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Feedback in the non-asymptotic regime

Yury Polyanskiy, H. Vincent Poor, and Sergio Vard

Abstract

Without feedback, the backoff from capacity due to non-gsytic blocklength can be quite
substantial for blocklengths and error probabilities akrest in many practical applications. In this
paper, novel achievability bounds are used to demonstratért the non-asymptotic regime, the maximal
achievable rate improves dramatically thanks to variddherth coding and feedback. For example, for
the binary symmetric channel with capacity2 the blocklength required to achie98% of the capacity
is smaller thar200, compared to at least100 for the best fixed-blocklength code (even with noiseless
feedback).

Virtually all the advantages of noiseless feedback are shimwbe achievable even if the feedback
link is used only to send a single signal informing the encddeterminate the transmission (stop-
feedback). It is demonstrated that the non-asymptoticiehaf the fundamental limit depends crucially
on the particular model chosen for the “end-of-packet” oainsignal. Fixed-blocklength codes and
related questions concerning communicating with a guesghtlelay are discussed, in which situation

the feedback is demonstrated to be almost useless evensgporpeotically.
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I. INTRODUCTION

In the context of fixed blocklength communication, Shannbhshowed that noiseless feed-
back does not increase the capacity of memoryless chanmetai increase the zero-error capac-
ity. For a class of symmetric discrete memoryless chanim4ds), Dobrushin [2] demonstrated
that the sphere-packing bound holds even in the presenceisélaess feedback.

Nevertheless, it is known that feedback can be very usetiged that variable-length codes
are allowed. In his ground-breaking contribution, Burresli3] demonstrated that the error
exponent improves in this setting and admits a particulsiryple expression:

E(R) = %(C ~R), 1)

for all ratesO < R < C, where(C' is the capacity of the channel add is the maximal relative
entropy between the conditional output distributions. &er, zero-error capacity may improve
from zero to the Shannon capacity (as in the case of the berasure channel (BEC)) if variable
length is allowed. Furthermore, since existing commuincasystems with feedback (such as
ARQ) have variable length, in the analysis of fundamentalts for channels with feedback, it
is much more relevant and interesting to allow codes whasgtheis allowed to depend on the
channel behavior.

We mention a few extensions of Burnashev’s work [3], [4] val# to this paper. Yamamoto
and Itoh proposed a simple and conceptually important tinasp coding scheme, attaining the
optimal error exponent [5]. Using the notion of Goppa’s emcpl mutual information (EMI)
several authors have constructed universal coding scheiteigsing rates arbitrarily close to
capacity with small probability of error [6], [7], exponéaity decaying probability of error [8]
and even attaining the optimal Burnashev exponent [9], El®jultaneously for a collection of
channels. An extension to arbitrary varying channels with dtate information available at the
decoder has been recently proposed as well [11].

In contrast to the error exponent analysis of variabledlergpding with feedback, which
focuses on the regime of asymptotically long average béuaih at fixed rate, in this paper,
following [12] we focus on the regime of fixed probability afer and finite average blocklength.
Another aspect that was not previously addressed in thatiitee is the following. In practice,
control information (such as initiation and terminatios)not under the purview of the physical

layer. However, the information theory literature typlgahssumes that all the feed-forward
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control information is carried through the same noisy cledms the information payload. This
is most notably illustrated by Burnashev’s model in which &rror exponent is, in fact, dictated
by the reliability with which the termination informatiors iconveyed to the receiver through
the DMC while at the same time assuming that the feedback Hiaxk infinite reliability to
carry not just a termination symbol but the whole sequencehainnel outputs. To separate
physical-channel issues from upper-layer issues, andlaa@modelling of control signaling, it
is important to realize that initiation/termination syntbare in fact carried through layers and
protocols whose reliabilities need not be similar to thogeeeienced by the payload. To capture
this, we propose a simple modification of the (forward) cledlnmodel through the introduction
of a “use-once” termination symbol whose transmissiontdesafurther communication.

The organization of this paper is as follows. Section Il preés a formal statement of the
problem and examines the relationships between differefimitions of variable-length coding.
Section IIl analyzes the maximal achievable rate with antheut a termination symbol. Sec-
tion IV focuses on zero-error communication. Section V dsses fixed-blocklength coding with
feedback and problems related to transmitting with guaethidelay, arising in communication

systems with real-time data.

[I. STATEMENT OF THE PROBLEM

In this paper we consider the following channel coding sden#& non-anticipatory channel
consists of a pair of input and output alphahdtand 5 together with a sequence of conditional

probability kernels{me{-Yfﬂ}g’il. Such channel is called (stationary) memoryless if
PYZ_‘Xinifl =Pyx, = Pyix,, Vi>1 (2)

and if A and B are finite, it is known as a DMC.
Definition 1: An (¢, M, ¢) variable-length feedback (VLF) code, whefés a positive real )/
is a positive integer and < ¢ < 1, is defined by:
1) A space/ with! |i/]| < 3 and a probability distributiod”; on it, defining a random variable
U which is revealed to both transmitter and receiver befoeestiart of transmission; i.e.
U acts as common randomness used to initialize the encodethandiecoder before the

start of transmission.
The bound on the cardinality éf is justified by Theorem 19 in the appendix.
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2) A sequence of encodefs : U x {1,..., M} x B! — A, n > 1, defining channel inputs
Xn - fn(Uv VV7 Yn_l) ) (3)

whereW € {1,..., M} is the equiprobable message.

3) A sequence of decodetg : U x B" — {1,..., M} providing the best estimate & at
time n.

4) A non-negative integer-valued random variablea stopping time of the filtratiosy,, =
o{U,Y1,...,Y,}, which satisfies

Elr] < ¢. (4)

The final decisionV is computed at the time instant

A

W=g.(UYT), (5)
and must satisfy

PV £W] < e (6)

The fundamental limit of channel coding with feedback isegi\by the following quantity:
M3 (4, €) = max{M : 3(¢, M, ¢)-VLF code} . (7)

Those codes that do not require the availabilitylbfi.e. the ones withl/| = 1, are called
deterministiccodes. Although from a practical viewpoint there is hardty ahotivation to allow
for non-deterministic codes, they simplify the analysisl @&xpressions, just like randomized
tests do in hypothesis testing. Also similar to the lattiee tlifference in performance between
the deterministic and non-deterministic codes is nedkgibr any practically interesting/ and
¢, since a few initial channel outputs can be used to supplyragyired common randomness.

In a VLF code the decision about stopping transmission isrtadolely upon observation of
channel outputs in a causal manner. This is the setup igatst by Burnashev [3]. Note that
sincer is computed at the decoder, it is not necessary to specifyahes ofg, (Y") for n # 7.

In this way the decoder is a map: B> — {1,..., M} measurable with respect 4.

Definition 2: An (¢, M, ¢) variable-length feedback code with termination (VLFT), exda/

is a positive realM is a positive integer and < ¢ < 1, is defined similarly to VLF codes with

an exception that condition 4) in the Definition 1 is replatgd
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4’) A non-negative integer-valued random variablea stopping time of the filtratio®,, =
o{W,U,Y1,...,Y,}, which satisfies

E[r] < ¢. (8)

The fundamental limit of channel coding with feedback amdhteation is given by the following
guantity:
M; (0, e) = max{M : 3(¢, M,¢)-VLFT code} . 9)

In a VLFT code, “termination” is used to indicate the facttthiae practical realization of
such a coding scheme requires a method of sending a reliadl@fepacket signal by means
other than using thed — B channel (e.g., by cutting off a carrier). As we discussedhia t
introduction, timing (including termination) is usuallphdled by a different layer in the protocol.
Note that equivalently, a VLFT code may be understood as a ®de used over a modified
channel, having an additional special use-once input syymtamsmission of which disables
further communication (see the proof of Theorem 4 below faroacrete application of this
idea). We prefer, however, to understand the channel as d §it@hastic model, while the
structural constraints (such as how precisely the trarsamgerminates, or whether the feedback
is available) are left to the definition of the code.

The following are examples of VLFT codes:

1) VLF codes are a special case in which the stopping timie determined autonomously
by the decoder; due to availability of the feedbacks also known to the encoder so that
transmission can be cut off at

2) stop-feedback codese a special case of VLF codes where the encoder funcfifnse ,

satisfy:
(U W, Y™ ) = £, (UW). (10)

Such codes require very limited communication over feeklbawly a single signal to stop
the transmission once the decoder is ready to decode.

3) variable-length codes (without feedback), \dt codes defined in [20, Problem 2.1.25]
and [19], are VLFT codes required to satisfy two additior|uirementsr is a function

of (W, U) and the encoder is not allowed to use feedback, i.e. (10shdlie fundamental
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limit and thee-capacity of variable-length codes are given by

M>(lye) = max{M : 3(¢, M,e)-VL code}, (11)
[C] = lm Hog M;(£.c). (12)

4) fixed-to-variable codes, &tV codesdefined in [19] are also required to satisfy (10), while
the stopping time /&
T=inf{n>1:¢,(U,Y") =W}, (13)

and therefore, such codes are zero-error VLFT codes. Okeopunot all zero-error VLFT
codes are FV codes, since in general condition (10) doeseat®ssarily hold.

5) automatic repeat requesfRQ codes analyzed in [12, Section IV.E] are yet a more
restricted class of deterministic FV codes, where a singtdfblocklength, non-feedback
code is used repeatedly until the decoder produces a caséntate.

The main goal of this paper is to analyze the behaviorogfM;(¢,¢) and log M (¢, €)

and compare them with the behavior of the fundamental liniihout feedback]log M*(n, €).

Regarding the behavior dég M (¢, ¢) Burnashev’s result (1) can be restated as

log M} (£, exp{—FEl}) = (C (1 — C'El) +o(l), (14)

for any 0 < E < (). Although (14) does not imply any statement about the expanef
log M3 (¢, ¢) for a fixede, it still demonstrates that in the regime of very small piality of

error, the parametet; emerges as an important quantity.

[Il. FUNDAMENTAL LIMITS FOR € > 0.
A. Main results

The first result shows that, under variable-length codidtpwéng a non-vanishing error
probability e boosts the:-capacity by a factor ofllfE even in the absence of feedback.

Theorem 1:For any non-anticipatory channel with capaditythat satisfies the strong converse
for fixed-blocklength codes (without feedback), theapacity under variable-length coding
without feedback, cf. (12), is

[[06]]:1?6,66(0,1). (15)

2As explained in [19], this model encompasses fountain caaeshich the decoder can get a highly reliable estimate of

autonomously without the need for a termination symbol.
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The proof is given in the appendix. In general, it is known,[IBeorem 16] that the VL capacity,
[C] = lim.,( [C ], is equal to the conventional fixed-blocklength capacitthaut feedback(,
for any non-anticipatory channel (not necessarily satigfjthe strong converse). On the other
hand, the capacity of FV codes for state-dependent nordergmhannels can be larger than
C [19].

Our main result is the following:

Theorem 2:For an arbitrary DMC with capacitg’ we have for any) < e < 1

log M3 (l,e) = f—i + O(log?) , (16)
. |
log M (L, e) = 1. + O(log?) . (17)
More precisely, we have
% —logl+0O(1) <log M;({,¢e) < f?e +0(1), (18)
1
log ME(4, €) < log M (£,¢) < w o). (19)
— €

A consequence of Theorem 2 is that for DMCs, feedback (evéhersetup of VLFT codes)

does not increase thecapacity, namely,

lim = log M; (¢, ) = [C.] (20)

{—00

where[C.] is defined in (12) and given by Theorem 1.

However, a much more important implication of Theorem 2 is tbllowing. If we denote
by M*(n, ¢) the fundamental limit of coding with fixed blocklength and feedback (which is
equal to the maximal cardinality of the code with blockldngtand probability of errog), then
for several channels, including DMCs, the additive whiteu&aan noise (AWGN) channel and
some channels with memory the behavior of this function adfixand moderate: is tightly
characterized by the expansion [12], [18]

log M*(n, €) = nC — VnVQ (e) + O(logn), (21)

where C' is the channel capacityy is the channel dispersion ar@~! is the inverse of the

standard®-function:

Q) = / Ty (22)
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Thus in the absence of feedback the backoff frewapacity (equal to capacity for DMCs) is
governed by th% term (21). The key advantage of variable-length coding viegdback lies
in completely eliminating that penalty, thereby opening gossibility of attaining the capacity
at a much smaller (average) blocklength.

Furthermore, the achievability (lower) bound in (18) isabed via stop-feedback codes that
use feedback only to let the encoder know that the decodemhas its final decision; namely,
the encoder mapsg, satisfy (10). As (18) demonstrates, such a sparing use db&ek does not
lead to any significant loss in rate even non-asymptoticlliturally, such a strategy is eminently
practical in many applications, unlike those strategied tequire full, noiseless, instantaneous
feedback. In the particular case of the BSC, a lower boundl {i®h a weakerlog ¢ term and

W|th replaced byC' has been claimed in [8].

B. Achievability bound

The proof of Theorem 2 relies on a general achievability lboun
Theorem 3:Fix a real numbery > 0, a channeI{Pyi‘Xiyffl}fi1 and an arbitrary process
X = (X1, Xs,...,X,,...) taking values in4. Define a probability space with finite-dimensional

distributions given by

n

Pyayngn(a”",b",¢") = Pxn(a") Pgn(c H vy (bla? 01 (23)

i.e. X and X are independent copies of the same processYars the output of the channel
when X is its input. For the joint distribution (23) define a sequert information density

functionsA™ x B” — R

1(a™; ") = log AP () (24)
and a pair of hitting times:
7 = inf{n >0:(X"Y") >~}, (25)
7 o= inf{n >0:(X"Y") >~}. (26)
Then for anyM there exists ari/, M, e) VLF code with
¢ < E7] (27)
e < (M-1)P[T <7]. (28)
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Furthermore, for any\/ there exists a deterministi¢’, M, ¢) VLF code with e satisfying (28)

and

0" < esssup E [7]X]. (29)

Remarks:

1) It is instructive to think ofX,Y and X as the sent codeword, the output of the channel
in response toX and a codeword distributed & but independent of X, Y).

2) Worsening the bound to (29) is advantageous, since fommsstnc channels we have
E[r|X] = E[r] and thus the second part of Theorem 3 guarantees the exstére
deterministic code without any sacrifice in performance.

3) Theorem 3 is a natural extension of the DT bound [12, Thedré], since (28) corresponds
to the second term in [12, (70)], whereas the first term in [¥B)] is missing because
the information density corresponding to the true messagateally crosses any level
with probability one.

4) Interestingly, pairing a fixed stopping rule with a randoading argument has been
already discovered from a different perspective: in thetexnof universal variable-length
codes [6]-[10], stopping rules based on a sequentially coespEMI were shown to be
optimal in several different asymptotic senses. Althougfaiuable for universal coding,
EMI-based decoders are hard to evaluate non-asymptgtiaatl their analysis relies on

inherently asymptotic methods, such as type-counting,16¥.

Proof: To define a code we need to spedity, f,., g., 7). First we define a random variable

U as follows:
U 2 A% x - x A® (30)
M trmes
Py 2 Pyxw X - X Pyo, (31)
M trmes

where Py is the distribution of the proces¥. Note that even fof.A| = 2, & will have the

cardinality of the real lin&R. However, in view of Theorem 19{| can always be reduced $o
The realization ofU definesM infinite dimensional vector€; € A>,j = 1,..., M. Our

encoder and decoder will depend ohimplicitly through {C,}. The coding scheme consists

of a sequence of encodefs that map a messageto an infinite sequence of inputs; € A>
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10

without any regard to feedback:

fa(w) = (Cy)n, (32)

where(C;),, is then-th coordinate of the vecto€;. Obviously, such encoder satisfies (10).

At time instantn the decoder compute® information densities:

2

Sin=1C;(n);Y"), j=1,..., M, (33)

whereC;(n) is the restriction ofC; to the firstn symbols. The decoder also defingsstopping
times:

i Eimf{n>0:8,>7}. (34)
The final decision is made by the decoder at the stopping time

7_*

1>

; :HlllnM T; . (35)

This means that* is the moment of the first-upcrossing among alb;. The output of the

encoder is

g(Y™) = max{j : T, =T7"}. (36)

We are left with the problem of choosing;,j =1,... M.

This will be done by generatin@; randomly, independently of each other and distributed
according toPx~ on A>.

We give an interpretation for our decoding scheme in the iab@ase of a memoryless
channel withPyx~ = Pg, i.e. X, are independent and identically distributed with a single-
letter distributionPx. In this case, the decoder observesrandom walksS; one of which has
a positive drift/(X;Y) (the true message) arid/ — 1) have negative drifts-D(Px Py || Pxy),

a quantity known as lautum informatidi( X; '), see [22]. The goal of the decoder, of course,
is to detect the one with positive drift.

The average length of transmission satisfies:

Er < LS EpmWw -y (37)
M £

= E[n|W =1] (38)

= E[7], (39)
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11

where (38) is by symmetry and (39) follows by the definition7ofn (25). Analogously, the

average probability of error satisfies

Plg(Y™) #W] < Plg(Y™) #1W = 1] (40)
< Pln > W =1] (41)
M
< P LU{Tj <n}HW= 1] (42)
j=2
< (M=1P[r, < n|W =1], (43)

where (40) is by (36), (42) is by the definition (35), and (43py a union bound and symmetry.
Finally, notice that conditioned ol = 1 the joint distribution of(S; ,,, S2.,, 71, T2) is exactly the
same as that ofi(X™; Y"),(X"; Y"), 7, 7) defined in the formulation of the theorem and (25),
thus we have proved (27) and (28).

To prove (29) simply notice that similarly to (39) we have abhsurely:
E[7*|U] < esssup E [7|X], (44)

and thus the bound (29) is automatically satisfied for eveslizationU. On the other hand,

because of (43) there must exist a realizatigrof U such that
Plg(Y™") # WU = uo] < (M-1)P[7 < ], (45)

which therefore defines a deterministic code with the soadflet performance (28) and (29m

C. Converse bounds

The converse parts of Theorem 2 follow from the followingules
Theorem 4:Consider an arbitrary DMC with capacity. Then any(¢, M, ¢) VLF code with

0 <e<1-— 4 satisfies

log M < CEHMI) (46)
1—e€
whereas eaclil, M, ¢) VLFT code with0 < e < 1 — - satisfies
Cl+ hie) + (0 + 1) (4
logM (€> : ( ) (Z—i—l) (47)
— €
1 1) +h 1
< Cl+ og(€+1 zt (€) + ogej (48)

whereh(z) = —xzlogx — (1 — x) log(1 — x) is the binary entropy function.
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Proof: The inequality (46) is contained essentially in Lemmas 1 anaf [3]. Thus we
focus on (47) only briefly mentioning how to obtain (46). Eiwge give an informal argument.

According to the Fano inequality

(I —€)logM < I(W;Y7,7)+ h(e) (49)
= I(W;YT)+I(W;7|YT) + he) (50)
< I(W;Y7T)+ H(1) + h(e) (51)
< IWYT)+ (C+ )b (e%) + h(e) (52)
< Cl4 (04 D)h (6%) +h(e), (53)

where in (52) we have upper-boundét{~) by solving a simple optimization problénfor an

integer-valued non-negative random variabie

max H(r) = ((+ D (@%1) , (54)

K [7]<¢

and in (53) we used the result of Burnashev [3]:
IW;Y") <CE[r] < C?. (55)

Clearly (53) is equivalent to (47). The case of VLF codes isnesimpler since is a function
of Y™ and thusl (W;Y 7", 7) = I[(W;Y7).

Unfortunately, the random variablé¥ ™, 7) andY™ are not well-defined and thus a different
proof is required. Nevertheless, the main idea still pivotshe fact that because of the restriction
on expectations; cannot convey more thaf(log¢) bits of information about the message.

Initially, we will assume that the code is deterministic abidl = 1. Consider a tripletf,,, g,, 7)
defining a given code. For a VLFT codejs a stopping moment of the filtration{ W, Y%} .

To get rid of dependence aefon W we introduce an extended chanr@él, B, Py‘X) as follows:

A = AU{T}, (56)

B = BU{T}, (57)
Pyix(gld), ##T,

Pyl = 4RO 07 (58)
Yg=T}, 2=T.

3The solution is given by a geometric distribution.
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X X
1 ol 1 ol

1—-9 1—-9
Te .ol
Original BSC Extended BSC

Fig. 1. lllustration of the channel extension in the proofTéfeorem 4.

In other words, the channé?ﬂx has an additional inpuf’ conveyed noiselessly to the output.
If Pyx is a BSC with crossover probabilitythen the extended channel has transition diagram
as represented on Fig.*IWe also assume that the original and extended channels finedle
on the same probability space where they are coupled in sugyahat wheneveX = X we
haveY =Y.

Next, we convert the given codg,, g,,7) to the code(f,, §.,7) for the extended channel

as follows:

Crn—1
fn(VV, Yn_l) _ fn(W7Y ) , T >N, (59)

T, T<n,

>
I

T+1=inf{n:Y, =T}, (60)
o gn(f/") ., T>n,
g(Y") = . : (61)
g (YT 7 <n,

Note that by definitionr > n can be decided by knowingy’ and Y"~! only and hencef, is
indeed a function of I, Y"~'); also notice that"~! € A"~! wheneverr > n, and therefore
the expressiorf, (W, Y™!) is meaningful.

Since7 is a stopping time of the filtration
a 2 in

the triplet (f,,g.,7) forms an (¢ + 1, M,¢) VLF code for the extended channel (58). This
code satisfies an additional constraint: input symbols used only once and it terminates

the transmission. Now we prove that any such code must paiskrtain upper bound on its

“The extended BSC was the first DMC to be analyzed in informatti@ory [13].
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cardinality M. To do so, consider the spae, ..., M} x A> and two measures on | -
and Py x Py.., where P, ;.. is the joint distribution of random variablé$ and Y induced

by the code(fn,gn, 7). Consider a measurable function
¢:{1,..., M} x A® = {0,1} (63)
defined as
¢ =1{g:(Y") = W}. (64)
Notice that under measur®, ;.. we have:
Pyyelp=1>1—¢, (65)

due to the requirement (6). On the other hand, since ukRdek P;.. g: is independent ofV/,

we have

(Pw X Pyoc)lp =1] = == (66)

By assumptionl — ¢ > = and therefore by the data-processing inequality we must hav

1
M
D(Pyyyoc || P Pyroc) = d(1 = €] |57) , (67)

whered(z||y) = zlog ¥ + (1 —z)log }:—; is the binary relative entropy. After straightforward

manipulations in (67) we obtain
(1—e)log M < I(W:Y>®) + h(e). (68)

Although, (68) is just the Fano inequality, inclusion of tbemplete derivation illustrates the
similarity with the meta-converse approach in Theorem 2@& &action 111.G in [12]. Another
important observation is that for smdll the bound can be tightened by replacing the step of
data-processing (67) with an exact non-asymptotic sotutiothe Wald’s sequential hypothesis
testing problem.

We proceed to upper boundiV; Y‘X’).5 To do so we define a sequence of random variables:

Py o (Y| W, YF1
7, = log —:W (Y Ak_l ), (69)
Py gna (Ve[ YR71)

SNotice thatY > formalizes the idea of viewingY ", 7) as a random variable.
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which are relevant td(W;Y/OO) because by simple telescoping we have

I(W;Y>®) = I(W; Y1)+ I(W;Y5°|V7) (70)
= D Wi Yinly") (7)

k=1
= Y E[Z]. (72)

k=1

For Z, we have the following property:
E[Zy| Fi] = L5, ,(W; Y2), (73)

wherelz(-;-) denotes mutual information, conditioned on. Specifically, for discrete random
variablesA, B and C' we define the following# -measurable random variable:

PA=a,B=0bC =c|Z]|P[C = c|.¥]
PA=a,C =c| Z|PB=0C=c|F]|’

I7(A;B|C) =) Pl[A=0a,B=bC =c|.F|log

a,b,c
(74)
where the summation is over the alphabetsiof3 and C'. We also define
A
Hz(A) = Iz(4A), (75)
and other information measures similarly.
We define yet another process adapted to filtration cf. (62),
V, 21{# <n}. (76)
With this notation we have:
Ly, (WiYy) = Iz, (W;YiVi) (77)
= Iz (Wi Vi) + Lz, ,(W; Ve[ Vi) (78)
< Hp, (Vi) + L (W3 Vil Vi) (79)
< Hz (Vi) + 1z (X YilV), (80)

where (77) follows becaus¥; is a function ofY}, (78) is the usual chain rule and (80) is
obtained by applying the data-processing lemma to the Marktation W — X, — Y, — Vj,
which holds almost surely when conditioned &f._;. We now upper-bound the second term

in (80) as follows
Iz, (X YilVi) < 0-PVi = 1% 1] + PV, = 0.7 _4]C, (81)
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because whei, = 1 we must haveX, = Y, = T and the mutual information is zero, while
whenV, = 0 we are computing the mutual information acquired on ﬂy—gX channel over a
distribution Py, . ., which has a zero mass on the symigland thus

sup  I(X;Y)=C. (82)

Overall, from (73), (80) and (81) it follows:

E [Z/Jﬂ;g_l] < Hg:lwl (Vk) + ]P)[Vk = 0|9]9_1]C (83)
Finally, we obtain
I(W;Y>®) = ZE (2| T 1] (84)
< SO H(T) 4 BV = 00 @)
k=1
= Y HW[Y* ')+ CE[] (86)
k=1
< Y HWVF) +CE[r] (87)
k=1
= H(W,Va,..)+CE[7] (88)
= H(7)+CE[7] (89)
= H(t)+ CE[7] (90)

where (84) follows from (72), (85) results from (83), (86)léwvs by taking an expectation of

the obvious identity

Z1{vk_0} 21{7>k}_7—1 (91)

k=1
and recalling that — 1 = 7, (87) follows becaus&*~! is a function ofY*~!, (88) is obtained
by the entropy chain rule, (90) follows sin¢®, V5,...,V,,...) is an invertible function off,
and finally (90) follows since = 7 + 1.
Together (68), (90) and (54) prove (47) in the case of a detéstic code with|U| = 1. For
the case ofU| > 1 the above argument has shown that we have

(1 —PW # W|U])log M < CE[r|U] + Hyqry (1) + R(P[W # W|U])  as, (92)
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wherelV = ¢,(Y ") is the output message estimate of the decoder. By takingxpecation of
both sides of (92) and applying the Jensen’s inequality éokiimary entropy terms we obtain

(1 —P[W # W) logM < CE[r] + H(r|U) + h(e), (93)

and then (47) follows since by (54) we have

1
H < H(t) < Dh|——) . 4
() < () < ¢+ 0 () (04)
Notice that in the case of VLF codes, the first term in (86) pissars because, is a function
of Y*~! thus leading to the tighter bound (46). [ |

An alternative to the converse in (46) for channels with< oo was discovered by Burna-
shev [3, Theorem 1] in order to show optimality of the expdn@n. A stronger version of that
result with a streamlined proof was given in [14]:

Theorem 5 ([14]): Consider a DMC with) < C' < ('} < co. Then any(¢, M,¢) VLF code

satisfies I \ .
fzoi?gé{(l—g—g) Ogc +alog4—f—§ , (95)
where
C1 = alr’r(llgé(AD(PY|X:a1||PY|X:a2) (96)
- rrzuyn Pyix(y|r) > 0. (97)

The proofs of both [3, Theorem 1] and Theorem 5 rely on semdeas of [15] and [3], who
proposed to split the analysis of a given code in two phasesy e auxiliary stopping time
71 < 7. Burnashev used, defined as the first time when the conditional entrépyiV’ |Y ™) falls
below a threshold! > 0. Instead, [15] proposed to be the first time whemax,, Py y»(w|Y™)
reaches a threshold- . As demonstrated in [14], such a choice results in a much mlegant
proof. Note that unlike [14], the original result in [15] wasymptotic, and restricted to the
case of the AWGN channel. Moreover the reasoning in [15]@oed a flaw, as pointed out by
Burnashev [3].

One drawback of the bound (95) is that it is not always strorigan (46). For example,
for a capacity% BSC ande = 1073, (95) is worse than (46) for all delays. To rectify this
situation we give a new bound which is provably tighter thathb(46) and Theorem 5. The
proof, included in the appendix, employs the two-phaseagapr choosing the sameas in [14],
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[15]. Furthermore, it follows the meta-converse framewafrkl2, Section IIl.E] and [16, Section
2.7].
Theorem 6:Consider a DMC with0 < C' < C} < oo. Then any(¢, M,¢) VLF code with

0 < e <1-— 4 satisfies

1 . € 1—e€ A& h(e) !
0 ~ (10g M — _ € log M | _
> O<§S;llp_ﬁ I (og Fy(§) — min {FJV[(€)7 ¢ 0g }) + ’ ) og -9 ;
(98)
where
Fy(z) = xlog(M —1)+h(z), 0<z<l1 (99)
N2 Prix(yles) (0,1). (100)

Y,T1,%2 Py‘X(’y|l'2)
Numerical experimentation suggests that weakening (98gphacing the minimum by, ()

has negligible effect.

D. Asymptotic expansions

Proof of Theorem 2:The upper bounds in (16) and (17) follow from Theorem 4. Fer th

lower bound (16), suppose that for ealtthere exists ar{¢’, M, +)-VLF code with

log M = Ct' —logt' — ag, (101)

where aq is some constant. To see that (101) implies the lower bounfl&) consider the

Ve—1

7 and uses

code which terminates without any channel uses,.e= 0, with probability

the (¢', M, ;;)-VLF code otherwisg Such a code has probability of erroend average length

(= Z'iﬁl_‘le) and, therefore, using (101) we have

log M*(L,e) > Cl —logl — ag (102)

_ f—c “log £+ O(1), (103)

as required.

®Note that due to availability of the stop feedback such aearidation can be realized on the decoder side only, i.e.ontth
requiring any common randomneds, Thus if ((’7M7 [—E)-VLF code exists with|U| = 1 then the overall coding scheme
constructed to achieve (16) also hag = 1.

DRAFT April 18, 2011



19

To prove (101), we apply Theorem 3 with the procéss, }>° , chosen to be independent and
identically distributed (i.i.d.) with a marginal distriban Py — a capacity achieving distribution.
To analyze (28) it is convenient to define a pair of random walk

S. 2 XY™, (104)

S, 2 u(Xmym. (105)

First notice that since the sequenge— n/(X;Y) =S, — nC is a martingale we obtain from
Doob’s optional stopping theorem [17, Theorem 10.10]
CE[r] = EI[S;] (106)
< v+ag, (107)
whereaq is an upper-bound of;. The equality
D(P||Q)E[r] =E [log 0 JJ (108)

is traditionally called Wald’s identity in the sequentigldothesis testing literature. In particular,

we obtain from (107)
Plr < o0o] =1 (109)

Next notice that for any (measurable) functibrwe have
E[f(X",Y")] =E[f(X",Y")exp{—S,}], (110)

becauses,, = log jﬁj{fﬂ. Therefore, we have
xnyn

P7 <7 < P[T <] (111)
= lim P[7 <1 (112)
= lim Efexp{~5,}1{r < n}] (113)
= lim E[exp{~5,}1{r, <n}] (114)
= lim E [exp{~5,}1{r, < n}] (115)
= E[lim (exp{=5;, }1{r < n})] (116)
= Elexp{-5:}1{r < oo}] (117)
< exp{—7}, (118)
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where (111) is from (109), (112) is by monotonicity, (113)fiem (110), in (114) we have
defined
Tn 2 min{7,n}, (119)

from which (114) follows, (115) is by the optional stoppitnggbrem [17, Theorem 10.10] applied
to the martingalexp{—S,,} and stopping time,,, and finally (116) and (118) both follow from

exp{—95, }I{r, < n} =exp{—95:}1{m <n} <exp{—}, (120)

which in turn follows from the definition of in (25).
The existence of ar{¢’, M, +)-VLF code with M satisfying (101) now follows by taking
v = CVl — ay and using (107) and (118) in (27) and (28), respectively. [ |
We note in passing that while the codes with encoders utdifull noiseless feedback can

achieve the Burnashev exponent (1), it was noted in [8], {h8} the lower error exponent
Ei{(R)=C—-R (121)

is achievable at all rate® < C' with stop-feedback codes (10). Indeed, this property gasil
follows from (118) and (107).

A numerical comparison of the upper and lower bounds for t8€ Bvith crossover probability
§ = 0.11 ande = 1073 is given in Fig. 2, where the upper bound is (98) and the loveemil
is Theorem 3 evaluated for varioudg and the lowest possible for which the right-hand side
of (28) is still smaller thari0—3. Note that forBSC(d) the(X"; Y™) becomes a random walk
taking stepdog 26 andlog(2 — 24) with probabilitiesé and1 — 4, i.e.,

WX Y") = nlog(2 — 26) +log 7 f 5 ; Z, (122)
where Z,, are independent Bernouli[Z, = 1] = 1 — P[Z, = 0] = 4. The evaluation of (28) is
simplified by using (110) to get rid of the procegs(™; Y"), which in this case is independent
of (X, Y™):

e < (M=DE[f()], (123)

where
f(n) 2 E[1{r < n}exp{—o(X";Y7)}]. (124)

The dashed line in Fig. 2 is the approximate fundamentat fimnifixed blocklength codes without
feedback given by the equation (21) withlog n) substituted by% logn; see [12, Theorem 53].
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Fig. 2. Comparison of upper and lower bounds on the maximhaiesable rate of variable-length feedback coding for the

BSC(0.11); probability of erroe = 1073,

Theorem 7:For aBEC(J) ande € [0,1) we have

logy M3 (£, €) = 1€_C€ +0(1), (125)
whereC' =1 — § bit. More precisely,
| | h(e)
— | < p < — .
L_({J _logsz(ﬁ,e)_l_Ejtl_€ (126)

Proof: The upper bound in Theorem 2 holds even ot 0, so we need only to prove
a lower bound. First, we assume= 0 and take arbitraryc. Consider the strategy that simply
retransmits each of bits until it gets through the channel unerased. More folynale define

a stopping time as
7o = inf{n > 1: there aret unerased symbols il},...Y,}. (227)
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It is easy to see that
E[r] = —— . (128)
Hence for any’ we have shown
log, M3 (¢,0) > [£C] . (129)

For e > 0 we make use of the randomization to construct a transmissibeme that stops at

time O with probabilitye and otherwise proceeds as above. We define a stopping time
Te = 10l{U > €}, (130)

where U is uniform on|0, 1] and measurable with respect #. It is clear that using such a

strategy we obtain a probability of error upper-bounded: layd

Elr] = 1—65(1 —€). (131)

Hence we are able to achieve
g, 176,00 |

© J . (132)

1—e€
[
The result of Theorem 7 suggests that to improve the expandi6) to the orderO(1),
it is likely that we need to go beyond encoders satisfying).(1® the problem of achieving
the optimal error exponent, similar reasons necessitateggmeyond stop feedback and lead to

introducing a second communication phase as in [3] and [5].

V. ZERO-ERROR COMMUNICATION

The general achievability bound, Theorem 3, applies only t00. What can be said about

e =107?

A. No termination symbol (VLF codes)

Burnashev [3] showed that @ = oo, then as/ — oo we have for some > 0
log M3 (¢,0) > £C — a\/llog { + O(log ) . (133)

For this reason, for such channels zero-error VLF capasityqual to the conventional capac-
ity. However, the bound//log ¢ on the penalty term is rather loose, as the following result

demonstrates.
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Theorem 8:For a BEC'(J) with capacityC' = 1 — ¢ bit we have
logy M7 (£,0) = (C' + O(1). (134)

Proof: Theorem 7 applied witla = 0. [ |
Regarding any channel with; < co (e.g. the BSC), the following negative result holds:

Theorem 9:For any DMC withC; < oo we have
log M;(¢,0) =0 (135)

for all ¢ > 0.
Proof: We show that wherC; < oo no (¢,2,0) VLF code exists. Indeed, assume that

(U, fn, g, T) is such a code. For zero-error codes, randomization camhgtdnd hence, without
loss of generality we assumé&/| = 1. The result can now be derived from [3, Theorem 1],
from (95) (both applicable tdt/| = 1) or from (98) by noticing that any/¢, M,0) VLF code
is also an(¢, M, ) code for anye > 0 and takinge — 0. However, it is instructive to give an
independent direct proof, which generalizes to infinitehalgets and channels with memory.

Conditioning onli¥ = 1 andW = 2 gives two measure®; and P, on B, which are mutually
singular when considered on thealgebra®,, where¥, = o{Y1,...,Y,} is a filtration onB,

with respect to whichr is a stopping time. Define a process, adapted to the saméiditira

dPy
R, =log —| , 136
°8 77, . (136)
where % denotes the Radon-Nikodym derivative betwégrand P, considered as measures

n

on the spac® with o-algebra¥,,. Then, by memorylessness we have
Pyix (Yol fa(1, Y1)

R,— R, 1=1o : 137
! gPY|X(Yn|fn(2>Yn_1)) ( )
From (137) and”; < oo it follows that there exists a constamt > 0 such that
Ry — Ry > —ay, (138)
and, consequently,
R, > —na; . (139)

"Indeed, for each, we must havé®[W # W |U = uo] = 0 and thus we can take the valug which minimizesE [7|U = uo].
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On the other hand, taking the conditional expectation o7J1@th respect taP; we obtain from
the definition ofC; in (96):

E [Rn|gn—l] < Rn—l + C(1 < 00, (140)

where here and in the remainder of this proof the expectdian taken with respect to measure
Py. Thus (140) implies that undé?; the processz,, —nC; is a supermartingale. For any integer
k > 0 the random variablenin{r, £} is a bounded stopping time. Therefore, by Doob’s stopping

time theorem [17, Theorem 10.10] we have
E [Ruingrky] < CiE [min{7, k}] < CiE[7] < 00. (141)
At the same time, from (139) we have
Roin{r iy > —ay min{7, k} > —a;7, (142)

and sinceE [r] < oo we can apply Fatou’s lemma to (141) to obtain

E[R,] =E [lilgn inf Ryingriy] < C1E[7] < 00. (143)
—00
On the other hand,
Dy, (P1||P) = E[R-] < o0, (144)
thus implying thatP; and P, cannot be mutually singular g, — a contradiction. [ |

B. Communication with a termination symbol (VLFT codes)

The shortcoming of VLF coding found in Theorem 9 is overcoméhie paradigm of VLFT
coding. Our main tool is the following achievability bound.

Theorem 10:Fix an arbitrary channeﬂPYZ_‘Xi-ylifl};’g1 and aproces¥ = (X1, Xo, ..., Xp,...)
with values in.A. Then for every positive integeV/ there exists ari¢, M,0) VLFT code with

l< iE [min {1, (M—1)PL(X"™Y™) < o X" Y™)|X"Y"]}], (145)

n=0

where X", X", Y™ and(-;-) are defined in (23) and (24). Moreover, this is an FV code which

is deterministic and uses feedback only to compute the stggpne, i.e. (10) holds.
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Proof: To construct a deterministic code we need to define a trigletg,, 7). Consider
a collection of M infinite A-strings{C;, ..., Cy}. The sequence of the encoder functions is
defined as
fa(w) = (Cu)n, (146)

where(C;),, is then-th coordinate of the vectdT;. Recall that in the paradigm of VLFT codes

it is allowable for the stopping rule to depend on the true messadé so we may define

7=inf{n >0:4(Cy(n);Y") > II;%(@(CU(TL); Y™}, (147)

where as before€C;(n) € A" is a restriction ofC; to the firstn coordinates. Definition (147)
means that if the true messagejishen the transmitter stops at the first time instanvhen
1(C;(n);Y™) is strictly larger than any othex{(C,(n);Y™),v # j). Finally, the sequence of

decoder functions is defined as

k, i V5 # k:1(Cr(n);y") > o(Cj(n);y")
1, otherwise
Upon receiving a stop signal, the decoder outputs the infléxeaunique message corresponding

to the maximal information density, thus we have
g (Y =W, (149)

and the constructed code is indeed a zero-error VLFT codearfigr selection ofM strings
C;,j=1,...,M. We need to only provide an estimate of the expected lengtlhmmimunication
E[7].

The result is proved by applying a random coding argumertt ®éichC; generated indepen-
dently with probability distributionPy -, corresponding to the fixed input process Averaging

over all realizations of C,,j = 1,..., M} we obtain the following estimate:

Plr >n] = Plr>n|W =1] (150)

P lU{z(Cl(n);Y”) <(Cj(n); Y™}

where (150) follows from symmetry and (151) simply stated thr > n andWW = 1 then at least

IA

W = 1] , (151)

one information density should not be smaller th&@;(n); Y"). We can proceed from (151)

as in the random-coding union (RCU) bound [12, Theorem 17]:
Plr >n] < Emin {1, (M—1)PR(X™"Y") <o( X" Y™)|X"Y"]}], (152)
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where we have additionally noted that conditioned®r= 1 the joint distribution of C; (n), C;(n), Y™)
coincides with that of X", X", Y™) for everyj # 1. Summing (152) over alth from 0 to oo

we obtain
E(r]=> Plr>n] <) Emin{l, (M-1)P(X"Y") <o(X"Y")|X"Y"]}].  (153)

Thus, there must exist a realization o€;, j = 1,..., M} achieving (145). [ |
Theorem 11:For an arbitrary DMC we have

log M;(£,0) = £C' + O(log ) . (154)

More specifically we have
log M (£,0) < (C +1logl+ O(1), (155)
log M:(€,0) > (C+O(1). (156)

Furthermore, the encoder achieving (156) uses feedbacil¢alate the stopping time only, i.e.
it is an FV code.

Proof: The upper bound (155) follows from (48). To prove a lower kahuwe will apply
Theorem 10 with the process selected as i.i.d. with a capacity-achieving marginalritistion.

We first weaken the bound (145) to a form that is easier to aealy
E fmin {1, (M~ DPL(X™ Y™) < o X5 Y")|X"Y"])] (157)
< E[min {1, MPL(X"Y™) < o(X™ V™)X Y]} (158)
= Efmin {1, MP[(X";Y") <o(X" V") X Y]} 1{a(X"; V") < log M}]
+ E [min {1, MPR(X"; Y™) < o(X™Y™)| XY™} 1{a(X";Y™) > log M}] (159)
< PR(X™Y™) < log M] + MP[(X™;Y™) > log M] (160)
= E [exp {~[u(X";Y") —log M]*}] | (161)

where (160) is obtained from (159) by upper-boundingh by 1 in the first term and by
MP[R(X™;Y™) > log M] in the second term, and (161) is an application of (110).
In view of (161), Theorem 10 guarantees the existence dfa/,0) VLFT code witr?

(<E iexp {—[Z(X";Y") — logM]+} : (162)
n=0

8,(X°;Y?) = 0 by convention.
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We now define the filtrationz as
Ty =0o{ X", X" Y"}, n=0,1,... (163)

Notice that:(X™;Y") is a random walk adapted t& with bounded jumps and positive drift
equal to the capacity":

E[s(X™Y™)] =nC, (164)

whereas the proceséX";Y™") is also a random walk with bounded jumps, but with a negative

drift equal to the lautum information [22]:
E[.(X™Y")] = —nD(Px Py||Pxy) = —nL(X;Y). (165)
Define a stopping time of the filtratio# as follows:
T=inf{n >0: (X" Y") > logM}. (166)
With this definition we have

Zexp{ (XM Y™) —log M]*Y T+Z€Xp{ L(X*T YR — log MY}

(167)

Because(X7;Y7) > log M we have
[(XFTT YR —log M) = (X YR —o(XTYT) +o(XT YT — log M]T(168)
> [(XFTYRT) (XY (169)

Application of (169) gives

o0

Zexp{ Xk:-i—’r Yk—i—r) log M]+}
k=0

Zexp { Xk:-i-’r Yk-i-T) . Z(XT; YT)]+}
k=0

(170)
By the strong Markov property of the random walk, conditioren .%, the distribution of the
process (X7 YFT) — (X7, Y7) is the same as that of the proceéX*; Y*). Thus, (167)
and (170) imply

E <E

7]+ E Zexp{ o(XF YR (171)

Zexp{ (XY™ logM]+}
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To estimate the second term, notice that for some constants > 0 we have

E [exp {~[o(X*Y")]"}] (172)
= PLX"Y") <0 +E [exp {—o(X"Y")} 1{s(X" V" > 0}] (173)
= PR(X*YF) <0+ Pu(X*YF) > 0] (174)
< ayexp{—ak}, (175)

where (174) is an application of (110), and (175) followsnircChernoff bound since both
1(X*; YY) ando(X*; Y*) are sums of i.i.d. random variables with positive expectatiohand
negative expectation(X;Y'), respectively. Summing (175) over all non-negative integewe

obtain that for some constant > 0 we have
Zexp{ L(XE YT <as. (176)
Finally, by the boundedness of jumps@X™;Y™) there is a constant, > 0 such that
(X YT) —logM < ay. a77)

Sincex(X™; Y") —nC' is a martingale with bounded increments we have from Dodiogsng
time theorem [17, Theorem 10.10]:

E[W(X7;YT)|=CE][7], (178)

but, on the other hand, from (177) we have

E[(X7;Y7)] <logM + ay (179)

and thus,
B[] <08M o, (180)
Together (180), (176) imply via (171) and (162) the requil@der bound (156). [ |

Theorem 11 suggests that VLFT codes may achieve capacityaweery short blocklengths.
To illustrate this numerically we first notice that Theore® darticularized to the BSC with

i.i.d. input processX and an equiprobable marginal distribution yields the foltw resulf.

This expression is to be compared with the (almost) optinea-fieedback achievability bound for the BSC, [12, Theorem
34].
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Corollary 12: For the BSC with crossover probability and for every positive integei/
there exists ari/, M,0) VLFT code satisfying

(< ii( )5t 1—5)”—tmin{1, M i <Z)2—”} . (181)

n=0 t=0

A comparison of (181) and the upper bound (48) is given in BigWe see that despite
the requirement of zero probability of error, VLFT codes alde to attain the capacity of the
BSC at blocklengths as short as 30. As in Theorem 7 the coemeegto capacity is very fast.
Additionally, we have depicted the (approximate) perfonoe of the best non-feedback code
paired with the simple ARQ strategy, see [12, Section IVijte that the ARQ strategy indeed
gives a valid zero-error VLFT code. The comparison on Figu@gests that even having access
to the best possible block codes the ARQ is considerably@ubal. It is interesting to note
in this regard, that a Yamamoto-Itoh [5] strategy also p#es best block code with a noisy
version of ARQ (therefore, it is a VLF achievability boun@@onsequently, we expect a similar
gap in performance.

Another property of VLFT codes is that the maximal achiegatalte for very small block-
lengths may be noticeably above capacity. This can be sean astifact of the model which
provides for an error-free termination symbol. Ordinarillye overhead required in a higher
layer to provide much higher reliability than the individuyshysical-layer symbols would not
make short blocklengths attractive. This point is best destrated by computing the following
specialized achievability bound for the BEC, which imprevwbe general Theorem 10 in this
particular case.

Theorem 13:For the BEC with erasure probabilityand any positive integet/ there exists

an (u(M), M,0) VLFT code, where the functiop : Z, — R, is the solution to

M—-1 1

pM) = S5 (M = 1)(M — 1)

roo g [ () [P e ()] e

initialized by x(1) = 0.

Proof: If we need to transmit only one messagé, = 1, then we can simply set = 0.

Therefore, we have

u(1)=0. (183)
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Fig. 3. Rate% log M/ (¢£,0) as a function of for zero-error transmission over the BSC(0.11) with a teation symbol. The

lower bound is (181); the upper-bound is (48).

If we need to transmit an arbitrard/ > 1 number of messages than we do the following. First,
all M messages are split into three groups. This splitting iscséatd known to both the encoder
and the decoder. The first group consists of a single mesSagpécial message” below) and
the remainingV/ — 1 messages are split almost evenly in two (“non-special”ugsy according

to

M—1 M—1
M—1=[ 5 Lﬂ 5 J (184)

Second, ifiV is equal to the special message, then the encoder termith&emmunication
by settingr = 0. If W belongs to one of -'] messages then the encoder sfts= 0,
and to f; = 1 if W belongs to the remaining group ¢f-|. Third, upon passing through
the channel one of three possibilities can happen: trassonigerminated withl” (if W was a
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special message), the digit was delivered correctly, ordige was erased:

1) In the first case, the decoder knows thEt must have been equal to the pre-selected
special message, which it outputs 1&s (error-free, of course).

2) In the second case the decoder has gained the knowleddeaidb of the two non-special
groupsWV belonged. Therefore, we can reiterate the algorithm witbduced size of the
message set, settinf’ = [#-1] or M’ = |*-L|, depending on the group to whidh’
belonged.

3) Finally, if the digit was erased then the only knowledge tlecoder has gained is tHat
was a non-special message. Therefore, we reiterate thetailgavith M/’ = M — 1 since
the special message was ruled out.

We now analyze the average number of channel uses requiredi¢ch a recursive procedure to

terminate. The first case happens with probabifj]twnd the total number of channel use%is

The second case happens with probabiﬂif@}1 - (1 —¢) and the (average) number of channel

uses isl +p ([252]) or 1+ 4 (| 242 ]) depending on the group to whidl belonged. Finally,

the third case happens with probabili%wLl -6 and the number of channel useslis (M —1).

In total we obtain (182). [ ]
The first few values of the-function are

u1) = o0, (185)
w2 = 1/2, (186)
pE) = $(2+9), (187)
w(d) = 1+%(5+52). (188)

Since it is not possible to computg2°°) directly, the following idea was used for large values
of M. Fix somek,,,, and compute.(2*) for all k < k,,.., via (182). Fork > k,,., We can use
a strategy of simply retransmitting each of the fikst k,,,, bits until it is delivered unerased,
and then use the described recursive strategy to transeniethainingk,,... bits. This gives the
bound

k — kmaz

p(2°) < s + g (28 (189)

As k... increases, the upper bound improves. Experimentation shioat there is no visible

improvement oncé,,,,, = 10.

~
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Fig. 4. Rate% log M; (¢,0) as a function of¢ for zero-error transmission over the BEC(0.5) with a teation symbol. The

lower bound is Theorem 13; the upper-bound is (48).

Numerical comparison of the achievability bound of Theof&against the converse bound (48)
is given on Fig. 4 for the case éf= 0.5. We notice that indeed for small(and, equivalently,
M) the availability of the termination symbol allows the rdateexceed the capacity slightly.
Also, the horizontal capacity line coincides with the “titemhal” achievability bound for the
BEC, as given by Theorem 7 with= 0, which does not take advantage of the additional degree

of freedom enabled in the VLFT paradigm (i.e., a terminasgmbol).

V. EXCESSDELAY CONSTRAINTS

Quantifying the notion of delay for variable-length codingth feedback has proven to be
notoriously hard, see, for example, [23] for a related dis@mn. While for fixed-blocklength

codes, delay is naturally identified with blocklength, ire tkariable-length setup, however,
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the usage of average blocklendgi{r| as a proxy for delay may not be sensible in real-time
applications with hard delay constraints. Neverthelelss, definition of rate aé%ff is very
natural, since by the law of large numbers, the ratio of hitsttannel uses will approadﬁ%f

for a repeated use of the same code.

An advantage of feedback is the ability to terminate trassion early on favorable noise
realizations thereby reducing average blocklength. Hewet/remains to be seen whether under
a constraint on the probability of excess delay, variableggth coding offers any advantage.
Depending on whether VLF or VLFT codes are used, we conswiewifferent formulations of
the delay constraint. While the delay is not allowed to edcaeertain threshold in either case,
for the VLFT codes we additionally require the decoded ngssa be correct with probability

one.

A. VLF codes

Consider an arbitrary VLF code and define the error evenedifftly from (6). Namely, fix

a delayd and define the probability of error as
e=P{W £ W}U{r >d}. (190)

The question is then: what is the maximuvh compatible with a chosed ande? The answer
is obvious: since in such formulation the encoder has nonitice to terminate before the delay
d, we might as well fix blocklength to bé and force the decoder to take the decision at time
d. This, however, is no different from fixed-blocklength cagliwith feedback.

Definition 3: An (n, M, ¢) fixed-blocklength feedback code is &n, M, ¢) VLF code with
7 = n. The fundamental limit of fixed-blocklength feedback codegiven by

M; (n,e) = max{M : 3(n, M, ) fixed-length feedback codle (191)

In the case of the BEC, the tight converse bound for fixedkdogth codes shown in [12,
Theorem 38] applies even when feedback is available. Toexethe proof of [12, Theorem 53]
automatically applies to the feedback case and we have:

Theorem 14:For the BEC,

log M; (n,€) = nC — VnVQ*(e) + O(1), (192)
whereC' andV are the capacity and the dispersion of the BEC.
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Therefore, we see that if we treat the excess delay as ee®(190), then feedback is unable
to improve the,/n penalty term. In fact, much more is true. The numerical cowmn of the
upper (converse) bound for the BEC was shown in [12, Sectidip tb be extremely tight. In
particular, it was shown that non-feedback codes existabhieve values ofog, M within 2-3
bits of the converse bound for all blocklengths> 10. Consequently, under an excess delay
probability constraint, the potential benefit of feedbasKkimited to enlargindog, M by those
2-3 bits at most.

Similar conclusions regarding the expansion and the bohaldisfor a wide class of symmetric
channels (including the BSC), as is shown below. Namely, @eahstrate that for such channels,
the expansion (21) does not change in the presence of fdedlian attention is restricted to the
fixed-blocklength codes defined in Definition 3. Moreover, degnonstrate that non-asymptotic
(converse) upper bounds, used for numerical computatiofii Sections Ill.H, 1ll.I] and shown
there to be extremely tight, hold verbatim in the presencéetlback. The main idea in our
analysis is due to Dobrushin [2] and thus, the subsequenttsesiay be viewed as both a
strengthening of his result to the non-asymptotic settihgl@], and as a generalization to a
wider class of channels defined as follows.

Definition 4: ADMC (A, B, Py|x) is called weakly input-symmetric if there exists ane A
and a random transformatidh, : B — B for eachx € A such thatl}, o Py|x—,, = Py|x—, and
T, o Py« = Py«, Where Py is the (unique) capacity achieving output distribution.

Note that the compositioff;, o Py~ with a distributionP,- on B is given by

(Ty o Py)(y) = > Tulyly) Pr(y) . (193)
y'eB
Thus, in other wordsJ}, is a stochastic matrix which upon multiplication by the coluPy|x—,,
yields the columnPy | x_,. Weak input-symmetry is a (strict) generalization of Dadim [2] and
Gallager [24, p. 94] symmetries. This more general propéyever, is sufficient to compute
thelogn term in (21); see [16, Section 3.4.5].
The performance of an optimal binary hypothesis test is ddfes follows (see [12, Section
[11.D2] for more details). Consider &V-valued random variablél” that can take probability
measures” or (). A randomized test between those two distributions is ddfiog a random

transformationP,, : W — {0, 1} where0 indicates that the test choos@s The best perfor-
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mance achievable among those randomized tests is given by

Ba(P,Q) =min > Q(w)Pzw(1|w), (194)

weW

where the minimum is over all probability distributiod%;;;; satisfying

> P(w)Pyw(ljw) > a. (195)

weW

The minimum in (194) is guaranteed to be achieved by the NayRearson lemma. Thus,
Ba(P, Q) gives the minimum probability of error under hypothe&isf the probability of error
under hypothesig’ is not larger tharnl — «.
The generalization of Theorem 14 is the following:
Theorem 15:Consider a weakly input-symmetric DMC with capacity and dispersion/.
Then M; (n, €) satisfies a “sphere-packing bound”:
1

My(n,€) < o—, (196)
51—6
where g} is defined for0 < a <1 as follows:
n A n n
ﬁa = 5a(Py|X:mO> Py*) ) (197)

with g € A and Py being as defined in Definition 4. In particular,if > 0 then asn — oo
we have
1
log Mj (n,¢) < nC — vVnVQ *(e) + 3 logn + O(1), (198)

whereas iflV = 0 then
log My (n,e) <nC —log(l —e). (199)

For example, for the BSC it was shown in [12, Section Ill.H&ttl§196) is tight to within a
factor of 10 for a wide range of. Therefore, for the BSC and sueh the value oflog M} (n, €)
can improve thdog M*(n, ) (achieved without feedback) by at most 3-4 bits.

Some properties of weakly input-symmetric channels (faation see [12, Section IV.A]) are
summarized in the next result.

Theorem 16:For any weakly input-symmetric DM@ all of the following hold:

1) The capacityC' satisfies

C = D(Pyjx=s,||Py+). (200)
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2) Thee-dispersionV,, see [12, Definition 2], equals the dispersignand satisfies
V= V(Py|x=al|Pr+) (201)
= V(Prix=l|Py-) (Vo :D(Pyix=||Py-) =C). (202)
3) If V>0 then asn — oo we have
—log B, =nC —VnVQ '(e) + % logn +O(1). (203)

If V =0 then we have
—log B, = nC —log(1l —¢). (204)

Proof: To show (200) notice that a transformatibpmaps the pair of distributions? | x —z,, Py+)

to (Py|x=., Py+) and therefore by the data processing for divergence we get
D(Py|x=z||Py+) < D(Py|x=a||Py+) (205)
from which (200) follows via
C = max D(Pyjx=||Pr-). (206)
For eachz™ define a random transformatidn.. : B* — B™ as follows:
Ton (2"ly") = [T Toe Gl (207)
k=1

Then T,» maps the pair of distribution§Py_, . Py.) t0 (Pynjxn—yn, Py. and thus by the
data-processing property fgy, (i.e., application of a random transformation cannot imprthe

value of 5,) we obtain

504(PY"|X”=56"7 P)?*) > ﬁa(( ;\X:xo)v P)?*) : (208)

To show (201) notice that by [12, Lemma 58] we have for any A,

10g Ba(PY | x—ps Py+) = —nD(Pyx || Py+) — \/nV(PY\szHPY*)Q_l(a) +o(vn). (209)
But by (208) we must have
10g Ba(PY | x—g: PV+) = 108 Ba (P x—gy> P¥+) - (210)

Now assuming that € A is such thatD(Py x—,||Py+) = C and applying (209) to both sides
of (210) fora > 1/2 we obtain

V(Py|x=a||Py+) = V(Py|x=zo||Py+), (211)
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whereas takingy < 1/2 we show
V(Py|x=z||Py+) < V(Pyix=zol|Py+), (212)

and consequently (201) follows.
Finally, by (200), (201) and [12, Lemma 58] (see also [16892-(2.90)]) we obtain (203)
and (204). [ |
Proof of Theorem 15Fix an(n, M, ¢) fixed-blocklength feedback code. Its encoder defines

a transition probability kernePy~y, from the input space
Dy 2 1{1,..., M} (213)

to the output spacg”. We can view then the tripletD,;, Py, B") as a channel on which
we have a usuglM, ¢) code. For such a code [12, Theorem 27] shows
1
M < , 214
= Bi—e(Pwyn, PwQyn) (e14)
where Py, is the equiprobable distribution di,, and @y is the following product distribution

on B":

Qve(y;) =[] Pr-(w)- (215)
j=1
Therefore, the proof of (196) will be complete if we can show

Bo(Pwyn, PwQyn) > B . (216)

Lemma 17 (at the end of this section) shows that (216) folldwse prove that for any
jed{l,...,M}
Bo(Pynw=j, Qyn) > By . (217)

Fix arbitraryj € {1,..., M} andx, € A. The sequence of encoder functiofisk = 1,...,n

defines the measurg,y—; as follows:

Pynjw—;(y") = H Pyix(yel (G, ") (218)
k1

Since the channel is weakly input-symmetric, to eack A there exists a transformation
T, : B — B such that
PY|X:m =T,0 PY\X:;BO ) (219)
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where the composition is understood as in (193). We will nefing a transformatioft; : B" —

B" as follows: .
T;(2"[y") = H Tfk(j,ykfl)(zﬂyk) . (220)

k=1
Then according to this construction and (218), on the onel vea have
T‘j o) P{/L\X:xo = Pyn‘W:j y (221)

whereas on the other hand, since edthpreservesPy ., we also have

Ty o Qyn = Qyn . (222)

Then it follows that
Bo(Pyniw=j, Qyn) = Bal(Tjo Pyx_yy Tjo Qyn) (223)
> BalPix—ay Q). (224)

where (223) follows by (221) and (222), and (224) follows katadprocessing property fat,
(i.e., simultaneous application @f; to both measures cannot improve the value3gf. This
completes the proof of (196). Finally, (198) and (199) fallby (214) and (203) or (204),
respectively. [ ]
The following result is a straightforward modification of2[1Lemma 29]; see [16, Lemma
32]:
Lemma 17:Suppose that there is an non-decreasing convex fungtiof, 1] — [0, 1] such

that for allz € F
Ba(Py|x=z Qvix=c) = f(a). (225)

Then, for anyPx supported or- we have

Ba(Px Pyix, PxQy|x) > f(a). (226)

B. VLFT codes

It has been shown above that one of the key advantages of VioEE&scis in their ability
to achieve zero probability of error without any penalty ater. In this section we study the

guestion of excess delay for such codes. For a zero-erromMidée we define an-delay as
D.=min{n : P[t >n| <€}, e€][0,1]. (227)
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Thus a zero-error VLFT code with, < d is a code which is guaranteed to deliver the data error-
free, and does so in less thdrchannel uses in all exceptportion of the cases. The question

arises: for a fixed, what is the maximum\/ compatible with a giver-delay requiremend:
M (d,e) = max{M : Jzero-error VLFT code withD, < d} 7 (228)

The obvious achievability bound is to simply pair a fixeddilength non-feedbackn, M, ¢)

with n = d code with an ARQ retransmission strategy to achieve zexr.eiWe have thus
M:(d,e) > M*(d,e) = dC — VdVQ *(e) + O(logd), (229)

where M*(d, ¢) denotes the performance of the best non-feedback, fixezklelogth code and
is thus given by (21).

Can we improve the crucial/d-penalty term in (229)? The answer is negative, at least for
the BEC:

Theorem 18:For the BEC,

log M (d, ) < dC —VadVQ (e) +logd + O(1), (230)
whereC andV are the capacity and the dispersion of the BEC.
Proof: Let E; be the i.i.d. process corresponding to erasures; = 0] = 1-P[E; = 1] =4,
whereo is the erasure probability of the BEC. Then the total numbeunerased symbols by
time n is given by

N, =Y Ej. (231)
j=1

Following the steps of the proof of [12, Theorem 38], we caa Hwt by timen the total
number of messages distinguishable at the receiver is djperded byzg‘:O 2Ni (summation
corresponds to the fact that a VLFT code has the freedom dfisgra termination symbol at

any time). Therefore, since the code achieves zero-erranave

min {i 2N ,M}] . (232)
=0

Since V; is a monotonically non-decreasing it follows that

1
Plr <n|< —E
r<n< 4

n Nn,
d 2N < Yot (n— N,)2M (233)
j=0 t=0
< 2M(n+2-N,) (234)
< (n+2)2". (235)
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Although the bound (234) is useful for numerical evaluatitie bound (235) is more convenient
for the analysis. Indeed, we have from (232) and (235):

Plr <n] < %E [min {(n + 2)2" , M} ] (236)
n+ 2 ) M
= E {mln{QN ’n+2H . (237)

Recall now that for the non-feedback case [12, Theorem 38]bearestated as
1—€e< %E [min {2N" , M}] . (238)
The analysis of the bound (238) in the proof of [12, Theorerj) B&s shown that (238) implies
log M < nC —vVnVQ (e) + O(1), (239)

asn — oo, whereC' and V' are the capacity and the dispersion of the BEC. Comparing)(23
and (237) we see thdl/ is replaced byn%z. Therefore, the same argument as the one leading
from (238) to (239) when applied to (237) must give

log M < nC — VnVQ () +log(n+2) + O(1), (240)

which implies (230). [ ]

VI. DISCUSSION

We have demonstrated that by allowing variable length, everodicum of feedback is enough
to considerably speed up convergence to capacity. Fotrdlisn purposes we can see in Fig. 2
that we have constructed a stop-feedback code, that ashireexample90% of the capacity
of the BSC with crossover probability= 0.11 and probability of erroe = 10~2 at blocklength
200; see Fig. 2. In contrast, to obtain the same performancefixéd-blocklength codes requires
a blocklength of at leasi100 even if full noiseless feedback is available at the tranemit his
practical benefit of feedback opens the possibility of zitilg the full capacity of the link without
the complexity required to implement coding of very longadptaickets.

A major ingredient of the achievability bounds in this papethe idea of terminating early
on favorable noise realizations. Although, we have applslidea to the codes with codewords
with unbounded durations, it is clear that without any digant effect on probability of error we

could also assume that the transmission forcibly termgateer a time which is a few times the
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average blocklengtih. Consequently, it can be shown that any point on the achildyaturve

of Fig. 2 can be realized by pairing some linear block codd wit stopping rule (35). In other

words, even traditional fixed-blocklength linear codes t@ndecoded with significantly less

(average) delay if used in the variable-length settings Itmportant, thus, to investigate whether
traditionally good codes (such as low-density parity-égh@dPC) codes) are also competitive
in this setting.

Theoretically, the benefit of feedback is manifested by theeace of they// term in the
expansions (16) and (17), whereas this term is crucial terdehe the non-asymptotic perfor-
mance without feedback. Equivalently, we have demonstrdigt for variable-length codes with
feedback the channel dispersion is zero. To intuitivelyl&xpthis phenomenon, we note that
without feedback the main effect governing thé: behavior was the stochastic variation of
information density around its mean, which is tightly cltaesized by the central limit theorem.
In the variable-length setup with feedback, the main idehas of Wald-like stopping once the
information density of some message is large enough. Torvexethere is virtually no stochastic
variation (besides a negligible overshoot) and this exgldéine absence of any references to the
central limit theorem.

We have also analyzed a modification of the coding problemniypdlucing a termination
symbol (VLFT codes), which is motivated in many practicalations in which control signals
are sent over a highly reliable upper layer. We have showniththis setup, in addition to the
absence of// term, the principal new effect is that the zero-error caacicreases to the full
Shannon capacity of the channel. Although availability duae-once” termination symbol is
immaterial asymptotically, the transient behavior is #igantly improved. Analytically, this
effect is predicted by the absence of not only € term but also of thelog? term in
the achievability bound (156). Furthermore, our codes véimination have a particularly
convenient structure: the encoder uses the feedback liyk@choose the time when to stop the
transmission (by sending the termination symbol), andretise simply sends a fixed message-
dependent codeword. The codes with such structure havedadled fixed-to-variable (FV), or
fountain, codes in [19]. Thus, in short, we have demongirétat fountain codes can achieve
90% of the capacity of the BSC with crossover probability- 0.11 at average blocklength 20
and with zero probability of error. Practically, of courseero-error” should be understood as

the reliability being essentially the probability with vehi the termination symbol is correctly
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detected.

Finally, we have discussed some questions regarding comsatiom of real-time data. We
have demonstrated that constraints on the excess delafy it advantage of feedback (and
variable length), i.e. the improvement in performance efbest feedback code can be marginal
at best compared to non-feedback, fixed-blocklength cotless. is in sharp contrast with the

results of the previous sections.

APPENDIX

The next result shows that restriction on the cardinality/oh the Definitions 1 and 2 does
not entail loss of generality.
Theorem 19:For any(¢, M, ¢) VLFT code there exists af, M, ¢) VLFT code with|U/| < 3.

Proof: Denote byG), the following subsets oR?:
G2 {(¢,¢): 3¢, M, ¢)-code withU| < kY, k=1,2,. .., (241)

and
G 2{(¢,¢): 3(¢', M, ¢)-codé. . (242)

Notice thatG,, is a convex hull ofGG; since by taking a general code and conditioninglon
we obtain a deterministic code. By Caratheodory’s theoraathven know thatz; = G.. Since
by assumptior(/, ) € G then(Z,¢) € Gs. [
Proof of Theorem 1: Fix ¢ < e and a largen. Then there exists a fixed-blocklength
code without feedback with blocklength probability of errore’ and number of messagég
satisfying:
logM > nC + o(n). (243)

Consider the following variable-length code (without feadk): with probabilityll_‘j, encoder
sends a codeword of lengih otherwise it sends nothing. It is easy to see that the pibiyab

of decoding error is upper-bounded bywhereas the average transmission time is equal to
(= f_;jn and therefore the average transmission rate is

A log M 1—¢

= > :
R=——>C1—+o(l) (244)
By taking the limitn — oo we obtain
1 _
[c]> 07— (245)
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Since€ is arbitrary we can achieve any rate closeffg.
For the converse recall that a channel is said to satistmwgtconverse if its fixed-blocklength

no feedback fundamental limibg M *(n, ) satisfies
log M*(n,e) =nC +o(n),n — oo, Vee (0,1). (246)

Now, consider ar{/, M, ¢) variable-length code. Define the following quantities faclken > 0

andu € U:
e(nu) = PW£W|r=nU=u], (247)

which satisfy, of course,
Ele(r,U)] <e. (248)

Fix « and notice that conditioned oti = u, 7 is a function of W, and thereforeMP[r =
n|U = u] is an integer. Then the condition = n defines an(n, MP[t = n|U = u],e(n,u))

fixed blocklength subcode. Therefore, we have for each 0:
Plr =n|U = u]M < M*(n,e(n,u)). (249)

We now fix arbitraryN > 0 and¢’ > 0 and sum (249) for alh < N such thate(n, u) < €

N

MP[r < N,e(t,u) <€|U=u] < ZM*(n, e(n,u))1{e(n,u) <€}, (250)
n;O

< Z M*(n,€), (251)
n=0

< NM*(N,€), (252)

where (251) follows since by definitiof/*(n, ¢) is a non-decreasing function ef and (252)
follows because for a non-anticipatory chaniét(n, ¢) is also a non-decreasing function of

By taking the expectation of (252) with respectlfowe obtain
MP[r < N,e(1,U) < €] < NM*(N,¢€). (253)

On the other hand, by the Chebyshev inequality we have

Plr < N,e(r,U)<¢é] > 1-— EJEIT |_E [6(;’ v)l (254)
> 1- % - 5 . (255)
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Finally, we choose’ > ¢ and take

N - L (256)
1—e¢/e
Now from (253), (255) and (256) we obtain
log M < log M* [ 251 ) 42109 1 (257)
1—¢/é 1—¢/€
(41
_ 2

O gz +ol0), (258)

where (258) follows from strong converse (246). Dividingttbsides of (258) by we have
proven that the rate of any/, M, ¢) variable-length code must satisfy:

log M C
<
or in other words, for any’ > ¢ we have
C
< 2
Taking ¢ — 1 completes the proof. [ |

Proof of Theorem 6: As in the proof of Theorem 4 it is sufficient to consider theecas

of codes with|U/| = 1. This follows because of convexity of the right-hand side(@8) in e
as explained in (92). Next, by replacing a stopping timevith min{r, N}, N = 1,... and
including {r > N} in the error event, we obtain a sequence of codes with prttyabi error
en \( € asN — oo. Since for each fixed the argument of the supremum in (98) is continuous
in ¢, it is sufficient to prove (98) for codes with a bounde& N for someN > 1.

We consider a measurable spate- {1,..., M} x B>, understood agiV, Y>°) with filtration
¢, as in Definition 1. Fixing a code we notice that encoflgr,n = 1, ...} induces a distribution
P = Pyy~ on ). Considering a stopping timg (to be specified later), we define an auxiliary
measureQ on €2 as follows:

, 1
QW =il = (261)
QY, = yn‘Yn_l = yn_17 W=jl = Py){n <7} (262)
+PY, =y, |V =y W # j]1{n > 71} (263)
where Py is the unique capacity achieving output distribution cgpanding to a DMCPyx.
For convenience we denof¢/[-| = P[-|IWV = j] andQ’[-] = Q[-|WW = j] for j = 1,..., M. Then
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we have for any evenB
PIB, W # j|¥:]

VIBI) = "By 7 ji]

(264)

Notice that sincer < N we may replace3> with BY thereby reducing to the case of a finite
spacef). Moreover, becaus€; < co measure®, P’, Q, (P;)Y and the counting measure are
all mutually absolutely continuous. This enables us to éadding specifiers “almost surely”
and dealing with non-uniqueness of conditional expeatatio (264) and below.

We define the following processes

Py (YW

S = s g (269
R, = S,—min(n,7)C —|n—7|"C, (266)
o= PW#£W|Z,], (267)
m(w) = PW =w|9,], (268)
T = max (W), (269)
W, = argmaxm,(w), (270)

Without loss of generality we can assume that our code sisfi
WoE g(YT) =W, (271)
T = 1, (272)
o < 1 —=n,, vo<n<rT, (273)

since otherwise we can truncateo the first time instant when inequality (273) is violatedcB
truncation can only redudg [r] andP[IV # W]. Itis easy to see thak, is a P/-supermartingale

(for any ) according to (96) and the classical characterization pacay
C = max D(Py|x—,||Py) . (274)

Consider regular branchd¥[.] and Q’[-] of conditional probabilitiesP?|-|.,] and Q7[-|%,,].

Then, one easily shows that the relative entropy betweeand )’ on ¥, satisfies

Dg, (pJHQJ) = Ej[S’T - ST1|gT1] ) (275)

April 18, 2011 DRAFT



46

where here and belo@’[-] denotes the expectation with respect/to. Since R, is a super-

martingale we have further
Dy, (P7||Q7) < C\E[r — 11|%,,] . (276)

Consider now the following chain:

max M .

d (1 || fn g fT;max) < d (1 — Z T ()Q' W = jl%]) (277)
S Zﬂ-ﬁ _]|gﬁ] ||QJ[ _]|g’r1]) (278)
< Z T (7) D, (P7|Q7) (279)

M
< O m GBI — i) (280)

j=1
== ClE [7' — Tl‘gq—l] y (281)

where (277) is by (264) applied witB = {W = j}, inequality

M

= 97 W # .]|ng] 7.(-7r—naux R . .
T < —A PW =3 W 9. 282
Zwl W;Aj\gqﬁ] = 1_@“; [ 3 W # jl%.,] (282)
- g, (283)

I — e

and the fact that the second argumentiff|-) in the left-hand side of (277) is not larger than
the first (according to (273)); (278) is by Jensen’s inedyalpplied tod(-||-) and by an obvious
identity

— 1)y = Zﬂﬁ VPIIW = j|%,,], (284)

(279) is the data-processing for relative entropy, (28)yig276) and (281) follows since

Z 77-7'1 ‘gﬂ - [|g7'1] : (285)

By an elementary lower bound o#-||-) applied to the left-hand side of (277) we obtain
from (281)

_ -max

s
(1 - 777'1) log ﬂ-n:;x h(nﬁ) < CiE [T - 7-1|ng] : (286)
1T
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To estimate the expectation of consider another chain

Eflog M — Fy(1—70™)] = Eflog M — Fu(P[W,, # W|%,])] (287)
= E[dPW, =W|¥,]%) (288)

= E[d(PW,, = WIZ,][|QW,, =W|4,])  (289)

< Dy, vorwy(P||Q) (290)
= E [S’Tl] (291)
< CE[n], (292)

where (289) is because und@r W is equiprobable and independent €f, (290) is a data-
processing inequality applied to measufeand Q on thes-algebra®,, v o{IW}, and (292) is
becauseR, is a supermartingale.
We now choose
7 = min{7,inf{n > 0: 7™ >1—-¢(}}. (293)

Similar to [14, Proposition 2] one shows that for alland ; we have

A T () _ < Tny1(J) _ < i T () .
L=m(j) = 1=mpa(G) — M1 —m())
Since\; < 1 we can see that regardless of whethgf™ hits level 1 — ¢ beforer or not, we

(294)

have
1 — qmax £
L > :
T A1 ¢ (295)
On one hand, we have the following estimate

— grnax +
CElr =] 2 [E |- ) los 22~ h(o) (296)

Mg }*
> |E |(1—=mn,)log—————— — h(n, (297)

1 neton )
Mé !

> |(I1—¢)lo —h(e)| 298
> |(1- € log (s = hle) (298)
(299)

where (296) is by (286), (297) is by (295), and (298) is by @aissinequality, convexity of
(1 —x)log * and the trivial identityP[1/" # W] = E [5,]. On the other hand, if we denote an
event

A={30<n<71:7,*>1-¢}, (300)
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then
CE[r] > logM —E[Fy(1 — "™ (301)
> log M — P[A]Fy (&) — PIAFy (P[W # WA (302)
> log M — Fy(€) — min {FM(E), 2 log M} , (303)

where (301) is by (292); (302) is by concavity 6f,(x) and since omd: 7" > 1 — ¢, while
on A% 7 = n_; and (303) is by the bound

T1 -

PATFy (PIW # W|A]) < Fu(BIW # WJ), (304)

which follows from concavity ofF),(-) and

PIA)Fy(PW # W|A]) < P[L— 7™ > ¢Jlog M (305)
< glogM, (306)
which follows by Chebyshev’s inequality and (272). Summ({288) and (303) we obtain (98).
[
REFERENCES

[1] C. E. Shannon, “The zero error capacity of a noisy chghd®E Trans. Inform. TheonMol. 2, No. 3, pp. 8-19, Sept.
1956.

[2] R. L. Dobrushin, “Asymptotic bounds on error probalyilifor transmission over DMC with symmetric transition
probabilities,” Theory of Probab. Applicatyol. 7, pp. 283-311, 1962.

[3] M. V. Burnashev, “Data transmission over a discrete clehrwith feedback. Random transmission timeProblems of
Information Transmissioryol.12, no.4, pp. 10-30, 1976.

[4] M. V. Burnasheyv, “Sequential discrimination of hyposes with control of observationsMath. USSR, Izvestiajol. 15,
no. 3, pp. 419-440, 1980.

[5] H. Yamamoto and K. Itoh, “Asymptotic performance of a riftl Schalkwijk-Barron scheme for channels with noiseless
feedback,"IEEE Trans. Inform. Theorwol. 25, no. 6, pp. 729-733, Nov. 1979.

[6] N. Shulman, “Communication over an unknown channel vienmon broadcasting,” Ph.D. dissertation, Tel-Aviv Univ.,
Tel-Aviv, Israel, 2003.

[7] S. C. Draper, B. J. Frey, and F. R. Kschischang, “Efficieaniable length channel coding for unknown DMCBjoc. 2004
IEEE Int. Symp. Information Theory (ISITGhicago, IL, USA, June 2004.

[8] A. Tchamkerten and E. Telatar, “A feedback strategy foaby symmetric channelsProc. 2002 IEEE Int. Symp. Information
Theory (ISIT) Lausanne, Switzerland, July 2002.

[9] A. Tchamkerten and E. Telatar, “Optimal feedback scheower unknown channels?roc. 2004 IEEE Int. Symp. Information
Theory (ISIT) Chicago, IL, USA, June 2004.

DRAFT April 18, 2011



49

[10] A. Tchamkerten and E. Telatar, “Variable length codmgr an unknown channellEEE Trans. Inform. Theoryol. 52,
no. 5, pp. 2126-2145, May 2006.

[11] S. C. Draper, F. R. Kschischang, and B. Frey, “Ratelesing for arbitrary channel mixtures with decoder channales
information,” IEEE Trans. Inform. Theorywol. 55, no. 9, pp. 4119-4133, Sep. 2009.

[12] Y. Polyanskiy, H. V. Poor and S. Verdl, “Channel codirage in the finite blocklength regimel/EEE Trans. Inform.
Theory vol. 56, no. 5, pp. 2307-2359, May 2010.

[13] C. E. Shannon, “A mathematical theory of communicatidell Syst. Tech. Jvol. 27, pp. 379-423 and 623-656, Jul./Oct.
1948.

[14] P. Berlin, B. Nakiboglu, B. Rimoldi, and E. Telatar, ‘simple converse of Burnashev’s reliability functiofZEE Trans.
Inform. Theory vol. 55, no. 7, pp. 3074-3080, Jul. 2009.

[15] J. P. M. Schalkwijk and M. Barron, “Sequential signgliaonder a peak power constraintEEE Trans. Inform. Theory
vol. 17, no. 5, pp. 278-282, May. 1971.

[16] Y. Polyanskiy, “Channel coding: non-asymptotic funtental limits,” Ph.D. dissertation, Princeton Univ., Reton, NJ,
USA, 2010.

[17] D. Williams, Probability with martingales. Cambridge, UK: Cambridge University Press, 1991.

[18] Y. Polyanskiy, H. V. Poor and S. Verd(, “Dispersion betGilbert-Elliot channel IEEE Trans. Inform. Theoryol. 57,
no. 4, pp. 1829-1848, Apr. 2011.

[19] S. Verdl and S. Shamai, “Variable-rate channel capadEEE Trans. Inform. Theorol. 56, no. 6, pp. 2651-2667, Jun.
2010.

[20] I. Csiszar and J. Kornetpformation Theory: Coding Theorems for Discrete Mema@yl8&ystemsicademic, New York,
1981.

[21] S. Verdl and T. S. Han, “A general formula for channgbagity,” IEEE Trans. Inform. Theorwol. 40, no. 4, pp. 1147-
1157, 1994.

[22] D. P. Palomar and S. Verd(, “Lautum informatiofEE Trans. Inform. Theoryol. 54, no. 3, pp. 964-975, Mar. 2008.

[23] A. Sahai, “Why do block length and delay behave diffékeif feedback is presentX’EEE Trans. Inform. Theoryol. 54,
no. 5, pp. 1860 - 1886, May 2008.

[24] R. G. Gallager)nformation Theory and Reliable CommunicatiorNew York: Wiley, 1968.

Yury Polyanskiy (S’08-M’'10) received the M.S. degree (with honors) in apglimathematics and physics from the Moscow
Institute of Physics and Technology, Moscow, Russia in 2808 a Ph.D. degree in electrical engineering from Princeton
University, Princeton, NJ in 2010.

In 2000-2005, he was with the Department of Surface Oilfietgiifment, Borets Company LLC, where he rose to the
position of Chief Software Designer. His research intaréstlude information theory, coding theory and the thedryamdom
processes.

Dr. Polyanskiy won a silver medal at the 30th Internationaygtcs Olympiad (IPhO), held in Padova, Italy. He was a
recipient of the Best Student Paper Awards at the 2008 an@l EERE International Symposiums on Information Theory TSI

April 18, 2011 DRAFT



50

H. Vincent Poor (S'72-M'77-SM’82-F'87) received the Ph.D. degree in eteal engineering and computer science from
Princeton University in 1977. From 1977 until 1990, he waglon faculty of the University of lllinois at Urbana-Chamgai
Since 1990 he has been on the faculty at Princeton, wherethe Bean of Engineering and Applied Science, and the Michael
Henry Strater University Professor of Electrical Engiriegr Dr. Poor’s research interests are in the areas of sstichenalysis,
statistical signal processing and information theory, #ar applications in wireless networks and related fielisiong his
publications in these areas aaiickest DetectioffCambridge University Press, 2009), co-authored with QiignHadjiliadis,

and Information Theoretic SecuritNow Publishers, 2009), co-authored with Yingbin Liang &tdomo Shamai.

Dr. Poor is a member of the National Academy of Engineeringebiow of the American Academy of Arts and Sciences,
and an International Fellow of the Royal Academy of Engimegp(U.K.). He is also a Fellow of the Institute of Mathematic
Statistics, the Optical Society of America, and other oizm@tions. In 1990, he served as President of the IEEE Infioma
Theory Society, in 2004-07 as the Editor-in-Chief of th&€smnsactionsand in 2009 as General Co-chair of the IEEE International
Symposium on Information Theory, held in Seoul, South Kokéa received a Guggenheim Fellowship in 2002 and the IEEE
Education Medal in 2005. Recent recognition of his work uels, the 2009 Edwin Howard Armstrong Achievement Award
of the IEEE Communications Society, the 2010 IET Ambroseriibg Medal for Achievement in Communications, the 2011
IEEE Eric E. Sumner Award, and an honorary D. Sc. from the ehsity of Edinburgh, awarded in 2011.

Sergio Verdl (S’80-M'84-SM’88-F'93) is the Eugene Higgins ProfessorEiéctrical Engineering at Princeton University.

A member of the National Academy of Engineering, Verdl & tlcipient of the 2007 Claude Shannon Award and the 2008
IEEE Richard Hamming Medal. He was awarded a Doctorate Her@ausa from the Universitat Politecnica de Catalunya in
2005.

His research has received several awards including the t§@8nation Theory Outstanding Paper Award, the Inforiomti
Theory Golden Jubilee Paper Award, and the 2006 Joint Conuations/Information Theory Paper Award.

Sergio Verd( is currently Editor-in-Chief dfoundations and Trends in Communications and InformatibaoFy.

DRAFT April 18, 2011



