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Abstract—It is demonstrated that codewords of good codes
for the additive white Gaussian noise (AWGN) channel become
more and more isotropically distributed (in the sense of evalu-
ating quadratic forms) and resemble white Gaussian noise (in
the sense of ℓp norms) as the code approaches closer to the
fundamental limits. In particular, it is shown that the optimal
Gaussian code must necessarily have peak-to-average power
ratio (PAPR) of order log n.
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I. INTRODUCTION

The problem of constructing good error-correcting codes

has been one of the main focuses of information and coding

theories. In this paper we investigate some of the proper-

ties that the optimal codes must necessarily posses. Such

characterization facilitates the search for the good codes and

may prove useful for establishing converse bounds in multi-

user communication problems, as well as being of theoretical

importance.

Specifically, in this paper we focus on the additive white

Gaussian noise (AWGN) channel. After introducing the no-

tation in Section I-A, we characterize the degree of isotropy

of good constellations in Section II, and the possible ranges

of ℓp norms of these constellations in Section III. Note that

studying ℓp norms is a natural mathematical generalization

of the concept of peak-to-average power ratio (PAPR), which

corresponds to p = ∞. Thus one motivation of this work is

to understand PAPR requirements of good channel codes.

A. Definitions

A random transformation PY |X : X → Y is a Markov

kernel acting between a pair of measurable spaces. An

(M, ǫ)avg code for the random transformation PY |X is a

pair of random transformations f : {1, . . . ,M} → X and

g : Y → {1, . . . ,M} such that

P[Ŵ 6= W ] ≤ ǫ , (1)

where in the underlying probability space X = f(W ) and

Ŵ = g(Y ) with W equiprobable on {1, . . . ,M}, and

W,X, Y, Ŵ forming a Markov chain:

W
f→ X

PY |X→ Y
g→ Ŵ . (2)
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An (M, ǫ)max code is defined similarly except that (1) is

replaced with the more stringent maximal probability of error

criterion:

max
1≤j≤M

P[Ŵ 6= W |W = j] ≤ ǫ . (3)

A code is called deterministic, denoted (M, ǫ)det, if the

encoder f is a functional (non-random) mapping.

A channel is a sequence of random transformations,

{PY n|Xn , n = 1, . . .} indexed by the parameter n, referred to

as the blocklength. An (M, ǫ) code for the n-th random trans-

formation is called an (n,M, ǫ) code. The non-asymptotic

fundamental limit of communication is defined as1

M∗(n, ǫ) = max{M : ∃(n,M, ǫ)-code} . (4)

In this paper we study the AWGN(P ) channel, that is

defined as a sequence of random transformations PY n|Xn :
Xn → R

n, where the n-th input space Xn is

Xn = {xn ∈ R
n :
∑

x2
i ≤ nP} (5)

and

PY n|Xn=x = N (x, In) . (6)

By [1, Theorem 54], for this channel one has for any 0 <

ǫ < 1:

logM∗(n, ǫ) = nC(P )−
√

nV (P )Q−1(ǫ)+O(log n) , (7)

where

C(P ) =
1

2
log(1 + P ), V (P ) =

log2 e

2

P (P + 2)

(P + 1)2
(8)

are the channel capacity and dispersion, and Q−1(·) is the

functional inverse of the complementary Gaussian CDF:

Q(x) =
∫∞
x

1√
2π

e−y2/2dy.

In this paper we consider the following increasing degrees

of optimality for sequences of (n,Mn, ǫ) codes:

1) A code sequence is called capacity-achieving, or o(n)-
achieving, if

1

n
logMn → C . (9)

2) A code sequence is called O(
√
n)-achieving if

logMn = nC +O(
√
n) . (10)

3) A code sequence is called capacity-dispersion achiev-

ing, or o(
√
n)-achieving, if

logMn = nC −
√
nV Q−1(ǫ) + o(

√
n) . (11)

1Additionally, one should also specify which probability of error crite-
rion, (1) or (3), is used.
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4) A code sequence is called O(log n)-achieving if

logMn = nC −
√
nV Q−1(ǫ) +O(log n) . (12)

We quote several results from [2]:

Theorem 1 ([2]): Consider a random transformation

PY |X , a distribution PX induced by an (M, ǫ)max,det code

and an auxiliary output distribution QY . Suppose

sup
x

Var

[

log
dPY |X=x

dQY
(Y )

∣

∣

∣

∣

X = x

]

≤ Sm (13)

for some constant Sm ≥ 0, then we have2

D(PY |X ||QY |PX) ≥ logM −
√

2Sm

1− ǫ
+ log

1− ǫ

2e
. (14)

Theorem 2 ([2]): For any 0 < ǫ < 1 and P > 0 there

exists a = a(ǫ, P ) > 0 such that the output distribution PY n

of any (n,Mn, ǫ)max,det code for the AWGN(P ) channel

satisfies

D(PY n ||P ∗
Y n) ≤ nC − logM + a

√
n , (15)

where Y ∗n and its distribution P ∗
Y n are given by

Y ∗n ∼ P ∗
Y n

△
= N (0, (1 + P )In). (16)

i.e. Y ∗n is distributed according to the capacity achieving

output distribution (caod) of the AWGN channel.

II. QUADRATIC FORMS

We denote the canonical inner product on R
n as

(a,b) =

n
∑

j=1

ajbj , (17)

and write the quadratic form corresponding to matrix A as

(Ax,x) =

n
∑

j=1

n
∑

i=1

ai,jxixj , (18)

or (for a random x) as (AXn, Xn). Note that when Xn ∼
N (0, P )n we have trivially

E [(AXn, Xn)] = P trA , (19)

where tr is the trace operator. Therefore, the next result shows
that good codes must be close to isotropic Gaussians, at least

in the sense of evaluating quadratic forms:

Theorem 3: For any P > 0 and 0 < ǫ < 1 there exists a

constant b = b(P, ǫ) > 0 such that for all (n,M, ǫ)max,det

codes and all quadratic forms A such that

−In ≤ A ≤ In (20)

we have

|E [(AXn, Xn)]− P trA| ≤ b1
√
n

√

nC − logM + b
√
n

(21)

for b1 = 2(1+P )√
log e

and (a refinement for A = In)

|
n
∑

j=1

E [X2
j ]−nP | ≤ 2(1 + P )

log e
(nC− logM + b

√
n) . (22)

2The right-hand side of (14) may be improved by an additive constant
log e if instead of the proof in [2] one invokes Augustin’s strong converse [3,
Satz 7.3 and 8.2], [4, Section 2].

Remark 1: It is possible to modify the proof slightly and

demonstrate that (21) holds on a per-codeword basis for an

overwhelming majority of codewords.

Proof: Denote

Σ = E [xxT ] , (23)

V = (In +Σ)−1 , (24)

QY n = N (0, In +Σ) , (25)

R(y|x) = log
dPY n|Xn=x

dQY n

(y) , (26)

d(x) = E [R(Y n|x)|Xn = x] , (27)

v(x) = Var[R(Y n|x)|Xn = x] . (28)

Denote also the spectrum of Σ by λi, i = 1, . . . , n and its

eigenvectors by vi, i = 1, . . . , n. We have then

|E [(AXn, Xn)]− P trA| =
∣

∣

∣

∣

∣

n
∑

i=1

(λi − P )(Avi,vi)

∣

∣

∣

∣

∣

(29)

≤
n
∑

i=1

|λi − P | , (30)

where (29) is by computing the trace in the eigenbasis of Σ

and (30) is by (20).

For the log-Radon-Nikodym derivative we have:

R(y|x) = log e

2

(

ln det(In +Σ) + (Vy,y) − ||y − x||2
)

(31)

and thus under PY n|Xn=x
we have that R(Y n|x) is dis-

tributed as

log e

2

(

ln det(In +Σ)− ||Zn||2 + (V(x+ Zn),x+ Zn)
)

(32)

from where

d(x) =
log e

2
(ln det(In +Σ) + (Vx,x) + tr(V − In))

(33)

and thus

D(PY n|Xn ||QY n |PXn) =
1

2

n
∑

j=1

log(1 + λj) . (34)

By using

Var[A+B + C] ≤ 3(Var[A] + Var[B] + Var[C]) (35)

we estimate

v(x) ≤ 3 log2 e

(

1

4
Var[||Zn||22]+

1

4
Var[(V Zn, Zn)] + Var[(V x, Zn)]

)

. (36)

Since V ≤ In we have trV2 ≤ n and

||Vx||22 ≤ ||x||2 ≤ nP . (37)

Plugging these estimates into (36) and computing expecta-

tions over Zn ∼ N (0, In) we get

sup
x

v(x) ≤ n

(

9

4
+ 3P

)

log2 e
△
= nb21 . (38)



Finally from Theorem 1 applied with Sm = b21n and (34) we

have

1

2

n
∑

j=1

log(1 + λj) ≥ logM − b1
√
n− log

2

1− ǫ
(39)

≥ logM − b
√
n (40)

=
n

2
(log(1 + P )− δ) , (41)

where we defined

b =

√

2
(

9
4 + 3P

)

1− ǫ
log e+ log

2

1− ǫ
(42)

δ = 2(nC + b
√
n− logM) . (43)

To derive (22) consider the chain:

−δ ≤ 1

n

n
∑

j=1

log
1 + λi

1 + P
(44)

≤ log





1

n

n
∑

j=1

1 + λi

1 + P



 (45)

≤ log e

n1 + P

n
∑

j=1

(λi − P ) (46)

=
log e

n1 + P
(E [||Xn||22]− nP ) , (47)

where (44) is (41) divided by n, (45) is by Jensen’s inequal-

ity, (46) is by log x ≤ (x− 1) log e and (47) is trivial. Since

||x||22 − nP ≤ 0, we conclude that (22) holds. Finally, (21)

follows from (30) and the next Lemma.

Lemma 4: Let λ1, . . . , λn > −1 be such that

n
∑

i=1

λi ≤ nP , (48)

n
∑

i=1

log(1 + λi) ≥ n log(1 + P )− nδ . (49)

Then

n
∑

i=1

|λi − P | ≤ n(1 + P )

√

2δ

log e
(50)

Proof: Define two probability distributions on n + 1
integers {0, . . . , n} as follows:

pi =
1

n
, i = 1, . . . , n (51)

qi =

{

1− 1
n(1+P )

∑n
j=1(1 + λj) , i = 0 ,

1+λi

1+P , i = 1, . . . , n
(52)

Then, by (48) we have D(P ||Q) ≤ δ and (50) follows from

Pinsker-Csiszar inequality after noticing

‖P −Q‖TV ≥ 1

2n(1 + P )

n
∑

j=1

|λi − P | (53)

The previous proof relied on a direct application of The-

orem 1 and is independent of the relative entropy estimates

in Theorem 2. At the expense of a more technical proof we

could derive a similar result using concentration properties of

Lipschitz functions demonstrated in [2, Corollary 8]. Indeed,

notice that because E [Zn] = 0 we have

E [(AY n, Y n)] = E [(AXn, Xn)] + trA . (54)

Thus, (21) follows if we can show

|E [(AY n, Y n)]− E [(AY ∗n, Y ∗n)]| ≤
const

√
n

√

nC − logM + b
√
n , (55)

where Y ∗n is defined in (16). This is precisely what [2,

Corollary 8] would imply if the function y 7→ (Ay,y)
was Lipschitz with constant O(

√
n). Of course (Ay,y) is

generally not Lipschitz when considered on the entire of Rn.

However, it is clear that from the point of view of evaluation

of both the E [(AY n, Y n)] and E [(AY ∗n, Y ∗n] only vectors

of norm O(
√
n) are important, and when restricted to the

ball S = {y : ‖y‖2 ≤ b
√
n} the function does have a

required Lipschitz constant of O(
√
n). This approximation

idea can be made precise using Kirzbraun’s theorem (see [5]

for a short proof) to extend (Ay,y) beyond the ball S

preserving the maximum absolute value and the Lipschitz

constantO(
√
n). Another method of showing (55) is by using

Bobkov-Götze extension of Gaussian concentration results

to non-Lipschitz functions [6, Theorem 1.2] to estimate the

moment generating function of (AY ∗n, Y ∗n). Both methods

yield (55), and hence (21), but with less sharp constants than

in Theorem 3.

III. BEHAVIOR OF ||x||q
The next natural question is to go to polynomials of

higher degree. The simplest example of such polynomials are

F (x) =
∑n

j=1 x
q
j for some power q, to analysis of which we

proceed now. To formalize the problem, consider 1 ≤ q ≤ ∞
and define the q-th norm of the input vector in the usual way

||x||q △
=

(

n
∑

i=1

|xi|q
)

1
q

. (56)

The aim of this section is to investigate the values of ||x||q
for the codewords of good codes for the AWGN channel.

Notice that when coordinates of x are independent Gaussians

we expect to have

n
∑

i=1

|xi|q ≈ nE [|Z|q] , (57)

where Z ∼ N (0, 1). In other words, there exists a sequence

of capacity achieving codes and constants Bq, 1 ≤ q ≤ ∞
such that every codeword x at every blocklength n satisfies3:

||x||q ≤ Bqn
1
q = O(n

1
q ) 1 ≤ q < ∞ , (58)

and

||x||∞ ≤ B∞
√

log n = O(
√

logn) . (59)

3This does not follow from a simple random coding argument since we
want the property to hold for every codeword, which constitutes exponen-
tially many constraints. However, the claim can indeed be shown by invoking
the κβ-bound [1, Theorem 25] with a suitably chosen constraint set F.



Can we prove that (58)-(59) hold (with possibly different

constants) for any good code?

It turns out that the answer depends on the range of q and

on the degree of optimality of the code. Our findings are

summarized in Table I. The precise meaning of each entry

will be clear from Theorems 5, 6, 9 and their corollaries.

The main observation is that the closer the code’s cardinality

comes to M∗(n, ǫ), the better ℓq-norms reflect those of ran-

dom Gaussian codewords (58)-(59). Loosely speaking, very

little can be said about ℓq-norms of capacity-achieving codes,

while O(log n)-achieving codes are almost indistinguishable

from the random Gaussian ones. In particular, we see that,

for example, for capacity-achieving codes it is not possible to

approximate expectations of polynomials of degrees higher

than 2 (or 4 for dispersion-achieving codes) by assuming

Gaussian inputs, since even the asymptotic growth rate with

n can be dramatically different. The question of whether we

can approximate expectations of arbitrary polynomials for

O(log n)-achieving codes remains open.

We proceed to clarify the statements made in Table I. First,

we show that all the entries except one are the best possible.

Theorem 5: Each estimate in Table I, except n
1
q log

q−4

2q n,

is tight in the following sense: if the entry is nα, then there

exists a constant Bq and a sequence of O(log n)-, dispersion-,
O(

√
n)-, or capacity-achieving (n,Mn, ǫ)max,det codes such

that each codeword x ∈ R
n satisfies for all n ≥ 1

‖x‖q ≥ Bqn
α . (60)

If the entry in the table states o(nα) then for any sequence

τn → 0 there exists a sequence of O(log n)-, dispersion-,
O(

√
n)-, or capacity-achieving (n,Mn, ǫ)max,det codes such

that each codeword satisfies for all n ≥ 1

‖x‖q ≥ Bqτnn
α . (61)

Proof: First, notice that a code from any row is an

example of a code for the next row, so we only need to

consider each entry which is worse than the one directly

above it. Thus it suffices to show the tightness of o(n
1
4 ),

n
1
4 , o(n

1
2 ) and n

1
2 .

To that end recall that by [1, Theorem 54] the maximum

number of codewordsM∗(n, ǫ) at a fixed probability of error

ǫ for the AWGN channel satisfies

logM∗(n, ǫ) = nC −
√
nV Q−1(ǫ) +O(log n) , (62)

where V (P ) = log2 e
2

P (P+2)
(P+1)2 is the channel dispersion. Next,

we fix a sequence δn → 0 and construct the following

sequence of codes. The first coordinate x1 =
√
nδnP for

every codeword and the rest (x2, . . . , xn) are chosen as

coordinates of an optimal AWGN code for the blocklength

n− 1 and power-constraint Pn = (1 − δn)P . Following the

argument of [1, Theorem 67] the number of codewords Mn

in such a code will be at least

logMn = (n− 1)C(Pn)−
√

(n− 1)V (Pn)Q
−1(ǫ) +O(1)

(63)

= nC(P )−
√

nV (P )Q−1(ǫ) +O(nδn) (64)

assuming δn ≫ 1
n . At the same time, because x1 of each

codeword x is abnormally high we have

‖x‖q ≥
√

nδnP . (65)

So all the examples are constructed by choosing a suitable

δn as follows:

• Row 1: see (58)-(59).

• Row 2: nothing to prove.

• Row 3: for entries o(n
1
4 ) taking δn =

τ2
n√
n

yields a

dispersion-achieving code according to (64); the esti-

mate (61) follows from (65).

• Row 4: for entries n
1
4 taking δn = 1√

n
yields an O(

√
n)-

achieving code according to (64); the estimate (60)

follows from (65).

• Row 5: for entries o(n
1
2 ) taking δn = τ2n yields a

capacity-achieving code according to (64); the esti-

mate (61) follows from (65).

• Row 6: for entries n
1
2 we can take a codebook with one

codeword (
√
nP, 0, . . . , 0).

Remark 2: The proof can be modified to show that in each

case there are codes that simultaneously achieve all entries

in the respective row of Table I (except n
1
q log

q−4

2q n).

We proceed to proving upper bounds. Notice simple rela-

tions between the ℓq norms of vectors in R
n. To estimate a

lower-q norm in terms of a higher one, we invoke Holder’s

inequality:

‖x‖q ≤ n
1
q
− 1

p ‖x‖p , ∀1 ≤ q ≤ p ≤ ∞ . (66)

To provide estimates for q > p, notice that obviously

‖x‖∞ ≤ ‖x‖p . (67)

Then, we can extend to q < ∞ via the following chain:

‖x‖q ≤ ‖x‖1−
p
q

∞ ‖x‖
p
q
p (68)

≤ ‖x‖p , ∀q ≥ p (69)

Trivially, for q = 2 the answer is given by the power

constraint

‖x‖2 ≤
√
nP (70)

Thus by (66) and (69) we get: Each codeword of code for

the AWGN(P ) must satisfy

‖x‖q ≤
√
P ·
{

n
1
q , 1 ≤ q ≤ 2 ,

n
1
2 , 2 < q ≤ ∞ .

(71)

This proves entries in the first column and the last row of

Table I.

Before proceeding to upper bounds for q > 2 we point

out an obvious problem with trying to estimate ‖x‖q for

each codeword. Given any code whose codewords lie exactly

on the power sphere, we can always apply an orthogonal

transformation to it so that one of the codewords becomes

(
√
nP , 0, 0, . . .0). For such a codeword we have

‖x‖q =
√
nP (72)

and the upper-bound (71) is tight. Therefore, to improve upon

the (71) we must necessarily consider subsets of codewords



TABLE I: Behavior of ℓq norms ‖x‖q of codewords of good codes for the AWGN channel.

Code 1 ≤ q ≤ 2 2 < q ≤ 4 4 < q < ∞ q = ∞

random Gaussian n
1
q n

1
q n

1
q

√
logn

any O(logn)-achieving n
1
q n

1
q n

1
q log

q−4
2q n

√
logn

any dispersion-achieving n
1
q n

1
q o(n

1
4 ) o(n

1
4 )

any O(
√
n)-achieving n

1
q n

1
q n

1
4 n

1
4

any capacity-achieving n
1
q o(n

1
2 ) o(n

1
2 ) o(n

1
2 )

any code n
1
q n

1
2 n

1
2 n

1
2

Note: All estimates, except n
1
q log

q−4
2q n, are shown to be tight.

of a given code. For simplicity below we show estimates for

the half of all codewords.

The following result, proven in the Appendix, takes care

of the sup-norm:

Theorem 6 (q = ∞): For any 0 < ǫ < 1 and P > 0 there

exists a constant b = b(P, ǫ) such that for any4 n ≥ N(P, ǫ)
and any (n,M, ǫ)max,det-code for the AWGN(P ) channel

at least half of the codewords satisfy

‖x‖2∞ ≤ 4(1 + P )

log e

(

nC −
√
nV Q−1(ǫ) + log

2bn2

M

)

,

(73)

where C and V are the capacity-dispersion pair for the

channel. In particular, the expression in brackets is non-

negative for all codes and blocklengths.

Remark 3: What puts Theorem 6 aside from other results

in this paper and [2]. is its sensitivity to whether the code

achieves the dispersion term.

From Theorem 6 the explanation of the entries in the last

column of Table I becomes obvious: the more terms the

code achieves in the asymptotic expansion of logM∗(n, ǫ)
the closer its estimate of ‖x‖∞ becomes to the O(

√
logn),

which arises from a random Gaussian codeword (59). To be

specific, we give exact statements:

Corollary 7 (q = ∞ for O(log n)-codes): For any 0 <

ǫ < 1 and P > 0 there exists a constant b = b(P, ǫ) such that

for any (n,Mn, ǫ)max,det-code for the AWGN(P ) with

logMn ≥ nC −
√
nV Q−1(ǫ)−K logn (74)

for some K > 0 we have that at least half of the codewords

satisfy

‖x‖∞ ≤
√

(b+K) logn+ b . (75)

Corollary 8 (q = ∞ for capacity-achieving codes): For

any capacity-achieving sequence of (n,Mn, ǫ)max,det-codes

there exists a sequence τn → 0 such that for at least half of

the codewords we have

‖x‖∞ ≤ τnn
1
2 . (76)

Similarly, for any dispersion-achieving sequence of

(n,Mn, ǫ)max,det-codes there exists a sequence τn → 0
such that for at least half of the codewords we have

‖x‖∞ ≤ τnn
1
4 . (77)

4N(P, ǫ) = 8(1 + 2P−1)(Q−1(ǫ))2 for ǫ < 1

2
and N(P, ǫ) = 1 for

ǫ ≥ 1

2
.

Remark 4: By Theorem 5 sequences τn are necessarily

code-dependent.

For the q = 4 we have the following estimate (see

Appendix for the proof):

Theorem 9 (q = 4): For any 0 < ǫ < 1
2 and P > 0 there

exist constants b1 > 0 and b2 > 0, depending on P and ǫ,

such that for any (n,M, ǫ)max,det-code for the AWGN(P )
channel at least half of the codewords satisfy

‖x‖24 ≤ 2

b1

(

nC + b2
√
n− log

M

2

)

, (78)

where C is the capacity of the channel. In fact, we also have

a lower bound

E [‖x‖44] ≥ 3nP 2 − (nC − logM + b3
√
n)n

1
4 , (79)

for some b3 = b3(P, ǫ) > 0.
Remark 5: Note that E [‖z‖44] = 3nP 2 for z ∼ N (0, P )n.
We can now complete the proof of results in Table I:

1) Row 2: q = 4 is Theorem 9; 2 < q ≤ 4 follows by (66)

with p = 4; q = ∞ is Corollary 7; for 4 < q < ∞ we

apply interpolation via (68) with p = 4.
2) Row 3: q ≤ 4 is treated as in Row 2; q = ∞ is

Corollary 8; for 4 < q < ∞ apply interpolation (68)

with p = 4.
3) Row 4: q ≤ 4 is treated as in Row 2; q ≥ 4 follows

from (69) with p = 4.
4) Row 5: q = ∞ is Theorem 8; for 2 < q < ∞ we apply

interpolation (68) with p = 2.

The upshot of this section is that we cannot approximate

values of non-quadratic polynomials in x (or y) by assuming

iid Gaussian entries, unless the code is O(
√
n)-achieving, in

which case we can go up to degree 4 but still will have to

be content with Gaussian lower bounds only such as (79).5

Before closing this discussion we demonstrate the sharp-

ness of the arguments in this section by considering the

following example. Suppose that a power of a codeword x

from a capacity-dispersion optimal code is measured by an

imperfect tool, such that its reading is described by

E =
1

n

n
∑

i=1

(xi)
2Hi , (80)

5Using quite similar methods, (79) can be extended to certain bi-quadratic
forms, i.e. 4-th degree polynomials

∑
i,j ai−jx

2

i
x2

j
, where A = (ai−j) is

a Toeplitz positive semi-definite matrix.



where Hi’s are i.i.d bounded random variables with expecta-

tion and variance both equal to 1. For large blocklengths n we

expect E to be Gaussian with mean P and variance 1
n‖x‖

4
4.

On the one hand, Theorem 9 shows that the variance will not

explode; (79) shows that it will be at least as large as that

of a Gaussian codebook. Finally, to establish the asymptotic

normality rigorously, the usual approach based on checking

Lyapunov condition will fail as shown by Theorem 5, but

the Lindenberg condition does hold as a consequence of

Theorem 8. If in addition, the code is O(log n)-achieving
then

P[|E − E [E ]| > δ] ≤ e
− nδ2

b1+b2δ
√

log n .

APPENDIX

In this appendix we prove results from Section III.

To prove Theorem 6 our basic intuition is that any code-

word which is abnormally peaky (i.e., has a high value of

‖x‖∞) is wasteful in terms of allocating its power budget.

Thus a good capacity- or dispersion-achieving codebook can-

not have too many of such wasteful codewords. Formalization

of this intuitive argument is as follows:

Lemma 10: For any ǫ ≤ 1
2 and P > 0 there exists a con-

stant b = b(P, ǫ) such that given any (n,M, ǫ)max,det code

for the AWGN(P ) channel, we have for any 0 ≤ λ ≤ P :6

P[‖x‖∞ ≥
√
λn] ≤

b

M
exp

{

nC(P ′)−
√

nV (P ′)Q−1(ǫ) + 2 logn
}

(81)

where P ′ = P − λ and C(P ) and V (P ) are defined in (8).

Proof: Our method is to apply the meta-converse in the

form of [1, Theorem 30] to a subcode {‖x‖∞ ≥
√
λn}.

Application of a meta-converse requires selecting a suitable

auxiliary channel QY n|Xn . We specify this channel now. For

any x ∈ R
n let j∗ be the first index s.t. |xj | = ||x||∞, then

we set

QY n|Xn(yn|x) = PY |X(yj∗ |xj∗)
∏

j 6=j∗(x)

P ∗
Y (yj) (82)

We will show below that for some b1 = b1(P ) any M -

code over this Q-channel has average probability of error

ǫ′ satisfying:

1− ǫ′ ≤ b1n
3
2

M
. (83)

On the other hand, writing the expression for

log
dPY n|Xn=x

dQY n|Xn=x

(Y n) we see that it coincides with

the expression for log
dPY n|Xn=x

dP∗
Y n

except that the term

corresponding to j∗(x) will be missing; compare with [7,

(4.29) and before]. Thus, one can repeat step by step the

analysis in the proof of [1, Theorem 65] with the only

difference that nP should be replaced by nP − ‖x‖2∞
reflecting the reduction in the energy due to skipping of j∗.
Then, we obtain for some b2 = b2(α, P ):

log β1−ǫ(PY n|Xn=x
, QY n|Xn=x

) ≥

− nC (P ′) +
√

nV (P ′)Q−1(ǫ)− 1

2
logn− b2 , (84)

6For ǫ > 1

2
one must replace V (P − λ) with V (P ) in (81). This does

not modify any of the arguments required to prove Theorem 6.

where P ′ = P − ‖x‖2
∞

n and which holds simultaneously for

all x with ‖x‖ ≤
√
nP . Two remarks are in order: first,

the analysis in [1, Theorem 64] must be done replacing n

with n − 1, but this difference is absorbed into b2. Second,

to see that b2 can be chosen independent of x notice that

B(P ) in [1, (620)] tends to 0 with P → 0 and hence can be

bounded uniformly for all P ∈ [0, Pmax].
Denote the cardinality of the subcode {‖x‖∞ ≥

√
λn} by

Mλ = MP[‖x‖∞ ≥
√
λn] . (85)

Then according to [1, Theorem 30], we get

inf
x

β1−ǫ(PY n|Xn=x
, QY n|Xn=x

) ≤ 1− ǫ′ , (86)

where the infimum is over the codewords of Mλ-subcode.

Applying both (83) and (84) we get

−nC (P ′) +
√

nV (P ′)Q−1(ǫ)− 1

2
logn− b2 ≤

− logMλ + log b1 +
3

2
logn (87)

Thus, overall

logMλ ≤ nC(P −λ)−
√

nV (P − λ)Q−1(ǫ)+ 2 logn+ b ,

(88)

for b = b1 exp{b2}.
It remains to show (83). Consider an (n,M, ǫ′)avg,det-

code for the Q-channel and let Mj , j = 1, . . . , n denote the

cardinality of the set of all codewords with j∗(x) = j. Let ǫ′j
denote the minimum possible average probability of error of

each such codebook achievable with the maximum likelihood

(ML) decoder (informed of the value of j). Since

1− ǫ′ ≤ 1

M

n
∑

j=1

Mj(1 − ǫ′j) (89)

it suffices to prove

1− ǫ′j ≤

√

2nP
π + 2

Mj
(90)

for all j. Without loss of generality assume j = 1 in

which case observations Y n
2 are useless for determining the

value of the true codeword. Moreover, ML decoding regions

Di, i = 1, . . . ,Mj for each codeword are disjoint intervals

in R
1 (so that decoder outputs message estimate i whenever

Y1 ∈ Di). Note that for Mj ≤ 2 there is nothing to prove,

so assume otherwise. Denote the Mj message points by

xi, i = 1, . . . ,Mj and assume (without loss of generality)

that −
√
nP ≤ x1 ≤ x2 ≤ · · · ≤ xMj

≤
√
nP and

that D2, . . . DMj−1 are finite intervals. Then the following

estimate may be established by elementary arguments

1− ǫ′j ≤
2

Mj
+

Mj − 2

Mj

(

1− 2Q

( √
nP

Mj − 2

))

(91)

≤ 2

Mj
+

√

2nP
π

Mj
, (92)

Thus, (92) completes the proof of (90), (83) and the theorem.



Proof of Theorem 6: Notice that for any 0 ≤ λ ≤ P

we have

C(P − λ) ≤ C(P ) − λ log e

2(1 + P )
. (93)

On the other hand, by concavity of
√

V (P ) and since V (0) =
0 we have for any 0 ≤ λ ≤ P

√

V (P − λ) ≥
√

V (P )−
√

V (P )

P
λ . (94)

Thus, taking s = λn in Lemma 10 we get with the help

of (93) and (94):

P[‖x‖2∞ ≥ s] ≤ exp
{

∆n − (b1 − b2n
− 1

2 )s
}

, (95)

where we denoted for convenience

b1 =
log e

2(1 + P )
, b2 =

√

V (P )

P
Q−1(ǫ) , (96)

∆n = nC(P )−
√

nV (P )Q−1(ǫ) + log
bn2

M
. (97)

Note that Lemma 10 only shows validity of (95) for 0 ≤
s ≤ nP , but since for s > nP the left-hand side is zero, the

statement actually holds for all s ≥ 0. Then for n ≥ N(P, ǫ)
we have

(b1 − b2n
− 1

2 ) ≥ b1

2
(98)

and thus further upper-bounding (95) we get

P[‖x‖2∞ ≥ s] ≤ exp

{

∆n − b1s

2

}

. (99)

Finally, if we had that for some code ∆n < 0 then (99)

would imply that P[‖x‖2∞ ≥ s] < 1 for all s ≥ 0, which
is clearly impossible. Thus we must have ∆n ≥ 0 for any

(n,M, ǫ)max,det code. The proof concludes by taking s =
2(log 2+∆n)

b1
in (99).

Before proving Theorem 9 we state two auxiliary results.

Lemma 11: Let f : Y → R be a (single-letter) function

such that for some θ > 0 we have

m1 = E [exp{θf(Y ∗)}] < ∞ , (100)

(one-sided Cramer condition) and

m2 = E [|f(Y ∗)|2] < ∞ . (101)

Then there exists b = b(m1,m2, θ) > 0 such that for all

n ≥ 16
θ4 we have

1

n

n
∑

j=1

E [f(Yj)] ≤ E [f(Y ∗)] +
D(PY n ||P ∗

Y n) + b
√
n

n
3
4

,

(102)

provided that P ∗
Y n = (P ∗

Y )
n.

Proof: Follows by a straightforward application of

Donsker-Varadhan inequality [8, Lemma 2.1] and technical

estimates of E [exp{tf(Y ∗)}].
Theorem 12: Consider an (M, ǫ)avg code for an arbitrary

random transformation PY |X . Then for any QY we have

βα(PY , QY ) ≥ Mβα−ǫ(PXY , PXQY ) ǫ ≤ α ≤ 1 .
(103)

Proof: On the probability space corresponding to a given

(M, ǫ)avg code, define the following random variable

Z = 1{Ŵ (Y ) = W,Y ∈ E} , (104)

where E is an arbitrary subset satisfying

PY [E] ≥ α . (105)

Precisely as in the original meta-converse [1, Theorem 26]

the main idea is to use Z as a suboptimal hypothesis test

for discriminating PXY against PXQY . Following the same

reasoning as in [1, Theorem 27] one notices that

(PXQY )[Z = 1] ≤ QY [E]

M
(106)

and

PXY [Z = 1] ≥ α− ǫ . (107)

Therefore, by definition of βα we must have

βα−ǫ(PXY , PXQY ) ≤
QY [E]

M
. (108)

Taking the infimum in (108) over all E satisfying (105)

completes the proof of (103).

Proof of Theorem 9: To prove (78) we will show the

following statement: There exist two constants b0 and b1 such

that for any (n,M1, ǫ) code for the AWGN(P ) channel with
codewords x satisfying

‖x‖4 ≥ bn
1
4 (109)

we have an upper bound on the cardinality:

M1 ≤ 4

1− ǫ
exp

{

nC + 2

√

nV

1− ǫ
− b1(b− b0)

2
√
n

}

,

(110)

provided b ≥ b0(P, ǫ). From here (78) follows by first upper-

bounding (b− b0)
2 ≥ b2

2 − b20 and then verifying easily that

the choice

b2 =
2

b1
√
n
(nC + b2

√
n− log

M

2
) (111)

with b2 = b20b1+2
√

V
1−ǫ + log 4

1−ǫ takes the right-hand side

of (110) below log M
2 .

To prove (110), fix b, denote

S = b−
(

6

1 + ǫ

)
1
4

(112)

and assume b is large enough so that

δ
△
= S − 6

1
4

√
1 + P > 0 . (113)

Then, on one hand we have

PY n [‖Y n‖4 ≥ Sn
1
4 ] ≥ P[‖Xn‖4 − ‖Zn‖4 ≥ Sn

1
4 ] (114)

≥ P[‖Zn‖4 ≤ n
1
4 (S − b)] (115)

≥ 1 + ǫ

2
, (116)

where (114) is by triangle inequality for ‖·‖4, (115) is by

the constraint (109) and (116) is by Chebyshev inequality



applied to ‖Zn‖44 =
∑n

j=1 Z
4
j . On the other hand, we have

P ∗
Y n [‖Y n‖4 ≤ Sn

1
4 ] = (117)

≥ P ∗
Y n [{‖Y n‖4 ≤ 6

1
4

√
1 + Pn

1
4 }+ {‖Y n‖4 ≤ δn

1
4 }]
(118)

≥ P ∗
Y n [{‖Y n‖4 ≤ 6

1
4

√
1 + Pn

1
4 }+ {‖Y n‖2 ≤ δn

1
4 }]
(119)

≥ 1− exp{−b1δ
2
√
n} , (120)

where (118) is by the triangle inequality for ‖·‖4 which

implies the inclusion

{y : ‖y‖4 ≤ a+ b} ⊃ {y : ‖y‖4 ≤ a}+ {y : ‖y‖4 ≤ b}
(121)

with + denoting the Minkowski sum of sets, (119) is by (69)

with p = 2, q = 4; and (120) hold for some b1 = b1(P ) > 0
by the Gaussian isoperimetric inequality [9] which is appli-

cable since

P ∗
Y n [‖Y n‖4 ≤ 6

1
4

√
1 + Pn

1
4 ] ≥ 1

2
(122)

by Chebyshev inequality applied to
∑n

j=1 Y
4
j (note: Y n ∼

N (0, 1+P )n under P ∗
Y n ). As a side remark, we add that the

estimate of the large-deviations of the sum of 4-th powers of

iid Gaussians as exp{−O(
√
n)} is order-optimal.

Together (116) and (120) imply

β 1+ǫ
2
(PY n , P ∗

Y n) ≤ exp{−b1δ
2√n} . (123)

On the other hand, by [1, Lemma 59] we have for any x

with ‖x‖2 ≤
√
nP and any 0 < α < 1:

βα(PY n|Xn=x
, P ∗

Y n) ≥ α

2
exp

{

−nC −
√

2nV

α

}

, (124)

where C and V are the capacity and the dispersion of the

AWGN(P ) channel. Then, by convexity in α of the right-

hand side of (124) and [7, Lemma 32] we have for any input

distribution PXn :

βα(PXnY n , PXnP ∗
Y n) ≥ α

2
exp

{

−nC −
√

2nV

α

}

.

(125)

We complete the proof of (110) by invoking Theorem 12

(see below) with QY = P ∗
Y n and α = 1+ǫ

2 :

β 1+ǫ
2
(PY n , P ∗

Y n) ≥ M1β 1−ǫ
2
(PXnY n , PXnP ∗

Y n) . (126)

Applying to (126) bounds (123) and (125) we conclude

that (110) is shown with

b0 =

(

6

1 + ǫ

)
1
4

+ 6
1
4

√
1 + P . (127)

Next, we proceed to the proof of (79). On one hand, we

have
n
∑

j=1

E
[

Y 4
j

]

=
n
∑

j=1

E
[

(Xj + Zj)
4
]

(128)

=

n
∑

j=1

E [X4
j + 6X2

jZ
2
j + Z4

j ] (129)

≤ E [‖x‖44] + 6nP + 3n , (130)

where (128) is by the definition of the AWGN channel, (129)

is because Xn and Zn are independent and thus odd terms

vanish, (130) is by the power-constraint
∑

X2
j ≤ nP . On

the other hand, applying Lemma 11 with f(y) = −y4, θ = 2
and using Theorem 2 we obtain7

n
∑

j=1

E
[

Y 4
j

]

≥ 3n(1+P )2−(nC−logM+b3
√
n)n

1
4 , (131)

for some b3 = b3(P, ǫ) > 0. Comparing (131) and (130)

statement (79) follows.

We remark that by a straightforward extension of

Lemma 11 to expectations 1
n−1

∑n−1
j=1 E [Y 2

j Y
2
j+1], cf. [10,

Section IV.E], we could provide a lower bound similar to (79)

for more general 4-th degree polynomials in x. For example,

it is possible to treat the case of p(x) =
∑

i,j ai−jx
2
ix

2
j ,

where A = (ai−j) is a Toeplitz positive semi-definite matrix.

We would proceed as in (130), computing E [p(Y n)] in two

ways, with the only difference that the peeled off quadratic

polynomial would require application of Theorem 3 instead

of the simple power constraint. Finally, we also mention

that the method (130) does not work for estimating E [‖x‖66]
because we would need an upper bound E [‖x‖44] . 3nP 2,

which is not possible to obtain in the context of O(
√
n)-

achieving codes as counter-examples in Theorem 5 show.
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[3] U. Augustin, “Gedächtnisfreie kanäle für diskrete zeit,” Z. Wahrschein-
lichkeitstheorie und Verw. Geb., vol. 6, pp. 10–61, 1966.

[4] R. Ahlswede, “An elementary proof of the strong converse theorem for
the multiple-access channel,” J. Comb. Inform. Syst. Sci, vol. 7, no. 3,
pp. 216–230, 1982.

[5] I. J. Schoenberg, “On a theorem of Kirzbraun and Valentine,” Am.

Math. Monthly, vol. 60, no. 9, pp. 620–622, Nov. 1953.
[6] S. Bobkov and F. Götze, “Exponential integrability and transportation

cost related to logarithmic Sobolev inequalities,” J. Functional Analy-

sis, vol. 163, pp. 1–28, 1999.
[7] Y. Polyanskiy, “Channel coding: non-asymptotic fundamental limits,”

Ph.D. dissertation, Princeton Univ., Princeton, NJ, USA, 2010, avail-
able: http://people.lids.mit.edu/yp/homepage/.

[8] M. Donsker and S. Varadhan, “Asymptotic evaluation of certain markov
process expectations for large time. i. ii.” Comm. Pure Appl. Math.,
vol. 28, no. 1, pp. 1–47, 1975.

[9] V. Sudakov and B. Tsirelson, “Extremal properties of half-spaces for
spherically invariant measures,” Zap. Nauch. Sem. LOMI, vol. 41, pp.
14–24, 1974.
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