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Abstract—Autonomous Underwater Vehicles
(AUVs) are used for an ever increasing range of
applications due to the maturing of the technology.
Due to the absence of the GPS signal underwater,
the correct estimation of its position is a challenge
for submerged vehicles. One promising strategy to
mitigate this problem is to use a group of AUVs
where one or more assume the role of a beacon
vehicle which has a very accurate position estimate
due to an expensive navigation suite or frequent
surfacings. These beacon vehicles broadcast their
position and the remaining survey vehicles can use
this position information and intra-vehicle ranges
to update their position estimate. The effectiveness
of this approach strongly depends on the geometry
between the beacon vehicles and the survey vehicles.
The trajectories of the beacon vehicles should thus
be planned with the goal to minimize the position
uncertainty of the survey vehicles. We propose a
distributed algorithm which dynamically computes
the locally optimal position for a beacon vehicle
using only information obtained from broadcast
communication of the survey vehicles. It does not
need prior information about the survey vehicles’
trajectory and can be used for any group size of
beacon and survey vehicles.

I. Introduction

Autonomous Underwater Vehicles (AUVs) navigating
underwater face significant localization challenges when
compared to aerial or ground vehicles. High frequency
electromagnetic waves such as Global Positioning System
(GPS) signals do not penetrate the water more than a
few millimeters. For the same reason other localization
methods based on optical systems such as laser range
finders or cameras cannot be employed except in a few
niche applications. AUVs thus rely mostly on dead-
reckoning navigation using proprioceptive sensors which
inadvertently accrue a position drift which grows with-
out bound. The most common methods which provide
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position fixes are based on the AUVs obtaining acoustic
range measurements to fixed beacons at known positions.
Due to the limited range of these systems (< 10 km) and
the time required to deploy them they are normally used
in applications where the are of operations is only a few
km2. In addition to the restrictions submerged vehicles
face with respect to navigation, communication is also
restricted to slow (≈ 1 kBytes/s), acoustic channels,
where the limited bandwidth only allows for only one
vehicle transmitting at a time.
As AUV technology matures AUV operations shift

from deploying a single vehicle to deploying a larger
group of vehicles. Deploying several AUVs is beneficial
for many applications, particularly those which require
a large area to be surveyed or redundancy is key. In
addition to these benefits a group of AUVs provide the
opportunity to implement Cooperative Navigation (CN).
The underlying idea of CN is that in group of vehicles
where the individual members operate sufficiently close
together the individual vehicles can exchange navigation
information and thereby improve their own position es-
timate. This requires that each vehicle is outfitted with
an acoustic modem for vehicle-to-vehicle communication.
In addition the modem provides intra-vehicle ranges
through one-way or two-way travel time measurements.
If in such a group a single vehicle has a more accurate
position estimate than the other members, the position
estimate of all vehicles within communication range can
be improved.
One possible CN strategy has no vehicles which are

designated navigation aids and the approach simply
relies on the fact that some vehicles may have a better
navigation estimate than others. As all vehicles usually
broadcast their position estimate to provide a telemetry
feedback to the surface operator this approach does
not require any additional hardware or communication
bandwidth, but only software which incorporates the
overheard telemetry packages.
For applications however, such as precision surveys,

where navigation accuracy is key the concept of desig-
nated Communication and Navigation Aids. The con-
cept of dedicated CNAs was first proposed in [1] for a
mine-hunting scenario with the underlying idea that a
very small number of CNA (one or two) with a very
accurate estimate of their positions could be used to
provide a much larger group of Search, Classify and
Map SCM-vehicles with navigation information. These
SCM-vehicles would be equipped with a special sonar
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payload to detect buried or free-floating mines. The CNA
would be either surface crafts with a permanent access
to GPS or an AUV with a very accurate (and expensive)
navigation suite. To maintain a bounded uncertainty on
their position estimates, these CNA would move at a
very shallow depth and surface for a GPS fix whenever
necessary. The SCM outfitted with much simpler (and
cheaper) navigation sensors would be able to maintain a
bounded uncertainty on their position estimates without
surfacing over the entire duration of the mission.
The sole mission objective of the CNA is to mini-

mize the overall uncertainty of the SCM vehicles. To
accomplish this, their first objective is to maintain a
very good estimate about their own position, as in CN
any uncertainty in the CNA’s position directly translates
into an uncertainty in the SCM’s position. In addition,
the relative position between the CNA and SCM will
also strongly affect the position uncertainty of the SCM
as shown in [2]. Therefore the second objective of the
CNA is to adjust its position such that the CNA-SCM
geometry is optimal for CN. This paper proposes an
algorithm which attempts to determine a locally optimal
position of the CNAs based only on the information avail-
able to them through the CNAs’ sensors and broadcast
messages from the SCMs. No a priori knowledge of the
SCMs’ trajectory is required. It also does not need any
information about the number of CNAs and SCMs. As
a result CNA or SCM vehicles which are temporarily
outside the communication range will automatically be
removed from the optimization and added back once
communication is reestablished. This property makes our
approach robust against the strong variations of the
acoustic communication channel. If additional informa-
tion is available however several algorithms such as the
one proposed in [3] and [4] exist which can provide a
globally optimal trajectory.

II. Related work

One particular strength of our method is that it does
not need the path of the AUVs to be known a priori.
If however such information is available, the approach
presented by Chitre [3] and Tan [4] can provide more
optimized trajectories.
The problem of selecting an action for an agent, in our

case the speed and course of our CNA, in a situation in
which several objectives have to be satisfied has been the
subject of extensive research [5] and [6]. These methods
typically switch between satisfying the different goals
individually or perform averaging which does not nec-
essarily lead to the optimal solution. Dias et al. provide
a good survey about market-based methods [7].
Benjamin developed the IVP-method which can com-

pute an optimal solution for a set of piece-wise linear ob-
jective functions [8]. This implementation was tested in
several different scenarios and has demonstrated an Au-
tonomous Surface Craft successfully reaching a waypoint
while observing the “rules of the road” [9] and tracking
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Fig. 1. A set of 5 vehicles performing CN using an EKF. Each
vehicle i maintains the distribution over its state (red) through
a mean vector µi and the associated covariance matrix P i. This
information, along with the unique ID is broadcasted to other
vehicles. Here a broadcast from vehicle 2 is received by vehicle 1.

underwater targets with a towed array while ensuring
that its maneuvers would not damage the array [10].

While not addressing the problem of dynamically posi-
tioning the beacon, several papers deal with the specific
case of one or more submerged vehicles navigating of
a single beacon. They also address the influence intra-
vehicle geometry on the effectiveness of the approach [11],
[12].

III. Cooperative Navigation

When applying the EKF to solve the problem of
CN, we assume that all n vehicles of the set of par-
ticipating vehicles V i = {1, . . . , i, . . . , n} maintain a
vector which consists of the mean vector xi(k) =
[xi(k), yi(k), zi(k)]

T = µi(k) = [µxi(k), µyi(k), µzi(k)]
T

that contains the estimate of their position at time k, as
well as P i

P i(k) =
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the covariance matrix describing the uncertainty associ-
ated with that estimate.

A. Prediction

Whenever vehicle i = 1 obtains proprioceptive mea-
surements u1(k) from its dead-reckoning sensors, µ1(k)
and P 1(k) are propagated (µ and P denote the state
after the predict step, but before the update step)

µ1(k + 1) = g(u1(k),µ1(k)) (1)

P 1(k + 1) = G1(k + 1)P 1(k)G
T
1 (k + 1)

+Q1(k + 1) (2)

where Q1(k + 1) is a matrix where the elements contain
the variances of the motion model which is modeled as
zero-free Gaussian noise and G1(k + 1) is the Jacobian
containing the partial derivatives of g.

∂g(u1(k + 1),x1(k))

∂x1(k)

∣

∣

∣

∣

x1=µ1(k+1)



B. Update

If vehicle 1 receives a broadcast from vehicle 2 at k that
contains µ2(l) and P 2(l) together with an intra-vehicle
range measurement r1,2(k), it uses this information to
update its estimate of its own position as follows:

First, it computes what the predicted range z1,2(k) be-
tween the two vehicles would be, based on their estimated
position.

z1,2(k) = ‖µ1(k)− µ2(k)‖2 (3)

The difference between the predicted measurement and
the measured distance z1,2(k) − r1,2(k) represents the
innovation.

The covariance matrix of vehicle 1 and vehicle 2 are
combined into

P 1,2(k + 1) =

[

P 1(k + 1) 0
0 P 2(k + 1)

]

. (4)

Note that P 1(k + 1) and P 2(k + 1) are assumed to
be independent (P 1,2(k + 1) is diagonal). This is not
generally true and if the non-zero off-diagonal elements of
P 1,2(k + 1) are ignored, the EKF can become overcon-
fident and diverge. As keeping track of these elements
in CN is very difficult, however, [13] proposes a method
which keeps P 1(k + 1) and P 2(k + 1) independent.

We compute the Jacobian H1,2(k + 1) that contains
the derivatives of the range measurement with respect to
the position of vehicle 1 and 2 (time index k omitted on
matrix components).

H1,2(k + 1) =
[

∂r
∂µx1

∂r
∂µy1

∂r
∂z1

∂r
∂µx2

∂r
∂µy2

∂r
∂z2

]

Using the residual covariance and the variance

S1,2(k + 1) = H1,2(k + 1)P 1,2(k + 1)HT
1,2(k + 1) + σ2

r

and σr associated with the exteroceptive (range) sensor
we compute the Kalman gain

K1,2(k + 1) = P 1,2(k + 1)HT
1,2(k)S

−1
1,2(k + 1)

that represents a weighting factor for how much the
measurement will affect the updated position. Using the
innovation z1,2(k) − r1,2(k) and the Kalman gain, the
updated combined position estimate is

µ1,2(k + 1) =
(

µ1(k + 1),µ2(k + 1)
)

= µ1,2(k + 1) +

K1,2(k + 1)
(

z1,2(k)− r1,2(k)
)

(5)

and the combined covariance is

P 1,2(k + 1) =

[

P 1(k + 1) P 12(k + 1)
P 21(k + 1) P 2(k + 1)

]

=
(

I6×6 −K1,2(k + 1)H1,2(k)
)

P 1,2(k + 1) (6)

from which we can extract the updated position estimate
µ1(k + 1) and the updated covariance P 1(k + 1) for
vehicle 1. Note that we also obtain an updated estimate
for the position and covariance of vehicle 2 P 2(k+1) and
µ2(k + 1).

IV. Algorithm

Our algorithm computes the optimal future position
of a CNA such that a position-information broadcast
from this position by the CNA will reduce the combined
position uncertainty of all AUVs by the largest amount.
The algorithm is decentralized and as such only incorpo-
rates information which is locally available or overheard
through the acoustic channel. Using decentralized algo-
rithms is a key requirement in the underwater domain as
the reliable communication channel to a single controller,
as required by centralized topologies, is not available.
As we do only use locally available information and in
particular don’t have any knowledge about the future
SCM positions (beyond actual course and speed) we are
not able to compute a globally optimal trajectory. For
the remainder of this paper “optimal” thus refers to a
local optimum within the set of locations which can be
reached by the CNA at that time.

The metric which is minimized in this version of the
algorithm is the sum of the trace differences between the
prior and posterior covariances of the AUV’s position
estimates. This metric assumes that the navigation algo-
rithm running on all vehicles is an EKF as described in
the previous section. The algorithm however can accom-
modate other Bayes filters and any state representation
by modifying line 6 in algorithm 2 and line 6 in algo-
rithm 3 accordingly. Also, the metric which is minimized
can be changed to other metrics by modifying line 5 in
algorithm 4. The following assumptions are made by the
adaptive positioning algorithm:

A. Vehicles

There are two groups of vehicles. A group of AUVs, A,
which carry out a mission and a group of CNA, C, which
serve as moving navigation beacons. Optimizing the
relative position between CNA and an AUV is entirely
left to the CNA as it is assumed that each AUV’s track
is solely controlled by its mission objective. No CNA
needs to be aware a priori of all members of the set of
participating AUVs and CNAs. The sets A and C can be
updated dynamically.



1) Communication: Each member of A and C shall be
outfitted with an acoustic modem for data transmission
and intra-vehicle ranging. As only one vehicle can trans-
mit at any given time, there will be a schedule S which
assigns a time slot during which a vehicle (CNA or AUV)
can broadcast a status message. The schedule S is, either,
provided to all vehicles before the mission starts or, in
the case of a central communications controller which
initializes communication through polling, the vehicles
“learn” the schedule as they overhear polling requests. It
is assumed that the schedule is repetitive and does not
change over a longer period of time such that predic-
tions about the time of future transmissions are possible
once S is known. Each entry in S consists of a vehicle
identification number, i, and a broadcast time, tbi , which
is relative to the start of the schedule. When a vehicle
i broadcasts, its transmission mi not only contains the
actual distribution over its pose estimate xi, but also
its course θi and speed vi or even a short description of
the upcoming mission plan. This information fits into a
typical modem packet with the size of ≈ 40 bytes. This
will enable every other vehicle overhearing this message
to compute a short-time prediction of the vehicle’s future
position. The message also contains a unique vehicle
identification number i. Each vehicle also stores the
predicted positions of CNAs and AUVs in the according
entries in A or C.
2) Sensors: Optionally, the CNA may have available

to them a sensor tableN which contains a set of tuples, in
which each tuple ni ∈ N contains information about the
i-th sensor’s capabilities. If this information is available
to the CNA it can also carry out short-term predictions
about the future position and uncertainties of the AUV
and CNA.
The adaptive positioning algorithm consists of four

modules (Algorithm 1, 2, 3 and 4), which are run on each
CNA individually when the appropriate conditions are
met. Algorithm 2 and 3 both call the function algorithm 4
which computes the optimal CNA position for a given
setup of CNAs and AUVs.
Algorithm 1 is run whenever the CNA receives a

broadcast from an AUV.
Algorithm 2 is run whenever the CNA receives a

broadcast from another CNA.
Algorithm 3 is run whenever the schedule S indicates

that the CNA should broadcast.
Algorithm 4 is a function which computes an optimal

future CNA position when the position and associated
uncertainties of all CNAs and AUVs have been predicted
for this time.

B. Message Reception from an AUV (Algorithm 1)

When a CN receives a broadcast from an AUV, aj ,
it decodes the message (line 3) and uses it to update
its estimate of the future positions and associated uncer-
tainties of aj up to the next time tbi (line 4) at which
the CNA is scheduled to broadcast. It achieves this by

forward projection using aj ’s actual position course and
speed (line 5) and the information about aj ’s sensor
quality which is retrieved from Ni(j). If the received
message mA

j (t0) from aj contains a description of its
short term mission plan an even more accurate prediction
can be made. For the scenario we use to illustrate the
algorithm, all predictions are based on available course
and speed information. The functions g(·) and h(·) in
line 5 also use the information locally stored in Ci so as
to consider the message broadcasts from all other CNA
which occur between the current time (t0) and tbi and
how they will affect the AUV’s position estimate at the
time tbi . The updated information about aj is stored in
Ai(j, t

b
i ) (line 6).

Algorithm 1 Executed on CNA whenever a message
from an AUV is received.
Require: Ai, Ci,Si,Ni

1: loop

2: if message mA
j received from AUV aj ∈ Ai then

3: mA
j (t0) =













xA
j

PA
j

vAj
θAj
j













4: tbi = f(t0,Si(i))
5: xA

j (t
b
i ) = g(xA

j (t0), v
A
j (t0), θ

A
j (t0), t

b
i , Ci)

PA
j (t

b
i ) =

h(xA
j (t0),P

A
j (t0), v

A
j (t0), θ

A
j (t0), t

b
i ,Ni(j), Ci)

6: tbi ,x
A
j (t

b
i ),P

A
j (t

b
i )→ Ai(j, t

b
i )

7: end if

8: end loop

C. Message Reception from Another CNA (Algorithm 2)

When a message is received from CNA cj it shall
contain a more recent estimate of the CNA’s state es-
timate xC

j , the associated uncertainty PC
j as well as the

actual course and speed (estimates) vCj and θCj (line 3).
The algorithm then locally emulates the effect that that
specific broadcast would have had on the positioning
estimate of all AUVs assuming that all AUVs received
the message. This is carried out as follows: Firstly,
it fetches the predicted position, xA

k , and uncertainty

estimate, P
A

k , for the actual time t0 for each AUV in
Ai from its AUV table (line 5). It then updates the
position and uncertainty of each AUV using the Kalman
state update (5) and the uncertainties using the Kalman
covariance update (6) (line 6) and then stores the the
resultant estimate back into the table Ai(k) (line 7).
Algorithm 2 then duplicates the decision making pro-

cess taking place at CNA cj . Using the communications
schedule Si(j), it computes the point in time, tbj , at
which CNA cj will broadcast again (line 9). Calling the
function compute opt CNA position (algorithm 4) with
the actual position of cj obtained from mC

j (t0) and our



Algorithm 2 Executed on a CNA whenever a message
from another CNA is received.
Require: Ai, Ci,Si,Ni

1: loop

2: if message mC
j received from CNA cj ∈ Ci then

3: mC
j (t0) =













xC
j

PC
j

vCj
θCj
j













4: for all ak ∈ Ai do

5: Ai(k, t0)→ xA
k (t0),P

A

k (t0)

6:
xA
k (t0)

(5),xC
j ,PC

j
→ xA

k (t0)

P
A

k (t0)
(6),PC

j ,Ni(k)
→ PA

k (t0)

7: xA
k (t0),P

A
k (t0)→ Ai(k, t0)

8: end for

9: tbj = f(t0,Si(j))
10: xC

j opt(t
b
j)← optCNApos

(

tbj ,x
C
j (t0),Ai(t

b
j), Ci(t

b
j)
)

{Alg. 4}
11: PC

j (t
b
j) = h(xC

j (t0),P
C
j (t0),x

C
j opt(t

b
j),Ni(j))

12: tbj ,x
C
j opt(t

b
j),P

C
j (t

b
j)→ Ci(j, t

b
j)

13: end if

14: end loop

local knowledge of the future positions of the AUVs
and the CNAs, we can compute the optimal position
xC
j opt(t

b
j) for cj (line 11). If all information transmitted

through the acoustic modems was received by all vehicles,
then CNA ci and cj will have the same positioning
information available and xC

j opt(t
b
j), computed locally

by cj , should be the same location computed by ci.
If not all values were equally shared, ci and cj will
compute different values, but in the absence of any
other information xC

j opt(t
b
j) is the best prediction for

cj ’s position at tbj . Additionally we use the table entry
for cj ’s sensor noise characteristics Ni(j) to predict the
future position uncertainty at xC

j opt(t
b
j) (line 11). The

new estimate about cj ’s future positions is updated in
Ci(j, t

b
j) (line 12).

D. CNA broadcast (Algorithm 3)

When the actual time, t0, matches its scheduled broad-
cast time, tbi , CNA ci first broadcasts a message mC

i (t0)
containing its actual position estimate xC

i , associated
covariance PC

i as well as its actual course θCi and speed
vCi (line 3) in a similar manner to that of algorithm 2.
First, the effect that this CNA’s position broadcast would
have on each AUV is modeled, in which it is assumed
that each received the latest broadcast mC

i (t0) (line 5, 6
and 7). Then using the schedule Si the next broadcast
time tbi is computed (line 9). At this time all available
information about the positions of each CNA and AUV
at tbi (from Ai(t

b
j) and Ci(tbj)) is used to determine the

optimal position, xC
i opt(t

b
i ) at which the CNA’s next

Algorithm 3 Executed on a CNA whenever it is sched-
uled to broadcast.
Require: Ai, Ci,Si,Ni

1: loop

2: if t0 = tbi then

3: broadcast mC
i (t0) =













xC
i

PC
i

vCi
θCi
i













4: for all ak ∈ Ai do

5: Ai(k, t0)→ xA
k (t0),P

A

k (t0)

6:
xA
k (t0)

(5),xC
i ,PC

i→ xA
k (t0)

P
A

k (t0)
(6),PC

i ,Ni(k)
→ PA

k (t0)

7: xA
k (t0),P

A
k (t0)→ Ai(k, t0)

8: end for

9: tbi = f(t0,Si)
10: xC

i opt(t
b
i )← optCNApos

(

tbi ,x
C
i (t0),Ai(t

b
i ), Ci(t

b
i )
)

{Alg. 4}
11: PC

i (t
b
i ) = h(xC

i (t0),P
C
i (t0),x

C
i opt(t

b
i ),Ni)

12: tbi ,x
C
i opt(t

b
i ),P

C
i (t

b
i )→ Ci(i, t

b
j)

13: end if

14: end loop

broadcast should take place (line 10). The position uncer-
tainty accumulated up to xC

i opt(t
b
i ) is predicted based on

the actual position and uncertainty, as well as the future
position and the sensor noise Ni (line 11). All updated
information is stored in Ci(i, t

b
j) (line 12).

E. Determining the Optimal CNA Position (Algo-
rithm 4)

This function computes the optimal CNA position for
a desired time, tbi , assuming that the predicted position
of all other CNAs in Ci and the positions for all AUVs
in Ai are available.
As we showed in [14] that there is no closed form

solution to find the optimal beacon point, we chose a
brute-force approach. The function first computes a grid
of discrete positions M which could possibly be reached
by the CNA before the next broadcast (line 1). The
number of grid positions in M depends on the maximum
speed of the vehicle, vmax, the time between now (t0) and
the next broadcast tbi and the spacing of the grid points.
As the runtime of the function is linearly dependent on
the number of grid points, the grid spacing can be varied
depending on vmax, t

b
i and the available CPU cycles.

For each grid point, xC
p in M , we now compute by how

much the overall position uncertainty would be reduced
if it would broadcast from this point at tbi . It does this
by fetching the position xA

k (t
b
i ) for each AUV ak (line 4)

and computing the difference between the trace of the

prior P
A

k (t
b
i ) and posterior covariance matrix PA

k (t
b
i ),

assuming a Kalman update (6) by ci from position xC
p .

The trace differences for all AUVs are summed up and



Algorithm 4 Compute the optimal position xC
opt for

a CNA ci for a predicted time tbi . It assumes that the
position and uncertainties for all other vehicles (CNAs
and AUVs) are given by Ai and Ci.

Require: tbi ,x
C
i ,Ai, Ci

1: M =
{

xC
1 , . . . ,x

C
p , . . . ,x

C
q

}

∀ xC
p s.t.

∥

∥xC
i − xC

p

∥

∥

2
≤ vCimax(t

b
i − t0)

2: for all xC
p ∈M do

3: for all ak ∈ Ai do

4: Ai(k, t
b
i )→ xA

k (t
b
i ),P

A

k (t
b
i )

5: K(p) =
∑

k

trace

(

P
A

k (t
b
i )−

PA
k (t

b
i )

∣

∣

∣

∣

P
A

k (tbi )
(6),xC

p ,PC
i

→ PA
k
(tbi )

)

6: end for

7: end for

8: M
max (K)
→ xC

p opt(t
b
i )

9: return xC
p opt(t

b
i )

stored in K (line 5). K has the same size as M . After
the total achievable improvement has been computed for
all xC

p (t
b
i ), we determine the largest entry in K. The

position which maps to this entry is the optimal position
xC
p opt to which the CNA should move so as to maximally

reduce the uncertainty of the AUV set (line 8).

V. Results

To test this adaptive positioning algorithm we simulate
two scenarios. The first scenario (figure 2) consists of one
AUV and one CNA, in which both vehicles start at the
same point and the AUV mission takes it on a straight
west-east trajectory for 400 m. The second scenario (fig-
ure 3) uses two AUV and two CNA. All vehicles start at
the same point with AUV 1 moving north for 100 m and
AUV 2 moving south for 100 m. Both AUV then move
on a west-east trajectory while maintaining their 200 m
separation. The simulated sensor noise is equivalent to an
AUV with an inexpensive navigation suite. The variances
of the sensor noise for both simulations are shown in
table I.

TABLE I

Sensor noise and maximum speed of the simulated vehicles

used in the adaptive positioning simulation (figure 2

and 3).

Vehicle σu,σv σθ σr vmax Notes

CNA 1 0 m/s 0 ◦ 2m 1.5 m/s has GPS
CNA 2 0 m/s 0 ◦ 2m 1.5 m/s has GPS, not in 1
AUV 1 0.2 m/s 10 ◦ 1m 1 m/s
AUV 2 0.2 m/s 10 ◦ 1m 1 m/s not in 1

A. One AUV, one CNA

Figure 2 shows the simulation results for the most
basic possible CN setup, one CNA and one AUV. Every
60 seconds the CNA broadcasts its position and then

computes the optimal position for the next broadcast. As
there are no other CNA present, the CNA only needs to
take the effect of its own updates and the vehicles’ sensor
performance into account. The top plot, at t=20 s, shows
the situation directly after the mission commenced. The
CNA has just broadcast its position and the position
it predicts for the AUV at the next broadcast which is
marked with red “+”. The semi-transparent circle with
radius r = ∆t · vmax = 60 s · 2m/s = 120m marks
all positions which the CNA could reach at maximum
speed. Our algorithm discretizes this circle into grid
points with 5 m spacing. It then computes, for each grid
point, the position uncertainty which the AUV would
have after a hypothetical update broadcast by the CNA
from this grid position. The difference between the prior
and posterior trace of the AUV’s position estimate is
represented by the color of the semi-transparent circle.
Positions marked blue would lead to a very small decrease
in overall uncertainty and positions marked red to a very
high overall decrease. The mapping between the absolute
value of K(p) and the color is scaled, each time the circle
is plotted, to span the maximum color space. Thus we
cannot provide a legend which maps colors to absolute
values for K(p). The position which corresponds to the
maximum of that difference is selected as the future
position for he CNA.

As the AUV has a high variance in its heading di-
rection it accumulates the highest uncertainty in the
direction perpendicular to the direction it is traveling
in. As shown by Zhou and Roumeliotis in [15], the
biggest decrease in the trace of the covariance can be
achieved if the beacon vehicle is somewhere along the
semi-major axis of the AUV’s covariance ellipse. Brute-
force computation confirms this, by highly favoring posi-
tions perpendicular to the direction in which the AUV is
traveling, illustrated in dark red, for the first update. At
t=72 s (middle plot) the CNA has reached its planned
position. The AUV has reached its predicted position
and the CNA has transmitted its message and computed
a new optimal broadcast position for its new message.
As the previous broadcast, at t=70 s, strongly reduced
the error in the north-south direction, the along-track
error will dominate the position uncertainty and the
optimal position is in line with the vehicle traveling. The
bottom plot, at t=320 s, shows the vehicles after the
fifth broadcast. At this stage a “saw-tooth” pattern has
been established, in which the CNA oscillates between
the two relative positions (top and middle plot). Due to
the much larger distances that the CNA has to travel
in this scenario, compared to those of the AUV, the
distance between the CNA and the AUV slowly increases,
as reaching the optimal relative position is the CNA’s
only goal. Future versions of the algorithm will enforce a
minimum distance between the vehicles.
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Fig. 2. One CNA one AUV in an adaptive motion control simula-
tion. The CNA automatically adapts its position to be in a position
during the broadcast which minimizes the position uncertainty of
the AUV.

B. Two AUV, Two CNA

A more complex CN-scenario is shown in figure 3.
Here, two CNA try to jointly optimize their trajectory
to improve the position uncertainty for two AUV. All
four vehicles start at the same position and both CNA
broadcast their position every 30 s. After CNA 1 broad-
casts its first message, at t=10 s, it determines that the
position marked by the blue “+” is the optimal position
for its next broadcast. Meanwhile CNA 2 waits until
its first broadcast, at t=40 s, and then determines its
optimal position for its next broadcast at t=100 s (cyan
“+”). When computing the trace difference represented
by the semi-transparent circle in the middle plot (the
corresponding circle for CNA 1 is not shown as they
would overlap), CNA 2 takes the effects of the broadcast
from CNA 1 at t=70 s into account, as otherwise it would
also head for the optimal position previously computed
by CNA 1, leading to a redundant update. Shortly after
CNA 2 reaches its computed position, all four vehicles
achieve the stable position of a quadrilateral which is
maintained throughout the mission (bottom plot).

The “one AUV, one CNA scenario” depicted in fig-
ure 2 shows how optimizing the trajectory for the short-
term optimal broadcast position alone can lead to a
sub-optimal long-term solution as the distance between
the vehicles constantly grows until the distance is too
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Fig. 3. Two CNA, two AUV in an adaptive motion control
simulation. The CNA automatically adapt their position to be
in a position during the broadcast which minimizes the position
uncertainty of both AUV.

long for transmission. Therefore we would also like the
dynamic positioning of our CNA to be influenced by
other objectives such as maintaining a minimum distance
to all vehicles. If the acoustic propagation conditions
are known, choosing the broadcast position such that
the transmission loss to all vehicles is minimized could
be another possible objective. Fusing multiple objectives
is beyond the scope of this paper. However the output
of our algorithm could provide an input into the IVP
method proposed in [10] which would carry out the
fusion.

VI. Conclusions

In this paper we propose an algorithm which allows
dedicated mobile navigation beacons (CNAs) to opti-
mally position themselves in order to best serve a group
of submerged vehicles carrying out a mission (SCMs).
The algorithm does not require any a priori knowl-
edge about the vehicle’s path and only uses information
available from overheard broadcasts and proprioceptive
sensors. It is completely distributed and can dynamically
adapt to a change in the number of CNAs and SCMs.
As the required update rates are low, the computational
load of the algorithm is negligible. Simulations for two
scenarios show that stable CNA trajectories can emerge.
Future versions of the algorithm will improve the

resilience towards loss of communication by including



link quality information. By optimizing the trajectory
for improved intra-vehicle communication, we also en-
able the CNA to better serve in its secondary role as
communications hub or relay.
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