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Abstract—The backoff from capacity due to finite blocklength
can be assessed accurately from the channel dispersion. This
paper analyzes the dispersion of a single-user, scalar, coherent
fading channel with additive Gaussian noise. We obtain a conve-
nient two-term expression for the channel dispersion which shows
that, unlike the capacity, it depends crucially on the dynamics of
the fading process.

Index Terms—Shannon theory, channel capacity, channel cod-
ing, finite blocklength regime, fading channel, Gaussian noise,
coherent communication.

I. INTRODUCTION

Given a noisy communication channel, let M∗(n, ǫ) be the

maximal cardinality of a codebook of blocklength n which

can be decoded with block error probability no greater than ǫ.
The functionM∗(n, ǫ) is the fundamental performance limit in

the finite blocklength regime. For non-trivial channel models

exact evaluation of M∗(n, ǫ) is computationally impossible.

However, knowledge of Shannon capacity C of the channel

enables the approximation1

logM∗(n, ǫ) ≈ nC (1)

for asymptotically large blocklength. It has been shown in

[1] that a much tighter approximation can be obtained by

defining an additional figure of merit referred to as the channel

dispersion:

Definition 1: The dispersion V (measured in squared infor-

mation units per channel use) of a channel with capacity C is

equal to

V = lim
ǫ→0

lim sup
n→∞

1

n

(nC − logM∗(n, ǫ))2

2 ln 1
ǫ

. (2)

Channel capacity and dispersion become important analysis

and design tools for systems with delay constraints; see [1]

and [2, Chapter 5]. For example, the minimal blocklength

required to achieve a given fraction η of capacity with a given

error probability ǫ can be estimated as:2

n &

(

Q−1(ǫ)

1− η

)2
V

C2
. (3)

The authors are with the Department of Electrical En-
gineering, Princeton University, Princeton, NJ, 08544 USA.
e-mail: {ypolyans,verdu}@princeton.edu.
The research was supported by the National Science Foundation under grant

CCF-10-16625 and by the Center for Science of Information (CSoI), an NSF
Science and Technology Center, under grant agreement CCF-09-39370.

1In this paper, unless explicitly stated all logarithms, log, and exponents,
exp, are taken with respect to an arbitrary fixed base, which also determines
the information units. Capacity and all rates are measured in information units
per channel use.

2As usual, Q(x) =
∫∞

x
1√
2π

e−t2/2 dt .

The motivation for Definition 1 and estimate (3) is the follow-

ing expansion for n → ∞
logM∗(n, ǫ) = nC −

√
nV Q−1(ǫ) +O(log n) . (4)

As shown in [1] in the context of memoryless channels, (4)

gives an excellent approximation for blocklengths and error

probabilities of practical interest.

This paper derives the dispersion of a single-input single-

output (SISO), real-valued additive white Gaussian noise

(AWGN) channel subject to stationary fading. The receiver

is assumed to work in a coherent manner so that a perfect

estimate of the fading coefficients is known to the decoder.

Under such circumstances, it is well known that the channel

capacity is independent of the fading dynamics [3]. On the

contrary, we show that the dispersion exhibits an essentially

linear behavior with the fading coherence time. In turn, the

required blocklength (see (3)) is linear in the dispersion.

We have observed [4] a similar effect for the Gilbert-Elliott

channel, when the channel state is known at the decoder.

The paper is organized as follows. The channel model and

the relevant literature are introduced in Section II. Section III

presents a heuristic derivation of the dispersion. Rigorous

results are the main content of Section IV. Section V illustrates

the application of our results to a first-order auto-regressive

Gaussian fading process.

Notation: Vectors and matrices are denoted by bold-face

letters (e.g., x and A). Components of a random vector x are

denoted by capital letters X1, X2, etc. The standard inner-

product and the L2 norm on R
n are denoted as (·, ·) and

||x||2 = (x,x), respectively. Entry-wise k-th power of a vector
x is denoted as xk. Entry-wise (or Schur) product of two

vectors h and x is denoted as h⊙x. The covariance function

of a stationary process X = {Xk, k = . . . ,−1, 0, 1, . . .} is

RX(k) = E [(Xk − E [Xk])(X0 − E [X0])] , k ∈ Z (5)

from which the spectral function FX is uniquely determined

as

RX(k) =

∫ π

−π

1

2π
eiωkdFX(ω) , FX(−π) = 0 . (6)

When FX is absolutely continuous, its derivative is the spectral

density SX which (under certain conditions) can be found as

SX(ω) =

∞
∑

k=−∞

RX(k)e−iωk . (7)

If SX exists and is continuous at zero, the long-term variance

of X is defined as

L [X]
△
= lim

n→∞

1

n
Var

[

n
∑

i=1

Xi

]

, (8)
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where the limit is guaranteed to exist and is equal to [5, Section

1.3]

L [X] = SX(0) (9)

= RX(0) + 2

∞
∑

k=1

RX(k) . (10)

Given two σ-algebras F and G we define the α-mixing

coefficient as

α(F ,G) △
= sup

A∈F ,B∈G
|P[A,B]− P[A]P[B]| . (11)

The sequence of α-mixing coefficients of a stationary process

X is

αX(k) = α(σ{Xj , j ≤ 0}, σ{Xj, j ≥ k}) . (12)

II. CHANNEL MODEL

In accordance with [6], a channel is a sequence of random

transformations (transition probability kernels) parametrized

by the blocklength n. The scalar, frequency-flat, coherent

fading channel with SNR P is defined as follows. Consider

a stationary and ergodic real-valued process H = {Hi}
satisfying

E [|Hi|2] = 1 . (13)

For each blocklength n ≥ 1 we have:

• the input space is a subset of R
n satisfying the power

constraint:

||x||2 ≤ nP . (14)

• the output space is R
n × R

n consisting of two vectors

known to the receiver

h = (H1, . . . , Hn) (15)

y = (Y1, . . . , Yn) . (16)

• the input-output relation is given by

Yi = HiXi + Zi , i = 1, . . . , n , (17)

where Zi are i.i.d. standard normal random variables ∼
N (0, 1) independent of H and x.

The capacity of such a channel is given by [3, (3.3.10)]:

C(P ) = E [C(PH2)] , (18)

where C(P ) is the capacity of the AWGN channel with SNR

P :

C(P ) =
1

2
log(1 + P ) . (19)

Traditionally, the dependence of the optimal coding rate on

blocklength has been associated with the question of comput-

ing the channel reliability function. However, predictions on

required blocklength obtained from error exponents may be far

inferior compared to those obtained from (3) (e.g. [1, Table I]).

Despite considerable efforts surveyed in [3, Section III.C7] the

reliability function of the channel treated in this paper remains

unknown even at rates near capacity. Error-exponent results are

available for the block-fading channel [7, Section 3.4], [8] and

[9]. See also [10, Section 4] for discussion of key differences

between block-fading and stationary fading.

Typically channel dispersion equals the reciprocal of the

second derivative of the reliability function at capacity. Thus,

in the absence of analytically tractable expressions in the realm

of error exponents, the simplicity of the channel dispersion

formula (27) is illuminating.

III. HEURISTIC DERIVATION

Before presenting the result we motivate it with a simple

heuristic. Let us replace a stationary process {Hi} via a block-

stationary process {Ĥi} with block size T . In other words,

(Ĥ1, . . . , ĤT ) are distributed as (H1, . . . , HT ) and different

T -blocks of {Ĥi} are independent. The key (and, at this point,

unjustified) assumption is that the resulting channel dispersion

converges to the sought-after one as T → ∞.

Considering x = (X1, . . . , XT ), y = (Y1, . . . , YT ) and

ĥ = (Ĥ1, . . . , ĤT ) as single super-letters, the channel model

becomes memoryless:

yk = ĥk ⊙ xk + zk , k = 1, . . . n , (20)

with n equal to the coding blocklength, zk ∼ N (0, IT ), and
inputs subject to a power constraint

n
∑

k=1

||xk||2 ≤ nTP . (21)

By [7] the capacity of such a channel is TC(P ) (per T -block)
achieved by taking x ∼ N (0, P IT ).

For both the AWGN and the DMC with cost constraints

(see [1, Section IV.B] and [2, Section 3.4.6], resp.), the channel

dispersion is given by

V = Var [ıX;Y (X ;Y )|X ] , (22)

where X is distributed according to the capacity achieving

distribution and

ıX;Y (a; b) = log
dPY |X

dPY

(b|a) . (23)

Thus, the extension of (22) to the channel model (20) merely

involves replacing Y with (y, Ĥ) and taking X ∼ N (0, P IT ).
Doing so one gets for ıX;Y the following

1

2

T
∑

i=1

log(1 + PĤ2
i ) +

Ĥ2
i X

2
i + 2ĤiXiZi − PĤ2

i Z
2
i

1 + PĤ2
i

log e

(24)

The expectation of (24) equals, of course, TC(P ), while for

the conditional variance of (24) we find

VT = Var

[

T
∑

i=1

1

2
log(1 + PH2

i )

]

+ T
log2 e

2

(

1− E
2

[

1

1 + PH2

])

. (25)



Thus, the limiting dispersion (per channel use) is

V(P ) = lim
T→∞

VT

T
(26)

= L
[

C(PH2)
]

+
log2 e

2

(

1− E
2

[

1

1 + PH2

])

(27)

It is interesting to contrast (27) with the result for the

discrete additive-noise channel, whose instantaneous noise

distribution is governed by a stationary and ergodic state

process S = {Sj, j ∈ Z}. The capacity-dispersion pair can

be shown to satisfy

C̄ = E [C(S0)] , (28)

V̄ = L [C(S)] + E [V (S0)] , (29)

where C(s) and V (s) are the capacity and the dispersion of

the DMC corresponding to the state s; see [4] and also [11]

for the case of a memoryless state process.

While (28) is the counterpart of (18), (29) is not the

counterpart of (27). In fact, (27) can be written as

V(P ) = L
[

C(PH2)
]

+E
[

V (PH2)
]

+
log2 e

2
Var

[

1

1 + PH2

]

(30)

where V (P ) is the dispersion of the AWGN channel with SNR

P [1, (293)]:

V (P ) =
log2 e

2

(

1−
(

1

1 + P

)2
)

. (31)

Comparing (29) and (30) we see that in both cases the

dynamics of the fading (or state) process affects the dispersion

through the spectral density at zero of the corresponding

capacity process. However, from (30) we see that the cost

constraint introduces an additional dynamics-independent term

in the expression for dispersion.

IV. MAIN RESULT

Theorem 1: Assume that the stationary process H =
{Hi, i ∈ Z} satisfies the following assumptions:

1) Condition (13) on the second moment holds.

2) The α-mixing coefficients (12) satisfy for some r < 1:

∞
∑

k=1

k(αH(k))r < ∞ . (32)

3) For all j > 1 we have

P[HjH0 6= 0] > 0 . (33)

Then the dispersion V(P ) of the coherent fading channel in

Section II is given by (27). Furthermore, for any 0 < ǫ < 1/2
we have as n → ∞
logM∗(n, ǫ) = nC(P )−

√

nV(P )Q−1(ǫ) + o(
√
n) , (34)

regardless of whether ǫ is a maximal or average probability of

error.

The proof is outlined in the Appendix.

The assumptions of Theorem 1 are not as restrictive and

hard to verify as they may seem at first sight. Assump-

tion 2, which implies ergodicity of H, automatically holds

for processes with finite memory (such as finite-order moving

averages) and can usually be verified easily for other finite-

order Markov processes. If H is Gaussian, then the α-mixing

coefficients can be tightly estimated from the spectral density

of H. In particular, if SH(ω) is a rational function of eiω then

αH(k) decay exponentially; see Section V for more.

Assumption 2 also ensures that the first term in (27) makes

sense. Indeed, although {Hi, i ∈ Z} possessing a spectral

density implies that {log(1+PH2
i ), i ∈ Z} also has one [12],

the continuity of the latter is not guaranteed. However, assump-

tions 1, 2 and [5, Lemma 1.3] imply continuity. Assumption 3

is necessary and sufficient for the uniqueness of the maximizer

in

max
Xn

I(Xn;Y n|Hn) (35)

as can be seen from the argument in [7, Section 3.2]. Note

that Assumption 3 is automatically satisfied if the distribution

of H0 has no atom at zero. Assumption 3 is independent of

the other ones (e.g., let H be an ergodic Markov chain with

two states, H = 0 and H = 1, which transitions from 1 to 0
with probability 1). Although a mild requirement, we believe

Theorem 1 still holds without Assumption 3.

Similarly, for the complex AWGN we have:

Theorem 2: For the complex AWGN with complex-valued

fading process {Hi, i = 1, . . .}, in the assumptions of Theo-

rem 1 the dispersion is given by

Vc(P ) =

L
[

log(1 + P |H |2)
]

+ log2 e ·
(

1− E
2

[

1

1 + P |H |2
])

(36)

V. GAUSS-MARKOV FADING

We now proceed to investigate the behavior of the disper-

sion (27) with respect to the spectrum of the fading process.

Before doing so, however, we need to check condition (32).

To simplify the computation of the α-mixing coefficients, we

first observe that

αX(k) ≤ sup
f,g

E [f(X0, X−1, . . .)g(Xk, Xk+1, . . .)] , (37)

where the functions f and g are zero-mean and unit variance.

The quantity on the right side of (37) is known as a ρ-
mixing coefficient, which for Gaussian processes is easy to

compute thanks to a beautiful observation of Sarmanov [13].

In particular, [14] gives an explicit formula and shows that for

any Gaussian process whose spectral function SX is rational

in eiω, the ρ-mixing coefficients decay exponentially. In view

of (37), this automatically guarantees that any process obtained

via finite-order auto-regressive moving average (ARMA) of a

white Gaussian noise satisfies (32).3

3Moreover, for Gaussian processes, (37) is tight up to a universal constant
factor [14, Theorem 2]. Hence, Gaussian processes with non-absolutely
continuous spectral functions, must have αX(k) ≥ ǫ > 0 for all k.
Consequently, Theorem 1 is not applicable to such fading scenarios.
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Fig. 1. Normalized dispersion of a coherent fading channel with Gauss-
Markov fading process (38) as a function of coherence time.

For the purpose of illustration we consider the Gauss-

Markov, or AR(1), fading process:

Hi = aHi−1 +Wi , Wi ∼ N (0, 1− a2) , (38)

where 0 ≤ a < 1. The spectral density is

SH(ω) =
1− a2

1 + a2 − 2a cosω
, (39)

whereas the coherence time is defined as

Tcoh
△
=

maxω SH(ω)
1
2π

∫ π

−π
SH(ω)dω

=
1 + a

1− a
. (40)

Therefore, for memoryless fading Tcoh = 1.
Note that αH(k) are easy to estimate since by the Markov

property:

αH(k) = α(σ{H0}, σ{Hk}) (41)

and by (37) and [13] we get

αH(k) ≤ ak . (42)

This helps in the computation of L [C(PH2)] since a firm

exponentially decaying bound on the tail of the series in (10)

can be given via [5, Lemma 1.3]. which allows for termination

of the series (10) with a sharp estimate of precision. The

second term in (27) is easily computed numerically.

The dependence of the dispersion on coherence time under

the Gauss-Markov model is illustrated in Fig. 1. In view of (3)

we plot the normalized dispersion V

C2 , where C = 0.1403,
0.3848 and 1.2527 bits/ch.use for SNR = −6 dB, 0 dB and

10 dB, respectively. Thus, for example, when Tcoh = 102

achieving 90% of the capacity with block error rate 10−3

requires codes of length 80000, 50000 and 20000 for SNR
of −6 dB, 0 dB and 10 dB, respectively. We notice that

the required blocklength is approximately proportional to

Tcoh with the coefficient of proportionality dependent on the

SNR. However, unlike the ad-hoc definition of coherence time

in (40), the notion of dispersion and the estimate in (3) are

fully theoretically justified by Theorem 1.
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APPENDIX

PROOF OF THEOREM 1

Due to space limitations, we rely heavily on the notation

and results of [1]. In particular, we assume familiarity with

the definition of βα(P,Q) in [1, (100)] and κτ (F, QY ) in [1,

(107)].

Achievability: Fix blocklength n and select the auxiliary

output distribution

QY nHn(yn, hn) = PHn(hn)

n
∏

j=1

N (0, 1 + Ph2
i ) . (43)

We denote

βn
α(x)

△
= βα(PY nHn|Xn=x, QY nHn) . (44)

Henceforth x is assumed to belong to the power sphere

||x||2 = nP . (45)



To analyze the asymptotic behavior of βn
α(x) we note that

log
PY nHn|Xn=x

QY nHn
under P is distributed as

log e

2

n
∑

i=1

ln(1 + PH2
i ) +

H2
i x

2
i + 2HiZixi − PH2

i Z
2
i

1 + PH2
i

(46)

The expectation of (46) is equal to nC and variance to nV(x)

V(x) = V0 + V1(x) + V2(x) + vn (47)

V0 = E [V (PH2
1 )] + L [C(PH2)] (48)

vn =
1

n
Var

[

n
∑

i=1

C(PH2
i )

]

− L [C(PH2)] (49)

V1(x) =
log2 e

2P

1

n
(d, P1− x2) (50)

V2(x) =
log2 e

4P 2

1

n
(An(x

2 − P1),x2 − P1) (51)

(d)j = E

[

∑n

i=1 log(1 + PH2
i )

1 + PH2
j

]

(52)

where 1 is an n-vector of all ones and An is the n × n co-

variance matrix of
{

1
1+PH2

i

, i = 1, . . . , n
}

. As in [1, Section

III.J2], a central-limit theorem analysis of (46) implies

log βn
α(x) = −nC−

√

nV(x)Q−1(α) + o(
√
n) (53)

Although as x goes around the power sphere V(x) experiences
quite significant variations, for the most part it is very close

to V in (27):

Lemma 3: For each n let x be distributed uniformly on the

power sphere (45). Then for each δ > 0 we have as n → ∞

P [|V(x) − V| > δ] → 0 . (54)

We now fix δ and denote

F = {x : ||x||2 = nP,V(x) < V + δ} . (55)

Given QY nHn and F we define κτ (F , QY nHn) as in [1,

(107)]. The following is a simple lower bound for κτ :

Lemma 4: For any distribution PX we have

κτ (F , QY ) ≥ βτPX [F ](PY , QY ) , (56)

where PY is the distribution induced by PX over the channel

PY |X .

As simple as it is, under regularity conditions this lower bound

becomes tight upon taking the supremum over PX [15].

For our purposes we select PX to be the uniform distribution

on the power-sphere (45). By Lemma 3 for all n sufficiently

large we have PX [F ] > 1
2 and therefore from (56) we get for

some constant K1:

κτ (F , QY ) ≥ β τ

2
(PY nHn , QY nHn) (57)

≥ exp

{

−D(PY nHn ||QY nHn) + log 2

τ/2

}

(58)

≥ exp

{

−K1

τ

}

(59)

where in (57) PY nHn is the distribution induced on the output

of the fading channel by x uniform on the power sphere, (58)

follows from the data-processing inequality for divergence:

d(βα(P,Q)||α) ≤ D(P ||Q) , (60)

and (59) from a computation D(PY nHn ||QY nHn) = O(1) as
n → ∞. Therefore, by the κβ bound [1, Theorem 25] for each

τ > 0 there exists an (n,M, ǫ) code with

M ≥ κτ (F , QY nHn)

supx∈F βn
1−ǫ+τ (x)

. (61)

From (61) via (53) and (59) we get

logM∗(n, ǫ) ≥ −K1

τ
+nC−

√

n(V + δ)Q−1(ǫ−τ)+o(
√
n) .

(62)

Since τ and δ are arbitrary we conclude that the lower-bound

in (34) is established.

Converse: Given a sequence of (n,Mn, ǫ) codes (average

probability of error) we first notice that without loss of

generality the encoder can be assumed deterministic. Next,

as in the proof of [1, (286)] we reduce to the case of maximal

probability of error. Furthermore, as in [1, Lemma 39] we

reduce to the case when all of the codewords belong to the

power sphere (45). Thus by the meta-converse [1, Theorem

30] with an auxiliary channel chosen as in (43) we have

logMn ≤ − inf
x

log βn
1−ǫ(x) , (63)

where the infimum is over all the codewords. If we extend the

infimum to the entire power-sphere then in view of (53) we

obtain for ǫ < 1/2:

logMn ≤ nC−
√

n inf
x

V(x)Q−1(ǫ) + o(
√
n) . (64)

Note that due to (32) the vector d in (50) is almost parallel

to 1 and from (45) we have (1,x2 −P ) = 0. This shows that
V1(x) = o(1). Since V2(x) ≥ 0 we obtain the upper bound

logMn ≤ nC−
√

nV0Q
−1(ǫ) + o(

√
n) . (65)

Note that V0 accounts for the first two terms in (30). Since

the third term can be at most log2 e
8 , (65) already gives a very

good bound on the dispersion term. To get a tighter bound

and conclude the proof of (34) we need to show that any

capacity-achieving sequence of codes contains large subcodes

with codewords fully on the set where V(x) ≈ V. Intuitively,

this is true since by Lemma 3 only a tiny portion of the

power sphere yields atypical values for V(x). A rigorous and

technical proof of this fact (omitted for space limitations) uses

Assumption 3.


