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a b s t r a c t

As low carbon technologies become more pervasive, distribution network operators are
looking to support the expected changes in the demands on the low voltage networks
through the smarter control of storage devices. Accurate forecasts of demand at the
individual household-level, or of small aggregations of households, can improve the
peak demand reduction brought about through such devices by helping to plan the
most appropriate charging and discharging cycles. However, before such methods can be
developed, validation measures which can assess the accuracy and usefulness of forecasts
of the volatile and noisy household-level demand are required. In this paperwe introduce a
new forecast verification error measure that reduces the so-called ‘‘double penalty’’ effect,
incurred by forecastswhose features are displaced in space or time, compared to traditional
point-wise metrics, such as the Mean Absolute Error, and p-norms in general. The measure
that we propose is based on finding a restricted permutation of the original forecast that
minimises the point-wise error, according to a given metric. We illustrate the advantages
of our error measure using half-hourly domestic household electrical energy usage data
recorded by smart meters, and discuss the effect of the permutation restriction.
© 2013 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
s. P
1. Introduction

Asmany countries progress towards a low carbon econ-
omy, the increased penetration of low-carbon technolo-
gies (LCTs) may produce new risks to the security and
robustness of the electricity networks (Combrink &
Vaessen, 2006). The decarbonisation of transport and heat-
ing (for instance, through the uptake of electric vehicles
and heat pumps) is likely to increase the network demand,
whilst household microgeneration increases the prospect
of a two-way flow of electricity on the network, as con-
sumers become suppliers and feed back into the grid.

∗ Correspondence to: Mathematical Institute, University of Oxford,
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01865 611 511.
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In short, electricity demand is likely to increase and be-
come more unstable, particularly at the low voltage (LV)
level (Combrink & Vaessen, 2006).

In response to these new challenges, the UK govern-
ment is aiming to help network operators and suppliers
prepare for a low carbon economy through initiatives such
as the £500m low carbon network fund (LCNF) (Ofgem,
2012), and the roll-out of smart meters to every home
in the UK by 2020 (National Grid, 2012). Smart meters
are advanced energy meters with a two-way communi-
cation capability which record high resolution (typically
half-hourly) energy consumption. These detailed patterns
of energy demand provide opportunities to improve our
understanding of energy consumption habits, to design
smarter interventions for energy reductions, and to pro-
duce accurate forecasts of energy demand at the LV level.
Such accurate forecasts at the level of households, or small
aggregations of households, can help distribution network

ublished by Elsevier B.V. All rights reserved.
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operators improve their management and planning of the
LV networks. Forecasts can also be combinedwith network
storage devices to improve peak demand reduction. As part
of theNewThamesValley Vision1 LCNF project, storage de-
vices are being considered to help alleviate the high de-
mand on the LV network at peak times. Simple set point
control is the simplest and most common way of control-
ling battery storage, but often fails to reduce the peak de-
mand (Thomas, 2010). However, accurate household-level
forecasts could optimise the use of the battery by help-
ing to plan the appropriate charging and discharging of the
storage device (Molderink, Bakker, Bosman, Hurink & Smit,
2010; Xu, Xie, & Singh, 2010). Until recently, the majority
of load forecasting has been at the medium voltage (MV)
to high voltage (HV) substation levels, where the demand
is relatively smooth andmore regular (for instance, see the
review papers by Alfares & Nazeeruddin, 2002; Moghram
& Rahman, 1989; Taylor & Espasa, 2008). However, at the
LV network to household level, the demand is volatile and
noisy, and typically consists of many different types of
behaviour, such as frequent but irregular peaks (Brabec,
Konár, Pelikán, & Malý, 2008). Hence, forecasting methods
developed for the MV and HV levels may not be appropri-
ate for the household level. In order to produce and test
the accuracy of household-level forecast demands, appro-
priate forecast verification methods are required.

Forecast verification hinges on the ability of quanti-
tative measures to assess the similarities between fore-
casts and observations, what Murphy (1993) refers to as
forecast quality. Hence, measure-orientated approaches
based on point-wise comparisons, such as the mean ab-
solute error (MAE) and root mean square error (RMSE),
can often lead to spurious conclusions, see Brooks and
Doswell III (1996); Castati et al. (2008), and Hoff-
man, Liu, Louis, and Grassotti (1995). In particular, an
observed feature that is forecasted accurately in terms of
size and amplitude, but displaced in time, incurs a ‘‘dou-
ble penalty’’ (Keil & Craig, 2009). Thus, as we illustrate in
this paper, it can be difficult for skilled, plausible forecasts
to out-perform even a flat forecast that is of almost no
informative value, particularly when the data are volatile
and noisy. This problem has long been understood in the
meteorology community. Consequently, a large number of
alternative verification strategies have been proposed;
see Castati et al. (2008) for a review. The class of
distribution-oriented approaches (Brooks & Doswell III,
1996; Murphy & Winkler, 1987) offers many insights but
requires large quantities of data and is computationally in-
tensive (Brooks & Doswell III, 1996).

One approach to the calculation of displacement errors,
which was also pioneered in meteorology, has been to
formulate errors using an optimal distortion of the original
field, i.e., smooth changes in position and amplitude
that minimise the misfit between the data and the
forecasts (Hoffman et al., 1995). Although such verification
methods have been developed widely, they have limited
appeal in the setting inwhichwe are interested primarily—
volatile, noisy and irregular data. In this case, it may

1 http://www.thamesvalleyvision.co.uk/.
be more appropriate to use verification measures that
deform the forecast discontinuously. To some extent, such
techniques are employed in ‘fuzzy’ verification techniques
for high-resolution weather forecasting (Ebert, 2008).
These typically compare the average states of ‘events’
occurring within a neighbourhood of interest. For real-
valued variables, such as the amount of rainfall or thewind
intensity, events are defined relative to some threshold. In
essence, these methods produce new fields for both the
observed and forecasted data, which are then compared
using a traditional point-wise metric. Such measures are
both scale and threshold dependent, and thus, one must
consider a matrix of errors that captures both of these
variations.

Many algorithms and metrics have been developed for
measuring the similarity of time series, such as Dynamic
Time Warping (DTW), longest common subsequence,
edit distance on real sequences, and edit distance with
real penalty (Chen & Ng, 2004). Often, these algorithms
are applied in information retrieval and data mining
techniques in order to measure the cost of morphing
one time series into another. Dynamic Time Warping
is one of the most popular techniques for measuring
time series similarity, and has been used successfully in
automatic speech recognition algorithms (Muller, 2007).
DTW measures the differences between sequences which
may vary in time or speed by stretching the time series
through the duplication of local points. The difference
in the deformed time series is then calculated using
a standard Lp metric. A more recent method, called
the Move-Split-Merge (MSM) metric, is similar to DTW,
except that duplicated and deleted values incur a fixed
cost (Stefan, Athitsos, & Das, 2013). For time series
matching methods, although suitable for comparing series
with the same (but perhaps stretched) shape in time, they
are biased toward preserving ordering, and therefore are
not flexible enough, in the context of energy demand,
to cope with the natural irregularities in household
energy usage behaviour. In addition, DTW and MSM will
tend to underestimate the costs of repeated peaks by
simply merging/duplicating the local peaks, with little
or no penalty incurred for the inaccurate repetition. The
additional complications and restrictions introduced by
such techniques make them unsuitable for measuring the
errors of household-level forecasts. This motivates the
development of a new forecast error measure, which is the
topic of this paper.

Before sophisticated forecasting techniques for house-
hold electrical energy usage can be developed, we need to
be able to assess their veracity against data quantitatively.
However, in this paper we illustrate the fact that the capri-
cious nature of energy usage means that traditional point-
wise measure-oriented approaches perform poorly at this
task. Our main contribution is to suggest a new approach
that allows for some flexibility in the timing of the forecast
when computing the error, while retaining some simplic-
ity. Specifically, for each forecast we define the error to be
the minimum error (with respect to an appropriate norm)
over the set of all restricted spatial/temporal permutations
of the forecast.Webegin in Section 2with a formal descrip-
tion of point-wise errormeasures, particularly the p-norm,

http://www.thamesvalleyvision.co.uk/
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then introduce the ‘‘adjusted error’’ and illustrate its ad-
vantages using a simple, synthetic example. In Section 3,
we use our new measure to assess the accuracy of a hi-
erarchy of daily forecasts of half-hourly electrical usages,
taken from individual household smart meter data. In Sec-
tion 4, we present a detailed discussion of the effect of the
‘adjustment limit’, i.e. the maximum allowed permutation
displacement. Finally,we draw conclusions and discuss the
advantages and disadvantages of our method in Section 5.

2. Measuring errors

2.1. Standard error estimates: the p-norm error

Let x = (x1, x2, . . . , xn)T and f = (f1, f2, . . . , fn)T be the
actual and forecasted data vectors respectively, such that
each fi is a prediction of the actual data xi for i = 1, . . . , n.
We focus on one-dimensional data (i.e., time series), but
the methods that we describe can be generalised to higher
dimensions. Error measures can be described in terms of a
vector function

E = F(f, x), (1)

where F : Rn
× Rn

→ R is some metric. In this paper we
focus on the absolute p-norm,

Ep = ∥f − x∥p =


n

i=1

|fi − xi|p
1/p

, (2)

for some p ≥ 1 (see Golub & Loan, 1996, p. 52). For ex-
ample, this type of error includes the Mean Absolute Error
(MAE) and the root mean square error (RMSE), which are
simply constant multiples of the 1-norm and 2-norm er-
rors, respectively.

2.2. The adjusted error

In order to manage and plan the LV networks prop-
erly, distribution network operators (DNOs) require an ac-
curate knowledge of the network peak demand. Accurate
household-level demand forecasts will help DNOs to un-
derstand when and how often network constraints are vi-
olated. In addition, the forecasts can be used in conjunction
with the smart control algorithms of storage devices to re-
duce peak demands by helping to create a plan for the bat-
tery to charge at times of low demand and then discharge
at around the time of the expected peak (Molderink et al.,
2010; Rowe, Holderbaum, Potter, & Liu, 2012). Hence, for
these applications it is more important that peaks be pre-
dicted at approximately the correct times, rather than not
at all. However, as was stated in Section 1, such forecasts
incur a double penalty from point-wise error measures,
andmay be judged incorrectly as poor forecasts. This leads
to the idea that the error measure should allow for small,
possibly discontinuous, displacements of the forecast val-
ues in time. We note that there exist many perfect match-
ings between the forecast values and actuals. Each match
can be described by a permutation matrix P . To restrict
the magnitude of the displacements of the forecast values,
we impose an ‘adjustment limit’, denoted w ≥ 0, on the
permutations such that Pij = 0 for |i − j| > w. We define
the adjusted error as the solution to the minimisation

Ew
= min

P∈P
F(Pf, x), (3)

for the given metric F , where P is the complete set of
restricted permutations. The adjusted p-norm error is then

Ew
p = min

P∈P
∥Pf − x∥p. (4)

The adjusted error is a semimetric, not a metric, since
in general it does not obey the triangle inequality. The
error minimisation is a variant of the assignment problem,
a well-known combinatorial optimisation problem that
can be solved in polynomial time (Munkres, 1957) using
the ‘Hungarian method’, details of which are provided
by Schrijver (2002). To incorporate the adjustment limit
into the algorithm, if |i − j| > w, we set |fi − xj|p = Ω ,
where Ω is a large constant that effectively prevents such
permutations. The method’s time complexity is O(n(m +

n log n)) (Tomizawa, 1971), where m is the number of
potential error matches, n2. We note that this method
is related to but distinct from the use of the Hungarian
algorithm in Monge Type problems (such as the Earth
Mover’s distance), which redistributes the cumulative
mass (Levina & Bickel, 2001). The adjusted error in Eq. (4)
does not subdivide or combine separate predictions, but
merely reorders them.

The adjustment limit w is a time-scale parameter that
is problem dependent and has an important effect on the
efficacy of our verification method. If w = 0, then we
recover the original p-norm error in Eq. (2). Increasing
w reduces the adjusted error, but a small error resulting
from large displacements is not necessarily indicative of a
good forecast. Thus, the mean displacement, which can be
obtained from the permutation matrix P , is an additional
measure of accuracy that can be used to compare different
forecasts. We discuss these points in detail in Section 4.

2.3. A simple example

In this subsection we compare four qualitatively
different forecasts of a simple energy load profile using the
absolute and adjusted p-norm errors. The synthetic data,
illustrated with solid black lines in each panel of Fig. 1,
consists of a single peak centred around t = 5, with a
constant background usage over a 20 time-point domain.

The hypothetical forecasts, illustrated with dashed
lines, consist of a flat forecast (F1) (corresponding to the
average usage) and a single peak centred around three
different times (F2–F4),with the correct backgroundusage.
In the context of using the forecasts to reduce the peak
demand via a storage device, F2 is a very good forecast,
F3 is reasonable, and both F1 and F4 are poor. Planning
the control of a storage device using the F2 forecast will
enable a large reduction in peak demand, and F3 should
still facilitate moderate peak load shedding, due to the
expectation of a peak at approximately the correct time.
However, F1 and F4 would provide no peak load shedding
due to the inaccuracy in forecasting the peak demand. The
absolute and adjusted p-norm errors, for p = 4, of each of
the forecasts illustrated in Fig. 1 are presented in Table 1.
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Fig. 1. Four ‘forecasts’, F1, F2, F3 and F4 (dashed lines), together with the
actual data (solid lines), for a simplified example.

Table 1
Comparison of the error measurements given by the different norms for
the four different forecasts, F1–F4, described in the main text.

Error Forecast
F1 F2 F3 F4

Absolute error 0.82 0.20 0.99 1.00
Adjusted error (w = 1) 0.82 0.20 0.79 1.00
Adjusted error (w = 2) 0.82 0.20 0.48 1.00
Adjusted error (w = 3) 0.82 0.20 0.20 1.00

We have used the 4-norm rather than the more com-
mon 2-norm because we want to penalise large errors
(i.e., missed peaks) much more than small errors. Differ-
ent values of p yield qualitatively similar results. Table 1
illustrates the following:

• Absolute 4-norm error. The good forecast, F2, has the
smallest error, while the flat forecast, F1, has a smaller
error than either the poor forecast, F4, or the reasonable
forecast, F3. This illustrates the double penalty effect
which is present in point-wise error measures.

• Adjusted 4-norm error, w = 1 and w = 2. The reason-
able (F3) forecast error is reduced to about 95% and 58%
of the flat (F1) forecast error for the adjustment limits
w = 1 and w = 2 respectively. The F1, F2 and F4 fore-
cast errors are the same for both the adjusted and abso-
lute measures—displacing the forecast values does not
change the errors.

• Adjusted 4-norm error, w = 3. The good (F2) and rea-
sonable (F3) forecast errors are equal. However, we can
still distinguish F2 as being the better forecast with this
method by considering themean displacement. F2 has a
zero mean displacement of the forecast values (imply-
ing that the minimum permutation is achieved by the
forecast), whereas F3 has a mean displacement of 0.6
grid points over the 20 forecasted values.

In summary, the synthetic example illustrates that
the adjusted p-norm error can give a more accurate
representation of the forecast usefulness than the standard
p-norm error.
3. Application to household energy load forecasting

As was shown in the previous section, standard point-
wise measures may not be adequate for assessing the
accuracy of a forecast. Although many forecast methods
have been developed and calibrated for smoother higher
voltage demands (see for instance the review paper by Al-
fares & Nazeeruddin, 2002), their accuracies when applied
to household- or LV-level demand cannot be assessed until
an appropriate error measure has been established. Once
suitable benchmarks have been developed, both old and
new forecastingmethods can be tested and compared, and
other techniques, such as clustering, can be applied to im-
prove the forecasts. In this section, we consider the stan-
dard and adjusted 4-norm errors in order to compare the
performances of three simple forecasting methods applied
to half-hourly domestic household electrical energy usage
data. The data were collected by household smart meters
as part of the Ofgem-managed Energy Demand Research
Project (EDRP) trial run by Scottish and Southern Energy
(SSE).2 A wide variety of energy usage behaviours are ob-
served between households, and the individual household
demand is both volatile and noisy. However, there are
daily, weekly and seasonal patterns that could potentially
be exploited by forecasting methods. Such forecasts can
have a positive impact on network operations and plan-
ning.

3.1. An example with three households

Fig. 2(a)–(c) illustrate a week’s worth of half-hourly
electrical energy usage profiles, in kilowatt-hours (kWh),
for three representative UK households. Household A
consumes most of their energy during one or two peak
periods at regular daily intervals. Thus, we would hope
to be able to forecast their usage fairly accurately.
Household B has irregular peak demands that are smaller
than those of the other households, but they maintain a
fairly constant background usage. Household C is the most
volatile, having large irregular peak demands and periods
of low usage. We would expect this household’s energy
usage to be difficult to forecast. The average daily energy
usages for households A, B and C are 5.51 kWh, 9.89 kWh
and 18.12 kWh, respectively.

Our household energy usage dataset consists of 10
weeks of half-hourly kWh records (3360 in total) for
each of the three households. Each forecast generates
an unsupervised rolling daily prediction from midnight
over the course of the 10th week, with access to the full
data-history of each household separately. Our aim is to
assess the validation techniques, and as a consequence, the
forecast methods that we implement are chosen to form a
clear hierarchy. The three methods by which each of the
daily forecasts are generated are as follows:

1. Flat forecast: The average usage over the previous 7
days, used as the forecast for all time periods.

2 See http://www.ofgem.gov.uk/sustainability/edrp/Pages/EDRP.aspx
for further details.

http://www.ofgem.gov.uk/sustainability/edrp/Pages/EDRP.aspx
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Fig. 2. Example of half-hourly smart meter electrical energy usage (in kWh) for (a) household A, (b) household B and (c) household C, as described in the
main text.
Fig. 3. Forecasted usage of each household described in the text on Wednesday of the final week of the data set. The plots show the actual usage (shaded
area) and the forecasts for (a) household A, (b) household B and (c) household C, using the AA (black line), LW (dashed line) and Flat (gray line) forecast
methods.
2. Last week (LW) forecast: The usage on the same day of
the previous week.

3. Averaged adjustment (AA) forecast: A combination of
a historic average and baseline usage. A detailed
description can be found in Appendix.

Snapshots of a single day’s data from each household, with
the corresponding forecasts, are illustrated in Fig. 3.

Clearly, the flat forecast provides little informative
value, while the LW forecast is innately realistic but
performs poorly for irregularities in the week-to-week
behaviour. The AA forecast is subjectively better than the
other forecasts, but volatility still reduces its performance.

As in the simple example described in Section 2.3, we
compare the absolute and adjusted p-norm errors with
p = 4, in order to penalise larger peaks to a greater extent
than smaller peaks. We usew = 3 as the adjustment limit,
and hence the forecasts can be displaced by up to one and
a half hours either side of their original forecast time. The
effects of w are considered in more detail in Section 4.
Because the forecasts produce rolling daily predictions, we
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Fig. 4. Panels (a)–(c) correspond to households A–C respectively. Each
panel depicts the daily averages of the 4-norm (black) and adjusted
4-norm (gray) errors for the three forecasts.

calculate the ith day’s errors for each measure, ei, and use
the mean absolute error,

⟨E⟩ =
1
7

7
i=1

ei, (5)

to compare forecasts.
The daily mean errors of each forecast method are

shown in Fig. 4(a)–(c) for households A–C, respectively.
The black bars show the daily mean 4-norm error and
the gray bars show the daily mean adjusted 4-norm error.
Focusing first on the 4-norm errors, we note that the
flat forecast out-performs the other forecasts for both
households B and C. In addition, the AA forecast is beaten
by the LW forecast for household A. Clearly, these results
do not agree with the proposed forecasting hierarchy. In
particular, we know that the flat forecast reproduces none
of the daily household usage patterns. By ignoring peaks
altogether, the flat forecast avoids the double penalty and
can appear to be better than more sophisticated forecasts,
but it is clearly of no use for control or scheduling purposes.

We now consider the 4-norm adjusted errors, illus-
trated with gray bars in panels (a)–(c) of Fig. 4. We note
that the adjusted norm does not change the flat forecast
errors, but reduces all of the LWandAA errors. The AA fore-
cast is now the most successful forecast for all households,
with a marked improvement for household A in particular.
This can be attributed to the regular peak demands which
are observed in the data being forecasted close to when
they actually occur, and the absence of the double penalty
in the adjusted error measure. Relative to the flat forecast
errors, the improvement in the errors for the AA forecast
decreases from households A to C, owing to the relative in-
creases in volatility. The errors for household C are by far
the largest in magnitude, and the relative differences be-
tween methods are the smallest, indicating that forecast
sophistication only introduces marginal relative improve-
ments as the volatility increases.

3.2. An example with six hundred households

To illustrate that our results hold more generally, we
consider the 4-norm and adjusted 4-norm errors of the
three forecastingmethods, applied to the usage data of 600
individual domestic households. As in the example above,
the dataset for each household consists of half hourly
electrical energy usage over a 10-week period, collected
by smart meters during the EDRP trial. Using the Flat, LW
andAAmethods, rolling daily forecasts of each household’s
energy usage were produced for the final week of each
dataset. Fig. 5 shows themeandaily difference between the
flat forecast errors and the 4-norm and 4-norm adjusted
errors (with w = 3) for both the LW and AA forecasts.
The horizontal axis represents the mean daily difference
between the 4-norm errors of the Flat forecast and the LW
(or AA) forecast, and the vertical axis represents the mean
daily difference between the adjusted 4-norm errors of the
Flat forecast and the adjusted 4-norm errors of the LW (or
AA) forecast. The diagonal line indicates where the mean
4-norm and mean adjusted 4-norm errors are equal. Since
the adjusted 4-norm error is always smaller than (or at
most equal to) the 4-norm error, no forecasts can occupy
the area below the line.

The three occupied quadrants of the graph establish
a three-cluster segmentation of the forecasts in terms of
their accuracy:

1. Points in the lower-left quadrant represent forecasts
whose mean 4-norm and mean adjusted 4-norm errors
are larger than or equal to the mean flat forecast errors.
We refer to these forecasts as Poor.
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Fig. 5. Mean daily difference in the adjusted 4-norm forecast errors of the flat and LW (unfilled circles) or AA (filled) forecasts versus the mean daily
difference in 4-norm forecast errors of the flat and LW (unfilled circles) or AA (filled) forecasts. Also included are the data for households A (diamonds), B
(triangles) and C (squares).
2. Points in the upper-left quadrant represent forecasts
whosemean flat forecast error is smaller than themean
4-normerror forecast but larger than themean adjusted
4-norm error. Since the small temporal re-alignment
has reduced the error compared to the 4-norm error,
we refer to these forecasts as Good after adjustment.

3. Points in the top right quadrant represent forecasts
whose mean 4-norm and mean adjusted 4-norm errors
are both smaller than the mean flat forecast errors. We
refer to these as Good forecasts.

The plot shows that, in general, the AA forecasts (filled
circles) are superior to the LW forecasts (unfilled circles).
The majority of the AA forecasts are either good (360) or
good after adjustment (208). Only 32 of the AA forecasts
are poor, whereas 225 of the LW forecasts are poor.
For the LW method, only 105 are good forecasts, and
just under half (270) are good after adjustments. Of
the 600 households, the LW forecasts only out-perform
the AA forecasts for 30 households in the 4-norm, but
for 46 households in the adjusted 4-norm. In Fig. 5,
we also include the data for the LW and AA forecasts
of households A, B and C. In terms of our accuracy
classification, both the LW and AA are good forecasts for
household A, whereas for households B and C, the AA
forecast is only good after adjustment and the LW forecast
is poor. The large proportion of forecasts that are good
after adjustment are particularly important. If only the
4-norm is used as an accuracymeasure, then these forecast
methods could potentially be rejected mistakenly, despite
their improved score relative to the adjusted norm.

4. The adjustment limit

The choice of the adjustment limit, w, is largely
subjective and application-specific, but canhave important
implications for the problem being investigated. For
instance, the adjusted norm can be used to identify
households whose peaks can be forecasted accurately
within w of the actual peak. Such forecasts can then be
used to create a charging/discharging plan of a storage
device, in order to reduce the anticipated peak demand on
the LV network (Molderink et al., 2010; Rowe et al., 2012).
Different sizes of the adjustmentwindow therefore change
the potential reduction in the network peak demand.
For small windows (e.g., w = 0), many forecasts will
incur a double penalty, and battery storage could be
discarded mistakenly as an inappropriate solution for
these networks. Similarly, a large adjustment window
means that very inaccurate forecastswill have small errors,
but will provide little information about the size and
timing of the actual peak demand, and provide little if any
reduction in peak demand. Hence, in this application, the
choice of w should be made with the aim of maximising
thepotential peakdemand reductionusing the battery. The
specific choice of w based on a particular application is
beyond the scope of this work, but will be considered in
future work in the context of smart storage. In this section
we analyse the properties of the adjusted error in more
detail by considering the measure as a function of w for
forecasts of household smart meter data, and investigate
how this can inform us of the predictability properties of
different households.

Fig. 6 displays the mean adjusted 4-norm error for each
of the households introduced in Section 3 for the AA and
LW forecasts, illustrated in panels (a) and (b) respectively,
for different values of w. Each curve is a monotonically
decreasing function of the adjustment limit. The black
marker on each line shows where the forecast error equals
the error of the flat forecast (the forecasts for household A
have smaller errors than the flat forecast in these examples,
hence the absence of amarker). For all households, in order
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Fig. 6. The mean adjusted errors for (a) the AA forecast and (b) the LW forecast for the usage of households A (solid line), B (dotted line) and C (dashed
line) as a function of w. The black marker on each line shows where the forecast errors equal the errors of the flat forecast.
Fig. 7. Average weighted displacement of forecasted points for different adjustment limits for (a) the AA forecast and (b) the LW forecast for the three
different households A (solid line), B (dotted) and C (dashed). Also included is the expected displacement if forecast points were assigned randomly.
to outperform the flat forecast, the AA forecast must use
w ≥ 1, whereas the LW forecast must use w ≥ 4. As we
increase w, large reductions in the adjusted error indicate
that large peaks in the forecast are being matched to the
actuals. We focus on the AA forecast for our analysis, but
similar results hold for the LW forecast. As we increase
w from 0 to 2, there are large decreases in the adjusted
error of the forecast for household A due to the closeness
(within 3 half-hours) of the peaks in the forecasts and the
actual usage. Moderate decreases in the forecast errors are
also observed for household C, although the errors are still
relatively large compared with the errors in the forecasts
for households A and B, even with w = 20 (shifts of
±10 h). Household B has a slow rate of reduction as w
increases. As is shown in Section 3, the general behaviour of
household B can be forecasted accurately, and so the slow
reduction is likely to be due to the matching of the small
daily irregularities.

The adjusted error decreases with an increasing w, but
this is likely to increase the mean displacement of the
forecast positions simultaneously. Smaller displacements
are more desirable, as they indicate a closer proximity
of the features of the forecast to the actuals. To fully
describe the accuracy of a forecast, we must consider
both the mean displacement and the adjusted error of
the forecast. As was shown for the synthetic example
in Section 2.3, the mean displacement can be used to
distinguish between the accuracies of two forecasts with
the same adjusted error. Since we are interested primarily
in the displacement of the peak loads, we consider a
weighted mean displacement. Suppose that the forecast at
point i, fi, is matched to the actual at j, and di = |i − j|
is the forecast displacement; then, we define the average
displacement for each day as

D̂ =

48
i=1

f 4i di
f 4i

. (6)

The power of 4 ensures that our measure is representative
of larger peaks.

Fig. 7 shows the mean displacement of the AA and LW
forecasts over the final week as a function of w for each
household, together with a plot of the expected average
displacement if the forecast had been assigned randomly.
(The random displacement is found by calculating the
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expected displacement for each of the 48 daily points
within the adjustment limit, assuming that any displace-
ment is equally likely. The mean over the 48 daily points
is then calculated.) We present the results for the AA fore-
cast, but the LW forecast results are similar. The mean dis-
placements of the forecasts for households B and C closely
match the random displacement curve when w < 10. It is
likely that the features of the forecasts are being matched
to the irregular week-to-week behaviours of the house-
holds. As we showed in Section 3, the regular behaviour
of household B is forecasted accurately, but the small, ir-
regular demands are forecasted poorly. Household C has
no regular week-to-week behaviour, and is largely unpre-
dictable. In contrast, household A has a regular weekly
behaviour and the peaks are forecasted accurately, and
therefore the mean displacement remains small for all w
values. As the adjustment limit is increased beyond w =

15, some of the afternoon andmorning peaks arematched,
resulting in a small increase in the size of the average dis-
placement.

Figs. 6 and 7 together reveal extra information about
the usage patterns and forecast accuracies of each of the
different households. In particular, for household A, sharp
drops in the forecast error as w is increased from 0 to 2
indicate that the forecasts approximate the large features
in the data closely. The small average displacements
confirm that the regular peaks are being matched. In
contrast, for household C, the large reduction in forecast
errors is likely to be the result of matching the random,
irregular behaviour, as is shown by themean displacement
being similar to a random assignment in Fig. 7. Similarly,
we find that the small reductions in the adjusted error for
household B as we increasew are mainly a consequence of
matching the small irregular behaviours which are missed
by the forecast.

5. Discussion

As low carbon technologies become ubiquitous, there
are increased risks to the robustness and security of low
voltage (LV) electricity networks. The electrification of
heating and transport is expected to increase network peak
demand, while the increased uptake of more intermittent
forms of generation such as photovoltaics is likely to
increase network volatility. In order to be able to manage
the local networks effectively, it is vital that distribution
network operators understand how demand is changing
and what practical solutions are available. Household
smart meters are becoming an integral part of many
governments’ low carbon agendas, and many countries
aim to have a meter in every home within the next
decade. Smart meters provide a valuable opportunity for
detailed data analytics, and in particular for forecasts
at the individual and low voltage substation levels.
Accurate household-level forecasts can also be utilised
for planning the smart control of storage devices so as
to reduce peak demands, and for understanding how
often network constraints are violated. However, before
useful household-level forecasts can be developed, an
appropriate verification measure must be established for
assessing the accuracy of such forecasts.
In this paper we suggest such a measure for assessing
the success of forecasts of volatile and noisy data. A
standard treatment of forecast accuracy is to consider the
p-norm of the error, but, due to the ‘‘double penalty’’ effect,
suchmeasures are inadequate, especiallywhen attempting
to forecast peaks and troughs in the data. Any successful
forecast method requires a degree of flexibility in the
spatial/temporal positioning of the peaks. Our proposed
solution, the adjusted p-norm error, allows for limited
permutations of the forecasted data, which reduces the
penalty imposed on shifted peaks. This is first illustrated
with a simple synthetic example, then demonstrated
on forecasts of real, high resolution household electrical
energy usage.

To test the forecast measure, three forecast methods
were applied to three separate households’ energy demand
data, with varying degrees of week to week regularity, and
hence, forecastability. The forecasts varied in skill, with a
clear hierarchy: an innately poor flat forecast, a poor, yet
realistic ‘last week as this week’ forecast, and an adjusted-
average of the previous week’s behaviour. We found that,
with respect to a point-wise metric, the flat forecast
could outperform many of the more realistic, informative
forecasts. This was not the case with our new error
measure. In Section 3.2, we also applied the measure to
forecasts of 600 independent households,which confirmed
the ability of the new measure to distinguish successfully
between the accuracies of the three forecast methods.
In addition, we also considered the effect of changing
w on the adjusted error and the average displacement
of the matched forecasts. This offered further insights
into the accuracies of the forecasts. In summary, in this
paper we have presented a new method for verifying the
forecast accuracywhich has been shown to be effective and
efficient for assessing the accuracy of shifted features of
volatile and noisy data sets.

The new measure presented in this paper deforms
the forecast in a discontinuous way, which may not be
appropriate for all applications. For high voltage level
demand, which is more smooth and regular, the standard
point-wise measures are adequate. In contrast, for volatile
and irregular data, the smoothness of the deformationmay
be less significant and the measure presented here may be
suitable. An additional advantage of the adjusted norm is
that it can be applied using any standard normand requires
only a single control parameter, w.

Accurate household-level forecasts can be utilised in
smart control algorithms to plan the charging/discharging
of a battery on LV networks which are close to maximum
capacity (Molderink et al., 2010; Rowe et al., 2012).
Hence, a principalmotivation for the new forecastmeasure
presented in this paper is to identify those LV networks
in which smart storage could be an effective solution for
peak demand reduction. In addition, it is arguably more
appropriate for the forecast measure to impose heavier
penalties on peaks which are forecasted too late than
on those which are forecasted too early, to ensure that
the battery is charged sufficiently before the anticipated
peaks, in order to maximise peak reductions. In future
work, we consider how the size of the adjustment window
and allowing for biases in timing can affect the potential
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peak reduction via the smart control of storage devices
at the household to LV substation-level. In addition, we
will also consider the accuracy of more traditional forecast
methodologies which are used in higher voltage load
forecasting relative to that of our new measure, to test
their suitability for forecasting electricity demand at the
household level.
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Appendix. The averaged adjustment forecast

In this Appendix we briefly describe the Averaged
Adjustment (AA) forecast, as implemented in this report.
For clarity, we show how we forecast for one particular
day; the other days of the week are forecasted in an
analogous way. We assume that we have N daily usage
profiles at a half-hourly resolution of the dth day of
the week (d = 1, . . . , 7), which we write as G(k)

=

(g(k)
1 , g(k)

2 , . . . , g(k)
48 )T for k = 1, 2, . . . ,N , where G(1) is the

previous week’s usage on the dth day, G(2) is the usage on
the dth day from two weeks before, etc. We create a base
profile F(1)

= (f (1)
1 , f (1)

2 , . . . , f (1)
48 )T , where each half hour

is defined as the median value over all N half hours. We
update the baseline profile iteratively usingmatchingwith
each successive previous week’s data. This is performed as
follows. Suppose that F(k) is the current baseline for the kth
iteration (1 ≤ k ≤ N − 1). We define Ĝ(k)

= P̂G(k), where
P̂ ∈ P is a permutation matrix such that

∥P̂G(k)
− F(k)

∥4 = min
P∈P

∥PG(k)
− F(k)

∥4, (7)

where P represents the set of restricted permutations of
the half hour loads (i.e., each half hour imoved to some half
hour j, where |i− j| ≤ w, andw is the deformation limit, as
described in Section 2.2). In other words, Ĝ(k) is the usage
from thepreviousweek thatminimises the deformednorm
error between the baseline load usage and the usage of the
current week G(k). The new baseline is defined to be

F(k+1)
=

1
k + 1

(Ĝ(k)
+ kF(k)). (8)

This process is repeated for each of the remaining weeks,
to give the final forecast F(N). Hence, the forecast is defined
to be an average of the initial baseline and permutations of
the previous weeks:

F(N)
=

1
N + 1


N

k=1

Ĝ(k)
+ F(1)


. (9)
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