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Abstract

The brown bear (Ursus arctos) hibernates for 5 to 6 months each winter and during this time ingests no food or water and
remains anuric and inactive. Despite these extreme conditions, bears do not develop azotemia and preserve their muscle
and bone strength. To date most renal studies have been limited to small numbers of bears, often in captive environments.
Sixteen free-ranging bears were darted and had blood drawn both during hibernation in winter and summer. Samples were
collected for measurement of creatinine and urea, markers of inflammation, the calcium-phosphate axis, and nutritional
parameters including amino acids. In winter the bear serum creatinine increased 2.5 fold despite a 2-fold decrease in urea,
indicating a remarkable ability to recycle urea nitrogen during hibernation. During hibernation serum calcium remained
constant despite a decrease in serum phosphate and a rise in FGF23 levels. Despite prolonged inactivity and reduced renal
function, inflammation does not ensue and bears seem to have enhanced antioxidant defense mechanisms during
hibernation. Nutrition parameters showed high fat stores, preserved amino acids and mild hyperglycemia during
hibernation. While total, essential, non-essential and branched chain amino acids concentrations do not change during
hibernation anorexia, changes in individual amino acids ornithine, citrulline and arginine indicate an active, although
reduced urea cycle and nitrogen recycling to proteins. Serum uric acid and serum fructose levels were elevated in summer
and changes between seasons were positively correlated. Further studies to understand how bears can prevent the
development of uremia despite minimal renal function during hibernation could provide new therapeutic avenues for the
treatment of human kidney disease.
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Introduction

Advanced chronic kidney disease (CKD) is characterized by

muscle wasting, cardiovascular disease (CVD), osteoporosis,

inflammation and oxidative stress; factors that often occur in

combination [1] and herald a poor prognosis [2]. New treatment

strategies are urgently needed to decrease the unacceptable high

mortality rate in this underserved patient group, but to date most

attempts have been disappointing [3].

Animals in the wild live day-to-day as a consequence of

evolutionary adaptations that aid their survival [4], including

under stressed or extreme conditions. By studying how animals

survive extreme conditions, one may identify novel mechanisms

that can protect them (i.e. the science of biomimicry). In this

context, hibernating free-ranging bears (Ursidae) are of special

interest to the nephrologist as these amazing creatures adapt up to

6 months of inactivity with anuria and no food or water intake at

near normal (30–35uC) body temperatures (in contrast to other

hibernating animals) without developing azotemia, muscle wasting
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or osteoporosis [5]. Their ability to prevent azotemia is a special

and (to the best of our knowledge) unparalleled feature of

hibernating bears. Humans would not survive even short periods

of inactivity and anuria without lethal metabolic complications,

such as renal failure or extensive muscle and bone loss [5].

Recently, we have had the opportunity to study free-ranging

brown bears (Ursus arctos) living in central Sweden, in which we

were able to obtain blood samples from the same individuals

during their active period in summer and hibernation in winter.

We evaluated a number of parameters, including renal function,

the calcium-phosphate FGF23 axis, uric acid and fructose levels,

and the level and pattern of amino acids in the blood. We present

several novel findings in this paper.

Bears and Methods

Ethics
No specific permissions were required for research on the

locations described in this article as all activities were carried out

according to the Swedish Right of Public Access law. The field

studies did not involve endangered or protected species. All animal

handling and sampling was carried out under approval of the

Swedish Ethical Committee on animal research (C212/9) and was

in compliance with Swedish laws and regulations. The appropriate

authority and ethical committee was ‘‘Djuretiska nämnden,

Uppsala, Sweden’’.

Bears and Collections of Samples
Samples of blood were taken from 16 free-ranging sub-adult 2-

to 3-yr-old Eurasian brown bears [Ursus arctos, 11 females and 5

males equipped with a Global Positioning System (GPS) collar

with a median body weight of 53 kg (range 22–77 kg)] in Dalarna

and Gävleborgs Counties, Sweden, 2010–2012. Each bear was

captured during hibernation (February or March) (Fig. 1) and

during the active period in June of the same year [6]. Bears were

immobilized by darting with an anesthetic (see below) in the den

and again by darting from a helicopter during June (Fig. 2). Bears

were weighed on a stretcher suspended beneath a spring scale. In

winter the anesthetic consisted of a mixture of tiletamine-

zolazepam (1.1 mg/kg), medetomidine (0.03 mg/kg) and keta-

mine (1.3 mg/kg), and in summer, in a mixture of tiletamine-

zolazepam (4.7 mg/kg) and medetomidine (0.09 mg/kg) [6]. In

the field, blood samples were taken from the jugular vein within

20 min from darting and collected in tubes containing the

additives EDTA, Lithium heparin or clot activator, respectively

(VacuetteH; Greiner Bio-one, Frickenhausen, Germany). Approx-

imately 1 hour after sampling blood was centrifuged at 2000xg for

10 min for collection of plasma or serum and immediately frozen

on dry ice until storage at 270uC.

Laboratory Measurements
The following analytes were measured by spectrophotometer

with routine methods on a Konelab 20XT centrifugation analyzer

(Thermo Fisher Scientific, Vantaa, Finland); albumin with the

bromcresol green (BCG) method; glucose using the glucose

oxidase/peroxidase Trinder reaction; creatinine with the Jaffe

method; cholesterol and triglycerides in coupled enzyme reactions

forming quinonimine, respectively; total protein, calcium and

phosphorus forming colored complexes with cupric ions, Arsenazo

III and ammonium molobdate, respectively; urea using an urease/

glutamate dehydrogenase method converting NADH to NAD;

and uric acid with a fully automated Trinder (AOX) method using

uricase/peroxidase.

Fructose was measured enzymatically with a recently modified

sensitive inulin assay [7]. The fructose in the sample is converted

to sorbitol using sorbitol dehydrogenase (SDH) and NADH, which

is read at 340 nm on the Konelab 20XT pending an incubation

for 20 min. The thiol assay measured free sulphydryls in the

plasma in a reaction using Ellman’s reagent (5,59-dithio-bis(2-

nitrobenzoic acid)) (DTNB). The TNB22 formed was quantified

spectrometrically at 412 nm on the Konelab 20XT [8]. Plasma C-

reactive protein (CRP) levels were measured by the Immulite

Automatic Immunoassay Analyzer (Siemens Medical Solutions

Diagnostics, Los Angeles, CA, USA) with an assay manufactured

for this analyzer. The assays are not validated for bear plasma.

Measurement of pentraxin-3 (PTX3) was accomplished with

ELISA’s from R&D Systems Inc. (Abingdon, UK). Free plasma

amino acids were determined in both human and bear samples by

high-performance liquid chromatography with fluorometric de-

tection [9]. Aspartate, cysteine and proline are not possible to

analyze for technical reasons. Serum FGF23 was measured using

an intact mouse/human FGF23 assay (Kainos, Japan) that only

detects the intact, biologically active, protein by using two

monoclonal antibodies for capture and detection, respectively.

Although this assay has not been developed and/or validated for

brown bears, the results yielded physiologically plausible concen-

trations comparable with those in humans and demonstrated good

linearity in diluted samples. In contrast, a C-terminal FGF23 assay

and intact FGF23 assay (Immutopics, CA, USA) did not produce

detectable FGF23 levels in the current study.

Statistics
All values are expressed as median (range). Differences between

winter and summer samples were analyzed with paired Wilcoxon

signed rank test. Comparative statistical between healthy humans

and summer bears were analyzed by non-parametric Wilcoxon

signed rank test. Changes in the level of some variables between

the hibernation and active periods were calculated and shown as

‘‘D’’. Spearman’s rank correlation was used to determine

correlations between two variables. A p-value ,0.05 was

considered to be statistically significant. The statistical analysis

was performed using statistical software SAS version 9.3 (SAS

Campus Drive, Cary, NC, USA).

Figure 1. Captured brown bear in its den. Photo: Andrea Friebe,
the Scandinavian Brown Bear Research Project.
doi:10.1371/journal.pone.0072934.g001
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Results

The overall sample size was 16 bears in winter and summer,

unless stated otherwise. The median body weight in both the

active state and during hibernation was 53 kg.

Table 1 shows plasma concentrations of different metabolites

during summer and winter. The median S-creatinine was 2.5-fold

higher during denning than during the active period (p,0.001;

Fig. 1), and the median urea concentration was 2-fold lower

(p = 0.008; Fig. 3). Thus, the urea/creatinine ratio was markedly

higher (p,0.001) during the active state. Whereas no difference in

median calcium level was observed between hibernation and the

active period (p.0.999), the median serum phosphorous level was

significantly lower (p = 0.001) and the median FGF23 significantly

higher (p = 0.036) during hibernation than the active period.

The glucose level was significantly higher during hibernation

than the active period (p = 0.039). Both, the median fructose

(p = 0.041) and the uric acid (p = 0.03) levels were significantly

lower during hibernation than the active period. We found a

significant positive correlation between the levels of fructose and

uric acid during hibernation (r= 0.66, p = 0.007) but not during

the active period (r= 20.18, p = 0.498). However, the changes in

the levels of fructose and uric acid between hibernation and active

period (Dfructose and Duric acid) correlated significantly and

positively (r= 0.57, p = 0.021; Fig. 4). Both the median choles-

terol (p,0.001) and triglyceride levels (p,0.001) were significantly

higher during hibernation than the active period (Table 1). Also,

the total protein (p,0.001) and S-albumin (p,0.001) levels were

significantly higher during hibernation. A significant positive

correlation was observed between Dalbumin and Dcholesterol

(r= 0.63, p = 0.009). The correlation between Dtotal protein and

Dalbumin was significant and positive (r= 0.83, p,0.001).

Whereas no significant differences in the levels of either CRP

(p = 0.231) or PTX3 (p = 0.307) were observed between the

hibernation and active period, higher levels of free thiols was

observed during hibernation (p = 0.043). Due to the low number of

bears (n = 5) this p-value should be interpreted with caution.

Median levels of amino acids in the active summer and

hibernating winter periods are given in Table 2 and were

compared to those of healthy humans. The median concentration

of total amino acids was significantly higher in bears during

summer than in humans. This is mostly due to a 37% higher

concentration of essential amino acids (EAA) and a modest

(although significant) 3% higher concentration of non-essential

amino acids (NEAA). Note that EAA and NEAA are listed in

Table 2 according to the amino acid requirements known for

humans. No differences in the median level of total, EAA, NEAA

or branched chain amino acid (BCAA) concentrations in bears

were observed between hibernation winter and the active summer

period (Table 2). However, this apparent stability is the

consequence of very diverse pattern of changes in the concentra-

tion of individual amino acids (Table 2). Of note, several amino

acids did not change significantly between hibernation and active

summer period. This is the case for all three BCAAs (leucine,

isoleucine and valine). Tryptophane, phenylalanine, glycine, serine

and alanine also showed no change between the two periods. In

contrast, some amino acids were significantly higher (lysine,

histidine, 3-methylhistidine, glutamine and glutamic acid) while

others were significantly lower (threonine, methionine, asparagine,

tyrosine and taurine) during hibernation than the active summer

period (Table 2). Arginine and its precursor citrulline exhibited

opposite changes. Amino acids that are involved in nitrogen

excretion, i.e., glutamine (for the synthesis of ammonia) and

ornithine (for the synthesis of urea), exhibited coordinated

increases.

Discussion

In this paper we present a series of metabolic measurements on

free-ranging brown bears during hibernation in comparison to the

Figure 2. Aerial darting from helicopter of a free-ranging female brown bear during the active summer period. Photo: Andreas
Zedrosser, the Scandinavian Brown Bear Research Project.
doi:10.1371/journal.pone.0072934.g002
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active period. To our knowledge, this study represents the largest

series to date that investigates nitrogen metabolism, the calcium-

phosphate axis, and measurements of nutrition indices (lipids,

glucose, amino acids and uric acid) in free-ranging bears in two

metabolically different periods of the year. Several interesting

novel findings were observed.

Nitrogen metabolism
This study confirms the remarkable ability of the brown bear to

recycle urea nitrogen during the hibernation period. As mammals

cannot hydrolyze urea (because they do not possess the enzyme

urease) it has to be excreted by the kidney. A previous study in

bears has shown that glomerular filtration rate (GFR) is reduced to

about only one fourth of its normal value during hibernation (from

122 to 37 ml/min) [10]. As the bladder becomes leaky so that

water, electrolytes and nitrogen wastes are returned to the blood,

bears are anuric during the entire hibernation [11]. Despite the

decrease in GFR and the recycling of urine, serum urea is lower

during hibernation than during the active period due to the unique

ability of bears to recycle urea nitrogen back to protein [12]. In

contrast to the lower urea concentration, creatinine (another

endproduct of protein metabolism) was 2.5-fold higher during

hibernation than during summer. Creatinine, the endproduct of

creatine, which is the high-energy storage molecule in muscle, is

not metabolized and is cleared only by the kidney. Since bladder

urine returns to the blood, creatinine cannot be excreted during

hibernation and accumulates in the blood. However, this elevation

remains relatively modest because creatinine generation is

probably reduced in winter due to the lack of muscle activity. In

most cases, when kidney function is reduced in humans and other

mammals, serum creatinine and urea concentrations usually rise in

Table 1. Differences in biochemical and renal parameters between winter and summer samples in 16 free-ranging bears.

Summer (S) Winter (W) W/S ratio Significance

Weight (kg) 53 (22–77) 53 (21–66) 0.95 (0.79–1.25) NS

S-creatinine (mmol/L) 83 (65–112) 217 (154–294) 2.64 (1.85–3.53) p,0.001

Urea (mmol/L) 9.3 (3.0–29.6) 3.3 (0.8–23.2) 0.46 (0.12–1.68) p,0.01

Urea/creatinine ratio 118 (36–352) 14 (4–124) 0.15 (0.04–0.69) p,0.001

Calcium (mmol/L)a 2.45 (2.27–2.56) 2.44 (2.18–2.55) 1.01 (0.85–1.11) NS

Phosphate (mmol/L) 1.93 (1.24–2.64) 1.23 (0.53–1.59) 0.59 (0.31–1.26) p,0.001

FGF23 (pg/ml)b 105 (62–532) 203 (164–237) 2.13 (0.39–3.56) p,0.01

Glucose (mmol/L) 5.6 (2.5–10.8) 7.5 (5.4–12.5) 1.14 (0.72–4.52) p,0.05

Fructose (mmol/L) 138 (89–287) 99 (39–383) 0.69 (0.25–1.61) p,0.05

Uric acid (mmol/L) 96 (29–299) 48 (33–120) 0.58 (0.16–4.22) p,0.05

Cholesterol (mmol/L) 6.4 (3.7–8.8) 10.4 (8.0–18.9) 1.56 (1.21–2.59) p,0.001

Triglycerides (mmol/L) 2.3 (0.9–3.3) 4.8 (2.0–7.0) 2.19 (1.08–3.59) p,0.001

Total protein (g/L) 57.5 (49.6–68.3) 72.5 (47.8–80.9) 1.25 (0.96–1.47) p,0.001

Albumin (g/L) 28.3 (22.5–31.8) 36.2 (31.3–43.8) 1.24 (1.13–1.69) p,0.001

Thiols (mmol/ L)c 267 (239–284) 471 (372–472) 1.67 (1.44–1.97) p,0.05

CRP (mg/L)d 4.5 (0.0–11.2) 6.0 (1.3–13.2) 1.03 (0.42–7.43) NS

PTX3 (ng/ml) 0.07 (0.01–0.38) 0.08 (0.05–0.13) 1.08 (0.31–10.0) NS

Median and range.
an = 10, bn = 13, cn = 5, d normal value for humans ,2 mg/L.
doi:10.1371/journal.pone.0072934.t001

Figure 3. Box plots showing mean and SD as well as individual serum creatinine and urea levels in summer and winter from 16 free-
ranging brown bears. The urea/creatinine ratio was about 8 times higher during the active summer period.
doi:10.1371/journal.pone.0072934.g003
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parallel. In the case of hibernation, we observe a remarkable

divergence in serum urea and creatinine (Fig. 3) that is explained

by the possibility to re-use urea nitrogen, but not creatinine,

through symbiotic gut bacteria.

The mechanism(s) responsible for the reduction in urea during

hibernation probably involves a combination of factors. First, a

reduction in metabolic rate probably leads to lesser urea synthesis

in the liver. During winter bears obtains most of their energy from

metabolizing stored fat producing only CO2 and H2O as end

products. Second, as the urea that is still produced is recycled back

into skeletal muscle and other body proteins [13] it has been

speculated that (like in ruminants and some other herbivorous

mammals) urea is hydrolyzed by urease-expressing gut bacteria

into ammonia and CO2. Ammonia is then used by enterocytes to

synthetize glutamine which may be incorporated into proteins

[14]. In ruminants, a facilitated urea transporter is expressed in the

rumen epithelium [15]. A similar urea transporter is also expressed

in the colon of other mammals [16] including in humans [17].

Most likely, bears express a similar urea transporter in the colon

and/or some subsegment of the intestinal wall. Ahlqvist et al [18]

showed that by serving as a carbon source for amino acid

formation, glycerol released from fats might help prevent azotemia

during winter denning. The observation by Nelson et al [19] that

urea levels decrease in the autumn, when food is still available,

suggests that metabolic changes occur prior to the hibernation

state. This occur as a consequence of increased intake of fruits and

berries prior to hibernation [20]. As berries provide abundant

carbohydrates with little proteins, it reduces the need to synthetize

and excretes urea.

Nutritional Parameters
Bears increase their food intake in the late summer and autumn

to increase their fat stores before hibernation, and then will survive

hibernation primarily by burning these fat stores [21]. In this

study, the hibernating bears showed evidence for enhanced fat

stores as noted by the higher levels of serum triglycerides and

cholesterol levels (Table 1), which confirms findings by Arinell

et al [22]. We observed higher levels of both the total protein and

albumin in hibernation samples. This may be due to a modest

dehydration during hibernation because bears (although inactive)

cannot prevent some water loss through the airways in the expired

air. However, this finding also indicates preserved protein stores

and confirms Lohuis et al [23], who showed that protein synthesis

and breakdown were in balance during winter anorexia. As bears

spare most of their crucial skeletal muscle proteins during

hibernation anorexia, it seems conceivable that reserves from

other organs may be used as sources for nitrogen during denning.

Complicated protein kinetic studies of other organ metabolism,

such as liver and kidney, are needed to resolve this issue.

Several mammals, including hibernating marmots (Marmota)

and ground squirrels (Sciuridae) as well as long distance migratory

birds, develop insulin resistance in preparation for the period of

fasting associated with hibernation or migration [24,25]. In this

study the hibernating bears had slightly higher glucose levels

suggesting the presence of insulin resistance. In many hibernating

animals, the brain might utilize the release of ketones, such as b-

hydroxybutyric acid instead of glucose during hibernation [26].

Whether this is also occurring in bears is not known. In the present

study we also noted a two-fold higher uric acid level in the active

period in comparison to hibernation. Serum uric acid of

hibernating mammals tends to be elevated during the active

period and to decrease during torpor [27]. Nelson et al [12]

studied two captive American black bears (Ursus americanus) and

noted higher urinary uric acid excretion in the autumn before

hibernation. Previous studies in hibernating squirrels have shown

that there is a rapid drop in both inosine and uric acid in the liver

during hibernation [28,29], consistent with an inhibition of AMP

deaminase. We have recently found evidence that AMP deami-

nase activity is low in the liver of the 13-lined ground squirrel

(Ictidomys tridecemlineatus) during hibernation (R Johnson, unpub-

lished) and a decrease in AMP deaminase may be important for

the activation of AMP kinase and the burning of fat [30]. In

addition, higher uric acid levels in summer could represent the

generation of uric acid during the metabolism of purines and

fruits. Fruits contain fructose, a monosaccharide that generates

uric acid during its catabolism [31]. Fructose has been shown to

increase fat stores in a variety of animals as well as to induce

insulin resistance [32], and the mechanism is likely mediated in

part by the effect of uric acid to induce mitochondrial oxidative

stress [33]. For bears, fruit intake increases particularly in the

autumn where it is a food source used to help fatten the animal.

The typical bear diet during late summer and autumn includes

enormous amount of berries, such as from the Vaccinum family [i.e.

bilberries (V. myrtilus), huckleberrries (V. parvifolium) and lingonber-

ries (V. vitis-idea)], which are rich in both fructose [34] and

resveratrol [35]. It has been reported that large bears in captivity

can eat as much as 260,000 huckleberries/day when fed ad libitum

[36]. In fact, in a feeding and foraging trial using captive and wild

American black bears, maximum intake ranged from 30 g/min for

berries to amazing .200 g/min for fruits [20]. It should also be

taken into account that during the ripening process of berries

during the summer and autumn their content of fructose, flavonol,

abscisic acid (a plant hormone) and anthocyanins increases [37]

whereas vitamin C content decreases [38]. Considering the

enormous amount of berries consumed by bears in the summer

and autumn, their effects on metabolism and renal function need

further studies.

Amino acids
We demonstrated higher total amino acid, EAA and NEAA

levels in summer active bears compared to healthy humans.

Interestingly, more than 3-fold higher taurine levels were observed

Figure 4. A positive correlation was observed between changes
(D) in fructose and uric acid from winter to summer. This suggest
that higher uric acid levels observed during the active summer period is
in part dependent on increased fructose intake via fruits and berries.
doi:10.1371/journal.pone.0072934.g004
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in bears during their active period. Since taurine is key for the

conjugation of the unique bear bile ursodeoxycholic acid it has

been speculated that taurine deficiency in captive bears causes

metabolic bone disease due to decreased absorption of vitamin D

[39]. Previous studies on bears have shown discrepant results

regarding changes in plasma amino acid levels; with constant [12],

elevated [40] or decreased [41] levels reported during winter

anorexia. Our amino acid analyses demonstrated no seasonal

change in either total amino acids, EAA, NEAA or BCAA levels.

This contrasts with the dramatic changes in amino acid levels that

occur during prolonged starvation in humans [42], deep

hibernators, such as hedgehogs (Erinaceinae spp) [43], and other

mammals undergoing prolonged fasting, such as elephant seals

(Mirounga spp) [44]. This suggests that bears maintain a

remarkably stable whole amino acid balance despite several

months of anorexia and inactivity. As inflammation contributes to

low amino acid levels in CKD patients [45] the absence of

inflammation during hibernation may contribute to maintained

amino acid levels in bears.

Several specific changes in individual amino acid concentrations

were observed during hibernation (Table 2). For the following

discussion we assume that EAAs are identical in bears and

humans. Although this has not been evaluated to our knowledge, a

recent study suggests that the essential amino acids are the same in

humans, rats, dogs and a few other species, with differences only in

quantitative requirements among species [46]. In the present

study, five of the EAAs did not change significantly between

summer and winter. Since there is no food intake and since these

AAs are assumed not to be synthetized in the body, it means that

their balance is kept constant, and thus, that they are not at all

degraded (since they could not be re-synthetized, being ‘‘essen-

tial’’). BCAA (leucine, isoleucine and valine) usually serve as

metabolic fuel in muscle and kidney. During hibernation, the

metabolism is markedly reduced and the level of these amino acids

is, thus, unchanged. It is notable that methionine, a sulfur amino

acid, declined to almost half of its summer value. The increased

concentration of lysine and histidine may result from some protein

breakdown. The possibility that amino acids synthetized by the gut

microflora might be used by the bears require further studies.

A larger fraction of the NEAAs showed seasonal changes since

only three out of 12 did not change significantly. The three NEAA

that exhibit a similar concentration during hibernation as during

the active period are the three smallest amino acids (glycine,

alanine and serine). Interestingly, the amino acids that are

involved in nitrogen excretion in the form of urea and ammonia

exhibit coordinated changes in winter. We observed about 50%

Table 2. Amino acid levels during summer and winter in 15 sub-adult free-ranging bears and 39 healthy subjects (28 males) with
age 68 years (range 38–80 years).

Healthy Subjects Bears: Summer Bears: Winter Significancec

Total amino acids (mmol/L) 2587 (1504–3852) 2887 (2068–3454)b 3041 (2606–3913) NS

Total EAA (mmol/L) 699 (434–957) 959 (555–1145)b 999 (816–1309) NS

Total NEAA (mmol/L) 1886 (1069–2894) 1945 (1447–2675)b 2055 (1775–2604) NS

Total BCAA (mmol/L) 379 (246–531) 445 (178–576) 430 (309–561) NS

Leucine (mmol/L) EAA 109 (64–155) 146 (60–212)b 135 (95–189) NS

Isoleucine (mmol/L) EAA 53 (26–75) 69 (30–103)b 74 (58–107) NS

Valine (mmol/L) EAA 216 (151–307) 225 (89–281) 210 (155–268) NS

Tryptophan (mmol/L) EAA 44 (28–66) 42 (23–61) 39 (24–55) NS

Phenylalanine (mmol/L) EAA 52 (38–67) 58 (37–79)b 65 (40–88) NS

Glycine (mmol/L) NEAA 215 (125–391) 285 (167–591)b 302 (195–362) NS

Alanine (mmol/L) NEAA 313 (126–609) 599 (276–735)b 440 (324–699) NS

Serine (mmol/L) NEAA 88 (60–148) 98 (66–147) 88 (59–127) NS

Lysine (mmol/L) EAA 148 (89–219) 191 (61–3219)a 345 (254–424) p,0.001

Histidine (mmol/L) EAA 79 (48–120) 88 (31–137) 106 (68–149) p,0.05

3-metylhistidine (mmol/L) NEAA missing 11 (4–29) 37 (23–54) p,0.001

Glutamine (mmol/L) NEAA 633 (364–1012) 502 (317–743)b 733 (570–917) p,0.001

Glutamic acid (mmol/L) NEAA 33 (9–89) 57 (41–70)b 66 (43–115) p,0.05

Threonine (mmol/L) EAA 129 (49–224) 158 (73–192)a 117 (80–149) p,0.01

Methionine (mmol/L) EAA 22 (12–43) 46 (28–77)b 25 (817–34) p,0.001

Aspargine (mmol/L) NEAA 43 (22–60) 37 (21–49)a 22 (4–34) p,0.001

Tyrosine (mmol/L) NEAA 60 (36–108) 54 (835–79) 38 (26–48) p,0.001

Taurine (mmol/L) NEAA 40 (22–62) 143 (61–260)b 100 (27–118) p,0.05

Arginine (mmol/L) NEAA 79 (39–129) 112 (32–230)a 80 (54–100) p,0.05

Ornithine (mmol/L) NEAA 38 (5–93) 33 (12–54) 71 (41–120) p,0.001

Citrulline (mmol/L) NEAA 40 (25–75) 40 (20–145) 59 (48–81) p,0.05

Median and range, NS; not significant, c winter vs summer.
BCAA; branched chain amino acids; EAA; essential amino acids; NEAA; non-essential amino acids.
Differences between healthy subjects versus summer levels of 15 sub-adult bears are denoted with ap,0.05, bp,0.001.
doi:10.1371/journal.pone.0072934.t002
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higher levels of glutamine during hibernation compared to the

active summer state. As glutamine is formed from glutamate and

ammonium (NH4
+) by glutamine synthase, increased glutamine

formation may provide a mechanistic explanation to counter

unwanted NH4
+ buildup during conditions of reduced renal

clearing capacity. Glutamine is the amino acid that serves to

transport nitrogen between organs. Notably, glutamine is used to

transfer nitrogen from the digestive tract to the kidney where NH4

is produced and excreted [47]. Furthermore, glutamine exerts

translational control of mitochondrial uncoupling protein (UCP)-2

by binding to an open reading frame [48] and UCP-2 mediates

mitochondrial uncoupling by facilitating proton translocation

across the mitochondrial inner membrane without the production

of ATP [49]. Interestingly, increased UCP-2 activity results in

defective glucose-induced insulin release from pancreatic beta-cells

[50], which could explain the apparent hyperglycemia during

hibernation. It is tempting to propose that the increased glutamine

concentration during hibernation is a mechanism to signal

increased mitochondrial uncoupling, and thus increased heat

production, from peripheral tissue other than the UCP-1

containing brown adipose tissue. The normally devastating

UCP-2-mediated increased kidney oxygen usage, resulting in

intrarenal hypoxia and kidney disease [51], is likely prevented by

the low GFR, and thus low oxygen demand, during hibernation.

The observation that both glutamine and ornithine are signifi-

cantly increased in winter also suggests a lower metabolic rate of

these nitrogen excretion-related pathways. During normal feeding,

dietary arginine is almost entirely degraded in the liver. The

body’s supply in arginine originates from the synthesis of arginine

in the kidney, using citrulline that is released by the liver in the

blood stream [52]. The opposite differences observed during

hibernation vs. summer in citrulline (increase) and arginine

(decline) is consistent with a reduced metabolic activity of the

kidney.

Calcium-Phosphate Axis
In humans, long-term inactivity, as well as a reduction in kidney

function, are associated with substantial changes in parameters of

bone and mineral metabolism [5]. In contrast, a striking feature in

bears is that calcium levels (as observed in the present study) and

bone mineral density are unaltered during hibernation, indicating

the presence of bone-preserving mechanisms [53,54]. In this study,

we found that serum inorganic phosphorous level was significantly

lower during hibernation. This may reflect a state of starvation

and reduced caloric intake with redistribution from extracellular to

intracellular space when cellular phosphate demand is insufficient.

This has previously been demonstrated in healthy humans and in

CKD patients with protein energy wasting and/or reduced protein

intake [55]. Low winter phosphate levels may also reflect bone-

preserving mechanisms; i.e. no excess phosphate is released from

bone. As renal and intestinal phosphate transport is modulated by

amino acids and glucose it is possible that also other metabolic

changes will off-set downstream alterations in phosphate metab-

olism. Although numerous studies in man and rodents support that

FGF23 is stimulated by dietary phosphate intake and hyperphos-

phatemia [56,57,58], we observed higher levels of circulating

FGF23 during hibernation, despite the presence of hypophospha-

temia. Similarly, there is a gradual increase in FGF23 that parallels

the decline in kidney function in patients with CKD [56,59]. Thus,

these data are consistent with the hypothesis that GFR per se is a

strong regulator of FGF23, independent of serum inorganic

phosphorous level or dietary phosphate intake.

Inflammation
In humans reduced renal function is commonly associated

with low-grade persistent inflammation [60]. However, in the

present study circulating levels of the inflammatory biomarkers

CRP and PTX3 were markedly low both during hibernation and

the active period (Table 1), which indicate that despite reduced

renal function and prolonged inactivity bears do not develop

systemic inflammation during hibernation. This may be due to a

documented increase in antioxidant levels during hibernation,

especially increases in vitamin C levels [61]. The high levels of

vitamin C may act as a mitochondrial antioxidant and counter

the effects of uric acid, thereby aiding the oxidation of fat

[27,33]. It could also be speculated that high intake of resveratrol

via Vaccinum berries may contribute to the antioxidative milieu in

bears [62]. We observed markedly higher levels of taurine of

bears, which also may contribute to their overall anti-oxidant

defense [63]. Notably, taurine depletion is a common feature of

the pro-oxidant human uremic milieu [9]. Other possibilities

include the effect of low body temperature in blocking the

immune system [64], changes in plasma bile acid composition,

such as ursodeoxycholic acid [65] known to have anti-inflam-

matory effects [66], or changes in mitochondrial function and the

regulation of apoptosis [67,68].

Strengths and limitations
The present study is, to our knowledge, the largest study to date

on free-ranging bears. Sixteen bears were each studied twice while

living in their normal environment and fed ad libitum their natural

diet. Several coordinated metabolic pathways and markers were

studied simultaneously (carbohydrate, lipid and nitrogen metab-

olism, calcium-phosphate balance and inflammation). The small

number of sampled bears limited most previous studies and the

majority was conducted under laboratory or enclosure conditions.

Such studies may not mimic the natural circannual fattening cycle

and eating habits as well as the natural winter hibernation profiles.

However, some limitations remain. First, the analytic methods

were developed for human assays and the accuracy for bear

samples could not be unequivocally determined. Secondly, due to

limited amount of serum/plasma, some analyses could not be

performed in all bears. Three proteinogenic amino acids are

missing in our analyses and we did not measure, hematocrit,

plasma sodium and osmolality (which could have given informa-

tion about the hydration status of the animals). It should also be

acknowledged that as sampling was performed in February (or

March) and June, respectively, our data are not representative of

late hibernation or late summer-autumn conditions. Although

body weight did not differ between hibernation and the active

summer period significant differences in body composition would

probably be observed if bears were instead captured at the end of

the hibernation period (i.e. leanest) and late autumn (i.e. fattest).

As the bear diet changes in the late summer when berries are

abundant and start to ripe, it is possible that dietary changes may

lead to a different metabolic milieu. Indeed, a previous study

indicated that urea levels decline by about 50% between summer

and autumn samples [19], which indicates that changes in the bear

diet may reduce the intensity of nitrogen catabolism even before

the fasting period.

Conclusions

In conclusion, the present study of 16 free-ranging brown bears

confirms that despite anuria and 2.5-fold increase in creatinine

levels, azotemia does not develop. While total EAA, NEAA and

BCAA concentrations do not change during hibernation anorexia,

Renal Function in Bears

PLOS ONE | www.plosone.org 7 September 2013 | Volume 8 | Issue 9 | e72934



changes in individual amino acids ornithine, citrulline and

arginine indicate an active, although reduced urea cycle and

nitrogen recycling to proteins. Changes in glutamine and citrulline

are consistent with a reduced metabolism in the kidney, in

agreement with the reduced GFR. The reasons and implications

for the 2–3 fold higher levels of taurine and alanine in bears needs

further studies. We also find elevated FGF23 but lower phospho-

rous levels during hibernation. Despite prolonged inactivity and

reduced renal function, inflammation does not ensue and bears

seem to have enhanced antioxidant defense mechanisms during

hibernation. The significant decrease in uric acid levels despite

reduced renal functions indicates a reduced nucleic acid catabo-

lism during hibernation. Further studies of these metabolic

magicians may lead to novel interventions for both prevention

and treatment of uremic complications.
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