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On the number and location of zero-group-velocity modes 
by 

Eduardo Kausel1 

Abstract 
Although fundamental concepts in elastodynamics and acoustics such as waves guides, 
Rayleigh-Lamb modes, phase and group velocity, or anomalous modes are very well-
understood and firmly established, by contrast an intense literature search in the matter of 
the number of zero group velocity (ZGV) modes, their location in wavenumber spectra 
other than at cutoff frequencies, or the methods needed to find these from first principles 
turned out curiously empty. Thus, this has provided the motivation for this article 
documenting a theoretical and quantitative analysis of this problem for horizontally 
layered media bounded by any arbitrary combination of external boundaries. 

Introduction 
It is well known that among the Rayleigh-Lamb modes in waveguides there exist a 
handful of branches in the low frequency-wavenumber spectrum which stand out for their 
anomalous characteristics, namely their phase velocity is positive while their group 
velocity is negative. These branches terminate at saddle points intersected by complex 
(evanescent) branches at which the group velocity –but not the phase velocity– vanishes 
altogether, and after this so-called ZGV point, a normal branch ensues for which both the 
group and phase velocities turn positive and thus normal. Although a rich literature exists 
and numerous papers have documented and evaluated these ZGV modes both 
numerically (Mindlin, 1958a) and in experiments which have established their 
unequivocal physical presence as resonances [3-6], no work to date seems to have 
examined how many of these modes exist or how they are distributed in k   space. 
This has given motivation for this article, documenting a theoretical and quantitative 
analysis to this problem not only for homogeneous plates in plane strain with free 
boundary conditions at its two bounding surfaces, but also for layered media bounded by 
any arbitrary combination of Neumann and Dirichlet boundaries.  

ZVG modes in an arbitrarily layered system 
Consider a horizontally homogeneous medium of finite thickness h  characterized by a 
depth-dependent shear modulus  z , Lamé constant  z  and mass density  z .  

With appropriate use of singularity functions, this description also can be made to include 
layered media for which the properties are locally homogeneous but change abruptly 
from layer to layer. Also, the medium is bounded by any arbitrary combination of 
clamped (Dirichlet) and/or free (Neumann) boundaries at its two horizontal, external 
surfaces. We designate these boundary conditions by two pairs of indices such as FF-FF, 
FF-CC, FC-CF, and so forth, with the first index in each pair referring to the normal 
(vertical) condition, and the second to the tangential (horizontal) condition. Also, the first 
pair refers to the upper boundary while the second pair identifies the lower boundary. For 
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example, a wholly free plate has FF-FF boundaries. As has already been amply 
documented in the technical literature over the past century, any such system admits a 
family of real (i.e. non-evanescent) propagation modes which define the frequency-
wavenumber spectrum. These are occasionally supplemented by complex wavenumber 
branches that represent evanescent modes, of which there are infinitely many but these 
are manifest only in the immediate vicinity of sources. Figure 1 shows a sketch of a 
complex spectrum where a complex branch intersects a real branch at a ZGV point at 
which the slope is horizontal, i.e. where the group velocity vanishes (Mindlin, 1958a). 
 
At any fixed frequency of excitation, there exists a finite set of real modes which —when 
plotted in a frequency-wavenumber diagram— show up as spectral lines that are born at 
the so-called cutoff frequencies of the system at 0k   and then rise and ultimately display 
asymptotic trends at high frequencies. By contrast, at any fixed wavenumber there exist 
infinitely many characteristic frequencies. The cutoff frequencies represent plane waves 
of infinite wavelength which reverberate vertically up and down in the system and of 
which there are two types: longitudinal (or primary, or dilatational, or pressure, or P, or 
 ) waves, and transverse (or secondary, or equivoluminal or shear, or S, or  ) waves. 
The evaluation of the cutoff frequencies for a homogeneous system with arbitrary 
boundary conditions is elementary and can be written down in closed form. In the case of 
layered systems, a numerical solution is necessary but it can be accomplished without 
much ado and to any desired degree of accuracy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Complex wavenumber spectrum for a free plate (sketch after Mindlin, 1958a) 

ZGV 
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With regard to the frequency-wavenumber spectrum for an arbitrary layered medium and 
the location of ZGV points within that spectrum, we make in the ensuing a number of 
statements whose detailed proof can be found in Appendix A. We also defer for now the 
issue of the computation of an actual spectrum which is taken up in Appendix B. Let 
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denote a Rayleigh-Lamb mode whose horizontal and vertical components    ,n nU z W z  

satisfy all of the boundary conditions and define the modal shape that results from the 
solution of an appropriate, transcendental eigenvalue problem. The characteristic 
frequency n is the eigenvalue, 1,2,n    is an integer modal counter, and the 
horizontal wavenumber k  is taken as a known, real parameter. The imaginary factor in 
the vertical component is included herein for reasons of convenience, for it renders all 
algebra real. 
 
We define the modal coefficients 
 

 

 

 

0

0

0

0

2 (2 )

(2 )

2 (2 )

(2 )

h

mn m n m n

h
n m m n

mn m n n m

h
m n m n

mn

h

mn m n m n mn

a U U W W dz a

dW dU dW dU
b U W U W dz b

dz dz dz dz

dU dU dW dW
g dz c

dz dz dz dz

m U U W W dz d

  

   

  

 

     

           
    
     

  









 

 
which are all symmetric in the sub-indices (i.e. mn nma a  etc.).  In terms of these 
coefficients, it is shown in Appendix A that the modes satisfy the following pair of 
orthogonality conditions: 
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which hold true even when the material parameters change with z . Observe that in these 
equations we have arbitrarily normalized the modes to have unit modal mass. As also 
shown in Appendix A, a perturbation analysis to these equations yields the following 
derivatives with respect to the horizontal wavenumber, which we designate with primes: 
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In particular, any ZGV point  , , 0n nk     satisfies the identity 1

2 0nn nnk a b  . Moreover, 

a ZVG point admits not only its actual eigenmode  , , 0n n nk   f , but also an 

exceptional mode of the form: 
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which in our simpler notation translates into 
 
 exc in nU U xU  , exc in nW W xW       (5b) 
 
with the derivatives computed as in (4a,b). It was Mindlin (1958b) who first predicted 
that such exceptional modes would exist at all non-repeated cutoff frequencies. Although 
they appear to violate the boundedness at x   , they can arise and have been observed 
at the edges of plates of finite width. More recently, Tassoulas and Akylas (1984) 
extended Mindlin’s results to all ZGV points, even those whose wavenumber is not zero, 
and discussed their physical implications at length. They also made references to 
experiments where the resonances associated with exceptional modes were clearly 
observed at the plate’s perimeter when excited at the appropriate frequency. In Appendix 
A, we provide in turn a further generalization confirming that such exceptional modes 
arise at all ZGV points of an arbitrarily layered medium. 
 
At the cutoff frequencies 0k  , the modes decouple into pure longitudinal   modes and 
transverse   modes, in which case equations (3,4) simplify further into 
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where the modal counters ,   now run independently and conveniently through all 

natural numbers; thus, they substitute for the distinct pairs  ,m n  that apply to the 

combined set of such modes and which are needed when the modes are coupled for 0k  .  
 
Observe that at any cutoff frequency that is not repeated, 0nnb   in (4c) because for 0k 
a horizontal mode S has no vertical P components and vice-versa. Hence, 0n   at all 
non-repeated cutoff frequencies, and this holds true for any boundary conditions and 
whether the system is layered or homogeneous. Thus, all non-repeated cutoff frequencies 
are by themselves ZGV modes. 
 
Still, at least in a homogeneous plate, a coincidence of two cutoff frequencies can recur at 
periodic intervals whenever the wave velocity ratio / /P SC C p q  is a rational number. 
Hence, at a double cutoff-frequency the group velocity is not zero, i.e. the two spectrum 
branches born at that point do not have a zero slope at that location, as will be shown. 
This was first predicted by Mindlin (1958a) and is generalized herein for an arbitrary 
medium. Conceivably, such a perfect coincidence of two cutoff frequencies is far less 
likely in either a layered plate or in an inhomogeneous plate, or at least it would not recur 
at regular intervals. 
 
Now, whenever two cutoff frequencies coincide, then any linear combination of the 
longitudinal and transverse modes with that same frequency is also an eigenmode. For 
example, denote two linear combinations 1 2,v v  such as 
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where 1

20     is any arbitrary angle. It can readily be shown that these two 

combinations are mutually orthogonal and also satisfy normality, namely equations 
(3a,b). In particular, for 0  , they reduce to (7a). On the other hand, from equation (2b), 
we obtain for these two modes 
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Since 22 11b b  , it follows from (4c) with 0k   and 1 2        that 1

1 11 12 /b    

and 1
2 11 12 /b    , with the average slope being zero. Thus, at any repeated cutoff 

frequency where two branches are born, one of these has positive slope and the other has 
an equal but negative slope i.e. a negative group velocity. The implication is that the 
branch with negative slope gives rise to a an anomalous spectral segment that at some 
point will reach a minimum and thus terminate at a ZGV mode with 0k  . Hence, we are 
led to the conclusion that all repeated cutoff frequencies give rise to anomalous branches 
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terminating at a ZGV point, even if the double cutoff frequency point itself is not one of 
these. However, it should also be observed that as the frequency of the double cutoff 
frequency increases, the magnitude of the negative slope decreases steadily in tandem 
with that frequency, i.e. with the modal number. Thus, double roots with very high modal 
number produce ZGVs which are either very close to the frequency axis or which lie only 
slightly below that frequency, to the point that they are virtually indistinguishable from 
the double root, and thus difficult to detect. Another way of saying this is that the branch 
exhibits an initial flat segment where the group velocity is very low.  

Number of ZGV Modes 
So how many ZGV modes other than those at the cutoff frequencies already referred to 
exist? The short answer is “very few”, as will be seen. Inasmuch as a ZGV point lies in a 
trough of the spectral line in question and that such a line is born at a cutoff frequency, it 
follows that that spectral line must have a local maximum at 0k  . In other words, the 
first derivative at a non-repeated cutoff frequency is zero while the second derivative 
must be negative for a ZGV branch to develop. Thus, in principle all we must do to 
decide which branches contain ZGV modes is to apply the formulas above and test for 
the presence and number of negative second derivatives at 0k  . This number would 
then have to be augmented by consideration of the existence of double roots, if any. 
 
In principle, the summations in (7e) involve infinitely many terms, which we simulate 
herein with N =100,000 of these, but final results were not sensitive to this number. 
Presumably, the accuracy of these summations could have been refined further by 
establishing the asymptotic trends of the summands and evaluating the tails by means of 
formulas such as the polygamma function. Still, using the simple and direct summation 
we achieved results that were quite acceptable, at least for the purposes of this article. 
 
In the ensuing, we apply these concepts to homogeneous plates with various boundary 
conditions and disregard —at least for now— the possibility of repeated cutoff 
frequencies by assuming that the   and   frequencies are distinct. Also, we omit in 

our analyses the zero cutoff frequencies that correspond to rigid body modes in free 
plates, because as can be seen from (7d), the coefficient 0 00, 0b b   , inasmuch as the 

rigid body mode has no vertical derivative. We also make use of the following symbols, 
equivalences and definitions: 
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Plate with mixed boundary conditions 
A homogeneous plate endowed with any combination of mixed boundary conditions (i.e. 
“rollers”) on both sides has no ZVG modes other than at the cutoff frequencies. The 
modal frequencies in such plates for any wavenumber can be found in closed form (e.g. 
Kausel, 2006, pp. 90-96): 
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Boundary conditions FC-FC, CF-CF: 
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In 11a-12b, the cutoff frequencies follow by setting 0   
 
Plate with boundary conditions FF-FC or FF-CF 
This case need not be considered separately herein because its modes agree with either 
the symmetric or the anti-symmetric modes of a homogeneous, free plate of double 
thickness.  
 
Homogeneous stratum: 
In the case of a homogeneous stratum (FF-CC), the P and S modal parameters are 
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Homogeneous plate: 
In the case of a homogeneous plate (FF-FF), the P and S modal parameters are 
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By and large, we found only a handful of ZGV modes of very low modal order which 
were followed by a highly rarified region containing just a few isolated points of high 
modal order. Most of those modes were of the S type and a minority of the P type. 
Furthermore, we found that the number of ZGV poles decreases with Poisson’s ratio after 
a value of about 0.25, and especially after 0.40  . Tables 1 and 2 provide a summary of 
ZGV branches found for a uniform plate and a uniform stratum, respectively. We applied 
the preceding exact formulas and searched for negative second derivatives among the 
first five hundred P modes and an equal number of S modes in both a stratum and in a 
plate of various Poisson’s ratios. We then repeated the search using the Thin-Layer 
Method (TLM) [9-12] described briefly in Appendix B, a discrete formulation based on 
the finite element method which not only provided comparable results but also the 
dispersion spectra for either homogeneous or layered media. A question mark in the 
tables after the last modal number indicates uncertainties due to numerical error, in most 
cases because the magnitude of the second derivative was very small. By contrast, a dash 
means that we found no further ZGV branches up to the 500 limit with either technique.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2:  5S branch for 0.  , homogeneous stratum 
 
In general, it was difficult to confirm the reality of negative second derivatives beyond, 
say, the 50th P mode, because the magnitude of those derivatives was very small and thus 
rather prone to round-off errors. In addition the branches of high modes associated with 
ZGVs were rather flat near the frequency axis. Figure 2, which shows the fifth S mode in 
a stratum with 0.  , illustrates this point: Although the ZGV point can still be clearly 
discerned, this is so only after some massive magnification, as can be verified by 
observing the scale used for the frequency axis. Sharp-eye readers may also have noticed 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
4.498

4.499

4.5

4.501

4.502

4.503

4.504

4.505

4.506



9 
 

that we omitted 0.10   for the plate –but not for the stratum– because that value leads 
to a wave speed ratio 3

2/P SC C  , which results in a large number of coincident cutoff 

frequencies in the plate, and thus of ZGV modes. As can be seen, even the small change 
in Poisson’s ratio from 0.10 to 0.11 leads to an abrupt fall in the number of ZGV modes, 
because the speed ratio is no longer a rational number. 
 
Table 1: Homogeneous plate: 

  /S PC C   Type  Mode number

0  0.707  S  4 24 140?  

P  1 2 7 12 41  70? 

0.11  0.662  S  3 4 9 15 21  74? 

P  1 –  

0.15  0.642  S  3 4 14 42?  

P  1 34 77 274?  

0.20  0.612  S  3 8 13 80?  

P  1 11 30 109?  

0.25  0.577  S  3 12 45 168?  

P  1 4 15 56?  

0.30  0.535  S  3 11 28 101?  

P  1 8 31 240?  

0.35  0.480  S  2 6 52 102?  

P  12 –  

0.40  0.408  S  2 12 22 120?  

P  2 20 198?  

0.45  0.302  S  2 –  

P  –  

 
Table 2: Homogeneous stratum: 

  /S PC C   Type  Mode number

0  0.707  S  4 5 11 45 120? 

P  2 27 56?  

0.10  0.667  S  4 10 –  

P  2 –  

0.15  0.642  S  4 9 48 154?  

P  2 13 56?  

0.20  0.612  S  4 29 65?  

P  1 2 21 –  

0.25  0.577  S  3 8 36 107?  

P  1 10 133?  

0.30  0.535  S  3 7 20 80?  

P  1 20 –  

0.35  0.480  S  3 14 141?  

P  1 31?  

0.40  0.408  S  3 6 9 36 303? 

P  1 55?  

0.45  0.302  S  2 5 22 32 231? 

P  –  
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Finally, Figure 3 shows the spectrum for a layered plate, with stars and circles indicating 
the cutoff frequencies for S and P modes, respectively. The free plate had the following 
properties: 
 
     Table 3: Layered, free plate 
Layer  Mass Density Thickness Shear modulus Sh. wave velocity Poisson’s ratio

1  1.00  0.25  1.0000 1.00 0.00 

2  1.00  0.50  1.5625 1.25 0.05 

3  1.00  0.25  1.2100 1.10 0.11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3:  Wavenumber spectrum for layered plate  
 
 
This time only a numerical solution via the TLM (with 200 quadratic thin layers) was 
possible, see Appendix B. That model predicted that the S modes 4,16,29,48, 110, … and 
the P modes 1,2,89 … would sustain ZGV modes.  
 
In summary, although it may well be that infinitely many ZGV modes exist in a 
homogeneous stratum or plate —especially if cutoff frequencies are repeated— for 
practical purposes their number is in the single digits, at least in the range of engineering 
interest, inasmuch as for the most part only some five or so S and P branches of low 
modal order are clearly manifest. 

Locating the ZGV modes 
How can the actual ZGV points be located without searching for their presence in a 
complete wavenumber spectrum, indeed, without computing any other modal branches? 

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10



11 
 

The strategy is simple: Start at a cutoff frequency at which the second derivative is 
negative –or where a double cutoff frequency exists– and march forward from there 
along that branch, evaluating the path in small increments. In the TLM approach 
(Appendix B), this could be accomplished in the context of an inverse iteration scheme 
with shift by the Rayleigh quotient, computing not only the projected eigenvalue —i.e. 
the next point on the branch— but also its first derivative via eq. 4c, and using both to 
estimate the neighboring point lying ahead on that branch. Also, the second derivative 
could be obtained as a by-product in the context of a backward difference scheme —the 
formula in (4d) is not applicable because only one (i.e. the current) mode will be 
available once 0k  .  

Conclusions 
In this paper, we considered the problem of how many zero group velocity (ZVG) modes 
exist in an inhomogeneous plate at points other than those at cutoff frequencies, and also 
how these can readily be located. The following findings apply to any arbitrary layered 
plate and with any combination of boundary conditions: 

 The group velocity vanishes at all non-repeated cutoff frequencies. This fact had 
already been established by Mindlin (1958b) in the context of a homogeneous 
plate.  

 Each and every ZGV point admits an additional exceptional mode that varies 
linearly in the direction of wave propagation, and which may lead to edge 
resonances in plates of finite width. Such modes exist not only at the cutoff 
frequencies, but also at all ZGV points (Tassoulas and Akylas, 1984). We have 
further shown that this is also true in layered plates with arbitrary boundary 
conditions. 

 In a homogeneous plate where the ratio of longitudinal to transverse wave speed 
is a rational number, repeated cutoff frequencies can arise at which two branches 
with opposite slope will be born. The descending branch will necessarily give rise 
to a ZVG with a non-zero wavenumber. Still, such repeated cutoff frequencies are 
much less likely in a layered plate or an inhomogeneous plate. 

 Whenever cutoff frequencies are repeated at periodic intervals, there exist 
infinitely many ZVG’s. However, high order ZVG’s —whether or not any cutoff 
frequencies are repeated— lie in branches that are so flat that for practical 
purposes they do not materialize, and presumably any attenuation will wipe them 
out as well. Thus, for practical purposes, only a handful of low order modes is 
capable of sustaining ZVG modes of engineering interest.  

 Whenever the cutoff frequencies are not repeated, the number of ZGV modes 
with non-zero wavenumber is rather small, numbering in the single digits. For the 
most part they are of the S type, and appear in branches of low modal order. 

 ZGV’s can be located by starting at a cutoff frequency with negative second 
derivative, or following the descending branch of a double cutoff frequency.  

 The number of ZVG’s decreases with Poisson’s ratio. This is mainly the result of 
the growing separation of the cutoff frequencies of P modes from those of the S 
modes as Poisson’s ratio increases. 
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Appendix A 

Rayleigh-Lamb modes in a layered medium 
Consider a horizontally homogeneous, elastic medium of finite thickness h  characterized 
by a depth-dependent shear modulus   z , Lamé constant  z  and mass density  z .  

With appropriate use of singularity functions, this description also can be made to include 
layered media for which the properties are locally homogeneous while changing abruptly 
from layer to layer. Also, the boundary conditions at either surface are arbitrary. In the 
absence of body forces, the displacement field must satisfy the elastic wave equations for 
vertically inhomogeneous media in plane strain 
 

    2 2

2 2
2 0

wu u u w

t x z z x z z


    

                        
   (A1a) 

   2 2

2 2
2 0

uw w w u

t x z z x z z


    

                        
   (A1b) 

 
together with some appropriate boundary conditions at the top and bottom surface, the 
details of which are of no particular concern to us here. Assume next that such medium 
admits free Rayleigh-Lamb waves which can be written as 
 

     i, , , nt kx
nu x z t U k z e          (A2a) 

     i, , i , nt kx
nw x z t W k z e           (A2b) 

 
in which the mode satisfies all of the boundary conditions and defines the modal shape 
that results from  the solution of an appropriate, transcendental eigenvalue problem. The 
characteristic frequency n is the eigenvalue, n  is an integer modal index or modal 
counter, and the horizontal wavenumber k  is taken as a known, real parameter. The 
imaginary factor in the vertical component is included for reasons of convenience for it 
renders all algebra real.  To be admissible, the ansatz (A2) must satisfy the Fourier-
transformed dynamic equilibrium equations 
 

   2 22 0n n
n n n n

dW dUd d
k U k W U

dz dz dz dz
                

   
  (A3a) 

   2 22 0n n
n n n n

dU dWd d
k W k U W

dz dz dz dz
                

   
  (A3b) 

 
Orthogonality: 
Consider next a distinct mode  , , ,m m mk U W , multiply eq. (A2a) by mU  and (A2b) by mW  

and add these two equations, then integrate the result over the thickness. Integrating again 
by parts and taking into account whatever boundary conditions may apply, we obtain 
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 

   

2

0 0

2

0 0

2

2 0

h h
n m n m

m n m n m n m n

h h
m n m n

n m n m n

dW dW dU dU
k U U W W dz k U U W W dz

dz dz dz dz

dU dU dW dW
dz U U W W dz

dz dz dz dz

    

    

                     
        

 

 
 

           (A4) 
Interchanging the indices ,m n  and subtracting the resulting expression from one another, 
we obtain 
 

   2 2

0
0

h

m n m n m nU U W W dz           (A5) 

 
which leads immediately to the first orthogonality condition 
 

  
0

1

0

h

m n m n mn

m n
U U W W dz

m n
 


    

      (A6) 

 
where we have chosen to scale the eigenvectors so that they have a unit modal mass.  
Eqs. (A4) and (A6) imply in turn the second orthogonality condition 
 

 

 

2

0 0

2
2

0

2

2
0

h h
n m n m

m n m n m n m n

h
nm n m n

mn n

dW dW dU dU
k U U W W dz k U U W W dz

dz dz dz dz

m ndU dU dW dW
dz

dz dz dz dz m n

    


    

                     
           

 


 

           (A7) 
We define the coefficients 
 

 

 

 

 

0

0

0

0

2

2

h

mn m n m n

h
n n m m

mn m m n n

h
m n m n

mn

h

mn m n m n mn

a U U W W dz

dW dU dW dU
b U W U W dz

dz dz dz dz

dU dU dW dW
g dz

dz dz dz dz

m U U W W dz

  

   

  

 

     

           
    
     

  









  (A8) 

 
which  are symmetric in ,m n  (i.e. mn nma a  etc.).  In terms of these coefficients, eq. A7 
can be written in compact form as 
 
 2 2

mn mn mn n mna k b k g            (A9) 
 
It should be noticed that all of these expressions and properties apply no matter how the 
material properties change with depth and whatever the boundary conditions. 
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Derivatives with respect to wavenumber: 
Consider next the derivative of eq. (A6) with respect to the horizontal wavenumber, 
which we designate with single primes: 
 

  
0

0
h

m n m n m n m nU U W W U U W W dz            (A10) 

 
Expressing the modal derivatives in terms of the modes with modal coordinates jm , i.e.  

 

1
m j jm

j






 f f   or 
1

m m
jm

jm m

U U

W W






   
      
      (A11) 

we obtain 
 

     
0

1

0
h

j n j n jm m j m j jn
j

U U W W U U W W dz  




        (A12) 

 
and because of the first orthogonality condition, this reduces to 
 

  
1

0jn jm jm jn
j

   




          (A13a) 

or 
 0nm mn            (A13b) 

so 
0,nn nm mn            (A14) 

 
In a similar fashion we can also write down without much ado the derivatives of the 
coefficients (A8), which are: 
 

  
1

mn jn jm jm jn
j

a a a 




   ,  
1

2nn jn jn
j

a a 




    

 
1

mn jn jm jm jn
j

b b b 




     
1

2nn jn jn
j

b b 




       (A15) 

 
1

mn jn jm jm jn
j

g g g 




     0mnm   

 
Hence, the derivative of eq. (A9) is 
 

    2 2

1 1

2 2 0mn mn n n mn jm jm jm jn jn jn jn jm
j j

a k b a k b k g a k b k g    
 

 

           

           (A16) 
Now, since each term in the summations satisfies equation A9, then 
 
 2 22 2 0mn mn n n mn m mn n nma k b                 (A17) 
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and with eq. (A14) 
 

 2 22 2mn mn mn m n mn n na k b                (A18a) 

2 2nn nn n na k b            (A18b) 
so 

 
2 2

2 mn mn
mn

n m

k a b


 





, m n   and 
1
2nn nn

n
n

k a b



    (A19) 

 
At any cutoff frequency that is not repeated, 0nnb   because for 0k  , a horizontal mode 
S has no vertical P components and vice-versa. Hence, 0n   at all non-repeated cutoff 
frequencies, and this is true for any boundary conditions and whether the system is 
layered or homogeneous. Thus, all non-repeated cutoff frequencies are ZGV modes. 
Consider next the derivative of (A18b): 
 
  21

2nn nn nn n n na ka b                (A20) 

or 

  2

1 1

2nn jn jn jn jn n n n
j j

a k a b    
 

 

           (A21) 

In particular, at all non-repeated cutoff frequencies and using (A19) 
 

 
2

2 2
1,

1 jn
n nn

j j nn j n

b
a

  



 

 
   

  
 ,  0k  , 0n      (A22) 

 
Exceptional modes 
Consider next the variation with the horizontal wavenumber of the contribution of a 
single mode to the displacement vector at a ZGV location in the spectrum, i.e. a point 
where 0n  : 
 

 
            i i i,

e i e en n nt kx t kx t kxn
n n n

k
x z

k k
          

 
u

f f f y    (A23a) 

i
n

n
n

U

W

 
   

f          (A23b) 

 
whose spatial- x  derivatives are 
 

        i ie i en nt kx t kx
nz k

x
        

y y f      (A24a) 

        
2

i i2
2

e 2 en nt kx t kx
nz k k

x
        

y y f      (A24b) 
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Following Tassoulas and Akylas, we now claim that   in nz x y f f  is an exceptional 

mode at points of ZGV, including those at which the wavenumber is not zero. To 
demonstrate this, we begin by substituting (A23, A34) into equations (A1), and after brief 
algebra we obtain  
 

   

   
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                     
                       

  (A25a) 

and 
 
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                      
                    

  (A25b) 

Now, the terms in brackets multiplied by i x are the equations (A2) for the nth mode, so 
they vanish identically. Hence 
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  (A26a) 
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On the other hand, taking the derivative of eqs. A2 with respect to k , we obtain 
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   (A27a) 

and 
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     

     
 

                 
    

  (A27b) 

 
Comparison of (A26a,b) with (A27a,b) indicates that they agree perfectly provided that 

0n  , i.e. that the point is a ZGV point.  We rush to add, however, that although the 
exceptional mode does satisfy the equations of motion at ZGV points and thus represents 
a resonant condition of the medium at that wavenumber and frequency, by itself the 
derivative of the ZGV mode is not a mode in the sense that the terms in braces in eqs. 
(A26a,b) do not vanish. Tassoulas and Akylas discuss the exceptional modes at length 
and make references to experiments where such modes have been clearly observed. 

 

Appendix B:  

Thin Layer Method (TLM) 
A most convenient tool to obtain the Rayleigh-Lamb spectrum for any horizontal 
wavenumber k  is what is now referred to as the thin-layer method (TLM), which 
employs a finite element formulation in the direction of depth (i.e. layering), yet a 
continuous solution in the horizontal, unbounded direction [9-12]. In the TLM, the 
layered system is characterized by an algebraic, secular equation of the form (Waas [9], 
1972), 
 

  2 2ˆik k    A B G M v 0        (B1) 

in which i 1  , and all matrices are real, narrow-banded and block-tridiagonal which 
depend solely on the material properties, the order of the FE expansion, and the thickness 
of the thin layers. With the exception of B̂  that is anti-symmetric, all other matrices are 
symmetric, ,A M  are both positive definite, and G  is positive semi-definite (definite, if 
the system does not allow rigid body modes). By a simple similarity transformation 
involving the substitution Tvf  with a diagonal matrix  1, i,1, i,diag  T  , it can be 

shown that ˆiB TBT  becomes real and symmetric, the transformation does not affect 
any of the other matrices, and equation (B1) simplifies into the fully real and symmetric 
form 
  2 2k k    A B G M 0f        (B2) 

 
This leads to a standard real and symmetric eigenvalue problem (EVP) for Lamb waves 
of the form 
 
 2

j j jK Mf f ,    2k k k  K A B G      (B3) 
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which can readily and effectively be solved with modern tools, say those in Matlab, even 
when hundreds or thousands of thin layers are used, and for any boundary conditions. 
The cutoff frequencies are obtained by setting 0k  , in which case the modal 
components uncouple into transverse S-modes and longitudinal P-modes. 

Perturbation analysis 
 We now proceed to write down perturbation formulas obtained by taking the first and 
second derivatives of eq. (B3) with respect to wavenumber, which we designate by 
means of single and double primes. The result is 
 

   22 j j j j j       K M K M 0f f       (B4a) 

 

      2 22 2 2j j j j j j j j j                 K M K M K M 0f f f   (B4b) 

 
where 2 k  K A B , 2 K A .  Expanding the vector derivatives as j j i ij   f F f , 

multiplying the above two equations by T
jf  and considering standard orthogonality 

conditions as well as the eigenvalue problem itself together with normalized modes 
1T

jj j jm  Mf f  , we are readily led to 

 

 
2

jj j
j gr

j

d
V

dk

 
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


    ,  21
2 2 2

1 jn nj
j jj j

n jj n j

 
  

  

  
     

  
   (B5a) 

2 2

ij
ij ji

j i


 

 


  


  , 0jj        (B5b) 

 2T
ij i j ij ija k b    Kf f  2T

ij i j ija   Kf f     (B5c) 
T

ij i ja  Af f ,   T
ij i jb  Bf f      (B5d) 

 
Although the matrices in the eigenvalue problem are organized from top to bottom by 
interfaces, it is convenient for the purposes of our analysis –even if not for the solution of 
the eigenvalue problem itself– to organize these instead by degrees of freedom, 
separating the horizontal x  from the vertical z  degrees of freedom. After this is done, we 
are led to matrices and bilinear forms with the following structure: 
 

x

z

 
  
 

A O
A

O A
,  xz

zx

 
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B O
,  x

z

 
  
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G O
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O G
,  x

z

 
  
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M O
M

O M
,  xj

j
zj

 
  
 

f
f

f
 

          (B6a) 
 T T

ij xi x xj zi z zja  A Af f f f ,  T T
ij xi xz zj zi zx xjb  B Bf f f f   (B6b) 

 
It is further convenient to distinguish between longitudinal and transverse modes, which 
can be accomplished by means of Greek sub-indices ,  . Then, at the cutoff frequencies 

0k  , the modes uncouple into pure P and S modes for which x z   0f f , in which case 
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T
z z za   Af f , T

x x xa   Af f , 2 T
x xz zb b     Bf f , and 0b b   .  An exception to 

the latter identity is observed whenever two cutoff frequencies for P and S modes should 
coincide, a situation that can occur at isolated points when the ratio of wave velocities 

/P SC C  is a rational number.  In that case, the previous formula 0b   would apply to 

that pair.  
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