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Abstract—We study the maximal achievable rateR∗(n, ε) for a
given block-lengthn and block error probability ε over Rayleigh
block-fading channels in the noncoherent setting and in thefinite
block-length regime. Our results show that for a given block-
length and error probability, R∗(n, ε) is not monotonic in the
channel’s coherence time, but there exists a rate maximizing
coherence time that optimally trades between diversity andcost
of estimating the channel.

I. I NTRODUCTION

It is well known that the capacity of the single-antenna
Rayleigh-fading channel with perfect channel state information
(CSI) at the receiver (the so-calledcoherent setting) is inde-
pendent of the fading dynamics [1]. In practical wireless sys-
tems, however, the channel is usually not knowna priori at the
receiver and must be estimated, for example, by transmitting
training symbols. An important observation is that the training
overhead is a function of the channel dynamics, because the
faster the channel varies, the more training symbols are needed
in order to estimate the channel accurately [2]–[4]. One way
to determine the training overhead, or more generally, the
capacity penalty due to lack of channel knowledge, is to
study capacity in thenoncoherent setting, where neither the
transmitter nor the receiver are assumed to havea priori
knowledge of the realizations of the fading channel (but both
are assumed to know its statistics perfectly) [5].

In this paper, we model the fading dynamics using the well-
known block-fading model [6]–[8] according to which the
channel coefficients remain constant for a period ofT symbols,
and change to a new independent realization in the next period.
The parameterT can be thought of as the channel’s coherence
time. Unfortunately, even for this simple model, no closed-
form expression for capacity is available to date. A capacity
lower bound based on theisotropically distributed (i.d.)unitary
distribution is reported in [6]. In [7]–[9], it is shown that
capacity in the high signal-to-noise ratio (SNR) regime grows
logarithmically with SNR, with thepre-log (defined as the
asymptotic ratio between capacity and the logarithm of SNR
as SNR goes to infinity) being1 − 1/T . This agrees with
the intuition that the capacity penalty due to lack of a priori
channel knowledge at the receiver is small when the channel’s
coherence time is large.
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In order to approach capacity, the block-lengthn of the
codewords must be long enough to average out the fading
effects (i.e.,n � T ). Under practical delay constraints, how-
ever, the actual performance metric is the maximal achievable
rate R∗(n, ε) for a given block-lengthn and block error
probability ε. By studyingR∗(n, ε) for the case of fading
channels and in the coherent setting, Polyanskiy and Verdú
recently showed that faster fading dynamics are advantageous
in the finite block-length regime when the channel is known to
the receiver [10], because faster fading dynamics yield larger
diversity gain.

We expect that the maximal achievable rateR∗(n, ε) over
fading channels in thenoncoherent settingand in thefinite
block-length regimeis governed by two effects working in
opposite directions: when the channel’s coherence time de-
creases, we can code the information over a larger number
of independent channel realizations, which provides higher
diversity gain, but we need to transmit training symbols more
frequently to learn the channel accurately, which gives rise to
a rate loss.

In this paper, we shed light on this fundamental tension
by providing upper and lower bounds onR∗(n, ε) in the
noncoherent setting. For a given block-length and error prob-
ability, our bounds show that there exists indeed a rate-
maximizing channel’s coherence time that optimally trades
between diversity and cost of estimating the channel.

Notation: Uppercase boldface letters denote matrices
and lowercase boldface letters designate vectors. Uppercase
sans-serif letters (e.g.,Q) denote probability distributions,
while lowercase sans-serif letters (e.g.,r) are reserved for
probability density functions (pdf). The superscriptsT andH

stand for transposition and Hermitian transposition, respec-
tively. We denote the identity matrix of dimensionT × T
by IT ; the sequence of vectors{a1, . . . , an} is written as
an. We denote expectation and variance byE[·] and Var[·],
respectively, and use the notationEx[·] or EPx

[·] to stress that
expectation is taken with respect tox with distribution Px.
The relative entropy between two distributionsP and Q is
denoted byD(P‖Q) [11, Sec. 8.5]. For two functionsf(x)
andg(x), the notationf(x) = O(g(x)), x → ∞, means that
lim supx→∞

∣

∣f(x)/g(x)
∣

∣ <∞, andf(x) = o(g(x)), x→ ∞,
means thatlimx→∞

∣

∣f(x)/g(x)
∣

∣ = 0. Furthermore,CN (0,R)
stands for the distribution of a circularly-symmetric com-
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plex Gaussian random vector with covariance matrixR, and
Gamma(α, β) denotes the gamma distribution [12, Ch. 17]
with parametersα andβ. Finally, log(·) indicates the natural
logarithm,Γ(·) denotes the gamma function [13, Eq. (6.1.1)],
andψ(·) designates the digamma function [13, Eq. (6.3.2)].

II. CHANNEL MODEL AND FUNDAMENTAL L IMITS

We consider a single-antenna Rayleigh block-fading channel
with coherence timeT . Within the lth coherence interval, the
channel input-output relation can be written as

yl = slxl +wl (1)

wherexl andyl are the input and output signals, respectively,
wl ∼ CN (0, IT ) is the additive noise, andsl ∼ CN (0, 1)
models the fading, whose realization we assume is not known
at the transmitter and receiver (noncoherent setting). In ad-
dition, we assume that{sl} and {wl} take on independent
realizations over successive coherence intervals.

We consider channel coding schemes employing codewords
of length n = LT . Therefore, each codeword spansL
independent fading realizations. Furthermore, the codewords
are assumed to satisfy the following power constraint

L
∑

l=1

‖xl‖2 ≤ LTρ. (2)

Since the variance ofsl and of the entries ofwl is normalized
to one,ρ in (2) can be interpreted as the SNR at the receiver.

Let R∗(n, ε) be the maximal achievable rate among all
codes with block-lengthn and decodable with probability of
error ε. For every fixedT andε, we have1

lim
n→∞

R∗(n, ε) = C(ρ) =
1

T
sup
Px

I(x;y) (3)

where C(ρ) is the capacity of the channel in (1),I(x;y)
denotes the mutual information betweenx and y, and the
supremum in (3) is taken over all input distributionsPx that
satisfy

E
[

‖x‖2
]

≤ Tρ. (4)

No closed-form expression ofC(ρ) is available to date.
The following lower boundL(ρ) on C(ρ) is reported in [6,
Eq. (12)]

L(ρ) =
1

T

(

(T − 1) log(Tρ)− log Γ(T )− T +
T (1 + ρ)

1 + Tρ

)

− 1

T

∫ ∞

0

e−uγ̃ (T − 1, T ρu)

(

1 +
1

Tρ

)T−1

× log
(

u1−T γ̃(T − 1, T ρu)
)

du (5)

where

γ̃(n, x) ,
1

Γ(n)

∫ x

0

tn−1e−tdt

denotes theregularized incomplete gamma function. The input
distribution used in [6] to establish (5) is the i.d. unitarydistri-
bution, where the input vector takes on the formx =

√
Tρux

1The subscriptl is omitted whenever immaterial.

with ux uniformly distributed on the unit sphere inCT . We
shall denote this input distribution asP(U)

x . It can be shown
thatL(ρ) is asymptotically tight at high SNR (see [7, Thm. 4]),
i.e.,

C(ρ) = L(ρ) + o(1), ρ→ ∞.

III. B OUNDS ONR∗(n, ε)

A. Perfect-Channel-Knowledge Upper Bound

We establish a simple upper bound onR∗(n, ε) by assuming
that the receiver has perfect knowledge of the realizationsof
the fading process{sl}. Specifically, we have that

R∗(n, ε) ≤ R∗
coh(n, ε) (6)

whereR∗
coh(n, ε) denotes the maximal achievable rate for a

given block-lengthn and probability of errorε in the coherent
setting.

By generalizing the method used in [10] for stationary
ergodic fading channels to the present case of block-fading
channels, we obtain the following asymptotic expression
for R∗

coh(n, ε):

R∗
coh(n, ε) = Ccoh(ρ)−

√

Vcoh(ρ)

n
Q−1(ε)

+ o

(

1√
n

)

, n→ ∞. (7)

Here,Ccoh(ρ) is the capacity of the block-fading channel in
the coherent setting, which is given by [1, Eq. (3.3.10)]

Ccoh(ρ) = Es

[

log
(

1 + |s|2ρ
)]

(8)

Q(x) =
∫∞
x

1√
2π
e−t2/2dt denotes theQ-function, and

Vcoh(ρ) = TVar
[

log
(

1 + ρ|s|2
)]

+ 1− E
2

[

1

1 + ρ|s|2
]

is thechannel dispersion. Neglecting theo(1/
√
n) term in (7),

we obtain the following approximation forR∗
coh(n, ε)

R∗
coh(n, ε) ≈ Ccoh(ρ)−

√

Vcoh(ρ)

n
Q−1(ε). (9)

It was reported in [14], [15] that approximations similar to
(9) are accurate for many channels for block-lengths and error
probabilities of practical interest. Hence, we will use (9)to
evaluateR∗

coh(n, ε) in the remainder of the paper.

B. Upper Bound through Fano’s inequality

Our second upper bound follows from Fano’s inequality [11,
Thm. 2.10.1]

R∗(n, ε) ≤ C(ρ) +H(ε)/n

1− ε
(10)

whereH(x) = −x log x − (1 − x) log(1 − x) is the binary
entropy function. Since no closed-form expression is available
for C(ρ), we will further upper-bound the right-hand side
(RHS) of (10) by replacingC(ρ) with the capacity upper
bound we shall derive below.

Let Py |x denote the conditional distribution ofy given
x, and Py denote the distribution induced ony by the
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Fig. 1. U(ρ) in (17), L(ρ) in (5) andCcoh(ρ) in (8) as a function of the
channel’s coherence timeT , ρ = 10 dB.

input distributionPx through (1). Furthermore, letQy be an
arbitrary distribution ony with pdf qy(y). We can upper-
boundI(x;y) in (3) by duality as follows [16, Thm. 5.1]:

I(x;y) ≤ E
[

D(Py |x‖Qy)
]

= −EPy
[log qy(y)] − h(y |x). (11)

Since

Tρ− E
[

‖x‖2
]

≥ 0 (12)

for everyPx satisfying (4), we can upper boundC(ρ) in (3)
by using (11) and (12) to obtain

C(ρ) ≤ 1

T
inf
λ≥0

sup
Px

{

−EPy
[log qy(y)]

− h(y |x) + λ(Tρ− E
[

‖x‖2
]

)
}

. (13)

The same bounding technique was previously used in [17] to
obtain upper bounds on the capacity of the phase-noise AWGN
channel (see also [18]).

We next evaluate the RHS of (13) for the following pdf

qy(y) =
Γ(T )‖y‖2(1−T )

πTT (ρ+ 1)
e−‖y‖2/[T (ρ+1)], y ∈ C

T . (14)

Thus,y is i.d. and‖y‖2 ∼ Gamma(1, T (1 + ρ)). Substitut-
ing (14) intoEPy

[log qy(y)] in (13), we obtain

−EPy
[log qy(y)]

= log
T (1 + ρ)πT

Γ(T )
+
T + E

[

‖x‖2
]

T (ρ+ 1)

+ (T − 1)E
[

log
(

(1 + ‖x‖2)z1 + z2
)]

= log
T (1 + ρ)πT

Γ(T )
+

1

ρ+ 1
+ (T − 1)ψ(T − 1)

+ E

[

(T − 1)

∞
∑

k=0

(

1 + 1/‖x‖2
)−k

k + T − 1
+

‖x‖2
T (1 + ρ)

]

. (15)

The first equality in (15) follows because the random variable
‖y‖2 is conditionally distributed as(1 + ‖x‖2)z1 + z2 given
x, wherez1 ∼ Gamma(1, 1) andz2 ∼ Gamma(T − 1, 1).

Substituting (15) into (13), and using that the differential
entropyh(y |x) is given by

h(y |x) = Ex

[

log(1 + ‖x‖2)
]

+ T log(πe)

we obtain

C(ρ) ≤ c1
T

+
1

T
inf
λ≥0

sup
Px

{

E

[ ∞
∑

k=0

(T − 1)
(

1 + 1/‖x‖2
)−k

k + T − 1

− log
(

1 + ‖x‖2
)

+
‖x‖2

T (1 + ρ)
+ λ

(

Tρ− ‖x‖2
)

]}

(16)

(a)

≤ c1
T

+
1

T
inf
λ≥0

sup
‖x‖

{ ∞
∑

k=0

(T − 1)
(

1 + 1/‖x‖2
)−k

k + T − 1

− log
(

1 + ‖x‖2
)

+
‖x‖2

T (1 + ρ)
+ λ

(

Tρ− ‖x‖2
)

}

, U(ρ) (17)

where

c1 , log
T (1 + ρ)

Γ(T )
− T +

1

ρ+ 1
+ (T − 1)ψ(T − 1).

To obtain (a), we upper-bounded the second term on the RHS
of (16) by replacing the expectation over‖x‖ by the supremum
over ‖x‖.

The boundsL(ρ) and U(ρ) are plotted in Fig. 1 as a
function of the channel’s coherence timeT for SNR equal to
10 dB. For reference, we also plot the capacity in the coherent
setting [Ccoh(ρ) in (8)]. We observe thatU(ρ) andL(ρ) are
surprisingly close for all values ofT .

At low SNR, the gap betweenU(ρ) andL(ρ) increases. In
this regime,U(ρ) can be tightened by replacingqy(y) in (13)
by the output pdf induced by the i.d. unitary input distribution
P
(U)
x , which is given by

q(U)
y

(y) =
e−‖y‖2/(1+Tρ)‖y‖2(1−T )Γ(T )

πT (1 + Tρ)

× γ̃

(

T − 1,
T ρ‖y‖2
1 + Tρ

)(

1 +
1

Tρ

)T−1

. (18)

Substituting (17) into (10), we obtain the following upper
bound onR∗(n, ε):

R∗(n, ε) ≤ R̄(n, ε) ,
U(ρ) +H(ε)/n

1− ε
. (19)

C. Dependence Testing (DT) Lower Bound

We next present a lower bound onR∗(n, ε) that is based
on the DT bound recently proposed by Polyanskiy, Poor, and
Verdú [14]. The DT bound uses a threshold decoder that
sequentially tests all messages and returns the first message
whose likelihood exceeds a pre-determined threshold. With
this approach, one can show that for a given input distribution



PxL , there exists a code withM codewords and average
probability of error not exceeding [14, Thm. 17]

ε ≤ EP
xL

[

PyL |xL

(

i
(

xL;yL
)

≤ log
M − 1

2

)

+
M − 1

2
PyL

(

i
(

xL;yL
)

> log
M − 1

2

)]

(20)

where

i
(

xL;yL
)

, log
pyL |xL

(

yL |xL
)

pyL(yL)
(21)

is the information density. Note that, conditioned onxL, the
output vectorsyl, l = 1, . . . , L, are independent and Gaussian
distributed. The pdf ofyl is given by

py |x(yl |xl)

=
exp

(

−yH
l (IT + xlx

H
l )−1yl

)

πT det(IT + xlx
H
l )

(a)
=

1

πT (1 + ‖xl‖2)
exp

(

−‖yl‖2 +
|yH

l xl|2
1 + ‖xl‖2

)

(22)

where (a) follows from Woodbury’s matrix identity [19, p. 19].
To evaluate (20), we choosexl, l = 1, . . . , L, to be

independently and identically distributed according to the i.d.
unitary distributionP(U)

x . The pdf of the corresponding output
distribution is equal to

q
(U)
yL (yL) =

L
∏

l=1

q(U)
y

(yl)

whereq(U)
y (·) is given in (18). Substituting (22) and (18) into

(21), we obtain

i
(

xL;yL
)

=
L
∑

l=1

i(xl;yl) (23)

where

i(xl;yl) = log
1 + Tρ

Γ(T )
+

|yH
l xl|2

1 + ‖xl‖2
− Tρ‖yl‖2

1 + Tρ

+ (T − 1) log
Tρ‖yl‖2
1 + Tρ

− log
(

1 + ‖xl‖2
)

− log γ̃

(

T − 1,
T ρ‖yl‖2
1 + Tρ

)

+ T − 1.

Due to the isotropy of both the input distributionP(U)
xL and

the output distributionQ(U)

yL , the distribution of the information

densityi
(

xL;yL
)

depends onP(U)

xL only through the distribu-

tion of the norm of the inputsxl. Furthermore, underP(U)

xL , we
have that‖xl‖ =

√
Tρ with probability 1, l = 1, . . . , L. This

allows us to simplify the computation of (20) by choosing
an arbitrary input sequencexl = x̄ , [

√
Tρ, 0, . . . , 0]T ,

l = 1, . . . , L. Substituting (23) into (20), we obtain the desired
lower bound onR∗(n, ε) by solving numerically the following
maximization problem

R(n, ε) , max

{

1

n
logM : M satisfies (20)

}

. (24)
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Fig. 2. Bounds on maximal achievable rateR∗(n, ε) for noncoherent
Rayleigh block-fading channels;ρ = 10 dB, T = 50, ε = 10−3.

The computation of the DT boundR(n, ε) becomes difficult
as the block-lengthn becomes large. We next provide an
approximation forR(n, ε), which is much easier to evaluate.
As in [15, App. A], applyingBerry-Esseen inequality[14,
Thm. 44] to the first term on the RHS of (20), and applying
[20, Lemma 20] to the second term on the RHS of (20), we
get the following asymptotic expansion forR(n, ε)

R(n, ε) = L(ρ)−
√

V (ρ)

n
Q−1(ε) +O

(

1

n

)

, n→ ∞ (25)

with V (ρ) given by

V (ρ) ,
1

T
E
P
(U)
x

[Var[i(x;y) |x]] = 1

T
Var[i(x̄;y)]

where, as in the DT bound, we can choosēx =
[
√
Tρ, 0, . . . , 0]T . By neglecting theO(1/n) term in (25), we

arrive at the following approximation forR(n, ε)

R(n, ε) ≈ L(ρ)−
√

V (ρ)

n
Q−1(ε). (26)

Although the termV (ρ) in (26) needs to be computed numer-
ically, the computational complexity of (26) is much lower
than that of the DT boundR(n, ε).

D. Numerical Results and Discussions

In Fig. 2, we plot the upper bound̄R(n, ε) in (19), the lower
boundR(n, ε) in (24), the approximation ofR(n, ε) in (26),
and the approximation ofR∗

coh(n, ε) in (9) as a function of
the block-lengthn for T = 50, ε = 10−3 andρ = 10 dB. For
reference, we also plot the coherent capacityCcoh(ρ) in (8). As
illustrated in the figure, (26) gives an accurate approximation
of R(n, ε).

In Figs. 3 and 4, we plot the upper boundR̄(n, ε) in (19), the
lower boundR(n, ε) in (24), the approximation ofR∗

coh(n, ε)
in (9), and the coherent capacityCcoh(ρ) in (8) as a function of
the channel’s coherence timeT for block-lengthsn = 4×103

and n = 4 × 104, respectively. We see that, for a given
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Fig. 3. R̄(n, ε) in (19), R(n, ε) in (24), approximation ofR∗

coh
(n, ε)

in (9), andCcoh(ρ) in (8) at block-lengthn = 4 × 103 as a function of
the channel’s coherence timeT for the noncoherent Rayleigh block-fading
channel;ρ = 10 dB, ε = 10−3.
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Fig. 4. R̄(n, ε) in (19), R(n, ε) in (24), approximation ofR∗
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in (9), andCcoh(ρ) in (8) at block-lengthn = 4 × 104 as a function of
the channel’s coherence timeT for the noncoherent Rayleigh block-fading
channel;ρ = 10 dB, ε = 10−3.

block-length and error probability,R∗(n, ε) is not monotonic
in the channel’s coherence time, but there exists a channel’s
coherence timeT ∗ that maximizesR∗(n, ε). This confirms
the claim we made in the introduction that there exists a
tradeoff between the diversity gain and the cost of estimating
the channel when communicating in the noncoherent setting
and in the finite block-length regime. A similar phenomenon
was observed in [15] for the Gilbert-Elliott channel with no
state information at the transmitter and receiver.

From Figs. 3 and 4, we also observe thatT ∗ decreases as

we shorten the block-length. For example, the rate-maximizing
channel’s coherence timeT ∗ for block-lengthn = 4× 104 is
roughly 64, whereas for block-lengthn = 4×103, it is roughly
28.
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