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Increases in use of novel synthetic stimulant are not directly linked to decreased 

use of 3,4-methylenedioxy-N-methylamphetamine (MDMA) 

 

Abstract 

A decline in 3,4-methylenedioxy-N-methylamphetamine (MDMA) use in Adelaide, 

Australia from 2009 to 2010 was confirmed by us previously. Reports suggested that 

the shortage in MDMA supply was associated with an increased prevalence of other 

synthetic stimulants, but quantitative measurements were unavailable. To obtain 

objective data on the community use of synthetic stimulants, we collected wastewater 

samples from multiple treatment plants in Adelaide, Australia from 2009 to 2011 and 

analysed them using solid-phase extraction/liquid chromatography/tandem mass 

spectrometry (SPE-LC-MS/MS), targeting MDMA and some of the most reported 

synthetic cathinones and piperazines. Data were temporally compared. MDMA and 

six other synthetic stimulants were detected and quantified in wastewater samples. 

While MDMA level decreased markedly from 2009 to 2010 and remained low in 

2011, localized increased use of mephedrone, methylone, 

methylenedioxypyrovalerone (MDPV), benzylpiperazine (BZP), 3-

trifluoromethylphenylpiperazine (TFMPP), but not methcathinone, was observed in 

2010 and 2011. This suggested that the decline in MDMA use was associated with an 

increase in the use of a number of other synthetic stimulants. However, the lag time 

from the decrease in MDMA to the increase in use of a number of these stimulants, 

together with the highly regionalized use of all synthetic stimulants except 

methcathinone indicates that there was no direct population wide substitution in 

response to the reduction in MDMA. 

Key words: Wastewater; MDMA; Synthetic stimulant; New psychoactive substance; 

Temporal comparison; Stability.  



2 
 

Introduction 

Drug abuse is a global phenomenon, which causes various health, social and 

economic problems. Prevalence of drug use in a defined region is crucial information 

to allow healthcare and policies to be geographically and temporally specialized to 

improving the cost-efficiency of resources spent on reducing population drug misuse. 

The information on population drug use is conventionally collected via large-scale 

surveys, hospital presentations, and customs and police seizures, which provide 

informative data on drug users’ profiles and a snapshot of the drug use situation, but 

have some limitations with obtaining timely information about fast-changing drug 

markets. Wastewater analysis directly measures the concentration of drugs of interest 

(or their metabolites) in municipal wastewater, regardless of their pharmacological 

properties or street names, and then back-calculates the original disposition or 

consumption in the contributing population [1]. Thus, it has been used to provide 

information on drug use in the population with high reliability and timeliness [2,3].  

Recently, there has been some attention to the apparently increasing use of novel 

synthetic cathinones and piperazines. These compounds have similar pharmacological 

properties to the popular stimulants such as cocaine, amphetamines and 3,4-

methylenedioxy-N-methylamphetamine (MDMA) [4-9]. Toxicity [10-14] and some 

deaths [15-17] have been associated with the recreational use of these drugs. These 

drugs are sometimes sold online under a variety of names, such as “bath salts” and 

“plant food” [18], and users often do not know the actual active ingredients when 

using these drugs [12].  

It was reported that MDMA supply experienced a decline in 2009 and 2010 [19,20], 

which was supported by our previous wastewater analyses [21]. There is now 
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evidence that this was a temporary phenomenon [22,23]. Meanwhile, reports 

suggested that the novel synthetic stimulant drugs have increased in popularity since 

2006, and particularly since 2009 [20]. Hence, it is possible that the decline of 

MDMA was associated with increased popularity of the novel synthetic stimulants. It 

has been suggested that this may have occurred because drug producers may have 

actively switched to producing these alternative synthetic stimulants or it may have 

occurred passively because of a shortage in MDMA precursors and stricter laws [20]. 

However, it is also possible that the two phenomena are unrelated and that the 

increased popularity of the other synthetic stimulants would have occurred in the 

absence of any change in MDMA use. An initial step in understanding the change in 

synthetic stimulant use is to determine whether the amounts of these substances used 

increased in response to the decrease in MDMA use. 

Baker and Kasprzyk-Hordern [24] developed an analytical method for methcathinone, 

BZP and TFMPP, and detected the latter two in wastewater samples; van Nuijs et al 

[25] also developed a liquid chromatography-tandem mass spectrometry method for 

mephedrone and MDPV, but did not find them in wastewater. In this study, we aim to 

analyse wastewater samples collected in Adelaide, Australia from 2009 to 2011, 

targeting MDMA and the most reported synthetic cathinones methcathinone, 4-

methylmethcathinone (mephedrone), 3,4-methylenedioxy-N-methylcathinone 

(methylone) and methylenedioxypyrovalerone (MDPV), as well as synthetic 

piperazines benzylpiperazine (BZP) and 3-trifluoromethylphenylpiperazine (TFMPP) 

(Figure 1), and temporally compare the data to determine whether the change in 

MDMA use was associated with an increase in the use of these synthetic cathinones 

and piperazines. As far as we know, this is also the first reported method for 

methylone detection in wastewater. 
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Methods 

Chemicals and reagents 

MDMA and MDMA-d5 were purchased from Cerilliant Corp. (Round Rock, TX) as 

certified solutions at the concentration of 100 mg/L in methanol. The analytical 

reference substances of the other six synthetic stimulants were provided by Forensic 

Science South Australia as standard solutions at the concentration of 100 mg/L in 

methanol. The solutions were diluted to 50 µg/L (MDMA and MDMA-d5) or 25 µg/L 

(the other synthetic stimulants) in ethanol and stored at −20 °C. Methanol and formic 

acid purchased from Merck Pty. Ltd. (Kilsyth, VIC, Australia) as well as distilled 

water prepared by a water still (Labglass Pty. Ltd., Brisbane, QLD, Australia) were 

used for liquid chromatography/ tandem mass spectrometry (LC-MS/MS) analyses. 

Sodium metabisulphite (Na2S2O5) was food grade. All other reagents were analytical 

grade from Chem-Supply Pty. Ltd. (Gillman, SA, Australia). Ammonia (28−30%, 

w/w) was used at the original concentration or as a 10-time dilution, while 

hydrochloric acid (1 M), acetic acid (2.5%, v/v) and sodium hydroxide (10%, w/v) 

were prepared by diluting concentrated reagents with distilled water prior to use. 

Sampling 

Samples were collected as described previously [21,26]. Generally, wastewater 

samples were obtained from three (named A, B, and C, respectively in this article) 

independent wastewater treatment plants (WWTP) in Adelaide. All the three WWTP 

serve suburban areas with populations ranging from 130,000 to 200,000 and similar 

social-economic status. For practical issues, samples from the WWTP serving the 

Adelaide CBD area were not collected in this study. 80‒100 mL of wastewater 

sample was taken by autosamplers when every 400,000 L of wastewater passes 
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through the inlet pipes, which gives a sampling interval of 10‒15 min, depending on 

the wastewater flow. After each 24-h cycle of sample collection, a 1.2 L aliquot was 

transferred into a polyethylene terephthalate bottle and stored at 4 °C for a maximum 

of 7 days in the WWTP before transferring to the laboratory. 

In each sampling year 68 weeks of wastewater samples were collected over the 

May‒July period. Samples were transported from each WWTP to the analytical 

laboratory at atmospheric temperature within 4 h, and stored at ‒20 °C until analyses. 

All samples were extracted using solid-phase extraction (SPE) within one month after 

arrival at the laboratory. 

Sample preparation 

All samples were prepared using the method reported previously [21,26]. Briefly, 300 

mL samples were thawed, mixed, filtered (GF/A 1.6 μm, Whatman Ltd., Kent, UK), 

and spiked with 33.3 ng/L MDMA-d5. The filtered and spiked samples were passed 

through preconditioned XRDAH506
TM

 solid-phase extraction cartridges (UCT Inc., 

Bristol, PA). After wash with 6 mL pH 6 buffer, 2 mL 0.1 M acetic acid and 6 mL 

methanol, the analytes were eluted with 6 mL mixture of 96% dichloromethane: i-

propanol (80: 20) / 4% ammonia (28−30%, w/w). The mixture was then evaporated to 

dryness, and the residue was reconstituted in 20 µL methanol, followed by mixing 

with 180 µL 0.1% formic acid buffer. The final mixture was stored at 4 °C before 

instrumental analyses if analysed within one week after preparation, or at ‒20 °C for 

long-term storage. 
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LC-MS/MS 

Samples were analysed on a LC-MS/MS system, which consists of an Agilent 1200
TM

 

series liquid chromatograph (Santa Clara, CA) and an AB Sciex 4000 Q-Trap
TM

 mass 

spectrometer (Applied Biosystems Ltd., Toronto, Canada). MDMA-d5 was used as 

the internal standard for all analytes including MDMA and the other synthetic 

stimulants.  

The LC-MS/MS methods were identical to those previously reported [21,26,27], 

except for the compound-dependent parameter settings for the novel synthetic 

stimulants listed in Table S1. Generally, 10 µL of reconstituted sample was injected 

into the LC-MS/MS system. The separation was achieved on a Phenomenex Luna
TM

 

pentafluorophenyl (PFP[2]) column (3 μm, 100 Å, 50 × 4.6 mm; Phenomenex Inc., 

Torrance, CA) connected to a PFP(2) guard column (SecurityGuard
TM

; 4 × 2.0 mm; 

Phenomenex Inc., Torrance, CA). The mobile phase was composed of methanol 

(solvent A) and 0.1 % formic acid (solvent B) at a flow rate of 0.5 mL/min. The 

gradient started with 95% B for 1 min and was then decreased to 5% B over the next 

14 min and maintained there for 1 min. Then it was brought back to 95% B in 0.1 min 

and kept there for 2 min. Electrospray ionization source operated in positive mode via 

multiple-reaction monitoring were used to obtain the mass spectra.  

MDMA was quantified using the internal standard MDMA-d5 and the method of 

isotopic dilution, as described in previous studies [21,26,27]. The other synthetic 

stimulants were also quantified using MDMA-d5 as the internal standard, but with 

calibration curves generated using the method of standard addition with wastewater 

samples from the same WWTP. The ranges of the calibration curves were set as 1–50 

ng/L for mephedrone, methylone, MDPV and TFMPP, and 1–200 ng/L for 
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methcathinone, BZP and MDMA. These ranges were based on the linear ranges of the 

analytes and their concentration ranges in wastewater, as determined in preliminary 

studies. 

Stability and binding tests 

Additionally, stability and binding tests were conducted to further validate the method, 

using methods similar to those in our previous studies [27]. Briefly, stability tests 

were conducted to evaluate if there is analyte loss during storage [28], and if the 

stability can be improved under different storage conditions; binding tests 

investigated if there is analyte loss during the filtration step in sample preparation 

[29,30] by comparing the recoveries of analytes from filtered and unfiltered samples 

using liquid-liquid extraction (LLE). All stability and binding tests were conducted in 

triplicate. The detailed methods and results can be found in the supporting material. 

Method validation 

Both the SPE-LC-MS/MS and LLE-LC-MS/MS methods used in this study were 

validated. Limits of quantification (LOQ) and linear ranges were determined in a 

creek water sample mixed with 0.01 % (w/v) laundry powder and 0.1 % (v/v) urine 

from a volunteer who has not history of drug use to simulate wastewater, since drug-

free wastewater was unobtainable. This “artificial wastewater” was prepared to 

represent drug-free wastewater for the determination of LOQ and linear range based 

on the fact that the environmental matrix, human waste and household chemicals are 

the major sources of wastewater matrix. An analyte concentration in the “artificial 

wastewater” sample that gave a signal to noise ratio of 10 was set as the LOQ. Linear 

range was the concentration range of the analytes that gave linear instrumental 

responses. Absolute recovery, relative recovery (i.e. precision) and reproducibility (n 
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= 7, inter-day RSD) of all methods were tested on a 1:1:1 (v/v/v) mixture of real 

wastewater samples obtained from the three WWTP. 

Data analyses 

Data conversion  

Measured concentrations of MDMA and synthetic drugs were converted into disposed 

amount of each drug per day per 1,000 of the population, using the method described 

by Zuccato et al [1] and taking into consideration of the daily wastewater volume and 

the contributing population. Since the level of drugs in a wastewater sample may vary 

by the sampling year, sampling location and sampling day of the week, all converted 

data were grouped and compared in different ways as below. GraphPad Prism
TM

 5 

(GraphPad Software Inc., La Jolla, CA) was used for all statistics. 

Temporal comparison 

Weekly disposition of each drug was calculated by adding the daily values over 7 

days and expressed as disposition per week per 1,000 of the population. Means and 

standard error of the mean of estimated weekly disposition were calculated for each 

WWTP in each year. 

Two-way analysis of variance was used, with the sampling year and WWTP as the 

two factors. Tukey’s multiple comparisons were applied to determine which year 

showed significant (p < 0.05) higher or lower values. 
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Weekly use pattern 

For the year and WWTP that shows the highest level of each drug, daily disposition 

data were categorized and averaged according to their sampling day of the week to 

show the weekly use pattern of the drug. 

Results 

Validation 

Table S2 and Table S3 summarise the validation data for the analytical methods used 

in this study, namely SPE-LC-MS/MS and LLE-LC-MS/MS, respectively. Both 

methods showed satisfactory sensitivity, linear range, recovery, accuracy and 

precision. 

Stability and binding tests  

In untreated wastewater, 15 % of MDPV degraded in 3 days. Approximately 20 % of 

mephedrone and TFMPP were lost after one week. Methylone and BZP levels 

dropped 20 % after the 2-week storage (Figure S1). All drugs were stable for up to 

two weeks if samples were stored at 4 °C or −20 °C, acidified to pH 2 or preserved by 

2 g/L Na2S2O5 (data not shown). Furthermore, no noticeable change of analyte 

concentration was observed in reconstituted sample extract stored at 4 °C or −20 °C 

(data not shown).  

No significant loss of analytes was observed after filtration (data not shown), 

indicating that the drugs analysed in this study have little affinity to particulate 

matters or filter papers.  
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Temporal comparison 

The disposition of each drug was grouped by WWTP and temporally compared 

(Figure 2). MDMA level declined markedly in 2010 as previously reported [21] and 

remained low in 2011. Meanwhile, methcathinone disposition was consistent from 

2009 to 2011 and there was a similar consumption level across WWTP. The 

remaining synthetic stimulants showed very different patterns of use. Firstly, their use 

was geographically localized, occurring predominantly (although not exclusively) in 

one WWTP. While the use of all these stimulants increased after 2009, only 

mephedrone experienced an increase in 2010; for all the other synthetic stimulants the 

increase occurred in 2011. 

Weekly use pattern 

MDMA shows a strong pattern of excretion on Sunday compared to other days of the 

week, reflecting a predominant pattern of weekend (particularly Saturday night) use 

(Figure 3). Mephedrone, methylone and BZP also showed higher disposition on 

weekends, whereas the levels of methcathinone, MDPV and TFMPP were more 

consistent over the week. 

Discussion 

In this study MDMA and six other synthetic stimulants were detected and quantified 

in wastewater samples. The response to the pronounced decrease in MDMA level [21] 

differed across the various synthetic stimulants. Methcathinone use, which was the 

highest of the stimulants in 2009, did not change with the decrease in MDMA use. 

Use of mephedrone increased in 2010, while use of the remaining compounds did not 

increase until 2011. In addition, while methcathinone use was similar across different 
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regions, the use of the remaining synthetic stimulants was predominantly in one 

region. This suggested that the decline in MDMA was associated with increased use 

of novel synthetic stimulants other than methcathinone. However, for most of these 

stimulants there was a lag between the decline in MDMA use and their increased use, 

and hence the relation is not a direct one. It can therefore be concluded that the novel 

synthetic stimulants did not directly replace MDMA across the population.  

The weekly disposition patterns of the synthetic stimulants were found to be 

inconsistent in this study. While MDMA, mephedrone, methylone and BZP levels 

peaked on the weekend, methcathinone, MDPV and TFMPP dispositions were 

relatively consistent throughout the week. This could possibly be due to longer 

elimination half-lives for methcathinone, MDPV and TFMPP, which might smooth 

out the weekly trend. However, data on their pharmacokinetic properties in human 

subjects are required to support this hypothesis. Alternatively, there may be 

differences in the patterns of use as there are between other stimulants. 

Rust et al [31] analysed 325 hair samples from 2009 and 2010 that originally tested 

positive for amphetamines or MDMA, and found mephedrone in 11 cases and 

methylone in 1 case. BZP, methcathinone, MDPV and TFMPP were also targeted but 

not found. This suggested some limited overlap of MDMA users and users of the 

other synthetic stimulants. A survey carried out in London nightclubs in July 2011 

also revealed that although overall 65.8% reported previous use of the novel synthetic 

stimulants, frequent use was rare (except for mephedrone) [32]. Both studies support 

our conclusion that the novel synthetic stimulants only partially replaced MDMA in 

the market. 
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Zuba and Byrska [33] analysed 449 seized ‘legal high’ samples from October 2008 to 

June 2011 in Poland, and found that most of the pills were mixtures of two or more 

ingredients, including but not limited to MDPV, BZP and TFMPP. However, 

mephedrone was often the sole product component. This finding together with others 

reports [31, 32] that suggested higher prevalence of mephedrone over the other 

synthetic stimulants indicated that mephedrone might be produced and distributed in a 

different way from the other synthetic stimulants. This hypothesis is supported by our 

data, which showed that the increase in mephedrone use occurred in the year before 

the increase in use of methylone, MDPV, BZP and TFMPP. 

In this present study, we used the parent drugs of the synthetic stimulants as the 

analytical targets, mainly due to the fact that the analytical standards of their 

metabolites were not available at the time when this study was carried out. Limited 

metabolic studies [34-39] suggested that the parent forms exist in the urine of rats and 

humans after intake of these novel synthetic stimulants, but the excretion ratios from 

human subjects, which are essential to back-calculate the consumption [1], are largely 

unknown. If more metabolic data for these stimulants become available in the future, 

it might be possible to back-calculate the consumption of these novel synthetic 

stimulants in the population based on the disposition data in this study. 

In conclusion, the decline in MDMA use was associated with some increases in the 

use of some other synthetic stimulants in a localized manner. This demonstrates that 

there was no population wide substitution of novel synthetic stimulants for MDMA. 
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Captions for figures 

Figure 1. Chemical structures of synthetic drugs analysed in this study. MDMA: 3,4-

methylenedioxy-N-methylamphetamine; mephedrone: 4-methylmethcathinone; 

methylone: 3,4-methylenedioxy-N-methylcathinone; MDPV: 

methylenedioxypyrovalerone; BZP: benzylpiperazine; TFMPP: 3-

trifluoromethylphenylpiperazine. 

Figure 2. Weekly drug disposition (mg/ week/ 1,000 people) in each year and WWTP 

served area. MDMA: 3,4-methylenedioxy-N-methylamphetamine; mephedrone: 4-

methylmethcathinone; methylone: 3,4-methylenedioxy-N-methylcathinone; MDPV: 

methylenedioxypyrovalerone; BZP: benzylpiperazine; TFMPP: 3-

trifluoromethylphenylpiperazine. Two-way analysis of variance with Tukey’s 

multiple comparisons. p values of multiple comparisons are displayed to the left of 

each figure. 

Figure 3: Disposition of analysed drugs on each day of the week. 2009 data of WWTP 

A was displayed for MDMA; 2011 data of WWTP B for methcathinone; 2010 data of 

WWTP A for 4-methylmethcathinone (mephedrone); and 2011 data of WWTP A for 

3,4-methylenedioxy-N-methylcathinone (methylone), methylenedioxypyrovalerone 

(MDPV), benzylpiperazine (BZP) and 3-trifluoromethylphenylpiperazine (TFMPP). 
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Methods for stability and binding tests 

Stability tests were carried out in fresh wastewater samples that were stored in 

different conditions, including: no treatment, storage at 4 °C, −20 °C, acidification, 

preservative-addition and filtration. Concentration of analytes was measured on the 

starting day (day 0) and on days 1, 2, 3, 7 and 14 thereafter to show whether there was 

significant change. A change of more than 15% was considered significant formation 

(> 115%) or degradation (< 85%). Stability of analytes in reconstituted extract was 

evaluated by comparing the analytes’ peak areas with a standard solution prepared in 

ethanol and stored at −20 °C after storage at either 4 °C or −20 °C or 1, 3, 7 and 14 

days. 

For binding tests, 100 mL sample was spiked with reference standards to ensure that 

the concentrations of these analytes were above the LOQ of the analytical method. 

After 2 h, half of the mixed sample was filtered under vacuum using 1.6 µm GF/A 

glass microfiber filters (Whatman Ltd., Kent, UK), while the other 50 mL remained 

unfiltered. Analytes in filtered and unfiltered samples were then extracted using 

liquid-liquid extraction (LLE) and analyzed analysed by LC‒-MS/MS [2527]. Data 

were then compared by paired two-tailed t test using GraphPad PrismTM 5 (GraphPad 

Software Inc., La Jolla, CA) to assess whether there was significant analyte loss after 

filtration. 

Caption for Figure S1. 

Figure S1. Analyte stability in untreated wastewater in 14 days. Data are expressed as 

average value of remaining percentages of Day 0, n = 3. Mephedrone: , 4-

methylmethcathinone; methylone: , 3,4-methylenedioxy-N-methylcathinone; MDPV: , 
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methylenedioxypyrovalerone; BZP: , benzylpiperazine; TFMPP: , 3-

trifluoromethylphenylpiperazine. Initial concentration was 25 ng/L for all the drugs.�



Table S1. Selected mass spectrometric parameters used in the analysis of 3,4-
methylenedioxymethamphetamine (MDMA), methcathinone, 4-methylmethcathinone (mephedrone), 
3,4-methylenedioxy-N-methylcathinone (methylone), methylenedioxypyrovalerone (MDPV), 
benzylpiperazine (BZP) and 3-trifluoromethylphenylpiperazine (TFMPP) for Applied Biosystems 4000 
Q-TrapTM. 

Transition 
Q1 
m/z 

Q3 
m/z 

Dwell 
time (ms) 

DPa (V) EPb (V) CEc (V) CXPd (V) 

MDMA 1# 194 163 60 50 10 20 30 

MDMA 2 194 105 40 50 10 30 30 

MDMA 3 194 135 40 50 10 35 30 

Methcathinone 1# 164 146 80 50 10 20 10 

Methcathinone 2 164 130 40 50 10 42 10 

Methcathinone 3 164 105 40 50 10 28 10 

Mephedrone 1# 178 160 80 50 10 20 10 

Mephedrone 2 178 144 40 50 10 45 10 

Mephedrone 3 178 119 40 50 10 32 10 

Methylone 1# 208 160 80 50 10 25 10 

Methylone 2 208 190 40 50 10 20 10 

Methylone 3 208 58 40 50 10 45 10 

MDPV 1# 276 126 80 70 10 40 10 

MDPV 2 276 135 40 70 10 40 10 

MDPV 3 276 175 40 70 10 30 10 

BZP 1# 177 91 80 50 10 35 10 

BZP 2 177 65 40 50 10 65 10 

BZP 3 177 85 40 50 10 25 10 

TFMPP 1# 231 188 80 50 10 35 10 

TFMPP 2 231 119 40 50 10 45 10 

TFMPP 3 231 168 40 50 10 40 10 

MDMA-d5*
# 199 165 60 50 10 20 30 

a Declustering potential.  
b Entrance potential.  
c Collision energy.  
d Collision cell exit potential. 
# Transitions used for quantification. 
* Internal standard. 
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Table S2. Validation data of the SPE‒-LC‒-MS/MS method used in this study. MDMA: , 3,4-methylenedioxymethamphetamine; Mephedrone: , 4-methylmethcathinone; 
methylone: , 3,4-methylenedioxy-N-methylcathinone; MDPV: , methylenedioxypyrovalerone; BZP: , benzylpiperazine; TFMPP: , 3-trifluoromethylphenylpiperazine. 

Note: LOQ and linear ranges were determined on “artificial wastewater”. 

�

 
LOQ  

(ng/L) 
Linear range  

(ng/L) 
R2 

Absolute recovery  
(%; mean ± 95% CI) 

Relative recovery 
(%; mean ± 95% CI) 

RSD 
(%) 

MDMA 1 1−1000 0.995 89.3 ± 2.8 100.0 ± 2.1 3.66 
Methcathinone 1 1−1000 0.994 98.15 ± 11.42 117.49 ± 9.89 10.76 
Mephedrone 1 1−3000 0.993 98.60 ± 3.86 104.27 ± 4.24  4.87 
Methylone 1 1−2000 0.995 99.45 ± 1.81 102.38 ± 1.93 2.39 
MDPV 1 1−2000 0.992 98.68 ± 1.09 100.04 ± 1.11 1.30 
BZP 1 1−2000 0.994 104.60 ± 5.45 92.39 ± 4.84 6.36 
TFMPP 1 1−2000 0.998 101.15 ± 1.24 100.78 ± 1.19 1.39 



Table S3. Validation data of the LLE‒-LC‒-MS/MS method used in the binding tests. MDMA: , 3,4-methylenedioxymethamphetamine; Mephedrone: , 4-
methylmethcathinone; methylone: , 3,4-methylenedioxy-N-methylcathinone; MDPV: , methylenedioxypyrovalerone; BZP: , benzylpiperazine; TFMPP: , 3-
trifluoromethylphenylpiperazine. 

Note: LOQ and linear ranges were determined on “artificial wastewater”. 
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LOQ 

(ng/L) 
Linear range 

(ng/L) 
R2 

Absolute recovery 
(%; mean ± 95% CI)

Relative  recovery  
(%; mean ± 95% CI)

RSD 
(%)

MDMA 2 2−1000 0.995 70.74 ± 1.72 91.33 ± 2.21 2.09 
Methcathinone 2 2−500 0.990 53.55 ± 6.06 101.04 ± 7.44 14.42 
Mephedrone 2 2−2000 0.994 66.83 ± 2.32 99.54 ± 3.66 4.68 
Methylone 2 2−1000 0.994 72.07 ± 1.95 97.31 ± 2.76 3.66 
MDPV 2 2−1000 0.997 53.11 ± 5.31 111.22 ± 11.19 13.41 
BZP 2 2−1000 0.994 35.09 ± 3.45 112.86 ± 10.29 13.01 
TFMPP 2 2−1000 1.000 65.28 ± 3.55 101.54 ± 5.80 7.21 
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