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ABSTRACT. Fetal monitoring may help with possible recognition of problems in the fetus. This research 
work focuses on the design of the Back-propagation Neural Network (BPNN) and Adaptive Linear 
Neural Network (ADALINE) to extract the Fetal Electrocardiogram (FECG) from the Abdominal ECG 
(AECG). FECG is extracted to assess the fetus well-being during the pregnancy period of a mother to 
overcome some existing difficulties regarding the fetal heart rate (FHR) monitoring system. Different sets 
of ECG signal has been tested to validate the algorithm performance. The accuracy of the QRS detection 
using the designed algorithm is 99%. This research work further made a comparison study between various 
methods' performance and accuracy and found that the developed algorithm gives the highest accuracy. 
This paper opens up a passage to biomedical scientists, researchers, and end users to advocate to extract the 
FECG signal from the AECG signal for FHR monitoring system by providing valuable information to help 
them for developing more dominant, flexible and resourceful applications. 
Keywords: fetal electrocardiogram, QRS complex, neural network, artificial intelligence, fetal heart rate. 

ECG materno baseado em rede neural backpropagation a partir de sinal abdominal para 
monitoramento fetal contínuo 

RESUMO. O monitoramento fetal pode auxiliar o reconhecimento de problemas no feto. Este estudo 
objetivou a concepção da Rede Neural Backpropagation (RNBP) para obter o eletrocardiograma fetal 
(ECGF) a partir do ECG abdominal (ECGA). O ECGF é obtido para avaliar o bem estar fetal durante a 
gravidez a fim de superar alguma dificuldade durante o monitoramento da frequência cardíaca do feto 
(FCF). Diferentes séries de sinais de ECG foram testados para avaliar o desempenho do algoritmo.  
A precisão da detecção de QRS usando o algoritmo concebido é de 99%. O presente estudo também 
comparou o desempenho e precisão de vários métodos e observou que o algoritmo projetado fornece a 
maior acurácia. Este trabalho permite que cientistas biomédicos, pesquisadores e usuários finais defendam o 
uso do sinal do ECGF ao invés do sinal do ECGA para monitorar a FCF, fornecendo valiosas informações 
para o desenvolvimento de aplicações mais dominantes, flexíveis e criativas.  
Palavras-chave: eletrocardiograma fetal, complexo QRS, rede neural, inteligência artificial, frequência cardíaca fetal. 

Introduction 

FHR monitoring is a routine work for obtaining 
the significant information about the condition of a 
fetus during the pregnancy and labor period of a 
mother (HASAN et al., 2007). FECG characteristics 
(heart rate, dynamic behavior, and waveform) are 
convenient in determining the fetal life, fetal 
maturity, fetal development, and existence of fetal 
distress or congenital heart disease (HASAN et al., 
2007). FHR variations observed during pregnancy 
and labors have commonly been used as indirect 
indications of fetal conditions. FHR monitoring can 
identify conditions, which may lead to fetal and/or 
maternal mortality or morbidity (HELGASON  
et al., 2011). The FHR may change as the fetus 

 

responds to conditions in the uterus. An abnormal 
FHR or pattern may mean that the fetus is not 
getting enough oxygen or there are other problems 
(HASAN et al., 2009). However, FHR 
abnormalities are unpredictable and may occur at 
any time. To monitor such abnormalities, 
ambulatory monitoring has been proven a useful 
method with use of long-term monitoring of the 
FHR, where, the woman can maintain normal daily 
activities, work, and avoid unnecessary hospital 
stays.  

The most familiar means of acquiring the FHR 
is Doppler ultrasound. The FECG can also be 
acquired for FHR using surface electrodes on the 
mother's abdomen, whilst the fetal magneto-
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cardiogram (FMCG) is detectable using 
superconducting quantum interference device 
(SQUID) magnetometers and fetal 
phonocardiography (FPCG) also allows the heart 
sounds to be detected and hence FHR can be 
calculated (CROWE et al., 1995). Currently, 
Doppler ultrasound and FECG have proven to be 
reliable techniques for monitoring FHR 
(KHANDOKER et al., 2009). The FHR monitoring 
using the Doppler ultrasound is widely used and 
appropriate because an invasive test cannot be used 
daily. The advantage of the Doppler ultrasound 
technique is that it can be virtually assured that a 
recording of FHR will be obtained. The 
disadvantages of such systems require intermittent 
repositioning of the transducer and they are only 
suitable for use with highly trained midwifes. The 
ultrasound transducer is problematic and 
uncomfortable while the procedure involves 
launching a 2 MHz signal towards the fetus. The 
use of Doppler ultrasound (invasive manner) is not 
suitable for long periods of FHR monitoring 
(FUKUSHIMA et al., 1985; UNGUREANU et al., 
2007). Doppler ultrasound technique suffer from 
the limitation of sensitivity to movement and most 
Doppler systems rely upon some form of averaging 
to produce their FHR data.  

In contrast, methods utilizing the AECG have a 
greater prospect for long-term monitoring of FHR 
and fetal well-being using signal processing 
techniques. The AECG signal can also be used for 
antepartum non-invasive FHR determination 
through the detection of small fetal cardiac 
potentials at the surface of the maternal abdomen 
(SOLUM et al., 1980). The AECG can be used to 
produce true RR interval data, which is suitable for 
heart rate variability studies if required. Its advantage 
is that it is completely non-invasive and unobtrusive, 
has comparatively low power requirements and can 
be used over extended (e.g. 24 hours) periods. The 
method additionally allows the maternal heart rate 
(MHR) to be recorded since the MECG is also 
detected from the AECG. The advantage of using 
AECG to extract FECG is that additional 
information can be extracted compare to using 
Doppler ultrasound although the accuracy of this 
technique is much lower compare to former one 
(MARIA et al., 2001).  

The recording and monitoring of the FHR from 
electrodes on the maternal abdomen is the most 
convenient option for an ambulatory recorder 
although it involves overcoming several difficulties. 
The difficulty arises in detecting the fetal QRS 
complexes from the AECG signal, which consists of 
both the MECG and FECG. This composite signal 

may also contain a relatively large amount of noise, 
and may be further distorted by muscle and 
breathing movements. A relatively weak FECG also 
causes difficulties. The signal strength of the MECG 
is usually many times that of the FECG. While this 
is itself may not be a problem if the noise level is 
low, it is definitely an issue if the maternal and fetal 
ECG QRS’s are coincident with each other. This 
causes the MECG to completely overlap the FECG 
so that only the MECG QRS is detectable. To 
overcome the above problems, some multiple-lead 
algorithms use the thoracic MECG to cancel the 
MECG in the AECG to get FECG (KHAMENE; 
NEGAHDARIPOUR, 2000), though this is 
inconvenient for the patient during long-term 
monitoring. Hence, to make the AECG suitable for 
the detection of the FECG, the signal to noise ratio 
(SNR) must be enhanced. The decision was made 
to base on the investigation into the possibility of 
constructing an ambulatory FHR recorder around 
the acquisition of the abdominal FECG. Therefore, 
an attempt has been made to overcome the above 
problems of the AECG method and this 
development work is an effort to produce an FHR 
monitoring system with the capability of long-term 
recording of the FHR ambulatory technique. 

There is a significant amount of work being 
done to improve SNR of FECG signal (PARMAR; 
BHUVAN, 2010). Recent research shows that the 
nonlinear domain can be modeled more accurately 
with artificial intelligence technologies. Some 
approaches like fuzzy logic and moving averaged 
have been proposed to extract fetal ECG from 
abdominal ECG of pregnant woman (HASAN et al., 
2009; PARK et al., 1992). Among different artificial 
intelligence tools, neural networks are increasingly 
applied to detect FHR and extract fetal ECG 
(PETRENAS et al., 2012). In this research, a BPNN 
has been designed. The BPNN is chosen mainly 
because it is adaptive to nonlinear and time-varying 
features of AECG signal (HASAN et al., 2011). It 
can be trained to recognize the normal waveform 
and filter out the unnecessary artifacts.  

Material and methods 

The algorithm is a crucial part for processing the 
AECG to detect the R peaks in QRS complex of 
MECG and FECG for measuring the MHR and 
FHR respectively. Many different techniques have 
been developed for FECG enhancement and 
detection from the AECG signal. In the proposed 
and developed methodology has been used AECG 
signal from the mother’s abdomen where the 
algorithm must have the capability of processing the 
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AECG signal and continuously detect the maternal 
and fetal QRS complexes. Mainly, Neural Network 
has been designed in this research to detect QRS 
complex in AECG signal. QRS complex detection is 
important so that RR-interval can be extracted for 
disease classification and can be made the correct 
decision by the physician and clinician during the 
pregnancy. Neural network has been chosen mainly 
because it is adaptive to the nonlinear and time-
varying features of ECG signal (HASAN et al., 
2011). It can be trained to recognize the normal 
waveform and filter out the unnecessary artefacts 
from the ECG signal. According to the design of the 
algorithm, the AECG signal from mother’s 
abdomen considered for FHR extraction using the 
AI. Mainly, there are some features has been 
collected from the AECG, and then the features 
have been used to feed the network to detect the 
QRS complex for MECG and to remove the noises 
parallel. After this, again the AI has been used for the 
extraction of FECG by suppressing the MECG from 
the AECG for FHR monitoring. 

In the case of QRS complex detection i.e. before 
feeding into the neural network, the network is 
trained to memorize the characteristics of an R peak 
of QRS complex. One of the distinct features of R 
peak is large amplitude compared with other 
portions of ECG like P and T waves. R peak has 
high differentiation value due to sudden large 
amplitude change over short period. The duration of 
QRS complex exceeding certain threshold is usually 
large than the other parts of signal. R peak is also a 
maximum point with high positive threshold at QR 
portion and high negative threshold at RS portion. If 
we plot the differentiation signal, there is crossing 
zero point from positive to negative. Besides, usually 
the interval between RR is almost constant for a 
particular ECG signal. If the point is the first point 
exceeding in a signal, first-element flag is set. This is 
to let the network learns that the first element can 
have variable RR interval, since the RR interval 
calculated is the distance from zero point. These 
attributes, amplitude, differentiation, duration, 
approximate RR interval, and zero-crossing flag, 
first-element flag are used to train the network to 
recognize R peak. 

The flow chart of QRS complex detection is 
shown in Figure 1. The signal is amplified by power 
two to amplify the signal with large amplitude and 
reduce the effects of high frequency but low 
amplitude noise. This is also to detect peaks that have 
low axis due to base line drift. When the signal is 
amplified by power two, the negative peak with high 
amplitude can be detected when the positive is low. 

The threshold has adaptive nature i.e. the 
threshold will be updated according to the features 
characteristics. The maximum is chosen from the 
signal over an initialization period. The maximum is 
recalculated when a peak is found to reflect the 
effect of the current peak. If the peak is low, the 
threshold is lowered for the next peak, and vice 
versa. This is to deal with base line drift effect. The 
threshold is lowered when a possible peak is not 
detected over a maximum period. The search is 
rechecked over the period in case the peak suddenly 
goes low due to noise and base line drift. According 
to the algorithm the threshold1, threshold2 and 
threshold3 have been considered as follows: 

 
max3875.01 Xthreshold ×=  (1)

 
12 thresholdthreshold =  (2)

 
23 thresholdthreshold −=  (3)

 
where: 

the Xmax is the maximum (chosen from the 
signal over an initialization); 

threshold1 is 0.3875 times for Xmax; 
threshold2 for positive peak; 
threshold2 for negative peak.  
When a value greater than the threshold is found, 

it scans the maximum for the duration the values 
greater than the peak. Then the next peak is found 
from the end of the duration. For every possible 
peak found the differentiation and the original 
amplitude at that point is calculated. There is a 
second threshold for the original peak. The duration 
of the original signal is found. Since the R peak 
always has the highest frequency, the differentiation 
is found. If the current differentiation value is 
positive and the next value is negative, a crossing-
zero flag is set to one to indicate it is a maximum 
value. If on the other hand, the current 
differentiation value is negative and the next is 
positive value, the crossing-zero flag is set to 
negative to indicate that this is a minimum point. 
The interval between the current point and the 
previous possible peak is calculated. This is to get 
the approximate RR interval to determine if the 
point is an R peak. 

The parameters of amplitude of original signal, 
duration over second threshold, differentiation 
value, possible RR-Interval, and crossing -zero point 
are written to a file. Then the file is re-opened to 
check if there are any points that are redundant. A 
minimum RR-interval is chosen as 5 points. Since 
the signal is encoded as 128 samples per second and 
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the normal human heart beat are 72 per minute. It is 
equivalent to 1.2 beats per second. Then the average 
RR interval is around 128 points for one QRS 
complex to detect. The RR low is set to 5. It is very 
unlike that two QRS complexes occur within  
5 samples. Therefore, for peaks that are less than  
5 samples from the previous possible peak, the peak 
with highest amplitude is chosen and the remained 
are discarded. 

All the remaining points are fed into the network 
to train the network so that it can remember the 
characteristics of an R peak. During simulation, data 
that have characteristics close to training data will be 
identified as R peak. 

 

 
Figure 1. Flow chart of QRS complex detection algorithm. 

The ECG signal is raised to power two. This is 
because when a particular QRS complex has 
significant low axis (baseline drift), the signal is 
equal to power two of absolute value. This takes into 
consideration of negative amplitude. Power 2 is used 
because this significantly distinguishes the peak 
amplitude from low amplitudes. Therefore, the 

unnecessary artifact can be removed. The amplitude 
of power two is used to detect amplitude exceeding 
the threshold. The amplitude of original signal is 
used for neural network input. This is because we 
need to take into consideration of the positive and 
negative sign of the amplitude. If it is positive, then 
it is more likely to be R peak. However, when 
exceeding maximum window size and there is no 
positive peak detected, negative peak with 
appropriate RR interval is given consideration. 

Usually the R peak has larger duration compared 
with P wave, T waves, and noises. Therefore, it has 
been easily detected the duration of R peak. Usually 
R peak happens at quite consistent interval. It is a 
criterion that we look into to determine R peak. If 
after certain duration no possible peak is found, the 
threshold is reduced to search again, in case of 
baseline drift. 

The QRS usually has the largest differentiation 
values compared with other portions of ECG. 
However, there are times that the noise and T wave 
has differentiation even larger than the QRS. The R 
peak is the maximum point. At this point, there 
should be a change from positive to negative 
derivative values. If it happens, the crossing-zero flag 
is set. 

Back propagation is the generalization of the 
Widrow-Hoff learning rule to multiple-layer 
networks and nonlinear differentiable transfer 
functions. Feed forward networks often have one 
or more hidden layers of sigmoid neurons 
followed by an output layer of linear neurons. 
Multiple layers of neurons with nonlinear transfer 
functions allow the network to learn nonlinear 
and linear relationships between input and output 
vectors. The linear output layer lets the network 
produce values outside the range -1 to +1. The 
designed Back propagation network has two layers 
(HASAN et al., 2007). It is a two-layer tan-
sigmoid/linear network. Each layer has a weight 
matrix W, a bias vector b, and an output vector a. 
The architecture of the multilayer feed forward 
network is shown in Figure 2. The notation IW 
means input layer weight and LW means hidden 
layer weight. The notation wa, b

m, n means weight 
for the connection link between from layer b to 
layer a. It is the weight for mth neuron at layer a 
from nth output from layer b. For example, lw2, 1

3, 5 

means layer weight from hidden layer 1 to layer 2. 
The weight is from 5th output at layer 1 to 3rd 
neuron in layer 2. P is the input vector, n is the 
output layer before transfer function and a is the 
actual output vector.   
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Figure 2. Back propagation multilayer feed forward network. 

The network was designed with 6 inputs, which 
are amplitude, differentiation, duration, RR 
interval, zero-crossing flag, and first-element flag 
for each point that needs to be judged if it is an R 
peak. The network is trained to output 1 for R peak 
and 0 to non-R peak. There are 13 neurons in the 
hidden layer. There is no definite way of 
determining the right number of neurons in 
hidden layer. It is chosen based on Kolmogorov's 
theorem. Kolmogorov's theorem states that if the 
number of input neuron is m, and the inputs are 
scaled to lie in the region from 0 to 1, a network 
with only one hidden layer and 2m+1 neurons in 
this layer can exactly map these inputs to the 
outputs. There should not be any constraint on the 
output for this theorem to be applicable. 
Therefore, 6*2+1 = 13 neurons are chosen as the 
number of neurons. However, Kolmogorov's 
theorem does not specify whether this network is 
an optimum solution for this mapping. The 
network with this number of neuron in hidden 
layer may not be the simplest to do the mapping. 
However, due to the cause that with 13 neurons, 
the network still takes quite some time for training, 
the number is not reduced for optimized solution. 
The network is created by using command of 
newff for two layer neural networks. 

 
( ) [ ]{ }( )''' ,'',tan'1,13,maxmin trainlmpurelinsigInputnewffnet ↑↑↑= (4)

 
where: 

net is the network object; 
the number of neurons 13 in the hidden layer; 
the transfer function is considered tansig.  
The number of neuron in output layer is 1 with 

the purelin transfer function. Finally, the training 
function has been considered trainlm that is the 
Levenberg-Marquardt second order training speed-
training functions. The decision of choosing 
number of neurons in hidden layer actually still 
remains a challenge. If the number of neuron is too 

large, the network needs more storage and the 
training is more complicated. The memory is 
distributed over large number of weights. Some 
weights may be insignificant to the overall 
performance. However, if the number is too small, 
though the network still can do the exact mapping, 
there may be over fitting. Over fitting means, that 
the network cannot generalize when presented with 
slightly different inputs. The network is initialized 
with the following settings: 

 
100.. =showtrainParamnet  (5)

 
800.. =epochstrainParamnet  (6)

 
31.. −= egoaltrainParamnet  (7)

 
It means that for every 100 iteration, the error is 

displayed once. The maximum epoch for training is 
800 and the goal is to reach error at 1e-3. For each 
training session, the training stops when reaches 
either maximum epochs or goal error. The network 
is trained with 20 signals. The total points fed into 
the network are around 1000 input-target pairs. The 
signals are with different amplitudes, heart rate, and 
noise level. The weight and bias values are saved for 
each training session. When the simulations are not 
satisfactory, the network is trained one more time 
with the last saved weight and bias values. This can 
improve the network and reduce the number of 
time of training. 

Preprocessing and post processing are used 
before and after training. This is because the range 
of values for different parameters differs too much. 
For example, RR interval is normally below 350, but 
amplitude can be as large as 30,000. Preprocessing 
normalize the inputs so that training becomes 
smoother and faster. The output is post processed to 
get back to original range.  

For FECG extraction, fetal signal is contained 
within AECG of pregnant woman, together with 
maternal signal. It is well known that fetal signal is 
easily susceptible to noise corruption due to weak 
amplitudes. Besides, maternal signal is the 
dominating ECG in the AECG. FECG needs to be 
filtered out from AECG of pregnant woman.  

The architecture of the neural network is 
mainly designed by using the adaptive filtering 
approach that is the combination of ADALINE 
(adaptive linear network) and TDL (tapped delay 
line). According to the concept of TDL, the input 
signal MECG enters and passes through the N-1 
delays and the output of the TDL is an N-
dimensional vector, made up of the input signal at 
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the current time, the previous signal, which is 
feed to the ADALINE. For the less complexity, 
the value of N is considered 2. The adaptive filter 
linear neural network has been shown in Figure 3 
where, the MECG, which is predicted and closely 
to the AECG, passes through the 1 delay and the 
delayed output was multiplied by the two 
corresponding initial weights. After addition of 
the weighted output, it passes through the linear 
activation function. Finally, the output of the 
network was detracted from the target input 
(AECG) and to reduce the difference between 
input and target signal the weight has been 
updated every step. Therefore, the difference is 
considered the FECG by suppressing from the 
AECG.  

 

 
Figure 3. Adaptive filter linear neural network. 

ADALINE filter is better than conventional 
filtering because suppression is used instead. It can 
avoid eliminating desirable signal. The initial weight 
was considered w1,1 = 0, and w1,2 = -2. For input 
signal, 1000 data was fed into the network that is 
considered the maternal signal and for the target 
signal, 1000 data has been used as abdominal signal. 
Initially, the learning rate and momentum has been 
taken 0.8 and 0.5 respectively. The learning rate and 
momentum changeable. The changing of the 
learning rate and the momentum also affect the 
output of the network. The input (AECG) 

considered as 
→
p , the desired output (MECG) 

considered as →
X
d

 
and the adaptive weight 

considered as 
→
w . The learning rate is η  and the 

momentum is m. Therefore, the network 
representation will be like below. 

 
→→

=→ pwnet
X

.  (8)

→→→ ==
XXX

netnetga )(  (9)

 
→→→ −=
XXX
adδ  (10)

 
The learning rule will be 
 

→→→
→−+= pmww
X

oldnew ..)1( δη  (11)

 
The operation of the network is as followed. 

The MECG, which is the signal to be predicted, 
enters into network through tapped delay line. The 
value that enters the network is the current value. 
The two outputs of the tapped delay lines are 
actually the previous values of current ECG value. 
The three values are multiplied with three weights 
value. Three weighted values enter a summer and 
linear transfer function. Since the target is AECG 
of pregnant woman, the network changes the 
weight on each time step to minimize the error. If 
the error is zero, then the network output is exactly 
equal to target ECG. However, the best the 
network can predict is the MECG in AECG of 
pregnant woman due to the correlation between 
two signals. Thus, the error does not equal to error 
instead, it equals fetal ECG, which is what actually 
we want to extract. 

Results and discussion 

To extract FECG from the AECG for the 
monitoring of FHR, the algorithm was developed in 
the previous sections. In this research, the signals 
used in training and testing for the neural network 
were downloaded from MIT database website. The 
training set signals consists of both normal AECG 
and AECG with paroxysmal atrial fibrillation. The 
test signals consists of both normal and atrial 
fibrillation ECG. 

The training set consists of 50 record sets. Each 
record set contains two 30-minute with consecutive 
record names (e.g., n01 and n02), and two 5-minute 
"continuation" records with names ending in c (e.g., 
n01c and n02c). All four records in each record set 
are excerpts of longer continuous AECG recordings 
of a single subject. The 50 record sets come from 48 
different subjects. The records with names 
beginning with p come from subjects who have 
paroxysmal atrial fibrillation (PAF). The second 
(even-numbered) record in each pair of 30-minute 
records contains the ECG immediately preceding an 
episode of PAF. Thus, for example, record p16 
immediately precedes the episode of the PAF in 
record p16c. 
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The first (odd-numbered) record of the set (for 
example, record p15) contains 30 minutes of the 
AECG during a period that is distant from any 
episode of PAF. Distant means there is no PAF 
during the 45-minute period before or after the 30-
minute record in this case. The corresponding 5-
minute continuation record (e.g., record p15c) 
shows the minutes immediately following the PAF-
distant record. 

The records with names beginning with n come 
from subjects who do not have documented atrial 
fibrillation, either during the period from which the 
records were excerpted or at any other time. The 
subjects include healthy controls, patients referred 
for long-term ambulatory ECG monitoring, and 
patients in intensive care units. 

The test set is constructed from 50 different 
subjects. As in the training set, pairs of 
consecutively numbered records come from the 
long-term AECG recording of a single subject. 
Approximately half of the record sets in the test 
set come from subjects with PAF. All signals are 
converted into text format and graphical format in 
excel files.  

The *.dat files downloaded are in binary format. 
They contain the digitized ECGs with 16 bits per 
sample, least significant byte first in each pair, 128 
samples per signal per second, samples from each 
channel alternating, nominally 200 A/D units per 
millivolt.  

They are manually converted to text file format 
*.txt by using a C++ program, confil.cpp. Since 
the total number of samples is large (128 samples 
per second = 7680 samples per minute, thus total 
samples = 7680*40 = 307200 samples per subject), 
only two thousand samples are converted in each 
text file (2000*4 = 8000 samples per subject). This 
is to due to reduce the neural network training 
time. 

The QRS detection in the MECG was done by 
using the Backpropogation Neural Network 
approach. Initially, to train the neural network, 20 
different signals were used and for testing, more 
than 10 signals were used. Approximately, 1,000 
input-target pairs of the ECG signal fed into the 
network with different amplitudes, noise level, and 
heart rate. In each training session, the weight and 
bias values for both hidden layer and input layer 
were saved. With the unsatisfactory simulation, the 
network is trained one more time with the last saved 
weight and bias values, which improved the network 
and helped to reduce the number of time of 
training. The preprocessing and post processing has 
been done on the signal before and after training the 
network. This was because the range of values for 

different parameters differs too much (HASAN  
et al., 2011). For example, RR interval is normally 
below 350, but amplitude can be as large as 30,000. 
Preprocessing concepts normalize the inputs so that 
training becomes smoother and faster. The output is 
post processed to get back to original range. The 
testing output signal has been shown in Figure 4. 
According to the figure, there were actually 5 QRS 
complex for maternal ECG in the input signal and 
all the 5 R-peaks were detected. According to the 
output result of this figure, it has been showing that 
there was neither false R-peak nor missing R-peak 
in the output result, i.e. the algorithm can be able to 
detect R-peak in the QRS complex correctly. 

 

 
Figure 4. Testing signal for neural network. 

According to the output result, it can be said that 
the QRS detection algorithm was working properly 
under the satisfactory level. Table 1 summarizes the 
results of detection accuracy for 10 signals. The 
Accuracy of the algorithm has been considered as 
below. 

 
( ) 100*PeaksetecteddPeaksAccuracyDetection =  (12)

 
( ) 100*PeakspeaksingMissPercentagePeaksingMiss = (13)

 
( )
( ) 100*

peaksoutputTotal

peakspositiveFalse
PercentagePositiveFalse = (14)

 
From the Table 1, it is being shown that the 

developed R-peak detection algorithm shows 99% 
average accuracy. During the testing on T06 data set, 
only one false R-peak is detected, which contributed 
lower percentage (0.09%) of false positive peak. 
High amplitude and differentiation values have also 
been experienced but those were in reasonable 
range. During the testing on the output of another 
date set T09, one R-peak was missing thus 
contributed lower missing peak percentage (0.09%), 
which is due to the smaller RR interval than the 
average RR interval in training set.  
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Table 1. Detection accuracy. 

Input signal No. of R Peaks No. of peaks detected No. of Missing peaks No. of false positive Accuracy of Detection 
T01 7 7 0 0 100.00% 
T02 10 10 0 0 100.00% 
T03 7 7 0 0 100.00% 
T04 8 8 0 0 100.00% 
T05 7 7 0 0 100.00% 
T06 10 10 0 1 100.00% 
T07 7 7 0 0 100.00% 
T08 7 7 0 0 100.00% 
T09 11 10 1 0 90.00% 
T10 6 6 0 0 100.00% 
Average 99.00% 
 

After detecting, the QRS complex of MECG in 
the AECG, the next task would be extracted the 
FECG. To extract the FECG, in this research, 
adaptive neural network has been designed where 
the network using the adaptive filtering approach 
that is the combination of ADALINE and TDL. 
The input signal has been given to the neural 
network as AECG and the estimated signal has 
been considered as MECG signal that is target 
signal. Initially, the learning rate and momentum 
has been taken arbitrary. The changing of the 
learning rate and the momentum also affect the 
output of the network. According to the Figure 5, 
the suppressed output that is the FECG from the 
input signal AECG to target signal MECG. In the 
figure, there were 4 QRS complex in the AECG 
that was cleared to understandable. Around 50 to 
100 samples, there were maternal and fetal QRS 
overlapping but in the output, the fetal signal was 
clearly extracted in this overlapping condition. 
Again, around 650 to 700 samples also happened 
regarding the overlapping problem but the 
algorithm was able to separate the fetal ECG from 
the Abdominal ECG.  

 

 
Figure 5. Extract fetal ECG from abdominal ECG to maternal 
ECG. 

A comparison has been highlighted in terms of 
the accuracy with this work and some other work 
done by other researcher shown in Table 2. 
According to the table of accuracy for FHR 
extraction method, it can be said that the proposed 
method are offering better opportunities in the field 
of FHR extraction. 

Table 2. Accuracy comparison for FHR extraction method. 

Author Description (Method) Accuracy (%)
Karvounis et al. (2007)  Complex wavelet 98.94 
Groome et al. (1995) Adaptive algorithm 85.00 
Pieri et al. (2001) Matched filter 65.00 
Ibrahimy et al. (2003) Statistical analysis 89.00 

This work Artificial Intelligence 99.00 
 

Conclusion 

An efficient system of FECG Extraction for the 
monitoring of FHR during the pregnancy has been 
successfully developed in this research using 
Artificial Neural Network approach. The results 
obtained from the simulation in MATLAB shows 
that the developed system could accurately extract 
the FECG from the AECG. Although the previous 
research methods, which has been used by the 
previous researcher, accurately achieve for the 
FECG extraction from the AECG, still all of them 
suffer from familiar limitations that this research 
solves. This research also totally noninvasive 
approach therefore the problem for the invasive 
approach also was solving by this research. This 
research can also be used as a reference for other 
researches targeting FHR extraction and monitoring 
system. 
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