
 1

MCT1-mediated transport of a toxic molecule is an effective strategy 

for targeting glycolytic tumors 
Kivanc Birsoy,1,2 Tim Wang,1,2,3 Richard Possemato,1,2 Omer H. Yilmaz,1,2 Catherine E. Koch,1,2  

Walter W. Chen,1,2 Amanda W. Hutchins,1,2 Yetis Gultekin,1,2 Tim R. Peterson,1,2 Jan E. 

Carette,1,6 Thijn R. Brummelkamp,1,7 Clary B. Clish,3 and David M. Sabatini1,2,3,4,5 

1Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, MA 02142, USA. 

2Department of Biology, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA. 

3Broad Institute, Seven Cambridge Center, Cambridge, MA 02142, USA. 

4David H. Koch Institute for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. 

5Howard Hughes Medical Institute, MIT, Cambridge, MA 02139, USA. 

6Current address: Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA. 

7Current address: Department of Biochemistry, Netherlands Cancer Institute, Plesmanlaan 121 1066 CX, Amsterdam, The 

Netherlands. 

To whom correspondence should be addressed.  Email:  sabatini@wi.mit.edu  

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/16519647?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2

SUMMARY 
There is increasing evidence that oncogenic transformation modifies the metabolic program of 

cells. A common alteration is the upregulation of glycolysis, and efforts to target glycolytic 

enzymes for anti-cancer therapy are underway. Here, we performed a genome-wide haploid 

genetic screen to identify resistance mechanisms to 3-bromopyruvate (3-BrPA), a drug 

candidate that inhibits glycolysis in a poorly understood fashion. We identified the SLC16A1 

gene product, MCT1, as the main determinant of 3-BrPA sensitivity. MCT1 is necessary and 

sufficient for 3-BrPA uptake by cancer cells. Additionally, MCT1 mRNA levels are the best 

predictor of 3-BrPA sensitivity and are most elevated in glycolytic cancer cells. Lastly, forced 

MCT1 expression in 3-BrPA resistant cancer cells sensitizes tumor xenografts to 3-BrPA 

treatment in vivo. Our results identify a potential biomarker for 3-BrPA sensitivity and provide 

proof of concept that the selectivity of cancer-expressed transporters can be exploited for 

delivering toxic molecules to tumors. 
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As a result of the rewiring of small molecule metabolism that accompanies oncogenic 

transformation, cancer cells acquire metabolic liabilities not shared by their normal 

counterparts1-4. There is great interest in identifying these liabilities and exploiting them for the 

development of new cancer-selective therapies5. Many cancer cells activate aerobic glycolysis 

and so exhibit high rates of glucose uptake and lactate excretion even when oxygen is available 

for oxidative phosphorylation6. Several glycolytic enzymes as well as the transporters that 

import glucose and export lactate are considered targets for drug development7-13. We 

undertook a loss of function genetic screen for genes that affect the sensitivity of cancer cells to 

3-bromopyruvate (3-BrPA), a drug candidate under clinical development14,15. 3-BrPA has 

cytotoxic effects and decreases cellular energy levels by inhibiting glycolysis in a poorly 

understood fashion16. In addition to glycolytic enzymes17-19, 3-BrPA can also inhibit several non-

glycolytic enzymes20-24 and, given its simple structure, is likely to have more than one direct 

protein target within cells. Thus, 3-BrPA is likely best characterized as a toxic molecule rather 

than a specific inhibitor of glycolysis. Here, we identify the SLC16A1 gene product, 

monocarboxylate transporter 1 (MCT1), as the main determinant of 3-BrPa uptake and 

sensitivity, leading us to propose the therapeutic strategy of using MCT1-mediated transport to 

deliver toxic molecules to glycolytic tumors. 

Insertional mutagenesis in haploid or near haploid mammalian cells has enabled 

genome-wide loss of function screens for genes underlying basic cellular physiology 25-27. For 

example, screens in the near-haploid KBM7 human cell line identified the host factors 

necessary for the cytotoxic effects of several viruses and microbial toxins28-30. To apply this 

approach to the study of 3-BrPA, we used retroviral infection to create a library of mutagenized 

haploid KBM7 cells containing ~70 million insertions, which covered approximately 98% of all 

genes expressed in KBM7 cells30. The mutagenized cells were treated with 3-BrPA and the 

surviving cells were expanded as a pool. Using massively parallel sequencing, insertions in the 

resistant population were mapped to the human genome. A proximity index analysis was used 

to identify genomic regions that contained multiple gene-trap insertions in close proximity. 

SLC16A1 and BSG (Basigin) were the two most frequently inactivated genes (Fig. 1a) and had 

the highest degree of insertional enrichment compared to the unselected control cells (p=4.7E-

121 and p=5E-29, respectively) (Supplementary Fig. 1). The highest scoring gene, SLC16A1, 

encodes MCT1, an H+ linked monocarboxylate transporter that excretes lactate from cells and 

is highly upregulated in a subset of cancers 31-36.  The second highest scoring gene, Basigin, is 

a chaperone necessary for escorting MCT1 to the plasma membrane37,38. To enable the in 
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depth study of the effects of MCT1 loss, we isolated two clones (Clone A and B) that carry 

insertions in the first intron of the SLC16A1 gene (Fig. 1b) and in which MCT1 protein is 

undetectable by immunoblotting (Fig. 1c). Consistent with the screening results, the MCT1-null 

cells were completely resistant to doses of 3-BrPA (Fig. 1d) that in parental KBM7 cells induce 

cell death accompanied by caspase-3 activation (Supplementary Fig. 1). Importantly, re-

expression of MCT1 in the MCT1-null cells nearly completely restored their sensitivity to 3-BrPA 

(Fig. 1e). Thus, these data strongly point to MCT1 as an important determinant of 3-BrPA 

sensitivity in KBM7 cells. 

To begin to understand how loss of MCT1 confers 3-BrPA resistance, we examined the 

effects of 3-BrPA on the metabolism of parental and MCT1-null KBM7 cells. In the absence of 3-

BrPA, there were no differences in lactate production or oxygen consumption between the cell 

types (Supplementary Fig. 2), suggesting that MCT1 loss does not alter basal energy 

metabolism to any great extent. In contrast, 3-BrPA caused a substantial decrease in the 

extracellular acidification rate (ECAR), a proxy for lactate production, and total ATP levels (Fig. 

2a-b) of parental, but not MCT1-null, KBM7 cells. Consistent with these findings, 3-BrPA did not 

affect AMPK and ACC phosphorylation, markers of energy stress39, in MCT1-null cells while 

robustly increasing them in the wild type counterparts (Fig. 2b). To more completely 

characterize the metabolic state of cells in response to 3-BrPA, we metabolically profiled wild 

type and MCT1-null KBM7 cells treated with 3-BrPA. Relative to MCT1-null cells, in wild type 

KBM7 cells 3-BrPA caused an accumulation of the glycolytic intermediates that precede 

glyceraldehyde 3-phosphate, a substrate for glyceraldehyde phosphate dehydrogenase 

(GAPDH), but a depletion of those that come after. Furthermore, 3-BrPA treated wild type KBM7 

cells accumulated intermediates of the pentose phosphate pathway, which branches off above 

the GADPH step of glycolysis (Fig. 2c). Additionally, the partial suppression by RNAi of GAPDH 

expression slows down cancer cell proliferation and sensitizes cells to 3-BrPA treatment 

(Supplementary Fig. 3). 3-BrPA has previously been shown to inhibit GAPDH 17 along with 

several other glycolytic enzymes, including hexokinase (HK2) 40,41, lactate dehydrogenase 

(LDH) 19, succinate dehydrogenase (SDH) 18,42, aldolase (ALDOA) 43, and pyruvate kinase 

(PKM) 44,45. However, our metabolite profiling strongly implicates GAPDH inhibition as the 

primary cause of its anti-glycolytic effects (Fig. 2c). Altogether, these data show that MCT1-null 

KBM7 cells are remarkably resistant to the metabolic effects of 3-BrPA, suggesting that 3-BrPA 

might not enter cells in the absence of MCT1 and implicating MCT1 as a 3-BrPA transporter.  
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Indeed, compared to parental KBM7 cells, MCT1-null cells did not take up 14C-labeled 3-

BrPA (Fig. 2d). Unlabeled 3-BrPA and, to a lesser extent, known MCT1 substrates such as 

lactate and pyruvate, effectively competed with the uptake of radiolabeled 3-BrPA, 

demonstrating that the transport is specific (Supplementary Fig. 3). Moreover, consistent with 

the pH dependence of MCT1 transport31,46, a reduction in extracellular pH enhanced 3-BrPA 

uptake (Supplementary Fig. 3). Thus, MCT1 is necessary for the cellular uptake of 3-BrPA and, 

given its capacity to transport monocarboxylates46, likely directly transports 3-BrPA.  

Considering that MCT1 loss confers resistance to 3-BrPA in KBM7 cells, we asked if 

MCT1 expression levels in cancer cells might predict their sensitivity to 3-BrPA. In a panel of 15 

cancer cell lines, we determined IC50 values for 3-BrPA-induced cell death and correlated them 

with transcriptome-wide mRNA expression data from the Cancer Cell Line Encyclopedia (CCLE) 
47.  Of the 20,000 mRNAs examined, SLC16A1 mRNA levels were the single best predictor of 

3-BrPA sensitivity (r=-0.89, p=1.4E-5) (Fig. 3a). Recently, other monocarboxylate transporters in 

model organisms were implicated as the primary carriers of 3-BrPA 48. In yeast, Jen1p, a 

transporter with no homology to mammalian MCTs was reported to be the major carrier of 3-

BrPA, though the mammalian counterpart has not been identified48. Our correlation data reveals 

MCT1 as the predominant transporter and toxicity determinant for 3-BrPA. Indeed, the 

expression of no other member of MCT and SMCT monocarboxylate transporter families 

significantly correlates with the 3-BrPA sensitivity of cancer cell lines (Fig. 3a, Supplementary 

Fig. 4).  

We next asked whether MCT1 expression can also predict 3-BrPA sensitivity within a 

single cancer type and focused on breast cancer lines because they exhibit a particularly wide 

range of MCT1 expression levels (Supplementary Fig. 5). Indeed, breast cancer lines with high 

MCT1 protein levels are sensitive to 3-BrPA, whereas those with low to no MCT1 are resistant 

to even high concentrations of 3-BrPA (Fig. 3b). Stable expression of MCT1 in two breast 

cancer lines with low MCT1 expression (MDA-MB-231 and SK-BR-3) was sufficient to sensitize 

them to 3-BrPA (Fig. 3c). Additionally, as in KBM7 cells, MCT1 expression did not alter lactate 

production or oxygen consumption, but it did enhance 14C-3-BrPA uptake (Fig. 3d). Lastly, the 

partial suppression by RNAi of MCT1 expression was sufficient to confer resistance to 3-BrPA 

to cell lines with high levels of MCT1 (BT-20, BT-549) (Fig. 3e).  

To test if MCT1 expression can affect the sensitivity of established tumors to 3-BrPA, 

parental MDA-MB-231 cells, which express low levels of MCT1 (Supplementary Fig. 5), were 
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injected subcutaneously into the left flanks of Nude mice, while MDA-MB-231 cells stably 

expressing MCT1 were injected into the contralateral flanks of the same animals.  We allowed 

palpable subcutaneous tumors to form for 2 weeks before beginning 3-BrPA administration. 

After 3 weeks of 3-BrPA treatment, tumors with forced MCT1 expression were significantly 

smaller than those that were untreated or treated with 3-BrPA but expressing a control protein 

(GFP) (Fig. 3f, Supplementary Fig. 5). These results indicate that MCT1 expression is sufficient 

to sensitize pre-formed tumors to 3-BrPA treatment and has predictive value for determining 3-

BrPA sensitivity in vivo.  

We additionally examined if cancer cells with high levels of MCT1 expression share any 

metabolic properties. Using the oxygen consumption rate (OCR) to ECAR ratio as a measure of 

the relative contributions of OXPHOS and glycolysis to cellular energy production, we compared 

OCR/ECAR ratios from 15 cancer cell lines with genome-wide expression data obtained from 

the CCLE. Interestingly, along with two glycolytic enzymes (LDHB and PGM1), MCT1 was 

amongst the genes whose expression most strongly and significantly correlated with lower 

OCR/ECAR ratios (Fig. 4, Supplementary Fig. 5). This finding indicates that tumors which 

exhibit the highest rates of glycolysis are more likely to have elevated levels of MCT1 and 

therefore will be more sensitive to 3-BrPA treatment (Fig. 4). 

Our results predict that MCT1 expression levels will serve as a biomarker for identifying 

tumors likely to respond to 3-BrPA treatment14,15. Furthermore, as we find that MCT1 

expression correlates with elevated glycolysis, it may be possible to enhance the efficacy of 3-

BrPA by concomitant treatment with glycolytic inhibitors so as to exploit the high glycolytic 

demand of tumors and the cancer-enriched expression of MCT1. It is interesting to note that 

small molecule inhibitors of MCT1 that inhibit lactate export from cancer cells are in 

development and show promise as anti-cancer therapies11,49. While this approach requires that 

MCT1 be expressed and required for cancer cell survival11,49, 3-BrPA treatment is distinct in 

that it requires only MCT1 expression to be efficacious. For example, KBM7 cells are sensitive 

to 3-BrPA, but complete loss of MCT1 does not affect their viability.  

 Lastly, our data further suggests that the toxic effect of 3-BrPA is not a result of its anti-

glycolytic effect but rather its highly alkylating nature. The stringent correlation between 3-BrPA 

sensitivity and expression of its transporter, but none of the previously identified metabolic 

targets or transporters48,50, suggests that 3-BrPA is likely non-specifically toxic once it enters 

the cell. Consistent with this, 3-BrPA has non-glycolytic targets, such as V-ATPases 20, 
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SERCAs 24, Carbonic Anhydrases 51  and HDACs 52. Like MCT1, other transporters are also 

upregulated in subsets of cancers53,54, and so it may be possible to develop toxic molecules 

that, in a fashion analogous to 3-BrPA, exploit these transporters to selectively enter and target 

cancer cells.  
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FIGURE LEGENDS 
Figure 1. Haploid cell genetic screening identifies MCT1 as required for 3-BrPA 

sensitivity 

(a) Mutagenized KBM7 cells were treated with 3-BrPA and resistant clones were pooled. Gene–

trap insertion sites were identified by massively parallel sequencing and mapped to the human 

genome. The Y-axis represents the proximity index, a measure of the local density of insertions. 

The X-axis represents the insertion sites ordered by their genomic position. (b) Map of unique 

insertion sites in the SLC16A1(MCT1) and BSG (Basigin) genes in the surviving cell population. 

Boxes denote exons. (c) Immunoblotting for MCT1 protein in two clonally derived cell lines 

containing gene trap insertions in SLC16A1 (Clone A and B).  (d) Resistance of MCT1-null 

KBM7 clones to 3-BrPA (50 µM) compared to wild type KBM7 cells. Microscopic analysis (Left) 

and survival curves (Right) of wild type and MCT1 null KBM7 cells after 3 days of 3-BrPA 

treatment. Error bars are ± SEM. Scale bar, 20 microns. (e) Exogenous expression of MCT1 in 

MCT1-null KBM7 cells restores their sensitivity to 3-BrPA. Error bars are ± SEM (n = 3). 

Figure 2. MCT1-null cells are immune to the metabolic effects of 3-BrPA and do not 

transport it 

(a) Extracellular Flux Analysis of wild type and MCT1-null KBM7 cells upon 3-BrPA (50 µM) 

addition. Changes in ECAR, a proxy for lactate production, were monitored upon the addition of 

50 µM 3-BrPA. Results are displayed as a percentage of the ECAR reading immediately before 

3-BrPA addition. Error bars are ± SEM (n = 10). (b) Intracellular ATP levels in wild type and 

MCT1-null KBM7 cells were determined after treatment for 60 minutes with the indicated 

concentrations of 3-BrPA using a luciferase-based assay. Error bars are ± SEM (n = 6). 

Immunoblots show phosphorylation status of AMPK and ACC in wild type and MCT1-null KBM7 

cell after treatment with 3-BrPA (50 µM). (c) Heat map of relative metabolite changes between 

wild type and MCT1-null KBM7 cells upon 3-BrPA treatment. Yellow to blue colored bar 

indicates degree of change (log2) in metabolite abundance relative to MCT1-null KBM7 cells. 

Cells were cultured for 1 hour with 50 µM 3-BrPA and intracellular metabolites were obtained 

and analyzed by LC-MS (n = 3). (d) 14C-3-BrPA uptake in MCT1-null and wild type KBM7 cells 

in the presence/absence of excess unlabeled 3-BrPA (500 µM). Error bars are ± SEM (n = 3). 

Note that in some instances error bars are too small to see or are hidden by a symbol. 

Figure 3. MCT1 expression is the predominant determinant of 3-BrPA sensitivity in 

cancer cells 
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(a) The concentration of 3-BrPA at which 50% cell growth inhibition occurred after 3 days of 

administration (IC50) was determined for 15 cancer cell lines. These values were correlated with 

transcriptome-wide mRNA expression data from the Cancer Cell Line Encyclopedia (CCLE) and 

the resulting Pearson correlation coefficients were sorted and plotted. The red dot indicates 

SLC16A1 (MCT1), whereas blue dots indicate members of MCT and SMCT family of 

transporters. Names of all members of these families shown to transport lactate are indicated on 

the plot. (b) Immunoblot shows MCT1 protein levels for 9 different breast cancer cell lines (Left). 

Relative protein levels correlated with the corresponding IC50 values for 3-BrPA for each cell line 

(Right). (c) Immunoblot for MCT1 levels in SK-BR-3 and MDA-MB-231 cells expressing a 

control GFP protein or MCT1 (Left). Survival curves of indicated cell lines expressing the MCT1 

cDNA and treated with 3-BrPA (Right). Error bars are ± SEM (n = 3). (d) 14C-3-BrPA uptake in 

parental and MCT1-overexpressing MDA-MB-231 cells. Error bars are ± SEM (n = 3).  (e) 

Immunoblots and survival curves upon 3-BrPA treatment for indicated cell lines expressing 

shRNAs targeting a control GFP protein or MCT1 (MCT1_1 and MCT1_2). Error bars are ± 

SEM (n = 3).  (f) Representative photographs (Left) and average weights (Right) of tumors 

formed by MDA-MB-231 cells expressing the MCT1 or GFP cDNA after 3 weeks of treatment 

with vehicle or 3-BrPA (8 mg/kg). Error bars are ± SD (n = 5). Note that in some instances error 

bars are too small to see or are hidden by a symbol. 

Figure 4. MCT1 expression correlates with glycolysis upregulation in cancer cells 

(a) OCR/ECAR values were determined for 15 cell lines using the Seahorse Extracellular Flux 

Analyzer. These values were correlated with transcriptome-wide mRNA expression data from 

the Cancer Cell Line Encyclopedia (CCLE) and the resulting Pearson correlation coefficients 

were sorted and plotted.  (b) Schematic illustration of the toxic cargo delivery strategy using 3-

BrPA.  Glycolytic cancer cells express high levels of MCT1 and are sensitive to 3-BrPA. Cancer 

cells with low/no levels of MCT1 are resistant to 3-BrPA.  
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METHODS 
Materials. Material were obtained from the following sources: antibody to MCT1 from Millipore, 

antibody to GAPDH from Sigma, antibodies to RPS6, ACC, AMPK, phospho-ACC, phospho-

AMPK and Raptor from Cell Signaling Technologies, HRP-conjugated anti-rabbit antibody from 

Santa Cruz Biotechnology, lactate dehydrogenase from Roche, lactic acid and 3-BrPA from 

Acros Organics, RPMI-1640 media, glycine –hydrazine solution, pyruvate, l-lactate, d-lactate 

puromycin, and polybrene from Sigma, blasticidin from Invivogen, 14C-3BrPA from Moravek 

Biosciences,  Matrigel and Cell-Tak from BD Biosciences, IMDM from US Biologicals. Cell lines 

were obtained from ATCC. Lentiviral shRNAs were obtained from the The RNAi Consortium 

(TRC) collection of the Broad Institute. The TRC numbers for the shRNAs used are 

TRCN0000072186 (GFP), TRCN0000038339 (MCT1_1), TRCN0000038340 (MCT1_2), 

TRCP0000982283 (GAPDH_1) and TRCP0000982283 (GAPDH_2). Primer sequences for 

cloning MCT1 into pMXs-IRES-blasticidin and PLJM1-puro are indicated in the Supplementary 

Table 1. 

Cell Culture and Virus transduction. KBM7 cells were cultured in IMDM supplemented with 

with 10% IFS and penicillin/streptomycin. All other cell lines in this study were cultured in RPMI 

supplemented with 10% FBS. KBM7, MDA-MB-231 and Sk-Br-3 cell lines stably overexpressing 

human MCT1 or GFP were generated by infection with lentiviruses expressing the 

corresponding cDNAs and selected for blasticidin (10µg/ml) or puromycin resistance (4 µg/ml) 

for 3 days, respectively. Similarly BT-20, KBM7, MDA-MB-468 and BT-549 expressing shRNAs 

for MCT1 and GAPDH were generated by infection with lentiviruses expressing the 

corresponding shRNAs (Supplementary Table 1) and spin-infected via a 30-min spin at 2,250 

rpm in media containing 4 µg/ml polybrene. Cells were next selected with puromycin.  

Haploid Cell Screening. A haploid cell genetic screen with 3-BrPA was performed using 100 

million mutagenized KBM7 cells as described previously 30. Mutagenized haploid KBM-7 cells 

were exposed to 50 µM 3-BrPA for 3 weeks. Surviving clones were harvested and genomic 

DNA was isolated and insertions were amplified. The sequences flanking retroviral insertion 

sites were mapped to the human genome using inverse PCR followed by Illumina sequencing. 

Genomic regions with a high density of insertions were identified using the proximity index for a 

given insertion. Additionally, the statistical enrichment of insertions at a given locus in the 

selected population was calculated by comparing the number of inactivating insertions to those 

in the untreated control dataset via a Fisher’s Exact Test. Individual clones were isolated among 

50 different clones and genomic DNA for individually selected clones were isolated using a 
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genomic DNA isolation kit (Qiagen). Genomic insertions were identified by inverse PCR and 

subsequent sequencing as described previously 25. 

Metabolic assays. The bioenergetic profiles of KBM7 and MDA-MB-231 cells in response to 3-

BrPA were determined using a Seahorse Bioscience XF24 Extracellular Flux Analyzer 

(Seahorse Bioscience). For the indicated experiments, 250,000 KBM7 or 40,000 MDA-MB-231 

cells seeded in Seahorse tissue culture plates using unbuffered RPMI (10 mM Glucose). KBM7 

cells were attached to the plates using CellTak (Clontech) one hour prior to the start of the 

experiment. For AUC (area under the curve) OCR and ECAR measurements, three consecutive 

readings were performed for each cell line. For experiments where 3-BrPA is used, after 3 

consecutive readings, 50 µM 3-BrPA was injected through port A and ECAR and OCAR levels 

were measured. Lactate production was measured as described previously55. For ATP assays, 

20,000 cells were seeded and treated for 60 min with indicated amounts of 3-BrPA and relative 

ATP levels compared to untreated cells were determined using a luciferase-based assay 

(Promega). For metabolite measurements, 10 million wild type and MCT1 null KBM7 cells were 

cultured for 1 hour in presence of 50 µM 3-BrPA before metabolite extraction. Then, cells were 

rapidly washed three times with cold PBS, and then metabolites were extracted by addition of 

80% ice-cold methanol followed after incubation on dry ice for 15 min. Endogenous metabolite 

profiles were obtained using LC-MS as described56. Metabolite levels (n=3) were normalized to 

cell number. 

 

3-BrPA uptake assay. Wild type KBM7 or MCT1-null cells were seeded in HBSS and exposed 

for up to 20 minutes to 100 µM C14-labeled 3-BrPA (6.8 mCi/mmole) (Moravek) with or without 

competitor molecules like 3-BrPA, Pyruvate, L-Lactate and D-Lactate. Cells were washed with 

cold HBSS, lysed in a NaOH buffer, and uptake measured using a liquid scintillation counter.  

Cell Survival Assays. Cells (5,000-20,000) were seeded in 96-well plates and treated with 

indicated amounts of 3-BrPA. After 3 days of treatment, CellTiter-Glo (Promega) and/or 

CyQuant (Invitrogen) were used to measure cell cycle arrest or cell death percentage for each 

concentration compared to untreated cells. FACS analysis with Annexin V and 7AAD staining 

was performed according to manufacturer’s manual (BD Pharmingen). 

Correlation Analysis. 15 cell lines (BT-474, BT-549, CAKI-1, CAL-51, HCC-70, Hs 578T, 

Jurkat, MDA-MB-157, MDA-MB-231, MDA-MB-453, MDA-MB-468, PC-3, SK-BR-3, T47D, ZR-

75-1) were treated with 3-BrPA (0-300 µM). After 3 days, cell viability was quantified via 
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CellTiter-Glo assay and an IC50 from the resulting dose-response curve was interpolated using a 

nonlinear regression model. Transcriptome-wide normalized mRNA levels from gene expression 

profiling experiments performed on the Affymetrix Human Genome U133 Plus 2.0 chip were 

obtained from the CCLE for all 15 cell lines. The mRNA expression pattern across all 15 

samples for each of the genes was then correlated with the IC50 values. Similar correlation 

analysis was performed using OCR/ECAR values for each cell line.  

Immunoblotting and Immunohistochemistry. Briefly, cells were rinsed twice in ice-cold PBS 

and harvested in a standard lysis buffer containing 50mM Hepes, pH 7.4, 40mM NaCl, 2mM 

EDTA, 1.5mM orthovanadate, 50mM NaF, 10mM pyrophosphate, 10mM glycerophosphate, 

protease inhibitors (Roche) and 1% Triton-X-100. Proteins from total lysates were resolved by 

8–12% SDS-PAGE, and analyzed by immunoblotting using indicated antibodies (1:1000) 55. For 

quantitation, ImageJ software was used and the signals were normalized using an equal loading 

control (RPS6/Raptor). Immunohistochemistry was performed on formalin-fixed paraffin 

embedded sections using a boiling Dako antigen retrieval method (Dako). A 1:500 dilution of the 

anti-MCT1 antibody was used for staining. 

Mouse studies. All animal studies and procedures were approved by the MIT Institutional 

Animal Care and Use Committee. 6-10 week old nude mice (Taconic) were used for generating 

all xenografts. In subcutaneous xenografts, mice were injected at two sites in the dorsal region, 

under isofluorane anesthesia with 100 µl/injection of tumor cell suspension in RPMI with 20% 

matrigel. 2.5 million MDA-MB-231 cells were injected. After 2 weeks, tumors were measured 

and mice were separated for PBS and 3-BrPA treatment (8 mg/kg). After 3 weeks, tumors were 

harvested, their dimensions were measured with a caliper and tumor volume estimated 

according to the formula: (0.5*W*L*L). Tumors were fixed in formalin for later processing. 
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