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Data Assimilation with Gaussian Mixture Models using the Dynamically Orthogonal

Field Equations. Part I: Theory and Scheme

Thomas Sondergaard and Pierre F. J. Lermusiaux ∗

Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts

ABSTRACT

This work introduces and derives an efficient, data-driven assimilation scheme, focused on a
time-dependent stochastic subspace, that respects nonlinear dynamics and captures non-Gaussian
statistics as it occurs. The motivation is to obtain a filter that is applicable to realistic geophysical
applications but that also rigorously utilizes the governing dynamical equations with information
theory and learning theory for efficient Bayesian data assimilation. Building on the foundations of
classical filters, the underlying theory and algorithmic implementation of the new filter are developed
and derived. The stochastic Dynamically Orthogonal (DO) field equations and their adaptive
stochastic subspace are employed to predict prior probabilities for the full dynamical state, effectively
approximating the Fokker-Planck equation. At assimilation times, the DO realizations are fit to
semiparametric Gaussian mixture models (GMMs) using the Expectation-Maximization algorithm
and the Bayesian Information Criterion. Bayes’ Law is then efficiently carried out analytically within
the evolving stochastic subspace. The resulting GMM-DO filter is illustrated in a very simple exam-
ple. Variations of the GMM-DO filter are also provided along with comparisons with related schemes.

1. Introduction

Data assimilation (DA) is the process of quantitatively
estimating dynamically evolving fields by melding infor-
mation from observations with that predicted by computa-
tional models. DA has a long and interesting history; thor-
ough expositions include Daley (1991), Ghil and Malanotte-
Rizzoli (1991), Bennett (1992, 2002), Wunsch (1996), Malanotte-
Rizzoli (1996), Robinson et al. (1998), Kalnay (2003) and
Evensen (2007). Most schemes are derived from estimation
theory (Jazwinski 1970; Gelb 1974), information theory
(Sobczyk 2001; Cover and Thomas 2006), control theory
(Lions 1971; Dimet and Talagrand 1986), and optimization
theory and inverse problem theory (Tarantola 2005). While
traditionally grounded in linear theory and the Gaussian
approximation (Kalman 1960), recent years have seen the
emergence of advanced DA schemes attempting to shed
such limitations. One research thrust has been the develop-
ment of efficient methods that respect nonlinear dynamics
and capture non-Gaussian features. Most such methods
are either challenging to employ with large realistic sys-
tems or still based on some ad hoc approximations. Our
motivation here is to allow for realistic geophysical appli-
cations while rigorously utilizing the governing dynamical
equations with information theory and learning theory for
efficient Bayesian inference.

It is well known that geophysical dynamics can be very
nonlinear and intermittent. The importance of account-

ing for nonlinearities in DA is also known for some time,
e.g. (Miller et al. 1994). Nonlinearities not only affect pre-
diction, but also the melding of measured and predicted
information. As a result, oceanic and atmospheric fields
can be characterized by complex, far-from-Gaussian statis-
tics (CPSMA 1993; Lermusiaux et al. 2002a; Auclair et al.
2003; Dee and Silva 2003; Lermusiaux et al. 2006; Sura
2010). With the introduction of the Ensemble Kalman fil-
ter (Evensen 1994; Houtekamer et al. 1998), error subspace
schemes (Lermusiaux and Robinson 1999) and square-root
filters (Whitaker and Hamill 2002; Tippett et al. 2003)
came the adoption of Monte Carlo methods (Doucet et al.
2001) within the DA community. In addition to utiliz-
ing the inherent nonlinearities of the governing equations,
Monte Carlo methods allow exploration and exploitation of
probabilistic structures beyond the simple Gaussian meld-
ing of information. One type of such methods are par-
ticle filters, e.g. (Pham 2001; van Leeuwen 2009), which
evolve probability density functions (pdfs) using a discrete
set of models states or particles and a corresponding mix-
ture of “Dirac functions”. Extensions include diffusion ker-
nel filters (e.g. Krause and Restrepo 2009) and paramet-
ric filters (e.g. Kim et al. 2009). A related interest has
been the approximation of distributions by Gaussian Mix-
ture Models (GMMs) (Bocquet et al. 2010). Examples in-
clude Alspach and Sorenson (1972), Anderson and Ander-
son (1999), Chen and Liu (2000), Bengtsson et al. (2003),
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Kotecha and Djuric (2003), Eyink and Kim (2006), Smith
(2007), Hoteit et al. (2008) and Dovera and Rossa (2010),
many of which will be examined later in this work. As will
be shown, GMMs provide an attractive method for approx-
imating distributions for the purposes of Bayesian infer-
ence. When fit to Monte Carlo data using the Expectation-
Maximization algorithm (Dempster et al. 1977) and the
Bayesian Information Criterion (Schwartz 1978), an accu-
rate representation of the true pdf results. This is to be
developed in this work.

A concern with present nonlinear DA schemes is their
difficulty in handling the dimensionality of state vectors
commonly encountered in oceanic and atmospheric appli-
cations, typically on the order of n ∼ 106−1010. A common
useful remedy has been the adoption of various localization
approximations (Bengtsson et al. 2003) and heuristic argu-
ments (Anderson and Anderson 1999). A number of filters
e.g. (Lermusiaux and Robinson 1999) have opted to focus
on a time-dependent dominant subspace of the full state
space, thereby allocating computational resources solely to
the states that matter most. In a similar manner, we em-
ploy here the Dynamically Orthogonal (DO) field equa-
tions (Sapsis and Lermusiaux 2009; Sapsis 2010). The DO
equations originate directly from the governing dynamical
equations, i.e. the stochastic partial differential equations
describing the evolution of the full geophysical system. By
applying an orthogonality condition on the evolution of the
stochastic subspace, the governing equations are reduced to
evolution equations for (i) the mean field; (ii) the stochastic
subspace; and (iii) the probabilistic variability contained
within the subspace. These DO equations efficiently rep-
resent the true evolving pdf in between assimilation times
and effectively approximate the Fokker-Planck equation.

In part I of this two-part paper, we develop and derive
the underlying theory and algorithms of the proposed DA
scheme: the GMM-DO filter. In section 2, we introduce
and define the filter’s core components. The derivation
of the filter with a key proof are completed in section 3.
Section 4 provides a simple example illustrating the filter’s
update step, while section 5 places the GMM-DO filter
in the context of contemporary schemes based on related
ideas. Conclusions are in section 6. In Appendices A and
B, we present the EM algorithm and outline variations of
the filter, respectively. In part II of this two-part paper
(Sondergaard and Lermusiaux 2012), we apply the GMM-
DO filter in a dynamical systems setting. Specifically, we
evaluate its performance against contemporary filters when
applied to (1) the Double Well Diffusion Experiment and
(2) the Sudden Expansion fluid flow.

2. GMM-DO Filter Components

In this section, we introduce the core components that
we ultimately combine into the GMM-DO filter, specifi-

cally:

• Gaussian mixture models;

• Expectation-Maximization algorithm;

• Bayesian Information Criterion; and

• Dynamically Orthogonal field equations.

In each case, we provide definitions and briefly justify the
choices of these components in the context of oceanic and
atmospheric DA. As a whole, the DO equations provide
prior probabilities for a semiparametric assimilation frame-
work based on Gaussian mixture models that are fit with an
Expectation-Maximization algorithm and a Bayesian Infor-
mation Criterion. Bayes’ Law is then efficiently employed
analytically to combine the predicted and observed infor-
mation. The objective is to estimate the probabilistic prop-
erties of the dynamical state of the system under study,
denoted as random state vector X. For ease of notation,
expositions in this section are completed in the correspond-
ing dynamical state space. However, in computations, all
Bayesian updates occur within the evolving subspace (see
Sect. 3). Table 1 summarizes the notation specific to this
manuscript.

a. Gaussian Mixture Models

The pdf for a random vector, X ∈ Rn, distributed ac-
cording to a multivariate Gaussian mixture model (GMM)
is given by

pX

(
x
)

=
M∑

j=1

πj×N
(
x; x̄j ,Pj

)
, (1)

subject to the constraint that

M∑
j=1

πj = 1. (2)

We refer to M ∈ N as the mixture complexity; πj ∈ [0, 1] as
the mixture weights; x̄j ∈ Rn as the mixture mean vectors;
and Pj ∈ Rn×n as the mixture covariance matrices. The
multivariate Gaussian density function takes the form:

N
(
x; x̄,P

)
≡ 1

(2π)n/2 |P |1/2
e−

1
2 (x−x̄)T P−1(x−x̄). (3)

GMMs provide an attractive semiparametric framework
in which to approximate unknown distributions based on
a set of ensemble realizations (McLachlan and Peel 2000).
They are a flexible compromise between (a) a fully para-
metric (Gaussian) distribution for which M = 1 and (b) a
(Gaussian) kernel density estimator (Silverman 1992) for
which M = N , with N being the number of realizations.
A single parametric distribution, while justified based on
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maximum entropy arguments (Cover and Thomas 2006) of-
ten enforces too much structure onto the ensemble set and
cannot model highly skewed or multimodal distributions.
A kernel density estimator, on the other hand, usually re-
quires one to retain all N realizations for the purposes of
inference – a computationally burdensome task. Further-
more, due to the granularity associated with fitting a kernel
to every realization, it often necessitates an heuristic choice
of the kernel’s shape parameter (see Sect. 5).

Mixture models efficiently summarize the ensemble set
by a parameter vector, while retaining the ability to accu-
rately model complex distributions (see figure 1). In fact,
in the limit of large complexity and small covariance, a
GMM converges uniformly to any sufficiently smooth dis-
tribution (Alspach and Sorenson 1972). Other mixtures
and expansions have been used to approximate arbitrary
probability distributions, among them the Gram-Charlier
expansion, Edgeworth expansion and Pearson-type density
functions (Alspach and Sorenson 1972). While the former
two suffer from being invalid distributions when truncated
(namely, that they must integrate to one and be positive
everywhere), the latter does not lend itself well to Bayesian
inference. In contrast, GMMs (1)-(3) are clearly valid.

An important property of GMMs is that they are con-
jugate priors to the commonly used Gaussian observation
models: their Bayesian update then remains a Gaussian
mixture (Casella and Berger 2001; Sondergaard 2011). Specif-
ically, for a prior multivariate GMM,

pX

(
x
)

=
M∑

j=1

πf
j ×N

(
x; x̄f

j ,P f
j

)
, (4)

and a multivariate Gaussian observation model,

pY |X
(
y|x

)
= N

(
y;Hx,R

)
, (5)

the Bayesian update remains a multivariate GMM,

pX|Y
(
x|y

)
=

M∑
j=1

πa
j×N

(
x; x̄a

j ,P a
j

)
, (6)

with posterior parameters:

πa
j =

πf
j ×N

(
y;Hx̄f

j ,HP f
j HT + R

)∑M
m=1 πf

m×N
(
y;Hx̄f

m,HP f
mHT + R

)
x̄a

j = x̄f
j + Kj(y −Hx̄f

j )

P a
j = (I −KjH) P f

j ,

(7)

where
Kj = P f

j HT (HP f
j HT + R)−1 (8)

is the Kalman gain matrix associated with mixture com-
ponent j.

Consequently, for Gaussian observation models with
GMMs as priors, the usually intractable Bayesian update
reduces to an update of the elements of the parameter
set, {π1, . . . , πM , x̄1, . . . , x̄M ,P1, . . . ,PM}, given by (7).
Specifically, the individual mixture mean vectors and co-
variance matrices are found to be updated in accordance
with familiar Kalman filter equations, the coupling occur-
ring solely through the mixture weights.

Having introduced GMMs as an attractive method for
approximating distributions for the purposes of Bayesian
inference, its optimal parameter values,

{π1, . . . , πM , x̄1, . . . , x̄M ,P1, . . . ,PM}optimal,

need to be estimated based on a set of N ensemble re-
alizations, {x} = {x1, . . . ,xN}. Here, we seek the value
for the parameters that maximizes the probability of ob-
taining the given realizations; the Maximum Likelihood
(ML) estimators. For this we make use of the Expectation-
Maximization (EM) algorithm.

b. The Expectation-Maximization Algorithm

The EM algorithm is an iterative procedure for estimat-
ing the parameters θi of a target distribution that maxi-
mize the probability of obtaining a given set of realizations,
{x} = {x1, . . . ,xN}. While resulting ML estimators can
be justified based on intuition alone, they are also consis-
tent and asymptotically efficient (Bertsekas and Tsitsiklis
2008). For most cases, differentiating the parametric prob-
ability distribution, p{X}

(
{x}; θ1, . . . , θM

)
, with respect to

θi, and equating the result to zero for maximization,

∂p{X}
(
{x}; θ1, . . . , θM

)
∂θi

= 0, i = 1, . . . ,M, (9)

results in nonlinear systems for θi’s that lack closed form
solutions. Such is also the case for GMMs. Hence, one
resorts to numerical methods for obtaining the ML esti-
mate. While various hill-climbing schemes exist, the EM
algorithm takes advantage of properties of probability dis-
tributions.

Specifically, the EM algorithm (see App. A.a) is an iter-
ative succession of expectation and maximization steps for
obtaining the ML estimate. It successively estimates the
weights with which a given realization is associated with
each of the M mixture components. This is done based on
present parameter estimates, followed by optimizing these
parameters again using the newly calculated weights. Re-
peating this, it ultimately arrives at an estimate for the
ML parameter vector based on the set of ensemble realiza-
tions, {x}. In App. A.b, we present the EM algorithm for
GMMs. The result is:
Given the set of ensemble realizations, {x} = {x1, . . . ,xN},
and initial parameter estimate,

θ(0) = {π(0)
1 , . . . , π

(0)
M , x̄

(0)
1 , . . . , x̄

(0)
M ,P

(0)
1 , . . . ,P

(0)
M },
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repeat until convergence:

• For all i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}, use the
present parameter estimate, θ(k), to form

τj(xi;θ(k)) =
π

(k)
j ×N

(
xi; x̄

(k)
j ,P

(k)
j

)∑M
m=1 π

(k)
m ×N

(
xi; x̄

(k)
m ,P

(k)
m

) . (10)

• For all j ∈ {1, . . . ,M}, update the parameter esti-
mate, θ(k+1), according to

π
(k+1)
j =

N
(k)
j

N
(11)

x̄
(k+1)
j =

1

N
(k)
j

N∑
i=1

τj(xi;θ(k))× xi (12)

P
(k+1)
j =

1

N
(k)
j

N∑
i=1

τj(xi;θ(k))× (xi − x̄
(k+1)
j )(xi − x̄

(k+1)
j )T ,

(13)

where

N
(k)
j ≡

N∑
i=1

τj(xi;θ(k)). (14)

Inspection of the above satisfis intuition. In the E-step
of the EM algorithm, eqn. (10), we calculate the probabil-
ity of mixture component j having generated realization xi

based on the present parameter estimates. We do so across
all possible pairs of realizations and components. In the M-
step of the EM algorithm, eqns. (11) - (13), the parameter
values are updated in accordance with their weighted av-
erages across all realizations (similar in form to eqns. (A2)
- (A4) for the complete data set). As proved in App. A.b,
repeated iterations of the above ensures that a local maxi-
mum for the ML parameter estimate is met. We thus arrive
at an optimal fit of a GMM of complexity M to the set of
N realizations, {x}.

c. The Bayesian Information Criterion

Until now, we have assumed the mixture complexity,
M , to be fixed and known. Such is rarely the case in prac-
tice, however. Determining the optimal complexity of a
GMM can be a complicated task, particularly given lim-
ited a priori knowledge, and is often guided by empirical
evidence, namely the set of ensemble realizations. Such
a task is formally referred to as ‘model selection’. While
numerous schemes exist (e.g. Eisenberger 1964; McLach-
lan and Peel 2000; Duda et al. 2001), here we focus on the
Bayesian Information Criterion (BIC).

Introducing a Bayesian framework, the parameter vec-
tor θ is assumed random and M is considered constant but

unknown. We denote pΘ

(
θ;M

)
as the (arbitrary) prior dis-

tribution for θ at a given M , and p{X}|Θ
(
{x}|θ;M

)
as the

distribution for the ensemble set conditioned on a θ at a
given M . In this work, the latter is a GMM.

The goal is to select the model complexity, M , that
maximizes the likelihood of obtaining {x}. In other words,
by the assumed independence of the realizations, we seek
M for which

p{X}
(
{x};M

)
=

N∏
i=1

pXi

(
xi;M

)
(15)

is a maximum. A derivation of this optimum M is given in
Sondergaard (2011). In summary, Laplace’s approximation
is applied to the left hand of side of Bayes’ Law (MacKay
2003),

pΘ|{X}
(
θ|{x};M

)
=

p{X}|Θ
(
{x}|θ;M

)
pΘ

(
θ;M

)
p{X}

(
{x};M

) , (16)

evaluated at the ML estimate for the parameter vector, θ.
Ultimately, we obtain:

1
N

LN
x (M) =

1
N

LN
x (θ̂ML,M) +

1
N

log pΘ

(
θ̂ML;M

)
+

KM

2N
log 2π − KM

2N
log N − 1

N
log

∣∣Jx(θ̂ML)
∣∣, (17)

where KM denotes the length of the parameter vector,
Jx(θ̂ML) defines the expected Fisher information (Bishop
2006) in any one realization, xi, evaluated at the ML es-
timate for the parameter vector, θ, and where we have
defined the log-likelihoods:

LN
x (M) =

N∑
i=1

log pXi

(
xi;M

)
(18)

LN
x (θ̂ML,M) =

N∑
i=1

log pXi|Θ
(
xi|θ̂ML;M

)
. (19)

For large N , however, we keep only the order one terms of
(17) to arrive at the BIC:

BIC = min
M

{
−2LN

x (M)
}
≈ min

M

{
KM log N − 2LN

x (θ̂ML,M)
}

,

(20)
where N is the number of realizations; M is the mixture
complexity; LN

x (M) is the log-likelihood of the ensemble set
integrated across all possible parameter values; LN

x (θ̂ML,M)
is the log-likelihood of the ensemble set evaluated at the ML
estimate for the parameter vector; and KM is the number
of parameters. M needs to be chosen to minimize the BIC.

The BIC is a quantitative equivalent of the ‘Occam’s
Razor’ (MacKay 2003; Duda et al. 2001), namely that
one should favor the simplest hypothesis consistent with
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the ensemble. Here, a balance is struck between under-
fitting - and thus imposing too much onto the data - and
overfitting, for which we limit our predictive capacity be-
yond the ensemble. This is done by penalizing the fit of
the realizations, quantified by twice the log-likelihood of
the ensemble set evaluated at the ML parameter vector,
2LN

x (θ̂ML,M), with a term proportional to the mixture
complexity, KM log N .

At this point, what remains for our DA scheme is an
efficient method for evolving the probabilistic description
of the state in time. For this, we employ the DO equations.

d. The Dynamically Orthogonal Field Equations

The DO equations (Sapsis and Lermusiaux 2009; Sapsis
2010), are a closed reduced set of evolution equations for
general stochastic continuous fields, X(r, t; ω), described
by a stochastic partial differential equation (SPDE):

∂X(r, t; ω)
∂t

= L[X(r, t; ω);ω], (21)

with initial conditions

X(r, t0;ω) = X0(r;ω) (22)

and boundary conditions

B [X(r, t; ω)]
∣∣
r=ξ

= h(ξ, t; ω), (23)

where r denotes the position in space; t is time; ω a ran-
dom event; L[·] a general, potentially nonlinear, differen-
tial operator (presently, an ocean or fluid flow model); B
a linear differential operator; and, ξ the spatial coordi-
nate denoting the boundary. Two main assumptions are
made in the derivation of the DO equations. First, a gen-
eralized, time-dependent Karhunen-Loeve decomposition of
the fields (Lermusiaux 2006; Sapsis and Lermusiaux 2009)
is used,

X(r, t; ω) = x̄(r, t) +
s(t)∑
i=1

x̃i(r, t)Φi(t;ω), (24)

where x̄(r, t) = E
[
X(r, t; ω)

]
are the mean fields with

E
[
•

]
being the expectation operator over ω; x̃i(r, t) are

orthonormal modes spanning the time-dependent stochas-
tic subspace; and Φi(t;ω) are zero-mean, stochastic coef-
ficients. The decomposition (24) defines generalized Em-
pirical Orthogonal Functions. In addition to x̃i(r, t), the
dimension of the subspace s also varies with time, but in
what follows, for ease of notation, we omit t next to s.
Second, after insertion of (24) into (21), a DO condition is
imposed, i.e. the rate of change of the stochastic subspace
basis is orthogonal to itself over the physical domain,〈

∂x̃i(·, t)
∂t

, x̃j(·, t)
〉

= 0 ∀i, j ∈ {1, . . . , s} . (25)

With these assumptions, the original SPDE is reduced to
DO equations (see definition below):

i. a PDE (26) for the evolution of the mean field, x̄(r, t);

ii. a family of s PDEs (27) for the evolution of the or-
thonormal modes x̃i(r, t) describing a basis for the
time-dependent dominant stochastic subspace; and,

iii. a system of s stochastic differential equations (28) for
the coefficients, Φi(t;ω), that define how the stochas-
ticity evolves within the stochastic subspace.

Mathematically, for the governing dynamics (21), with ini-
tial and boundary conditions (22) and (23), the coupled
DO evolution equations are (using Einstein notation,

∑
i aibi ≡

aibi):

∂x̄(r, t)
∂t

= E
[
L[X(r, t; ω);ω]

]
, (26)

∂x̃i(r, t)
∂t

= Π⊥(
E

[
L[X(r, t; ω);ω]φj(t;ω)

])
C−1

Φi(t)Φj(t)
,

(27)
dΦi(t;ω)

dt
=

〈
L[X(·, t; ω);ω]− E

[
L[X(·, t; ω);ω]

]
, x̃i(·, t)

〉
,

(28)

where

Π⊥(F (r)) ≡ F (r)− 〈F (·), x̃k(·, t)〉 x̃k(r, t) (29)

is the projection of F (r) onto the null space of the stochas-
tic subspace; and,

CΦi(t)Φj(t) ≡ E
[
Φi(t;ω)Φj(t;ω)

]
(30)

is the correlation between random variables Φi(t;ω) and
Φj(t;ω). The associated boundary conditions take the form

B [x̄(r, t)]
∣∣
r=ξ

= E
[
h(ξ, t; ω)

]
(31)

B [x̃i(r, t)]
∣∣
r=ξ

= E
[
h(ξ, t; ω)Φj(t;ω)

]
C−1

Φi(t)Φj(t)
(32)

and the initial conditions are given by

x̄(r, t0) = x̄0(r) = E
[
X0(r;ω)

]
(33)

x̃i(r, t0) = x̃i0(r) (34)
Φi(t0;ω) = 〈X0(·;ω)− x̄0(·), x̃i0(·)〉 (35)

where i = 1, . . . , s and x̃i0(r) are the orthonormal modes
for the stochastic subspace at t0.

With the DO equations, both the stochastic subspace
and the stochastic coefficients are dynamically evolved in
time. They are initialized based on the initial pdf and
thereafter evolved in accord with the SPDE governing X(r, t; ω)
and its boundary conditions. This evolution is an advan-
tage when compared to the Proper Orthogonal Decompo-
sition (Papoulis 1965; Holmes et al. 1996) and Polynomial
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Chaos (Ghanem and Spanos 1991) which both fix in time
parts of their truncated expansion, the former the stochas-
tic subspace and the latter the form of the stochastic coef-
ficients. We note that s can also be evolved based on the
dynamics and external observations (Sapsis and Lermusi-
aux 2011), as done in Error Subspace Statistical Estimation
(ESSE), (Lermusiaux 1999b).

3. The GMM-DO Filter

Combining the components described in Section 2, and
building on the foundations of classical assimilation schemes,
we now complete the derivation of the GMM-DO filter:
data assimilation with GMMs using the DO equations.
The result is an efficient, data-driven scheme that preserves
non-Gaussian statistics and respects nonlinear dynamics.

The GMM-DO filter consists of a recursive succession of
two distinct steps: a forecast step and an update step. The
Bayesian assimilation is the update step. As will be proved,
this update is efficiently computed within the evolving sub-
space and the result is equivalent to the Bayesian update
in the dynamical state space. For today’s ocean and atmo-
sphere simulations, the subspace update is computationally
feasible. We refer to table 1 for notation.

a. Initial Conditions

We initialize the state vector at discrete time k = 0 in
a decomposed form,

X0 = x̄0 +
s0∑

i=1

x̃i,0 Φi,0(ω) , (36)

that accords with the DO equations. The initial state
mean, x̄0, orthonormal modes, x̃i,0 , and stochastic coeffi-
cients, Φi,0(ω), are chosen so as to best represent the initial
probabilistic state. Various representations and discretiza-
tions for the coefficients, Φi(t;ω), exist (Sapsis and Lermu-
siaux 2009; Ueckermann et al. 2012), several of which can
be employed with our GMM-DO scheme. Here, we adopt a
Monte Carlo approach: we draw N realizations of the mul-
tivariate random vector, {Φ1,0(ω), . . . ,Φs0,0(ω)}, to obtain
the matrix,

{φ0} = {φ1,0 , . . . , φN,0}. (37)

We emphasize that the φr,0 ∈ Rs0 represent realizations
residing in the initial stochastic subspace of dimension s0.
With this, we rewrite (36) in its Monte Carlo ensemble
form,

xr,0 = x̄0 + X 0 φr,0 , r = {1, . . . , N}, (38)

where X 0 ∈ Rn×s (table 1) is the matrix of modes forming
an orthonormal basis for the initial subspace. This X 0 is
evolved in time by dynamics and random forcing in (27).

b. Forecast

Starting from either the initial DO conditions or the
posterior state description following the assimilation of data
at time k − 1 (i.e. the Bayesian GMM update at k − 1),

xa
r,k−1 = x̄a

k−1 + X a
k−1 φa

r,k−1, r = {1, . . . , N}, (39)

we use the stochastic DO equations, (26)–(28), to efficiently
evolve the probabilistic description of the state vector in
time, arriving at a forecast for observation time k:

xf
r,k = x̄f

k + X f
k φf

r,k, r = {1, . . . , N}. (40)

This forecast is efficiently computed using the numerical
schemes derived by Ueckermann et al. (2012). Specifically,
for the mean and modes, we employ a second-order finite-
volume spatial discretization and DO-specific projection
method, and for the stochastic coefficients, a second or
fourth order integration scheme in time.

As (39) and (40) indicate, all of the mean, orthonor-
mal modes and coefficients are evolved during the forecast
from tk−1 to tk. In particular, the span of the modes X f

k

differs from that of X a
k−1: the subspace evolves with time

in between data assimilation.

c. Observation

Common to oceanic and atmospheric applications, we
employ here a linear (or linearized) observation model,

Yk = HXk + Υk, Υk ∼ N (υk;0,R) . (41)

where Yk ∈ Rp is the observation random vector at time
k, H ∈ Rp×n is the linear observation model and Υk ∈ Rp

the corresponding random noise vector, assumed to be of
a Gaussian distribution. We denote the realized obser-
vation vector by yk ∈ Rp and realized noise vector by
υk ∈ Rp. This observation model could be generalized to
other forms, which would lead to variations in the following
update scheme.

d. Update

The whole update occurs at fixed discrete time instant
and, in what follows, we thus omit the subscript time in-
dex k. In the update, the subspace is for now assumed
unchanged by the observations1: the notation (·)f or (·)a

is thus not used on the modes X . Of course, observations
affect the subspace evolution after each assimilation since
the DO equations (26)–(28) are coupled. In conclusion,
starting from the prior, here the DO forecast,

xf
r = x̄f + Xφf

r , r = {1, . . . , N}, (42)
1As an aside, in ESSE (Lermusiaux 1999b), the update consists

of two parts: data assimilation in a fixed-subspace followed by a cor-
rection of the subspace based on the innovation vector and posterior
misfit. This results in prior and posterior subspaces that differ. We
can generalize this subspace learning scheme to the present Bayesian
GMM-DO framework, but this is not done here.
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the goal is to update the mean state x̄f and set of realiza-
tions, {φf} = {φf

1 , . . . ,φf
N}, in accordance with (41) and

realized observations y, to obtain the posterior GMM-DO
estimate:

xa
r = x̄a + Xφa

r , r = {1, . . . , N}. (43)

To do so, we first optimally fit a GMM (Section 2a) to
the forecast set of realizations in the stochastic subspace.
This prior GMM estimate is then updated within the sub-
space, in accordance with observations and Bayes’ Law, ul-
timately leading to the posterior GMM-DO estimate (43).
In what follows, we derive and describe this GMM-DO up-
date algorithm.

1) GMM representation of prior set of ensemble
realizations

At the time of a new set of measurements, y, we use
the EM algorithm and BIC to determine the GMM that
best represents the set of ensemble realizations within the
stochastic subspace, {φf} = {φf

1 , . . . ,φf
N}. We denote the

parameters of the GMM by

πf
j ,µf

j ,Σf
j , j = 1, . . . ,M,

where πf
j ∈ [0, 1], µf

j ∈ Rs and Σf
j ∈ Rs×s. We again

stress that the GMM efficiently resides in an s-dimensional
subspace of the n-dimensional dynamical state space, with
s � n, thus making the prior estimation procedure com-
putationally feasible.

We determine the optimal mixture complexity by ap-
plication of the BIC, (20), successively fitting GMMs of
increasing complexity (i.e. M = 1, 2, 3, . . .) with the EM
algorithm, until a minimum of the BIC is met. The final re-
sult is a GMM optimally fit to the ensemble of realizations
in the stochastic subspace. We write the resulting prior pdf
of this GMM as:

pΦf

(
φf

)
=

M∑
j=1

πf
j ×N

(
φf ;µf

j ,Σf
j

)
. (44)

Due to the affine transformation (42) linking the stochas-
tic subspace with the state space, we may expand the pre-
viously determined GMM into the state space according
to:

x̄f
j = x̄f + Xµf

j (45)

P f
j = XΣf

j X T . (46)

This is a key property of our GMM-DO filter. The mix-
ture weights, πf

j , naturally remain unchanged. We note
that x̄f

j and P f
j now refer to the mean vector and covari-

ance matrix, respectively, for mixture component j in the
state space. We thus arrive at the prior distribution for the

state vector in state space, taking the form of the following
GMM:

pXf

(
xf

)
=

M∑
j=1

πf
j ×N

(
xf ; x̄f

j ,P f
j

)
. (47)

We emphasize that, due to the affine transformation (42),
this distribution would equally have been obtained had we
performed the prior fitting of the GMM directly in the state
space based on the set of realizations {xf} = {xf

1 , . . . ,xf
N}.

2) Bayesian update

Since the uncertainty of the state is restricted to the
stochastic subspace, we prove next that the Bayesian up-
date can be performed therein. In doing so, we again
make use of the affine transformations (42)–(43) linking the
stochastic subspace with the state space. We re-emphasize
that presently, this subspace, described by the matrix X ,
is assumed to remain unaffected by the assimilation. The
result of the theorem, of course, provides an efficient im-
plementation of the GMM-DO filter’s update step, with
significant computational savings due to the reduced di-
mensionality, s � n. For realistic modeling with large
state vectors, only this update is computationally feasible.

Theorem 1
Given the GMM fit (47) to the DO forecast as prior dis-
tribution and the realized observation vector y with obser-
vation model (41) of Gaussian distribution, the posterior
distribution pXa

(
xa

)
of the state vector in the state space

is obtained by Bayesian update of (44) carried out in the
stochastic subspace. The result pΦa

(
φa

)
is equivalent to up-

dating pXf

(
xf

)
directly. Specifically, the update equations

for the mean x̄f and parameters πf
j , µf

j and Σf
j are:

x̄a = x̄f + X
M∑

j=1

πa
j×µ̂a

j (48)

= x̄f + X
M∑

j=1

πa
j×(µf

j + K̃j(ỹ − H̃µf
j )) (49)

πa
j =

πf
j ×N

(
ỹ; H̃µf

j , H̃Σf
j H̃T + R

)∑M
m=1 πf

m×N
(
ỹ; H̃µf

m, H̃Σf
mH̃T + R

) (50)

µa
j = µ̂a

j −
M∑

j=1

πa
j×µ̂a

j (51)

Σa
j = (I − K̃jH̃)Σf

j . (52)

with the definitions

H̃ ≡ HX (53)

ỹ ≡ y −Hx̄f (54)

K̃j ≡ Σf
j H̃T (H̃Σf

j H̃T + R)−1 ≡ X T Kj . (55)
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Proof
Bayesian update in the state space. Applying the Bayesian
update equations (4)–(7) of Section 2a to the GMM prior
(47) and observation model (41), we first obtain the pos-
terior distribution for the state vector in the state space:

pXa

(
xa

)
=

M∑
j=1

πa
j×N

(
xa; x̄a

j ,P a
j

)
(56)

with

πa
j =

πf
j ×N

(
y;Hx̄f

j ,HP f
j HT + R

)∑M
m=1 πf

m×N
(
y;Hx̄f

m,HP f
mHT + R

) (57)

x̄a
j = x̄f

j + Kj(y −Hx̄f
j ) (58)

P a
j = (I −KjH)P f

j (59)

where

Kj = P f
j HT (HP f

j HT + R)−1 (60)

is the Kalman gain matrix associated with mixture com-
ponent j.

With this, we can derive the expression for the posterior
mean field in the state space,

x̄a =
M∑

j=1

πa
j×x̄a

j (61)

=
M∑

j=1

πa
j×(x̄f

j + Kj(y −Hx̄f
j )) , (62)

as well as for other moments in the state space (see Re-
mark hereafter). This completes the Bayesian update in
the full state space, with the posterior mean vector x̄a and
GMM parameters all expressed in terms of the state space
quantities and realized observations y.

Bayesian update in the stochastic space. Now, we show
that the Bayesian update in the state space defined by
(56)–(59) and (62) is equivalent to a Bayesian update in the
stochastic DO subspace. We first remark that using (53)
and (55) is computationally efficient. To derive (55), we use
identity (46), orthonormality of the modes and definition
(53),

K̃j ≡ Σf
j H̃T (H̃Σf

j H̃T + R)−1 = Σf
j X T HT (HXΣf

j X T HT + R)−1

= X T P f
j HT (HP f

j HT + R)−1 = X T Kj .

Deriving next the update equation (50) for the mixture
weights, we start from (57) and use (45) and (46), to obtain:

πa
j =

πf
j ×N

(
y;Hx̄f

j ,HP f
j HT + R

)∑M
m=1 πf

m×N
(
y;Hx̄f

m,HP f
mHT + R

) (63)

=
πf

j ×N
(
y;H(x̄f + Xµf

j ),HXΣf
j X T HT + R

)∑M
m=1 πf

m×N
(
y;H(x̄f + Xµf

m),HXΣf
mX T HT + R

) ,

(64)

which becomes by simple rearranging of terms,

=
πf

j ×N
(
y −Hx̄f ;HXµf

j ,HXΣf
j X T HT + R

)∑M
m=1 πf

m×N
(
y −Hx̄f ;HXµf

m,HXΣf
mX T HT + R

) .

(65)

Then, applying definitions (53) and (54) leads to:

πa
j =

πf
j ×N

(
ỹ; H̃µf

j , H̃Σf
j H̃T + R

)∑M
m=1 πf

m×N
(
ỹ; H̃µf

m, H̃Σf
mH̃T + R

) , (66)

With this, we obtain an efficient update equation for the
mixture weights using vectors and matrices specific to the
subspace, all the while retaining the familiar structure of
(57).

In a similar manner, to derive (48), (49) and (51) for
the posterior mean x̄a and mixture means µa

j , we start
with (62), use (45) and apply definition (55) to obtain:

x̄a =
M∑

j=1

πa
j×(x̄f

j + Kj(y −Hx̄f
j )) (67)

=
M∑

j=1

πa
j×(x̄f + Xµf

j + X K̃j(y −H(x̄f + Xµf
j )))

(68)

which becomes, using
∑M

j=1 πa
j × x̄f = x̄f and applying

definitions (53) and (54),

= x̄f + X
M∑

j=1

πa
j×(µf

j + K̃j(ỹ − H̃µf
j )) . (69)

As a result, we obtain,

x̄a ≡ x̄f + X
M∑

j=1

πa
j×µ̂a

j , (70)

where we have defined “intermediate” mean vectors in the
stochastic subspace,

µ̂a
j = µf

j + K̃j(ỹ − H̃µf
j ). (71)

These “intermediate” vectors, when adequately combined
and weighted, are the contribution of our Bayesian GMM-
DO update to the conditional mean state x̄a from the fore-
cast mean state x̄f . We refer to these M vectors as “in-
termediate” means from the fact that our DO framework
requires that the parametric distribution describing the
stochastic subspace is of mean zero, i.e.

∑M
j=1 πa

j ×µa
j = 0.

This condition is obviously not satisfied by µ̂a
j . The actual
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means of the posterior mixture components in the subspace
can be obtained by a reset of these intermediate means:

µa
j 7→ µ̂a

j −
M∑

j=1

πa
j×µ̂a

j . (72)

Rather than merely stating this as a matter of fact, how-
ever, we now derive this result. Similarly to (45), we first
write:

x̄a
j = x̄a + Xµa

j . (73)

By subtraction of x̄a and left multiplication by X T , we
then obtain:

µa
j = (X T X )−1X T

(
x̄a

j − x̄a
)

(74)

= X T
(
x̄a

j − x̄a
)
, (75)

where (75) results from the orthonormality of the modes,
i.e. X T X = I. We now have, inserting (58) and (70) in
(75),

µa
j = X T

(
x̄a

j − x̄a
)

= X T (x̄f
j + Kj(y −Hx̄f

j )− x̄f −X
M∑

j=1

πa
j×µ̂a

j ),

(76)

and then using (45), definition (55) and the orthonormality
of the modes,

= X T (Xµf
j + X K̃j(y −Hx̄f

j )−X
M∑

j=1

πa
j×µ̂a

j )

= µf
j + K̃j(ỹ − H̃x̄f

j )−
M∑

j=1

πa
j×µ̂a

j . (77)

Hence, we derive (51),

µa
j = µ̂a

j −
M∑

j=1

πa
j×µ̂a

j . (78)

Finally, to derive (52) that expresses the updated mix-
ture covariance matrices, Σa

j , in terms of DO subspace
quantities, we proceed similarly. As in (46), we expend
P a

j

P a
j = XΣa

j X T (79)

and then equate (79) to (59), inserting (46), to obtain,

P a
j = XΣa

j X T

= (I −KjH)P f
j = (I −KjH)XΣf

j X T .

We then left multiply by X T and right multiply by X , and
use definition (55), to obtain:

Σa
j = X T (I −KjH)P f

j X

= X T (I −X K̃jH)XΣf
j X T X

= (I − K̃jH̃)Σf
j . (80)

where the orthonormality of the modes and definition (53)
have been used. �

With the above theorem, we have derived efficient ex-
pressions (48)–(52) for the GMM-DO update in the time-
dependent stochastic subspace. To conclude, we note the
similarity of these GMM-DO filter equations for a Bayesian
update with the corresponding ESSE equations for Gaus-
sian update, both of which occur in the stochastic subspace.

Remark: Although strictly unnecessary for the GMM-
DO filter, we can also obtain all updated state space quan-
tities. For example, the full posterior covariance matrix
in the state space can be obtained using the Law of Total
Variance (Bertsekas and Tsitsiklis 2008):

P a =
M∑

j=1

πa
j ×P a

j +
M∑

j=1

πa
j ×

(
x̄a

j − x̄a
)(

x̄a
j − x̄a

)T
. (81)

3) Generation of posterior set of ensemble real-
izations

We complete the update step, as with ESSE scheme A
(Lermusiaux and Robinson 1999), by generating a posterior
set of realizations within the stochastic subspace, {φa} =
{φa

1 , . . . ,φa
N}, according to the posterior multivariate GMM,

pΦa

(
φa

)
, with parameters

πa
j ,µa

j ,Σa
j , j = 1, . . . ,M.

With this, we arrive at the posterior DO representation in
Monte Carlo form for the state vector based on a Bayesian
assimilation of the observations, y, at time k:

xa
r,k = x̄a

k + X kφa
r,k , r = {1, . . . , N}. (82)

We note that the size of the prior and posterior ensembles
at time k in the stochastic subspace do not need to be the
same: e.g. N can be evolved by a convergence criterion
for the DO forecast from time k to the next observation
time k + 1 (Lermusiaux 2007; Ueckermann et al. 2012).
This concludes the derivation of the GMM-DO filter. We
summarize the algorithm using the flowchart displayed in
figure 2. We note that extensions of this GMM-DO filter
algorithm are provided in Appendix B: specifically, an al-
gorithm for limiting the GMM fit to a dominant subspace
in the full stochastic DO subspace as well as an algorithm
for constraining the means of the GMM.

Next, we illustrate the GMM-DO filter procedure by
way of a simple toy example. More realistic applications
are provided in Part II (Sondergaard and Lermusiaux 2012).
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4. Example

Assume we are provided with the following (arbitrarily
chosen) forecast for the DO decomposed representation of
the state:

x̄f =

1
2
3

 and X =

1 0
0 1
0 0

 ,

with one hundred subspace realizations, {φf} = {φf
1 , . . . ,φf

100},
generated from a Gaussian mixture model of complexity
two:

pΦf

(
φf

)
=

2∑
j=1

πj×N
(
φf ;µf

j ,Σf
j

)
.

Let us further assume the following forecast parameters:

πf
1 = 0.5, µf

1 =
[
−10
−1

]
, Σf

1 =
[
1 0
0 1

]
πf

2 = 0.5, µf
2 =

[
10
1

]
, Σf

2 =
[
1 0
0 1

]
.

For simplicity, we will take the true field to coincide with
one of the realizations, i.e.

xt = x̄f + Xφf
1 .

We make noisy measurements of the first and third ele-
ments of the state vector, i.e.

H =
[
1 0 0
0 0 1

]
,

normally distributed with an error covariance matrix given
by

R = σ2
obs×

[
1 0
0 1

]
,

where σobs = 5. We illustrate all of the above in panel
(a) of figure 3. With this, we proceed with the update
step, using the GMM-DO flowchart, figure 2. We bypass
illustrating the application of the BIC and rather present
results directly for GMMs of complexity, M , one and two.
The former is a single Gaussian parametric distribution
while the latter would, with high probability, be obtained
using the BIC criterion in the present example.

a. Fitting of GMM

i. Use the EM algorithm to obtain the prior mixture
parameters

πf
j ,µf

j ,Σf
j , j = 1, . . . ,M

within the stochastic subspace based on the set of
ensemble realizations, {φf} = {φf

1 , . . . ,φf
100}. The

identified mixtures (of complexities one and two),
along with their marginal distributions, are displayed
in panel b-(i) of figure 3.

b. Update

i. Calculate parameters:

H̃ ≡ HX
ỹ ≡ y −Hx̄f

and determine the mixture Kalman gain matrices:

K̃j = Σf
j H̃T (H̃Σf

j H̃T + R)−1.

ii. Assimilate the measurements, y, by calculating the
’intermediate’ mixture means in the stochastic sub-
space,

µ̂a
j = µf

j + K̃j(ỹ − H̃µf
j ),

and further compute the posterior mixture weights:

πa
j =

πf
j ×N

(
ỹ; H̃µf

j , H̃Σf
j H̃T + R

)∑M
m=1 πf

m×N
(
ỹ; H̃µf

m, H̃Σf
mH̃T + R

) .

iii. Update the DO mean field (displayed in panel c-(ii)
of figure 3),

x̄a = x̄f + X
M∑

j=1

πa
j×µ̂a

j ,

as well as the mixture parameters within the stochas-
tic subspace:

µa
j = µ̂a

j −
M∑

j=1

πa
j×µ̂a

j

Σa
j = (I − K̃jH̃)Σf

j .

iv. Generate the posterior set of ensemble realizations
within the stochastic subspace, {φa} = {φa

1 , . . . ,φa
100},

based on the multivariate GMM with posterior pa-
rameters

πa
j ,µa

j ,Σa
j , j = 1, . . . ,M.

We display the posterior set of realizations in panel c-
(i) of figure 3.

By way of this simple example, we draw two conclusions
on the benefits of the GMM-DO filter. Due to the initial
non-Gaussian statistics, the GMM was expectedly found to
provide a posterior estimate superior to that of the Gaus-
sian parametric distribution (PD), as evidenced for exam-
ple by their posterior means, panel c-(ii) of figure 3. In
particular, due to the PD’s conservative estimate for the
covariance matrix of the true pdf (panel b-(i) of figure 3),
the noisy measurements were inherently favored during the
update step, essentially resulting in an ‘overshoot’ of its
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posterior estimate for the mean. Given the GMM’s accu-
rate representation of the non-Gaussian features, on the
other hand, the prior information was properly balanced
with that due to the measurements, resulting in a success-
ful Bayesian update. While this was to be expected given
the initial bimodal distribution, previous arguments sug-
gest that this holds for arbitrary distributions as long as
the fitting of GMMs based on the EM algorithm and BIC
provides a good approximation of the true pdf.

The second conclusion refers to the posterior statistics,
represented by the subspace realizations, {φa} = {φa

1 , . . . ,φa
100},

in panel c-(i) of figure 3. In addition to the GMM’s success-
ful capture of the true solution, the compactness of its pos-
terior set of realizations further emphasized an added belief
in this estimate. The accuracy of the posterior representa-
tion of the true statistics clearly affects future assimilations
(not shown here, however). We therefore hypothesize that
the GMM-DO filter outperforms simpler schemes, e.g. the
Gaussian parametric distribution, in this respect. In part
II of this two-part paper, we support this hypothesis by
applying the GMM-DO filter in truly dynamical systems.

5. Discussions and Comparisons with Related Schemes

In this section, we review a selection of past pioneering
DA schemes that, as the GMM-DO filter, have adopted the
use of GMMs for approximating the true pdf.

a. Alspach and Sorenson (1972)

GMMs were, to the best of our knowledge, first ad-
dressed in the context of filtering theory by Alspach and
Sorenson (1972). Here, the authors were particularly mo-
tivated by the inappropriate use of the Gaussian paramet-
ric distribution, stating that “the Gaussian [parametric]
approximation greatly reduces the amount of information
that is contained in the true density, particularly when it is
multimodal”. They emphasized the ability of GMMs to ap-
proximate arbitrary pdfs, all the while retaining the famil-
iar computational tractability when placed in the context
of Bayesian inference.

Based on an approximation of the known, initial (non-
Gaussian) distribution by a GMM of complexity M , their
scheme would essentially run M extended Kalman filters in
parallel – one for each mixture component – coupled solely
through the mixture weights. Their update would thus
take a form structurally similar to that of the GMM-DO
filter, set aside the latter’s focus on a stochastic subspace
nonlinearly evolving through fully coupled DO equations.
While the authors freed themselves of the Gaussian para-
metric constraint, their scheme remained grounded in lin-
ear theory, however, having been inspired by the Extended
Kalman filter. The authors also made no mention of the
appropriate mixture complexity, nor the manner in which
the initial mixture parameters were obtained. Moreover,

while they alluded to the need for intermittently restarting
the distribution – either due to a poor mismatch of fore-
cast distribution with observations, or to the collapse of
weights onto a single mixture component – no appropriate
remedies were proposed.

b. Anderson and Anderson (1999)

Anderson and Anderson (1999), in part inspired by the
recent advances of ensemble methods within the DA com-
munity (e.g. Evensen 1994; Lermusiaux 1997; Houtekamer
et al. 1998), extended the work of Alspach and Sorenson
by adopting a Monte Carlo approach for evolving the prob-
abilistic description of the state in time. By arguing that
“one of the fundamental advantages of a Monte Carlo ap-
proach [is its] ability to represent non-Gaussian probability
distributions”, they chose to approximate the Monte Carlo
realizations by use of a kernel density estimator,

pXf

(
xf

)
=

N∑
i=1

1
N
×N

(
xf ;xf

i , αΣf
)
, (83)

with xi representing realizations in state space; Σ the sam-
ple covariance matrix based on the set of ensemble realiza-
tions; and α an heuristically chosen scaling parameter.

Upon assimilating data from a Gaussian observation
model, their posterior distribution for the state vector would
thus take the familiar form

pXa

(
xa

)
=

N∑
i=1

πa
i ×N

(
xa;xa

i , αΣa
)
, (84)

with parameters determined in accordance with (57)–(59),
from which they would draw N new realizations.

The authors justifiably argued for the advantages over
filters invoking the Gaussian parametric distribution, giv-
ing as example their respective performances when applied
to the three-dimensional Lorenz-63 model (Lorenz 1963):
while their kernel filter would represent states solely in ac-
cordance with model dynamics, simpler filters would po-
tentially assign finite probability to regions of state space
never visited.

One drawback of the filter lay in their arguments for
choosing the scaling parameter, α. Specifically, the authors
stated that while “a number of methods for computing the
constant covariance reduction factor, α, have been devel-
oped, ... the value of α is often subsumed into a tuning
constant and so does not need to be calculated explicitly.
... Tuning a filter for a real system is complicated ... [and]
must be chosen with care”.

Hoteit et al. (2008) later extended the filter by allow-
ing the realizations to carry uneven weights, drawing on
the concepts of particle filters. Specifically, they retained
the posterior form of equation (84) rather than drawing N
new realizations following every assimilation step. To avoid
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the collapse of weights onto only a few realizations, they
proposed a number of interesting methods for resampling.
While effective, these ideas are not discussed further.

c. Bengtsson et al. (2003)

Bengtsson et al. (2003) expressed a concern over Ander-
son and Anderson’s use of kernel density methods for ap-
proximating distributions, arguing that the use of “scaled
versions of the full ensemble covariance around each center
in the mixture ... cannot adapt as easily to local structure
in the forecast distribution”. Instead, they proposed to
approximate the set of realizations by a GMM (of com-
plexity less than the number of realizations), estimating
the mixture parameters using local knowledge of the en-
semble distribution. They stated that such an approach
would provide a more accurate approximation to the true
pdf.

Their update step essentially proceeded as follows: M
ensemble realizations would be arbitrarily chosen to act
as means for the proposed Gaussian mixtures, from which
Nn nearest neighbors to each of these realizations would
be used to approximate their respective mixture covari-
ance matrices. From here, one would proceed with the
Bayesian update, conceptually inspired by the Ensemble
Kalman filter (Evensen 1994).

As with Alspach and Sorensen, the authors left unan-
swered methods for determining both the mixture complex-
ity, M , as well as the appropriate choice of Nn, the number
of nearest neighbors. Furthermore, their choice of mixture
means, based on the arbitrary sampling of ensemble real-
izations, would certainly invite for sampling noise.

The authors further expressed difficulties associated with
manipulating pdfs in high dimensional spaces. They thus
introduced a hierarchy of adaptations to the aforemen-
tioned filter in which they invoked varying degrees of local-
ization approximations, all based on heuristic arguments.
As a remedy, however, they concluded that “a more sophis-
ticated filter will likely rely on efficient, sequential identi-
fication of low-dimensional subspaces where non-Gaussian
densities can be accurately represented and filtered using
finite ensemble sizes”.

d. Smith (2007)

Indirectly extending the work by Bengtsson et al., Smith
(2007) employed the EM algorithm to uncover the under-
lying structure represented by the set of ensemble real-
izations, thus alleviating former heuristic arguments. The
author modified the Ensemble Kalman Filter to allow for a
Gaussian mixture representation of the prior distribution,
using Akaike’s Information Criterion (AIC) as the method
for selecting the appropriate mixture complexity. (As a side
note, McLachlan and Peel (2000) found the BIC to out-
perform the AIC when fitting Gaussian mixtures to data;

specifically, the latter would have the tendency to over-
estimate the mixture complexity.) Similar to the scheme
of Bengtsson et al., Smith retained the concept of operat-
ing on individual ensemble realizations during the update
step, imposing only – but somewhat surprisingly – that the
posterior distribution be normally distributed.

For illustration, the author applied his Cluster Ensem-
ble Kalman filter to a two-dimensional phytoplankton-zooplankton
biological model. While successful for such simple models,
he emphasized the difficulties of extending his scheme to
test cases of larger dimensions, making, however, the use-
ful comment that “the state space could be projected onto
a lower dimensional space depicting some relevant phe-
nomenon, and the full covariance matrix in this state space
could be used.”

e. Dovera and Rossa (2010)

Dovera and Rossa (2010) would later modify the ap-
proach by Smith, attempting to overcome the constraint
that the posterior distribution be Gaussian. Their update
step seemingly disagreed with the output of the EM algo-
rithm, however – a point of view reflected in the recent
work by Frei and Kunsch (2011).

The authors applied their scheme to both the Lorenz-63
model as well as a two-dimensional reservoir model, out-
performing the regular Ensemble Kalman filter. As with
previous schemes, however, they equally noted the prob-
lems caused by systems of high dimensionality, again us-
ing a number of localization arguments to overcome this
burden. With the GMM-DO filter, all of these issues are
addressed by: (i) adopting the generalized, time-dependent
Karhunen-Loeve decomposition of the state dictated by the
DO framework; and (ii) deriving the corresponding rigor-
ous GMM-DO updates for fully Bayesian-based data as-
similation.

6. Summary and Conclusions

A data assimilation framework that rigorously utilizes
the governing dynamical equations with information the-
ory and learning theory for efficient Bayesian geophysical
data assimilation was presented. The theory and algorithm
of the resulting filter, the GMM-DO filter, were developed
and derived. The DO equations and their adaptive stochas-
tic subspace are employed to provide prior probabilities,
effectively approximating the Fokker-Planck equation. At
assimilation times, the DO realizations are fit to semipara-
metric GMMs using the Expectation-Maximization (EM)
algorithm and the Bayesian Information Criterion (BIC).
Bayes’ Law is then efficiently carried out analytically within
the evolving stochastic subspace.

Past literature had identified the advantages of adopt-
ing GMMs in a filtering setting, allowing the update step
to capture and retain potential non-Gaussian features. In
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some cases, the EM algorithm and model selection criteria
had been used to obtain optimal mixture parameter values,
resulting in a more accurate approximation of the true pdf.
However, existing schemes often reverted to heuristic ap-
proximations or surprising choices. A novelty of the GMM-
DO filter lies in its rigorous coupling of – GMMs, the EM
algorithm and the BIC – with the efficient DO equations.
By focusing on the time-dependent dominant stochastic
subspace of the state space, we address prior limitations
caused by the dimensionality of geophysical applications.
Particularly, we render obsolete ad hoc procedures. Con-
trary to the Ensemble Kalman filter, as well as several other
methods, we presently refrain from operating directly on
individual ensemble realizations during the update step.
Rather, under the assumption that the fitted GMM accu-
rately captures the true prior pdf, we analytically carry out
Bayes’ Law efficiently within the stochastic subspace.

The derived GMM-DO filter respects nonlinear dynam-
ics and captures non-Gaussian statistics as it occurs, obvi-
ating the use of empirical arguments. Of course, variations
of the present filter exist, two of which are derived in Ap-
pendix B. Additional areas for further research include the
selection of the algorithms for fitting the GMMs to the DO
realizations. Schemes based on the EM-BIC approach have
the advantage of being generic, but there is a large body of
literature on other estimators (McLachlan and Peel 2000),
and some schemes could be tailored to specific oceanic or
atmospheric applications. Constraints can also be added
to this fitting procedure, leading to a supervised learning of
the GMM properties. Other mixture models could be used,
e.g. including Laplace mixtures for heavier tails, depend-
ing of the application and efficiency requirements. One
advantage of the GMM is that if the number of Gaussians
is one (M = 1), one recovers a classic Kalman update.
Since our GMM-DO filter estimates the optimal M , if it
is found to be one, a Kalman update in the subspace is
used. The GMM-DO filter is thus a straightforward and
efficient extension of the Kalman filter for nonlinear and
non-Gaussian geophysical systems. The present GMM-DO
update could also be augmented with a subspace learn-
ing scheme based on the innovation vector and posterior
misfit, extending the ESSE learning to GMMs. Another
variation of this update is to operate directly on individual
realizations; such a variation exist in ESSE. Another re-
search direction is the derivation of GMM-DO smoothers.
A possibility is to employ a statistical linearization as in
the ESSE smoother (Lermusiaux and Robinson 1999; Ler-
musiaux et al. 2002b), but other options are possible, in-
cluding hybrid ones with variational schemes (e.g. Moore
et al. 2004). Finally, for the case of white-noise stochas-
tic forcing and for small enough stochastic subspace size,
the Fokker-Planck equation that evolves the joint pdf for
the stochastic coefficients of the DO expansion (Sapsis and
Lermusiaux 2011) could be used instead of the stochastic

differential equations for DO realizations. This approach
would directly provide the prior joint pdf for the Bayesian
update, but numerical schemes other than those employed
here would then be needed (Ueckermann et al. 2012).

In part I of this two-part paper, we derived the GMM-
DO filter, outlined its algorithmic implementation, and
placed it in the context of current literature. In part II,
we evaluate its performance when applied to the following
test cases: (i) the Double-Well Diffusion Experiment and
(ii) the Sudden Expansion fluid flow.
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APPENDIX A
EM algorithm (with Gaussian mixture models)

The EM algorithm is commonly introduced in the con-
text of ‘incomplete data’ (Dempster et al. 1977), for which
ML parameter estimation by partial differentiation, eqn. (9),
fails to yield a closed form solution. To circumvent this,
the main idea is to artificially ‘complete’ the data at hand
with additional pseudo data (or knowledge about the data),
thereby giving rise to closed form solutions for the ML pa-
rameters (McLachlan and Peel 2000). The data with which
to complete the existing data set is chosen by the user
and may have little physical relevance; its choice, how-
ever, ultimately dictates the efficiency of the algorithm.
By conditioning the complete data on the available data,
an improved estimate for the ML parameters is iteratively
obtained. This procedure lies at the heart of the EM algo-
rithm.

For the case of GMMs, we augment the available data
set, represented by the set of ensemble realizations, {x} =
{x1, . . . ,xN}, to form the complete data set,

{z} = {c1,x1, . . . , cN ,xN}, (A1)

where ci represents an indicator vector of length M such
that

(ci)j =

{
1 if realization xi was generated by mixture component j

0 otherwise,
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with (ci)j referring to the jth element of vector ci. (Here,
these membership indicators have little physical relevance,
and exist merely as a conceptual device within the EM
framework.) Conditioned on the additional knowledge of
the set {c} = {c1, . . . , cN}, we assume known the origin of
each realization, namely the mixture component that gen-
erated it. This knowledge gives rise to closed form solutions
for the ML estimator of the parameter vector, specifically:

πj =
Nj

N
(A2)

x̄j =
1

Nj

N∑
i=1

(ci)j × xi (A3)

Pj =
1

Nj

N∑
i=1

(ci)j × (xi − x̄j)(xi − x̄j)T , (A4)

where

Nj ≡
N∑

i=1

(ci)j . (A5)

With the addition of the data set {c} = {c1, . . . , cN}, we
have thus completed the data vector (i.e. in some sense,
we pretend that we know which mixture component gen-
erated each realization, so as to get the EM iterations
started). In the real EM algorithm, however, a realiza-
tion is not hard-wired to a particular mixture component,
as done above. Rather, the algorithm iteratively estimates
the weights with which a given realization is associated
with each of the M mixture components.

In what follows, to avoid lengthy expressions, we neglect
random variable subscripts when describing pdfs with the
understanding that their arguments are realizations of this
random variable. For instance, for the pdfs

p
(
x;θ

)
≡ pX

(
x;θ

)
, (A6)

x is the realization of random variable X.

a. Derivation of EM algorithm

We let {x} = {x1, · · · , xN} denote the set of available
data, {z} the complete data vector and θ = {θ1, · · · , θM}
the set of parameters (to be determined) of the chosen dis-
tributional form, p

(
{z};θ

)
. We further assume, as is often

the case, that the available data is a unique and deter-
ministic function of the complete data, i.e. {x} = g({z}).
(For instance, this may simply be a subset of the complete
data.) By the Total Probability Theorem (e.g. Bertsekas
and Tsitsiklis (2008)), we may thus write:

p
(
{z};θ

)
=

∑
{x}

p
(
{z}

∣∣{x};θ)
× p

(
{x};θ

)
(A7)

= p
(
{z}

∣∣g({z});θ
)
× p

(
g({z});θ

)
. (A8)

By taking logarithms, we consequently obtain for any value
of {z} that satisfies {x} = g({z}):

log (p
(
{x};θ

)
) = log (p

(
{z};θ

)
)

− log (p
(
{z}

∣∣{x};θ)
).

(A9)

By further taking expectations with respect to the com-
plete data, conditioned on the available data and parametrized
by an arbitrary vector θ̃ (to be optimized), i.e.

E
[
(•) | {x}; θ̃

]
=

∫
{z}

(•)p
(
{z}

∣∣{x}; θ̃)
d{z}, (A10)

the left hand side of equation (A9) remains unaffected,

E
[
log

(
p
(
{x};θ

))
| {x}; θ̃

]
= log

(
p
(
{x};θ

))
, (A11)

and we thus obtain

log (p
(
{x};θ

)
) = E

[
log (p

(
{z};θ

)
) | {x}; θ̃

]
− E

[
log (p

(
{z}

∣∣{x};θ)
) | {x}; θ̃

]
.

(A12)

For the sake of convenience, we define the notation

U(θ; θ̃) = E
[
log (p

(
{z};θ

)
) | {x}; θ̃

]
(A13)

V (θ; θ̃) = −E
[
log (p

(
{z}

∣∣{x};θ)
) | {x}; θ̃

]
(A14)

to obtain the simplified expression

log (p
(
{x};θ

)
) = U(θ; θ̃) + V (θ; θ̃). (A15)

By application of Gibbs’ inequality (MacKay 2003), we see
that

V (θ; θ̃) = −E
[
log (p

(
{z}

∣∣{x};θ)
) | {x}; θ̃

]
(A16)

≥ −E
[
log (p

(
{z}

∣∣{x}; θ̃)
) | {x}; θ̃

]
(A17)

= V (θ̃; θ̃). (A18)

Therefore, if we denote θ̃ as our present estimate for the
parameter vector, by choosing θ 6= θ̃ such that it further
satisfies U(θ; θ̃) ≥ U(θ̃; θ̃), we guarantee that

log (p
(
{x};θ

)
) = U(θ; θ̃) + V (θ; θ̃) (A19)

≥ U(θ̃; θ̃) + V (θ̃; θ̃) (A20)

= log (p
(
{x}; θ̃

)
). (A21)

Consequently, upon repeated iterations, our estimate for
the parameter vector monotonically increases the (log) like-
lihood of generating the data at hand, {x} = {x1, · · · , xN}.
Assuming further that the likelihood is bounded from above,
we are thus guaranteed to converge to a stationary point
and as such obtain an estimate for the ML parameter vector
(Casella and Berger 2001). In summary, the EM algorithm
proceeds as follows.
EM algorithm : Given the available data, {x} = {x1, . . . , xN},
initial parameter estimate, θ(0), proposed complete data
vector {z} with predetermined, user-specified distribution,
p
(
{z};θ

)
, repeat until convergence:
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• Using the present parameter estimate θ(k), form

U
(
θ;θ(k)

)
= E

[
log

(
p
(
{z};θ

))
| {x};θ(k)

]
. (A22)

• Update the estimate for the parameter vector, θ(k+1),
by maximizing U

(
θ;θ(k)

)
:

θ(k+1) = argmax
θ

(
U(θ;θ(k))

)
. (A23)

Next, we apply the EM algorithm to multivariate GMMs.
We provide the derivation in a condensed manner; we refer
to Sondergaard (2011) for full details.

b. The EM algorithm with Gaussian mixture models (GMMs)

We augment the available data set, {x} = {x1, . . . ,xN},
generated by a GMM of unknown parameters,

θ = {π1, . . . , πM , x̄1, . . . , x̄M ,P1, . . . ,PM}, (A24)

to form the complete data set

{z} = {c1,x1, . . . , cN ,xN}, (A25)

as described in equation (A1).
By the assumed independence of the data, the proba-

bility distribution for the complete data takes the form

p
(
{z};θ

)
=

N∏
i=1

p
(
ci,xi;θ

)
(A26)

=
N∏

i=1

M∏
j=1

(
πj ×N (xi; x̄j ,Pj)

)(ci)j
. (A27)

Upon taking logarithms we obtain

log (p
(
{z};θ

)
) =

N∑
i=1

M∑
j=1

(ci)j×
(
log πj+logN (xi; x̄j ,Pj)

)
.

(A28)
By further taking the conditional expectation of equation
(A28) with respect to the available data, arbitrarily parametrized
by vector θ(k), we consequently obtain the expression to be
maximized under the EM algorithm:

U(θ;θ(k)) = E
[
log

(
p
(
{z};θ

))
| {x};θ(k)

]
(A29)

=
N∑

i=1

M∑
j=1

E
[
(ci)j | {x};θ(k)

]
×

(
log πj + logN

(
xi; x̄j ,Pj

))
.

(A30)

For convenience of notation, we define:

τj

(
xi;θ(k)

)
≡ E

[
(ci)j | {x};θ(k)

]
(A31)

=
π

(k)
j ×N

(
xi; x̄

(k)
j ,P

(k)
j

)∑M
m=1 π

(k)
m ×N

(
xi; x̄

(k)
m ,P

(k)
m

) . (A32)

This completes the E-step of the EM algorithm, equation
(A22)

We proceed with evaluating θ(k+1), the parameter vec-
tor, θ, which maximizes U(θ;θ(k)). This forms the M-step
of the EM algorithm, equation (A23). To determine the
updated mixture weights, π

(k+1)
j , we augment U(θ;θ(k))

using Lagrange multipliers and so introduce the auxiliary
function, Λ, with multiplier, λ:

Λ =
M∑

j=1

N∑
i=1

τj(xi;θ(k))×
(
log πj −

n

2
log 2π

− 1
2

log |Pj | −
1
2

(xi − x̄j)
T

P−1
j (xi − x̄j)

)
+ λ× (

M∑
k=1

πk − 1),

(A33)

By equating to zero the gradients of Λ with respect to πp

and λ, we obtain after manipulations the final expression:

π(k+1)
p =

∑N
i=1 τp

(
xi;θ(k)

)
N

≡ N
(k)
p

N
, (A34)

where N
(k)
p is the sum total of particles associated with a

given mixture component, p, under the present estimate for
the parameter vector, θ(k). With this, we proceed to de-
termine the unconstrained parameters, x̄

(k+1)
p and P

(k+1)
p .

To obtain the updated mixture mean vectors, x̄
(k+1)
p , we

equate the appropriate partial derivative of Λ with zero,

∂Λ
∂x̄p

= 0 (A35)

to obtain

x̄(k+1)
p =

1

N
(k)
p

N∑
i=1

τp(xi;θ(k))× xi. (A36)

Similarly, to obtain the updated mixture covariance matri-
ces, P

(k+1)
p , we enforce (with knowledge of x̄

(k+1)
p )

∂Λ
∂Pp

= 0 (A37)

to ultimately arrive at

P (k+1)
p =

1

N
(k)
p

N∑
i=1

τp(xi;θ(k))×(xi−x̄(k+1)
p )(xi−x̄(k+1)

p )T .

(A38)
This completes the condensed derivation of the EM algo-
rithm as applied to GMMs. The algorithm is summarized
in the main body of the text, equations (10)–(13). For ad-
ditional remarks on the EM algorithm and its application
to GMMs, including the choice of starting parameters and
the issue of convergence, we refer to Sondergaard (2011).
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APPENDIX B
Variations of the GMM-DO filter

a. EM algorithm in q-dominant space of stochastic subspace

Estimating and manipulating non-trivial pdfs in high-
dimensional spaces can be a difficult task (Bengtsson et al.
2003). Heuristic arguments suggest that the number of
realizations required to accurately represent multivariate
pdfs grows exponentially with the dimension of the space
(Silverman 1992). This is one of the reason why we investi-
gate approximations to our main scheme that would allow
efficient fitting of GMMs to realizations when the dimen-
sion of the stochastic subspace itself is large and may pose
a difficulty. Another reason arises from oceanic and atmo-
spheric applications. In such applications, the variance of
the ESSE or DO modes is often found to decay rapidly with
mode number, e.g. (Lermusiaux 1999a,b, 2001, 2007; Sapsis
and Lermusiaux 2011). In addition, the accuracy of the low
variance modes is not as good as that of the large variance
modes: this is mainly because of their much smaller vari-
ance and of their proximity to the truncation index and
thus un-modeled interactions with the truncated modes.
As a result, trying to fit all structures of the marginal prob-
abilities for these low variance modes is likely not needed
and can in fact reduce the robustness in the Bayesian in-
version. Finally, it reduces the computational cost.

As in the main text, we let the dimension of the stochas-
tic subspace be s, i.e. X ∈ Rn×s. When deemed necessary
on the grounds of tractability and mode variance decay,
we can limit our estimation of mixtures to the stochas-
tic coefficients associated with the space defined by the q
most dominant modes, denoting this X q ∈ Rn×q. We in
turn approximate the stochastic coefficients of the remain-
ing s − q modes, {Φq+1, . . . ,Φs}, as zero mean Gaussian
with (co)variances based on the sample covariance matrix.
For our purposes, an obvious and appropriate measure of
dominance is the variance of each of the stochastic coeffi-
cients.

Next, we define this modified EM algorithm for GMMs
in a q-dominant space.
EM algorithm in q-dominant space of stochastic
subspace : Given the set of realizations, {φ} ∈ Rs×N , as-
sociated with the stochastic subspace, X ∈ Rn×s, we limit
our attention to the ensemble set, {φq} ∈ Rq×N , associ-
ated with the q-dominant reduced space, X q ∈ Rn×q, of the
stochastic subspace (i.e. q ≤ s). We define q such that the
following holds:

1 ≥
∑q

i=1 var(Φi)∑s
j=1 var(Φj)

≥ C ≥ 0, (B1)

where C denotes a user-specified constant chosen such that
the majority of the energy in the stochastic subspace is cap-
tured. (Note, we assume that the stochastic coefficients, Φi,

are ordered by decreasing variance, i.e. var(Φ1) ≥ var(Φ2) ≥
. . . ≥ var(Φs). Other ratios are also possible, e.g. (Lermu-
siaux 2007; Sapsis and Lermusiaux 2011).)

Based on the reduced ensemble set, {φq} = {φq
1, . . . ,φ

q
N},

and initial parameter estimate,

θq,(0) = {πq,(0)
1 , . . . , π

q,(0)
M , x̄

q,(0)
1 , . . . , x̄

q,(0)
M ,P

q,(0)
1 , . . . ,P

q,(0)
M },

appropriately sized for the reduced EM estimation proce-
dure, we repeat until convergence:

• For all i ∈ {1, . . . , N} and j ∈ {1, . . . ,M}, use the
present parameter estimate, θq,(k), to form

τj

(
φq

i ;θ
q,(k)

)
=

π
q,(k)
j ×N

(
φq

i ;µ
q,(k)
j ,Σq,(k)

j

)∑M
m=1 π

q,(k)
m ×N

(
φq

i ;µ
q,(k)
m ,Σq,(k)

m

) .

(B2)

• For all j ∈ {1, . . . ,M}, update the parameter esti-
mate, θq,(k+1), according to

π
q,(k+1)
j =

N
q,(k)
j

N
(B3)

µ
q,(k+1)
j =

1

N
q,(k)
j

N∑
i=1

τj

(
φq

i ;θ
q,(k)

)
× φq

i (B4)

Σq,(k+1)
j =

1

N
q,(k)
j

N∑
i=1

τj

(
φq

i ;θ
q,(k)

)
×

(
φq

i − µ
q,(k+1)
j

)(
φq

i − µ
q,(k+1)
j

)T

(B5)

where

N
q,(k)
j =

N∑
i=1

τj

(
φq

i ;θ
q,(k)

)
. (B6)

Once converged, we obtain the GMM associated with the
stochastic subspace, X ∈ Rn×s, by embedding the above q-
dominant vectors and matrices into their adequately sized
equivalent:

µj =
[
µq

j

0

]
, 0 ∈ Rs−q (B7)

and

Σj =
[

Σq
j Σ1:q,(q+1):s

Σ(q+1):s,1:q Σ(q+1):s,(q+1):s

]
, (B8)

where Σ ∈ Rs×s is the sample covariance matrix,

Σ =
1

N − 1

N∑
i=1

φφT , (B9)

and Σa:b,c:d denotes the sub-matrix of Σ defined by rows
a-b and columns c-d.

In the above, we arrive at equations (B7) and (B8) by
application of the Law of Iterated Expectations and the
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Law of Total Variance, respectively (e.g. Bertsekas and
Tsitsiklis 2008), ensuring that the stochastic coefficients,
{Φq+1, . . . ,Φs}, are approximated as zero mean Gaussian
distributions with variances based on the sample covari-
ance matrix.

b. EM algorithm with a constrained mean for the Gaussian
mixture model

In the DO decomposition (24), we impose a zero-mean
constraint on the random vector, Φ(ω), represented by the
ensemble set, {φ} = {φ1, . . . ,φN}. Since the EM algo-
rithm is an unconstrained optimization procedure in this
regard, however, the EM fit of the GMM may not neces-
sarily itself be of zero mean, i.e.

M∑
j=1

πj × µj 6= 0. (B10)

While the test cases presented in part II of this two-part pa-
per give evidence to suggest that this is little cause for con-
cern (namely that this mean offset is negligible and tends to
zero as N increases), we nonetheless propose two possible
remedies:

i. When forming the auxiliary function in equation (A33),
one may add the constraint that the GMM be of zero
mean, i.e.

M∑
j=1

πj × µj = 0, (B11)

thus updating the auxiliary function (in the stochas-
tic subspace) to:

Λ =
M∑

j=1

N∑
i=1

τj(φi;θ(k))×
(
log πj −

s

2
log 2π

− 1
2

log |Σj | −
1
2

(φi − µj)
T Σ−1

j (φi − µj)
)

+ λ1 × (
M∑

k=1

πk − 1) + λ2 ×
M∑
l=1

πl × µl.

(B12)

While this clearly provides a viable solution, a closer
inspection reveals that such a constraint destroys the
simplicity of the EM algorithm. Particularly, the
closed form equations (11)–(13) for the updated mix-
ture parameters then no longer arise. Rather, the
GMM parameters to be optimized become intimately
coupled.

ii. A complementary approach first estimates the pa-
rameter vector by means of our regular EM algorithm
for GMMs. This estimate is then in turn fed as a first
guess to the coupled set of equations obtained in i)

above, for which an iteration procedure of choice may
be utilized. Since based on experience we know that
the first guess is good for N large enough, we expect
that only a few iterations are needed to converge to
an optimal set of parameter values satisfying the ad-
ditional zero mean constraint.
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Parametric Distribution Gaussian Mixture Model Kernel Density Estimator

Fig. 1. Gaussian (parametric) distribution, Gaussian mix-
ture model and Gaussian (kernel) density estimator based
on 20 samples generated from the mixture of uniform distri-
butions: pX

(
x
)

= 1
2 ×U(x;−8,−1) + 1

2 ×U(x; 1, 8), where
U(x; a, b) = 1

b−a denotes the continuous uniform pdf for
random variable X.
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Fig. 2. GMM-DO filter flowchart.
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STOCHASTIC SUBSPACE STATE SPACE

(a) Prior State Estimate

(b) Fitting of Gaussian Mixture Model to Ensemble Realizations

(c) Posterior State Estimate

-4

0

4
-20 0 20

Measurement

Measurement

10

5

0

-5

-10

-15

x1 x2 x3

Prior Mean

True Solution

Parametric Distribution (PD)
Gaussian Mixture Model (GMM)

Posterior Mean (GMM)

Posterior Mean (PD)

-4

0

4
-20 0 20

Measurement

Measurement

10

5

0

-5

-10

-15

x1 x2 x3

Prior Mean

True Solution

-4

0

4
-20 0 20

Measurement

Measurement

10

5

0

-5

-10

-15

x1 x2 x3

True Solution

Parametric Distribution (PD)
Gaussian Mixture Model (GMM)

(i) (ii)

(i) (ii)

(i) (ii)

Fig. 3. GMM-DO filter update. In column (i), we plot the
set of ensemble realizations within the stochastic subspace,
{φ} = {φ1, . . . ,φ100}; in column (ii), we display the vec-
tors and information residing in the state space. Panel (a)
shows the prior state estimate; in panel (b), we show the
fitting of Gaussian mixture models of complexity M = 1
(PD) and M = 2 (GMM), and plot their marginal distribu-
tions for each of the stochastic coefficients, Φ1 and Φ2; in
panel (c), we provide the posterior state estimate again in
the decomposed form that accords with the DO equations.
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Table 1. Notation relevant to the GMM-DO filter. (While
we have primarily adopted notation specific to probability
theory, information theory and estimation theory, where
possible we also utilize the notation advocated by Ide et al.
(1997).)

Descriptors
(·)f forecast
(·)a analysis

Scalars
i ∈ N stochastic subspace index
j ∈ N mixture component index
k ∈ N discrete time index
n ∈ N dimension of state vector
p ∈ N dimension of observation vector
q ∈ N dimension of dominant stochastic subspace
r ∈ N realization index
s ∈ N dimension of stochastic subspace
M ∈ N complexity of Gaussian Mixture Model
N ∈ N number of Monte Carlo members
Φi ∈ R random variable describing the pdf for orthonormal mode x̃i

Vectors
X ∈ Rn state (random) vector
x ∈ Rn state realization
x̃i ∈ Rn DO mode i: dynamically orthonormal basis for stochastic subspace
x̄ ∈ Rn mean state vector
Y ∈ Rp observation (random) vector
y ∈ Rp observation realization
x̄j ∈ Rn mean vector of mixture component j in state space
µj ∈ Rs mean vector of mixture component j in stochastic subspace
Φ ∈ Rs multivariate random vector, [Φ1 . . . Φs]
φ ∈ Rs realization residing in stochastic subspace
Υ ∈ Rp observation noise (random) vector
υ ∈ Rp observation noise realization

Matrices
P ∈ Rn×n covariance matrix in state space
Σj ∈ Rs×s covariance matrix of mixture component j in stochastic subspace
Pj ∈ Rn×n covariance matrix of mixture component j in state space
R ∈ Rp×p observation covariance matrix
H ∈ Rm×n (linear) observation model
X ∈ Rn×s matrix of s DO modes, [x̃1 . . . x̃s]
{φ} ∈ Rs×N set of subspace ensemble realizations, {φ1, . . . ,φN}
{x} ∈ Rn×N set of state space ensemble realizations, {x1, . . . ,xN}
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