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Abstract

Control

Enabling robo t m anipulators to m anipulate and/or recognise arbitrarily placed 3D 
objects under sensory control is one o f the key issues in robotics. Such ro b o t sensors 
should  be capable o f providing 3D information about objects in o rder to accom plish the 
above m entioned tasks. Such robot sensors should also provide the m eans for 
m ultisensor o r m ultim easurem ent integration. Finally, such 3D  inform ation should  be 
efficiently  used fo r perform ing desired tasks.

This w ork  develops a novel com putational fram e w ork  fo r solving som e o f  these 
problem s. A  vision (cam era) sensor is used in  conjunction w ith a  robo t m anipulator, in the 
fram e-w ork  o f active vision to estim ate 3D structure (3D geom etrical m odel) o f a class 
o f objects. Such inform ation is used for the visual robot con tro l, in the fram e-w ork  o f 
m odel based vision.

O ne part o f  this d issertation is devoted to the system  calibration. T he cam era and 
eye/hand calibration is presented. Several contributions are in troduced in this part, 
in tended to im prove existing calibration procedures. This results in m ore efficient and 
accurate calibrations. Experim ental results are presented.

Second part o f this w ork  is devoted to the m ethods o f  im age processing and 
im age representation. M ethods fo r extracting and representing necessary im age features 
com prising vision based m easurem ents are given.

T hird  part o f this dissertation is devoted to the 3D geom etrical m odel 
reconstruction  o f a class o f objects (polyhedral objects). A  new  technique fo r 3D m odel 
reconstruction  from  an im age sequence is introduced. This algorithm  estim ates a 3D 
m odel o f an object in term s o f 3D straight-line segm ents (w ire-fram e m odel) by 
in tegrating pertinent inform ation over an image sequence. The im age sequence is 
obtained from  a m oving cam era m ounted on a robot arm . Experim ental results are 
presented.

Fourth part o f this d issertation is devoted to the robo t visual control. A  new  visual 
con tro l strategy is in troduced. In particular, the necessary hom ogeneous transform ation 
m atrix fo r the robo t gripper in o rder to grasp an arbitrarily placed 3D object is estim ated. 
This problem  is posed as a problem  o f 3D displacem ent (m otion) estim ation betw een the 
reference m odel o f an object and the actual m odel o f the object. Further, the basic 
algorithm  is extended to handle m ultiple object m anipulation and recognition. 
E xperim ental results are presented.
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Chapter 1

Introduction

To enable robo t m anipulators to  detect, m anipulate and/or recognise arbitrarily 

placed 3D  object under sensory control is one o f the key issues in successful robotic 

applications. Such robo t sensors should be capable o f  providing 3D  inform ation about 

objects in o rder to accom plish above m entioned tasks. Such sensors should also provide 

the m eans fo r m ultisensor o r m ultim easurem ent integration. Finally, such 3D inform ation 

should  be efficiently  used fo r perform ing desired tasks.

This w ork  develops a novel com putational fram e w ork  fo r solving som e o f  these 

problem s. In  this w ork a vision (cam era) sensor is used to estim ate 3D structu re  o f 

objects w ithin a class o f objects. The objects are assum ed to be well m odelled as 

polyhedra. The cam era is m ounted on a robot m anipulator to take advantage o f its 

mobility. The m oving cam era permits us to  resolve traditionally very difficult vision 

problem s m ore easily. Using image sequences permits us to cope w ith inherently noisy 

im age m easurem ents, by fusing inform ation over image sequences and consequently  

m inim ising im pact o f the m easurem ent noise. The first goal o f this study is to consider the 

problem s o f  system  calibration. The second goal o f this study is to consider m ethods for 

3D geom etrical m odel reconstruction o f objects based on the m oving cam era, i.e., the 

cam era fixed on the robo t arm . The third goal of this study is to use these 3D visual 

reconstructed  m odels for the purpose o f the robot visual control. The results w e have 

achieved during the course o f this w ork are presented in this thesis and a brief sum m ary is 

given below.
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1.1 Thesis preview

C hap ter 2 presents experim ental set-up used during the course  o f this w ork . It 

presents devices used and their overall integration.

C hap ter 3 presents problem  o f  cam era and eye/hand calibration. Several 

contributions are introduced in this part. First, a m odification o f  an existing cam era 

calibration m ethod is proposed. T hat perm its us to determ ine the nonlinear cam era m odel 

by using only closed-form  (non iterative) com putations. Second, a statistical approach  to 

cam era calibration is proposed. This approach perm its us to com pute a m easure o f 

accuracy fo r the obtained param eter values. This confidence m easure allows to asses the 

cam era calibration accuracy and to fuse multiple da ta  in o rder to achieve better param eter 

estim ates. N ext, eye/hand calibration procedure is presented. Experim ental results are 

given and discussed.

C hap ter 4  presents m ethods fo r image processing and im age representation 

needed fo r extracting necessary information fo r the purpose  o f this w ork. As a result o f 

this processing stage, an im age is represented as a list o f  straight-line segm ents. This 

im age representation m akes the subsequent stages efficient and feasible.

C hap ter 5 introduces a new technique for 3D structu re  (3D  geom etrical model) 

estim ation o f objects within a class o f objects, by using m onocular im age sequence and 

know n cam era m otion. The technique is based on tracking line-segm ents over image 

sequences. T he tracking process consists o f prediction, m atching and updating stages. 

T hese stages are handled in a Kalman filtering fram ew ork o f covariance based prediction, 

m atching and updating. The prediction stage o f our tracking process does no t use 

heuristics abou t m otion in the im age plane and applies to  arbitrary cam era m otion. The 

prediction is based on assum ptions about object structure (i.e. a rough know ledge o f  a
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distance betw een cam era and an object is assum ed know n and the depth  ex ten t o f  the 

object is sm all com pared w ith the cam era-object distance) fo r  the initialisation phase, the 

rest o f  the tracking process is based on estim ated object structure . T he m atching stage 

is based on the simple nearest-neighbour m atching algorithm  using the M ahalobonis 

(statistical) distance as a similarity m easure. The updating stage is based on standard 

Kalman filter estim ation algorithm . Experim ental results from  a cam era m ounted  on a 

robot arm  are  presented to show  the efficiency and accuracy o f  the proposed  algorithm .

C hap ter 6 proposes a novel control schem e fo r ro b o t m anipulator guidance 

based on visual inform ation. The robo t arm positions and orientates its g ripper with 

respect to a 3D object, using vision data, in order to achieve desired  grasping relation 

betw een the gripper and the object. The proposed control schem e consists o f tw o distinct 

stages: 1) Teaching stage, in the teaching stage the ro b o t reconstructs a 3D  reference

m odel o f  a presented unknow n object w ithin a class o f objects, by in tegrating  inform ation 

from  an im age sequence obtained from  a cam era m ounted on the ro b o t arm  (eye-in-hand 

configuration). The m odel is represented and stored as a se t o f  3D  straight-line segm ents. 

T he ro b o t is also taught desired grasping relation. 2) Execution stage, in the execution 

stage the ro b o t system reconstructs a 3D observed m odel o f the arbitrarily placed 3D 

object and determ ines the necessary m otion in order to achieve desired  position and 

orientation o f its gripper with respect to the object, by estim ating the 3D  displacem ent 

betw een reference and observed models. The displacem ent estim ation is based on 

"hypothesise and verify" paradigm. Further, the basic algorithm  is extended to handle 

m ultiple ob ject m anipulation and recognition The perform ance o f  the p roposed  algorithm s 

has been tested  on the real robot system , and the experim ental results are presented  .

C hap ter 7 presents the conclusions o f the study and offers suggestions fo r further

study.

3



Chapter 2

Experimental Set-Up

For the purposes o f this w ork  the following equipm ent, devices and softw are have 

been used.

2.1 Robot manipulator (arm)

A  robo t m anipulator consists o f a sequence o f links connected by independently 

driven jo in ts. The robo t arm has revolute and/or prism atic jo in ts. T he assem bly of 

sequential links m akes up a kinem atic chain.

T he prim ary objective o f the robot m anipulator is to carry out m anipulation tasks 

in its w orkspace. T he m anipulation task  is described as a sequence o f positions and 

orientations o f its gripper. T he robo t arm is controlled in the jo in t space and the task  

definition is usually given in the w orld space (Cartesian space). It is a central question to 

define the relation betw een the robot jo in t coordinates and w orld coordinates o f its 

gripper.
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This problem  is denoted as robot kinem atic m odelling [Paul81], [C ry86], 

[F u88]. This problem  is tw ofold, it com prises the d irec t k inem atic m odel and inverse 

kinem atic model. Efficient w ay to derive the kinem atic m odel is by using hom ogeneous 

coord inate  transform ations. By using D anavit-H artenberg convention fo r hom ogenueous 

transform ation definition, the direct kinem atic m odel o f the ro b o t arm  can be derived 

easily.

The direct kinem atic m odel gives the relation betw een the position and orientation 

o f the robot gripper and the robot jo in t coordinates, that is

w here x, y, z  are coordinates o f the robot gripper position vec to r w ith respect to the 

w orld  reference fram e, a ,  (3, 7 are Euler angles o f the gripper ro ta tion  (A ppendix A) 

w ith respect to the w orld reference frame, 9; ,...,0  n  are jo in t coordinates o f  the robo t 

and n  is the num ber o f  jo in ts (degrees o f  freedom ).

T he inverse kinem atic m odel is inverse solution o f Eq.(2.1), that is

T he inverse kinem atic m odel is solved either in the closed-form  or num erically, depending 

on the particular robot configuration.

x

y

(2. 1)

6:
= / _1U ,y ,z ,o t,(3 ,Y ) (2.2)
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In ou r research w ork, the Unimation PU M A  robo t m anipulator is used. The 

PU M A  robo t m anipulator has six revolute degrees o f freedom . This m eans, tha t the 

P U M A  robo t arm  can achieve the arbitrary position and orientation o f its hand within its 

w orkspace. T he PU M A  robo t m anipulator is driven with six D C  m otors. Its m easurem ent 

system  consists o f increm ental shaft encoders m ounted on each m otor. Its overall w ork  is 

contro lled  by M A R K  robo t controller. The robo t con tro ller supports  off-line 

program m ing o f the robo t tasks in the high-level procedural robo t language V A L. VAL 

language offers m otion instructions in the jo in t space and the w orld space as well. The 

k inem atic structure o f the PU M A  robot is show n in Fig.2.1.

As can be seen from  Fig.2.1.1 all m otion specifications are given w ith respect to 

the ro b o t w orld coordinate system (X Y b, Zj,) fixed at the robo t base, the robo t hand 

coord inate  system  (Xh, Yh, Z h) fixed at the robot hand and the jo in t space. 

T ransform ations betw een the w orld and jo in t space are done according to the inverse and 

direct robo t kinem atics. The robo t controller provides the w orld coordinates o f  the hand 

and jo in t coordinates o f  the robot.

Figure 2.1.1 PU M A  Robot Kinem atic S tructure
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2.2 Camera and frame store

In this w ork the SO N Y -77ce CC D  cam era is used. The cam era has 8.8 m m  x 6.6 mm 

sensing area. The sensing cell size is 0.011 mm x 0.011m m . The cam era provides C C IR  

video signal with 14.1875 M H z. W e use a 16 mm lens C m ounted. T he Im aging 

T echnology fram e sto re  is used. This fram e store  generates a digital im age w ith 512 x 

512 pixels spatial resolution. The intensity level is quantizied with 8 bits. T he fram e sto re  

sam pling frequency is 10 M H z. The fram e store  is I/O  m apped to the PC  bus. For the 

basic access to the fram e store the M A V IS softw are lib rary  is used.

2.3 Overall system integration and implementation

The cam era is fixed on the robo t hand by m eans o f  a custom  m ade m echanical 

fixture. The fram e store is fitted to a PC -386 com puter. T he PC  is in terfaced to  the ro b o t 

con tro ller via a serial link (9600 bauds). The com m unication softw are w as developed 

allow ing to control the robo t m otion and to  acquire the robo t state inform ation from  the 

PC com puter control softw are. A n im age o f  the Set-Up is show n in F ig.2.3.1.

The overall softw are im plem entation of the algorithm s presented in this d isertadon  

w as done by the author in C language on the PC  com puter. The source code is available 

from  the author.
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Figure 2.3.1 Experimental Set-Up
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Chapter 3

Camera and Eye-Hand Calibration

In  this chap ter the problem  o f cam era calibration and problem  o f  eye/hand 

calibration are considered. Cam era calibration param eters, intrinsic param eters consisting 

o f  the effective focal length, radial distortion coefficient, scale fac to r and im age centre, 

extrinsic param eters consisting o f the ro tation m atrix and translation vector, are 

determ ined and analysed. The m ain contributions o f  this w ork  are follow ing. Firstly, a 

m odification o f an existing cam era calibration m ethod is proposed, tha t perm its 

determ ination o f  the nonlinear cam era m odel by using only closed-form  (non iterative) 

com putations. Secondly, by using a statistical e rro r m odel o f calibration points ex traction  

in digital im ages, w e form ulate the cam era calibration problem  in term s o f optim al 

estim ation fram ew ork. This statistical approach enables us to com pute a m easure o f 

accuracy o f obtained param eters. This confidence m easure allows us to asses the cam era 

calibration accuracy and to fuse m ultiple da ta  in order to achieve better estim ates. 

Thirdly, w e in troduce a new statistical m easure, that can be used to evaluate the 

perform ance o f the calibrated cam era in term s o f  the 3D m easurem ents. F urther, eye/hand 

calibration is presented. The experim ental results are given.
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3.1 Introduction

C alibration o f cam eras is an im portant issue in the m achine vision. A ccurate 

calibration o f  cam eras is especially crucial fo r m easurem ent applications. The objective of 

cam era calibration is to estim ate the intrinsic cam era param eters, w hich describe the 

im age form ation process and to estim ate the extrinsic cam era param eters, w hich describe 

the geom etrical relation betw een the cam era and the scene. The existing techniques for 

cam era calibration can be classified into follow ing categories:

• D irect nonlinear minimisation: In this group, equations that relate the param eters to 

be estim ated with 3D coordinates o f calibration points and their im age plane 

projections are established. The search fo r unknow n param eters consists o f  an 

iterative algorithm  with an objective to minimise residual errors o f  som e equations. 

T he main advantage o f these m ethods is ability to  include different types of 

distortions. They give accurate solutions provided that the m odel is good  and co rrec t 

convergence has been achieved. The main disadvantage o f  these m ethods is the need 

fo r a nonlinear search for several unknow ns, consequently, the p roper convergence to 

the global minima can not be guaranteed unless a good initial guess is available, noise 

level is low  and also the search procedure is w ell designed.

• C losed form  solution: In this types o f algorithm s, param eter values are com puted  

directly through non iterative algorithm s. Since no iterations are requ ired , the 

algorithm s are fast and the solution is guaranteed. The main d isadvantage is tha t the 

nonlinear cam era distortions can not be included and the calibration points can not be 

coplan ar.

• T w o stage m ethods: The m ethods in this group [Tsa87], [Len87], [W en92] involve a 

direct non iterative solution fo r m ost o f  the calibration param eters and som e iterative 

solution for the o ther param eters. The m ain technique includes one presented  by Tsai 

[Tsa87]. The radial alignment constraint is used to derive a closed-form  solution for 

the m ost external param eters (the ro tation matrix and tw o com ponents o f the
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translation vector). Then an iterative search is used to determine the rest of the 

calibration parameters (the effective focal length, the radial distortion coefficient and 

the depth component in the translation vector). Lenz and Tsai [Len87] added two 

additional parameters, namely the image centre coordinates, which were considered 

to be known in [Tsa87] to the set of iteratively determined parameters. The 

advantages of their method are as follows:

1) The radial lens distortion is considered

2) The number of parameters to be estimated through iterations is small and a good 

initial guess is provided

3) The calibration points can be coplanar

3.2 Relation to previous work

In all of those above mentioned techniques either linear or nonlinear unweighted 

least-squares estimation is done. The unweighted least-squares estimation is optimal in the 

sense of minimum variance, provided that the equation residual is uncorrelated zero-mean 

random noise with equal variance. If residual components have different variances or they 

are correlated the unweighted least-squares will not give an optimal solution in the sense 

of minimum variance. The least-squares minimization makes sense only when error 

behaviours are well understood. Moreover, if the optimal solution that minimizes the 

cost function is found, this does not necessarily mean that the each component of the 

solution vector is reliable, depending on the noise level and observability of the 

measurement equations. In case of camera calibration this reflects interaction between the 

intrinsic and extrinsic camera parameters. In all of those techniques there is no measure of 

accuracy of final camera parameters. In this chapter, we address the problem of statistical 

analysis of camera calibration parameters and we give a new method to determine some 

of the camera parameters. This approach permits us to use the weighted least-squares
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estimation of camera parameters and to achieve the minimum variance estimate. More 

importantly it allows to compute confidence bounds of estimated camera parameters. 

This is important for the following reasons

• It allows us to asses the quality of the camera calibration

• It detects unreliable and unstable camera calibrations

• It allows us to fuse multiple data in order to improve calibrated parameters

For this purpose we use the two-stage method proposed by Tsai [Tsa87] with the

following differences

• In [Tsa87] the image centre coordinates were assumed to be known in advance. 

Later on in [Len87] an iterative method of determining the image centre coordinates 

was proposed. We propose a closed-form solution for the image centre coordinates.

• In [Tsa87] the iterative search is employed in order to find some parameters. We 

propose closed-form solutions for all camera parameters.

• By computing noise properties and using minimum variance estimation, we improve 

the parameter accuracy.

• The confidence bounds of all parameters are computed.

• The multiple data for intrinsic camera parameters are fused.
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3.3 Camera model

This section describes the camera model and defines the calibration parameters. 

The camera model is basically the same as that used by a lot of calibration techniques 

mentioned above. The camera model is based on perspective projection and assumes that 

the lens distortion is radial one. The first model is a pinhole camera model that neglects all 

optical distortions. The second model takes into account the radial lens distortion as the 

most dominant one. Fig.3.3.1 illustrates the basic geometry of the camera model.

xc camera
O

xf frame store

yc
(cx.cy)

V
yf

Figure 3.3.1 Camera Model

(xw  yw  zw) are the 3D coordinates of the calibration point P  in the 3D world coordinate 

system. (xc, y c, zc) are the 3D coordinates of the same point in the camera centred 

coordinate system. The camera coordinate system is centred at point O, the optical centre, 

with zc axis the same as the optical axis, (x, y) is the image coordinate system centred at 

the intersection of the optical axis zc and the front image plane and parallel to xc and y c 

axes of the camera coordinate system ./is the distance between front image plane and the 

optical centre. (xu, yu) are the image coordinates of P if a perfect pinhole camera model 

is used, (xj, y^) are actual (distorted) image coordinates of P  which differ from (xw yu)
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due to lens distortions. The image plane is sampled and stored in the computer (frame) 

memory, (xf, yfi are pixel coordinates of the discrete image in terms of rows and columns. 

Additional parameters must be introduced and calibrated that relate the image coordinates 

in the front image plane to the computer image coordinate system. Thus, the overall 

transformation from (x, y, z) to (xp yp) must be established. This overall transformation is 

given as follows:

1) Rigid body transformation from the object world coordinate system 

(Xw y w  zw) to the camera coordinate system (xc, y c, zc)

V

1

__
_i X' X ' x w '

yc = U  rs r6 -f
*y

= R yw

. Z c _ 1 0̂ 1__ z. W _ A .

where R is a (3x3) rotation matrix defining the camera orientation, and T  is a translation 

vector defining the camera position. Extrinsic parameters to be calibrated are R and T.

2) The transformation from the 3D camera coordinate system (xc, y c, zc) to ideal 

(undistorted) image coordinates (xu, y u) using perspective projection with pinhole camera 

geometry

y „ - f —  (3.3.2)
Zc Zc

w h e r e / i s  the effective focal length o f the lens. The param eter to be calibrated  i s / .

3) The transformation between ideal image coordinates and real (distorted) image 

coordinates is given by
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x  = -------- —-----------  v = --------—------------------- (3 3 3)
“ (1+ k ( x ] + y ld) y  “ (l + A(x’ +y2))

where & is the radial lens distortion coefficient. The parameter to be calibrated is k.

4) The transformation between real image coordinates (x ,̂ yd) and computer 

image (frame buffer) coordinates (xp, yp)

xd = s xdx(xf - c x), yd = sydy(y f - c y) (3.3.4)

where

(xp yp) are row and column numbers of image pixels in computer memory

(cx> Cy ) are row and column numbers of the centre of computer frame memory

dx is centre to centre distance between adjacent sensor elements in x  (scan line) direction

dy is centre to centre distance between the sensor elements on the image plane along _y

axis

sx  is scale factor along x direction

Sy is scale factor along y direction

5) To transform between computer image coordinates (in terms of rows and 

columns in frame buffer) and real image coordinates, obviously distances between the two 

adjacent sensor elements in both directions (dx, dy) need be used. These distances are 

available from manufacturers with submicron accuracy for CCD cameras. In case of solid 

state CCD cameras, there is one to one mapping between rows in the computer image and 

video lines from cameras. This implies that the vertical scale factor Sy is equal to one. 

The situation in the x direction is different. A video line is generated by scanning Nc 

number of sensor elements in the x  direction. This line is sampled by the computer into Np 

samples. It follows that the horizontal scale factor sx is roughly given by
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s ( 3 .3 .5 )

However, this value is only a rough one due to hardware timing mismatch between image 

acquisition and camera scanning hardware. It is desirable to calibrate the sx  value. The 

parameters to be calibrated are the image centre (cx> c-y) and the horizontal scale 

factor sx .

By substituting from Eq.(3.3.1) to Eq.(3.3.5), the complete camera model is given by 

[Tsa87]

3.4 Tsai's calibration method

The calibration problem is stated in the following terms. Given a sufficient 

number of calibration points (xj, y/, z{) and their corresponding pixel locations (*y/, yy{ ), 

estimate the set of external (R, T) and internal if, k, cx, Cy, sx) parameters from the 

camera model given by Eq.(3.3.6). The very efficient solution for the camera parameters, 

provided that the image centre (cx, cy ) and the horizontal scale factor sx are known in 

advance, is given in Tsai's two stage calibration procedure [Tsa87]. The first stage uses 

the radial alignment constraint. This constraint follows from Eq.(3.3.6) by dividing the 

first two equations with each other. Calibration points are assumed to be on a common 

plane. The (x, y, z) coordinate system can be chosen so that z = 0 for all points. By doing 

so we have

rxx + r2y + i\z + tx _  sxdx(xf - c x) 
r,x + rsy  + r9z + tz (1 + kD2)

r4x + rsy  + r6z + ty _  dy(yf -  cy) 
r7x  + rsy  +  rsz + tz (1 + kD2)

D 2 = [sdx(xf - c x)]2 +[dy(yf - cy) f

(3.3.6)
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y<axiri + y*yi r2 + y*tx - - xdiy trs = xdi (3.4.1)

where

ri r2 = — , '-4 = - .  rs = ~ i  * > -  (3.4.2)
i,  f, f, i,  i,

With the number of calibration points larger than five, an overdetermined system of linear 

equations can be established and solved for five unknowns r[, r2, r4, r5, tx. By using 

properties of rotation matrices, we have [Tsa87]

2 _ -4(r,r; - r 4r2) ]
2(r1V5'-r > 2)2

2 n 0.5

S r = r i  + 7 2 + r 4 + ? *4 (3.4.3)

Having determined t y  from Eq.(3.4.3), ry,r2,rA,r5 and t x  are determined from Eq.(3.4.2). 

The overall rotation matrix is given by

R  = 4̂ r5
ri  h

V1_r42- ' (3.4.4)

where r7, r8, r9 are determined from the outer product of the first rows using the

orthonormal property of the rotation matrix. In the second stage, with R ,  tx  and t y

determined, the Eq.(3.3.6) becomes a nonlinear equation with/, ¿and t z  as unknowns. In 

[Tsa87] the nonlinear least-squares criterion was established and solved by an iterative

method, completing the calibration of camera parameters.
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3.5 Minimum variance estimator

Let a set of linear measurement equations be given by

Z = Hx + e, E(e) = 0, E (eet ) = W (3.5.1)

where x is a parameter vector, Z is a measurement vector, e is a noise vector with zero- 

mean and covariance matrix W. The minimum variance estimate [Gel74], [Bar88] of 

the parameter vector* is defined as the minimizer of the cost function given by

min ( Z - H x ) TW~l ( Z - H x )  (3.5.2)
X

Let us consider in general a nonlinear measurement equation in the form

f ( x , a ) - 0, a = a  + E, E(e) = 0, E (eet ) = R (3.5.3)

where a* is an observation vector corrupted with additive noise e, x  is a parameter vector 

and R is variance of the measurement noise e. Suppose that we have a good estimate x* 

of the true parameter vector. We can use the idea of linearization and expand f(x, a) in the 

vicinity (x*, a*) in the following manner



This equation can be rewritten as

z = hx + mE

. ». 3 / 0 * , a*) *
z  = - f ( x  ,a   ' - x

uX
d f(x * ,a * )  (3.5.5)

dx
_ d f ( x \ a )

3a

This equation now  appears as a linear m easurem ent equations fo r the param eter vecto r x  

w ith a new additive noise me. W e can com pute second o rder statistics o f  the new  

m easurem ent noise as follows

v = mE, E(v)  = 0, W  = E ( w T) = mRmT (3.5.6)

H aving a set o f  nonlinear m easurem ent equations /¡(x, a) = 0, having an approxim ate 

solution o f the param eter vecto r x*, perform ing above derived linearization and assum ing 

th a t the m easurem ent noise is uncorrelated, w e can define the m inim um  variance 

estim ator o f the param eter vector x  as

min 'S \{ z i - h ix ) T w^iZi-hs) (3.5.7)
* M

w here Zp hi and w( are determ ined  according to E q.(3 .5 .5) and E q.(3 .5 .6)

The m inim um  variance estim ate is given by

x  = S~]B,  C o v (x )  = S~l , S  = ± h ? WT %  5 = ^  h fw ~ lZi (3.5.8)
/=i ¡=i

The m inim ised residual is given by
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J  =  X  ^  "  hi^ )T wi 1 (z, -  /l,x)
i=l

(3.5.9)

The minimised residual has a %2 distribution w ith n-nx  degrees o f freedom  up to the first 

order approxim ation and assum ing Gaussian noise, n is the num ber o f equations and nx  is 

the size o f the param eter vector x.

3.6 Statistical approach to camera calibration

T he horizontal scale factor sx  can be easily, accurately and independently 

estim ated by using a square calibration pattern in front o f the cam era, approxim ately 

parallel w ith the im age plane and approxim ately centred  a t the im age centre. This 

arrangem ent is show n in Fig.3.6.1.

Figure 3.6.1 A rrangem ent for Scale Factor D eterm ination 

From  Fig.3.6.1 and Eq.(3.3.4) follows

x d l = s xd x (x f l - c x), x d2= s xd x ( x f 2 - c x )

y*i = dy(yfi - cy\  yn = dy(yf2-cy)
(3.6.1)
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by manipulating Eq.(3.6.1) we have

xd lZ xJL = s d x (xf2- x f i) 

y  d i ~  ydi x d y { y f l - y f ,)
(3.6.2)

taking into account above mentioned geometric assumptions, the left hand side of the 

Eq.(3.6.2) becomes one, leading to the expression

where Ny and Nx are the horizontal and vertical lengths of the square image in pixels. 

The variance of sx  is computed up to the first-order approximation as

where Var(Nx) and Var(Ny) are variances of Nx and Ny respectively. They are of order 

of a few pixels. Multiple measurements of sx can be taken and fused according to the 

minimum variance estimation (Section 3.5).

We arrange the radial alignment constraint Eq.(3.4.1), in such a way which 

permits us to determine the image centre coordinates in addition to parameters originally 

determined from the radial alignment constraint [Tsa87]. This arrangement has the form

° s [S tf, dNy l  0 Var(Ny) \
ds ds Var(Nx) 0 dNx

(3.6.4)

dyyriXi?i + dyyfiytr2 + dyyfitx + dxxflx{r4 +dxxfty,r5 - dyxipl - dyy-tp2 - dyp3 = dxx,

where

(3.6.5)



The equation Eq.(3.6.5) is a linear equation w ith e igh t unknow ns 

(rl ,r2,rA,r5, t x , p l , p 2, p ?>) . Minimum o f  eight calibration points and their corresponding  

im age points are necessary to solve fo r eight unknow ns. B ecause o f noise m ore points are 

desirable. An overdeterm ined system o f  linear equations can be form ed and solved. 

H aving solution fo r the interm ediate param eters ( p ^ p 2^pj )  perm its us to  solve fo r the 

im age centre coordinates by solving three linear equations w ith tw o unknow ns E q.(3.6.6).

W e define the minimum variance estim ator o f the param eters contained  in the 

radial alignm ent constraint in the follow ing two-step m anner

• Solve the overdeterm ined system of linear equations Eq.(3.6.5), using ordinary  least- 

squares (unw eighted least squares) m ethod, fo r the solution vec to r x *  =

• Linearizing m easurem ent equations E q.(3.6.5) around obtained solution vec to r x *  

and m easurem ent vectors (xfi, yjj)  (the m easurem ent vecto r is the im age pixel 

location with its corresponding extraction noise) and applying the p rocedure  from 

the section 3.5, w e form ulate and solve the minimum variance estim ation problem  

(w eighted least-squares). T ha t gives the minimum variance estim ate and 

corresponding covariance m atrix of the solution vector

(r[,r2,r^r5,tx, p v p 2,p^)*

n n

C heck if  the estim ate is consistent, by testing that the m inim ised residual

n

1=1

is a x 2 d istributed variable w ith (n-8) degrees o f freedom
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• Solve fo r the image centre coordinates (cx , Cy) from  E q .(3 .6 .6 ) by applying the 

procedure from  the section 3.5, that gives the minimum variance estim ates and their 

covariance m atrix

• Solve fo r the elem ents o f the R  m atrix and tx  and t y  com ponents o f  the T  vector 

according to Eq.(3 .4 .2), E q.(3.4.3) and E q.(3 .4 .4). V ariances o f  each  elem ent in 

the m atrix R  and vector T  are com puted up to the first-o rder approx im ation  as

a )  =  J W J T

w here J  is Jacobian o f an elem ent w ith respect to in term ediate param eters given by

_  de de de de de

9r, dr2 dr4 dr5 tx

and W  is the covariance m atrix o f the interm ediate param eters obtained above

B y substituting these found values fo r R ,  tx  and t y  into E q .(3 .3 .6 ), we have a 

nonlinear equation relating the rest o f cam era param eters (f , k , t ,) .  B y introducing 

in term ediate param eters, the nonlinear Eq.(3.3.6) can be rew ritten as fo llow s

[a, b, c ]X  = e, X  = [ / ,  t , ,  k f]  (3.6.7)

w hich has a  linear form  with respect to interm ediate param eters X .

W e define the minimum variance estim ator o f the param eters f ,  k  and tz  in the 

follow ing tw o-step m anner
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• Solve the overdetermined system of linear equations Eq.(3.6.7), using ordinary least- 

squares (unweighted least-squares ) method, for the solution vector x*  = ( / ,  tz, kf)

• Linearizing measurement equations Eq.(3.6.7) around obtained solution vector x*  

and measurement vector ( x p  yj[) (the measurement vector is the image pixel 

locations with its corresponding extraction noise) and applying the procedure from 

the section 3.5, we formulate and solve the minimum variance estimation problem 

(weighted least squares). That gives the minimum variance estimate and 

corresponding covariance matrix of the solution vector

x  =  S~[B,  C ov(x)  = S ~ \  S ^ h J ' w r 1̂ ,  B  = ^ h f w ; lZi
¡=1 i=l

• Check if the estimate is consistent, by testing that the minimized residual

J  =  j r  (z; -  h - x f  w~l (z; -  h,x)
;=i

is a x 2 distributed variable with (n-3) degrees of freedom

This completes the determination of all camera parameters and their variances. 

Thus, measurement uncertainties introduce calibration inaccuracies whose magnitudes 

depend on the experimental conditions. Above presented procedure give the relationship 

between magnitudes of random errors and calibration inaccuracies. Thereby, the validity 

of calibrations can be assessed, unreliable and unstable calibrations can be detected and 

data fusion can be performed. Since, the intrinsic parameters are independent of extrinsic 

parameters, different data with their covariances obtained by moving camera to different 

position can be fused, giving improved estimate in the minimum variance sense of the 

intrinsic parameters. At different positions of the camera, we estimate the intrinsic camera
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param eters and their covariances. The m ultiple data  are fused according the minimum 

variance criterion  (Section 3.5).

3.7 Evaluation of calibration accuracy

H aving cam era param eters calibrated and their confidence bounds available, it is 

still difficult to  have insight about the perform ance o f the calibrated cam era  in the 3D 

m easurem ent application. Classical criteria to assess the 3D  m easurem ent perform ance of 

the calibrated  cam era is the accuracy o f 3D coordinate m easurem ents obtained through 

stereo triangulation using the calibrated cam era. One o f them  is the average norm  o f 3D 

positional difference betw een m easured and true values o f 3D point coord inates, it is 

referred  to as R M S  (root m ean square) m easure. R M S  criteria is given by

w here X m ( and X t[ are true and m easured 3D  point coordinates. This criteria  depends on 

the actual geom etry  o f the stereo set-up and the cam era param eters as well, by adjusting

having poorly  calibrated camera. For that reason, we introduce a statistical criteria  for 

assessing the calibrated param eters, which is insensitive to the actual stereo set-up.

The geom etry  o f the stereo set-up is presented in Fig.3.7.1.

(3.7.1)

the geom etry o f  the stereo set-up a good m easure o f this criteria can be achieved by
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Figure 3.7.1 Geometry of Stereo Set-up

From the figure we have the following equations for computing the 3D coordinates of the 

points in the world coordinate system, in terms of the left and right calibrated camera

i _ f i rix+rjy + i j z + i  
r ‘x + t{y  + ^ z  + t'z

i . ¡ r l x + r j y  + r l z+ t l
v = r

r7* +  r8'y + rgz + i'

_  f t i\x + r;y + r;z + trx 
r'x +  r ly  + r'z  + t[

r _ fr rjx+r^y + r'z+t;  
rjx+rjy + rjz+tl

By locating the point images in the left and right image, and correcting distortion 

according to the camera model, these equations can be solved for unknown 3D 

coordinates of the point. The minimum variance estimator (section 3.5) is used to 

estimate 3D coordinates. That gives the solution vector and its associated covariance
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matrix, which takes into account the image digitisation noise and treats the camera 

parameters as constants. By doing so, we obtain

* , =

x,

yt

Zi

Cov(Xi) = Wi

We use the x2 statistical test to asses the accuracy of the parameters in the following 

manner. Let us define

qi = ( X l - X l ) TW,- ' (Xi - X , )

qi is a x2 distributed variable with 3 degrees of freedom, X( is the true position vector of 

the point. From the p.d.f  of x2 distribution it is easy to determine a confidence interval, 

such that

9i *  X2W

is satisfied with desired probability Pr (we usually use the confidence interval of 95%, 

which gives the threshold value of 3.84). From this, it is obvious if the camera 

parameters are well calibrated, the image noise is well described, regardless of the actual 

stereo set-up and image resolution, the above test will be satisfied. Based on this we 

introduce the measure of accuracy as follows

Ca = ^~ (3.7.2)
P.

where Pe is the probability of the x2 distribution equal to Pr, and Pa is actual probability 

computed over all test points. It is obvious that this measure is close to one for well 

calibrated cameras. In ideal case for perfectly calibrated cameras it is equal to one and for 

well calibrated cameras it is slightly greater than one.
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3.8 Experimental results

1) Description of calibration set-up

The set-up used in this calibration experiments consists of a planar calibration 

pattern. The images o f the pattern were taken by a CCD camera mounted on a robot arm. 

The digitizer gives 512 x 512 pixels and 8 bits/pixel. The calibration pattern consists of 

twenty five squares and was custom made. The calibration pattern is shown in 

Fig.(3.8.1).

Figure 3.8.1 Camera Calibration Pattern

2) Image processing

The 3D calibration points are chosen to be corners of squares on the calibration 

plate with z component set to zero. Their spatial positions (.x^  Zwi=0) are reliably 

established owing to the accuracy of the calibration pattern. The corresponding image- 

point locations are estimated with a subpixel accuracy using the following procedure. The 

image of the calibration pattern is thresholded by an automatic threshold selection 

procedure. The edges of the squares are detected by using a simple binary edge detection
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algorithm. Edge points are linked by a contour following algorithm. The straight-lines are 

fitted to the contour points corresponding to the edges of the squares of the calibration 

pattern. The comer points are determined by computing intersections of the 

corresponding computed lines. Fig.3.8.1 shows detected comers. The overall procedure 

including the correspondence between 2D and 3D comers is fully automatic. One half of 

the points are used for the calibration and the second half of points are used for the 

accuracy assessment.

3) Image noise characterisation

The calibration points extraction noise is determined by corresponding 

digitisation noise. Each pixel is a rectangle with a side-length a in the x direction and b in 

the y  direction. Since the uniform round-off noise with a spacing equal to d  has a variance 

d2/12. The covariance matrix of the image point is given by

Cov -v

7 f .

V 012
0 ÈL

. 12.

d*  u i « = ^ — , b =  1
dy

From the data-sheet of our camera ¿¿t=0.011 mm and dry=0.011 mm. The value of 

horizontal scale factor ^=1.4875 is determined independently as described previously. 

This gives

Cov
A/

y/

1.4875
12

0

0 —  
12.

4) Experiment 1

We used the camera mounted on a robot arm. First, the horizontal scale factor was 

calibrated. Then, the robot arm was moved to various locations and orientations with
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respect to calibration pattern. At each position the camera parameters and their variances 

were computed. Table 3.8.1 shows the estimated intrinsic parameters of the camera and 

their standard deviations for five different locations of the camera. Table 3.8.2 shows 

the fused values of the intrinsic camera parameters and their variances. It is important to 

note, that each time during the experiments unreliable and unstable calibrations were 

detected.

n Sr. Cx Cy f k Dev
SY

Dev
Cx

Dev
Cv

Dev
f

Dev
k

1 1.487 244.1 267.7 16.13 -0.0013 0.004 18.3 14.7 0.22 0.00040
2 1.487 240.2 262.9 16.15 -0.0013 0.004 18.2 15.2 0.23 0.00038
3 1.487 240.7 253.5 16.22 -0.0014 0.004 18.0 15.5 0.24 0.00046
4 1.487 238.4 259.5 16.14 -0.0013 0.004 19.9 15.8 0.21 0.00030
5 1.487 247.5 280.0 16.15 -0.0013 0.004 20.2 16.5 0.21 0.00029

Table 3.8.1 Intrinsic Parameters

sr. Cx Cy f k Dev Dev Dev Dev Dev
SY Cx Cy f k

1.487 242.0 264.5 16.16 -0.001 0.0017 6.9 8.4 0.101 0.00015

Table 3.8.2 Fused Intrinsic Parameters

5) Experiment 2

The same camera mounted on a robot arm looking at the calibration plate is used. 

At one position, the intrinsic and extrinsic parameters are estimated by using calibration 

points. Then the robot arm is moved to another position looking at the calibration plate, 

and the intrinsic and extrinsic parameters are estimated again by using calibration points. 

This makes a stereo set-up. After this, intrinsic and extrinsic parameters of the camera at 

two position and sensed test points in the two images are used to determine 3D 

coordinates of the test points by using stereo triangulation. Since we know the positions 

of the test points in the world coordinate system, we can asses the calibration accuracy by 

comparing true and computed point coordinates. The values of the camera parameters
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and results of the triangulation test are given in Table 3.8.3. The rotation matrix is 

parametrized by Euler angles (Appendix A).

Parameters Values - Position 1 Values - Position 2
Rotation 
matrix 
(roll, pitch, 
yaw angles)

oc=-3.1329
ß=-2.412
7=43.336

a = -1.547
ß=7.922
7=43.799

Translation
vector

¿*=-139.215
¿v=-84.65
i7=289.573

¿*=-107.8
¿v=-77.96
¿7=311.3

Focal length f= 16.20 £=16.12
Image
centre

Cx= 243 , Cy=258 Ct=245, Cy=265

Scale factor sY= 1.487 j r= 1.487
Distortion
coeff.

¿=-0.0013 ¿=-0.0014

RMS measure RMS= 0.9 mm
Ca measure Ca = 1.09

Table 3.8.3 Stereo Triangulation Test

The values of the error measures RMS (Eq.3.7.1) and Ca (Eq.3.7.2) given in Table 3.8.3 

show well calibrated camera. Plenty of experiments were performed giving consistent 

results.

3. 9 Eye/Hand calibration

In order for a robot to use a robot hand mounted camera to estimate the 3D 

position and orientation of an object, it is necessary to know the relative position and 

orientation between the camera and the hand (eye/hand). This requires us to determine the 

relative rotation and translation (homogeneous transformation) between two coordinate 

frames, one centred at the camera optical centre, and the other at the robot hand. This is 

shown in Fig.3.9.1.
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A few efficient eye/hand calibration algorithms are given in [Shi89], [Tsa89], 

[Wan92]. The most efficient method for performing the hand/eye calibration with regard 

to speed and accuracy is method given in [Tsa89]. This approach is presented here and is 

used in this work. The relations between different coordinate systems and transformations 

used for calibration are shown in Fig.3.9.2.
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The list of definitions for coordinate systems used

• G/, The hand coordinate frame. The coordinate frame fixed on the robot hand and as 

the robot moves this frame moves as well.

• C[, The camera coordinate frame. That is, the coordinate frame fixed on the camera, 

with the z axis coinciding with the optical axis, and the x, y axes parallel to the image

axes.

• RW, The robot coordinate frame. It is fixed in the robot work space, and as the robot 

arm moves around, by using the measurement system the robot conU'oller tells where 

the hand is relative to RW.

• CW, The calibration object coordinate frame. This is an arbitrarily selected coordinate 

frame so that the coordinate of each calibration point is known relative to CW.

The list of definitions of homogeneous transformation matrices used

Hgi defines coordinate transformation from G; to RW

R"  Tgi 
0 0 0 1

Hci defines coordinate transformation from CW to C;

R c i  T c i

0 0 0 1

• Hgij defines coordinate transformation from G/ to Gj



R g ij  T t j  

0 0 0 1

• Hcij defines coordinate transformation from Q  to Cj

Cl] ci
0 0 0 1

Tcij

• Hcg defines coordinate transformation from C/ to G/ (eye/hand transformation)

Procedure to compute Hcg (Eye/Hand transformation)

Measurements

Measurements are Hci and Hgi for i=l,...,N. Hci are obtained from computing 

camera extrinsic calibration parameters (camera calibration section), using the image 

gathered at i-th position of the robot motion. It defines the relative rotation and 

translation from CW to Q . In other words it gives Hci matrix. Hgi are obtained from the 

robot controller at i-th position of the robot.

Elements to be computed

Intermediate elements Hgij, Hcij 

From Fig.3.9.1 follows

0 0 0 1

(3.9.1)

General homogeneous transformation matrix H  is given by
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where R is a rotation matrix and T is a translation vector. Since, the rotation has three 

degrees of freedom, the matrix representation of the rotation is nonminimal 

representation. The minimal representation is by three parameters. It is well known that 

any rotation can be modelled as a rotation by an angle 0 around an axis trough the origin 

defined with a unit vector n. It is obvious that specifying n and 9 completely specifies R 

and vice-versa. The relationship between n, 9 and R is given by [Tsa89]

R n _ R x  ' R n _ R3± ;ga_J k t C0S(9) = ^ -+ — + -̂  
2 sin (9 ) 2 sin (9) 2 sin (9) 2

Another convenient representation is a vector representation of the rotation. In other 

words it is possible to represent R by n vector scaled by some function of 9. One of such 

representation is the vector representation of the rotation. In this case, the rotation is 

presented by the vector [Tsa89]

Pr = 2 s in ^ j [ f l1 n2 n3]r ,O <0< 7t

where n is the rotation axis and 9 is the rotation angle. 

The relation between R and Pr is very simple

R = ( l - ^ - ) I + ^ { P rPrT + aSkew(Pr))

' 0 -V. Vy'
a  = ^ 4 - \ P r\2, Skew (V) = v* 0 - v;

r yy Vx 0

According to [Tsa89] the following procedure is used to compute Hcg.
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Procedure to compute Reg

C om pute the vector P'cg. For each pair o f different location i, j  se t-up  a system  of 

linear equations w ith P'cg  as the unknown

w here Pgij  is the vecto r representation o f the Rgij, Pcij is the vector representation  o f  the 

Rcij. Since, Skew  m atrix is always singular, it takes a t least tw o pairs to solve fo r a 

unique solution for P'cg  using linear least squares technique

• C om pute Peg

This system  can be solved for Tcg by linear least squares. This com pletes the eye/hand 

calibration (H cg ). The p roof o f this procedure is given in [Tsa89],

3.10 Accuracy assessment

The accuracy o f the eye/hand calibration results is assessed by how  accurately , the 

placem ent o f a cam era in 3D world with an arbitrary m anipulator m ovem ent, can be 

predicted. Since there is no absolute Hcg  ground truth to com pare w ith, the accuracy 

m ust be assessed as the erro r between predicted cam era pose com puted  by using the

C om pute R eg  according to Eq.(3.9.2)

Procedure to compute Tcg

For each pair o f locations i, j, set up a system  o f linear equations
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estimated Hcg and measured camera pose for some movements. This is done as follows. 

For each measurement position, used for collecting data for Hcg determination, compute 

the homogeneous matrix Hrc (transformation from robot world frame to calibration world 

frame CW) by

Hrc = K - K H - J

Make an average of Hrc for each measurement position. Estimate Hcg. Next, move robot 

to different positions and predict the camera pose relative to the robot world base 

coordinate R W by

Hnc = H ' lH~lpc eg gk

where Hgk is obtained from the robot controller. Compare this predicted pose with 

measured pose

H m e  ~  H c k  rc

where Hck is the measured pose of the camera. In order to compare these transformations 

we use RMS (root mean square ) measure. RMS measure is defined as

RMS
V w n

where X p i and X m ( are predicted and measured vectors. If matrices are to be compared 

using this measure, than matrices are stacked as vectors.
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1) Description of experimental set-up

3.11 Experimental results

A CCD camera is fixed to the last link of a PUMA-560 robot arm. The robot 

controller is interfaced to the host computer (PC -386) via a serial link, allowing to 

control the robot motion and access to the measurement system of the robot. The host 

computer is fitted with a frame grabber connected to the camera. All system is under full 

control of the host computer and all processing is fully automatic (Chapter 2).

2) Hcg determination

The robot makes a series of the preplanned motions, at each pause the camera 

calibration is done and Hci matrix is computed, the robot controller supplies Hgi matrix. 

At the end of motion, the Eye/Hand transformation (Hcg) and the transformation (Hrc) 

are computed. In Table 3.9.1 the calibrated Hcg matrix for 6 pairs of different locations 

is given.

Reg Teg (mm)

0.98866 0.08650 -0.12174 12.4
-0.07847 0.99123 0.06923 -13.5
0.12718 -0.05779 0.97889 126.4

Table 3.9.1 Eye/Hand Transformation Matrix

3) Hcg accuracy assessment

The robot makes arbitrary motions and predicted and measured camera pose is 

computed at each pause of the motion At the end of motion RMS error in the rotation 

matrix and translation vector is computed. Table 3.9.2 shows the errors for 6 test robot 

locations.
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Rotation matrix error Translation vector error (mm)

0.17235 5.5

Table 3.9.2 Errors in Eye/Hand Transformation Matrix 

3.12 Conclusions

In this chapter a modification to an existing camera calibration technique has been 

introduced, that permits us to determine accurately the parameters of the nonlinear 

camera model using only closed form (non iterative) computations. We have introduced a 

statistical analysis of the calibrated camera parameters that enable us to asses the 

accuracy of the estimated parameters, to fuse multiple data and to detect unreliable and 

unstable calibrations. A statistical measure to evaluate the performance of the calibrated 

camera in 3D measurement applications has also been introduced. The eye/hand 

calibration has been presented. The exprimental results indicate high accuracy obtained 

for both calibration problems.
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Chapter 4

Image Processing and Representation

In this chapter we present methods for image processing and image representation 

needed for extracting necessary information for the purpose of this work. Methods for 

transforming an image from its digital matrix representation to a very compact and 

structured representation which is suitable for the algorithms in the following chapters are 

presented. This representation consists of extracted image contours. Image contour 

points are extracted by a zero crossing technique. They are then grouped into contours by 

a gradient guided contour following algorithm. The obtained contours are approximated 

by straight line segments. Finally, we present an efficient data structure which supports 

fast data manipulation.

4.1 Introduction

Most image analysis problems are solved in two distinct stages. The first stage is 

called low-level and consists of extracting visual features (a symbolic representation), the 

second stage, called analysis, uses this information to perform a particular task. Visual 

features of an image are objects extracted from the image which contain pertinent 

information for its analysis. In general such features are either contours or regions of the 

image. The edges of the image are zones of transition between homogeneous image
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regions. They correspond to discontinuities of the image intensity. Physically, intensity 

discontinuities of the image correspond to discontinuities of parameters of the scene 

being viewed by the camera. Among them are

• The reflectance of the surface element

• The vector normal to the surface element

• The incident luminance intensity

The type of features used depends of the applications. In this chapter, we describe 

the low-level processing necessary to construct a symbolic representation of the image 

which is of use for our system. This representation is based on image contours.

4.2 Edge extraction

There are a lot of techniques for edge detection [Mar82], [Pra91], [Can86], all of

them are based on the definition of an edge as a zone of transition between homogeneous

regions. Two main approaches for detecting these transitions rely on either the first order 

derivatives or the second order derivatives of the image. Since, the digitisation and 

quantisation process introduces noise into a digital image, the computation of first and 

second order derivatives must be combined with some kind of local smoothing of the 

image, to improve the signal-to-noise ratio.

Gradient-based techniques usually label a point in an image as the edge point if 

the gradient magnitude at the point exceeds a given threshold value. The different 

methods to compute the gradient of the image give different gradient operators, such as 

Sobel, Robert, Gaussian operators [Pra91],
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In this work we use the second order derivative based technique. The zero 

crossing technique, initially introduced in [Mar82], consists of first filtering an image by a 

low pass filter, in order to remove the higher spatial frequencies which generally 

correspond to image acquisition noise. Next, Laplacian of the filtered image is computed. 

The zero crossings of Laplacian of the filtered image correspond to the maximal points 

of the gradient image, i.e. to places where the intensity of the image changes the most 

rapidly. Formally, let l(x, y) represent the image intensity function and G(x, y) represent 

the point spread function of the low pass filter. Then filtering is obtained by the 

convolution product

l f  = G * I

followed by the Laplacian computation

2 # l f  d2I f  
V  I  - —  —

'  32* d2y

The filter impulse response is generally Gaussian and is given by

2 ( * W )

where the parameter a  controls the smoothing level of the filter, or the resolution at 

which zero crossings are detected. The reason for using the Gaussian function for 

smoothing (filtering) is quite straightforward. The Gaussian function permits us to choose 

the resolution at which intensity changes are manifested in the image, i.e. to choose the 

level of detail which is retained in the image. For example, an image which has been 

smoothed just a little (small cr) will retain a significant amount of detail, while one which 

has been smoothed a great deal (large a) will retain only the gross structure.
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Since, the two-dimensional Gaussian function is separable into the product of two 

one dimensional Gaussian function, the convolution of the image with a Gaussian impulse 

response can be obtained by two one dimensional convolutions, with one dimensional 

Gaussian function [Ver91]. Specifically

G(x,y )  * I(x, y ) = G(x)  * (G ( y ) * / ( * ,  y))

Thus, the image is first convolved with a "vertical" Gaussian and then the resulting image 

is convolved with a "horizontal" Gaussian. This filtering can be realised by one pass over 

the image by using buffer size with the length equal to the size of the truncated Gaussian 

impulse response (Gaussian kernel). Zero crossing points are detected by checking the 

sign change in a (3x3) window across the image. For the purpose of discrete 

implementation, the continuous infinite Gaussian impulse response must be discretized 

and truncated. Normally, one chooses the quantization resolution of the function by 

deciding on the integer number which will represent the maximum amplitude at the centre 

point (i.e. 1000), and then one chooses the mask size which includes all non-zero values. 

Also, the Laplacian operator is replaced by its discrete approximation.

Since, the Laplacian itself is a high-pass filter even after smoothing an image it is 

possible to extract some zero crossing points which belong to zones of very low contrast 

and correspond to the texture introduced by image acquisition noise. These points can be 

suppressed by computing the gradient of the image at the detected zero crossings and 

retain only zero crossings whose gradient magnitude is above a threshold value. This 

combines the precision of the edge localisation by zero crossing and robustness to noise 

of the gradient based edge detectors. This operation is equal to a logical AND between 

the zero crossing image and the thresholded gradient image. The Sobel (3x3) convolution 

kernel is used for gradient computation. Zero-crossings of LoG image method for edge 

detection has the following advantages
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• The edge points extraction operations use only simple operations, which can be 

implemented efficiently, such as convolution and logical operations

• Since zero crossings define the transition from the regions of the different 

intensity, they form one pixel wide connected contours

• These contours are closed, since by definition they surround regions of the image 

with constant intensity

These characteristics give a computational advantage in the image processing when 

compered with the other methods for edge detection, such as gradient based or local 

maxima techniques.

Fig.4.2.1 shows an image of an industrial part. Fig.4.2.2 shows its edge image 

obtained as described above.

Figure 4.2.1 Raw Image of Object
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43 Boundary detection

As we discussed previously, edge detection is the first stage of the boundary 

detection. We need to aggregate these local edge elements, which are a relatively 

featureless representation, into structures better suited to the process of interpretation. 

This is usually achieved using processes such as edge linking, gap filling and curve- 

segments linking in order to generate a distinct, explicit and unambiguous 

representation o f the boundary. There are several techniques for boundary detection 

and they vary in the amount of domain-dependent information that is used in the 

grouping process [Bal82], [Ver91]. One of them called contour following is described 

in detail in the sequel and used in this work.
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4.3.1 Contour following

Contour following is a simple and fast approach which uses no domain-dependent 

information and "follows" the boundary exclusively on the basis of locally derived 

information. Essentially, all contour following algorithms start with a point which is 

believed to be on the contour (edge point) and to extend the contour by adding a 

neighbouring point using local information. This process of extensions is reiterated, 

starting at this new contour point. We use the following algorithm, described in detail 

below.

The algorithm scans the zero crossing image starting from the beginning (the 

upper left comer) in the left to right and top to bottom fashion. As soon as the zero 

crossing point is encountered a process of building a boundary is started. The point is put 

in a list and labelled as visited, and the next point to be added to the list from (3x3) 

neighbourhood is determined on the basis of the edge direction. The edge direction is 

computed from the gradient direction of the image at this point by using the Sobel (3x3) 

or (5x5) gradient operator. The edge direction at a point is defined by a=P±90, where p is 

gradient direction. The edge direction is coarsely quantized into eight direction in the 

(3x3) neighbourhood. Based on this information the priorities are defined for inclusion of 

the neighbouring pixel into the boundary. The algorithm attempts to chose the next 

contour point following directions in the increasing order, provided the direction one is 

the computed quantisied edge direction, as shown in Fig.4.3.1.1.

\
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Figure 4.3.1.1 Gradient Guidance
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This gradient guided contour following scheme shows a good robustness to the noise. 

Even though zero crossing contours are supposed to be one pixel wide, because of noise 

and digitisation it is possible to have thicker contours. These are suppressed by removing 

all points in the (3x3) neighboured except the chosen one. This allows us to avoid very 

costly morphological processing such as thinning. The process continues until a gap is 

discovered, meaning the contour cannot be extended any further. At this stage the 

algorithm will tray to till in gaps of predefined length which we chose as admissible 

breaks in the contour. In our implementation we chose the gap length up to three pixels 

in any direction. The guiding is based on the edge direction as described before. If the gap 

is filled in the process continues until the contour can not be followed any further, or the 

starting point is reached signalling closed contour. If the contour is closed, the contour list 

consist of all boundary points. If the contour is not closed, the contour following resumes 

at the starting point in order to group the second part of the open contour. In this case the 

process terminates when the contour can not be extended any further. In both cases the 

contour list is formed representing a boundary. After this the image scanning is resumed 

at the starting point of the previous boundary to group other contours. The process 

continues until the end of the image is reached. At this stage a list of contours and 

corresponding contour points have been formed.

4.3.2 Polygonal approximation

After processing an edge image by the contour following algorithm, the image is 

represented by a set of digital curves. Further structuring of these digital curves is 

necessary to bring out information pertinent to our intended application (visual 

reconstruction based on straight-line segments). The new structuring of the image data is 

obtained by polygonal approximation of the contours. This allows a further reduction of 

the image data and makes subsequent processing stages very efficient or even possible.
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According to [Pav82] each curve can be approximated up to desired accuracy by 

a polygonal line. This means that a digital curve can be represented instead of by all points 

by polygonal vertices only. This makes a considerable data reduction depending of the 

curve type. It is important to note that this approximation is not unique for desired 

accuracy, i.e. different polygons can achieve the same desired accuracy. One of the 

procedures for performing the polygonal approximation of the curve is the recursive 

splitting algorithm. In the splitting scheme, curve segments are continually divided 

(usually into two parts) as long as they fail some fitting condition.

The recursive splitting algorithm we use is given as follows [Pav82], Given a 

curve, the principle is to join two points of the curve by a straight line segment. For every 

point on the curve, compute its perpendicular distance to the straight line and find the 

point with the maximal distance e separating the curve from the line segment. If the 

distance is less than a threshold, the curve segment is approximated by the straight line 

segment, otherwise the initial chain is split into two at the point where the distance is £ 

and replace the starting curve segment with two new segments. Recursively apply the 

algorithm on both new chains until the predefined threshold is reached on every curve 

segment. This is shown in Fig.4.3.2.1.

x

Figure 4.3.2.1 Polygonal Approximation
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The main computational demand in this algorithm is to determine a point on a curve 

segment where the maximal distance e between the curve segment and a straight-line 

segment joining the curve segment endpoint occurs. An efficient method to determine this 

point is by transforming the curve segment to the coordinate system attached to the 

straight-line segment. In the transformed coordinate system this point is defined by the 

absolute maximal value of the y' coordinate of the curve segment points. This 

transformation is given by

1 1
 ̂

_

cos(0) s in (0 )T x -;t1 

-s in (0 ) cosW jL y -y ^
, T =

A
, 0 = atan

f  \
y2- y i

V X2~Xy J

, e = max ry

This is shown in Fig.4.3.2.2.

Figure 4.3.2.2 Maximal Separation Between Curve and Straight-Line Segment

From Fig.4.3.2.1 can be seen that the final approximating polygon depends on the curve 

itself and the starting partitioning points (A, B), even though the desired accuracy of
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approximation is independent of the curve and partitioning points. A change in 

partitioning points may result in a different number of polygon segments and different 

lengths and orientations of the segments. The simplest way to determine a set of 

partitioning points is to define a bounding box of a curve. The bounding box of a curve is 

a rectangle which encloses the curve. As described above by using contour following 

algorithm the connected points are detected and stored. The extreme points of the 

contour, that is, those having the minimal and maximal coordinates are stored as well. 

These points form the bounding box as it is shown in Fig.4.3.2.1 where points (Pp P2, P3, 

P4) define the bounding box. These points depend on the curve orientation in the image 

plane. In the case that the digital curve is close enough to a polygon, the bounding box 

coordinates will coincide with some vertices of the curve, and the polygonal 

approximation will be unique and independent of the curve orientation since the vertices 

of the approximating polygon cluster about high curvature points on the curve. Since the 

curves we anticipate dealing with consist of curved and straight parts, the partitioning 

points defined by the bounding box only cannot guarantee a unique approximation, 

independent of the curve orientation. Here we develop a way to make this process less 

sensitive to the curve orientation, for curves with distinct features such as sharp turns or 

comers, by detecting sharp turns, i.e. points on the curve with high curvature. We 

determine the high curvature points in the following manner. During the contour 

following, the edge directions of the edge points are stored. The high-curvature points 

correspond to the sharp changes in the edge directions. Basically, the Q-s curve [Bal82] 

is constructed, where 0 is the angle of a tangent to the curve and s is the arc length of the 

contour traversed. The horizontal parts of the 0-s curve correspond to the straight-line 

parts of the original curve (0 is not changing), while jumps and sharp changes in the 0-s 

curve correspond to comers and high curvature points in the original curve. Thus, by 

detecting the sharp transitions in the Q-s curve, we in fact perform detection of corners 

and other high curvature points in the original curve. The problem of detecting sharp 

changes along the curve is equivalent to the problem of edge detection in one 

dimension. So, we use the one dimensional zero crossing of the second derivative of the
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Gaussian smoothed Q-s curve as points with high curvature. The order of high curvature 

points are independent of the curve orientation and the starting point on the curve. The 

bounding box coordinates and high curvature point coordinates are then used to generate 

partitioning points.

Finally, the algorithm for polygonal fitting can be summarised as follows 

Step 1

Build an initial pseudo polygon using the bounding rectangle coordinates and the 

points with high curvature along the curve. This makes the fitting algorithm work equally 

well, regardless of the curve orientation and where it starts its operation on the contour.

Step 2

Modify and extend the pseudo polygon. In this step, the initial pseudo polygon is 

modified and extended to ensure an accurate approximation. Efficient implementation of 

this algorithm is by a recursive procedure. The family of approximation of a given curve is 

stored in a binary tree. The leaves of the tree gives the vertices of the polygon 

approximation sorted by increasing arc length. Any tree traversal can access these 

vertices. The end and start points for this algorithm are supplied by step 1. After 

approximation is done for each curve segm ent, a list of the polygon vertices is built for 

the entire curve sorted by the increasing arc length. The same procedure is repeated over 

all contour chains. After this is done a list comprising all straight line segments is formed.

Even though some precautions were taken to robustify the polygonal fit to a 

digital curve, it is still possible to have broken segments due to noise. By scanning the list 

of straight-line segments, obtained previously in step 2, all segments with lengths less 

than a prescribed threshold are removed leaving more reliable segments. This list
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represents the image in a very compact form suitable for subsequent processing. An 

example of polygonal approximation by the above presented algorithm is given in 

Fig.(4.3.2.3) for the edge image given in Fig.(4.2.2).

4.4 Data structuring

The output of the previous processing stage is a list of straight-line segments. 

The segment is represented by its end points, another convenient representation of a 

straight-line segment is by its mid point, orientation and length. The last representation 

is very suitable for the segment matching in two images, as it will be seen in the 

following chapters. Since the segment matching requires multidimensional range 

searching operations, in order to avoid the very costly brute-force searching strategy, 

we developed an indexing method for data structuring based on buckets [Knu75], 

[Aya91] which permits very efficient range searching. We use rectangular cells to 

structure the image. These cells form a regular partition of the image, as shown in

Figure 4 3 .2 3  Example of Polygonal Approximation

Fig.(4.4.1).
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•  segment mid point

Figure 4.4.1 Image Structuring

After getting the segment list, we construct an indexing table for the image. To 

each image cell corresponds an entry into the indexing table. The each entry comprises a 

list of pointers to segments whose mid points belong to that cell (Fig.4.4.1). The 

algorithm for computing the indexing table has the linear complexity in the number N  of 

segments (O(N)). As will be seen in the following chapters, this indexing table drastically 

reduces the computational complexity of the segment matching algorithms. In fact, these 

algorithms hypothesise the appearance of a currently observed segment in the next image 

and verify its hypothesis by analysing the segments of the next image. Since the 

hypothesised segment appearance involves the position of its mid point, then for 

verification it is enough to examine segments contained in the image cells overlapped by 

the hypothesised window, instead of checking all of them (the brute-force algorithm 

which matches segments in two images has complexity of O(NN), assuming N  is number 

of segments in both images). The complexity of the matching algorithm supported with 

this data structure lies somewhere between O(N) and O(NM), where M  is maximum 

number of segments per cell, depending on the cell size and segments distribution over 

the image. For the small cell size and equally distributed segments this tends to kO(N),
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where k is small compared to N. For the large N  this is a significant improvement in 

speed, having in mind that each comparison requires the matrix calculation. Obviously 

there is a trade-off between the memory requirements and speed. After computation of 

the indexing table, the image is represented by the segment list and its indexing table. 

Fig.4.4.2 shows an example of the data structure for the image given in Fig.4.4.1.

Segment list

s1
s2

Indexing table

OvfT * s1

S3
(2',5) s2

(5 \6) s9 * s10

s10
(6',8)

Figure 4.4.2 Supporting Data Structure

For example to find all segments whose mid points are in the spatial range given 

by the image cell (5',6) just two accesses will retrieve segments (s9,s10) as opposed to 

ten accesses without supporting indexing table.

4.5 Image geometric rectification

So far it has been assumed that the image formation is modelled by the ideal pin­

hole model and ideal lens. This means that the image of a 3D straight line is a 2D line. 

Since the lens introduces non-linear distortions, as was mentioned in the previous 

chapter, image data must be corrected or rectified to account for this distortions. 

Extracted contour chains are rectified according to the nonlinear lens mode, before
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polygonal approximation is done. From the nonlinear lens model and the intrinsic camera 

calibration parameters (Chapter 3), rectified image coordinates are given by

u u = c x + Û j cp
* ( 1  + kD2)

Vu = C’  (1 + kD )

D  — X j + Y j , X d = s xdx (U d - C x), Yd =  dy(Vd -  C  )

4.6 Conclusion

We have presented methods for transforming an image from its digital matrix 

representation to a very compact and structured representation which is suitable for the 

algorithms in the following chapters. This representation consists of extracted image 

contours. Image contour points are extracted by a zero crossing technique. They are then 

grouped into contours by the gradient guided contour following algorithm. The obtained 

contours are approximated by straight line segments. Finally, we have built an efficient 

data structure which supports fast segment searching.
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Chapter 5

3D Vision Based Structure Estimation

The new technique for 3D structure (3D geometrical model) estimation of objects 

within a class of objects (polyhedra), by using monocular image sequence and known 

camera motion, is presented in this chapter. The technique is based on tracking line- 

segments over image sequences. The tracking process consists of prediction, matching 

and updating stages. These stages are handled in a Kalman filtering framework of 

covariance based prediction, matching and updating. The prediction stage of our tracking 

process does not use heuristics about motion in the image plane and applies for arbitrary 

camera motion. The prediction is based on assumptions about object structure (i.e. a 

rough knowledge of a distance between camera and an object is assumed known and the 

depth extent of the object is small compared with the camera-object distance) for the 

initialization phase, the rest of the tracking process is based on estimated object 

structure. The matching stage is based on the simple nearest-neighbour matching 

algorithm using the Mahalobonis (statistical) distance as a similarity measure. The 

updating stage is based on the standard Kalman filter estimation algorithm. Experimental 

results from a camera mounted on a robot arm are presented to show the efficiency of the 

proposed algorithm.

56



5.1 Introduction

In robotic applications, a robot has to perform a series of tasks such as object 

manipulation and object recognition. A common requirement in performing any of these 

tasks is the 3D description of a scene or the objects in the scene. A substantial amount of 

effort has been invested in the computer vision area, on developing robust methods for 3D 

structure computation. However, robust computation of 3D structure with respect to 

image noise is still very desirable. Using known camera motion to estimate 3D structure 

of an object from image sequences is an important and efficient way to tackle the 

problem of 3D structure estimation for the following reasons. The image measurements 

are inaccurate. Errors in image measurements get reflected in the estimation of structure. 

These errors can be reduced using more images and fusing their pertinent information. 

A sequence of images allows solution of the problem in an incremental manner. The first 

few frames can be used to obtain a rough estimate of structure, which can be refined using 

observations based on successive frames. The correspondence (matching) among image 

features can be resolved more reliably and easily by tracking image features over a 

sequence. This chapter describes a new method to integrate 3D structure of an object in 

terms of a set of 3D straight-line segments, by measuring and fusing their images in terms 

of 2D image straight-line segments over a sequence of images, using known camera 

motion [Prl93], [Prl94J. The system is based on fusing multiple stereo views. Stereo 

views construction and stereo views fusion is realized and highly simplified by tracking 

image features over an image sequence. This process of tracking can be seen as a cyclic 

one. The model structure undergoes a cycle of prediction, matching and updating. The 

process of prediction, matching and updating is based on the Kalman filtering framework. 

The tracking process permits us to simplify generally very difficult feature-matching 

problem between successive images by using a simple nearest-neighbour matching 

algorithm, and to integrate multiple observations in order to improve the overall accuracy 

of reconstructed 3D structure. Unlike other approaches, our approach requires no 

constraints on camera motion, and feature tracking is based on generic assumptions
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about the object structure and estimated structure itself instead of on traditional feature 

tracking which is based on image motion heuristics. This approach provides for reliability, 

accuracy, computational advantages and a very simple tuning of the overall system 

parameters.

5.2 3D Structure reconstruction

An image represents a mapping from 3D objects or a scene to 2D measurements. 

Therefore, it is not possible to recover the spatial geometry of an unknown object from a 

single image. At least two images are necessary to recover 3D information. Two basic 

techniques aimed at structure recovery are so-called stereo vision and structure-from- 

motion.

5.2.1 Stereo vision

By having two or more images taken from different viewing angles, it is possible 

to determine the spatial position of a world point observed at least at two images. This is 

referred to as stereo vision. The basic stereo configuration is shown in Fig.5.2.1.1.
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The stereo triangulation is a way to obtain 3D measurements. Let us first define different 

coordinate systems used. We use one coordinate system centered at the left camera and 

one coordinate system centered at the right camera. The coordinate system centered at 

the left camera is used as a coordinate system of the entire stereo configuration, that 

means 3D computations are done with reference to this system. The orientation and 

position of the right camera with respect to the left camera is given by a rotation matrix R 

and translation vector T  (assumed known, for example determined trough calibration). 

The camera model is given in Chapter 3. The relation between image plane projections of 

a world point P and its 3D coordinates in these frames is given by

= Jy -, ' ~y Zi z i
ui = sx — +Cx, V[ = s — + C

Ur=Sx —  +CX, Vr = S y —  +  C
Zr Zr

where («/, v/J and (ur, vr) are the image plane coordinates in the left and right image, 

(x l> yi >z l) a°d (xr, yn zr) are coordinates of the point P in the right and left coordinate 

system and (sx, Sy, CX> Cy) are camera intrinsic parameters. These coordinates are related 

by a rotation matrix R and translation vector T  between coordinate systems

rn rn ra X! h
y , = r2l f21 rn yt + t, (5.2.1.2)
Zr . / J l rn r33. ,zl. Jz.

By substituting Eq.(5.2.1.2) into Eq.(5.2.1.1) we obtain
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U i = s x —  +  CX, vt =  sy— + C y
z, x!

u = s  rn X i+ r n yl + r n zl + t x 

x r3lx l + r 32y , + r 33zl + t z

r2ix,+r22yi+r7iZ,+ty |

r3lx l +  r32yl + r 33z! + t z :

(5.2.1.3)

Therefore, we have four equations with three unknowns (xi, yi ,zi). The process of 

determining these unknowns according Eq.(5.2.1.3) is called the stereo triangulation.

Stereo error modelling

All images are contaminated by noise and subsequently regardless of the image 

feature extraction algorithms, the noise will propagate and contemn the image features (in 

this case a location of image projections of a world point ). From this fact it is very 

important to analyse, take into account and minimise the impact of the noise on the 

corresponding 3D reconstruction. This effect is shown in Fig.5.2.1.2.

/

/
\  -

d

A

- one pixel

_h_- d w -  "B“

, - image plane
+7

L bl< . . -

Figure 5.2.1.2 Stereo Errors
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From this simple stereo configuration and taking into account only spatial 

digitisation noise, it is obvious that the true world point can lie anywhere inside the 

shaded region. Also it is clear that different components of a three-dimensional point 

determined by stereo triangulation have quite different uncertainties, i.e. the depth 

component is much less reliable than the lateral components (since the distance to the 

object is usually larger than the distance between cameras). It is of essential importance 

to take into account the image noise during the 3D reconstruction and to have a measure 

of uncertainties in the obtained results.

Given specific descriptions of real cameras and scenes, we can obtain bounds on 

the estimation accuracy of the 3D stereo computation, using perturbation or covariance 

analysis techniques based on first-order Taylor expansions [Mat87], [Aya87], In the 

sequel the covariance analysis is presented in detail. Here, the perturbation analysis is 

used in order to give some insight about the relative accuracy of depth estimates obtained 

from different stereo configurations (we construct the stereo configurations by moving a 

camera). It is well known that the rotational displacements between images provides no 

depth information. Furthermore, for the translational displacements the accuracy of depth 

estimates depends on the type of translations between images forming the stereo system.

A short derivation that demonstrates the relative accuracy obtainable from 

forward and lateral image displacements forming the stereo system will be given. For 

clarity, we consider only stereo images displaced by translation along X  and Z axes. For 

the lateral displacement along X  axis, i.e. for ty = tz = 0 and R = /  (identity matrix), 

from Eq.(5.2.1.3) the inverse depth is given by



whereas forward displacement, i.e. ty = tx = 0 and R = I , gives the depth

(5.2.1.4.B)
^ (ur ~ C x)tz

For the sake of simplicity in derivations, we will deal with the inverse depth (disparity). 

The perturbation in the inverse depth arising from the perturbation in image measurements 

(differences of image coordinates) can be expressed for the lateral displacement by

d, = - ,  5d, = _ M — 5(„ _ „ ) ,  6d  (5.2.1.5)
z d(ur-u,) sxtx

and the forward displacement by

df = ~ ,  hdf  =  d d f - 8 (ur - u t), 8 df = -  5- (u- r -  
7 z ’ 7 d(ur-ur) r lJ' f  (Ur - C x)tz

(5.2.1.6)

These equations give the error in the inverse depth as a function of the error in the 

measured difference of the point locations in the stereo images, the amount of 

displacement between images, and the position of the feature in the field of view.

Since we are interested in comparing forward and lateral displacements, a good 

way to visualise these equations is to plot the relative depth uncertainty. Assuming that 

the measurement perturbations are the same in both models, the relative uncertainty is 

given by



where / and dx are camera intrinsic parameters (Chapter 3). The image coordinate ur 

indicates where the object appears in the field of view. Fig.5.2.1.3 shows that the above 

formula for the relative uncertainty is thus

$df t
~rL =  *  (5.2.1.8)
5 d, tan(0)i2

where 0 is the angle between the object and the camera (optical) axis.

z / K
.  P

(Ur-Cx)dx

f
/  x 

0 /

F igure 5.2.1.3 Angle between Object and Camera Axis

This relationship is plotted in Fig.5.2.1.4 for tx  = tz  . At 45° from the optical 

axis, depth uncertainty is equal for lateral and forward displacements. As this angle 

approaches zero, the ratio of uncertainty grows, first slowly then increasingly rapidly. In 

general, for practical fields of view, the accuracy of depth extracted from the forward 

translation will be effectively unusable for a large part of the image. This fact suggests 

that the "best" interframe camera displacements are lateral ones, while forward 

displacements are the "worst".
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Figure 5.2.1.4 Relative Depth Uncertainty for Forward vs. Lateral Camera Displacement

Estimation criteria 

Minimum variance estimator

The problem of solving the stereo triangulation equations Eq.(5.2.1.3) can be 

tackled in an optimal manner according to the estimation theory concepts. The most 

commonly used estimation criterion is the minimum variance criterion [Gel74], [Bar88]. 

One of the main advantages of this criterion is that we do not need to know the exact 

noise distribution, which is very difficult to obtain in most applications. As we will see the 

minimum variance estimator does not require knowledge of more than second-order 

statistics of the noise distribution, which often can be estimated in practice.

Let us suppose that an observation vector y  is related to a parameter vector x  by 

the equation

y = / ( * )  + £ (5.2.1.9)
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where e is a random vector with zero-mean E(e )=0, and a covariance matrix 

E(z £ T)=R'

The unbiased minimum variance estimator is one that minimises

(5.2.1.10)

In other words, the optimal parameter vector x  is the one that minimises the matrix 

weighted error between the computed observation and the actual observation y. At 

solution that minimises Eq.(5.2.1.10), the optimal estimate x  has a covariance matrix 

given by

E ( ( x - x ) ( x - x ) T) =
d f ( x ) 1 d f ( x ) A
y ()X dx

(5.2.1.11)

Returning to the stereo equations Eq.(5.2.1.3) the optimal three-dimensional point x ,  

according to the minimum variance criterion should minimise

mm

ut — U[ (x)
r

ut — ul (x)
V, -  V, (x) ■*« o' -1

V, -  V, ( x )

ur-ur(x) 0 R r . ur -ur{x)

_vr-v, (x)_ vr-vr(x)̂

(5.2.1.12)

where (up v/J and (ur, vr) are a pair of noisy stereo projections assumed uncorrelated, /?/ 

and R r are their covariance matrices (determining the covariance matrices will be 

discussed in the sequel). This is a nonlinear minimisation problem. We first give an 

approximate solution to this problem. By simple manipulation the stereo equations 

Eq.(5.2.1.3) can be expressed as a set of linear equations

Hx = b (5.2.1.13)

These equations can be solved by the least-squares method

x = ( H TH) - i H Tb (5.2.1.14)
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The geometrical interpretation of this approximate solution is as follows: Due to 

noise, the two back projection lines through the observed points in the left and right 

images, respectively, do not intersect in space. The solution in Eq.(5.2.1.14) is the 

midpoint of the shortest line segment that connects these two projection lines. From this 

approximate solution a few (usually one or two) iterations are performed to minimise 

Eq.(5.2.1.12) (we use the Newton’s method). It has been observed that the approximate 

solution Eq.(5.2.1.14) is very close to the optimal solution Eq.(5.2.1.12), unless the 

stereo configuration is very unusual (i.e., one camera is far behind the other). Therefore, 

in most cases the use of the approximate solution (closed-form) will not cause significant 

performance degradation when compared to the optimal solution (iterative). In our 

experimental work we use the approximate solution.

The error covariance of the estimated position x  also needs to be determined. It 

simply follows from Eq.(5.2.1.11) and Eq.(5.2.1.12)

Cov(x) =

f T ut ( x )

a V,(i) 'R, O' ~ ' ± v , ( x )

ur{x) . 0 dx ur(x)

V _vr(*)_ Vr(x)

■a -1

(5.2.1.15)

Kalman filter estimator

Data or sensor fusion is concerned with algorithms that combine multiple 

measurements and their uncertainties in order to obtain the final (fused) estimate which is 

better than any particular measurement in some sense. Recent advances in sensor fusion 

are based on techniques from estimation theory.
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One of the very powerful technique is Kalman filter [Kal62], [Gel74], [Bar88]. 

The Kalman filter is a recursive, optimal in Bayesian sense, estimation technique used to 

estimate states of linear stochastic dynamic systems being observed with noisy sensors. 

The optimality in Bayesian sense is closely related to the minimum variance and least- 

squares optimality. These relations are given in [Gel74], [Bar88]. The filter is based on 

two separate probabilistic models. The first model, the system model, describes 

evaluation over time of the current state vector. The transition between states is 

characterized by the known transition matrix and the addition of Gaussian noise with a 

known covariance matrix (process noise). The second model is the measurement (sensor) 

model, that relates the measurement vector to the current state through a measurement 

matrix and the addition of Gaussian noise with a known covariance matrix (measurement 

noise). The Kalman filter equations are given by

System model

= Axk + Gwk, wk ~(0,Q)

Measurement model
zk = Hxk + v*, vk ~ (0, R)

Prediction phase

x~k+i= A x k, x 0 = x p 

Pk+l=APkA T +GQGT, P0 =Pp
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Update phase

Kk tI=P;ttH T[HP;tlH T + R]-'

Pm =Pm - K m [H P ^H t +  R\K,■T
Jt+1

In order to apply the Kalman filter we need to define the system model and the 

measurement model, to characterise the process and measurement noise by means of 

their covariance matrices and to define initial conditions.

For example, let us assume we need to estimate a constant parameter vector 

from its noisy observations. In this case The Kalman filter estimation is formulated as 

follows

System model

where (xj, X2  xn) are components of the parameter vector, the state transition matrix 

is an identity matrix and the process noise is zero, reflecting the fact that the state vector 

is constant

X[(k + 1) 1 0 0 jqOfc)
x2(k + 1) = 0 1 0 x2(k)

jc„(* +  1)J [ o  0 l J U w
(5.2.1.17)
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Measurement model

Measurement model of (xj, x j x n) components are given by

' z ^ k ) x x(k ) /
"£ ,(* ) '

\

z2(k ) = H x 7(k ) + e2(*) , Cov e2( * )
xn( k )_ \ 1

where (zp z2 ,—,zm ) is a measurement vector, H  is a measurement matrix and R is the 

measurement noise covariance matrix. By having the system model and measurement 

model together with noise description the standard Kalman filter equations Eq.(5.2.1.16) 

are used to optimise the parameter vector. The Kalman filter algorithm applied to 

estimate constant parameters is equivalent to the recursive weighted least-squares 

algorithm [Bar88].

As was mentioned the Kalman filter is the optimal estimator under assumption of 

Gaussian errors. If we do not make this assumption, then among linear estimators, the 

Kalman filter produces the unbiased estimate of a state vector with minimum variance 

[Gel74]. This means that among all the estimators which compute the state vector as a 

linear combination of the measurements, the Kalman filter minimises the expected value 

of the error norm, while ensuring the absence of bias.

Stereo correspondence problem

The most difficult part of any stereo vision algorithm is the so called 

correspondence (matching) problem. The matching problem comprises determining the 

image points in two images corresponding to the same world points. The matching 

algorithms are either region (pixels) or contour based. The region based matchers match 

image regions (intensity levels) based on correlation techniques, while contour matchers 

match contours between images based on their geometrical properties. The region based 

matchers are generally less accurate and computationally much more demanding.
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In this work we use straight line segments as image features. The reasons why we 

chose to use contours instead of regions are as follows

• Reduce the complexity by reducing the number of matches to be carried out, there are 

always less segments than points

• Explicitly take into account the continuity of contours, when two points correspond,

often their neighbours correspond as well

• Geometric attributes measured on contour segments are richer and hence more

discriminant than measurements of points. They can provide stronger matching

constraints

• The position and orientation of a segment are generally measured with more precision 

than the position of an isolated point, therefore three dimensional reconstruction is 

more accurate

• The corresponding 3D structure obtained from 2D image segments reconstruction 

consists of a set of 3D segments, which is compact and structured enough to be 

efficiently used and manipulated

Regardless of the feature types, all stereo matching algorithms use geometric and 

heuristic constraints to reduce complexity and improve accuracy and reliability of finding 

matches. The fundamental geometric constraint is the so-called epipolar constraint 

[Hor86]. This constraint states that given a point in the left image its corresponding 

(match) point in the right image lies on the straight line (epipolar line) completely defined 

by the coordinates of the left point and the stereo configuration parameters (R, T). The 

problem is symmetric if the right point is considered. The epipolar line coefficients simply
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follow by manipulating the stereo equations Eq.(5.2.1.3). In case the stereo cameras are 

parallel, the epipolar lines are horizontal (raster) lines in the images making the searching 

very simple. If the maximal and minimal depth of the scene is known in advance, than the 

epipolar line can be constrained much further, since in that case a segment of the epipolar 

line contains the match point. The end points of the segment are defined by the maximal 

and minimal depth. These geometric constraints are shown in Fig.5.2.1.4.

Figure 5.2.1.4 Epipolar Constraint

In general small displacements between stereo images minimise the matching problem but 

sacrifice the accuracy of the 3D reconstruction. This problem can be traded off by 

fusing and integrating information over the image sequence.

5.2.2 Structure-from-motion

A relative motion between a camera and an object can be used to obtain 3D 

information of the object. The process of computing 3D structure using image 

displacements resulting from motion is also called structure-from-motion. The approaches 

to structure-from-motion are categorised as optical flow based or feature based
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approaches, the instantaneous positional velocity fields in conjunction with additional 

information or assumptions are used to compute the 3D structure. Feature based 

approaches consists of tracking the 2D features (edges) and interpreting the 3D structure 

in terms of the displacements of features in an image sequence.

The motion in the image plane caused by the camera motion in the static scene is 

given by the well-known optical flow equations [Hor86]. Let a camera move with an 

angular velocity co and a translational velocity V (Fig.5.2.2.1).

The motion of a 3D point P in the camera coordinate frame is described by the equation

p

Figure 5.2.2.1 Optical Flow

(5.2.2.1)dt
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Expanding this into components yields

dx
dt
dy_
dt
dz
dt

—  =  -V x - a > yz+ (O zy

—  =  —Vy ~  (i)zx  +  G),z (S.2.2.2)

-  = -V z -ooxy + (oyx

Now, projecting (x, y, z) onto an ideal, unit focal length image (for the sake of simplicity)

u = - + C x, v = —+ C  (S.2.2.3)
z z

takeing the derivatives of (u, v) with respect to time, substituting in from Eq.(5.2.2.2), 

discretizing with a sampling time AT and assuming slow changing camera velocity leads 

to the familiar equations of optical flow

*k+l A T
z

'- 1  0

0 -1  Vk

X 'uk
V + A T

vk_
y

.Vz.

ukvk
_(l+ v , ) - u kvk ut.

0),
co,

(5.2.2.4)

These nonlinear equations relate the depth z of the world point and the camera motion to 

the induced image displacement or optical flow. By measuring optical flow and assuming 

known motion the 3D structure can be recovered from the above equation.

However, no method exists for reliable computation of optical flow [Alo92], 

[Barr94], and all methods are highly demanding with respect to computational resources.
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Feature-based approaches provide better estimates of the structure if a set of correctly 

matched features is available. In the feature based approaches the more critical problem is 

the detection of robust features and the solution of the correspondence (matching) 

problem. The feature based approaches will be more discussed in the sequel. As is the 

case with stereo vision, small interframe displacements (which is the fundamental 

assumption for structure-from-motion, since in that case Eq.(5.2.2.4) is a valid 

approximation of Eq.(5.2.2.3)) ease the correspondence problem (small displacements 

constrain possible image displacements Eq.(5.2.2.4)) but sacrifice the depth accuracy. 

Again, the overall accuracy can be increased by processing an image sequence. As a 

conclusion of this section, if we consider only two frames, the stereo vision accuracy is 

superior to the structure from motion accuracy thanks to its allowable larger displacement 

between images at the expense of much more complex matching problem.

5.3 3D Model reconstruction by fusing data from image sequences

The effective way to increase accuracy of the reconstructed 3D structure from 

noisy image data consists of fusing (combining) multiple observations and their 

uncertainties in order to reduce adverse impact of the image noise.

5.3.1 Relations to previous work 

Review of previous work

One important approach in this direction is to fuse multiple 3D stereo frames 

(3D visual maps) obtained from stereo image sequences. The 3D visual maps usually 

consist of basic geometric primitives such as points, lines and planar patches. The 

previous work [Aya89], [Zha90], [Wen92] to cite a few, used estimation theory concepts 

to fuse multiple observations after resolving 3D primitive correspondences. Both Ayache 

and Faugeras [Aya89] and Zhang and Faugeras [Zha90] tracked 3D line segments over a
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sequence of stereo image frames and used extended Kalman filter algorithm to fuse 

multiple 3D visual maps (stereo views) consisting of 3D line segments. To do the fusion, 

the displacement between successive stereo-pair coordinate frame is either assumed 

known or determined. Weng et al. [Wen92] used the batch-recursive least-squares 

algorithm to fuse multiple 3D maps in order to improve convergence rate.

Another important approach in this direction is based on structure from motion 

techniques. Much of the work in structure from motion techniques has concentrated on 

deriving depths of pixels, points and lines. The main idea of these approaches is based 

on the fact that the small interframe (camera) displacement implies the small image 

displacement. This fact permits to set tight search windows for correspondences, which 

in turn improves reliability and reduces computational load of finding matches. In order to 

get depth estimates, this stage is followed by applications of the structure-from-motion 

techniques to resulting correspondences. As was mentioned earlier, robust matching for 

simple features such as pixels and points is difficult for real scenes. Higher level image 

features such as lines can privide stronger constraints for matching and improve the 

robustness of the computations. They also can allow the larger interframe displacement 

while preserving efficient computation. These techniques are based on tracking image 

features over the image sequence.

Tracking of image features over image sequences have been mostly based on 

heuristics about motion of these features in the image plane. Since the scene structure and 

camera motion are involved in the features motion, the constant velocity motion models 

are not very reliable. The previous work [Matt89], [Cro92], [Der90], [Saw93], [Kum92], 

[She92] has identified Kalman filtering framework as an efficient way to tackle this 

problem. Mathhies and Kanade [Mat89] showed recovery of depth from lateral camera 

motion in a dense image sequence by tracking grey level values. Crowley et al. [Cro92] 

showed recovery of 3D structure of a scene by tracking 2D line segments. They employed 

constant velocity model to track line segments in the image plane and extended Kalman
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filter to fuse data. Deriche and Faugeras [Der90] also employed the motion heuristics to 

track line segments. Sawhney and Hanson [Saw93] described a system which is based on 

constraining the camera motion and 3D structure, which permits modelling the image 

plane motion by an affine transformation. This transformation is used to track line 

segments in the image plane. Kumar and Hanson [Kum92] presented a technique to 

integrate 3D model, assuming an initial 3D model is known, by using an optic flow based 

line tracking algorithm. The main benefit arising from the tracking image features is that 

the tracking drastically simplifies matching problem. In fact if the tracking is accurate 

enough the matching can be accurately and reliably based on a simple nearest-neighbour 

matching algorithm. This is the point where Kalman filter gives a big advantage. If the 

tracking of a target by the Kalman filter is consistent [Bar88], then the prediction phase of 

the Kalman filter will give the truthful probability distribution of the next state, this also 

gives the probability distribution of the next measurement vector according to the 

measurement equations. These probability distributions can be used to associate the 

multiple observations to the multiple targets [Bar88] in the multitarget tracking 

environment, which resembles the image features tracking.

Main difficulties associated with previous work

The main difficulties associated with data fusion arising from stereo image 

sequences is the correspondence problem. The correspondence problem in this case is 

twofold. The first correspondence solution is related to matching 2D image features in 

order to reconstruct 3D structure or 3D visual map. The second correspondence problem 

is related to matching 3D features between 3D maps in a stereo sequence in order to 

improve 3D structure accuracy. These problems are difficult thanks to their combinatorial 

nature and computationally are very demanding.

The main difficulty associated with data fusion arising from structure-from-motion 

techniques is the feature tracking. As was mentioned above, the tracking of image
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features over image sequences is based on assumptions about image motion heuristics 

such as constant velocity or acceleration motion. In order to give an insight into this 

modelling we will make a simple derivation with regard to a point motion modelling. Let 

us rewrite the optical flow equations derived previously (Eq. 5.2.2.4) as follows

*+i.

AT -1  0
0 -1

v,uk
Vv + A T

v*.
y

y .

ukvk -(1  + k* ) 
(1 + v*2) - u kvk

CO,

CO.

(5.3.1.1)

These nonlinear equations relate the depth z of the world point and the camera motion to 

the induced image displacement or optical flow. The tracking approaches based on the 

image motion heuristics attempt to approximate the complex motion equations 

Eq.(5.3.1.1) by a simple motion model such as constant velocity motion in the image 

plane.

For example such a model is given by

(5.3.1.2)

The measurement model is given

*i" 1 0  0 0 

0 0 1 0

uk

uk
+

-£6.
y«_

(5.3.1.3)
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The state of the system is estimated by the Kalman filter based on the above models. The 

attempts are made to cover the complex nonlinear behaviour by a liner model and a 

random input. This model could be used to track points between frames. The similar 

models are derived for tracking parameters of higher level image features such as line 

segments. For example, in [Cro92], [Der90], [Saw93] each parameter a of a straight-line 

segment is modeled as

a k+1 '1 A T "a/ V
_0 1 _

+_®*+1. A. _E2_
(5.3.1.4)

and the measurement model is given by

z, =[1 0]at
+ (5.3.1.5)

The essential benefit of tracking based on Kalman filter is that the predicted point position 

together with its predicted covariance matrix lies at the heart of matching algorithm. It is 

clear that it is very difficult to chose the proper level of the process noise covariance 

matrix even for a given scene and camera motion. On the one hand if the process 

covariance matrix is too small a lot of matches will be undiscovered. On the other hand by 

choosing the covariance matrix to large all advantages arising from tracking to allow fast, 

simple and reliable matching are lost. Another difficulty associated with this model is that 

it is not clear how to chose the initial conditions for Kalman filter. From this discussion it 

is obvious that a lot of filter parameters must be tuned "by hand". These difficulties 

associated with both techniques led us to find a method which would use good properties 

of both techniques namely, high accuracy of stereo vision and ease of matching supported 

by tracking.
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New approach for 3D structure estimation

In this chapter we present a new approach for recursive 3D structure estimation 

from image sequences using known camera motion and generic assumptions about 

object structure. A rough distance estimate between a camera and an object is assumed 

known. The depth extent of an object is assumed to be small compared to the camera- 

object distance.

The novelty of this technique lies in the fact that this technique incorporates 

advantages of both previously described techniques (stereo image sequence and feature 

tracking) while minimizing their disadvantages. In fact a stereo image sequence (3D 

visual maps) is fused to achieve high accuracy while matching problem is highly 

simplified by tracking. The 3D (structure) matching problem is completely eliminated and 

the 2D (image) problem is simplified to the nearest-neighbour checking. The tracking is 

based on some assumptions about structure and the estimated structure, eliminating the 

need for motion models in the image plane and subsequently permitting arbitrary camera 

motion and allows larger interframe displacements. This leads to the considerable 

reduction in a number of images to be processed in order to achieve high accuracy.

The approach developed here is first to build an initial 3D model by using motion 

stereo which only requires a rough estimate of the distance between camera and objects, 

and then refine and extend it by viewing it over a sequence of images. Both the modelled 

and unmodelled features are tracked over the sequence based on the known camera 

motion, currently estimated 3D model for modelled features and the estimated average 

distance of the object for unmodelled features. Correspondences among features in the 

sequence are reliably and easily established by tracking. After resolving correspondences, 

the motion stereo triangulation process is used to obtain new observations for modelled 

features and for creation of new features. The Kalman filter is used to fuse new
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observations with previous ones. This algorithm can be seen as a cyclic process, in which 

the 3D model structure undergoes a cycle of prediction, matching and updating

• In the prediction phase, the current state of the model is used to predict the state of 

the external world at the time that the next observation is taken

• In the matching phase, the observation is brought into correspondence with the 

prediction. Such matching requires the predictions and observations be transformed to 

the same coordinate system

• In the update phase, the observed information are integrated into existing model

The approach described here accounts for arbitrary camera motion and only needs 

a rough estimate of the distance between the camera and scene for the initialisation phase. 

The block diagram of the overall system is illustrated in Fig.5.3.1.2.

observation m otion

\ /

prediction — ? matching —? transformation
/ \

transfo
/
rmation update

3D model

Figure 5.3.1.2 System for 3D Structure Reconstruction



5.3.2 3D Object model representation

A dynamic object model we deal with in this work is a list of geometric primidves 

given in a reference frame, which describes the object model at an instant in time

M {t) = {/»(f), P2 (t)} (5.3.2.1)

We assume that the actual objects can be accurately represented by these 

geometric primitives, and these primitives or their parameters can be measured by using 

vision sensors. Each geometric primitive describes a local part of the object as a 

conjunction of estimated geometric properties and their uncertainties. In addition, each 

primitive is assigned a unique identification label ID. The identification label ID acts as a 

name by which the primitive can be referred to

P (t)  ={ x ( t ) ,  W (t), ID } (5.3.2.2)

The actual state of the object M(t) is observed trough a measurement process 

corrupted by the measurement noise. In order to apply an estimation algorithm such as the 

Kalman filter it is of crucial importance to have proper estimates of uncertainty in both 

system model and measurement model. The uncertainty estimates provide two crucial 

roles in the system, first they provide tolerance bounds for matching observations and 

predictions, second they provide the relative strengths of predictions and observadons 

when calculating new estimates according the Kalman filter algorithm.

In this work the particular 3D geometric primitives used are 3D straight-line 

segments (polyhedral objects). The minimal representation of a 3D segment consists of 

six parameters. Here we use the representation given by segment endpoints and their 

covariance matrices, that is, the 3D segment is represented by
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i. = [p, p, wj (5.3.2.3)

where P j(xpy j,z j)  and P2(x2>y2’z2) are endpoint coordinates in a reference frame, and Wj 

and W2 are their covariance matrices.

5.3.3 Vision-based measurements

It is assumed that the object model we want to reconstruct consists of a set of 3D 

straight-line segments as described previously. Taking into account a pin-hole camera 

model a 3D straight-line segment will be projected as a 2D straight-line segment. Hence, 

the basic measurement to be done is the measurement of 2D line segments in the image.

The minimal representation of a 2D straight-line segment requires four 

parameters. The basic representation comprises the coordinates of two endpoints in the 

image plane

S., =[w, v, u2 v2] (5.3.3.1)

Endpoints of a 2D image line segments (u, v) are related to endpoints of a 3D world line 

segments (x,y,z) through the camera model

x 1 +

z + u
y

sy ~  +cy
_Ev_

. y z y.

(5.3.3.2)

where (e u, e v) are image measurement noise terms.
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The image noise must be characterised. It is well known that the effect of image 

noise on the process of extracting straight-line segments is more pronounced along the 

direction of the edge then in the direction perpendicular to the edge. This is due to 

random effects which break edge lines into smaller segments. The uncertainties in the 

endpoints of a segment can be modelled with standard deviations <Jp along the edge and 

a v perpendicular to the edge in a coordinate system aligned with the line segment 

(Fig. 5.3.3.1).

Figure 5.3.3.1 2D Segment Noise Modelling 

In the aligned coordinate system (x, y) a covariance matrix of any endpoint is given by

Cov
0

0
*1

a:
(S.3.3.3)

using a reasonable assumption that the perpendicular and parallel noise terms are 

uncorrelated. Since, we need covariance matrices expressed in the original image 

coordinate frame (u, v), they can be computed as follows. From Fig.5.3.3.1 the relation 

between (u, v) and (x, y) coordinates is given by
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u

V

cos(0) -s in (0 ) 
sin(0) cos(0)

x

L^J
(5.3.3.4)

where 0 is a rotation angle between (x, y) and (u, v) coordinate systems and (tu> tv) is an 

arbitrary constant translation vector between the coordinate systems. Then, the 

covariance matrix is given by

C ov
f - -u
VV

cos(0) -s in (0 ) 
sin(0) cos(0) 0

0
<5-

cos(0) -s in (0 ) 
sin(0) cos(0)

(5.3.3.S)

which leads to

%  = Cov
a 2p cos2(0) + a 2 sin2(0) ( a 2 - o 2)cos(0)sin(0)
( a 2 - a 2)cos(0)sin(0) a 2 cos2 (0) + a 2 sin2 (0)

(5.3.3.6)

Hence, in order to determine the uncertainties in image 2D segment 

measurements, we have to estimate the parallel <jp and perpendicular av  deviations as 

given by Eq.(5.3.3.3). If we consider the effects of image noise on the process of 

extracting straight-line segments we can make following observations

• The perpendicular position of a line segment can be measured with precision. The 

accuracy is a function of the edge detection algorithm and is usually on the order of a 

pixel. We use the value for ct2v of one or two pixels

Along the edge, the position of a line segment and consequently the position of its 

endpoints is much less precise, thanks to the random effects which make the polygonal 

approximation algorithm produce different polygons (shortened or extended
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segments). It is difficult to find an analytical expression for these effects. By 

experimentation we found the proper value for c 2^ to be between four and six pixels.

It is important to note that this noise model (Gaussian error distribution) cannot 

handle rough errors (outliers), for example such as breaking a large segment in two or 

more segments of the similar length, that often exist in reality. A way to cope with outliers 

will be discussed in the sequel.

We also use another line segment representation given in [Cro92], [Der90]. The 

2D line segment is described by four parameters

S2 =\uc v c I 9] (5.3.3.7)

where (itc, vc) are coordinates of the segment midpoint, I is its length and 0 is its 

orientation as given in Fig.5.3.3.1. This representation has a computational advantage for 

segment matching, since these parameters are less correlated when compared to other 

representations. Having endpoints of a segment and their covariances, the segment 

parameters given by Eq.(5.3.3.7) and their covariances can be computed as follows

u, +m, v, + v, _ iU , — v, r  7 ' 7]
Uc =  ■ , vc = 1 2 , 0 = tan (— L), / =  V («1 — « 2) + O i~ v2 )2 2 U2 -  Uy

(S.3.3.8)

The covariance matrix is computed as

Wx = C ov

v.

0 0
p 0 0 

0 0
w

0 0 ^

, W, = Cov = JWyJ T =

0 0
2 0 0

0 0 0

0 0 0 2 a l
r J

(5.3.3.9)
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where J  is Jacobian matrix of Eq.(5.3.3.8) with respect to endpoint coordinates given by

7 =

3mc 3mc 3 uc
3m, 3v, 3m, 3v2
3vc dvc g Vc
3m, 3v, 3m2 3v2
_3/_ A dl_ dl_
3 3vt 3 u2 3v2
30 30 _30_ _30_
3«! 3vl 3 m2 3v2_

(5.3.3.10)

and Wp is given by Eq.(5.3.3.6).

So far we have been concerned only with geometric attributes of segments. We 

also use one non-geometric parameter which may provide a strong constraint for 

matching depending on the scene. It is the average luminescence intensity level a; along 

segment and its variance Wj. Finally the segment is represented by a list of two sets of 

redundant geometric parameters, its average luminescence intensity, their covariance 

matrices, a unique identification label ID used to identify the segment during the 

processing and C is a counter that keeps track of how many times the segment has been 

observed sequentially since its first appearance.

S = [lij Vt
« 2  V 2  Uc V c I 0 a, W, W2 W, ID  C] (5.3.3.11)

The ID  is a unique index which makes it possible to identify a segment in different 

images. A segment in the current image inherits ID from its corresponding segment in the 

previous image after finding its match. Segments with no match found in the previous 

image get unique ID and are regarded as first observations of the new world segments. 

From the two corresponding segments we calculate a 3D segment. The 3D segment 

conserves this ID, which makes it possible to direcdy associate a reconstructed 3D
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segment with a segment in the 3D model for fusion purposes without need for 3D 

segment matching.

The C is a counter which counts a number of times a segment has been observed 

sequentially since its first appearance. This number is used to make the system robust with 

respect to the rough image noise. A new 2D segment does not construct a new 3D 

segment unless it is observed sequentially a prescribed number of times (we usually use 

two, three or four in the experiments). This rule copes successfully with rough errors 

(outliers) arising from the polygonal approximation algorithm (Chapter 4).

In summary, each image in the sequence, after image processing stage 

(Chapter 4), is represented by a list of segments given by Eq.(5.3.3.12) and each segment 

is described by parameters given by Eq.(5.3.3.11).

I( t )  =  {Sl (t),S2(t),.. . ,Sn(t)}  (5.3.3.12)

Fig.5.3.3.2 shows the notation used in the subsequent derivations.
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The 3D model is computed in the world reference frame. Matrices H,„..,Hk 

denote the homogenous transformation matrices among the camera coordinate system and 

the world system. Matrices H2P...,Hj(r denote relative transformations between successive 

frames. Either absolute or relative transformations are assumed known in this work 

(known camera motion), possibly their noisy values.

5.3.4 Prediction phase of tracking

Relations among coordinates of a 3D world point, their image projections and 

camera motion parameters, in two successive frames in an image sequence (motion stereo 

Fig.(5.2.1)) are given by

uk = s x — + C X, vk =  s — + C
zk ' zk

“*+i = s x — + C x, vk+l= s y^  +  Cy

'XM ~ru rn ri3 V V
yk+i = r2\ hi r23 yk +

. . /31 rn r33 . . zk_ Jz.

(5.3.4.1)

By manipulating above equations, we have

Vn (“* ~ Cx) + ̂ ri2 K- " C>) + W «  +  sxsy ~
Uk+1 ” Sx j >

Syhx(v* ~ C X) + sxrn  (vt ~ C y) + sxsyr33 + sxsy - s-
z k
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(5.3.4.2)

These equations relate the depth of the physical point Zfc to its image projections 

(uh  vh  uk+l> vk+l) and camera motion (R, T) between successive frames.

These equations express so-called the epipolar geometric constraint for the stereo 

cameras. The epipolar constraint says, given a point in the first stereo image its 

corresponding (match) point in the second image necessarily belongs to a straight line 

(Eq.(5.3.4.2)) of the second image determined completely by the first point. This line is 

called the epipolar line associated with the point in the first image. This epipolar line 

model can be used to predict the image location of the point between current and next 

frame. By having an estimate of the point depth, its image coordinates in the current 

image and the camera motion, the next image location is predicted by Eq.(5.3.4.2).

Its covariance matrix up to the first-order approximation is predicted by

(S.3.4.3)

where J  is Jacobian matrix of Eq.(5.3.4.2) with respect to (iifc, zfc) given by

*±L
Buk dvk dzt

duk dv* dzk
1 (5.3.4.4)
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and W is a covariance matrix of the (ufo v zk) given by

W =
0

0 Var (zk)
(5.3.4.5)

where Wp is given by Eq.(5.3.3.6) and Varfzfc) is the variance of the current depth 

estimate. In the same manner the motion uncertainties can be taken into account.

The line segments are predicted by predicting their endpoints as explained above 

and computing necessary representations and their uncertainties. In order to use 

prediction equations Eq.(5.3.4.2) it is necessary to have the depth estimate. This is 

especially important at the beginning of the tracking process (first stereo-pair), since for 

the rest of the tracking process currently available depth estimates are used. Here we use 

the task constraint of our system to determine the initial depth estimates. Since our robot- 

camera system is intended to reconstruct 3D structure of an object to be manipulated and 

detected a rough distance between the initial robot-camera position and the object is 

always known. So, in order to initiate our algorithm we only need to supply the rough 

estimate of the distance between the camera and the object and its variance (which takes 

into account the error in the estimate and the depth extent of the object).

z0 = z(0), a ; (0, = Var(z0) (S.3.4.5)

By experimentations it was found that the error of up to 20% for our set-up can 

be handled. For this initialization to work properly it is also assumed that the depth extent 

of the object is small when compared to the distance from the camera, which is satisfied 

for most objects we deal with. By experimentations it was found that the ratio of the 

distance to the depth extent of up to 0.2 meets this assumption. The depth estimate 

Eq.(5.3.4.5) is used for the initial 3D model reconstruction (first stereo-pair). For the
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tracking of new yet unmodelled features entering the field of view during motion, the 

depth estimate is computed as the average depth between the camera and currently 

estimated 3D model. The prediction of the already modelled feature is based on the 

current depth estimate belonging to that feature.

The 3D model is reconstructed in the world frame. The prediction phase deals 

with the model given in the camera frames. The currently estimated world model must be 

transformed to the camera frames for the purpose of the prediction. This is done using 

known camera motion. From the Fig.5.3.3.2 these transformations are given by

Pck=Hl lPw> Cov(pck) = H; lCov(pw) H- lT (5.3.6.1)

where p is a 3D position vector of the segment endpoint in the current camera frame, 

Cov(pcjc) is its covariance matrix, is the current camera transformation matrix, p w is 

a position vector of the segment endpoint in the world frame and Cov(pyv) is its 

covariance matrix. Having all segments transformed to the current camera frame their 

appearances in the next camera position are predicted by Eq.(5.3.4.2).

5.3.5 Matching phase o f tracking

The matching phase determines the most likely association of observed and 

predicted primitives based on the similarity between the predicted and observed 

properties. The mathematical measure for such similarity is to determine the difference 

between these properties. The threshold value must be defined on the difference to decide 

whether these properties are similar or not. Since the geometric properties are subject to 

noise, which can be estimated as it was described previously, it is essential to take into 

account the noise estimates of geometric properties when choosing threshold values.
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The most reliable way to take into account noise effects in comparing properties 

is the so-called Maholobonis distance [Bar88] which permits us to define a dynamic 

threshold for comparison depending on the noise level. So as a match measure we use the 

Maholobonis distance between predicted segment parameters from the previous frame 

and observed segment parameters from the current frame

d = (Sp - S 0) T (Wp + Woy l (Sp -  S0 )  ( 5 . 3 . 5 . 1 )

where Sp, SQ are geometric segment parameters (midpoint, length and orientation) given 

by Eq.(5.3.3.7) and possibly luminescence intensity incorporated, Wp Wa are their 

covariance matrices computed as described previously. This measure should be computed 

for each predicted segment against observed segments. The smallest Maholobonis value 

Eq.(5.3.5.1) below prescribed threshold is chosen as the match (nearest-neighbour). 

After this all observed segments are labelled either as new observations of the already 

modelled world (matched segments) or as observations of the new yet unmodelled world 

entities (unmatched segments). If an observed segment is matched to a predicted segment, 

then it inherits the ID (identification label) from its matched predicted segment. 

Unmatched segments are assigned unique ID.

The threshold value depends on the errors in the measurement and prediction 

phases. If all errors are assumed Gaussian, then the Maholobonis distance is a chi-square 

distributed variable. By looking up the %2 distribution table, a threshold on this variable 

can be chosen giving the desired confidence level in accepting a match. Although in this 

case errors are not exactly Gaussian, we use this way to set up the threshold value in our 

implementation. The match measure Eq.(5.3.5.1) is a chi-square variable with four 

degrees of freedom. We usually use the threshold value of 9.49 for the desired 

confidence of 95%.
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A naive matching algorithm yields a O(NN) complexity to match N  segments, 

assuming there are N  segments in booth images. However, the matching process may be 

very slow, especially when there is a large number of segments. This is because the 

computation of the Mahalanobis distance (Eq.(5.3.5.1)) involves a matrix inversion 

( 4x4 matrix, the luminescence attribute if used is uncorrelated with geometric attributes) 

and is relatively expensive. Since the computational complexity of the matching is a big 

part of the whole algorithm complexity, we use the indexing scheme for structuring 

image segments as presented in Chapter 4 (Section 4.5). This indexing scheme together 

with computed uncertainties of predicted and observed segments give the complexity of 

matching equal to kO(N), where N  is the number of segments and k  is a small number 

compered to N  depending on the segments distribution over an image. The computed 

uncertainty of a predicted segment midpoint is used to define an image search window 

in which the midpoint of its corresponding observed segment should lie with a desired 

confidence. By defining the Maholobonis distance for the segment midpoint coordinates 

we have

(  m  _  m T
(  Y m  —

P  0

m nt (w ;  +  w am r
A p  A'o

■a 1 ■c ■*3 \ ^ p  y  p >
< d (5.3.5.2)

where (x'", y'" ) and (x”,y ”) are the midpoint coordinates of predicted and observed 

segments and W ” and W ” are their covariance matrices. The Eq.(5.3.5.2) presents the

uncertainty ellipse within which a match to a predicted segment should lie with the desired 

confidence. This is shown in Fig.5.3.5.1. In order to find the predicted segment match it is 

enough to test only observed segments whose midpoints belong to the uncertainty ellipse, 

since the rest of segments cannot be matches. The image search windows to be searched 

is defined by the size of the uncertainty ellipse. In order to compute the parameters of the 

ellipse Eq.(5.3.5.2) for each predicted segment, the value of W0m  covariance matrix is 

necessary. Since this matrix in general is different for each observed segment, it is
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approximated by a fixed worst-case matrix. The worst-case matrix is simply defined by 

the expresión for WDm matrix given by Eq.(5.3.3.9).

•  segment mid point

Figure 5.3.5.1 Image Search Window

Moreover, in our experimentations we found no significant difference in performance 

between usage of the full covariance matrices and their diagonal terms only (setting off- 

diagonal elements to zero) in computing Eq.(5.3.5.1) at the benefit of rather big 

computational savings, since the matrix inversion is fully avoided. This approximation is 

justified, by weak correlations among segment parameters by using second segment 

representation (midpoint, length and orientation). These two techniques make matching 

process extremely fast.
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5.3.6 Updating phase of tracking

Having resolved correspondences among segments in two successive frames, 3D 

model refinement and expansion are performed.

Model refinement

The Model updating is carried out by the Kalman filter algorithm. Since 3D 

measurements and their uncertainties are defined in the current camera coordinate 

system, they must be transformed to the world reference system. From Fig.5.3.3.2, this 

is computed according to

P* = H k P c k - Cov(pwk) = H kCov(pck)HTk (5.3.6.1)

where is a 3D measurement in the camera frame, C o v ( p is its covariance matrix, 

Hfc is the current camera transformation matrix, p w^  is a transformed measurement and 

Cov(pwk) is its covariance matrix.

Having all measurements transformed to the common reference system, the 

Kalman filter algorithm is applied to the following estimation model

The state transition model is given by

Xk+i V
yk+l =  / yk
.Zk+1_ .zk_

where (x , z f c )  are coordinates of endpoints of 3D segments in the world frame, I  is 

identity matrix, because we are dealing with constant parameters (stationary object in the 

world reference frame).
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The measurement model

The measurement model of (x , z k )  coordinates is given by

1
* ?s*

i V r V
yk + , Cov

A . V A . y

where m£ is the measurement vector given by Eq.(5.3.6.1), I  is identity matrix, 

(e x ,e  y ,e Z)T is the measurement noise vector and Rfc is its covariance matrix given 

by Eq.(5.3.6.1).

The system model and measurement model, together with their covariances are 

used in the the standard Kalman filter equations to update positions of 3D segments and 

their covariances.

Convergence rate analysis

For the particular system and measurement model Eq.(5.3.6.2) and Eq.(5.3.6.3) 

the Kalman filter is equivalent to the recursive weighted least-squares estimation 

algorithm. This gives a possibility to assess its convergence rate as a function of the 

number of processed frames.

The recursive Kalman filter optimization of the above system is equivalent to the 

following weighted least-squares batch optimization problem

n
min X  K  "  h P ) TR~k (%  “  h P )  

p
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The solution vector and its covariance matrix is given by

p  = Î X 1’
-1 n

, Cov(p) =
1

T

i

. * = 1 . * = 1

Assuming that the covariance of successive stereo measurements are constant, resulting 

covariance is given by

Cov(p) = —  
n

Thus, the covariance decreases inversely to the number of processed frames, this has been 

confirmed experimentally.

Model expansion

The newly observed 2D segments which have been tracked successfully over a 

prescribed number of frames are added to the 3D model by applying stereo motion 

equations Eq.(5.3.6.1) to the image segments between current and previous observations. 

Also, the 3D segments within a model which have not been updated for a prescribed 

number of times are removed from the model. This controls the model size and removes 

unreliable segments.

5.4 Application of algorithm

Consider a camera mounted on a robot arm as shown in Fig.5.4.1. The camera is 

rigidly mounted on the robot end-effector. The camera pose with respect to the end- 

effector is described by the transformation matrix H  (Chapter 3). The end-effector pose 

with respect to the robot base is described by the transformation matrix T (Chapter 2). 

The matrix H  is determined by the eye/hand calibration procedure (Chapter 3). The
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matrix T  is provided by the robot controller. The camera position with respect to the 

robot base is given by

Hc = TH  (5.4.1)

This matrix defines the camera motion as a result of the robot arm motion. Our goal is to 

estimate 3D structure of an object by using above described approach.

Figure 5.4.1 Robot-Camera Kinematic Scheme

Experim ental results

Our experimental set-up consists of a CCD camera with 16mm lens mounted on a 

PUMA-560 robot arm. A frame-grabber is fitted to the PC-386 which has 512x512 pixels 

spatial resolution. The PC is interfaced to the robot controller by a RS-232 serial link. 

This allows us to control the motion of the robot and to acquire the robot state 

information (Chapter 2). The necessary image processing software such as edge 

detection, edge linking and edge segmenting was realised according to the material 

presented in Chapter 4. The Eye/Hand and camera calibration software was realised 

according the material presented in Chapter 3.
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The objects used for our experiments are located at a distance of about 40 cm 

from the camera. The camera follows prescribed trajectories. Camera displacements 

between consecutive frames are between 3-5 cm and camera rotations are between 0-5 

degrees. The robot moves and stops for processing. On PC-386 it takes a few seconds to 

execute the algorithm per image for a few tens of segments excluding low-level image 

processing (filtering and edge detection).

For the system to be initiated, a set of initial parameter values must be supplied to 

it, as previously described in details.

In Table 5.4.1 we give a summary of these parameters and their particular values 

used in the experiments presented here

o

resolution of

Gaussian

filter

e

tolerance for

polygonal

approx.

°  D

parallel

segment

uncertainty

<*2v

normal

segment

uncertainty

zo

object-

camera

distance

estimate

<*2z

object-

camera

distance

uncertainty

1 2 pixels 6 pixels 2 pixels 400 mm 3600

Table 5.4.1 System Parameters

Here experimental results for four test objects are given. First one is an artificial cubic 

like object with known ground truth in terms of 3D segment lengths with "good" 

geometric and reflectance properties. The rest of the objects are industrial parts.
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First test object

Fig.5.4.2 shows a raw image of the cube. Fig.5.4.3 shows the reconstructed 3D 

segments of the cube after ten processed images with their labels superimposed. 

Fig.5.4.4 and Fig.5.4.5 show the length estimation of the segment labelled by number 5 

and its variance over 10 frames. Table 5.4.2 shows true lengths of some segments, their 

estimated lengths and their variances after first stereo-pair is processed. Table 5.4.3 

shows true lengths of some segments, their estimated lengths and their variances after ten 

processed images. From the presented results it can be seen that the 3D structure which 

is recovered very quickly converges to precision on the order of a millimetre. All 3D 

segments have the similar convergence rate and it usually takes five or six images to 

achieve steady state.
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Figure 5.4.2 Raw Image of Object, Top View

Figure 5.4.3 Visually Reconstructed Model after 10 Frames,

Projection on Camera
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Figure 5.4.4 Length Estimation, Segment No.5

No. o f tam es

Figure 5.4.5 Length Variance, Segment No.5



Segment No. l(mm) ltrue(mm) Cov( 1)
1 14 10 105
2 21 25 108
3 18 15 100
4 13 12 110
5 22 20 105
6 11 15 98
7 21 23 104
8 14 12 114
9 9 5 108
10 12 9 101

Table 5.4.2

Estimated and True Lengths of some Segments and Their Variances after 
First Stereo-Pair

Segment No. l(mm) ltrue(mm) Cov( 1)
1 9 10 10
2 24 25 11
3 16 15 12
4 11 12 13
5 20 20 12
6 14 15 13
7 23 23 11
8 12 12 14
9 7 5 10
10 8 9 13

Table 5.4.3

Estimated and True Lengths of some Segments and Their Variances after 10 Frames
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Second test object

Fig.5.4.6 shows a raw image of a connector. Fig.5.4.7 shows the 

reconstructed connector model after the tenth image with their labels. Fig.5.4.8 and 

Fig.5.4.9 show the length estimation of the segment labelled by number 2 and its 

variance over 10 frames. Table 5.4.4 shows true lengths of some segments, their 

estimated lengths and their variances after first stereo-pair is processed. Table 5.4.5 

shows true lengths of some segments, their estimated lengths and their variances after ten 

processed images.

Segment No. l(mra) ltrue(mm) Cov( 1 )
37 13 18 180
36 19 16 185
35 29 30 188
1 26 30 175
2 24 16 180
9 9 16 182

Table 5.4.4
Estimated and True Lengths of some Segments and Their Variances after 

First Stereo-Pair

Segment No. l(mm) ltrue(mm) Cov( 1 )
37 18 18 22
36 17 16 18
35 30 30 25
1 29 30 20
2 15 16 20
9 11 16 22

Table 5.4.5

Estimated and True Lengths of some Segments and Their Variances after
10 Frames
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Figure 5.4.6 Raw Image o f Object, Top View

Figure 5.4.7 Visually Reconstructed Model after 10 Frames,

Projection on Camera
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No. o f frames

Figure 5.4.8 Length Estimation, Segment No.2

Figure 5.4.9 Length Variance, Segment No.2
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Third test object

Fig.5.4.10 shows a raw image of a switch box. Fig.5.4.11 shows the 

reconstructed switch box model after the tenth image with their labels. Fig.5.4.12 and 

Fig.5.4.13 show the length estimation of the segment labeled by number 3 and its 

variance over 10 frames. Table 5.4.6 shows true lengths of some segments, their 

estimated lengths and their variances after first stereo-pair is processed. Table 5.4.7 

shows true lengths of some segments, their estimated lengths and their variances after ten 

processed images.

Segment No. l(mm) ltrue(mm) Cov( 1 )
7 13 11 100
8 32 30 90
9 46 45 108
10 10 11 110
32 15 18 90
15 14 18 95

Table 5.4.6

Estimated and True Lengths of some Segments and Their Variances after 
First Stereo-Pair

Segment No. l(mm) ltrue(mm) Cov( 1 )
7 11 11 11
8 30 30 10
9 45 45 12
10 11 11 12
32 16 18 10
15 17 18 11

Table 5.4.7

Estimated and True Lengths of some Segments and Their Variances after
10 Frames
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Figure 5.4.10 Raw Image o f Object, Top View

Figure 5.4.11 Visually Reconstructed Model after 10 Frames,
Projection on Camera
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Figure 5.4.12 Length Estimation, Segment No.8

Figure 5.4.13 Length Variance, Segment No.8
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Fourth test object

Fig.5.4.14 shows a raw image of two switch boxes. Fig.5.4.15 shows the 

reconstructed 3D model after the tenth image with their labels. Fig.5.4.16 and Fig.5.4.17 

show the length estimation of the segment labeled by number 3 and its variance over 10 

frames. Table 5.4.8 shows true lengths of some segments, their estimated lengths and 

their variances after first stereo-pair is processed. Table 5.4.9 shows true lengths of 

some segments, their estimated lengths and their variances after ten processed images.

Segment No. l(mra) ltrue(mm) Cov( 1 )
30 13 18 70
29 25 30 70
6 34 36 55
7 14 11 55

51 20 25 65
52 38 35 182

Table 5.4.8

Estimated and True Lengths of some Segments and Their Variances after 
First Stereo-Pair

Segment No. l(mm) ltrue(mm) Cov( 1 )
30 15 18 8
29 28 30 10
6 36 36 6
7 11 11 6

51 24 25 8
52 36 35 10

Table 5.4.9

Estimated and True Lengths of some Segments and Their Variances after
10 Frames
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Figure 5.4.14 Raw Image o f Object, Top View

Figure 5.4.15 Visually Reconstructed Model after 10 Frames,
Projection on Camera

ill



No. of frames

Figure 5.4.16 Length Estimation, Segment No.6

No. o f frames

Figure 5.4.17 Length Variance, Segment No.6
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Results discussion

W e have perform ed a num ber o f experim ents w ith these and o ther objects, which 

satisfy the assum ption that objects can be well m odelled by a  set o f straight-line segm ents. 

In all cases the algorithm  was able to reconstruct 3D m odels o f  objects accurately, reliably 

and quickly. O verall repeatability is very high and false 3D  reconstructed  segm ents are 

very scarce. The algorithm  has proven to be very robust to variations in the system  

param eters Table 5.4.1 and the cam era motion. W e have perform ed a num ber of 

experim ents by changing the nominal system param eters Table 5 .4 .1 , using different 

cam era trajectories and different interfram e displacem ents. The system  has perform ed well 

as long as reasonable perturbations have been made.

5.5 Conclusions

T he new  technique fo r 3D structure estim ation from  m onocular im age sequences, 

using know n cam era m otion, based on tracking line-segm ents over im age sequences has 

been presented  in this chapter. The tracking process consists o f  prediction, m atching and 

updating stages. These stages are handled in a Kalman filtering fram ew ork o f covariance 

based prediction, m atching and updating. The prediction stage o f ou r tracking process 

does no t use heuristics about m otion in the image plane and applies fo r arbitrary cam era 

m otion. T he prediction is based on assum ptions about object s tructu re  (i.e. a rough 

know ledge o f a distance betw een cam era and an object is assum ed know n and the depth 

ex ten t o f the object is small com pared with the cam era-object distance) for the 

initialization phase, the rest o f  the tracking process is based on the estim ated object 

structure . T he m atching stage is based on the sim ple nearest-neighbour m atching 

algorithm  using the M ahalobonis (statistical) distance as a similarity m easure. The 

updating stage is based on standard Kalman filter estim ation algorithm .

T he reliable and accurate function o f the system depends on three m ajor factors. 

T he first fac to r influencing the reliability and accuracy o f the system is calibration o f the
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cam era, the position o f the cam era on the robo t arm  and the robo t arm itself. W hen the 

system  is not properly calibrated, the result is an increased e rro r in the prediction from  3D 

to 2D space and overall 3D reconstruction. The second fac to r is the satisfaction o f  the 

assum ptions about object structure. If  the initial distance estim ate o f the object from  the 

cam era is severely m issed (known with a big error) than the m atching will fail and no 3D  

structure will be reconstructed. It is im portant to note that the influence o f  the accuracy  o f 

the initial distance estim ate can be controlled by controlling  the size o f the in ter-fram e 

displacem ents. The sm aller displacem ents the less sensitivity to the accuracy o f the initial 

distance estim ate. This is a trade-off betw een the accuracy o f  the initial distance estim ate 

and the num ber o f processed frames required. I f  the depth  ex ten t o f  the object is too  

large, m issed and false m atches are m ore likely to result. I t  is im portant to note tha t for 

the robotic pick and place operations these assum ptions are alm ost always m et. The third 

fac to r influencing the reliability and accuracy is the uncertainties description. I f  the 

uncertainties associated w ith the different stages o f the tracking process are too small 

than the m atching w ill fail and the reconstructed  geom etrical m odel will contain m uch less 

segm ents and poor overall reconstruction results. On the o ther hand if  these uncertainties 

are too  large, the m atching process based on the nearest neighbour m atching algorithm  

may generate false m atches because o f much m ore com peting m atches. False m atches 

reconstruct false 3D segm ents and again poor overall reconstruction  results. It is of 

essential im portance to have these uncertainties properly defined.

The m ain advantage o f our system  is that determ ination o f uncertainties and o ther 

system  param eters is very sim ple and has a firm analytical basis. N o param eter is tuned or 

guessed by num erous trials and errors. The uncertainties due to feature extraction errors 

are handled on analytical basis. Specifically, it is show n that for ou r assum ption abou t 

object structure , prediction o f object image m otion can be based on 3D structu re  

constrain t and not on heuristics about the im age m otion o f features.
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T he technique has been implem ented to provide 3D  inform ation fo r  a robo t 

m anipulator. The experim ental results show  reliability and accuracy o f  the p roposed  

technique. T he 3D  structure  which is recovered very quickly converges to  precision on 

the o rder o f  a  millimetre provided the system is w ell calibrated  and system  param eters are 

tuned  properly .
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Chapter 6

Robot Visual Control

In this chap ter a new  contro l schem e fo r a robo t m anipulator con tro l based on 

visual inform ation is proposed. The control system  determ ines the position and orientation 

o f  the robo t gripper in o rder to  achieve desired grasping relation betw een the g ripper and 

a 3D  object. The proposed  control schem e consists o f tw o distinct stages: 1) Teaching 

stage, in  the teaching stage the robo t reconstructs a 3D geom etrical m odel o f a presented  

unknow n object within a class o f  objects (polyhedra), by in tegrating inform ation from  an 

im age sequence obtained from  a cam era m ounted on a robo t arm  (eye-in-hand 

configuration). The m odel is represented by a set o f 3D  straight-line segm ents and 

denoted  as a reference m odel. The robot is also taught desired grasping relation  by 

m anual guidance. 2) Execution stage, in the execution stage the robo t system  reconstructs 

a 3D  m odel o f the arbitrarily placed 3D object. This m odel is denoted  as an observed 

m odel. Then, the necessary position and orientation o f its gripper is determ ined in o rder 

to achieve desired position  and orientation o f its gripper w ith respect to the object. This is 

done by estim ating 3D displacem ent betw een the reference and observed m odels. The 

displacem ent estim ation is based on "hypothesise and verify" paradigm . Further, the basic 

algorithm  is ex tended  to handle multiple objects m anipulation and recognition The 

perform ance o f the proposed  algorithm s has been tested on the real robo t system , and the 

experim ental results are presented .
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6.1 Introduction

The robotic system s that include vision and other sensors have been receiving a lot 

o f attention. Such system s can solve many problem s w hich limit ro b o t applications, by 

m aking them to adapt to environm ent changes and execu te  their tasks. In o rder to 

present the various approaches which researchers have chosen to adop t in solving the 

problem s o f  vision-guided robotics, it is useful to consider a taxonom y o f visual control 

strategies fo r robots due to [San82] and [W ij93]:

1) Static and dynam ic position based "Look and M ove" contro l schem e

The block diagram  o f this strategy is shown in Fig.6.1.

Figure 6.1 Position Based "Look and M ove" V isual C ontrol System

In the static and dynamic "look and move" approach a vision system  provides an 

o u ter feedback loop defining a target position and orientation in w orld space, while the
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dynam ic robo t arm  con tro l relies on an inner contro l loop based upon feedback  derived 

from  jo in t-m ounted  sensors. Static look and m ove is characterised by a sequence o f stop- 

look-m ove steps, while dynamic look and m ove is characterised  by a sequence o f  look- 

w hile-m oving iterations. T he distinction betw een static and dynamic "look and m ove" 

strategies is basically dependent on timing. These m ethods require accu ra te  system  

calibrations. Exam ples o f  static "look and m ove" system s are given in [Sar82] and 

[D ri84], They deal w ith 2D objects in a plane parallel to  a cam era plane, effectively 

determ ining three degrees o f freedom  (x, y) together w ith x -y  plane orien tation  o f an 

object. A n exam ple o f dynam ic "look and m ove” which m ust be used if a  m oving ob ject is 

to  be picked is given in [A1193]. In [A1193] stereo cam eras are used to determ ine the 

centroid  coord inates (x, y, z) o f  a m oving object being tracked. N o object orien tation  is 

determ ined.

2) Static and dynam ic im age based "Look and M ove" contro l schem e 

T he block diagram  o f this strategy is show n in Fig.6.2.

Figure 6.2 Image Based "Look and Move" Visual Control System

118



In static and dynamic im age based "look and m ove" approaches a vision system  

provides a feedback loop in terms o f an interm ediate feature space. This requires a 

m apping betw een geom etric features in an im age o f the perceived ob ject and the 

position and orientation o f the object relative to cam era. I f  image processing delays can 

be overcom e, a contro ller operating directly on the relationship betw een im age features 

can be designed. If  im age processing delays are significant to prevent d irect dynamic 

control using vision derived data, then an interm ediate approach can be used in w hich a 

vision feedback provides an ou ter corrective loop to  the inner jo in t-based  con tro l loop. 

The m ajor difficulty w ith this m ethod is connected with selection o f  im age features for 

contro l and specifying dem ands in term s o f these features, which is fa r from  being trivial. 

These m ethods require accurate system  calibrations. Exam ples o f this approach  are given 

in [Fed89] and [Pap92]. In [Fed89] a sim ple straight line feature is used. T hey  deal with 

picking a 2D  m oving object in a plane parallel to a cam era plane, effectively determ ining 

three degrees o f  freedom  (x, y ) position and x -y  plane orientation o f  the object. In 

[Pap92] a point o r tw o point features o f a 2D  object are used to track  an object 

constrained in a plane parallel to a cam era plane.

3) E nd-E ffector "Look and M ove" control schem e

The block diagram  o f this strategy is shown in Fig.6.3. These m ethods use direct 

feedback o f  the robo t end-effector positions as a means o f reducing the problem s of 

robo t inaccuracy which result from poor system calibrations. The basic idea in this 

m ethod is to use visual feedback to match the robot end-effector and object positions in 

the im age. E xact spatial coordinates are no t required, and a w ell-chosen feedback  can 

correc t fo r inaccuracies in calibrated param eters [W ij93]. T he contro l o f the jo in ts can be 

based upon closed-loop jo in t control with the end-effector tracking schem e providing only 

an ou ter corrective loop. The m ajor difficulty w ith this approach is connected  with 

selection o f object features, end-effector features and corresponding end-effector 

tracking algorithm s. An exam ple o f this m ethod is given in [H ol94], T here, the stereo
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cam eras are used to track  the robot end-effector (a planar patch associated  w ith it) and 

the object (a planar patch associated with it) by the use o f  affine active co n to u r models 

derived from  the planar patch boundaries. Basically, the system  determ ines the position 

coord inates (x, y, z) o f the centroids o f both planar patches and their orientations 

(norm als on to  patches). The control dem and is to bring these tw o patches into desired 

relative position  and orientation.

Figure 6.3 End-Effector "Look and M ove" V isual C ontrol System

In this chapter a new approach to vision based contro l is p roposed . T he task 

considered in this chapter is to m ove the robo t m anipulator gripper to a position and 

orientation w here grasping o f  a 3D object should be perform ed. T he novelty  o f  this 

schem e lies in the fact that 3D unknown objects within a class o f  objects (polyhedra) are 

considered and the com plete procedure is fully autom ated. The con tro l schem e is based 

on 3D  vision based m odel reconstruction and 3D displacem ent estim ation. A ccording to 

the previous classification, this control strategy can be classified as Static Position Based 

Look and M ove V isual Control.
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6.2 Relation to previous work

T he crucial po in t in this visual robo t control schem e is the problem  o f 3D 

displacem ent estim ation o f  an object, based on 3D observations o f  the object. Such a 

problem  is related  w ith m otion analysis in com puter vision. In particular, this problem  is 

related  to the problem  o f m otion estim ation from  tw o or m ore stereo  fram es. Basically, 

this problem  consists o f tw o parts. The first part is to establish correspondences betw een 

3D features in tw o stereo  frames. The second part is to estim ate 3D  displacem ent using 

m atched features. Com putationally efficient solutions to these problem s based on 

"hypothesise and verify" paradigm  w ere reported  in the literature [Fau86], [A ya86], 

[A ya89], [Zha90], [Zha92]. Unlike o ther approaches this approach attem pts to find 

locally consisten t m atches by using rigidity assum ptions about objects. Then, the global 

m atching is checked by using displacem ent estim ates obtained from  locally consistent 

m atches. In [Aya89] the initial displacem ent (m otion) estim ate betw een tw o stereo 

fram es is assum ed to be know n, and tw o stereo frames are m atched and the displacem ent 

estim ate refined by using the extended Kalman filter algorithm . In [Zha90], [Zha92] no 

assum ption abou t displacem ent is used and a set o f rigidity constrain ts is used to 

d iscover potential m atches, followed by an application o f the extended Kalman filter 

algorithm  to estim ate  3D displacem ent betw een two stereo fram es.

B ased on these ideas, we develop a technique for 3D displacem ent estim ation and 

robot control, which brings following m odifications and im provem ents

• W e form ulate a set o f rigidity constraints fo r geom etric primitives which w e use and 

incorporate  the uncertainty o f m easurem ents in their form ulation. T hese rigidity 

constraints are used to d iscover potential m atches betw een two 3D  m odels.

• W e use a closed-form  algorithm  to estim ate 3D displacem ent. This algorithm  thanks 

to its non iterative nature outperform s the efficiency o f nonlinear algorithm s.
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• W e form ulate the usage o f  this inform ation in order to  accom plish the ro b o t control 

task.

6.3 Control strategy

In robotics, the task o f pick and place is the m ost fundam ental one. In o rder to 

pick  a w orkpiece the desired position and orientation o f the  robo t gripper w ith  respect to 

the w orkpiece m ust be achieved. In this chap ter the problem  o f  determ ining the desired 

gripper position and orientation fo r the arbitrarily placed 3D  w orkpiece based on visual 

inform ation is discussed. The relations betw een different coord inate  system s and 

hom ogeneous transform ation m atrices used for robo t visual contro l are  show n in 

Fig.6.3.1.

Figure 6.3.1 C oordinate Transform ations fo r V isual R obot C ontro l



The list of definitions for coordinate systems used

• G, The gripper coordinate frame. T hat is, the coordinate system  fixed on the robo t 

gripper.

• O, T he coordinate system  fixed on the object

• R W , T he  robo t coordinate system. The position and orientation o f  the gripper 

coord inate system  G is controlled with respect to the R W

The list o f  defin itions o f hom ogeneous transform ation m atrices used

H g, H ng  define coordinate transform ations from  G to R W

H m  defines the coordinate transform ation betw een the reference and observed object

H_ =
R m Tw m
o 1

is the desired coordinate transform ation betw een the gripper fram e G and the 

object fram e 0

H  =
Rm Tm m 
0  1

As w as m entioned before, our control schem e consists o f tw o stages. The first 

stage is the teaching stage. During this stage an unknown object w ithin a class o f objects 

is presented  to the robot-cam era system. The system reconstructs a 3D m odel o f  the 

object using the algorithm  presented in C hapter 5. W e call this m odel a reference model. 

N ext, the ro b o t arm is manually guided to the desired grasping position and orientation

123



fo r the object. This position and orientation defines H g  transform ation. This matrix 

definition and the reference m odel construction m akes the teaching stage o f  the contro l 

schem e. Second stage is the execution stage. This is a w orking stage o f  the ro b o t arm , in 

which the robo t arm  is required to grasp the arbitrarily p laced object keeping the desired 

relative orientation and position defined by m atrix. D uring this stage the robot- 

cam era system  reconstructs a 3D m odel o f  the object. W e call this m odel the observed 

m odel. H aving the reference m odel and the observed m odel we can estim ate the 3D 

displacem ent (m otion) betw een them. This displacem ent is given by H m  coordinate 

transform ation. H aving determ ined H m , the new  gripper position and orientation is given 

by the hom ogeneous m atrix H ng. This m atrix sim ply follow s from  Fig.6.3.1 as

H  =  H  H~' (6.3.1)fig g nt v '

The fundam ental problem  in this approach is to construc t an accurate  and reliable 

3D representation o f an object by using visual data and to estim ate the relative 

displacem ent (m otion) o f the object by using these 3D  representations. In o rder to 

estim ate 3D  displacem ent betw een the reference and actual pose o f  the object, the 

m atching (correspondence) problem  m ust be resolved betw een the reference and 

observed object m odels. W e solve this problem  by using so-called "hypothesise and 

verify" paradigm  for tackling the m atching problem. H aving resolved correspondences, 

we estim ate the 3D displacem ent using a closed-form  algorithm . In the sequel 

approaches for solving these two difficult and im portant problem s will be presented.
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O ur eye-in-hand robot configuration is show n in Fig.6.4.1.

6.4 3D Vision based model reconstruction

Figure 6.4.1 Eye in H and R obot C onfiguration

A  cam era is rigidly m ounted on the robo t gripper. The cam era pose w ith respect 

to the gripper is described by the transform ation m atrix H . The gripper pose is described 

by its transform ation m atrix  w ith respect to the robot base. The m atrix  H  is determ ined by 

the eye/hand calibration procedure (C hapter 3). The m atrix T  is provided by the robo t 

con tro ller (C hap ter 2) . The cam era position with respect to the ro b o t base is then given

Hc =  TH  (6.4.1)

The algorithm  for 3D m odel reconstruction given in C hap ter 5 is used. The algorithm 

integrates 3D  structure o f a scene from the image sequence using know n cam era motion. 

T he algorithm  integrates 3D  m odel o f a scene in the form  o f 3D straight-line segm ents by 

tracking and fusing 2D line-segm ents m easurem ents over the im age sequence. A 3D  line- 

segm ent is described by coordinates o f its two end-points and their covariance m atrices
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S = [ A ,p 2,H',W'] (6.4.2)

T he process o f tracking, m atching and updating is based on Kalman filtering fram ew ork. 

This approach provides fo r reliability, accuracy and com putational advantages. In order 

to construct 3D representation o f an object, the object is p laced in the field o f view  o f  the 

cam era, the robo t m akes a sequence o f m ovem ent (stop and go m otion) a t each pause an 

im age is taken, processed  and the 3D m odel is updated. T he 3D m odel is defined in the 

robot base coord inate fram e.

6.5 3D Displacement estimation

T he problem  o f estim ating 3D displacem ent (m otion) o f an object from  its tw o 3D 

observations is usually solved in tw o steps. The first step is to establish feature 

correspondences betw een two observations. The correspondence (m atching) problem  is 

regarded  as a very difficult one. The rigidity assum ption about the object provides a 

strong  constra in t which simplifies the analysis and is used in alm ost all m atching 

algorithm s [B ol82], [H ora84], [Gri84], [Pol87], [Gri87], [C he88], [Zha92]. T he form  of 

rigidity constrain ts depend on the geom etrical prim itives used to represent 3D object, 

am ong them  are 3D points, lines and planar patches.

O ne approach fo r solving the correspondence problem , originally developed  for 

the recognition purposes, is so-called the interpretation tree search. This approach 

operates by exam ining all hypotheses about pairings betw een two 3D m odels. By using 

geom etric constraints the search tree can be considerably consuained  making 

com putations m ore feasible [Bol82], [H ora84], [Gri84], [G ri87]. This approach suffers 

from  exponential com binatorics in the case o f spurious data  and occluded objects.

A nother approach for solving this problem is so-called "hypothesise and verify" 

paradigm  [Fau86], [A ya86], [Aya89], [Zha92], The distinctive feature o f this approach is 

tha t the d isplacem ent param eters are initially determ ined using a locally consisten t set of
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the geom etrical prim itives determ ined by rigidity assum ptions ("hypothesise stage"). T o  

ensure global consistency, verification is done fo r overall prim itives ("verify stage"). A fter 

the verification stage is done the best hypothesis is chosen. This is show n in F ig .6 .5 .1.

Figure 6.5.1 D iagram  o f the H ypothesise and V erify Paradigm

Posing the solution in this way cuts dow n the com putational com plexity and 

im proves the robustness o f the m ethod in case o f partially observed object. In this w ork  

w e use this paradigm  to solve fo r 3D displacem ent.

O nce correspondences are established the second step is to estim ate the 3D 

displacem ent betw een tw o observations. M any closed and iterative solutions ex ist in the 

literature to the problem  o f displacem ent estim ation from  know n correspondences 

[A ru87], [Fau83], [H ua86]. D ue to the errors in m easurem ents these m ethods find 

solutions by m inim ising som e criteria (usually least squares).
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6.5.1 R ig id ity constraints

The 3D rigid body motion can be uniquely represented by a rotation around the 

origin of the coordinate system followed by a translation. Let P and P' be a position 

vector of the same point before and after motion, then we have

P =RP + T  (6.5.1.1)

where R is the rotation matrix and T  is the translation vector. Under rigid motion, the 

geometry of a rigid body remains constant. In other words the geometry of the object 

does not change during displacement. Since we deal with objects represented by 3D line 

segments, a set of rigidity constraints for line-segments is given below. If two line 

segments S} and S2 in the reference model are matched to the S /  and S2' segments in the 

observed model, as shown in Fig.6.5.1.1, then:

Figure 6.5.1.1 Rigidity Constraints 

The following rigidity constraints hold
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Length constraint

Distance constraint

Angular constraint

/| /|, 1"2

1̂2 — 1̂2

uv = u v  (6.5.1.2)

where // and //' are segment lengths, d72 and ¿J2' are distances between segment 

midpoints, m and v are segment unit vectors and uv is a dot-product. The above equalities 

can be easily verified using the properties of rigid displacement Eq.(6.5.1.1).

Above mentioned constraints hold in case of noise-free measurements. Since the 

3D vision based measurements are always corrupted by noise due to image processing, 

system calibration errors and stereo reconstruction, the constraints are not satisfied. Here 

the rigidity constraints are reformulated by explicitly taking into account the uncertainty 

of measurements. One way is to chose fixed threshold values for constraints. However, 

the errors of measurements given by a stereo system have different distributions in 

different directions, so such phenomena cannot be handled properly with prefixed 

threshold values. The idea is to dynamically compute a threshold for each constraint. 

Since the module for 3D visual reconstruction (Chapter 5) supplies the 3D information 

and their uncertainties in the form of covariance matrices Eq.(6.4.2), the rigidity 

constraints should be reformulated to take into account measurement uncertainties 

explicitly.

Let us consider a nonlinear equation of the form

y = f ( x ) ,  x = x 0, Cov(x) = W (6.5.1.3)
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where x  is a normally distributed random vector with the mean x 0 and Cov(x) = W, then 

up to the first-order approximation y  is the normally distributed variable with the mean 

and variance given by

ÿ = f ( x 0),  Var(y) = Jac(x0)W Jac(x0) T (6.5.1.4)

where Jac  is the gradient vector of the f(x).

Under this assumption

d = (y - y ) 2 /V ar(y)  (6.5.1.5)

d  is a %2 distributed variable with one degree of freedom. The threshold k on this 

variable can be set such that the desired probability of d  falls in the interval [0, k\ is 

satisfied, by looking at a y l  distribution table.

d < k  (6.5.1.6 )

For example, one can use k = 3.84 for a probability of 95%.

By applying this formalism, the rigidity constraints Eq.(6.5.1.2) are reformulated as 

follows

Length constraint

The length constraint says that the difference between the norms of two vectors 

should be zero. For convenience, we use the squared norm of a vector instead its norm.

Taking into account the uncertainty of measurements, we formalise the constraint as

follows:

d = l Tl - l Tl

Given the covariance matrix W[ of I and the covariance matrix Wj' of the variance 

Wrf of d can be computed according to Eq.(6.5.1.4).
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wd =4 (lTW,l + r w ri )  

Therefore, the length constraint can be expressed as

(6.5.1.7)

According to Eq.(6.5.1.6), a threshold k on this variable can be set such that the desired 

probability of (fiAVrf falls in the interval [0, k] is satisfied. We usually use k=3.84 for a 

probability of 95%.

Distance constraint

Exactly the same derivation applies to the distance constraint

Angular constraint

The dot-product constraint says that the difference between the cosines of angles 

between two vector should be zero.

Now the variance of d  can be computed. Under the first-order approximation, we have

d  = u7 v — u 7 v

Wd = v TWuv + uTWvu + v TWu.v + ur W¥.u

Therefore, the dot-product constraint is expressed as

(6.5.1.8)
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According to Eq.(6.5.1.6), a threshold k on this variable can be set such that the desired 

probability of cfiAVrf falls in the interval [0, k] is satisfied. One can use £=3.84 for a 

probability of 95%.

6.5.2 Generating hypotheses

In this stage the rigidity constraints are used to generate hypotheses about matches 

between the reference and observed model. The generation of hypotheses is implemented 

as follows. For a segment in the observed model, a segment S ,' is found in the 

reference model such that its length is compatible with that of Sj. For the pair (S,, S} '), we 

then fmd pairs (Sfo S ^ )  such that two pairs satisfy the rigidity constraints. When this is 

done, we go to the next segment S2 of the observed model. Since, we do not want to 

recover all matches in this stage, but to recover potential displacements between them, 

different heuristics are used to reduce complexity of the process.

Firstly, all segments in the reference and observed model are sorted in decreasing 

length order so that we can easily fmd, by binary search, the segments in the reference 

model that are compatible in length with segments in the observed model.

Secondly, instead of finding all possible pairs compatible with a given pair, we find 

a sufficient number of them (usually three) and stop. The number of hypotheses to be 

generated is predefined. We usually generate twenty hypotheses with three matched pairs 

for objects having a few tenths of segments.

Thirdly, the number of segments is reduced by considering only longest segments 

in the observed and reference model (for instance, one half of segments).
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6.5.3 3D Displacement estimation from 3D point correspondences

In this section commonly used techniques for 3D displacement estimation from 3D 

point correspondences are presented.

Let yj,...,yn be N  points in 3D space. Let R be a rotation matrix and T be a 

translation vector. Let ;c7,...,;tn be the points in 3D space which match yp ...,yn . Each x{ is 

the same rigid body motion of y\. Hence, each y[ is given by

yi = Rxi + T  (6.5.3.1)

3D displacement (motion) estimation problem is to infer R and T from ylf...,yn and

X] x n. In theory three noncollinear point correspondences are enough to uniquely

estimate rigid body displacement. In the presence of noise, we need to take into account

the uncertainties in the points that are constructed by stereo triangulation. Using the

estimated 3D positions and their estimated covariance matrices Eq.(6.5.3.1) becomes

9i = y i + z yi’ Cov(eyi) = Wyi, Cov(£xi) = Wxi

yi = Rxi + T + e i, £ ,= * £ „ - £ „ ,  Cov(£i) =  Wi = Wyi +RW xiRT (6.5.3.2)

According to the minimum variance estimation (Chapter 3, Section 3.5), the displacement 

parameters should minimise

X  (y, -  Rx, -  T f w r 1 (y; -  Rx. -  T) (6.5.3.3)
i=i

where N  is the number of point correspondences and Wi is given by Eq.(6.5.3.2). It is 

important to note that Wi depends on the unknown matrix R. Since the matrix R is a 

rotation matrix, there are only three degrees of freedom in R. Letting (a, (3, 7) denote
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Euler angles parametrization of R (Appendix A), Eq.(6.5.3.3) is a nonlinear function of a 

six dimensional parameter vector mT=(a, p, 7, tx, ty, tz). Thus, the objective is to 

determine the vector m which minimizes Eq.(6.5.3.3).

Closed-form estimation

A closed-form solution that minimizes a special form of Eq.(6.5.3.3)

N 2

m in Z v .'lb ,' ~ - T’l . subject to RRt = I  (6.5.3.4)
(fi.n ¡=1

where 7/ are weighting factors, is given in [Aru87], [Free89]. The solution to this

problem is based on singular value decomposition (SVD) of a (3x3) matrix (Appendix B).

This objective function is in fact a scalar weighted least squares criterion. However, since 

the depth component of a point is significantly less reliable than the lateral components, 

and the errors in the three components have considerable correlations, the scalar weighted 

objective function does not properly treat those uncertainties. A closed form solution to 

a matrix weighted objective function given by

X  tt- -  Rxt -  T)T w r1 (y. -  Rxi -  T ) (6.5.3.S)
1=1

where Wi are weighting matrices, is given in [Wen92], Estimates of Wi follow from 

Eq.(6.5.3.2) by taking R=I. This is a valid approximation for small rotations only.

Extended Kalman filter estimation

The standard Kalman filter is a powerful recursive tool to deal with state 

estimation problem in a linear noisy system. The extended Kalman filter [Bar88], [Gel74], 

[Jaz76] applies the standard Kalman filter to nonliner systems with additive Gaussian
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noise by continually updating a linearization around the previous state estimate, starting 

with an initial guess. The use of the extended Kalman filter for displacement estimation 

were reported in [Aya8 6 ], [Aya89], [Zha90], [Zha92].

Linearizing the measurement equation Eq.(6.5.3.2) around the current 

displacement estimate m=(a, P, 7 , tx, try, tz) and the current observation vector (y, x) 

(Chapter 3, Section 3.5) we get a linearized measurement equation

Z = Hm + £, Cov(e) =  W

Now, the standard Kalman filter (Chapter 5) can be applied to update the displacement 

estimate m. This process is performed sequentially over all point correspondences. The 

distinctive advantage of the EKF based displacement estimation is that all possible types 

of differentiable measurement equations (not only the 3D point primitive) can be 

incorporated in a uniform manner.

Direct iterative estimation

The last method we consider is the direct iterative optimization of the objective 

function Eq.(6.5.3.3). The modified Newton's method [Den83] is used to optimise the 

cost function.

The accuracy of the presented methods was compared. A number of simulations 

with the simulated and real data to test the performance of the methods with regard to the 

accuracy, reliability and computational complexity was performed. The direct iterative 

optimisation found accurate solutions in all tested cases with a few iterations, while 

having the biggest computational demand. The well known problems with EKF were 

confirmed. Unless a very good initial guess is provided and noise level is low, the initial 

divergence occurs for a small number of processed measurements for systems with severe
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nonlinearities (the use of an iterated EKF at the begining is usually a must). It may take a 

lot of measurements (point correspondences) for the EKF to pull back from the initial 

divergence. Once the good convergence is achieved, EKF performs well. The 

computational demand of EKF is smaller than for the direct iterative optimisation 

thanks to its sequential nature. Closed-form solutions are computationally most efficient, 

even though they are the most sensitive to the measurement noise. For the small number 

of point correspondences and high level of the measurement noise they may be unreliable. 

By performing numerous tests with real data obtained from our system, we found closed- 

form solutions nearly as good as nonlinear solutions with regard to accuracy. Finally, 

we settled on the following algorithm for displacement estimation

• We find the closed-form solution which optimises Eq.(6.5.3.4). This step is performed 

in the "hypothesise" stage, when the number of point correspondences is very small 

(usually three). Since a relatively large number of the hypothesised displacements 

must be computed, it is of a great interest to have a fast and accurate algorithm in 

this stage. Having determined displacement estimate m, its covariance matrix is 

determined by (Chapter 3, Section 3.5)

^  j—i uTYl u f t t  j

* When new point correspondences become available in the "verify" stage, the final 

displacement can be determined by recomputing the closed-form solution for all point 

correspondences. This solution can be improved further by performing the iterative 

optimisation, using the closed-form solution as a starting point. It usually takes just 

one iteration for modified Newton's method to converge. After performing a number 

of experiments we do not find this necessary, since the closed-form solution itself is of 

high accuracy.
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In our case segments are given by their endpoints Eq.(6.4.2), and we do not 

establish correspondence between endpoints but between segments, the midpoints of 

matched segments are used to estimate displacement. A midpoint of a segment given by 

Eq.(6.4.2) and its covariance matrix is given by

P i + P - >  ^  / % w \ +  W *  m  ^Pm=  - C o v ( p J ~ - 1^ (6.53.6)

It is obvious, if two segments are matched their midpoints are matched unambiguously. 

Therefore, at least three matched segments are needed to determine displacement. In our 

experiments, hypotheses consisting of three segment pairs are usually used. So, for each 

generated hypotheses we estimate corresponding displacement as presented above.

6.5.4 Verifying hypotheses

At this stage, from each hypothesis an initial estimate of the rotation and

translation is computed using the method from the previous section. Each initial

displacement estimate is applied to the reference model. Then, we have to match the 

transformed reference model and the observed model. If a transformed segment is near 

enough to some segment in the observed model, then this pair is considered to be 

matched. After discovering matches, the final displacement using all matched segments is 

computed. The same procedure is done for each hypothesis. Next step is to chose the 

best hypothesis. A simple criteria is used, the best hypothesis is one with maximal number 

of matches.

In order to verify the quality of an initial displacement estimate and possibly to 

improve it, all segments in the reference model are transformed by using the initial 

displacement estimate. Transformed segments should be matched to the observed
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segments. Again, the statistical measure of closeness between segments is used. 

Segments are given by

S  =  [ P l ' P 2 ' W l ’ W 2 ] (6.5.4.1)

Let Hj be the initial displacement estimate

H. =
R ,  T ,

0  1

We transform the reference segments and their covariance matrices with the initial 

transformation

p[ = HiP° , p\ = H ,p°2, Cov(p[ ) = , Cov(p'2 ) = H ^ H j  (Ó.5.4.2)

We want to know whether transformed reference segments can be matched to the 

observed segments. The first step is to examine if two segments are compatible in length. 

According to Eq.(6.5.1.7) the Mahalanobis distance between the segment lengths for 

matched segments must satisfy

>2

- 2 - < k  (6.5.4.3)
W0

the threshold value for k of 3.84 for the probability of 95% is used. If this constraint is 

satisfied, the similarity in orientation between segments is examined next. According to 

Eq.(6.5.1.8), the Mahalanobis distance between the segment orientations for matched 

segments must satisfy
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(6.5.4.4)

the threshold value for k of 3.84 for the probability of 95% is used. If this constraint is 

satisfied as well, the distance between the midpoints of two segments is examined. The 

Mahalanobis distance between the midpoints is given by

d 2m = (m -m ')T(W + W 'y l (m -m ')  (d.5.4.5)

where m, m ' are segment midpoints and W, W' are their covariance matrices. If dm2 is 

less than the prescribed threshold (we use the threshold value of 7.81 for the probability 

of 95%), then two segments are considered matched. If more then two segments satisfy 

this test, we choose as a match two segments with the smallest value of the sum of values 

Eq.(6.5.4.3), Eq.(6.5.4.4) and Eq.(6.5.4.5).

It can be seen that the complexity of the verifying stage is in the worst case is 

O(MN) (where M and N  are numbers of observed and reference segments) for each 

hypothesis. The speed of the algorithm depends essentially on the ability to quickly 

access the segments in the observed model. It is possible to use several techniques to 

structure data to achieve this. Here the simplest one is used. All segments are sorted by 

length, binary search is used to discard segments from comparison in the observed model 

that are not compatible in length with the transformed reference segments. Depending on 

the model structure, this might lead to very efficient matching .
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6.6 Multiple objects manipulation and recognition

6.6.1 Multiple identical objects manipulation

The algorithms presented above are easily applied for multiple objects 

segmentation and manipulation. Let us consider a case where the robot arm is supposed 

to manipulate multiple identical objects in its field of view. The teaching stage of the 

visual robot control is the same as described previously. The reference model of the object 

is reconstructed and the desired grasping position is thought. The execution stage of the 

control scheme reconstructs the observed model consisting of a number of identical 

objects. The objects must be segmented (labelled) out for the purpose of manipulation. 

We propose the following algorithm for object segmentation.

• The same algorithm as in case of a single object is applied. If the sufficient number of 

the reference model segments are matched to the segments in the observed model 

(more than 1 / 2  of the total number of segments in the reference model), it is 

considered that an instance of the object is found. The matched segments in the 

observed model are removed from the observed model. The matched segments in the 

observed and the reference model are used to manipulate the object instance.

• The same algorithm is applied repeatedly between the reference and the observed 

model (after removal of the found object) and the next instances of the object are 

found.

• The algorithm stops when all objects are labelled. This is defined when sufficient 

number of matches cannot be found ( 1 / 2  of the total number of segments in the 

reference model).
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6.6.2 M ultip le different objects manipulation and recognition

The algorithms presented above are easily applied for multiple objects 

segmentation and manipulation. Let us consider a case where the robot arm is supposed 

to manipulate multiple different objects in its field of view. The teaching stage of the 

visual robot control is the same as described previously. The reference model of each 

object is reconstructed and the desired grasping position is thought. The execution stage 

of the control scheme reconstructs the observed model consisting of a number of 

objects. The objects must be segmented (recognised) for the purpose of manipulation. 

We propose the following algorithm for object segmentation.

• The same algorithm as in case of multiple identical objects is applied. We start by 

taking one reference model. If the sufficient number of the reference model segments 

are matched to the segments in the observed model (more than 1 / 2  of the total number 

of segments in the reference model), it is considered that an instance of the object is 

found. The matched segments in the observed model are removed from the observed 

model. The matched segments in the observed and the reference model are used to 

manipulate the object instance.

• The same algorithm is applied repeatedly between the reference and the observed

model (after removal of the found object) and the next instances of the objects are

found.

• The procedure stops when all objects of one type are labelled. This is defined when 

sufficient number of matches cannot be found ( 1 / 2  of the total number of segments in 

the reference model).

• Then, the next reference model is chosen and the procedure is repeated.

• The algorithm stops when all reference models are applied.
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6.7 Experimental results

The approach presented in this chapter has been tested with a lot of various 

objects. The algorithm has succeeded in correctly matching, computing 3D displacement 

and controlling the robot arm in almost all tested cases. In this section a few 

experimental examples are provided to demonstrate the performance of the matching 

process and accuracy of the displacement estimation.

First test object

Fig.6.6.1 shows an image of an artificial cubic like object. Fig.6.6.2 shows a 3D 

reconstructed model of the object. A sequence of six images was used for 3D model 

reconstruction. It forms the reference model of the object. The robot is manually guided 

to the desired grasping pose, and the gripper pose is stored. Fig.6.6.3 shows an image of 

the displaced object, there is a translation and rotation in the displacement. Fig.6.6.4 

shows a 3D reconstructed model of the displaced object. A sequence of six images was 

used for reconstruction. In both cases the robot arm follows the same motion sequence 

(stop, process and go) during the model reconstruction phase. Fig.6.6.5 shows the 

reference and observed 3D models superimposed. The reference model consists of 44 

segments, while the observed model consists of 43 segments. For the convenience of 

presentation all results are given with respect to the camera coordinate frame where the 

first image is taken.

Applying the displacement estimation technique to these two models, twenty 

hypotheses are generated consisting of three matched segment pairs. For all hypotheses 

initial displacement estimates are computed. The initial displacement estimates based on 

five correct hypotheses are given in Table 6.6.1. The rotation matrix is parametrized by 

Euler angles (Appendix A).

142



Hyp. No. a  (roll) 
deg.

P (pitch) 
deg.

7  (yaw)
...

tx
(mm)

ty
(mm)

tz
(mm)

1 2.5 4.5 50.6 36.5 39.8 1 . 1

2 1.3 2.9 53.7 35.1 38.8 0.9
3 3.5 3.3 50.1 37.9 41.4 1.9
4 3.3 3.4 53.7 35.7 40.5 1.3
5 2 .6 4.1 51.7 36.1 41.3 1 .6

Table 6.6.1 Initial Displacement Estimates

All initial estimates are applied to the reference model in order to do their 

verification and to improve estimates. Table 6.6.2 shows the number of matched segments 

between the transformed reference model and observed model and the final displacement 

estimates for the five correct hypotheses. As can be seen all of them yield the correct 

estimate of displacement

Hyp.No a
(roll)
deg.

P
(pitch)
deg.

7
(yaw)
deg.

tx
(mm)

ty
(mm)

tz
(mm)

No. of 
Matches

1 1 . 2 2.3 50.9 37.9 39.4 0.3 36
2 1 . 2 2.3 50.9 37.9 39.4 0.3 36
3 1 . 2 2.3 50.9 37.9 39.4 0.3 36
4 1 . 2 2.3 50.9 37.9 39.4 0.3 36
5 1 . 2 2.3 50.9 37.9 39.4 0.3 36

Table 6.6.2 Final Displacement Estimates

To determine how good the estimates are, the best computed estimate is applied 

to the reference model and superimpose it on the observed model. Fig.6 .6 .6  shows the 

superposition of the models by using hypothesis N o.l. The estimate of displacement is 

very good. This is also confirmed by controlling the robot arm to grasp the object using 

this displacement estimate.

Ten successive experiments were performed with this object placed at different 

locations. In all cases displacement was correctly estimated and the robot was controlled 

successfully. The robot arm takes the straight-line path to approach the object from 

above.
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Figure 6.6.1 Raw Image of Object

Figure 6.6.2 3D Model of Object, Projection on Camera



Figure 6 .6 3  Raw Image of Displaced Object

Figure 6.6.4 3D Model of Displaced Object, Projection on Camera
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Projection on Camera

Figure 6.6.6 Superposition of Reference(solid) and Observed(dashed) Models 

(After Applying Computed Displacement), Projection on Camera



Second test object

Fig.6 .6.7 shows an image of a connector. Fig.6 .6 .8  shows a 3D reconstructed 

model of the object. A sequence of six images was used for 3D model reconstruction. It 

forms the reference model of the object. The robot is manually guided to the desired 

grasping pose, and the gripper pose is stored. Fig.6.6.9 shows an image of the displaced 

object, there is a translation and rotation in the displacement. Fig.6 .6 .10 shows a 3D 

reconstructed model of the displaced object. A sequence of six images was used for 

reconstruction. In both cases the robot arm follows the same motion sequence (stop and 

go). Fig.6.6.11 shows the reference and observed 3D models superimposed. The 

reference model consists of 48 segments, while the observed model consists of 64 

segments.

Applying the displacement estimation technique to these two models, we generate 

twenty hypotheses consisting of three matched segment pairs. For all hypotheses initial 

displacement estimates are computed. Their values for five hypotheses are given in 

Table 6.6.3. All initial estimates are applied to the reference model in order to do their 

verification and to improve estimates. Table 6.6.4 shows number of matched segments 

between the transformed reference model and observed model and the final displacement 

estimates for the five hypotheses. As can be seen all of them yield the correct estimates 

of the displacement.

Hyp. No. a  (roll) 
deg.

P (pitch) 
deg.

7  (yaw) 
deg.

tx
(mm)

*y
(mm)

tz
(mm)

1 3.5 1.5 35.6 16.5 9.8 1 0 . 1

2 1.3 3.9 33.7 15.1 8 .8 9.9
3 4.5 4.3 35.1 17.9 9.4 10.9
4 3.3 2.4 37.7 15.7 10.5 11.3
5 2 .6 5.1 32.7 16.1 11.3 1 0 .6

Table 6.6.3 Initial Displacement Estimates
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Hyp.No a
(roll)
deg.

P
(pitch)

deg.

7
(yaw)
deg.

tx
(mm)

ty
(mm)

tz
(mm)

No. of 
Matches

1 1 . 2 1.5 35.9 15.9 1 0 .2 10.3 26
2 1 . 2 1.5 35.9 15.9 1 0 .2 10.3 26
3 1 . 2 1.5 35.9 15.9 1 0 .2 10.3 26
4 1 . 2 1.5 35.9 15.9 1 0 .2 10.3 26
5 1 . 2 1.5 35.9 15.9 1 0 .2 10.3 26

Table 6.6.4 Final Displacement Estimates

To determine how good the estimates are, we apply the best computed estimate to 

the reference model and superimpose this transformed model on the observed model. 

Fig.6.6.12 shows the superposition of the models by using hypothesis N o .l. The estimate 

of displacement is very good. This is also confirmed by controlling the robot arm to grasp 

the object using this displacement estimate.

Ten successive experiments were performed with this object placed at different 

locations. In all cases the displacement was correctly estimated and the robot arm was 

controlled correctly.

148



rrrr rrrrrt t >,» i.v .'.'.i.i.'W
  ..

iia iiiii
M I M l"v!\

: ! <-• r. ,4:

Figure 6.6.7 Raw Image o f Object

Figure 6.6.8 3D Model of Object, Projection on Camera
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Figure 6.6.9 Raw Image of Displaced Object

Figure 6.6.10 3D Model of Displaced Object, Projection on Camera
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Figure 6.6.11 Superposition o f Reference (solid) and Observed (dashed) Models,
Projection on Camera

Figure 6.6.12 Superposition of Reference(solid) and Observed(dashed) Models 

(After Applying Computed Displacement), Projection on Camera
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Th ird  test object

Fig .6.6.13 shows an image o f a switch box. F ig .6 .6 .14 show s a 3D reconstructed  

m odel o f the box. A  sequence o f six images was used fo r 3D m odel reconstruction . It 

forms the reference m odel o f the object. The robot is manually guided to the desired 

grasping pose, and the gripper pose is stored. Fig.6.6.15 show s an im age o f  the displaced 

object, there is a translation and rotation in the displacem ent. F ig .6.6.16 show s a 3D 

reconstructed  m odel o f the displaced object. A sequence o f  six im ages w as used fo r 

reconstruction. In both cases the robot arm follows the sam e m otion sequence (stop and 

go). F ig .6.6.17 shows the reference and observed 3D m odels superim posed. T he 

reference m odel consists o f 43 segm ents, while the observed m odel consists o f 47 

segm ents.

Applying the displacem ent estim ation technique to these tw o m odels, tw enty 

hypotheses are generated consisting o f three m atched segm ent pairs. For all hypotheses 

initial displacem ent estim ates are com puted. Their values based on five co rrec t 

hypotheses are given in Table 6.6.5.

Hyp. No. a  (roll) 
deg.

P (pitch) 
deg.

7 (yaw) 
deg.

tx
(mm)

ty
(mm)

tz
(mm)

1 2.5 4.5 -30.6 16.5 9.8 0.5
2 1.3 2.9 -33.7 15.1 8.8 0.4
3 3.5 3.3 -30.1 17.9 8.4 0.6
4 3.3 3.4 -33.7 15.7 9.5 0.4
5 2.6 4.1 -35.7 16.1 9.3 1.2

Table 6.6.5 Initial D isplacem ent Estim ates

All initial estim ates are applied to the reference m odel in o rder to do  their 

verification and to im prove estim ates. Table 6.6.6 show s num ber o f m atched segm ents 

betw een the transform ed reference model and observed m odel and the final displacem ent 

estim ates fo r five hypotheses. As can be seen all o f  them yield the co rrec t estim ate of 

displacem ent.
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Hyp.No a
(roll)
deg.

P
(pitch)
deg.

7
(yaw)
deg.

tx
(mm)

ty
(mm)

tz
(mm)

No. of 
Matches

1 1.3 1 . 2 -30.9 15.3 9.8 0.9 34
2 1.3 1 . 2 -30.9 15.3 9.8 0.9 34
3 1.3 1 . 2 -30.9 15.3 9.8 0.9 34
4 1.3 1 . 2 -30.9 15.3 9.8 0.9 34
5 1.3 1 . 2 -30.9 15.3 8 .8 0.9 34

Table 6 .6 .6  Final Displacement Estimates

To determine how good the estimates are, the best computed estimate is applied 

to the reference model and superimpose on the observed model. Fig.6.6.18 shows the 

superposition of the models by using hypothesis N o.l. The estimate of displacement is 

very good. This is also confirmed by controlling the robot arm to grasp the object using 

this displacement estimate.

Ten successive experiments were performed with this object placed at different 

locations. In all cases displacement was correctly estimated and the robot arm was 

controlled correctly.
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Figure 6.6.13 Raw Image of Object

Figure 6.6.14 3D Model o f Object, Projection on Camera
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Figure 6.6.15 Raw Image of Displaced Object

Figure 6.6.16 3D Model of Displaced Object, Projection on Camera
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Figure 6.6.17 Superposition of Reference (solid) and Observed (dashed) Models,
Projection on Camera

Figure 6.6.18 Superposition of Reference(solid) and Observed(dashed) Models 

(After Applying Computed Displacement), Projection on Camera
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M ultip le objects test

Fig.6.6.19 shows an image of the connector and the switch box. Fig.6.6,20 shows 

a 3D reconstructed model of the objects. The sequences of six images were used for 3D 

models reconstruction. Applying the above described algorithm the objects were 

recognized and manipulated. Fig.6.6.21 shows the observed model after recognising and 

extracting the connector. Fig.6.6.22 shows the observed model after recognising and 

extracting the switch box.

Ten successive experiments were performed with these objects placed at different 

locations. In all cases objects were recognised and displacements were correctly estimated 

and the robot arm was controlled correctly.
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mipmm

Figure 6.6.20 3D Model of Objects, Projection on Camera
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Figure 6.6.21 3D Model o f Objects After Recognising and Extracting One Object,
Projection on Camera

Figure 6.6.22 3D Model o f Objects After Recognising and Extracting Second

Object, Projection on Camera
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6.8 Conclusions

An approach for robot arm visual control has been developed. The control task 

considered is to determine necessary position and orientation of the robot gripper in order 

to grasp the arbitrarily placed 3D object. Basically, the control scheme is based on the 3D 

displacement estimation between the reference and observed 3D models of the object.

In order to determine displacement, we have presented an approach based on 

"hypothesise and verify" paradigm for matching two 3D models and computing the 3D 

displacement between them. The rigidity constraints are used to generate hypotheses of 

segment correspondences between two models. It has been shown that a unique 

displacement can be computed from minimum three pairings of 3D segments. The 

uncertainty of measurements has been integrated into the formalism of the rigidity 

constraints. An initial estimate of the displacement can then be computed for each 

hypothesis. In order to compute the displacement a closed-form algorithm is used. This 

initial estimate is applied to the whole reference model in an attempt to verify and improve 

it. Matching is performed between the transformed reference model and the observed 

model. Finally, the best hypothesis is retained, as one which has the maximal number of 

matched segments, and the final estimate of the displacement is computed from all 

matched segments. This displacement is used to control the robot arm. The algorithm was 

successfully tested with various objects and displacements. The algorithm has been 

successfully extended to handle multiple objects manipulation and recognition.
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Chapter 7

Conclusions and Suggestions

To enable robot manipulators to manipulate arbitrarily placed 3D object under 

sensory control is one of the key issues in successful robotic applications. Such robot 

sensors should be capable of providing 3D information about objects in order to 

accomplish above mentioned tasks. Such sensors should also provide the means for 

multisensor or multimeasurement integration in order to minimize the impact of 

measurement noise. Finally, such 3D information should be efficiently used for 

performing desired tasks. The work outlined in this thesis has attempted to solve some 

of these problems.

The purpose of this chapter is to summarize and evaluate the contributions 

made by this work. Further directions for research are also suggested.

7.1 Review of research contributions

A novel computational frame work for solving some of above mentioned 

problems has been developed in this thesis. In this work a vision (camera) sensor in 

conjunction with a robot manipulator is used to estimate 3D structure of objects 

within a class of objects. The objects are assumed to be well modelled as polyhedra.
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The camera is mounted on the robot manipulator to take advantage of its mobility. The 

moving camera permits us to resolve traditionally very difficult vision problems more 

easily. Using image sequences permits us to cope with inherently noisy image 

measurements, by fusing information over image sequences and consequently 

minimising the impact of adverse measurement noise. The 3D visually derived object 

structure is used for the robot control.

In order to attain these goals the following issues have been considered. First, 

the issues of system calibration. Second, the issues of image processing and 

representation. Third, the issues of 3D vision based structure estimation. Fourth, the 

issues of visual robot control and object recognition. The results we have achieved 

during the course of this work are summarised below.

In Chapter 3 a modification to an existing camera calibration technique, that 

permits us to determine accurately parameters of the nonlinear camera model using 

only closed form (noniterative) computations, has been introduced. A new statistical 

analysis of the calibrated camera parameters that permits us to asses the accuracy of 

the obtained camera parameters, to fuse multiple data and to detect unreliable and 

unstable calibrations, has been introduced. A  new statistical measure to evaluate the 

performance of the calibrated camera in 3D measurement applications has been 

proposed. The usefulness of the proposed methods have been proven.

In Chapter 4 image processing methods for straight line feature extraction 

have been presented. Minor contributions such as improving robustness and efficiency 

of polygonal approximation and efficient data structuring have been introduced.

In Chapter 5 a new technique for 3D structure estimation from monocular 

image sequences, using known camera motion, based on tracking line segments over 

image sequences has been introduced. The tracking process consists of prediction, 

matching and updating stages. These stages are handled in the Kalman filtering
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framework of covariance based prediction, matching and updating. The prediction 

stage of the tracking process does not use heuristics about motion in the image plane 

and applies for the arbitrary camera motion. The prediction is based on assumptions 

about object structure (i.e. a rough knowledge of a distance between camera and an 

object is assumed known and the depth extent of the object is small compared with the 

camera-object distance) for the initialisation phase, the rest of the tracking process is 

based on the estimated object structure. The matching stage is based on the simple 

nearest-neighbour matching algorithm using the Mahalobonis (statistical) distance as a 

similarity measure. The updating stage is based on standard Kalman filter estimation 

algorithm.

The main advantages of the new method are as follows: It has been shown 

that for some assumptions about the object structure, the prediction of object image 

motion can be based on the 3D structure constraints and not on heuristics about the 

motion o f image features. This fact has implied that successful tracking can be realised 

in the case of arbitrary camera motion and large interframe displacements. It has been 

shown that the determination of uncertainties and other system parameters is very 

simple having a firm analytical basis. No parameter is tuned or guessed by numerous 

trials and errors. The technique has been implemented to provide 3D information for a 

robot manipulator. The experimental results show the reliability and accuracy of the 

proposed technique. The 3D structure which is recovered very quickly (a few images) 

converges to precision on the order of a millimetre provided the system is well 

calibrated and system parameters are tuned properly.

In Chapter 6  a new approach for robot arm visual control has been introduced. 

The control task considered was to determine necessary position and orientation of the 

robot gripper in order to grasp the arbitrarily placed 3D object. Basically, the control 

scheme is based on the 3D displacement estimation between the reference and 

observed 3D models of the object. The "hypothesise and verify" approach has been 

used to estimate 3D displacement. The main characteristics of the new control
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approach are as follows: No geometrical knowledge about 3D object to be 

manipulated is required. The system automatically builds the geometrical 

representation of the object. The specification of grasping demands is very simple, 

and is done by manual robot guidance. The proposed algorithm was quite successfully 

tested for a class of objects (polyhedra). The system has been successfully extended for 

multiple object manipulation and object recognition.

7.2 Further directions of research

The methods presented in this thesis have proven to be quite robust and 

efficient, in spite of the fact that they do not exploit a great deal of available 

information. We believe that these methods can be readily extended to incorporate 

other information such as proximity and connectivity between line segments. These 

constraints would make the 3D reconstruction, 3D displacement estimation and object 

recognition more robust. Another direction for the further research may be 

development of techniques to include other primitives in geometrical modelling, such 

as 3D curves and 3D surface patches, in order to model more complex industrial parts. 

Further, issues of sensor (camera motion) planing could be investigated.
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Appendix A

Rotation Parametrizations

Any rotation can be represented by an orthogonal 3x3 matrix R with 

determinant equal to one, that is

RRt = / ,  det (R) = 1

Euler first showed that this matrix has the three-dimensional parametrization. Here we 

present the common rotation parametrizations.

Parametrization by Euler angles

The most common way to represent the rotation R is to decompose it into the 

product of three rotations of a predefined fixed coordinate system about axes x, y  and 

z. Denoting these angles of rotation by (a, p, 7 ), let

c o s(a )  - s in ( a ) O' COS(P) 0 sin(P) '1 0 0

R ~ sin ( a )  c o s(a ) 0 0 1 0 0 co s(7 ) - s in ( 7 )

0 0 1_ _-sin((3) 0 COS(P) 0 sin (7) cos(7)

]The angles (a , P, 7 ) are generally called roll, pitch and yaw [Pau82], [Cra8 6 ], and are 

shown in Fig.(AA. 1).
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Figure A A .l Rotation R(ct, ß, 7 )

The rotation R(a, (3,7 ) is thus written

Ä (a,ß ,y ) =
cos(a) cos(P) cos(a) sin(P) sin(y) -  sin(a) cos(y) 
sin(a) cos(P) sin(a) sin(P) sin(y) + cos(a) cos(y) 

-sin(P) cos(P)sin(y)

cos(a) sin(ß) cos(y) + sin(a) sin(y) 
sin(a) sin(ß) cos(y) -  cos(a) sin(7) 

cos(ß)cos(y)

To determine the Euler angles of the rotation R (for which we denote elements 

by R ÿ  ), let

ri = (R?i + R21 )

we have the relations

c o s(a )  = — s in (a ) =  —
T1 T1

COS(P) = T) sin(P) = R ji

co s(y) = sin(7) = ^ L
T1 T]

w hich determine the angles (a , p, 7).
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Another common way to represent rotation R is by a rotation vector. This 

representation is based on the fact that any rotation R has an invariant axis with normal 

direction vector n, say. Vectors collinear to n are invariant by R, while orthogonal 

vectors undergo a rotation of angle 9 in the plane orthogonal to n. We denote the 

rotation by the angle 9 about the n axis by R(n, 9). It is shown in Fig.(AA.2).

Parametrization by rotation vector

Figure AA.2 Rotation R(n, 9) 

Therefore, for any vector r, we can write

9=||r||, 9 < 2tt, n = ^  = (nx,ny,nz)T 

The vector r is mapped into the rotation R by the means of Rodrigues' formula
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where

cos(0 ) +  r ^ ( 0 )  rxr g ( Q ) -r J ( Q )  rxr.g(Q) +  r f ( Q )

R = V yg W  +  r J ( B )  cos (0 ) +  r ^ ( 0 )

rxrzg ( Q ) -r f ( Q )  rrg (Q )  +  rxf(Q )

ryrtg ( Q ) -r xf(Q )  

cos(B) +  rx g(B)

/ ( 0 )  =
sin (0)

i( 9 )  =
l - c o s ( 0 )

~Q 2

The rotation matrix R  is mapped into the vector r  by

cos(0) =  +  —&•+  ^ 33 -  r  =  r  — ^ 13 ^ 31 r =  ^ 2l ^ 12
2 2 /(0 )  ’ y 2 / (0 )  ’ 2 2 /(0 )
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Appendix B

3D Displacement Estimation from 3D Point 
Correspondences

L ety ;,...,;yn be N  points in Euclidean 3-space. Let R  be a rotation matrix and T  

be a translation vector. Let xj,...,xn be the points in Euclidean 3-space which match 

yv ...,yn. Each x is the same rigid body motion o f y. H ence each y  is obtained as a 

rotation o f x  plus a translation plus noise.

y =  R x + T + Z*  n n

The problem o f  displacement estimation is to infer R  and T  from y ]t...,yn and 

xj,...,xn. To determine R  and T  w e can set up a constrained least squares problem. W e 

will minimise the criterion

N  2
m i n X ^ l b «  -  -  71 . subject to R R T =  I

(R , T ) „=1

(AB.l)

the constraint R R ^  = / ,  is a consequence that R  is a rotation matrix, and yn are 

weighting factors. To be able to express these constraints using Lagrangian multipliers 

w e let

R = where each r is a 3x1 vector

The constraint R R T  =  / ,  then amounts to six constraint equations

r*rx =  1, r/r2 =  1, r[r3 =  1, rfr2 = 0 ,  r,r r3 = 0 ,  r[r3 = 0

1



The least squares problem with constraints given by E q .(A B .l) can be written as 

minimising

N 3

71=1 *=1

where

3

1
k=1

- l )  +  2 \ r f r 2 + 2 ^  + 2 ^ 6r2rr3 (AB.2)

~yni~ ’ h

- *„2 - y„2 , T = h

_*„3_ y * . J i .

Taking partial derivative o f  Eq.(A B.2) with respect to T, and setting these partíais to 

zero results in

t 1 y . ( . y . - R x , - T ) = o
n-1

By rearranging w e obtain

T = y - R x ,  where x =    and y  =  -------

¿ y*

(AB.3)
n=1 #7=1

Thus once R  is known, T  is quickly determined from E q.(A B.3). Substituting the 

value for T  E q .(A B.3) into Eq.(A B.2) w e obtain

N 3
X Y ,X (y*k -  yn - rk (* . - x ) ) 2 +  ^ k (rjf rk - 1 )  +  l X ^ r 2 +  \ srfr3 +  X6r2r r3
n=l fc=l A:=l

(AB.4)

N ow  w e take partial derivatives o f Eq.(AB.4) with respect to the components o f  each 

rn. Setting these partial derivatives to zero w e obtain

2



X - x ( x „ -x ) Trl + X lrl +X4r2 + X 5r3 =  X  Y ^ i  - * ) ( * „  - * )
>1=1 «=1

jv w
X  y„ (*■ -  *  )(*» -  * )T r2 +  K ri + v 2 + v 3 = X  y» (y n2 -  y2 x * „  -  * )
n=l n=l

JV
X  Yfl (*« -  * )  (*« - x f r 3 + V i  + V 2 + V 3= X y » ( X.3 -  >3 )(*„ -  *  )

n=l

(A B .5 )

Let

A =  ^ ( x n - x ) ( x n- x ) T, A = «=1

A.j X j

X4 X2 X6
X5 a,6 x.3

N
, B =  [b\ b2 b3] where bk =  X  Y» -  7* )(•*» -  * )

n=l

Then Eq.(AB.5) can be sim ply rewritten as

A R t + R tA  =  B  

Multiplying both sides o f  this equation on the left by R  w e have

RAR T +  A  =  RB

Since A =  A T, ( R A R T)T =  R A R T, Since both R A R T  and A  are symmetric, the left 

hand side must be symmetric. Hence, the right hand side is also symmetric. This means,

R B  =  (R B )t

The solution for R  com es quickly. Let the singular value decom position o f  B  be

B  =  U D V

where U  and V  are orthonormal and D  is diagonal. Then

R U D V  =  ( U D V )TR r = V tD U tR t 

B y observation, a solution for R is immediately obtained as

R = V tU t

This solution is given in [Aru87], [Fre89].
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