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Dispersion of the Gilbert-Elliott Channel

Yury Polyanskiy, H. Vincent Poor, and Sergio Verdú

Abstract

Channel dispersion plays a fundamental role in assessing the backoff from capacity due to finite

blocklength. This paper analyzes the channel dispersion for a simple channel with memory: the Gilbert-

Elliott communication model in which the crossover probability of a binary symmetric channel evolves

as a binary symmetric Markov chain, with and without side information at the receiver about the channel

state. With side information, dispersion is equal to the average of the dispersions of the individual binary

symmetric channels plus a term that depends on the Markov chain dynamics, which do not affect the

channel capacity. Without side information, dispersion isequal to the spectral density at zero of a certain

stationary process, whose mean is the capacity. In addition, the finite blocklength behavior is analyzed

in the non-ergodic case, in which the chain remains in the initial state forever.
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I. INTRODUCTION

The fundamental performance limit for a channel in the finiteblocklength regime isM∗(n, ǫ),

the maximal cardinality of a codebook of blocklengthn which can be decoded with block error

probability no greater thanǫ. Denoting the channel capacity byC1, the approximation

log M∗(n, ǫ)

n
≈ C (1)

is asymptotically tight for channels that satisfy the strong converse. However for many channels,

error rates and blocklength ranges of practical interest, (1) is too optimistic. It has been shown in

[1] that a much tighter approximation can be obtained by defining a second parameter referred

to as the channel dispersion:

Definition 1: The dispersionV (measured in squared information units per channel use) of a

channel with capacityC is equal to2

V = lim
ǫ→0

lim sup
n→∞

1

n

(nC − log M∗(n, ǫ))2

2 ln 1
ǫ

. (2)

In conjunction with the channel capacityC, channel dispersion emerges as a powerful analysis

and design tool; for example in [1] we demonstrated how channel dispersion can be used to

assess the efficiency of practical codes and optimize systemdesign. One of the main advantages

of knowing the channel dispersion lies in estimating the minimal blocklength required to achieve

a given fractionη of capacity with a given error probabilityǫ:3

n &

(

Q−1(ǫ)

1 − η

)2
V

C2
. (3)

The rationale for Definition 1 and estimate (3) is the following expansion

log M∗(n, ǫ) = nC −
√

nV Q−1(ǫ) + O(logn) . (4)

As shown in [1], in the context of memoryless channels (4) gives an excellent approximation

for blocklengths and error probabilities of practical interest.

Traditionally, the dependence of the optimal coding rate onblocklength has been associated

with the question of computing the channel reliability function. Although channel dispersion is

1Capacity and all rates in this paper are measured in information units per channel use.

2All logarithms, log, and exponents,exp, in this paper are taken with respect to an arbitrary fixed base, which also determines

the information units.

3As usual,Q(x) =
R ∞

x
1√
2π

e−t2/2 dt .
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equal to the reciprocal of the second derivative of the reliability function at capacity, determining

the reliability function is not necessary to obtain channeldispersion, which is in fact far easier.

Moreover, for determining the blocklength required to achieve a given performance predictions

obtained from error-exponents may be far inferior comparedto those obtained from (3) (e.g. [1,

Table I]).

In this paper, we initiate the study of the dispersion of channels subject to fading with memory.

For coherent channels that behave ergodically, channel capacity is independent of the fading

dynamics [2] since a sufficiently long codeword sees a channel realization whose empirical

statistics have no randomness. In contrast, channel dispersion does depend on the extent of the

fading memory since it determines the blocklength requiredto ride out not only the noise but

the channel fluctuations due to fading. One of the simplest models that incorporates fading with

memory is the Gilbert-Elliott channel (GEC): a binary symmetric channel where the crossover

probability is a binary Markov chain [3], [4]. The results and required tools depend crucially on

whether the channel state is known at the decoder.

In Section II we define the communication model. Section III reviews the known results for

the Gilbert-Elliott channel. Then in Section IV we present our main results for the ergodic case:

an asymptotic expansion (4) and a numerical comparison against tight upper and lower bounds

on the maximal rate for fixed blocklength. After that, we moveto analyzing the non-ergodic

case in Section V thereby accomplishing the first analysis ofthe finite-blocklength maximal rate

for a non-ergodic channel: we prove an expansion similar to (4), and compare it numerically

with upper and lower bounds.

II. CHANNEL MODEL

Let {Sj}∞j=1 be a homogeneous Markov process with states{1, 2} and transition probabilities

P[S2 = 1|S1 = 1] = P[S2 = 2|S1 = 2] = 1 − τ , (5)

P[S2 = 2|S1 = 1] = P[S2 = 1|S1 = 2] = τ . (6)

Now for 0 ≤ δ1, δ2 ≤ 1 we define{Zj}∞j=1 as conditionally independent given{Sj}∞j=1 and

P[Zj = 0|Sj = s] = 1 − δs , (7)

P[Zj = 1|Sj = s] = δs . (8)
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The Gilbert-Elliott channel acts on an input binary vectorXn by adding (modulo 2) the vector

Zn:

Y n = Xn + Zn . (9)

The description of the channel model is incomplete without specifying the distribution ofS1:

P[S1 = 1] = p1, (10)

P[S1 = 2] = p2 = 1 − p1 . (11)

In this way the Gilbert-Elliott channel is completely specified by the parameters(τ, δ1, δ2, p1).

There are two drastically different modes of operation of the Gilbert-Elliott channel4. When

τ > 0 the chainS1 is ergodic and for this reason we consider only the stationary casep1 = 1/2.

On the other hand, whenτ = 0 we will consider the case of arbitraryp1.

III. PREVIOUS RESULTS

A. Capacity of the Gilbert-Elliott Channel

The capacityC1 of a Gilbert-Elliott channelτ > 0 and stateSn known perfectly at the receiver

depends only on the stationary distributionPS1
and is given by

C1 = log 2 − E [h(δS1
)] (12)

= log 2 − P[S1 = 1]h(δ1) − P[S1 = 2]h(δ2) , (13)

whereh(x) = −x log x−(1−x) log(1−x) is the binary entropy function. In the symmetric-chain

special case considered in this paper, both states are equally likely and

C1 = log 2 − 1

2
h(δ1) −

1

2
h(δ2). (14)

Whenτ > 0 and stateSn is not known at the receiver, the capacity is given by [5]

C0 = log 2 − E
[

h(P[Z0 = 1|Z−1
−∞])

]

(15)

= log 2 − lim
n→∞

E
[

h(P[Z0 = 1|Z−1
−n])

]

. (16)

Throughout the paper we use subscripts1 and 0 for capacity and dispersion to denote the

cases when the stateSn is known and is not known, respectively.

4We omit the case ofτ = 1 which is simply equivalent to two parallel binary symmetricchannels.
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Recall that for0 < ǫ < 1 the ǫ-capacity of the channel is defined as

Cǫ = lim inf
n→∞

1

n
log M∗(n, ǫ) . (17)

In the caseτ = 0 and regardless of the state knowledge at the transmitter or receiver, the

ǫ-capacity is given by (assumingh(δ1) > h(δ2))

Cǫ =











log 2 − h(δ1) , ǫ < p1 ,

log 2 − h(δ2) , ǫ > p1 .
(18)

Other than the case of small|δ2−δ1|, solved in [11], the value of theǫ-capacity at the breakpoint

ǫ = p1 is in general unknown (see also [12]).

B. Bounds

For our analysis of channel dispersion we need to invoke a fewrelevant results from [1].

These results apply to arbitrary blocklength but as in [1] wegive them for an abstract random

transformationPY |X with input and output alphabetsA and B, respectively. An(M, ǫ) code

for an abstract channel consists of a codebook withM codewords(c1, . . . , cM) ∈ AM and a

(possibly randomized) decoderPŴ |Y : B 7→ {0, 1, . . .M} (where ‘0’ indicates that the decoder

chooses “error”), satisfying

1 − 1

M

M
∑

m=1

PŴ |X(m|cm) ≤ ǫ. (19)

In this paper, bothA andB correspond to{0, 1}n, wheren is the blocklength.

Define the (extended) random variable5

i(X; Y ) = log
PY |X(Y |X)

PY (Y )
, (20)

wherePY (y) =
∑

x∈A PX(x)PY |X(y|x) andPX is an arbitrary input distribution over the input

alphabetA.

Theorem 1 (DT bound [1]):For an arbitraryPX there exists a code withM codewords and

average probability of errorǫ satisfying

ǫ ≤ E

[

exp

{

−
[

i(X; Y ) − log
M−1

2

]+
}]

. (21)

5In this paper we only consider the case of discrete alphabets, but [1] has more general results that apply to arbitrary alphabets.
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Among the available achievability bounds, Gallager’s random coding bound [6] does not yield

the correct
√

n term in (4) even for memoryless channels; Shannon’s (or Feinstein’s) bound is

always weaker than Theorem 1 [1], and the RCU bound in [1] is harder than (21) to specialize

to the channels considered in this paper.

The optimal performance of binary hypothesis testing playsan important role in our develop-

ment. Consider a random variableW taking values in a setW, distributed according to either

probability measureP or Q. A randomized test between those two distributions is defined by a

random transformationPZ|W : W 7→ {0, 1} where0 indicates that the test choosesQ. The best

performance achievable among those randomized tests is given by

βα(P, Q) = min
∑

w∈W

Q(w)PZ|W (1|w) , (22)

where the minimum is taken over allPZ|W satisfying

∑

w∈W

P (w)PZ|W (1|w) ≥ α . (23)

The minimum in (22) is guaranteed to be achieved by the Neyman-Pearson lemma. Thus,

βα(P, Q) gives the minimum probability of error under hypothesisQ if the probability of error

under hypothesisP is not larger than1 − α. It is easy to show that (e.g. [7]) for anyγ > 0

α ≤ P

[

P

Q
≥ γ

]

+ γβα(P, Q). (24)

On the other hand,

βα(P, Q) ≤ 1

γ0
, (25)

for any γ0 that satisfies

P

[

P

Q
≥ γ0

]

≥ α . (26)

Virtually all known converse results for channel coding (including Fano’s inequality and

various sphere-packing bounds) can be derived as corollaries to the next theorem by a judicious

choice ofQY |X and a lower bound onβ, see [1]. In addition, this theorem gives the strongest

bound non-asymptotically.
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Theorem 2 (meta-converse):ConsiderPY |X andQY |X defined on the same input and output

spaces. For a given code (possibly randomized encoder and decoder pair), let

ǫ = average error probability with PY |X ,

ǫ′ = average error probability with QY |X ,

PX = QX = encoder output distribution with

equiprobable codewords.

Then,

β1−ǫ(PXY , QXY ) ≤ 1 − ǫ′ , (27)

wherePXY = PXPY |X andQXY = QXQY |X.

IV. ERGODIC CASE: τ > 0

A. Main results

Before showing the asymptotic expansion (4) for the Gilbert-Elliott channel we recall the

corresponding result for the binary symmetric channel (BSC) [1].

Theorem 3:The dispersion of the BSC with crossover probabilityδ is

V (δ) = δ(1 − δ) log2 1 − δ

δ
. (28)

Furthermore, provided thatV (δ) > 0 and regardless of whether0 < ǫ < 1 is a maximal or

average probability of error we have

log M∗(n, ǫ) = n(log 2 − h(δ)) −
√

nV (δ)Q−1(ǫ)

+
1

2
log n + O(1) . (29)

The first new result of this paper is:

Theorem 4:Suppose that the state sequenceSn is stationary,P[S1 = 1] = 1/2, and ergodic,

0 < τ < 1. Then the dispersion of the Gilbert-Elliott channel with stateSn known at the receiver

is

V1 =
1

2
(V (δ1) + V (δ2)) +

1

4
(h(δ1) − h(δ2))

2

(

1

τ
− 1

)

. (30)
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Furthermore, provided thatV1 > 0 and regardless of whether0 < ǫ < 1 is a maximal or average

probability of error we have

log M∗(n, ǫ) = nC1 −
√

nV1Q
−1(ǫ) + O(log n) , (31)

where C1 is given in (14). Moreover, (31) holds even if the transmitter knows the full state

sequenceSn in advance (i.e., non-causally).

Note that the conditionV1 > 0 for (31) to hold excludes only some degenerate cases for which

we have:M∗(n, ǫ) = 2n (when both crossover probabilities are 0 or 1) orM∗(n, ǫ) = ⌊ 1
1−ǫ

⌋
(whenδ1 = δ2 = 1/2).

The proof of Theorem 4 is given in Appendix A. It is interesting to notice that it is the

generality of Theorem 2 that enables the extension to the case of state known at the transmitter.

To formulate the result for the case of no state information at the receiver, we define the

following stationary process:

Fj = − log PZj |Zj−1

−∞
(Zj |Zj−1

−∞) . (32)

Theorem 5:Suppose that0 < τ < 1 and the state sequenceSn is started at the stationary

distribution. Then the dispersion of the Gilbert-Elliott channel with no state information is

V0 = Var [F0] + 2

∞
∑

i=1

E [(Fi − E [Fi])(F0 − E [F0])] . (33)

Furthermore, provided thatV0 > 0 and regardless of whetherǫ is a maximal or average probability

of error, we have

log M∗(n, ǫ) = nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) , (34)

whereC0 is given by (15).

It can be shown that the processFj has a spectral densitySF (f), and that [10]

V0 = SF (0) , (35)

which provides a way of computingV0 by Monte Carlo simulation paired with a spectral

estimator. Alternatively, since the terms in the series (33) decay as(1 − 2τ)j , it is sufficient

to compute only finitely many terms in (33) to achieve any prescribed approximation accuracy.

In this regard note that each term in (33) can in turn be computed with arbitrary precision by

noting thatPZj |Zj−1

−∞
[1|Zj−1

−∞] is a Markov process with a simple transition kernel.
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(b) No state information

Fig. 1. Rate-blocklength tradeoff at block error rateǫ = 10−2 for the Gilbert-Elliott channel with parametersδ1 = 1/2, δ2 = 0

and state transition probabilityτ = 0.1.

Regarding the computation ofC0 it was shown in [5] that

log 2 − E [h(P[Zj = 1|Zj−1])] ≤ C0 ≤ log 2 − E [h(P[Zj = 1|Zj−1, S0])] , (36)

where the bounds are asymptotically tight asj → ∞. The computation of the bounds in (36)

is challenging because the distributions ofP[Zj = 1|Zj−1
1 ] andP[Zj = 1|Zj−1

1 , S0] consist of2j

atoms and therefore are impractical to store exactly. Rounding off the locations of the atoms to

fixed quantization levels inside interval[0, 1], as proposed in [5], leads in general to unspecified

precision. However, for the special case ofδ1, δ2 ≤ 1/2 the functionh(·) is monotonically

increasing in the range of values of its argument and it can beshown that rounding down (up)

the locations of the atoms shifts the locations of all the atoms on subsequent iterations down

(up). Therefore, if rounding is performed this way, the quantized versions of the bounds in (36)

are also guaranteed to sandwichC0.

The proof of Theorem 5 is given in Appendix B.

B. Discussion and numerical comparisons

The natural application of (4) is in approximating the maximal achievable rate. Unlike the BSC

case (29), the coefficient of thelog n term (or “prelog”) for the GEC is unknown. However, the

October 14, 2010 DRAFT
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TABLE I

CAPACITY AND DISPERSION FOR THEGILBERT-ELLIOTT CHANNELS IN FIG. 1

State information Capacity Dispersion

known 0.5 bit 2.25 bit2

unknown 0.280 bit 2.173 bit2

Parameters:δ1 = 1/2, δ2 = 0, τ = 0.1.

fact that1
2
log n in (29) is robust to variation in crossover probability, it is natural to conjecture that

the unknown prelog for GEC is also1
2
. With this choice, we arrive to the following approximation

which will be used for numerical comparison:

1

n
log M∗(n, ǫ) ≈ C −

√

V

n
Q−1(ǫ) +

1

2n
log n , (37)

with (C, V ) = (C1, V1), when the state is known at the receiver, and(C, V ) = (C0, V0), when

the state is unknown.

The approximation in (37) is obtained through new non-asymptotic upper and lower bounds

on the quantity1
n

log M∗(n, ǫ), which are given in Appendices A and B. The asymptotic analysis

of those bounds led to the approximation (37). It is natural to compare those bounds with the

analytical two-parameter approximation (37). Such comparison is shown in Fig. 1. For the case

of state known at the receiver, Fig. 1(a), the achievabilitybound is (98) and the converse bound

is (115). For the case of unknown state, Fig. 1(b), the achievability bound is (152) and the

converse is (168). The achievability bounds are computed for the maximal probability of error

criterion, whereas the converse bounds are for the average probability of error. The values of

capacity and dispersion, needed to evaluate (37), are summarized in Table I.

Two main conclusions can be drawn from Fig. 1. First, we see that our bounds are tight

enough to get an accurate estimate of1
n

log M∗(n, ǫ) even for moderate blocklengthsn. Second,

knowing only two parameters, capacity and dispersion, leads to approximation (37), which is

precise enough for addressing the finite-blocklength fundamental limits even for rather short

blocklengths. Both of these conclusions have already been observed in [1] for the case of

memoryless channels.

Let us discuss two practical applications of (37). First, for the state-known case, the capacityC1

is independent of the state transition probabilityτ . However, according to Theorem 4, the channel

DRAFT October 14, 2010
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Fig. 2. Minimal blocklength needed to achieveR = 0.4 bit and ǫ = 0.01 as a function of state transition probabilityτ . The

channel is the Gilbert-Elliott with no state information atthe receiver,δ1 = 1/2, δ2 = 0.

dispersionV1 does indeed depend onτ . Therefore, according to (3), the minimal blocklength

needed to achieve a fraction of capacity behaves asO
(

1
τ

)

when τ → 0; see (30). This has an

intuitive explanation: to achieve the full capacity of a Gilbert-Elliott channel we need to wait

until the influence of the random initial state “washes away”. Since transitions occur on average

every 1
τ

channel uses, the blocklength should beO
(

1
τ

)

as τ → 0. Comparing (28) and (30) we

can ascribe a meaning to each of the two terms in (30): the firstone gives the dispersion due to

the usual BSC noise, whereas the second one is due to memory inthe channel.

Next, consider the case in which the state is not known at the decoder. As shown in [5],

when the state transition probabilityτ decreases to0 the capacityC0(τ) increases toC1. This is

sometimes interpreted as implying that if the state is unknown at the receiver slower dynamics

are advantageous. Our refined analysis, however, shows thatthis is true only up to a point.

Indeed, fix a rateR < C0(τ) and anǫ > 0. In view of the tightness of (37), the minimal block-

length, as a function of state transition probabilityτ needed to achieve rateR is approximately

given by

N0(τ) ≈ V0(τ)

(

Q−1(ǫ)

C0(τ) − R

)2

. (38)

When the state transition probabilityτ decreases we can predict the current state better; on

the other hand, we also have to wait longer until the chain “forgets” the initial state. The trade-
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Fig. 3. Comparison of the capacity and the maximal achievable rate 1

n
log M∗(n, ǫ) at blocklengthn = 3 · 104 as a function

of the state transition probabilityτ for the Gilbert-Elliott channel with no state information at the receiver,δ1 = 1/2, δ2 = 0;

probability of block error isǫ = 0.01.

off between these two effects is demonstrated in Fig. 2, where we plotN0(τ) for the setup of

Fig. 1(b).

The same effect can be demonstrated by analyzing the maximalachievable rate as a function of

τ . In view of the tightness of the approximation in (37) for largen we may replace1
n

log M∗(n, ǫ)

with (37). The result of such analysis for the setup in Fig. 1(b) andn = 3 · 104 is shown as

a solid line in Fig. 3, while a dashed line corresponds to the capacity C0(τ). Note that at

n = 30000 (37) is indistinguishable from the upper and lower bounds. We can see that once

the blocklengthn is fixed, the fact that capacityC0(τ) grows whenτ decreases does not imply

that we can actually transmit at a higher rate. In fact we can see that onceτ falls below some

critical value, the maximal rate drops steeply with decreasing τ . This situation exemplifies the

drawbacks of neglecting the second term in (4).

In general, asτ → 0 the state availability at the receiver does not affect neither the capacity

nor the dispersion too much as the following result demonstrates.
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Theorem 6:Assuming0 < δ1, δ2 ≤ 1/2 andτ → 0 we have

C0(τ) ≥ C1 − O(
√
−τ ln τ ) , (39)

C0(τ) ≤ C1 − O(τ) , (40)

V0(τ) = V1(τ) + O

(

[− ln τ

τ

]3/4
)

(41)

= V1(τ) + o (1/τ) . (42)

The proof is provided in Appendix B. Some observations on theimport of Theorem 6 are in

order. First, we have already demonstrated that the factV0 = O
(

1
τ

)

as τ → 0 is important

since coupled with (3) it allows us to interpret the quantity1
τ

as a natural “time constant”

of the channel. Theorem 6 shows that the same conclusion holds when we do not have state

knowledge at the decoder. Second, the evaluation ofV0 based on the Definition (33) is quite

challenging6, whereas in Appendix B we prove upper and lower bounds onV1; see Lemma 11.

Third, Theorem 6 shows that for small values ofτ one can approximate the unknown value of

V0 with V1 given by (30) in closed form. Table I illustrates that such approximation happens to

be rather accurate even for moderate values ofτ . Consequently, the value ofN0(τ) for small

τ is approximated by replacingV0(τ) with V1(τ) in (38); in particular this helps quickly locate

the extremum ofN0(τ), cf. Fig. 2.

V. NON-ERGODIC CASE: τ = 0

When the range of blocklengths of interest are much smaller than 1
τ
, we cannot expect (31)

or (34) to give a good approximation oflog M∗(n, ǫ). In fact, in this case, a model withτ = 0

is intuitively much more suitable. In the limitτ = 0 the channel model becomes non-ergodic

and a different analysis is needed.

A. Main result

Recall that the main idea behind the asymptotic expansion (4) is in approximating the dis-

tribution of an information density by a Gaussian distribution. For non-ergodic channels, it is

6Observe that even analyzingE [Fj ], the entropy rate of the hidden Markov processZj , is nontrivial; whereasV0 requires the

knowledge of the spectrum of the processF for zero frequency.
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∼

q
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Fig. 4. Illustration to the Definition 2:Rna(n, ǫ) is found as the unique pointR at which the weighted sum of two shaded

areas equalsǫ.

natural to use an approximation via a mixture of Gaussian distributions. This motivates the next

definition.

Definition 2: For a pair of channels with capacitiesC1, C2 and channel dispersionsV1, V2 > 0

we define anormal approximationRna(n, ǫ) of their non-ergodic sum with respective probabil-

ities p1, p2 (p2 = 1 − p1) as the solution to

p1Q

(

(C1 − R)

√

n

V1

)

+ p2Q

(

(C2 − R)

√

n

V2

)

= ǫ . (43)

Note that for anyn ≥ 1 and 0 < ǫ < 1 the solution exists and is unique, see Fig. 4 for an

illustration. To understand better the behavior ofRna(n, ǫ) with n we assumeC1 < C2 and then

it can be shown easily that7

Rna(n, ǫ) =











C1 −
√

V1

n
Q−1

(

ǫ
p1

)

+ O(1/n) , ǫ < p1

C2 −
√

V2

n
Q−1

(

ǫ−p1

1−p1

)

+ O(1/n) , ǫ > p1 .
(44)

We now state our main result in this section.

Theorem 7:Consider a non-ergodic BSC whose transition probability is0 < δ1 < 1/2 with

probability p1 and0 < δ2 < 1/2 with probability 1 − p1. TakeCj = log 2 − h(δj), Vj = V (δj)

7See the proof of Lemma 15 in Appendix C.
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and defineRna(n, ǫ) as the solution to (43). Then forǫ 6∈ {0, p1, 1} we have

log M∗(n, ǫ) = nRna(n, ǫ) +
1

2
log n + O(1) (45)

regardless of whetherǫ is a maximal or average probability of error, and regardlessof whether

the stateS is known at the transmitter, receiver or both.

The proof of Theorem 7 appears in Appendix C.

B. Discussion and numerical comparison

Comparing (45) and (44) we see that, on one hand, there is the usual 1√
n

type of convergence

to capacity. On the other hand, because the capacity in this case depends onǫ, the argument

of Q−1 has also changed accordingly. Moreover, we see that forp1/2 < ǫ < p1 we have that

capacity is equal to1 − h(δ1) but the maximal rate approaches itfrom above. In other words,

we see that in non-ergodic cases it is possible to communicate at rates above theǫ-capacity at

finite blocklength.

In view of (45) it is natural to choose the following expression as the normal approximation

for the τ = 0 case:

Rna(n, ǫ) +
1

2n
log n . (46)

We compare converse and achievability bounds against the normal approximation (46) in Fig. 5

and Fig. 6. On the latter we also demonstrate numerically thephenomenon of the possibility of

transmitting above capacity. The achievability bounds arecomputed for the maximal probability

of error criterion using (313) from Appendix C withi(Xn; Y n) given by expression (311),

also from Appendix C, in the case of no state knowledge at the receiver; and using (317)

with i(Xn; Y nS1) given by the (314) from Appendix C in the case whenS1 is available at the

receiver. The converse bounds are computed using (334) fromAppendix C, that is for the average

probability of error criterion and with the assumption of state availability at both the transmitter

and the receiver. Note that the “jaggedness” of the curves isa property of the respective bounds,

and not of the computational precision.

On comparing the converse bound and the achievability boundin Fig. 6, we conclude that

the maximal rate,1
n

log M∗(n, ǫ) cannot be monotonically increasing with blocklength. In fact,

the bounds and approximation hint that it achieves a global maximum at aroundn = 200.

We have already observed [1] that for certain ergodic channels and values ofǫ, the supremum
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of 1
n

log M∗(n, ǫ) need not be its asymptotic value. Although this conflicts with the principal

teaching of the error exponent asymptotic analysis (the lower the required error probability, the

higher the required blocklength), it does not contradict the fact that for a memoryless channel

and any positive integerℓ

1

nℓ
log M∗(nℓ, 1 − (1 − ǫ)ℓ) ≥ 1

n
log M∗(n, ǫ) , (47)

since a system with blocklengthnℓ can be constructed byℓ independent encoder/decoders with

blocklengthn.

The “typical sequence” approach fails to explain the behavior in Fig. 6, as it neglects the

possibility that the two BSCs may be affected by an atypical number of errors. Indeed, typicality

only holds asymptotically (and the maximal rate converges to the ǫ-capacity, which is equal to

the capacity of the bad channel). In the short-run the stochastic variability of the channel is

nonneglible, and in fact we see in Fig. 6 that atypically low numbers of errors for the bad

channel (even in conjunction with atypically high numbers of errors for the good channel)

allow a 20% decrease from the error probability (slightly more than0.1) that would ensue from

transmitting at a rate strictly between the capacities of the bad and good channels.

Before closing this section, we also point out that Fano’s inequality is very uninformative in

the non-ergodic case. For example, for the setup of Fig. 5 we have

lim sup
n→∞

log M∗(n, ǫ)

n
≤ lim sup

n→∞
sup
Xn

1

n

I(XnS1; Y
nS1) + log 2

1 − ǫ
(48)

=
log 2 − p1h(δ1) − p2h(δ2)

1 − ǫ
(49)

= 0.71 bit (50)

which is a very loose bound.

VI. CONCLUSION

As we have found previously in [1], asymptotic expansions such as (4) have practical im-

portance by providing tight approximations of the speed of convergence to (ǫ-) capacity, and

by allowing for estimation of the blocklength needed to achieve a given fraction of capacity, as

given by (3).
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Fig. 5. Rate-blocklength tradeoff at block error rateǫ = 0.03 for the non-ergodic BSC whose transition probability isδ1 = 0.11

with probability p1 = 0.1 andδ2 = 0.05 with probability p2 = 0.9.
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Fig. 6. Rate-blocklength tradeoff at block error rateǫ = 0.08 for the non-ergodic BSC whose transition probability isδ1 = 0.11

with probability p1 = 0.1 andδ2 = 0.05 with probability p2 = 0.9.
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In this paper, similar conclusions have been established for two channels with memory. We

have proved approximations of the form (4) for the Gilbert-Elliott channel with and without state

knowledge at the receiver. In Fig. 1, we have illustrated therelevance of this approximation by

comparing it numerically with upper and lower bounds. In addition, we have also investigated

the non-ergodic limit case when the influence of the initial state does not dissipate. This non-

ergodic model is frequently used to estimate the fundamental limits of shorter blocklength codes.

For this regime, we have also proved an expansion similar to (4) and demonstrated its tightness

numerically (see Fig. 5 and Fig. 6).

Going beyond quantitative questions, in this paper we have shown that the effect of the

dispersion term in (4) can dramatically change our understanding of the fundamental limits

of communication. For example, in Fig. 3 we observe that channel capacity fails to predict the

qualitative effect of the state transition probabilityτ on maximal achievable rate even for a rather

large blocklengthn = 30000. Thus, channel capacity alone may offer scant guidance for system

design in the finite-blocklength regime. Similarly, in the non-ergodic situation, communicating

at rates above theǫ-capacity of the channel at finite blocklength is possible, as predicted from

a dispersion analysis; see Fig. 6.

In conclusion, knowledge of channel dispersion in additionto channel capacity offers fresh

insights into the ability of the channel to communicate at blocklengths of practical interest.

REFERENCES
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APPENDIX A

PROOF OFTHEOREM 4

Proof: Achievability:We choosePXn – equiprobable. To model the availability of the state

information at the receiver, we assume that the output of thechannel is(Y n, Sn). Thus we need

to write down the expression fori(Xn; Y nSn). To do that we define an operation onR×{0, 1}:

a{b} =











1 − a , b = 0 ,

a , b = 1
. (51)

Then we obtain

i(Xn; Y nSn) = log
PY n|XnSn(Y n|Xn, Sn)

PY n|Sn(Y n|Sn)
(52)

= n log 2 +
n
∑

j=1

log δ
{Zj}
Sj

, (53)

where (52) follows sincePSn|Xn(sn|xn) = PSn(sn) by independence ofXn andSn, (53) is be-

cause under equiprobableXn we have thatPY n|Sn is also equiprobable, whilePYj |XjSj
(Yj|Xj, Sj)

is equal toδ
{Zj}
Sj

with Zj defined in (7). Using (53) we find

E [i(Xn; Y nSn)] = nC1 . (54)

The next step is to computeVar[i(Xn; Y nSn)]. For convenience we write

ha =
1

2
[h(δ1) + h(δ2)] (55)
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and

Θj = log δ
{Zj}
Sj

. (56)

Therefore

σ2
n

△
= Var[i(Xn; Y nSn)] (57)

= E





(

n
∑

j=1

Θj

)2


− n2h2
a (58)

=
n
∑

j=1

E
[

Θ2
j

]

+ 2
∑

i<j

E [ΘiΘj] − n2h2
a (59)

= nE [Θ2
1] + 2

n
∑

k=1

(n − k)E [Θ1Θ1+k] − n2h2
a (60)

= n(E [Θ2
1] − h2

a)

+2

n
∑

k=1

(n − k)E
[

h (δS1
)h
(

δS1+k

)

− h2
a

]

, (61)

where (60) follows by stationarity and (61) by conditioningon Sn and regrouping terms.

Before proceeding further we define anα-mixing coefficient of the process(Sj , Zj) as

α(n) = sup |P[A, B] − P[A]P[B]| , (62)

where the supremum is overA ∈ σ{S0
−∞, Z0

−∞} andB ∈ σ{S∞
n , Z∞

n }; by σ{· · · } we denote a

σ-algebra generated by a collection of random variables. BecauseSj is such a simple Markov

process it is easy to show that for anya, b ∈ {1, 2} we have

1

2
− 1

2
|1 − 2τ |n ≤ P[Sn = a|S0 = b] ≤ 1

2
+

1

2
|1 − 2τ |n , (63)

and, hence,

α(n) ≤ |1 − 2τ |n . (64)

By Lemma 1.2 of [10] for any pair of bounded random variablesU andV measurable with

respect toσ{Sj , j ≤ m} andσ{Sj, j ≥ m + n}, respectively, we have

|E [UV ] − E [U ]E [V ]| ≤ 16α(n) · ess sup |U | · ess sup |V | . (65)
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Then we can conclude that since|h (δS1
) | ≤ log 2 we have for some constantB3

∣

∣

∣

∣

∣

n
∑

k=1

kE
[

h (δS1
) h
(

δS1+k

)

− h2
a

]

∣

∣

∣

∣

∣

≤
n
∑

k=1

kE
[∣

∣h (δS1
)h
(

δS1+k

)

− h2
a

∣

∣

]

(66)

≤
n
∑

k=1

16kα(k) log2 2 (67)

≤ B3

∞
∑

k=1

k(1 − 2τ)k (68)

= O(1) , (69)

where (67) is by (65) and (68) is by (80). On the other hand,

n

∣

∣

∣

∣

∣

∞
∑

k=n+1

E
[

h (δS1
) h
(

δS1+k

)

− h2
a

]

∣

∣

∣

∣

∣

(70)

≤ 16n
∞
∑

k=n+1

α(k) log2 2 (71)

≤ 16Kn
∞
∑

k=n+1

(1 − 2τ)k log2 2 (72)

= O(1) . (73)

Therefore, we have proved that

n
∑

k=1

(n − k)E
[

h (δS1
) h
(

δS1+k

)

− h2
a

]

(74)

= n

n
∑

k=1

E
[

h (δS1
)h
(

δS1+k

)

− h2
a

]

+ O(1) (75)

= n

∞
∑

k=1

E
[

h (δS1
)h
(

δS1+k

)

− h2
a

]

+ O(1) , (76)

A straightforward calculation reveals that

∞
∑

k=1

E
[

h (δS1
) h
(

δS1+k

)

− h2
a

]

(77)

=
1

4
(h (δ1) − h (δ2))

2

[

1

2τ
− 1

]

. (78)
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Therefore, using (76) and (78) in (61), we obtain after some algebra that

σ2
n = Var[i(Xn; Y nSn)] = nV1 + O(1) . (79)

By (53) we see thati(Xn; Y nSn) is a sum over anα-mixing process. For such sums the following

theorem of Tikhomirov [8] serves the same purpose in this paper as the Berry-Esseen inequality

does in [1] and [9].

Theorem 8:Suppose that a stationary zero-mean processX1, X2, . . . is α-mixing and for some

positiveK, β andγ we have

α(k) ≤ Ke−βk , (80)

E
[

|X1|4+γ
]

< ∞ (81)

σ2
n → ∞ , (82)

where

σ2
n = E





(

n
∑

1

Xj

)2


 . (83)

Then, there is a constantB, depending onK, β andγ, such that

sup
x∈R

∣

∣

∣

∣

∣

P

[

n
∑

1

Xj ≥ x
√

σ2
n

]

− Q(x)

∣

∣

∣

∣

∣

≤ B log n√
n

. (84)

Application of Theorem 8 toi(Xn; Y nSn) proves that
∣

∣

∣
P

[

i(Xn; Y nSn) ≥ nC1 +
√

σ2
nx
]

− Q(x)
∣

∣

∣
≤ B log n√

n
. (85)

But then for arbitraryλ there exists some constantB2 > B such that we have
∣

∣

∣
P

[

i(Xn; Y nSn) ≥ nC1 +
√

nV1λ
]

− Q(λ)
∣

∣

∣
(86)

=

∣

∣

∣

∣

∣

P

[

i(Xn; Y nSn) ≥ nC1 +
√

σ2
n

√

nV1

σ2
n

λ

]

− Q(λ)

∣

∣

∣

∣

∣

(87)

≤ B log n√
n

+

∣

∣

∣

∣

∣

Q(λ) − Q

(

λ

√

nV1

σ2
n

)∣

∣

∣

∣

∣

(88)

=
B log n√

n
+ |Q(λ) − Q (λ + O(1/n))| (89)

≤ B log n√
n

+ O(1/n) (90)

≤ B2 log n√
n

, (91)
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where (88) is by (85), (89) is by (79) and (90) is by Taylor’s theorem.

Now, we state an auxiliary lemma to be proved later.

Lemma 9:Let X1, X2, . . . be a process satisfying the conditions of Theorem 8; then forany

constantA

E

[

exp

{

−
n
∑

j=1

Xj

}

· 1
{

n
∑

j=1

Xj > A

}]

≤ 2

(

log 2
√

2πσ2
n

+
2B log n√

n

)

exp{−A} , (92)

whereB is the constant in (84).

Observe that there exists someB1 > 0 such that

2

(

log 2
√

2πσ2
n

+
2B log n√

n

)

= 2

(

log 2
√

2π(nV + O(1))
+

2B log n√
n

)

(93)

≤ B1 log n√
n

, (94)

whereσ2
n is defined in (57) and (93) follows from (79). Therefore, from(94) we conclude that

there exists a constantB1 such that for anyA

E [exp{−i(Xn; Y nSn) + A} · 1{i(Xn; Y nSn) ≥ A}] ≤ B1 log n√
n

, (95)

Finally, we set

log
M−1

2
= nC −

√
nV Q−1(ǫn) , (96)

where

ǫn = ǫ − (B1 + B2) log n√
n

. (97)

Then, by Theorem 1 we know that there exists a code withM codewords and average probability

of error pe bounded by

pe ≤ E

[

exp

{

−
[

i(Xn; Y nSn) − log
M−1

2

]+
}]

(98)

≤ P

[

i(Xn; Y nSn) ≤ log
M−1

2

]

+
B1√

n
(99)

≤ ǫn +
(B1 + B2) log n√

n
(100)

≤ ǫ , (101)

where (99) is by (95) withA = log M−1

2
, (100) is by (91) and (96), and (101) is by (97).

Therefore, invoking Taylor’s expansion ofQ−1 in (96) we have

log M∗(n, ǫ) ≥ log M ≥ nC −
√

nV Q−1(ǫ) + O(logn) . (102)
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This proves the achievability bound with the average probability of error criterion.

However, as explained in [1], the proof of Theorem 1 relies only on pairwise independence

of the codewords in the ensemble of codes. Therefore, ifM = 2k for an integerk, a fully

random ensemble ofM equiprobable binary strings may be replaced with an ensemble of 2k

codewords of a random linear[k, n] code. But a maximum likelihood decoder for such a code

can be constructed so that the maximal probability of error coincides with the average probability

of error; see Appendix A of [1] for complete details. In this way, the above argument actually

applies to both average and maximal error criteria after replacing log M by ⌊log M⌋, which is

asymptotically immaterial.

Converse:In the converse part we will assume that the transmitter has access to the full

state sequenceSn and then generatesXn based on both the input message andSn. Take the

best such code withM∗(n, ǫ) codewords and average probability of error no greater thanǫ. We

now propose to treat the pair(Xn, Sn) as a combined input to the channel (but theSn part

is independent of the message) and the pair(Y n, Sn) as a combined output, available to the

decoder. Note that in this situation, the encoder induces a distributionPXnSn and is necessarily

randomized because the distribution ofSn is not controlled by the input message and is given

by the output of the Markov chain.

To apply Theorem 2 we choose the auxiliary channel which passesSn unchanged and generates

Y n equiprobably:

QY n|XnSn(yn, sn|xn) = 2−n for all xn, yn, sn . (103)

Note that by the constraint on the encoder,Sn is independent of the messageW . Moreover,

underQ-channel theY n is also independent ofW and we clearly have

ǫ′ ≥ 1 − 1

M∗ . (104)

Therefore by Theorem 2 we obtain

β1−ǫ (PXnY nSn, QXnY nSn) ≤ 1

M∗ . (105)
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To lower boundβ1−ǫ (PXnY nSn, QXnY nSn) via (24) we notice that

log
PXnY nSn(xn, yn, sn)

QXnY nSn(xn, yn, sn)
= log

PY n|XnSn(yn|xn, sn)PXnSn(xn, sn)

QY n|XnSn(yn|xn, sn)QXnSn(xn, sn)
(106)

= log
PY n|XnSn(yn|xn, sn)

QY n|XnSn(yn|xn, sn)
(107)

= i(xn; ynsn) , (108)

where (107) is becausePXnSn = QXnSn and (108) is simply by noting thatPY n|Sn in the

definition (52) ofi(Xn; Y nSn) is also equiprobable and, hence, is equal toQY n|XnSn . Now set

log γ = nC −
√

nV Q−1(ǫn) , (109)

where this time

ǫn = ǫ +
B2 log n√

n
+

1√
n

. (110)

By (24) we have forα = 1 − ǫ that

β1−ǫ ≥ 1

γ

(

1 − ǫ − P

[

log
PXnY nSn(Xn, Y n, Sn)

QXnY nSn(Xn, Y n, Sn)
≥ log γ

])

(111)

=
1

γ
(1 − ǫ − P [i(Xn; Y nSn) ≥ log γ]) (112)

≥ 1

γ

(

1 − ǫ − (1 − ǫn) − B2 log n√
n

)

(113)

=
1√
nγ

, (114)

where (112) is by (108), (113) is by (91) and (114) is by (110).

Finally,

log M∗(n, ǫ) ≤ log
1

β1−ǫ
(115)

≤ log γ +
1

2
log n (116)

= nC −
√

nV Q−1(ǫn) +
1

2
log n (117)

= nC −
√

nV Q−1(ǫ) + O(log n) , (118)

where (115) is just (105), (116) is by (114), (117) is by (109)and (118) is by Taylor’s formula

applied toQ−1 using (110) forǫn.
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Proof of Lemma 9: By Theorem 8 for anyz we have that

P

[

z ≤
n
∑

j=1

Xj < z + log 2

]

≤
∫ (z+log 2)/σn

z/σn

1√
2π

e−t2/2dt +
2B log n√

n
. (119)

≤ log 2

σn

√
2π

+
2B log n√

n
. (120)

On the other hand,

E

[

exp

{

−
n
∑

j=1

Xj

}

· 1
{

n
∑

j=1

Xj > A

}]

≤
∞
∑

l=0

exp{−A − l log 2}P

[

A + l log 2 ≤
n
∑

j=1

Xj < A + (l + 1) log 2

]

. (121)

Using (120) we get (92) after noting that
∞
∑

l=0

2−l = 2 . (122)

APPENDIX B

PROOFS OFTHEOREMS 5 AND 6

For convenience, we begin by summarizing the definitions andsome of the well-known

properties of the processes used in this appendix:

Rj = P[Sj+1 = 1|Zj
1] , (123)

Qj = P[Zj+1 = 1|Zj
1] = δ1Rj + δ2(1 − Rj) , (124)

R∗
j = P[Sj+1 = 1|Zj

1, S0] , (125)

Gj = − log PZj |Zj−1

1

(Zj|Zj−1
1 ) = − log Q

{Zj}
j−1 , (126)

Ψj = P[Sj+1 = 1|Zj
−∞] , (127)

Uj = P[Zj+1 = 1|Zj
−∞] = δ1Ψj + δ2(1 − Ψj) , (128)

Fj = − log PZj |Zj−1

−∞
(Zj|Zj−1

−∞) = − log U
{Zj}
j−1 , (129)

Θj = log PZj |Sj
(Zj|Sj) = log δ

{Zj}
Sj

, (130)

Ξj = Fj + Θj . (131)
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With this notation, the entropy rate of the processZj is given by

H = lim
n→∞

1

n
H(Zn) (132)

= E [F0] (133)

= E [h(U0)] . (134)

Define two functionsT0,1 : [0, 1] 7→ [τ, 1 − τ ]:

T0(x) =
x(1 − τ)(1 − δ1) + (1 − x)τ(1 − δ2)

x(1 − δ1) + (1 − x)(1 − δ2)
, (135)

T1(x) =
x(1 − τ)δ1 + (1 − x)τδ2

xδ1 + (1 − x)δ2
. (136)

Applying Bayes formula to the conditional probabilities in(123), (125) and (127) yields8

Rj+1 = TZj+1
(Rj) , j ≥ 0 , a.s. (137)

R∗
j+1 = TZj+1

(R∗
j ) , j ≥ −1 , a.s. (138)

Ψj+1 = TZj+1
(Ψj) , j ∈ Z , a.s. (139)

where we startRj andR∗
j as follows:

R0 = 1/2 , (140)

R∗
0 = (1 − τ)1{S0 = 1} + τ1{S0 = 2} . (141)

In particular,Rj , R
∗
j , Qj , Ψj andUj are Markov processes.

Because of (139) we have

min(τ, 1 − τ) ≤ Ψj ≤ max(τ, 1 − τ) . (142)

For any pair of points0 < x, y < 1 denote their projective distance (as defined in [14]) by

dP (x, y) =

∣

∣

∣

∣

ln
x

1 − x
− ln

y

1 − y

∣

∣

∣

∣

. (143)

As shown in [14] operatorsT0 and T1 are contracting in this distance (see also Section V.A

of [15]):

dP (Ta(x), Ta(y)) ≤ |1 − 2τ |dP (x, y) . (144)

8Since all conditional expectations are defined only up to almost sure equivalence, the qualifier “a.s.” will be omitted below

when dealing with such quantities.
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Since the derivative ofln x
1−x

is lower-bounded by 4 we also have

|x − y| ≤ 1

4
dP (x, y) , (145)

which implies for alla ∈ {0, 1} that

|Ta(x) − Ta(y)| ≤ 1

4
|1 − 2τ |dP (x, y) . (146)

Applying (146) to (137)-(139) and in the view of (140) and (142) we obtain

|Rj − Ψj| ≤ 1

4

∣

∣

∣

∣

ln
τ

1 − τ

∣

∣

∣

∣

|1 − 2τ |j−1 j ≥ 1 , (147)

|Qj − Uj | ≤ |δ1 − δ2|
4

∣

∣

∣

∣

ln
τ

1 − τ

∣

∣

∣

∣

|1 − 2τ |j−1 j ≥ 1 . (148)

Proof of Theorem 5: Achievability:In this proof we demonstrate how a central-limit theorem

(CLT) result for the information density implies theo(
√

n) expansion. Otherwise, the proof is

a repetition of the proof of Theorem 4. In particular, with equiprobablePXn , the expression for

the information densityi(Xn; Y n) becomes

i(Xn; Y n) = n log 2 + log PZn(Zn) , (149)

= n log 2 +

n
∑

j=1

Gj . (150)

One of the main differences with the proof of Theorem 4 is thatthe processGj need not beα-

mixing. In fact, for a range of values ofδ1, δ2 andτ it can be shown that all(Zj , Gj), j = 1 . . . n

can be reconstructed by knowingGn. Consequently,α-mixing coefficients ofGj are all equal to

1/4, henceGj is notα-mixing and Theorem 8 is not applicable. At the same timeGj is mixing

and ergodic (and Markov) because the underlying time-shiftoperator is Bernoulli.

Nevertheless, Theorem 2.6 in [10] provides a CLT extension of the classic Shannon-MacMillan-

Breiman theorem. Namely it proves that the process1√
n

log PZn(Zn) is asymptotically normal

with varianceV0. Or, in other words, for anyλ ∈ R we can write

P

[

i(Xn; Y n) > nC0 +
√

nV0λ
]

→ Q(λ) . (151)

Conditions of Theorem 2.6 in [10] are fulfilled because of (64) and (148). Note that Appendix

I.A of [15] also establishes (151) but with an additional assumptionδ1, δ2 > 0.
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By Theorem 1 we know that there exists a code withM codewords and average probability

of error pe bounded as

pe ≤ E

[

exp

{

−
[

i(Xn; Y n) − log
M−1

2

]+
}]

(152)

≤ E
[

exp
{

− [i(Xn; Y n) − log M ]+
}]

(153)

where (153) is by monotonicity ofexp{−[i(Xn; Y n) − a]+} with respect toa. Furthermore,

notice that for any random variableU anda, b ∈ R we have9

E
[

exp
{

− [U − a]+
}]

≤ P[U ≤ b] + exp{a − b} . (154)

Fix someǫ′ > 0 and set

log γn = nC0 −
√

nV0Q
−1(ǫ − ǫ′) . (155)

Then continuing from (153) we obtain

pe ≤ P[i(Xn; Y n) ≤ log γn] + exp{log M − log γn} (156)

= ǫ − ǫ′ + o(1) +
M

γn
, (157)

where (156) follows by applying (154) and (157) is by (151). If we setlog M = log γn − log n

then the right-hand side of (157) for sufficiently largen falls belowǫ. Hence we conclude that

for n large enough we have

log M∗(n, ǫ) ≥ log γn − log n (158)

≥ nC0 −
√

nV0Q
−1(ǫ − ǫ′) − log n , (159)

but sinceǫ′ is arbitrary,

log M∗(n, ǫ) ≥ nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) . (160)

Converse:To apply Theorem 2 we choose the auxiliary channelQY n|Xn which simply outputs

an equiprobableY n independent of the inputXn:

QY n|Xn(yn|xn) = 2−n . (161)

9This upper-bound reduces (152) to the usual Feinstein Lemma.
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Similar to the proof of Theorem 4 we get

β1−ǫ (PXnY n , QXnY n) ≤ 1

M∗ , (162)

and also

log
PXnY n(Xn, Y n)

QXnY n(Xn, Y n)
= n log 2 + log PZn(Zn) (163)

= i(Xn; Y n) . (164)

We chooseǫ′ > 0 and set

log γn = nC0 −
√

nV0Q
−1(ǫ + ǫ′) . (165)

By (24) we have, forα = 1 − ǫ,

β1−ǫ ≥ 1

γn
(1 − ǫ − P [i(Xn; Y n) ≥ log γn]) (166)

=
1

γn

(ǫ′ + o(1)) , (167)

where (167) is from (151). Finally, from (162) we obtain

log M∗(n, ǫ) ≤ log
1

β1−ǫ
(168)

= log γn − log(ǫ′ + o(1)) (169)

= nC0 −
√

nV0Q
−1(ǫ + ǫ′) + O(1) (170)

= nC0 −
√

nV0Q
−1(ǫ) + o(

√
n) . (171)

Proof of Theorem 6: Without loss of generality, we assume everywhere throughout the

remainder of the appendix

0 < δ2 ≤ δ1 ≤ 1/2 . (172)

The bound (39) follows from Lemma 10: (40) follows from (176)after observing that when

δ2 > 0 the right-hand side of (176) isO(τ) whenτ → 0. Finally, by (177) we have

B0 = O
(√

−τ ln τ
)

(173)

which implies that
B1

B0
= O

(

− ln3/4 τ

τ 1/4

)

. (174)
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Substituting these into the definition of∆ in Lemma 11, see (199), we obtain

∆ = O





√

− ln3 τ

τ



 (175)

as τ → 0. Then (41) follows from Lemma 11 and (30).

Lemma 10:For any0 < τ < 1 the differenceC1 − C0 is lower bounded as

C1 − C0 ≥ h(δ1τmax + δ2τmin) − τmaxh(δ1) − τminh(δ2) , (176)

whereτmax = max(τ, 1 − τ) andτmin = min(τ,1 − τ). Furthermore, whenτ → 0 we have

C1 − C0 ≤ O
(√

−τ ln τ
)

. (177)

Proof: First, notice that

C1 − C0 = H− H(Z1|S1) = E [Ξ1] , (178)

whereH and Ξj were defined in (132) and (131), respectively. On the other hand we can see

that

E [Ξ1|Z0
−∞] = f(Ψ0) , (179)

wheref is a non-negative, concave function on[0, 1], which attains0 at the endpoints; explicitly,

f(x) = h(δ1x + δ2(1 − x)) − xh(δ1) − (1 − x)h(δ2) . (180)

Since we know thatΨ0 almost surely belongs to the interval betweenτ and 1 − τ we obtain

after trivial algebra

f(x) ≥ min
t∈[τmin,τmax]

f(t) = f(τmax) , ∀x ∈ [τmin, τmax] . (181)

Taking expectation in (179) and using (181) we prove (176).

On the other hand,

C1 − C0 = H− H(Z1|S1) (182)

= E [h(δ1Ψ0 + δ2(1 − Ψ0)) − h(δ11{S1 = 1} + δ21{S1 = 2})] . (183)

Becauseδ2 > 0 we have

B = max
x∈[0,1]

∣

∣

∣

∣

d

dx
h(δ1x + δ2(1 − x))

∣

∣

∣

∣

< ∞ . (184)
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So we have

E [Ξ1] ≤ BE [|Ψ0 − 1{S1 = 1}|] (185)

≤ B
√

E [(Ψ0 − 1{S1 = 1})2] , (186)

where (186) follows from the Lyapunov inequality. Notice that for any estimator̂A of 1{S1 = 1}
based onZ0

−∞ we have

E [(Ψ0 − 1{S1 = 1})2] ≤ E [(Â − 1{S1 = 1})2] , (187)

becauseΨ0 = E [1{S1 = 1}|Z0
−∞] is a minimal mean square error estimate.

We now take the following estimator:

Ân = 1

{

0
∑

j=−n+1

Zj ≥ nδa

}

, (188)

wheren is to be specified later andδa = δ1+δ2
2

. We then have the following upper bound on its

mean square error:

E [(Ân − 1{S1 = 1})2] = P[1{S1 = 1} 6= Ân] (189)

≤ P[Ân 6= 1{S1 = 1}, S1 = · · · = S−n+1]

+ 1 − P[S1 = · · · = S−n+1] (190)

=
1

2
(1 − τ)n (P[B(n, δ1) < nδa] + P[B(n, δ2) ≥ nδa])

+ 1 − (1 − τ)n , (191)

whereB(n, δ) denotes the binomially distributed random variable. UsingChernoff bounds we

can find that for someE1 we have

P[B(n, δ1) < nδa] + P[B(n, δ2) ≥ nδa] ≤ 2e−nE1 . (192)

Then we have

E [(Ân − 1{S1 = 1})2] ≤ 1 − (1 − τ)n(1 − e−nE1) . (193)

If we denote

β = − ln(1 − τ) . (194)

and choose

n =

⌈

− 1

E1
ln

β

E1

⌉

, (195)
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we obtain that

E [(Ân − 1{S1 = 1})2] ≤ 1 − (1 − τ) · e−
β

E1
ln β

E1

(

1 − β

E1

)

. (196)

When τ → 0 we haveβ = τ + o(τ) and then it is not hard to show that

E [(Ân − 1{S1 = 1})2] ≤ τ

E1

ln
τ

E1

+ o(τ ln τ) . (197)

From (186), (187), and (197) we obtain (177).

Lemma 11:For any0 < τ < 1 we have

|V0 − V1| ≤ 2
√

V1∆ + ∆ , (198)

where∆ satisfies

∆ ≤ B0 +
B0

2(1 −
√

|1 − 2τ |)
ln

eB1

B0
, (199)

B0 =
d2(δ1||δ2)

d(δ1||δ2)
|C0 − C1| , (200)

B1 =

√

B0

|1 − 2τ |

(

d(δ1||δ2)

∣

∣

∣

∣

ln
τ

1 − τ

∣

∣

∣

∣

+
h(δ1) − h(δ2)

2|1 − 2τ |

)

, (201)

d2(a||b) = a log2 a

b
+ (1 − a) log2 1 − a

1 − b
(202)

andd(a||b) = a log a
b

+ (1 − a) log 1−a
1−b

is the binary divergence.

Proof: First denote

∆ = lim
n→∞

1

n
Var

[

n
∑

j=1

Ξj

]

, (203)

whereΞj was defined in (131); the finiteness of∆ is to be proved below.

By (131) we have

Fj = −Θj + Ξj . (204)

In Appendix A we have shown that

E [Θj ] = C1 − log 2 , (205)

Var

[

n
∑

j=1

Θj

]

= nV1 + O(1) . (206)
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Essentially,Ξj is a correction term, compared to the case of state known at the receiver, which

we expect to vanish asτ → 0. By definition ofV0 we have

V0 = lim
n→∞

1

n
Var

[

n
∑

j=1

Fj

]

(207)

= lim
n→∞

Var

[

− 1√
n

n
∑

j=1

Θj +
1√
n

n
∑

j=1

Ξj

]

. (208)

Now (198) follows from (203), (206) and by an application of the Cauchy-Schwartz inequality

to (208).

We are left to prove (199). First, notice that

∆ = Var[Ξ0] + 2
∞
∑

j=1

cov(Ξ0, Ξj) . (209)

The first term is bounded by Lemma 12

Var[Ξj] ≤ E [Ξ2
j ] ≤ B0 . (210)

Next, set

N =

⌈

2 ln B0

B1

ln |1 − 2τ |

⌉

. (211)

We have then

∞
∑

j=1

cov[Ξ0, Ξj ] ≤ (N − 1)B0 + B1

∑

j≥N

|1 − 2τ |j/2 (212)

≤
ln B0

B1

ln
√

|1 − 2τ |
B0 +

B0

1 −
√

|1 − 2τ |
(213)

≤ B0

1 −
√

|1 − 2τ |
ln

eB1

B0

, (214)

where in (212) forj < N we used Cauchy-Schwarz inequality and (210), forj ≥ N we used

Lemma 13; (213) follows by definition ofN and (214) follows bylnx ≤ x − 1. Finally, (199)

follows now by applying (210) and (214) to (209).

Lemma 12:Under the conditions of Lemma 11, we have

Var[Ξj] ≤ E [Ξ2
j ] ≤ B0 . (215)
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Proof: First notice that

E [Ξ1|Z0
−∞] = Ψ0d(δ1||δ1Ψ0 + δ2(1 − Ψ0))

+(1 − Ψ0)d(δ2||δ1Ψ0 + δ2(1 − Ψ0)) , (216)

E [Ξ2
1|Z0

−∞] = Ψ0d2(δ1||δ1Ψ0 + δ2(1 − Ψ0))

+(1 − Ψ0)d2(δ2||δ1Ψ0 + δ2(1 − Ψ0)) . (217)

Below we adopt the following notation

x̄ = 1 − x . (218)

Applying Lemma 14 twice (witha = δ1 , b = δ1x + δ2x̄ and with a = δ2 , b = δ1x + δ2x̄) we

obtain

xd2(δ1||δ1x + δ2x̄) + x̄d2(δ2||δ1x + δ2x̄)

≤ d2(δ1||δ2)

d(δ1||δ2)
(xd(δ1||δ1x + δ2x̄) + x̄d(δ2||δ1x + δ2x̄)) . (219)

If we substitutex = Ψ0 here, then by comparing (216) and (217) we obtain that

E [Ξ2
1|Z0

−∞] ≤ d2(δ1||δ2)

d(δ1||δ2)
E [Ξ1|Z0

−∞] . (220)

Averaging this we obtain10

E [Ξ2
1] ≤

d2(δ1||δ2)

d(δ1||δ2)
(C1 − C0) . (222)

Lemma 13:Under the conditions of Lemma 11, we have

cov[Ξ0, Ξj] ≤ B1|1 − 2τ |j/2 . (223)

Proof: From the definition ofΞj we have that

E [Ξj |S0
−∞, Zj−1

−∞ ] = f(Ψj−1, R
∗
j−1) , (224)

where

f(x, y) = yd(δ1||δ1x + δ2(1 − x)) + (1 − y)d(δ2||δ1x + δ2(1 − x)) . (225)

10Note that it can also be shown that

E [Ξ2
1] ≥

d2(δ2||δ1)

d(δ2||δ1)
(C1 − C0) , (221)

and therefore (222) cannot be improved significantly.
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Notice the following relationship:

d

dλ
H(λ̄Q + λP ) = D(P ||λ̄Q + λP ) − D(Q||λ̄Q + λP ) + H(P ) − H(Q) . (226)

This has two consequences. First it shows that the function

D(P ||λ̄Q + λP ) − D(Q||λ̄Q + λP ) (227)

is monotonically decreasing withλ (since it is a derivative of a concave function). Second, we

have the following general relation for the excess of the entropy above its affine approximation:

d

dλ

∣

∣

∣

∣

λ=0

[H((1 − λ)Q + λP ) − (1 − λ)H(Q) − λH(P )] = D(P ||Q) , (228)

d

dλ

∣

∣

∣

∣

λ=1

[H((1 − λ)Q + λP ) − (1 − λ)H(Q) − λH(P )] = −D(Q||P ) . (229)

Also it is clear that for all otherλ’s the derivative is in between these two extreme values.

Applying this to the binary case we have

max
x,y∈[0,1]

∣

∣

∣

∣

df(x, y)

dy

∣

∣

∣

∣

= max
x∈[0,1]

|d(δ1||δ1x + δ2(1 − x)) − d(δ2||δ1x + δ2(1 − x))| (230)

= max(d(δ1||δ2), d(δ2||δ1)) (231)

= d(δ1||δ2) , (232)

where (231) follows because the function in the right side of(230) is decreasing and (232) is

because we are restricted toδ2 ≤ δ1 ≤ 1
2
. On the other hand, we see that

f(x, x) = h(δ1x + δ2(1 − x)) − xh(δ1) − (1 − x)h(δ2) ≥ 0 . (233)

Comparing with (228) and (229), we have

max
x∈[0,1]

∣

∣

∣

∣

df(x, x)

dx

∣

∣

∣

∣

= max(d(δ1||δ2), d(δ2||δ1)) (234)

= d(δ1||δ2) . (235)

By the properties off we have

∣

∣f(Ψj−1, R
∗
j−1) − f(Ψj−1, Ψj−1)

∣

∣ ≤ d(δ1||δ2)|R∗
j−1 − Ψj−1| (236)

≤ B2|1 − 2τ |j−1 , (237)

where for convenience we denote

B2 =
1

2
d(δ1||δ2)

∣

∣

∣

∣

ln
τ

1 − τ

∣

∣

∣

∣

. (238)
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Indeed, (236) is by (232) and (237) follows by observing that

Ψj−1 = TZj−1
◦ · · · ◦ TZ1

(Ψ0) , (239)

R∗
j−1 = TZj−1

◦ · · · ◦ TZ1
(R∗

0) (240)

and applying (146). Consequently, we have shown

∣

∣E [Ξj|S0
−∞, Zj−1

−∞] − f(Ψj−1, Ψj−1)
∣

∣ ≤ B2|1 − 2τ |j−1 , (241)

or, after a trivial generalization,

∣

∣E [Ξj |Sk
−∞, Zj−1

−∞] − f(Ψj−1, Ψj−1)
∣

∣ ≤ B2|1 − 2τ |j−1−k . (242)

Notice that by comparing (233) with (216) we have

E [f(Ψj−1, Ψj−1)] = E [Ξj] . (243)

Next we show that

∣

∣E [Ξj |S0
−∞, Z0

−∞] − E [Ξj ]
∣

∣ ≤ |1 − 2τ | j−1

2 [2B2 + B3] , (244)

where

B3 =
h(δ1) − h(δ2)

2|1 − 2τ | . (245)

Denote

t(Ψk, Sk)
△
= E [f(Ψj−1, Ψj−1)|Sk

−∞Zk
−∞] . (246)

Then because of (235) and sinceΨk affects only the initial condition forΨj−1 when written

as (239), we have for arbitraryx0 ∈ [τ, 1 − τ ],

|t(Ψk, Sk) − t(x0, Sk)| ≤ B2|1 − 2τ |j−k−1 . (247)

On the other hand, as an average off(x, x) the functiont(x0, s) satisfies

0 ≤ t(x0, Sk) ≤ max
x∈[0,1]

f(x, x) ≤ h(δ1) − h(δ2) . (248)

From here and (63) we have

∣

∣E [t(x0, Sk)|S0
−∞Z0

−∞] − E [t(x0, Sk)]
∣

∣ ≤ h(δ1) − h(δ2)

2
|1 − 2τ |k , (249)

or, together with (247),

∣

∣E [t(Ψk, Sk)|S0
−∞Z0

−∞] − E [t(x0, Sk)]
∣

∣ ≤ h(δ1) − h(δ2)

2
|1 − 2τ |k + B2|1 − 2τ |j−k−1 . (250)
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This argument remains valid if we replacex0 with a random variablẽΨk, which depends on

Sk but conditioned onSk is independent of(S0
−∞, Z0

−∞). Having made this replacement and

assumingPΨ̃k|Sk
= PΨk|Sk

we obtain

∣

∣E [t(Ψk, Sk)|S0
−∞Z0

−∞] − E [t(Ψk, Sk)]
∣

∣ ≤ h(δ1) − h(δ2)

2
|1 − 2τ |k + B2|1 − 2τ |j−k−1 . (251)

Summing together (242), (243), (246), (247) and (251) we obtain that for arbitrary0 ≤ k ≤ j−1

we have

∣

∣E [Ξj|S0
−∞Z0

−∞] − E [Ξj ]
∣

∣ ≤ h(δ1) − h(δ2)

2
|1 − 2τ |k + 2B2|1 − 2τ |j−k−1 . (252)

Setting herek = ⌊j − 1/2⌋ we obtain (244).

Finally, we have

cov[Ξ0, Ξj] = E [Ξ0Ξj ] − E
2[Ξ0] (253)

= E
[

Ξ0E [Ξj |S0
−∞, Z0

−∞]
]

− E
2[Ξ0] (254)

≤ E [Ξ0E [Ξj]] + E

[

|Ξ0|(2B2 + B3)|1 − 2τ | j−1

2

]

− E
2[Ξ0] (255)

= E [|Ξ0|](2B2 + B3)|1 − 2τ | j−1

2 (256)

≤
√

E [Ξ2
0](2B2 + B3)|1 − 2τ | j−1

2 (257)

=
√

B0(2B2 + B3)|1 − 2τ | j−1

2 , (258)

where (255) is by (244), (257) is a Lyapunov’s inequality and(258) is Lemma 12.

Lemma 14:Assume thatδ1 ≥ δ2 > 0 andδ2 ≤ a, b ≤ δ1; then

d(a||b)
d2(a||b)

≥ d(δ1||δ2)

d2(δ1||δ2)
. (259)

Proof: While inequality (259) can be easily checked numerically, its rigorous proof is

somewhat lengthy. Since the base of the logarithm cancels in(259), we replacelog by ln below.

Observe that the lemma is trivially implied by the followingtwo statements:

∀δ ∈ [0, 1/2] :
d(a||δ)
d2(a||δ)

is a non-increasing function ofa ∈ [0, 1/2] ; (260)

and
d(δ1||b)
d2(δ1||b)

is a non-decreasing function ofb ∈ [0, δ1] . (261)
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To prove (260) we show that the derivative ofd2(a||δ)
d(a||δ) is non-negative. This is equivalent to

showing that










fa(δ) ≤ 0 , if a ≤ δ ,

fa(δ) ≥ 0 , if a ≥ δ ,
(262)

where

fa(δ) = 2d(a||δ) + ln
a

δ
· ln 1 − a

1 − δ
. (263)

It is easy to check that

fa(a) = 0 , f ′
a(a) = 0 . (264)

So it is sufficient to prove that

fa(δ) =











convex, 0 ≤ δ ≤ a ,

concave, a ≤ δ ≤ 1/2 .
(265)

Indeed, if (265) holds then an affine functiong(δ) = 0δ + 0 will be a lower bound forfa(δ)

on [0, a] and an upper bound on[a, 1/2], which is exactly (262). To prove (265) we analyze the

second derivative offa:

f ′′
a (δ) =

2a

δ2
+

2ā

δ̄2
− 1

δ2
ln

δ̄

ā
− 2

δδ̄
− 1

δ̄2
ln

δ

a
. (266)

In the caseδ ≥ a an application of the boundlnx ≤ x − 1 yields

f ′′
a (δ) ≤ 2a

δ2
+

2ā

δ̄2
− 1

δ2

(

δ̄

ā
− 1

)

− 2

δδ̄
− 1

δ̄2

(

δ

a
− 1

)

(267)

≤ 0 . (268)

Similarly, in the caseδ ≤ a an application of the boundln x ≥ 1 − 1
x

yields

f ′′
a (δ) ≥ 2a

δ2
+

2ā

δ̄2
− 1

δ2

(

1 − ā

δ

)

− 2

δδ̄
− 1

δ̄2

(

1 − a

δ

)

(269)

≥ 0 . (270)

This proves (265) and, therefore, (260).

To prove (261) we take the derivative ofd(δ1||b)
d2(δ1||b) with respect tob; requiring it to be non-

negative is equivalent to

2(1 − 2b)

(

δ ln
δ

b

)(

δ̄ ln
δ̄

b̄

)

+ (δb̄ + δ̄b)

(

δ ln2 δ

b
− δ̄ ln2 δ̄

b̄

)

≥ 0 . (271)
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It is convenient to introducex = b/δ ∈ [0, 1] and then we define

fδ(x) = 2(1 − 2δx)δδ̄ ln x · ln 1 − δx

δ̄
+ δ(1 + x(1 − 2δ))

(

δ ln2 x − δ̄ ln2 1 − δx

δ̄

)

, (272)

for which we must show

fδ(x) ≥ 0 . (273)

If we think of A = ln x andB = ln 1−δx
δ̄

as independent variables, then (271) is equivalent to

solving

2γAB + αA2 − βB2 ≥ 0 , (274)

which after some manipulation (and observation that we naturally have a requirementA < 0 <

B) reduces to
A

B
≤ −γ

α
− 1

α

√

γ2 + αβ . (275)

After substituting the values forA, B, α, β and γ we get that (271) will be shown if we can

show for all0 < x < 1 that

ln 1
x

ln 1−δx
δ̄

≥ 1 − 2δx

1 + x(1 − 2δ)

δ̄

δ
+

(

(

1 − 2δx

1 − 2δx + x

)2(
δ̄

δ

)2

+
δ̄

δ

)1/2

. (276)

To show (276) we are allowed to upper-boundln x and ln 1−δx
δ̄

. We use the following upper

bounds forln x and ln 1−δx
δ̄

, correspondingly:

ln x ≤ (x − 1) − (x − 1)2/2 + (x − 1)3/3 − (x − 1)4/4 + (x − 1)5/5 , (277)

ln y ≤ (y − 1) − (y − 1)2/2 + (y − 1)3/3 , (278)

particularized toy = 1 − δx
δ̄

; both bounds follow from the fact that the derivative ofln x of the

corresponding order is always negative. Applying (277) and(278) to the left side of (276) and

after some tedious algebra, we find that (276) is implied by the

δ2(1 − x)3

(1 − δ)5
Pδ(1 − x) ≥ 0 , (279)

where

Pδ(x) = −(4δ2 − 1)(1 − δ)2/12

+ (1 − δ)(4 − 5δ + 4δ2 − 24δ3 + 24δ4)x/24

+ (8 − 20δ + 15δ2 + 20δ3 − 100δ4 + 72δ5)x2/60

− (1 − δ)3(11 − 28δ + 12δ2)x3/20

+ (1 − δ)3(1 − 2δ)2x4/5 . (280)
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Assume thatPδ(x0) < 0 for somex0. For all 0 < δ ≤ 1/2 we can easily check thatPδ(0) > 0

andPδ(1) > 0. Therefore, there must be a rootx1 of Pδ in (0, x0) and a rootx2 in (x0, 1) by

continuity. It is also easily checked thatP ′
δ(0) > 0 for all δ. But then we must have at least one

root of P ′
δ in [0, x1) and at least one root ofP ′

δ in (x2, 1].

Now, P ′
δ(x) is a cubic polynomial such thatP ′

δ(0) > 0. So it must have at least one root on

the negative real axis and two roots on[0, 1]. But sinceP ′′
δ (0) > 0, it must be thatP ′′

δ (x) also

has two roots on[0, 1]. But P ′′
δ (x) is a quadratic polynomial, so its roots are algebraic functions

of δ, for which we can easily check that one of them is always larger than1. So,P ′
δ(x) has at

most one root on[0, 1]. And therefore we arrive at a contradiction andPδ ≥ 0 on [0, 1], which

proves (279).

APPENDIX C

PROOF OFTHEOREM 7

We need the following auxiliary result:

Lemma 15:Define Rna(n, ǫ) as in (43). AssumeC1 < C2 and ǫ 6∈ {0, p1, 1}. Then the

following holds:

Rna

(

n, ǫ + O(1/
√

n)
)

= Rna(n, ǫ) + O(1/n) . (281)

Proof: Denote

fn(R)
△
= p1Q

(

(C1 − R)

√

n

V1

)

+ p2Q

(

(C2 − R)

√

n

V2

)

(282)

Rn
△
= Rna(n, ǫ) = f−1

n (ǫ) . (283)

It is clear thatfn(R) is a monotonically increasing function, and that our goal isto show that

f−1
n (ǫ + O(1/

√
n)) = Rn + O(1/n) . (284)

Assumeǫ < p1; then for any0 < δ < (C2−C1) we havefn(C1+δ) → p1 andfn(C1−δ) → 0.

Therefore,

Rn = C1 + o(1) . (285)

This implies, in particular, that for large enoughn we have

0 ≤ p2Q

(

(C2 − Rn)

√

n

V2

)

≤ 1√
n

. (286)
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Then, from the definition ofRn we conclude that

ǫ − 1√
n
≤ p1Q

(

(C2 − Rn)

√

n

V2

)

≤ ǫ . (287)

After applyingQ−1 to this inequality we get

Q−1

(

ǫ

p1

)

≤ (C2 − Rn)

√

n

V2
≤ Q−1

(

ǫ − 1/
√

n

p1

)

. (288)

By Taylor’s formula we conclude

Rn = C1 −
√

V1

n
Q−1

(

ǫ

p1

)

+ O(1/n) . (289)

Note that the same argument works forǫ that depends onn, provided thatǫn < p1 for all

sufficiently largen. This is indeed the case whenǫn = ǫ + O(1/
√

n). Therefore, similarly

to (289), we can show

f−1
n (ǫ + O(1/

√
n)) = C1 −

√

V1

n
Q−1

(

ǫ + O(1/
√

n)

p1

)

+ O(1/n) , (290)

= C1 −
√

V1

n
Q−1

(

ǫ

p1

)

+ O(1/n) , (291)

= Rn + O(1/n) , (292)

where (291) follows by applying Taylor’s expansion and (292) follows from (289). The case

ǫ > p1 is treated similarly.

We also quote the Berry-Esseen theorem in the following form:

Theorem 16 (Berry-Esseen):(e.g. Theorem 2, Chapter XVI.5 in [13]) LetXk, k = 1, . . . , n

be independent with

µk = E [Xk] , (293)

σ2
k = Var[Xk] , (294)

tk = E [|Xk − µk|3] , (295)

σ2 =

n
∑

k=1

σ2
k , (296)

T =
n
∑

k=1

tk (297)

Then for all−∞ < λ < ∞
∣

∣

∣

∣

∣

P

[

n
∑

k=1

(Xk − µk) ≥ λσ

]

− Q(λ)

∣

∣

∣

∣

∣

≤ 6T

σ3
. (298)
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Proof of Theorem 7:First of all, notice thatp1 = 0 andp1 = 1 are treated by Theorem 3.

So, everywhere below we assume0 < p1 < 1.

Achievability: The proof of the achievability part closely follows the steps of the proof of

Theorem 3 [1, Theorem 52]. It is therefore convenient to adopt the notation and the results

of [1, Appendix K]. In particular, for alln andM there exists an(n, M, pe) code with

pe ≤
n
∑

k=0

(

n

k

)

(

p1δ
k
1 (1 − δ1)

n−k + p2δ
k
2(1 − δ2)

n−k
)

min
{

1, MSk
n

}

, (299)

whereSk
n is

Sk
n

△
= 2−n

k
∑

l=0

(

n

l

)

(300)

(cf. [1, (580)]).

Fix ǫ 6∈ {0, p1, 1} and for eachn selectK as a solution to

p1Q

(

K − nδ1
√

nδ1(1 − δ1)

)

+ p2Q

(

K − nδ2
√

nδ2(1 − δ2)

)

= ǫ − G√
n

, (301)

whereG > 0 is some constant. Application of the Berry-Esseen theorem shows that there exists

a choice ofG such that for all sufficiently largen we have

P[W > K] ≤ ǫ , (302)

where

W =
n
∑

j=1

1{Zj = 1} . (303)

The distribution ofW is a mixture of two Bernoulli distributions:

P[W = w] =

(

n

w

)

(

p1δ
w
1 (1 − δ1)

n−w + p2δ
w
2 (1 − δ2)

n−w
)

. (304)

Repeating the steps [1, (580)-(603)] we can now prove that asn → ∞ we have

log M∗(n, ǫ) ≥ − log SK
n (305)

≥ n − nh

(

K

n

)

+
1

2
log n + O(1) , (306)

whereh is the binary entropy function. Thus we only need to analyze the asymptotics ofh
(

K
n

)

.

First, notice that the definition ofK as the solution to (301) is entirely analogous to the definition
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of nRna(n, ǫ). Assuming without loss of generalityδ2 < δ1 (the case ofδ2 = δ1 is treated in

Theorem 3), in parallel to (44) we have asn → ∞

K =











nδ1 +
√

nδ1(1 − δ1)Q
−1
(

ǫ
p1

)

+ O(1) , ǫ < p1

nδ2 +
√

nδ2(1 − δ2)Q
−1
(

ǫ−p1

p2

)

+ O(1) . ǫ > p1 .
(307)

From Taylor’s expansion applied toh
(

K
n

)

asn → ∞ we get

nh

(

K

n

)

=











nh(δ1) +
√

nV (δ1)Q
−1
(

ǫ
p1

)

+ O(1) , ǫ < p1

nh(δ2) +
√

nV (δ2)Q
−1
(

ǫ−p1

p2

)

+ O(1) , ǫ > p1 .
(308)

Comparing (308) with (44) we notice that forǫ 6= p1 we have

n − nh

(

K

n

)

= nRna(n, ǫ) + O(1) . (309)

Finally, after substituting (309) in (306) we obtain the required lower-bound of the expansion:

log M∗(n, ǫ) ≥ nRna(n, ǫ) +
1

2
log n + O(1) . (310)

Before proceeding to the converse part we also need to specify the non-asymptotic bounds

that have been used to numerically compute the achievability curves in Fig. 5 and 6. For this

purpose we use Theorem 1 with equiprobablePXn . Without state knowledge at the receiver we

have

i(Xn; Y n) = gn(W ) , (311)

gn(w) = n log 2 + log
(

p1δ
w
1 (1 − δ1)

n−w + p2δ
w
2 (1 − δ2)

n−w
)

, (312)

whereW is defined in (303). Theorem 1 guarantees that for everyM there exists a code with

(average) probability of errorpe satisfying

pe ≤ E

[

exp

{

−
[

gn(W ) − log
M−1

2

]+
}]

. (313)

In addition, by application of the random linear code method, the same can be seen to be true

for maximal probability of error, provided thatlog2 M is an integer (see Appendix A in [1]).

Therefore, the numerical computation of the achievabilitybounds in Fig. 5 and 6 amounts to

finding the largest integerk such that right-hand side of (313) withM = 2k is still smaller than

a prescribedǫ.

DRAFT October 14, 2010



45

With state knowledge at the receiver we can assume that the output of the channel is(Y n, S1)

instead ofY n. Thus,i(Xn; Y n) needs to be replaced byi(Xn; Y n, S1) and then expressions (311), (312)

and (304) become

i(Xn; Y nS1) = gn(W, S1) , (314)

gn(w, s) = n log 2 + log
(

δw
s (1 − δs)

n−w
)

, (315)

P[W = w, S1 = s] = ps

(

n

w

)

δw
s (1 − δs)

n−w . (316)

Again, in parallel to (313) Theorem 1 constructs a code withM codewords and probability of

error pe satisfying

pe ≤ E

[

exp

{

−
[

gn(W, S1) − log
M−1

2

]+
}]

. (317)

Converse:In the converse part we will assume that the transmitter has access to the state

realizationS1 and then generatesXn based on both the input message andS1. Take the best

such code withM∗(n, ǫ) codewords and average probability of error no greater thanǫ. We

now propose to treat the pair(Xn, S1) as a combined input to the channel (but theS1 part is

independent of the input message) and the pair(Y n, S1) as a combined output, available to the

decoder. Note that in this situation, the encoder induces a distribution PXnS1
and is necessarily

randomized, because the distribution ofS1 is not controlled by the input message and is given

by

P[S1 = 1] = p1 . (318)

To apply Theorem 2 we select the auxiliaryQ-channel as follows:

QY nS1|Xn(yn, s|xn) = P[S1 = s]2−n for all yn, s, xn . (319)

Then it is easy to see that under this channel, the output(Y n, S1) is independent ofXn. Hence,

we have

1 − ǫ′ ≤ 1

M∗(n, ǫ)
. (320)
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To computeβ1−ǫ(PXnY nS1
, QXnY nS1

) we need to find the likelihood ratio:

r(Xn; Y nS1)
△
= log

PXnY nS1
(Xn, Y n, S1)

QXnY nS1
(Xn, Y n, S1)

(321)

= log
PY n|XnS1

PXnS1

QY n|XnS1
QXnS1

(322)

= n log 2 + log PY n|XnS1
(Y n|XnS1) (323)

= n log 2(1 − δS1
) − W log

1 − δS1

δS1

, (324)

where (322) is becausePXnS1
= QXnS1

(we omitted the obvious arguments for simplicity), (323)

is by (319) and in (324) random variableW is defined in (303) and its distribution is given

by (304).

Now, choose

Rn = Rna

(

n, ǫ +
p1B1 + p2B2 + 1√

n

)

, (325)

γn = nRn , (326)

where B1 and B2 are the Berry-Esseen constants for the sum of independent Bernoulli(δj)

random variables. Then, we have

P[r(Xn; Y nS1) ≤ γn|S1 = 1]

= P

[

n log 2(1 − δ1) − W log
(1 − δ1)

δ1
≤ γn

∣

∣

∣

∣

S1 = 1

]

(327)

≥ Q

(

−γn − nC1√
nV1

)

− B1√
n

(328)

= Q

(

(C1 − Rn)

√

n

V1

)

− B1√
n

, (329)

where (328) is by the Berry-Esseen theorem and (329) is just the definition ofγn. Analogously,

we have

P[r(Xn; Y nS1) ≤ γn|S1 = 2] ≥ Q

(

(C2 − Rn)

√

n

V2

)

− B2√
n

. (330)

Together (329) and (330) imply

P[r(Xn; Y nS) ≤ γn]

≥ p1Q

(

(C1 − Rn)

√

n

V1

)

+ p2Q

(

(C2 − Rn)

√

n

V2

)

− p1B1 + p2B2√
n

(331)

= ǫ +
1√
n

, (332)
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where (332) follows from (325). Then by using the bound (24) we obtain

β1−ǫ(PXnY nS1
, QXnY nS1

) ≥ 1√
n

exp{−γn} . (333)

Finally, by Theorem 2 and (320) we obtain

log M∗(n, ǫ) ≤ log
1

β1−ǫ
(334)

≤ γn +
1

2
log n (335)

= nRna

(

n, ǫ +
p1B1 + p2B2 + 1√

n

)

+
1

2
log n (336)

= nRna(n, ǫ) +
1

2
log n + O(1) , (337)

where (337) is by Lemma 15.

As noted before, forǫ = p1 even the capacity term is unknown. However, application of

Theorem 2 withQY |X = BSC(δmax) where δmax = max(δ1, δ2), yields the following upper

bound:

Cp1
≤ 1 − h(s∗) , (338)

wheres∗ is found as the solution of

d(s∗||δ2) = d(s∗||δ1) . (339)

To get (338), take any rateR > 1 − h(δmax) and apply a well-known above-the-capacity error

estimate for theQ-channel [16]:

1 − ǫ′ . exp (−nd(s||δmax)) , (340)

wheres < δ1 satisfiesR = 1 − h(s). Then it is not hard to obtain that

β1−p1
(PY |X , QY |X) ∼ exp (−nd(s∗||δmax)) . (341)

The upper bound (338) then follows from Theorem 2 immediately. Note that the same upper-

bound was derived in [11] (and there it was also shown to be tight in the special case of|δ1−δ2|
being small enough), but the proof we have outlined above is more general since it also applies

to the average probability of error criterion and various state-availability scenarios.
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