
FibLSS: A Scalable Label Storage Scheme for
Dynamic XML Updates?

Martin F. O’Connor and Mark Roantree

Interoperable Systems Group, School of Computing,
Dublin City University, Dublin 9, Ireland
{moconnor,mark}@computing.dcu.ie

Abstract. Dynamic labeling schemes for XML updates have been the
focus of significant research activity in recent years. However the label
storage schemes underpinning the dynamic labeling schemes have not
received as much attention. Label storage schemes specify how labels
are physically encoded and stored on disk. The size of the labels and
their logical representation directly influence the computational costs of
processing the labels and can limit the functionality provided by the
dynamic labeling scheme to an XML update service. This has signifi-
cant practical implications when merging XML repositories such as clin-
ical studies. In this paper, we provide an overview of the existing label
storage schemes. We present a novel label storage scheme based on the
Fibonacci sequence that can completely avoid relabeling existing nodes
under dynamic insertions. Theoretical analysis and experimental results
confirm the scalability and performance of the Fibonacci label storage
scheme in comparison to existing approaches.

1 Introduction

There has been a noticeable increase in research activity concerning dynamic
labeling schemes for XML in recent years. As the volume of XML data increases
and the adoption of XML repositories in mainstream industry becomes more
widespread, there is a requirement for labeling schemes that can support updates.
While read-only XML repositories such as data warehouses have seen significant
optimization using views and query adaptation [13], and novel approaches to
multi-dimensional modeling [6] faciliate complex rollup and drill-down opera-
tions, these efforts do not tackle issues of major changes to the underlying XML
documents.

A major obstacle in the provision of an XML update service is the limited
functionality provided by existing dynamic labeling schemes. There are a number
of desirable properties that characterize a good dynamic labeling scheme for
XML [16], such as the ability to determine ancestor-descendant, parent-child, and
sibling-order relationships between nodes from the labels alone; the generation

? The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2012) under grant agreement no. 304979.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/16510908?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of compact labels under arbitrary dynamic node insertions; and the ability to
support the reuse of deleted node labels. In this paper, we address the problem of
storing scalable binary encoded bit-string dynamic labeling schemes for XML. By
scalable, we mean the labeling scheme can support an arbitrary number of node
insertions and deletions while completely avoiding the need to relabel nodes.
As the size of the databases grow from Gigabytes to Terabytes and beyond, the
computational costs of relabeling nodes and rebuilding the corresponding indices
becomes prohibitive, not the mention the negative impact on query and updates
services while the indices are under reconstruction.

1.1 Motivation

The In-MINDD FP7 project is funded by the European Commission to investi-
gate means to decrease dementia risk and delay the onset of dementia by combin-
ing areas of social innovation, multi-factorial modelling and clinical expertise [8].
The project aims to quantify dementia risk and deliver personalised strategies
and support to enable individuals to reduce their risk of dementia in later life.
One of the main tasks is to integrate longitudinal studies such as the Maastricht
Ageing Study (MAAS) [9], construct XML views, and integrate the views for
various clinical studies. However, this integration process requires the threading
of XML elements from one study into another, requiring many and frequent rela-
beling of nodes. The benefit of XML views is their highly interoperable qualities
but their usage presents the problem of XML updates.

There are only two reasons that cause a dynamic labeling scheme to relabel
nodes when updating XML. The first reason is that the node insertion algorithms
of the dynamic labeling scheme do not permit arbitrary dynamic node insertions
without relabeling. For example, when a new node is inserted into an XML tree,
the DeweyID labeling scheme [21] requires the relabeling of all following-sibling
nodes (and their descendants). The second reason that causes a dynamic labeling
scheme to relabel nodes is due to the overflow problem.

The Overflow Problem. The Overflow Problem concerns the label storage scheme
used to encode and store the labels on disk or any physical digital medium and
affects both fixed-length and variable-length encodings. It should be clear that
all fixed length label storage schemes are subject to overflow once all the assigned
bits have been consumed by the update process and consequently require the
relabeling of all existing nodes. It is not so obvious that variable-length encodings
are also subject to the overflow problem. Variable length labels require the size
of the label to be stored in addition to the label itself. Thus, if many nodes are
inserted into the XML tree, then at some point, the original fixed length of bits
assigned to store the size of the label will be too small and overflow, requiring
all existing nodes to be relabeled. This problem has been named the overflow
problem in [11].

We hold the position that a modern dynamic labeling scheme for XML should
not be subject to the overflow problem. All dynamic labeling schemes subject
to the overflow problem must relabel existing nodes after a certain number of



updates have been performed. In our previous work [17], we highlighted that
there are only two existing dynamic labeling schemes that can completely avoid
the need to relabel nodes, namely QED [11] and SCOOTER [17]. All other dy-
namic labeling schemes for XML must relabel existing nodes after an arbitrary
number of node insertions due to either limitations in the node insertions al-
gorithms or limitations in the label storage scheme employed by the dynamic
labeling scheme.

1.2 Contribution

In this paper, we provide a comprehensive review of the existing state-of-the-
art in label storage schemes employed by XML dynamic labeling schemes. We
present a novel label storage scheme that exploits the properties of the Fibonacci
sequence to encode and decode node labels of any arbitrary size. The Fibonacci
label storage scheme is scalable - it will never require a dynamic labeling scheme
for XML to relabel nodes regardless of arbitrary or repeated dynamic node
insertions and deletions. The Fibonacci label storage scheme offers comparable
storage costs with the best existing approaches and in particular, is well suited
for large data volumes. It also offers the best performance in computational
processing costs compared to existing approaches. We provide both theoretical
analyses and experimental evaluations to validate our approach.

This paper is structured as follows: in §2, we review and analyze the state-of-
the-art in label storage schemes for XML, with a particular focus on scalability.
In §3, we present the Fibonacci label storage scheme and the properties that
underpin it. We present the algorithms for encoding and decoding a node label
and provide a detailed explanation of the encoding transformation. In this sec-
tion, we also provide a theoretical analysis of the growth rate of the Fibonacci
encoded labels. In §4, we provide experimental evaluations of our approach in
terms of execution time and total label storage costs and analyze the results.
Finally in §5, our conclusions are presented.

2 Related Research

A key consideration for all dynamic labeling schemes for XML is how they choose
to physically encode and store their labels on disk. All digital data is ultimately
stored as binary, but the logical representation of the label on disk directly influ-
ences the size of the label on disk and the computational cost to encode/decode
from the logical to the physical representation. In this section, we provide an
overview of label storage schemes. All existing approaches to the storage of dy-
namic (variable-length) labels fall under four classifications: length fields, control
tokens, separators and prefix-free codes. We employ the same four classifications
as those presented in [7].



2.1 Length Fields

The concept underlying length fields is to store the length of the label imme-
diately before the label itself. The naive approach is to assign a fixed-length
bit code to indicate the length of the label. In a dynamic environment, after a
certain number of node insertions, the label size will grow beyond the capacity
indicated by the fixed-length bit code and consequently a larger fixed-length bit
code will have to be assigned and all existing labels will have to be relabeled
according to the new larger fixed-length bit code. One could initially assign a
very large fixed-length bit code to minimize the occurrence of the relabeling
process, but that would lead to significant wastage in storage for all relatively
small labels. In [7], they present several different variations of variable-length
bit codes to indicate the size of the label but the authors acknowledge that all
of the variable-length approaches lead to either relabeling of existing nodes or
involve significant wastage of storage space.

2.2 Control Tokens

The concept underlying control tokens is similar to length fields, except rather
than storing the length of the label, tokens are used instead to indicate or control
how the subsequent bit sequence is to be interpreted. We now provide a brief
overview of UTF-8 [26] which is a multi-byte variable encoding that uses control
tokens to indicate the size of a label.

UTF-8 is employed by the DeweyID [21] and Vector labeling schemes [24].
Originally, UTF-8 was designed to represent every character in the UNICODE
character set, and to be backwardly compatible with the ASCII character set.

Referring to Table 1, any number between 0 and 127 (27 − 1) inclusive, may
be represented using 1 byte. The first bit sequence in the label is the control
token(s). If the first bit is the control token “0”, it indicates the label length is
1 byte. If the first bit is the control token “1”, then the number of bytes used to
represent the label is computed by counting the number of consecutive control
token “1” bits until the control token “0” bit is encountered. The first two bits
of the second and subsequent bytes always consist of the bit sequence “10” as
illustrated in Table 1.

Value Byte1 Byte2 Byte3 Byte4 Byte5 Byte6

0 - (27 − 1) 0xxxxxxx

27 - (211 − 1) 110xxxxx 10xxxxxx

211 - (216 − 1) 1110xxxx 10xxxxxx 10xxxxxx

216 - (221 − 1) 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

221 - (226 − 1) 111110xx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

226 - (231 − 1) 1111110x 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx 10xxxxxx

Table 1: UTF-8 Multi-byte Encoding using Control Tokens



Example 1. To encode the DeweyID label 1.152 in UTF-8, we first determine
how many bytes each component requires, convert each component to binary
and finally encode using the appropriate number of bytes. 1 is less than 127 (27

− 1), hence the UTF-8 encoding of 1 is 0 0000001. 152 is between 128 (27) and
2047 (211 − 1), and 152 in binary is 10011000, hence the UTF-8 encoding of
152 requires two bytes and is 110 00010 10 011000 (the spaces are present for
readability only). Finally, the full UTF8 encoding of the label 1.152 is 0 0000001
110 00010 10 011000.

The primary limitation of control tokens relate to the requirement to pre-
define a fixed-length step governing the growth of the labels under dynamic
insertions. The fixed-length step cannot dynamically adjust to the characteris-
tics of the XML document or the type of updates to be performed. Furthermore,
from the point of view of scalability, UTF-8 cannot encode a number larger than
231 − 1.

2.3 Separators

Whereas control tokens are used to interpret and give meaning to the sequence
of bits that immediately follow the token, a separator reserves a predefined bit
sequence to have a particular meaning. Consequently, regardless of where the
predefined bit sequence occurs, it must be interpreted as a separator. The QED
[11] and SCOOTER [17] schemes are the only dynamic labeling schemes to date
that employ the separator storage scheme to encode their labels. We now describe
the label storage scheme employed by the QED labeling scheme and omit the
SCOOTER labeling scheme as the label storage scheme adopted is conceptually
very similar.

In QED, a quaternary code is defined as consisting of four numbers 0, 1, 2,
3 and each number is stored with two bits, i.e.: 00, 01, 10, 11. The number 0
(and bit sequence 00 ) is reserved as a separator and only 1, 2, and 3 are used
in the QED code itself. Therefore, any positive integer can be encoded in the
base 3 and represented as a quaternary code. For example, the DeweyID label
2.10.8 can be represented in the base 3 as 2.101.22 and can be encoded using
quaternary codes and stored on disk as 11 00 100110 00 1111 (the spaces are
present for readability only).

The primary advantage of separator storage schemes over control token sche-
mes is that no matter how big the individual components of a label grow, the
separator size remains constant. In the case of quaternary code, the separator
size will always be 2-bits no matter how large the label grows. A disadvantage
suffered by separator storage schemes compared to control token schemes is that
control tokens permit a fast byte-by-byte or bit-by-bit comparison operation [7]
and consequently facilitate fast query performance when labels have comparable
lengths.



2.4 Prefix-free Codes

Prefix-free codes [4] are fixed-length or variable-length numeric codes that are
members of a set which have the distinct property that no member in that set is
a prefix to any other member in that set. For example, the set m={1,2,3,4} is a
prefix set, however the set n={1,2,3,22} is not a prefix set because the member
“2” is a prefix of the member “22”.

The ORDPATH [18] dynamic labeling scheme uses prefix-free codes as its
label storage scheme. The authors present two prefix-free encoding tables; we
present their first encoding table in Table 1 and omit the second table as it is
conceptually very similar.

Prefix-free Code Number of bits Value range

0000001 48 [−2.8x1014, −4.3x109]

0000010 32 [−4.3x109, −69977]

0000011 16 [−69976, −4441]

000010 12 [−4440, −345]

000011 8 [−344, −89]

00010 6 [−88, −25]

00011 4 [−24, −9]

001 3 [−8, −1]

01 3 [0, 7]

100 4 [8, 23]

101 6 [24, 87]

1100 8 [88, 343]

1101 12 [344, 4439]

11100 16 [4440, 69975]

11101 32 [69976, 4.3x109]

11110 48 [4.3x109, 2.8x1014]

Table 2: ORDPATH Variable-length Prefix-free codes and Value range

Example 2. To encode the ORDPATH label 1.152, we must encode each of the
components in the label individually. 1 lies in the value range [0, 7] and hence will
be represented using three bits (001) and have the prefix code 01. Thus, the full
representation of 1 is 01 001. 152 lies in the value range [88, 343] and hence will
be represented using 8 bits and have the prefix code 1100. Note, 152 in binary
is the 8 digit number 10011000 but ORDPATH uses the binary representation
of 64 to represent this number. 64 is obtained by subtracting the start of the
value range from the number to be encoded, that is 152 − 88 = 64. The binary
representation of 64 is 01000000 (using 8 bits). Hence the full representation of
152 is 1100 01000000. Finally the full representation of the ORDPATH label
1.152 is 01 001 1100 01000000 (the spaces are present for readability only).

The ORDPATH prefix-free label storage schemes often require less bits to
represent a label that the UTF-8 control token scheme - recall the label 1.152



requires 24-bits to be represented in UTF-8 but only 17 bits using ORDPATH
prefix-free codes. However, the ORDPATH prefix free codes have higher compu-
tational costs in order to decode a label.

2.5 Critique of Label Storage Schemes

In this section, we outlined the four approaches underlying the implementation
of all existing label storage schemes for XML to date: length fields, control token,
separators, and prefix-free codes. No single approach stands out, each has their
own advantages and limitations. Fixed length fields are ideal for static data and
variable length fields are ideal for data that is rarely updated. Control token
storage schemes may facilitate fast byte-by-byte label comparison operations
if the properties of the labeling scheme is designed to take advantage of such
operations. However the control token storage schemes proposed to date are not
compact. The separator storage schemes offer compact label encoding however,
the entire label must be decoded bit-by-bit in order to identify each individual
component in the label. Lastly, prefix-free codes may also permit fast byte-by-
byte comparisons but require a pre-computed prefix-free code table to encode
and decode labels and a more complex encode/decode function that leads to
higher label comparison computational costs.

The key problem we seek to address in this paper is the provision of scalability
- that is a label storage scheme that will never require the labeling scheme
to relabel existing nodes under any arbitrary combination of node insertions
and deletions. The SCOOTER and QED labeling schemes are the only labeling
schemes to successfully provide this feature by employing the separator label
storage scheme in conjunction with node insertion algorithms that do not require
the relabeling of existing nodes. Control tokens and prefix-free label storage
schemes have been deployed by dynamic labeling schemes that numerically or
alphanumerically encoded their labels (DeweyID [21], ORDPATH [18], DLN [2],
LSDX [3], Vector [24], DDE [25], however, none of these labeling schemes are
scalable as illustrated in [17]). In contrast, length field and separator label storage
schemes have been deployed by bit-string dynamic labeling schemes. However,
all binary encoded bit-string dynamic labeling schemes (ImprovedBinary [10],
CDBS [12], EXEL [14], Enhanced EXEL [15]) are unable to avail of the separator
storage scheme (because a bit sequence is reserved as a separator) and are not
scalable. Lastly, all length field label storage schemes are subject to relabeling
after an arbitrary large number of node insertions. Consequently, there does
not exist a label storage scheme that enables binary encoded bit-string dynamic
labeling schemes to completely avoid the relabeling of nodes. We address this
problem now.

3 Fibonacci Label Storage Scheme

The Fibonacci label storage scheme may be employed by any binary encoded bit-
string dynamic labeling scheme and enables the labeling scheme to completely



avoid the relabeling of nodes. The Fibonacci label storage scheme is a hybrid
of the control token and length field classifications. Before we describe the label
storage scheme, we provide a brief overview of the Fibonacci sequence [22] and
the Zeckendorf representation [23].

Definition 1. Fibonacci Sequence.
The Fibonacci sequence is given by the recurrence relation Fn = Fn−1 + Fn−2

with F0 = 0 and F1 = 1 such that n ≥ 2.

The first 10 terms of the Fibonacci sequence are: 0, 1, 1, 2, 3, 5, 8, 13, 21,
34. Each term in the sequence is the sum of the previous two terms.

Definition 2. Zeckendorf Representation.
For all positive integers n, there exists a positive integer N such that

n =

N∑
k=0

εkFk where εk is 0 or 1, and εk ∗ εk+1 = 0.

This may be more informally stated as: every positive integer n has a unique
representation as the sum of one or more distinct non-consecutive Fibonacci
numbers. It should be noted that although there are several ways to represent
a positive integer n as the sum of Fibonacci numbers, only one representation
is the Zeckendorf representation of n. For example, the positive integer 111 may
be represented as the sum of Fibonacci numbers in the following way:

1. 111 = 89 + 21 + 1
2. 111 = 55 + 34 + 13 + 8 + 1
3. 111 = 89 + 13 + 5 + 3 + 1

However, only the first expression is the Zeckendorf representation of 111,
because the second expression contains two consecutive Fibonacci terms (55 +
34) as does the third expression (5 + 3). We will exploit the property that no two
consecutive Fibonacci terms occur in the Zeckendorf representation of a positive
integer to construct the Fibonacci label storage scheme.

3.1 Encoding and Decoding the length of the label

We begin with a simple example providing an overview of the encoding process
for the Fibonacci label storage scheme before we present our algorithms. Given
a binary encoded bit-string label Nnew = 110101,

– We first determine the length of Nnew. It has 6 bits.
– We then obtain the Zeckendorf representation of the length of the label. The

Zeckendorf representation of 6 is 5 + 1.
– We then encode the Zeckendorf representation of the label length as a Fi-

bonacci coded binary string. Specifically, starting from the Fibonacci term
F2 (recall F0 = 0 and F1 = 1), if the Fibonacci term Fk+1 occurs in the Zeck-
endorf representation of the label length, then the k th bit in the Fibonacci
coded binary string is set to “1”. If the Fibonacci term Fk+1 does not occur
in the Zeckendorf representation, then the k th bit in the Fibonacci coded
binary string is set to “0”.



– For example, the first term F2 (1) occurs in the Zeckendorf representation
of 6 and thus, the first bit in the binary string is “1”. The second term
F3 (2) does not occur in the Zeckendorf representation of 6 and thus, the
binary string is now “10”. The third term F4 (3) does not occur in the
Zeckendorf representation of 6 and thus, the binary string is now “100”. The
fourth term F5 (5) occurs in the Zeckendorf representation of 6 and thus,
the binary string is now “1001”. There are no more terms in the Zeckendorf
representation of the length of Nnew (6 bits), therefore stop.

– The Fibonacci coded binary string of the Zeckendorf representation will
never contain two consecutive “1” bits, precisely because it is a Fibonacci
encoding of an Zeckendorf representation. Also, given that the construction
of the Fibonacci coded binary string stops after processing the last term in
the Zeckendorf representation, we are certain the last bit in the Fibonacci
coded binary string must be “1”. We subsequently append an extra “1” bit
to the end of the Fibonacci coded binary string to act as a control token or
delimiter. Thereafter, we know the only place two consecutive “1” bits can
occur in the Fibonacci coded binary string is at the end of the string. Thus
the binary string is now “10011”.

– The Fibonacci label storage scheme adopts a length field storage approach,
which means we encode and store the size of the label immediately before
the label itself. The last two bits of the Fibonacci coded binary string will
always consist of two consecutive “1” bits and they act as a control token
separating the length field of the label from the label itself. To complete our
example, the label Nnew (110101) is encoded and stored using the Fibonacci
label storage scheme as 10011 110101 (the space is provided as a visual aid).

It can be seen from above that the Fibonacci label storage scheme is a hybrid
of the control token and length field label storage schemes. In [1] and [5], the
authors exploit a Fibonacci coding of the Zeckendorf representation of variable-
length binary strings for synchronization and error correction during the trans-
mission of codes. However, to the best of our knowledge, Fibonacci coded binary
strings have never been proposed as a foundation for a label storage scheme nor
have they been proposed to provide scalabilty to dynamic labeling schemes.

Algorithm 1 outlines the label length encoding process. It receives as input a
positive integer n representing the label length and outputs a Fibonacci coded
binary string of the Zeckendorf representation of n. Algorithm 2 outlines the
label length decoding process which is the reverse transformation of algorithm
1.

3.2 Fibonacci Label Storage Scheme Size Analysis

In Table 3, we illustrate the relationship between the growth in label size and
the corresponding growth in the quantity of labels that may be encoded. Given a
label encoding length n, the quantity of labels that may be encoded with length
n is equal to the Fibonacci term Fn−1. In [19], the authors prove that the average
value of the nth term of a sequence defined by the general recurrence relation Gn



Algorithm 1: EncodeLabelLength.

/* Encode n to Fibonacci coded binary string of Zeckendorf representation of n. */
input : n - a positive integer representing the length of a label.
output: fibStr - a Fibonacci coded binary string of the Zeckendorf representation of n.

1 begin
2 F0 ←− 0;
3 F1 ←− 1;
4 Fstart ←− F0 + F1;
5 Fend ←− the largest Fibonacci number ≤ n;
6 fibArray ←− the Fibonacci sequence from Fstart to Fend inclusive;
7 fibStr ←− “1”;
8 for (i=length(fibArray); i=1; i−−) do
9 if (n ≥ fibArray[i]) then

10 fibStr ←− “1” ⊕ fibStr;
11 n ←− n − fibArray[i];

12 else
13 fibStr ←− “0” ⊕ fibStr;
14 end

15 end
16 return fibStr;

17 end

Algorithm 2: DecodeLabelLength.

/* Decode a Fibonacci coded binary string of a Zeckendorf representation to n. */
input : fibStr - a Fibonacci coded binary string of the Zeckendorf representation of n.
output: n - a positive integer representing the length of a label.

1 begin
2 F0 ←− 0;
3 F1 ←− 1;
4 Fstart ←− F0 + F1;
5 fibCount ←− length(fibStr);
6 fibArray ←− the first fibCount terms of the Fibonacci sequence from Fstart inclusive;
7 n ←− 0 ;
8 for (i=1; i < length(fibArray); i++) do
9 if (fibStr[i] == “1”) then

10 n ←− n + fibArray[i];
11 end

12 end
13 return n;

14 end

= Gn−1 +− Gn−2 increases exponentially. Therefore, as the number of labels to
be encoded using the Fibonacci label storage scheme increases exponentially, the
corresponding growth in the size of the Fibonacci coded binary string is linear.
This demonstrates that when processing a large quantity of labels the Fibonacci
label storage scheme scales gracefully.

4 Evaluation

In this section, we evaluate the Fibonacci label storage scheme by comparing
it with three other label storage schemes, namely ORDPATH Compressed bi-
nary format, UTF-8 and the Separator label storage schemes. All label storage
schemes were implemented in Java version 6.38 and all experiments were car-
ried out on a 2.66Ghz Intel(R) Core(TM)2 DUO CPU with 4GB of RAM. The



Growth Counter Label Encoding Length Num of labels

1 2 1

2 3 1

3 4 2

4 5 3

5 6 5

6 7 8

7 8 13

8 9 21

9 10 34

10 11 55

11 12 89

12 13 144

13 14 233

14 15 377
...

...
...

n n + 1 Fn

Table 3: Fibonacci Encoded Label Length Growth Rate

experiments were performed 11 times, the time from the first run was discarded
and the results of the subsequent 10 experiments averaged. For all experiments,
the unit of storage is in bits and the unit of time is in milliseconds (ms). The OR-
DPATH prefix-free code tables and the array of Fibonacci numbers from 1 to N
are computed once (in advance), and not each time a label is encoded/decoded,
so as to reflect a real-world implementation scenario.

The Fibonacci and Separator label storage schemes were designed to encode
bit-string labels, whereas the ORDPATH and UTF-8 label storage schemes were
designed to encode integer-based labels. Consequently, to ensure an equitable and
fair experimental evaluation, all four label storage schemes encode the positive
integers from 1 to 10n where n has the values from 1 to 6 inclusive. Given
that the Fibonacci and Separator label storage schemes expect a bit-string label
to encode, the integer is converted from base 10 to base 2 (binary) and the
binary string representation of the integer is encoded. In Figure 1, we illustrate
the storage costs for all four label storage schemes using labels derived from
the integer encodings from 1 to 106 (Note: a logarithmic scale is used in the
illustration). The ORDPATH compressed binary format provides a choice of
two encoding tables to use; we present both encodings to enable a comprehensive
evaluation and analysis. In this remainder of this section, “FIB” is used to denote
the Fibonacci label storage scheme.

ORDPATH2 provides the most compact storage representation when encod-
ing less than 10 integers. UTF-8 provides the most compact storage representa-
tion when encoding 102 integers and SEPARATOR when encoding 103 through
105 inclusive. When encoding 106 integers, FIB provides the most compact stor-
age representation. This result is in line with our theoretical analysis in §3.2
which observed that as the number of labels to be encoded using FIB increases
exponentially, the corresponding growth rate in the size of the Fibonacci coded



10^1 nodes 10^2 nodes 10^3 nodes 10^4 nodes 10^5 nodes 10^6 nodes
FIB 65 1061 14841 189390 2264705 25947204
ORDPATH1 56 879 14307 186112 2556512 35856512
ORDPATH2 52 1157 16462 206587 2427032 27627032
UTF‐8 80 800 14984 222608 2658328 31458328
SEPARATOR 60 968 13828 180336 2222876 26405704

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

100,000,000

Bits
FIB

ORDPATH1

ORDPATH2

UTF‐8

SEPARATOR

Fig. 1: Storage Costs of Encoding Integers for the Label Storage Schemes.

binary string is linear. Hence, although the performance of FIB is average for
small to medium sized labels, FIB provides a highly compact storage representa-
tion for large labels. However, unlike ORDPATH and UTF-8, FIB is not subject
to the overflow problem and will never require existing labels to be relabeled.

10^5
nodes

10^6
nodes

FIB 81 853
ORDPATH1 93 1052
ORDPATH2 83 1080
UTF‐8 92 1103
SEPARATOR 101 1137

0

200

400

600

800

1,000

1,200

Time (ms)
FIB

ORDPATH1

ORDPATH2

UTF‐8

SEPARATOR

(a) Label Storage Scheme Encoding
Times

10^5
nodes

10^6
nodes

FIB 88 936
ORDPATH1 94 1080
ORDPATH2 107 1168
UTF‐8 130 1496
SEPARATOR 277 3227

0
500

1,000
1,500
2,000
2,500
3,000
3,500

Time (ms)
FIB

ORDPATH1

ORDPATH2

UTF‐8

SEPARATOR

(b) Label Storage Scheme Decoding
Times

Fig. 2: Integer Encoding and Decoding times for Label Storage Schemes.

In Figure 2, we illustrate the computational processing times to encode and
decode 105 and 106 integer labels. The times for 104 (or less) integer encodings
are not shown because they are single digit results with negligible differences
between them. FIB is the fastest label storage scheme at both encoding and
decoding. FIB is the fastest because as a length field label storage scheme it
only has to encode and decode the length of the label. The actual bit-string
label is stored immediately after the Fibonacci coded binary string and can be
read and written without having to process each individual bit. All of the other



label storage schemes must process the entire label to generate their encoding.
ORDPATH1 has similar encode and decode computational processing costs. OR-
DPATH2 encodes more quickly than it decodes because the key size that maps
to the range of the integer encoding grows more quickly than the encoding ta-
ble employed by ORDPATH1. UTF-8 decodes approximately 30 percent slower
than it encodes because when decoding, it must parse each individual byte in
the multi-byte label and strip away the 2-bit control token at the start of each
byte. SEPARATOR is the slowest at both encoding and decoding because it
must parse every bit in the bit-string label in order to identify each individual
component in the label. In summary, FIB is the fastest label storage scheme at
both encoding and decoding, it is not subject to the overflow problem and will
never required the relabeling of existing node labels.

5 Conclusions

In this paper, we provided a detailed overview of the existing state-of-the-art
in label storage schemes for XML dynamic label schemes. We presented a new
label storage scheme based on the Fibonacci sequence that may be employed by
any binary encoded bit-string dynamic label scheme to completely overcome the
overflow problem. Our experimental evaluation demonstrated that the Fibonacci
label storage scheme offers storage costs comparable to existing approaches and
is particularly well suited for large datasets. The computational processing costs
of the Fibonacci label storage are also favorable when compared to existing
approaches because the processing requirements are primarily determined by
the length of the label and not dependent on the value of the label itself.

Apart from the In-MINDD project, there are many applications that can
benefit from this approach. In earlier work [20], we managed repositories with
large numbers of sensor values where repeated transformations were required
to calibrate data in order to make it usable. However, certain aspects of sensor
networks require different labels to what was managed in this current paper. As
part of our future work, we are extending the Fibonacci label storage scheme
beyond binary encoded bit-string labels to encode both numeric and alphanu-
meric labels. The goal is to provide an alternative label storage scheme that
may be employed by all dynamic labeling schemes, offering a compact storage
representation while minimizing processing costs.

References

1. Apostolico, A., Fraenkel, A.S.: Robust Transmission of Unbounded Strings Using
Fibonacci Representations. Information Theory, IEEE Transactions on 33(2), 238–
245 (1987)

2. Böhme, T., Rahm, E.: Supporting Efficient Streaming and Insertion of XML Data
in RDBMS. In: DIWeb. pp. 70–81 (2004)

3. Duong, M., Zhang, Y.: LSDX: A New Labelling Scheme for Dynamically Updating
XML Data. In: ADC. pp. 185–193 (2005)



4. Elias, P.: Universal Codeword Sets and Representations of the Integers. Information
Theory, IEEE Transactions on 21(2), 194 – 203 (mar 1975)

5. Fraenkel, A.S., Kleinb, S.T.: Robust Universal Complete Codes for Transmission
and Compression. Discrete Applied Mathematics 64(1), 31–55 (1996)

6. Gui, H., Roantree, M.: A Data Cube Model for Analysis of High Volumes of Am-
bient Data. Procedia CS 10, 94–101 (2012)

7. Härder, T., Haustein, M.P., Mathis, C., Wagner, M.: Node Labeling Schemes for
Dynamic XML Documents Reconsidered. Data Knowl. Eng. 60(1), 126–149 (2007)

8. In-MINDD - INnovative, Midlife INtervention for Dementia Deterrence: (2013),
online Resource http://www.inmindd.eu/

9. Jolles, J., Houx, P., van Boxtel, M., Ponds, R.: Maastricht Aging Study: Determi-
nants of Cognitive Aging. Neuropsych Publishers (1995)

10. Li, C., Ling, T.W.: An Improved Prefix Labeling Scheme: A Binary String Ap-
proach for Dynamic Ordered XML. In: DASFAA. pp. 125–137 (2005)

11. Li, C., Ling, T.W.: QED: A Novel Quaternary Encoding to Completely Avoid
Re-labeling in XML Updates. In: CIKM. pp. 501–508 (2005)

12. Li, C., Ling, T.W., Hu, M.: Efficient Processing of Updates in Dynamic XML Data.
In: ICDE. p. 13 (2006)

13. Liu, J., Roantree, M., Bellahsene, Z.: A SchemaGuide for Accelerating the View
Adaptation Process. In: ER. pp. 160–173 (2010)

14. Min, J.K., Lee, J., Chung, C.W.: An Efficient Encoding and Labeling for Dynamic
XML Data. In: DASFAA. pp. 715–726 (2007)

15. Min, J.K., Lee, J., Chung, C.W.: An Efficient XML Encoding and Labeling Method
for Query Processing and Updating on Dynamic XML Data. Journal of Systems
and Software 82(3), 503–515 (2009)

16. O’Connor, M.F., Roantree, M.: Desirable Properties for XML Update Mechanisms.
In: EDBT/ICDT Workshops (2010)

17. O’Connor, M.F., Roantree, M.: SCOOTER: A Compact and Scalable Dynamic
Labeling Scheme for XML Updates. In: DEXA (1). pp. 26–40 (2012)

18. O’Neil, P.E., O’Neil, E.J., Pal, S., Cseri, I., Schaller, G., Westbury, N.: ORDPATHs:
Insert-Friendly XML Node Labels. In: SIGMOD Conference. pp. 903–908 (2004)

19. Rittaud, B.: On the Average Growth of Random Fibonacci Sequences. Journal of
Integer Sequences 10(2), 3 (2007)

20. Roantree, M., Shi, J., Cappellari, P., O’Connor, M.F., Whelan, M., Moyna, N.:
Data Transformation and Query Management in Personal Health Sensor Networks.
J. Network and Computer Applications 35(4), 1191–1202 (2012)

21. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang,
C.: Storing and Querying Ordered XML using a Relational Database System. In:
SIGMOD Conference. pp. 204–215 (2002)

22. Wolfram‖Alpha: Fibonacci Numbers, Wolfram Alpha LLC edn. (December 2012),
online Resource http://mathworld.wolfram.com/FibonacciNumber.html

23. WolframAlpha: Zeckendorf Representation, Wolfram Al-
pha LLC edn. (December 2012), online Resource
http://mathworld.wolfram.com/ZeckendorfRepresentation.html

24. Xu, L., Bao, Z., Ling, T.W.: A Dynamic Labeling Scheme Using Vectors. In: DEXA.
pp. 130–140 (2007)

25. Xu, L., Ling, T.W., Wu, H., Bao, Z.: DDE: From Dewey to a Fully Dynamic XML
Labeling Scheme. In: SIGMOD Conference. pp. 719–730 (2009)

26. Yergeau, F.: UTF-8, A Transformation Format of ISO 10646, Request for Com-
ments (RFC) 3629 edn. (November 2003)


