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by 
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Abstract 
This article presents a generalization of the Thin-Layer Method (TLM) to three dimensions, a 
tool that allows assessing layered media subjected to loads eliciting non-symmetrical wave-
fields. It is based on a formulation which fully couples the three components of motion, and 
allows finding effective solutions to either stationary or moving loads of arbitrary shape that act 
on —or within— horizontally layered media. In particular, it is an ideal tool for finding 
analytical solutions to the so-called 2.5D problem, which entails loads with arbitrary distribution 
in one horizontal coordinate direction together with a harmonic (sinusoidal) variation in the 
other. Inasmuch as the Green’s functions for the latter case are found explicitly in the spatial 
domain without recourse to numerical integration, it allows using such functions —most likely in 
the context of the boundary element method (BEM)— as fundamental solutions for problems of 
soil-structure interaction where the structure is invariant in one horizontal direction, such as a 
railroad track resting on an embankment. The method entails solving at each frequency of 
interest two uncoupled eigenvalue problems for generalized SH and SVP waves, after which the 
fundamental solutions are obtained in closed-form at any desired point in space. Inasmuch as the 
proposed technique dispenses with at least one of the two inverse Fourier transforms into the 
spatial domain, in due time the methodology presented is likely to become the preferred tool for 
a wide class of problems. The technique is first benchmarked against the known solution for a 
point load and then applied to a rectangular and triangular load distribution. 

1. Introduction 
The literature on the problem of dynamic loads within homogeneous elastic half-spaces and 
more generally, of sources acting within layered and/or vertically inhomogeneous media is very 
rich indeed, and there exist innumerable papers and monographs on the calculation of the wave 
field elicited by such loads. Besides strictly numerical solutions, such as finite element and finite 
differences models augmented with absorbing or transmitting boundaries —and more recently, 
discrete models coupled to perfectly matched layers (PML)— the vast majority of the solution 
strategies is based on either propagator matrices [1,18], global matrices [15], stiffness matrices 
[4], or the Thin-Layer Method (TLM) [5,6,9,10,13,14,19]. To the casual reader then, it would 
seem that there is already a vast arsenal of tools available by means of which one could tackle 
just about any problem. While there may be some truth to this perception, the fact remains that 
when one steps up the calculations from two dimensions into three (i.e. attempts to solve 
problems other than those of plane strain, or with cylindrical symmetry), the computational effort 
exhibits a substantial jump, which renders even modern computers ineffective for certain classes 
of problems. For example, a source problem involving time-harmonic line or point loads can be 
solved effectively by means of a single spatial Fourier or Hankel transform —even if in the case 
of layered media this may not be a trivial undertaking— whereas non-symmetrical loads, such as 
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rectangular or irregular loads involve two such transforms, which raises enormously the cost and 
difficulty of the computation and at the very least may render it at impractical. It will be shown 
that when the TLM is put to the task at hand, it is possible to carry out at least one of the two 
Fourier transforms in closed form. This reduces the computational effort to that of a series of 
plane-strain problems supplemented by a numerical transform over the third spatial direction. In 
other words, the 3D problem is solved as an aggregate of 2D problems of manageable size. To 
the best of the writers’ knowledge, there is no other numerical solution at present possessing 
these computational advantages.  
 
The TLM is an efficient semi-analytical method for the calculation of the fundamental solutions 
for layered media. It consists in expressing the displacement field in terms of a finite element 
expansion in the direction of layering together with analytical descriptions for the remaining 
directions. In essence, the TLM is a discrete version of the normal modes method familiar to 
geophysicists, but it differs from it in that the normal modes associated with generalized SH and 
SVP waves are obtained directly from the solution of two algebraic eigenvalue problems 
involving narrowly banded matrices, and not by means of search techniques. Thus, the modal 
superposition involves both the propagating as well as the evanescent modes, which in turn 
allows accurate computations of the displacement field not only in the distant far field, but also 
at close distances from the source. At its inception the method was limited to stratified media of 
finite depth, but when paraxial boundaries became available, they allowed consideration of strata 
underlain by elastic half-spaces [2,16]. A brief historical account of this method can be found in 
[10,11]. In the interest of greater generality, the ensuing sections will present the theory for a 
material which is transversely isotropic (i.e. cross-anisotropic) with respect to horizontal planes. 

2. Wave equation in 3-D Cartesian coordinates 
Consider a vertically inhomogeneous (or even homogeneous) medium of infinite lateral extent, 
and at least for now, of arbitrary but finite depth, i.e. a stratum or a plate (to be extended to half-
spaces later on). It consists of a linearly elastic material characterized by a mass density   and a 

symmetric constitutive matrix    , 1,...,6ijd i j D . The medium is subjected to an arbitrary 

dynamic load b  placed at some location. With dots denoting partial derivatives with respect to 
time, the dynamic equilibrium equation at a point can be written compactly in matrix format as 
 
 T  u L σ b           (1) 
 
in which the displacement vector u , the stress vector σ  and the operator matrix L  are defined as 
  T

x y zu u uu          (2a) 

  T
x y z yz xz xy     σ        (2b) 
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We also consider the stress-strain and the strain-displacement relations 
 
 σ Dε            (3a) 

ε Lu            (3b) 

 T
x y z yz xz xy     ε        (3c) 
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where   and G  are the Lamé constants in the isotropic plane, while t  , tG , tD  are the Lamé 
constants and  the constrained modulus in the transverse direction. The conditions on the right 
guarantee the positive definiteness of D . When t  , tG G , and 2tD G  , the material 
reduces to an isotropic one.  Substituting these expressions into Eq. (1), we are led to the elastic 
wave equation in 3-D space 
 
 T  u L DLu b          (4) 
 
On the other hand, the differential operator L can be expressed as 
 

 x y zx y z

  
  

  
L L L L         (5) 

 
in which the coefficient matrices , ,x y zL L L  are trivially obtained by simple inspection of Eq. 

(2c). When the medium consists of homogenous layers, the material properties are piecewise 
constant with depth, in which case the term LTDL in Eq. (4) can be expanded as 
 

 
   

 

2 2 2
T

2

2 2 2

2 2

xx xy yx xz zx

yy yz zy zz

x x y x z

y y z z

  
    

    

  
   

   

L DL D D D D D

D D D D

     (6) 

 
with material matrices D  defined by 

 
 T , , , ,a x y z    D L DL         (7) 

 
Tables with the matrices D  for a cross-anisotropic material are given in Appendix I. On the 

other hand, the internal stresses in horizontal planes can be obtained as 
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  T T T
zx zy z z z    s L σ L DLu        (8) 

 
Thus, if one excises out any horizontal slice of the medium and treats it as a free body in space, 
dynamic equilibrium dictates the need to balance the internal stresses at the now exposed upper 
and lower surfaces by means of ad hoc external tractions, i.e. 
 

 u u

l l

   
       

t s
T

t s
         (9) 

 
where tu and tl are the external tractions applied at the upper and lower boundaries of the excised 
domain and su and sl the internal stresses at these same locations. 

3. Discretization in the vertical direction 
We proceed next to discretize the system in the vertical direction, subdividing the medium into 
horizontal layers which are thin in the finite element sense, i.e. which are small in comparison 
with the expected wavelengths and strain gradients. Thereafter, we consider an arbitrary thin 
layer as a free body in space (Figure 1) and express the displacement field within that layer by 
means of the interpolation ansatz 
 
 u NU           (10) 
 
in which  , ,x y U U  is a vector containing the nodal displacements (observe that the “nodes” 

here are actually horizontal surfaces) 
 
    T T T T

1 , , ,... , , 1,2m j j x j y j zu u u j m  U u u u      (11) 

 
and  zN N  is an interpolation matrix of the form 

 
  1 ... mN NN I I          (12) 

 
Figure 1: Discretization into thin layers, showing one thin-layer as a free body in space ( 3m  ). 
 
with Nj being the interpolation functions, which depend on the vertical coordinate z. Also, I  is a 
3 3  identity matrix, m is the number of nodal surfaces in each thin-layer, and 1m   is the 
interpolation order. When 2m   (i.e. quadratic or cubic thin layers), there exist inner surfaces 

h 

1 1,u t  

,m mu t  
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which are equidistant from each other. For example, m = 3 corresponds to a quadratic 
interpolation with one internal nodal surface, as shown in Figure 1, which depicts one thin layer 
as a free body in space, acted upon and dynamically equilibrated by appropriate tractions applied 
onto the nodal surfaces.  
 
When we substitute the interpolation (10) into the wave equation (4) and boundary conditions 
(9), we find that these equations are not satisfied exactly because the ansatz is only an 
approximation to the actual field, so we find unbalanced body forces r  and boundary tractions q  
of the form 
 
 T  b u L DLu r          (13) 
 

 1 1 1

m m m

     
            

t s q
q

t s q
        (14) 

 
The discrete wave equation is now obtained by application of the method of the weighted 
residuals and requiring the virtual work done by the unbalanced forces within the thin-layer and 
on its bounding surfaces to be zero. This results in the discrete, single thin-layer equation 
 

 
2 2 2

2 2xx xy yy x yx x y y x y

    
      

     
U U U U U

P MU A A A B B GU    (15) 

 
where the vector P  contains the consistent external tractions at the interfaces of the thin-layer 
(which result from the external tractions t  and the body loads b ), while the thin-layer matrices 
M , A , B  and G  are given by 

 T

0

h

dz M N N          (16a) 

 T T

0

, ,
h

dz x y   A N D N        (16b) 

  T

0

h

xy xy yx dz A N D D N         (16c) 

 T T

0 0

, ,
h h

z zdz dz x y       B N D N N D N       (16d) 

 T

0

h

zz dz  G N D N          (16e) 

 
in which h is the thickness of the thin-layer and d

dz
 N N . Appendix II tabulates the above 

matrices for an individual thin layer consisting of a cross-anisotropic material and considering 
both a linear and quadratic interpolation, i.e. 2,3m  , respectively. After the individual matrices 
are overlapped in the usual finite element sense (i.e. layer by layer and in the natural top down 
order of the interfaces), one is led to a narrowly banded set of global system matrices and vectors 
which characterize the complete stack of thin layers. The resulting system of partial differential 
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equations has the same form as Eq. (15), but its shape is now block-tridiagonal and has a 
correspondingly larger number of equations. To avoid proliferation of symbols, in the ensuing 
we shall continue to use Eq. (15) as written, but with the implicit understanding that it now refers 
to the complete assembly of thin layers.  
 
Having obtained the system of equations for a layered system of finite depth, we proceed next to 
extend it without much ado to layered systems underlain by infinitely deep, homogeneous half-
spaces, making use for this purpose of paraxial boundaries attached at the bottommost interface, 
which together with transition (buffer) layers provide a close approximation to the impedance 
(dynamic stiffness) of that underlying half-space. Details on these boundaries and their use in the 
context of the TLM can be found in [2,7,8,16]. 

4. System equation in wavenumber domain and eigenvalue problem 
To solve the system Eq. (15), we proceed to express the displacements U and external tractions P 
in the frequency-wavenumber domain, i.e. we carry out the Fourier transformations 
 

      i
, , , , x yt k x k y

x yk k x y t e dx dy dt


  
  

  

   U U      (17a) 

      i
, , , , x yt k x k y

x yk k x y t e dx dy dt


  
  

  

   P P      (17b) 

 
after which  Eq. (15) changes into 
 

    2 2 2ix xx x y xy y yy x x y yk k k k k k         P A A A B B G M U     (18) 

 
where i 1  . All matrices in this expression are symmetric, except for xB  and yB  which are 

skew-symmetric. Although this system could be solved for U  as is, it is both possible and 
convenient to first change the system of equations into a fully symmetric form by means of a 
similarity transformation, which can be shown to preserve all eigenvalues of the characteristic 
equation. This is accomplished by multiplying every third row of the system (18) by i  and 
every third column by i , an operation which solely affects the vectors P  and U  and the matrices 

xB  and yB , while leaving the other matrices unchanged. As a result of this transformation, the 

system of equations changes into 
 

  2 2 2
x xx x y xy y yy x x y yk k k k k k         p A A A B B G M u       (19) 

 
where p  and u  are obtained from P  and U  by multiplying every third row by i . Also, xB  and 

yB  are obtained from xB  and yB  by simply reversing the sign of every third column [Note: in 

comparison with previous works on the TLM, we use here a reversed sign for the i  factor, for 
reasons of convenience]. After solving the system of Eq. (19), U  is recovered by multiplying 
every third row of u  by i ,  at which time the displacements in the space-time domain can be 
obtained —at least formally— from the triple inverse Fourier transform 
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   i

3

1
, , , ,

2
x yt k x k y

x y x yx y t k k e dk dk d
 



  
 

  

   U U     (20) 

 
In the ensuing we shall provide a closed-form solution to the inner inversion of Eq. (20), relying 
for this purpose on a pair of eigenvalue problems which do not depend on the two horizontal 
wavenumbers ,x yk k . As a first step in that direction, we begin by re-arranging the order of the 

degrees of freedom, grouping first all horizontal-x, then all horizontal-y, and finally all vertical-z 
degrees of freedom. We do this ad-hoc change solely to reveal the special structure possessed by 
the matrices in Eq. (19) and the implications that this structure has on the eigenvalue problems. 
Once that task is accomplished, we revert to the usual grouping of degrees of freedom by 
interface, and not by coordinate direction, to minimize the bandwidth of the equations. After the 
stated regrouping is accomplished, we find that the matrices attain the following structure: 
 

x

xx y

z

 
   
  

A O O

A O A O

O O A

,  
y

yy x

z

 
   
  

A O O

A O A O

O O A

,  
x y

xy x y

 
   
  

O A A O

A A A O O

O O O

 

x
T

 
   
  

O O B

B O O O

B O O

 ,  y
T

 
   
  

O O O

B O O B

O B O

 ,  
i

x

y

z

 
   
  

u

u u

u

  

x

y

z

 
   
  

G O O

G O G O

O O G

,  
x

y

z

 
   
  

M O O

M O M O

O O M

,  
i

x

y

z

 
   
  

p

p p

p

    (21) 

 
where O  is the null matrix, x yG G , x y z M M M . In addition, all sub-matrices are block-

tridiagonal and symmetric, except for B  which is not symmetric. 
 
Consider again Eq. (19) and set the right hand side to zero, replace the displacement vector u  by 
an as yet unknown modal vector f , and interpret the result as an eigenvalue problem in the two 
horizontal wavenumbers for some fixed frequency  : 
 

 2 2 2
x xx x y xy y yy x x y yk k k k k k       A A A B B G M 0  f     (22) 

 
In particular, consider the eigenvalue problem which is obtained by setting 0yk  , xk k . 

Because of the structure of the matrices, this results in the two uncoupled eigenvalue problems 
 

2 x x x

T
z z z

k k
                     
          

A O C OO B 0

O A O CB O 0

f

f
     (23a) 

 2
y y yk  A C 0f          (23b) 

 
where we have used the shorthand 



 8

2
x x x C G M ,  2

y y y C G M , 2
z z z C G M    (24) 

 
Eqs. (23a,b) constitute, respectively, the eigenvalue problems for the normal modes of 
generalized Rayleigh (or SVP) and Love (or SH) waves in the stratified medium. 
 
On the other hand, if we set instead 0xk  , yk k  and consider again the special structure of the 

matrices given above, we are led once more to the very same two eigenvalue problems, an 
observation that will allow us to formulate the solution to the full eigenvalue problem in Eq. (22) 
in terms of the solutions to (23a,b). Indeed, with the polar representation of the wavenumbers 
 

 2 2
x yk k k  ,  cosxk k  ,  sinyk k      (25) 

 
then for any fixed wavenumber direction  , we can show that the eigenvalue problem in Eq. 
(22) admits eigenvectors of the form 
 

 
cos

sin
xj

j xj

zj




 
   
 
 

f

f f

f

 with  Rjk k  = eigenvalues of (23a), i.e. Rayleigh modes (26a) 

 
sin

cos
yj

j yj




 
   
 
 0

f

f f  with  Ljk k  = eigenvalues of (23b), i.e. Love modes (26b) 

 
in which j  is a modal index whose maximum number (= the number of modes) depends on the 
number of thin layers, on their expansion order, and on the boundary conditions. The proof of 
(26a,b) follows by simply substituting these eigenvectors into the expanded form of Eq. (22). For 
example, substituting the Rayleigh solution (26a), we obtain 
 

   
   

  

2 2

2 2

2 2

cos sin

cos sin

cos sin

x x y y x xj x y x y xj x zj

x y x y xj x y y x y xj y zj

T T
x xj y xj x y z z zj

k k k k k

k k k k k

k k k k

 

 

 

     

     

    

A A C A A B 0

A A A A C B 0

B B A C 0

f f f

f f f

f f f

   (27) 

 
With the polar equivalences for ,x zk k  and identities x yC C , the above simplifies to 

 

 
 

 

2

2

2

cos

sin

x x xj zj

x x xj zj

T
xj z z zj

k k

k k

k k





    
    

  

A C B 0

A C B 0

B A C 0

f f

f f

f f

       (28) 

 
We observe that the first two are identical to the first equation in (23a), while the third equals the 
second equation therein. A similar proof applies to the Love modes. Next, we rewrite the 
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quadratic eigenvalue problem (23a) as a linear eigenvalue problem in 2k , albeit with non-
symmetric matrices, so it will admit distinct right and left eigenvectors: 
 

 2 x x x
T

z z z

k
k

                  
         

A O C B 0

B A O C 0

f

f
  Right eigenvectors  (29a) 

 2 x xT T
x z T

z z

k k
                   

A O C B
0 0

B A O C
f f  Left eigenvectors  (29b) 

 
With the shorthand  T T T

x zk   f fl  and T T T
x zk   f fr  for the left and right eigenvectors, 

respectively, the eigenvalue problem attains the two complementary forms 
 
  2T

j Rjk  A C 0l  and  2
Rj jk  A C 0r      (30) 

 
or in matrix notation 
 
 2 T T

R  K L A L C O ,  2
R  A R K CR O      (31) 

 
where 

 x
T

z

 
  
 

A O
A

B A
,  x

z

 
  
 

C B
C

O C
      (32a) 

   x R
j

z

 
   

 

K
L

F

F
l ,    x

j
z R

 
   

 
R

K

F

F
r      (32b) 

  1 2, ,x x x F f f    1 2, ,z z z F f f ,  1 2diag , ,R R Rk kK    (32c) 

 
The modes in (32b,c) are scaled in such a way that they satisfy the orthogonality conditions 
 
 T

RL A R K ,   3T
R L CR K       (33) 

 
Similarly, the Love wave eigenvalue problem in Eq. (23b) can be written in matrix form as 
 
 2

y y L y y A K C OF F ,   1 2, ,y y y F f f ,  1 2diag , ,L L Lk kK    (34) 

 
in which the modal matrices satisfy the orthogonality and normalization conditions 
 
 T

y y y A IF F ,   2T
y y y L C KF F       (35) 

5. Fundamental solutions in wavenumber domain 
We proceed next to combine the eigenvectors for the two eigenvalue problems into one, which 
leads us to an augmented set of matrices, plus left and right eigenvectors plus orthogonality 
conditions —compare with Eqs. (26a, 26b, 33, 35): 
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xx xy

xy yy
T T
xz yz z

 
   
  

A A O

A A A O

B B A

,  
xx xz

yy yz

zz

 
   
  

C O B

C O C B

O O C

,  

 diag

R

L

jk

 
  
 



K O
K

O K  (36a) 

with 
 2 2cos sinxx x y  A A A   2 2

xx yy x x y y     C C G M G M  

 2 2sin cosyy x y  A A A   2
zz z z C G M  

  sin cosxy x y   A A A   sin /yk k       (36b) 

 cosxz B B     cos /xk k   

 sinyz B B     2 2
x yk k k   

 

 
cos sin

sin cos
x y

x y

z R

 
 

 
   
 
 

R

K O

F F

F F

F

, 
cos sin

sin cos
x R y

x R y

z

 
 

 
   
 
 

K

L K

O

F F

F F

F

   (36c) 

 

 RT  
   

 

K O
L A R J

O I
, 

3
2

2

T R

L

 
    

 

K O
L CR JK

O K
    (36d) 

 
We are now ready to attempt the inversion of Eq. (19). For this purpose, we first rewrite it as 
 

  * 2 *k p A C u , *

i

x

y

zk

 
   
  

p

p p

p

,  *

i

x

y

zk

 
   
  

u

u u

u

    (37) 

 
and proceed to express the displacements in terms of the normal modes, weighted with as yet 
unknown participation factors G : 
 
 * u RG           (38) 
 
Using the orthogonality conditions and solving for the participation factors, we obtain 
 

     * 2 2 2 2T T T Tk k k     L p L A C R L AR L CR J I KG G G     (39a) 

   12 2 1 * 1 *T Tk
    I K J L p DJ L pG ,       (39b) 

  12 2
2 2

1
diag diagj

j

D k
k k

  
          

D I K       (39c) 

Hence  

 * 1 *Tu R DJ L p , 
1

1 R R

L


  
  
 

D K O
DJ

O D
      (40) 

or in full 
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1

cos sin
cos sin

sin cos
sin cos

i i

x x y xT T T
R x R x zR R

y x y yT T
y yL

z z R zk k

 
 

 
 


     

                            

u p
K KD K O

u p
OO D

u K O p

F F
F F F

F F
F F

F

 

            (41) 
Observe that the modal shapes do not depend on the horizontal wavenumbers, i.e. they do not 
depend on  .  Hence, the response in the wavenumber domain is 
 

   2 1 2cos sin cos i cos sin sin cosT T T
x x R x x y x R R z z y L y x yk          u D p p D K p D p pF F F F F F  

   2 1 2sin cos sin i sin sin cos cosT T T
y x R x x y x R R z z y L y x yk          u D p p D K p D p pF F F F F F  

 1i cos sinT T
z z R R x x y z R z zk    u K D p p D pF F F F            (42a,b,c) 

 
and we have thus succeeded in inverting Eq. (19).  Now, as it was already shown in [4, eq. 34], 
the Rayleigh (SVP) eigenvalue problem satisfies —among several other relationships— the 
orthogonality condition 1 T

z R x
 K OF F . Thus, it follows that 

 
  1 1 1 2 2 1 2 1T T T T T

z R x z R R R x z R R R x z R R x z R R xk k         K D D K I K K D K D K D OF F F F F F F F F F  

so 

 11 T T
z R R x z R R xk

k
K D K DF F F F  

which means that (42c) can also be expressed as 
 

  1i cos sinT T
z z R R x x y z R z zk    u K D p p D pF F F F      (42d) 

 
which in most cases is more convenient than (42c). 
 
   Table 1: Kernels of fundamental solutions 

 
In the ensuing, it will be implicitly understood that the eigenvalue problem for Rayleigh (SVP) 
waves will result in eigenvectors xjf , zjf  whose components at the thm  elevation and thj  mode 
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1
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j j

yx
j j j j
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are written as ,m m
xj zj   and their eigenvalues are j Rjk k , while the corresponding eigenvectors yjf  

for Love (SH) waves will have components written as m
yj  with eigenvalues j Ljk k ; this is to 

conform with the customary symbols used in earlier works on the TLM.  Also, in the light of Eq. 
(39b) and Eq. (42a-d), it is convenient to define the set of kernels njK given in Table 1. 

 
From Eq. (42a-d) and in terms of these kernels, we can express the fundamental solutions 

 , ,mn
x yG k k   at the thm  elevation in direction   due to a unit load applied at the thn  elevation in 

direction   as listed in Table 2. 
 
  Table 2: Fundamental solutions in frequency-wavenumber domain 

6. Inversion of fundamental solutions into the spatial domain 
Having obtained the fundamental solutions explicitly in terms of the two horizontal 
wavenumbers, we now proceed to carry out the inverse Fourier transforms for the displacements 
elicited by arbitrarily distributed load into the spatial domain. For this purpose, we take 
advantage of the linearity of the underlying operators, in which case superposition applies. Thus, 
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Of these two inverse transforms, we shall be able to accomplish at least the first one in closed 
form for various load configurations of engineering interest, and in special cases even both, say 
for a point load.  To verify the correctness of the formulae, we evaluate first the fundamental 
solutions for point loads, for which the exact expressions in cylindrical coordinates are already 
available. Thereafter, we present the results for a rectangular load (which exhibits double 
symmetry, albeit not of the cylindrical kind) and for a triangular load, which is non-symmetric in 
the y  direction. 

  Table 3: Point load, inverse Fourier transforms in xk , 2 2Im 0j yk k   
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evaluating the various integrals by means of contour integration in either the lower (for 0x  ) or 
upper (for 0x  ) complex wavenumber plane xk , we obtain the formulas given in Table 3, with 

jk  standing for either the Rayleigh or the Love poles, as may be appropriate. We then go on to 

evaluate the integral in eq. (44b), which for a point load can also be done in closed form. 
However, inasmuch as the details of integration are rather lengthy and complicated, they are best 
relegated to Appendix III. It is found that the inverse Fourier transforms in yk  are as listed in 

Table 4. These expressions are in agreement with the known formulas for a point load [3], so this 
confirms the correctness of the current formulation. 

 
Table 4: Point load, inverse Fourier transforms in yk  

 
b) Rectangular load 
Consider next a uniform rectangular load of dimension 2 2a b  whose sides are parallel to the 
directions ,x y  respectively. The load acts either in the horizontal or vertical direction, centered 
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Omitting the term in yp  , the Fourier inversion in xk  results now in the integrals in Table 5. 
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Table 5: Rectangular load, integrals in xk , 2 2Im 0j yk k   
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c) Triangular load 
Consider next the uniform triangular load shown in Figure 2.  

 
Figure 2: Triangular load 

 
The wavenumber content of such load can be shown to be given by 
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In the ensuing, we shall use the symbol x  as a dummy function argument which will stand for 
either x , x a  or x a . Also, we shall use a sub-index   to denote the optional sign of certain 
arguments. The evaluation of the inverse Fourier transforms in xk  can be accomplished using 
contour integration in an appropriate complex half-plane, a somewhat tedious process which 
requires finding the residues of the various poles of the integrand while accounting properly for 
the signs of x  and x a  as well as the sign of yk . For example, the first integral has poles at 

/x yk k h a   and 2 2
x j yk k k   . After this is done, the inverse Fourier transforms are found to 

be as follows: 
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for which the requisite integrals are given in Table 6 (using numerical integration, we have 
verified that these formulas are correct). 
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   Table 6: Triangular load, auxiliary integrals over xk , 2 2Im 0j yk k   
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7. Examples of application 
We proceed to demonstrate the method described herein by means of three numerical examples. 
The first is for validation purposes, and deals with the response to a point load of a homogeneous 
full-space in  , , ,yx k z   domain, for which a closed form solution exists. The second and third 

examples also deal with a full space, but this time subjected to distributed square and triangular 
loads, which are compared against the results obtained by numerical integration of the exact 
point load solution available in the literature [12]. 
 
a) Harmonic line load in a homogeneous full-space 
Consider an isotropic full-space with mass density 1  , shear modulus 1G   and Poisson’s 

ratio 0.25  , subjected to a time harmonic line load        , , , exp i i yx y z t x z t k y   b . The 

exact solution to this problem in the  , , ,yx k z   domain can be found in [12, 17]. Here, we 

compute the displacements in the horizontal plane 0z   at horizontal distances 0.01x  , x   
and 5x   for a line load applied at the origin with excitation frequency 1f   Hz i.e.  2  . 

The reference wavelength for this example is  / 1SC f   , where / 1SC G    is the shear 

wave velocity. 
 
To avoid discretization effects —about which a discussion can be found in [11]— the full-space 
is modeled with an elastic layer with thickness 20m, subdivided into 200 thin-layers with a 
quadratic expansion, which is supplemented by means of paraxial boundaries at its upper and 
lower horizons that simulate the infinite extent of the medium. This gives about 10 quadratic 
thin-layers per wavelength, which is more than enough to obtain accurate results. Also, inasmuch 
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as the exact solution is singular under the load yet it is finite in the discrete solution, we place the 
closest receiver at 0.01x  . In the TLM model, the load is applied at the middle surface. To 
avoid strong oscillations in the response, a small amount of damping 0.005P S    is added, 
which renders the wave velocities complex. Figures 3a, 2b and 3c depict a comparison of the 
vertical displacements due to a vertical load obtained by the current procedure and by the 
analytical solution. 

0 2 4 6 8 10 12 14 16 18 20
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

k
y

u zz

 

 

RE(u
zz

) - TLM

IM(u
zz

) - TLM

RE(u
zz

) - Theor.

IM(u
zz

) - Theor.

 
Figure 3a: Displacements at 0.01x   
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Figure 3b: Displacements at x   
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Figure 3c: Displacements at 5x   

 
As can be seen from Figures 3b and 3c, the match between the exact solution and the TLM 
solution is supremely good, to the point that one can hardly distinguish between the two results. 
Nonetheless, very near the load (Figure 3a) one can observe a rather small difference in the real 
part which is due to discretization effects. This is because the thickness of the thin layers is only 
0.1  while the receiver is placed at one tenth of that distance from the source. Still, given the 
excellent quality of the comparison even at that short range, this demonstrates the robustness of 
the TLM solution, especially in the light of the paraxial boundaries being used.  
 
Observe that at large distances the response decays very fast with the wavenumber yk  beyond 

the threshold /S Sk C  (the branch point), while below that value the response is highly wavy. 
Hence, when computing the inverse transform from yk –space into y–space for remote points, 

one can truncate the integrals at the branch point; but then again because of the rapid oscillations 
one must consider a sufficiently dense number of points below that threshold. Conversely, for 
receivers at close range, the response functions are less wavy, but they also decay more slowly 
with yk . Hence, their Fourier inversion must include points beyond the branch point even if one 

can get away with coarser spacing. 
 
b) Square load within a homogeneous full-space 
Consider again the full-space of the previous example, but now acted upon in the 0z   plane by 
a square load of size    acting in the y direction. Using the same model as in the previous 
example, we determine the displacements in the y direction for receivers placed in the plane 

0z   at ranges 0x   (axis), 1
2x   (edge of load) and 5x  . The displacements obtained with 

the TLM are compared with the results obtained by integrating the exact point load solution [12] 
over the loaded area. Figures 4a-c show on the left the transfer function in yk (i.e. before 

multiplication by the load spectrum) and on the right the displacements obtained by the two 
different approaches. 
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Figure 4a: Transfer function (left) and displacements in space domain (right), 0x   
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Figure 4b: Transfer function (left) and displacements in space domain (right), 1
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Figure 4c: Transfer function (left) and displacements in space domain (right),  5x   

 
From Figs. 4a-c we observe once more that the displacements obtained with the TLM are in 
excellent agreement with those obtained by numerical integration of the exact point load 
solution. Again, the transfer functions for receivers close to the load decay more slowly with yk , 

but are also less wavy than the functions for remote receivers, and these effects dictate the 
number of integration points in yk  needed. We emphasize that it is not necessary to repeat the 

calculation of the eigenvalue problems as yk  is changed.  

 
c) Triangular load within a homogeneous full-space 
Finally, we repeat the steps of the previous example, but this time considering a triangular load 
with height and base 2h a   , see Figure 2, and again we compute the response both with the 
TLM and by numerical integration of the exact solution. The displacements in x elicited by a 
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load in x are shown in Figures 5a-c as function of y, for receivers with ranges 0x  , 1
2x   

(corner of triangle) and 5x   (far field). This time the load is not symmetric in y, so the 
wavenumber spectrum of the load in yk is not symmetric either, which means that we must also 

calculate the displacements for negative wavenumbers. 
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Figure 5a: Transfer function (left) and displacements in space domain (right), 0x   
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Figure 5b: Transfer function (left) and displacements in space domain (right),  1
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Figure 5c: Transfer function (left) and displacements in space domain (right),  5x   

 
Figures 5a-c demonstrate yet again an excellent agreement between the two approaches. Also, in 
Figure 5b we observe a discontinuity of the displacement in the vicinity of y  , which 
corresponds to the corner of the triangle. In Figure 5c we can see that the displacements are 
almost symmetric with respect to 0.66y  , which corresponds to the center of gravity of the 
load. 
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8. Conclusions 
This article presented a generalization of the Thin-Layer Method (TLM) into a three-
dimensional, cross-anisotropic space for dynamic loads in layered media in which loads and 
displacements exhibit neither plane strain nor cylindrical symmetry. In general, the previously 
available numerical solutions for problems of this nature called for numerically intensive, double 
Fourier transforms in the two horizontal wavenumbers, which we may refer to as the longitudinal 
(x) and transverse (y) wavenumbers. The technique presented herein, however, circumvents 
much of that effort by being able to carry out at least one of those two transforms in closed form. 
Like the standard TLM formulation in plane strain and cylindrical geometry, the technique 
herein relies on the solution of two eigenvalue problems for generalized Rayleigh and Love 
waves, but inasmuch as these eigenvalue problems need not be repeated for each transverse 
wavenumber, the Fourier inversion in the remaining direction can be carried out very efficiently. 
Furthermore, this can be done for any range x, inasmuch as the transfer functions in , , ,yx k z   are 

already available everywhere. The technique is so efficient that we believe that in due time it will 
be regarded as the method of choice for this class of problems. In a companion paper to be 
submitted separately, the writers will apply the described algorithm to moving loads of arbitrary 
shape, obtaining results in the time domain by means of a single Fourier transform.  
 
If the examples presented were all for a full, homogeneous space it is because for that 
environment there exist exact solutions which can be used as benchmarks against which to assess 
the numerical solutions. In addition, the very close fit attained with the benchmarks 
demonstrated also the quality of the paraxial approximations used to model the infinite medium. 
It should be very clearly understood, however, that the computational effort and accuracy of the 
proposed technique will remain exactly the same if the medium had been chosen to be layered 
and consisting of transversely isotropic materials, or if the medium had been “simply” a half-
space, layered or not. In these cases, however, we no longer have reference solutions available 
for comparison. However, the efficiency of the algorithm does not at all depend on the 
heterogeneity in the vertical direction, i.e. in the direction of layering. 
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Appendix I – Matrices D  for cross-anisotropic materials 

With the constitutive matrix D defined by Eq. (3d), the matrices D  in Eq. (7) are 
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Appendix II: Thin-layer matrices for cross-anisotropic materials 
a) Linear expansion  
The shape functions for this case are 
 
 1N  ;  2 1N   ,  /z h   
 
where 0z   at the bottom surface of the thin-layer and z h  at the top surface. Evaluation of 
Eqs. (16a-d) results in the following thin-layer matrices: 
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The matrices D  used herein are defined in Appendix I. After assembling the elementary matrix 

B , the elementary matrix B  is obtained by changing the sign of every third column of B . 
 
b) Quadratic expansion 
The shape functions are now 
 
  1 2 1N    ,  2 4 1N    ,   3 1 1 2N     ,  /z h   

 
where again 0z   at the bottom surface of the thin-layer and z h  at its top surface. Evaluation 
of Eqs. (16a-d) results in the following elementary matrices: 
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Again, after assembling the elementary matrix B , the elementary matrix B  is obtained by 
changing the sign to every third columns of B . 
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Appendix III: Point load, Fourier integrals in ky 
The Fourier inversion of the point load solution over yk  is rather cumbersome, but is included 

here for the sake of completeness.  
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