with the next sound as it comes along.

One step in developing this new methodology was to test the implemen-

tation on a design project. Given the scope of this thesis, I have chosen a

rehabilitation project, concerning myself with one of its more critical perfor-

mance criteria - good acoustics. The redesign of Chevalier Auditorium is a real,

concurrent project in Medford, Massachusetts. The present auditorium, a local

multi-purpose hall, is to be transformed into a regional performing arts center.

In order to concentrate on satisfying particular acoustic constraints of a design,

and not compromise this criterion with other issues such as site, climate, use,

etc..., I have chosen to design this project with one principal objective: a per-

forming space with good acoustics.

21

Chapter 2

Program Development

At the heart of this research project is the implementation of this new

sound synthesis model in an acoustical ray tracing program. This is the first

comprehensive three-dimensional model using ray techniques that can display

information about reflected and transmitted sound in a graphic manner which

is readily understood by engineers, architects and laymen. Simple ray tracing

(fig. 2-1) has been one of the most commonly used tools used in acoustical

analysis. It has traditionally been implemented either by hand, in a simple

two-dimensional fashion, or by computers to produce a three dimensional

analysis limited to numerical output.

Figure 2-1: A traditional ray diagram of the direct and several
reflected sound waves in a concert hall. Reflections also

occur from balcony faces, rear wall, niches, and any other
reflecting surfaces.

22

Recursive ray tracing is a relatively new rendering approach in computer

graphics since it was originally implemented in 1979 [Whitted 80, Kay 79], it

has been combined with various illumination models to produce some of the

most realistic images to date (fig. 1-3). For a detailed account of computer ray

tracing principles the reader is referred to the papers by J. Whitted [Whitted

80] and D. Rogers [Rogers 85]. Before ray tracing techniques were developed,

the correct visualization of reflections, transparency, shade and shadows were

impossible in even the most comprehensive programs. As an architectural tool,

it offers immediate benefits through its ability to create renderings with ac-

curately cast shadows and reflections with greater speed and precision than

scale models.

The main similarity between optics and acoustics exploited here is that

both light and sound can be modeled as vectors traveling in a line (fig. 2-3),

such that the physical laws can be modeled using linear algebra. Light is, in

fact, often used in place of sound to model the specular acoustical properties in

scale models or to fine tune built designs. However, the respective interaction

of light and sound with material properties present problems as each behaves

differently under given physical circumstances. For example, a hard dark sur-

face may reflect sound but not light, while light may easily pass through glass

while sound will not. It is also not possible to use light to perform time

analyses, since it travels much too rapidly for the propagation delay and rever-

beration to be perceptible. Hence limitations quickly appear with literal physi-

cal models that replace sound with light in other than rudimentary specular

models.

A significant aspect of this ray technique is the fact that a design's

properties are depicted from the viewer's perspective. In this ray tracing

23

Figure 2-2: Diagram of the rays emitted from the viewer.

scheme, contrary to conventional acoustical methods, the receiving point emits

the rays instead of the sound source (fig. 2-2). Rays are sent out from the

observer's ear (or eye) and travel back to the source(s). This viewpoint allows

renderings to produce a picture of what the listener hears instead of what the

sound source "sees". It is important to realize that the propagation of sound is

perceived as a function of the listener's and source's locations. The specular

properties are directly related to the observer's and sources' relationship with a

space. As a grammatical analogy, the sound is perceived in the first person,

and removed as a the third person observer. To analyze a particular point, an

observer must be situated at that point himself, not just looking at it from

across the room. Each different vantage point reveals a unique performance

characteristic.

The computer program has two basic parts: a ray tracing algorithm and

24

1
Source

Sor branch

L

pp 4
Listener L

Figure 2-3: Diagram of the reflections of a single ray
in an enclosed space and its respective ray tree.

an intensity (illumination) algorithm. In a well written program these parts

operate fairly independently of each other so that different ray tracing and il-

lumination algorithms are interchangeable in a modular fashion. The ray trac-

ing algorithm calculates the ray paths, while the intensity model, or "shader",

determines the energy incident at each ray-surface intersection, or "node" in

the ray's path. The ray tracing, or visible surface, algorithm recursively creates

a tree of rays for each pixel of the display (fig. 2-4) Recursive means that as

each ray intersects a surface, new rays are spawned which, in turn, intersect

with other surfaces. The main attribute of this tree is that it records the dis-

tance and direction of the rays to the next surface intersection. Once a ray tree

is completed, it is passed to the shader for intensity calculations. Since the in-

tensity of a node is greatly dependent on the intensity of the node preceding it,

the shader traverses back up this tree accumulating the intensities at each

node until the listener is reached. The ray tracing algorithm cannot only dis-

play the location and relative intensities of the real and virtual (reflected)

25

sound sources in a steady state condition but can also produce a series of

images mapping the propagation of an impulse sound field over time.

2.1 Limitations

The ray tree described above is effective in following the specular inter-

actions in a space, but there are limitations that should be noted here. The

field of computer graphics uses mathematical models which approximate but

cannot completely follow the true physical interactions of light. The intensity

models to date are not to be used for determining accurate pressure level read-

ings, since they do not completely follow the diffuse second order interreflec-

tions within an enclosure. The implementation of such a complete physical il-

lumination model is too complex and computationally expensive. The intensity

formula used in this rendering tool can model the specular and first order dif-

fuse reflections which are of primary importance in acoustical analyses.

Approximations must be made in describing the space for analysis. At-

taining a high level of detail in a geometric database describing all of the ele-

ments comprising a space is prohibitively expensive to draw and, subsequently,

to compute. Most professionals are interested and operate on the macroscopic

aspects of the spatial geometry. The "hall of mirrors" effect, from acoustically

reflective walls, becomes very confusing in a complex room with very many ele-

ments. It may be possible to provide too much information, thereby reaching a

threshold where any more information becomes confusing. The interreflections

create visual noise where it is impossible to attribute the causes and effects of

reflection. It becomes very difficult to distinguish specific features of a space

and ascertain causes of properties displayed.

26

Presently, a problem lies in the fact that it is not known to what degree

the overall accuracy and effectiveness of the analyses are compromised by these

simplifications to the ray tracer and geometric descriptions. The effects of dif-

fuse interreflections and small elements within a room's geometry are

generally not considered significant. The lack of the second order diffuse com-

ponent is not significant. The viability of other ray based measurement

methods [Wayman 80, Benedetto 84] and sound reproduction using ray

methods [Yamaha 86], modeling only the specular components and using

simplified spaces, tend to support this claim.

The diffuse interreflection calculations would require sending out a huge

number of rays at each node to determine the exposure to each diffuse surface.

There are alternative computer methods for accurately determining second or-

der diffuse reflections, based on light models using radiosity algorithms [Cohen

85, Nishita 85]. However, these radiosity techniques can only model surfaces

with perfectly diffuse (Lambertian) properties. This is not suitable for architec-

tural acoustics, which often deals with large surfaces that, given the large

wavelengths of sound, appear acoustically smooth. For example, what may ap-

pear as a visually hard dull surface may actually exhibit acoustically specular

properties.

2.2 Recursive Ray Tracing

The following section describes the ray tracing or visible surface algo-

rithm as used in this research. The algorithm as written (appendix A), is

simple but slow. Its advantages are that it is clear and allows for easy

modifications. For future applications it is suggested at a much faster and

more sophisticated version be used [Kay 86, Fujimoto 86]. The concepts of ray

27

tree generation are directly borrowed from lighting versions; other versions

should be very portable to meet acoustic needs. The principles and functions of

recursive ray tracers remain the same and are described below.

To generate an image, a ray is sent out for each of the pixels on the com-

puter screen. Hundreds of thousands of rays are then generated that travel

from a point perpendicular to the sound field so as to cover a solid angle in the

direction of interest. If a ray hits a surface, reflected and/or transmitted rays

are recursively generated and sent out so as to form a tree (fig. 2-4). Rays in-

cident on specular surfaces obey the physical law whereby the reflection and in-

cidence angle are equal. At each ray-surface intersection source-finding feelers

S are also emitted. These source-finding rays also check for occlusion by other

objects and are used for intensity calculations by the shader.

Figure 2-4: Progressive reflection of a single sound wave
in an enclosed space.

At each surface intersection, or "node" in the tree, an attenuation may be

calculated from the respective specular property of the surface intersected.

Theoretically, the ray tracing tree is infinitely deep and is terminated once all

28

rays leave a scene. The reflected sound inside of an enclosure is trapped, and

the ray tree ends only once the sound is completely absorbed. In order to save

on computation time, the recursive ray generation may be terminated when the

accumulated impedance of the surfaces intersected reaches a specified value

(such as 95 per cent), or when a prescribed maximum tree depth has been

reached, usually around five to ten reflections. The recursion may may stop be-

fore a ray ever reaches a source, in which case no specular sound reaches the

listener from the source.

One of the first extensions that had to be been made involved making of

the sound source directly visible from the viewer. Most ray tracing programs

are not concerned with this facility. The sources are well out of the field of

view or are occluded by other objects so as not to be directly visible. Only the

reflections of a source are visible on the objects. In a performance space,

however, a listener is usually interested in looking directly toward a source2 .

The source is made visible by sending out source finding rays directly from the

receiver.

2.3 The Acoustical Model

The acoustical intensity model, or shader, is used to determine the

energy levels at each node of the ray tree. The intensity incident at a node is

primarily composed of reflected energy, and other optional transmitted and am-

bient energy terms. The reflection component is comprised of specular energy

and a first order diffuse energy. The specular component is further divided into

2 References here are made to a singular source although it should be noted that they may
represent several other sources.

29

energy incident from a previous surface and from the source. The energy from

a source is then attenuated as a function of the displacement of its initial power

and the properties of a surface. Properties at a node attenuate by a respective

surface's impedance or Noise Reduction Coefficient (NRC) rating. If an inter-

vening surface is transparent, the Sound Transmission Class (STC) rating

characteristics of the surface is used as the attenuation factor.

When the intensity model has been completely traversed the tree back to

the listener, the resulting intensity is displayed as a color at the appropriate

pixel on the screen. Intensity is denoted on a grey scale, according to the dis-

play device, but usually with 256 possible shades. The shader represents little

or no sound from a particular direction as zero or black on the screen.

I <1

An

Source j S 0 0 V

Lj

Figure 2-5: Local Specular and diffuse reflection
components for the intensity model.

Although the exact nature of reflections from surfaces is best explained

in terms of microscopic physical interactions between sound waves and the sur-

face, most shaders depend on the aggregation of local surface variations for sig-

nificant reductions in computing time. As computers become more powerful, a

30

better understanding at this microscopic level may one day be explored to yield

more accurate models. A model for the specular reflection of sound from

smooth surfaces follows the formula where the incident energy is attenuated by

an impedance coefficient, k, as in:

reflected = incidentkspecular

As shown in figure 2-5, the sound intensity, I, passed to the viewer from

a point on a surface, consists of the specular reflection term along the vector s.

n is the surface normal, L, is the direction of the jth sound source, S are the

local sight and specular reflection directions. The global intensity3 for each

pixel is the sum of the local interactions, passed along I, where at each node:

k, and kd are the surface specular and diffuse
coefficients, respectively.

IS = energy from the source, S, direction.
I = energy from the specular, L, direction.

To form the formula for j sound sources:

Ilcal = kj, + kXI,.(S-L)P + kdXII(n-Lj)

The first summation term is a source's specular energy contribution. It is

dependent on the source being sufficiently collinear with the specular path to

the viewer 4 . The second summation is the source's diffuse energy contribution

at a node; this is proportional to the angle of incidence to the surface. Here, the

reflection coefficients, k, are held constant. However, other models may be

used to determine their variations with the incidence angle or wavelength. By

making k. and kd smaller or larger, the surface can be made less or more reflec-

tive.

3This intensity model is derived from the global illumination model [Rogers 85] used for
light.

4This is based on the "Phong" [Phong 75] spatial distribution value used to determine
specular highlights.

31

Presently, the diffuse property is denoted by kd and has no industry

equivalent. The problem lies in that there is no standard for roughness and it

may be expressed at the microscopic scale of surface particles to a macroscopic

scale of furnishings and building elements. The diffuse energy is proportional

to the dot product of the surface normal and the incident source energy I,. The

diffuse component is useful for demarcating shadows and energy flux on an

area.

Although the shadows cast do not take into account the refraction of

waves around objects, they do help demarcate those areas with direct lines of

sight, which is considered an auditory and visual requirement of a performance

seat. Sound waves, especially at lower frequencies, can refract around objects

and virtually eliminate any distinct shadows. When a person is in the shadow

of an object he can still hear a fair amount of sound. This is a point requiring

further study.

A conceptual difference with traditional rendering application is that a

source is the only energy in a space. There are none of the ambient and or ex-

ternal transparency terms often used in light models. The ambient energy

term is a pseudo approximation of the other environmental factors which are

otherwise not easily accountable, such as background audience and mechanical

noises. Ambient term is a steady state value that cannot approximate fluctuat-

ing real-life conditions.

32

2.4 Time Analysis

Since the reverberation of light is considered instantaneous, time factors

are of little interest in light models. The program as described until now is

primarily derived from light-based models, and produces images showing only

the integrated or steady state effects of sound. However, due to the slow speed

at which sound travels, the reverberation and reflection times are very sig-

nificant factors in acoustical perception. Several display methods were inves-

tigated which could communicate reverberation effectively. The most promis-

ing methods involve drawing multiple images or frames at discrete time inter-

vals. Each frame can then be shown individually or in rapid succession, creat-

ing a stop-action or animated sequence of the sound field propagation.

Until now, general mathematical formulae had been used in determining

the reverberation time of spaces. For example, Sabin's commonly used rever-

beration time formula5 R,=0.05V/a gives only a very rough notion of how a

space functions temporally. It is valid only in cases of uniform room

geometries, uniform distribution of absorptive material and sound propagation.

In most halls however, these variables are often quite inconsistent throughout

a space.

In addition to direction, each ray has a given magnitude or length which

is used to deduce the time of travel. With this information, a critical assess-

ment of sound travel over a tree's cumulative path length is possible. Reflec-

tions can then be identified precisely as to location and time of arrival.

Once a ray tree is passed to the shader, the free path lengths are then

5 "a" is the total Sabins (absorption value) within a space

33

Figure 2-6: Time frames showing all of the incident sound at
10 milliseconds intervals. View from the audience looking

towards the stage.

34

M

divided into time segments which are sorted by their respective distances from

the sources. A frame is then drawn for each range of distances covered by a

segment, so that in effect, the more direct reflections appear first and then the

more roundabout paths appear later, as the sound field travels uniformly out

from the source. This allows a person to closely follow the impulse wave front

radiating out from the source towards the observer, seeing when and where

various reflections take place, as in a strobe lit photographic sequence. For ex-

ample, if the shader were to divide the tree at ten millisecond intervals, then

the tree would be divided up into roughly ten-foot segments, with an image

showing all the reflection falling within that interval (fig. 2-6).

2.5 Directions to be further explored

One display method is to superimpose the later sound fields arriving at

specific intervals over the initial energy. A second time analysis method, as an

extension of the second model above, would be to again divide the tree into time

segments but to accumulate the intensities from the previous frame. The

frames would show the total cumulative energy arriving up to a given time in-

terval. An image would then "develop" over time. At fifty milliseconds one

could see all of the sound having arrived during the reinforcement span.

Several advanced aspects of this project await further development:

" In optics, transmitted rays are refracted according to Snell's law; in
acoustics, however, this remains to be explored.

" In modeling the effects of sound refraction, varying frequency
around objects eliminates any distinct shadows. Ray tracing has
been performed with cones [Amanatides 84] to simulate fuzzy
shadows and distributed light sources, and an adaptability to
refraction remains to be explored.

" Testing and calibrating results to real performance space measure-
ments.

35

2.6 Implementation

Implementation of this program in its present state is quite simple. An

outline of the parts involved in performing an analysis are a spatial database,

viewing and source parameters, and the ray tracer program (fig. 2-7).

Vie w
Info.

Viewer &
Source Parameters Ray

CR L
File Image(s)

Spatial
Description

Figure 2-7: Components needed to use the program.

Creation of the database is presently a slow manual process that uses a

text editor rather than a graphics editor. A graphics editor such as a CAD

program would allow for a much quicker, easier and more complete description

of spaces. The present format of the database is an early version of the CRL

Schema format currently under development here at MIT. The CRL format

has special facilities for recording specific knowledge about architecture and

planning. It allows descriptions in terms of attributes and conceptual struc-

ture, in addition to a variety of geometric properties. The CRL schema is

unique in its ability to manage general information about the world, not just an

image of the world [Jurgensen 87]. The main advantage of the CRL format ex-

ploited here is its ability to store surface descriptions and a variety of architec-

36

tural material and acoustical properties. The schema allows different types of

application programs to access a common description of a situation, building or

site. It provides a much more powerful descriptive language for sharing data

amongst programs much like the Initial Graphics Exchange Specification

(IGES)6 and DXF7 standards commonly used in the profession.

The databases of the various spaces analyzed were procedurally defined

and involved writing a program which, in turn, wrote the CRL files. The main

advantages of this were that parts of the building were readily identifiable and

changeable. Modifications were most easily made in this way, since CRL files

are not easily readable by people (example in appendix B). A three dimensional

wire frame program was also written and was essential in previewing and

debugging the database in a graphic format. This program was extremely use-

ful for correcting errors and viewing design changes.

The present ray model uses intensity values that are normalized units

between zero and one. Actual values are then relative to this scale. Reflections

are relatively attenuated according to surface properties, or coefficients. A

source may emit an energy level of one unit which may represent one watt or

500 watts. What is important here is how much power is arriving relative to

the source. This works much like reverberation time measurements, which

depends on a relative 60 dB reduction in intensity, regardless of the source's

power.

6IGES is produced by the National Technical Information Service for the U.S. Department of
Commerce. It is a formal standard accepted by the American National Standards Institute,
which is generally found on larger minicomputer- and mainframe-based programs.

7The DXF standard was developed by Autodesk Inc. for use in its Autocad program and is
popular among PC applications.

37

To use the program the designer locates himself and the source(s) by

specifying the points within a space8 . Some empirical experience is useful in

selecting where these points should be located. It is best to analyze only those

points in suspected troublesome areas and those locations most representative

of the main seating areas. For example, the sampling points should cover the

edges and middle of the audience, under deep balconies, the foci of curved sur-

faces, and other suspect areas. Observation points need not be limited to the

traditional audience locations: such as the stage itself (as if listening to an ac-

companying musician) or high above the stage (as a microphone in a recording

configuration). The listener may even be a source himself, as long as the source

and receiver points are not exactly coincident. This is not actually a problem in

real life since a musician's ear is always at some distance from his instrument,

and it is technically impossible for a source to emit and receive simultaneously.

The same constraints apply to the locations of sound sources, with one

distinction being that more than one source may be defined simultaneously.

Sources can be located anywhere in a space as long as they are not exactly coin-

cident with the listening point. Additionally, an output power parameter also

needs to be defined. At the present time, power output is in normalized units

between zero and one.

The angle of coverage of a source is an additional property which can be

defined in two different ways. The angle of coverage defines the energy dis-

tribution characteristics of a source over a specific volume of space (fig. 2-8a).

Presently, this is most easily done by enclosing the source on several sides with

polygonal surfaces. The angle of coverage is then modified by the geometry and

opening of the bounding volume (fig. 2-8b).

8 As a note, the points referred to here and in later discussions are in the three-dimensional
world coordinates in which the space is defined.

38

Igo* 180 [js, 180* I15B
1500 CPS 3000 CP'S 6000 CPS
(ka-3.55) (ka=7.1) (ka =14.2)

Figure 2-8: Measured directivity patterns for a typical direct-radiator
speaker coverage of a typical speaker. DI is the decibel index and

CPS is the cycles per second. Note variations with frequency.

A problem with this bounding method is that the enclosure is separately

defined in the building's geometric database while the source must be properly

situated as a separate viewing parameter. This simple bounding method does

not provide an accurate modeling of the energy to angle relationships found in

real sources.

In the future, a more accurate and computationally faster alternative will

be not to use a bounding enclosure, but rather to map the energy distribution

directly onto the source and to attenuate the source finding rays accordingly.

Methods for entering the distribution pattern, however, need a more com-

prehensive and interactive interface to be developed later.

Time delay is another parameter of a sound source that can be defined to

depict a common feature of modern amplification systems. It is then possible to

fine tune and predict the effects of distributed sound systems commonly in use

in airports, stadiums and large halls. A delay retards in milliseconds the time

39

at which an impulse source becomes "visible". This delay feature is effective

only when one or more sources is delayed relative to another source. An

analysis of the synchronization of sources and the effectiveness of sound rein-

forcement systems is then possible. This is also particularly useful in deter-

mining the Haas effect whereby the sound of a second source must arrive

within time and below a certain intensity level, so as not to confuse the location

of the primary source and yet reinforce the overall intelligibility.

40

Chapter 3

Evaluation of Program Results

The acoustical criteria and the ability to make qualitative judgments

about a space remains difficult in any medium, and is the subject of much

psycho-acoustic research. This begins to answer a most important question,

"What does a good sounding space look like?" A first step of forming visual

criteria is to establish a library of visual references. For this, I attempted to

evaluate Boston Symphony Hall, a space that has well-known acoustical

properties. From these reference images it is then possible to extrapolate what

we believe are good qualities of a space. At the outset of this project, some as-

sumptions are made as to what constitutes a good or bad image.

The present implementation of acoustic ray tracing program is quite

simple, yet it brings forward not only new data but also many associated issues

with this new methodology. The program described in the previous chapter is

listed in appendix A. It is sufficiently developed to substantiate and test many

of the concepts behind this new analysis methodology.

3.1 Understanding an Image

Our eyes adjust to a viewing environment and the display of a computer

monitor, making quantitative judgments regarding the intensity (or sound)

levels difficult. This has not been a problem when using numerical data. The

need for a calibrated visual reference a scale becomes apparent. Additionally,

the very slight changes in grey tones make it difficult to distinguish discrete

values. An intensity that may be represented by a number between 0 and 1

41

may have any 256 intermediate shades between black and white. Without a

complete scale against which compare a value, it is very difficult to assess the

energy which corresponds to the exact intensity of a color. A reference scale

would be situated in much the same way as the legend on a topological map

assigns ocean depths to various shades of blue.

The lack of an accurate and tested intensity model makes it difficult, if

not impossible, to draw specific quantitative judgments from the images. It is

very difficult to determine how a sound attenuation of 60 dB appears. While

the color of a pixel may represent a new medium for representing acoustical

data, the image on a much larger scale presents a completely new format for

storing and communicating that information. The color values of a pixel on a

computer screen are only an alternate form of denoting an intensity usually

described by a number. An image is nothing more than a two-dimensional

matrix of intensities. Using this principle it would be easy to represent these

intensities directly with numbers so as to create a matrix of numbers rather

than color values. A problem with this is that image coherence would be lost

since the area numbers cover does not become lighter or darker proportionally

to its value; the display would then loose its analogous pictorial quality.

Similar problems of determining the value of a single pixel extend to

regions and the entire image itself. The difficulty of comparing images is in as-

sessing whether more or less energy arrives between them. To solve this

problem, the intensities are summed for regions of the display. The summation

of the pixel values produces a more quantifiable number depicting the total or

average value for that region. This number can then be compared, referenced

and passed to other programs more easily.

As a preliminary step towards a more interactive design and analysis in-

42

terface, techniques for using a mouse to interact with the image is an another

important aspect of this environment. It is possible to use a mouse to define

areas of interest and point to particular locations in order to extract more infor-

mation. This is discussed in the conclusion.

It is also useful to examine the interactions account for the value of a

particular pixel or a region. The ray program is able to deliver the ray tree

description of a particular pixel that, in turn, allows for the careful analysis of

the effects of objects and properties. In the future, this description of the ray

tree will allow the program to interact with other high level applications such

as expert systems and constraint managers.

It is important to realize that the propagation of sound is perceived as a

function of the listener's and source's locations. The specular properties are

directly related to the observer's and source's relationship with a space. As a

grammatical analogy, the sound is perceived in the first person, and not

removed as a the third person observer. To analyze a particular point, an ob-

server must be situated at that point himself, not just be looking at it from

across the room. Each different vantage point will reveal a unique performance

characteristic.

A particular feature of the images which requires some getting used to is

the three dimensional perspective of the space in the images. When a person

looks at the images, especially for the first time, there is an inherent tendency

to compensate the foreshortening of the perspective views. This tendency ap-

pears to be more pronounced when looking at the time sequence of an impulse

response than in the steady-state conditions where time is not a factor. Reflec-

tions that appear to be further away tend to naturally be interpreted as arriv-

ing later. This, of course, is unnecessary since the time sequence displays the

43

energy sorted according to distance of the listener, regardless of its apparent

distance.

After 50 ms After 100 ms

.... 0..10

TOE RanA SB

After 150 ms

PMuo Du10141000

FILEPE*4 I 801001 II
PLAE I - I
01401-M1 -650-4.0;otcI

-ON 10.0 0

R

0011 VI141 I ISIZI01

No1 .0 CEC

CA4 3* 11 6- 1 0.

Entire time span

FILE 0441 I IS1OZE Atli

R OO 1.01 0 04 :4a

0U .2011

REAR REAR

Figure 3-1: Directivity response patterns showing the sound
energy incident on a listener.

Recent technological advances can now provide some precise analyses of

the the performance of concert halls. The use of quad miking technology has

promoted the use of radial graphs depicting the directivity response pattern of

performance spaces. Radial directivity graphs plot the specular responses of a

space from a particular listener location, much like the images produced here.

I note here that there have been other computer acoustical models that can also

generate directivity graph techniques, but these are accurate only in rooms

with simple geometries [Borish 84]. An obvious shortcoming of these graphs is

that they do not show the cause of a particular response.

44

The visual representation of the directivity response pattern gives an
easier understanding of how the directions of the reflections coming in a cer-
tain length of time are distributed, and of the time-dependent changes of the
distribution. [Yamaha 86]

Recently, much attention has been paid to the perception of spatial ex-

tension. The perception of reverberation depends on the volume of the room

and the average absorption ratio, and the sense of extension depends on the

magnitude of lateral reflections, and thus on the shape of the room [Yamaha

86, p. 9]. The perception of reverberation is related to the the magnitude of the

lateral reflections and the delay of these reflections. There are many other

parameters: the perception of extension is affected by such factors as the reflec-

tion delay time. The delay time between the arrival of the direct sound and the

early reflections is referred to as the "initial delay gap" or IDG (see fig. 3-2).

Direct Reflections
sound

UR1 R5
Initial-time-delayR4R5

gap t1Zn]

Time in milliseconds >

Figure 3-2: Reflection patterns along the time axis. Sound arrives
from the performer first, and after a gap, reflections from the

walls, ceiling and other reflective surfaces arrive in rapid succession.

The perception of extension will be heightened by higher lateral reflection

volumes and larger IDG's. A particularly interesting fact is that the perception

of extension bears almost no relation to reverberation or its length. This dis-

tinction between the reverberation time and lateral extension is an indication

of our growing understanding of specific room properties.

The time sequence images provide a powerful means for analyzing the

notion of extension and a variety of acoustical and visual representational

45

issues. In tests involving a very simple lecture hall and more complex spaces

described later in detail, the ray techniques used in synthesizing the sound

field prove to be successful and function very much as originally planned. The

accuracy and behavior of the reflections appear to be consistent and account-

able in all of the test cases.

3.2 Boston Symphony Hall

I decided to synthesize the performance of Boston Symphony Hall and

compare its results with what is known about it from other independent em-

pirical observations. If the "good" qualities can be associated with the images,

then the visual characteristics derived from this hall could then be taken as

desired features to look for in images of other halls. Boston Symphony hall is

very similar in size and scale to Chevalier auditorium. This makes it possible

to correlate the behavior of the two halls based upon their images. Symphony

hall, because of its relatively simple shape, is well suited to the the present ray

tracer's capacity for geometric descriptions.

Leo Beranek in his book Music, Acoustics and Architecture gives a

description Symphony Hall: "Symphony Hall, built in 1900, is known as the

first hall designed on scientifically derived principles of acoustics. In some

ways it is reminiscent of the Leipzig neues Gewandhaus; nevertheless it is

quite different, primarily because it seats 2631 compared to 1560 in the

Gewandhaus. [Beranek 62]" Beranek goes on to provide other acoustical

evaluations of the hall by noted conductors and musicians as follows:

The sound from Symphony Hall is clear, live, warm, brilliant and loud,
without being overly loud. The hall responds immediately to an orchestra's
efforts. The orchestral tone is balanced, and the ensemble is excellent.

Bruno Walter said, "This is a fine hall, a very good hall. ... It seems very
live. It is the most noble of American concert halls."

46

With one exception, the conductors who were polled rated this hall as the
best in America and one of the three best in the world. Sir Adrian Boult
wrote, "The ideal concert hall is obviously that into which you make a not
very pleasant sound and the audience receives something that is quite
beautiful...." Ten of the thirteen American and Canadian music critics rate it
among the best in the world: "The sound is excellent; the hall has full rever-
berance; the orchestra is in good balance unless one is too near the stage on
the main floor." "This is wonderful; it has the right loudness; music played in
it is clear and clean."

There are a few negative features in Symphony Hall, as there are in every
hall. The seats in rear corners under the overhangs of the balconies are
shielded from the reverberant sound of the upper hall, and the reflected
sound that reaches these seats from the soffits of the side balconies is some-
what unnatural. In the centers of the side balconies, echoes from the corners
of the rear wall can be heard when staccato trumpet notes are played. Both
blemishes involve very few seats. [Beranek 62]

The relatively simplistic evaluations above demonstrate the limited

abilities of auditory assessments from well trained ears. The need for more

scientific and precise evaluation becomes obvious if progress is be made in es-

tablishing cause and effect relationships.

A most striking feature of the Boston Symphony Hall images are the

clear and strong arrival of specular reflections and continuity of the sound field

as denoted by the diffuse reflections. Strong specular reflections arrive at very

much the same time (fig. 3-6), which may account for the often cited special

clarity of the hall. Most of the specular reflections also arrive within 60 to 70

milliseconds of the direct sound, providing good sound reinforcement for the

classical music most commonly played there. The dispersion of the sound field

without any marked discontinuities, as is visible by the diffuse properties, also

contributes to the clarity by providing a smooth and consistent decay curve.

From the higher balcony locations, the proximity of the ceiling provides

vertical reflections similar to that of the stage enclosure. The side balconies

are shallow and high enough that they do not block the sound radiation to bal-

cony locations. Had these side balconies been extended another three feet to

47

I
0

ii -

~

I I j II
I I

ILI ii
III IIJj I

I I
ill I F
J'i 1 L

7--i K
1' I Iiii ~ I

I II IK
N I I 'I

III II
III II

illi II

Figure 3-3: Symphony Hall - First and Second floor half-plans.

48

, I ~ I
2 o2

ga

I

I

I

A

(i~

Figure 3-4: Symphony Hall - Section.

49

II

Figure 3-5: Symphony Hall - Interior photo views.

50

Figure 3-6: Symphony Hall - a time sequence at 10 millisecond
intervals with views in the front and back directions.

51

a - - - -M

Figure 3-6, continued.

52

m

m

in

accommodate another row of seating for example, these lateral reflections

would have been blocked (fig. 3-7).

From the less desirable seats in the audience far back under the balcony,

the results can be seen as less desirable. The overhead balconies and the rela-

tively low angle of incidence of the reflections on the undersides of the bal-

conies tend to make overhead reflections non-existent. The recent low impor-

tance that is ascribed to vertical reflections in the perception of extension does

not explain the lack of extension commonly ascribed to these seats. One ex-

planation is in the simplification of room geometry and the modeling of a very

empty hall, which does not contain people or seats. These lateral reflections

should be greatly absorbed by the neighboring audience, creating a much more

"dead" space that is consistent with the actual perceptions from those locations.

In the rear side corner of the audience (fig. 3-8) there is a very noticeable

alternation between the right and left wall reflections without overhead reflec-

tions to moderate them. The result, I assume, would be a noticeable reduction

in the intelligibility as these reflections arrive over a relatively long period and

without any reinforcing grouping.

In directivity plots, the specular highlights of the images are depicted by

the radial lines on the graphs. While there are no directivity plots available for

Symphony Hall, the arrival times of the specular reflections can be seen to be

consistent with directivity plots of other concert halls of similar size (fig. 3-1).

Work is currently being done in plotting directivity graphs which will allow for

accurate comparisons of the actual measured responses, in addition to the

perspective images of the ray tracing program. This additional information

will most easily be generated where additional information can be extracted

from the ray trees still in memory. This information of the direction and

lengths of the specular reflections can be quickly and accurately plotted.

53

1

Figure 3-7: Symphony Hall - Time sequence from balcony.

54

a M

M

M

Figure 3-8: Symphony Hall - Time intervals from the rear side corner.

55

M 0

In

Figure 3-9: Symphony Hall - Side from under Balcony.

3.3 Variations on Symphony Hall

As a first test this program's ability to visualize the qualitative aspects of

the acoustic behavior of the space, changes were made to Symphony Hall's

design. Alterations to the designs were used to explore the changes in images

and attempts were made to correlate them to presumed degradations and im-

provements. This provided a first notion of the magnitude or scale with which

degradations or improvements in performance appeared correspondingly worse

or better in the images. A particularly feature of Symphony Hall is its liveli-

ness and clear sound which I assume is due in a large part to the clearly

visible, temporally coincident reflections from the stage enclosure. To deter-

mine the effectiveness of the present configuration, changes were made to this

one aspect of the hall's design.

The new configuration (fig. 3-10), was produced by moving out the sides,

ceiling and the back of the enclosure to form a square. One notable result was

56

the decrease in how much sound energy came from the enclosure area. Al-

though this result is very much as expected, it was difficult to predict exactly

how this would be represented in the images. The stage opening was notice-

ably darker, indicating that the sound was not being directed out to the lis-

tener, and as I would suspect, was being contained by the parallel walls.

Figure 3-10: Square stage enclosure modifications.

The coffered ceiling and pillasters do not appear to have the pronounced

effect which I had initially expected. It appears that these elements, because

they are parallel to the walls and of the same materials, do not constitute sig-

nificant reliefs. These protruding elements were visible only as the small

shadows which they produced. They do not protrude enough from the walls to

create a noticeable difference in reflections in terms of directions changes and

attenuation. Figure 3-10 shows that there is little difference between images

with the coffers and the pillasters removed.

A significant temporal displacement of sound is created by the balcony,

which extends out approximately ten feet from the walls. The small frontal

57

Figure 3-11: A variation with smooth upper walls and ceiling.

area and non-reflective latticework of the balcony appear to minimize this ef-

fect and do not produce significant reflections. This is especially true in the

case of high frequency sound. In the case of low frequency sound, where the

length of the wave is larger than the reflective element's dimension, the reflec-

tive property would be noticeably changed and is the subject of further

research.

3.4 Conclusion

From what is known in psycho-acoustics and the consistent results of the

program, I believe that the some of Boston Symphony Hall's best acoustical

properties were visible. The most notable features are probably its clear and

bright specular reflections from the stage enclosure and the side walls. The im-

portance, for example, of the sloped stage enclosure becomes readily clear. The

enclosure ceiling is quite effective in directing overhead sound to the middle

audience area on the floor. This direct overhead reflection along with the

58

reflections off of the sides walls are able to provide strong sound reinforcement

with short IDG's for such a large space. Overhead reflections occurring at al-

most the same moment as the lateral stage reflections provide clarity and

liveliness. The coffering on the ceiling seems to have less effect, especially at

the high frequencies, than I would have expected.

Another observation gathered from the analysis of Symphony Hall and a

differently scaled lecture room was that in this visual format the sense of ex-

tension was inversely related to the visual sense of direction. A long and nar-

row space has reflections that arrive more forward of the listener yet with

smaller IDG's, increasing intelligibility even though the listener is more distant

from the source. A wide space has lateral reflections arriving more at right

angles to the listener and greater IDG's, reducing intelligibility although the

source is closer. This dichotomy of the visual and auditory perceptions of the

space are more noticeable in this time analysis and image format.

It would appear that as a visual criterion, a temporal grouping of the

sound is a desired feature of clarity. In addition, the distribution of specular

reflections provides a sense of spatial extension, and an overall image bright-

ness indicates of a fairly live space.

59

Chapter 4

Design Contexts for the Program

Chevalier auditorium, named after a World War One hero from Medford,

is a building of much interest to the community. The auditorium and gym-

nasium underneath, and after ten years of disuse, are the subject of a $2.5 mil-

lion rehabilitation project.

The scope of the services and actual redesign as outlined by the city of

Medford are:

. Said rehabilitation includes, but is not limited to, roof reconstruction,
construction of air conditioning system, provision of handicap access
facilities, lobby and auditorium restoration, gymnasium restoration, con-
struction of a stage gallery, stage manager's gallery, and dressing rooms,
relocation of stairway, and window replacement.9

The requirements do not specify the extent of any major structural changes

which may alter the shape of the space. These original requests I believe are

flexible enough to allow some significant changes. I have applied this acous-

tical methodology to evaluate Chevalier's existing design as an intermediate

step towards a new design. This allows me to make the necessary change in

the final redesign but stay within its original intentions.

Chevalier auditorium and Symphony Hall are very similar in scale and

capacity, but differ significantly in plan. The most notable features of

Chevalier auditorium are its curved walls and its very deep balcony. Sym-

phony hall distributes its audience over three levels while Chevalier accom-

modates them all with just two levels. Oval plans as used in the auditorium

9Taken from the "Request for Proposals: Design services for the phase II rehabilitation of the Chevalier
Auditorium/Gene Mack Gymnasium Facility."

60

are generally regarded as being acoustically problematic, being prone to poor

energy distribution and a whispering gallery effect along the sides of the hall.

4.1 Chevalier Hall

The following description of Chevalier auditorium is taken from a 1985

appraiser's report of the building. 10

Figure 4-1: Exterior front and side elevation photograph.

"The structure is composed of solid brick, with steel and wood framing,

rests upon a poured concrete foundation. The side and rear elevations are

simple, with solid brick walls broken only by double-hung windows, pedestrian

doors and one tail-gate loading door. The street elevation, however, presents a

formal ordering of marble and sandstone column designs, three main and two

10The appraisers were T.H. Reenstierna & Sons of Arlignton, Mass., for the purpose of es-
timating the market value of the simple fee title as of May 1, 1985.

61

side access doors, and a stone portico with steps leading to the Forest Street

sidewalk. The north side actually remains in contact with the main portion of

the three-story High School building.

"Some of the connecting doors are still operable, but this building has

been converted to condominiums, and the doors will be blocked after secondary

egress arrangements for the dwelling units have been secured.

"Inside, the main floor of the theater contains approximately 1,489 solid

veneered wood folding seats. The balcony contains an additional 700 seats for

a total maximum seating capacity of approximately 2,189. The volume of the

space is 375,000 cubic feet. The height of the theater averages approximately

30 feet. An appraisal analysis of the auditorium states that it could possibly be

reproduced for $4,378,000 or roughly $2,000 per seat. Its market value as of

May 1985 was $1,500,000. The total project costs including

architectural/design/engineering, constructions costs cannot exceed two million

dollars to restore and update the facility as a performing arts center."

Once the database with the surface descriptions had been entered, the

evaluation of the preliminary design were made. Again, simplifications in the

description of the hall were made, primarily in approximating its curved sur-

faces with polygons. The hall is very simply decorated and the approximations

of the diffuse component are not as severe as in Symphony hall. From personal

observations in visiting the hall, the curved wall did produce some of the

problems associated with curved walls, namely that of discrete echoing and

creep. A discreet echoing problem was noticeable when speaking at one side of

the room on the balcony level. A whispering gallery effect was noticeable when

a person would speak to another person at the other end of a side wall at the

floor level. Also, a brief intelligibility test with a person speaking from the

62

/

\-

I _________________________

----- 4
Ir

K->
I-----

I -

*- -

* I
I-- -

ji

B'

/
-1/

/

Figure 4-2: First floor plan of Chevalier auditorium

63

/

f

C

1

L

t

- \< 7,
-

- V

Figure 4-3: Second floor plan

64

t

r *~

Iii LI;
[LiLt

i-.

I'

Iii: ~ 1III' i~

~

*1
-1

17~

L1

Figure 4-4: Section - Chevalier Hall

IL

71 .LJI

- I.II

I 4-

1;:tI.1'

1
I

Hdrn~

65

]1

~ 3--

it

Figure 4-5: Interior views - Chevalier auditorium

66

Figure 4-5, continued.

67

Figure 4-6: Preliminary design - center seating analysis

68

w 4K

stage toward a seating location yielded poor results. It has been said that the

rear seating areas provide the best intelligibility. This lower intelligibility was

not directly attributable to any one specific feature of the hall, but was most

likely a combination of features not properly reinforcing the intelligibility.

4.2 Analysis

From the first images is was obvious that the hall was not efficient in

directing the sound to the audience. At first it was assumed that this was due

to the lack of a stage enclosure. It was possible to see from the images that

much of the sound was being trapped between the back stage wall and the

proscenium. This was noticeable by the reverberant field as seen in center of

figure 4-6. An interesting feature is the clear outline of the proscenium open-

ing on the back stage wall. This reflected outline provided a clear view of the

energy which was reflected out to the audience and the energy which became

trapped in the stage area.

In the first images there is a noticeable amount of lateral energy coming

from the main auditorium walls. When sitting in mid-audience, there are no

specular and few diffuse reflections from the side walls. We see that the over-

all image of the space in the room is much darker than that of Symphony Hall.

A first solution was to create a stage enclosure which would keep the

sound from becoming trapped backstage, and to shape this enclosure to con-

form to the reflected outline on the back wall. An analysis was made of this

new configuration. To my surprise, it produced relatively little change in the

amount of sound reaching the audience. I suspect much of the energy was kept

bouncing within the parallel walls of the enclosure, much like the modifications

69

ct

B

-aW

FCHo -

wih iilr-a trce viwonn fgr4-5

70

Figure 4-8: Initial attempt at enclosing a stage

to the Symphony hall enclosure. Although the square enclosure did prevent

the intra-stage reverberations, the stage area was only slightly brighter. The

rear reflection of the enclosure completely blended into the side walls, making

them appear larger and without definition. This change did not affect the

audience space which continued to appear dark and lacking reflections.

After looking at Symphony hall's enclosure, I decided to slope the walls

and make the connection between the stage and audience larger to increase its

sense of liveliness. The improvements from these relatively minor changes

were immediately visible. This also produced a larger stage area with greater

functionality. The modified sloped enclosure did create clear overhead and side

reflections. However, this enclosure still requires some fine tuning, since there

reflections did not quite arrive "in phase" as in the BSO geometry,

Again, however, this improved enclosure did not produce the desired

responses within the auditorium. It seemed as though no amount of design

changes from the stage area were sufficient to affect the rest of the auditorium.

It was then obvious that fairly significant changes to the audience space itself

71

Figure 4-9: Modified stage enclosure with the extended stage. Note
the larger area in shadow in front of the stage.

was needed. The rear seating areas under the balconies also appeared to be

dark with little sound coming into them. Renderings from the rear wall in-

dicate that the reflections that arrive at this time are very directional and ar-

rive within a fairly short time span (fig. 4-10). This is consistent with the intel-

ligibility and criticism often associated with these seats. There are no reflec-

tions that are indicative any sense of extension and liveness at these seats.

But, these properties are indicative of good intelligibility, which is consistent

with actual listener accounts.

In this deep balcony configuration, significant modifications are impos-

sible within the scope of this rehabilitation project. Some form of amplification

system will have to be used under balcony areas to create a sense of

extension. l

1 1The consultants involved with the actual redesign plan to accomplish this through a dis-
tributed speaker system.

72

Figure 4-10: View from the side audience under the balcony.

4.3 Design Changes

The main problem is that the curved walls are not angled properly to

direct reflections to center of the hall. As a design, the oval of the room and

ceiling and circle of the balcony do not focus on the stage but rather just short

of it. In this light, I decided to bring the stage out into the audience space as a

slight thrust stage (fig. 4-9). The stage when not requiring an orchestra pit is

then of a more traditional convex form that provides for a greater versatility in

uses and relieves the narrow dimension of the back stage area. At first, it was

also believed that this extension would help in reflecting more sound up to the

balcony area. Subsequent analyses with this orchestra pit raised to the stage

height, however, did not indicate an appreciable difference in reflected energy

to the balcony level.

In order to most effectively create the lateral reflections that are needed

in the audience space, I decided to make the front and side walls stepped and

parallel as in figure 4-11. The most significant changes involved making the

side walls step back in such a way as to maintain the oval of the original plan.

73

Figure 4-11: Modifications with the new stepped walls.

74

.. a. I

ir

W - -

K

In testing these design modifications, it was apparent that large steps

were made. The results immediately indicated that this was effective in

delivering the sound to the mid-audience sections and preventing the sound

from creeping along the side walls. The small change in wall direction was

very effective in bringing more diffuse and specular sound energy to the center

audience sections.

Figure 4-12: Cumulative specular reflections only.
Before and after modifications.

The rough stepping nature did produce visibly dark vertical areas of

shadows. The issue of whether these shadows are audibly perceptible remains

75

to be tested. Shadow and shade areas are the products of modeling the diffuse

components, of which the significance remains to be determined. Again, most

acoustical models and research are primarily concerned with the specular com-

ponents. There is an obvious and significant improvement in the sound

properties of the space when only the specular reflections are rendered (fig.

4-12), as there are now reflections arriving where previously there were none.

Comparisons were made of the differences between the original and modified

design by summing the intensities of the images with and without diffuse com-

ponents. When diffuse sound components are taken into account, the ad-

vantages are not so clear. The increase in intensity is offset by the dark

shadow areas, making the image only moderately brighter overall. The overall

intensity sums of the two different configurations yields the following

intensities 12:

before after % change
Specular only: 97,545 134,972 +38.37
Diffuse and Specular: 10,361,892 11,660,133 +12.53
Symphony Hall: - 12,060,669 -

I also attempted to increase the liveliness of the space by making the stage less

detached from the audience (fig. 4-11). I enlarged the stage's floor area and the

opening of proscenium between the auditorium and stage, by making eliminat-

ing some of the back stage rooms. This made the sound less directional and

increased liveliness.

12Values are in pixel units.

76

4.4 Empirical Experience

The experience of using this program has brought several points to light.

This program appears to be very effective in pointing out many potential acous-

tical pitfalls in design. Such a visual analysis by nature of its comprehensive-

ness is very useful in keeping the designer from overlooking specific

weaknesses or strengths which might otherwise go undetected. The graphic

nature of information also makes it difficult to misinterpret properties.

Designers today, like the designer of Chevalier Hall, continue to design

plans without a full understanding of the non-visual consequences. Even to the

acoustical engineer of the actual project, the possibility of overlooking some

aspects of the design exists.

Manual ray tracing, because of its speed and ease of use, will not be

eliminated in the preliminary sketch phases of a design. It is a quick and

general enough to express a concept, but it is ineffective in providing a precise

evaluation. The curved walls make approximations difficult and the three

dimensional analyses are not feasible.

Using this program to analyze an oval shaped space clearly shows the

issues which plague such geometries. It is very difficult to visually determine

where reflections will fall. First, the perception of the shallow curve of the

walls is deceptive when standing in the space. The engineer here assumed that

the curve was not a problem for getting reflections to the center audience sec-

tions. Second, it is easy to ascribe properties to features of a design without

testing them. In this case it was believed that the deep window recesses were

sufficient to diffuse the sound into the space. Neither of these predictions are

consistent with the program results. The windows are either too deep or too

oblique to provide an effective surface area to the audience.

77

Figure 4-13: Perspective views allowing for preliminary and
selective viewing of the Chevalier Hall database.

78

In making modifications to the design, I found it was desirable to work as

much as possible within this computer environment. Unlike a traditional ar-

chitectural setting where most of the work is done on paper, it is easiest to

make most changes directly on the computer and test them immediately. It is

not practical to switch and incorporate changes between paper and electronic

media. A three-dimensional viewing program proved invaluable for quickly

and graphically previewing the database (fig. 4-13). Although the viewing

program did not provide editing capabilities, it provided perspective and plan

views and selective views of the database. A graphics editor would have

provided a much faster interface for creating the database. From this I have

found that it is desirable to work and make changes directly in the three

dimensional database and visually confirm the changes in a wire frame draw-

ing.

Because of this analysis tool, I believe that the problems of the original

design are made very clear. The comprehensiveness of the information

presented has allowed me to work more effectively in the redesign of Chevalier

Hall. Ultimately, the program made the actual properties of this design much

clearer.

79

Chapter 5

An Idealized Environment

The program developed here presents a significant achievement in

providing a new means for understanding acoustics. Only one year ago, when

the ideas of ray tracing were conceived, there was uncertainty as to success of

the recursive ray tracing model used in producing the pictorial results that

have been presented here. In the time that these original concepts have been

applied, the potential applications of this program have far exceeded its

original expectations as a simple visualizing tool. One of the primary benefits

of the use of images has been the development of a visual interface for its effec-

tive integration into the design process. The long-range potential of these

acoustical recursive ray concepts has grown enormously. However, I will touch

on some of the more immediate needs of future applications.

For this thesis, these steps were performed manually. The interpretation

and the exact extent to which data can be derived from the parametric descrip-

tion will have to be further explored along with other interactive tools. Access

to a graphics editor will not take place within the time frame of this thesis.

Hopefully, what will be set out is an abstract model of the design process into

which this fits. There will be some notion as to which decision should be

manual and which should be automatic, and the interface that they require.

The visualizing of acoustics is not only effective within the architectural

design process, it is also powerful as an educational tool. The original goal of

these images was to increase our understanding of acoustics by seeing its ef-

fects on a design. It does not rely on a tacit knowledge of the symbolic nature

of traditional conventions and denotations.

80

5.1 Immediate Improvements

Future developments will concentrate on display and interface tech-

niques using the X Window System13. X is a display interface protocol that

provides a standard for displaying graphics across a wide variety of computer

architectures. It provides a network transparent windowing system which

runs under many operating systems, further increasing portability and display

possibilities. This allows for images to be generated at one location and be dis-

played over a network at another location without concern as to display types

and machine systems.

What does exist are methods to interact with the images on the

computer's screen and mouse. When the mouse is pointed to a specific location

on an image it is possible to get a numeric breakdown and parametric descrip-

tion of how a particular intensity came to be. This parametric description in-

volves the paths of rays in the tree, the surfaces they hit, their respective inten-

sities, and cumulative intensities up the tree. Additionally, most of the inter-

actions should take place by means of a pointer on the images or the database

through a graphic editor. Hopefully, in the future, the database will be

manipulated only through a graphics editor, such as a CAD program or a

higher level artificial intelligence system. To date neither of these utilities ex-

ist in a package or individually and any database manipulations will have to be

done manually.

The present computer model is only preliminary. The accuracy of the

images is still subject to much field testing. The acoustical intensity model and

13The X Window System is a trademark of MIT

81

the ray tracer are both deficient in the specific areas of accuracy and speed,

respectively. The intensity model needs work in extending its accuracy over a

variety of factors, such as issues of phase, incidence angle on absorptive sur-

faces, transparent objects, and frequency distribution.

The ray tracing algorithm used to date is simple but very slow. For-

mation of the ray tree for each pixel of the screen is by far the slowest part of

the program. Renderings require anywhere from a few minutes to a full day1 4

in the case of the more complex spatial description for Boston Symphony Hall.

The subdivision of the ray trees into time segments does not add significant

processing time.

Much work is being done in computer graphics to find more efficient ray

tracing algorithms. A promising technique involves the spatial sorting of ob-

jects in order to eliminate having to run through the entire object list for each

ray-surface intersection test [Fujimoto 85, Kay 86]. Similar spatial sorting, or

octree, algorithms have been implemented with extremely complex scenes be-

ing processed in the same time other conventional computer graphic methods.

The times are relatively independent of the number of objects. Scenes contain-

ing thousands of polygons have been traced in approximately two hours on a

VAX1 5 11/750 [Fujimoto 86].

Another approach is to use more powerful machines. Because each pixel

of an image is calculated independently, ray tracing is especially vectorizable

and well suited to parallel processing. This ray tracer has been recently ported

14 Computed on a Digital Equipment Corp. VS2 workstation.

15Vax is a trademark of the the Digital Equipment Corporation.

82

to a Butterfly 16 parallel processing computer. No benchmarks have been made

to date; however, I would project processing times of two hours or faster using a

128 processor machine for buildings much more detailed then Symphony Hall.

Parallel processing computers also have an enormous amount of memory

which should be able to simultaneously store all of the time related information

from the ray trees. This will make for a much finer and wider range of time

analyses to explored. One goal is to combine a faster algorithm and a faster

machine, which could produce near real time rendering performance.

Work is currently being done is representing information in other

numeric and graphics formats. Most programs and models to date have been

designed to investigate one or a few particular aspects of acoustics. This

program, due to its fairly comprehensive model of the environment, is able to

extract data covering aspects of acoustics which are usually the product of

several individual programs.

As more interactive features of the program are developed, the X display

protocols will become an integral part of the program. Through the X window-

ing system it is possible to display a variety of information other than the

images produced to date. Multiple windows can provide the means for simul-

taneously viewing additional acoustical information, and and greater facility

for inputing sound parameters of source directivity and power output. Given

the time it takes to run this program it would be useful to preview the input

parameters through wire frame drawings. Additional windows, displayed next

to the images, can provide more quantitative information through radial and

16The Butterfly is a trademark of BBN Advanced Computers, Inc. and a subsidiary of Bolt,
Beranek and Newman Inc..

83

Figure 5-1: A possible display interface for displaying and
interacting with additional information.

time delay graphs. These would help to decipher the sometimes complicated

interactions and reduce some of the subjective nature of interpreting images.

Reverberation times should be able to be deduced and represented

numerically without significant modifications. Other simpler approaches in

computer ray tracing seem to indicate a strong feasibility in this direction

[Wayman 80, Benedetto 84].

84

5.2 Future Applications

While the production of visual information has been an essential aspect

exploited in these ray tracing concepts, these methods can also produce other

types of information.

A notable aspect of the comprehensive information produced here is the

possibility of synthesizing audio output from the images produced. This would

provide a direct acoustical experience of listening to a design's properties.

Images could either be converted directly into audio output, in which case, a

person would hear the impulse response, or transformed into software

parameters to digital sound field control equipment 17. This equipment would

synthesize the sound field structure of the concert hall or auditorium, and the

auditory effect of each reflected sound field that comprises this sound field.

Once these properties of a design are entered into a sound field modeler, it

would be possible to listen to music as it would be heard.

5.3 Knowledgeable Environments

The current environment provides only the capabilities to work in one

direction, that is to visualize properties according to a manually defined

geometric and material database. Once a designer evaluates a space and

decides to change some feature of that space, he must return to the data file,

find the geometric and material specifications, make the changes according to

his approximations with a text editor, and run the program again. This can be

a long and tedious process before he can observe the consequences of his deci-

sions.

17This is a similar approach as the Yamaha DSP-1, but the sound field properties would
come from a synthesis of a space, rather than from empirical measurements.

85

The images used here open up an extremely large range of interactive

and interface capabilities. Yet, it is unlikely that the graphic form of com-

munication developed here for people will be of value to computers. Numeric

information will have to be extracted from the ray tracing concepts.

Presently, the evaluation of the output remains in the hands of the desig-

ner. Future design decisions will benefit from the assistance of artificial intel-

ligence systems. Constraint managers will automate and optimize through a

detailed understanding of cause and effect relationships. In a complete inter-

active system, the designer will be able to work backwards, from the images to

the spatial description, as well as forwards. This would involve the use of a

constraint manager to produce an environment where the image would not be

the only end product. Constraint managers operate on the principle that an

image is the product of a set of a precise set of relations which can also be

traced backwards. A constraint based system would be able to take a desired

property and a model of the relations which generated an image, to work from

changes in the image back to changes in the database.

The main liaison between the geometric description and images will be

the ray program, which will communicate to designers with graphics, and a

knowledge base system using parametric descriptions of the ray paths. The

constraint manager will in a way perform the inverse of the ray tracer. For ex-

ample, the ray program may show a gap in the arrival times of a reflected

sound. If the designer judged that some sounds arrived too late for intel-

ligibility, he could choose to move a wall by pointing at the wall in the image.

The ensuing parametric descriptions of that particular ray path would be input

to the constraint manager, which, it in turn, would go into the database and

move the selected wall (or walls) as would be necessary to achieve the desired

reflection time.

86

Qualitative assessments as to whether the information represented is

good or bad remains to be determined by the user. At some later date, these

psycho-acoustical judgments may be encoded and combined with the physical

model used here, to produce a comprehensive design package.

5.4 Conclusion

The profound acoustical understanding this program brings to the design

process will, I hope, provide a new, self-confident approach in manipulating the

invisible properties of sound. This visual nature of the images produced is

especially effective in reducing the possible misunderstanding and ascribing

design intentions with the actual performance. The simulation capabilities, I

believe, will produce some long term savings in time, by condensing the heuris-

tic nature of design. I doubt this methodology will guide designers to converge

on one optimal solution for a configuration, but it will allow for a much greater

range of alternatives to be explored. Accurate simulations will provide the

means for quicker iterations, quicker referencing and greater experience to be

acquired without the process of building. This tool will help the architect to ex-

press acoustical constraints in design with a greater clarity and certainty.

Before redesigning Chevalier auditorium, I believed it would have been

possible to incorporate the acoustical response, as visible in the images, into

the design. This would correlate in a most direct way the acoustical inter-

actions with the visual experience of the design. A problem with this idea,

though, is that it is only effective for a particular source and listener relation-

ship. The physical configuration of a hall must be general enough to accom-

modate everyone, so this is not easily possible. Given the newness of this tech-

nique though, I would not say that it is impossible, and the chance of coupling

87

the acoustical and visual experiences may one day be possible. This may re-

quire some new technology, such as walls and reflectors that track to the source

as it moves about on stage in order to maintain an optimal source and listener

relationship. I doubt many will create a hall of mirrors with equally optically

and visually reflective surface properties and use a light source to denote the

specular properties. As an experiment, however, the effects could prove inter-

esting.

The long term effects of this comprehensive graphic model will no doubt

provide for a greater correlation between the visual and auditory experiences of

a performance. It is also possible that designs involving curved walls and fan-

shaped plans can be effectively treated, as in Chevalier Hall, to not exhibit

these configurations acoustically. Design trends that arise from this methodol-

ogy, if any, will be the result of much empirical experience which cannot be

readily extrapolated here. The graphic analysis and ray based synthesis model

presented here will, however, continue to develop as an aid in the concep-

tualization of the building performance.

88

Appendix A

Technical Notes and Listing

The program in appendix A was written in the C programming language.

The code was developed and runs under the UNIX 18 operating system.

However, it has been kept as portable as possible and can run under a variety

of alternate operating systems.

The images produced by the program are in a file of runlength encoded

one byte intensity values. The file can then be displayed, through separate

programs, on a variety of computer monitors. Display devices should have a

facility for using a pointer, such as a mouse, for interacting with the image.

Presently, the interaction functions are limited and they serve only to deter-

mine a pixel's device coordinates on a screen. These coordinates can then be

passed into different ray analysis programs which perform other specific tasks,

such as providing precise ray tree information or integrating of energy over

specific areas.

18UNIX is a trademark of AT&T Bell Laboratories

89

A.1 Source Code

/ **/
/* */

/* program: ray input.crl outfile [-x xRes] [-y yRes] */
/* */
/* purpose: render an image of objects using recursive */

ray tracing and an illumination model.
/* */
/* input: object description file containing lists of
/* polygonal and quadric surfaces. */

/* */
/* output: a file of runlength encoded hex color table */
1* index values with a descriptional header. */

/* */
/* author: Philip R. Thompson, ($Author: phils $) */
/* $Date: 88/01/30 17:51:28 $ $State: Exp $
/* *
/* based on: JTWhitted, 10-Jan-84
/**/
#ifndef LINT
static char raycastid[] =

"$Header: appendixl.mss,v 1.2 88/01/30 17:51:28 phils Exp $"
#endif LINT

#include <stdio.h>
#include "rays.h"

#define XRES 512 /* default terminal resolution, can be */
#define YRES 384 /* overridden by connnand line arguments *1

char *progName;

main (argc, argv)
int argc;
char **argv;

Ray root; /* primary ray from the viewpoint */
Object *thisObject, *readObj(; /* pointer to object list */
int xRes=XRES, yRes=Y_RES; /* actual # of rays sent */
int j;
double maxy, maxx; /* viewport coordinates */
double xIndex, yIndex; /* ray direction coordinates */
char *out file, *strrchr(, *calloc(;
FILE *view file = stdin;

#ifndef COLOR
char *strcpy(, *strcat (, *malloc(;
int outrile; /* picture output file descriptor */
byte *scanLine, grey_normo; /* color indices */

#else COLOR
int outFile red, outFile_grn, outFileblu;
byte *scanLinered, *scanLine_grn, *scanLine blu;
byte colornorm ();

#endif COLOR

90

progName = argv[0];
if (argc < 3)

error("usage: %s in.crl out [-x xRes][-y yRes] [-i input]",

progName);

thisObject = readObj(argv[1]);
if (strcmp(strrchr(argv[2],' .'),".crl") == 0)

error ("can't overwrite input file: %s", argv[21);

else
outfile = argv[2];

for (argc -= 3, argv += 3; argc > 0; argc--, argv++)

if (**argv == '-')
switch (*++(*argv)) (
case 'x':

xRes = atoi(*(++argv));
argc--;
if (xRes > MAXRES)

error("max X resolution is %d", (char *)MAXRES);

fprintf(stderr, "\nxRes = %d\n",xRes);
break;

case 'y':
yRes = atoi (* (++argv));
argc--;
if (yRes > MAXRES)

error ("max Y resolution is %d", (char *)MAXREZS) ;

fprintf (stderr, "yRes = %d\n",yRes);
break;

case 'i' :
if ((view file=fopen(* (++argv), "r")) == NULL)

error ("Can't read input file: %s.", *argv);
argc--;
break;

default:
error ("Unknown command line option: -%s" , *argv) ;

}
else

error ("usage: %s in. crl out [-x res] [-y res] [-i input]",
progName);

}
maxx = (xRes-1) /2 .0;
maxy = (yRes-l)/2.0;
init ray(view file, maxx, maxy);

#ifdef COLOR
scanLine red = (byte *)calloc((unsigned)xRes, sizeof(byte));

scanLine_grn = (byte *)calloc((unsigned)xRes, sizeof(byte));

scanLineblu = (byte *)calloc((unsigned)xRes, sizeof(byte));

if (scanLinered==NULL I I scanLine_grn==NULL I scanLine blu==NULL)

error("NO more memory - calloc error",."\0");

outFilered = ecreat (strcat (strcpy (malloc ((unsigned)
strlen(outfile)+4) ,out_file), ".red"), 0644);

outFile_grn = ecreat (strcat (strcpy (malloc ((unsigned)
strlen(out file)+4) ,outfile), ".grn"), 0644);

91

outFileblu = ecreat(strcat(strcpy(malloc((unsigned)
strlen(outfile)+4),outfile),".blu"), 0644);

init outFile(outFilered, xRes, yRes, RED);
init outFile(outFile_grn, xRes, yRes, GREEN);

init outFile(outrileblu, xRes, yRes, BLUE);

#else
if ((scanLine =(byte *)calloc((unsigned)xRes,sizeof(byte))) = NULL)

error("NO more memory - calloc() error", "\0");
outFile = ecreat(outfile, 0644);
init outFile(outFile, xRes, yRes, GREY);

#endif COLOR

/* loop for each scan line */
for (yIndex=maxy; yIndex >= -maxy; yindex -= 1.0) {

/* loop for each pixel */
for (xIndex = -maxx, j=0; xlndex <= maxx; xIndex += 1.0, j++)

viewTrans(&root, xlndex, yIndex);

/* the real work of the program takes place
* in the procedures rayHit () and raySahde ()
* - intersect ray with objects and calculate
* intensities, perhaps recursively
*/

rayHit (&root, thisObject);
shaderoot(&root, thisObject);

#ifndef COLOR
scanLine[j] = grey_norm(&root);

}
runlencode (outFile, scanLine, xRes);

#else
scanLinered[j] = colornorm(root.intensity.red);
scanLineblu[j] = colornorm(root.intensity.blue);
scanLine_grn [j] = colornorm (root . intensity .green);

}
runl_encode (outFile_red, scanLine red, iRes) ;
runl encode (outFile_grn, scanLine_grn, xRes) ;
runlencode(outrileblu, scanLineblu, xRes);

#endif COLOR
printf("Scanline number: %d\n", (int)yIndex);

}
#ifndef COLOR

if (close(outFile) != 0)
error("error in CLOSING outFile %d", (char *)outFile);

#else
(void)close(outFilered);
(void) close (outFile_grn);
(void) close (outFile blu);

#endif COLOR
printf("\n%c%s finished A-okay!!!\n", 7, progName);
exit(0);

/* end main */

92

/* if the camera moves, rotates, tilts, etc., the transformation
* is done here
*/

viewTrans(this, x, y)
Ray *this;
double x, y;

{
double z = 1.0, normalizeVeco; /* distance to viewport */
extern Point eye;

bzero((char *)this, sizeof(Ray));
Transform(&x,&y,&z);

this->direction.x = x;
this->direction.y = y;
this->direction.z = z;
(void) normalizeVec (& (this->direction));

this->origin.x = this->head.x = eye.x;
this->origin.y = this->head.x = eye.y;
this->origin.z = this->head.x = eye.z;

this->rayType = PRIMARY;
this->ident = EOL;
this->cSpec = 1.0;
this->t = HUGEREAL;

)

#ifndef COLOR
byte grey_norm(thisRay) /* get a grey value, 0 MAXRGB */
Ray *thisRay;

{
float intensity;
int normintensity;

intensity = (thisRay->intensity.red + thisRay->intensity.green +
thisRay->intensity.blue) / 3.0;

if (intensity > 1.0)
intensity = 1.0;

norm intensity = (int) (intensity*MAXRGB + 0.5);
#else COLOR
byte colornorm(intensity)
float intensity;
{

int norm intensity;

if (intensity > 1.00)
intensity = 1.00;

normintensity = (int) (intensity*MAXRGB + .0.5);
#endif COLOR

return ((byte) norm intensity);

}

93

/* freeing function for Ray types
*/
freeChildren(this)
Ray *this;

{
if (this->shadow != NULL) {

free ((char *)this->shadow);
this->shadow = NULL;

}
if (this->refracted != NULL) {

free ((char *)this->refracted);
this->refracted = NULL;

}
if (this->reflected != NULL) {

free ((char *)this->reflected);
this->reflected = NULL;

}

/*** end cast.c ***/

94

/ **/
/* */
/* purpose: a recursive shader and illumination model */
/* */
/* author: Philip R. Thompson, ($Author: phils $) */
/* $Date: 88/01/30 17:51:28 $ $State: Exp $
/* */
/* based on: JTWhitted, 1/17/84 */
/ **/
#ifndef LINT
static char rayshadeid[] =

"$Header: appendixl.mss,v 1.2 88/01/30 17:51:28 phils Exp $";

#endif LINT

#include <stdio.h>
#include "rays .h"

extern int numlights;
extern Light *light;

/* rayShade () - a recursive shading procedure
*/
rayShade (thisRay, thisObject)
Ray *thisRay;
Object *thisObject;

{
Ray *sRay(, *tRayo, *lRay(;

if (thisRay->ident != ZOL) (
if (thisOb ject [thisRay->ident] .theseP rops ->type & REFLECTED)

thisRay->reflected = sRay (thisRay, thisObject);

if (thisObject [thisRay->ident] .theseProps->type & REFRACTED)
thisRay->refracted = tRay (thisRay, thisObject);

if (thisObject [thisRay->identj .theseProps->type & SHADOW)
thisRay->shadow = lRay (thisRay, thisObject);

}
shade (thisRay, thisObject);

/* once shade for a ray is computed,
* all descendent rays can be freed

freeChildren (thisRay);

}

/* sRay() - specular reflection ray generator.
* returns pointer to reflected ray

Ray *sRay (parentRay, object)
Ray *parentRay;
Object *object;

Ray *this, *newRayo;

95

double normalizeVec (;

if ((parentRay->cSpec < 0.05) || (parentRay->level >= MAXLEVEL))
return (NULL);

this = newRay();
this->rayType = REFLECTED;
this->parent = parentRay;
this->level = parentRay->level+1;
this->cSpec = object[parentRay->ident].theseProps->kSpec *

parentRay->cSpec;

/* origin of reflected ray is point of intersection of
* incident ray with reflecting surface.

*/
this->origin.x = parentRay->head.x;
this->origin.y = parentRay->head.y;
this->origin. z = parentRay->head. z;

/* reflected ray direction is V' + 2*Nonn
* (see CACH, vol.23, no.6, page 344 for explanation)
*/

this->direction.x = parentRay->direction.x / -parentRay->incDot +
2.0*parentRay->normal.x;

this->direction.y = parentRay->direction.y / -parentRay->incDot +
2.0*parentRay->normal.y;

this->direction.z = parentRay->direction.z / -parentRay->incDot +
2. 0*parentRay->normal. z;

(void) normalizeVec (& (this->direction)) ;

/* this is where the recursion is the process takes place,
* this new ray is run through the mill to see what intensity
* it picks up before shading for its parent is computed.
*/
rayHit (this, object);
return (this);

)

/* tRay() - transparency ray generator.
* returns pointer to refracted ray
* note: relative index of refraction is ratio of refractive
* indices at interface between two media.
*/

Ray *tRay (parentRay, object)
Ray *parentRay; /* parent ray */
Object *object;
{

Ray *this, *newRayo;
double kref, Vtl, Vt2, normalizeVeco, sqrt(;
Point Vprime, Vtemp;

if ((parentRay->cSpec < 0.05) 11 (parentRay->level >= MAXLEVEL))
return(NULL);

96

this = newRayo;
this->rayType = REFRACTED;
this->level = parentRay->level + 1;
this->parent = parentRay;
this->cSpec = object[parentRay->ident].theseProps->kSpec *

parentRay->cSpec;

this->origin.x = parentRay->head.x;
this->origin.y = parentRay->head.y;
this->origin.z = parentRay->head.z;

Vprime.x = parentRay->direction.x / -parentRay->incDot;
Vprime.y = parentRay->direction.y / -parentRay->incDot;
Vprime. z = parentRay->direction.z / -parentRay->incDot;
Vtemp.x = Vprime.x + parentRay->normal.x;
Vtemp.y = Vprime.y + parentRay->normal.y;
Vtemp.z = Vprime.z + parentRay->normal.z;

Vtl = sqrt(sqr(Vprime.x) + sqr(Vprime.y) + sqr(Vprime.z));
Vt2 = sqrt(sqr(Vtemp.x) + sqr(Vtemp.y) + sqr(Vtemp.z));

kref = sqrt(sqr(object[parentRay->ident].theseProps->kRefr) *
sqr(Vtl) - sqr(Vt2));

this->direction.x = kref*(parentRay->normal.x + Vprime.x) -
parentRay->nomal .x;

this->direction.y = kref*(parentRay->normal.y + Vprime.y) -
parentRay->normal.y;

this->direction.z = kref*(parentRay->normal.z + Vprime.z) -
parentRay->normal. z;

(void) normalizeVec (& (this->direction));

rayHit (this, object);
return (this);

}

1* lRay() - light ray(s) generator.

* returns a pointer to light ray(s) if visible
* note: doesn't call rayHit and 't' is 0.0 for obscured rays
*/

Ray *lRay(parentRay, object)
Ray *parentRay;
Object *object;

{
int i;
Ray *this;
char *calloc();
Object *j;
double ldist, dotProduct(), normalizeVec();

if ((parentRay->cSpec < 0.05) || (parentRay->level > MAXLEVEL))
return(NULL);

if ((this=(Ray *)calloc((unsigned)numlights, sizeof(Ray))) == NULL)
error ("lRay: calloc() error", "\0 ") ;

97

for (i=0; i < numlights; i++)
this[i].rayType = SHADOW;
this[i].parent = parentRay;
this[i].level = parentRay->level+1;
this[i].origin.x = parentRay->head.x;
this[i].origin.y = parentRay->head.y;
this[i].origin.z = parentRay->head.z;
this[i].head.x = light[i].x;
this[i].head.y = light[i].y;
this[i].head.z = light[i].z;
this[i].direction.x = this[i].head.x - this[i].origin.x;

this[i].direction.y = this[i] .head.y - this[iJ.origin.y;

this[i].direction.z = this[i).head.z - this[i].origin.z;

this[i].t = ldist = normalizeVec(&(this[i].direction));
this[i].ctotal = parentRay->ctotal + ldist;
if ((this[i].incDot = dotProduct(& (this[i].direction),

&(parentRay->normal))) <= 0.0) {
this[i].t = this[i].ctotal = 0.0;
continue;

)
this[i].intensity.red = this[i].intensity.green =

this[i].intensity.blue = light[i].intensity;
for (j=object; j != NULL; j=j->next) {

switch (j->objType) {
case POLYGON:

interPoly (&(this[iJ), j);
break;

case SPHERE:

interSphere (&(this[i]), j);
break;

case QUADRIC:

interQuad (&(this[i]), j);

break;

}
if (this[i].t < ldist) {

if (object [this [i] .ident] .theseProps->type & REFRACTED) {
this[i).intensity.red *=

object[this[i] .ident].theseProps->kTrans;
this[i].intensity.green *=

object[this[i].ident].theseProps->kTrans;
this[i].intensity.blue *=

object[this[i].ident].theseProps->kTrans;
this[i].t = ldist;

} else { /* object is opaque */
this[i].t = this[i].ctotal = 0.0;
break;

}
}

}

return(this);

}

/* shadle() - computes shade at each node of the ray tree

98

*/
shade (thisRay, thisObject)
Ray *thisRay;
Object *thisObject;

{
Point R;
int i;
Properties *surfProp;
double dotNL, dotVL, dotProducto, pow(, normalizeVeco;
float tmp, phong = 1000.0;
extern float Iamb;

surfProp = thisObject[thisRay->ident].theseProps;

if (thisRay->t == HUGEREAL) { /* doesn't hit anything, */
thisRay->intensity.red = 0.082; /* give it a backgroud */
thisRay->intensity.green = 0.071; /* color 'RG&B' */
thisRay->intensity.blue = 0.066;
return;

} else {
/* the ray intersects a surface,
* compute shade with a local model.

*/
thisRay->intensity.red = Iamb * surfProp->color.red;
thisRay->intensity.green = Iamb * surfProp->color.green;
thisRay->intensity.blue = Iamb * surfProp->color.blue;

}
if (thisRay->reflected != NULL) {

/* there is a reflected ray, add contribution from
* mirror reflection.
*/
thisRay->intensity.red += thisRay->reflected->intensity.red *

surfProp->kSpec;
thisRay->intensity.green += thisRay->reflected->intensity.green

* surfProp->kSpec;
thisRay->intensity.blue += thisRay->reflected->intensity.blue *

surfProp->kSpec;

}
if (thisRay->refracted != NULL) {

/* there is a refracted ray, add contribution
* from transmitted light.
*/
thisRay->intensity.red += thisRay->refracted->intensity.red *

surfProp->kTrans;
thisRay->intensity.green += thisRay->refracted->intensity.green

* surfProp->kTrans;
thisRay->intensity.blue += thisRay->refracted->intensity.blue *

surfProp->kTrans;
}
if (thisRay->shadow != NULL) {

for (i=0; i < numlights; i++)
if ((thisRay->shadow[i].t <= 0.0) ||

((dotNL=thisRay->shadow[i].incDot) <= 0.0))
continue;

99

/* calculate diffuse surface normal shading */
thisRay->intensity.red += (float)dotNL * surfProp->kDiff *

thisRay->shadow[i].intensity.red;
thisRay->intensity.green += (float)dotNL * surfProp->kDiff *

thisRay->shadow[i].intensity.green;
thisRay->intensity.blue += (float)dotNL * surfProp->kDiff *

thisRay->shadow[i].intensity.blue;

if (thisRay->reflected != NULL)
dotVL = dotProduct(&(thisRay->shadow[i].direction),

& (thisRay->reflected->direction));
else {

/* find direction of highlight reflection (R)
* in order to calculate phong highlights
*/
R.x = -thisRay->shadow[i].direction.x/dotNL +

2. 0*thisRay->normal.x;
R.y = -thisRay->shadow[i].direction.y/dotNL +

2.0*thisRay->normal.y;
R.z = -thisRay->shadow[i].direction.z/dotNL +

2.0*thisRay->normal.z;
(void) normalizeVec (&R);
dotVL = -dotProduct(&(thisRay->direction), &R);

)
if (dotVL > 0.0) {

tmp = (float)pow(dotVL,phong) * surfProp->kSpec;
thisRay->intensity.red +=

thisRay->shadow[i] .intensity.red * tmp;
thisRay->intensity.green +=

thisRay->shadow[i].intensity.green * tmp;
thisRay->intensity.blue +=

thisRay->shadow[i] .intensity.blue * tmp;
)

}
}

/* code to make the source directly visible from
* the view point
*/
shaderoot(thisRay, objList)
Ray *thisRay;
Object *objList;

int i;
Ray this;
Object *j;
float tmp;
double dotVL, pow(, dotProduct(;
double ldist, normalizeVeco;

bzero((char *)&this, sizeof(Ray));
this.rayType = SHADOW;
this.level = thisRay->level;

100

this.parent = thisRay;
this.origin.x = thisRay->origin.x;
this.origin.y = thisRay->origin.y;
this.origin.z = thisRay->origin.z;
for (i=0; i < numlights; i++)

this.head.x = light[i].x;
this.head.y = light[i].y;
this.head.z = light[i].z;
this.direction.x = this.head.x - this.origin.x;
this.direction.y = this.head.y - this.origin.y;
this.direction.z = this.head.z - this.origin.z;
this.t = this.ctotal = ldist = normalizeVec(&(this.direction));

if ((dotVL=dotProduct(&(thisRay->direction),
&(this.direction))) <= 0.0)

continue;

this.intensity.red = this.intensity.green =
this.intensity.blue = light[i].intensity;

for (j=objList; j != NULL; j=j->next) (
switch (j->objType) {
case QUADRIC:

interQuad (&this, j);
break;

case POLYGON:
interPoly (&this, j);
break;

case SPHERE:

interSphere (&this, j);
break;

}
if (this.t < ldist) {

if (ob jList [this. ident] .theseProps->type & REFRACTED)
this.intensity.red *=

objList[this.ident].theseProps->kTrans;
this.intensity.green *=

objList[this.ident].theseProps->kTrans;
this.intensity.blue *=

objList[this.ident].theseProps->kTrans;
this.t = ldist;

} else { /* object is opaque */
this.t = 0.0;
this.ctotal = 0.0;
break;

}
}

}
#ifdef SRAY

printRay(&this);

#endif SRAY
tmp = (float)pow(dotVL, 50000.0);
thisRay->intensity.red += this.intensity.red * tmp;
thisRay->intensity.green += this.intensity.green * tmp;
thisRay->intensity.blue += this.intensity.blue * tmp;

}
}

101

/*** end shade.c ***/

102

/ **/
/* *
/* purpose: intersects tRay (perhaps recursively) with all */
/* surfaces in the object description and returns */

distance and object id. of the nearest intersection */
/* *
/* author: Philip R. Thompson, ($Author: phils $) */
/* $Date: 88/01/30 17:51:28 $ $State: Exp $
/* */
/* based on: JTWhitted, 1-17-84 */
/ **/
#ifndef LINT
static char ray_hitid[] =

"$Header: appendixl.mss,v 1.2 88/01/30 17:51:28 phils Zxp $";
#endif LINT

#include <stdio.h>
#include "rays.h"

rayHit (tRay, thisObject)
Ray *tRay;
Object *thisObject;

Object *i;

double dotProduct(, normalizeVeco;

/* loop once per surface element */
for (i = thisObject; i != NULL; i = i->next) {

switch (i->objType) {
case POLYGON:

interPoly (tRay, i);
break;

case SPHERE:

interSphere (tRay, i);
break;

case QUADRIC:
interQuad (tRay, i);
break;

default:
error("RayHit: Unknown object type.", " \0 ");

}
}
if (tRay->t < HUGEREAL)

(void) normalizeVec (& (tRay->normal));
/* calculate dot product of parent ray and surface normal

* to a) determine surface orientation, and b) generate
* Vprime for sRay(, tRay() and lrayo;
*/

if ((tRay->incDot = dotProduct(&(tRay->direction),
&(tRay->normal))) > 0.0) {

tRay->incDot = -tRay->incDot ;
tRay->normal.x = -tRay->normal.x;

tRay->normal . y = -tRay->normal . y;
tRay->normal. z = -tRay->normal. z;

103

}

if (tRay->rayType = PRIMARY)
tRay->ctotal = tRay->t;

else
tRay->ctotal = tRay->parent->ctotal + tRay->t;

/* calculate shade (perhaps recursively)
* returned by this ray

*/
rayShade (tRay, thisObject);

}

/*
1_rayHit(tRay)
Ray *tRay;
*/

interQuad (tRay, tObj)
Ray *tRay;
Object *tObj;
{

Quadric
double
double
double
double
double
double
Point
Point

*surf;
acoef;
bcoef;
ccoef;
a, b, c, d,e, f,g, h,j,.k;
disc, tTmp, sqrt () ;
thisX, thisY, thisZ;
*rDir;
*rOrg;

1*
1*
1*

1*
1*
1*

square term coefficient */
linear term coefficient */
constant term coefficient */

intersection point on surface */
this ray direction */
this ray origin */

rDir = &(tRay->direction);
rOrg = &(tRay->origin);
surf = tObj->ptr.quadric;

a = surf->a;
d = surf->d;
g = surf->g;
k = surf->k;

b = surf->b;
e = surf->e;
h = surf->h;

c
f

j

= surf->c;
= surf->f;
= surf->j;

/* substitute ray equation into surface equation
*/
acoef = a

c
f

bcoef = 2,

ccoef = a

*

*

*

0
b
c
d
f

g
*

rDir->x * rDir->x + b * rDir->x * rDir->y +
rDir->x * rDir->z + e * rDir->y * rDir->y +

rDir->y * rDir->z + h * rDir->z * rDir->z;

* a * rOrg->x * rDir->x +
* (rOrg->x * rDir->y + rDir->x'* rOrg->y) +
* (rOrg->x * rDir->z + rDir->x * rOrg->z) +
* rDir->x + 2.0 * e * rOrg->y * rDir->y +

* (rOrg->y * rDir->z + rDir->y * rOrg->z) +

* rDir->y + 2.0 * h * rOrg->z * rDir->z + j * rDir->z;

rOrg->x * rOrg->x + b * rOrg->x * rOrg->y +

104

c * rOrg->x * rOrg->z + d * rOrg->x +
e * rOrg->y * rOrg->y + f * rOrg->y * rOrg->z +
g * rOrg->y + h * rOrg->z * rOrg->z + j * rOrg->z + k;

if (acoef = 0.0)
return;

else {
/* use the quadratic formula to sorve for 't'

disc = bcoef*bcoef - 4.0*acoef*ccoef;

if (disc < 0.0)
return;

/* no REAL solution */

else
tTmp = (-bcoef - sqrt(disc))/(2.0 * acoef);

if (tTmp < 0.0) /* t must be positve */
tTmp = (-bcoef + sqrt(disc))/(2.0 * acoef);

/* this is the blatant, but essential fudge
* to insure that the origin of a ray is
* not mistaken for a valid point of intersection
*/

if (tTmp < EPSILON)
return;

if this is the closest value of t so far,
then record t and the identity of the surface
and compute the surface normal (yes, it would
be more efficient to compute the surface normal
outside of this loop)

if (tTmp < tRay->t)
tRay->t = tTmp;

tRay->ident = tObj->objIdent;
thisX = tRay->head.x = tRay->origin.x + tTmp*tRay->direction.x;
thisY = tRay->head.y = tRay->origin.y + tTmp*tRay->direction.y;
thisZ = tRay->head.z = tRay->origin.z + tTmp*tRay->direction.z;
tRay->normal.x = 2.0*a*thisX + b*thisY + c*thisZ + 2.0*d;
tRay->normal.y = 2.0*e*thisY + b*thisX + f*thisZ + 2.0*g;
tRay->normal.z = 2.0*h*thisZ + c*thisX + f*thisY + 2.0*j;

}
)

interSphere (tRay, tObj)
Ray *tRay;
Object *tObj;

{
Sphere
Point
double
double

*sphr;
delta;
a, b, c, d;
tTmp, dotProduct(, sqrt();

sphr = tObj->ptr.sphere;

a = (sqr(tRay->direction.x) + sqr(tRay->direction.y) +

105

}
/*

*

*

*

*

*1

sqr(tRay->direction.z));
delta.x = tRay->origin.x - sphr->center.x;
delta.y = tRay->origin.y - sphr->center.y;
delta.z = tRay->origin.z - sphr->center.z;
b = 2.0 * dotProduct(&(tRay->direction), &delta);
c = sqr(delta.x) + sqr(delta.y) + sqr(delta.z) - sqr(sphr->radius);
d = b*b - 4.0*a*c;

/* check if intersection exists */
if (d < 0.0)

return;
else

tTmp = (-b - sqrt(d)) / (2.0*a);
if (tTmp < 0.0)

tTmp = (-b + sqrt(d)) / (2.0*a);
if (tTmp < EPSILON)

return;

if (tTmp < tRay->t)
tRay->t = tTmp;
tRay->ident = tObj->objldent;
tRay->head.x = tRay->origin.x + tTMp*tRay->direction.x;
tRay->head.y = tRay->origin.y + tTmp*tRay->direction.y;
tRay->head.z = tRay->origin.z + tTmp*tRay->direction.z;
tRay->normal.x = 2.0*(tRay->head.x - sphr->center.x);
tRay->normal.y = 2.0*(tRay->head.y - sphr->center.y);
tRay->normal.z = 2.0*(tRay->head.z - sphr->center.z);

}
}

/* Intersect a ray with a polygon
* On entry:
* surf = definitions for a polygon and a ray
* On exit:
* tRay = ray with new normal and length (t)
*/
interPoly (tRay, tObj)
Ray *tRay;
Object *tObj;

register double a,b,cd;
register double thisX,thisY,thisZ;
register double tTmp, dotVN;
Point *rOrg, *rDir;

tTmp = HUGEREAL;
rDir = &(tRay->direction);
rOrg = &(tRay->origin);

/* Get plane equation & normal of the polygon */
a = tObj->ptr.polygon->a;
b = tObj->ptr.polygon->b;
c = tObj->ptr.polygon->c;
d = tObj->ptr.polygon->d;

106

if ((dotVN = a*rDir->x + b*rDir->y + c*rDir->z) == 0.0)
return; /* polygon on edge, not visible */

if ((tTmp=(a*rOrg->x + b*rOrg->y + c*rOrg->z + d)/-dotVN) < 0.0)

tTmp = -tTmp;

/* check that the origin of the ray is not mistaken for point of
* intersection and distance is closest so far.
*/
if ((tTmp < tRay->t) && (tTmp > EPSILON))

/* The ray intersects the plane of the polygon. Find the
point of intersection */

thisX = rOrg->x + (rDir->x * tTmp);

thisY = rOrg->y + (rDir->y * tTmp);
thisZ = rOrg->z + (rDir->z * tTmp);

/* first check if point is within the object's bounding box */
if (thisX > tObj->objmin.x && thisX < tObj->objmax.x &&

thisY > tObj->objmin.y && thisY < tObj->objmax.y &
thisZ > tObj->objmin.z && thisZ < tObj->objmax.z)

/* it is, so do the actual tests and calculations */
if (inpoly(thisX,thisY,thisZ,tObj->ptr.polygon)) {

tRay->t = tTmp;
tRay->ident = tObj->objldent;
tRay->head.x = thisX;
tRay->head.y = thisY;
tRay->head.z = thisZ;
tRay->normal.x = a;
tRay->normal.y = b;
tRay->normal.z = c;

}
} else

return;

}

/* The algorithm counts intersections between the polygon and a ray
* starting at the given point. The 2 bit "angle" calculation
* technique is used
*/
inpoly (x, y, z, polyptr)
double x,y,z;
Polygon *polyptr;

{
double p2x,p2y;
double plx,ply;
double sign, tempd, fabs();
int count, i, j, polytype;
int to, from, temp;

tempd = fabs (polyptr->c);
polytype = 1;

if (fabs (polyptr->b) > tempd)

107

tempd = fabs(polyptr->b);
polytype = 2;

}
if (fabs(polyptr->a) > tempd)

tempd = fabs (polyptr->a);
polytype = 3;

)
switch (polytype) {
case 1:

plx = polyptr->vertex[0]->x - x;
ply = polyptr->vertex[0]->y - y;
break;

case 2:
pix = polyptr->vertex[0]->x - x;
ply = polyptr->vertex[0]->z - Z;
break;

case 3:
pix = polyptr->vertex[0]->y - y;
ply = polyptr->vertex[0]->z - z;
break;

}
if (pix >= 0.0) {

if (ply < 0.0)
from = 3;

else if (ply >= 0.0 && pix > 0.0)
from = 0;

else
from = 1;

} else {
if (ply <= 0.0)

from = 2;
else

from = 1;
}
count = 0; /* initialize intersect counter */
for(i=0; i < polyptr->numvtx; i++) {

j = (i+1 < polyptr->numvtx) ? i+1 : 0;
switch (polytype) {
case 1:

p2x = polyptr->vertex[j]->x -x;

p2y = polyptr->vertex[j]->y -y;

break;
case 2:

p2x = polyptr->vertex[j]->x -x;

p2y = polyptr->vertex[j]->z -Z;

break;
case 3:

p2x = polyptr->vertex[j]->y - y;
p2y = polyptr->vertex[j]->z - z;
break;

}
if (p2x >= 0.0) {

if (p2y < 0.0)
to = 3;

else if (p2y >= 0.0 && p2x > 0.0)

108

to = 0;
else

to = 1;
} else (

if (p2y <= 0.0)
to = 2;

else
to = 1;

temp = (to - from) & 3;
if (temp = 1)

count++;
else if (temp = 3)

count--;
else if (temp = 2) (

sign = plx*p2y - p2x*ply;
if (sign > 0.0)

count += 2;
else if (sign < 0.0)

count -= 2;
else

return (TRUE);
}
pix = p2x;
ply = p2y;
from = to;

}
if ((count != 0) && ((count % 4) = 0))

return(TRUE);
else

return(FALSE);

/*** end hit.c ***/

109

/ **/
/* */

/* purpose: contains math functions for vectors and
/* 3-D coordinate transformations

/* */
/* author: Philip R. Thompson, ($Author: phils $) */
/* $Date: 88/01/30 17:51:28 $ $State: Exp $

/* */
/* 3-D GRAPHIC ROUTINES */
/ **/
#ifndef LINT
static char ray_mathid[] =

"$Header: appendixl.mss,v 1.2 88/01/30 17:51:28 phils Exp $";
#endif LINT

#include <math.h>
#include "rays. h"

double TransM[4] [4]; /* Transformation Matrix */
double SV[4] [4]; /* Saved View matrix */
double cx,cy,cz; /* Current cursor position */
double screenscale, screenctrx, screen ctry;

/* MATRIX TRANSFORMATION ROUTINES */

PrintMatrix (M)
double M[4] [4];

register x,y;

for (x=0;x<4;x++)
for (y=0 ; y<4; y++)

printf("%10.2f ",M [x] [y]);
printf("\n");

)
printf("\n");

}

Set (M)
double M[4] [4];

register x,y;

for (x=0;x<4;x++)

for (y=0;y<4;y++)
TransM[x] [y] = M[x] [y];

Save (M)
double M[4][4];

register x,y;

110

for (x=0;x<4;x++)
for (y=O;y<4 ;y++)

M[x] [y] = TransM[x] [y];
}

ResetMatrix (M)
double M[4][4];

register x,y;

for (x=0;x<4;x++)

for (y=O;y<4;y++)
if (x = y)

MIx] y] = 1.0;
else

M[x][y] = 0.0;
}

MatrixMult (Ml, M2)

double M1[4] [4];
double M2[4] [4];

register x, y, z;
double R[4][4];

for (x=0 ;x<4;x++)

for (y=O;y<4;y++)
R[x](y] = 0.0;
for (z=0;z<4;z++)

R[x] [y] += M1[x] [z] * M2[z] [y];

Set (R);

}

Transform (newx, newy, newz)
double *newx, *newy, *newz;
{
double x = *newx, y = *newy, z = *newz;

*newx=TransM[0][0]*x + TransM[1][0]*y + TransM[2][0]*z + TransM[3] (0];
*newy=TransM[0] [1]*x + TransM[1] [1]*y + TransM[2] [l]*z + TransM[3] [1];
*newz=TransM[0][2]*x + TransM[1][2]*y + TransM[2][2]*z + TransM[3]2];

translateXYZ (x, y, z)
double x,y,z;

double M[4] [4];

ResetMatrix (M);
M [3] [0] =x;
M [3] [1] =y;

111

M [3] [2] = z;
MatrixMult (TransM,M);

}

rotateX(rad) /* rotation counter-clockwise in radians */
double rad;

{
double M[4][4];

ResetMatrix (M);
M[1l](1] = cos(rad);
M[1][2] = sin(rad);
M(2][1] = -sin(rad);
M[2][2] = cos(rad);
MatrixMult (TransM, M);

}

rotateY(rad)
double rad;

{
double M[4][4];

ResetMat rix (M);
M[(0][0] = cos(rad);
M[0][2] = -sin(rad);
M[2](0] = sin(rad);
M(2][2] = cos(rad);
MatrixMult (TransM, M);

)

rotateZ(rad)
double rad;

double M[4] [4];

ResetMatrix (M);

M[0][0] = cos(rad);
M[0][1] = sin(rad);
M[1][0] = -sin(rad);
M[1][1] = cos(rad);
Mat rixMult (TransM, M);

)

scaleXYZ(sx,sy,sz)
double sx,sy,sz;
{

double M[41[(4];

ResetMatrix (M);
M[0][0] = sx;
M[1][1] = sy;
M[2][2] = sz;
MatrixMult (TransM,M);

}

112

rotateAxis(xl, yl, z1, x2, y2, z2, rad) /* rotate abt arb axis */
double xl, yl, z1, x2, y2, z2, rad;

{
double a, b, c, d, D;
double r1, r2, PolarAngle(;

= x2 - x1;
= y2 - yl;
= z2 - z1;
= sqrt(a*a
/= d;
/= d;
/= d;
= sqrt(b*b

/* temporary variables */
/* temporary angles */

+ b*b + c*c);

+ c*c);

ResetMatrix (TransM);

translateXYZ(-x1,-y1,-z1);
r1 = PolarAngle(c,b);
rotateX(rl);

r2 = PolarAngle(D,a);
rotateY(r2);

rotateZ (rad);
rotateY (-r2);

rotateX(-rl);
translateXYZ (x1,yl, z1);

}

/* VIEWING TRANSFORMATION */

perspective (P)
double P;
{

/* Avoid this */

double M [4][4];

ResetMatrix (M);

M [2] [3] =P;

M [3][3] =P;
Mat rixMult (TransM, M);

}

LeftHand()

{
double M [4] [4];

ResetMatrix (M);
M [2][2] = -1;
MatrixMult (TransM, M);

}

view(Ex,Ey,Ez)
double Ex,Ey,Ez;

113

a
b
c
d
a
b
c
D

{
double hypo, PolarAngleo;

ResetMatrix (TransM);
translateXYZ (-Ex, -Ey, -Ez);
rotateX(90.0);
hypo = sqrt(Ex*Ex+Ey*Ey);
if ((Ex != 0.0) || (Ey != 0.0))

rotateY(PolarAngle(-Ey,Ex));
rotateX (PolarAngle (hypo, -Ez));

}

/* DISPLAY ROUTINES */

Init View(windw, windh)
int wind-w, windh;

{
ResetMatrix (TransM);
screenscale = (double)windw;
screen ctrx = (double)wind w / 2.0;
screen_ctry = (double)windh / 2.0;

}

Display_2D(x, y, z)
double *x, *y, z;

{
*x = (*x / z) * screen scale + screen ctrx;
*y = (*y / z) * -screen_scale + screenctry;

}

ShowLine (xl,ylz1, x2,y2, z2)
double xl,yl,z1,x2,y2,z2;

double txl=xl, tyl=yl, tx2=x2, ty2=y2;

Display_2D(&txl, &tyl, z1);
Display_2D(&tx2, &ty2, z2);

#ifdef THREE_D
DrawLine (trunc(txl),trunc(tyl),trunc(tx2),trunc(ty2));

#endif THREE_D

}

#define LEFT Ox01
#define RIGHT 0x02
#define BOTTOM 0x04
#define TOP Ox08
#define BACK Ox10
#define FRONT 0x20
#define ZMIN 0.1

Code(x,y,z,c)

114

double x,y,z;
unsigned *c;

{
*c = 0;
if (x < -z)

*c= LEFT;

else if (x > z)
*c = RIGHT;

if (y < -z)
*c |= BOTTOM;

else if (y > z)
*c 1= TOP;

)

ClipLine(x1,y1,z1,x2,y2,z2)
double xl,y1,z1,x2,y2,z2;

unsigned c, c1, c2;
double x, y, z, t;

if (zi < ZMIN) (
if (z2 < ZMIN)

return;

t = (ZMIN - z1) / (z2 - zl);
x1 += (x2 - x1) *t;

yl += (y2 - yl) *t;

Z1 = ZMIN;
} else if (z2 < ZMIN) {

t = (ZMIN - z2) / (z1 - z2);
x2 += (xl - x2) *t;

y2 += (y1 - y2) *t;

z2 = ZMIN;

)
Code (xl, yl, z1, &cl) ;
Code (x2, y2, z2, & c2) ;

while (c1 | c2) {
if (c1 & c2)

return;

C = (c1 != 0) ? ci : c2;

if (LEFT & c) (
t = (z1 + x1)/((x1 - x2) - (z2 -z)

z = t*(z2 - z1) + :1;
x =-z;
y = t*(y2 - yl) + y1;

) else if (RIGHT & c) {
t = (z1 - x1)/((x2 - x1) - (z2 - z1));
z = t*(z2 - zi) + z1;

x =Z;
y = t*(y2 - y1) + y1;

) else if (BOTTOM & c) {
t = (z1 + yi)/((yl - y2) - (z2 - z1));
z = t * (z2 - zi) + :1;
x = t * (x2 - xl) + x1;

115

y =-z;
} else if (TOP & c) {

t = (z1 - yl)/((y2 - yl) - (z2 - 1)
z = t * (z2 - z1) + z1;
x = t * (x2 - xl) + x1;

y = z;
}
if (c = c1)

x1 = x; yl = y; zi = z;
Code (x,y,z,&cl);

} else if (c == c2) {
x2 = x; y2 = y; z2 = z;
Code (x,y,z,&c2);

}
}
ShowLine(xl,yl,zl,x2,y2,z2);

)

moveabs3(x, y, z)
double x,y,z;

{
double nx = x, ny =y, nz =z;

Transform(&nx, &ny, &nz);
cx = nx;
cy = ny;
cz = nz;

}

line abs3 (x, y, z)
double x, y, z;

double nx = x, ny =y, nz = z;

Transform(&nx, &ny, &nz);
ClipLine(cx, cy, cz, nx, ny, nz);
cx = nx;
cy = ny;
cz = nz;

}

/* ARC ROUTINES by Cheng-Haam Tham */

arcX (r, theta, theta stop, dtheta, x)
double r, theta, thetastop, dtheta, x;
{

theta = toRadians(theta);
thetastop = toRadians (thetastop);
d_theta = toRadians(dtheta) ;

move abs3 (x, (r*cos (theta)), (r*sin(theta)));
for (theta += dtheta; theta <= thetastop; theta += dtheta)

116

lineabs3(x, (r*cos(theta)), (r*sin(theta)));

}

arcY (r, theta, thetastop, dtheta, y)
double r, theta, theta_stop, dtheta, y;
{

theta = toRadians(theta);
theta_stop = toRadians(theta_stop);
d_theta = toRadians (dtheta) ;

move abs3((-r*cos(theta)), y, (r*sin(theta)));
for (theta += dtheta; theta <= thetastop; theta += dtheta)

lineabs3 ((-r*cos(theta)), y, (r*sin(theta)));
}

arcZ (r, theta, thetastop, dtheta, z)
double r, theta, thetastop, d_theta, Z;
{

theta = toRadians(theta);
theta_stop = toRadians (theta_stop) ;
d_theta = toRadians(dtheta);

move abs3((r*cos(theta)), (r*sin(theta)), z);
for (theta += d _theta; theta <= thetastop; theta += d_theta)

lineabs3((r*cos(theta)), (r*sin(theta)), z);
}

/* TEXT ROUTINE */

text (x,y,z,str)
double x,y,z;
char str[];

{
double nx = x, ny = y, nz = z;

Transform(&nx, &ny, &nz);
Display_2D(&nx, &ny, nz);

#ifdef THREE_D
DrawText(trunc(nx), trunc(ny), str);

#endif THREE_D

}

/* VECTOR ROUTINES */

double normalizeVec(vec) /* get the unit vector */
Point *vec;

{
double denom;

denom = sqrt(sqr(vec->x) + sqr(vec->y) + sqr(vec->z));
vec->x /= denom;

117

/* the magnitude */

double dotProduct (v1, v2)
Point *vl, *v2;

{
return(vl->x * v2->x +

vl->y * v2->y +
vl->z * v2->z);

}

double PolarAngle(x,y)

double x,y;
/* returns the polar angle of (x,y) */

double length, theta;

length = sqrt (x*x + y*y);
if ((length = 0.0) I| ((theta = fabs(x/length)) >= 1.0))

return(0.0);

else
theta = acos(theta);

if ((x >= 0.0) && (y >= 0.0))
return(theta);

else if ((x <= 0.0) && (y >= 0.0))
return(PI - theta);

else if ((x <= 0.0) && (y <= 0.0))
return(-PI + theta);

else
return (-theta);

}

double VectorsAngle(vl, v2)
Point *vl, *v2;

/* angle between two vectors*/

double theta = 0.0;
double dl, d2, dotProducto;

dl = sqrt(sqr(vl->x) + sqr(vl->y) + sqr(vl->z));
d2 = sqrt(sqr(v2->x) + sqr(v2->y) + sqr(v2->z));
if ((dl != 0.0) && (d2 != 0.0)) {

theta = dotProduct(vl,v2) / (dl*d2);
theta = acos(theta);
return (theta);

}
return(theta);

}

/*** end 3d math.c ***/

118

vec->y
vec->z
return

/= denom;
/= denom;
(denom);

}

/* */
/* purpose: read the data from an ASCII crl format file */

/* */
/* author: Philip Thompson, ($Author: phils $) */
/* $Date: 88/01/30 17:51:28 $ $State: Exp $

/* */
/* based on: Peter Jurgensen 12-June-1985 */

/* */
/* note: reads only the surface and curve definitions */
/* of the old CRL files
/ **/
#ifndef LINT
static char ray_readid[] =

"$Header: appendixl.mssv 1.2 88/01/30 17:51:28 phils Exp $";
#endif LINT

#include <stdio.h>
#include "rays.h"

#define toupper(c) ((' a'<=(c) && (c)<='') ? ((c)-('a'-'A')) : (c))
#define UEOfile {printf ("Unexpected end of file. \n") ; return;}

Point *pointptr[MAXPNTS];
Object thisObject [MAXOBJ];
Properties properties [MAXOBJ];
int nObjs = EOL; /* total number of objects */
int nProps = EOL; /* total number of properties */
int points = 0; /* total number of points */

Object *readObj (fileName)
char *fileName;

int obcode;
FILE *fopen(, *inFile; /* the file pointer */
char *tmp_name, *strrchr(), *strcpy(, *strcat(), *malloc(;

/* check for ".crl" extension on object data file
*/
if (strcmp(strrchr(fileName,' .'), ".crl") != 0)

tmp_name = strcat(strcpy(malloc((unsigned)
strlen (fileName) +4) , fileName), ".crl");

else
tmpname = fileName;

if ((inFile=fopen(tmpname,"r")) <= NULL)
error ("readObj: can't OPEN %s", tmp_name);

/* read the header of the file */
if ((obcode = fgetc(inrile)) != '>')

error ("readObj: not a crl file - no header","\0 ");
else

dalheader (inrile);

119

/* loop through all the records in the file */
while (((obcode = fgetc(inrile)) != EOF) && (nObjs < MAXOBJ)) {

switch (toupper (obcode)) {
case ';': /* COMMENT */

dalcomma (inFile);
break;

case 'V': /* VERTEX */
dalpoina(inFile)
break;

case 'P':
dalsurfa(inrile)
break;

case 'Q':
dalcurva (inFile)
break;

case 'S':
dalsphera(inFile
break;

case 'F':
dalfinia(inFile)
break;

case 'E':
daledgea(inFile)
break;

case '>':

/* POLYGON */

/* QUADRIC */

/* SPHERE */

) ;

/* LIBRARY FINISH */

/* EDGE */

/* HEADER */
dalheader(inrile);
break;

default:
error("readobj: bad object code %c\n", (char *)obcode);

}

if (nObjs == MAXOBJ)
fprintf(stderr,"Too many objects: %d / %d\n", nObjs, MAXOBJ);

thisObject[nObjs].next = NULL;
if (fclose(inrile) != NULL)

error ("readObj: error CLOSING inrile", "\0");
initypolys(thisObject);
return(thisObject);

}

dalcomma (fileptr)
FILE *file_ptr;

{

/* DALCOMM */

char record[MAXSTR];

if (fgets(record, MAXSTR-1, fileptr) = NULL)
UEOfile

}

dalheader (filejptr)
FILE *fileptr;

/* DALHEADER */

120

char record[MAXSTR];

if (fgets(record, MAXSTR-1, file-ptr) == NULL)
UEOfile

}

dalpoina(file_ptr) /* DALPOIN */
FILE *file_ptr;

{
char record[MAXSTR];
double Xreal, Yreal, Zreal;
Point *makepnt();

if (fgets(record, MAXSTR-1, file-ptr) == NULL)
UEOfile

if (sscanf(record+1,"%lf %lf %lf", &Xreal, &Yreal, &Zreal) != 3)
error("DALPOIN: incorrect number of points %d", (char *)points);

points++;
point_ptr[points] = makepnt(Xreal, Yreal, Zreal);

}

daledgea(file_ptr) /* DALEDGE */
FILE *fileptr;
{
char record[MAXSTR];

if (fgets(record, MAXSTR-1, fileptr) = NULL)
UEOfile

}

dalsurfa(file_ptr) /* DALSURF */
FILE *fileyptr;

{
char record[MAXSTR], *malloc(;
int next, localindex;
int vertices, finish;
Point **vtx;
Polygon *poly;

if (fgets(record, MAXSTR-1, fileyptr) = NULL)
UEOfile

if (sscanf(record+l,"%d %*d %d",
&vertices, &finish) ! 2)

error("DALSURF: incorrect vertex and finish","/0");

vtx = (Point **)malloc((unsigned)vertices*sizeof(Point *));
for (next=0; next < vertices; next++) {

if (fgets(record, MAXSTR-1, file_ptr) = NULL)
UEOfile

if (sscanf(record,"%d", &localindex) ! 1)
error ("DALSURF: incorrect point index", "/0");

vtx[next] = point_ptr[local index];

121

}
poly = (Polygon *)malloc((unsigned)sizeof(Polygon));
poly->numvtx = vertices;
poly->vertex = vtx;

nObjs++;
thisObject[nObjs].objType = POLYGON;
thisObject[nObjs].objldent = nObjs;
thisObject[nObjs].ptr.polygon = poly;
thisObject[nObjs].theseProps = &(properties [finish-1]);
thisObject[nObjs].next = &(thisObject[nObjs+1]);

I

dalcurva(file_ptr) /* DALCURV */
FILE *fileptr;

char record [MAXSTR], *malloc (;
Quadric *surf;
int finish;

if (fgets(record, MAXSTR-1, file_ptr) = NULL)
UEOfile

if (sscanf(record+1,"%d", &finish) != 1)
error ("DALCURV: incorrect finish argument", "/0");

surf = (Quadric *)malloc (sizeof(Quadric));
if (fgets(record, MAXSTR-1, filejptr) = NULL)

UEOfile
if (sscanf(record,"%lf %lf %lf %lf %lf %lf %lf %lf %lf %lf",

& (surf->a) , & (surf->b) , & (surf->c) , & (surf->d) , & (surf->e),
&(surf->f) , & (surf->g) , & (surf->h) , &(surf->j) , & (surf->k)) ! 10)

error ("DALCURV: incorrect surface arguments", "/0");
nObjs++;
thisObject[nObjs] .objIdent = nObjs;
thisObject[nObjs] .objType = QUADRIC;
thisObject.[nObjs].theseProps = &(properties[finish-1]);
thisObject[nObjs].ptr.quadric = surf;
thisObject[nObjs] .next = & (thisObject[nObjs+1]);

}

dalsphera(fileytr) /* DALSPHERA */
FILE *file_ptr;

{
char record[MAXSTR], *malloc();
Sphere *sphrptr;
int finish;

if (fgets(record, MAXSTR-1, file_ptr) = NULL)
UEOfile

if (sscanf(record+1,"%d", &finish) != 1)
error ("DALSPHERA: incorrect finish argument", "\0 ");

sphr_ptr = (Sphere *)malloc((unsigned)sizeof(Sphere));
if (fgets(record, MAXSTR-1, fileyptr) == NULL)

UEOfile

122

if (sscanf(record,"%lf %lf %lf %lf", &sphr_ptr->center.x,
&sphr_ptr->center.y, &sphr_ptr->center.z,
&sphr_ptr->radius) != 4)

error ("DALSPHERA: incorrect sphere description", "\0");
nObjs++;
thisObject[nObjs].objIdent = nObjs;
thisObject[nObjs].objType = SPHERE;
thisObject[nObjs].theseProps = &(properties[finish-1]);
thisObject[nObjs].ptr.sphere = sphr_ptr;
thisObject[nObjs].next = &(thisObject[nObjs+l]);

)

dalfinia(file_ptr) /* DALFINI */
FILE *file_ptr;

{
char record[MAXSTR];
float dRed, dGreen, dBlue;
int type;

if (fgets(record, MAXSTR-1, file_ptr) == NULL)
UEOfile

nProps++;
if (sscanf(record+1,"%f %f %f %f %f %f %f %d",

&dRed, &dGreen, &dBlue,
&(properties[nProps].kDiff), &(properties[nProps].kSpec),
&(properties[nProps].kTrans), &(properties[nProps].kRefr),
&type) != 8)

error ("DALFINI: incorrect finish count", "/0");
properties[nProps].color.red = dRed;
properties[nProps].color.green = dGreen;
properties[nProps].color.blue = dBlue;
properties[nProps].type = (unsigned)type;

)

Point *makepnt (x,y, z)
double x,y,z;

I
char *malloco;
Point *ptr;

if ((ptr=(Point *)malloc(sizeof(Point))) == NULL)
error("zmakepnt: malloc() error", "/0 ");

ptr->x = X;
ptr->y = y;
ptr->z = Z;
return (ptr);

}

/* Initialize the object list, calculate the plane equations for all the
* polygons in the data base, and calculate the bounding cubes for each
* polygon.
*/

123

initpolys(firstobj)
Object *firstobj;

{
Object *objptr;
Polygon *polyptr;
Point **vtx;

int i;
double a,b,c,d, xl,yl,zl, x2,y2,z2, x3,y3,z3, normx,normy,normz;
double minx, miny, minz, maxx, mazy, maxz;

#ifdef DEBUG
double normd;

#endif DEBUG

/* Calculate the plane equation of the polygons */
objptr = firstobj;
while (objptr != NULL) {

#ifdef DEBUG
printf("Object Ident: %d\n", objptr->objIdent);
printf("type %c rgb %.2f %.2f %.2f\n", objptr->type,

objptr->theseProps->color.red, objptr->theseProps->
color.green, objptr->theseProps->color.blue);

#endif DEBUG

if (objptr->objType != POLYGON) {
objptr = objptr->next;
continue;

)
polyptr = objptr->ptr.polygon;
vtx = polyptr->vertex;

/* Calculate bounding cube of the
minx = miny = minz = HUGEREAL;
maxx = maxy = maxz = -HUGEREAL;
for (i = 0; i < polyptr->numvtx;

minx = min (vtx i] ->x, minx) ;
miny = min (vtx[i]->y, miny);
minz = min(vtx[i]->z, minz);
maxx = max (vtx i]->x, maxx) ;
maxy = max (vtx i]->y, mazy);
maxz = max(vtx[i]->z, maxz);

}
objptr->objmin.x = minx -
objptr->objmin.y = miny -
objptr->objmin.z = minz -
objptr->objmax.x = maxx +
objptr->objmax.y = maxy +
objptr->objmax.z = maxz +

/* if obj isn't a poly */
/* get the next one */

/* Get a ptr to poly */

polygon */

i++) {

EPSILON;

EPSILON;

EPSILON;
EPSILON;

EPSILON;

EPSILON;

/* Get vertices of a polygon */
x1 = vtx[O]->x; yl = vtx[0]->y; Z1
x2 = vtx[l]->x; y2 = vtx[l]->y; z2
x3 = vtx[2]->x; y3 = vtx[2]->y; z3

vtx0] ->z;
vtx[1]->z;
vtx[2] ->z;

124

/* Calculate the plane equation */
a = yl*(z2-z3) + y2 *(z3-zl) + y3*(zl-z2);
b = -(xl*(z2-z3) + x2*(z3-z1) + x3*(z1-z2));
C = xl*(y2-y3) + x2*(y3-yl) + x3*(y1-y2);
d = x1*(z2*y3-y2*z3) + x2*(z3*y1-z1*y3) + x3*(z1*y2-z2*y1);

/* Calculate the normal vector */
x1 -= x2; yl -= y2 ; z1 -= z2;
x3 -= x2; y3 -= y2 ; z3 -= z2;

normx = (yl*z3 - y3*zl);
normy = (x3*zl - xl*z3);
normz = (xl*y3 - x3*yl);

/* Adjust the sign of the plane equation so that it
* agrees with the normal vector
*/

if ((normx > 0.0 && a > 0.0) ||
(normx < 0.0 £& a < 0.0)) {

polyptr->a = a;
polyptr->b = b;
polyptr->c = c;
polyptr->d = d;

)
else if ((normy > 0.0

(normy < 0.0
polyptr->a = a;
polyptr->b = b;
polyptr->c = c;
polyptr->d = d;

}
else if ((normz > 0.0

(normaz < 0.0
polyptr->a = a;
polyptr->b = b;
polyptr->c = c;
polyptr->d = d;

}
else (

polyptr->a =
polyptr->b =
polyptr->c =
polyptr->d =

}

&&b > 0.0) ||
&& b < 0.0)) {

&& c > 0.0) ||
&& c < 0.0)) {

-a;
-b;
-c;
-d;

#ifdef DEBUG
normd = -(normx*x2 + normy*y2 + normz*z2);
printf("a:%8.2f b:%8.2f c:%8.2f d:%8.2f\n",polyptr->a,polyptr->b,

polyptr->c,polyptr->d);
printf("x:%8.2f y:%8.2f z:%8.2f d:%8.2f\n",normx,normy,normz,normd);

#endif

objptr = objptr->next;
} /* Done with all the objects */

}

125

I*** end read.c ***/

126

/**/
/* *
/* purpose: housekeeping functions */
/* *
/* author: Philip R. Thompson, ($Author: phils $) */
/* $Date: 88/01/30 17:51:28 $ $State: Exp $
/**/
#ifndef LINT
static char ray_utilsid[] =

"$Header: appendix1.mss,v 1.2 88/01/30 17:51:28 phils Exp $";

#endif LINT

#include <stdio.h>
#include "rays.h"
#include "ImageHeader. h"

#ifndef NONUNIX

#include <pwd.h>
#include <sys/time.h>
#include <sys/types.h>
#endif NONUNIX

static char viewstr[100];
Light *light;
int numlights, seg_length, seg_num, seg_start;
byte *seg_array;
Point eye;
Point viewypnt;
double zrotate, viewangle;
float Iamb;

/* this allocates internal memory for each ray
*/
Ray *newRay()

{
char *malloco;
Ray *this;

if ((this=(Ray *)malloc(sizeof(Ray))) = NULL)
error("newRay: malloc() error", "\0 ");

bzero((char *)this, sizeof(Ray));
this->ident = EOL;
this->t = HUGEREAL;
return (this);

}

error(sl, s2)
char *s1, *s2;

{
extern int errno, sysnerr;
extern char *syserrlist[], *progName;
FILE *fopen(, *fp;
char fname[16], *err-file, *strcat(), *strcpy(;

127

err-file = strcat(strcpy(fname, progName), " .err");
if ((fp=fopen(err file, "w")) = NULL)

exit(2);

fprint f (fp, "%s ERROR->\n", progName);
fprintf(fp, s1, s2);
fprintf(stderr,"%c%s ERROR->\n%c", BELL, progName, BELL);
fprintf(stderr, s1, s2);
if (errno > 0 && errno < sysnerr)

fprintf(fp," (%s)", syserrlist[errno]);
fprintf(stderr," (%s)", syserrlist[errno]);

)
fprintf(fp, "\n");
fprintf(stderr, "\n");
exit (1);

}

int ecreat(ofilename, pmode)
char *ofilename;
int pmode;

int ofildes;

if ((ofildes = creat(ofilename, pmode)) <= NULL)
error ("can't CREATE %s", ofilename);

return (ofildes);
}

#ifdef SRAY
init from header (infile, x, y)
FILE *infile;
int *x, *y;

int i;
ImageHeader head;
long file_pos, ftell();

if (fread((char *)&head, sizeof(head), 1, infile) ! 1)
error("Unable to read file header.","\0");

if (atoi(head.headersize) != sizeof(ImageHeader))
error ("Header size mismatch", "\0");

if ((atoi(head.fileversion)) != IMAGEVERSION)
error ("Incorrect Image_file Version.", "\0");

*x = atoi(head.pixmap_width) ;
*y = atoi(head.pixmap_height);
fprintf(stderr,"\nResolution: %d x %d\n", *x, *y);

file-pos = ftell(infile);
if (fseek(infile, 152L, 0) == -1)

error ("Improper f seek call", "\0 ");

(void)fscanf(infile,"%lf %lf %lf %lf %lf %lf %lf %lf %d %f",
&eye.x, &eye.y, &eye.z, &view_pnt.x, &viewpnt.y, Aviewpnt.z,

128

&viewangle, &zrotate, &numlights, &Iamb);

light = (Light *)malloc((unsigned)numlights*sizeof(Light));
for (i=O; i < numlights; i++) (

(void)fscanf(infile,"%lf %lf %lf %f", &light[i].x,
&light[i].y, &light[i].z, &light[i].intensity);

fprintf(stderr,"source[%d]: %4.11f %4.11f %4.11f %4.2f\n", i,
light[i].x, light[i].y, light[i].z, light[i].intensity);

)
(void)fseek(infile, file_pos, 0);

}
#endif SRAY

initray(infile, x, y)
FILE *infile;
double x, y;
{

int i;

char tmp[48], *strncat(, *strncpy(;

Getviewdata(infile);
init ViewTrans(x, y);

(void) sprintf (tmp,
"%.llf %.1lf %.llf\n%.llf %.1lf %.llf\n%.llf\n%.llf\n%d %.lf\n",
eye.x, eye.y, eye.z, view_pnt.x, viewpnt.y, viewpnt.z,
viewangle, zrotate, numlights, Iamb);

(void)strncpy(viewstr, tmp, strlen(tmp));
for (i=0; i < nutalights; i++) (

(void)sprintf(tmp,"%.llf %.llf %.1lf %.lf\n", light[i].x,
light[i].y, light(i].z, light[i] .intensity);

(void)strncat(viewstr, tmp, strlen(viewstr));
fprintf(stderr,"source[%d]: %4.11f %4.11f %4.1lf %4.2f\n", i,

light[i].x, light[i].y, light[i].z, light[i].intensity);
)
(void) sprintf (tmp, "%d %d %d\n", seg_start, seg_num, seg_length);
(void)strncat(view-str, tmp, strlen(viewstr));

)

Get viewdata (infile)
FILE *infile;

{
int i;

char *malloco;
FILE *outfile, *fopen(;

if (infile = stdin)
outfile = stdout;

else
outfile = fopen ("/dev/null", "w");

fprintf(outfile,"Enter eye coordinates <from>: ");
(void)fscanf(infile,"%lf %lf %lf", &eye.x, &eye.y, Geye.z);
fprintf(outfile,"Enter view coordinates <to>: ");

129

(void)fscanf(infile,"%lf %lf %lf", &viewpnt.x, &view_pnt.y,
&view_pnt. z);

fprintf(outfile,"Enter viewangle <45>: ");
(void)fscanf(infile, "%lf", &viewangle);
fprintf(outfile,"Enter screen orientation <0>: ");
(void)fscanf(infile,"%lf", &zrotate);
fprintf(outfile,"Enter number of light sources <0-%d>: ", MAXLIGHT);
(void) fscanf (infile, "%d %f", &nnumlights, &Iamb);
if (numlights < 0 && numlights > MAXLIGHT)

error("Incorrect light sources. MAX is %d", (char *)MAXLIGHT);
if ((light = (Light *)malloc((unsigned)numlights *

sizeof(Light))) == NULL)
error("light & malloc() no more light space", "\0");

for (i=0; i < numlights; i++) {
fprintf(outfile,"coords & intensity of %d <5 5 0 1.0>: ",i+1);
(void)fscanf (infile,"%lf %lf %lf %f",&light[i].x,

&light [i].y,&light[i] .z,&light[i].intensity);
}
fprintf (outfile, "Start, Number & lengths of time segments: ");
(void) f scanf (infile, "%d %d %d", &segstart, seg_num, &seg_length);
if (seg_num > MAXSEG)

error ("Too many segments. MAX is %d", (char *)MAXSEG);

init ViewTrans(x, y)
double x, y;
{

Point hi, low; /* vectors to diagonal viewport corners
Point view-dir;

double PolarAngle (, VectorsAngle (;
double sqrt(, tan(, cos();
double viewfactor, rotate;
extern double TransM[4][4];

viewfactor = toRadians(viewangle/2.0);
viewfactor = sqrt(sqr(x)+sqr(y)) / tan(viewfactor);

hi.x = x/viewfactor; low.x = -x/viewfactor;
hi.y = y/viewfactor; low.y = -y/viewfactor;
hi.z = low.z = 1.0;

view-dir.x = viewpnt.x - eye.x; /* viewing direction */
view dir.y = viewpnt.y - eye.y;
view-dir.z = viewpnt.z - eye.z;
viewangle = toDegrees(VectorsAngle(&hi, &low));

fprintf(stderr,"\nEye point: %5.21f %5.21f %5.21f\n",
eye.x, eye.y, eye.z);

fprintf(stderr,"View dir: %5.21f %5.21f %5.21f\n",
view dir.x, view-dir. y, viewdir.z)-;

fprintf(stderr, "viewAngle: %.21f degrees.\n", viewangle);

/* set viewport transformation matrix
*/
ResetMatrix (TransM) ;

130

scaleXYZ(1.0/viewfactor, 1.0/viewfactor, 1.0);
fprintf(stderr,"rotationZ = %4.21f deg.\n", zrotate);
rotateZ (toRadians (zrotate));
rotate = PolarAngle(viewdir.z, viewdir.x);
fprintf(stderr,"rotationY = %4.21f deg.\n" ,toDegrees(rotate));
rotateY (rotate);
view dir.z *= cos(rotate);
rotate = -PolarAngle(view dir.z, viewdir.y);
fprintf(stderr,"rotationX = %4 .21f deg.\n" ,toDegrees(rotate));
rotateX(rotate);

I

init outFile(outfile, width, height, color)
int outfile, width, height, color;
{

register int x;

extern char *progName;
ImageHeader header;

#ifndef NONUNIX
char *timefptr, *login_ptr, *ctimeo, *getlogin(;
struct passwd *getpwnam(), *getpwuid(), *pwd;
struct timeval time val;
struct timezone time zone;
uid-t getuid();

(void)gettimeofday(&timeval, &timezone);
timeptr = ctime(&time val.tv sec) ;
time tr[strlen(timeptr)-1] ='\0' ;
loginptr = getlogin();
if (*login_ptr)

pwd = getpwnam(login_ptr);
else

pwd = getpwuid((int)getuid();

bzero((char *)&header, sizeof(ImageHeader));
(void) sprint f (header. creator, "%s ", pwd->pw_gecos);
(void) sprintf (header .date, "%s ", timeytr);

#endif NONUNIX

(void) sprintf (header. fileversion, "%d", IMAGEVERSION);
(void) sprintf (header. header_size, "%d", sizeof (ImageHeader));
(void) sprintf (header. pixmap_width, "%d", width);
(void) sprintf (header. pixmap_height, "%di", height);
(void) sprintf (header. numcolors, "%d", MAXRGB+1);
(void) sprintf (header. creat_program, "%s ", progName);
(void)sprintf(header.view info,"%s", viewstr);

switch (color) {
case GREY:

for (x = 0; x <= MAXRGB; x++)

header.c_map[x] [0] = header.c_map[x] [1] =
header. cmap[x] [2] = (byte)x;

break;

131

case RED:

for (x = 0; x <= MAXRGB; x++) {
header.c_map[x] [0] = (byte)x;
header.cmap[x][1] = header.cmap[x][2] = 0;

}
break;

case GREEN:
for (x = 0; x <= MAXRGB; x++) {

header. c_map [x] [1] = (byte) x;
header.cmap[x] [0] = header.cmap[x] [2] = 0;

I
break;

case BLUE:

for (x = 0; x <= MAX RGB; x++) (
header. c_map [x] [2] = (byte)x;
header.c map[x] [0] = header.c_map[x] [1] = 0;

}
break;

}
writeBytes(outfile, (char *)&header, sizeof(ImageHeader));

}

runlencode (outfile, scanline, xres)
int outfile, xres;
byte *scanline;

byte runlength, lastcolor;
int i;

runlength = 0;

lastcolor = scanline[O];
for (i=1; i < xres; i++)

if ((runlength == 255) 11 (scanline[i] != lastcolor)) {
writeBytes (outfile, (char *)firunlength, sizeof (byte));
writeBytes (outfile, (char *)&lastcolor, sizeof(byte));
runlength = 0;

lastcolor = scanline[i];
} else

runlength++;

i
writeBytes (outfile, (char *)&runlength, sizeof(byte));
writeBytes (outfile, (char *)&lastcolor, sizeof(byte));

}

writeBytes (fd, buf, nbytes)
int fd, nbytes;
char *buf;

if (write(fd, buf, nbytes) != nbytes)
error("problem WRITING to outFile", "\0 ");

/*** end utils.c ***/

132

Author: Philip R. Thompson
Address: phils@athena.mit.edu, 9-514
Note: size of header is 1024 bytes
$Header: appendixl.mss,v 1.2 88/01/30 17:51:28 phils Exp $
$Date: 88/01/30 17:51:28 $

#define IMAGEVERSION

#define MAXINDEX

2
256

typedef struct ImageHeader
char fileversion[8];
char headersize[8];
char pixmap_width[8];
char pixmap_height [8];
char numcolors[16];
char data size[16];
char creator[48];
char date[32];
char creat_program[8];
char view info[104];
unsigned char cmap[MAX_

} ImageHeader;

/ *
1*
1*
/*
/*
/*
1*
/*
1*
/*

header version */
Size of file header (bytes) */
Width of the raster image */
Height of the raster imgage (lines) *
actual number of colors in file */
size of runlength encoded data (bytes)
Name of who made it */
Date and time image was made */
program that created this file */
viewing parameters for this image */

/

*/

INDEX] [3]; /* RG&B values of the indices */

typedef struct Line {
unsigned short x, y;
unsigned char length, color;

} Line;

/*** end ImageHeader.h ***/

133

/*
*

*

*

*

*/

/ **/
/* */

/* purpose: header file for ray casting routines. */
/* */

/* author: Philip R. Thompson ($Author: phils $) */
/* $Date: 88/01/30 17:51:28 $ $State: Exp $

/* */
/* based on: JTWhitted, copyrighted 1984
/ **/

#define MAXOBJ 1000 /* maximum number of surface elements */
#define MAXPNTS 2000 /* maximum number of vertices for surfaces */
#define MAXRES 1024 /* maximum horizontal resolution */
#define MAXSTR 256 /* arbitrary maximum string length */
#define MAXLEVEL 10 /* maximun depth for this branch of tree */
#define MAXLIGHT 4 /* maximum number of light sources */
#define MAXSEG 20 /* maximum number of ray segments and files */
#define MAXRGB 255 /* max. intensities for r,g & b */

#define EOL -1
#define HUGEREAL 100000000.0
#define EPSILON 0.0000001

#define PRIMARY Ox0
#define REFLECTED Ox1
#define REFRACTED Ox2
#define SHADOW Ox4
#define RED 1
#define GREEN 2
#define BLUE 3
#define GREY 4

#define PI 3.14159265358979323846
#define DEG 57.29577951308232087680
#define BELL 7
#define FALSE 0
#define TRUE 1

#define sqr(x) (x * x)
#define trunc(x) ((int) ((x)+0.5))
#define abs(x) (x > 0 ? x : -x)
#define max(x,y) (x > y ? x : y)
#define min(x,y) (x < y ? x : y)
#define toRadians(theta) ((theta) / DEG)
#define toDegrees(theta) ((theta) * DEG)

typedef unsigned char byte;

typedef enum (POLYGON, QUADRIC, SPHERE, LINE, POINT) ObjType;

typedef struct Point { /* point and vector structures */
double x,y,z;

) Point;

134

typedef struct Pixel {
float red, green, blue;

} Pixel;
/* R,G&B color components */

/* each quadric surface element is defined by a coefficient

* array for general quadric surface of form:
*/
typedef struct Quadric

double a,b,c,d, /* a*x*x + b*x*y + c*x*z + d*x
e,fg, /* + e*y*y + f*y*z + g*y

h,j, /* + h*z*z + j*z
k; *+ k = 0;

Quadric;

/* polygon description contains lists of plane coefficients,

* and various flags
*/
typedef struct Polygon (

int numvtx;
double a, b, c, d;
Point **vertex;
struct Polygon *next;

} Polygon;

typedef struct Sphere {
Point center;
double radius;

} Sphere;

/*
/*
/*
/*

number of vertices */
plane equation */
table of vertex indixes */
polygon list pointer */

/* center of sphere */
/* radius " i

typedef struct
double
float

} Light;

Light {
x, y, z;
intensity;

/* location of light source
/* color intensity of light */

typedef struct Properties {
Pixel color;
float kDiff;
float kSpec;
float kTrans;
float kRefr;
unsigned type;

} Properties;

/* color properties */
/* diffuse reflection coefficient */
/* specular I " */
/* transmission coefficient */
/* index of refraction between media */
/* gross class. of surface props - */
/* reflective, transparent or both */

/* object description contains lists of

* surfaces and surface properties
*/
typedef struct Object {

struct Object *next;
int objIdent;

/* object list ptr */
/* object indentifier */

*/
*/
*/
*/

points,

135

Properties *theseProps;
ObjType objType;
union {

Polygon *polygon;
Quadric *quadric;
Sphere *sphere;

} ptr;
Point objmin;
Point objmax;

} Object;

/* each ray is a straight 1
* ray = origin + t*dir
* starting from the viewer
* by a recursive ray casti
* point of intersection ar
*/
typedef struct Ray

unsigned rayType;
int ident;
short level;
Point origin;
Point direction;
Point head;
Point normal;
Pixel intensity;
double t;
double ctotal;
double cSpec;
double incDot;

struct Ray *parent;
struct

struct
struct

Ray *reflected;
Ray *refracted;

Ray *shadow;

/* list of surface properties */
/* type of object */

/* pointers to surface coefs */

/* bounding box of object */

ine defined by:
ection
's position, a tree of rays is generated
ng a procedure. shadow rays for each
e grouped in a linked list

/* reflected, refracted or shadow */
/* identifier of intersected surface*/
/* depth of this branch of ray tree */
/* ray origin */
/* ray direction */
/* coord at intersection point */
/* surface normal at intersect point */
/* accumulated reflection */
/* distance to nearest intersect pnt*/
/* cumulative distance travelled */
/* cumulative specular attenuation */
/* dot product of incident or reflect

ray and surface normal */
/* ptr to parent */
/*
/*
/*

ptr to reflected ray
ptr to refracted ray
ptr to shadow ray */

*/
*/

} Ray;

/*** end rays.h ***/

136

Appendix B

Geometric Spatial Databases

The following is a CRL file describing the geometry and surface

properties of Chevalier Auditorium.

> CRL VERSION 1

F 0.8 0.8 0.8 0.2 0.8 0.0 0.0 5
V -29.50 0.00 -2.00
V -29.50 0.00 2.00
V 29.50 0.00 2.00
V 29.50 0.00 -2.00
V 23.00 0.00 -2.00
V 15.00 0.00 -6.00
V 5.00 0.00 -8.00
V -5.00 0.00 -8.00
V -15.00 0.00 -6.00
V -23.00 0.00 -2.00
P 10 0 1
1
2
3
4
5
6
7
8
9
10
V -21.00 1.00 28.00
V 21.00 1.00 28.00
P 4 0 1
2
11
12
3
V -21.00 27.50 28.00
V -29.50 44.50 2.00
P 4 0 1
2-
11
13
14
V 21.00 27.50 28.00
V 29.50 44.50 2.00
P 4 0 1
3
12
15
16

137

4 0 1P
11
13
15
12
V
V
V
V
P
17
18
19
20
P
13
14
16
15
V
V
V
P
21
1
22
23
V
V
V
P
24
4
25
26
V
p
21
1
10
27
V
p
24
4
5
28
V
p
27
10
9
29
V
P

-21.00 14.00 28.00
-22.40 16.00 24.00
22.40 16.00 24.00
21.00 14.00 28.00
4 0 1

4 0 1

-29.50 -4.00 -2.00
-29.50 0.00 0.00
-29.50 -4.00 0.00
4 0 1

29.50 -4.00 -2.00
29.50 0.00 0.00
29.50 -4.00 0.00
4 0 1

-23.00 -4.00 -2.00
4 0 1

23.00 -4.00 -2.00
4 0 1

-15.00 -4.00 -6.00
4 0 1

15.00 -4.00 -6.00
4 0 1

138

-5.00 -4.00 -8.00
4 0 1

5.00 -4.00 -8.00
4 0 1

4 0 1

0.3 0.3 0.3 0.3 0.2 0.0 0.0 5
-22.40 30.00 24.00
22.40 30.00 24.00
4 0 2

0.7 0.7 0.7 0.5 0.1 0.0 0.0 5
-29.50 51.00 0.00
4 0 3

front upper slope
29.50 51.00 0.00
4 0 3

4 0 3

0.3 0.3 0.3 0.5 0.2 0.0 0.0 5
-38.50 7.00 -3.50
-38.50 10.50 -3.50
-34.00 10.50 -3.50
-34.00 7.00 -3.50
4 0 4

139

38
39
40
V 38.50 7.00 -3.50
V 38.50 10.50 -3.50
V 34.00 10.50 -3.50
V 34.00 7.00 -3.50
P 4 0 4
41
42
43
44
V -29.50 10.50 -6.50
V -29.50 7.00 -6.50
P 4 0 4
40
39
45
46
V 29.50 10.50 -6.50
V 29.50 7.00 -6.50
P 4 0 4
44
43
47
48
V -29.50 12.50 -99.00
V -29.50 9.00 -99.00
P 4 0 4
46
45
49
50
V 29.50 12.50 -99.00
V 29.50 9.00 -99.00
P 4 0 4
48
47
51
52
V -25.50 12.50 -104.50
V -25.50 9.00 -104.50
P 4 0 4
50
49
53
54
V 25.50 12.50 -104.50
V 25.50 9.00 -104.50
P 4 0 4
52
51
55
56
V -16.00 12.50 -108.00

140

v 0 vT

0E- 061 00'0E-
0ET- 00'E 00'09-
0OG- 00'L 00'98-
00'- 0'6 008E-

1 0 01
09*0VL- 00'6 00*0t-
OSOVEL- 00*6 00*0V

os*E- oo'L oooiV
00'66- 00'6 000?V

OG'E- 00'L 0
00'66- 00'6 0

00'80T- 00'6
00'80T- 0G'T

00'80T- 00'6 0

09
Z9
T9
0G
99

'0901- A
'09- A

09
69
Ls
eG

09
69

99
9G

00*9T A
00'9T A

899
Ls
EG

v 0 v a
0'9T- A

lK

69
89
L9
d
A
A
A
A
C9

9
99
09
8G

vs
09
19
99
99

A
A

V9
E9

89

A
A

38.50 19.50 -3.50
38.50 23.00 -3.50
34.00 23.00 -3.50
34.00 19.50 -3.50
4 0 4

-31.00 23.00 -5.50
-31.00 19.50 -5.50
4 0 4

31.00 23.00 -5.50
31.00 19.50 -5.50
4 0 4

-31.00 24.50 -108.00
-31.00 21.00 -108.00
4 0 4

31.00 24.50 -108.00
31.00 21.00 -108.00
4 0 4

-25.50 24.50 -114.00
-25.50 21.00 -114.00
4 0 4

25.50 24.50 -114.00
25.50 21.00 -114.00
4 0 4

-19.00 24.50 -117.00
-19.00 21.00 -117.00
4 0 4

142

84
83
87
88
V 19.00 24.50 -117.00
V 19.00 21.00 -117.00
P 4 0 4
86
85
89
90
P 4 0 4
88
87
89
90
V -40.00 21.00 -108.00
V -40.00 19.50 -3.50
P 5 0 4
76
80
91
92
70
V 40.00 21.00 -108.00
V 40.00 19.50 -3.50
P 5 0 4
78
82
93
94
74
V 40.00 21.00 -130.50
V -40.00 21.00 -130.50
P 10 0 4
95
96
91
80
84
88
90
86
82
93
F 0.1 0.1 0.1 0.9 0.0 0.0 0.0 5
V -40.00 -4.00 -36.00
V -40.00 -4.00 -0.00
V 40.00 -4.00 -0.00
V 40.00 -4.00 -36.00
P 4 0 5
97
98
99
100

143

V -40.00 -0.50 -101.00
V 40.00 -0.50 -101.00
P 4 0 5
101
97
100
102
V -40.00 2.00 -130.50
V 40.00 2.00 -130.50
P 4 0 5
103
101
102
104
V 38.50 22.00 -117.00
V 38.50 28.00 -138.00
V -38.50 28.00 -138.00
V -38.50 22.00 -117.00
P 4 0 5
105
106
107
108
V -31.00 21.50 -117.00
V -38.50 24.50 -117.00
V -31.00 20.00 -3.50
P 4 0 5
109
110
68
111
V 31.00 21.50 -117.00
V 38.50 24.50 -117.00
V 31.00 20.00 -3.50
P 4 0 5
112
113
72
114
V 38.50 9.50 -108.00
V 38.50 15.00 -130.50
V -38.50 15.00 -130.50
V -38.50 9.50 -108.00
P 4 0 5
115
116
117
118
V -29.50 9.50 -108.00
V -38.50 12.50 -108.00
V -29.50 7.50 -3.50
P 4 0 5
119
120
38

144

121
V 29.50 9.50 -108.00
V 38.50 12.50 -108.00
V 29.50 7.50 -3.50
P 4 0 5
122
123
42
124
F 0.8 0.8 0.8 0.4 0.6 0.0 0.0 5
V -38.50 22.00 0.00
V -38.50 56.00 0.00
V -38.50 56.00 -138.00
V -38.50 22.00 -138.00
P 4 0 6
125
126
127
128
V 38.50 22.00 0.00
V 38.50 56.00 0.00
V 38.50 56.00 -138.00
V 38.50 22.00 -138.00
P 4 0 6
129
130
131
132
F 0.8 0.8 0.8 0.4 0.6 0.0 0.0 5
V -38.50 -4.00 0.00
V -38.50 51.00 0.00
P 4 0 7
133
134
35
23
V 38.50 -4.00 0.00
V 38.50 51.00 0.00
P 4 0 7
135
136
36
26
V -38.50 54.00 0.00
V 38.50 54.00 0.00
P 4 0 7
134
137
138
136
F 0.8 0.8 0.8 0.3 0.7 0.0 0.0 5
V -38.50 22.00 -25.00
V -38.50 -4.00 -25.00
P 4 0 8
133

145

125
139
140
V 38.50 22.00 -25.00
V 38.50 -4.00 -25.00
P 4 0 8
135
129
141
142
V -40.00 22.00 -25.00
V -40.00 -4.00 -25.00
P 4 0 8
140
139
143
144
V 40.00 22.00 -25.00
V 40.00 -4.00 -25.00
P 4 0 8
142
141
145
146
V -40.00 22.00 -30.00
V -40.00 -4.00 -30.00
P 4 0 8
144
143
147
148
V 40.00 22.00 -30.00
V 40.00 -4.00 -30.00
P 4 0 8
146
145
149
150
V -38.50 22.00 -30.00
V -38.50 -4.00 -30.00
P 4 0 8
148
147
151
152
V 38.50 22.00 -30.00
V 38.50 -4.00 -30.00
P 4 0 8
150
149
153
154
V -38.50 22.00 -44.00
V -38.50 -4.00 -44.00
P 4 0 8

146

152
151
155
156
V 38.50 22.00 -44.00
V 38.50 -4.00 -44.00
P 4 0 8
154
153
157
158
V -38.50 -3.50 -44.00
V -40.00 22.00 -44.00
V -40.00 -3.50 -44.00
P 4 0 8
159
155
160
161
V 38.50 -3.50 -44.00
V 40.00 22.00 -44.00
V 40.00 -3.50 -44.00
P 4 0 8
162
157
163
164
V -40.00 22.00 -49.00
V -40.00 -3.50 -49.00
P 4 0 8
161
160
165
166
V 40.00 22.00 -49.00
V 40.00 -3.50 -49.00
P 4 0 8
164
163
167
168
V -38.50 22.00 -49.00
V -38.50 -3.50 -49.00
P 4 0 8
166
165
169
170
V 38.50 22.00 -49.00
V 38.50 -3.50 -49.00
P 4 0 8
168
167
171
172

147

V -38.50 -3.00 -49.00
V -38.50 22.00 -63.00
V -38.50 -2.50 -63.00
P 4 0 8
173
169
174
175
V 38.50 -3.00 -49.00
V 38.50 22.00 -63.00
V 38.50 -2.50 -63.00
P 4 0 8
176
171
177
178
V -40.00 22.00 -63.00
V -40.00 -2.50 -63.00
P 4 0 8
175
174
179
180
V 40.00 22.00 -63.00
V 40.00 -2.50 -63.00
P 4 0 8
178
177
181
182
V -40.00 22.00 -68.00
V -40.00 -2.50 -68.00
P 4 0 8
180
179
183
184
V 40.00 22.00 -68.00
V 40.00 -2.50 -68.00
P 4 0 8
182
181
185
186
V -38.50 22.00 -68.00
V -38.50 -2.50 -68.00
P 4 0 8
184
183
187
188
V 38.50 22.00 -68.00
V 38.50 -2.50 -68.00
P 4 0 8
186

148

185
189
190
V -38.50 -2.00 -68.00
V -38.50 22.00 -83.00
V -38.50 -1.50 -83.00
P 4 0 8
191
187
192
193
V 38.50 -2.00 -68.00
V 38.50 22.00 -83.00
V 38.50 -1.50 -83.00
P 4 0 8
194
189
195
196
V -40.00 22.00 -83.00
V -40.00 -1.50 -83.00
P 4 0 8
193
192
197
198
V 40.00 22.00 -83.00
V 40.00 -1.50 -83.00
P 4 0 8
196
195
199
200
V -40.00 22.00 -88.00
V -40.00 -1.50 -88.00
P 4 0 8
198
197
201
202
V 40.00 22.00 -88.00
V 40.00 -1.50 -88.00
P 4 0 8
200
199
203
204
V -38.50 22.00 -88.00
V -38.50 -1.50 -88.00
P 4 0 8
202
201
205
206
V 38.50 22.00 -88.00

149

V 38.50 -1.50 -88.00
P 4 0 8
204
203
207
208
V -38.50 -1.00 -88.00
V -38.50 22.00 -102.00
V -38.50 -0.50 -102.00
P 4 0 8
209
205
210
211
V 38.50 -1.00 -88.00
V 38.50 22.00 -102.00
V 38.50 -0.50 -102.00
P 4 0 8
212
207
213
214
V -40.00 22.00 -102.00
V -40.00 -0.50 -102.00
P 4 0 8
211
210
215
216
V 40.00 22.00 -102.00
V 40.00 -0.50 -102.00
P 4 0 8
214
213
217
218
V -40.00 22.00 -106.00
V -40.00 -0.50 -106.00
P 4 0 8
216
215
219
220
V 40.00 22.00 -106.00
V 40.00 -0.50 -106.00
P 4 0 8
218
217
221
222
V -38.50 22.00 -106.00
V -38.50 -0.50 -106.00
P 4 0 8
220
219

150

223
224
V 38.50 22.00 -106.00
V 38.50 -0.50 -106.00
P 4 0 8
222
221
225
226
V -38.50 0.00 -106.00
V -38.50 22.00 -130.00
V -38.50 0.00 -130.00
P 4 0 8
227
223
228
229
V 38.50 0.00 -106.00
V 38.50 22.00 -130.00
V 38.50 0.00 -130.00
P 4 0 8
230
225
231
232
V 38.50 2.00 -130.50
V 38.50 23.00 -130.50
V -38.50 23.00 -130.50
V -38.50 2.00 -130.50
P 4 0 8
233
234
235
236
V 38.50 54.00 -138.00
V -38.50 54.00 -138.00
P 4 0 8
106
237
238
107
F 0.8 0.8 0.8 0.5 0.5 0.0 0.0 5
V -38.00 58.00 -135.00
V -38.00 58.00 -3.00
V 38.00 58.00 -3.00
V 38.00 58.00 -135.00
P 4 0 9
239
240
241
242
;stairs
V -37.17 54.00 -138.00
V -37.17 54.00 0.00
P 4 0 9

151

137
238
243
244
V -37.17 55.33 -138.00
V -37.17 55.33 0.00
P 4 0 9
244
243
245
246
V -35.83 55.33 -138.00
V -35.83 55.33 0.00
P 4 0 9
246
245
247
248
V -35.83 56.67 -138.00
V -35.83 56.67 0.00
P 4 0 9
248
247
249
250
V -34.50 56.67 -138.00
V -34.50 56.67 0.00
P 4 0 9
250
249
251
252
V -34.50 58.00 -138.00
V -34.50 58.00 0.00
P 4 0 9
252
251
253
254
;stairs
V 37.17 54.00 -138.00
V 37.17 54.00 0.00
P 4 0 9
138
237
255
256
V 37.17 55.33 -138.00
V 37.17 55.33 0.00
P 4 0 9
256
255
257
258
V 35.83 55.33 -138.00

152

V 35.83 55.33 0.00
P 4 0 9
258
257
259
260
V 35.83 56.67 -138.00
V 35.83 56.67 0.00
P 4 0 9
260
259
261
262
V 34.50 56.67 -138.00
V 34.50 56.67 0.00
P 4 0 9
262
261
263
264
V 34.50 58.00 -138.00
V 34.50 58.00 0.00
P 4 0 9
264
263
265
266
;stairs
V 38.50 54.00 -137.00
V -38.50 54.00 -137.00
P 4 0 9
238
237
267
268
V 38.50 55.33 -137.00
V -38.50 55.33 -137.00
P 4 0 9
268
267
269
270
V 38.50 55.33 -136.00
V -38.50 55.33 -136.00
P 4 0 9
270
269
271
272
V 38.50 56.67 -136.00
V -38.50 56.67 -136.00
P 4 0 9
272
271
273

153

274
V 38.50 56.67 -135.00
V -38.50 56.67 -135.00
P 4 0 9
274
273
275
276
V 38.50 58.00 -135.00
V -38.50 58.00 -135.00
P 4 0 9
276
275
277
278
;stairs
V 38.50 54.00 -1.00
V -38.50 54.00 -1.00
P 4 0 9
137
138
279
280
V 38.50 55.33 -1.00
V -38.50 55.33 -1.00
P 4 0 9
280
279
281
282
V 38.50 55.33 -2.00
V -38.50 55.33 -2.00
P 4 0 9
282
281
283
284
V 38.50 56.67 -2.00
V -38.50 56.67 -2.00
P 4 0 9
284
283
285
286
V 38.50 56.67 -3.00
V -38.50 56.67 -3.00
P 4 0 9
286
285
287
288
V 38.50 58.00 -3.00
V -38.50 58.00 -3.00
P 4 0 9
288

154

287
289
290

155

Bibliography

[Allen 79]

[Amanatides 84]

[Benedetto 84]

[Benedetto 85]

[Beranek 621

[Beranek 86]

[Borish 84]

[Cohen 85]

Jont B. Allen and David A. Berkley.
Image method for efficiently simulating small-room acous-

tics.
Journal of the Acoustical Society of America 65(4):943-50,

April, 1979.

John Amanatides.
Ray Tracing with Cones.
Computer Graphics 18(3):129-35, April, 1984.
Proc. Association for Computing Machinery (ACM)

Siggraph'84.

Giuliana Benedetto and Renato Spangolo.
Statistical distribution of free pathlengths in the acoustics of

enclosures.
Journal of the Acoustical Society of America 75(5):1519-21,

May, 1984.

Giuliana Benedetto and Renato Spangolo.
Reverberation time in enclosures: The surface reflection law

and the dependence of the absorption coefficient on the
angle of incidence.

Journal of the Acoustical Society of America 77(4):1447-51,
April, 1985.

Leo L. Beranek.
Music, Acoustics & Architecture.
John Wiley & Sons, Inc., 1962.

Leo L. Beranek.
Acoustics.
American Institute of Physics, Inc., 1986.
Copyright by the Acoustical Society of America.

Jeffrey Borish.
Extension of the image model to arbitrary polygedra.
Journal of the Acoustical Society of America 75(6):1827-36,

June, 1984.

Michael F. Cohen and Donald P.. Greenerg.
The Hemi-Cube, A Radiosity Solution for Comlpex Environ-

ments.
In Computer Graphics. ACM Siggraph '85, July, 1985.
Quarterly report of ACM Siggraph, Vol. 19, Number 3.

156

[Cook 82]

[Dennett 81]

[Fujimoto 85]

[Fujimoto 86]

[Furrer 64]

[Jordan 80]

[Jurgensen 87]

[Kay 79]

[Kay 86]

[Knuth 75]

Robert L. Cook and Kenneth E. Torrance.
A Reflectance Model for Computer Graphics.
ACM Transaction on Graphics 1(1):7-24, January, 1982.
Also in ACM Siggraph'85 Conference course notes, Vol. 12.

Daniel C. Dennett.
The Nature of Images and the Introspective Trap.
Bradford Book. Imagery.
M.I.T. Press, 1981, pages 51-61.

Akari Fujimoto and Kansei Iwata.
Accelerated Ray Tracing.
In Computer Graphics Tokyo'85. Graphica Computer Corp.,

1985.

Akira Fujimoto, Takajuki Tanaka, and Kansei Iwata.
ARTS: Accelerated Ray-Tracing System.
IEEE Computer Graphics & Applications ?(?):16-26, April,

1986.

Willi Furrer.
Room and Building Acoustics and Noise Abatement.
Butterworth Inc., 1964.

Vilhelm Lassen Jordan, M.Sc., Ph.D.
Acoustical Design of Concert Halls and Theatres.
Applied Science Publishers, LTD., 1980.

Peter Jurgensen and James Anderson.
A Knowledge Representation Schema for Design Support

Systems
Computer Resource Laboratory at the School of Architecture

and Planning, Massachusetts Institute of Technology,
Cambridge, MA, 1987.

Douglas S. Kay and Donald Greenberg.
Transparency for Computer Synthesized Images.
Computer Graphics 13():158-164,, 1979.

Timothy L. Kay and James T. Kajiya.
Ray Tracing Complex Scenes.
Computer Graphics 20(4):269-78, August, 1986.
Proc. ACM Siggraph'84.

Donald Knuth.
Computer Science and Mathematics.
American Scientist 61():709,, 1975.

157

[Nishita 85]

[Phong 75]

[Pylyshyn 81]

[Rogers 85]

[Schwartz 81]

[Wayman 80]

[Weghorst 84]

[Whitted 80]

[Whitted 85a]

[Whitted 85b]

[Wojtowicz 86]

Tomouki Nishita and Eihachiro Nakame.
Continuous Tone Representation of Three-Dimensional Ob-

jects Taking Account of Shadows and Interreflection.
In Computer Graphics. ACM Siggraph '85, July, 1985.
Quarterly report of ACM Siggraph, Vol. 19, Number 3.

Bui-Tong Phong.
Illumination for Computer Generated Images.
Communications of the ACM 18():311-17, , 1975.

Zenon Pylyshyn.
The Imagery Debate - Analog Media versus Tacit Knowledge.
Bradford Book. Imagery.
M.I.T. Press, 1981, pages 151-206.

David F. Rogers.
Procedural Elements for Computer Graphics.
McGraw-Hill Book Company, 1985.

Robert Schwart.
Imagery - There's More to It Than Meets the Eye.
Bradford Book. Imagery.
M.I.T. Press, 1981, pages 109-30.

J. L. Wayman.
Computer simulation of sound fields using ray methods.
PhD thesis, University of California, Santa Barbara, July,

1980.

Hank Weghorst, Gary Hooper, and Donald P. Greenberg.
Improved Computational Methods for Ray Tracing.
ACM Transaction on Graphics 3(1):52-69, January, 1984.

Turner Whitted.
An Improved Illumination Model for Shaded Display.
Communications of the ACM 23(6):343-49, June, 1980.

Turner Whitted and Rob Cook.
A Comprehensive Shading Model.
In Image Rendering Tricks. ACM Siggraph '85, July, 1985.
Conference course notes, Vol. 12.

Turner Whitted.
Simple Ray Tracing.
In Image Rendering Tricks. ACM Siggraph '85, July, 1985.
Conference course notes, Vol.12.

Jerzy Wojtowicz and William Fawcett.
Archictecture: Formal Approach.
Academy Editions, 1986.

158

[Yamaha 86] Sound Field Creation, The Yamaha DSP-1
Yamaha, 1986.

159

