Behavior Compliance Control for More
Trustworthy Computation Outsourcing

Vom Fachbereich Informatik der
Technischen Universitat Darmstadt genehmigte

Dissertation

zur Erlangung des Grades
Doktor Ingenieur (Dr.-Ing.)

von
Dipl.-Inform. Sami Alsouri

geboren in Al Mshairfeh, Jordanien.

TECHNISCHE
UNIVERSITAT
DARMSTADT

Referenten: Prof. Dr. Stefan Katzenbeisser
Technische Universitat Darmstadt
Prof. Dr. Eric Bodden
Fraunhofer-Institut fir Sichere

Informationstechnologie

Tag der Einreichung: 20.06.2013
Tag der miindlichen Prifung: 02.08.2013
Hochschulkennziffer: D17

Darmstadt 2013

Abstract

Computation outsourcing has become a hot topic in both academic research and
industry. This is because of the benefits accompanied with outsourcing, such as cost
reduction, focusing on core businesses and possibility for benefiting from modern
payment models like the pay-per-use model. Unfortunately, outsourcing to poten-
tially untrusted third parties’ hosting platforms requires a lot of trust. Clients need
assurance that the intended code was loaded and executed, and that the application
behaves correctly and trustworthy at runtime. That is, techniques from Trusted
Computing which are used to allow issuing evidence about the execution of binaries
and reporting it to a challenger are not sufficient. Challengers are more interested
in evidence which allows detecting misbehavior while the outsourced computation
is running on the hosting platform.

Another challenging issue is providing a secure data storage for collected evidence
information. Such a secure data storage is provided by the Trusted Platform Mod-
ule (TPM). In outsourcing scenarios where virtualizations technologies are applied,
the use of virtual TPMs (vIPMs) comes into consideration. However, researcher
identified some drawbacks and limitations of the use of TPMs. These problems
include privacy and maintainability issues, problems with the sealing functionality
and the high communication and management efforts. On the other hand, virtual-
izing TPMs, especially virutalizing the Platform Configuration Registers (PCRs),
strikes against one of the core principles of Trusted Computing, namely the need
for a hardware-based secure storage.

In this thesis, we propose different approaches and architectures which can be
used to mitigate the problems above. In particular, in the first part of our the-
sis we propose an approach called Behavior Compliance Control (BCC) to defines
architectures to describe how the behavior of such outsourced computations is cap-
tured and controlled as well as how to judge the compliance of it compared to a
trusted behavior model. We present approaches for two abstraction levels; one on
a program code level and the other is on the level of abstract executable business
processes.

In the second part of this thesis, we propose approaches to solve the aforemen-
tioned problems related to TPMs and vI'PMs, which are used as storage for evi-
dence data collected as assurance for behavior compliance. In particular, we rec-
ognized that the use of the SHA-1 hash to measure system components requires
maintenance of a large set of hashes of presumably trustworthy software; further-

more, during attestation, the full configuration of the platform is revealed. Thus,
our approach shows how the use of chameleon hashes allows to mitigate the impact
of these two problems. To increase the security of vI'PM, we show in another ap-
proach how strength of hardware-based security can be gained in virtual PCRs by
binding them to their corresponding hardware PCRs. We propose two approaches
for such a binding. For this purpose, the first variant uses binary hash trees, whereas
the other variant uses incremental hashing.

We further provide implementations of the proposed approach and evaluate their
impact in practice. Furthermore, we empirically evaluate the relative efficacy of
the different behavioral abstractions of BCC that we define based on different real
world applications. In particular, we examined the feasibility, the effectiveness,
the scalability and efficiency of the approach. To this end, we chose two kinds of
applications, a web-based and a desktop application, performing different attacks
on them, such as malicious input attach and SQL injection attack. The results
show that such attacks can be detected so that the application of our approach can
increase the protection against them.

ii

Zusammenfassung

Auslagerung (Outsourcing) von Geschiftsprozessen ist ein heiles Thema geworden,
sowohl in der akademischen Forschung als auch in der Industrie. Dies ist wegen der
Vorteile, die das Outsourcing mit sich bringt, wie z.B. Kostenreduzierung, Fokus-
sierung auf das Kerngeschéft und die Moglichkeit von modernen Zahlungsmodellen
zu profitieren, wie z.B. das Pay-per-Use-Modell.

Leider ist das Outsourcing zu nicht notwendigerweise vertrauenswiirdigen Hosting-
Platform erfordert viel Vertrauen. Kunden brauchen die Gewissheit, dass der be-
absichtigte Code nicht nur geladen und ausgefiithrt wird, sondern auch dass sich
der Code zur Laufzeit richtig und wie gewiinscht verhélt. Das heifit, Techniken aus
der Trusted Computing die angewendet werden, um Beweise iiber die Ausfithrung
bestimmer Programme zu erstellen und zu einem Herrausforderer auszuliefern, sind
nicht ausreichend. Viel mehr sind Herrausforderer daran interessiert, Missverhalten
eines ausgelagerten Programms zu entdecken und entsprechend zu reagieren.

Ein weiteres relevantes Thema ist die Bereitstellung eines Laufzeit-sicheren Spei-
chers, der zum Speichern von gesammelten Beweisdaten verwendet wird. Eine sol-
che sichere Datenspeicherung wird bereitgestellt durch das Trusted Platform Mo-
dule (TPM). In Outsourcing-Szenarien, in denen Virtualisierungstechnologien zum
Einsatz kommen, werden virtuelle TPMs (vIPMs) benutzt um die Funktionalitéten
eines wirklichen TPMs in virtualisierten Umgebungen zur Verfiigung zu stellen.
Jedoch haben Forscher einige Nachteile und Grenzen der Verwendung von TPM
identifiziert. Zu diesen Problemen z#hlen Privatsphire und Wartbarkeit Proble-
me, Probleme mit der Sealing-Funktionalitét sowie der hohe Kommunikation und
Management-Aufwand. Auf der anderen Seite, TPM- Virtualisierung, insbesondere
Virtualisierung von PCRs (Plattform Configuration Register), stofit gegen einen
der wichtigsten Grundsétze der Trusted Computing, ndmlich die Notwendigkeit fiir
eine hardware-basierte sichere Aufbewahrung von Daten.

In dieser Arbeit prisentieren wir unterschiedliche Anséitze und Architekturen,
die verwendet werden kénnen, um die durch die oben genannten Probleme entste-
henden Nachteile zu mildern. Im ersten Teil dieser Arbeit prisentieren wir einen
Ansatz namens Behavior Compliance Control (BCC), die verschiedene Ansétze und
Architekturen beinhaltet, die beschreiben, wie das Verhalten der ausgelagerten Be-
rechnungen erfasst und gesteuert wird, sowie die Moglichkeit zur Beurteilung iiber
die Ubereinstimmung des registrierten Verhaltens mit einem vertrauenswiirdigen
Verhaltensmodell. Genauer, wir prasentieren Ansétze fiir zwei Abstraktionsebenen,

iii

einen auf eine Programm-Code-Ebene und einen anderen auf der Ebene der ab-
strakten ausfithrbaren Geschéftsprozesse.

Im zweiten Teil dieser Arbeit prisentieren wir unsere entwickelten Losungen zu
den oben genannten Problemen von TPMs und vIPMs. Wir haben festgestellt,
dass die Verwendung von SHA-1 Hashfunktion zur Messung von Systemkomponen-
ten zur Wartung von langen Listen von vertrauenswiirdigen Software fithrt. Viel
mehr wird die genaue Zusammensetzung der Konfiguration der Hosting-Platform
bei der Ausfithrung vom Prozess der Remote Attestation bekanntgegeben. So zeigt
unser Ansatz wie die Verwendung von Chamaleon Hashfunktionen es erlaubt, die
Auswirkungen dieser beiden Probleme zu mildern. Auf der anderen Seite, um die
Sicherheit der vITPMs zu erhohen, zeigen wir in einem anderen Ansatz, wie die
Stérke der Hardware-basierten Sicherheit fiir virtuelle PCRs durch Bindung ihrer
Werte an die entsprechenden Hardware-PCRs zuriickgewonnen werden kann. Wir
entwickelten zwei Ansitze um eine solche Bindung zu realisieren; im ersten Ansatz
verwenden wir bindre Hash-Baume, wihrend wir im zweiten Ansatz das inkremen-
telle Hashing nutzten.

Auflerdem haben wir die vorgeschlagenen Ans#tze prototypisch implementiert,
um ihre Machbarkeit und Wirkung in der Praxis zu evaluieren. Dariiber hinaus
préasentieren wir eine empirische Bewertung der relativen Wirksamkeit der verschie-
denen Verhaltens-Abstraktionen von BCC, die wir basierend auf reale Anwendun-
gen erstellt haben. Insbesondere untersuchten wir die Machbarkeit, die Wirksam-
keit, die Skalierbarkeit und Effizienz des BCC-Ansatzes. Zu diesem Zweck haben wir
uns zwei Arten von Anwendungen ausgesucht, ein Web-basiertes und eine Desktop-
Anwendung, auf die wir verschiedene Angriffe durchgefiirt haben, wie z.B., Eingabe
von bosartigen Inhalten und SQL-Injection-Angriffe. Die Ergebnisse zeigen, dass
solche Angriffe mit Hilfe unseres Ansatzes erkannt werden konnen, so dass mehr
Schutz gegen sie erreicht werden kann.

v

Acknowledgment

I am very thankful to my family, especially my parents, for their incredible efforts
and for motivating me throughout the preparation of this thesis. They have been
always supporting me and encouraging me with their best wishes. A special thank
goes to my wife for her support and patience during the last years, also to my both
daughters Nusaibah and Jumana.

Special thanks also go to my supervisor Stefan Katzenbeisser who gave me the
opportunity to study and write this thesis under his guidance. I am very grateful
to him for his support and assistance during the years in which I worked on this
thesis. I also want to thank Eric Bodden for his valuable comments and for his
co-supervision.

A well-deserved word of appreciation is also in order for Jan Sinschek, Andreas
Sewe, Thomas Feller, Sunil Malipatlolla, Sebastian Biedermann and (")zgiir Dagde-
len for the innumerable fruitful and enlightening discussions and for the research
projects we conducted together.

I would like to make a special reference to the excellent working conditions I
found at the Department of Computer Science at TU Darmstadt and the support
I received from the Center for Advanced Security Research Darmstadt (CASED).
I warmly thank all SECENG and CASED members for the motivating working
atmosphere.

I would like to express my thanks to all those I did not mention and who supported
me in any matter during the time in while I worked on my thesis.

Contents

(1__Introduction 1
[2° Preliminaries: Program Profiling, Cryptography and Trusted Computing] 9
2.1 Program Analysis and Profilingl 9
2.2 Business Processedo oL 11
2.3 Cryptographic Primitives| 13
[2.3.1 Chameleon Hashing| 13

[2.3.2 Group Signatures|. 15

2.4 Trusted Computing and Virtualization| 17
[2.4.1 Main Functionalities of Trusted Computing| 17

[2.4.2 Cloud Computing and Virtualization|. 22

I3 Behavior Compliance Control| 25
|3.1 Low-Level Behavior Compliance Control Using Program Profiling|. . 25
[3.1.1 How to Characterize Behaviorf. 27

[3.1.2 Profile and Model Generationl 31

3.1.3 Platform Reference Architecturel 32

[3.2 High-Level Behavior Compliance Control for Business Processes|. . . 38
13.2.1 Overview of the System Architecturel. 39

[3.2.2 Integrity Measurement of Business Processes on the Hosting |

| Platforml. 42
[3.2.3 Attestation and Verification of Fxecuted Business Processes/ . 43

324 Attacker Modello 45

B.3 Related Workl 46

|4 A Runtime-Secure Storage| 51
4.1 Hardware-based Security for vIIPMs|00 L. 51
|4.1.1 Hash Tree Based Binding| 52

[4.1.2 Incremental Hash Based Binding| 59

413 Attacker Modell L 57

414 Related Workl oo 58

4.2 Group-Based Attestation: Enhancing the Privacy and Maintainability| 58
4.2.1 Attestation Problems & Related Workl 59

4.2.2 Chameleon Attestation Il. 60

vii

Contents

4.2.3 Group Signatures Based Attestation| 63

4.2.4 Chameleon Attestation IIl 65

[Tmplementation of the Approaches| 67
.1 A Java Implementation of the Low-Level BCC| 68
[5.2 Building Chain of Trust and Runtime-Secure Storage|. 71
[5.2.1 Building the Chain of Trust| 71

[5.2.2 Implementation of the vI'lPM Manager|. 73

5.3 Adoption of the High-Level BCC to Apache ODE}. 75
[5.3.1 Plattorm Architecture Setup| 75

[5.3.2 Implementation of the Flow Attestation Extension| 76

[5.3.3 Implementation of the Attestation Services| 77

[5.3.4 Implementation of the Flow Verification Extension| 78

[(£.3.5 Performance Evaluationl 79

5.4 Implementation of Group-Based Attestation 80
[5.4.1 Implementation of Chameleon Attestationl| 81

15.4.2 Implementation of Chameleon Attestation II| 82

[5.4.3 Experimental Results| 82

[6 A Security Evaluation for Low-Level BCC Based on Real Applications] 89
6.1 Malicious-Input Attack on Document Manipulation Applications| . . 89
[6.1.1 General Experimental Setup|. 89

6.1.2 RQI: Feasibility] 90

6.1.3 RQ2: Effectiveness| 91

6.1.4 RQ3: Scalability], 93

6.1.5 RQ4: Efficiency|. 93

6.2 SQL Injection Attack on Web Applications| 95
6.2.1 RQI: Feasibility], 95

[6.2.2 RQ2: Effectiveness| 96

6.2.3 RQ2: Scalability|], 97

6.2.4 RQ2: Efficiency|. 98

[/ Summary and Conclusion| 99
Bib graphy| 101

viii

List of Algorithms

(1 TPM_Update_Leaf Init]
[2 TPM Update Leaf| o
B TPMIncrement Hashl

ix

List of Figures

1.1 'The three-phase approach to low-level behavior compliance control |. 4
[1.2 The PaaS delivery model in our scenario|)
2.1 An example for a loan request process expressed in BPEL| 13
2.2 The internal structure of the TPM| 19
[2.3 'The remote attestation process| 22
3.1 Example program|. oo 29
[3.2 Three abstractions ot the example program: Functions, call graph, |

and calling context tree|] 30
[3.3 Architectures for passive and active compliance controll. 33
[3.4 A concrete instantiation of the low-level behavior compliance controll 36
[3.5 'The hosting platform architecture|. 41
4.1 Sample Binary Hash Tree| 52
4.2 'The remote attestation process using hash trees|. 99
|4.3 Building software groups of different granularities|. 61
|4.4 Integrity measurement and the process of Chameleon Attestation I| . 63
|4.5 Integrity measurement and the process of Chameleon Attestation II] 65
5.1 Example CCT| 70
5.2 The profile management tool| 71
[5.3 Architectures for passive and active compliance controll. 72
.4 Example SML|. 77
5.5 Attestation client’s user interfacel 78
5.6 The impact ot distributions’ number on maintainability of RMLs| . . 85
[5.7 Granularity levels of privacy and control precision| 86
[6.1 False positive rate for differently-sized training sets (arithmetic mean |

+ standard deviation of 10 training sets each)] 91
6.2 Relation between application runtime and model size, measured in |

number of calling context tree nodes.| 93
[6.3 False positive rates during creating the model of InsecureWebApp| 96
6.4 The trace after executing the insert attack{. 97

X1

List of Figures

|6.5 The relation between model size and the runtime of InsecureWebApp| 98

xii

List of Tables

.1 Plattorm configurations for hardware and software] 67
5.2 An example of post-boot measurements made by IMA| 73
5.3 Examples from the vI'PM manager commands list| 74
[p.4 Attestation-server’s response to the client| 79
[5.5 The performance analysis of our implementation| 80
5.6 Reduction of measurements mn RMILJ 83
[5.7 Pertormance of CH depending on SHA-1 and different file sizes| . . . 87
[6.1 Percentage of inputs (exploits or fuzzed) detected as illegal | 92

xiii

1 Introduction

The past decade has seen an increasing interest in IT outsourcing as it promises
many economic benefits, such as cost reduction, the possibility to focus on core
capabilities as well as access to the provider’s expertise and skills [69]. Another
advantage, compared to in-house data processing, is that most providers charge on
a pay-per-use basis which means that the customers do not have to pay for idle
machines [110].

A concrete instantiation of this outsourcing scenario is Cloud Computing, in
which concepts from virtualization technologies are applied. The core idea behind
Cloud Computing is to provide enviroments for hosting both data and computa-
tion, i.e., clients machines must not be powerful to run complicated computations.
In Cloud Computing, there are various delivery models, such as infrastructure as
a service (TaaS), platform as a service (PaaS), and software as service (SaaS) [21],
which provide different abstraction levels of hosting, i.e., the higher is the level the
less the provider must care about. In IaaS, the hosting provider is responsible for
providing only the infrastructure, which means that clients care about installing
and configuring the platform and all upper levels. A step higher is the PaaS model,
in which the provider provides — in addition to the infrastructure — the plat-
form and leaves selecting and installing applications to the duties of the client. In
SaaS, the hosting provider must provide all the previous services including software
installation and in most cases its basis configurations.

At the same time, usage of service-oriented architectures (SOAs) has increased.
Services in SOA deliver defined business functionalities and are clearly capsulated
and loosely coupled entities [76]. Such services can be used in business processes
which follow the SOA paradigm. In order to describe such abstract business pro-
cesses and to specify the orchestration logic independent from the specific imple-
mentation of services, the Business Process Execution Language (BPEL) [63] has
been established as an OASIS standard.

In recent years, not only outsourcing standard applications gains importance,
but also outsourcing of business processes that are represented by workflows. Com-
panies are able to use platforms provided by third parties as a remote runtime
environment for their business processes, consisting of cross-linked services. For
instance, in PaaS, a cloud provider hosts hardware, the operating system and the
platform middleware (such as a business process execution engine, BP-Engine) and
a database management system, and the customer delivers only the business process

1 Introduction

descriptions (e.g. BPEL processes) to the cloud provider.

However, outsourcing a computation to a hosting platform is not without risks:
the client generally has no guarantee that the platform provider will execute the
outsourced computation in the way intended [65]. An adversary (such as a mali-
cious user or dedicated insider) in the could can compromise the outsourced appli-
cation (e.g., document conversion server, a web server or business software) in a
way that prevents it from fulfilling its security requirements. Furthermore, when
outsourcing the more abstract business processes, customers are concerned about
security problems that can arise after outsourcing. One of their major concerns is
the adversary’s possibility to manipulate the flow of the outsourced processes [79].
For example, consider a simple credit request process where either an extensive
or a simple creditworthiness check is performed depending on the requested credit
value. The former check is to be performed if the requested value is over 10008,
otherwise the latter check is performed. A customer who outsources this business
process of credit risk assessment to a hosting platform must be assured that the
correct activity (i.e., the correct flow) is executed.

Accordingly, we argue that hosting providers can provide clients such assurance
by providing trustworthy evidence about the runtime behavior of the outsourced
application. In this setting, it is important that the evidence can be efficiently
checked, without re-doing most of the computations, as this would defeat the pur-
pose of outsourcing. Also, such an approach needs to go without the need of manual
step-by-step auditing, since this would require expensive manual labor and would
be prone to human error. In response to this challenge, work has been done on
trusted computing, wherein the integrity of a platform is assured via a process
called integrity measurement. Load-time integrity measures [86], which check the
program to be run before its execution and report its integrity back to the client, are
insufficient in this context. For instance, in the scenario of outsourcing a document
server, its code is unaltered and hence such measures would verify the integrity of
the document server’s code, providing a false impression of security. To effectively
recognize attacks caused by malicious inputs or insufficient countermeasures, clients
must be given a means to reliably validate that the outsourced application indeed
executes as intended. However, the behavior of the application is not only influ-
enced by its code, but also by input data driving computations and configuration
files. As a consequence, identifying what applications run at a remote site is not
sufficient to verify that outsourced code runs as desired.

In addition, to be able to verify the flow of an outsourced business process,
trustworthy evidence about its execution is needed. That is, more transparency
for the remote processes [110] is demanded such that manipulations of the flow of
business processes can be detected, even if these changes take place in a provider’s
remote system. Delivering such evidence helps systems and process auditors to
control the compliance of outsourced business processes with business or security

objectives [64].

Another challenge in this area is how to securely provide a runtime-secure stor-
age for such evidence. Trusted computing offers manners to securely store small
amounts of data inside the so-called Platform Configuration Registers (PCRs) of
the Trusted Computing Module (TPM). Unfortunately, the concept of one hard-
ware TPM for every platform is not adequate in scenarios where multiple TPMs
are needed on the same platform, such as virtualization scenarios. To solve this
problem, the concept of virtual TPMs (vIPMs) [28] was proposed to allow the uti-
lization of TPM functionalities, such that each virtualized system is associated to
an isolated TPM instance. vI'PMs are currently implemented in software. Current
approaches for virtualizing TPMs [28, 90, [83] do not provide — to the best of our
knowledge — hardware-based security for virtual PCRs (vPCRs), which is one of
the main principles of trusted computing.

Another problem with trusted computing lies in the reporting services, called
remote attestation. Research has identified several problems with the classical
remote attestation process as specified by the Trusted Computing Group (TCG) [3].
These problems include privacy [33] and maintainability issues [86) [72], problems
with the sealing functionality [82] and the accompanied high communication and
management efforts [72].

To this end, we pursue in this thesis the following goals:

1. Developing an approach which helps to provide evidence of intended execution
by capturing, controlling and verifying the compliance of the behavior of
outsourced computations of different abstraction levels.

2. Extending existing runtime-secure storage architectures to be able to store all
security-critical runtime information that are related the generated evidence,
in a way which is more conform to the principles of cloud computing; the
main focus will be the support for multi-tenancy and virtualization.

3. Providing proof-of-concept implementations for these architectures.

To fulfill these goals, we list in the following our contributions in this thesis:

Approaches to Behavior Compliance Control — Chapter 3

In Chapter 3, we present two different approaches to behavior compliance con-
trol (BCC) which allow hosting platforms to create trustworthy evidence about the
behavior of outsourced computations, and —in turn— allow clients to decide on the
compliance of this behavior with trusted and correct reference behavior. The first
approach, called low-level BCC, consists of three phases as illustrated in Figure|l.1
In a learning phase, before outsourcing the application, the client learns the behav-
ior of a program by running it locally (thus in a correct and trusted manner) using

1 Introduction

Learning Phase Runtime Phase

class XVZ {

public void method1{ Outsourcing

o Hosting Platform

I
1
I
1
I
1
1
public void method2{ H
1
1
1
1
1
1
1

o
o
=1
L O
g2
£
=2
o
O

10

Complicance Verification
Phase

Figure 1.1: The three-phase approach to low-level behavior compliance control

a collection of representative inputs. This process results in execution profiles, from
which one then computes a so-called application model. The model is considered
to characterize the intended behavior of an application.

In the runtime phase, after the application has been outsourced to a hosting
platform, there are two options to assure behavior compliance. First, the client can
actively check model compliance at runtime, through an inserted inline reference
monitor. As an alternative, the platform provider can use runtime monitoring
techniques to log critical runtime information into a securely sealed storage, thus
yielding trusted evidence on the application’s actual behavior. Next, the client
verifies if the observed program run, according to this evidence, complies with the
application model learned in the training phase. If the run is found to be compliant,
the outsourced computation is assumed to have executed correctly. Our approach
builds on ideas from intrusion and anomaly detection [45], [49] [62], 93], 47, [44], but
for the first time assesses to what extent such techniques can be used for behavior
compliance control of outsourced computations, when combined with technologies
for the trusted assessment of logs, e.g., secure storage.

To the best of our knowledge, previous works on anomaly detection all consider
one particular way of abtracting from a program’s behavior. But the nature of the
behavior profiles used is critical to the success of our approach, and to anomaly-
detection techniques in general. Hence, in this thesis, we take a more comprehen-

sive approach and evaluated multiple possible representations of an application’s
behavior at different levels of abstraction. For the purpose of this thesis, we use
function calls as an indicator of program behavior, as they are a natural abstrac-
tion of program behavior, and of wide applicability. To approximate the behavior
of a program, we investigate three characterizations on different levels of granular-
ity: function sets, call graphs and calling context trees. We define compliance of
a program run as a subset relationship: a function call that is not covered by the
application model marks deviating behavior.

We further present two architectural frameworks for compliance control, an ac-
tive and a passive one. Given the application model, the active framework uses
a reference monitor to verify the correctness of a program run just-in-time. The
passive approach is similar to the integrity measurement approach of trusted com-
puting, but aims at recording behavior rather than the integrity of the (binary)
application code.

In the second part of this chapter, the second approach, called high-level behavior
compliance control, is described. We consider the PaaS delivery model (sketched in
Figure , where a customer provides a logging (attestation) policy in addition to
the business process description, and expects from the hosting platform trustworthy
evidence E about the correct execution of these processes. Accordingly, our main
contribution is to provide an architecture which follows the “compliance by design”
principle, allowing to remotely verify the correct execution of a business process.

- Attestation -=ﬂ=- Q - -
1- Outsource business Business Process Engine

~ Policy

Processes

2- Check the evidence £

Customer Hosting Platform

Figure 1.2: The PaaS delivery model in our scenario

Technically, we use remote attestation and the Trusted Platform Module (TPM),
core technologies of Trusted Computing (TC). The combination of remote attesta-
tion with business processes has been poorly investigated so far. Unlike traditional
attestation architectures, we provide a fine-granular and policy-based attestation
architecture, where the attestation policy defines critical actions that need to be
logged during the execution of the outsourced business process. After the process

1 Introduction

is completed, the client can request (during an attestation phase) a signed version
of this log, which allows to verify correct process execution. The log can either be
verified on the fly or stored for later use in case a dispute arises. Our architecture
also works on multi-tenancy hosting platforms [56] and considers multi-instance
processes.

Improving Existing Techniques to Build a Runtime-Secure Storage —
Chapter 4

In this chapter, we deal with the aforementioned privacy, scalability and maintain-
ability problems related to integrity measurement and remote attestation of trusted
computing. More specific, remote attestation discloses full information about the
software running on the attested platform, including details on the operating sys-
tem and third-party software. This may be an unwanted privacy leak, as it allows
for product discrimination (e.g., in a DRM context a party can force the use of a
specific commercial software product before certain data is released, thereby lim-
iting freedom of choice) or targeted attacks (e.g., if a party knows that someone
runs a specifically vulnerable version of an operating system, dedicated attacks
are possible). Thus, attestation methods are required that do not reveal the full
configuration of the attested platform but nevertheless allow a challenger to gain
confidence on its trustworthiness. The second major problem of TCG attestation is
the scalability of Reference Measurement Lists [86]. The large number of software
products and versions of operating systems makes maintenance of the lists cum-
bersome. For instance, [40] notes that a typical Windows installation loads about
200 drivers from a known set of more than 4 million, which is increasing continu-
ously by more than 400 drivers a day. The large number of third-party applications
aggravates the problem further. Scalability of the remote attestation process is
sometimes seen as a major limiting factor for the success of trusted computing [72].

In this thesis, we propose novel attestation and integrity measurement techniques
which use chameleon hashes or group signatures in the integrity measurement and
attestation process. Even though this increases the computational complexity of
the attestation process, we show that the presented mechanisms increase the scal-
ability of remote attestation, while providing a fine-grained mechanism to protect
privacy of the attested platform. One construction uses chameleon hashing [67],
which allows grouping sets of software and hardware versions, representing them
through one hash value. For instance, all products of a trusted software vendor or
versions of the same software can be represented by one hash value. On the one
hand, this reduces the management effort of maintaining Reference Measurement
Lists (RMLs), and on the other hand increases privacy, as the challenger is not
able to see any more the exact configuration of the attested platform, but only the
installed software groups. At the same time, the challenger system can be assured

that all running software comes from trusted software groups. We show that the
proposed system can easily be integrated into an architecture similar to the TCG,
with only minor modifications.

In the second part of this chapter, we propose an approach to bind vPCRs to
hardware PCRs to gain strength of hardware-based security. More specifically, we
provide two variants for this binding; the first uses binary hash trees [73] and the
second uses the concept of incremental hashing [23, 5I]. In the first variant all
vPCRs of the same index — on a platform — are jointly hashed using binary hash
trees. The root hash value is stored in the hardware PCR. In the second variant,
we use the incremental hashing approach, so that an aggregated hash value can be
stored in the hardware TPM chip.

Both approaches require the calculation of the hash tree or the incremental
hash inside the TPM to guarantee the security of the hash result. Unfortunately,
the current TPM specification does not provide interfaces for such operations.
Thus, we propose some additions to TPM sepecifictions. While it is difficult to
change deployed TPM chips, next-generation TPMs [104] will allow specifying
required cryptographic functionalities; furthermore, the concept of reconfigurable
TPM chips [39, 50 43] allows the implementation of new functionalities with rela-
tive ease.

Proof-of-Concept Implementations — Chapter 5

To the approaches described in Chapter (3], we do provide two concrete instantia-
tions, in the form of one implementation in the context of Java programs and one
for BPEL business-process execution. The Java scenario is representative of white-
box behavior profiles that are directly based on an application’s internal execution
behavior. The BPEL scenario acts on a higher level abstraction. It considers a
client outsourcing business process definitions to be executed on a business process
engine. Our implementation, based on BPEL and the ODE engine, can detect ma-
nipulations in the service orchestration specified in the business process definition.

Furthermore, we make a proposal for implementation of the approach detailed in
Section 4. I base on a Virtex5 FPGA platform and show that the application of both
approaches can increase the security of virtual TPMs with reasonable overhead. In
addition, we show that the proposed system described in Section [4.2] can easily be
integrated into an architecture similar to the TCG, with only minor modifications.
We have implemented the attestation process in a prototypical fashion and show
that the approach is feasible in practice. Finally, we show that a very similar
attestation technique can be implemented by group signatures instead of chameleon
hashes as well.

1 Introduction

An Analysis for Evaluating the Approaches — Chapter 6

Since the approach to the low-level BCC is considered as a main contribution of this
thesis, we empirically evaluate the relative efficacy of the three different behavioral
abstractions that we define based on different real world applications. We list
some attacks, which can be performed by an adversary to harm an outsourced
application, and describe how our approach can be applied to detect such attacks.
We used our Java-based implementation to produce behavior profiles collected from
these different outsourced open-source applications, fed with publicly available data
as inputs. Our results show that using function sets and call graphs as behavior
abstraction, it is possible to learn program behavior with low rates of false warnings.
In addition, even in cases where false warnings do arise, we discuss how these can be
used to the benefit of the approach by re-performing those computations in-house
that our tool chain warned about (for example, in the private part of a hybrid
cloud). This process allows the outsourcing company to identify false warnings
as such, and hence allows the company to gradually refine the application profile,
ultimately yielding an optimal profile with no manual intervention.

2 Preliminaries: Program Profiling,
Cryptography and Trusted Computing

In this chapter, we give a background about the methods and techniques we use in
our approaches we propose in Chapters|[3|and [4l Since we propose in Section an
approach which uses methods from program analysis, we give in Section a brief
background about program analysis and program profiling and discuss their usage
in research. In Section[2.2] we explore the area of business process management and
automation. Section gives a background about some cryptographic primitives
we used in the development of our approaches we present in Section Since
various architectures we propose in this thesis rely on technologies from Trusted
Computing and virtualization, we explain in Section [2.4] some principles and tech-
niques on which both topics are built.

2.1 Program Analysis and Profiling

Program analysis aims at providing techniques which allow examining program
code and reasoning over possible behaviors of it. One can distinguish between two
main types of program analysis. While in static analysis a behavior model of the
analyzed code is built without executing it, in dynamic analysis an execution of the
code is necessary [41]. Moreover, static analysis usually uses an abstracted model
(e.g., abstraction from program’s input data) of program states which leads to loss
of information about the program’s behavior. On the contrary, dynamic analysis is
precise because no abstraction needs to be done, i.e., during execution actual and
exact runtime behavior is detected. Typically, dynamic analysis is used in areas
like program optimization, program understanding and program testing, i.e., it is
used mainly in software development lifecycle.

Program profiling is a form of dynamic program analysis used to analyze the
dynamic program behavior using runtime information of the program. The most
common use of profiling is to ald program optimization. Program or software
optimization is the process of making the program/software run more efficiently or
use fewer resources. Software profiling is also used for debugging and bug isolation,
coverage testing, understanding program/architecture and examining memory or
CPU usage.

2 Preliminaries: Program Profiling, Cryptography and Trusted Computing

There are two principal techniques for program profiling: instrumentation-based
profiling and sampling-based profiling. While the former relies on augmenting a
program with instrumentation code at points of interest, the latter uses sampling
methods at defined time intervals to draw conclusions about the behavior of a
program [77]. There is no perfect profiling techniques, i.e., each technique has its
advantages and disadvantages.

Although instrumentation-based profiling is widly used, it still suffers from some
drawbacks; the instrumentation method is intrusive and overhead-related, since
instrumentation code must be inserted at numerous places of the program to be
profiled. The instrumentation can be performed by a compiler, a profiling tool or
— in case of executing byte code — by a virtual machine. In addition, by its nature,
these techniques leads to increasing the size of code to be executed, which is in
some cases unacceptable for memory-size critical systems. Another drawback is the
fear of possible behavior changes of an instrumented program. Compared to the
other profiling techniques, instrumentation at specific points can be considered at
the same time as strength of the technique; selecting the instrumentation points
leads to more profiling flexibility and accuracy. In summary, the most challenging
issue is to control the tradeoff between accuracy and efficiency which is not trivial
and application-related issue.

On the contrary, works like [111] [116] which use sampling techniques fail to give
a complete and accurate overview about overall behavior of a system. This is
because the fact that sampling uses timers which generate interrupts at defined
time intervals, which could lead to missing information about the behavior of the
program; predicting “good” time intervals is difficult for dynamically generated
profiles. This time interval is then associated with a program construct such as
a function body, a loop or a statement, depending on the program counter PC.
The information loss is resulting from approximating the association of sampling
intervals to a program construct [77]. Usually, hardware performance counters are
used to obtain high frequency sampling with reasonable overhead. The higher is
the frequency of the samples, the more profiling accuracy can be achieved. Another
problem of this technique are execution interrupts caused by taking samples.

One of the data structure representations resulting by profiling a program is
calling-context trees (CCT) [15], which associate a metric with a sequence of proce-
dures called during execution. Keeping the context of calling avoids approximating
a program’s context dependent behavior.

Fore more accuracy and flexibility, CCT profiles for modern programing lan-
guages like Java are required to capture overall program execution on any standard,
state-of-the-art Java Virtual Machines (JVM) and represent both inter-procedural
and inter-procedural control flow. JP2 [8§] is a profiler that produces accurate
and complete calling-context trees on production JVMs. JP2 traces the entire call
stack which to led a statement of method being executed. This thread-aware tool

10

2.2 Business Processes

generate a single CCT for all threads executing in the JVM. As a result, the CCT
can be serialized, e.g., as an XML structure. We use JP2 in the implementation of

our approach proposed in Section The implementation details about JP2 are
explained in Section

2.2 Business Processes

Business processes are complete and dynamically coordinated sets of collaborative
and transactional activities that deliver one or more defined values and fulfill a
specific goal. They gain more importance especially when they come in the context
of Business Process Management (BPM). BPM includes methods and techniques
for defining, designing, simulating, executing and monitoring both automated and
non-automated business processes. The main focus of BPM lies in the phase of ex-
ecution, which assumes the completion of the aforementioned pre-phases. Another
important phase is the simulation, which helps managers and business analysts
to simulate their processes and to get the information they need about processes.
Simulation is usually used for, e.g., costs calculations, supporting the capacity or
deployment planning, and prediction of performance data of changing environment
situations. In Section we see how simulation can be used in security-related
issues as well.

One of the ways to automate processes is to use business process execution engines
that execute the required steps of the process. Organizations and companies can
use and combine new and existing services by the use of such engines. That is,
business process engines are systems that manage and monitor processes while
running in real time. It automates processes that are clearly defined in process
templates or models. The execution engine then synchronizes the activities and
interactions of the process model. It assigns activities to stakeholders according to
the routing rules that are defined in the model. It escalates, delegates and manages
the status of the workflow, and ensures that tasks are completely executed. In
addition, it coordinates the interaction with other applications on the middleware
and provides audit processes. An example for an open-source business process
engine is the ODE Apache (Orchestration Director Engine) which executes business
processes written following the WS-BPEL (Business Process Execution Language)
standard. Besides Apache ODE, there are lots of commercial process engines which
execute and manage BPEL processes such as the Oracle BPEL Process Manager!,
the BizTalk Server? developed by Microsoft, and the WebSphere Process Server?
developed by IBM.

Thttp:/ /www.oracle.com/technetwork /middleware/bpel
http://www.microsoft.com/biztalk
Shttp://www-01.ibm.com/software/integration /wps/

11

2 Preliminaries: Program Profiling, Cryptography and Trusted Computing

WS-BPEL is an OASIS?* standard executable language for specifying actions
within business processes with web services. Although BPEL was introduced in
2002 by IBM, BEA Systems and Microsoft as a language used to describe the
orchestration of web services, it is also wildly used in research, so that there are
lots of scientific papers and articles which discuss strengths and weaknesses BPEL
as well as its improvements. The description itself is also provided in the form of
a web service and can be used as such. It is based upon the XML language and
includes a number of ways in which business processes can be expressed. The goal
of BPEL is to allow “abstract” programming. It should be noted that BPEL does
not support direct human interaction. That is, BPEL processes only communicate
with web services, i.e., the latter can act as an interface for human interaction.
However, IBM has published a white paper in cooperation with SAP under the
name BPEL4People [5] which is considered as an extension for BPEL providing the
requirements for human interaction.

The description of processes is structured in blocks. In the block structuring,
the control flow is expressed using basic activities such as assign, invoke, and
receive/reply, or structured activities such as sequence, if, foreach or pick,
which is similar to procedural programming languages. BPEL supports officially no
graphical representation of its elements. However, there exist many extensions and
partner-languages to support this. As an example for a BPEL process, we depict
in Figure a simple loan request process, which is graphically modeled using the
BPEL Designer® plug-in for Eclipse.

In detail, the process begins by receiving the name of the customer applying
for the loan. Afterwards, the activity “prepareCustomerData” of type assign
is performed to prepare customer data for saving. After saving data, the engine
begins to process the construct “specifyIntensityCheck” of type switch, which
checks whether the requested amount is over a certain threshold. Depending on
the requested value, a sequence of activities is performed; for high loan requests
the web service “creditWorthinessChecklIntense” is called which performs intensive
creditworthiness checks using the data of the requester, otherwise standard checks
are performed. The process ends by sending the result of creditworthiness check to
the caller. Note that this example process is used in sections where we describe our
approach related to business processes (cf. Section .

“http://www.oasis-open.org/
Shttp:/ /www.eclipse.org/bpel/

12

2.3 Cryptographic Primitives

]
= main
@] receivelnput
= prepareCustomerData

& saveCustomerData

@ specifyCheckintensity

If Else
2 Squence 2 Squence
= preparelntenseCheck = prepareStandardCheck
& creditWorthinessChecklIntense & creditWorthinessCheckStandard
= createOutput = createQutput
4] replyoutput
@®

Figure 2.1: An example for a loan request process expressed in BPEL

2.3 Cryptographic Primitives

2.3.1 Chameleon Hashing

Unlike standard hash functions, chameleon hashes utilize a pair of public and private
keys. Every party who knows the public key is able to compute the hash value on
a given message. The possession of the private key enables collisions to be created.
However, chameleon hash functions still provide collision-resistance against users
who have no knowledge of the private key.

Maybe one of the most popular and important cryptographic primitives are hash
functions. Hash functions are deterministic and low-cost functions. They take as
input a bitstring of arbitrary length and output a value of fixed size. The special
feature of hash functions are the following properties. It is easy to compute the
output (hash value) for any given input string, but it is unfeasible® to find (a)

5Note that the adversary has actually a negligible probability to find such a input value due

13

2 Preliminaries: Program Profiling, Cryptography and Trusted Computing

an input string mapping to a given hash value (preimage-resistance) and (b) two
distinct input strings mapping to the same hash value (collision-resistance). The
feature of hash functions provide big advantages in many applications, e.g. digital
signatures, hash tables, to identify files on peer-to-peer file sharing networks and a
good deal more.

Chameleon hash functions are also hash functions, but unlike standard hash func-
tions, they are assigned with a pair of public and private (trapdoor) information.
Chameleon Hashing was introduced in [67] by Krawczyk and Rabin for the use in
a signature scheme but basically they are non-interactive chameleon commitment
schemes introduced by Brassard, Chaum and Crepeau [32].

A chameleon hash function is defined by a set of efficient (polynomial time)
algorithms [20]:

Key Generation. The probabilistic key generation algorithm Kg : 1* — (pk, sk)
takes as input a security parameter k in unary form and outputs a pair of a
public key pk and a private key (trapdoor) sk.

Hash. The deterministic hash algorithm CH : (pk,m,r) — h € {0,1}" takes as
input a public key pk, a message m and an auxiliary random value r and
outputs a hash h of length 7.

Forge. The deterministic forge algorithm Forge : (sk,m,r) — (m/,r’) takes as
input the trapdoor sk corresponding to the public key pk, a message m and
auxiliary parameter r. Forge computes a message m’ and auxiliary parameter
r’ such that (m,r) # (m/,r’) and CH(pk, m,r) = h = CH(pk, m’,7’).

In contrast to standard hash functions, chameleon hashes are provided with the
Forge algorithm. By this algorithm only the owner of the trapdoor (sk) can
generate a different input message such that both inputs map to the same hash
value. In some chameleon hashes the owner of the private information can even
choose himself a new message m’ and compute the auxiliary parameter ' to find
a collision CH(pk,m,r) = h = CH(pk,m/,r’). This is a powerful feature since
anyone who knows the private information can map arbitrary messages to the same
hash value.

We desire the following security properties to be fulfilled by a chameleon hash
function (besides the standard property of collision resistance):

Semantic Security. For all pairs m, m’, the values CH(pk, m,r) and CH(pk, m/, r)
are indistinguishable, i.e., CH(pk, m,r) hides any information on m.

to the birthday paradox. It is assumed that in such cases we can ignore this probability.

14

2.3 Cryptographic Primitives

Key Ezxposure Freeness. Key Exposure Freeness indicates that there exists no effi-
cient algorithm able to retrieve the trapdoor from a given collision, even if
it has access to a Forge oracle and is allowed polynomially many queries on
inputs (m;,r;) of his choice.

Any chameleon hash function fulfilling the above definitions and security require-
ments can be used in our approach presented in Section our particular choice
of a chameleon hash is detailed in [20]. Next, we explain some details about our
particular choice.

The scheme introduced in [20] takes in addition to a message m and an auxiliary
parameter r a label £ which is a arbitrary bitstring. We need a secure hash-and-
encode scheme C : {0,1}* — {0,...,2%¢7!} which we use to map the label £ to
an integer. In [20] it is recommended to use the EMSA-PSS encoding, defined in
[25, 38]. The chameleon hash scheme CHAM = (Kg, CH, Forge) is constructed
as follows:

Key Generation. Let 7 and k be security parameters. Let H be a collision
resistant hash function, s.t. H : {0,1}* — {0,1}". Choose randomly two positive
k-bit, distinct odd primes p,q. Let N be the RSA modulus N = pq, thus we get
d(N) = (p — 1)(¢ — 1). Furthermore, choose a positive integer e randomly, s.t.
1 <e < ¢(N) and ged(e,p(N)) = 1. The RSA modulus N and the integer e form
the public key. Next, determine the integer d which satisfies the congruence relation
de =1 mod ¢(N). The private key consists of the values (p, ¢, d). Hence, the key
generation algorithm Kg outputs pk = (N, e) and sk = (p, ¢, d).

Hashing. Given a message m, label £ and randomness r, the hashing algorithm
CH computes

CH(L,m,r) = J™*™r¢ mod N,

where J = C(L).
Forge. Choose a message m’ randomly (or alternatively take m’ as input) and

compute r’ as
r = r(Jd)H(m)_H(m,) mod N.

The Forge algorithm Forge outputs (m/,).

2.3.2 Group Signatures

Group signatures were introduced by Chaum and van Heyst [35] and allow a member
of a group to anonymously sign a message on behalf of the group. A group has
a single group manager and can have several group members. Unlike standard
digital signatures, signers of a group are issued individual signing keys gsk|[i|, while
all members share a common group public key gpk such that their signatures can
be verified without revealing which member of the group created the signature.

15

2 Preliminaries: Program Profiling, Cryptography and Trusted Computing

This provides anonymity. However, the group manager is assigned with a group
manager secret key gmsk and is able to discover the signer (traceability).

Basically, a group signature scheme GS = (GKg, GSig, GVf, Open) is defined
by a set of efficient algorithms (for more details, we refer to [35] and [24]):

Group Key Generation. The probabilistic group key generation algorithm GKg :
(1%,1™) — (gpk, gmsk, gsk) takes as input the security parameter x and the
group size parameter n in unary form and outputs a tuple (gpk, gmsk, gsk),
where gpk is the group public key, gmsk is the group manager’s secret key,
and gsk is a vector of n secret signing keys. The group member i € {1,...,n}
is assigned the secret signing key gsk][i].

Group Signing. The probabilistic signing algorithm GSig : (gskl[i],m) — o;(m)
takes as input a secret signing key gsk[i] and a message m and outputs a
signature o;(m) of m under gsk]i].

Group Signature Verification. The deterministic group signature verification algo-
rithm GVT : (gpk,m,o0) — {0, 1} takes as input the group public key gpk,
a message m and a signature o and outputs 1 if and only if the signature o is
valid and was created by one of the group members. Otherwise, the algorithm
returns 0.

Opening. The deterministic opening algorithm Open : (gmsk,m,o0) — {i, L},
which takes as input a group manager secret key gmsk, a message m and a
signature o of m. It outputs an identity ¢ € {1,...,n} or the symbol L for
failure.

Join. A two-party protocol Join between the group manager and a user let the user
become a new group member. The user’s output is a membership certificate
cert; and a membership secret gsk[i]. After an successful execution of Join
the signing secret gsk|[i] is added to the vector of secret keys gsk.

The following is a list of security requirements which a group signature scheme
should meet:

Correctness. A signature o generated by a group member using the GSig algorithm
must be recognized as valid (output is 1) by the GVT algorithm, i.e. Ym Vi €

{1,...,n}
GVf(gpk, m, GSig(gsk[i],m)) = 1.

Unforgeability. No person other than group members is able to produce a signature
to any message on behalf of the group.

16

2.4 Trusted Computing and Virtualization

Anonymity (or Untraceability). It must be computationally infeasible to trace the
real identity of a signer from a valid group signature. Only a group manager
using its group manager secret key has this ability.

Unlinkability. It must be computationally infeasible to determine whether two
group signatures come from a same group member.

Exculpability (or No-framing). A coalition of group members or the group manager
is able to produce a valid signature on behalf of another group member.

Traceability. A group manager must be able to determine the signer’s identity of a
given signature using the Open algorithm.

Coalition Resistance. Any given subset of group members, sharing their respective
secrets, must be prevented to compute a valid group signature which is not
openable by the group manager.

In order to allow revocation of users, we require an additional property:

Revocability. A signature produced using GSig by a revoked member must be
rejected using GVf. Still, a signature produced by a valid group member
must be accepted by the verification algorithm.

The group signature scheme GS above requires a fixed number of group members
and we expect that the size and membership do not change after time. However,
in our scenario it is desirable to add or remove a member of the group. Therefore,
further properties are needed which imply adapted and redefined security prop-
erties as well as algorithms for administration of group members. Their security
requirements are elaborately discussed in [26]. These groups offering the properties
above are called dynamic groups.

2.4 Trusted Computing and Virtualization

2.4.1 Main Functionalities of Trusted Computing

Over the last decades, there were many efforts being made to increase security and
to assure integrity of I'T systems. To this end, since 1999 an IT consortium, known
as Trusted Computing Group (TCG)7, has been trying to define standards that
provide more security and trustworthiness of IT systems.

A Trusted Computing System (TCS) is according to TCG composed of a Trusted
Computing Platform (TCP) and a Trusted Operating System (TOS). TCP defines
all extensions, methods and standards which are related to hardware or firmware

"http://www.trustedcomputinggroup.org/

17

2 Preliminaries: Program Profiling, Cryptography and Trusted Computing

of a system. These extensions starts by extending existing functionalities, e.g.,
CPU up to developing new devices and chips such as the Trusted Platform Mod-
ule (TPM). On the contrary, TOS can be considered more complex, since it includes
defining numerous security functionalities, concepts as well as trusted services and
applications, which are responsible for, e.g., measuring and reporting the integrity
of a system. It is worth mentioning that in addition to these two terms, the term
Trusted Computing Base (TCB) plays a major role in a TCS, since it defines those
components whose security and integrity influence the security of the whole system.

An architectural specification of TCP is defined by TCG in [I01]. In this speci-
fication, there are two main components described; the tamper-resistant hardware
module called TPM and the Root of Trust for Measurement (RTM).

Because hardware components provide generally more security than equivalent
software implementations, one of the TCG goals was to realize the root of trust
inside the hardware, namely using the TPM component which is soldered on the
mainboard of a PC. RTM is realized through the measurements which are taken by
the Core Root of Trust for Measurement (CRTM). The latter is normally imple-
mented as an extension to BIOS, and therefore it is a part of the firmware of the
system. Both the TPM and CRTM build the Trusted Computing Platform (TCP),
and can be considered as root of trust for the overlying layers. That is, TCP consists
of only hardware and firmware independently from the operating system and all
other software running on the system. Root of trust is the basis of a chain of trust
and therefore it can be seen as the start point of the functions of TCP. It is worth
mentioning that the security and integrity of the root of trust can not be proven
by the system itself, and it requires external evidence from a trusted authority.

Trusted Platform Module

The TPM is a microcontroller chip which can be placed on the motherboard of
a computer system. The description of TPM and its functionalities can be found
in many TCG specifications such as [I02]. The specifications are addressed to
both TPMs manufacturers such as Amtel and Infineon, and software developer
who intend to use TPM functionalities.

Figure illustrates the internal structure and the main units of a TPM. There
are two types of units; functional and storage units. The functional units provide
cryptographic functionalities like generating random numbers, calculating hashes
and signing/verifying. The storage units can be divided into volatile and non-
volatile storage. In addition, the TPM provides numerous commands (cf. the TCG
commands specification [I03]) to be used by devices and applications that need to
communicate with the TPM and make use of its functionalities.

The SHA-1 engine generates a 160-bit hash value of a given input, which is
generally used to update the Platform Configuration Registers (PCRs), especially

18

2.4 Trusted Computing and Virtualization

RAM <> EEPROM <> PCR

1/0 CPU
RNG SHA-1 RSA
Rou Engine Engine Engine

Figure 2.2: The internal structure of the TPM

at boot-time of the system. For the common use of SHA-1, it is not recommended
to use this unit since a software implementation of this function is expected to be
much faster than the implementation within a TPM.

The RSA-engine implements the well-known RSA algorithm. TCG recommends
exclusively the use of 2048-bit keys. The engine is used for encryption and decryp-
tion as well as signing and verifying. An important usage area of the engine is to
use it in building a secure hierarchy of cryptographic keys and encrypting small
amounts of data to be stored outside the TPM. It is also used to generate RSA key
pairs with the help of RNG-engine, which provides this unit with random numbers.

Another important unit of the TPM is the Endorsement Key (EK), which is a
2048-bit RSA key pair. It is important to note that EK is generated and placed
into the TPM during production of the TPM and is kept in the non-volatile storage
of the TPM. The EK has a certificate which is part of the platform credentials of
a TCS, which guarantee for a challenger the presence of a TPM that is conform
to TCG specifications. The private part of EK is known only to the TPM itself,
and therefore it is assumed to be secure and can not be compromised or even read
from any device or application outside the TPM. The EK and its certificate can be
considered as machine identifier and therefore it is not used to sign messages that
will be sent to challengers. To protect the identity privacy, the data can be signed
using the Attestation Identity Key (AIK). The generation of AIKs is independent
of EK, and thus, nothing is learned about the EK from data signed with AIKs.

The non-volatile storage is used mainly to store security-critical data which needs
to be permanently stored in the TPM, such as the EK, Storage Root Key (SRK)
and the Owner Authorization Secret. On the contrary, the volatile storage is used
for, e.g., the Platform Configuration Registers (PCRs), the RSA key slots and
authentication session handles. The PCRs are small data storages which are used to
keep 160-bit SHA-1 hashes. The hashes are initialized and updated in the integrity

19

2 Preliminaries: Program Profiling, Cryptography and Trusted Computing

measurement process defined by TCG (we will explain this later in more details).
The TCG specification requires for TPM manufacturers the presence of at least
24 such registers. The lower indexes of these registers are reserved for keeping
the measurements of the pre-boot process (indexes 0-7), while the higher indexes
are reserved for measurements taken during the boot the process (indexes 8-15).
Registers 17 to 23 can be used by the dynmaic operating system.

Trusted Software Stack

In addition to TCP, TCG defines specifications for supporting software called
Trusted Software Stack (TSS). TSS is composed of different layers which provide
standardized interfaces for applications to use the services of the TPM and to com-
municate with the rest of the platform and other remote platforms. Layering details
of TSS and its functionalities can be found in the TSS specification [100]. In addi-
tion, the TPM Device Driver (TDD) are provided by TPM manufacturers to allow
direct control over the TPM using the TPM Device Driver Library (TDDL) and
its interface the TDDLI, i.e., the T'SS uses the TDDL and TDDLI to communicate
with the TPM. On the other hand, T'SS provide some core services which define an
interface for the overlying service provider (TCG Service Provider — TSP). These
services include, for example, a context manager, key and credential manager and
an event manager. For instance, an email software can make use of interfaces of
TSP to get access to the functionalities of the TPM, e.g., encryption.

Integrity Measurement

One of the main goals of Trusted Computing is to assure the integrity of a platform.
This is done by measuring every entity (such as BIOS, OS kernel and libraries, and
application software) using the SHA-1 hash before its execution. The measurements
are taken performing either the SHA-1 engine provided by TPM, or a software
implementation of the SHA-1 algorithm. All measurements are securely stored
by extending values in a particular PCR register by a hash chain. To allow the
challenger to recompute the hash values, information about the measured entities
is stored in form of a Stored Measurement Log (SML).
The following demonstrates how an entity A measures an entity B [37]:

e A measures the entity B. The result is B’s hash value.

e Corresponding information about the entity B (such as entity name) and
the hash value itself will be stored in the unsecured Stored Measurement
Log (SML).

e The current PCR value is extended in the form of: ExtendedPCRValue :=
SHA-1(previous PCR value || hash value of entity B).

20

2.4 Trusted Computing and Virtualization

e A passes control to B.

To prevent malicious software behavior, the TPM chip only allows to extend the
PCR registers, so that PCRs can not be reset as long as the system is running. The
only way to reset PCRs is to reboot the platform, i.e., when starting the system,
all PCRs are empty at this time. As mentioned before, the basis of a chain of
trust is a trusted component, i.e., in this case it is the CRTM. The CRTM acts
as trust anchor for the measurements coming, and computes a hash value of itself
and the static part of BIOS. After extending the hash value in the particular PCR
as explained above, the CRTM passes control to the BIOS to measure hardware,
option ROMs, and the operating system (OS) loader, then passes control to the
OS loader. The hash values chain built is called Static Chain of Trust, i.e., this
chain contains the hash values of the TCP. Building on the Static Chain of Trust,
the Dynamic Chain of Trust contains all hash values taken by a Trusted-OS, such
as Integrity Measurement Architecture (IMA) [86], or any overlying layer in the
system such as middleware. IMA extends the ”measure-then-execute” principle
followed throughout the boot process into the run-time of a system and therefore
builds the Dynamic Chain of Trust.

The practical attestation framework IMA, which is an extension of the Linux
kernel, was developed by IBM research [86]. IMA measures user-level executables,
dynamically loaded libraries, kernel modules and shell scripts. The individual mea-
surements are collected in a Stored Measurement List (SML) that represents the
integrity history of the platform. Measurements are initiated by so-called Measure-
ment Agents, which induce a measurement of a file, store the measurement in an
ordered list into SML, and report the extension of SML to the TPM. Any measure-
ment taken is also aggregated into the TPM PCR number 10. Thus, any measured
software can not repudiate its existence.

Remote Attestation

Measuring the integrity of a platform builds only the basis to assess it. To this end,
TCG defines a process called “Remote Attestation”, in which signed measurements
can be released to third parties in order to judge the trustworthiness of the state
of the attested platform.

As shown in Figure [2.3] the challenger creates a 160-bit nonce and sends it to
the attested platform. The attestation service running on that host forwards the
received nonce and the PCR number requested by the challenger to the TPM chip,
which signs the data using the TPM_Quote function. After signing, the results are
sent back to the attestation service. To protect identity privacy, only the Attestation
Identity Keys (AIKs) can be used for the signing operation. The attestation service
sends the signed data together with the SML back to the challenger. Using the

21

2 Preliminaries: Program Profiling, Cryptography and Trusted Computing

Challenger (C Attesting Platform (AP,
e @ nonce, PCR 9 G
e Check Sig & nonce v 5.
. =9
eVaIidate PCR against SML | QSIg{PCR, nonce}’ SML §§ ” e
<€ 0 5
SML 3
Name Version SHA-1 e _g
BIOS 1 ABC ‘ e @ §
os 1 EFG :\\/l q z
swi 1 123 , ISt
sw2 1 TUJ 2
SML H
3
s
RML
‘ Name Version SHA-1
BIOS 1 BCE | 0 ¥

pu os
sw1
’ sw1
Swi1

SHA-1 [FER
Engine 0

ZKL RSA

TUJ Engine

swi
sw2
sw2

NP slw|N R R
>
[}
N

Figure 2.3: The remote attestation process

corresponding public key AIK,,;, the challenger verifies the signature and the
nonce, and re-computes the hash chain using the SML. If the re-computed hash
value equals the signed PCR value, then SML is considered untampered. Finally,
the challenger determines whether all measurements in SML can be found in the
trusted Reference Measurement List (RML); in this case the attested platform is
considered as trusted.

Sealing

The idea of sealing is to bind data of the local platform, or data sent to other
platforms, on a a particular state of the recipient’s system. A sealed message can
be decrypted by the recipient only if he is, from the perspective of the transmitter,
in a trusted state. If the recipient is in the desired state, then he will be able to
decrypt the message sent to him. That is, the configuration state is used in the
encryption and decryption process.

2.4.2 Cloud Computing and Virtualization

Cloud Computing depends on virtualization technologies. Several Virtual Machines
(VMs)—each running a separate operating system (termed guest)—run on one
hardware platform, controlled by a hypervisor. Hypervisors provide an environment
to manage the VMs themselves and the native resources needed by each guest.

22

2.4 Trusted Computing and Virtualization

Basically, one can distinguish between two types of hypervisors: a type 1 hypervisor
runs directly on the hardware, while a type 2 hypervisor runs on another operating
system. Type 1 can, in turn, be classified into full virtualization (also called HVM)
and paravirtualization (PVM). In full virtualization the hypervisor provides the
guest operating systems with virtual hardware. This requires the usage of special
hardware such as the Intel Virtualization Technology (VT-x) and AMD’s AMD-V.
On the contrary, PVM does not require special hardware, but substantial operating
system modifications.

One of the widely used hypervisors that supports type 1 is Xen [22]. When
booting a machine with Xen support, the first guest operating system, called in
Xen terminology “domain 0” (dom0), boots automatically when the hypervisor
boots and obtains special management privileges and direct access to all physical
hardware by default. Any further guest operating systems are called “domain U”
(domU).

In order to enjoy the benefits of TPMs in VMs, Virtual TPMs (vTPMs) were
proposed to allow different (separated) TPM instances in each VM. For example,
[28] proposes a system that enables the use of the functionalities of Trusted Com-
puting (such as secure storage, cryptographic functions, etc.) for an unlimited
number of VMs on a single hardware platform. All (software) vI'PM instances are
executed within a special VM, which provides an interface to manage and create
these instances. To establish trust, the authors propose three different strategies
of how the Virtual Endorsement Key (vEK) can be issued. One of the strategies
is that the vEK is signed by an AIK of a physical TPM, so that the vIPM can
request certificates for its vAIKs at a privacy CA. Another strategy is to sign the
vAIK with an AIK of a physical TPM, and the third strategy is to use a local
CA to issue a certificate for the vEK of the vTPM. In addition, a challenger can
distinguish between a real TPM and a vI'PM by a statement in the certificate.
One important requirement for such vI'PMs is the secure association of a vIPM
instance to a VM instance. More information about the security requirements of
vTPMs can be found in [28] 81, [80]. Another virtualization concept of TPMs was
proposed by Strasser and Stamer [94]. The authors detailed in their approach a
software-based TPM emulator to be used for research and developing purposes.

23

3 Behavior Compliance Control

Application security is one of the important issues discussed in both literature and
practice over the last decades. A special topic in this area is security of outsourced
computation. More specific, as motivated previously, one of the discussed problems
in this thesis is verifying the behavior trustworthiness of outsourced applications
to remote systems. In this chapter, we present in detail our proposed approaches
and architectures which describe how to capture, control and judge the behavior
compliance of such outsourced applications running on remote hosting platforms.
Hereby we present approaches for two different abstraction levels; one is on the
level of program code, and the other is on the level of abstract executable business
processes which contain actions that fulfill a certain business goal. We intentionally
present approaches on two different levels of abstraction to show the impact of
such an abstraction on controlling the level of security and trust, effectiveness and
performance, as well as the feasibility of each proposed approach.

In Section [3.1] we present an approach which is based on program profiling. We
capture first the behavior of a target application using different profiling techniques
and then build an application model, which is considered as a behavior benchmark
for this application. Every program run is then compared to this model to verify
the compliance of this run to the model. We call this approach “Low-Level Behavior
Compliance Control”.

In a similar way, we present in Section another approach for more abstract
business processes, which we call “High-Level Behavior Compliance Control”.

Note that Sections and are entirely based on the publications [14] [12]

respectively.

3.1 Low-Level Behavior Compliance Control Using
Program Profiling

Assume that a client wishes to outsource some computation to a remote computing
facility operated by a hosting platform. To do so, the client sends the application
code to the service provider!, e.g., using the platform-as-a-service model of Cloud
Computing, or, in a software-as-a-service scenario, it licenses the required service.

n this section, we use the terms “service provider” and “hosting platform” interchangeably.

25

3 Behavior Compliance Control

At the remote facility, the code is executed on machines that are not under the
virtualizing TPMs, especially virutalizing the Platform Con

guration Registers (PCRs), strikes against one of the core principles of Trusted
Computing, namely the need for a hardware-based secure storge of the client. The
client therefore wishes to get guarantees ensuring that the provider does indeed
execute the code as-is, without any manipulation performed by the service provider
or by any other adversary.

As described before in Figure to give this guarantee we propose here a three-
phase approach as follows:

Phase I: Learning Phase — Before outsourcing
This phase captures the behavior of a representative amount of the target
application’s executions (profiles) using different techniques of program pro-
filing (this phase must be done in a secure environment, e.g., in-house), and
builds an application model out of all captured profiles. The model is consid-
ered trusted.

Phase 1I: Runtime Phase — At runtime
The runtime program execution (trace) of the target application is logged in
a secure manner.

Phase I1I: Compliance Checking — After execution
Finally, the logged trace is compared to the well-known and trusted applica-
tion model built in the learning phase in order to check its compliance.

Before outsourcing the target application, the client (or a trusted third party)
determines (e.g., in-house) application profiles that describes a super set of program
executions that are deemed to be representative for whole application behavior, and
acceptable in terms of legal behavior. Each profile represents one single program
run. The nature of those profiles is key to the success of the approach. We will
discuss below different ways how such profiles can be structured (see Section .
Out of all these profiles, an application model is created. This model represents
all — from the point of view of this approach — allowed and acceptable program
runs. Given such a model, the client can then characterize whether program runs
executed remotely by the service provider comply with a model or not. If a program
run does not comply with the model, this non-compliance signals to the client that
the computation might not have been trustworthy, for instance because the software
was executed with a sabotaged configuration setup, or because it was fed invalid
inputs with the goal of exploiting a vulnerability in the application (potentially
unknown to the client). Otherwise, the non-compliance is considered false positive.

In Chapter 4 we describe how to secure collected runtime information about runs
executed on the side of the hosting platform, i.e., in the runtime phase of behavior

26

3.1 Low-Level Behavior Compliance Control Using Program Profiling

compliance control (cf. Figure . We also describe how such a platform can be
built and of which components it is composed. In this section, we first explain how
to collect a behavior-characterizing model, i.e., in the learning phase, and in which
ways such a model can be represented.

We assume that the application’s model is constructed in a trusted manner by
running an instrumented version of the target application using a set of test cases
which fulfill an acceptable degree of behavior representativeness. This generates
execution profiles, which we use to construct the model. Figure presents the
result of this learning phase as a graph (lower left). We then collect the runtime
information in the same way as generating the application profiles. In a similar way,
we define any given program run (logged at runtime phase) as compliant with this
model if this run is covered by the model. In other words, the application model
comprises all allowed behavior; every execution outside this model is considered a
breach of compliance. That way, the model defines a safety property for the ap-
plication, denoting the behavior that is anticipated and therefore considered safe.
Note that this notion of model does not cover liveness properties, i.e., a model de-
fined that way cannot demand that a program run must expose a certain behavior;
an empty run will always be compliant to any model.

We call this approach low-level since it is applied on program’s code level, which is
considered low-level, compared to the other Behavior Compliance Control approach
for more abstract business processes presented in Section

3.1.1 How to Characterize Behavior

With the semantics of models defined by excluding behavior out of training sets,
one of the major research questions in the area of behavior compliance control is
how to actually classify behavior. Behavior can be classified in many ways, ranging
from very coarse-grained characterizations to very fine-grained ones. The challenge
in behavior compliance control is to find the right granularity in this spectrum.
If the profiles are used to construct a model that is too coarse-grained then the
model will be too permissive, which may cause malicious behavior to go undetected
by our approach (false negatives). Conversely, if the chosen behavior model is too
fine-grained, then it may suffer from overfitting, which may cause spurious false
warnings (so-called false positives). Such false warnings are a burden on the client,
since they require further inspection, which is, albeit fully automated, still time-
consuming. In this section, we propose different characterizations of behavior at
different levels of granularity, and to assess the usefulness of those abstractions in
the context of behavior compliance control.

Previous works by others described behavior on different level of granularity.
Sekar et al. [93] classify behavior using a quite coarse-grain black-box approach,
in which finite-state automata resemble temporal orderings of observed system

27

3 Behavior Compliance Control

calls. Gao et al. [47] use a gray-box approach that also monitors system calls,
but uses additional information from the runtime execution stack to build a so-
called execution graph. Feng et al.’s approach [44], on the other hand, is a pure
white-box approach, i.e., uses information internal to the executing program: the
author’s base their approach entirely on stack-trace information. All of the above
approaches have their relative strengths and weaknesses. Hence, for this work, we
decided to not restrict ourselves to a single mind set: instead of arbitrarily fixing
one given classification of behavior, we decided to implement three white-box mod-
els on different levels of abstraction, and to compare their relative usefulness for
the behavioral compliance control of outsourced applications. We chose white-box
approaches because in general white-box approaches yield at least as much informa-
tion as black-box approaches (which only monitor the application’s input-output
behavior). Many programs written for outsourcing scenarios (e.g., for the cloud)
are written in managed-code languages such as Java, which are easy to instrument,
and are therefore particularly amenable to such white-box approaches.

We regard function calls as a main ingredient for characterizing behavior. We
have consequently evaluated three possible approximations of behavior by tracing
which functions a program calls during its execution and in which contexts. Each
approximation thereby induces a different kind of profile, which can then be used
for our behavior compliance control approach. We distinguish profiles according to
the amount of information that they contain (from least to most information):

e Functions: A set of functions F' the program called during the execution.

e (Call graph: A call graph, with nodes representing functions, and an edge from
f to f/if f calls f’ at least once during the execution.

e Calling context tree: A calling context tree (CCT) [15], with the root node
representing the program’s entry point and a node f’ as child of node f if f
calls f' in the same context at least once during its execution.

To illustrate these abstractions, consider the example program in Figure In
Figure [3.2] we show the corresponding instantiations of each of the different abstrac-
tions mentioned above: functions, call graph, and calling context tree. Figure
shows the “Functions” representation. Herein, the profile just consists of the set
of all functions called during the program’s execution. Figure [3.2b] on the other
hand, shows the program’s dynamic call graph. Note that in a call graph, every
function, such as bar, is represented by exactly one node, no matter in how many
different contexts the function is invoked. Figure [3.2¢| shows the program’s calling
context tree. In this representation, calling contexts are kept separate: because bar
is called in two different places, once by main and once by foo (which is in turn
called by main), it appears twice in the tree, just under the appropriate contexts.

28

3.1 Low-Level Behavior Compliance Control Using Program Profiling

public static void main(String args|[]) {
foo ();

for (int i = 0; i < args.length; i++)
bar ();

static void foo () {
bar ();

1
2
3
4
5}
6
7
8
9

11 static void bar() { }

Figure 3.1: Example program

We chose these three different characterizations of behavior in a way that they
would produce a total order with an increasing level of detail. It is easy to see that
calling context trees contain more information than call graphs, and call graphs
contain more information than the set of executed functions. Conversely, we can
construct a call graph from a calling context tree simply by merging nodes labeled
with the same function. Similarly, we can construct the set of all executed functions
by a traversal of the call graph.

The fact that the three different abstractions form such a total order allows us to
evaluate different characterizations of behavior at opposite ends of the granularity
spectrum: The “Functions” representation is quite coarse-grained but can be com-
puted very efficiently. Yet, by its nature it may have the tendency to yield false
negatives, i.e., to miss attacks on the application. The calling context trees at the
other end of the spectrum are very fine-grained. Their computation consumes more
time, which may still pay off, though, because profiles based on calling context trees
may identify more attacks. On the other hand, such profiles may suffer from false
positives, i.e., false warnings. In Chapter [0 we present an extensive evaluation
demonstrating how well these three different abstractions are suited to the task of
behavior compliance control. Next, we provide a formalization of our three different
abstractions.

Definition 1 (Function set). Let r be a monitored program run. Then the function
set of r, denoted by functionSet(r), is the smallest set fulfilling the following
property: For any invocation f — f' of function f' from function f on r, it holds
that {f, f'} C functionSet(r).

Definition 2 (Call graph). A call graph is a directed graph (V,E) with V a set
of nodes representing functions, and E CV XV a set of directed edges. Then the
call graph of r, cg(r), is a call graph that fulfills the following constraints. V is the
smallest set such that for any invocation f — f' of function f’ from function f on

29

3 Behavior Compliance Control

{main, foo, bar}
(a) Functions (b) Call graph

\4
bar

(c) Calling context tree

Figure 3.2: Three abstractions of the example program: Functions, call graph, and
calling context tree

r, it holds that {f, f'} C V. E is the smallest subset of V x V such that for each
such f, f' it holds that (f,f') € E.

Definition 3 (Calling context tree). Let F' be the set of all function identifiers.
Then Cyy, the set of all calling contexts over F, is defined as Cyy := FT. The
set Cyy is closed under concatenation: we define a concatenation function “” on
calling contexts such that for any context ¢ € Cuyr and function f € F it holds
that c- f € Cpr. A calling context tree is a tree (V, E) with V. C Cyr a set of nodes
representing calling contexts and E C V XV a parent-child relationship. We further
demand that there exists a unique root node vy which has no parents, i.e., for which
it holds that =3v € V s.th. (v,v) € E. Let r be a monitored program run. Then
cct(r) is a calling context tree for which the following holds. V is the smallest set
such that for any invocation ¢ — f of function f from within context ¢ on r, it
holds that {c,c- f} C V. E is the smallest subset of V- x V such that for each such
f,c it holds that (c,c- f) € E.

Note that all of the above definitions are oblivious to multiple threads. In par-
ticular, different threads do not induce different contexts in the calling context
tree. Variants of the above abstractions that do distinguish between threads are
straight-forward to define, but have not proven necessary to conduct our evalua-
tion (cf. Chapter [6).

30

3.1 Low-Level Behavior Compliance Control Using Program Profiling

3.1.2 Profile and Model Generation

While, in principle, one could create all variants of application models described
above by hand, this process would already be prohibitively cumbersome in the case
of function sets and downright unrealistic for calling context trees. Therefore, a
way to automatically generate these behaviour models is needed.

There are two basic options to generate function-call models automatically: stati-
cally or dynamically. In a static approach, one would use a static-analysis tool (such
as Soot [106] or WALA [109]) to analyse the program’s code without actually ex-
ecuting the program. We considered such an approach in the beginning but then
quickly decided that it would be unsuitable for the purpose of behavior compliance
control: Static code analysis typically abstracts from all input data, which means
that the models found through static analysis tools would allow all behaviors the
application could possibly exhibit on any (valid or invalid) input. For the purpose
of behavior compliance control, such models would clearly be too coarse-grained;
behavior compliance control is particularly useful in scenarios where attacks oc-
cur through invalid program inputs such as compromised configuration files.? It is
therefore important that the models are, at least to some extent, sensitive to those
inputs.

For behavior compliance control, we therefore opt for a dynamic approach that
collects application profiles at runtime. The application is first instrumented with
code that serializes a profile onto disk. Then the client test-runs the instrumented
application using existing test cases. The client collects an execution profile for
every test run. The application’s final model for this training data is then defined
as the union of all those individual profiles: in the case of Functions we use simple
set union, while in the case of call graphs or calling context trees we define the
union in the natural way, by computing the union over the graph, respectively tree,
node and edge sets. We call the resulting profile the application’s model. Since the
union operation is associative, it does not matter whether the model is computed
in a step-wise, iterative way, i.e., after each individual profile is collected, or if one
instead computes the union once over all collected individual profiles.

Due to this property, when a model appears too restrictive, it can easily be
expanded by joining the application’s current model with new execution profiles.
This is a fully automatic process. A narrowing conversion can only be done by
hand. In the case where the model contains calling context trees, however, it
suffices to delete a single node to cut off this node’s entire transitive closure, which
makes such a modification comparatively easy to perform, especially if proper tool
support is provided to visualize and explore the calling context tree [74]. This step
merely requires to identify a starting point for the “forbidden” feature in question.

2 Attacks that rely on modifying code can be avoided through existing techniques like binary
attestation.

31

3 Behavior Compliance Control

When, as in our approach, the other abstractions (function sets and call graphs) are
computed from calling context trees, the same narrowing conversion can be used
to update those models as well. In the other case, where call graphs or function
sets are created directly, an equivalent narrowing conversion must be applied on
the respective abstraction instead.

Some properties (e.g., multi-user) of an application influence the behavior of
an application in such a way that models generated by using different values of
these properties differ much from each other. Consequently, it will not be useful to
generate one model for all values of these properties. For example, an administrator
has obviously totally different access rights to some modules of the application than
a normal user. For this reason, clients should not share models among another even
if the application is used jointly. This deficit is probably caused by joining all profiles
using a simple union operation. Accordingly, this causes loss of information which
has been gathered in profiles individually. Sharing could dilute the model, as for
some client it could cause malicious behavior to go unnoticed if behavior similar
to the malicious behavior (“similar” in the sense of what the profile characterizes)
was observed during the other client’s learning phase. This can be considered as a
limitation of our approach.

In particular, it should be noted that all approaches to anomaly detection, includ-
ing our own one, are susceptible to mimicry attacks [96] [108], in which an attacker
tries to cause behavior that is malicious, nevertheless mimics legal behavior in such
a way that the malicious behavior remains undetected. This problem can be mit-
igated somewhat by keeping the application model undisclosed, but to the best of
our knowledge no way to absolutely avert mimicry attacks is known to date.

3.1.3 Platform Reference Architecture

In this section, we present two possible variants of platform architectures for behav-
ior compliance control. In the first architecture, the client is interested in verifying
the behavior of his outsourced application after its execution. We call this variant
passive compliance control. In the second variant, called active compliance control,
the client observes the behavior of the outsourced application at runtime, which
allows the client to react upon any detected untrustworthy behavior just in time.

Both variants require the presence of a trusted behavior measurement compo-
nent (such as the Trusted Logger and the Trusted Reference Monitor explained
below), as well as secure storage on the host that performs the computation. As-
suring the integrity of these components is a complementary problem from behavior
compliance control and may be achieved through several means.

For this reason, the architectures described in this section are meant to be generic.
However, basing on technologies from Trusted Computing, e.g., integrity measure-
ment and remote attestation, we will describe at the end of this section a concrete

32

3.1 Low-Level Behavior Compliance Control Using Program Profiling

Appip \
for(i=1to n){ a
2 Application, Trusted
tEm Lot Logger
1 L.
} < Application,
Client Hosting Platform
(a) Passive compliance control
- -
Application, Trusted Models
Reference DB
- Monitor
Application,

Hosting Platform

(b) Active compliance control

Figure 3.3: Architectures for passive and active compliance control

instantiation of the generic architectures that fulfills these requirements, including
concrete mechanisms for verifying the integrity of collected profiles. An implemen-
tion of this instantiation is described in Sections [5.1] and £.2.21

Passive Compliance Control

First, we consider a platform architecture for passive behavior compliance control,
which records the behavior of an outsourced application and reports it to the client
in a trustworthy manner. Even though passive monitoring does not prevent un-
trustworthy behavior from happening, it helps the client to detect such behavior
and take appropriate measures (such as legal actions against the service provider).

In summary, as described earlier, the client first computes an application model
by running the software in a trusted environment, collecting profiles as described in
Section Subsequently, the client outsources the application to the host and
executes it on the hosting platform. After execution, the host provides the client
with evidence about the application behavior. The client finally verifies the evidence
and decides on its trustworthiness. In the following, we detail the individual phases
of this procedure.

e Learning phase: As described in Section the client generates, in a

33

3 Behavior Compliance Control

34

secure manner, an application model m which characterizes the behavior of
the target application, which has a unique application ID App;p. Afterwards,
the application is outsourced to the hosting platform. Note that this step is
done in a trusted environment (for example in the private part of a hybrid
cloud) and thus is assumed to be trustworthy.

Runtime phase: Figure[3.3a)shows the abstract platform architecture of the
hosting platform. We assume the presence of trusted system measurement
components, which assure the load-time integrity of the loaded applications
and the trusted logger. The load-time integrity of the hosting platform can
subsequently be verified by the client before outsourcing takes place. To this
end, techniques such as integrity measurement and remote attestation pro-
posed by the Trusted Computing Group can be used to assure the integrity of
the platform and to securely report its state to a challenger (see Section.

The trusted logger logs all events coming from the application itself (i.e.,
in case of using instrumented code) or from the middleware (e.g., the Java
Virtual Machine), on which this application runs. As mentioned previously,
a core task of the hosting platform is to generate trustworthy traces about
the execution of the outsourced application. As the generated traces are
security-critical, secure storage is required to assure their integrity.

Compliance verification phase: As shown in Figure the client ob-
tains the authenticated traces as recorded by the trusted logger component.
Using a secure challenging and communication protocol the challenger sends
the ID Apprp, of the application which was outsourced to hosting platform.
The hosting platform retrieves, in a secure manner, all the traces (t1,...,t,)
to all application executions corresponding to the sent Apprp, where n is the
total number of these executions. Once the client has obtained the traces and
verified their integrity, he compares the trace against the application model
collected in the learning phase. We write ¢ = m if the trace ¢ corresponds to
the model m and ¢ [~ m otherwise. Whenever ¢ [~ m, this indicates that the
trace diverged from the model and the remote execution is hence untrustwor-
thy. In this case, the client computes the difference t\m. This difference aids
the client in determining the characteristics of the divergence, with the goal
to determine if an actual attack has taken place.

The difference I\m is very important to determine whether the divergence is a
false-positive or an attack which has been detected. Nevertheless, this is not
an easy job, since the client can either verify it manually, which is in some sit-
uations very time costly or even impossible, or automatically by re-executing
the application using the same context data, which is again impossible in
some cases (technically or even legally because of, e.g., license restrictions).

3.1 Low-Level Behavior Compliance Control Using Program Profiling

However, in case of re-executing the application in-house (for example, in the
private part of a hybrid cloud), the client can record the resulting trace t'.
We write ¢t = t’ if the trace t is equivalent to the trace ¢’ and t # ¢’ otherwise.
Whenever ¢t = I, the execution on the hosting platform is considered correct
and trustworthy, and the divergence was a false positive. In this case, the
client expands m by adding t\m to it. By doing so, m can be continuously
improved to decrease the overall false positives rate. If otherwise ¢ # t/, the
execution is considered untrustworthy. However, concrete implementations of
the “=7, “\” and “=” operators depend on the kind of profile being used.

Note that, in contrast to intensive detection, where a very low false positive
rate is imperative, our approach can tolerate higher rates. Essentially, the
false-positive rate determines how much outsourced computation has to be
re-done in-house (cf. hybrid cloud environment). Thus, a false-positive rate
in the order of a few percent may well be acceptable, as still the bulk of the
computation is performed by the hosting platform.

Active Compliance Control

While passive compliance control of program behavior is a good way to decide on
its trustworthiness in retrospect, it cannot suppress undesired actions. To make
this active, it is necessary to monitor the running application and react accordingly
as soon as a deviation from the application model occurs.

In Figure [3.3b, we present an abstract hosting-platform architecture, assuming
the presence of system integrity measurement components, which guarantee the
load-time integrity of the reference monitor and the model database, which stores
the different models of different applications. In addition, we assume that the
Trusted Reference Monitor (TRM) is resistant against runtime attacks.

Unlike in passive compliance control, the client transfers the application’s model
m to the hosting platform in a secure manner. On the platform, m is stored in
the model database. When the application executes, either the application itself or
the application middleware (such as a virtual machine) notifies the TRM of every
event characterizing the application’s behavior. The TRM controls the application’s
behavior at each action verifying the compliance of that action with the reference
model m. In case of non-compliance, the TRM acts appropriately according to a
security policy.

The difficulty and efficiency of this approach depend on the chosen granularity
of the application model. For function sets, suppression logic can be added to
the program quite conveniently at calls to functions that are outside the allowed-
function set. For a call graph, it is equally possible to disallow all calls that do not
correspond to a call edge in the model. This, however, does not hold for virtual
method calls in object-oriented programs. For such calls, the call target can often

35

3 Behavior Compliance Control

only be determined at runtime. In these cases, a potentially offensive callee must be
made aware of its runtime caller in order to perceive a model violation. Monitoring
compliance with a model based on calling context trees is difficult, as conformance
depends on the entire stack configuration. A suitable implementation will hence use
an external monitor to keep track of the callstack as it evolves. Such an approach
is likely too overhead-prone to monitor regular applications, but it may be feasible
when monitoring the behavior of more abstract applications such as automated
business processes, where the model is usually very small and runtime monitoring
therefore reasonably fast.

A Concrete Instantiation of the Reference Architecture

]

nonce, Appjg, i

Trusted
Logger

« Validate nonce

* Check all signatures
 Verify chain of trust
» Check compliance

for(i=1to n){

Application,
Application,

VPCR,
o]

Sigrpm{PCR;, nonce}, SML
Si9,1pm; 1VPCRj,NONCE},...,

VIPM,

Traces II
() P VTPM,

Attestation Service

@
2
2
T
5
=
2
g
7
2
<

t |Zm SigvaMn{tvPCtRi,nonce} o e e
} SRR Nl e e e e e e e o e
Trusted OS Kernel
Hardware with TI;II/I -----------------
Client Hosting Platform

Figure 3.4: A concrete instantiation of the low-level behavior compliance control

Here, we propose an instantiation of the reference architecture for passive com-
pliance control. However, most the components we use in this instantiation can be
also used for active variant. Our particular choice is the use of functionalities of
Trusted Computing to assure the integrity of both the platform and the generated
profiles. For this, we use binary measurements to assure the integrity of each run-
ning component, and remote attestation to report the state of the platform and the
profiles to the client. In the context of outsourced applications, the use of a single
hardware TPM is not sufficient, since many applications are run on one platform,
each of which can be executed many times. We hence use the concept of virtual
TPMs, allowing to a assign a (unique) virtual TPM instance to each outsourced
process. All vI'PMs are managed by a vI'PM manager, which provides an inter-
face to create, manage and access vI'PM instances; the vIPM manager is notified
whenever an application instance is started. When notified, the manager creates a
new vIPM instance and associates it with the application instance.

In the following, we explain the details of these components:

36

3.1 Low-Level Behavior Compliance Control Using Program Profiling

Setup: The setup is done as described in the previous section. The result of the
learning phase is an application model m, which characterizes the behavior of
the application. Afterwards, the application, whose ID is App;q, is outsourced
to the hosting platform.

Behavior measurement: As shown in Figure the use of TPM and the trusted
OS kernel on the hosting platform assures integrity of Trusted Logger, i.e., by
building a static and dynamic chain of trust. Using trusted boot, we build a
chain of trust starting from the TPM chip up to the kernel, all target appli-
cations and finally the logging facility. The load-time integrity of the hosting
platform can subsequently be verified by the client (before or even after out-
sourcing takes place) using classic binary remote attestation, as described
below.

The Trusted Logger logs the events coming from the application itself (i.e.,
in case of using instrumented code) or from the middleware (e.g., the Java
Virtual Machine, JVM), on which this application runs. As mentioned pre-
viously, a core task of the hosting platform is to generate trustworthy traces
of the execution of the outsourced application. As the generated traces are
security-critical, secure storage is required. To this end, we use facilities of
TC as well, by recording a hash chain of all trace events in one fixed PCR
register of the TPM chip.

To assure integrity of stored traces, a particular vPCR i is chosen to hold a
hash chain of all recorded events (e.g., the set of nodes V' in calling context
trees or call graph). Whenever a new trace entry is generated, the vPCR i is
extended by hashing the trace entry using SHA-1 and running the TPM_Extend
command as described in the TPM specification [I05]. The trace entry itself
is stored in external (untrusted) storage.

Thus, after the outsourced application terminated, the vPCR register i of the
vTPM associated to the application contains a (securely stored) hash chain
of all recorded events; further, the trace t of all events is available on storage.

Attestation of the platform and the traces: In the remote attestation process, the
client obtains the authenticated trace as recorded by the Trusted Logger
component. The operation proceeds similar to TCG’s remote attestation.
As shown in Figure the attestation service of the client sends a 160-bit
nonce, the PCR index 4, which is supposed to contain the hash chain, and the
application ID App;q. The attestation service of the hosting platform’s TPM
then forwards the received information to the TPM, which in turn signs the
desired PCR value and the nonce. The result is the signature Sigrpys. In
addition, the attestation request is forwarded to the vI'PM manager, which

37

3 Behavior Compliance Control

in turn forwards it to all vIPM instances (vI'PMj, ..., vT PM,) that corre-
spond the traces t1,...,t, of the application whose ID is App;4, and where n
is the total number of these instances. The result of this operation is a set of
signatures Sigyrpury s -0 S1GuTPM,, -

All these values are sent then to the client, who verifies the correctness of the
signatures and validates the PCR value against the SML, and vPCR values
against the corresponding traces t1,...,t,.

Compliance verification: Once the client has obtained the traces and verified their
integrity, he compares the them against the application model collected in
the learning phase, i.e., verifies whether ¢ = m. The verification is done as
described above in compliance verification phase of the passive compliance
control.

3.2 High-Level Behavior Compliance Control for Business
Processes

In Section we introduced our first approach for capturing and controlling be-
havior of outsourced applications. We described how our approach is applied on a
lower level of abstraction, i.e., directly on program’s code level. In this section, we
introduce another approach to behavior compliance control, dedicated to the more
abstract level of automated and executable business processes.

In particular, we consider a concrete delivery model of Cloud Computing, called
platform-as-a-service (PaaS) [21I]. In PaaS, a cloud provider hosts hardware, the
operating system, the platform middleware (such as a business process execution
engine) and a database management system as well as other services. The client
delivers the software using tools and/or libraries from the provider, controls software
deployment and is able to modify its configuration settings.

As mentioned previously, our goal is to build a system architecture and to pro-
vide techniques which allow both, a hosting platform Hand a client C, to take ad-
vantage of business process outsourcing without being concerned about malicious
workflow behavior of outsourced business processes (attacker model is described in
Section [3.2.4). Here, a client provides a logging (attestation) policy in addition
to the business process description, and expects from the hosting platform trust-
worthy evidence about the correct execution of these processes. Before starting to
discuss the details of our approach, we discuss in the following some definitions of
a business process.

Hammer and Champy [60] define a business process as a collection of activities
that take one or more kinds of input and create an output that is of value to the
client. However, we need a more formal definition of the notion of business processes

38

3.2 High-Level Behavior Compliance Control for Business Processes

in order to use its terminology in the proposed approach. Since our approach deals
with the flow of business processes, it is important to identify which elements in
a business process can play a role in influencing the flow an executable business
process and accordingly the correct execution of it.

We slightly modified the definition of [70] and define a BP is as a tuple:

Definition 4 (Business process). BP = (BP;y, A, M, F,T, D), where
e BP;; is a unique ID of the process;

e A is a set of activities with one activity marked as the start activity ag. In
addition, there exist two disjoint subsets Ajn; and Acye of A such that A =
Aint U Aezt. Aijnt 18 the set of all activities which do not need an external
service call (i.e., the computation is directly done inside the BP-Engine). On
the contrary, Aezt contains all activities that do need external service calls;

e M is a set of possible process messages, where each message is composed of a
set of variables;

e [is a set of connectors, all of type {XOR, OR, AND};

e T is a transition function U — 2Y, where U is a set of process elements and
is defined as U = AU F'; and

e D is a data transition function, where D;, : A — M defines input parameters
and Doys : A — 2M defines output parameters for each activity a € A.

This formal definition covers abstract processes and is not bound to a certain
specification language. It can, however, be used to describe processes expressed in
BPEL and is therefore used throughout this approach.

Every single execution of a BP is called a business process instance (PI). These
PlIs are run and managed using a business process engine, such as Apache ODE?.
Every PI has a unique ID, denoted by PI;4, across all business processes executed
on the BP-Engine. The engine is also needed to send and receive messages, handle
data manipulation as well as in the communication with external services.

3.2.1 Overview of the System Architecture

As mentioned before, a client Cwants to be assured about the correct execution
of his outsourced business processes running on the hosting platform 4. That is,
‘H must provide trustworthy evidence about the integrity of his computing platform
and the correct execution of the outsourced processes to C. The architecture which
allows issuing such evidence should fulfill the following four requirements:

3http://ode.apache.org

39

3 Behavior Compliance Control

Ry Trustworthy system architecture from boot to the business process level. The
trustworthiness of the higher levels of a system requires the trustworthiness
of all lower levels (from the operating system level down to the hardware
level of the system). The whole system’s trustworthiness must be based on a
root-of-trust.

Ry Multi-tenancy support. The system of the provider must be able to host
business processes for many clients simultaneously in order to be cost-effective.

R3 Support of multi-instance business processes for BP engines. In practice, pro-
cess instances are created whenever abstract business processes are executed.
For the business process’ execution to be considered trustworthy, every pro-
cess instance must be trustworthy, even when running simultaneously with
others.

Ry Tenants privacy. Each tenant should be able to verify his remote business
processes without gaining information on business processes of other tenants
that run on the same hardware platform.

Figure shows the overall architecture of the client platform, the hosting plat-
form, and the communication between them. In summary, the client outsources
a business process with id BP,; to the hosting platform, which uses virtualization
technologies and therefore has different domains. The hosting platform runs the
BP on a BP-engine installed on a certain domain and logs critical actions during
execution. At the same time, the client can “attest” the hosting platform after
execution to obtain a (signed) log of the execution of his BP, which he can validate
locally.

On the hosting platform, our approach leverages a hardware TPM to build a
chain of trust, documenting the integrity of the computing platform. As in the
standard integrity measurement of T'C, each component measures the next one be-
fore passing control to it, and notifies the TPM to update the state of the platform,
which is reflected in the PCR registers. Once the boot process is finished, con-
trol is passed to the hypervisor, which is responsible for loading the guest domains
(Domain 1,...,n in Figure . Since we consider the PaaS delivery model of
Cloud Computing, we assume in our architecture that every tenant has his own
guest domain. In order to securely store the measurement values of all compo-
nents in a domain, including the operating system kernel, we use a domain virtual
TPM manager. This vI'PM manager provides an interface to control and manage
vTPM instances, so that every domain is securely associated to a different domain
vTPM instance. All created vIPMs and the vIPM manager run in a separated
and secured domain (e.g., dom0 in Xen). All vTPMs and the vITPM manager are
supposed to be trusted by all tenants and therefore belong to our Trusted Comput-

40

3.2 High-Level Behavior Compliance Control for Business Processes

Client Platform Hosting Platform

—
o c
= =
o 1
= E
= =
o [l |
o o

;
= P
V 4 _ Y

. / BP-Engine
Pl
SMLgomains SMLp, ... SMLg, Domain 0 Domainl ... Domain n
------------ c-) E,"""""" T Hypervisor T
--------- IjI;r-d-v;a-r;““““- ““““-“““““I-I;rdware with TPM

Figure 3.5: The hosting platform architecture

ing Base (TCB). Note that we propose different approaches in Chapter @ which
provide more efficient and scalable hardware-based security for virtual TPMs.

After passing control to the trusted OS installed in a domain, the chain of trust is
extended to include all middleware applications and their extensions. The trusted
OS maintains a measurement log, which contains all components loaded at runtime.
We denote this log by SM Lgomain- Since we consider business processes written
in a special specification language, our architecture includes a business process
engine (BP-Engine). The BP-Engine is measured by the underlying level (e.g. the
trusted OS), and its measured value is extended in the corresponding PCR of the
domain vTPM instance. The BP-Engine is equipped with a Policy Engine (PolEn)
and a Flow Attesting Extension (FAE). The former is responsible for identifying the
elements in a business process that need to be logged during execution, while the
latter is responsible for measuring these elements and extending the measured values
in the corresponding vI'PM. Note that we assume that the FAE is trusted once its
measurement corresponds to a well-known and trustworthy reference measurement.
That means it is not prone to TOCTTOU attacks. This way, the chain of trust is
extended to include the business process.

Regarding the client platform, we assume that the client trusts his own environ-
ment; his platform therefore does not require extra security mechanisms. It is only
equipped with a BP-Engine, which is extended to have the Flow Verification Ezx-
tension (FVE). FVE can be used to verify the (signed) logs provided by the hosting
platform. More details about the FVE and the communication between the client
platform and the hosting platform are given in Section [3.2.3

41

3 Behavior Compliance Control

3.2.2 Integrity Measurement of Business Processes on the Hosting
Platform

This subsection details which duties need to be carried out by H to prove flow
correctness of executed business processes. We identify hereby two main duties;
the first is to provide a mechanism to log sensitive activities of business processes,
and the second is to provide secure storage for the logged information.

Providing secure storage. Since we consider multi-instance business processes (as
required by Rjs of Section , the use of a single hardware TPM, which has only
24 PCR registers [0], is not adequate. In fact, each PI requires an independent
PCR register, to which hashes of all executed sensitive activities are extended. If
we consider thousands of Pls, it is therefore not possible to store the log information
of these PlIs in the PCRs of a single hardware TPM. One can theoretically store the
states of all PIs using only one PCR register by extending all their measurements
using the SHA-1 hash. However, this would result in problems later. Remember
that in the remote attestation process, C has to recalculate the quoted PCR value
using the SML. Consequentially, all logged information of all executed Pls on a
single host would be needed during verification of one of them.

For example, let a1 and as be two executed activities within a process instance
PI, and af, a be within PI’. Let the BP-Engine execute the activities as follows:
ai, aj, ag, a. Later, to verify the SML against the quoted PCR hash value in the
attestation process using one PCR, it is necessary to involve PI’ in the verification
of PI and vice versa, which makes the verification impossible, since the challenger
does not have the reference values (i.e. RML) to verify the BPL entries against it.

Another problem of having only one hardware TPM is caused by multi-tenancy.
As required by Rs, the hosting platform executes business processes for many ten-
ants. That is, the quoted PCR and the SML would have to be sent to different
tenants, and each of them obtains information about the business processes of the
other. This would clearly violate the privacy of the clients.

Thus, we have to separate the log information in a manner so that every PI has an
independent log. Accordingly, it must be possible to calculate the state of each PI
separately. To solve this problem, we propose using a second vI'PM manager, called
BP vTPM Manager, which also controls and manages vI'PM instances. Every
BP vTPM instance is associated to one business process instance and stores its
measured values. We refer to Section [5.2.2] for more details about the construction
and implementation of the vI'PM manager.

The logging approach. The second duty of H is to provide a logging mechanism
which convinces C of the trustworthiness of executed business processes. For this
purpose, we propose the use of a target/actual flow comparison. This comparison

42

3.2 High-Level Behavior Compliance Control for Business Processes

forms the core security guarantee about the correct execution of every PI. Hereby
we distinguish between two types of flows, fiarger and foctuar- While the target flow
ftarget specifies the expected and allowed flow of the business process, the actual
flow fuctual specifies the flow executed by H.

The target/actual flow comparison can deliver correct results only if FAE can log
all information of the BP which influences both types of flows. To identify these
elements, we give a look at Definition 4l We identify that only the set M influences
ftarget- That is, the attestation policy of fisrger should, in this case, include logging
every modification to any variable in M. f,.a 1 specified by logging the executed
activities, denoted by Acze, at runtime. Similarly, the attestation policy of fucrual
contains every executed activity. On the contrary, the BP;; element trivially does
not influence both flows. The sets F, T and D are also irrelevant for both flows.
However, they are still required for performing the comparison at C.

Whenever a PI is created, the FAE is notified and a BP vTPM instance is created
by the BP vIPM manager in the root domain and associated to the new PI.
Also a new SMLpy,, is created in the guest domain. The FAE collaborates with
the extension PolEn to identify which elements must be logged. That is, for the
aforementioned policies, SM Lpy,, contains log entries about all activities, as well
as every data manipulation that occurred to the set of messages M. All these
log entries are stored in the corresponding vI'PM instance by hashing the BP
specification part of the logged entry and extending the old state using SHA-1.
This way, it will be possible to recreate both flows (fsctuar and fiarger) using the
SMLpr,,.

3.2.3 Attestation and Verification of Executed Business Processes

C can start the verification of a BP at any time after the BP was executed on
H. That is, different BP vIPM instances and different SM Lp;,, must have been
created as described in Section The verification is divided into three phases;
the remote attestation, the signature and log verification, and the flow verification
phase.

The remote attestation phase: The goal of this phase is to securely report the
state of all executed business processes to the relevant client. The attestation
process starts by sending a 160-bit nonce and the BPF;4, in which C is interested,
to H; more specifically to the attestation service running on H (see Figure .
The attestation service forwards the request to both vI'PM managers. The domain
vTPM manager forwards the request again to the vI'PM instance associated to the
client’s domain. The nonce and the value of the requested PCR register are then
signed by the vI'PM. This signature is denoted by Sigdomain. Similarly, the BP
vIPM manager receives the nonce and BP;4. Since a BP might execute multiple

43

3 Behavior Compliance Control

PIs, where every PI has his own vI'PM, the manager first retrieves all vIPMs
corresponding to this BP;;. Again, the nonce and the requested PCR values are
signed by all vI'PMs instances, which correspond to the sent BP,;. Similar to the
SMLpry,,, we denote these signatures by Sigpry,,.

The attestation service now sends these signatures (Sigaomain and Sigpr,),
the SM Liomain and the set SM Lpy,
and logs as described below.

,,,,,

The signature and log verification phase: After receiving the response, C needs
to verify the evidence delivered by H. To this end, C first verifies the signature
Si9domain Using the corresponding vAIK,,;. Afterwards, C recomputes the state
of his own guest domain using SM Lgomain- If the resulting state equals the signed
PCR value, the SM L gomain can be considered untampered. Similarly, C verifies
the signatures Sigpr,,. .., Stigps, and the logs SMLpy,,...,SMLp;, as explained
before.

Note that all signatures and logs can be verified on the fly or stored for later use
in case a dispute arises.

If all aforementioned steps finished successfully, C can start verifying the correct-
ness of the flow as explained in the next phase.

The flow verification phase: In this phase, C decides whether a specified PI was
executed correctly. More specifically, if fiorget of a PI equals foeruar, then the
execution of this PI is verified correct. As established in R3 of the previous section,
to consider a BP as trusted, every PI of it must be verified correct.

The factuar of a PI can be regenerated using the set of activities Aecze logged
in the SM Lpy,,. However, to generate figrget, FVE simulates its execution on a
BP-Engine using the messages M and the data manipulation that occurred within
the PI, which can be also retrieved from SM Lpy,,.

The simulation of the BPs must fulfill two conditions. First, the simulation
must not re-execute activities which need external service calls (A¢z¢). Second, the
simulation must be performed with acceptable overhead such that C still can benefit
the outsourcing. This is an applicable scenario especially in hybrid clouds.

To avoid calling external activities in the simulation process, FVE uses a trans-
formation function 7. The goal is here to transform every activity which needs
an external service call to another one which can be directly computed on the BP-
Engine using the input and output data of each executed external activity. Note
that all this information is logged in SM Lpy,,. That is, after the transformation
we obtain a new business process description BP’ which can be directly executed
on BP-Engine without external calls.

44

3.2 High-Level Behavior Compliance Control for Business Processes

Now, the execution of BP’ can be done very fast without the need of exten-
sive resources and without mentionable overhead. Also the BP-Engine used for
the simulation does not need to provide all the functionalities which are provided
by a standard one (such as external calls components, big database management
systems, etc.).

After executing BP/, FVE compares the resulting fiqrget with the regenerated
factuar- If both flows are equivalent, the execution of the PI is considered trusted.

Our approach considers only deterministic business processes. That is, for BPs
which show non-deterministic behavior, there might exist multiple “correct” paths.
For those parts (e.g., flow block in BPEL), FVE can accept any valid path.

Requirements Revisited

In the following we argue that our architecture fulfills the requirements defined in

Section B.2.1F

e Ri: The use of a hardware-based root of trust and secure boot guarantees
the trustworthiness of the most lower level. Based on it, the chain of trust is
extended to include all higher levels.

e Rs: The use of vI'PMs allows the fulfillment of the multi-tenancy requirement.
Each tenant has his own domain vITPM instance.

e RR3: We support muti-instance business processes by the use of the BP vIPM
manager.

e R4: Tenants privacy is fulfilled by the secure isolation of vIPMs. As described
in [28], the use of a 4-byte vIPM instance identifier to each packet carrying a
TPM command identifies to which vI'PM the command should be delivered.
The vIPM instance number is perpended in dom0, so that compromised
guest domains can not forge packets in order to get access to another tenant’s
vTPM. In addition, since all BP vIPM commands come through the domain
vTPM manager, it is not possible for a client to get access to another’s BP
vTPM.

3.2.4 Attacker Model

We assume the presence of an attacker Athat is not capable of modifying outsourced
business process descriptions during transfer between C and H in undetectable way.
This can easily be achieved using an authenticated channel between C and H.

In addition, we assume that A is not capable of making any hardware attack in
the hosting platform, especially those attacks which are targeted to any hardware

45

3 Behavior Compliance Control

security chips (e.g., TPM), and therefore it can be trusted by the client. Note, this
is a common assumption when using hardware security chips.

We also assume that once a component is measured, the attacker A is not ca-
pable of performing runtime attacks on the measured component. That is, A is
not capable of modifying its behavior at runtime after performing the measure-
ment at load-time (TOCTTOU attacks). For example, once Flow Attesting Exten-
sion (FAE) is measured and its value is considered trustworthy, we assume that it
behaves correctly and trustworthy. However, this is not assumed for BP orchestra-
tion component (i.e., the component which uses the transition function 7" to decide
where the flow goes next). That means, we assume that an adversary (e.g., mali-
cious administrator) can manipulate the orchestration of the activities involved in
this BP.

3.3 Related Work

In this section, we present the related literature we reviewed to both, the low-level
and the high-level BCC.

For low-level BCC, there has been a significant amount of previous work on
automated property inference [78), 98, 97, [42] and anomaly detection [61], 52] on
many different levels, both static and dynamic, all with their relative strengths
and weaknesses. Many of those approaches could be integrated into our generic
architecture defined in Section B.1.3l We decided to define our own set of three
behavior abstractions because this setup would allow us to evaluate the relative
properties of those abstractions. Our approach extends all previous approaches
to anomaly detection by allowing anomalies to be identified in a distributed but
trustworthy manner.

Our approach is not the first to capture program behavior in terms of calling-
context information. Ammons et al. [I5] show how to generate context-sensitive
performance profiles efficiently, using hardware performance counters. Dynamic
sandboxing, proposed by Inoue et al. [62], shows similarities with behavior com-
pliance control. Like behavior compliance control, dynamic sandboxing relies on
dedicated training runs to determine a set of legal behaviors. However, Inoue et
al. only consider profiles at function granularity and validate them in two very lim-
ited scenarios; in particular, they do not provide a detailed, quantitative evaluation
and do not consider a broader applicability of dynamic sandboxing beyond runtime
monitoring.

Our approach builds on ideas from intrusion detection. In the mid-nineties, For-
rest et al. [45] addressed an important problem in intrusion detection, the definition
of what they call “self”, in other words a system’s normal behavior. The authors
propose a method to define “self” for privileged Unix processes by recording short

46

3.3 Related Work

sequences of system calls. Behaviors that deviate from these patterns are flagged as
anomalous and considered untrustworthy. Giffin et al. [49] developed an approach
for validating remote system calls of mobile code outsourced from a local machine
to a (potentially untrusted) client machine to detect potential manipulations. The
approach uses statistical analysis to construct a behavior model from the user’s
binary program. During remote job execution, all system calls arriving at the local
machine are checked against the model.

None of those approaches considers the scenario of behavior compliance control in
outsourcing scenarios and consequently the authors did not discuss the security of
the hosting platform as we do in Chapter 4} In addition, all approaches are black-
box approaches (in addition to other similar works mentioned in Section .
Compared to our approach, this gives them the advantage of being independent of
any programming language or compiler. On the other hand, white-box approaches
such as ours yield higher flexibility (as they can obtain more information) and finer
granularity 4.

Our active approach to behavior compliance control shares some properties with
state-based runtime monitoring, first introduced by Schneider [02], whereby desired
security properties are formulated in terms of a finite-state automaton. During ex-
ecution of the program, a trace of events is generated and checked against the
automaton expressing safety properties. The main difference to behavior compli-
ance control is that security automata usually need to be coded manually, which
imposes a significant burden on programmers. While there are approaches to infer-
ring automata from a program’s code or execution trace (e.g. [16]), those approaches
are often limited and have not yet been shown to scale in practice. Our approach,
on the other hand, extracts behavior fully automatically.

Other authors have proposed enforcement architectures to control access to data
objects distributed to remote systems [I15]. Such architectures control how out-
sourced applications can access outsourced objects at runtime, assuming that these
applications are trusted after verifying their load-time integrity. As we discussed
before, behavior compliance control goes well beyond such load-time based mea-
sures.

Trusted Computing allows to remotely attest the integrity of computing plat-
forms. Behavior compliance control goes beyond binary attestation by not only
considering the integrity of the application’s code at load-time, but its actual run-
time behavior. Gu et al. [54] propose an approach to remote attestation that can
be seen as complementary to ours. Behavior compliance control is focused on as-
sessing the compliance of a single application’s execution to its model. Gu et al.’s

4Note that if we apply our approach on Java applications, our approach can be then considered
as black-box approach by using load-time transformation of Java bytecode. Nevertheless, the fine-
granularity and the flexibility are still kept.

47

3 Behavior Compliance Control

approach, on the other hand, rather focuses on system-wide attestation; the au-
thors attest behavior by measuring the ways in which different processes call each
other. In an approach called Semantic Attestation, Vivek et al. [58] propose to
use a trusted virtual machine for remote attestation. The core idea is that such a
trusted virtual machine is capable of performing code analysis and runtime moni-
toring. In the approach, the appropriate property checkers need to be programmed
manually, though. This is in stark difference to behavior compliance control, in
which application models are automatically generated from legal executions. In
more recent work, Gu et al. [53] propose an architecture to attest the execution of
single mission-critical subroutines of an outsourced application. The authors use
the debug facilities of certain CPUs to track the execution of a specific function.
The execution of the function is then transferred to a secure environment prepared
by a secure kernel.

Finally, some effort has been spent on the construction of schemes for verifiable
computation [48] 27], which aim at outsourcing computations to a third party, while
offering a proof of correctness for the result. At the moment, these constructions
are rather impractical and cannot cope with side-effects of the program execution.

A related work to the high-level BCC is the one proposed by [9]. The authors
proposed a set of formal definitions to describe the behavior of business processes
and introduced a framework for their attestation based on the functionalities of
TC. The authors also propose a high-level and abstract description of the verifica-
tion of the attested business processes. However, it is not clear how the approach
proves a correct execution of a business process, since the verification mechanism
they propose is very abstract. In addition, the authors did not consider the busi-
ness processes executed by a BP-Engine, and accordingly the did not consider and
discuss the problem of multi-instance and multi-tenant business processes.

WS-Attestation [113] proposes an extension to WS-Trust [75] to define the in-
teraction between the entities service provider and service consumer. The authors
introduced three models to describe the communication between these entities.
However, they basically discussed the communication issues and did not discuss
the execution of business processes on Cloud Computing environments. Also the
approach proposed in [I0] is only a specification of the models proposed in WS-
Attestation.

Anstett et al. [17] investigated the requirements and challenges of outsourcing
BPEL processes in a cloud environment considering different delivery models. How-
ever, they did not provide a solution architecture for the investigated challenges and
requirements.

The authors in [114] proposed a first step towards a general framework to enforce
usage control in ubiquitous computing environments. Finally, Sailer et al. [85] aim
at providing an attestation architecture that can protect against firewall-bypassing
and information-leaking of confidential data. In our work we consider a completely

48

3.3 Related Work

different scenario.

49

4 A Runtime-Secure Storage

In Chapter [3] we presented our approaches for capturing and controlling behavior
of outsourced computations. We also presented techniques which assure a secure
and trustworthy storage of recorded information (especially information recorded
at runtime). To this end, we used technologies from Trusted Computing to prove
and verify the state’s trustworthiness of the hosting platform, and also to construct
a manager for virtual TPMs (vTPMs) as detailed in Sections and This
manager provides interfaces to create and manage vI'PMs in a secure manner. In
this chapter, we present novel approaches for building more secure runtime-secure
storage, and to improve some main functionalities of Trusted Computing.

More particular, current vI'PM approaches strike against one of the important
principles of Trusted Computing, namely the hardware-based security. For this
reason, we propose two approaches to gain strength of hardware-based security for
virtual PCRs by binding them to their corresponding hardware PCRs. This is done
in Section [4.11

In addition, one of the central aims of Trusted Computing is to provide the ability
to attest that a remote platform is in a certain trustworthy state. While in principle
this functionality can be achieved by the remote attestation process as standardized
by the Trusted Computing Group, problems like privacy and scalability make it
difficult to realize in practice: In particular, the use of SHA-1 hash to measure
system components requires maintenance of a large set of hashes of presumably
trustworthy software; furthermore, during attestation, the full configuration of the
platform is revealed. In Section [4.2] we show how chameleon hashes and group
signatures can be used to mitigate of these problems.

Note that Sections and are based on our works detailed in [I3] [IT] respec-
tively.

4.1 Hardware-based Security for vTPMs

Virtual TPMs (vTPMs), which are software-based implementations, were con-
structed to offer the functionalities of hardware TPMs for contexts where one TPM
is not enough, e.g., virtualized environments. The main problem of them is that
one looses the strength of the hardware-based implementation of TPMs, which is
actually one of the main principles set by the TCG when designing TPMs. Espe-
cially, storing sensitive and security-critical data about the state of a platform or

51

4 A Runtime-Secure Storage

Figure 4.1: Sample Binary Hash Tree

a software in virtual PCRs (vPCRs) is problematic. To provide hardware-based
security for virtual PCRs, we propose in this section two different approaches. The
first uses the well-known binary hash trees and the second uses incremental hash-
ing. Both approaches are based on the idea of binding all virtual PCRs with a
specific index to the hardware PCR of the same index. That is, for conventional
hardware PCRs, it exists exactly 24 hash trees. That way, any manipulation of a
virtual PCR can be detected by the help of the value of its corresponding hardware
PCR.

4.1.1 Hash Tree Based Binding

To bind vPCRs to hardware PCRs, we imagined the vPCRs running on a platform
as leafs and the hardware PCRs as a root. To bind values stored in leafs to the
root value, we decided to use cryptographic hash trees as shown in Figure The
root of each hash tree is stored in the corresponding register of the TPM. Currently
available TPMs are not capable of handling hash trees, therefore we present an
efficient approach to enable hash tree support for TPMs, proposing an extension
to the TCG’s standard. In the following, we explain our approach using three
phases; the setup phase, the integrity measurement phase, and finally the remote
attestation phase.

Setup Phase. We construct the hash tree in the following way: The leaves at the
top of the tree present all vPCRs of a specific index i of all existing vIPMs (1,...,n)
on a platform. For instance, vPC R}, indicates the vPCR number 10 of the vIPM
number 1. To increase efficiency, we propose using hash trees of fixed height I.
That is, with [= 10, one can run 1024 vI'PMs on the same platform bound to a
single hardware TPM. This number is probably enough for single platforms (e.g.,
servers), in case of using isolated vI'PMs for virtual machines. Nodes further down

52

4.1 Hardware-based Security for vI'PMs

Algorithm 1: TPM_Update_Leaf Init

Input: old vPCR value vPCR,4,
new vPCR value vPCR ey,
hardware PCR index i,
height of the tree [

Output: OK or error

if ¢; # 0 then // a hash tree execution is running

L return error;

else
ci 1 // initialize counter with tree height
tmpog < vPC Ryg;
tmppew <= VPC Rpew;
return OK;

in the tree are the hashes of their respective child nodes. Figure illustrates this
process; hg represents the accumulated vPCR values (root hash node) that will be
stored in the hardware TPM; hg is obtained by combining the hashes h; and hao,
ie.,

ho = hash(hlﬂhg),

where || indicates the concatenation operation. Similar to hg, all intermediate
hashes are computed. That way, the calculation of hy depends on the calculation
of the leaves and all intermediate nodes in the hash tree. Consequentially, any
manipulation to one of the leaves can be detected.

Integrity Measurement. Once a vPCR value needs to be updated, the vIPM is
notified about the new measurement and the new value of the vIPM is bound to
the corresponding hardware PCR as explained in the setup phase. In addition, the
SML of this vI'PM is also updated.

More specific, the TSS notifies the underlying hardware TPM by starting the
procedure depicted in Algorithm [l sending the old vPCR value vPC R4, the new
vPCR value vPC R, the height of the hash tree [and the PCR index i of the
hardware TPM that needs to be updated. This algorithm is then executed inside the
hardware TPM, which in turn stores these provided values in temporary registers
in the volatile storage. The algorithm returns OK if and only if the process was
successfully finished and there is no hash tree updating process currently running
for this PCR;. As a summary, the goal of executing Algorithm [I]is to initialize the
re-calculation process of the new root value.

After providing the hardware TPM with the old and new vPCR values, re-

53

4 A Runtime-Secure Storage

Algorithm 2: TPM_Update_Leaf
Input: hardware PCR index i, sibling
Output: updated hardware PCR value PCR], or error
tmpola = hash(tmpoal|sibling);
tmpnew = hash(tmppew||sibling);
c +— ¢ —1; // reduce the hash tree level by 1
if ¢; = 0 then // root of tree reached?
if tmpold = PORZ then
PCRz — tmpnew;
return PCR;;

else

L return error; // the hash tree is tampered
else
L return c;; // update calculation runs, return tree level

calculation of the hash tree is required as shown in Algorithm [2] Since the hash tree
is located outside the TPM and the algorithm must be provided with all siblings
located in the way to the root of the hash tree, Algorithm [2] must be called [— 1
times, and provided at each time with the correct sibling of the current hash tree
level. First, the TPM is provided with the sibling of the leaf (i.e., the vPCR) and
hashes the old and the new value of the vPCR with its sibling. The same process
is repeated until the root is reached (i.e., the tree height equals 0), otherwise the
current hash tree level is returned. If the old vPCR value equals the value stored in
PCR;, the hash tree is untampered and the newly calculated root can be stored in
PCR;, otherwise an error is returned, indicating a potential software attack aiming
at manipulating the PCR values. It does not matter who calls Algorithm [2|in the
hardware TPM to provide the siblings values, more important is the provision of
the correct values to calculate a correct root value, which equals PC'R;. That is, an
attacker which calls Algorithm [2] after the Algorithm [1| was called, would have to
deliver a collision to PCR; in order to successfully perform an attack on the TPM
in order to update the root value to another selected one. This is assumed to be
hard when using a collision-resistant hash function.

Note that it would be possible to provide the TPM with all required siblings (from
a leaf to the root) at once. Although this would reduce the communication overhead
with the TPM, it would require at the same time the presence of enough temporary
storage for all these values, which could be a problem for resource constraint TPM
implementations.

54

4.1 Hardware-based Security for vI'PMs

. ! &
Validate nonce 3 nonce, VTPMi i g oPCR|[oPCR oPCH|[oPCR
. 8 3 [oPor]
+ Check all signatures | g
- Verify SML ‘g g 9
* Check hash tree g Sigrem{PCR;, nonce}, SML, subtree é ! & !
g g :
< Sigyrem, {VPCR;,nonce} < !) B
O =~ VTPM Manager
Trusted OS Kernel
Hardware with TPM
Challenger Remote Party

Figure 4.2: The remote attestation process using hash trees

Remote Attestation. The remote attestation process is very similar to the one
described by TCG, with one more difference, which is verifying the hash tree. In de-
tail, we assume that the challenger knows the vI'PM’s ID, in which he is interested.
That is, the attestation service of the challenger sends a nonce, the vT PM,;; and
PCR’s index 4, to the remote party as shown in Figure The attestation service
of the remote party receives the request and forwards it to the vI'PM manager,
which controls and manages vIPM instances. Afterwards, the vI'PM manager re-
trieves the correct vI'PM instance, which in turn signs the nonce together with the
value of vPC'R; by using a vAIK of this particular vI'PM. The result is denoted
by Sigyrpm,,(vPCR;,nonce). The nonce is then forwarded to the hardware TPM,
which also signs the nonce and the value of the requested PCR (i.e., the root node
of the hash tree), which results in the signature Sigrpys(PCR;,nonce). These sig-
natures and the SML are finally sent to the challenger (see Figure . In addition,
a subtree, which contains all siblings located in the way from the a vPCR to the
root, has to be sent to the challenger. The challenger verifies the signatures and
the SML. In addition, the challenger re-calculates the hash tree as described above.
If the signed root value equals the re-calculated value (which means that the vPCR
is untampered), and the signed value can be considered trusted.

4.1.2 Incremental Hash Based Binding

Incremental hashing is another efficient way to aggregate hash values of messages
that change over time. More specific, an incremental hash function produces an
updated hash value of a modified message faster than recomputing the hash from
scratch. In summary, incremental hashing provides a collision-free hash function
f for which the following is true. Let x = z1...x, be some input, viewed as a
sequence of blocks, and say block i is modified to . Let 2/ = 2} ...z} ...z} be the

new message. Then given f(z),4,x;,x}, it is easy to compute f(2') [23]. We can

55

4 A Runtime-Secure Storage

apply this paradigm to the idea of binding vPCR values to a single hardware PCR
value to have the following mapping:

e f(x) represents the old hardware PCR value,

e | represents the vI'PM instance number k,

e x; represents the old value of the vPCR,

e 1/ represents the new value of the vPCR, and

e f(2') represents the new accumulated value stored in the hardware PCR.

To this end, we propose here an approach which uses incremental hashing to
aggregate all vPCR values of a platform and update the aggregated value after
every extend operation performed on any vI'PM on the platform.

Algorithm [3] details the hash update procedure based on the incremental hashing
scheme of [23], which defines different combining operation. Our particular choice
is the modular multiplication MuHASH. To comply to TCG standards, we slightly
modify the input parameter of MuHASH, such that the updated hash will include
the history (PCR;) of all measurements.

Algorithm 3: TPM _Increment_Hash
Input: vPCR instance number k, old hash-value vPC R4, new hash-value
VPC R0
Output: updated hardware PCR value PCR
tmp; = mod_div(PCR;, hash(k||[vPCRyq));
PCR; = mod_mult(tmp;, hash(k||[vPCRyey||[PCR;));
return PCR};

Setup Phase. The incremental hash-based binding approach presented herein can
be used with an arbitrary number of vI'PMs. Adding and removing PCR values
of vITPMs is done by multiplying/dividing the corresponding hash values with the
aggregated hardware PCR value. In the setup phase, to bind all vPCRs of a
vIPM to the value of the hardware PC'R;, all corresponding v PCR; of each vIPM
instance k are combined according to the following equation, where m is the prime
modulus, ¢ is the index of the PCR register and n is the total instance number of
all vIPMs existing on the same platform:

PCR; <= H hash(k||[vPCRF) mod m
k=1

56

4.1 Hardware-based Security for vI'PMs

Integrity Measurement. For continuous integrity measurement, the update of a
PCR value is performed according to Algorithm First, the algorithm removes
the old vPCR value by dividing the current PCR value by the old vPCR’s hash
value (see mod_div). The result is then stored in a temporary value tmp;. After-
wards, to add the new vPCR value to the accumlated value, the algorithm multiplies
tmp; by the new hash value (see mod_mult). Note that PCR; is included in the
updated value PCR]. This is very important to do in order to avoid resetting a
PCR value and to keep track of the update history of a PCR.

Remote Attestation. The verification of the remote attestation process has to
include the integrity verification of the incremental hash. In addition to the SML
provided by a TSS of a vI'PM, an SML for the incremental hash updates is provided.
As defined by TCG, a challenger first verifies all signatures and the SML of the
vIPM. In addition, the challenger uses the SML of the hardware TPM, which has
all incremental hash updates, to verify the integrity of vI'PM itself.

4.1.3 Attacker Model

We assume the presence of an attacker which is not capable of performing physical
attacks on the hardware root-of-trust, the TPM. That is, the TPM is utilized
according the specifications of TCG.

We consider in this approach those platforms which use virtualization technolo-
gies and therefore vIPMs to secure virtualized machines (VMs), or platforms which
use vI'PMs to secure instances of applications (see Sections and . Here, we
assume that all measurement units running on this platform (also in virtualized
machines) are supposed to be not attackable by the attacker, and therefore they
belong to the Trusted Software Stack (TSS). That is, all integrity measurements
of running software and hardware are supposed to be correct, and reported to the
corresponding vI'PM to be stored in a vPCR.

However, the vPCRs themselves are still assumed attackable, even if they run in
a separated environment. That is, the attacker is capable of modifying a selected
vPCR to any arbitrary value. Since the hash tree is stored outside the TPM, it is
also assumed attackable. However, the root value of it is stored inside the hardware
TPM and therefore is supposed to be secure. Hereby the goal of the attacker is
to load and execute malicious software in one or more VM and modifying specific
vPCR values (after reporting the value of the malicious software) to another, for
the challenger, trusted value.

o7

4 A Runtime-Secure Storage

4.1.4 Related Work

Unfortunately, the current specification of the TPM does not support hardware-
based security for systems using virtualization and cloud computing technologies.
Though there exist in literature designs supporting resource constrained embedded
systems [43] and arbitrary number of virtual TPMs [90], they do not address the
above problem. Virtual TPMs in these approaches belong therefore to the TCB of
a platform.

The concept of hash trees has been used in many different contexts. In the area
of Trusted Computing, hash trees were applied in [I12] to protect memory regions
using the region block size and the number of memory updates as parameters for
the hash tree. Schmidt et al. [91] used hash trees during the integrity measurement
process to create tree-formed measurements, in which the measured components
represent the leaves and the PCR values represent the roots. The goal of this
work was to allow detecting the position of a possible manipulation of an SML,
which was possible in case of using linear ordered measurements (like in TCG
standard) only by checking the integrity value of each entry in the SML. Another
work applied the concept of hash trees in TC is the one presented by Sarmenta et
al. [89]. The objective of the authors was to create very large number of virtual
monotonic counters on an untrusted machine with a TPM. The virtual counters can
be then used to detect illegitimate modifications to shared data objects (including
replay attacks and forking attacks) [I07]. The authors proposed for this the use of
additional TPM commands in order to calculate hash tree node and root values in a
secure manner. However, we apply hash trees in our approach in a completely other
context, specifically, to bind virtual PCRs to hardware PCRs, which is a security
problem of virtual TPMs.

A conventional TPM is implemented, in general, as an Application Specific In-
tegrated Circuit (ASIC) [105], and therefore cannot be updated after deployment.
However, there exist approaches in literature for supporting a flexible update of
cryptographic algorithms on the TPM using the reconfiguration technology such as
Field Programmable Gate Array (FPGA) as proposed by Malipatlolla et al. in [95].
Further, Feller et al. [43] porposed a novel architecture for a TPM utilized to pro-
vide intelectual property (IP) protection and to design a trustworthy embedded
System.

4.2 Group-Based Attestation: Enhancing the Privacy and
Maintainability

Throughout this thesis, we often used technologies from Trusted Computing to as-
sure a platform’s integrity. However, research has identified some problems related

58

4.2 Group-Based Attestation: Enhancing the Privacy and Maintainability

with Trusted Computing. These problems include privacy and maintenance issues
as well as sealing and communication difficulties.

After clearly explaining some problems of Trusted Computing, we approach, in
this section, the mentioned problems by proposing three novel attestation tech-
niques, which are based on either chameleon hashes or group signatures. More
information about these two cryptographic systems can be found in Section

The first and second techniques allow balancing configuration privacy with the
control precision of the attestation process and substantially decrease the overhead
for maintaining RMLs, while the third one provides more flexibility for the chal-
lenger in control precision but offers no privacy advantage when compared with the
TCG attestation!.

4.2.1 Attestation Problems & Related Work

Integrity measurement according to the TCG specification seems to be a promising
way to check trustworthiness of systems. However, the suggested remote attestation
process has several shortcomings. In the following we list some problems which are
related to the approaches we present later in this section:

e Privacy. We can distinguish between identity privacy (IP) and configuration
privacy (CP). IP focuses on providing anonymity for the attested platform.
This problem can be solved by Direct Anonymous Attestation (DAA) [33] 34,
36]. On the other hand, CP is concerned with keeping configuration details of
an attested platform secret, since its disclosure may lead to privacy violations.
Still, the challenger system must be assured that the attested platform indeed
is in a trustworthy state. Our proposed approaches focus on providing CP.
Note that CP and IP are orthogonal problems, i.e., our solution can be used
in conjunction with mechanisms that guarantee IP.

o Discrimination and targeted attacks. By using remote attestation, product
discrimination may be possible. For example, in the context of DRM environ-
ments, large operating system vendors and content providers could collaborate
and force usage of specific proprietary software, which restricts the freedom
of choice. Furthermore, an adversary could leverage the precise configuration
of the attested platform and perform a specific targeted attack [68].

o Maintainability. A further drawback lies in the maintenance of Reference
Measurement Lists [86]. The TCG attestation requires the challenger to

!Note that the proposed approaches can be applied in the architecture proposed in Chapter
We use in this section the term “software” as an example for integrity measurement, since this is
the standard in Trusted Computing. However, the approaches work also on any kind of data (such
as business process descriptions and nodes of a calling context trees).

59

4 A Runtime-Secure Storage

maintain a Reference Measurement List (RML), which contains hashes of all
trustworthy software, to validate the received measurements. Consequently,
software updates or patches require distribution of new hash values. For this
reason, the management overhead increases to a point where attestation be-
comes impractical. Consequently, keeping these RML lists up-to-date involves
high management and communication efforts.

e Sealing. Besides remote attestation, TCG offers the ability to seal data to
the configuration of a specific platform. Again, any software update or con-
figuration change can lead to a completely new platform configuration state
and consequently hinder unsealing [82].

Sadeghi and Stiible [82] approached the above mentioned problems by the in-
troduction of Property-based Attestation (PBA). By applying PBA, the attested
platform proves that it fulfills certain semantic security requirements, called “prop-
erties”. This way, the concrete configuration of a platform does not need to be
disclosed. However, PBA requires an extension of TPM or alternatively a Trusted
Third Party along with a Trusted Attestation Service, which is responsible for
translations between properties and software. Semantic attestation [59] verifies
that the behavior of a platform fulfills given particular high-level properties. WS-
Attestation proposed by Yoshihama et al. [I13] employs PCR obfuscation to hide
software versions; however, maintainability remains a problem [9].

In [55], a model-driven remote attestation was proposed providing evidence of
trustworthiness by behavior compliances. However, these proposals involve changes
in operating system design or even changes to the trusted hardware module. On
the contrary our proposals only add a new cryptographic primitive (chameleon hash
function) in trusted kernel or introduce a PKI considering group signatures.

4.2.2 Chameleon Attestation |

The goal of the challenger in a remote attestation process is to decide about the
trustworthiness of the attested platform. A honest challenger is not concerned, in
fact, to know the detailed configuration of the attested platform, i.e., the specific
versions of hardware and software (see configuration privacy problem above). That
is, the challenger would be satisfied, if it is also possible for him to decide about the
trustworthiness of the platform without knowing the details of its configuration.

Other problems, like maintaining a huge database of RML entries (considering
millions of software and software versions) and sealing’s invalidity of updated soft-
ware, are also a big challenge. Our basic idea to solve all these problems is building
“legal” software groups.

In particular, we recognized that the use SHA-1 hashes leads to constructing
different chains of trust. Assume that SW, 1 is executed on the attested platform,

60

4.2 Group-Based Attestation: Enhancing the Privacy and Maintainability

Software
Manufacturer

Software
Suits

Software

Software
Version

Figure 4.3: Building software groups of different granularities

we then would get a chain of trust (S7) as follows:

Si = SHA-1(SHA-1(SHA-1(. .. ||SHA-1(SW1,1)) || SHA-1(SW2,)| . . .)

Now, assume that SW, ; is updated to another version (SW,2), we would get
another chain of trust (S2) like the following:

Sy = SHA-1(SHA-1(SHA-1(. . . ||SHA-1(SW1,.2))||SHA-1(SW2,.1))] . .)

Consequently, because of the different SHA-1 values of both versions, S; # S2. But,
we need is a technique which allows the statement S; = Ss, in such a way that the
challenger in the attestation processes can be convinced that the change in chain
of trust is because of a “legal” update and not a software manipulation.

In this section we describe a novel remote attestation approach, which makes it
possible for the challenger to decide on the trustworthiness of the attested platform,
without knowing its detailed configuration. The assumptions listed in [86] about
the attacker model are also the basis of our approach. In particular, we assume that
once a measurement is stored in an RML, the corresponding software is considered
trusted; additional security mechanisms must be in place to secure the integrity of
the RML (this is out of scope of this work).

Our approach is based on the the concept of software grouping; that is, according
to the precise scenario, these groups may e.g. contain all software products of the
same vendor, compatible software products (see go in Figure or all versions
of one specific software (see g; in Figure . We design the attestation process
in such a way that we assign the same hash value to all members of a software
group. To achieve this, we make use of a chameleon hash function. As mentioned
in Section [2.3.1] any party who knows the public key pk is able to compute the
hash value for a given message. In contrast, only the trusted instance holding the

61

4 A Runtime-Secure Storage

private key sk can create collisions. Based on the idea of software groups sharing
the same hash value, we describe in the following a novel remote attestation process
we call Chameleon Attestation I

Setup phase: For each group, a trusted instance (such as a software vendor) runs

the key generation algorithm Kg to obtain a public/private key pair (pk, sk).
When establishing a new software group, the software vendor picks for the
first product contained in the new software group a random r and makes it
available to the attested platform by delivering it with the software. Further-
more, he hashes the program’s code ¢ of the software with the chameleon hash
to obtain h = CH(pk, m,r); for performance reasons the SHA-1 hash value
of c is taken as m. The obtained chameleon hash is made public in a trusted
RML. Subsequently, to add a new software ¢’ to the same software group, he
uses the algorithm Forge to find a new 7’ so that CH(pk,m/,r’) = h and
distributes the new 7’ alongside the software. Again m’ is the SHA-1 hash of
¢ and is taken as input message. Step 1 in Figure shows the parameters
distributed to the attested platform by a software vendor.

Integrity measurement: On the attested platform, the operation proceeds in a

similar way as in the original integrity measurement process, see Figure
In particular, the software is first hashed using SHA-1 (step 2). Subsequently,
the attested platform computes in step 3 the chameleon hash value h of the
software using the public key pk and the random value r distributed alongside
the software. Since the PCRs in the TPM accept only a 160-bit message to be
extended to a particular register, the chameleon hash value is hashed again
using SHA-1 in step 4 and the corresponding information is stored in the
SML in step 5. The resulting value is finally extended to a PCR register (step
6). If we assume that groups of software are built upon software versions,
chameleon hash value of SW1, 1 equals the chameleon hash value of SW1,, 2,
e.g., after updating the software (see SML in Figure [4.4D)).

Remote attestation: The attestation process of Chameleon Attestation I is very

62

similar to the standard TCG attestation process. In step 1 in Figure the
challenger sends a nonce and the PCR index i, whose content has to be signed
by the TPM. In step 2, the Attestation Service forwards the request to the
TPM, and in step 3 the TPM signs the desired PCR value and the nonce, and
sends them back to the Attestation Service. In step 4, the attested platform
sends the SML containing the chameleon hash values instead of SHA-1 values.
In steps 5-7 the challenger verifies the signature, validates the PCRs values
against SML, and checks the trustworthiness of the sent measurements. Only
if SML contains trustworthy measurements the attested platform is considered
trusted. This way, a malicious challenger is no longer capable of disclosing

4.2 Group-Based Attestation: Enhancing the Privacy and Maintainability

Software Vendor ‘

Challenger (C . Attested Platform (AP,
A (1] nonce, i e
ol @
g aﬁ (1] © check sig & nonce
o .
G)
el s GVaIidate PCR against SML 031g{PCRl' nonce}, SML 9
SML (ater upd, =SML (bef d
Attested Platform (AP) A N:‘::er 2 (;i:ng) ‘ Na(mz 2e u(p:Haung) e E
2 k
% BIOS | TGH BIOS | TGH ! 3
LE Software g os | oeH os | oBH & e
o SwW1,, WG Swi1,, WG (“g
<
\9 sw2 KKL sw2 KKL &
bass L ¥ . L E
D e S 3 Compare individual 8
Enoine o o measurements with
N g RML
ON | e E
(6) Engine = RML Basssssnssnsnnnsnssnssnssnssnsadennsann e
T Name CH
{ BIOS | TGH (™™
9
o ! os GBH | SHA-L PCR
Es,:'q‘i\,'.t g swi WG Engine) :’
E sw2 KKL RSA -
Eﬁxe & sw3 uTs Engine -
(a) Integrity measure- (b) Attestation process

ment

Figure 4.4: Integrity measurement and the process of Chameleon Attestation I

the specific configuration (e.g., a specific software version) of the platform.

Chameleon Attestation I is flexible in the sense that the granularity of software
groups can be easily chosen to balance privacy and control precision (see Figure:
If more privacy is desired, then larger software groups may be formed; on the
other hand, if distinction between different software versions is an issue, smaller
groups can be maintained. Note that the decision of how granular a group is, can
be made only by the software vendor. Without modifying the TPM, Chameleon
Attestation I supports only the static chain of trust, since the TPM itself does not
provide functionalities to calculate chameleon hashes.

In Section [5.4.1] we provide a full implementation of Chameleon Attestation I,
and in Section we discuss in detail some experimental results and the conse-
quences of using Chameleon Attestation.

4.2.3 Group Signatures Based Attestation

An alternative approach to improve the remote attestation process in terms of pri-
vacy and maintainability is possible by applying digital signatures, in particular
group signatures. This requires the following modifications to the integrity mea-
surement architecture:

Setup phase: We again use the concept of software groups. This time, we use group
signatures; each software in the software group has its own private signature

63

4 A Runtime-Secure Storage

key gsk[i], while all share a common verification key gpk. Whenever a new
product or an update of software is published, the software is first hashed with
SHAT1 to obtain h = SHA-1(c), where c is the code of the software. Then, the
hash value h is signed by the private key gsk]i], i.e., 0 = GSig(gsk][i], h). The
public verification key and the signature is distributed alongside the software.

Furthermore, the public keys of all trusted software groups are stored in the
RML.

Integrity measurement: Whenever a software is loaded, it is hashed with SHA-1
and its signature is checked with the included public key using the group
signature verification algorithm GVf. If the signature is valid, the attesting
platform hashes the public key and extends the particular PCR with the
hash value of the public key of the verified software (instead of the hash
value of the software). Afterwards, a corresponding entry containing the
name of the software group and its public key gpk is stored in the Stored
Measurement Log (SML). If any failure occurs, similar to the process of IMA,
the corresponding PCR is set to an invalid state.

Remote attestation: The remote attestation works exactly as described in Sec-
tion [2.4.1] up to the point where the challenger receives the answer from the
attested platform. Then, the challenger verifies the signed PCR and his cho-
sen nonce, validates the hash chain of the PCR against the public keys con-
tained in the SML and checks their presence in the trusted RML. If all checks
succeed, the system is considered trustworthy.

Using group signatures instead of chameleon hashes provides some advantages.
While in Chameleon Attestation I a revocation of chameleon hash value requires
the revocation of all group members, using group signatures allows the revocation
of specific members of the group without the need to revoke the whole group. A
second advantage lies in the ability of fitting a group signature hierarchy to an
organization structure. That is, every product realm or series could have its own
private key, while verification is performed with one single public key.

On the other hand, Chameleon Attestation I outperforms group signature based
attestation in terms of performance. Chameleon Attestation needs to only compute
hash value for measured software whereas group signatures need to verify signatures.
While fast group signature schemes (like [31]) need about six exponentiations for
signing and verification, chameleon hash functions require much less computations.
For instance, our particular choice of a chameleon hash detailed in [20] performs
only two exponentiations. To the best of our knowledge there exists no group
signature which require less than three exponentiations.

64

4.2 Group-Based Attestation: Enhancing the Privacy and Maintainability

Software Vendor ‘

Challenger (C) . Attested Platform (AP)
0 (1) nonce, i
o
g (1] @ check sig & nonce i Slo
2 . z 8
g @ validate PCR against SML Osig{PCR,;, nonce}, SML i L)
20 €
0 Calculate chameleon SML (after updating) # SML (before updating) §
Attested Platiorm (AP) hashes of all individual | [vame [srs] r | [name|swa1] §
measurements and BIOS | ANN | 4HT BIOS | ANN | 4HT 3
ry
z

i Software

compare them with RML os | czr | o5 os | czr | os)
SW1,,| GHJ | RIK SW1,,| DFG | 7LM /,
sw2 | TRS | EWs sw2 | TRS | EWS

CcH
Engine

L2 S N SOPPY SR S
Name CH
BIOS TGH
0s GBH
swi WG
Sw2 KKL
Sw3 uTs

!
foowon yoaitls @

Trusted-OS] Applications |

SHA-1
Engine

RSA
Engine

Hardware

(a) Integrity measure- (b) Attestation process
ment

Figure 4.5: Integrity measurement and the process of Chameleon Attestation II

4.2.4 Chameleon Attestation Il

The remote attestation proposed above can be used to mitigate the privacy problem.
However, there is a tradeoff between privacy and control precision of the approach:
as the challenger is only able to see the software groups running on the attested
system, the challenger cannot distinguish individual software versions any more:
Assume a software vendor has developed a product SW, ;1 which is later updated
to SW, .2 because of disclosed security vulnerabilities. By applying the technique
mentioned above, a challenger cannot distinguish platforms where SW, 1 or SW, o
is run. When using Chameleon Attestation I we lose the possibility to efficiently
revoke certain members of a software group. A software vendor can only declare the
old chameleon hash value for the group as invalid and publish a new one. However,
this requires an update to the challenger’s RML. That is, revocation in this context
means revocation of the whole software group with all of its members and not
revocation of a certain member or even a subgroup.

In this section we show how chameleon hashes can be used to reduce the manage-
ment overhead of maintaining large RMLs in scenarios where configuration privacy
is not an issue. Instead of computing chameleon hashes on the attested platform,
we can move this calculation to the challenger side. As in the system described in
Section the manufacturer picks one chameleon hash for each software group,
publishes the hash value of each group in an RML, and sends alongside the software
random values 7 required to compute the chameleon hash. On the attested system,

65

4 A Runtime-Secure Storage

the standard integrity measurement process is performed (in which SHA-1 hashes of
loaded executables are stored into PCRs), except that the random values r required
to compute the chameleon hashes and the SHA-1 hashes are both saved in the SML.
The remote attestation process proceeds as in the standard TCG attestation, i.e.,
the challenger receives the signed PCR values. Subsequently, the challenger veri-
fies the signed PCR and his chosen nonce and validates the contents of the PCR
against the SML containing all SHA-1 values. Finally, for each entry in SML, the
chameleon hash is computed to build software groups and validated against the
RML. Figure depicts the steps performed in the integrity measurement and
attestation process.

Applying Chameleon Attestation II makes revocation of specific software group
members easier. Unlike Chameleon Attestation I and group signatures based at-
testation, the challenger himself can refuse untrusted software versions by simply
validating the SHA-1 values of these members against blacklists of revoked or un-
trusted group members. This leads to more flexibility for the challenger and gives
him a tradeoff between maintainability and control precision.

66

5 Implementation of the Approaches

This chapter describes the implementation of the proposed approaches in this the-
sis. It provides a guidance to the technologies and techniques which can be used
to implement them, and at the same time fulfill the requirements established in
previous sections.

In particular, we present in Section a Java-based implementation of the low-
level BCC proposed in Section To this end, we use a profiler, called JP2, which
is an open source calling-context-tree profiler for Java. Section provides, first,
the implementation of the trusted components which generate the chain of trust
used in Trusted Computing, and second the implementation details of the vIPM
manager used in previous sections. Section describes the implementation of the
high-level BCC presented in Section Here, we describe how the Apache ODE
BPEL engine is used to implement the approach. In addition, in Section [5.4] we
implement the approaches proposed in Section

Note that our implementations in this chapter serve only as proof-of-concept
implementations and can be improved in case of real production. In addition, the
implementations are — in general — based on two different configuration settings,
which are listed in the following table.

Component Brand/Model/Version

Setting 1 Setting 2
CPU AMD Phenom II X2 555 Intel Core 2 Duo T9600, 2.8 Ghz
Hard drive 500GB 250GB SATA 7200 rpm
Memory 4GB DDR3 4GB SDRAM
TPM Siemens TPM 1.2 Intel iTPM
Boot loader | GRUB 0.97 with TrustedGRUB v. 1.1.5 | GRUB with TrustedGRUB v. 1.1.3
Kernel Linux Kernel v. 2.6.32.5 with IMA Linux Kernel v. 2.6.27.38 with IMA
0S Debian 6.0 linux (squeeze) Fedora 10
TSS tpmdjava jTSS

Table 5.1: Platform configurations for hardware and software

67

5 Implementation of the Approaches

5.1 A Java Implementation of the Low-Level BCC

Profile Generation

To generate execution profiles, we use JP2, an open source calling-context-tree
profiler for Java [88] 87]. This light-weight profiler consists of a small Java agent,
which instruments the profiled application at load time, and an accompanying tool
to instrument the Java runtime library ahead of time. This combination enables us
to generate execution profiles which cover not only the application but also the Java
runtime library itself. Moreover, JP2’s profiles cover not only methods that have a
bytecode representation but also method calls made in either direction across the
bytecode-native code boundary. The following details are specific to a Java-based
setting:

Virtual machine-based execution: The Java platform allows for easy load-time trans-
formation of code. Hence, to introduce a runtime monitor, a client does not
need to instrument his application in house. Instead, the application can be
transformed remotely, by a custom class loader [71] or transformation agent.
Such instrumentation is performed on the level of bytecode and requires no
access to source code. JP2 does exactly this.

Generated code: The same class-loader mechanism that makes it easy to introduce
a runtime monitor at load time also makes it possible to generate classes
at runtime. Such classes frequently bear a randomized name, and that name
must be canonicalized to ensure that the same method, up to renaming, can be
reliably identified across program runs. To that end, we integrated the hashing
facility from TamiFlex [29] with the calling-context-tree profiler described
next.

Recursion: When using the Calling Context Tree abstraction, recursive calls can
cause the profile to grow very large. One way to address this would be to
“fold” those sub-trees in the CCT that exhibit a recursive structure. The
generated profiles would hereby be bounded. However, what exactly counts
as recursion in a language with dynamic dispatch is not obvious: Do only calls
to the same target method count or also calls to a different target method of
the same call site? Calls of the latter kind are frequent, e.g., when operating
on objects structured using the Composite pattern [46]. Moreover, mutual
recursion or, more generally, larger cycles of calls could be considered recursive
as well and maybe thus subject to folding. For the purpose of this thesis we
restrict the discussion to the straight-forward calling context tree abstraction
produced by JP2 and do not fold recursive calls; thus, the tree structure
mirrors the entire computation.

68

5.1 A Java Implementation of the Low-Level BCC

In our current implementation, we always collect full calling context trees, even
if we are just interested in call graphs or function sets. Call graphs are computed
from a CCT by merging nodes with the same name, and method sets are computed
by a simple exhaustive search through the call graph. This is sufficient to judge
the feasibility, effectiveness and scalability of the approach. Trivially, the efficiency
of the last two abstractions would be strongly influenced because of the extensive
logging of CCTs. For more efficiency, a realistic implementation would record only
the information required for the chosen behavior characterization.

JP2 supports profiling multi-threaded applications, i.e., it manages the access
and communication of different threads to the same CCT. In addition, it uses a
modified version of the Java class Thread!. This modified version includes addi-
tional fields (e.g., threadLocalCCTNode) which help to get some runtime informa-
tion about the status of the CCT being generated. These fields facilitate tracking
the generated CCT profiles. Moreover, in order to be able to create CCTs, it is
necessary to instrument Java classes which are going to be executed. For this, JP2
instruments Java code by adding new instructions that, e.g., calculate the number
of execution times of each method, and set information about the caller and callee.

When starting profiling, JP2 creates a root node (called callingContextTree)
which is considered as caller of all its children, i.e., callees. Figure shows the
CCT of the example program from Section (cf. Figure written in XML
format, which is one of the available dump formats provided by JP2. Every node is
identified by its class name and method name. In addition, the number of execution
times of a method is also stored (cf. the XML tag executionCount in the example).

Model Creation

We implemented a profile management tool with a graphical user interface as shown
in Figure[5.2] The tool creates a model by merging a selected number of profiles,
which are assumed to represent the behavior of the outsourced application. More
specific, the tags callsite and mathod are the most relevant ones when creating
the model.

To merge, the tool has to traverse all selected profiles. Since the profiles may
be of different sizes, we used two different APIs, the DOM and StAX, to read and
write content of XMLs. The DOM interface is used for profiles whose size is quite
small. Advantage of this technique is that one can navigate/read to any node of
the loaded profiles, because data is available in the memory. On the contrary, we
used the StAX interface for larger files. Using StAX does not lead to loading the
whole profile into memory, i.e., nodes are read once StAX asks to continue to next
event.

"http://docs.oracle.com/javase/6,/docs/api/java/lang/Thread.html

69

5 Implementation of the Approaches

<?7xml version= encoding= 7>
<callingContextTree xmlns= >
+ <method declaringClass= name= params= return=

BN

7 - <method declaringClass= name= params= return= >
8 + <executionCount>
+ <executedInstructions>

10 + <callsite instruction= >

- <callsite instruction= >
12 - <method declaringClass= name= params= return= >
13 + <executionCount>
14 + <executedInstructions>
15 - <callsite instruction= >
16 - <method declaringClass= name= params= return= >
17 - <executionCount>
18 1
19 </executionCount>
20 + <executedInstructions>

+ <basicBlock startInstruction= endInstruction= >

+ <basicBlock startInstruction= endInstruction= >

- <callsite instruction= >
- <method declaringClass= name= params= return= >
- <executionCount>
10
</executionCount>
+ <executedInstructions>
+ <basicBlock startInstruction= endInstruction= >

[

ENeN

NN NN NNNDN N
0 o ot w

31
32

33 </callingContextTree>

Figure 5.1: Example CCT

Furthermore, we used the tool Graphiz? and Cytoscape? to visualize the compli-
ance check of the profiles for more usability in case of manually checking execution
paths by humans. Figures and show example results of an executed com-
pliance check. The red paths represent non-compliant paths, whereas blue paths
represent compliant paths. The black paths represent paths which are subset of the
model but not of profile.

Compliance Control

We implement the “=" operator from Section by simply checking whether the
calling context tree, call graph or function set collected on the server is a sub-tree,
sub-graph or sub-set of the respective application model. For the “=” we define
that [= I’ if the respective trees or graphs are isomorphic, or in the case of function
sets if they are equal. We store calling context trees and call graphs in a normalized
fashion that allows us to decide [= I’ in time linear in the size of the operands.

2http://www.graphviz.org/
Shttp://www.cytoscape.org/

70

5.2 Building Chain of Trust and Runtime-Secure Storage

| £ Profile Management Application =
File Parse Options Filter Options About
= =5
\ = gy
% T @ © Y A 2+ 008 G

Add Profile Ren yiiles Parse Profile Merge Profiles Compare Profiles Filter Profile Sort Profiles Trim Profile Structure Essence Cross-Eval Node Count

Figure 5.2: The profile management tool

5.2 Building Chain of Trust and Runtime-Secure Storage

5.2.1 Building the Chain of Trust

Our particular choice to instantiate the integrity measurement components and to
build a chain of trust relies on concepts of Trusted Computing. Table[5.1]shows the
exact settings of the selected software and hardware to build our implementation
platform.

As specified by Trusted Computing, a root of trust must be implemented in hard-
ware chips, called TPM. Our platform is therefore equipped with an Intel iTPM
chip. During booting, SRTM (Static Root of Trust for Measurement) BIOS mea-
surements are made using SHA-1 and the values are stored in the binary _bios measurements
file located in the directory /sys/kernel/security/tpm0/. Simultaneously, these
values are extended into specific PCRs in the TPM. After measuring BIOS, the
chain of trust will include a trusted boot loader alongside the regular boot loader.
We used, for this, GRUB [I] together with its extension TrustedGRUB [4], which
extends the chain of trust by measuring and extending the operating system, which
is loaded through the bootloader. This enables the possibility to attest the booted
system configuration and to verify whether it is indeed the intended system config-
uration and that it has not been manipulated or exchanged by malicious software
or attackers (cf. pre-kernel measurements).

Afterwards, we used the Integrity Measurement Architecture (IMA) [84] as an
extension for the Kernel to allow measuring integrity of different kinds of executa-
bles, such as libraries, scripts, running software, hardware drivers and Kernel mod-

71

5 Implementation of the Approaches

(a) A bird’s eye view of the compliance check

——————= TianEamolemani. s

2277 Callsitelnstra

ZE87 LjavallanglClass|LjavailangiClassLoader|loadClass(Ljavaflang/Sing,;

F44BVILCIassAlsinit-)

2588 Callsitelnstrd

3447 Callsitelnstrz

7569 javallangiClass|Lsunimisc/LaunchersAppClassLoader|adClass(LjavalangSting,

(b) A zoomed-in perspective of the compliance check

S448VILiavalangObject|<init-0

Figure 5.3: Architectures for passive and active compliance control

ules (post-boot measurements) on the platform. That is, IMA extends the chain of
trust to include all executables running on the platform. To this end, it creates and
updates a special SML, in which all measurements are stored. These measurements
mirror — in case of no manipulations — a specific PCR value in the TPM, which
is by default number 10. IMA creates the directory /sys/kernel/security/ima/,
in which the file binary runtime measurements is included. All IMA measure-
ments are stored in this file as list entries. The first measurement list entry is the
boot_aggregate which consists of a SHA-1 hash of the contents of the first eight
PCRs (0 ...7). An example of the SML created and updated by IMA is shown in
Table where measurements hooks are the places from which a measure call is
issued. We refer to [86] for more information about the implementation details of
IMA. In summary, the aforementioned implementation details guarantee creating
a chain of trust from booting up to applications’ load-time. In Section we
explain how we can provide an implementation which extends the chain of trust to
include applications runtime information.

72

5.2 Building Chain of Trust and Runtime-Secure Storage

Entry # SHA-1 Measurement Measurement | File Name Type
Hook
000 EDF6DBA0609E5B3919E27FIEB6234259936 BE6DA ima-init boot-aggregate aggregate PCRs 0-7
001 3698483DE04931CB92E8681D7TB9DESDBFF90DASA mmap-file init executable
020 6D223FC8527EDI9ED091177C93D8B85BDDE20646F mmap-file grep executable
021 B4DAFEAB11FD01553844F800FB28C08E31FB1568 bash-script cham_cal bash command file

Table 5.2: An example of post-boot measurements made by IMA

5.2.2 Implementation of the vTPM Manager

Here, we explain how we can build a runtime-secure storage. As discussed before,
we decided to use technologies from Trusted Computing, which we consider as basis
for building such a storage.

In particular, we need to extend the chain of trust explained in the previous
section to include not only hash values of the executable binaries, but also informa-
tion coming from running midlleware or software at runtime. To this end, we used
vI'PMs, which are managed by an underlying vI'PM manager. Remember that the
use of one hardware TPM is not sufficient in scenarios where for each application
instance a TPM instance is needed (see Sections [3.1.3[and [3.2.1)).

We implemented a vIPM manager in Java as a singleton proxy to create and
manage vI'PM instances. That is, it offers functionalities which can be used by
applications and attestation services which has demand for connecting to a TPM,
querying its state and capabilities as well as for sending TPM commands and receiv-
ing the corresponding responses. In Table we list some important commands
which have been implemented within the vIPM manager.

Implementing vI'PMs is based on the software-based TPM emulator (version 7.1)
proposed by Strasser and Stamer [94] which is a powerful testing and debugging
tool that can also be used for educational purposes. It is composed of three main
parts: a user-space daemon (tpmd) that implements the actual TPM emulator, a
TPM device driver library (tddl) as the regular interface to access the emulator, and
a kernel module (tpmd_dev) that provides the character device /dev/tpm for low-
level compatibility with TPM device drivers [§]. The emulator offers the possibility
for command-line configuration using input parameters. Our vI'PM manager uses
this feature to create instances of vI'PMs. To this end, the manager uses the
method Runtime.getRuntime () .exec(cmd), which returns an instance of the class
java.lang.Process. The parameter cmd contains the given command which has
to be performed, e.g., /usr/local/bin/tpmd -u /tmp/tpmd/socket:123.

73

5 Implementation of the Approaches

’ Command Description

vTPM_Instance Create | Starts an instance of the TPM emulator and cre-
ates UDS connection to this instance. It also
initializes the vIPM instance by executing the
TPM_TakeOwnership command, which is important
when performing the remote attestation process in
a later step

vTPM_Instance Extend | Given a vIPM instance ID, the manager executes
the same command of the vIPM instance having
the given ID

vTPM_Instance Destroy | Given a vI'PM instance ID, the manager destroys
an afore created vI'PM instance having the given
ID, stops its corresponding process, and closes its
UDS connection

vTPM_Instance Quote Given a vI'PM instance 1D, the manager executes
and TPM_Quote command of the vIPM instance hav-
ing the given ID, which quotes the data structure
TPM_Quote_Info (see [99] for more details about data
structures in TPMs)

vTPM_Instance PCRRead | Given a vI'PM instance ID, the manager provides
non-cryptographic reporting over the content of a
named PCR of a vITPM instance having the given
1D

Table 5.3: Examples from the vI'PM manager commands list

In order for the manager to communicate with vI'PMs, we decided to use Unix
Domain Socket (UDS), which is an endpoint used for bidirectional inter-process
communication to exchange data between processes in the same host. That is, the
parameter u in the last command-line is needed to define the socket required for
exchanging data between the manager and the vI'PM. This way, it is possible to
create a communication channel for every vI'PM instance, which guarantees for the
manager to select the correct vI'PM instance to communicate with. Since our man-
ager is implemented in Java, we used the library Java Unix Domain Socket (JUDS,
version 0.93) 4.

We used a modified version of tpm4java [2] as a TSS, which is a software spec-
ification that provides a standard API for accessing the functions of the TPM.
tpm4java is developed for establishing connection to only one TPM. Since we need
to establish connections to different vIPMs, we conducted some code modifica-

“http://code.google.com/p/juds/

74

5.3 Adoption of the High-Level BCC to Apache ODE

tions to tpm4java. To this end, we removed the singleton implementation of it.
Since communication with the TPM is typically handled by the TCG device driver
library (TDDL), and its interface is defined by the TSS (TCG Software Stack) spec-
ification, we wrote a new constructor which allows taking the type of connection
as a parameter. In addition, we implemented a new connection type (i.e., TDDL),
which we called UDS-TDDL. Conequently, this new type allowed communication
with vI'PMs through sockets. This way, the manager can manage an arbitrary
number of vI'PMs.

5.3 Adoption of the High-Level BCC to Apache ODE

In this section we describe how we implemented our approach proposed in Sec-
tion [3.2] We first introduce the setup of the platform and then describe the imple-
mentation of each component of the architecture.

5.3.1 Platform Architecture Setup

Since our proposed architecture from Section relies on technologies from
Trusted Computing, the construction of H needs to guarantee generating a chain
of trust. This is done using the configurations setting 1 in Table and the im-
plementation described in Section [5.2.1]

Since H relies on technologies from Cloud Computing and therefore on virtual-
ization technologies, the kernel of the platform is equipped with Xen 4.0.1 extension
and serves as main operating system. This kernel is a Xen dom0 kernel and supports
starting hardware virtual guest machines (HVM) on the same computer with the
help of the Xen hypervisor. As domU guest domain we used a standard Debian 6.0
linux (squeeze) with kernel 2.6.38.2. In addition, we use IMA to allow measuring
kernel modules and software running on all guest domains.

As a BP-Engine we selected the Apache ODE (Orchestration Director Engine)® (ver-
sion 1.3.4), which is a Java-based web application that executes business processes
written in Business Process Execution Language (BPEL) [7]. The engine is respon-
sible to communicate with services, sending and receiving messages, handling data
manipulation and error recovery as described by the BPEL definition. That is,
the engine is capable of performing inner-computation (i.e., internally performing
data manipulation functions) and outer-computation (i.e., through calling external
services). The ODE engine runs on an apache tomcat® servlet container in ver-
sion 6.0.32. We assume that each tenant has its own BP-Engine, which runs on a
separate domU domain.

®http://ode.apache.org/
Shttp://tomcat.apache.org/

75

5 Implementation of the Approaches

To extend the chain of trust to include the ODE application, we implemented an
extension to the apache tomcat which measures all loaded Java classes of the ODE
engine using the SHA-1 hash. More specifically, we extended the WebAppClassLoader
of the package org.apache.catalina.loader in tomcat, which is responsible for
loading Java classes of deployed web applications. All measured classes extend a
specific PCR register in the vI'PM associated to the guest domain.

The proposed architecture suggests the use of two different vI'PM managers.
The first one is used to offer TPM functionalities for all measurements related to
guest domains up to the BP-Engine, which we call in the architecture domain vI'PM
manager. The second vIPM manager is responsible for offering TPM functionalities
for measurements taken within then BP-Engine. As a domain vTPM manager we
used the approach described by [28], whereas we used the implementation described
in Section for the BP vIPM manager. Both vIPM managers run in domo0.

To assure that each tenant can access only the vIPMs associated to his own
business processes, we make these vI'PMs also domain-specific by associating the
domain id to the BP vIPM upon creation. To specify the domain id of requests
coming to the BP vI'PM, we use the vIPM manager as a proxy, i.e., all requests
to create and destroy BP vI'PMs, as well as extending PCR values, come from
the domain vTPM manager. This is important to fulfill Rs (see Section for
more details). Since the virtualized domains are independent, we used for the
communication between the FAE and the vTPM manager the Remote Method
Invocation (RMI) interface.

In addition, all SML types are represented as XML documents without storing
them on the hard disk. This mitigates the overhead resulting from the frequent
logging. A manager of these logs is also implemented in Java.

5.3.2 Implementation of the Flow Attestation Extension

The FAE is implemented as a plugin for Apache ODE and extends it BpelEventListener,
which implements the well-known observer pattern. ODE provides several types of
execution events, such as process creation and deletion as well as activity start and

end events. That is, whenever such an event occurs the FAE is informed about it

and can react accordingly.

The implementation is designed in a way such that every business process instance
is associated to vI'PM instance. In addition, we implemented an SML manager in
Java to create and manage the SMLs of each PI, which are stored in XML format.

In detail, the FAE uses the event’s type instanceLifecycle to inform the BP
vITPM manager about creation and termination of processes (by calling vTPM_Instance_Create).
Depending on the sent command the manager, in turn, creates or destroys the corre-
sponding vTPM instances where for simplicity the Pl;; is used as a vIPM instance
ID. At the same time, a corresponding SM Lpy,, is created by the log manager.

76

5.3 Adoption of the High-Level BCC to Apache ODE

1 <?xml version= encoding= 7>

2 <TrustedOdeLog InstancelD= ProcessID= >
3

3

6 <ActivityExecStartEvent activityName= activityType= />

8 <VariableModificationEvent varName= >
9 <message>
10 <parameters>

11 <checkCreditWorthinessResponse>
12 <return>true</return>

13 </checkCreditWorthinessResponse>
14 </parameters>

15 </message>

16 </VariableModificationEvent>

18 <ActivityExecEndEvent activityName= activityType= />

1
22 </TrustedOdeLog>

Figure 5.4: Example SML

Another event’s type we used is activityLifecycle, which gives information
about starting, execution’s termination and failing of activities. The FAE uses this
type, e.g., to extend the vI'PM, which corresponds to PI, with the help of the
command vTPM_Instance_Extend offered by the BP vI'PM manager. To this end,
FAE retrieves the BPEL description of the activity to be extended, hashes it and
finally sends the hash value to the vIPM manager. A corresponding SML entry is
also added to SM Lpy,,.

The approach also specifies recording data handling, since it is required — in a
later step — to recreate the flows fociuar and fiarget. To do this, we make use of
the event’s type dataHandling, which informs about any data modification occurs
to any variable during execution. The data modifications are also reported to the
corresponding vI'PM and an SML entry is added to SM Lpy,,.

Figure shows an digest from SMLpy,, of the loanRequestService example
presented in Section Note that all measurements are reported to the vIPM
manager using SSH tunneling for Java RMI”.

5.3.3 Implementation of the Attestation Services

The attestation service module works as a proxy to transmitt requests of attestation
from the client C to the hosting platform H. The former is called attestation client
and the latter is called attestation server.

For the attestation client we developed a user interface, which allows starting
an attestation process for selected business processes. Figure shows a screen

"http://www.javaranch.com/journal /2003/10/rmi-ssh_p1.html

7

5 Implementation of the Approaches

iz

Attestation server connection
Host |[localhost | port [som1 |

Process Name
LoanRequestService-1

Details
used nonce |SlBleandf?edeEBSfSOl9b9955b4c934955b59 |

PCR |34809d33571802840793df9dbdc1f545d7fd1E(l | save

signature |75Eedef?Qa9Bb7aa3dﬁea7389(fe§)54f765d06bc310eblDcf23ed5457829d55975735@

connect and send request ‘ | verify signature | ‘ verify log ‘ ‘ verify flow

process name | instance id I signature I leg | flow
LoanRequestSenvice-1 |252 [valid [not checked [irvalid
LoanRequestsenvice-1 |253 [valid valid [not checked

[Thu Apr 14 11:29:41 CEST 2011] 3 items retrieved.

[Thu Apr 14 11:29:41 CEST 2011] Receiving 3. log...

[Thu Apr 14 11:29:41 CEST 2011] Receiving 2. log...

[Thu Apr 14 11:29:41 CEST 2011] Receiving 1. log...

[Thu Apr 14 11:29:41 CEST 2011] 3 instance logs availible.

[Thu Apr 14 11:29:41 CEST 2011] Using Nonce: 8181ea5fdf7eb8d369f9019b99a6b4c934855b58
[Thu Apr 14 11:29:41 CEST 2011] Connected, getting logs...

[Thu Apr 14 11:29:41 CEST 2011] Connecting. ..

Figure 5.5: Attestation client’s user interface

shot of the interface depicting the elements used in the attestation process, e.g.,
the unique identifier of a business process and nonce.

The attestation server is implemented using multi-threading in Java, so that
multiple attestation processes can be done simultaneously. After receiving the
attestation request form the client, the attestation server retrieves all SMLpy,,
which belong to the business process sent in the request. This is done with the help
of the log manager described previously. In addition, the attestation service uses
the command vTPM_Instance_Quote of the vI'PM manager to quote the requested
PCRs from all vIPMs which correspond to the found Pls. Finally, the attestation
service sends back the response to the client as shown in Table where “*” signals
a variable size and is defined directly before. The row numbers 2-8 are repeated as
much as the number of fetched instances.

After receiving the response from the attestation server, the attestation client
reconstructs the data structures TPM_Quote_Info and TPM_Composite Hash as spec-
ified by [99]. This is necessary to allow the attestation client to verify the nonce,
the signatures and all SMLs (SMLpy, ...SMLpy,) as described in Section
As shown in Figure the client has the possibility to verify the flow of any SML
in list as described in Section [(£.3.4

5.3.4 Implementation of the Flow Verification Extension

As described in we use an actual/target comparison to decide on the cor-
rectness of a business process’ flow. Data stored in SM Lpy,, are transformed, on

78

5.3 Adoption of the High-Level BCC to Apache ODE

Size (byte) | Format Description
1 integer | number of fetched instances
2 20 binary | PCR’s value
3 4 integer | SML’s size
4 * xml SMLs
5 4 integer | signature’s size
6 * binary | signature
7 4 integer | size of the public key part of AIK
8 * binary | public key part of AIK

Table 5.4: Attestation-server’s response to the client

the one hand, directly into fuctuar, and, on the other hand, indirectly into fiarget-
More specifically, we use data stored as VariableModificationEvent as shown in
Figure to simulate a BPEL process.

In addition, a transformation function 7 is used to avoid calling external ser-
vices Aeze. Our implementation of 7 is done using a BPEL-to-BPEL transforma-
tion. For a given PI, the FVE transforms every BPEL activity of type invoke
into an activity of type assign. The values used for the assign activity are taken
from the corresponding SM Lpy,,. By doing so, the execution of the new resulting
process BP” will not result in calling external activities, and allows local simulation.

Our implementation of 7 considers loops and conditional statements blocks (e.g.,
if statements), and transforms invokes within these blocks according to number
of iterations and branches taken during the execution of a PI. In case of iterations,
the implementation of T ignores unnecessary assign transformations.

After finishing the transformation process, which results in, first, a new busi-
ness process definition BP’ (i.e., fiqrget) that contains only internal activities, and,
second, the fuetuai, FVE starts the simulation process by executing BP’ on the
BP-Engine of C. FVE is implemented as an extension of Apache ODE. During
execution, the flow verifier checks the steps of the business process (i.e., the steps
of frarget). It compares every activity of fiarger With the one that was actually exe-
cuted in fyeuar- If both are equal, this step is verified valid. For those parts of BP,
which behave non-deterministic (such as flow blocks in BPEL), the flow verifier
accepts any of the flows within the block.

5.3.5 Performance Evaluation

This section presents some performance tests of our implementation, see Table
All measurements are performed on the software and hardware configurations listed
in setting 1 of Table

The tests number 5 and 6 of Table|5.5|are performed for the credit risk assessment

79

5 Implementation of the Approaches

’ +# \ What is tested? H # Experiments | Time average
1 | Creating a vI'PM instance 100 1.01 seconds
2 | TPM extending 10000 400 ps
3 | SHA-1 hashing (512 bytes) 100000 13 ps
4 | SHA-1 hashing (1 kb) 100000 16 ps
5 | BP completion with TPM 100 1.07 seconds
6 | BP completion without TPM 100 0.121 seconds

Table 5.5: The performance analysis of our implementation

business process we introduced in Section The SM Lp; of this process includes
13 activity start and 13 activity end log entries, as well as 9 variable modifications.

As shown in the table, the most expensive operation is the vI'PM instance cre-
ation. However, this operation is done only once for every PI. The most frequent
operation is number 2 in the table, which takes in average 400 us for every activity
start and finish, as well as every data modification.

The execution of business processes usually includes calls to external services
over a communication network; these calls cause a significant performance penalty.
Thus, the small overhead resulting after applying our approach (as shown in Ta-
ble will not significantly influence the execution of such a process, when com-
pared to usual network latencies. This shows that our approach is indeed applicable
in practice.

5.4 Implementation of Group-Based Attestation

In this section we describe the changes we made to the Linux system for the imple-
mentation of both variants of Chameleon Attestation as proposed in Sections [4.2.2]
and Out implementation is based on the software and hardware configura-
tions listed in setting 2, Table [5.1] Building a chain of trust as required in our
approaches is done using the implementation described in Section

Since we used as a TSS the Java based jTSS, it was necessary to make some
modifications on it, because jTSS supports only one measurement log, namely only
for pre-kernel measurements. To this end, we modified it to also support reading the
measurement log created by IMA (i.e., post-boot measurements). For the remote
attestation process, we implemented a Java based server and client. jTSS is used
by the server to access the functions of the TPM such as reading PCR registers,
signing PCR. content, etc. The client also uses the functionalities provided by jTSS
to verify signatures and recompute PCR contents. In addition, a MySQL database
management system was used on the client side to store the Reference Measurement
List (RML). The remote attestation process is performed from both, the client and

80

5.4 Implementation of Group-Based Attestation

the server, as specified in Sections and

For both approaches, it is assumed that a trusted party is responsible for creat-
ing attestation groups. We implemented the algorithm Forge (cf. Section
in order to create collisions for group members with the help of the private key
part sk, using some functionalities provided by the openSSL library®. In addition,
the implementation used the same library to generate all parameters needed to
calculate the chameleon hash value (i.e., executing the CH function).

5.4.1 Implementation of Chameleon Attestation |

For the first variant described in Section[4.2.2] it is necessary to calculate our chosen
chameleon hash function described in [20], denoted as CH, on the attested platform.
For that reason, we implemented an extension for IMA such that the CH value
is calculated after measuring every executable. We assume that the parameters
required to calculate CH are delivered with the executable and are accessible by
our extension. Note that to allow accessing these parameters for first measurements
performed by IMA, we added the file containing these parameters to initrd, which
contains all files that have to be executed by the kernel during the boot process.

We first created a special measurement list SM Lo g which contains the chameleon
hashes of measured executables. These measurements should mirror — in case of no
manipulations — the value of PCR number 11. To this end, we added the option
IMA_MEASURE PCR_IDX CH in the configuration file /security/ima/Kconfig. The
implementation of SM Lcyr is done using two files stored in same directory as the
original SML created by IMA. They also have the same names plus the postfix
“_ch”. SMLcy contains — as in the original SML of IMA — the SHA-1 hash value
of chameleon hashes, the PCR index and the name of the measured executable.
Remember that, in our approach, chameleon hashes are hashed again using SHA-
1 to produce a 160-bit long message that is needed for extension to a particular
PCR. We also modified the standard SML to store the public CH parameters J, r, e
and N. In particular, in order to store these parameters we extended the struct
ima_measure_entry.

Afterwards, to read these parameters again from SML, we implemented a new
function in the file /security/ima/ima main.c, which is called from the following
functions: ima_do measure file and ima_do_measure memory. To calculate the
CH value, we created a new function in the file /ima/ima main.c, which also stores
the resulting CH value in SM Loy and the SHA-1 value in standard SML. Note
that the standard ML is used only for internal purposes, whereas the SM Loy
is sent to the challenger during the attestation process. For the implementation
of CH we used a slightly changed version of the RSA patch for avr32linux, such

8http://www.openssl.org

81

5 Implementation of the Approaches

that all functionalities needed by the patch can be called from /ima/ima main.c.

A modification to the function ima_extend was also necessary, such that it ex-
pects another parameter containing the chameleon hash value, in order to extend
the PCR specified for storing the chain of chameleon hashes.

Group signature based attestation. The implementation of the group signature
based attestation proposed in Section [.2.3] can be achieved in a similar way as
the Chameleon Attestation I. The verification of a signature must be placed at
the position where the calculation of chameleon hashes is performed in Chameleon
Attestation I. In addition, the public keys of software vendors have to be stored in
the struct ima measure_entry instead of chameleon hash values.

5.4.2 Implementation of Chameleon Attestation Il

In the second variant described in Section [4.2.4] we need to calculate the chameleon
hash on the platform of the challenger. We thus modify the measurement process in

a way that the parameters .J, r, e and N are added to SML, as in Chameleon Attesta-
tion I. Furthermore, we extended the package iaik.tc.tss.impl. java.tcs.evenmgr
of jTSS such that the new chameleon hash parameters can be read from SML in
addition to SHA-1 values. To calculate the chameleon hash on the challenger side,
we modified the server such that the SHA-1 values and the corresponding new
parameters can be delivered to the challenger. We implemented the RSA based
chameleon hash function using OpenSSL on the side of the challenger to enable it
to calculate the hash value and verify it against the RML.

5.4.3 Experimental Results

To make this approach measurable, we conducted some experiments to see the
impact of our approach to the problems of integrity measurement and remote at-
testation discussed in Section The experiments show that Chameleon At-
testation significantly reduces the number of the reference measurements required
to decide the trustworthiness of the attested system. Subsequently, we discuss the
performance of our approach.

Maintainability

As mentioned before, keeping millions of RML entries up-to-date is a big challenge
when using the classical TCG’s remote attestation. A solution for this problem
should answer the following research question: to what extent do the number of
RML entries and its growth ratio influence the management, communication and
maintenance effort of fetching RML entries and keeping them up-to-date?

82

5.4 Implementation of Group-Based Attestation

Packages | Measure- Fresh Update | Total Statistics
ment installation % Fresh | % Update
installation
kernel TCG 1,820 1,816 3,636 50.1 % 49.9 %
CA 1 0 1 100.0 % 0 %
samba- TCG 18 15 33 54.5 % 45.5 %
common CA 1 0 1 100.0 % 0.0 %
samba TCG 24 26 50 48.0 % 52.0 %
CA 1 0 1 100.0 % 0.0 %
httpd TCG 71 72 143 49.7 % 50.3 %
(Apache) CA 1 0 1 100.0 % 0.0 %
All TCG 8,268 5,448 | 13,716 60.3 % 39.7 %
CA 981 37 1.018 96.3 % 3.7 %
ratio 8.5:1 147:1 13.5:1 10.7:1

Table 5.6: Reduction of measurements in RML

To give an answer to this question, we first created an RML by measuring a
fresh installation of Fedora 10 (kernel version 2.4.27.5), but neglecting the con-
tent of two folders: the folder /var/ which contains variable data that can be
changed or deleted at runtime, and the folder /usr/share/ which contains the
architecture-independent data. Since it is difficult in retrospect to group packages
by manufacturer (because the package manager of Fedora does not store informa-
tion about the author/manufacturer of a package), we grouped software products
by packages and assigned each file in a package its appropriate random r. Table
shows that we need 8,268 different entries in RML for the fresh installation when
we employ classic TCG attestation (one for each file). In the contrast, we need
to store merely 981 measurements in the RML by applying our approach (one for
each package in case of grouping by packages). Moreover, grouping measurements
by software manufacturer decreases the number of entries in RML sharply to reach
the number of trusted manufacturer. This shows how our approach can be used to
reduce the number of entries in the RML. Consequently, on the one hand, there will
be no need for large storage capacities for RMLS, and on the other hand, fetching
an entry out of all these entries will be much easier.

To test the management overhead when updating packages, we performed another
experiment by updating the Linux distribution and its installed packages to newer
versions. For instance, the kernel is updated from version 2.6.27.5 to 2.6.27.41,
the package samba-common from 3.2.4 to 3.2.15, the package samba from 3.2.4 to

83

5 Implementation of the Approaches

3.2.15, and the package httpd from 2.2.10 to 2.2.14. Table[5.6]shows that in case of
using the classic TCG attestation 1,816 new SHA-1 measurements (49.9 % of the
total measurements for the kernel) have to be distributed and published in RMLs.
Conversely, by employing Chameleon Attestation no new measurements have to be
distributed or published. For the overall distribution and its installed packages, we
need to update only 37 chameleon hashes rather than 5,448. These hashes mainly
account for newly added packages.

The previous numbers hold only for one updating process, neglecting at the
same time all in-between updates, which must have been performed. If we have a
look at the kernel versions, we find that the update was from version 2.6.27.5 to
2.6.27.41, which means that there were lots of versions missing and consequently
lots of updating required. Thus, the management and communication effort is
significantly reduced.

Another issue which increases the number of possible versions of one measurement
is considering numerous Linux distributions. Normally, Linux distributors compile
program packages themselves, which leads to the fact that there will exist many
SHA-1 measurements of the same file (one for each distributor). This is a real
problem since the RML size, the management and communication overhead will
be multiplied by a factor equaling the number of distributors. However, employing
our approach will absolutely solve this problem, since the chameleon hash of files
located in different distributions stays the same. Figure [5.6] shows the significant
impact difference between applying SHA-1 and chameleon hashes in RMLs, when
updating all packages of ten different distributions, assuming that each distribution
contains the same packages, each of which contains the same number of files. From
the figure, we can see that the number of RML entries increases significantly by
increasing the number of distributors when using SHA-1 hashes, while the same
number stays almost constant when using chameleon hashes.

Privacy

The configuration privacy of the attested platform is substantially enhanced by the
use of Chameleon Attestation I: the challenger can decide on the trustworthiness
of the attested platform without knowing the exact details of the configuration.

However, since there is a tradeoff between privacy and control precision, the
scheme can be applied on different granularities: depending on the choice of the
manufacturer, software groups may encompass different versions of individual files,
packages, software systems or even software of a specific vendor (see Figure .
The higher the level, the more privacy can be protected; on the downside, less
information on the platform is available, i.e., the control precision is lower. Our
approach can be easily combined with other identity privacy approaches, such as a
Privacy CA and DAA.

84

5.4 Implementation of Group-Based Attestation

—
o
S

—e— SHA-1
= CH

W
T
\

[\]
T
|

{

2 4 6 8 10
Number of Linux distributors

Number of RML entries to be updated

Figure 5.6: The impact of distributions’ number on maintainability of RMLs

A potential problem by using levels of privacy granularities lies in the inability
of the challenger to clearly identify loading sequences of security components. For
instance, if the grouping is done on the level of software manufacturers, so it will be
not possible for a challenger to know whether, e.g., an anti-virus program is loaded
before a firewall program, assuming they both belong to the same manufacturer.
A possible solution for this problem is by using dynamic levels of granularity, i.e.,
for specific security-critical components a lower level of granularity is chosen. An-
other solution is the complete renunciation of configuration privacy by the use of
Chameleon Attestation II, in which grouping is done by the challenger himself.

Another problem associated with TCG’s remote attestation is discrimination.
Using chameleon attestation may mitigate this problem by building a much higher
level of granularity, namely by using groups of software consortium. However, we
believe this is theoretically feasible but practically difficult.

Sealing

In a similar manner, the sealing problem can be avoided, since different versions of
the a software will have the same chameleon hash value, i.e., data can be bound to
this value without risking data unavailability when updating to the next version.

85

5 Implementation of the Approaches

Software
Manufacturer

Software

Figure 5.7: Granularity levels of privacy and control precision

Performance evaluation

Public key cryptography is often associated with performance overhead. Since we
use such public key schemes in the integrity measurement, we evaluated the perfor-
mance of Chameleon Attestation by measuring the timing difference compared to
the standard TCG measurement process. Our experiments were performed on the
platform whose hardware and software configurations listed in setting 2, Table

We used bootchart? to determine the boot time of a standard kernel, a kernel with
IMA, and a kernel with CH. While a standard kernel takes 30s to finish booting,
a kernel with IMA takes 33s and a kernel with CH takes 44s. However, booting is
a process which does not take place regularly, especially for server systems. More
interesting is the additional required time for every executable content, since they
give more insight into the performance.

The calculation of CH in Chameleon Attestation I (cf. Section is performed
in the kernel space and requires 4,674 us, while the calculation of CH in Chameleon
Attestation IT (cf. Section is done in the user space and requires 896 us, i.e.,
the fifth of the time needed for the first variant. Note that these measurements
are taken for a 160-bit input, which is the SHA-1 value of a measured file. The
calculation of collisions takes 899 us in the user space. All measurements were taken
using the function gettimeofday in both the kernel space and the user space.
We neglected the overhead of executing this function which was less than 1 us.
Note that all measurements we present here aim at giving a gross overview on the
overhead of applying public-key schemes — instead of SHA-1 only — in the integrity
measurement process. We expect that significant performance improvements can
be obtained using highly optimized code also in kernel space.

We conducted some experiments to evaluate the overhead resulting from ap-
plying Chameleon Attestation. The results are shown in Table and depict
that measuring a 2 byte file using SHA-1 takes 1.4 us, while measuring the same

“http://www.bootchart.org

86

5.4 Implementation of Group-Based Attestation

file and subsequently extending the TPM PCRs (SHA-1 + extend) takes approxi-
mately 9,972 us. However, since these measurements are already a few years old,
the values should now be smaller. Table[5.7|also illustrates the performance of CH

Measurement method 2 byte 1 KB 1 MB
SHA-1 1.4 us 20 us 18,312 us
SHA-1 + CH 4,675 us 4,694 us 22,986 s
CH fraction 99.8 % 99.6 % 20.3 %
SHA-1 + extend 9,972 us 9,989 us 28,281 us
SHA-1 + CH + extend 14,646 us 14,663 pus 32,955 us
CH fraction 31.9 % 31.9 % 14.2 %

Table 5.7: Performance of CH depending on SHA-1 and different file sizes

in the measurement process. The performance values of CH given in the table
are the average of 1000 measurements. Obviously, the size of the measured files
influences the required time significantly. For instance, the calculation of SHA-1 of
a 1 KB file takes approx. 20.1 us, while measuring a 1 MB file takes 18,312.3 us
~ 18.3 ms. Note that the time required to compute CH is almost constant, as it
is only applied to a SHA-1 value. Table also gives timing measurements for the
whole process of computing the SHA-1 and chameleon hashes and extending the
PCR register with the newly created hashes. The measurements show that for a
file of 1 MB 14.2% of the total time required to extend a particular PCR is taken
for computing the CH value. This percentage falls further when larger files are
executed. The table also shows clearly that the most time is taken for extending,
i.e., communicating with the TPM.

Thus, we believe that Chameleon Attestation is still applicable and its overhead
is reasonable compared to the communication overhead resulting from requests and
responses sent and received to/from the TPM.

87

6 A Security Evaluation for Low-Level
BCC Based on Real Applications

To be able to judge the low-level approach proposed in Section [3.1], we provide, in
this chapter, a detailed security evaluation using practical applications.

We evaluated hereby over four applications performing different attacks on them.
The goal was to measure to what extent can we detect these attacks and with which
costs. To this end, we set the following four main research questions:

RQ1 (Feasibility): In the learning phase, do the collected profiles converge to a
stable model with low false-positive rates?

RQ2 (Effectiveness): To what extent is the application model able to discriminate
between legal and illegal behavior?

RQ3 (Scalability): Is the profile size independent of the application’s runtime?

RQ4 (Efficiency): Can our approach be implemented efficient enough to induce a
sufficiently low runtime overhead?

6.1 Malicious-Input Attack on Document Manipulation
Applications

Malicious inputs represent one of the serious threats facing nowadays applications,
especially online application which has public interfaces and can be fed with data
from anybody. Attacks using malicious inputs try to tamper with specific parts
of an application in order to bypass the application’s security mechanisms. Com-
mon attacks which use malicious inputs are command insertion, cross site scripting
and buffer overflows. In the following, we evaluate such attacks using three Java
applications.

6.1.1 General Experimental Setup

In order to evaluate the above attack, we had to opt for applications for which we
would be able to obtain large sets of abnormal/malicious as well as legal /harmless
inputs. We chose the following subjects:

89

6 A Security Evaluation for Low-Level BCC Based on Real Applications

1. Apache pdfbor: A PDF manipulation framework [18].
2. POI-HSLF: A Java API to extract data from PowerPoint documents [19].

3. POI-HWPF: A Java API to extract data from Word documents [19].

All applications operate on popular file types (Adobe PDF, Microsoft PowerPoint
.ppt, and Microsoft Word .doc), all of which can be obtained in large numbers
from the web. Moreover, all three file types are well-known attack vectors. For the
PDF file type there further exist repositories of malicious inputs, which serve us to
simulate possible manipulations by the cloud provider (details below).

6.1.2 RQ1: Feasibility

For behavior compliance control to be feasible, it must be possible to automatically
generate a useful application model from only a number of representative inputs
small enough not to be prohibitive. Moreover, the generated application models
must yield false positive rates low enough for the approach to pay off. Remember
that any false positive induces increased computation cost in, e.g., a private cloud,
in case of re-performing the application in a fully trusted environment.

For our evaluation, we used the top 1,000 results of a Google search for filetype:pdf,
filetype:ppt, and filetype:doc, respectively. The resulting corpus of inputs al-
lowed us to generate application models from various numbers of input documents.
We believe those 3,000 documents to be harmless, legal documents.! Therefore, if
a model classified any run as abnormal that was induced by one of those inputs,
we count this classification as a false positive.

To generate the application models, we first used the JP2 profiler (cf. Sec-
tion to obtain a calling context tree for each of the applications and inputs.
From the resulting CCTs, we then derived both dynamic call-graph and function-
set profiles. This ensures that, for a given input document, all three abstractions
of the application’s behavior are consistent.

We then used ten-fold cross-validation [66] to determine the false-positive rate
that can be expected of the collected models. For each of the three file types, the
1,000 profiles were first divided into ten subsets of 100 profiles each. Then, each
profile from one of the subsets was checked for compliance with application models
derived from an increasing number of (randomly chosen) profiles in the other nine
subsets, up to all 900 profiles in the end. Every compliance check yields either the
answer “compliant” or an anomaly warning. Since we consider our training set

IThis is because Google has put in place filters to remove invalid or potentially malicious
documents from its search index. In fact, we tried to find malicious documents using Google but
failed.

90

6.1 Malicious-Input Attack on Document Manipulation Applications

Apache pdfbor (.pdf) POI-HSLF (.ptt) POI-HWPF (.doc)
100 % T T T T T T T T 1 1T T T T T T T T T T T 1T T T.7 1
Function
80 % |- 8 B : I —=—Call graph |
60 % |- : B : - oCT

40% .

False Positive Rate

H ok

T
I |
DO OOO OO [eoNoNolololoRol=} [eNeNeNeNoNoNoNoeNo Nl
DO~V NN A O D00 NN QOO F M AN - O
AN <F IO O~ 00D — M 0 O b~ A <F O O~ 00D
Training Set Size Training Set Size Training Set Size

Figure 6.1: False positive rate for differently-sized training sets (arithmetic mean +
standard deviation of 10 training sets each).

to only contain compliant input documents, we consider all warnings to be false
positives.

Figure shows the resulting false positive rates, averaged over the 10 subsets,
for various training set sizes. Because we used ten-fold cross-validation, at most
900 out of the 1000 available inputs were used for model generation. As Figure [6.1
shows, for both the Function and Call Graph abstractions it suffices to use only a few
hundred inputs for model generation to obtain a model with a false-positive rates
below 5%. Using the calling-context-tree (CCT) abstraction, however, requires a
larger number of inputs to achieve low false-positive rates. Even when using 900
inputs to generate the application model, an average of about 22%, 10%, and 3%,
respectively, of the remaining 100 profiles are deemed non-compliant. We also
observe that at least for the Calling Context Tree abstraction the false-positive
rates very much depend on the program under evaluation.

6.1.3 RQ2: Effectiveness

To increase trustworthiness, behavior compliance control must be able to detect
abnormal execution behavior. For the purpose of our evaluation we consider an
execution to be abnormal if it executes on an abnormal program input. In reality,
there could be other sources of abnormality such as glitches in the hardware or
execution environment. We obtained abnormal inputs from two distinct sources:
from dedicated repositories of malicious inputs for the file types in question and
from applying fuzzing techniques to legal inputs.

To simulate a targeted attack by a third party, we have used a set of 118 PDFs

91

6 A Security Evaluation for Low-Level BCC Based on Real Applications

Exploits Fuzzed
Apache pdfbox POI-HSLF POI-HWPF
(.pdf) (.ppt) (.doc)
Functions 11% 83 % 100 % 100 %
Call 34 % 89 % 100 % 100 %
graphs
CCTs 100 % 97 % 100 % 100 %

Table 6.1: Percentage of inputs (exploits or fuzzed) detected as illegal.

that have previously been used in exploits.? For this experiment, we used ap-
plication models computed by including all 1,000 profiles for PDF file type. As
Table shows, all abnormal executions were classified correctly when using the
Calling Context Tree abstraction. When using the more coarse-grained Call Graph
and Function abstractions, however, only 34 % respectively 11 % of inputs were clas-
sified correctly. We therefore conclude that it is essential to use information-rich
profiles to detect targeted attacks reliably. This is the main trade-off at the heart
of this paper: increased trust requires an increase investment to counter-balance
the increased rate of false positives caused by such information-rich profiles.

As we were unable to obtain a similarly large number of malicious PowerPoint and
Word documents to simulate a targeted attack, we commenced on a best-effort basis
and resorted to fuzzing techniques to simulate an untargeted attack or a problem
caused by a faulty data transmission. For each file type, we randomly picked
100 documents from of our corpus of legal documents and applied simple fuzzing
techniques to them.? This process yields 100 documents each which we define
to be abnormal inputs. For each of these inputs we then ran the corresponding
application and compared its behavior, abstracted as Functions, Call Graph, or
Calling Context Tree, with the application model of legal inputs used before.

Table shows the percentage of fuzzed inputs that were successfully detected
as illegal. As these results show, false negatives created by this simple fuzzing
algorithm are easy to recognize. It follows that abnormal program runs induced
by inputs corrupted in this manner will most likely be detected using behavior
compliance control; the abstraction chosen (Functions, Call Graph, Calling Context
Tree) has little influence on the detection rate. Those observations hold for the
particular fuzzing approach we consider. More targeted fuzzing approaches, taking

2Test data taken from http://contagiodump.blogspot.com/2010,/08 /malicious-documents-archive-for.html
(Collection 3).

310 random single-byte changes beyond the first 1024 bytes of data; the latter avoids corrupting
the main document header, a case that is particularly easy to identify as abnormal.

92

6.1 Malicious-Input Attack on Document Manipulation Applications

Apache pdfbox (.pdf)

POI-HSLF (.ptt)

POI-HWPF (.doc)

-10° 104 -10%
T T T T T T T -]
. 8t ﬁ'ﬁ& o x x .
n X« x ¥
3 s x 6l ~ 4 |
)
z 14l |
:ﬁ: ><>S%2< x X 2 1
2 [|
| | | O | | O | |
50 100 150 0 1 2 0) 10
Runtime [s] Runtime [s] Runtime [s]

Figure 6.2: Relation between application runtime and model size, measured in num-
ber of calling context tree nodes.

advantage of the input document’s internal structure, may be harder to recognize,
but from a security perspective would probably also be less capable of exploiting a
vulnerability in the outsourced application.

6.1.4 RQ3: Scalability

For behavior compliance control to pay off, checking for compliance must be afford-
able, and must scale to large, long-running applications. We thus evaluate whether
the size of the model correlates with the runtime of the application. If this were
the case, the compliance check could be as expensive as re-performing the actual
outsourced computation, hence defeating the purpose of outsourcing.

For the Function and Call Graph abstractions it is immediately obvious that
no such correlation can exist. This is because the number of functions, and con-
sequently the number of call-graph edges, is statically bounded. For the Calling
Context Tree abstraction, however, this is not the case. In particular, the use of
recursion can cause an application’s calling context tree to any size.? Figure
visualizes the relation between application runtime (with CCT logging enabled)
and the number of nodes in the resulting CCT profile. Interestingly, in our bench-
mark longer-running applications do not induce significantly larger profiles; thus,
our approach scales well over time.

6.1.5 RQA4: Efficiency

We comment on the runtime overhead caused by the instrumentation necessary for
profile generation and on the overhead induced by using securely sealed storage.

4In practice, the virtual machine’s maximum stack size does impose a (large) limit.

93

6 A Security Evaluation for Low-Level BCC Based on Real Applications

Efficiency is not the focus of our research. For the experiments mentioned above,
we used a setup as described in Section we collected calling context trees
in all cases, and in a second step computed call graphs and method sets based on
the collected trees. This procedure is inefficient. In a real-world setting one would
rather opt for a customized instrumentation that emits the respective representation
directly, as this can safe a significant amount of execution time. While computing
full CCTs will generally incur a significant runtime overhead (10 times or more),
one can bring overheads down to under 5% by using probabilistic calling context
trees [30]. Such probabilistic CCTs appear quite sufficient for our purposes, and
we plan to evaluate their utility in future work. Method sets and call graphs
are statically bounded and can therefore be indexed ahead-of-time, which makes
instrumentation possible that produces little to no observable runtime overhead [57].
We thereby conclude that sufficiently efficient implementations are possible given
the state of the art in dynamic program analysis. While such implementations are
outside the scope of this paper, we plan to investigate them in future work.

We measured the runtime cost of our runtime-secure storage on a machine equipped
with an AMD Phenom IT X2 555 processor and 4 GiB RAM under GNU /Linux (ker-
nel 2.6.32) and the TPM emulator version 0.7.2. Our tests show that the most
expensive operation is to create a vI'PM instance, which takes 1 second on aver-
age. However, this operation is only invoked once, at application startup time. The
overhead is caused by the expensive TPM_TakeOwnership operation, which creates
the Storage Root Key (SRK) key-pair.

The average total cost of storing a CCT profile depends on the average node
number. For pdfbox, POI-HSLF and POI-HWPF those are 120,850, 78,568 and
48,239 respectively. Hashing the unique identifier (8 bytes) of every node takes
about 6 ps. The instruction TPM_Extend, which extends a PCR register with a
hash, takes 400 ps. That is, we estimate the overhead of securely storing a full
CCT profile for pdfbox, POI-HSLF and POI-HWPF at about 50, 32 and 20 seconds
respectively. When using the more coarse-grained Call Graph abstraction, only an
average 5,313, 2,338 resp. 2,289 nodes must be stored for pdfbox, POI-HSLF and
POI-HWPF respectively, lasting approximately 3.1, 1.95 and 1.93 seconds. The
most efficient abstraction are Functions. The overhead for Functions is 2.1, 1.53
and 1.52 seconds for 2,577, 1,301 and 1,281 functions respectively.

Our results show that the cost of secure storage becomes an issue with CCTs but
appears low enough for the other two abstractions. In any case, note that storage
can be performed asynchronously on a separate processor core (or even a set of
those).

94

6.2 SQL Injection Attack on Web Applications

6.2 SQL Injection Attack on Web Applications

Web applications constitute a huge part of modern applications, applied in different
scenarios, e.g., social networks, online auctions, and all kinds of cloud services
constitute popular examples of online services complying with this paradigm. At
the same time threats and risks of disclosing sensitive data and running software on
unintended way arise. The Open Web Application Security Project (OWASP)? is
an open community, which helps organizations to develop, purchase, and maintain
applications that can be trusted. One of the main projects of OWASP is the Top 10
project, whose goal is to raise awareness about application security by identifying
some of the most critical risks facing organizations.

In this section, we evaluate our approach against the most popular attack list in
the ten® top risks identified by OWASP, namely the injection flaws attack. As a
test application we chose the InsecureWebApp’ application, which is a web applica-
tion that includes common web application vulnerabilities, deployed on the Apache
Tomcat Server. We did so to easily find exploits in web applications so that we can
evaluate our approach. The application is supposed to simulate some simplified
functionalities know from accounting software, such as payments management. It
has also a simple user management functionality, which manages access to the ap-
plication and its functionalities. The application is equipped with an SQL DBMS,
namely the HyperSQL (HSQL), which is an SQL relational database engine written
in Java.

6.2.1 RQ1: Feasibility

First we created different profiles by through clicking all visible hyperlinks in the
application, which is considered as the legal usage of this web application. Some
hyperlinks were click multiple times, resulting in calling all . jsp pages of the web
application. This is was achievable since the considered application is composed of
small number of such pages. The result of these tests were 35 profiles, which were
considered as legal runs of the application. Note that these profiles were created
using only the CCT abstraction. To create the model, we randomly divided the
profiles into five subsets containing seven profiles each. Then, each profile from one
of the subsets was checked for compliance with application models derived from an
increasing number of (randomly chosen) profiles in the other four subsets, up to all
28 profiles in the end. As shown in Figure the average of the false positive rate
at the end is about 24%.

https://www.owasp.org/
Shttps://www.owasp.org/index.php/Top_10_.2013-Top_10
"https:/ /www.owasp.org/index.php/Category: OWASP _Insecure_Web_App_Project

95

6 A Security Evaluation for Low-Level BCC Based on Real Applications

L
o

i
oo

o
N
' /‘

8 \ -
&
2 oo \\
:‘% 0,5] \
Ay
3 04 N~
E I \
03
e
0,2
0,1
0 T T
7 14 21 28

Training Set Size

Figure 6.3: False positive rates during creating the model of InsecureWebApp

6.2.2 RQ2: Effectiveness

To test the effectiveness of applying our approach on InsecureWebApp, we per-
formed multiple SQL injection attacks® on it. Since the selected application is
prone to this kind of attacks, it was known that such attacks will end successfully.
The challenge was to evaluate the ability of our approach to detect such attacks.

Our first attack was to try getting administrator rights on the application, by
bypassing the login functionality. In particular, in the field specified for user name
we put the administrator user name which is “admin”, and in the password field
we put following SQL statement:

> OR 1=1/%

Since the application was vulnerable to this attack, the result was successful and
access as administrator was granted. Our second attack was to try inserting a new
database entry in the “user” table. For this, we determined that the field specified
for the resending forgotten passwords is prone to this attack. Thus, we put the
following statement to add a new user:

x’; INSERT INTO user VALUES (6,’Jeffrey’,’blakas’,’Andreas
Papadreu’, ’blakas@BCChacker.com’,1); --

The attack here also was successful and a new user was added to the table. The
next attack is similar to the previous attack. The attack lies in trying to update a
user data entry in the “user” table of the database. The following SQL statement
was used and performed successfully so the user data was updated:

Shttp://www.unixwiz.net /techtips /sql-injection.html

96

6.2 SQL Injection Attack on Web Applications

€e100.xml -

las Drg,"apachE/;'Sp,’publi[ifFDrthLDginijsp,‘Dﬂe="7jsp§er‘,’ice“ return="V" params="Ljavax/servlet/http/HttpServletRequest; Ljavax/servlet/htip/HttpServietRespons
iction="58

site instructi:
ethod declaringCl
<callsite instruction=
E<method declaringCl

Bi<callsite instruction

Lorg/hsqldb/Session;" name="sqlExecuteDirectNoPreChecks” return="Lorg/hsqldb/Result;" params="Ljava/lang/String;">

Er<callsite instruction= b

S <method declaringClass="Lorg/hsqldb/DatabaseCommandInterpreter;” name="exscute” return="Lorg/hsqldb/Result;” params="Ljava/lang/String;">
E-<callsite instruction="50">

"Lorg/hsqldb/DatabaseCommandInterpreter;” name="exscutePart” return="Lorg/hsqldb/Result;" params="I Ljava/lang/
g">

<method declaringClass="Lorg/hsqldb/Session;" name="sqlExecuteCompiledoPreChecks” return="Lorg/hsqldb/Result;" params="Lorg/hsql

od declaringClas
<callsite instruct

<callsite instruction="4">

<method declaringClass="Lorg/hsqldb/CompiledStatementExecutor;” name="exscute” return="Lorg/hsqldb/Result;" params="Lorg/hs
3>
m<callsite instruction="7">

@<callsite instruction

J<callsite instruction="10">
| Er<method declaringClass="Lorg/hsqldb/CompiledStatementExecutor; " name="executeImpl” return="Lorg/hsqldb/Result;" params

<callsite instruct

rg/hsqldb/CompiledStatementExecutor;” name="executeInsertValuesStatement” return="Lorg/h{

Ei<callsite instruction="a">

Figure 6.4: The trace after executing the insert attack

x’; UPDATE user SET email = ’hacker@trojan.net’ WHERE
email = ’chris@mail.com

Afterwards, we started the application together with our extension implemen-
tion of BCC and got interesting results. All the previous attacks were detected
successfully. The reason for detecting such attacks was because of calling methods
in wrong contexts. For example, when performing the attack where a new user is
added to the “user” table, a method called ¢ ‘executeInsertValuesStatement’’
is called in a context which is not part of model at this place. Figure shows the
place of this call in trace resulting after performing the attack. According to the
evaluation results, the effectiveness of our approach against such attacks was high.

6.2.3 RQ2: Scalability

The answer of the question correlation between the profile size and the application’s
runtime for web applications is not trivial. This is because different possible defini-
tions of a profile. We previously defined a profile as a single run of the application.
However, in web applications there is an interaction between a client and server,
which means that a single run can vary from requesting a single static page to exe-
cuting a complex computation. In our test application, we tried to cover all possible
functionalities. In our evaluation, instead of considering every request/response as
profile, we rather randomly collected multiple request/response transactions in one
profile to see their impact over time on the size of the profile, i.e., scalability. As
shown in Figure [6.5 our results show that the size of the profiles is independent
from its running time, i.e., the resulting model scales well over time. Note that

97

6 A Security Evaluation for Low-Level BCC Based on Real Applications

1310000

1300000

1290000 -

1280000

Nodes

1270000

1260000

1250000

® *

*

PN oor o

< ¢ ¢

o o * *
*»
L 2
® ¢
0 20 40 60 80 100 120 140

Runtime [s]

Figure 6.5: The relation between model size and the runtime of InsecureWebApp

the number of nodes in this figure contains also the method calls caused by the the
container of the web application, namely the Apache Tomcat server.

6.2.4 RQ2: Efficiency

The evaluation results of the efficiency when applying our approach to detect this
attack show similar results to the ones presented in Section For this reason
we refer to that section for more details.

98

7 Summary and Conclusion

This work presented approaches an techniques which allow capturing, controlling
the behavior of outsourced computations as well as judging on their compliance. In
addition, we presented in this work how one can securely store collected behavior
data at runtime.

The Behavior Compliance Control (BCC) approach goes beyond load-time based
systems for compliance control by considering the application’s runtime behavior.
This allows the client outsourcing the application to detect attacks in which the ap-
plication’s code remains unaltered at load-time. Hereby we presented an approach
on program code level and another approach which is applied for automated exe-
cutable business processes. The BCC approach is fully automatic, allowing clients
to describe their application’s reference behavior by executing test runs in-house,
resulting in a so-called application model. We conducted an empirical evaluation
trying to test the efficacy of our approach in practice. For example, we evaluated
the efficacy of our approach against malicious input attack using more than 3,000
inputs to three different applications. We showed that behavior compliance control
can learn reference behavior quickly, resulting in application models that yield few
false warnings, but nevertheless successfully identify many attacks through mali-
cious program inputs. Our evaluation showed, though, that some abstractions of
program behavior are better suited towards yielding few false warnings, while others
are better suited to yielding few missed attacks. We hence conclude that the ideal
abstraction of behavior, combining both properties, lies somewhere in between the
abstractions we considered so far, opening an interesting avenue for future research.

In addition, we have considered some of the security problems that arise when
outsourcing business processes to remote systems. In particular, we considered a
scenario where a hosting platform must provide trustworthy evidence about the en-
forcement of mechanisms which guarantee the security of the platform. We showed
how the hosting platform can provide guarantees about the correct execution path of
outsourced business processes as described by the customer, plus guarantees about
the execution of the corresponding service code. We proposed an architecture to
provide such guarantees based on Trusted Computing technologies. In addition, the
architecture provides a solution for multi-tenancy hosting platforms considering at
the same time multi-instance processes. We also described how such an architecture
can be implemented using standard Trusted Computing implementations, the Java
virtual machine and the ODE business process engine.

99

7 Summary and Conclusion

To secure collected behavior information, we proposed techniques and architec-
tures which provide runtime-secure storage based on technologies of Trusted Com-
puting. However, we recognized that some drawbacks and limitations of using
standard techniques of Trusted Computing can negatively influence the security
and efficiency of the approach. To this end, we proposed some improvements to
the main functionalities of Trusted Computing, more specific, to the integrity mea-
surement and remote attestation processes. In particular, we have considered the
problem of privacy and scalability in remote attestation, as standardized by the
Trusted Computing Group. In particular, the use of SHA-1 hashes to measure the
integrity of programs and system components creates a large management over-
head; in addition, remote attestation causes privacy problems, as the full state of
the system is disclosed. To mitigate these problems we proposed Chameleon At-
testation, where we can assign a single hash value to sets of trusted software. By
a prototypical implementation we show that the performance overhead of using
public-key operations in the attestation process is acceptable.

Another contribution of this work was to provide hardware-based security to the
virtual TPMs, used to create the runtime-secure storage, by binding them to a
single hardware TPM. For this, two novel approaches, hash tree based binding and
incremental hash based binding, have been proposed.

100

Bibliography

1]

[10]

[11]

[12]

GNU GRUB - GNU Project - Free Software Foundation (FSF). http://www.
gnu.org/software/grub/.

The tpm4java Library. http://sourceforge.net/projects/tpméjava/.
Trusted Computing Group. http://www.trustedcomputinggroup.org/.

TrustedGRUB Extension to the GRUB Bootloader. http://sourceforge.
net/projects/trustedgrub/.

Oasis ws-bpel extension for people (bpeldpeople), June 2007.

TPM main specification version 1.2, level 2 revision 103, July 2007.
Web services business process execution language 2.0, Apr. 2007.
Software-based tpm emulator, Feb. 2013.

M. Alam, M. Nauman, X. Zhang, T. Ali, and P. C. Hung. Behavioral attesta-
tion for business processes. In Web Services, IEEE International Conference
on, pages 343-350, Los Alamitos, CA, USA, 2009. IEEE Computer Society.

M. Alam, X. Zhang, M. Nauman, and T. Ali. Behavioral attestation for web
services (BA4WS). In Proceedings of the 2008 ACM Workshop on Secure
Web Services, pages 21-28, Alexandria, Virginia, USA, 2008. ACM.

S. Alsouri, O. Dagdelen, and S. Katzenbeisser. Group-based attestation: en-
hancing privacy and management in remote attestation. In Proceedings of the
3rd international conference on Trust and trustworthy computing, TRUST 10,
pages 63-77, Berlin, Heidelberg, 2010. Springer-Verlag.

S. Alsouri, S. Katzenbeisser, and S. Biedermann. Trustable outsourcing of
business processes to cloud computing environments. In Network and System
Security (NSS), 2011 5th International Conference on, pages 280 —284, sept.
2011.

S. Alsouri, S. Malipatlolla, T. Feller, and S. Katzenbeisser. Hardware-based
security for virtual trusted platform modules. ArXiv e-prints, Aug. 2013.

101

http://www.gnu.org/software/grub/
http://www.gnu.org/software/grub/
http://sourceforge.net/projects/tpm4java/
http://www.trustedcomputinggroup.org/
http://sourceforge.net/projects/trustedgrub/
http://sourceforge.net/projects/trustedgrub/

Bibliography

[14]

[23]

102

S. Alsouri, J. Sinschek, A. Sewe, E. Bodden, M. Mezini, and S. Katzenbeisser.
Dynamic anomaly detection for more trustworthy outsourced computation.
In Proceedings of the 15th international conference on Information Security,
ISC’12, pages 168-187, Berlin, Heidelberg, 2012. Springer-Verlag.

G. Ammons, T. Ball, and J. R. Larus. Exploiting hardware performance
counters with flow and context sensitive profiling. In Proceedings of the 10th
Conference on Programming Language Design and Implementation (PLDI),
pages 85-96, 1997.

G. Ammons, R. Bodik, and J. R. Larus. Mining specifications. In Proceedings
of the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, pages 4-16, 2002.

T. Anstett, F. Leymann, R. Mietzner, and S. Strauch. Towards BPEL in
the cloud: Exploiting different delivery models for the execution of business

processes. In Proceedings of the 2009 Congress on Services - I, pages 670-677.
IEEE Computer Society, 2009.

Apache Software Foundation. The Apache Java PDF Library (PDFbox).
http://pdfbox.apache.org/.

Apache Software Foundation. The Java API for Microsoft Docu-
ments (Apache POI). http://poi.apache.org/.

G. Ateniese and B. de Medeiros. On the key exposure problem in chameleon
hashes. In Security in Communication Networks, pages 165-179. 2005.

F. Aymerich, G. Fenu, and S. Surcis. An approach to a Cloud Computing
network. In Applications of Digital Information and Web Technologies, 2008.
ICADIWT 2008. First International Conference on the, pages 113-118. IEEE,
2008.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,
I. Pratt, and A. Warfield. Xen and the art of virtualization. In Proceedings
of the nineteenth ACM symposium on Operating systems principles, pages
164-177. ACM, 2003.

M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: in-
crementality at reduced cost. In Proceedings of the 16th annual international
conference on Theory and application of cryptographic techniques, EURO-
CRYPT’97, pages 163-192, Berlin, Heidelberg, 1997. Springer-Verlag.

http://pdfbox.apache.org/
http://poi.apache.org/

Bibliography

[24]

[27]

[28]

[29]

M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signa-
tures: Formal definitions, simplified requirements, and a construction based
on general assumptions. In Advances in Cryptology — EUROCRYPT 2003,
page 644. 2003.

M. Bellare and P. Rogaway. Pss: Provably secure encoding method for digital
signatures. IEEE P1563a, 1998.

M. Bellare, H. Shi, and C. Zhang. Foundations of group signatures: The case
of dynamic groups. In Topics in Cryptology — CT-RSA 2005, pages 136-153.
2005.

S. Benabbas, R. Gennaro, and Y. Vahlis. Verifiable delegation of computation
over large datasets. In CRYPTO, pages 111-131, 2011.

S. Berger, R. Céaceres, K. A. Goldman, R. Perez, R. Sailer, and L. van Doorn.
vIPM: virtualizing the trusted platform module. In Proceedings of the 15th
conference on USENIX Security Symposium - Volume 15, Vancouver, B.C.,
Canada, 2006. USENIX Association.

E. Bodden, A. Sewe, J. Sinschek, H. Oueslati, and M. Mezini. Taming re-
flection: Aiding static analysis in the presence of reflection and custom class
loaders. In Proceeding of the 33rd International Conference on Software En-
gineering (ICSE), pages 241-250, 2011.

M. D. Bond and K. S. McKinley. Probabilistic calling context. In Proceedings
of the 22nd Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA), pages 97-112, 2007.

D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In Advances
in Cryptology CRYPTO 2004, pages 41-55. 2004.

G. Brassard, D. Chaum, and C. Crépeau. Minimum disclosure proofs of
knowledge. J. Comput. Syst. Sci., 37(2):156-189, Oct. 1988.

E. Brickell, J. Camenisch, and L. Chen. Direct Anonymous Attestation. In
Proceedings of the 11th ACM conference on Computer and Communications
Security, pages 132-145, Washington DC, USA, 2004. ACM.

E. Brickell and J. Li. Enhanced privacy ID: a direct anonymous attestation
scheme with enhanced revocation capabilities. In Proceedings of the 2007
ACM Workshop on Privacy in Electronic Society, pages 21-30, Alexandria,
Virginia, USA, 2007. ACM.

103

Bibliography

[35]

[36]

[37]

[38]

[39]

[43]

[44]

104

D. Chaum and E. van Heyst. Group signatures. In Advances in Cryptology —
EUROCRYPT 91, pages 257-265. 1991.

X. Chen and D. Feng. A new direct anonymous attestation scheme from
bilinear maps. In Young Computer Scientists, International Conference for,
pages 2308-2313, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

S. Choi, J. Han, and S. Jun. Improvement on tcg attestation and its im-
plication for drm. In Proceedings of the 2007 international conference on
Computational science and its applications - Volume Part I, ICCSA’07, pages
912-925, Berlin, Heidelberg, 2007. Springer-Verlag.

R. L. R. Crypt. Std: Emsapss — pkesfl v2.1., 2002.

T. Eisenbarth, T. Giineysu, C. Paar, A.-R. Sadeghi, D. Schellekens, and
M. Wolf. Reconfigurable trusted computing in hardware. In Proceedings of
the 2007 ACM workshop on Scalable trusted computing, STC ’07, pages 15-20,
New York, NY, USA, 2007. ACM.

P. England. Practical techniques for operating system attestation. In Trusted
Computing - Challenges and Applications, pages 1-13. 2008.

M. D. Ernst. Static and dynamic analysis: Synergy and duality. In WODA
2003: ICSE Workshop on Dynamic Analysis, pages 24-27, 2003.

M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically
discovering likely program invariants to support program evolution. In Proc.

of the 21st International Conference on Software Engineering (ICSE), pages
213-224, 1999.

T. Feller, S. Malipatlolla, D. Meister, and S. A. Huss. TinyTPM: A
Lightweight Module aimed to IP Protection and Trusted Embedded Plat-

forms. In IEEFE International Symposium on Hardware Oriented Security
and Trust (HOST 2011), June 2011.

H. H. Feng, O. M. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly
detection using call stack information. In Proceedings of the 2003 IEEE Sym-
posium on Security and Privacy, SP 03, pages 62-75, Washington, DC, USA,
2003. IEEE Computer Society.

S. Forrest, S. Hofmeyr, A. Somayaji, and T. Longstaff. A sense of self for unix
processes. In Security and Privacy, 1996. Proceedings., 1996 IEEE Sympo-
stum on, pages 120 —128, may 1996.

Bibliography

[46]

[52]

E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Professional,
November 1994.

D. Gao, M. K. Reiter, and D. Song. Gray-box extraction of execution graphs
for anomaly detection. In Proceedings of the 11th ACM conference on Com-
puter and communications security, CCS ’04, pages 318-329, New York, NY,
USA, 2004. ACM.

R. Gennaro, C. Gentry, and B. Parno. Non-interactive verifiable comput-
ing: Outsourcing computation to untrusted workers. In Proceedings of the
International Conference on the Theory and Applications of Cryptographic
Technique (CRYPTO), 2010.

J. T. Giffin, S. Jha, and B. P. Miller. Detecting manipulated remote call
streams. In In 11th USENIX Security Symposium, pages 61-79, 2002.

B. Glas, A. Klimm, O. Sander, K. Miiller-Glaser, and J. Becker. A system
architecture for reconfigurable trusted platforms. In Proceedings of the con-

ference on Design, automation and test in Furope, DATE 08, pages 541-544,
New York, NY, USA, 2008. ACM.

B.-M. Goi, M. U. Siddiqi, and H.-T. Chuah. Incremental hash function based
on pair chaining & modular arithmetic combining. In Proceedings of the Sec-
ond International Conference on Cryptology in India: Progress in Cryptology,
INDOCRYPT °01, pages 50-61. Springer-Verlag, 2001.

N. Gruska, A. Wasylkowski, and A. Zeller. Learning from 6,000 projects:
Lightweight cross-project anomaly detection. In Proc. of the 19th Interna-
tional Symposium on Software Testing and Analysis (ISSTA), pages 119-130,
2010.

L. Gu, Y. Cheng, X. Ding, R. H. Deng, Y. Guo, and W. Shao. Remote
attestation on function execution. In Proceedings of the 1st International
Conference on Trusted Systems (INTRUST), pages 60-72, 2010.

L. Gu, X. Ding, R. H. Deng, B. Xie, and H. Mei. Remote attestation on
program execution. In Proceedings of the 8rd Workshop on Scalable Trusted
Computing (STC), pages 11-20, 2008.

L. Gu, X. Ding, R. H. Deng, Y. Zou, B. Xie, W. Shao, and H. Mei. Model-
Driven remote attestation: Attesting remote system from behavioral aspect.
In Young Computer Scientists, International Conference for, volume 0, pages
2347-2353, Los Alamitos, CA, USA, 2008. IEEE Computer Society.

105

Bibliography

[56]

[60]

[61]

[62]

[65]

[66]

106

C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao. A framework
for native Multi-Tenancy application development and management. In The
9th IEEE International Conference on E-Commerce Technology and The 4th
IFEEE International Conference on Enterprise Computing, FE-Commerce and
E-Services (CEC-EEE 2007), pages 551-558, Tokyo, Japan, 2007.

T. Gutzmann and W. Lowe. Custom-made instrumentation based on static
analysis. In Proceedings of the Ninth International Workshop on Dynamic
Analysis, WODA 11, pages 18-23, New York, NY, USA, 2011. ACM.

V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation: a virtual
machine directed approach to trusted computing. In Proceedings of the 3rd
Conference on Virtual Machine Research And Technology Symposium, pages
3-20, 2004.

V. Haldar, D. Chandra, and M. Franz. Semantic remote attestation: a vir-
tual machine directed approach to trusted computing. In Proceedings of the
3rd conference on Virtual Machine Research And Technology Symposium -
Volume 3, pages 3-3, San Jose, California, 2004. USENIX Association.

M. Hammer and J. Champy. Reengineering the Corporation: A Manifesto
for Business Revolution. HarperBusiness, May 1994.

S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In Proc. of the 24th International Conference on Software
Engineering (ICSE), pages 291-301, 2002.

H. Inoue and S. Forrest. Anomaly intrusion detection in dynamic execu-
tion environments. In Proceedings of the 2002 Workshop on New Security
Paradigms (NSPW), pages 5260, 2002.

D. Jordan and J. Evdemon. Web services business process execution language
2.0, OASIS standard, 2007.

K. Julisch, C. Suter, T. Woitalla, and O. Zimmermann. Compliance by de-
sign - bridging the chasm between auditors and it architects. Computers &
Security, In Press, Corrected Proof, 2011.

Y. Karabulut, F. Kerschbaum, F. Massacci, P. Robinson, and A. Yautsiukhin.
Security and trust in I'T business outsourcing: a manifesto. Electronic Notes
in Theoretical Computer Science, 179:47-58, July 2007.

R. Kohavi. A study of cross-validation and bootstrap for accuracy estimation
and model selection. In Proceedings of the International Joint Conference on
Artificial Intelligence (IJCAI), pages 1137-1143, 1995.

Bibliography

[67]

[70]

[71]

[75]

[76]

[77]

H. Krawczyk and T. Rabin. Chameleon hashing and signatures. In Pro-
ceedings of the Network and Distributed System Security Symposium, pages
143-154. The Internet Society, 2000.

U. Kiihn, M. Selhorst, and C. Stiible. Realizing property-based attestation
and sealing with commonly available hard- and software. In STC ’07: Pro-
ceedings of the 2007 ACM Workshop on Scalable Trusted Computing, pages
50-57, New York, NY, USA, 2007. ACM.

M. C. Lacity, S. A. Khan, and L. P. Willcocks. A review of the IT outsourc-
ing literature: Insights for practice. The Journal of Strategic Information
Systems, 18(3):130-146, Sept. 2009.

A. Lazovik and H. Ludwig. Managing process customizability and customiza-
tion: Model, language and process. In IN: PROCEEDINGS OF WISE, 2007.

S. Liang and G. Bracha. Dynamic class loading in the java virtual machine.
In Proceedings of the 13th Conference on Object-Oriented Programming, Sys-
tems, Languages and Applications (OOPSLA), pages 36—44, 1998.

J. Lyle and A. Martin. On the feasibility of remote attestation for web ser-
vices. In 2009 International Conference on Computational Science and En-
gineering, pages 283—288, Vancouver, BC, Canada, 2009.

R. C. Merkle. Secrecy, authentication, and public key systems. PhD thesis,
Stanford, CA, USA, 1979. AAI8001972.

P. Moret, W. Binder, A. Villazén, D. Ansaloni, and A. Heydarnoori. Visu-
alizing and exploring profiles with calling context ring charts. Softw. Pract.
Ezper., 40(9):825-847, Aug. 2010.

A. Nadalin, M. Goodner, M. Gudgin, A. Barbir, and H. Granqvist. WS-Trust
1.3, 2007.

M. P. Papazoglou and W. Heuvel. Service oriented architectures: approaches,
technologies and research issues. The VLDB Journal, 16(3):389-415, 2007.

R. V. Peri, S. Jinturkar, and L. Fajardo. A novel technique for profiling
programs in embedded systems. In ACM Workshop on Feedback-Directed
and Dynamic Optimization, 1999.

M. Pradel and T. R. Gross. Automatic generation of object usage specifica-
tions from large method traces. In Proc. of the 24th International Conference
on Automated Software Engineering (ASE), pages 371-382, 2009.

107

Bibliography

[79]

[30]

[82]

[83]

[84]

[85]

[36]

108

R. Ramer and S. E. Goodman. Global sourcing of I'T services and information
security: Prudence before playing. Communications of the Association for
Information Systems, 20(1), Dec. 2007.

A. Sadeghi. Trusted computing: special aspects and challenges. In Proceedings
of the 84th conference on Current trends in theory and practice of computer
science, pages 98—117. Springer-Verlag, 2008.

A. Sadeghi, C. Stble, and M. Winandy. Property-Based TPM virtualization.
In Proceedings of the 11th international conference on Information Security,
pages 1-16, Taipei, Taiwan, 2008. Springer-Verlag.

A. Sadeghi and C. Stiible. Property-based attestation for computing plat-
forms: caring about properties, not mechanisms. pages 67-77, Nova Scotia,
Canada, 2004. ACM.

A.-R. Sadeghi, C. Stiible, and M. Winandy. Property-based tpm virtual-
ization. In Proceedings of the 11th international conference on Information
Security, ISC ’08, pages 1-16, Berlin, Heidelberg, 2008. Springer-Verlag.

R. Sailer. Integrity ~ measurement architecture (IMA).
http://researcher.watson.ibm.com/researcher/view_project.php?id=2851.

R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn. Attestation-based policy
enforcement for remote access. In Proceedings of the 11th ACM conference
on Computer and communications security, pages 308-317, Washington DC,
USA, 2004. ACM.

R. Sailer, X. Zhang, T. Jaeger, and van Doorn Leendert. Design and im-
plementation of a TCG-based integrity measurement architecture. In 15th
USENIX Security Symposium, San Diego, CA, USA, Aug. 2004. USENIX
Association.

A. Sarimbekov, A. Sewe, W. Binder, P. Moret, and M. Mezini. JP2: Call-
site aware calling context profiling for the Java Virtual Machine. Science of
Computer Programming, 2012.

A. Sarimbekov, A. Sewe, W. Binder, P. Moret, M. Schberl, and M. Mezini.
Portable and accurate collection of calling-context-sensitive bytecode metrics
for the Java virtual machine. In Proceedings of the 9th International Confer-
ence on the Principles and Practice of Programming in Java (PPPJ), 2011.

L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes, and S. Devadas.

Virtual monotonic counters and count-limited objects using a tpm without

Bibliography

[94]

a trusted os. In Proceedings of the first ACM workshop on Scalable trusted
computing, STC 06, pages 27-42. ACM, 2006.

V. Scarlata, C. Rozas, M. Wiseman, D. Grawrock, and C. Vishik. Tpm
virtualization: Building a general framework. In N. Pohlmann and H. Reimer,
editors, Trusted Computing, pages 43-56. Vieweg+Teubner, 2008.

A. U. Schmidt, A. Leicher, Y. Shah, and I. Cha. Tree-formed verification
data for trusted platforms. CoRR, abs/1007.0642, 2010.

F. B. Schneider. Enforceable security policies. ACM Transactions on Infor-
mation and System Security (TISSEC), 3(1):30-50, 2000.

R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the
2001 IEEFE Symposium on Security and Privacy, pages 144-155, Washington,
DC, USA, 2001. IEEE Computer Society.

M. Strasser and H. Stamer. A software-based trusted platform module emu-
lator. In Proceedings of the 1st Conference on Trusted Computing and Trust
in Information Technologies: Trusted Computing - Challenges and Applica-
tions (Trust), pages 33-47, 2008.

M. Sunil, F. Thomas, S. Abdulhadi, A. Tolga, and S. A. Huss. A novel ar-
chitecture for a secure update of cryptographic engines on trusted platform
module. In IEEFE International Conference on Field Programmable Technool-
ogy (FPT), Dec. 2011.

K. M. C. Tan, J. McHugh, and K. S. Killourhy. Hiding intrusions: From
the abnormal to the normal and beyond. In Revised Papers from the 5th
International Workshop on Information Hiding, pages 1-17, London, UK,
UK, 2003. Springer-Verlag.

S. Thummalapenta and T. Xie. Alattin: Mining alternative patterns for
detecting neglected conditions. In Proc. of the 24th International Conference
on Automated Software Engineering (ASE), pages 283-294, 2009.

S. Thummalapenta and T. Xie. Mining exception-handling rules as sequence
association rules. In Proc. of the 31st International Conference on Software
Engineering (ICSE), pages 496-506, 2009.

Trusted Computing Group. Tpm main part 2 tpm structures.

Trusted Computing Group. TCG software stack (TSS) specification version
1.2, Mar. 2007.

109

Bibliography

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]
[110]

[111]

[112]

110

Trusted Computing Group. Tcg specification architecture overview 1.4, Aug.
2007.

Trusted Computing Group. TPM main specification version 1.2, level 2 revi-
sion 103, July 2007.

Trusted Computing Group. TPM main specification version 1.2, level 2 revi-
sion 116, part 3 - commands, 2011.

I. Trusted Computing Group. Summary Of Features Under Consideration
For The Next Generation Of TPM, 2009.

Trusted Computing Group, Inc. TPM Main Specification Level 2 Version 1.2,
march 2011. Revision 116.

R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and V. Sundare-
san. Soot — a Java bytecode optimization framework. In Proceedings of the
1999 Conference of the Centre for Advanced Studies on Collaborative Re-
search (CASCON), pages 125-135, 1999.

M. van Dijk, J. Rhodes, L. F. G. Sarmenta, and S. Devadas. Offline untrusted
storage with immediate detection of forking and replay attacks. In Proceedings
of the 2007 ACM workshop on Scalable trusted computing, STC ’07, pages 41—
48. ACM, 2007.

D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection
systems. In Proceedings of the 9th ACM conference on Computer and com-
munications security, CCS ’02, pages 255-264, New York, NY, USA, 2002.
ACM.

T.J. Watson Libraries for Analysis (WALA). http://wala.fs.net/.
C. Weinhardt, A. Anandasivam, B. Blau, N. Borissov, T. Meinl, W. Michalk,

and J. StoBer. Cloud computing - a classification, business models, and re-
search directions. Business & Information Systems Engineering, 1(5):391—
399, 2009.

J. Whaley. A portable sampling-based profiler for java virtual machines. In
Proceedings of the ACM 2000 conference on Java Grande, pages 78-87. ACM,
2000.

D. Williams and E. G. Sirer. Optimal parameter selection for efficient mem-
ory integrity verification using merkle hash trees. In Network Computing
and Applications, 2004. (NCA 2004). Proceedings. Third IEEE International

Symposium on, pages 383 — 388, aug.-1 sept. 2004.

http://wala.fs.net/

Bibliography

[113] S. Yoshihama, T. Ebringer, M. Nakamura, S. Munetoh, and H. Maruyama.
WS-Attestation: efficient and Fine-Grained remote attestation on web ser-
vices. In Proceedings of the IEEE International Conference on Web Services,
pages 743-750. IEEE Computer Society, 2005.

[114] X. Zhang, J. Seifert, and R. Sandhu. Security enforcement model for dis-
tributed usage control. In Proceedings of the 2008 IEEE International Con-
ference on Sensor Networks, Ubiquitous, and Trustworthy Computing (sutc
2008), pages 10-18. IEEE Computer Society, 2008.

[115] X. Zhang, J.-P. Seifert, and R. Sandhu. Security enforcement model for dis-
tributed usage control. In Proceedings of the Conference on Sensor Networks,
Ubiquitous, and Trustworthy Computing (SUTC), pages 10 —18, 2008.

[116] X. Zhuang, M. J. Serrano, H. W. Cain, and J.-D. Choi. Accurate, efficient,
and adaptive calling context profiling. In ACM SIGPLAN Notices, volume 41,
pages 263-271. ACM, 2006.

111

Wissenschaftlicher Werdegang

Oktober 2001 — Januar 2009
Studium der Informatik (Diplom) an der Technischen Universitét Darmstadt

Mirz 2009 — August 2013
Promotion an der Technischen Universitidt Darmstadt unter Leitung von Prof. Dr. Ste-
fan Katzenbeisser

Mirz 2009 — Februar 2013
Stipendiat an Center for Advanced Security Research Darmstadt - CASED

salsouri
Rechteck

	Final-rev67.svn000.tmp
	Introduction
	Preliminaries: Program Profiling, Cryptography and Trusted Computing
	Program Analysis and Profiling
	Business Processes
	Cryptographic Primitives
	Chameleon Hashing
	Group Signatures

	Trusted Computing and Virtualization
	Main Functionalities of Trusted Computing
	Cloud Computing and Virtualization

	Behavior Compliance Control
	Low-Level Behavior Compliance Control Using Program Profiling
	How to Characterize Behavior
	Profile and Model Generation
	Platform Reference Architecture

	High-Level Behavior Compliance Control for Business Processes
	Overview of the System Architecture
	Integrity Measurement of Business Processes on the Hosting Platform
	Attestation and Verification of Executed Business Processes
	Attacker Model

	Related Work

	A Runtime-Secure Storage
	Hardware-based Security for vTPMs
	Hash Tree Based Binding
	Incremental Hash Based Binding
	Attacker Model
	Related Work

	Group-Based Attestation: Enhancing the Privacy and Maintainability
	Attestation Problems & Related Work
	Chameleon Attestation I
	Group Signatures Based Attestation
	Chameleon Attestation II

	Implementation of the Approaches
	A Java Implementation of the Low-Level BCC
	Building Chain of Trust and Runtime-Secure Storage
	Building the Chain of Trust
	Implementation of the vTPM Manager

	Adoption of the High-Level BCC to Apache ODE
	Platform Architecture Setup
	Implementation of the Flow Attestation Extension
	Implementation of the Attestation Services
	Implementation of the Flow Verification Extension
	Performance Evaluation

	Implementation of Group-Based Attestation
	Implementation of Chameleon Attestation I
	Implementation of Chameleon Attestation II
	Experimental Results

	A Security Evaluation for Low-Level BCC Based on Real Applications
	Malicious-Input Attack on Document Manipulation Applications
	General Experimental Setup
	RQ1: Feasibility
	RQ2: Effectiveness
	RQ3: Scalability
	RQ4: Efficiency

	SQL Injection Attack on Web Applications
	RQ1: Feasibility
	RQ2: Effectiveness
	RQ2: Scalability
	RQ2: Efficiency

	Summary and Conclusion
	Bibliography

	cv
	Introduction
	Preliminaries: Program Profiling, Cryptography and Trusted Computing
	Program Analysis and Profiling
	Business Processes
	Cryptographic Primitives
	Chameleon Hashing
	Group Signatures

	Trusted Computing and Virtualization
	Main Functionalities of Trusted Computing
	Cloud Computing and Virtualization

	Behavior Compliance Control
	Low-Level Behavior Compliance Control Using Program Profiling
	How to Characterize Behavior
	Profile and Model Generation
	Platform Reference Architecture

	High-Level Behavior Compliance Control for Business Processes
	Overview of the System Architecture
	Integrity Measurement of Business Processes on the Hosting Platform
	Attestation and Verification of Executed Business Processes
	Attacker Model

	Related Work

	A Runtime-Secure Storage
	Hardware-based Security for vTPMs
	Hash Tree Based Binding
	Incremental Hash Based Binding
	Attacker Model
	Related Work

	Group-Based Attestation: Enhancing the Privacy and Maintainability
	Attestation Problems & Related Work
	Chameleon Attestation I
	Group Signatures Based Attestation
	Chameleon Attestation II

	Implementation of the Approaches
	A Java Implementation of the Low-Level BCC
	Building Chain of Trust and Runtime-Secure Storage
	Building the Chain of Trust
	Implementation of the vTPM Manager

	Adoption of the High-Level BCC to Apache ODE
	Platform Architecture Setup
	Implementation of the Flow Attestation Extension
	Implementation of the Attestation Services
	Implementation of the Flow Verification Extension
	Performance Evaluation

	Implementation of Group-Based Attestation
	Implementation of Chameleon Attestation I
	Implementation of Chameleon Attestation II
	Experimental Results

	A Security Evaluation for Low-Level BCC Based on Real Applications
	Malicious-Input Attack on Document Manipulation Applications
	General Experimental Setup
	RQ1: Feasibility
	RQ2: Effectiveness
	RQ3: Scalability
	RQ4: Efficiency

	SQL Injection Attack on Web Applications
	RQ1: Feasibility
	RQ2: Effectiveness
	RQ2: Scalability
	RQ2: Efficiency

	Summary and Conclusion
	Bibliography

	Leere Seite

