
Hairy Brushes in
Computer-Generated Images

by

Steve Strassmann

S.B., Computer Science
Massachusetts Institute of Technology

Cambridge, Mass.
1984

SUBMITTED TO THE DEPARTMENT OF ARCHITECTURE
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS OF THE DEGREE

OF

MASTER OF SCIENCE

AT THE MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1986

@1986 Massachussetts Institute of Technology

Signature of the Author
.. .....................................................

Steve Strassmann
Department of Architecture

May 16, 1986

Certified by
. . . . . . .. . .. s.. . ..... .....

David Zeltzer
Assistant Professor of Computer Graphics

Accepted by
.......................................................

Nicholas Negroponte
Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

mAY 29 1986



Hairy Brushes in
Computer-Generated Images

by

Steve Strassmann

Submitted to the Department of Architecture on May 16, 1986 in partial
fulfillment of the requirements of the degree of Master of Science.

Abstract

Paint brushes are modeled as a collection of bristles which evolve over
the course of the stroke, leaving a realistic image of a sumi (Japanese wa-
tercolor) brush stroke. The major representational units are (1) Brush: a
compound object composed of bristles, (2) Stroke: a trajectory of position
and pressure, (3) Dip: a description of the initial condition of a class of
brushes, and (4) Paper: a mapping onto the display device. A modular
system allows experimentation with various models of ink flow and color
change. By selecting from a library of brushes, dips, and papers, the stroke
can then take on a wide variety of expressive textures.
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Chapter 2

Introduction

The "brushes" used in conventional computer painting systems are far sim-

pler than real paint brushes. Usually no more than automated rubber

stamps, they build up images by placing repeated copies of some static

or simply derived pattern. Some systems offer "airbrushes," which simulate

a spray of ink by painting pixels in a circular region around the brush.

This thesis describes an investigation into a far more realistic model of

painting. The image left by a sopping wet brush or crumbly crayon dragged

erratically across a sheet of textured paper can be generated by a represen-

tation which keeps track of the physical properties of the materials. This

work is useful not only to artists who want to paint intractively, but also

for automated rendering of natural (or non-realistic) scenes. As techniques
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2.1. PREVIOUS WORK

like ray-tracing extend the ability of computers to render scenes with photo-

graphic exactitide, there will be a complementary advancement of techniques

which allow computers to suggest scenes with artistic abstraction.

2.1 Previous Work

In Whitted [12], an unchanging anti-aliased image is dragged to draw a

smooth glossy tube. Paint systems using input devices with three or more

degrees of freedom (say, position and pressure) allow the user to vary some

parameter of the brush pattern (say, radius or hue of a solid circle) as they

paint. Lewis [5] describes stochastic and frequency-domain representations

of texture, but these techniques do not adequately render the effects at the

boundaries of discrete strokes.

Greene [4) describes an input device called the "drawing prism" which

digitizes the image of a real brush (or other object) making optical contact

with a transparent prism. Although the resulting images are realistic, the

system has no representational abstraction higher than the pixel level. The

system described in this thesis simulates a brush stroke using a hierarchy of

representation, allowing repeatability and experimentation at many levels

of control.

9



CHAPTER 2. INTRODUCTION

2.2 Sumi-e Painting

This research was inspired by the traditional Japanese art known as sumi-e.

Pronounced soo-me-ay, it comes from the Japanese words "sumi," the

black ink used in calligraphy, and "e," meaning picture. Sato's work [8]

has many examples and discusses the history, symbolism, and techniques of

traditional and modern sumi-e. It includes the famous Mustard Seed Garden

Manual of Painting, a compendium of 1000 years of sumi-e experience and

technique first published in China in 1679:

Although there are a wide variety of sumi-e painting styles, one seems

a particularly good candidate for computer simulation. Paintings in the

bokkotsu style are characterized by a few well-placed strokes on a light back-

ground. Pictures with hundreds or more strokes may become practical some

day, but for now bokkotsu sumi-e is appealing as a model because evocative

pictures may be made in black and white, and with only a few strokes. The

bokkotsu style emphasizes the quality of each stroke; this focuses the at-

tention on the processes and materials involved in the construction of each

stroke.

An example of computer-generated sumi-e can be seen in Fig. 2.1. The

picture comprises 17 strokes, each defined as a spline with between 3 and

10
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12 CHAPTER 2. INTRODUCTION

8 control points. It is anti-aliased, and was generated on an 8-bit deep

640 x 480 pixel frame buffer. The design was drawn free-hand, interactively,

using a mouse, after looking at some examples of similar paintings.



Chapter 3

The Representation

The key to a successful implementation is choosing the right representation.

In attempting to simulate brushes, there is a broad spectrum of possible

representations, ranging from the simple to the complex, which would have a

corresponding degree of realism and computational expense. In this chapter,

I discuss the basic representational units and my reasons for choosing them.

3.1 The Objects

All of the code is written in Zetalisp using flavors, an object-oriented pro-

gramming style. The basic representational units are therefore flavors, or

classes of objects. This creates a useful modular abstraction which allows

13



CHAPTER 3. THE REPRESENTATION

the user to deal with the many parameters of drawing in a managable and

structured hierarchy.

They are:

1. Brush - a compound object composed of bristles

2. Stroke - a trajectory of position and pressure

3. Dip - a description of the initial state of a class of brushes

4. Paper - a mapping onto the display device

Bristles, which do a lot of the work of the brush, are also objects in their

own right, but their description and definition is intimately connected with

that of the brush.

3.1.1 The Brush

A brush can be thought of as a collection of bristles, each of which has

its own ink supply and position relative to the brush handle. In the simple

case, each bristle is a simple shape (dot or rectangle) in a regular one or two-

dimensional lattice. In more complex brushes, the bristles may move relative

to each other, so each must explicitly store its position and orientation

relative to the brush's center. As the brush is moved through the trajectory

specified by the stroke, two periodic computations are performed:

14



3.1. THE OBJECTS

" The state of each bristle is updated.

Updating the bristles consists of evaluating one or more code fragments

("rules") which modify the color, ink quantity, relative position, or

other property for each bristle.

" An image computed from the bristles is transferred to the paper.

Typically, each bristle independently contributes an image (usually a

one-pixel dot) to the patch. A single bristle contributes to the im-

age only if. two conditions both hold: it is applied to the paper with

sufficient pressure, and it has ink remaining. A droplet of ink corre-

sponding to that bristle's color at that point in time is added to the

paper by sending a message to a paper object (see Sect. 3.1.4).

Each bristle has a color: for sumi the color is simply a shade of gray,

represented as a fraction between 0 and 1. It is assumed that all the

ink on a given bristle is of the same color; however, neighboring bristles

may be of different colors.

Since the details of how I implemented bristles have changed three times,

the actual arrangement of the bristles for each implementation is discussed

separately in Chapter 4.

15



CHAPTER 3. THE REPRESENTATION

3.1.2 The Stroke

A stroke is a set of parameters (e.g. position and pressure) which evolve as

a function of an independent variable. This may be thought of as elapsed

time, or the distance along the stroke; any monotonically increasing variable

will do. I call this variable "time", and represent it with the symbol S (since

T already has a special meaning in LISP). Its value is an approximation of

the distance along the stroke.

Since there is no special input hardware (other than a keyboard and a

mouse) currently attached to our Lisp machines, the shape of the stroke is

determined by a spline of 2D coordinates specifed using the mouse, clicking

once to specify each control point. For each control point, the user can

specify the pressure manually with the keyboard. The spline itself is a

connected series of line segments sufficiently small to give the illusion of a

smooth curve.

Position and pressure samples and the splines derived from them are

stored in the "stroke" object. The user can edit an incorrect stroke, or

select a different brush or dip for the same trajectory.

16



3.1. THE OBJECTS

3.1.3 The Dip

In traditional Oriental painting and calligraphy, a complex texture of color

and uneven distribution of ink can be applied to the brush. This can set up

the patterns of light and darkness which can make a simple straight stroke

look like a cylindrical segment of smooth bamboo, or make a cliff rising

out of the ocean seem to be covered with moss on top. By separating the

abstraction of dip from brush, one can use the same brush for a wide variety

of strokes and effects, just as in real sumi. If one selects a particular brush

and stroke, one can experiment with different dips to achieve exactly the

desired effect.

Since moving a brush through a stroke uses up the ink and can change

the position and color of the bristles, the dip must carry enough information

to restore the brush to its initial state (or a sufficiently similar state), so

that strokes can be repeated. This can be anything from using a simple

rule to storing an explict snapshot of the state of each bristle. Such a

rule is a procedure which has access to parameters such as the position of

each bristle within the brush, or user-specified parameters like blotchiness

or smoothness. Dipping a brush executes the procedure and/or copies the

stored bristle parameters. Randomness can be introduced at the time of

17



CHAPTER 3. THE REPRESENTATION

creating the dip, and/or at each act of dipping.

3.1.4 The Paper

The paper object is responsible for rendering the ink as it comes off the

brush. As each bristle decides to imprint itself, it sends a message to the

paper indicating its position and other relevant parameters. The paper

then reacts, usually by rendering a single dot of appropriate color at the

appropriate point.

The paper concept is useful because it presents an abstraction which al-

lows the system to run on frame buffers of various resolutions and depths. An

arbitrary texture can be mapped over the stroke in several ways to simulate

textured papers (see Sect. 5.5), using an algorithm similar to conventional

texture-mapping. The paper abstraction also has the potential of modelling

such effects as the wetness or absorptive properties of real paper, but I have

not yet implemented such behavior. I discuss some of the possibilities in

Sect. 7.5.

Currently, the user can draw on frame buffers with either 1, 8, or 24

bits per pixel, at either NTSC (640 x 480) or high (1280 x 1024) resolution.

Papers of arbitrarily higher resolution can be simulated because of the super-

sampling patch provided for anti-aliasing (see Sect. 4.3.3).

18



3.2. WHY THIS REPRESENTATION?

3.2 Why This Representation?

Although I have identified four major abstractions and a host of effects

(described in Chapter 5) which can be created with them, it is still too early

to pin down their exact specifications. Rather than design a system which

exactly emulates, say, a camel hair brush dipped in a particular brand of

india ink, I chose to design a framework in which many categories of paint-

like media can be expressed.

Anyone who has ever walked into an art store can attest to the fact that -

to the novice - there seems to be a bewildering number of degrees of freedom

to control in artistic media. It is important to choose a representation that

is modular for the following reasons:

" The user can become familiar with a small repertoire of familiar tools.

For example, different brushes can be used and re-used over the same

stroke to explore various effects. A certain dip or paper, once per-

fected, can be saved for later use.

" Since the simulation is based on a modular and hierarchically organized

set of effects, aspects of the simulation can be replaced or augmented

with more sophisticated algorithmic models as they are developed.

" The same picture can be rendered at many levels of complexity, from

19



20 CHAPTER 3. THE REPRESENTATION

quick drafts to final images, by selectively "turning on" different effects

independently of each other.



Chapter 4

The Three Implementations

Although the basic idea hasn't changed, I went through two different ren-

dering implementations before settling down on the third and current one.

In this chapter, I describe each of them and discuss their relative advantages

and disadvantages.

I think it is useful to describe the first implementation, since the no-

tion of a two-dimensional footprint is potentially more realistic than a one-

dimensional one. I include the description of the second implementation

because it aids understanding of the third implementation.

21



CHAPTER 4. THE THREE IMPLEMENTATIONS

4.1 The 1st Implementation: The 2D Footprint

When I first considered simulating the effect of a brush moving across a

page, I chose an extension of conventional "paint" systems which move a

shape across the page. If you think of this shape as a "footprint", the idea

is to move the shape through a trajectory (the stroke) a bit at a time, and

after each motion, copy the brush pattern to the frame buffer. To get a

more dynamic brush, one computes the evolution of the bristles periodically

through the stroke, changing the footprint image before each stamp.

4.1.1 Anti-aliasing the Dynamic Brush

In the case of drawing an anti-aliased image, I assumed that the bristles

are much smaller than an image pixel. I use the super-sampled patch idea

suggested in Whitted [121 for anti-aliased brush drawing, adapted for a dy-

namic brush. One can consider the brush to be moved across a virtual screen

whose resolution is some multiple (usually 1, 4 or 16) of the resolution of

the display screen. This virtual screen never needs to be created, since the

brush only affects a small patch of it at any time. At the beginning of a

stroke, an array just large enough to enclose the brush throughout the stroke

is allocated. At each point on the brush's path along the stroke, the image

22



4.1. THE 1ST IMPLEMENTATION: THE 2D FOOTPRINT

left by the brush is drawn onto the patch at high resolution. If the brush

tries to leave the region cached in the patch, the patch is moved. Values

from the trailing edge(s) are merged (by taking the average of the nxn-pixel

region) and written out onto the screen, and values from the leading edge(s)

are copied to the corresponding multiple locations in the patch. These loca-

tions are in fact the ones vacated by the old values, hence the image "wraps

around" on the patch.

The actual details of the algorithm are described in Appendix B.

4.1.2 Problems with the 2D Brush

" Rotation. One thing that was immediately apparent was the diffi-

culty of specifying the rotation of the brush image as the brush moves

through the stroke. This was partially a limitation of my input hard-

ware (a mouse), which made it very difficult to specify rotation, and

partially a question of style. I felt that the shape of the image should

rotate naturally and automatically to follow the path of the stroke, but

I couldn't think of a simple way to compute this. In practice, most of

my early images were drawn with brushes which did not rotate over

the stroke.

" Bristle Spreading. Although the implementation allowed the bristles

23



CHAPTER 4. THE THREE IMPLEMENTATIONS

to have an arbitrary position relative to the brush center, it was most

natural to arrange them in a regular square lattice. This raised the

problem of how to simulate the phenomenon of bristle spreading under

pressure. If the brush were wet, there's the question of how to fill the

gaps between bristles. If the brush were partially wet or dry, there's

the even more difficult question of how to partially fill the gaps.

* Predictability of Visual Effect. The visual effect of a two-dimensional

shape was hard to predict, since the trailing edge of the brush has the

"final say" on what image would be left on the paper. The computation

of complicated or interesting behavior in the leading edge or middle

regions seemed to be "wasted".

* 0 (N 2 ) Computation. This algorithm grows as 0 (N 2 ) where N is the

diameter of the brush. This causes the rendering to be very slow for

brushes larger than about 30 bristles in diameter.

24



4.2. THE 2ND IMPLEMENTATION: TRAPEZOIDS AND ELBOWS 25

4.2 The 2nd Implementation: Trapezoids and El-

bows

It seemed pretty obvious I should consider representing the brush as having

a one-dimensional footprint. Early on, I assumed the brush to be like a

windshield wiper that stays oriented perpendicular to the path. Since the

path is represented as a series of nodes connected by line segments, a first

approximation is to draw a trapezoid over each line segment and a tran-

sitional "elbow" at each node. The width at each node is defined by the

pressure at that node (see Sect. 5.4), and the width is constant at each

elbow, and linearly interpolated over each segment.

The brush is now changed to a one-dimensional array of bristles. The

nature of the computations performed for things like color and quantity

evolution is pretty much unaffected by the change in geometry, except that

the neighborhood of each bristle is now reduced from 4 to 2 neighbors, and

it is more practical to specify the dip using a mouse on a two-dimensional

graph.

4.2.1 Advantages over the 2D Brush

* Rotation. Rotation no longer has to be (nor can be) specified by the
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user instead, each segment of the brush's path is rendered by rotating

the brush so it stays perpendicular to the segment.

" Spreading. Spreading is accomplished by defining the width of the

brush at any point to be a function of the pressure at that point.

Since the pressure is linearly interpolated between nodes, the result is

a trapezoid connecting each pair of nodes.

" Predictability. Inasmuch as one knows the state of the bristles as they

evolve, one can predict the image they would leave behind, since it is

not complicated by many bristles writing over the same region of the

paper.

* O (N) vs. O (N 2 ) Computation. The rendering for brushes of all sizes

is significantly faster, and using very large brushes is practical.

4.2.2 The Algorithm

For an explanation of the notation not described here, see Appendix B.

I still keep the two-step process of moving and evolving the brush, then

transferring an image from the brush to the paper. The complexity now lies

in the problem of moving the brush. It is important to note that conventional

polygon-filling algorithms are not useful to me here. This is because I need

26



4.2. THE 2ND IMPLEMENTATION: TRAPEZOIDS AND ELBOWS 27

to draw each pixel in chronological order in order to capture the evolution

of the bristles as they moved along the stroke. The path of the brush is

computed as follows:

1. Specify the stroke path in the same way

sented as the n points (x, y, p, s)i for i =

2. The brush's center moves along the line

utive points (x, y)-. Let's call three such

as previously. This is repre-

0, . .. , (n - 1).

segments connecting consec-

points A, B, and C.

3. The brush sweeps over the trapezoid over AB, drawing a slice at a

time, then (if there is a C) it pivots through the elbow over B. Before

each move, the bristles are allowed to evolve.

4. The brush's image on the paper is a line segment, swept through a

line segment. These lines are computed by a version of Bresenham's

algorithm [7, p. 40] which I call "dense" Bresenham's [Fig. 4.1].

It's effectively the same, except that, in traversing the line, only one

coordinate at a time is allowed to change from one pixel to the next.

This helps ensure the brush covers more of the paper.

Anti-aliasing is handled the same way as described above. The bounding

box of the brush is a square whose side is the width of the brush at p = pm 2.
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Figure 4.1: Rasterizing a line using (A) Bresenham's algorithm (B) "Dense"

Bresenham's.

The brush is always centered in the bounding box.

The trapezoid doesn't actually extend from A to B, because that would

overlap with the elbows. Instead, auxiliary points are determined (as shown

in [Fig. 4.21). These points must satisfy the following constraints:

" If AB is the first segment of the stroke, A = M.

" If AB is the last segment of the stroke, N = B, and there is no elbow.

" E H I AB

" FG I AB

e IG I BC

e M bisects EH

* N bisects FG
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* BU is the width computed from the pressure at B

e N B= BO

F I
E

C

Figure 4.2: Construction of the trapezoid EFGH and elbow FGI.

Care must be taken to detect and handle the case in which the elbow

turns the other way.

4.2.3 Problems with Trapezoids and Elbows

The main problem was coverage. No matter how hard I tried, there were

pixels on the page that were not covered by the brush.

* If the region covered by a brush is a line (determined by Bresenham's

algorithm), and it sweeps out a path which is a line, then there are

missing pixels in positions which are function of the orientation of the

brush. This results in bizarre artifacts. For example, moving a brush

along a horizontal path leaves an image twice as dark as a 450 path
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II

A B

Figure 4.3: A brush swept horizontally gets

it misses half of them.

all the pixels. Swept diagonally,

Figure 4.4: A brush whose width changes misses pixels.

[Fig. 4.3]. I tried to solve this by defining the path, then the brush,

as a line drawn using "dense" Bresenham's.

o Even using a dense Bresenham's algorithm, there are occasionally

missed pixels as the brush changed width. These artifacts arise when

the jaggies of consecutive brush images don't coincide neatly, as shown

in [Fig. 4.4].

o Similar artifacts arise when the elbow is drawn. One solution is to

actually double the thickness of the brush's image (e.g. going back to

X. XX
X;Z

I 'A I I I I I

A

A
A I I

.X

L L I U

LLLL1
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a 2D image). Then, if it is rotated, the liklihood of missing a pixel is

lessened.

9 The computation of the trapezoid corners and the elbow is rather awk-

ward, especially for paths of high curvature. It is very difficult to sat-

isfy the constraints mentioned in Sect. 4.2.2 with a simple algorithm.

Instead, the code that computes the corners is a messy labyrinth of

special cases and approximations that have not been proven valid for

all possible strokes.

4.3 The 3rd Implementation: Polygons

The idea for the final implementation was suggested by Karl Sims, a fellow

graduate student at the Media Lab. Karl had implemented a generalized

polygon interpolation algorithm (10] for use with such rendering algorithms

as Phong and Gouraud shading. Given a polygon with V vertices, and a

N-dimensional vector value at each vertex, it generates the following:

" A list of all the pixels contained by that polygon.

" For each pixel, an N-dimensional vector which is the linear interpola-

tion of the values at each of the V vertices.
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In addition, the algorithm had the desirable property that if two such

polygons shared a common edge, every pixel along that edge belonged to

one and only one polygon.

4.3.1 Advantages over Trapezoids

There is a subtle reason why this algorithm is profoundly better than the

previous two. In the previous implementations, the question I would ask

was

Here's the brush. Now, what pixels does it draw onto?

My frustration arose from not being able to always identify all the pixels

which should have gotten drawn. This was manifest as various kinds of

aliasing artifacts and wasted computation. The correct way to phrase the

problem is:

Here are the pixels. Now, what part of the brush did they get

drawn with?

The rephrasing is similar to the idea in ray-tracing of working back from

the eye to the light source, not the other way round. Here are a few more

advantages of the third algorithm:
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" In addition to eliminating the artifacts of missing pixels, this imple-

mentation provides for a better level of abstraction. Since the pixels

"look up" the brush, it becomes easy to separate the concept of brush

size in bristles from brush size in pixels.

" Every pixel along the brush path is sorted and drawn chronologically.

This makes the rendering seem more intuitive to the casual observer,

and if it were accellerated (using faster hardware) enough for an in-

teractive system, it would give the user a real 'feel' of the ink flowing

from a brush.

" Drawing the pixels in chronological order also guarantees that effects

which depend on the order in which the ink is drawn can be used.

" Every pixel is drawn on exactly once (unless the stroke doubles back

over itself), and exactly one bristle is responsible for each pixel. Al-

though this may not be true to reality, it is a sufficiently good approx-

imation that realistic images can be generated. Since the essence of

the trailing edge of a brush is compiled into the state of a single row

of bristles, it is easier to understand and predict the resulting image.
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4.3.2 Algorithm

The idea is very similar to the previous one. The path is split up into nodes

specified by a sample of position and pressure. Between each pair of nodes

(called A and B), a segment (AB) is created. If AB is not the last segment,

the next point is called C.

For each segment, a quadrilateral (EFGH) is constructed which has the

following properties [Fig. 4.5]:

" A bisects EH

e B bisects FG

" EH is the width computed from the pressure at A

" FG is the width computed from the pressure at B

e FG bisects ZABC.

F

E B

C

G

H

Figure 4.5: Construction of the polygon for the 3rd algorithm.
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One exceptional case is when the lines EH and FG actually intersect

[Fig. 4.6]. This can happen if AB is relatively short compared to the width

EH. Since the polygon interpolation algorithm insists on being handed

vertices in clockwise order, one cannot simply pass on the quadrilateral

EFGH. I call this the "bow-tie" case, and I handle it by partitioning the

bow tie into two triangles, and rendering each one independently. Note that

one cannot simply swap the offending vertices, since the chronological order

of the vertices must be preserved.

F.

A

H

G

Figure 4.6: The annoying bowtie case.

Once the polygon's vertices are found, three properties are generated for

each pixel using 2D interpolation algorithm.

1. Its position on the frame buffer (X, Y). This is generated in the course

of the interpolation.

2. Its position along the stroke (S). This is done by interpolating (SA, SB, SB, SA)

on polygon EFGH.
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3. Its position across the brush (B). This is done by interpolating (1, 1, 0,0)

on polygon EFGH.

As the pixels are generated, they are sorted chronologically (by S) into

a temporary array of length (SB - SA). Then, as the brush moves and

updates, all pixels belonging to that portion of the stroke can be drawn.

For each pixel, its abstract brush position B (where 0 < B < 1) is used to

determine the nearest responsible bristle(s).

4.3.3 Anti-aliasing

As in the previous two implementations, anti-aliasing must be done with

supersampling, since the brush could theoretically change anywhere, at any

time; i.e. every pixel could be an edge. Instead of using a scrolling patch,

though, a much simpler patch is used. Since it is assumed that the areas

covered by the bounding boxes of consecutive polygons do not overlap much,

the complexities of scrolling are omitted.

" For each polygon, a patch the size of the polygon's bounding box,

scaled by R, is dynamically allocated.

" The corresponding region is scaled and copied from the screen to the

patch.
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" The polygon is drawn onto the patch at high resolution.

" The patch's contents are scaled down (by local averaging) and copied

back to the frame buffer.

4.3.4 Efficiency

The computational time consumed by the algorithm can be separated into

two parts:

" The serial part; this is the computation of the stroke geometry, e.g.

computation of the polygon vertices and edges.

" The parallel part; this can be broken into two parts:

- Each bristle executes the evolution rules to determine its next

state.

- Each pixel consults the brush to determine what color it should

become.

From running several informal timing benchmarks, it seems that about

90% to 99% of the computation on a serial machine is occupied by the

parallel part of the algorithm, except for pathologically small strokes and

brushes. Thus, although the polygon-vertex computation seems complex, it

occupies an insignificant amount of time compared to the rendering.
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Of the parallel part, the ratio of time between the two parts is very much

a function of how big the brush is, as measured both in bristles and in pixels.

Another important factor is the complexity of the evolution rules.

These results are encouraging for an implementation on a parallel pro-

cessor that will take advantage of the inherently parallel computation being

performed, and make real-time computer brush painting a reality.



Chapter 5

Effects

In this chapter, I will describe some of the effects one can control by changing

different parameters of the simulation. Although there may seem to be a

bewildering myriad of parameters to control, it's important to recognize that

each parameter has an intuitively recognizable function, and its effect on the

image can be appreciated with a minimum of experimentation.

5.1 Ink Quantity

The ink supply on each bristle is assumed to be a reservoir of a finite quantity

of fluid, which gets replenished each time the brush is dipped. The quantity

is decreased as the brush moves through the stroke, and eventually the
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bristle runs out. When the quantity drops to zero, that bristle no longer

contributes to the image on the paper.

If a scratchy breakup at the tail of each stroke is desired, the dip should

put just the right amount of ink on the brush, including selecting a few

bristles to be short-changed so they run out early [Fig. 5.1]. If the stroke is

known at the time of the act of dipping, its length is used to help determine

the quantity of ink deposited on the bristles. There are parameters which

control how many bristles get short-changed, and by how much, either as a

fraction of the total stroke length or in units of absolute distance.

5.2 Ink Color

Each bristle has a color: for sumi the color is simply a shade of gray, rep-

resented as a fraction between 0 and 1. It is assumed that all the ink on a

given bristle is of the same color; however, neighboring bristles may be of

different colors.

The distribution of color across the brush may be specified as constant,

or a linear ramp from one value to another, or as an explicit list of arbitrary

values [Fig. 5.2]. Although this distribution must be specified for the begin-

ning of the stroke, there are several ways of thinking about how the color
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A

________'~Y~

B

C

Figure 5.1: Different quantities: (A) A wet brush (B) 50% of the bristles

are approx. 33% dry. (C) 75% of the bristles are approx. 50% dry.
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evolves over the stroke:

" A distribution is specified for both the start and end of the stroke. At

any point in the middle of the stroke, the color of a given bristle is

linearly interpolated between the starting and ending values specified

for it [Fig. 5.3]. This idea may be extended to generalized distribution

samples at arbitrary points in the stroke.

" From the starting distribution, diffusion may be simulated by smooth-

ing the colors of neighboring bristles [Fig. 5.4]. Each bristle updates

its color according to a partial interpolation. For example, if

- Ci, is the color on the ith bristle at time t,

- D is a speed-of-diffusion parameter between 0 and 1 (1 is rapid

diffusion),

- and the bristles are assumed to be regularly spaced,

Then Ct,1 = C1 ,(1 - D) + ('-_' + D.

" A generalized evolution algorithm can be supplied [Fig. 5.5). The

color on a bristle may be a function of brush pressure, distance from

the origin, or even the quantity of the ink remaining (see Sect. 5.3).
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A

B

C

Figure 5.2: Different colors: (A) Constant (B) Linear (C) User-specified
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A

B

Figure 5.3: Color Interpolation: (A) Start/end interpolation from one ramp

to another (B) Interpolation from spike to notch.
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A

B

Figure 5.4: Color Diffusion: (A) Fast diffusion (D = .5) (B) Slow diffusion

(D = .1)
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A

B

Figure 5.5: Evolution Rules: (A) Random evolution of color (Brownian) (B)

"Ink stealing" evolution of quantity
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In addition to or instead of the above phenomena, a pattern can be

texture-mapped onto the stroke (see Sect. 5.5).

Once the color of the ink on the bristle is decided, the color to place

on the paper must be computed. The paper may already be colored due to

either the paper's natural texture or previously deposited ink. The user may

supply a color combination function of two or three inputs to be evaluated

each time a given bristle attempts to draw on a particular pixel of the paper;

the inputs are the ink color (Ci), the color of the paper at the point to be

drawn upon (C,), and an optional value derived from the texture-mapping

array, if there is one.

For sumi the default function used is a very simple one: the darkness

at the intersection of several strokes is assumed to equal the darkness of the

darkest stroke (e.g. C,Pi = max (C,, C,,))

5.3 Evolution of Quantity and Color

Jostling of neighboring bristles sometimes transfers ink among them; this

affects both the quantity and color of the bristles concerned. This is modeled

by thinking of the brush as a cellular automaton [13] with a small procedure

(rule) for quantity and color transfer. As the brush moves across the page a
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bit at a time, all bristles repeatedly execute the same rule, which can refer to

the parameters of each bristle and its immediate neighbors. It may compute

a new value for any of that bristle's parameters and modify it accordingly.

For example, one rule can allow a near-dry bristle to run out of ink, then

temporarily "discover" a new supply (either by stealing from a neighbor, or

just conjuring it out of nowhere) to create islands of ink and whitespace in

the middle of the stroke {Fig. 5.5, (B)). Incorporating an element of random-

ness into the rules can give rise to rich textures. On the other hand, avoiding

randomness may be necessary in applications like some kinds of animation,

where the user wants the complex texture of stroke to be consistent from

frame to frame (see Chapter 6).

5.4 Pressure

The pressure on a particular bristle is a function of the geometry of the

brush and the overall pressure on the brush at a certain point in the stroke.

Changing the applied pressure during the stroke can have two different

kinds of effects:

* Spreading. Pressing harder can spread the bristles further apart.
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* Contact. Pressing harder can bring more bristles into contact with the

paper.

Under spreading, each bristle's distance from the brush center is an

arbitrary function of the applied pressure. By default, distance is linearly

proportional to pressure, but some interesting effects can be demonstrated

by exploring other relationships {Fig. 5.6].

One can also consider that greater overall pressure brings more bristles

into contact with the paper [Fig. 5.7]. A value is assigned to each bristle

which represents the minimum brush pressure necessary to bring it into

contact with the paper. For example, to simulate a round brush of radius

1, each bristle gets a pressure-threshold proportional to the arcsine of its

distance from the center of the brush.

Intermittent contact with the paper near the pressure threshold is sim-

ulated by adding a rule which causes perturbations (either overall, or for

individual bristles) in two parameters:

" Changing the brush's pressure implies one's hand is oscillating.

" Changing the the pressure-threshold of a bristle implies the geometry

of the brush is changing.

Although these parameters have different meanings, the image ultimately
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B

C

Figure 5.6: Spreading under pressure: (A) Constant width (B) Width oc

pressure (C) Width quantized by user-supplied function
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A

B

C

Figure 5.7: Two interpretations of pressure: (A) More pressure spreads bris-

tles (B) More pressure brings more bristles into contact (C) A combination

of these two effects.
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depends on the difference between them; so it doesn't matter which modified

as long as one is consistent. A more realistic test for determining contact

might take into account the orientation of the brush and hysteresis (sticki-

ness).

5.5 Texture Mapping

Some interesting effects can be realized by mapping a texture onto the image

of the stroke [Fig. 5.8]. There are at least two ways of computing the

mapping:

" A rectangular array representing the texture of the paper is mapped

by a straightforward flat tiling. When a bristle attempts to draw ink

of a certain color on a given pixel, the array element corresponding to

that pixel is used.

" A one or two dimensional array is mapped along the long axis of the

stroke (this is only used in the implementations where the brush has

a one-dimensional footprint). The array element used corresponds to

how far along the stroke the brush has travelled. For example, a simple

1D texture (say, a sine wave) mapped onto a curvy stroke gives the

impression of banding similar to a raccoon's tail. If the texture map
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5.5. TEXTURE MAPPING 53

is two-dimensional, the bristle's radial distance from the brush center

is used to compute the array index in the second dimension.

Once a value is supplied by the texture array, it is used in the user-

supplied color combination function (see Sect. 5.2). For sumi the texture

value is a number (usually a fraction between 0 and 1) which is multiplied

by the ink color to selectively attenuate it before applying it to the paper.
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A

C

D

Figure 5.8: Texture mapping: (A) Textured paper (B) Textured by smi-

ley-face paper (C) Texture mapping with spreading bristles (D) Texture

mapping with pressure-threshold bristles.
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Chapter 6

Animation

One of the most important motivations for this work is the hope that creat-

ing reproducible brush strokes will allow paintings to be animated. I have

made some preliminary experiments, animating a few single strokes and a

scene comprised of 17 strokes. The reader can see one of these animations

(admittedly in a very small scale) by flipping the corners of this thesis.

6.1 Terminology

Due to the possibility of confusion, I try to use the following terminology

consistently when discussing animation:
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" Motion. In drawing a single stroke, the brush moves across the page.

This can sometimes be confused with the motion of an animated figure.

- Brush Motion. This is the act of drawing a single stroke. After

several brush motions are completed you have a still painting.

- Stroke Motion. This is the animation of a stroke as it changes

during a movie. If one stroke represents a person's moustache,

then stroke motion would be the motion of the moustache as the

characters chews some food.

" Structure. In animating paintings, some new terms must be introduced

to resolve the ambiguity in the concept of an "object".

- Elements. Several strokes form an element. Higher order ele-

ments can be created by combining other elements.

- Configuration. A stroke or an element retains its identity over

several frames. In any given frame, it has a specific configura-

tion. A stroke's configuration is the location and pressure of each

control point. An element's configuration is a set of operations

(usually a linear transformation) to be performed on all compo-

nents of that element.
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6.2 2D Keyframing

The code supporting animation right now is rather crude. It is basically

a two-dimensional keyframing system written by myself which allows the

user to specify the key configuations of a stroke. The position and pressure

of each control point of the stroke is interpolated between the key frames,

using a spline for non-periodic motion and a generalized sinusoid for periodic

motion. The same brush and dip is used for any given animated stroke.

6.3 Test Animations

The tests consist of three 8-second (240 frame) animations recorded on an

Ampex 1" videotape recorder. Each took a little under 1.5 minutes per

frame (or 5-6 hours per test) to render. For each test, the same stroke was

used, moving through the same configurations. All brushes were 140 bristles

wide, covering a region approximately 500 by 100 pixels in area, and were

rendered without anti-aliasing to save time. The following brush/dip pairs

were used:

A smoothly interpolated set of gray values (see Fig. 5.2 C). This

was especially pretty, although it didn't look like it was drawn with a

brush. Instead, it looked like a leaping salmon or excited flatworm.
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* A partly dry brush with stochastic quantity-sharing rules (see Fig. 5.5

B). This didn't turn out so well, since the random number generator

controlling the sharing of ink did not use the same seed from frame to

frame. Hence, the raggedy trailing edge of the stroke flickers badly as

the animation is played back.

This was particularly disappointing, since I'm particularly fond of just

such artifacts in hand-drawn animations using charcoal, chalk and

other such media. An earlier very low-resolution animation, played

back at about 4 frames per second actually looked far better, since

its "chunkiness" supported the perception of dynamic charcoal. In

the future, it would be best to try to ensure more frame-to-frame

consistency of each element, and avoid rapid motion of elements with

high spatial frequencies.

* A texture mapped brush (see Fig. 5.8 C). This resulted in a very

appealing animation, partly since the pattern chosen (a smiley face)

was humorously deformed as the stroke underwent squash and stretch.

" A randomly colored brush (see Fig. 5.5 B). The seed of the random

number generator used to determine the evolution of the brush color

along the stroke was reset at the beginning of each configuration, so
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that the color was consistent from frame to frame. This turned out

to help make this one of the prettier strokes, although there was still

some flickering moird patterns due to the fact that the frames were

not anti-aliased.

All of the tests demonstrate a plasticity markedly missing from con-

ventional computer animation. Although the test strokes are non-repre-

sentational, their smoothly flowing motions remind some viewers of shifting

eyebrows, worms, or flexing muscles. These results, are very encouraging for

using brushes for rendering animals and other natural subjects.

6.4 Flip Animation

The reader can view an animated brush stroke by flipping through the im-

ages in the right hand margin of this thesis. The animation is one complete

cycle of a 40 frame periodic motion similar to that used in the test ani-

mations. The brush is partly dry, and uses the stochastic quantity-sharing

rules with the same random seed at the beginning of rendering each frame.

This results in good frame-to frame consistency. The stroke has four con-

trol points sinusoidally interpolated between two configurations, where the

phase of each control point along the stroke lags by E behind the point to
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its left.

6.5 The Animated Shrimp

The shrimp shown in Fig. 2.1 was animated using a Sony write-once video

disc recorder. The scene was derived from four key frames, spline interpo-

lated over the total 92 frame sequence. Each frame took about one minute to

render. With the antennae and legs waving around, the tail kicking, and the

ripples flowing away from the leaf, the resulting animation is very lifelike.
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Further work:

7.1 Better Input Methods

Without an input device as expressive as a real brush, the current environ-

ment isn't very user friendly. There are many kinds of input devices offering

three or more degrees of freedom which might be adapted for manually en-

tering strokes. At the MIT Media Lab, we are exploring force sensitive

touch-screens [6], LED-based body trackers [3], and magnetic pointing de-

vices [9]. Other possible input devices include touch-sensitive tablets [2] and

the drawing prism [4].
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7.2 Better Rendering Hardware

With the advent of parallel computers, the drawing of the most sophisticated

of strokes should be possible in real time. This is because almost all of the

computation in the algorithms described here are local, that is, dependent

only on an immediate neighborhood of bristles or pixels, and thus is well-

suited to implementation on machines using parallel architectures.

7.3 Exploring Rules

More experimentation is needed to build a good-sized library of rules. Hope-

fully, subjective properties like "blotchiness", "dryness", or "clumpiness"

can be controlled by adding a rule and setting a parameter or two. New

kinds of rules will result in innovative brushes, as well as realistic models of

traditional watercolor brushes.

7.4 Real Color

For simplicity, I stayed with monochrome ink even though the frame buffer

I used has full 24 bit color. A useful extension would be to allow the user

to experiment with a virtual brush laden with various colors. A more com-

plicated rule would describe the behavior of paint mixing. Real electronic
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paint can change color as a function of thickness of application or chemical

reaction with the brush, paper, or other strokes. Gooey paint drips and

mounds up in ridges left by clumps of bristles.

7.5 Paper Effects

The wetness and absorptive properties of the ink or paper can be described

by specifying the area of the paper covered by each bristle, and an ink

redistribution function associated with the paper. The former corresponds

to the pre-filtering and the latter to post-filtering steps in anti-aliasing. In

addition to the usual blurring (low-pass filter) operations, one could use

a simple asymmetrical fractal to simulate the little forked bleeding that

capillary action sometimes causes on dry papers.

7.6 Splatter

A bit of splatter from a heavily-laden brush with stiff bristles pulled briskly

around a corner might be represented as a rule which gets activated when the

brush velocity or accelleration surpasses a certain threshold. It then places

a fractal distribution of splattered, fuzzy dots on the paper as a function of

the ink supply, trajectory, and pressure on the brush.
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7.7 Music and Painting

An appealing analogy to the stroke is the contour of a musical note over time.

Each stroke is a set of time-varying parameters (like position and pressure,

or loudness and timbre). A cluster of strokes can evoke a recognizable image,

much as a collection of notes create a chord or arpeggio.

Occasionally, when I am asked about the limits of realism in my sim-

ulation, I am reminded of similar questions asked of builders of electronic

instruments. The answer, of course, is that there is room in electronic me-

dia for both accurate reproduction of physical phenomena, and for creative

exploration with totally new forms of expression which take advantage of

the differences inherent in the new media.

7.8 3D Strokes

Perhaps the strokes themselves can be liberated from the 2D quality of

paper, and a technology of 3D paintbrushes can be realized. Non-computer

techniques come to mind, including sweeping a lit taper through a room to

leave a trail of smoke, or "drawing" in an aquarium filled with a viscous

gel using a long hypodermic filled with ink. All the issues of describing the

evolution of texture through the stroke remain. With stereoscopic displays
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[9] or computer-generated holograms [1], one will be able to create tenuous

sculptures far more delicate than currently possible. One could even imagine

folding translucent paper into origami shapes which define plane fragments

on which these brush strokes lie.
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Chapter 8

Conclusion

To get realistic brush strokes, one must simulate the phenomena which gives

rise to them. The tough part is modeling the behavior of individual bristles,

which we do with rules which execute each time the brush moves. To produce

an anti-aliased image, the brush's image is drawn onto a small patch which

is sampled and incrementally copied to the page.

When an animal, plant, or river can be represented by a few deft strokes,

perhaps under some circumstances a brush representation can replace a poly-

hedral one. Whereas polyhedra are good representations of analytic objects,

and polygonal fractals are good for largely amorphous ones, there is a mid-

dle classification of things too rich for one and too structured for the other.

Given the computational complexity and storage expense of representing
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a warm, fuzzy bunny as a skeleton of faceted polyhedra covered with skin

polyhedra and particle generated hair, perhaps representing it instead as a

collection of brush strokes would result in faster rendering, more compact

storage, and a more aesthetically appealing image.
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Appendix A

How to Use the System

The prototype system is not intended to be a general-purpose paint program.

As such, it lacks most of the useful functionality and well-designed user

interface users have come to expect from paint programs. Instead, effort was

concentrated on exploring new rendering algorithms and effects. I expect

the functionality of painting with a hairy brush to be incorporated in well-

designed paint programs, an issue which is beyond the scope of this thesis.

It is important to realize that the rendering algorithm is useful not only

to users of interactive systems, but also to artists who wish to let the com-

puter derive strokes algorithmically. For example, one could animate a stand

of bamboo swaying in the breeze by appropriately perturbing the location

of the strokes composing a painting of such a stand.
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A.1 System specifics

The system runs on a Symbolics 3600 Lisp Machine with a 1280 x 1024 x 24

bit frame buffer, configured for 8-bit per pixel grayscale. All of the code

is written in Zetalisp using flavors, using an object-oriented programming

style. The rules which govern the evolution of the brush are pieces of Lisp

code ("methods" in Zetalisp) associated with a particular flavor of brush.

These rules are executed as the brush moves along its path, and the code in

them can freely refer to and modify any parameters.

For machines with color hardware, one can choose one of two different

resolutions, and either 8 or 24 bits per pixel. 8 is preferable, since-most

drawing operations are faster. Since the program uses only 256 shades of

gray, there is no advantage to using 24 bits per pixel.

A.2 Starting up

To start up the program, log into a Lisp Machine at the MIT Media Labo-

ratory, and execute

(make-system 'sumi)

This will load all the necessary files. To get to the top-level menu, type:
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(sumi)

You will be prompted to specify what kind of window you want to use

the first time you do this. Afterwards, it will re-use the same window. If

you change your mind later and want select a new kind of window, you can

get back this menu by typing:

(sumi t)

Figure A.1: Specifying what kind of window to use.

For machines with no color hardware, the sumi system will work fine on

the black and white console, except all grey values get rounded to white or

black (sort of like working with high-contrast film).

Choose the type of screen:
Current screen: 24 bit high re-soTution

24 bit high res systerm
24 bit ritsc res system

24 bit genlocked ntsc res system X
8 bit high res systerm

8 bit nt.sc systerm
8 bit genlocked ntsc systerm

B/W screen
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A.3 The command menu

Once the type of window has been specified, the command menu is displayed

[Fig. A.2].

Draw
Redraw last

Save last stroke

Refresh
Quit

Change parameters:

Brush grays
Final brush grays.
Brush quantities

Brush pressure-thresholds
Pressure-to-width lookup table
Stroke texture (along stroke)

Resize dip to brush
Misc. parameters

Figure A.2: The command menu.

A.3.1 Drawing commands

" Draw. This allows the user to specify a new stroke. See Sect. A.4.

" Redraw last. After changing the brush, the most recently drawn

stroke is erased and redrawn using the new parameters.
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" Save last stroke. The stroke and the brush used to draw it are

stored in a buffer in user-readable form.

" Refresh. Erases the screen. If a paper texture is specified, it is drawn

on the screen.

" Quit. Quits the program.

A.3.2 Vector parameter editing

The rest of the commands allow the user to change attributes of the system.

Some of them use a histogram-editor window, since they edit parameters

whose values are vectors.

By drawing with the mouse, an arbitrary mapping of, say, color to the

brush can be defined. For example, the graph of brush color in [Fig. A.31

would result in a roughly dark stroke with a skunk-like white stripe down the

middle. One useful feature is that the number of samples in the histogram

need not match the number of bristles in the brush. Many-to-one and one-

to-many mappings are defined so that any bristle which falls in between two

samples gets a value which is the linear interpolation of those two samples.

This is important, so that any one dip will work with a brush of any size.

Histogram-based parameters controllable by the user are
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" Brush grays. Specifies the color distribution on the brush at the

start of the stroke.

" Final brush grays. If path interpolation (Sect. 5.2) is activated,

this is the "destination" color distribution.

" Brush quantities. Values less than 1 "short-change" a given bristle,

causing it to run out of ink early in the stroke.

" Brush pressure-thresholds. Sets the minimum pressure necessary

for a bristle to be in contact with the paper.

" Pressure-to-width lookup table. Defines an arbitrary mapping

of pressure to stroke width.

" Stroke texture. Defines a periodic one-dimensional texture to map

onto the stroke.

" Resize dip to brush. Forces the current dip to have as many data

samples as the current brush has bristles.

A.3.3 Misc. parameter editing

Finally, miscellaneous other parameters can be changed by selecting the

Misc. parameters. command [Fig. A.4].
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A.4 Drawing

The prototype system takes up to a minute or two to render a stroke, de-

pending on brush complexity and the super-sampling ratio for anti-aliased

strokes. Although this is too slow for real-time interactive drawing, the

user enters and edits the strokes' paths interactively using a mouse. The

input consists of discrete samples of position and pressure, which are then

smoothed using a cubic spline by the rendering algorithm.

After clicking on the Draw menu item, the user uses the mouse to position

the points of the stroke with one hand, while the other hand specifies the

pressure with the keyboard.

A.4.1 Pressure specification

The Symbolics 3600 keyboard has two redundant sets of 4 modifier keys

(known as "bucky keys" or "buckies"): CONTROL, META, SUPER, and HYPER.

On the left side of the keyboard, these are ordered right to left; this is

reversed on the right side. The boolean values determined by the up- or

downness of these keys are called "bucky bits".

The user can dynamically specify 16 different levels of pressure by selec-

tively pressing combinations of the buckies. The cursor responds to this in
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real time by growing or shrinking accordingly, depending on the pressure-

to-width algorithm selected by the user.

A.4.2 Position specification

Position is specified with the mouse. The Symbolics mouse has 3 buttons,

identified as left, middle, and right. To specify control points, the user

moves the mouse to the desired position (while choosing the desired pressure

with the buckies), and then selects that point by clicking left and releasing.

Clicking right completes input and starts rendering the stroke. Clicking

middle aborts the input so far and returns the user to the command menu.

There are two different modes of quick user feedback. The stroke drawn

by both is identical, but users sometime prefer one style over the other.

* Dots. For each data point, a solid dot of appropriate radius for the

pressure is drawn on the screen at that point. The user can visualize

the final stroke as "connecting the dots."

* Polygons. As the user specifies more and more of the stroke, a series

of solid black polygons approximating the stroke are drawn on the

page. The last two polygons are "rubber-band" objects; that is, they

follow the mouse around on the screen, and get fatter or slimmer
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according to the specified pressure.

Both the dots and the polygons are drawn in exclusive-or mode so they

can be rapidly erased when input is terminated.

Both modes were chosen for their speed of drawing and depiction of

the input specified so far. Hopefully, as faster rendering hardware becomes

available, such coarse feedback can be replaced by real-time rendering of the

final stroke.
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1 -1

.. mooicith] Perturb Linearize
Pesi7e Abort Quit

Figure A.3: A histogram-editing window. On the Y axis, Black=1 and

White=0. The X axis refers to the various bristles' positions.

Change Pararmeters:
Brush size (integer): 50
Ink te-tured along stroke?: Yes No
Ink textured by paper?: Yes No
Tetured background?: Yes No
Strol--e te-.ture coefficient (0-1) : none
Paper texture coefficient (0-1): none
Background te-ture coefficient (U-1) : none
H- ial copies of stroke te-ture: 2
Radial copies of stroke texture: 1
Texture array (along stroke) : Metal Ripple Smiley
Texture array (from paper) : Metal Ripple Smiley
Execute evolut-ion rules?: Yes No
Random i ze color?: Yes No
More pressure spreads bri stl es?: Constant Linear Look up
Interpolate start/end color?: Yes No
Speed of pigment diffusion (0-1): 0.2
Spl ine accuracy (integer): 6
Use patch for drawing?: Yes No
Zoon for anti-aliasing: 3
Stroke path :election style: Polygon Dots
E -it [

Figure A.4: Editing miscellaneous parameters.
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A B

Figure A.5: Two modes of input resulting in the same splined stroke: (A)

Dots (B) Polygons.



Appendix B

Details of the 2D Brush

This is a description of the algorithm used in the first implementation.

For anti-aliased images, the brush is drawn on a virtual screen with a

resolution R times higher than the frame buffer in both axes. All dimensions

given below are in virtual coordinates unless otherwise specified. Frame

buffer coordinates are referred to as "real" coordinates. The origin is in the

upper-left corner of the screen, with x increasing toward the right, and y

increasing toward the bottom. For simplicity, it is assumed that the real

and virtual origins coincide.

1. Specify the stroke path. This is represented as the n points (x, y, p, s)i

for I = 0 -+ (n - 1). The values x, y, and p represent position and
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pressure. s is an approximation of the distance traveled along the

curve, where so = 0. The brush's center moves along the line segments

connecting consecutive points (x, y)1 , as computed by Bresenham's

algorithm for drawing line segments. This guarantees that the brush

doesn't skip over any locations.

o On a system with no continuous pressure-sensitive input device,

the path may be derived from a cubic spline with N control

points. Each point is a triple (X, Y, P)3 specifying location and

pressure at the jth point. A fourth value approximating the dis-

tance along the curve, Sj, is computed for that point.

So = 0,S = ( - Xk-1) 2 _ (y -__y 2

k=1

* From this, two 2D cubic splines are created. One comes from

(X, Y)j and generates (x, y)j, the other from (P, S), and gener-

ates (p, s).

2. Select a brush. Determine the brush's bounding box (b. x bh); this

is the maximum width and height of the brush's image as it moves

through the stroke. For example, if the size of the brush's image is

proportional to the pressure, compute the bounding box at the pres-
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sure p = max(pi). If the brush is asymmetrical and rotates during

the stroke, the box must contain the outermost bristles at all angles

of rotation.

3. Dip the brush into a dip. The dip restores the brush and its bristles

to their normal configuration.

" If the dip maintains any or all of the brush's parameters explicitly,

these are copied over to the brush. A list of bristle parameters,

if any, is used to set the corresponding values in the bristles.

" If the dip has any rules governing setting or modifying any of the

brush's or its bristles' parameters, they execute.

4. Allocate the patch onto which the brush will draw the high-resolution

image. The patch is a 2D array whose dimensions (p, x ph) satisfy

two conditions:

(a) Both p, and Ph are multiples of the super-sampling ratio R. Thus

the patch will always map onto a % x Pg region of the frame

buffer.

(b) The patch must be large enough to contain the bounding box of

the brush, with room to spare if the box's edges lie on a fraction
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of a real coordinate.

A typical example of this problem is shown in (Fig. B.1]. For this

example, R = 4, b, = 6, and bh = 8. To completely contain the

brush, the patch's dimensions must be p, = 1 2 , Ph = 12.

PW

+- r-

p1~

I
b-

Figure B.1: A 6 x 8 pixel brush requires a 12 x 12 patch.

To satisfy these two requirements, the dimensions of the patch are:

PW = + 1) R, Ph =(E1 + 1) R

As the brush moves across the virtual sheet of paper, the upper-left

corner of the bounding box remains fixed relative to the brush's center,

no matter how small or large the image gets. The following notation

is used:

bpos: The center of the brush. This moves through the trajectory spec-
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patch (virtual coordinates)

Figure B.2: Positioning the brush from [Fig. B.1].

ified in step 1 above.

b-corner: The upper-left corner of the bounding box of the brush's image.

b-center: This stays constant throughout the stroke. Equals (bpos-b-corner).

real-b-corner: The pixel (in real coordinates) which corresponds to b-corner.

bLcorner, 
Y b cornery]real-b-cornerx = [cR I., real-b-cornery = R

5. For each position b-centeri, compute the displacement

Arealb-corner = realb-corneri - real b-corneri-1

" If Areal-b-corner = (0,0), the brush's image has not crossed a

real pixel boundary. No special action is necessary.

" If Areal-b-corner # (0,0), the brush's image has crossed a real

pixel boundary. Since the path was generated using Bresenham's
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algorithm, the magnitude of the displacement is guaranteed to be

at most one pixel in the x and/or y direction. The information

contained in one real row and/or column (i.e. R virtual rows or

columns) in the patch must be written to the screen. For each R x

R region, the average gray shade is computed and written to the

corresponding screen pixel. The pixels of the newly entered row

and/or column may now be copied into the patch, by repeating

each value to cover the corresponding R x R area of the patch.

Rather than move the contents of the patch in the appropriate

direction by copying all the values, the pointer patch-origin is up-

dated to reflect the fact that the "upper-left corner" of the patch

may actually lie somewhere inside the patch array [Fig. B.3).

patch-origin is a vector in real (screen) units which describes

how much the image is wrapped around on the patch. Therefore,

to access an element of the patch array which corresponds to the

virtual location (X, Y), use

patch-array, = (X + (R)(patch-origin, - real-b-corner,)) mod p,

patch-array, = (Y + (R)(patch-originY - realb-cornery)) mod Ph.
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-1
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4

5 1 2 3 4 5 6

a b c d 6 r e - F _ e f h gIh

e f g h j k I k I k I
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m n opa b a b c a b c d C d

Origin=-(0,0) (1, 1) (2,1) (0,2) (1,3) (1,0)

Figure B.3: Scrolling the patch as it crosses the screen.

Before the very first part of the stroke can be written, the patch array

is initialized with a portion of the image on the screen. For each pixel of

the L"- x Lh region of the screen, write its value onto the corresponding

R x R region of the patch array.

6. The brush is informed of its new location, pressure, and an estimate

of how far it has travelled so far, i.e. (x, y, p, s8)j. It may now execute

any rules it has, which in turn may affect the position, color, or any

other property of the bristles.

7. Each bristle does the following:

" If it has any special rules, they get a chance to run. This includes

perturbing its pressure, ink color, ink supply, etc.

" If the ink supply is not empty, and the pressure on this particular
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bristle is greater than the bristle's pressure-threshold, it places its

image onto the patch at the point corresponding to the bristle's

virtual location (X, Y). This is the point (patch-arrayz, patch-arrayy)

on the patch which we derived above. The bristle's image is a

single pixel whose color is computed as follows:

The color of the bristle's ink, the color already on the correspond-

ing patch cell, and the value from the texture array (if any) are

passed to the color combination function. By default, if the ink

(scaled by the texture value) is darker that what was there be-

fore, then that is the new value. Otherwise the patch is left alone.

The user may supply an arbitrary color combination function.

8. Although the brush and bristles can freely refer to the paper's texture

and other properties while executing rules in the above steps, the paper

is consulted one last time. Things like blurring, clumping or growing

hairlines to simulate seepage may now take place. If the brush has

been moving at a high velocity, a spattered texture may be drawn.

9. Steps 5-8 are repeated through the stroke. After the last iteration, the

entire patch-array must be written to the frame buffer, -using the same

algorithm as in step 5 above.
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