Computer Generation of
Photorealistic Images
using Ray Tracing

A Thesis by: Derek O’ Reilly B.Sc.
Supervisor: Dr. M. Scott Ph.D.

Submitted to
SCHOOL OF COMPUTER APPLICATIONS
DUBLIN CITY UNIVERSITY
for the degree of
M aster of Science
July 1991

Declaration No portion of this work has been submitted in support of an application for
another degree or qualification in Dublin City University or any other University or Institute
of Learning.

Abstract

Computer generation ofphotorealistic images has been the target of computer graphics
designers almost since the birth of the computer. Of all methods tried, Ray tracing has proven
to be the best at generating computer images that exhibit all the optical features found in a
real life photograph.

Ray tracing is the subject matter of this thesis. We discuss the various issues involved
in the design of a ray tracing system that will model and render complex scenes and we

implement such a ray tracing system.

Contents

The contents of this thesis are divided into six chapters. Chapter one describes the
problems of generating photorealistic images and how ray tracing can be used to solve these
problems.

Chapter two gives an overview of ray tracing. Here we describe what rays are, how
they travel and how they interact within a modelled scene. We describe some aliasing features
of computer monitors that reduce the photorealistic quality of a ray traced scene and we
discuss some methods for dealing with the aliasing.

We need to model a scene before we can ray trace it. Modelling is the subject matter
of chapter three.

How ray tracing is used to render a modelled scene, so as to produce a photorealistic
image on a computer monitor, is the topic for discussion in chapter four.

In chapter five, we discuss the implementation of a real ray tracer. This ray tracer,
PRIME\ was developed by the author of this thesis. PRIME is based on the contents of the
previous chapters.

In chapter six we discuss some conclusions from the research, and we describe some

possible enhancements and extensions that can be made to PRIME.

1 PRIME is Photorealistic Image Modelling Environment.

Acknowledgement

To my mother, for the chance to pursue these studies, and to Dr. Michael Scott, for

his advice and guidance along the way.

CONTENTS

CHAPTER ONE PhotorealisticGraphics ... 1
1.1 MO T IV AT IO N ettt ettt bttt s ae bttt e e b e e s e st et e e ae e st e s e es e e e e s benteneese e teneesbeneenbenbentenes 1
1.2 WHAT IS COMPUTER GRAPHICS ettt bt e 1
1.3 PHOTOREALISTIC IM A GES .. ettt bbbttt bbb s s 1
1.3.1 The Difficulties 0f M 0d ellinN g .o 2
1.3.2 The Difficulties Of ReNderiNg ... 2
1.4 RAY TRACING ottt s et e bt e e e s be b e b e eb e nbe s b et sbe s be s b e nbeebesbenbeebente e 2
CHAPTER TWO An Overview of RayTracing ... 3
P00 R 0 o o X0 U ok o PSPPSRSO 3
2.2 TRACIN G R A Y S ettt et r e es b e e st es b e st e st et e b e b et e b e b et e b e sb et e nbe st et e nnenes 3
2.2.1 FOrward RaAY T FACIN 0 ettt es st se e s s ese et eneseseeneneseesenene s 3
2.2.2 BaCkwWard RayY T FaCiN g .ot sieeste s et tesa st sa e sse e saneens 5
2.2.3 PIXEIS NG R Y Sttt bttt e bttt a b ne et e 5
B T o N A B 0 s TSRS 5
2.3.1 Reflected and Transmitted RaAYS .o e 6
2.3.2 Shadow and HIumMiINation RAYS .t srene 7
2.4 RECURSIVE M O D E L ottt ettt ettt sttt sttt et st ste b st sae b stesne b 7
2.5 AL TASING ittt ettt a bt R Rt Rt R e e At e Rt st e R b et ne et eRee e be Rt et e nbenbeneenbeteneesre e eee 9
2.5.1 SPAtIiAl A TTASTIN G iiiiiiieiiiieiie ettt ne e bbb e e 10
2.5.2 TempPoral A TTASIN g ettt beseeseseene s 10

2.5.3 ANTISATTASTNG oottt et e a ettt e s 13

2.6 SUPERSAMPLING ettt
2.6.1 Adaptive Supersampling ...
2.6.2 Stochastic SUPErsamMpling ...
2.6.3 Statistical Supersampling ..o
2.6.4 BEAM T FACIN G ciiriieieiieiiriee ettt ettt eaenenas

2.6.5 C0NE TraCiNg oottt ae s e

CHAPTER THREE Modelling the Real World

R I a1 o o X o U o2 f o) o

3.2 GEOMETRICAL TRANSFORMATIONS ...

3.2.1 2D TransformationS.....ivecieiieeeenn,

3.2.2 Homogeneous Coordinates.......enns

3.3.3 Composition of 2D Transformations ...,
3.3.4 3D TransformationS. .
3.3.5 Coordinate SYSTEIM S .

3.3.6 Inverse Transform M atriX .

3.4 SURFACE MODELLING oottt sttt
3.4.1 Polygonal SUFTACeS .
3.4.2 ParametriC SUTTACES .ot

3.4.3 Fractal SUTTaCES it

3.5 SOLID MODELLING ittt sttt
3.5.1 POIYNEAT @ i
3.5.2 Q UAATICS ciiiiiiiiieie ettt ettt ettt ettt et et e st e besbesbeebeereanis

3.5.3 Other Forms Of Solid Modelling ..o

3.6 CONSTRUCTIVE SOLID GEOMETRY .o

3.7 SPEEDING THINGS UP s

3.7.1 Bounding VOIUMES it

3.7.2 Spatial SubdiViSiON .

14
14
15
16
16

17

18

18
18
23
24
26
27

28

29
29
31

34

36
36
37

40

41

44

45

47

3.7.2.1 Uniform Spacial Subdivision ...

3.7.2.2 Nonuniform Spacial SubdiviSion ...

3.7.3 Potential Pitfalls In Spacial SUDAIVISION i

3.7.4 Ray Directional TeChNIQUES .ttt s

3.7.4.1 The Light BUTfEr e

3.7.4.2 RAY C ONEBIENCE ittt sttt sr e et e

3.7.4.3 Ray ClasSifiCation .o

3.7.4.4 Exploiting Coherencecccviiicvnenns

CHAPTER FOUR

4.1 Introduction......ccvvveeeenene.

4.2 COLOUR .,

Rendering in Ray Tracing ...

4.2.1 The Wave Model of Light .

4.2.2 The Particle Model Of Light. i

4.3 COMPUTER REPRESENTATION OF COLOUR .o

4.3.1 CIE Chromaticity
4.3.2 Colour Monitors

4.3.3 The RGB M odel

QIAGTAM et

4.3.4 Colour Palettes and LOOKUP T @b 1S e

4.4 COLOUR QUANTIZATION oo s

4.4.1 Getting over the 256 COlOUT Tim it s

4.4.2 Popularity Algorithm .

4.4.3 Median-cut AIGOTrItRM e

4.4.4 Octree quantization algorithm ..

4.5 COMPUTER COLOUR AS RAY S e

4.5.1 Three rays in one

4.6 LIGHT TRANSPORTATION MODES ... s

4.6.1 Surface Normals

47
48
49
50
50
51
52

52

53

53
54

55

55
55
57
59

60

60
61
61
62
63

64

64

64

64

4.6.2 Specular Reflectioncccivvevven,

4.6.3 Specular Transmission ...

4.6.4 Diffuse Reflection...cccoevvvcievveeiceennnnn,

4.6.5 Diffuse TransmisSioNnccceevvvveenenne.

4.6.6 Light Sources . .iiienenn,

4.7 SURFACE CHARACTERISTICS ...
4.7.1 Surface Texture Maps ..ccvvrniennn,
4.7.2 Surface Roughness Mapsccceee.
4.7.3 The Fresnel Function, F ..ccooovven.
4.7.4 Reflectance Coefficients.....ccoee.e.
4.7.5 Transmission Coefficients.............

4.7.6 TransmisSitivity ..o

4.8 THE HALL RENDERING MODEL oo

4.9 OTHER RENDERING MODELS e

CHAPTER FIVE The PRIME System.......ccooccvvvinnnn,

5.1 INtrodUCTioN i

5.2 DEVELOPMENT ENVIRONMENT s

5.3 MODELLING ..o

5.3.1 Primitives in PRIME ..o

5.3.2 Objects IN PRIME ...c.ccocoonvviiiiericnnn,

5.3.3 Copying Objects ..ccccveivviviviieineriennnn,

5.4 INTERSECTION ROUTINES IN PRIME ..

5.4.1 Mathematical Definition of aR ay

5.4.2 Ray/Primitive Intersection...............

5.4.2.1 Ray/Sphere Intersection...

5.4.2.2 Ray/Cylinder Intersection

65
67
70
71

71

72
72
73
75
77
77

78

78

80

Si

81

81

82
82
84

86

86
86
87
87

89

5.4.2.3 Ray/Infinite Cylinder INtersection ...

5.4.2.4 Ray/Circular Plane INterseCtion ...

5.4.2.5 RaAY/CONE INTEIrSECTION oottt

5.4.2.6 Ray/CUube INterSECTION oot

5.4.2.7 Ray/Pyramid INterSeCtiON .ot

5.4.2.8 Ray/Polygon INterSeCtion .

5.5.1 Inverse Mapping 0F @ SPREIe s

5.5.1.1 Inverse Mapping for a Cylinder........

5.5.1.2 Inverse Mapping for @ CirCle .

5.5.1.3 Inverse Mapping fOr @ C ONE .

5.5.1.4 Inverse Mapping for @ CUbDe ..o

5.5.1.5 Inverse Mapping for a Polygon ...

5.5.1.5.1 Inverse Mapping for a Quadrilateral........ccocconnnnenne.

5.5.1.5.2 Inverse Mapping for a Triangle.....iiiiinnineneeenn,

5.8 BOUNDING VOLUMES

5.9 PROBLEMS ENCOUNTERED

5.9.1 Numerical Precision......

592 Memory ...

5.10 COLOUR PLATES ...

CHAPTER SIX Conclusions And Future Work

6.1 CONCLUSIONS ...

6.2 FUTURE WORK ...

6.2.1 Speed Efficiency..........

6.2.1.1 Spacial SUDAIVISTON i

6.2.1.2 File Management ..t sa e

6.2.2 Enhancing the Rendered 1M @ Qe .t

6.2.2.1 Extra Modelling Primitives ...

6.22.2 Texture M aps

89
90
92
93
93
94
96
97
99

100

101

102

102

105

105

106
106

106

107

109

109

109
109
109
110
110
110

110

6.2.23 Surface Modellingcooveie e 1

6.3 CURRENT AREAS OF RESEARCH ettt re e 111
6.3.1 Parallel MaChiNeS .ottt st a s s be e sbeenes 111
LI I == o o1 1 Y/ TSRS 111
Bibliography

Colour Plates

Appendix A, Program Listings

Photorealistic Graphics

1.1 MOTIVATION

Graphics is perhaps the most rewarding area of computer science. This is hardly surprising,
considering that the predominant human sense is sight. There is a measure of fascination in creating
the appearance of a solid object on a computer monitor, solely by the execution of a list of computer
instructions. It is this fascination that has lead me to pursue my research; a study of computer

generated photorealistic images and their implementation using ray tracing techniques.

1.2 WHAT IS COMPUTER GRAPHICS

Any computer generated graphical image that is represented on a computer monitor is called
computer graphics. A related area, image-processing also outputs graphical images onto a computer
monitor. The difference between the two fields is that computer graphics systems generate their own
images, while those of image processing systems are captured by a camera, or some other image
grabbing device.

Most computer graphics represents simple two dimensional (2D) images. Examples of 2D
graphics are statistical pie and bar charts, icons used in windows applications, and the space craft and
monsters used in the famous arcade game "Space Invaders".

More complicated, three dimensional (3D) images are used in computer aided design (CAD),
flight simulators and other games, advertising, logos, and movies. Unlike the simple 2D graphics, 3D
graphics must represent 3D objects on a 2D computer monitor, much in the same way that a camera

represents a 3D scene with a 2D photograph.

1.3 PHOTOREALISTIC IMAGES

In order for a user to properly perceive the 3D image, the image must include shading, hidden
surface removal and other photorealistic characteristics.

Computer generation of photorealistic graphics can be separated into two distinct parts;
modelling and rendering. Modelling involves creating objects, moving them around to arrange a scene,
defining how each object will look in the scene, and defining how the lighting and camera will look
in the scene. Rendering involves making a realistic image out of the modelled scene by applying
surface characteristics to the surfaces of the objects in the scene. Both modelling and rendering are

difficult operations in a computer environment.

Chapter One Photorealistic Graphics

1.3.1 The Difficulties of Modelling

We can outline the difficulties of modelling by comparing the task to that of a sculptress. Both
are creating a 3D scene. However, the sculptress has a greater use of both hands and eyes.

The sculptress can manipulate the modelled scene with her hands and 3D tools. She works
with 3D objects in a familiar 3D world. The computer modeller’s task is much more difficult. She has
to manipulate 3D objects in the 2D world of a computer monitor. At best, she will have the use of a
mouse for manipulating objects.

The sculptress has the benefit of depth perception and depth perspective - both eyes work
together to provide a sense of depth. Also, the sculptress can easily move to provide a different view
of the scene. The computer modeller is restricted to a single fixed 2D frame of the 3D scene at any

given time.

1.3.2 The Difficulties Of Rendering

Rendering begins at the end of the modelling process, with a description of how objects are
arranged in a scene, the materials they are supposedly made of, the lights that fall upon them and the
placement of the camera. Rendering ends with a finished image on a 2D computer monitor.

In the real world, light interacts in many ways with objects. For example, light bends when
it enters water, it is reflected off shiny surfaces, while being absorbed by matt ones. Light cast on one
side on an object can produce shadows on the surface of objects that lie on the other side of the object
When rendering, objects can be hidden behind other objects. We cannot see the complete surface of
a 3D object at once, unless we add mirrors to our scene. If we do add mirrors, then we have the
equally difficult task of rendering the light reflection effects that they create. To generate photorealistic

images, we must also take into account camera lens aperture and numerous other optical phenomena.

1.4 RAY TRACING

Clearly, computer generation of photorealistic images is a non-trivial task. Of all the 3D
rendering approaches known, one method stands out as producing most accurately photorealistic
images. The method is Ray Tracing and is the subject matter of this thesis. The first computer
generated image to be passed as a photograph, that developed by Porter [PORT84], was developed
using ray tracing techniques. Since then, ray tracing techniques have been developed to incorporate

even more complex visual characteristics.

An Overview of Ray Tracing

2.1 Introduction

Ray tracing was first suggested by Appel in 1968 [APPEG68]. It was later used by
Goldstein and Nagel [NAGE71] as a solution to the hidden surface problem. However, it was
not until the late 1970’s that it was implemented by Kay & Greenberg [GREE79] and by
W hitted [WHITB80] to render complete images. Since then, ray tracing has proven to be the
most popular graphics technique for rendering photorealistic scenes. The visual attributes of
each pixel in a viewport are determined by tracing a ray from a viewing position, via the
pixel, into the world coordinate system. At its simplest, the pixel takes the colour of
whichever object is struck first by the ray. Further tracing of rays that are reflected or
transmitted at the ray’s intersection point with an object allows ray tracing to be used to
create a large variety of optical effects.

In this chapter we describe the basic concept of the ray tracing algorithm. We then
expand on the problems that aliasing can cause when ray tracing, and discuss some

supersampling methods that can be employed to minimise the aliasing effects.

2.2 TRACING RAYS

In the real world light travels as photons of energy. These photons travel along straight
paths called rays. When a photon strikes our eye, the energy of the photon is transferred to
the receptor cells on our retina. The retina perceives colour as a measurement of the energy

of the photon. Different energy levels give different colours.

2.2.1 Forward Ray Tracing

Ray Tracing techniques mimic very well the way light interacts with the real world.
In the real world light is emitted from light sources. It then travels as light rays in an infinite
number of directions away form the light source. The vast majority of the rays will never be
visible to a viewer looking into the scene through a view plane. Those rays that will

ultimately be visible to the viewer must first be reflected and transmitted throughout the scene

Chapter Two An Overview of Rav Tracing

Fig. 2.1 The paths taken by some of the light rays in a scene.

before finally being projected through the viewing plane and into the eye. Let us take Fig
2.11 as an example. Light ray A travels away from the light source. Upon striking the wall
it is absorbed. Ray B strikes the table, and is reflected. It then strikes the wall and is
absorbed. Ray C is reflected off the table and the mirror before it too strikes the wall. Ray
D is reflected off the table and through the view plane into the eye. Ray E is reflected off
the table, then off the mirror and through the view plane into the eye. By following the paths
taken by these five rays we have been forward ray tracing. Rays A, B, and C represent a
sample of the vast majority of rays that will never reach the eye. In reality, there would be
an infinity of such rays. Rays D and E, on the other hand, are rays that do reach the eye.

These are the only rays that we are interested in.

1 Strictly speaking, not all the light will be absorbed when
a ray strikes the wall. However, for simplicity of discussion we
shall assume that it does. The rendering models discussed In
chapter 5 take iInto account the full complexities of ray surface
intersections.

Chapter Two An Overview of Rav Tracing

2.2.2 Backward Ray Tracing

Forward Ray Tracing is too inefficient a technique to implement on a computer, as
only a tiny percentage of emitted rays ever reach the view plane. Fortunately, it is possible
to trace the path taken back along a ray from the eye, through the view plane, and around the
scene, until it finally arrives at the light source from which it originated. Knowing the path
that a ray takes and the objects that it intersects makes it possible to calculate the ray’s
colour. This method of tracing rays is called backward ray tracing. Backward ray tracing
guarantees that only those rays which we are interested in are traced; rays D and E in Fig 2.1.
This is the method used by all ray tracing systems. Because backward ray tracing is the only
ray tracing method used, it is usually referred to simply as ray tracing. All future references
to ray tracing in this thesis will be taken to mean backward ray tracing.

Associated with backward ray tracing is some reverse terminology. When we talk
about a reflected or transmitted ray, what we really refer to is the ray that caused the

reflection or transmission. The direction of these rays is also reversed, as is shown in Fig 2.2.

2.2.3 Pixels and Rays

In a computer model an origin, a viewport, and a world coordinate system will take
the place of the eye, the view plane and the scene respectively. To generate a perspective
rendering of the scene one ray is projected from the origin through each pixel in the viewport.
For parallel rendering one ray is shot through each pixel in a perpendicular direction to the

view plane.

2.3 RAY TYPES

Rays can be divided into four classes: pixel rays or eye rays which carry light directly
to the eye through a pixel on the monitor; reflection rays which carry light reflected by an
object; transmission rays2or transparency rays which carry light passing through an object;
and finally illumination rays or shadow rays which carry light from a light source directly to
an object’s surface. A further type of ray is an incident ray. Any ray that strikes a surface is

an incident ray with respect to that surface.

2 Transmission rays are refered to In some literature as
refraction rays. Both are the same thing.

5

Chanter Two An Overview of Ray Tracing.

Light source

Reflected ray Incident ray

Forward Ray Tracing

Fig. 2.2 Comparison between Forward and Backward ray tracing.

Although rays are divided into different classes, they are all mathematically similar.
The classifications are made only as an aid to discussion. The mathematical details of rays

is described in Section 5.4.1.

2.3.1 Reflected and Transmitted Rays

When a ray intersects a point on a surface it causes a new ray to be reflected away
from the surface. If the surface is not opaque then a second ray is transmitted through the
surface. An exact mathematical derivation for finding the direction of such reflected and
transmitted rays is described in Section 4.6. For now it is sufficient to know that these rays

exist.

Chapter Two An Overview ofRay Tracim

2.3.2 Shadow and Illumination Rays

When a ray intersects a point on the surface of an object it is necessary to find out
which lights in the world coordinate system are cast upon the point. The intensity of each
light cast on the point will affect its colouring. In order to find out which lights do reach the
point a shadow ray is sent out from the point in the direction of each of the lights in turn. If
any opaque object is positioned between the point and the light source along the path of the
shadow ray, then the point is in the shadow of the object with respect to this light source. If
no objects lie along the shadow ray’s path, then the point is illuminated by the light source.

The ray then becomes an illumination ray. Looking at Fig 2.3, we see that ray E intersects

E

Fig. 2.3 An eye ray E shot through a scene.

object 03. It then generates two shadow rays, S| and S2. As object 04 lies in the path of
shadow ray S2 we say the intersection point is in the shadow of 04 with respect to light
source Lb. No objects lie in the path of shadow ray Sl, so it becomes an illumination ray.

This will contribute to the final colour of light leaving the intersection point back along E.

Chapter Two An Overview of Rav Tracing

2.4 RECURSIVE MODEL

If an eye ray strikes an object’s surface then the ray becomes an incident ray with

respect to that surface. The interaction of the ray and the surface will cause a reflected ray
to be generated. Depending on the surface characteristics, a transmitted ray may also be
generated. These new rays will themselves be cast in the same manner as the eye ray. Upon
striking an object’s surface the new ray will itself become incident to the surface and again
a new level of reflected and transmitted rays will be generated. This leads to a recursive
model for ray tracing. The recursive model is shown in schematic form as a ray tree. Fig 2.3

shows a ray traced scene. It’s ray tree is shown in Fig 2.4.

Eye Ray

Fig. 2.4 A ray tree in schematic form.

We must now ask the question "At what stage does the recursion stop?". The normal

procedure is to stop tracing if either a ray goes out of the world coordinate system or its

Chapter Two An Overview of Ray Tracing

contribution to the final colour of the ray tree becomes too small. When a ray leaves the
world coordinate system it can be assigned a predefined background colour and traced no
further. Working out the contribution of any ray to the final colour of a ray tree is more
difficult to decide. The further down its position in the ray tree, the less the contribution of
any ray to the final colour. An example should help verify this. Suppose ray E was the only
ray affecting a pixel (i.e. it spawned no reflected or transmitted rays), then we would take its
colour as being the final colour to arrive at the top of the ray tree. However, it does spawn
both a reflected and transmitted ray. Their individual contributions to the final colour must
be less than that of E since E is formed by combining both together with the shadow ray
S13. Now R, the reflected ray that helped form colour E, is itself formed by combining R3
and T2, along with the shadow rays S5 and S6. Therefore, both R2 and T2 must contribute
less to the final colour than does RI. When building a ray tree, it is usual to set a
contribution threshold, below which further tracing of rays stops. This technique is known as

adaptive tree-depth control.

2.5 ALIASING

A major problem when synthesizing an image on a digital computer is that a computer
monitor cannot represent a continuous (analog) signal. Through our eyes, or by using a
camera, we can see an analog picture. Every line, curve, and tiny object in the frame is
represented exactly. When using a computer to simulate this image it is impossible to generate
an exact photo replication. This is because the computer is restricted to using a finite number
of pixels to represent the analog signal. You may argue that by using a computer monitor
with a higher resolution it must be possible to overcome this problem. This is only partially
true. No matter how high a resolution monitor is used the effects of aliasing are bound to
creep into any computer generation of photorealistic images. Some of the aliasing problems
are discussed in more detail in the following sections. Further reading on the problems of

aliasing can be found in [CROW?77].

3 Exactly how these rays are combined is described in detail
In chapter 5.

Chapter Two An Overview of Ray Tracine

2.5.1 Spatial Aliasing

Aliasing caused as a result of the uniform nature of the pixel grid is known as spatial
aliasing. Fig 25 shows a quadrilateral displayed at a variety of monitor resolutions. The

smooth edges of the original quadrilateral are approximated by the jagged edges of the

Original Quadrilateral 4X 4

8X 8 16 X 16

Fig. 2.5 The effects of spatial aliasing at different screen resolutions.

monitor grid. These jagged edges are known as the jaggies. As the resolution of the monitor
is increased, the effect of the jaggies will diminish. However, the jaggies will never
completely disappear, they will only get smaller. If you have a very high resolution monitor,
it may appear that there is no spatial aliasing. However, by projecting the same image onto
a hugh cinema screen the jaggies will be magnified and will thus be clearly visible.

A second effect of spacial aliasing is that very small objects, or large objects

sufficiently far away, may be hidden from the rays shot through the pixels. This is shown in

10

Chapter Two An Overview of Ray Tracing

Fig 2.6. You might think that if an object is that small, then it doesn’t really matter whether
or not it is displayed at all. Unfortunately, that is very far from the truth, as will be seen by

looking at temporal aliasing.

2.5.2 Temporal Aliasing

The word temporal comes from the latin tempus, meaning time. Temporal aliasing is
aliasing produced when using computer graphics in animation. An animation is nothing more
than many still frames shown in sequence. You might think that if each still frame was very
good, then the animation would also be very good. This is not the case.

You may have noticed on television what happens as a wagon wheel accelerates from
a stationary position. It initially appears to rotate in the direction of the cart’s motion, as
expected. However, it then appears to stop moving, and then rotates backwards! Why is this
so? A film normally consists of a sampling rate of between 24 and 30 frames per second (i.e.
between 24 and 30 frames are shown in sequence per second). When the wheel is rotating at
a speed less than the sample rate, a camera can correctly sample the image. As the wheel
speeds up and goes faster than the sample rate, then it may appear to go backwards. Take Fig
2.7 as an example. This shows a wheel, with one spoke coloured black, sampled at eight
frames per second. In the top row the wheel is rotating clockwise at one revolution per second

and is correctly sampled. In the centre row, the wheel is rotating at four revolutions per

11

Chapter Two An Overview of Ray Tracing

Tire t=38 t=4/8 t=58 t=6/8 t=78 t=8/

Nn 0 178 2/8 3/8 4/8 4/8

Revolutions

NN 0
Revolutions

Fig. 2.7 A spinning wheel sampled at a constant rate of eight frames per second.

second. After sampling, we cannot tell in which direction the wheel is moving. In the bottom
row the wheel is rotating at seven revolutions per second. However, it actually appears to be
rotating anticlockwise at one revolution per second.

A second case of temporal aliasing highlights the problem of disappearing objects
discussed in the above section on spatial aliasing. Now that this object is moving, it can
cause more problems. As it moves across the monitor, an object may be hidden over several
frames only to suddenly ’pop’ up at the next frame. After several further frames, this object
will again disappear off the monitor. Fig 2.8 shows a polygon moving up a monitor over
time. It pops up the monitor in discrete jumps rather than moving up in a smooth manner.

This jerky movement is very disconcerting to the eye.

12

Chapter Two An Overview of Ray Tracing

olygon
POg Flow of time in
successive frames
This row suddenly ‘pops 1
onto the monitor when
Time = 2 the moving edge covers

the pixel centres

Fig. 2.8 A polygon slowly moving up the screen appears to ’pop’.

2.5.3 Anti-Aliasing

Aliasing effects can always be tracked down to the fundamental nature of digital
computers and the point sampling nature of ray tracing. The essential problem is that we are
trying to represent continuous phenomena with discrete samples. We will now discuss some

of the methods of dealing with aliasing.

2.6 SUPERSAMPLING

The simplest way to counteract the effects of aliasing is to shoot lots of extra rays to
generate our monitor image. We can then take the colour of each pixel to be the average
colour of all the rays that pass through it This technique is called supersampling. We might
send nine rays through each pixel, and let each ray contribute one-ninth to the final colour
of the pixel. For example, if six rays shot through a pixel hit a green ball, and the other three
hit a blue background, then the final colour of the pixel will be two thirds green, one third

blue; a more accurate colour than either pure green or pure blue. Although supersampling can

Chapter Two An Overview of Ray Tracing

greatly reduce the effects of aliasing, it can never fully solve them.
The major problem with supersampling is that it is computationally very expensive.
If nine rays are sent through each pixel then the total running time of the program is

increased nine fold.

2.6.1 Adaptive Supersampling

Adaptive supersampling offers an attempt at reducing the computational overhead
associated with supersampling. Rather than firing off some fixed number of rays through
every pixel, we will use some intelligence and shoot rays only where they are needed.
Whitted [WHTT80] describes such a method for supersampling. One way to start is to shoot
five rays through a pixel, one through the centre, and one through each of the pixel’s four
comers.If all these rays return similar colours4 then it is fair to assume that they have all hit
the same object, and therefore we have found the correct colour. If the rays have sufficiently
differing colours, then we must subdivide the pixel area into four quarters. We will then fire
five rays through each of the four regions. Any set of five rays through a region that return
similar colours will be accepted as a correct colour. We will recursively subdivide and shoot
new rays through each region where the five rays differ. Because this technique subdivides
where the colours change, it adapts to the image in a pixel, and is thus called adaptive
supersampling.

This approach works fairly well, and is not too slow. Moreover, it is easy to
implement. However, the fundamental problem of aliasing remains. No matter how many rays
we shoot into a scene, if an object is too small , it may not be visible. We will still have
small objects ’popping’ across the monitor in animated sequences. The problem with adaptive
supersampling is that it uses a fixed, regular grid for sampling. By getting rid of this

regularity in the sampling, it is possible to minimise the effects of aliasing.

4 The rays do not need to return exactly the same colour. A
confidence interval can be set stating just how similar the rays
are required to be.

Chapter Two An Overview of Ray Tracing

2.6.2 Stochastic Supersampling

If we get rid of the regular sampling grid and replace it with an evenly distributed
random grid we can greatly reduce aliasing effects. We will still shoot a regular number of
rays through each pixel, but we will ensure that these rays are spread pretty randomly (or

stochastically) over the whole area of the pixel. An example of this can be seen in Fig 2.9.

Fig. 2.9 The shooting of evenly distributed rays through pixels.

The particular distribution of rays that we use is important, so stochastic supersampling is
sometimes called distributed ray tracing.

As a bonus, stochastic ray tracing give a variety of new effects that the discrete tracing
algorithms don’t handle well, or at all. Stochastic ray tracing allows us to render motion blur,
depth offield, and soft edges on shadows, known as penumbra regions.

The bad news is that a new problem is introduced. We now get an average colour at
each pixel. So although each pixel is almost the right colour, few are exactly right. We have
introduced noise. The noise is spread out over the whole monitor like static on a bad
television signal. Fortunately, the human visual system can usually filter out this noise.

By using stochastic ray tracing we may still be shooting too many rays through each
pixel. As in adaptive supersampling for a regular grid, we need some method to reduce the

average number of rays shot through any pixel.

2.6.3 Statistical Supersampling

We can use statistical supersampling to reduce the number of rays shot through the

average pixel. We start by shooting four randomly distributed rays through a pixel. If the

15

Chapter Two An Overview of Ray Tracing

colours of these rays are sufficiently similar, then stop the sampling. Otherwise shoot another
four randomly distributed rays through the pixel and test all eight rays. Testing for similarity
can be done by applying various statistical methods. In general, you set a confidence interval
for the pixel. Higher confidence intervals will give a more accurate colouring, but as more
rays are needed, they will be slower to compute. Supersampling is discussed by Mitchell
[MITC87]; by Cook[COOKS86], by Cook, Porter and Carpenter [PORT84]; by Lee [LEE85];
by Dippe [DIPP85], by Kajiya [KAJI86], and by Purgathofer [PURG86].

2.6.4 Beam Tracing

Another way of reducing aliasing effects is to use beam tracing. Beam tracing gets
over the basic point sampling problem of normal ray tracing. Instead of letting the ray
represent a point on the pixel we can assign the whole area of the pixel to the ray. The ray
then becomes a pyramid, with the apex at the eye and the base defined by the four comers

of the pixel. This is shown in Fig 2.10. When an intersection is found between such a beam

Beam Ray Cone Ray

Fig. 2.10 A beam ray and a cone ray.

ray and an object, the area of intersection is calculated and used as a basis for performing

16

Chapter Two An Overview of Ray Tracing

simple area anti-aliasing.

In beam tracing we need to cast only one ray through each pixel in the viewport. This
is an advantage over the supersampling methods. However, the intersection algorithm between
a beam ray and an object can be quite complex. Also, as the beam ray is reflected and
transmitted off curved surfaces it can become very distorted, furthering the complexity of the
intersection algorithm. The geometry of beam tracing is discussed by Dadoun and Kirkpatrick
[DADO085], while beam tracing of polygonal objects is discussed by Heckbert and Hanrahan
[HECK84].

2.6.5 Cone Tracing

Instead of a beam, we can trace a cone through each pixel. This is also shown in Fig
2.10. The advantage of a cone ray is that, when reflected or transmitted, a cone will still
represent a good approximation to the incident cone. Cone tracing is discussed by Amanatides
[AMANS84].

Like stochastic ray tracing, cone ray tracing can be used to implement various photo
effects that cannot be handled using normal ray tracing. These effects include fuzzy shadows,

and dull reflections.

17

Modelling the Real World

3.1 Introduction

Modelling involves building the scene to be ray traced. This scene could be simple,
like a single sphere in space, or it could be a more complex model, like a street, full of
buildings, cars and people.

In this chapter we describe the various methods used for describing objects when
building computer models. We describe how individual objects are generated within a model,
and how these objects can then all be transformed into one scene.

We will conclude this chapter by describing acceleration techniques that may be used

when modelling, so as to ensure efficient ray tracing of the scene.

3.2 GEOMETRICAL TRANSFORMATIONS

Every object to be modelled on a computer can be defined in terms of a set of control
points and a set of operations mapping these control points to form surfaces in 3D space. For
example, a cube can be defined by eight control points and an operation describing how these
control points represent the six faces of the cube. Even very complex objects, such as spline
surfaces are represented as points in 3D with specific operations connecting these control
points to form surfaces.

Geometrical transformations deal specifically with objects at the control point level,
leaving the description as to how these points are mapped to be discussed in Section 3.4 and
Section 3.5. There are three transformations that can be performed on any point in 3D space.
These transformations are translation, scaling, and rotation.

The three transformations can also be carried out in 2D space. We shall proceed by
developing the structure of the 2D transformation matrix, and we will then use the results to

build the 3D transformations matrix.

3.2.1 2D Transformations

2D geometry is carried out on a 2D xy-plane, shown in Fig. 3.1. Points in the xy-plane

can be described in terms of P = [xy], where X and y are unit amounts parallel to the x and

18

Chanter Three Modelling the Real World
y-axis

Fig. 3.1 The xy-axis of a 2D coordinate system

y axis respectively. When we represent points in such a way, we are using a cartesian
coordinate system.

Any point, P = [*y], in the xy-plane can be translated to a new position by adding
translation amounts to the coordinates of the point. A translation amount is given in terms of
Dx units parallel to the x-axis and Dy units parallel to the y-axis. Dx and Dy may be either
positive or negative amounts. We can place Dx and Dy in a translation vector T = [Dx Dy].
A translation from P = [jcy] by an amount T = [Dx Dy] to a new point P’ = [x” y’] can be

written:

X’ =x + Dx y'=y + Dy

or, more concisely:

Pr=P+T

An object can be translated by applying this equation to each of its defining points in

turn. Fig. 3.2a shows a triangle that has three defining points. A translation T = [3 -4] is

carried out on each of the three points, thus translating the whole object to the new position

shown in Fig. 32b.

A point can be scaled by Sx and Sy units parallel to the x and y axes of the xy-plane.

Again, the scaling values can be either positive or negative. Scaling is done by multiplying:

19

Chapter Three Modelline the Real World

(@) Before Translation (b) After Translation

Translation T m [3 -4]

Fig. 3.2 Translation in 2D

X" =X * Sx, y’=y * Sy
Sx 0
Defining S as: , We can write, in matrix form:
0 Sy
Sx 0
[*7]1= vl
0 Sy
or
P’=PS

The triangle in Fig. 3.3a is scaled by a factor of 1/2 in the x-axis and 1/4 in the y-
axis, resulting in that of Fig. 3.3b. The result of the scaling, however, is not quite what you

may have expected. The problem is that the scaling has been done about the origin. If the

20

Chapter Three Modelline the Real World

(a) Before Scaling

Scaling S - [1/2 1/4]

Fig. 3.3 Scaling in 2D

scaling factors were greater than 1, then the object would not only be enlarged, it would also
be repositioned further from the origin.

In order to scale an object about a point, P (Fig. 3.4a), we first translate the object so

.P .P
(a) original (b) translate P to (c) Scale about (d) Translate back
square origin origin to original P

Fig 3.4 Composite translate/scale/translate in 2D

21

Chapter Three Modelline the Real World
that P is at the origin (Fig. 3.4b). We then scale the object (Fig. 3.4c). Now, as P is at the
origin, the object is not only scaled about the origin, but also about P. After we have scaled
the object, we translate it back so that P returns to itsoriginal position (Fig. 3.4d).

Points can be rotated about the origin. The rotation isdefined as:

X’ =x *cos(0) -y * sin(0)

y =x *sin(0) +y * cos(0)

In matrix form, this is:

cos(0) sin(0)

[*"y’1 =[xyl _
msin(0) cos(0)

or

where R represents the rotation matrix defined above.

Fig. 35 shows a triangle rotated through an angle of 90°. As with scaling, the object
is rotated about the origin. To rotate about an arbitrary point, we follow the procedure

described above for scaling (i.e. we translate to the origin, rotate, and translate back).
The need to translate every object before it is either scaled or rotated is a feature we

would rather avoid. Itis messy, and computationally expensive. Fortunately, we can overcome

this problem by creating compositions of 2D transformations.

22

Chapter Three Modelling the Real World

(@) Original triangle (b) Triangle after rotation

Fig. 3.5 Rotation in 2D

3.2.2 Homogeneous Coordinates

In Section 3.2.1 we defined translation as an addition of two matrices, while both
scaling and rotation were defined as the multiplication of two matrices. We require to be able
to treat the three transformations in a homogeneous, or consistent, way so that the three
transformations can easily be combined together.

Homogeneous coordinates were developed in geometry by Maxwell
[MAXW46,MAXW51] and have subsequently been applied in graphics by Roberts [ROBE65]
and Blinn [BLIN77b,BLIN78].

We can represent any cartesian point P = [x y] by an equivalent homogeneous point

P=1[W*x, W *y, W], for any scale factor W * 0.

P = [xvy] is represented as P=1I"*j: W]

P=[W*xW*yW] is equal to [xy W]

T
1

By setting W = 1:

is equal to P

[xy 7]

23

Chanter Three Modelline the Real World

Therefore:

P = [xy] (cartesian) is represented as P=Uyi] (Homogeneous)

Using homogeneous coordinates, the translation, scaling and rotation transformation

matrices are all 3 X 3 matrices. Explicitly, they are defined as:

1 0 0
T = 0 1 0
D x Dy 1
Sx 0 0
0 Sy 0
0 0 I

cos(0) sin(0) O
-sin(0) cos(0) O
0 0 1

R(0)

where: Dx, Dy, Sx, Sy, and 0 have the same meanings as in Section 32.1.

3.3.3 Composition of 2D Transformations

In order to translate, scale, and rotate points in 2D homogeneous coordinates, we
multiply the point by the relevant matrix. Using homogeneous coordinates we can compound
translation, scaling and rotation operations into one transformation matrix. When we wish to
scale or rotate an object about a point, it is no longer necessary to translate the point to and
from the origin before and after the actual scaling/rotation takes place. We can combine the
three steps of translation, scaling/rotation, translation into one transformation matrix. For
example, the composite translate/rotate/translate transformation matrix to rotate an object

about some point P = [x y 1], by an angle of 0, is:

24

Chapter Three Modelling the Real World

1 0 0 cos(0) sin(0) O [0 0
0 1 0 -sin(0) cos(0) O 0 1 0
-X oy | 0 0 1 X y 1
Translate Rotate Translate
cos(0) sin(0) 0
-sin(0) cos(0) 0
x (I - cos(0)) + ysin(0) y(l - cos(0)) - xsin(0) 1

Composite Transformation Matrix

Henceforth, when we require to rotate any object by an angle 0, about the point P, we
need only multiply each of the object’s control points by this one transformation matrix,
whereas before we required two translations and a rotation per point.

We can combine any number of translations, scalings, and rotations into one
transformation matrix. This means that even the most complex transformation of a point can
be carried out by multiplying that point by only one matrix.

The computations can be speeded up even further by considering the general layout

of any 2D transformation matrix. All 2D transformation matrices have the following layout:

B r,, ri2 0
M = rzi rz 0
h g 1

The upper 2 X 2 submatrix represents the composite rotation and scale matrix, while
the lower 2 X 1 submatrix represents the composite translation matrix. Calculating P-M as
a point multiplied by a 3 X 3 matrix requires nine multiplications and six adds. However,
because the last column of M is fixed, we can reduce P-M to a total of four multiplications

and four additions.

25

Chapter Three Modelling the Real World

3.3.4 3D Transformations

Points are defined in 3D homogeneous coordinates in the same manner as described

for 2D, except that now a z coordinate is included in the definitionl Therefore:

P = [xyz1]

The following are the general translation and scaling 4 X 4 matrices used in 3D homogeneous

coordinate systems:

1 0 0 0
0 1 0 0
Translation: 0 0 1 0
D x Dy Dz 1
SX 0 0 0
0 Sy 0 0
Scaling: S 0 0 Sz 0
0 0 0 1

A rotation matrix must be defined for each of the three axes that are present in 3D.

The rotational matrices given here are for a right handed coordinate system. They are:

0 0 0
cos(0) sin(0) O
-sin(0) cos(0) O

0 0 1

Rotation about x-axis: Rx(0) =

O O O

1 1t is 1important to note that there are two ways of
defining the coordinate system, each way depending on the
direction of the +z axis. In the left handed coordinate system,
the +z axis extends away from the viewer, while In the right
handed coordinate system, the +z axis extends toward the viewer.
In a left handed coordinate system positive rotations are made
in a clockwise direction and In a right handed coordinate system
rotations are iIn a counterclockwise direction.

26

Chapter Three Modelline the Real World

cos(0) 0 -sin(0) 0
0 1 0 0
Rotation about y-axis: R™(0) sin(0) 0 cos(0) 0
1 1 1 1

cos(0) sin(0) 0 O

sin(0) cos(0) 0 O
Rotation about z-axis: Rz(0) 0 0 0 O
0 0 0 1

The general compound transformation matrix (M), comprising translation, scaling and rotation

is:
i ri2 'is 0
r2j r2 r23 0
ral 32 r3 0
U 1
where: the upper left 3 X 3 submatrix represents the combined scaling and

rotation and the lower left 3 X 1 submatrix gives the aggregate translations.

By using 3D homogeneous coordinates, we can perform any composite transformation
on any point in 3D space. By applying the same transformation to all the control points for

an object we can efficiently transform the object in 3D space.

3.3.5 Coordinate Systems

The ability to transform whole objects around in 3D space leads to the idea of
coordinate systems. When generating computer models, we normally use three 3D coordinate
systems. These are the primitive, object and world coordinate systems.

Each object that is to be modelled is developed in its own object coordinate system.
The object is built by the combining of primitives and objects that have been transformed

from primitive coordinate systems and other object coordinate systems. By using different

27

Chanter Three Modelling the Real World

transformation matrices, the same object can be transformed to multiple locations in other
coordinate systems. These locations can be other object coordinate systems or the world
coordinate system.

For example, we can define a car in a car object coordinate system. For this car, we
need four wheels. We need only define the wheel once in a wheel primitive coordinate
system, and then use four separate transformation matrices to correctly position the four
wheels in the car object coordinate system. We may, if we wish, transform the car object to
one or more positions in the world coordinate system.

Primitives are at the lowest level of the object tree. They cannot be created by a
combination of any other primitives. Primitives are like the nuts and bolts in engineering, or
the bricks used to build houses.

The world coordinate system is the last level of transformation that can be done in 3D.
It contains the final 3D scene that is being modelled.

The coordinate systems can be represented as an object tree, with the world coordinate
system as the root, the primitive coordinate systems as the leaf nodes and the various object
coordinate systems as the other nodes.

Using the structured approach of an object tree for modelling we may define very
complex objects with relative ease. The structured approach also speeds up development time

as we need create less object definitions.

3.3.6 Inverse Transform Matrix

Ultimately, the scene in the 3D coordinate system is built from the primitives of the
leaf nodes from the object tree. When ray tracing, we must check each ray against every
object that is within the scene. Rather than create unique intersection routines for each object
in the scene, we instead test the ray for intersection against each of the leaf nodes from the
object tree. We then need only describe intersection routines for each of the primitives.

In order to test for intersection we must ensure that the ray and the primitive are in
the same coordinate system. The ray is cast in the world coordinate system and a primitive
is defined in its own primitive coordinate system. The discussion so far has assumed that we
would transform the primitive into the world coordinate system. As both the primitive and
the ray will be in the same coordinate system, we can perform our intersection test. This

method is correct, but there is a more efficient way.

28

Chapter Three Modelling the Real World

Instead of transforming the primitive up into the world coordinate system, we can
transform the ray down into the primitive’s own coordinate system. As described in Section
5.4.1, aray contains a point and a vector. This point and vector can be transformed down into
the primitive’s coordinate system by multiplying each by the primitives inverse transform
matrix. The inverse transform matrix is quite simply the inverse of the transform matrix that
would have transformed the primitive into the world coordinate system.

In the world coordinate system we have multiple copies of each primitive transformed
into innumerable positions. Rather than writing general ray/primitive intersection routines that
are necessary in the world coordinate system, we can make use of the fact that we only need
a specific ray tracer for the pre transformed primitive in its own coordinate system. By
carefully choosing the way in which we define the primitive we can make significant
computational gains. The primitive types defined in PRIMEZ2, and discussed in Section 5.4
are choosen so as to be effeciently implemented.

In order for a ray/surface intersection routine to be performed, we must be able to
detect every point on the surface of a primitive. In Section 3.2, we stated that complete
surfaces are formed by mapping a set of control points. We will now discuss two methods
that are used to describe, or model, whole surfaces in terms of object control points. The

operations come under two headings, surface modelling and solid modelling.

3.4 SURFACE MODELLING

In surface modelling we define individual objects by using surfaces. Each surface is
defined by using a set of control points and a set of operations connecting the points. There
are various methods used in surface modelling. We shall describe the methods of polygonal,

parametric, andfractal surface modelling.

3.4.1 Polygonal Surfaces

A polygon is a closed plane that consists of three or more vectors, or straight lines,
that connect three or more vertices, or points, with no sides intersecting. Specific polygons

are named according to their number of sides, such as triangle and pentagon. We can

2 PRIME Photorealistic Image Modelling Environment.

29

Chanter Three Modelline the Real World

represent any plane surface precisely by using a polygon3 Therefore, we can represent any
object consisting wholly of plane surfaces by using a number of polygons, as shown in Fig.
3.6. Polygonal surfaces are cheaper to ray trace than surfaces created by using other surface
modelling methods, and are therefore preferable whenever possible.

Curved surfaces can be modelled by using a number of polygons to approximate the

curve. Methods used to approximate curved surfaces as polygonal surfaces are discussed by

Fig. 3.6 Object constructed using polygons

Ganapathy and Dennehy [GANAS82], Synder and Barr [BARR87a], and Von Herzen and Barr
[BARR87b]. When generating photorealistic images (ray tracing), it is not always sufficient
to merely approximate curved surfaces. Fortunately, we can use parametric surfaces to model

curved surfaces exactly.

3 Other regular plane surfaces, such as a circle, are
normally included in modelling as being polygons.

30

Chanter Three Modelling the Real World

3.4.2 Parametric Surfaces

Parametric surfaces are more expensive than polygonals to compute, but parametric
surfaces accurately model the curvature of a surface. There are several parametric surface
modelling methods available. We shall restrict our discussion to that of the Beta-Spline, or
fi-Spline. Discussions on other parametric surface modelling methods include those by Kajiya
[KAJI82], Barr [BARRS86], Joy and Bhetanabhotla [JOY86], Plass and Stone [PLAS83], and
Toth [TOTHS85].

The word spline comes from boat building, where planks of wood were formed into
shape by bending around pegs hammered into the ground. Originally, it was the pegs that
were called splines, though now the word is used to describe the curve itself. As aprelude
to 6-spline surfaces, we shall discuss B-spline curves. These are a 2D equivalent of the 3D
6-spline surface.

When talking about splines, we refer to the control points as knots. There are two
ways in which 6-splines can be constructed: interpolation and approximation. By using
interpolation the curve passes through each knot. By using approximation, the curve might
not necessarily pass through each knot. Approximation is easier to compute, but is not as
accurate as interpolation.

Much about 6-spline curves can be described using the simple Bezier curve. A typical
Bezier curve is shown in Fig. 3.7. The Bezier curve is an approximation method, as the
generated curve does not pass through all four defining knots. Fig. 3.8 shows the first six
steps of the construction of the Bezier curve from Fig 3.7. Each knot is joined by a line
segment. A parametric distance, a, is chosen in the range 0 to 1. This gives a new set of
knots, one less in number than the original set of knots. Again, these knots are joined by line
segments and a new set of knots is marked on the new line segments at a distance of a along
each line segment. This recursive process continues until only a single point is left.

All Bezier curves go through both of their endknots and the slope of any Bezier curve
is continuous along its entirety. The curve is clamped to its endknots. All the other knots
exert a blend, or pull, on the curve.

When modelling we usually need to create a precise curve. Using parametric curves,
the precision is normally achived through an iterative process. We use an initial set of knots
that we know are close to, but not necessarily, the best knots for the curve we desire. By

changing the curve locally, we ultimately obtain the precise curve we desire. As shown in Fig

31

Chapter Three Modelling the Real World

Fig. 3.7 Bezier curve, using four knots

Fig. 3.8 Construction of Bezier curve

3.8, when constructing a Bezier curve, all points that are on the curve are dependent on the

position of every one of the original knots. If we need to change a Bezier curve at some

32

Chapter Three Modelling the Real World

specific locality, we have to reposition all of the knots that define this curve. This is not too
bad if we have a Bezier curve generated using only a few knots, but as we define more
complex Bezier curves, needing many knots, it becomes infeasible to attempt to change the
curve locally.

A second problem when using Bezier curves is that discontinuities arise in a curve
when an attempt is made to loop it, as shown in Fig. 3.9.

When we wish to have local control and guaranteed continuity of the curve, we use

B-splines.

Fig. 3.9 Discontinuities in the Bezier curve

In principle, B-splines are similar to Bezier curves. The main difference is the choice
of blending (or pulling) function. While the Bezier curve takes all knots into account, the B-
spline takes into account only the four most local knots to any point on the curve. No matter
how many knots are used to define a curve, we need change only four knots to change the
curve at any given locality.

B-splines allow us to exert exact control over the slope of curve, with the use of skew
and tension. These two attributes are defined for every knot. The skew sharpens the slope of

the curve. For high skew values (skew > 1), the slope of the curve is no longer continuous.

33

Chapter Three Modelling the Real World

The effect of skew does not correspond to any easily described property in design, and so
tends to be used very rarely. Skew is shown in Fig. 3.10. Tension is used to pull the curve
closer to a knot, thus giving local control of the slope of the curve. For high tension values
(tension > 100), the resulting curve is closer to being linear. Tension is shown in Fig. 3.11.

The concepts of B-spline curves are readily transferred up to 3D B-spline surfaces. The

PO Pl

Skew =1
Skew = 3
Skew =15

Fig. 3.10 The effects of different skew values on a curve.

knots in B-spline surfaces are stored as a 2D array. B-spline surfaces retain the desirable
property that any change to the surface is kept local, with only the sixteen nearest knots (four
by four in the 2D array) being effected. Colour Plate 1 shows a wire frame of a B-spline
surface.

Detailed mathematical descriptions on the modelling of B-splines can be found in
Barsky’s definitive book on the subject [BARS88], and also in papers by Barsky and Beatty
[BARS83] and by Schaffner [SCHAS81].

34

Chanter Three Modelling the Real World

PS

1
o

Tension
Tension = 10

Tension = 100

Fig. 3.11 The effects of different tension on a curve.

3.4.3 Fractal Surfaces

Fractal surfaces are recursively built, with every level being based on the same
mathematical definition. No matter how closely we look at a fractal’s surface, we will see the
same pattern repeating itself. Fractal surfaces are ideal for the modelling of naturally
occurring objects, such as the sea, mountains, and trees.

When designing a fractal model, a set of variance parameters must be given, stating
the variance allowed by the recursion. The variance parameters ensure that the recursion does
not follow some completely chaotic direction. The variance parameters also control the
general ’look’ of the object. We will take the generation of a tree as an example of a fractal
object

For this model we need five variation parameters. The first parameter needed is the
angle between the first and last branches at any level of the tree. We also need a parameter
to determine the ratio between the branch angles at consecutive levels, a parameter that states
the maximum number of branches that emanate at any level, a parameter that states the ratio
between branch lengths at consecutive levels, and finally, a parameter that states the number
of levels of the tree. The first four variance parameters will have a random element added.
The last variance parameter controls the size of the tree, thus ensuring that it will fit into any
given scene. Two sample fractal modelled trees are shown in Fig. 3.12.

For fractal objects such as the coastline of a country, we must first create an outline

of the object (i.e. draw a rough map) and then tie the recursion around this outline. The

35

Chapter Three Modelling the Real World

(@) Uniform fractal tree

Fig. 3.12 Comparisson of uniformly and nonuniformly distributed fractal modelled trees.

outline can be generated by using polygons. At a local level the recursion is controlled by a
set of variance parameters, but at a higher level it is tied into the general outline of the coast.

Fractals are studied in detail by Mandelbrot [MAND83].

3.5 SOLID MODELLING

In solid modelling we use solid objects, rather than surfaces, to model a scene. Surface
and solid modelling are mutually exclusive. The freeform surfaces that can be modelled well
by using surface modelling are not good candidates for solid modelling. Solid modelling is
best suited to the modelling of non-naturally occurring objects, such as the objects in
engineering and architecture.

There are many primitives that can be used within a solid modelling ray tracer. The
major prerequisite for any primitive is that it must be a solid. We now discuss solid modelling

using polyhedra and quadrics, and we note other solid modelling methods currently in use.

36

Chanter Three Modelling the Real World

3.5.1 Polyhedra

Polyhedra are constructed by the joining together of several polygons, so as to form
a solid. For a polyhydral object to be a solid, one face of each polygon must point out away
from the object and the other face of each polygon must point into the object. The cube and
the pyramid are examples of polyhydral objects. Both the cube and the pyramid are used in
PRIME. Their respective mathematical definitions are given in Section 5.42.6 and Section

5.42.7.

3.5.2 Quadrics

Quadrics were used in the earliest ray tracers developed, [GOLD71]. Quadrics are
second degree, implicit surfaces. Because they are second degree, no term in a quadric will
ever be more than squared. This is significant, as a ray can only ever intersect a quadric
twice. This is a very desirable property, as it is the minimum number of intersections that a
ray can have with any solid object4. Because they are implicit, they are defined by only one
point and an equation. Some quadrics are the sphere, cylinder, and cone. In Section 5.4 we
derive the exact ray/quadric intersection routines for each of the above three quadrics. Here,
we shall describe the general properties of all quadrics, and how they are defined so as to be

easily ray traced.

Sphere

The implicit equation of a sphere is:

(X, -Xcf + (Ys-Y f +(Z -Y f =5r
where:
Sc = Sphere’s centre s [Xc Ye ZJ
Sr = Sphere’s radius

Sphere’s surface is the set of points [X, Ys ZJ.

4 We exclude the case where a ray emanates from inside an
object. This can only occur if a modeller is foolish enough to
place the image plane inside the 3D world coordinate system!

37

Chapter Three Modelling the Real World

The equation of a ray, as per Section 5.4.1, is:
R(t) = R,, + Rit
where:
Ra=[X0 YO ZJ
Rd=[Xd vd ZJ

t is the rays distance parameter

Substituting the ray equation into the sphere’s equation and solving for t gives:

(Xa+ Xdt - X f +
(Jo+ Yj-Yf +
Z0+Z2/-2f = sp

In terms of t, this simplifies to:

f(A) +2t(B) +C =0
where:
A=XR+YR+ZDR
B =X/X0-Xc) +Y/YO-Yco) +ZlZa-Zo
C=(X0-Xf + (YO-Yf +(Z,-Zf -5SR

This is the general form for any ray/quadric intersection equation. It gives t in terms of a

guadratic equation. The solution for t, therefore is:

2Bt V((2fl) 2- 4A0

t =
2A
or
-Bt V(B 2- AC)
t =

A

38

Chapter Three Modelling the Real World

By carefully choosing the primitive coordinate system, it is possible to cut down on
some ray/quadric intersection time. If we declare the sphere to be the unit sphere, centred at

the origin, then we can replace:

Xo-Xc¢ with X0
YO~YC with YO

Also, as the ray direction vector is normalised:

A=XR+YR+Z/=1

This means we can drop A out of the equation, giving:

where

B = XjX0+ YdY0 + ZjZ0

C=X2+YR+ZR2- 1

The ray/quadric intersection equations for the cylinder and cone are:

Cylinder

The canonical equation for an infinite cylinder is:

X2+Y2-1=0

Substituting the ray equation into this gives:

W+ Yd) + 2t(XILd+ YJIJ + (X2+Y2- 1=0

39

Chapter Three Modelling the Real World

Therefore:
-B+'I(B2-AC)
t =
A
Where:
A=Xf +Y2
B = X 0Xd + YOvd
C=X2+Y®-1
Cone

A=XR+Y2-Z®
B=XOXd+ YOvd-Z (Zi

C=X2+Y2-22

We can easily derive other quadrics along the same lines as the solutions shown
above. Other quadrics include the ellipsoid, the hyperboloid, and the paraboloid. Quadrics are

discussed by Roth [ROTH82], and Bier [BIERS83].

3.5.3 Other Forms Of Solid Modelling

A large variety of objects can be generated by using swept surfaces. A swept surface
is defined by a planar curve that is moved along its normal, so as to form a cylindrical object.
A second swept surface allows the radius of the cylinder to change, so forming a cone like
object Cylinder and cone swept surfaces are discussed by Goldstein and Nagel [GOLD71],
Wijk [WDKS84], Bier [BIER83], and Kajiya [KAJI83].

Instead of sweeping a surface along it normal, we can sweep the surface freely in
space. The background theory to swept surfaces is described by Faux [FAUX79].

Another technique for creating primitives is to use surfaces of revolution. Here, a
curve is revolved around an axis. A vase is an example of a surface of revolution.

Ray tracing algebraic surfaces, including quadrics, and higher order surfaces is
discussed by Hanrahan [HANRS83].

Various other methods of modelling (both surface and solid) are outlined by Glassner

[GLASS89].

40

Chapter Three Modelling the Real World

3.6 CONSTRUCTIVE SOLID GEOMETRY

Constructive solid geometry, (CSG), is a solid modelling method. Simple primitives,

such as polyhedra or quadrics, are transformed in 3D space and combined together to form
solid objects.

CSG is the method of choice for a wide range of applications of engineering design.
Objects are built through boolean operations on primitive and intermediate solids in CSG.
This reflects the way in which many engineering products are actually manufactured.

Descriptions of CSG systems are given by Boyse and Gilchrist [BOYS82], that
describes GMSolid, an interactive modeller for the design and analysis of solids; by Brown
[BROWS82], who gives a technical summary of a system called PADL-2; by Requicha and
Voelcker [REQUA82], giving a general overview of solid modelling; and by Myers
[MYERS82], who views the area from an industrial perspective.

CSG objects can be represented by a CSG binary tree. The leaf nodes of a CSG tree
consist of primitive solids that have been transformed into the object’s coordinate system5.
All other nodes contain boolean operators. There are three boolean operators allowable in
CSG; union, intersection, and difference.

The final object represented by a CSG tree will be in the tree’s root node. It’s content
is found recursively, by replacing each operator node with the result obtained when that
operator has been performed on its two child nodes.

The result of performing the union operator on two child nodes is that the union node
is replaced by everything that was in either of the child nodes.

The result of performing the difference operator on two child nodes is that the
difference node is replaced by everything that was in the right child node, but not in the left
child node.

The result of performing the intersection operator on two child nodes is that the
intersection node is replaced by everything that was in the right child node and also in the

left child node.

5 1t i1s conceptionally easier to i1magine primitives being
transformed up into the world coordinate system, even though, as
shown 1n Section 3.?, it is the rays i1n the world coordinate
system that are transformed down into the primitive®s coordinate
systems. The difference, iIn terms of implementation, is whether
to use the primitive"s transform matrices or their inverse
transform matrices.

41

Chapter Three Modelling the Real World

When the whole CSG tree has been recursively processed, the result contained in the
root node represents the completely built object.
Diagrammatically, union is represented by +, difference by -, and intersection by &.

A CSG constructed object is shown in Fig. 3.13.

Fig. 3.13 Object constructed using CSG

When ray tracing, it is necessary to classify a ray with respect to the object against
which the ray is being intersected. A Roth diagram can be used to describe the contents of
a CSG tree with respect to a given ray. At any point along the rays path, it is classified as
being outside, on, or inside the surface of an object. The ray path through the object can be
represented using a Roth diagram, as shown in Fig. 3.14. The ray/object intersection points

are calculated and a ray classification interval is drawn up for each leaf node. The

42

Chapter Three Modelling the Real World

Left (L) Right (R)

L= -
R =
L+R e
L &R ——
T = J—

R

L&R

Fig. 3.14 Roth Diagram showing union, intersection and difference operators

classification intervals from two child node’s can be combined into one classification interval,
depending on the operator type of their parent, as shown in Fig. 3.14. The final classification
interval replaces the operator at the parent node of the two children. The parent node is then
treated as a child of the operator from the next level up the CSG tree. The rules for

combining classifications in a CSG tree are shown in Table 3.1.

43

Chapter Three Modelling the Real World

Set operator Left Right Composite

Union in in in
in out in
out in in
out out out

Intersection in in in
in out out
out in out
out out out

Difference in in out
in out in
out in out
out out out

Table 3.1 Rules for combining classifications in a Roth Diagram

Roth also observed some efficiencies that are easily included into any CSG ray tracer.
If the operator is intersection or difference, and the left child returns an empty Roth
classification interval (i.e. the left child is not intersected by the ray), then it is pointless to

process the right child, as the final Roth diagram must be empty.

3.7 SPEEDING THINGS UP

Working out the ray/surface intersections points is perhaps the largest computational
expense in ray tracing. The number of such intersections to be calculated is directly
proportional to the number of primitives in a modelled scene. We may have a scene
containing several thousand primitives. Every ray must be checked against each primitive to
check if an intersection occurs. Clearly, if we can reduce the number of intersection
calculations by even a small percentage, then the computational savings will be great. There
are two major methods that can be employed to reduce the number of raylsurface
intersections. They are, by using fewer rays and by obtaining faster intersections.

We can shoot fewer rays into the scene by reducing the number of rays shot through
each pixel. We have already described such methods in Section 2.6, examples being adaptive
tree-depth control, statistical optimizationsfor anti-aliasing, beam tracing, and cone tracing.

However, even after these reductions, we must still shoot at least one ray through each
pixel. On an average graphics monitor we have a screen resolution of 1024 X 768 pixels, this
means we must shoot 786,000 pixel rays. Itwe have only 100 primitives in our scene, we will

need to perform over 78 million ray/primitive intersection tests. If we take into account the

44

Chapter Three Modelling the Real World

new reflected and transmitted rays that are recursively generated with every ray/surface
intersection, we would most likely need to perform over (a conservatively estimated) 700
million ray/primitive intersection tests.

W e can perform faster ray/primitive intersection tests, by either implementing faster
intersection routines for the various primitive types, or by cutting down on the number of
objects that are checked for intersection with each ray. Fast intersection routines are derived
for each primitive type implemented in the PRIME system. These are described in detail in
Section 5.4.

Here we shall deal with ways of reducing the number of ray/surface intersection tests
needed. There are three methods employed that reduce the number of surfaces checked for
intersection with any ray. They are bounding volumes, space subdivision, and directional
techniques. A ray tracing system may implement one, two, or all three of these methods in

order to obtain maximum efficiency.

3.7.1 Bounding Volumes

A bounding volume, also known as an extent or an enclosure, is a volume that fully
encloses an object. The object is only tested for intersection with a ray should that ray first
intersect the bounding volume of the object. Although an extra intersection is calculated for
those objects that are in the path of a ray, the overall number of intersections is reduced. In
a typical scene only a tiny percentage of objects are intersected by any given ray. On the
other hand, only one intersection test must be performed for each of the other objects in the
scene before they are rejected. When the intersection between a ray/bounding volume fails,
we can reject the object contained within the volume. As a typical object will consist of many
primitives, the final number of intersection tests performed will be greatly reduced.

Just like an object, a bounding volume can be of any shape. To test a bound for
intersection is the same as testing an object for intersection.

There are two factors that need to be taken into account when designing a bounding
volume; tightness o ffit and cost ofintersection ofthe volume. Simpler bounding volumes can
be tested for intersection more quickly than can complex ones. Because simpler bounds may
not tightly bound their enclosed object, there is a higher chance that these will be intersected
by a ray that does not intersect the object that is being bounded. Should this happen, the

enclosed object must itself be tested. This, of course, defeats the whole purpose of bounding

45

Chapter Three Modelling the Real World

volumes. On the other hand, it may be more efficient to use a simple bound that is subjected
to accepting the odd non good ray, rather than use a complex bound that requires a
computationally expensive ray/bound intersection test. Weghorst et al. [WEGH84] investigate
the tightness of fit versus cost of intersection trade-offs of bounding volumes.

Bounding volumes need not only be used to enclose whole objects. For complex
objects, containing many primitives, we can build a hierarchy of bounding volumes. Rubin
and W hitted [RUBI80] discuss the issue of bounding hierarchies.

Kay and Kajiya [KAY86] describe the use of convex hulls as bounding volumes. A
convex hull bounding volume can be tailor made to fit any object. Kay and Kajiya use a set
of plane couples that completely enclose an object to approximate its convex hull. Three of
the plane couples must be linearly independent, thus guaranteeing that the object is properly

bounded on all sides in 3D space. Each plane couple is defined by taking any two planes

(@) The set of planes othogonal to vector P (b) Bounding plane couple

Fig. 3.15 The use of plane couples as bounding volumes

from the infinite set of orthogonal planes along any vector in 3D space, as shown in Fig.
3.15a. The two planes that best bound an object are chosen as the object’s plane couple along
that vector, as in Fig. 3.15b. By using more and more plane couples, we form a tighter bound
around the object. Testing for a bounding volume/ray intersection requires two ray-plane
intersections for each plane couple. There is a trade-off between the tightness of fit obtained
by using many plane couples versus the extra computational cost of working out the

intersections for each new plane couple.

46

Chapter Three Modelling the Real World

3.7.2 Spatial Subdivision

To implement spatial subdivision we must ensure that the coordinate system is a
cuboid volume. That is, it must be a cube in 3D space. Spatial subdivision links each object
with one or more voxels, or sub-volumes, of the original world coordinate volume. As each
new object is transformed into the world coordinate system, it is linked with each of the
various voxels that contain part of its volume. The voxels act as bounding volumes to the
objects contained within them. A ray cannot intersect an object unless it also intersects a
voxel containing the object.

Every ray must travel along a straight path, thus imposing a strict order as to when
any voxel is intersected by a ray. Any object intersected within a voxel must be closer to the
ray’s origin than any object within the voxels that lie further along the rays path. Once we
find a ray/object intersection in any voxel, we can safely stop testing voxels further along the
ray’s path. This will normally lead to a large reduction in the number of objects that need to
be tested against a given ray.

We can subdivide the space either by uniform or nonuniform space subdivision. Both

methods prove to be superior to each other under differing circumstances.

3.7.2.1 Uniform Spacial Subdivision

Using uniform space subdivision, we simply divide the world coordinate system into
a regular grid of equally sized voxels, as shown in Fig. 3.16a. Using this method, no account
is taken of the distribution of the objects in the world coordinate space. We often have a
situation where many voxels are empty, while a few voxels contain the majority of the
objects. In such cases, spacial subdivision is actually detrimental to the efficiency of the
ray/surface intersection routine, and nonuniform space subdivision should be used.

When using uniform spacial subdivision, we must decide how many voxels to create.
If we have too few voxels, there will be no real division of the space, and so no real
computational gains can be expected. If we have too many voxels, the overhead of
intersecting many individual voxels may supersede any gains made in ray/object intersection
that resulted from using the voxels in the first place. Another problem with using many voxels
is that it may lead to memory overload. Glassner [GLAS84] curtailed this problem by storing

only those voxels that contained one or more objects.

47

Chapter Three Modelling the Real World

(@ Uniform spacial subdivision (b) Nonuniform spacial subdivision

Fig. 3.16 Dividing a cuboid using uniform and nonuniform spacial subdivision

3.7.2.2 Nonuniform Spacial Subdivision

When objects are nonuniformally distributed in the world coordinate space, we use
nonuniform spacial subdivision. In nonuniform spacial subdivision, we set a maximum
number of objects that can be associated with any one voxel. Once any voxel exceeds this
maximum, it is subdivided into a set of smaller voxels. The usual method of doing the
subdivision is to divide the voxel into eight equally sized voxels.

In nonuniform spacial subdivision, the size of the various voxels is not necessarily
constant. Each voxel is subdivided independently to all others, with the subdivision process
determined by the number of objects penetrating the voxel. Nonuniform spacial subdivision
is shown in Fig. 3.16b.

However, where the objects are uniformly distributed throughout the world coordinate
space, uniform spacial subdivision proves to be more efficient than nonuniform spacial
subdivision. This is because it is computationally less expensive to calculate the voxels that
lie on the path of a ray for the regular voxels of the uniform spacial subdivision algorithm
than it is to calculate them for the nonuniform spacial subdivision. Fujimoto et al. [FUJI86]

have implemented an efficient algorithm for this purpose.

48

Chapter Three Modelline the Real World

3.7.3 Potential Pitfalls In Spacial Subdivision

In both uniform and nonuniform spacial subdivision, we may get repeated ray/object

intersection testing, as shown in Fig. 3.17. This may be caused when an object is included

Voxels

mMRay

Fig. 3.17 The need for object mailboxes when using spacial subdivision

in more than one voxel. Object A is tested for intersection against the ray five times. To
avoid this, we use a mailbox, as described by Amaldi et al. [ARNAS87]. Each object is given
a mailbox and each ray is given a unigue number. When a ray is tested for intersection
against an object, the result of the intersection and the ray number are stored in the object’s
mailbox. Before testing any object for intersection against a ray, the ray numbers contained
in its mailbox are compared against the ray’s number. If both numbers match, then the result
of the intersection can be obtained from the mailbox, without any need to carry out a
ray/object intersection.

A second potential problem that must be accounted for is shown in Fig. 3.18. In voxel
1, the ray must be tested against Object A. An intersection is detected, as the ray will
actually intersect Object A later along its path. In order to avoid returning Object A as the

nearest object intersected by the ray, we accept as valid only those intersections that occur

49

Chapter Three Modelling the Real World

Voxels

Fig. 3.18

in the current voxel. Under this condition, Object A would be rejected as a valid intersection
in voxel 1, as the ray intersects it only in voxel 3. Object B would be a valid intersection in

voxel 2, and would be (correctly) returned as the first object intersected by the ray.

3.7.4 Ray Directional Techniques

Directional techniques explicitly incorporate directional information into the structure
of every object. Various operations can then be performed on behalf of many rays at once,
instead of just one ray at a time. The cost associated with using directional techniques is that
they require large amounts of storage. Three different directional techniques in use are the

light buffer, the ray coherence, and the ray classification techniques.

3.7.4.1 The Light Buffer

The light buffer, introduced by Haines and Greenberg [HAINS86], is a directional
technique that accelerates the calculation of shadows with respect to point light sources.6 One

of the facts utilized by this algorithm is that points can be determined to be in shadow

6 Point light sources are discussed In Section 4.6.6.

50

Chapter Three Modelling the Real World

without finding the nearest object. Any opaque occluding object will suffice to confirm that
a point is in shadow with respect to some light source. The search for an occluding object is

narrowed down by making use of the direction of the light source to the point in question.

3.7.4.2 Ray Coherence

Ohta and Maekawa [OHTAS87] introduced the ray coherence theorem in 1987. It is
a mathematical tool for placing a bound on the directions of rays that originate at one object
and then strike another. In its simplest form, the ray coherence formula applies to objects that
are bounded by non-intersecting spheres.

As shown in Fig. 3.19, any ray originating in sphere, SI, and terminating in sphere

Fig. 3.19 Exploiting ray coherence
S2 defines an acute angle 0 with the line that goes through the sphere centres. 0 can be

bound in terms of the sphere radii and the distance between their centres, giving:

cos(0) > V 1.

This inequality can be used to bound the directions of all rays that originate at one

object and intersect another.

51

Chanter Three Modelling the Real World

3.7.4.3 Ray Classification

The ray classification algorithm is described by Arvo and Kirk [ARV087]. Rays in
3D space have five degrees of freedom, and correspond to the points of R3 X S2, where S2is
the unit sphere. We split the 5D space of rays into small neighbourhoods, encoded as 5D
hypercubes. A hypercube represents a collection of rays with similar origins and similar
directions, and a list of all objects that are hit by any of the included rays. To test for
ray/object intersection, we need test only those objects that are contained in the hypercube

that contains the ray.

3.7.4.4 Exploiting Coherence

The ability to exploit the coherence of objects in a scene is discussed by Sutherland
et al. [SUTH74]. Knowledge of coherence can aid in the development of more efficient ray
tracers.

Objects tend to consist of pieces that are connected, smooth, and bounded. Distinct
objects tend to be largely disjointed in space. This is known as object coherence. Nonuniform
spatial subdivision works because of this fact.

Image coherence is basicly object coherence transformed down to the 2D world of the
monitor. We have the same degree of connectedness, smoothness, boundedness, and
disjointness with the final image on the monitor as we do with objects in the 3D scene.

Frame coherence is basicly image coherence with the effects of time taken into
consideration. Two successive frames of an animation are likely to be similar when the
sampling time difference between them is small.

Rays with almost the same origin and almost the same direction are likely to trace out
similar paths in a scene. This is called ray coherence. The beam and cone tracing in Section
2.6.4 and Section 2.65 respectively work only under the assumption of ray coherence. Both

Speer et al. [SPEE85] and Hanrahan [HANRB86] discuss ray coherence.

52

Rendering in Ray Tracing

4.1 Introduction

Rendering is about generating the colour effects of a scene that is being synthesised
using a computer. We are particularly interested in the way rendering is implemented in ray
tracing.

Before describing actual rendering models we will discuss colour, what it is and how
it comes to be. We discuss models that give a precise definition of what you and | perceive
as colour. These are used to develop the 3D RGB cube, which is the definition of colour as
used with computers. We discuss problems that arise because of the limitations of mid-range
computer graphics monitors, and describe methods that minimise these problems.

We discuss the various light and surface characteristics that are needed to formulate

a rendering equation. We combine these characteristics in a photorealistic rendering model.

4.2 COLOUR

The human eye is able to distinguish between approximately 128 hues. Hue is what
we colloquially call colour. Hue is the attribute of colour that enables us to classify the colour
as being red, purple, etc.. For each hue, around 20 to 30 different saturations may be
perceived as a different colour. The saturation is a measure of the purity or depth of a colour.
The human eye is also capable of distinguishing between 60 to 100 different brightness, or
intensity, levels. Therefore the human eye can distinguish between approximately 350,000
different shades of colour.

To the human eye, colour develops from the interaction of light rays with the surface
of objects. This is easily demonstrated. If you attempt to look at an object in a dark room that
has absolutely no light, you will see no colour! When a light ray strikes a surface it somehow
acquires colour from this surface. Therefore colour can travel. It travels as light rays. It is
travelling colour (light) that strikes our eyes and gives us the perception of colour.

Ray tracing is all about the light rays that strike our eyes. To understand colour we
must first understand how it is absorbed by light rays and how these light rays travel.

Light rays exhibit a dual wave-particle nature. These can be described by using either
awave model or aparticle model. Under certain circumstances a light ray behaves as a wave,

under others, it behaves as a particle. Neither model fully describes the nature of light.

53

Chapter Four Rendering in Rav Tracing

4.2.1 The Wave Model of Light

The basic particle of any light ray is aphoton. We can think of a photon as a tiny ball
flying through space. As the photon flies through space it behaves as if it is ’vibrating’. In
reality it doesn’t actually vibrate; it travels in a straight line. However, much of the
mathematics that describe vibrating can be applied to describing light rays. With every photon

we associate a wavelength (orfrequency). The wavelength and frequency are related by the

equation:

where X

wavelength

[= frequency

o
1

the speed of any light ray (in a vacuum, ¢ = 3.0 X 108nms]

The individual wavelengths of photons are what give rise to the perceived colours of
everyday objects when struck by light rays. When we refer to the wavelengths of visible light
we are actually referring to individual monochromatic colours from the visible light spectrum.

Only light rays with a wavelength of between 380nm (nanometres) and 780nm are

Violet Blue Cyan Green Yellow Orange Red

400 480 520 580 700 720

Fig. 4.1 Spectrum of visible light wavelengths.

visible to the human eye. This visible light spectrum is shown in Fig. 4.1. For example, light
rays with a wavelength of 520nm will be coloured green. However, not all colour is direcdy
represented on the spectrum. Only pure spectral colours are present. A pure spectral coloured
light ray is monochromatic, that is, it contains photons of only one wavelength (or colour).

Most light rays, however, are not monochromatic (lasers being a notable exception). Light

54

Chapter Four Rendering in Ray Tracing

rays normally contain a band (or mixture) of pure spectral colours. All visible non-pure
colours can be generated as a band of pure spectral colours with differing intensities.
Using the wave model, a band of photons will travel along a light ray as a single unit.

Moravec discusses applications of the wave theory in ray tracing [MORAS81],

4.2.2 The Particle Model Of Light

The particle model also states that a light ray contains a band of pure colour.
However, the difference between this and the wave model is that now the individual photons
do not combine into one unit. The individual photons that make up the band travel in parallel,
but as separate entities; much in the same way as people on a train are all travelling in the
same direction, but they are all still individual people!

When this light ray strikes our eye, the retina is struck not by the light ray as a unit,
but by the photons of individual wavelengths that make up the light ray. The individual
photons strike the eye in very rapid succession and the retina converts them into one colour.

The particle model is the light model used in ray tracing. When a light ray strikes a

surface, the individual wavelengths of the light ray interact separately with the surface.

4.3 COMPUTER REPRESENTATION OF COLOUR

When you and | describe something as being red, are we both perceiving the same
colour? If | were to look at the same object through your eyes, perhaps | would perceive it
as being pink. Although we both may have different definitions of what each colour is, we
each have what we believe to be the correct definition. In order to use colour with a

computer, it must be defined explicitly and not left to individuals subjective opinions.

4.3.1 CIE Chromaticity diagram

The Commission Internationale de L’Eclairage (CIE) introduced the standard CIE
chromaticity diagram in 1931. The CIE diagram gives an exact definition of each visible
colour. The CIE diagram defines colours by using an additive system. Using the CIE model,
any colour may be expressed as an addition of the threeprimary colours. The primary colours
are the monochromatic colours red, green and blue. In the CIE diagram the three primary

colours may be defined in terms of three normalised intensity ratios as:

55

Chanter Four

Green light source

56

Rendering in Ray Tracina

Chapter Four Rendering in Ray Tracing

As these three intensities always sum to 1, they form a linear equation; only two of
which are independent. This means that the CIE diagram can be represented in 2D. The
outline of CIE diagram is shown in Fig. 4.2. A full colour CIE diagram is shown in
[BURG89a]. All the colours in the CIE diagram are enclosed within the triangle defined by

the ranges:

O<x<l, O<y<lI, andO<x +y<|

The three primary colours are defined on the CIE diagram as

r=1when: x =1andy =0

1 when: x 1

g 0 andy

b

lwhen: x=0andy =0
The pure primary colours are defined on the CIE diagram at the following wavelengths:

Red 700nm

Green = 543.Inm

Blue = 435.8nm

4.3.2 Colour Monitors

Computer generation of colour is based upon colour mixing. By combining red, green
and blue colouring with differing intensities, we can generate any other visible colour.

When the three primary colours of a colour monitor are mapped onto the CIE diagram,
the group of colours that can be displayed on the monitor is shown in Fig. 4.3. This group
is a subset of the CIE set of visible colours. We use R, G, and B to represent the colours red,
green, and blue on the monitor. These are not pure red, green and blue as shown on the CIE

diagram. Their positions on the CIE diagram in terms of r, g, and b would be as follows:

r g b
R 0.628 0.346 0.026
G 0.268 0.588 0.144
B 0.150 0.070 0.780

We can produce a new colour reference diagram for the colours that are realisable

on a computer monitor by mapping the realisable colours from the CIE diagram on to a

57

Chapter Four Rendering in Ray Tracing

Green

Realisable colours

Red

Fig. 4.3 Comparison between CIE diagram colours and colours obtainable on a computer

monitor.

monitor red-green-blue diagram. In the monitor red-green-blue diagram, red is normalised

along the x-axis and blue along the y-axis. The necessary transformation matrix is as follows:

0.628 0.346 0.026
[r.g.blem = [R,GJ]monior 0.268 0.588 0.144
0.150 0.070 0.780

The reverse transformation matrix is found by inverting the matrix.
The problem with both the CIE and the red-green-blue models is that they represent

absolute colours. A colour’s intensity is not readily distinguishable from its hue.

58

Chapter Four Rendering in Ray Tracing

4.3.3 The RGB Model

In computers, colours are generated as a function of the respective intensities of the

Fig. 4.4 RGB cube.

three primary colours. A way to represent a complete set of colours based on intensities, is
to use the 3D RGB cube, as shown in Fig. 4.4. A full colour RGB cube is found in
[BURGB89b]. The intensity of each of the three primary colours is normalised. Using the RGB

cube, we define any realisable colour in terms of the intensities of red, green and blue.

59

Chapter Four Rendering in Ray Tracing

4.3.4 Colour Palettes and Lookup Tables

The complete range of colours that can be displayed on a colour monitor are known
as the palette for that monitor. For medium and high range monitors, the intensities of red,
green and blue are each stored in one byte of memory, giving a palette of 256 X 256 X 256
(or 16 million) possible colours that can be displayed on the monitor. This represents all the
colours in the RGB cube. Many of the 16 million colours are indistinguishable to the human
eye, as it can only differentiate between 350,000 colours.

The set of colours from the palette that can be simultaneously displayed on a monitor
are kept in a colour lookup table. For top of the range graphics monitors, the lookup table
contains the entire palette. For medium range graphics monitors, the lookup table is indexed

by one byte. It can only hold 256 colours from the palette at any time.

4.4 COLOUR QUANTIZATION

Depending on the graphics requirements, a choice must be made as to which colours
from the palette will be placed in the lookup table.

The 256 colours in the lookup table are indexed by an 8-bit byte. The way in which
we manipulate these bits will determine what colours are contained in the lookup table. We
can, for example, assign 3 bits to each of red and green, and assign 2 bits to blue. This will
allow us to have 8 X 8 X 4 intensities of red, green and blue respectively. The choice as to
which two colours are given 3 bits and which one colour is given 2 bits is a matter of choice,
and depends upon the image being generated.

A good starting place for deciding which colours to place in the lookup table is to
uniformly step through the palette and pick out 256 uniformly distributed colours. This is a
simple algorithm to implement. However, for photorealistic images a maximum of 8
intensities of any one colour is insufficient.

A second method of indexing divides the 8 bits into two fields. By using the two most
significant bits to hold specific colours, we have 6 bits (or 64 levels of intensity) for each
colour. Alternatively, we could use 3 bits to define colours and 5 bits for intensity. This gives
us a choice of 8 colours, each with 32 levels of intensity. There will always be a trade-off
between the number of colours we can display, and the number of intensities that we can
assign to each. Colour plate 3 is a good example of the colour/intensity trade off. Its lookup

table is described in Section 5.9.

60

Chanter Four Rendering in Ray Tracing

4.4.1 Getting over the 256 colour limit

The 256 colour lookup table limit is a feature of the graphics hardware. Itis is caused
only because the image is being displayed on a monitor. If the image is written to an image
filel, instead of being output to a monitor, then every pixel can be kept in its original red,
green, blue format. Of course, we may still wish to display the image on a computer monitor,
at which time we must map the image down to 256 colours. So, have we actually gained
anything by writing the image to an image file? Yes, we have. We can now use the colour
information in the image file to help us create a lookup table that is most representative of

the colours in the image file. Some methods of processing an image file are now discussed.

4.4.2 Popularity Algorithm

One method that does not require predefining the colour lookup table is thepopularity
algorithm. The rendered image, with all its red, green, blue pixel formats, is saved to an
image file rather than been output to a monitor. This image is processed to find the 256 most
popular pixel colours. These colours are then used as the entries in the lookup table, and all
the colours in the image file are mapped onto their closest representative in the table.

The popularity algorithm is hungry for memory. For an image of 1024 X 768 we need
1024 X 768 X 3 intsl, which is approximately 4.7 Megabytes of memory!

A second problem with the popularity algorithm arises after the entries in the lookup
table have been filled. This problem concerns the mapping of the pixels in the image file to
their nearest entry in the lookup table. The distance between any two colours could be
equated with the 3D distance between points in the RGB cube. However, it is computationally
cheaper to simply minimise:

+ |G ,-G2\ + \Bt -B2\

where: [R]t Gh B,] are intensities for an image pixel

\R2, G2, B2] are intensities in the lookup table

1 An image file i1s just a normal binary file. The usage of
the word image is for clarity only.

2 We need one int data type to represent each of the three
intensities red, green, and blue. Each int occupies two bytes of
memory .

61

Chapter Four Rendering in Ray Tracing

The determination of the minimum distance can be reached following an exhaustive
search. Alternatively, a zoom in approach can be used to cut down on the number of lookup
table entries to be processed. For each pixel in the image this approach works as follows:

Sort the lookup table entries by the red intensity. The lookup table entry with the
closest intensity agreement in red to that of the pixel is used as a first approximation to the
solution. The distance between this lookup table entry and the pixel is then found and used
to eliminate from further processing those table entries whose distance along the red axis is
greater than this minimum distance. The reduced table is next sorted by blue intensity. The
lookup table entry whose blue intensity is closest to that of the pixel is found. This is
compared with the best red. If the blue value is smaller, it replaces the red as the minimum
distance. Again the table is reduced by removing from further processing any entries where
the distance along the blue axis is greater than the minimum distance. The process is repeated
for green, leaving us with only those entries in the lookup table that passed the three
minimising tests. To find which of the remaining lookup table entries is the closest to the
pixel we conduct an exhaustive search.

The popularity algorithm is very computationally expensive. The closest fit search has
to be carried out for every pixel in the image file. Another drawback to the algorithm is that
it can miss small, but important areas of colour. For example, a specular highlight of white

light in an image without other white pixels will be incorrectly coloured.

4.4.3 Median-cut Algorithm

Another algorithm for assigning values to the lookup table is the median-cut algorithm.
The median-cut algorithm divides the RGB cube to ensure that each lookup table entry
represents the same number of pixels. The division is done by planes parallel to the three
axes. The initial division is made along the red axis. A histogram of red values is computed
and used to determine the position of the subdividing plane. The image pixels are then split
into two sets, one for each of the two subdivided volumes. A count of the number of pixels
being placed into each subdivided volume is kept. The algorithm proceeds recursively, with
the division of each volume being along its longest side. When 256 volumes have been
generated, a table entry is assigned to each volume by means of computing the average pixel
value in the volume. Mapping the pixels to the lookup table entries is achieved by comparing

each pixel’s red, green, and blue intensities with the bounding planes of the 256 volumes.

62

Chapter Four Rendering in Ray Tracina

4.4.4 Octree quantization algorithm

Another algorithm that is similar in principle to the median-cut algorithm is the octree
quantization algorithm. This method reduces both the computational time and the memory
requirements of the median-cut algorithm. The RGB cube is recursively divided into 8 equally
sized cubes. Each of these cubes contains some, possibly none, of the image file pixels. The
recursive subdivision continues down until every cube at the bottom level contains exactly
one or no pixels from the RGB cube. This recursive subdivision of the RGB cube can be
represented as an octree, with the RGB cube at the root and the cubes containing one or no
pixels as the leaf nodes. After removing leaf nodes that contain no pixel, the number of leaf
nodes is equal to the number of different pixels in the image. The tree is reduced by an
averaging process so as to find the 256 entries to place in the lookup table. The averaging
involves taking the nodes one level above the leaf nodes and giving as their colour the
average colour of the leaf nodes below them The tree is then pruned, making into leaf nodes
those nodes that were previously one level up from the now pruned leaf nodes. The process
is repeated up the levels of the tree until there are exactly 256 leaf nodes left. These colour
values are then used as the entries in the lookup table.

In practice we do not build the whole octree, as this would require considerable
memory. Instead, the building and the reduction take place in one pass of the image file. The
first 256 pixels in the image file are used to form an initial octree. If the tree has 256 leaf
nodes, then a reduction is made before adding the next pixel. Which leaf to prune is decided
either by using the deepest leaf or the one containing the fewest pixels. Both methods give
a slightly differing final image. After a reduction, one or more new pixels are either added
as a leaf node, or as part of a leaf’s average. New pixels will be added to the tree, either as
a leaf node or by inclusion in an average of a reduced node. This process of pruning and
adding will be performed until all the pixels in the image file have been processed. In the end
there will be exactly 256 leaf nodes. These are used as the entries in the lookup table.

Using either of the two methods for pruning that were stated above will lead to an
image of less quality than that of an image produced using the full octree quantization or

median-cut algorithms. However, there is very little visual difference in the final image.

63

Chanter Four Rendering in Ray Tracing

4.5 COMPUTER COLOUR AS RAYS

In a computer each colour is represented as a red, green and blue intensity. In order

to use light rays to transport colour in a computer model, we must be able to send the
combined red, green, blue intensity in the form of a ray.

A first attempt may be to group the information from the three intensities as one piece
of information, and to send this along the ray (i.e. use the wave model of light). However,
by using this model to describe light rays we cannot implement transmission. When a light
ray passes between two media, it is refracted by an amount dependent on its wavelength. This
process is described in Section 4.6.3. If we are using a single value to represent the three
wavelengths of red, green, and blue simultaneously, then there is no single direction that is

going to give us correct refraction.

4.5.1 Three rays in one

A simple solution is to send three rays instead of just one (i.e. use the particle model
of light). This, in fact, is what is done in ray tracing. For each of the eye rays described in
Section 2.3, a real ray tracer casts three rays, one for each of the red, green and blue

intensities. The red, green, and blue rays are processed independently of each other.

46 LIGHT TRANSPORTATION MODES

When a light ray strikes a point on a surface, the light ray will undergo changes in
colour and direction. The interaction of the light ray and the point will cause the light ray to
be reflected away from, and transmitted into, the surface. The reflection and transmission is
broken down into four classes: specular reflection, diffuse reflection, specular transmission,
and diffuse transmission. The amount of influence of each effect is dependent upon the
surface material and the wavelength of the light ray. The wavelength of any ray in a computer

is either red, green, or blue.

4.6.1 Surface Normals

In order to discuss the geometry of reflection and transmission of light rays we need
to introduce the concept of surface normals. A surface normal for any given point on a

surface is the vector that indicates the direction perpendicular to the surface at the given point.

64

Chapter Four Rendering in Ray Tracing

The surface normal always points away from the surface. For a plane, the surface normal is
the same at every point. For a sphere the surface normal for any point is found by following
the radius line through that point. In PRIME3, the surface normal for each surface is stored

and is returned, along with the intersection point whenever a ray intersects an object

4.6.2 Specular Reflection

When an incident light ray strikes a hard, flat, shiny surface, it is specularly reflected

Fig. 4.5 Reflection of light.

away from the surface. Specular reflection is shown in Fig. 4.5. The angle between the
surface normal (N) and the incident light ray (V)4 is called the angle ofincidence. We denote
it as 0;. The angle between the surface normal and the reflected light ray (R) is called the
angle of reflection, denoted 0/. We observe two points of detail. Firstly, as V, N and R all
lie on the same plane, we express R in terms of a linear expression of V and N. Secondly,

the angle of incidence is equal to the angle of reflection (i.e. 07 = 0%*).

3 PRIME is Photorealistic Image Modelling Environment. It is
the topic of discussion In Chapter 5.

4 The iIncident vector is called V, so as not to confuse it
with light intensity I. 1 will be introduced later in this
chapter.

50j is shown as 01 and OR #s shown as OR iIn Fig. 4.5 and
subsequent figures. This iIs caused by restrictions in the figure
generation software.

65

Chapter Four Rendering in Ray Tracing

We know N and V, and we wish to find R. We use Heckbert’s Method to derive R.

Fig. 4.6 Geometry needed to derive the direction of reflected and transmitted light using

Heckberfs method.

Using this formula we assume that all vectors are normalised. The geometry of Heckbert’s

method is shown in Fig. 4.6.

cl=cos 0j = -V*N

R is calculated simply by constructing the parallelogram of Fig. 4.7.

R =V + 2¢;N

66

Chapter Four Rendering in Ray Tracing

Fig. 4.7 Parallelogram showing composition of reflected light vector.

4.6.3 Specular Transmission

A specularly transmitted light ray has the same characteristics as a specularly reflected
light ray, except that it is directed into the surface. The angle at which the transmitted ray is
cast depends upon the density of the medium through which the incident ray travelled and the
density of the medium through which the transmitted ray will travel. As a light ray travels
from one medium into a more dense medium, it is bent toward the normal. As a light ray
travels from a more dense to a less dense medium, it bends away from the normal.
Transmission of light rays is shown in Fig. 4.8. The angle of incidence and the angle of
transmission are related by Snell’s Law.

Snell’s Law states:

sin(0/) r2
-------- =112 = -
sin(02 t];
Where: r\, is the index of refraction of medium 1 with respect to a vacuum

r|2 is the index of refraction of medium 2 with respect to a vacuum

X2l is the index of refraction of medium 2 with respect medium 1

67

Chapter Four Rendering in Ray Tracina

The index of refraction is dependent on the wavelength of the incident light ray.

Total internal reflection, shown in Fig. 4.9, may occur when a light ray tries to pass
from one medium to aless dense medium. If the incident light ray strikes the surface between
the two media at any angle greater than the critical angle for these two media, then the light
ray is reflected back into the more dense medium instead of being transmitted out to the less
dense one. The critical angle is reached when the angle of refraction is 90°.

Heckbert’s method is also used to find the direction for any specularly transmitted
light ray. If M is defined as a unit surface tangent vector in the plane of V and N Osee Fig.

4.6), then the transmitted ray (T) is expressed as:

T = Msin(92) - Ncos(02

68

Chapter Four Rendering in Ray Tracine

Fig. 4.9 Total internal reflection.

Therefore:

sin(02)
T = (V + CjN) - cos(02N
sin(07)

But by Snell’s law, the relative index of refraction r\ is:

sin(02) T, 1

sin(0,) rj2 n

SO:

T =TV + (tic; - 2N

where: ¢c2 = cos(02

V(1 - sin2(02)

V(1 - r]2sin2(0;))

= V({1 - ril - c,2)

69

Chanter Four Rendering in Ray Tracing

The transmission of light rays explain strange visual effects such as why a stick placed
in a glass of water appears to bend. As the water is more dense than the air, the light rays
travelling to our eye from the stick are bent en route, thus giving the impression that the stick

is bent.

4.6.4 Diffuse Reflection

Diffuse reflection is caused when an incident light ray is absorbed upon striking a
surface. Light rays are re-radiated away from the surface point as diffusely reflected light
rays. The colouring of the diffusely reflected light rays is dependent upon the angle at which
the incident light ray strikes the surface and upon the surface characteristics. Furthermore, the
re-radiated light rays will travel out in all directions with equal intensity, as shown in Fig.
4.10a. The amplitude of the re-radiated light rays is proportional to the angle at which the
incident light ray strikes the surface. A greater angle of incidence will lead to a lesser

amplitude of the re-radiated light rays. This effect is shown in Fig. 4.10b.

Q - 10 deg.

O = 30 deg.

& m 60 deg.

G m 80 deg.

@)

Fig. 4.10 Diffuse reflection.

70

Chapter Four Rendering in Ray Tracing

4.6.5 Diffuse Transmission

The characteristics of diffusely transmitted light rays are similar to those of diffusely

reflected light rays, except that diffusely transmitted light rays are emitted on the opposite

4.6.6 Light Sources

A scene will contain one or more light sources of varying colours. These lights can
be eitherpoint or distributed sources. A point source is similar to a normal light bulb. We can
assume that all of its light rays come from one point. For such a light source we will need
to know its origin and its colour. A distributed light source is like a fluorescent light We
model such a light source by using a number of point light sources.

Point light sources will be referenced as an array 0..numLights. Light rays from each
of the light sources may strike a surface point that is being ray traced. We represent
individual light sources as L T he intensity of individual light sources will be denoted as Itj.

In total, we have four sources of light rays that can influence the colouring of any

point being ray traced. These are Iljtl1a Isr, and Ist where:

71

Chapter Four Rendering in Ray Tracing

l,j is the intensity of point light source j, where 0 <= j <= numLights.

la is the ambient light. This term is used to approximate the effects of diffusely

reflected light rays from the various objects in a scene.

Isris the intensity of the reflected light ray. This tells us how much light is arriving

at the surface point along the reflected ray.

Id is the intensity of the transmitted light ray.

4.7 SURFACE CHARACTERISTICS

If you stand back at an angle to the left and look in amirror you will see objects, such
as a chair, that are at an equal angle but to the right of the mirror. You can see the chair
because lightrays coming from the chair are specularly reflected by the mirror into your eyes.
A lightray coming from the chair barely interacts with the mirror. The ray strikes the mirror
and is reflected away. It retains the colour it had when it struck the mirror; that of the chair.
If, instead of a mirror, we were to look at a shiny piece of metal, such as copper, we would
still see the chair. However, now the image would contain some copper colouring. The light
ray has absorbed some of the copper’'s colour. If we place a non-shiny surface, such as a
piece of paper in the place of the mirror, we see only the colour of the paper. The light ray
travelling from the chair was almost fully absorbed by the paper. The colour of the reflected
light ray, therefore, is dependent on the surface characteristics. Similarly, all incident light

rays interact with a surface before they are reflected and transmitted.

4.7.1 Surface Texture Maps

In order to render an image we need to be able to find the surface colour at any point
that is struck by aray. If the surface is only one colour, then this is used as the colour for any
point on the surface. However, in the real world most surfaces are multi-coloured. A globe
w ill have at least green land and blue sea. Wood w ill have various coloured grains running
along it. All of the surfaces in Colour Plate 2 are examples of multicoloured surfaces. In

order to represent any multi-coloured surface we use texture maps. A texture map is a two

72

Chapter Four Renderinn in Ray Tracina

dimensional representation of the surface colouring. If we ’roll’ the surface out until it
becomes flat, we get its texture map. Any surface can be mapped onto a texture map using
inverse mapping. Inverse mapping translates a 3D surface point coordinate onto the 2D
texture map. Each surface type that is modelled will need its own inverse mapping routine.

The exact mathematics of the texture maps that are used in PRIME are described in Section

Heckbert [HECKB86] compares various texture mapping methods. Some specialised
texture mapping algorithms are given by Miyata [M1Y A90], where he describes a method of
generating stone wall patterns, by Smith [SMIT87], who describes a method for mapping
warped surfaces, by Maeder [MAED89] who describes a method for describing granular
surfaces, and by Peachet [PEAC85] who describes a 3D texture volume that can be used to

map the texture of non-homogeneous materials, such as wood and stone.

4.7.2 Surface Roughness Maps

A surface roughness map is stored and accessed in the same manner as a texture map.
The roughness of a surface will have an effect on the intensity of the specularly reflected and
specularly transmitted rays.

We can think of a rough surface as being composed of many very tiny flat surfaces,
called microfacets. Because each microfacet is flat, light rays will be specularly reflected and
specularly transmitted by individual microfacets.

Fig. 4.12a shows a light ray arriving at a rough surface. The incoming light ray is
almost normal to the overall surface. The light ray is specularly reflected from one microfacet
to another again and again. Each time the light ray strikes a microfacet, it absorbs some
colouring from the surface. By the time the light ray finally reaches the eye it has been
strongly coloured by the surface. The amount of colouring absorbed by the light ray will
depend on the distribution of the microfacets on the surface.

In Fig. 4.12b the light ray strikes the surface at an angle almost parallel to the overall
surface (perpendicular to the surface normal). This light ray only grazes the surface and has
little interaction with the microfacets. When it reaches the eye, its colouring will not have
been significantly influenced by the surface.

In general, the colour and intensity of the specularly reflected light ray leaving a given

point on a surface will be dependent on the direction of the incoming light ray, the colour of

73

Chanter Four Rendering in Ray Tracing

(@) Light arriving at near normal incidence to the overall surface

Fig. 4.12 Greatly magnified image of the interaction of a light ray with a rough surface.

the object, and the distribution of the microfacets on the surface.

The microfacet model for specular reflection off rough surfaces is a theoretical model.
It is described by Torrance and Rogers [TORR67] and by Cook and Torrance [COOKS81]. It
is adapted to computer graphics by Blinn in [BLIN77a].

In order to use microfacets in a rendering equation we need two vectors, Hy and H.
H; is the normal vector for microfacets that specularly reflect the incoming light source (L;)

along V (the incident ray). lies exactly in the middle between L; and V. Therefore:

The vector serves the same purpose for specular transmission.

74

Chapter Four Rendering in Ray Tracing

4.7.3 The Fresnel Function, F

From the previous section we know that the colour absorbed by a light ray upon
striking a surface is dependent upon the angle of incident and wavelength of the ray, and
upon the surface characteristics of the point that is hit by the ray. The Fresnelfunction is used
in the rendering model to take these factors into account. The Fresnel function is used to
describe the interaction between light from each light source and the surface. The equation

for F of a given wavelength, given the angle of incidence 0 is:

1(g-cf [c(g +¢c) - 1]2
F(g,c) = -—---mmmmm- 1 +— — - ---
2{g+cf [Cg-9) - 112
Where: ¢ = cos(0) = V-Hj

g2=if + c2-1

ri = index of refraction at a given wavelength

Only F(0), the value at normal incidence, is directly available. Several reference works
such as [PURD70a],[PURD70b] and [PURD70c] contain listings of F(0) for different

material/wavelength combinations. F(0) is not generally listed for all angles of incidence, and

so must be derived.
At normal incidence, 0 = 0
=> c =cos(0) =1

=> c2= 1.

We can now solve for g

g2=if +c2-1

=rf+1-1
Therefore g =l fo°nm 6
6 Mathematically g = tg. However, Tj, the index of
refraction, can only be a positive value, so g = T}

75

Chapter Four Rendering in Ray Tracing

Plugging these values back into the Fresnel function gives:

F(0)=

We really want rj, so we take the square root of both sides and solve:

1+ V(F(0)

A —

1 - V(F(0))

Now that we know rj, we can easily solve the Fresnel equation at any other angle of
incidence.

For every material being rendered we need to build a table of Fresnel values, indexed
by the various wavelengths (red, green, and blue) and possible angles of incidence (0°.. 9(f)
of a light source. Fresnel lookup tables must be generated for both specular reflection and
specular transmission.

The Fresnel function for specular reflection is denoted Fsr(Q), and for specular

transmission it is FJQ). Both FJQ) and FJQ) are defined in the range:
0 <FJQ), FJQ) < 1
where higher values mean a greater colouring of the incident light by the surface.

Because of the principles regarding the conservation of energy:

FJQ) = 1-FJQ)

76

Chapter Four Rendering in Ray Tracing

Two further terms F* and F” also need to be assigned for every material/ray

wavelength combination. F* and F& are not affected by the angle of incidence of the ray.

Again: 0<FMF&<1
and
F*=1-F*

4.7.4 Reflectance Coefficients

kdr is the diffuse reflectance coefficient. It is a measure of how much of the reflected
light ray is radiated as diffusely reflected light rays. A shiny mirror would have a diffuse
reflectance of 0, while a piece of matt cardboard would probably have a diffuse reflectance

of higher than 0.9. k,, is the specular reflectance coefficient. kjr and ksr are related by:

K +K =1
and
0 <kjc,, <1

Associated with ksr is another surface characteristic, n. n is the specular reflection
highlight coefficient. It is used to exert control of the highlights on a surface. Very shiny
surfaces will have a large value for n, generating sharp highlights on the surface, n must be
> 0. If nis 1, we get very spread out highlights. As n rises to 10, 20 or even higher, the
highlights become sharper. If n is about 100 or larger we get mirror-like surfaces. The

parameter n was first developed by Phong [PHONT75].

4.7.5 Transmission Coefficients

kj, is the diffuse transmissive coefficient, kstis the specular transmissive coefficient, and

n’ is the specular transmission highlight coefficient, kj, and kst are related by:

* + Kt=1
and

0<k¥, <1

77

Chapter Four Rendering in Ray Tracing

4.7.6 Transmissitivity

Tris the transmissitivity per unit length of the medium containing the reflected ray.
A light ray travels further through the least dense of two mediums. For example, a light ray
travels further through a vacuum than through air, and further through air than through water.
It cannot travel at all through a thick steel block. T, is the transmissitivity per unit length of
the medium containing the transmitted ray.

A,, and Atare the respective distances travelled by the reflected and transmitted rays.
These distances are multiplied by Tr and T, to calculate the percentage of reflected and
transmitted light rays that actually arrive at the surface. Tr and T, are both defined in the
range:

0<T,T,<1

A value of 0 means that there is zero transmissitivity, while a value of 1 means there is full

transmissitivity (i.e. the medium is a vacuum).

48 THE HALL RENDERING MODEL

Having described each included part, we now tie them together to give a full rendering
equation. The Hall shading model is a reasonably complex rendering equation that
incorporates various effects required to produce photorealistic images. The terms in the model

are as laid out in Table 4.1.

Light sources Other bodies

Specular UW v (6,)(N-H/]
reflection

Specular
transmission

Diffuse VS*
reflection

Diffuse
transmission

Table 4.1 The terms in the Hall shading model.

78

Chapter Four Renderins in Ray Tracing

By summing the eight terms in the Hall model we will calculate the intensity of the

incident light ray.

W .r(0,)(N fl/] +

+
MILA(N-LY)] *
ANINMN(N-L L) +
kJstF M T r +
kjfj& yr? +

+
W *

For efficiency we move the constant terms out of the summation loops (ie the []
loops). That is, the values F& and F& are moved out of their respective loops in the third and
fourth parts of the equation.

We also move the ambient light terms into the diffuse and transmission curves. This

yields an efficient Hall rendering equation of:

KZjU'JEMiN fin +
+
+
+
KJIEM T +
KJX¥ M T?

Fig. 2.4 shows a ray tree. A value for / is calculated at every ray/object intersection
on the tree. The intensity of the specularly reflected ray (l,,) and specularly transmitted ray
(1) at each intersection point are the respective | values calculated when the
reflected/transmitted rays themselves intersect objects one level further down the tree.

The | value at the root of the tree is returned as the colour of the pixel ray.

79

Chapter Four Rendering in Ray Tracine

49 OTHER RENDERING MODELS

The Hall rendering equation is a general rendering model. As the quest for greater
visual realism continues, various specialised models have been developed. These include those
by Nishita and Nakamae [NISH86] for shading objects illuminated by natural sunlight, by
Max [MAX86], for dealing with atmospheric illumination, by Inakage [INAK89], also dealing
with atmospheric illumination, by Cohen and Greenberg [COHES85] for dealing with the use
of radiosity when catering for diffuse reflection in complex environments, by Blinn [BLIN82]
for dealing with light in clouds and dusty surfaces, and by Potmesil and Chakravarty

[POTM81] for dealing with a lens and aperture camera model for rendering.

80

The PRIME System

5.1 Introduction

PRIME (Photorealistic /mage Modelling Environment) is a ray tracing system
developed by the author of this thesis. The code is based on the topics discussed in the

previous chapters.

5.2 DEVELOPMENT ENVIRONMENT

PRIME was developed on an IBM Personal System/2 Model 70 computer (PS/2 model
70). The PS/2 model 70 has an Intel 80387 processor, running at 20Mhz clock speed.

The PS/2 used to develop PRIME has an Intel 80386 math coprocessor. This
coprocessor is a must when running a program that has a large number of floating point
arithmetic operations, such as PRIME.

The PS/2 used for development has 8 megabytes of extended memory. One megabyte
of this memory is used as a virtual disk, or vdisk. Using a vdisk we can store files in RAM
memory, rather than on a disk. Every read/write is treated as a memory read/write rather than
the much slower disk read/write. Before running PRIME, copies of all the files it accesses are
copied onto the vdisk. As much file reading/writing is carried out in PRIME, the vdisk greatly
improves the processing speed.

The rest of the extended memory is used to increase the compile time speed.

As standard, all PS/2 machines come with a VGA device adaptor and monitor. This
allows for a colour palette of only 16 colours, which is not enough for photorealistic image
generation. Instead of using the VGA, an IBM 8514/A device adaptor and an IBM 8514
monitor were used. This allows for a palette of 256 out of a possible 16 million colours to
be represented. The 8514 monitor supports both the VGA and 8514/A adaptor cards, so
PRIME can operate by using either mode.

PRIME was developed using Borland’s Turbo C. This environment was chosen over
the other C development environments because it provides a full set of low level graphics

interface routines for the 8514/A adaptor.

81

Chapter Five The PRIME System

5.3 MODELLING

The program Model.c is used to model scenes in the world coordinate system. It

contains the code needed to define objects and to transform these objects into the world

coordinate system.

5.3.1 Primitives in PRIME

Model.c is a solid modeller, as described in Section 35. All objects generated in
PRIME consist entirely of a set of primitives that are transformed and then combined using
a CSG tree. There are five primitive types available in PRIME. Three of them, the unit
sphere, the unit cylinder, and the unit cone are quadrics. The other two, the unit cube and the
unit pyramid, are polygonal solid objects. All five primitives are shown in Fig. 5.1. As
described in Section 3.3.5, each of the five primitives is defined in its own primitive
coordinate system that minimises the processing needed for ray/primitive intersection. The
five primitives are defined as:

Unit Sphere The unit sphere has its centre at the origin and a radius of one.

Unit Cylinder The unit cylinder has a height of one and a radius of one. It lies on the
+Z axis, ranging fromZ =0to Z = 1.

Unit Cone The unit cone has a height of one and aradius of one at its base. It lies
on the +Z axis, ranging from Z = 0 to Z = 1. Its apex is at the origin.

Unit Cube The unit cube has six faces, each of which has one by one dimensions.
It lies on the +Z +T +Z axes.

Unit Pyramid The unit pyramid has a base of one by one lying on the +X +Z axes
at Y= 0. It has a height of one, with its apex at the point
P=1[05 1.0 0.5].

We must input the following data for each primitive that we have in the scene.

PrimType
tx ty U
SX sy s,

rx ry rt

Ptx pty P*.
outsideMapl insideMapl

outsideMapN insideMapN

82

Chapter Five The PRIME System

Fig. 5.1 The five primitive types used in PRIME.

where: Primtype states which of the five types this primitive is.

t, s, and r represent the translation, scaling and rotation needed to construct the
transformation matrix for the primitive.

pt is the point about which we wish to scale and rotate.

Each surface on the primitive has a texture map associated with it. For a sphere
there is only one surface, while a cube has six surfaces, each of which may
have a separate texture map. We also require a texture map for the inside of
every surface. As shown in the bottom left and the right hand objects in Colour
Plate 3, the inside of a primitive can be of a different colour to the outside.

83

Chapter Five The PRIME System

We must also input the various surface attributes that are needed to properly render

each object. The full list of surface attributes we must input is:

kDR The diffuse reflectance coefficient.

KDT The transmissive reflectance coefficient.

fDR The diffuse reflectance curve for object.

tT The transmissitivity per unit length of object.
kRH The specular reflection highlight coefficient.
KTH The specular transmission highlight coefficient.

indx The refractive index of object with respect to a vacuum.

The meaning of each of these surface characteristics is described in Section 4.7.

5.3.2 Objects In PRIME

In PRIME, objects are built by using constructive solid geometry. As described in
Section 3.6, objects are built by combining simple primitives and other objects by the use of
union, difference, and intersection operations.

In order to model a scene, we need to input data for the CSG tree of each object in

the scene. The necessary data for any object’s CSG tree is:

numNodes

operatorl (leftChild rightChild) or leafNodel
operatorN (leftChild rightChild) or leafNodeN
where:

numNodes is the number of nodes in the CSG tree.

operatorl is one of the three possible boolean operators; union, intersection, and
difference.

leftChild and rightChild are the two child nodes to which the operator is to be
applied.

leafnodel is either a primitive or an object.

84

Chapter Five The PRIME System

An example input for a CSG tree could be:

+ 14
-2 3

Diagramatically, this would produce the CSG tree shown in Fig. 52. This is the CSG

tree of the object constructed in the bottom left section of Colour Plate 2.

Cl

Bl B2

Fig. 5.2

A Roth diagram methodology is used to build up the path a ray takes through an
object. A linked list, refereed to as a tList, is used to keep an ordered list of intersections that
occur between a ray and an object. A tList node contains the ray’s t value at one point of
intersection with the object. There is one tList node per ray/object intersection, so a tList will
consist of at least two nodes. tLists are implemented by using dynamically allocated memory.
By dynamically allocating memory we can ensure that there is no predefined limit as to the
number of intersections allowed between a ray and an object. This means that we can build
up arbitrarily complex objects. Each of the three operations, union, intersection, and
difference, have two tLists passed to them and return the one tList representing the state of
the ray/object intersection after the operation has been performed on the two TLists.

In PRIME, the building of the CSG tree and the Roth diagram are combined into one

85

Chanter Five The PRIME System

operation. As each new primitive is added to the CSG tree, the Roth diagram is updated so
as to reflect the current relation between the tree and the ray.
The code for the CSG tree and Roth methodology, along with the code implementing

each of the three operators, is contained in CSG.c.

5.3.3 Copying Objects

We can make multiple copies of any object. As with the original objects, copied
objects can be transformed within a scene. If, for example, we were modelling a chess board,
we would need multiple copies of the same object for each of the sixteen pawns. We would
also use multiple copies of objects for the remaining chess board pieces. The code for copying

objects is contained in Obj.c.

5.4 INTERSECTION ROUTINES IN PRIME

In PRIME, intersection is done at the primitive level. The ray/primitive intersections
are combined in Roth trees, thus representing ray/object intersections.
In order to implement intersection, we need to give a mathematical definition for a

ray.

5.4.1 Mathematical Definition of a Ray

Mathematically, all rays are similar. They are defined in terms of an origin, R0, a unit
direction vector, R®, and a distance parameter t.

RO is the point from which all eye rays originate, as described in Section 2.3.

Rd is the direction, in 3D space, in which a given ray is travelling. We need to
normalise Rd, otherwise t will be inconsistent when a ray is transformed into different
primitive coordinate systems.

By varying the length of t we can generate every possible point on a ray. As t
increases positively, we generate points on the ray that lie in front of the origin. These are
the only points on the ray we are interested in. A negative value of t represents a point along
the ray behind the origin. As the origin represents the eye, as per Section 2.3, points behind
it cannot be seen. A value of t = 0 represents the origin point. This is not included as a valid

t value, as it can lead to precision problems.

86

Chapter Five The PRIME System

A ray is defined as:
Set of points on the line R(f) = RO+ Rd * t

Where: RO = Ray Origin = [xQyO0zj
Rd= Ray Direction = [xdydzJ
xd +yd + zd =1 (i.e. Rj is normalised)

t>0

5.4.2 Ray/Primitive Intersection

In any ray/primitive intersection routine, we need not find the point of intersection
between a ray and a primitive, but the t value for this point of intersection. If a ray/primitive
intersection returns t > 0, then an intersection has occured. In addition to telling us when a
ray intersects a primitive, the t value states how far along the ray’s path the intersection has
taken place.

By substituting t into the ray equation and solving, we obtain the point of intersection.

At most, only one intersected primitive will not be obstructed by other primitives. Of
all the intersected primitives for a given ray, the unobstructed primitive is nearest to the ray’s
origin. The unobstructed primitive will have the smallest t value of all intersected primitives.
All other intersected primitives will be obstructed by at least this first primitive, so the
ray/primitive intersections for these primitives are invalid.

A separate ray/primitive intersection routine must be written for each of the five
primitive types available in PRIME. The source code for all five ray/primitive intersection

routines is found in Intersect.c

5.4.2.1 Ray/Sphere Intersection

The equation of a sphere’s surface is:
X2+ Y2+272=1

where:

X Y Z are points on the surface of the sphere.

87

Chapter Five The PRIME System

Substituting the ray equation into the sphere’s equation gives:
X, +Xj)2+(Y0O+Yj)2+ (Z0+23)2 =1
In terms of t, this simplifies to:
t(A) + 2t(B) + C =0
where:
A=Xf+Yj+2Z]/
B =X axXd+ YOYd + ZJZd

C=X®+Ye2+Zz®@-1

This is a quadratic polynomial in t and can be solved with the quadratic equation. Therefore,

the solution for t is:

251 V((2S)2 - 4AC)

2A

OR, dividing across by 2:

As the ray direction vector is normalised:

A=XR+YR+ZR=1

This means we can drop A out of the equation, giving:

i=-5xV(52-C)
where:
B =XOd+ YOYd + ZaZd

C=X®R+YR+z0®2-1

88

Chapter Five The PRIME System

A further speedup in processing can be obtained by taking into account that if:
V(S2-C) <0

then the ray cannot intersect the sphere. Should we encounter this case, we need not do any

further processing and can return immediately from the routine.

5.4.2.2 Ray/Cylinder Intersection

A unit cylinder is defined in terms of its three surfaces. One surface defines an infinite
cylinder as a quadric equation. The other two surfaces are unit circular planes. They cap the
infinite cylinder, making it one unit in length. We need a ray/surface intersection routine for

each of the three surfaces.

5.4.2.3 Rayl/Infinite Cylinder Intersection

We follow the same path of derivation for this intersection as we did for a sphere in

Section 5.42.1. The equation for an infinite cylinder along the z axis (as per Fig 5.1) is:
X2+ Y2-1=0
Substituting the ray equation into this gives:
(X0+Xd)2+ (YO+ Yj)2-1=0
In terms of t, this is:
+Y2) + 2t(XJCd+ YOYJ + (X2+0 -1 = 0
Therefore:

B 'i{B2-AC)

89

Chapter Five The PRIME System

Where:
A=Xj +Y®
B =X OXd + YOYyd

C=X2+Y®R-1

Again if:
iB2-C) <0

Then the ray cannot intersect the infinite cylinder.

S.4.2.4 Ray/Circular Plane Intersection

The two unit circles that cap the infinite cylinder are defined on separate planes. The

first is defined as:

This means that any point whose Z value is 0 is on the plane.

The second unit circle is defined as:

When testing for a ray/circle intersection, we must test for an intersection between the ray and

each of the circles. We shall derive the test for the unit circle on the plane Zs = 0.

If a ray is parallel to the plane on which the unit circle is defined, then the ray cannot

intersect the circle.

A ray is parallel to the plane if:

Therefore, any ray where Zd = 0 cannot intersect the circle.

90

Chapter F iv e The PRIME System

For those rays that pass the above test, we need to find which point along the ray’s path that

intersects the plane.

Substituting the ray’s equation into the plane’s equation gives:

z0+Zj=0

Therefore:

Zd

t must be greater than 0, as the plane must be in front of the ray. This gives:

Z0

Again, if this test fails, no intersection can take place, so we stop testing.

We place t back into the ray’s equation and solve to give a point P = [x y 0]. P is the

point where the ray intersects the plane.

We now test P to see if it lies inside the unit circle. The unit circle in the Z = 0 plane is

defined as:

VX2+Y2) =1

We can drop the V() from the equation, giving:

X2+Y2=1

91

Chapter Five The PRIME System

Therefore, for any values where:
X2+Y2<1

The ray intersects the circle.

Testing for the unit circle on the plane Z = 1, is similar to the above.

5.4.2.5 Ray/Cone Intersection

A cone is defined by an infinite cone whose tip is at the origin and a unit circle on
the Z = 1 plane.

Intersection of the circle is described in the previous section.

Derivation for the intersection of a ray/infinite cone proceeds along the same lines as for a

sphere and infinite cylinder. An infinite cone is defined as:
X2+Y2-22=0
Substituting the ray equation into this, gives:
(X0 + Xdtf + (YO+ Ydtf - (ZO+2Z/)2=0
In terms of t:
W +Yf-Z2 +2t(XJCd+ Ya¥d-2ZJZd) + X 2+ Y2-22=0
Thus giving a quadratic equation in terms of t:

-B+'i(B2-AC)

92

Chapter Five The PRIME System

where:
A-XR+YR-Z2
B=XO0Xi + Y0Ovd-Z &d
C=X2+Y2-22

5.4.2.6 Ray/Cube Intersection

A unit cube is defined by the volume enclosed by the six planes. The six planes are:
X=0,Xx=1Y=0,vy=1,2Z=0,andZ=1

To test for intersection of a unit cube, we must test each of its six faces. We will derive the

intersection of a ray and the face Z = 0.

We first test to check if the ray is parallel to the plane. If a ray intersects the plane, we then
find what the point of intersection is. Both of these tests are the same as for a unit circle on
a given plane.

Finally we test the point of ray/plane intersection to ensure it lies inside the square:

The square is bounded by the range:
0<X Y<1
Any point that lies inside this range is accepted, while all others are rejected as valid

intersections.

Testing each of the other five faces of the cube is similar.

5.4.2.7 Ray/Pyramid Intersection

A unit pyramid is defined in terms of five faces. These are:

The plane:

93

Chapter Five The PRIME System

and the four polygons joining this plane to the point P = [0.5 1.0 0.5].
We intersect the plane, Y = 0, as we would for a cube. We use a ray/polygon

intersection routine to test for intersection between the ray and each of the other polygons.

5.4.2.8 Ray/Polygon Intersection

The plane in 3D space that a polygon lies upon can be defined as:
AX+BY+CZ+D =0

where:

A2+B2+C2=1
The unit normal vector of the plane is defined by:
P,=[A B C]
We substitute the ray equation into this, to give:
A(X0+ Xdi) +B(Y0O+ Yd) + C(Z,, + Zdt) +D =0
Solving for t:

~(AX0 + BY0 + CZ0 + D)

AXd+ BYd + Czd

AX, +BY,+ CzZd=0

Then the ray is parallel to the plane containing the polygon, so no intersection occurs.

94

Chapter Five The PRIME System

Otherwise, place t back into the ray equation and solve to get the point of intersection.

We project the polygon onto a 2D plane such that its topology remains unchanged.
This can be achieved by removing the X Y Z coordinate whose corresponding plane equation
value is of the greatest absolute value. We assign U and V to the remaining two coordinates.

The point of intersection is also projected onto the U V 2D plane.

The 2D polygon is translated so that the point of intersection is at the origin. Starting
at the origin, we move along the +U axis. We count the number of polygon edges that the
+U axis intersects. If there are an odd number of +U axis/polygon edge intersections, then

the point lies inside the polygon, otherwise it lies outside the polygon.

5.5 TEXTURE MAPS

In PRIME, all texture maps are represented as two dimensional arrays. They are input

by the user in the following format:

mapNum
dimX dimY
ro,0 ro,l rdimyr-1
ri.o
ot
rdimx-1,0 *ke r cUmX-l/iimy-1
80.0 so.l 8 dimY-I
810
SdimX-Ifl 8dimX-l4imY-I
bo.o b 0,i b dimY-1
bi,o
b<HmX-I,0 bjimX-1JtmY-I
where: mapNum identifies the texture map.

dimX and dimY are the dimensions of the 2D array containing the texture map.

95

Chapter Five The PRIME System

Texture map details are kept for each of the three primary colours, r (red),
g(green), and b (blue).

We need to be able map the surface of each object in a 3D scene onto any 2D texture
map. This is done by inverse mapping.

Normalised index values are returned by the inverse mapping procedures in PRIME.
As they are normalised, the index values will always lie in the range (0..1). As all the inverse
mapping procedures return normalised U, V values, the same texture map array can be used
with any primitive type. The normalised index values are denoted U and V. They correspond
to dimY and dirriX respectively.

We need to derive an inverse mapping routine for each primitive type in PRIME.

5.5.1 Inverse Mapping of a Sphere

Fig. 5.3 Inverse mapping for a sphere.

96

Chanter Five The PRIME System

We denote the surface normal at the point of intersection on the sphere as S,. We
describe the sphere by the unit vector pointing towards its north pole, Sp, and the unit vector
pointing towards its equator, Se, as shown in Fig. 5.3.

As the pole is perpendicular to the equator:
Sp-Se=0
At the two poles, the parameter, U, is defined to be 0.
U ranges (0..1) starting at the +X axis, moving towards the +Y axis along theequator.

V ranges (0..1) from the south pole to the north pole.

From these definitions, V at the point of intersection is equal to the arc-cosine of the

dot product between the intersection’s normal and the north pole:

0 = arccos(-Sn-Sp)

If Vis equal to 0 or 1, then U equals 0. Otherwise

arccos((Se-Sn) / sin(0))

2k

If ((Sp"SJ-SJ < 0 "se footrote

Then U=1-U

1 & is the cross product for two vectors.

97

Chapter Five The PRIME System

5.5.1.1 Inverse Mapping for a Cylinder

We need to derive an inverse map for the cylindrical surface and for each of the two

unit circular planes.

Fig. 5.4 Inverse mapping for a cylinder.

Inverse mapping for the cylindrical surface is shown in Fig. 5.4. It is defined as:
U ranges (0..1) starting at the +X axis, moving towards the +Y axis.
V ranges (0..1) starting at Z = 0, moving towards Z = 1.

Given a point of intersection:

P, = [X YizJ

98

Chapter Five The PRIME System

Then
v=IX
arccos(X,)
U = o
2k
If N< 0

Then U=1-U

5.5.1.2 Inverse Mapping for a Circle

We define a circle, lying on the Z = 0 plane as:
X2+ VY2=1
We also have an intersection point:
R =1[X Y, Q]
U ranges (0.,1) starting at the +X axis, moving towards the +Y axis.
V ranges (0..1) starting at the centre of the circle, moving towards the edge. This mapping is

shown in Fig. 5-5.

V=yl(X2+ Y2

arccos(X,./ 'j(X2+ Y2

2k

if y,.<0
Then U=1-U

99

Chapter Five The PRIME System

Fig. 5.5 Inverse mapping for a circle.

For the unit circle on the plane Z = 1, we must reverse the direction of U, as this circle’s
outside surface points in the opposite direction to the outside surface of the unit circle on the

Z = 0 plane.

5.5.1.3 Inverse Mapping for a Cone

We define a cone as:

X2+Y2-722=0

U ranges (0..1) starting at the +X axis moving towards the +7 axis.

V ranges (0..1) starting at Z = 0, moving towards Z = 1. This mapping is shown in Fig. 5.6.

If N<
Then U=1-U

100

Chanter Five The PRIME System

Fig. 5.6 Inverse mapping for a cone.

5.5.1.4 Inverse Mapping for a Cube

Inverse mapping for each of the six faces of a cube is similar. We will derive the inverse map
for the face of the cube defined by:

Z=0

0<X,Y< 1

U ranges (0..1) starting from X = 0, moving towards X = 1
V ranges (0..1) starting from 7 =0, moving towards 7=1

Given an intersection point:

R=K 7-z]

Then:
U =Xi
V =i

101

Chapter Five The PRIME System

5.5.1.5 Inverse Mapping for a Polygon

The complete derivation for this inverse mapping algorithm is complex, so will not
be included in this discussion. It is fully developed by Ullner [ULLN83]. We begin by

developing a four vertex polygon, or quadrilateral, inverse mapping algorithm.

5.5.1.5.1 Inverse Mapping for a Quadrilateral

We are given an intersection point:

Ri=K r, 2]
and a polygon defined by the four points:
Pi=[X. 7, ZJ 0<i<3

Create a convex quadrilateral, equivalent to the four points of the polygon shown in Fig. 5.7.:

Fig. 5.7 Inverse mapping for a quadrilateral.

102

Chapter Five

The four points of the polygon are defined as:

where U =0,1
V=01

The surface normal to the plane containing the polygon is denoted Pn

Pw=T, Yo 7 }

The plane dependent factors for the algorithm are:

where:

Pb
Pc
Pd

Poo -Pio
Pio - Poo
P«1 mPoo
Poo

N.
Nc
Duo
D*
D&

= P®P,

= P@®Pn

= NC®,

= N.-Pd+ Nc-Pb
= Nd*Pb

The PRIME System

The basic idea is to define a function for U describing the distance of the perpendicular plane

(defined by that U and the quadrilateral’s axes) from the coordinate system origin.

D(U) = (Nc+ NaU) «(Pd+ PhU)

Given Rj, the distance of the perpendicular plane containing this point is:

Dr(U) = (Nc + NnU) mRj

Setting D(U) equal to Dr(U), solving for U and simplifying, gives a quadratic equation:

AU2+BU+C =0

103

Chapter Five

where:
A=D W
B =D* - (R,-N)
C =P -(Ri-No
I f 0*2 = 0

then the U axes are parallel, and the solution is:

os]

If Da* 0

then the solution is:

Ka= D" + CQuxRt)

Kb = Duy + (Quy'Mi)

where:

-D*

2D*

A* = e

104

The PRIME System

Chapter Five The PRIME System

There are two answers:

U= KaU (K &-Kb

At most one of these values will lie in the range (0..1), so it is the useful one.

A value for V is calculated in a similar way.

5.5.1.5.2 Inverse Mapping for a Triangle

In order to use get the inverse mapping for a polygon with three vertices, we simply

POl and PI'1

POO

Fig. 5.8 Inverse mapping for a Triangle.

assign both Poi and Pu to the same vertex, as shown in Fig. 5.8, and use the quadrilateral

inverse mapping just derived.

5.8 BOUNDING VOLUMES

In PRIME, any primitive type may be used as a bounding volume. The ray/bounding
volume intersection code is similar to that used for ray/primitive intersection, except that ray

bounding volume intersection can stop as soon as one intersection is found. Ray/bounding

105

Chapter Five The PRIME System

volume intersection routines for each primitive type are contained in Bound.c. Bounding

volumes are discussed in Section 3.7.1.

5.9 PROBLEMS ENCOUNTERED

Several problems were encountered along the way while developing PRIME. Two

serious problems involve numerical precision and memory allocation.

5.9.1 Numerical Precision

Although important throughout the code in PRIME, numerical precision is critical is
certain areas. For example, when calling the acos(x) function, we must insure that x is in the
range (-1..1). If x is even slightly outside this range, say by 10E-100 (or less than a billionth
of a billionth!), then the program crashes with a domain error.

A second precision critical area is when the union, intersection, and difference
operators are being applied to tLists while generating a Roth diagram. We often need to
compare two t values for equality. If the two nodes differ, even by 10E-100, then they are not
treated as being equal. This will cause the generation of some very strange looking objects!

In PRIME, the routine RoundOffO in MathFunc.c, rounds off any number that differs
from an integer value by less then a threshold minimum amount. The minimun value was

obtained by trial and error.

5.9.2 Memory

The tLists used to build CSG trees in PRIME are connected together as linked lists of
dynamically allocated memory. By using linked lists there is no limit to the number of
primitives that we can use to construct objects and therefore, we can construct arbitrarily
complex objects. A problem with dynamically allocating memory is that it must be freed
before program termination. When memory is allocated in C, a pointer is returned pointing
to the allocated memory block. Memory is freed by passing the pointer to a memory freeing
function. If an attempt is made to free a memory block that has not yet been allocated then
the potential for disaster arises. The memory freeing function frees the block of memory
pointed to by the pointer. This block of memory may be just some available memory, so

freeing it and making it available again does no harm. However, the memory may contain

106

Chapter Five The PRIME System

part of the operating system, part of the executable code of PRIME that is currently running
or some other vital memory. When this block of memory is next accessed by the operating
system, by PRIME, etc. the computer will crash. This crash will most probably not occur until
some time after the memory has been freed. It is therefore almost impossible to track down
the culprit pointer.

In PRIME, the routines in Memory.c are used as a front end to C’s memory allocation
and freeing routines. Whenever memory is allocated, its address is stored in an array. Before
memory is freed, its address is first checked against the table of allocated memory. Should
no entry be found, then an error message is issued and the program terminates. It is easy to
locate the offending pointer and correct the code accordingly.

An extra function in Memory.c is used to compare the number of memory allocations
against the number of memory frees. These two figures should be equal. If they are not, then
the code must be checked to find out where the unfreed memory allocation is occuning and
the program must be changed. This memory check function should be called as the last line

of code in a program using dynamic memory allocation.

5.10 COLOUR PLATES

Colour Plate 1 shows a wireframe of aJS-spline surface, as described in Section 3.4.2.
For this surface both skew and tension are set to 1 at every knot. There are 64 control knots
contained in an 8 by 8 matrix.

Colour Plate 2 demonstrates constructive solid geometry, as described in Section 3.6.
The top left object is constructed by the union of three primitives. The bottom left object
involves both union and difference, while the object to the right involves only difference.

This colour plate also shows how texture maps fit onto various surfaces. Note that the
inside of an D.C.U. 91 cube has its own texture map.

Colour Plate 3 is a scene rendered using the Hall Rendering Model, that is described
in Section 4.8. The source code for this shading model is contained in Hall.c.

The scene for Colour Plate 3 consists of a transparent sphere that hovers over a shiny
flat chessboard. All the sphere’s colouring results from the reflection and transmission of light
within the scene.

To allow for a large number of different shades for each colour used, the lookup table

for this colour plate is divided into two fields, each four bits in size. One field contains the

107

Chapter Five The PRIME System

red shadings and the other field contains the green shadings. The colour shades are accessed
as a 2D array of 16 X 16 dimensions, giving a total of 256 different shades of colour. The
array contains all the colour shadings that can be generated by combining red and green. The
cost of this method for indexing the lookup table is that we do not include any blue colouring.
Because we do not have any blue light component, we cannot generate white light. This is

why we use yellow light.

108

Conclusions And Future Work

6.1 CONCLUSIONS

During the period of this research, ray tracing has increased in popularity. Ray tracing
has now left the research laboratory and entered into the real life world of commercial
computer graphics. Ray tracing has been used in several animated advertisements and for
program logo’s on television.

The rapid growth of interest in ray tracing is due primarily to the massive increase in
capabilities, coupled with a similar reduction in costs of hardware. PRIME, the coding part
of this research, was developed on a personal desktop computer. Only a few short years ago,
development of a system of the size and complexity of PRIME, would have been only
possible only by using mainframe machines. As the cost/benefit ratio of hardware increases
even further, we may expect even greater acceptance of ray tracing as the standard graphical

interface for many computing applications.

6.2 FUTURE WORK

There are several improvements which can be made to PRIME. These come under two
areas; improvements to increase the speed efficiency of the system, and improvements to

enhance the rendered image that appears on a computer monitor.

6.2.1 Speed Efficiency

Here we discuss one extension and one improvement that can be implemented to

increase the speed of processing in PRIME.

6.2.1.1 Spacial Subdivision

As stated in Section 3.7, the major cost in processing time is the testing for ray/object
intersections. There are two main ways to cut down on the number of intersection tests that
need to be performed, by either using bounding volumes or by implementing spacial
subdivision. In PRIME only bounding volumes are utilised. The use of bounding volumes and
spacial subdivision are not mutually exclusive. Therefore, we can extend PRIME to

incorporate spacial subdivision. Spacial subdivision is discussed in Section 3.7.2.

109

Chapter Six Conclusions and Future Work

6.2.1.2 File Management

It was stated in Section 5.2 that PRIME was very heavily file read/write dependent.
A vdisk is used to improve file read/writing time. An alternative, that would help remove
PRIME'S hardware dependency, is the implementation of a more efficient file front end.

Every time a file is opened it can be added to an open files table. Whenever a file is
closed, it is marked as being closed in the open files table, but is not physically closed.
Whenever a file is opened, the open files table is checked for that file name. If the file name
is found, then it is simply marked as being opened. If a file is opened that is not found in the
open files table, and the open files table is full, we choose one of the files from the table that
is marked closed, physically close this file and replace it in the table with the new file. The
open files table approach works because of the principles of coherence, as discussed in
Section 3.7.4.4. The same objects, hence the same files, will be accessed very often over a
relatively short period. Once the files are closed, they will remain closed for a relatively long

period.

6.2.2 Enhancing the Rendered Image

There are several improvements that can implemented to improve the quality of the

rendered image.

6.2.2.1 Extra Modelling Primitives

Adding extra primitives to the five primitive types currently available in PRIME is
primarily a matter of adding a ray/primitive intersection routine and an inverse mapping
routine for each new primitive type added.

The ray/polygon intersection and inverse mapping routines in PRIME are written so
as to work for any three or four vertex polygon. Therefore, adding new polyhedral solids to

PRIME is trivial.

6.2.2.2 Texture Maps

As described in Section 5.5, texture maps used in PRIME are input as simple 2D
arrays. For realistic rendering, it would be preferable to use texture maps that are generated

by scanning in images using a package such as AT&T’s ScanWare. The code needed to

110

Chapter Six Conclusions and Future Work

convert texture map files generated by using a scanner into PRIME texture map formatted
files is easily implemented. However, if texture maps are to be generated by using scanned
in data, then a colour quantization algorithm, as discussed in Section 4.4, would have to be
added to PRIME. This is because with scanned texture maps, we cannot guarantee that no
more than a maximum of 256 predefined colours will be generated in the final rendered

image.

6.2.2.3 Surface Modelling

PRIME is a solid modelling system. An alternative approach, as described in Section
3.4, is to use surface modelling. Most surface modelling systems are totally different to solid
modelling. However, Carlson [CARL82] describes a surface modelling algorithm that uses
the union, intersection, and difference operators normally found only in solid modelling. By
using this as a basis, it may be possible to build a system that will deal simultanuously with

both solid and surface modelled objects.

6.3 CURRENT AREAS OF RESEARCH

Current research in ray tracing is primarily directed towards speeding up the

processing and increasing the variety of visual effects which can be rendered.

6.3.1 Parallel Machines

In Section 3.7, we discussed many of the software methods currently being used to
increase the speed of ray tracing. Currently, there is also much research into the hardware
being used in ray tracing, such as that by Badouel etal. [BAD090a,BAD090b], who discuss

various ray tracing techniques used with parallel computers.

6.3.2 Radiosity

Much of the current research in ray tracing is within the area of improving the
rendering of various visual effects. Some of these areas are listed in Section 2.6J, and Section
4.9. Another area of research relating to ray tracing is radiosity.

Radiosity is based on principles taken from thermal engineering. Radiosity is

applicable to environments composed of diffuse reflectors and transmitters, as discussed in

111

Chapter Six Conclusions and Future Work

Section 4.6.4. Radiosity produces the phenomena of colour bleeding (i.e. variable shading
within shadow envelopes), the effect of area light sources and penumbra effects along shadow
boundaries. It so happens that diffuse lighting effects are the least effectively rendered effects
in ray tracing. By combining radiosity and ray tracing into a single system we can improve

the rendered image quality.

Radiosity, as used in conjunction with ray tracing, is discussed by Lang [LANGS88].

112

AMANS4

APPEGS8

ARNAS87

ARV087

BADO090a

BADO090b

BARRS6

BARRS87a

BARRS87a

BARSS83

BARSS88

BIERS3

BLIN77a

BLIN77b

Bibliography

Amanatides, J., Ray Tracing With Cones SIGGRAPH 1984 VOL. 18 #3 JULY
PP. 129-135

Appel, A., Some Techniques For Shading Machine Renderings Of Solids,
THOMPSON BOOKS WASHINGTON D.C. 1968 PP. 37-45

Amalldi B., Priol T., and Bouatouch K., A New Space Subdivision Method For
Ray Tracing CSG Modelled Scenes, THE VISUAL COMPUTER, SPRINGER-
VERLAG 1987 VOL. 3 PP. 98-108

Arvo J. and Kirk D., Fast Ray Tracing By Ray Classification, SIGGRAPH
1987 JULY VOL. 21 #4 PP. 55-64

Badouel D. and Priol T., An Effecient Ray Tracing Algorithm On A Distributed
Memory Parallel Computer, INSTITUTE DE RECHERCHE EN
INFORMATIQUE ET SYSTEMES ALEATOIRES, INTERNAL
PUBLICATION # 506 JANUARY 1990

Badouel D., Bouatouch K, and Priol T., Ray Tracing On Distributed Memory
Parallel Computers: Strategies For Distributing Computations And Data,
INSTITUTE DE RECHERCHE EN INFORMATIQUE ET SYSTEMES
ALEATOIRES, INTERNAL PUBLICATION # 508 JANUARY 1990

Barr A.H., Ray Tracing Deformed Surfaces, SIGGRAPH 1986 AUGUST
VOL. 20 #4 PP. 287-296

Barr A. H. and Snyder J.M., Ray Tracing Complex Models Containing Surface
Tessellations, SIGGRAPH 1987 JULY VOL. 21 #4 PP. 119-126

Barr A. H. and Von Herzen B., Accurate Triangulations Of Deformed,
Intersecting Surfaces, SIGGRAPH JULY VOL. 21 #4 PP. 103-110

Barsky, B.A. and Beatty, J.C., Local Control Of Bias And Tension In Beta-
Splines, SIGGRAPH 1983 VOL. 17 #3 JULY PP. 193-218

Barsky, B.A., Computer Graphics And Goemetric Modeling Using Beta-Splines,
SPRINGER-VERLAG 1988

Bier, E.A., Solidviews, An Interactive Three-Dimensional lllustrator, BS and
MS THESIS, DEPT. OF EE and CS, MIT MAY 1983

Blinn, J.F., Models Of Light Reflection For Computer Synthesized Pictures,
COMPUTER GRAPHICS 1977 VOL. 11 #2 PP. 192-198

Blinn, J.F., A Homogeneous Formulation For Lines In 3-Space, SIGGRAPH
1977 VOL. 11 #2 PP. 237-241

BLIN78

BLINS2

BOYS82

BROWS82

BURG89a

BURG89b

CARLS82

COHES85

C00K81

COOKS86

COOKS8

CROWT77

DIPP85

DADO085

FAUXT79

BIBLIOGRAPHY

Blinn, J.F. and Newell, M.E., Clipping Using Homogeneous Coordinates
SIGGRAPH 1978 VOL. 12 #3 AUGUST PP. 245-251

Blinn, J.F., Light Reflection Functions For Simulation Of Clouds And Dusty
Surfaces, SIGGRAPH 1982 VOL. 16, #3 JULY PP. 21-29

Boyse J.W. and Gilchrist J.E., GMsolid: Interactive Modelling For Design And
Analysis Of Solids, IEEE COMPUTER GRAPHICS AND APPLICATIONS
1982 MARCH VOL. 2 #2 PP. 86-97

Brown C.M., PADL-2: A Technical Summary, IEEE COMPUTER GRAPHICS
AND APPLICATIONS 1982 MARCH VOL. 2 #2 PP. 69-84

Burger P. and Duncan G., Interactive Computer Graphics ADDISON WESLEY
1989 Color Plate 3

Burger P. and Duncan G., Interactive Computer Graphics ADDISON WESLEY
1989 Color Plate 6

Carlson, W.E., An Algorithm And Data Structure For 3D Object Synthesis
Using Surface Patch Intersections, SIGGRAPH 1882 VOL. 16 #3 JULY
PP. 255-263

Cohen, M.F. and Greenberg, D.P., The Hemi-Cube: A Radiosity Solution For
Complex Environments, SIGGRAPH 1985 VOL. 19 #3 PP. 31-41

Cook, R.L. and Torrance, K., A Reflectance Model For Computer Graphics,
SIGGRAPH 1981 VOL. 15 #3 AUGUST PP. 307-316

Cook, R.L., Stochtastic Sampling In Computer Graphics, ACM TRANS.
GRAPH VOL. 5 #1 1986 JANUARY

Cook, R.L., A Reflectance Model For Realistic Image Synthesis, MASTERS
THESIS CORNELL UNIVERSITY ITHACA NY DECEMBER 1988

Crow, F.C., The Aliasing Problem In Computer-Generated Shaded Images,
COMMUNICATIONS OF THE ACM 1977 VOL. 20 #11 NOVEMBER

Dippfe, M.A.Z. and Wold, E.H., Antialiasing Through Stochastic Sampling
SIGGRAPH 1985 VOL. 19 #3 JULY

Dadoun, N. and Kirkpatrick, D.G., The Geometry Of Beam Tracing,
PROCEEDINGS OF THE SYMPOSINM ON COMPUTATIONAL
GEOMETRY 1985 JUNE PP. 55-61

Faux, I.D. and Pratt, M.J., Computational Geometry For Design And
Manufacture, ELLIS HORWOOD 1979

FUJI86

GANABS82

GLAS84

GLAS89

GOLD71

GREET79

HAINS6

HANRS3

HANRS86

HECK®84

HECK86

INAKS89

JOY86

KAJI82

KAJI83

BIBLIOGRAPHY

Fujimoto A., Perrott C.G. and Iwata Kv Environment For Fast Elaboration Of
Constructive Solid Geometry, ADVANCES IN COMPUTER GRAPHICS
(PROCEEDINGS OF COMPUTER GRAPHICS TOKYO 1986) 1986 APRIL
PP 20-32

Ganapathy S. and Dennehy T.G., A New General Triangulation Method For
Planar Contours, SIGGRAPH 1982 JULY VOL. 16 #3 PP. 69-75

Glassner, A.S., Space Subdivision For Fast Ray Tracing, IEEE COMPUTER
GRAPHICS AND APPLICATIONS 1984 OCTOBER VOL. 4 #10 PP. 15-22

Glassner, A.S., An Introduction To Ray Tracing, ACADEMIC PRESS 1979
PP. 79-119

Goldstein, R.A. and Nagel, R., 3-D Visual Simulation, SIMULATION 1971
JANUARY VOL. 16 #1 PP. 25-31

Gteenburg, D.P. and Kay, D.S., Transparency For Computer Synthesized
Pictures, SIGGRAPH ’79 1979 VOL.13 # 2 AUGUST PP. 158-164

Haines E.A. and Greenberg D.P., The Light Buffer: A Shadow Testing
Accelerator, IEEE COMPUTER GRAPHICS AND APPLICATIONS 1986
SEPTEMBER VOL. 6 #9 PP. 6-16

Hanrahan, P., Ray Tracing Algebraic Surfaces, SIGGRAPH 1983 JULY
VOL. 17 #3 PP. 83-90

Hanrahan P., Using Caching And Breadth-First Search To Speed Up Ray-
Tracing, PROCEEDINGS OF GRAPHICS INTERFACE 1986 MAY PP. 56-61

Heckbert, P.S. and Hanrahan, P., Beam Tracing Polygonal Objects SIGGRAPH
1984 JULY VOL.18 #3 PP. 119-127

Heckbert, P.S., Survey Of Texture Mapping, IEEE COMPUTER GRAPH
APPLICATION 1986 NOVEMBER VOL. 6 #11 PP. 56-57

Inakage, M., An lllumination Model For Athmospheric Environments, NEW
ADVANCES IN COMPUTER GRAPHICS, PROCEEDINGS OF CG
INTERNATIONAL 1989 SPRINGER-VERLAG PP. 533-548

Joy K.I. and Bhetanabhotla M.N., Ray Tracing Parametric Surface Patches
Utilizing Numerical Techniques And Ray Coherence, SIGGRAPH 1986
AUGUST VOL. 20 #4 PP. 279-285

Kajiya, J.T., Ray Tracing Parametric Patches, SIGGRAPH 1982 JULY
VOL. 16 #3 PP. 245-254

Kajiya, J.T., New Techniques For Ray Tracing Proceduraity Defined Objects,
SIGGRAPH 1983 JULY VOL. 2 #3 PP. 161-181

KAJI86

KAY86

LANGS8S8

LEES85

MAEDS89

MANDS83

MAX86

MAXW46

MAXW51

MITC87

MI1YA90

MORAS1

MYERS82

NAGE71

NISH86

OHTAS87

BIBLIOGRAPHY

Kajiya, J.T., The Rendering Equation, SIGGRAPH 1986 VOL. 20, #4
PP. 143-150

Kay T.L. and Kajiya J.T., Ray Tracing Complex Scenes, SIGGRAPH 1986
NOVEMBER VOL. 20 # 4 PP. 269-278

Lang L., Lighting Design; Advances In Ray-Tracing And Radiosity Techniques
Improve Lighting Simulation, COMPUTER GRAPHICS WORLD VOL. 11 #10
1988 OCTOBER PP. 109-114

Lee, M.E., Render, R.A. and Uselton, S.P., Statistically Optimized Sampling
For Distributed Ray Tracing SIGGRAPH 1985 VOL. 19 #3 JULY PP. 61-67

Maeder, A.J., Texture Characterization Using Random Sampling, NEW
ADVANCES IN COMPUTER GRAPHICS, PROCEEDINGS OF CG
INTERNATIONAL 1989 SPRINGER-VERLAG PP. 603-612

Mandelbrot, B., The Fractal Geometry Of Nature, FREEMAN 1983

Max, N.L., Atmospheric Illumination And Shadows, SIGGRAPH ’86 1986
VOL. 20 #4 PP. 117-124

Maxwell, E.A., Methods OfPlane Projective Geometry Based On The Use Of
General Homogeneous Coordinates CAMBRIDGE UNIVERSITY PRESS 1946

Maxwell, E.A., General Homogeneous Coordinates In Space Of Three
Dimensions CAMBRIDGE UNIVERSITY PRESS 1951

|
Mitchell, D.P., Generating Antialiased Images At Low Sampling Densities,
SIGGRAPH 1987 VOL. 21 #4 JULY PP. 65-71
Miyata, K., A Method Of Generating Wall
SIGGRAPH 90 VOL. 24 #4 JULY PP. 387-394

Stone Patterns,

Moravec, H.P., 3D Graphics And The Wave Theory, SIGGRAPH 1981
AUGUST VOL. 15 #3 PP. 289-296

Myers W., An Industrial Perspective On Solid Modelling, IEEE COMPUTER
GRAPHICS AND APPLICATIONS 1982 MARCH VOL. 2 #2 PP. 86-97

Nagel, R. and Goldstein, R.A., 3-D Visual Simulation, SIMULATION 1971
JANUARY PP. 25-31

Nishita, T. and Nakamae, E,. Continuous Tone Representation Of Three
Dimensional Objects Illuminated By Sky Light, SIGGRAPH 1986 VOL. 20 #4
AUGUST PP. 125-132

Otha M. and Maekawa M., Ray Coherence Theorm And Constant Time Ray
Tracing Algorithm, COMPUTER GRAPHICS 1987 PP. 303-314

PEACS5

PHON75

PLASS83

PORT84

POTMS81

PURD70a

PURD70b

PURD?70c

PURGB86

REQUS2

ROBEG65

ROTHS82

RUB180

SCHAS81

SMIT87

BIBLIOGRAPHY

Peachey, D.R., Solid Texturing O f Complex Surfaces, SIGGRAPH 85 VOL. 19
#3 NOVEMBER PP. 279-286

Phong, Bui-Tuong, Illumination For Computer Generated Images
COMMUNICATIONS OF THE ACM 1975 VOL. 18 #6 PP. 311-317

Plass M. and Stone M., Curve-Fitting With Piecewise Parametric Cubics,
SIGGRAPH 1983 JULY VOL. 17 #3 PP. 229-239

Porter, T., Cook, R.L. and Carpenter, L., Distributed Ray Tracing,
SIGGRAPH 1984 VOL. 18 #3 JULY PP. 137-145

Potmesil M. and Chakravarty 1., A Lense And Aperture Camera Model For
Synthetic Image Generation, SIGGRAPH 1981 VOL. 15 #3 PP. 297-305

Purdue University, Thermophysical Properties Of Matter, Vol. 7: Thermal
Radiative Properties Of Metals, PLENUM, NY 1970

Purdue University, Thermophysical Properties Of Matter, Vol. 8: Thermal
Radiative Properties OfNonmetallic Solids, PLENUM, NY 1970

Purdue University, Thermophysical Properties Of Matter, Vol. 9: Thermal
Radiative Properties Of Coatings, PLENUM, NY 1970

Purgathofer, W., A Statistical Method For Adaptive Stochtastic Sampling,
PROCEEDINGS OF EUROGRAPHICS 1986 PP. 145-152

Reequicha A. and Voelcker H.B., Solid Modelling: A Historical Summary And
Contemporary Assessment, IEEE COMPUTER GRAPHICS AND
APPLICATIONS 1982 MARCH VOL. 2 #2 PP. 9-24

Roberts, L.G., Homogeneous Matrix Representations And Manipulations OfN-
Dimensional Constructs, DOCUMENT MS 1405, LINCON LABORATORY,
MASSACHUSETTS 1965

Roth, S.D., Ray Casting For Modeling Solids, COMPUTER GRAPHICS
IMAGE PROCESSING 1982 FEBUARY VOL.18 #2 PP. 109-144

Rubin S. and Whitted T., A Three-Dimensional Representation For Fast
Rendering Of Complex Scenes, SIGGRAPH 1980 JULY Vol. 14 #3
PP. 110-116

Schaffner, S.C., Calculation of B-Spline Surfaces Using Digital Filters,
SIGGRAPH 1981 DECEMBER VOL.15 #4 PP. 437-457

Smith, R.A., Planar 2-Pass Texture Mapping And Warping, SIGGRAPH 1987
VOL. 21 #4 NOVEMBER PP. 263-272

SPEES85

SUTH74

TORRG67

TOTHS85

ULLNS3

WEGHS84

WHITS80

WI1JK84

BIBLIOGRAPHY

Speer L.R., DeRose T.D., and Barsky B.A., A Theoretical And Empirical
Analysis Of Coherent Ray Tracing, COMPUTER GENERATED IMAGES
MAY 1986 PP. 11-25

Sutherland I.E., Sproull R.F., and Schumacker R.A., A Characterization OfTen
Hidden-Surface Algorithms, COMPUTER SURVEY 1974 MARVH VOL. 6
#1 PP. 1-55

Torrance, K.E. and Sparrow, E.M., Theory Of Off-Specular Reflection From
Roughened Surfaces J OPT SOC AM 1967 PP. 1105-1114

Toth D.L., On Ray Tracing Parametric Surfaces, SIGGRAPH 1985 JULY
VOL. 19 #3 PP. 171-179

Ullner, M.K., Parallel Machines For Computer Graphics, PHD. THESIS,
CALIFORNIA INSTITUTE OF TECHNOLOGY, COMPUTER SCIENCE
TECHNICAL REPORT 5112 1983

Weghorst H., Hooper G., and Greenberg D., Improved Computational Methods
For Ray Tracing, SIGGRAPH 1984 JANUARY VOL. 3 #1 PP. 52-69

Whitted, T., An Improved Illumination Model For Shaded Display,
COMMUNICATIONS OF THE ACM 1980 VOL. 23 #6 JUNE PP. 343-349

Van Wijk, J.J., Ray Tracing Objects Defined By Sweeping Planar Cubic
Splines, SIGGRAPH 1984 JULY VOL. 3 #3 PP. 223-237

Color Plate 1

‘M i, }}e

\$v:

V.

v

[lav>: o
<V = *ff
/
[A ' n
i v L
o/ I /m hi

Color Plate 2

Z a~eid JO-[OO0

Appendix A

//;c Module: Define.h

+define FALSE 0

¢define TRUE {FALSE /* false is always zero */
+define X 0

¢define 21

sdefine 2

+define W3

¢define U 0

¢define VvV 1

+define R 0 /* RGB colors.

+define G 1

+define B 2

¢define MaxSurface 6 /* The max number of surfaces in any primitive */

+define Out 0 /* surface outside */
¢define In 1 /* surface inside \%
+define BackRound 1 /* Backround color */

typedef double Vector[3];
typedef double Point[3];
typedef double Matrix[4][4];
typedef int ScrPoint[2];
typedef double Polygon[4][3];
typedef double RGBI[3];

+define MaxDepth 5

JFEH % K Kk

5 Module: Global.h

FF

[KR kK kK R ok kK K K kR k(R K K K ok kK K K ok ok ok ok ok ok ok kK K K K K ok ok ok kR ok kR K K K K ok ok ok Rk K K K K K ko ko

extern Light light[];
extern int numlLights;

i Module: Hue.h

-

R e T3

ypedef struct
{ouble kDR, 1* Diffuse reflectance coefficient

kDT, 1* " transmissive v

fDRI[3], 1* Diffuse reflectance curve for object
tT, /* Transroissitivity per unit length of object
fcRH, /*specular reflection highlight coefficient
XTH, 1* v transmission v t
indx; 1* Refractive index of object

JHue, HuePt;

KKK KKk K Rk K Kk K K

<

% Module: Lights

FF

typedef sl(]uct
oint pt:

RGB intensity; /* rgb intensity */
ILight,*LightPt;

*

//fk Module: Map.h

typedef struct

int uScale, /* The number of uv entries in the mapping.
vScale;
JMapHeader,*MapHeaderPt;

/ *
r*

/¥ Module: Obj.h
10

¢include "Hue.h"
typedef struct

char opcode[4];
int 1,
r;
YObj, *0bjPt;
typedef st{uct
rnt numEntries,
boundVol;

Hue hue;
JObjHeader,*ObjHeaderPt;

*
%

*1
*/
*/
*1
*/
o/
*/

Lt

%

L)
o/

HEADER FILES

Appendix A

i: Module: Patha.h

r~ .

static char ‘GraphFile
*BGIFile
*PriraPath
*BoundPath
*PrimFile
*PrimTxtPath
«ObjPath
*ObjCopyPath
«ObjTxtPath
*MapPath
*MapFile
«ObjLiatFile
sLightTxtFilo

Module: Prim

typedef struct

char typer
Matrix tranaform
inverse;

WeWthoaiaWgrapb .net",
"ci VVbgi®,
“d; WeWtheaiaWprimS V",
"ds S\cV VttiofiisS\bownd\\"
"dt\\c\\thoais\\priro\\primFi1&";j
*d \©\Vthesim\prim\\hnr
"ds\\c\\theais\\obJj\V\
»dj \\e\Vthesis\\obJCopy\\",
"d:\\c\Ntheai#\\obj\\0".
“di\\e\Y fcJT*ais\\map\V\
wd TN\c\\thesis\\map\W\Map",
*d WcV\the»ID\\objLiat"#
"di\Se\lthe*i»\\light\\light.txtw

/« 0,S,C or T o/
/* tranaform matrix */
/* inverse of transform */

int maplMaxSurfacelt2J,

priority;
double indx;
IPriw ,*PrimPt;

Module.* Ray.h

typedef sl(Puct
oint xQj *

Vector xB; 1*
)Kay4 *RayPt;

I Display higher priority primatives
/‘ refractive index, */

Origin */
Direction */

o/

*

o

/* Module; TList.h

10

. mom
typedef styuct A
double val;
int primNura,
aurfType;
Vector norm;

struct A “next;
)TLiat,»TLiatPt;

HEADER FILES

Appendix A Bound.c

/+ Module: Bound
//;k Various bounding volume functions

¢include <math.h>
¢include <stdlib.h>
¢include Otdio.h>
¢include <string.h>
¢include "paths.h"
¢include "define.h"
¢include "ray.h"
¢include "obj.h"
¢lnclude "prim.h"

extern void ‘Malloc(size t size).
Free(void *bTock),
Error{char *msg),
Inverse(Matrix c,Matrix b),
ReadPrim(int num,PrimPt prim),
WritePrim (int num,PrimPt prim).
Transform (PrimPt prim,Vector aVector t,Point pivot,
double rX,double rY,double rZ),
TransformRay(PrimPt prim,RayPt rayfRayPt newRay);
extern double Sqr(double num);
extern FILE *OpenObj(int num);
extern int IntersectPoly(int numPoints,double uVPoint[2],
double uVPairs[4][2]),
Inter9ectRayPlane(RayPt ray,Point plane.Point pt,double *t),
NewPrimNum(void);

int IntersectObjBound(RayPt ray,int objNum),
AddBound(ObjPt obj),
BoundSphere(RayPt ray),
BoundCube(RayPt ray),
BoundPyramid(RayPt ray),
BoundCylinder(RayPt ray),
BoundCone(RayPt ray);

int IntersectObjBound(ray,objNum)
RayPt ray;
i/nl objNum;

Test for intersection of an bounding volume.
Return 1 if an intersection occures, otherwise 0.

NS

FILE »0ObjFile;

ObjPt obj;

ObjHeaderPt header;

PrimPt prim;

int intersect - 0;

?ﬁ*?t newRay;

header - (ObjHeaderPt)Malloc(sizeof(ObjHeader));

objFile - OpenObj(objNum) ;
fread(header,sizeof(ObjHeader),1,0bjFile);

if(header->boundVol — -1) /e« No bounding volume */
intersect - 1;
el)e
obj - (ObjPt)Malloc(sizeof(Obj));
prim - (PrimPt)Malloc(sizeof(Prim));
newRay - (RayPt)Malloc(sizeof(Ray));

ReadPrim(header->boundVol,prim);
TransformRay(prim, ray,newRay);
itch(prim->type)

case 'S ':

intersect - BoundSphere(newRay);
break;

case 'B's

fntersect - BoundCube(newRay);
break;

case Y

Tntersect - BoundPyramid(newRay);

freak:

case 'Cr:

intersect - BoundCylinder(newRay);
break;
\
case 'N

intersect - BoundCone(newRay);
reak;

lfault:
rror("switch case fell to default. Module IntersectPrim. Program Intersect”);
break;

F)ee(prim);
Free(newRay);
Free(obj);

>

Free(header);
fclose(objFile);
)return(inlersecl);

Appendix A

int AddBound(obj)
ObjPt obj;

*

/* Add a new bounding volumeto the system.
/* obj->opcode holds file stem.
I obj->1 holds number

*
.
1

of

mmmmm.mmmmmmmmmmmm.mmmmmmmmmmmmmmmmm.m.mim,

ILE ‘boundTextFile;

PrimPt prim;

char tmpStr[40],
trapStri[40];

Vector s, I* scale
t; /s« translate */
Point pivot; /* pivot about which we rotate
double rX,
ry,
rzZ;
int primNum,
prim - (PrimPt)Malloc(sizeof(Prim));

strcpy(tmpStr,BoundPath);
strcat(tmpStr,obj->opCode) *
itoa(obj->1,trapStrl, 10);
strcat(tmpStr,tmpstrl);
strcat(tmpStr,” . txt");

boundTextFile - fopen(tmpStr,“r");
fseek(boundTextFile,0L,SEEK_SET);
fscanf(boundTextFile,"% c",tprim->type);

fscanf (boundTextFile, "% If% IflIIf", & [X],Ss[Y],is [Z]);
fscanf(boundTextFile HoIf% If% IfH it[X],tt[Y],it[Z]);

fscanf(boundTextFile,"% If% If% IfH,trX ,srY, fcrz);

fscanf (boundTextFile, "% If% IfIIfM fipivot [X],4pivot[Y],ipivot[Z]);

fclose(boundTextFile);

for(i - 0;% 4;i++) /* Copy ldentity matrix into prim-»transform
for(j - 0;j < 4;j++)
ifgi - j)
rim->transforrali][j] - 0.0;
el)e
)prim—>1ransform[i][j] - 1.0;
>
Transform (prim, a, t, pivot, rX,rY, rz) ;
Inverse(prim->transform,prim->inverse) ;
primNum - NewPrimNum ();
HritePrim (primNum,prim);
obj->1 - primNum; assign primative number to primative.

obj->opCode[0) - 'P";
Free(prim);
)return(obj~>l);

nt BoundSphere(ray)

RayPt ray;

/*

/* Test for intersection between aray and aspherical

//;cRelurn 1if anintersectionoccures, else 0.

(

double a,
b.

tmp,
tin,
tout;

int intersects;
P ’

a - Sqr(ray->xD[X]) + Sqr(ray->xD[Y]) + Sqr(ray->xD[Z]);
b - ray->xO[X] * ray->xD[X] + ray->xO[Y] * ray->xD[Y]

Mo

bounding volume,

c - Sqgr(ray->x0{X]) +Sqr(ray->x0O[Y]) +Sqr(ray->x0[2]) - 1.0;

if{(tmp - Sqr(b) - (a *c)) > 0.0) /* twointersections occur */
mp - sqrt(tmp);

tin - (-b + tmp) [/ a;

tout - {-b - tmp) ! a;

ifé(lin > 0.0) (tout > 0.0))

intersects - 1;

e)s

{ntersects - 05
))
C

intersects — 0;

return(intersects);

.M

*/

;/
A

+ ray->x0[2] kray—>xD[Z];

Bound.c

Appendix A

int BoundCube (ray)
RayPt ray; * * *

/*

/* Teat for intersectionbetween aray and acube bounding volume*
/fkReturn 1if anintersectionoccures, else 0.

(

double x,

k] Ui

if{ay—>xD[X] 1~ 0.0)

|f|((t ray->xO[X] [/ ray->xD[X]) >0.0)
y - ray->xO[Y] +t * ray->xD[Y]i
z - ray-> Z] +t * ray->xDJ[Z]]j
if,((y >- O((O[fifi (y <- 1.0) fifi (z >- 0.0) fifi (z <- 1.0))

return(l);

Y

i(((
y
z
i

t - (1.0 - ray~>xO[X]) / ray->xD[X]) >0.0)
- ray->x0O[Y] +t * ray->xD[Y];

- ray-> Z]l +t * ray,>xD[ZI;
fh(y >- 0 fifi (y <- 1.0 fifi (z >- 0.0) fifi (z <- 1.0))

)relurn(l);
ifiray»xD[Y] - .0.0)
TfL(t ray->xO[Y] / ray->xD[Y]) > 0.0)
X - ray->xO[X] +t * ray->xD[X];
z - ray->x0[Z] +t * ray->xDJ[Z];
if{(x >- 0.0) fifi (x <- 1.0) fifi (z >- 0.0) fifi (z <- 1.0))
)return(l);
ir)l((t - (1.0 - ray->xO[Y]) / ray->xD[Y]) > 0.0)
X - ray->xO[X] +t * ray->xD[X]]j
z - ray->x0[Z] +t * ray->xD[Z]i
if((x >- 0.0) fifi (x <- 1.0) fifi (z >- 0.0) fifi (z <- 1.0))

(
return(1);

}
)
\

if(ray->xD[Z) !- 0.0)
{
if((t - -ray->x0[Z] [/ ray->xD[Z]) >0.0)
X - ray->xO[X]+ t * ray->xD{X];
y - ray->xO[Y]+ t * ray->xD[Y};
if((x >- 0.0) fifi (x <- 1.0) fifi (y >- 0.0) fifi (y <- 1.0))

return(1);

N—

f}((l - (1.0 - ray->x0[Z]) / ray->xD[Z]) >0.0)

X - ray->XO[X]+ t * ray->xD[X]]j
y - ray->. b[Y]+t * ray~>xD[Y];
i d

f((x >- fifi (x <- 1.0) fifi (y >- 0.0) fifi (y <- 1.0))
(
return(1);
)
réturn(0); /* NO intersection */

int BoundPyranid(ray)

RayPt ray;
/' Test for intersection between a ray and a pyramid volume.
//;_Return 1 if an intersection occures, else 0.
double t,
X,
2

Point piane,
pt;
double uVPoint[2],
uVPoly[4]12];
/.*/ y[4]12]
/* base */
if(ray->xD[Y] 1- 0.0)
ifi((t - -ray->xO[Y] [/ ray->xD[Y]) >0.0)
X - ray->x0[X] 4 ray->xD[X]]j

+ t
z - ray->x0[z] + t * ray->xD[Z]:
ifg(x >- 0.0) fifi (x <- 1.0) fifi (z >- 0.0) fifi (z <- 1.0))

)y

return(1);

*i
L)
*/

¥

*/

k!

Bound.c

Appendix A

/e front */

of plane *

Drop Z value»

plane(X] - 0.0; I* definition
plane [Y] - 0.44721359499958;
plane[2} - -0.B94427190999916;
plane[K] - 0.0;
if(lnlersectRayPlane(ray,plane,pl,fil))
VPoly(0)[0] - 0.5; 1*
uVPoly(0)Il] - 1.0;
uVPoly(1)[0] - 0.0;
uVPolyflJ[1] - 0.0;
uVPolyJ2J[0] - 1.0;
uVPoly[2)[1] - 0.0;
uVPoi_nt(O} - ptixJ;
uVPoint(lJ - pt(Y];

if,(IntersoctPoly(3.uVPoint,uVPoly))

¥

»

return(1);

I* right */
plane[X] - 0.894427190999916;
plane[Y] - 0.44721359499958B;
plane[Z] - 0.0

planefw]

- -0.894427190999916;

if(IntersectRayPlane(ray,plane,pt,fit))

uVPoly[O][O0] -
uVPoly[O0][1] -
uVPoly[1)[0] -
uVPoly[1][1] -
UVPoly[2][0] -
uVPoly[2][1] -
uVPoint[0] - p
uVPoint[1l] - p
IntersectPoly(3,uVPoint,uVPoly))

if

1)

/4 back
plane[X] - 0.0;
plane[Y] - 0.44721359499958;
plane[Z] - 0.B94427190999916;
plane[W] - -0.094427190999916;
iffIntersectRayPlane(ray,plane,pt,fit))

Feturn(1);

*/

uVPoly[0J]|0] -
uVPoly[0][1] -
uVPoly[1][0] -
uVPoly1 -
uVPoly(2)(0) -
uVPoly(2)[11 -
uVPoint[0] - ptIX]J;

uVPoint(l) - pt(Y);
IntersectPoly (3

if

return(1);

)

1
0
0.
0
0
1

coocowo

Yl
t[z];

/* definition

I*

1%

Drop X values

of plane ki

Drop Z values

I* left */

plane[X] - 0.894427190999916;
plane[Y] - -0.44 7213594 99958;
plane[Z] - 0.0;

plane[W] - 0.0;

.uVPoint,uVPoly))

ifdlIntersectRayPlane(ray,plane,pt,fit))

uaVvPoly[0][0] -
uVPoly[O][1] -
uVPoly[1][0] -
uVPolytllilj -
uVPoly[2j[0) -
uVPoly[2][1] -
uVPoint[0] -

if

>

p
uVPoint[lj - p
o

IntersectP

)return(l);

return(0);

coroor
cooowmo

[yl
t[Z];

1%

Drop X values

ly(3,uVPoint,uvVPoly))

int BoundCylinder(ray)
RayPt ray;

* Test
* Retu

f
rn

or inters
1 if an

gouble X,

14

ifgray —=xD[Z] !-

i f((t

X
|

j

ection

intersection

0.0)

between a

ray

and a cylindrical

occures, else

ray->x0[Z] [/ ray->xD[Z])

ray->xO[X] + t 4 ray->xD[X];
ray->xO[Y] +t * ray->xD[Y];

((Sar(x)

eturn(1);

+ Sqr(y))

<-

1.0)

>0.0)

!

*/

*/

*/

*7

0

volume.

Bound,c

Appendix A Bound.c

i
iftilt - {10 - r*y~>x0[2)) / ray->xDUJ) > OO»
X - ray->x0{X) ¢ t * ray->xD[X}i

- ray->x0(Y) +t * ray->xD[Y]J;
|fé($qr(x) + Sqriy)) <- 1.0)

return 11)
I)((a - Sgr(ray->xD{X]) + Sqgr(ray->xD{Y))) !- 0.0)
b - ray->xO[X] * ray->xD[X) ¢ ray->xO(Y] =+ ray->xD(Y);
c - Sqgr{ray->x0(X]) + Sqr<ray->xO0(Y]» - 1.0;
If({d - Sqr(b) - (a * c)) > 0.0)
|f({(1 - (-b + Id - sqrt(d))) / a) > 0.0)

z - ray->x0(2) ¢ t e« ray->xD(2);
if,((z <- 1.0) (4 {z >- 0.0»)

)relurn(l)

if£{t - {-b - d) / a) > 0.0)

Z - ray->x0UJ + t * ray->xD|2);
if((z <- 1.0) it U »- 0.0))

return (1);

int BemndCone (ray)
RayPt ray:

Teat for intersection between a ray and a cone volume.
Return 1 if an intersection occures:, else 0,

double x

f‘.f’??’f’!“-ﬁ

[*o/
if{r«y->xD(2] 1- 0.0)
|

irt

<
X
y
1

t - (1.0 - ray->x0O[2]) / ray->xD[2)) > 0.0)
ray->x0[X) + t * ray->xDIXI;
ray->x0O[Y] + t * ray->xD(Y];

i f,{(Sqr{x) + Sqgr<y)) <- 1.0)

)return (1) *

) x
t(a - Sqgr{ray->xD (X)) ™= Sqrlray*->xD (Y]) - Sqr(ray->xD{2])) !- 0.0)
b - ray->x0(X) * ray->xD[X] ¢

ray->x0|Y) =« ray->xD[Y)
ray->xo[2} * ray- >foZ|t
Sqrtray->x0(X]) + Sqr (ray->xO [Y)) - Sqr(ray-~0Ui);
|f((d - Sqr(b) - ra 4 c)) > 0.0)
ifg(t - (-b + <d - agqrt<d|)) / a) > 0.0)

Z - ray->x0[ZJ + t * ray->xD|2);
it({z <- 1.0) it <z >- 0.0))

return(l)i

f(
|
%{(t - (-b - d) / a) > 0.0)

z - ray->x0[Z] +t * ray >xDtZJ;
if{(z <- 1.0) i< (z >- 0.0))

eturn(l)s
14

)retumtO) i

Appendix A Coords,c

|
/* Module: Coorda (Coordinates) *7
1* Various view port»nd world coordinate setting functions- */

¢include <graphics.h>
¢include "define.h"

int SetScrCoordsX (double normalisedX),
SetScrCoordsY (double normalisedY);

void AssignScrPts(ScrPoint uLScr.ScrPoint IRScr,
double xMin,double yMin,double xMax,double yMax),
AssignWPts(Point wLPt,Point wRPt);
double WorldStepSize(double xO,double xI,int numPixels);

WLX * 0.0, I* (x,y,z) of topleft and top right corners of V
WLY - 1000.0, /4 world. Because world is a cube, all other */
WLZ « 0.0, /4 corners can be derived from these points. *
WRX - 1000.0,

WRY - 1000.0,

WRZ - 0.0;

int SetScrCoordsX(normalisedX)

double normalisedX /4 Normalised position in range (Q..1) for x. 4/

L. * e MMM t* *F yn» . » . »Fe»»* % 51 »n** 5 »**yn . »»/
*j

/* Calculate the screen pixelposition of 'x' corresponding to the

*
/
/ﬁ_normalisedposi!iongiven as input. ?[

~eturn((int)(normalisedX 4 (double)(getmaxx() + 1)));

int SetScrCoordsY (normalisedY)

double normalisedY; /* Normalised position in range (O-.1) for y. */

*
/4 Calculate thescreen pixelposition of 'y' corresponding to the 4/
//;Cnormalisedposi!ion given as input. %/

}elurn((int)(normalisedY 4 (double)(getmaxy() + 1)));

void AssignScrPts(uLScr,IRScr,xMin,yMin,xMax,yMax)
ScrPoint uLScr,

IRScr;
double xMin,
yMin,
xMax,
/* Assignthe upperleft and lower right screen coordinates of the */
I* screensviewport into the world. */
1 X
ULScr[X] - sSetScrCoordsX(xMin);
uLScr[Y] - SetScrCoordsY (yMiny;
IRScr[X] - SetScrCoordsX(xMax
iRScr[Y] - SetScrCoordsY (yMax) jr
void AssignWPts(wLPt,wRPt)
Point wLPt,
wWRPt; */
/o 17
I* Assign the upperleft and upper right corner points of the world
m/* coordinate system. */
/e v
i\ILP[[X] - WLX;
WLPt[Y] - WLY;

WLPt[Z] - WLZ;
WRPt[X] - WRXj
WRPt[Y] - WRY;
WRPt[Z] - WRZ
>

double WorldStepSize(xO,xl,numPixels)

double xO,
x1;
i U BB X eL$.
TP Ty RS Sk
. o/
/* Given the wupper left and wupper right coords of the world cube, andthe */
/* number of pixels used to represent this distance on the screen, 4/
/4 calculate the resolution of world units to be steped for each pixels/
1,4 step. 4

%

~ F

retum ((xI - xO) / (double) (numPixels));

~—

Appendix A CSG.c

*
/* Modules CSG (Constructive Solid Geometry)

1* Functiona needed to implementation recursive CSG tree.These */
I* include a control function and functions for each ofthe three »/
1* CSG operations; Union Difference and Intersection. */

¢include <stdio.h>
¢include "define.h”
¢include "obj.h"
¢include "tList.h"
¢include "ray.h"

extern void »Malloc(size t size).

Free(void »bTock),

Error(char *rasg),

IntersectPrira(RayPt ray,int primNum,TListPt »tList);

ReadObj(int num.,ObjPt obj,FILE »objFile),

Add(TListPt »pt).

Kill(TListPt *pt).

Copy(TListPt ‘from,TListPt »to),

AddToTList(TListPt »tList.double tl,double t2.
Vector nin,Vector nOut.int pri®*Num);

extern int IsPrim(ObjPt obj);

void CSG(ObjPt obj,TListPt »tList,RayPt ray,FILE »objFile),
Union(TListPt »tList, TListPt »tListl),
Intersection(TListPt »tList.TListPt »tListl),
Difference(TListPt »tList, TListPt »tListl)?

extern TListPt tListPos;

void CSG(obj,tList,ray, objFile)

ObjPt obj;

TListPt »tList?

RayPt ray;

FILE *objFile;

[P) A» D D PN PPN DI IR R DI RN NI IR NN AR IR I NI NI NI NI NENR B D BB IIRRIIINIRIBII NI NI I M »Ho»/
»
I» Construct a CSGtreefor the real intersections between obj and ray. »/
Ipe Store the treeinTList.

B> X

R e R R R R R L R P e R R R R R PR R ER R R Sy |

ObjPt objL,

objR;
T LjigtPt newTList - NULL;
gl

while(!IsPrim(obj))
<

objL - (ObjPt)Malloc(sizeof (Obj))
objR - (ObjPt)Halloc(sizeof(Obj))
ReadObj(obj->l,0bjL,objFile);
CSG(objL,tList,ray,objFile);
if{(obj»opcade[o] — '+') || (tList !'- NULL))

eadObj(obj->r,objR,objFile);
CSG(objR,tnewTList,ray,objFile);
SV{itch(obj—>opCode[O])

a{}e LET
nion(lLisI,InewTLisI);
break;

case
ifference(tList,tnew TList);

breq}%;

case * s
<
Intersection(tList,tnew TList);
break;

default

rror{"switch case fell to default. Module Roth. Program CSG");
break;

)
>)
Free(objL)?

Free(objR) ;
return;

IIntersectP rira(ray,obj->1,tList);

void Union{tList, tListl)
TListPt »tList,

»tListl;
Z >y M M » a0 . 500 * s, Ft.orrnsrns FEr*aran0n...9595 55 M 25522992 M22aar«rrrn/
/=
/» Get the tList from the union of tList and tListl. Place the resultant »/

I» tList in tList. tListl is unchanged \
I o
». !

/rrim m m m oM M M M «KémM MM M MMM »M M M MMM »IYm o m mom m m mom »&m .»m

T ListPt tmpPtDummy - NULL;
w

tmpPtDummy - (TListPtIMalloc(siieof(TList));
tmpPtDuraray->next - NULL;

tListPos - tmpPtDummy;

While(<»tList !- NULL) tt (»tListl I- NULL))

Tf((»tListl)->val < {»tList)->val)
1
if{(»tListl)->next->val < (»tList)->val)

Appendix A

Add (tListl) ;

o)(o
if,((‘tListl)->next->val > (‘tList)->val)

if ((‘tListl)->next->val < (‘tList)->next->val)

opy(4 <‘tListl)->next, tList);
Add(tListl);

o)u
if,((‘“tListl)->next->val > (*tList)->noxt->val)
opy(tListl,tList);
Copy(4(‘tList)->next.tListl);
Add(tList);
u)éo /+ ('tListl)->next->val — (‘tList)->next->vAl */

Add(tListl);

j(ill(tList):

0)5 I (‘“tListl)->next->val — (*tList)->val */

)Add(tListI);
>)
el(e
ifé(‘tLisII)—>val > (‘tList)->val)
if(((‘tListI)->next»>vaI < (‘“tList)->noxt->val)

Add(tList);
Kill(tListl);
y

(e
ifé(-[Lisll)—>next—>val > (‘tList)->next->val)
if,((‘tListl)~>val > (‘tList)->next->val)

(

Add(tList):
el)se
if,((*tListl)->val < (‘tList)->next->val)

Qopy(A(‘tList)—>nexl.tListI):
Add(tList);
>

e{e I* (‘tListl)->val — (*tList)->next->val </
) dd(tList);
>)
olgo /e« (‘tListl)->noxt->val — (‘tList)->ncxt->val </
dd (tList) ;
)Kill(tLisll);
el)se /e (‘tListl)“>val — (‘tList)->val </

i
if((‘tListl)->next->val < (‘tList)->noxt->val)

Copy(4(‘tListl)->next,tList);
Add(tListl);

o)o
Tf,((‘tListl)->next->val > ('tList)->noxt->val)

Copy(4(‘tList)->next.tListl);
Add(tList);

olso [/« (‘tListl)->noxt->val — (‘tList)->next->val */

Add(tList)x

)Kill(tListI);
))

while(“tList !'- HULL)
Add (tList) ;
while(“tListl 1- HULL)

fdd(tLislI);

‘tList - tropPtDmmay->noxt;
Free (tmpPtDtmmy) :

CSG.c

Appendix A CSG.c

void Difference(tList, tListl)
TListPt “tList,
stListl;

Get the difference of tList nad tListl. Return this as tList
tListl is deleted.

int tmpPrimNura;

double trapVal;
istPt tmpPtDummy - NULL;

tmpPtDummy - (TListPt)Malloc(sizeof(TList));

tmpPtDummy->ne*t - NULL;

tLi9tPos - tmpPtDummy;

while((“tList 1- NULL) ft* (‘tListl !- NULL))
if(((‘tListI)—>vaI < (‘tList)->val)

i f,((‘tListl)->next->val < (‘tList)->val)

iII(tLislI)I

e){e
f{(‘lLis!l)->next->val > (‘tList)->val)
f((tListl)->next->val < {‘tList)->next->val)

Copy(ft(“tListl)->next,tList);
P(tListl);

else

if{(‘lListl)—>next—>val > (‘tLi9t)->next->val)

opy(ft (‘tList)->next,tListl); 12*
Kill(tList);
5){: /* (‘tListl)->next->val — (‘tList)->next->val */
I(tList);

Kill(tLiatl);

~—'

e)se /* <‘tListl)->next->val — {‘tList)->val
e)se

if((‘tListl)->val > (‘tList)->val)

Kill(tListl);

if,((‘tListl)->next->val < (‘tList)->next->val)

(mpVaI - (‘tList)->val;
trapPrimNura - (‘tList)->primNum;
Copy(ft(‘“tListl)->next,tList) ;
Copy(tListl,ft <*tListl)->next);
(‘tListl)->val - tmpVal;
(“tListl)->pyimNum - tmpPrimNura;
Add(tListl):

e(e
|f|((‘tLisII)—>next—>vaI > (‘tList)->next->val)
if((tListl)->val > (‘tList)->next->val)
{Add(tList); IRy

else

if(

Copy(tListl,ft(‘tList)->next);
d(

((‘tListl)->val < (‘tList)->next->val)

tList);
) : ;
else /* (‘tListl)->val (‘tList)->next->val */
{
Add(tList);
}
)
)
ellse /* (‘tListl)->next->val — (‘tList)->next->val */
Copy(tListl,ft(“tList)->next);
Add(tList);
Kill(tListl);
}
)
else It (‘tListl)->val — (‘tList)->val */

if((‘tListl)->next->val < (‘tList)->next->val)

(
Copy(ft(‘tListl)->next,tList);
Kill (tListl);

else
<

ifA(“tListl)->next->val > (‘tList)->next->val)

opy(ft(‘tList)->next,tListl);
I(

Kill(tList);
>
elge [* (‘tListl)->next->val — (‘tList)->next->val
i(tList);

)Kill(tLislI);

Appendix A CSG.c

)

w{lle(‘tList 1. NULL)
dd(tList);

while(«tListl 1- NULL)

ill(tListl);

‘\)List tmpPtDummy->next;
)Free (tmpPtDummy);

void Intersection(tList,tListl)
TListPt »tList,
stListl;

Place the intersection of tList and tListl in tList. tListl is deleted.

7},7“’1 tmpPtDummy - NULL;
tmpPtDummy - (TListPt)Malloc(sizeof(TList));
tmpPtDummy->next - NULL;
tListPos - tmpPtDummy;
w{ile(('tl_ist 1- NULL) 4£ (‘tListl !- NULL))
|f|((‘tLislI)—>vaI < (‘tList)->val)
it{(‘tListl)->next->val < (‘tList)->val)
Kill(tListl);
)se
if,((‘tListl)->next->val > (‘tList)->val)
P fL(tListl)->next->val < (‘tList)->next->val)
{opy(lLisI,ILisll);

Copy(4(‘tListl)->next,tList);
Add(tListl);

e)e
[
if{(‘lListl)->next->val > (‘tList) ->next->val)

opy(4(‘tList)->next,tListl);
Add(tList);

e)ge I* (‘tListl)->next->val — (‘tList)->next->val */

dd(tList);
Kill(tListl);

e)e I* (‘tListl)->next->val — (‘tList)->val */

J)

)
else

Kill(tListl);

{if (‘tListl)->val > (‘tList)->val)

rf((‘tListl)->next->val < (‘tList)->next->val)
{Copy(*(‘tLisll)->nexl‘tLisl);
Add(tListl);

)

else

if((tListl)->next->val > (‘tList)->next->val)
if(<‘tListl)->val > (‘tLiat)->next->val)
{ . .
Kill(tList);
)
else
<
if((‘tListl)->val < (‘tList)->next->val)
Copy(tListl,tLiat);
Copy(4(‘tList)->next,tListl);
Add(tList);
else /* (‘tListl)->val — (‘tList)->next->val */
(
Kill(tList);
)>
else /* (‘tListl)->next->v*|l — (*tList)->next“>val */

(Add(tListI);
)Klll(tList):

)
else I* {‘tListl)->val — (‘tList)->val */
if{i(‘tListl)->next->val < {‘tList)->next->val)

opy(4(‘tListl)->next,tLiat) ;
Add(tListl);
>
else
<

if ((‘tListl)->next->val > (‘tList)->next->val)

Appendix A C3G.c

Copy U (4tLiat)->next,tListl);
dd(tLiat);

els /* (*tLiatl)->next->val — (*tLiat)->next->val I¢

Add(tList);

)Kill (tListl) ;
)
y)

while(“tList !- NULL)
ill(tLiat);

while(‘tListl 1- NULL)

{(ill(tListl)T

*?List - tmpPtDuraray->next;

Free(tmpPtDummy);

)

Appendix A

/5 Module: Piles kf
/ Variou9 functions needed to initialise, open and close all */
/ global file*. ’_‘k//

*

¢include «string.h>
¢include <stdlib.h>
¢include <stdio.h>
¢include “"define.h™"
¢lnclude “"paths.h"
¢include “prim.h"
¢include “"ray.h"
¢include "obj.h"
¢include H<ap.h"

extern PILE »primFile,
EobjListFile;

extern void WriteObj(int nura,ObjPt obj,FILE *objFile),
ReadObj(int num,ObjPt obj,FILE »objFile),
ReadPrim(int num.PrimPt prim),
Error(char *msg),
Inverse (Matrix c¢,Matrix b),
Rotate(Matrix m,double rX,double rY,double rz),
Scale(Matrix m,Vector s),
HritePrim (int num,PrimPt prim),
MatrixCopy(Matrix a,Matrix b),
Translate(Matrix m,Vector t),
*Malloc(size t size).
Free(void ‘bTock) ;

extern int CopyPrim(PrimPt srcPrira,int rRRSTFileNum),
AddBound(ObjPt obj),
NewPrimNum(void) ;

void InitFiles(void),
OpenFiles(void),
CloseFiles(void)

void InitFiles(void
,,**H***H*”(*Hn)«nH*x*ﬂn*nm*x*”n*"H*x*mn*nm*x*”n*"*«*"*«/
/*) *
P . .
I/’Q_Inltlallse global files. *1/

(:ILE ‘tmpFile;

tmpFile - fopen(PrimFile,"w+b");
fclose(tmpFile);

tmpFile - fopen(ObjListFile,"v+b");
Ifclose(lm pFile);

;;W(: ki e & <« K« ;’

//:i, Close all global files. yl

JRUFta, %% * ok (FLfps > dhddokdkokok ko okk ok ok ok Qg okkokokokok ok ko ko ko ko ok ok ko kK Kk kR ok ok kK k]

close (primFile) ;
)fclose(objListFile);

void OpenFiles(void)
//*******k**x*x******k**x*x* e Y/
l/’.jc Open all global files. ;7

[k kK K K K ok ok kK K ok ok kK Kk ok ok ok K K ok ok ok K Kk ok ok ok K K ok ok kR K ok ok (R Kk kR R K ok (kK (KR KRRk

primFile - fopen(PrimFile,"r+b");
}.ijLiatFile - fopen(ObjListFile, Hr+b") *

Files.c

Appendix A Globale

{: Module: Global

7;‘ Declare all global variables.

¢include <»tdio.h>
¢include "define.h"
¢include "light.h"
¢include “tLiat.h"

FILE ‘priinFile,
*objListFile;

Light light[10];

int numLightc

RGB iA;

RGB background;

TListPttListPos - NULL;

Appendix A

*1
/* Module: Graph */
/4 various functions for screen graphics. 4/
"
» .,
einclude
¢include <roath.h>
¢include “"define.h"
¢include "paths.hn
¢include "rgb.h"

int SetScrCoordsX (double normalisedX),

SetScrCoordsY (double normalised*) ;
int colorNum(RGB rgbcolor,int graphType);
void InitGraph(int graphType),

InitPalette(void),
closeGraph(void),
PutPixel(int x.int y,int color);

void CloseGraph(void)
mmomomomomomom

//.mm mmmmmmmmmmmmmmmmmmmmmmmmmmm.//
/* .

/* Close the graphics mode, and restore the crt to normal. w
/mommomomomomomMmmm.mmm.mmmmmmmmmmmomomomom

closegraphO ;
restorecrtmode ();

~—'.

void InitGraph(graphType)

int graphType; /4 graphType — 0 -> DETECT el9e IBM6514HI1 4/
//*Inlllallse the graphics card, **//
/m .m m mmmmmmMmmMmmm MMM MM .m mmmmmmmmmmmm .mmom .mom /

nt graphDriver,
/**/grathode;

if(graphType — 0)
{raphDriver - DETECT;
e)(se
graphDriver - IBM6514;
>graphMode - IBMB514HI;

initgraph(*graphDriver,igraphHode ,BGIFile);
if(graphType — 1)

))
void PutPixel(x,y,color)
int x,

InitPalette();

tolor;
MMMMMMMMMMMMMMMMMMMMMMMMMMMM.MMMMMM .MM/

*

e Colorpixel(x,y) onthescreen. ¥/

~
=

TR

mmmmmm .m

<
Iputpixel(x,y.color);

void InitPalette(void) M M ,
) » Loy

e “

l/* Assign the256colors from256K colors allowed for 'IBM6514"' screen. W
L]

MMMMMMMMMMM e

fo{(r - 0;r < 256;r +— 32)
olr(g - 0;9 <256;g +- 32)

for(b - 0;b < 256;b +- 64)
setrgbpalette(i++,r,g,b);

se)rgbpalette(.Od) 0);
setrghpalette(l,8 17B.60);
setrghpalette(2,255, 0,40);
setrghpalette(3,15S0,239,130);
setrghpalette (4,145, 25,180);
setrgbpalette(5,255, 255,0);
setrgbpalette(6,234,209,240);
setrghbpalette(20,0,100,100);
setrgbpalette(8,255,255, 255);
setrghbpalette (9,90, 95, 255) ;

s>elrgbpaletle(7,135,135,250);

Graph.c

Appendix A

int ColorNum(color,graphType)
RGB color;
int graphType*

/*

/* Return the lookup table color num closest to the given r,
/[* intensities.

/.
(

int r,

b;
if(graphType — 0) /* VGA Screen */

\ -
r - (int)floor(color(R) *71J,
g - (int)floor(color[GJ ®7);
b - (int) floor (color [G) +3);
r - (r *32 ¢ g *4 ¢ b);

\relurn((r) 1* 0)7r:l;

e(se /* ©514/A Screen */

- (int)floor(color!Rj "7);

- (int)floor(color(G) *7);

- (int)floor(color[G] *3);

eturn ((r - (r * 32 + q *4 + b>*% 1- 0)?r:l;

T
9
b
r
>

g,

Graph.c

Appendix A Halle

[*
/* Module: Hall */
//- Various functions needed to compute a Hall shading model. *

sinclude <raath.h>
¢include "define.h"”
¢include "light.h"
¢include "hue.h"

extern void MakeVector(Point ptl,Point pt2,Vector v),
UnitVector(Vector v,Vector unitV);

extern double VectorDot(Vector viI,Vector v2),
Cos(double),
ACos(double x),
Sqgr(double x);

extern int nureLights;

extern Light light[];

extern RGB iA; /* ambient light 4/
void Hj(Vector 1.Vector v,Vector hj),

Hj_(Vector 1,Vector v,double indx.Vector hj),
ProcessColor(HuePt hue,RGB surfColor,RGB iSR,RGB iST,double sT,
Point pt,Vector v,Vector n,Vector r,Vector t,
RGB color);
double FSR(double surfColor,double iL,double ang),
FST(double surfColor,double iL,double ang),
ProcessWavelength(int lambda.double surfColor,double kDR,
double kDT,double iSR,double iST,double fDR,
double tT,double sT,double kRH,double kTH,
double indx,Point pt,Vector v,Vector n,
Vector r,Vector t);

double ProcessWav«
tT,sT,kRH ,kTH,indx,pt,v,n,r,t)

int lambda; /' Wavelength (ie r, g or b) */
double surfColor, /* The intensity of the wavelength at the surface point. ;,;f
kDR, Diffuse reflectance coefficient
kDT, 1* transmissive v !
iSR, / 4 Spectrum of the reflected ray */
iST, 1* v 't transmitted ray
fDR, /4 Diffuse reflectance curve for object at wavelength lambda */
tT, /* Transraissitivity per unit length of object *
ST, 1* " v ""transmitted ray */
kRH, /* specular reflection higwighl coeffigient *;Z
kTH, I e ‘x transmission /
indx; / Refractive index of object *7
Point pt; = Surface intersection point of incident ray kl
Vector v, 3 Unit incident vector */
* b
n. / * normal */
r. 1* reflected v */
t; /14 transmitted v */
/l‘ ./
l/*4AppIy "Hall shading Model” to one wavelength. */

//*Return the intensity of light at this wavelength. */

(

int i;
double a - 0.0,
b -
c - U
d -0.0,
intensity,
kSR,
kST,
fDT,
dotHj,
dotHj ,
vd? 7* VectorDot(n,1) */
Vector hj, /* vector that perfectly reflects light alongincidentray >/
hj_, 1* transmits */
/44, 1; * vector from currentlight sourceto surfaceintersection pt */
kSR - 1.0 - kDR;
kST - 1.0 - kDT;
fDT - 1.0 - fDR;
for(i - 0;i < numLights;i++) /* calculate summations */
c

MakeVector(light[i] .pt,pt,1);
UnitVector(1l,1);

Hj(l,v,hj);

Hj_(1,v.indx,hj_);

dotHj - VectorDot(n,hj);

dotHj_ - VectorDot(n,hj_);

vD - VectorDot(n, 1) ;

a +- light[i].intensity Ilambda] 4

FSR(surfColor,light[i],intensity[lambda],ACos(dotHj)) *
pow(dotHj,kRH);
b +- light[i].intensity[lambda] *
FST(surfColor,light[i].intensity[lambdaJ,ACos(dotHj_)) 4
pow(dotHj ,kTH);
light[i].Intensity[lambda] * vD;
light[i].intensity[lambda] 4 -vD;

~—
oo
+ +

réturn ((kSR 4 a) +
(kST * b) +
(kDR * fDR * (iA[lambda] + c)) +
(kDT 4 fDT 4 (IA[lambda] + d)) +
(kSR 4 iSR 4 FSR(surfColor, iA[lambda],ACos(VectorDot(n,r)))) +
(kST * iST 4 FST(surfColor,iA[lambda],0.0/‘ACos(-VectorDot(n,t)) 4

);_)ow {tT, sT) */))
)

Appendix A

double FSR(norfcolot, IL*ang)

double surfColor./* wavol.efs.gth */

iL, - * intensity of light source */

angJ /* angle between light andsurface nomai */
/¥ Get the specular reflection given surfColor, light intensity and ang
oMM LM

double tmp,
f

fb, /* fresnel value at 0 degrees */
f90, 1* 90 degrees */
. *
/**/ fAng; I» ang !
fo - surfColor;
f90 - 0.0;

fAng - Cos(ang) * aurfColor;
if,(<f90 - fO) — 0.0)

(

mp - 0.0;
e)e
{rap - (fAng - fO) / <f90 - fO);

il) Imp <0.0)

2

f - iL * (fO + HI1.O - f0> * tmp));

- iL * fO;

~— —~

)re turn (f)t

double FST (surfColor.iL, ang)
double surfColor,

iL.

ang;

;;Got the specular transmission given surfColor, light intensity

(
return(1.0 - FSR(surfColor,iL.ang));

void Hj(l,v,hj)
Vector |,

Vy
/ A

and ang.

/* Calculate the reflected vector hj*-hj is the vector which would

lg perfectly reflect the incoiwning light along the Incident ray.
/ Fkkakiolokck
int i

7 le trap;

¥

tmp - sqrtISqr(I{X1l + v(X]) ¢ Sqr(I(Y] & v(YIl) & Sqr(l(z) ¢ v{2))>;

for(i - X;i < W;i*+)
t
hijtij - (1[i]1 + v(il) / tmp;

)UnitVector(hj, hij);
void Hj (l.v,indx,hj_)
Vector I.

v
double indx;
Vector hj_;

/* Calculate the transmitted vector hi . hj is the vector which would

I/‘*perfeclly transmit the incomming light along the incident ray,

(

int i;
7g| le tmp;
tmp - indx - 1.0;

for (i - X;i < M:i++)
(1] (1) - <vtil + indx * I(i]) / tmp;

\
UnitVectorthj__,hj_)i

Hall.c

Appendix A Hall.c

void ProceasColor(hue,surfColor.iSR.1ST,iT,pt,v,n. r, tfcolor)
HuePt hue;

RGB surfColor,

iSR, /¥ Spectrum of tho refloctod ray

iST; I " *H# "' transmitted ray
double »T; /* Distance travelled by transmitted ray inside obj
Point pt; /o Surface intersection point of incidont ray
Vector v. /e U,QJJ incident vegjor

n. /e normal X

r. /e v reflected *

t; Ie ** transmitted *
RGB color; /o Color spectrum

Get tho color of an incidont ray at ita point of intersection with an
objoct.

- 0; i o< 3i++)

color[i] - ProcessWavolength(i,surfColor(i),hue->KDR,huo->kDT, iSR(i).
iST[i),hue->fDR(i],huo->tT.aT.hue-»cRH,
hue->kTH ,hue->indx.pt,v,n.r,t);

if(colorli) >- 1.0)

)

i;olor(i) - 0.999999;

Appendix A

/* Module:Int

ersect (lntersection)

* Various priroitave (ie cube, sphere etc.) intersection functions */

oA * * * *

¢include «stri

U RS NN |

ng.h>

¢include <math.h>
¢include <stdio.h>
¢include “define.h"”

sinclude "prir

o0.h"

¢include "objList.h"

¢include "ray.
¢include "obj.

b
he

¢include "TList.h”

extern void

extern int

extern double

extern FILE

int

void

AddObj(char *objData),

*Malloc(»ize_t size),

TransformRay(PrimPt prim,RayPt ray,RayPt newRay),
CopyObj(char *srcObj,char *de9tObj,char *copyTxt),
Error(char *msg),

Free(void ‘block),

CloseFiles(void),

VectorCro9S(Vector a,Vector b,Vector cross),
TListDel(TListPt *tList),

AddToTList(TListPt *tList,double tl,double t2,Vector niIn,Vector nOut,int
Union(TListPt »tList, TLiBtPt »tListl),
Difference(TListPt *tList, TListPt *tListl),
intersect(TListPt *tList,TListPt *tListl),
InitFiles(void), /* For test purposes only *7
OpenFiles(void),

ReadPrim(int nura,PrimPt prim),

ReadObj(int objNum,ObjPt obj,FILE +objFile),
AddMap(char *textFileName),

Inverse(Matrix c,Matrix b),

MatrixCopy(Matrix a,Matrix b),

VectorCopy(Vector a,Vector b),

MatrixMul(Matrix a.Matrix b),

UnitVector(Vector v,Vector xUnit),
PointMatrixMul(Point p. Matrix m,Point nevP),
VectorMatrixMul(Vector v,Matrix m,Vector newV),
CloseObj(FILE *objFile);

BoundCube(RayPt ray),

BoundSphere(RayPt ray);

BoundCylinder(RayPt ray);

BoundCond(RayPt ray);

BoundPyramid(RayPt ray);

Sqr(double x),

Roundoff(double num),

VectorDot(Vector a,Vector b),
PointVectorDot(Point a,Vector b),

PointDot(Point a,Point b),

Sin(double num),

Cos(double num),

ASin(double num),

ACos(double num);

*OpenObj(int num);

Swap(double t,Vector n,double *tln,double *tOut,Vector niIn,Vector nOut),
IntersectLineY Axis(double ptl[2],double pt2[2]),

IntersectPoly(int numPoints,double uVPoint[2],double uVPairs[4] [2]),
IntersectRayPlane(RayPt ray,Point plane,Point pt,double *t),

IntersectCube(RayPt ray,double *tin,double *tOut,Vector nin,Vector nOut),
IntersectPyramid(RayPt ray,double ‘tln.double *tOut,Vector nln,Vector nOut),
IntersectCylinder(RayPt ray,double *tln,double *tOut,Vector nln,Vector nOut),
IntersectCone(RayPt ray,double *tln,double *tOut,Vector nin,Vector nOut),
IntersectSphere(RayPt ray,double »tin,double *tOut,Vector nin,Vector nOut);

IntersectPrim(RayPt ray,int primNum,TListPt *tList);

int IntersectCylinder(ray,tin,tout,nln,nOut)
RayPt ray;
double ‘tin,
«tOut;
Vector nlin,
nout;

IR

/* Returns 1 i

- T

f an intersection between 'ray' and the cylinder prim exists

/* else returns 0.

/* 1If an inter

g points ('in'

section does occur then it calculates the two intersection
and '‘out') between ‘ray* and the cylinder prim type.

NOTE: Thisfunction worksin object coordinate system, ie the ray must

~ FFFF

already be translated into the objects local coordinate system.

Also ‘in' and'out’ are given in the objectscoordinate system.
M M M M
int i;
double ?c
b,
1]
Vector nO;
'
stin - 0.0;
«tOut - 0.0;
if(ray->xD[Z] !- 0.0)
if((t - -ray->x0[Z] / ray->xD[Z]) >0.0)
X - ray->xO[X] + t * ray->xD[X];
y - ray->xO[Y] + t * ray->xD[Y]J;
ifd(Sqr(x) + Sqr(y)) <- 1.0)
no[X| - 0.0;
no(Yl - 0.0;
no[zl - -1.0;

if{Swap(I,nO,tin,IOut,nln,nOut) — 1)

Intersect.c

Appendix A Intersect.c

)return(l);

)

if<((l - (1.0 - ray->x0[Z)) / ray->xD{2]) >0.0)

X - ray->xO[X] + t * ray->xD|[X]/
y - ray->x0O(Y] + t « ray->xD[Y];
ifi{(Sqr(x) + Sqr(y)J <- 1.0)

no[X] - .02
no [Y] - .0;
no[zZ] - 1.0;

if wap(t,nO,tin,tout,nln,nOut) ™ 1)

)relurn(l)?

if){(a - Sqr(ray~>xD[X]) + Sqr(ray->xD[Y])) !- 0.0)
- ray->xO[X] * ray->xD[X] + ray->xO[Y] * ray->xD[Y]y
¢ - Sqr(ray->xO[X]) + Sqr(ray->x0O[Y]) - 1.0;
if(((d - sqr(b) - (a *c)) > 0.0)
if(it - (-b + (d - sqrt(d))) / a) > 0.0)
Z- ray->x, 1, t,_* ray->xD[Z];
if{:(z <- fﬁ tt (Z >- 0.0))

r(i - X;i < Zji++)

—-_

n0[i] - ray->xO[i] + t * ray->xDI[il;

n()[Z] - 0.0
I

'f(Swap(t.,nyo,lin,Ioul,nln,nout) — 1)
return(1);

L)

il}((l - (b - d) / a) > 0.0)

% ray->x0[Z] t * ray->xD(Z);
if ((z <- 1.0) tf (z >- 0.0))

or(i - X;i < Zji++)
{
nQ[i] - ray->xO[i] +t * ray->xDJ[i];

)
nO[Z] - 0.0;
if(Swap(t,nO,tIn,tOut,nln,nOut) — 1)

return(1);
) }
|
>

re)Iurn(O);
>

int IntersectCone(ray,tin,tout,nln,nOut)
RayPt ray;
double *tln,
«tOut;
Vector nln,
nOut;

Returns 1 if an interaection between ‘'ray’' and the cone prim exists
else returns 0.

If an intersection does occur then it calculates the two intersection
points ('in' and 'out') between ‘'ray' and the cylinder prim type.

NOTE: This function works in object coordinate system, ie the ray must
already be translated into the objects local coordinate system.

Also 'in' and ‘'out' are given in the objects coordinate system.

{/ector no;

double x,

vy G
‘/tin/ - OO

*tOut - 0.0;

if(ray->xD[Z] !- 0.0)
(
if((t - (1.0 - ray->x0O[Z]) / ray->xD[Z]) >0.0)
{x - ray->xO[X]+ t* ray->xD(X];
ray->xo[Y]+ t * ray->xD(Y];

y -
ifI((Sqr(x) + Sqgr(y)) <- 1.0)
noIX] - 0.0;
no[Yy] - 0.0;
no[z] - 1.0;
if(Swap(t,n0,tin,tOut,nln,nOut) — 1)
<

)relurn(l);
i)((a - Sqr(ray->xD(X]) + Sqr(ray->xD(Y]) - Sqr(ray->><D[|])) 1- 0.0)

b - ray->xO[X] * ray->xDIX] +
ray->xO[Y] * ray->xD[Y] -

Appendix A Intersect.c

ray->x0(Z] * ray->xD[Z];
c - Sqgr(ray->xO[X]) + Sqgr(ray->x0O[Y]) - Sqr(ray->x0[Z]);
ifd(d - Sqr(b) - (a * c)) > 0.0)

|f((t - (-b + (d - sqrt(d))) / a) > 0.0)

z - ray->x0[Z] + t * ray->xD[Z];
if,((z <- 1.0) Cfi (z >- 0.0))

((- ray->x0 [X] + t * ray->xD[X];

y - ray->xO[Y] + t * ray->xD[Y);
nO[X] - x;

nO[Y] - N

no[z] - -*[

if(Swap(t,nO tin,tout,nln,nOut) 1)

return(1);

il)(l—(—b—d)/a)>00)

Z - ray->x0[Z] + t * ray<s>xD[Z];
ifl(z <-1.0) fifi (z >- 0.0)

X - ray->xO[X] + t * ray->xD[X]]
y - ray->x0(Y] + t * ray->xD[Y]*
iff{(z <- 1.0) fit (z >- 0.0))

nO[X] - x;
no[Y] - y;
no0[Z] z;
if wap(t,n0,tln,tout,nln,nOut) — 1)

return (1);

1

void IntersectPrim (ray,primNum, tList)
RayPt ray;

int priraNum;

TListPt ‘tList;

it

//;belurns 1 if an intersection between ray and prim exists,elseregurns ./ ./
1* 1f

an intersection does exist then the distance along'ray'where */
/* ‘prim* is intersected is placed in'tin' and 'tout’ ./
1* */
/* 1f no intersection occurs then in and out areundefined. o/
1* */
Iy, NOTE: ray is givenin Local Coordinates; u/
/* tin and tOutare returned in World Coordinates. o/
I* -1

. MM *

(

double tin,

tOut;
int intersect;
PrimPt prim;
RayPt newRay;
Vector nin,

nOut;
I»*/
prim - (PrimPt)Malloc(sizeof(Prim));
newRay - (RayPt)Halloc(sizeof(Ray));

ReadPrim (priraNum, prim) ;
TransformRay(prim,ray,newRay);
switch(prim->type)

case 'S’

intersect - IntersectSphere(newRay,itln,fitOut,nln,nOut);
break;

}

case 'B':

intersect - IntersectCube(newRay, fttin,fitOut,nln,nOut);
Ibreak;

case 'Y':

intersect - IntersectPyramid (newRay, fitln, fitOut,nln, nOut) *
break;

case 'C':
<

intersect - IntersectCylinder(newRay, fitln,fitOut,nln,nOut);
break;

case 'N':

Intersect - IntersectCone(newRay, fitln,fitOut,nln,nout);
break;

default:

Error("switch case fell to default. Module IntersectPrim. Program Intersect”);
break;

)

if (intersect)
AddToTList(tList,tin,tout,nln,nOut,priraNum);

F)ree(prim);
)Free(newRay);

Appendix A

in

t IntersectSphere (ray,tin,tout, nln, nOut)

RayPt ray; /* Ray in sphere coordinate system </

do

uble *tln,
»tOut;

Vector nln,

1%
I*
1%

I*
I*
%
I*
I*
I*

I*
/%

nOut;

Returns 1 if an intersection between ‘ray' and the sphere prira exists,
else returns 0.

If an intersection does occur then it calculates the distance along
ray of the two intersection points ('tin' and ‘tout') between ‘ray’

and the sphere prim type.

NOTE: This function works in object coordinate system, ie the ray must
already be translated into the objects local coordinate system.
Also 'tin' and ’tout' are given in the objects coordinate system,
and must later be scaled up to world coordinates

(10ub|e a,

)

in

b,
c,
trap;
int intersects,

P

a - Sqr(ray->xD[X]) + Sqgr(ray->xDJ[Y]) + Sqgr(ray->xDJ[Z]);

b - ray->xO[X] * ray->xD[X] + ray->xO[Y) * ray->xD[Y] + ray->xO[Z] * ray~>xD[Z];

c - sqr(ray->x0O[X]) + s*qr(ray»xo(Y]) + Sqr(ray->x0[Z]) - 1.0;

ifktmp - Sqr(b) - (a c)) > 0.0) /* two intersections occur */
tmp - sqrt(trap);
*tln - <-b + trap) [/ a;
stout - {-b - trap) / a;

(*tin > 0.0) fifi (*tOut > 0.0))

if(
(’fﬁ(‘lout < *tin)

rap - ‘tout; /+ swap tin and tout */
stout - »tin;
stin - trap;
for(i - X;i < Wji++)
ninTi] - ray->xO[i] + *tln * ray->xDti]?
}Out[i] - ~(ray~>xO[i] + *tOut * ray->xDT[i]);
iftersects — 1;
A
rntersects - 0;
e)se
intersects - 0;

return(intersects);

t IntersectCube(ray,tln,tOut,nln,nOut)

RayPt ray;
double *tlIn,

*toUt;

Vector nin,

nOut;

y/
fa Returns 1 if an intersection between ‘ray* and the cube prim exist»,
/e

1%
1%
/e
/m
/e
/e
1%
/e

else returns 0.
If an intersection does occur then it calculates thetwo intersection
points ('tin' and 'tOut') between ‘ray’' and the cube prira type.

NOTE: This function works in objectcoordinate system, ie the ray must
already be translated into the objects local <coordinate system.

Also 'in' and ‘'out' are given in the objects coordinate system.

double x,
X.
t
noO;

Vector
lee]
etin - 00
*tOut - 0*0;
if(ray->xD[X] !- 0.0)

{

if((t ray->xO0[X] / ray->xD [X]) >0.0)

)2 - ray->xO[YIl + t * ray->xD[Y];
- ray->x0[Z] +t * ray->xD[Z];
if,((y >- 0.0) fifi (y <- 1.0) fifi (2 >- 00 fifi (z <- 1.0))

hO[X] - -1.0;
nO[Y] - 0.0;
no[z] - 0.0;
ifgSwap(t,n0,tInrtOut,nln,nOut) — 1)

)relurn(l);

)

if((t - (1.0 - ray->xO[X]) / ray->xD[X]) >0.0)

y - ray->xO[Y] + t * ray->xD(Y];
z - ray->x0[Z] +t * ray->xDIZ];
if((y >- 0.0) fifi (y <- 1.0) 4« (z >- o0.0) fit (z <- l.0))
{

n0[X] - 1.0;

DA% A AR

*/
*/
o/
*/
o/
o/

*/
o/
*/
o/

Intersect.c

Appendix A

no[Y] - 0.0;

no[zZj - 0.0;
if(swap(t,no,tin,tout,nin,nOut) — 1)
<

(n;
)relu rn
y
>
if(ray->xD[Y] 0.0)

|
if((t - -ray->xo0iY] / ray->xD[Y]) >0.0)

X - ray->xO[X] + t =« ray->xD(XJi
z - ray->x0[zZ] + t * ray->xD[Z];
if((x >- 0.0) tt (X <- 1.0) tt (z >- 0.0) tt (Z <- 1.0))
RAOIX] - 00
noOtY] - -1.0;
no[Z] - 0.0;
if(Swap(t,n0,tin,tout,nln,nOut) — 1)
returni.l);

il}((t - (1.0 - ray->xO[Y]) / ray->xD[Y]) > 0.0)
t

X - ray->xO[X] + t * ray->xD[X]j?
z - ray->x0(zj t * ray">xPJ[Z);
if((x >- 0.0) tt (x <- 1.0(ﬁ (z >- 0.0) Tt 2 <- 1.0))

t

nO(X) - 0,0x

no{Yl - 1.0;

no(z) - 0.0;
if(Swapit*nO,Cln,tout,ftln,nout) — 1>

)return(l)?‘
)
))

if(ray—>xD|Z) -.0.0)
if((t - -ray->x0(Z) / r*y->xD[2J) > 0.0)

X - ray->xO[X) + t * ray->xD|X);
y - ray->x0tY] f to. r»y'>><Dt{];
if(x - 0.0) T x <- 1.0) (y >- 0.0) tt (y <- 1.0))

I:nOI><I - bO'
noO[YJ - O
no(z) - -1.0#
if(Swop{t,nO, tin,tout,nln,nOut) — il

return(1)i
)
)
>
if((t - (1.0 - ray->x0(Z)) / ray->xDJ[Z)) > 0.0)

X - ray->xo|x) * ray->xD(X];

+ ot
y - ray->) + t * ray->xDtY]?
if((x >- 66 tt (x <- 1 tt <y >- 00 tt (y <- 10)
(
nO(X) - 0.0;
no[Y] - (100
no(z] - .
if(Svap(t, nO,tin,tout,nln,nOut) — 1)

{ -
))returntl}.
\)

Jelurn(o)i /* NO intersection m/

int Swap(t,n0,tin,tout,nln,nOut)
double t;
Vector nO;
double *tln,
stout;
Vector nin,
nOuti

If a value has not yet been placed in *tln* then set up “tin"'

Return 0, else;

Place proper values in 'tin' and ‘tout*. Return 1»

Vector nl;

int 1;

-1

for(i - X;i < Ifji++)

Cnifi) - -noilj

it (*tn — 0.0)

etin - ti
VeclorCopy(nO,nIn)S

VectorCopy ini,nOut);
return(0);

f[(t < *tln)

options.

Intersect.c

Appendix A Intersect.c

etout - *tln;

stin -t
VectorCDpy{nin,nOut);
Vectorcopy(nO,nln);

e)e I* t > *tln «/

*tOut - t;
IVectorCopy(nI,nOut);

return(1);

1)

int IntersectRayPlane(ray,plane,pt,t)

RayPt ray:
Point plane,
pt;
double *t;
a *
+ Getthe "t' value of theintersectionbetween ray and plane. */
« |If Buchan intersectionexists, return 1, elsereturn 0. -_,é
. /
double vD,
vO;
Py
if ({vD - Roundoff(PointVectorDot (plane,ray->xD))) — 0.0) /* ray parallel to plane */
return(0);
e){e
O - - (Roundoff (PointDot(plane, ray->x0)) + plane [3]);
if((*t - vO / vD) >0.0) /* Find point of intersection */
<
for(i - X;i < Ujit++)
t[i] - ray->xO[i] + *t * ray->xD[i];

réturn(1);
e%e /+ intersection occurs behind ray =</
T

eturn(0);

1

int IntersectPyramid (ray,tin, tout, nln, nOut)

RayPt ray;
double *tln,
*tOut;
Vector nin,
nOut;
fk o
/* Returns 1 if an intersection between ‘ray' and the pyramid prira exists, o/
/* elBe returns 0. */
/* 1f an intersection does occur then it calculates the two intersection */
/+ points ('tin' and 'tOut') between ‘ray' and the pyramid prim type */
/m */
/+ NOTE: This function works in objectcoordinate system, ie the ray must */
I* already be translated into the objects local coordinate system. */
1* */
1* Also 'in' and ‘out' are given in the objects coordinate system. */
* ok *
! "::::::::7:7:»» ; !
double t,

Point plane,
pt;
double uVPoint[2],
uVPoly[4][2];
Vector nO;
%>
etin -
«tOut -

0.0;
0.0;

/+ base */
if(tray->xD[YJ i- 0.0)

|fi((t ray->xO[YJ [/ ray->xD[Y]) >0.0)
X - ray->xO[X] + t * ray->xD[X];

z - ray->x0[Z] + t * ray->xD][zj;
if,((x >- 0.0) fit (X <- 1.0) fifi (z >- 0.0) fifi (z <- 1.0))

no[X] - 0.0;
no[y] - -1.0;
nofz] - 0.0;
if,(Swap (t,n0,tin, tout,nln, nOut) — 1)

(1);
)return
y)
>

I* front </

plane[X] - 0.0; /+ definition of plane */
plane[Y] - 0.44721359499958;

plane[ZJ - -0.894427190999916;

plane [if] - 0.0;

if (IntersectRayPlane (ray,plane, pt, fit))

uVPolylO] [U] - 0.5* /+ Drop Z values </

Appendix A

uVPoly[0][V]
uVPoly[1](U]
UVPolylIT[V] -
uVPoly[2][U]
uVPoly[2][V] - 0.0;
uVPoint[U] - pt[X];
uVPoint[V] - pt[Y];

iflntersectPoly<3,uVPoint,uVPoly))

0
.0
.0;

0

0

R oor

no[X] - 0.0;

no[Y] - 0.5;
nofz] - -1.0;
iftSwap(t,nO,tin,Iout,nIn,nOut) — 1)

}return(l):
)}

I* right *7

plane[X} - 0.894427190999916;
plane[Y} - 0.44721359499958;

plane[Z] - 0.0;

plane[WJ] ----0.894427190999916;

if (IntersectRayPlane (ray,plane,pt, fit))

uVPoly[0} [U] - /* Drop X values *7

uVPoly{0}[V]
uVPoly[1][U]
uVPoly[1][V]
uVPoly[2][U}
uVPolyl2}[V]
uVPoint[U] -
uVPoint[V] -
iffintersectP

RO[X] -

nO[Z1 -
if(Swap(t,

1.0
no[Y] - 0.5
0.0
t,n

1}
I* back *f

plane[X] - 0.0;

P
P
o

(o}

}retu rn(1);

cooouvuo

t
t
|

Y
z
(

<—_roooor

0

,uVPoint,uVPoly))

rtin,tout,nln.nOut) — 1)

/* definition of plane */

plane[Y] - 0.44721359499958;
plane[Z] - 0.894427190999916;
plane [If] - -0.894427190999916;

ifélntsrsecIRayPlane (ray,plane, pt, fit))

uVPoly[0] [U]
uVPoly[0][V]
uVPoly[1][U]
uVPoly[1] 1V]
uVPoly[2][U]
uVPoly[2][V]
uVPoint[U] -
uVPoint[V] -
if(IntersectP
I
no{Xx] - 0.0
no[Y] - 0.5
no[z] - 1.0
ifiSwap(t,n

return (1)

>
1}

P
o

; /* Drop Z values */

t[Yd;
ly (3,uVPoint,uVPoly))

O,tIn,tOut,nln,nOut) — 1)

1* left */

plane[X] - 0.894427190999916;
plane[Y] - -0.44721359499958;
plane[B] - 0.0;

plane[lf] - 0.0;

ifAlnteraectRayPlane (ray,plane.pt, fit))

uVPoly[G](U]
uVPoly[0)][V]
uVPoly[1][U]
uVPoly[1][V]
uVPoly[2][U]
uVPoly[2][V]
uVPoint[U] -
uVPoint[V] -

if{(lnterseclP

o

; /* Drop X values </

ly (3: uVPoint,uVPoly))

ARO[X]-—- 1.0;
nO[Y] - 0.5;
no[Z] - 0.0;
ifgSwap(t,n0,tin,tOut,nln,nout) — 1)

}elurn(l);
>}

)relu rn(O);

int IntersectPoly(numPoints,uVPoint,uVPoly)

/* 1f uVPoint intersects the polygon defined in uVPoly, then return

*

/ return 0
*

int nunPoints;

double uVPoint[2),
uVPoly[4] [2];/* A 2D mapping of the same polygon

mt pt,
nextPt,

/** Number of points in the polygon
/ The intersection point of some ray with a 3D

1, else

polygon

Intersect.c

Appendix A

numlinteraecta - 0*
mH.
nSH;
[oe]
for(pt 0,'pt < nufaPointa;pt++)

uVPolylpti(UlJ uVPointlUJ;
uVPoly[pt]l(VI — uVPoint[VIj

if(uvPolylOJ[V] >- 0.0)

H -
\
el(a(:
1 - -1;
for (pt - dipt < nuniPoints;pt++)

nextPt * (pt + 1) % nufaPointa;
ingPoly[nextPt][l] >~ 0.0)

nSH - 1;
elao

nSH - -1;
|f)(aH 1. nSH)

if(({uVPoly(pt](U) >- 0.0) it (uvPoly[nextPtJ|U) >- 0.0))
numlinterseets++j

e) e

ifi{(uVPoly[pl][UJ >-0.0) || {uVPoly[nextPt][Ul >-0.0))

)numlnterae»ela +- IntornactLinoY Axia (uVPoly [pt],ovpoly [nextPtl)t

s}? - nSH;

r)lurn{(in[)fmadinumIntersec[a,z.o));

int IntersoctLineY Axis{ptl,pt2)

* If the 20 line defined by ptl..pt2 interaecta the +y axis then return
« elae return 0,

double ptlizJ,
pt2 [2];

ifi(ptZ[l] - ptitll)

e

return Oi

J

1.

I)return((pll[u] - pti[V) * (pt2[U) - ptl[U)) /(ptZ[V) - ptl[V))) > 0.0)71:0;
e

Intersect.c

Appendix A Ughtingx

/* * XK KI%
10
/* Module; Lighting
/* Functions needed to initiat« the various light sources and the
//. background ambiant lighting.
L]

*

#include <stdio,h>
#include ™"paths.
#Include "define.h"
-include "light.h"

extern Lightlight[J);
extern int num Lighta;
extern RGB iA;

extern RGB background;

void InitLighting (void)#

InitBackground (void) ;

void InitLighting(void)

[o
/- Initialise the lighting intenity and position of all the light.« in the
%mnde\.. Ala© initialise the ambiant light intensity.

FILE =fp;

Tl

fp - topsn(LighthIFili#"HbMi;
fscanf(fp# % 1% 1f11E" LiA [x]<tiA (YJ, tiA(2])]
fscanf (fp, ™id"*, inunvLights) ;

forii - 0, < numLightsii++)

(fscanf(fp,"%lf%If%lf%lf%lf%lf".
4lightti]l.pt[x],flight(1).pt(YJ,ilight(i).pt[IJ,
) flightlJiJ.intensitylXj.¢ light[i].intensityCYj,iligh lIij.ir\lens\ly[ZJ);

void InitBackground{j

Initialise the background intensity for rfg and b

backgroundIR]J 0.0;
background(G) - 0.0;
)background(BJ 0.0

Appendix A MathFunc.c

/k w

/* Module: MathFunc */
I* Various maths functions needed that are not provided by the

lr* standard maths library.

*

¢include <math.h>

double Sqr(double x),
Roundoff(double num),
Sin(double num).
Cos(double num).
ASin(double num).
ACos(double num);

const double Radient - 57.29578;

double Sqr(x)

double x;
1%
/t* Returns x squared. Q
/* NOTE: This function avoids devide by zero error caused by using pov.
1* *
{
return(x — 0.0)7(0.0):(x * x);
)

double Roundoff(num)
double num;

1%
/* Roundoff a real number close to an integer value. k
I»

(
double floorNum,
variance;
1**/
ifinum > 0.0)
floorNum - floor(num);
variance - num - floorNum;
if(variance > 0.99999999999)
(
num - floorNum + 1.0;
)
else

{
if/(variance < 0.00000000001)

i
num - floorNum;

}
}

}
el{e /* num <- 0.0 */
ftnum < 0.0)
floorNum - floor(-num);
variance - -num - floorNum;
iffvariance > 0.999999998)
num - (floorNum +1.0) * -1.0;
i
else

(
ifr(variance < 0.000000001)

num « -floorNum;

)
else
i
num - 0.0;
)
}
return(num);

)

double Sin(num)
double num;

/*
/r* Return the sin of a number given in degrees.

return(sin(num / Radient));

double Cos(num)
double num;

f* *

1-* Return the cos of « number given in degrees.
«

{
return(cos(num / Radient));

Appendix A MathFunc.c

double ASin(num)
double nun;

Return the arcsin of a number given in degrees.
return(asin(num) * Radient);

double ACos (num)

ouble num;

Return the arccos of a number given in degree».

return(acos(num) * Radient);

¥

Appendix A

Module: Matrix
Various matrix and vector functions*

¢include <jaath,h>
¢include Hdefine.h M

extern doublé Sqgr(double a);

void inverse (M atrix e,M atrix b)),
Matrixcopy (M atrix a,M atrix
VectorCopy(Vector a,Vector %(ﬁ,
UnitVvector(Vector a*Vector n).
VectorCrosi(Vector a,Vector b,Vector cross),
M atrixM ul(M atrix a.M atrix b>*
PointMatrixMul(Point p,Matrix m,Point neuf).
VectorMatrixMul(Vector v,Matrix ».vector newV).
MakeVector(Point pi,Point p2,vector v);

double VectorDot(Vector a,Vector b),
PointVectorDot(Point a,Vector b)*
Pointoot(Point a,Point bty*
Distanca(point ptO ,Point ptl);

void Inverse (c,b)
M atrix c,
b;

Get the inverse matrix of e and place it in b. If no inverse
then exit the program as an error.

int i,
row,
found;

Matrix a

iy ¢

MatrixCopy (c,a) *
for(i - 0;i < 4;i+4)

fcir(j - 0] < 43j++)

ifgi —)
{ni)[j] - 1.0;
e

()ti][jl - 0.0;

>1
>

for(row - O;row < 4;row++)
|f{a[row][row] 1-1.0)
ifga[row][row] 1- 0.0)
(d - 1,0 / a[tow][row];
for(i - 0;i < 4;i++)
t

atrow] [i] *- d~*

birow][i] *- d;
>)

elge
{ound - 07

i - row +1;
ile((!found) cc (i < 4))

rf<cafiltrow] 1- 0)

found - 1;
d - 1.0 / a[i][row];
for(j - 0;j < 4;j++)
1
afrow] [j] *- d 4 a[i][j);
)bITDW][J] +-d *b (111
)
io+- 1
))
foqr(i - (row + 1);i < 4;i++)

if(a[i][row] !« 0.0)

d - -af[i][row);
for(j - 0:;j < 4:j+4)

1031 +-d **trow][j];
i1[il +-d *btrow]J[jj/

forCi - row - I,*i >—Oi—)

t
If

a(i)(row) 1- 0.0)

- -a(iltrow);
or(j - 03j < 4;j*+)

~al/\

a j +-d
)b(i)tj) o-d

exists»

Matrix.c

Appendix A

void VectorCopy(a, bj
vector a*

1% Copy vector a into b. *,
;* * * FhdkkkAkkkikk ./

- |
o

far(i - X;i < W?i+¥)

)

void MatrixCopy(a, b)

b{il] - adJ;
|

M atrix a,
bj
K KK K kKK teseseetm/
/e */
/ Co matrix a into b* b/
fo * 7
int i,
ford - 0;i < 4:i++>

Sorij - Off < 4:j+4)

bfi] 13) - adl IjIf
)

))
[N o e e m.mm.mmmgll

<

g Multiply matrix a by b. Store the result in a. ’_‘k//
Fkkkkkkkkk * * *
Matrix a,
b;
int i
atfix c
fesl
fogil - 0;i < 4/i++)
Tog<j - 0;j < 4;j++>
c(i|lJJ - 0.0:
forlk - 0;k < 4;k++)
ctij[j> +- a[il(k]l <« b[k] [jl/
>
)
MatrixCopy{c,a);
)
void UnitVector(v, xUnit)
Vector v,
xunit; * * * Hdok
1* */
/» Calculate the unit Vector for v and place it in xUnit u/
[Ptk * okedokdokctokk * */
<
doable unitLength;
int H
1**]
unitLonqgth - Sqr(VIXJ) ¢ Sqr(v[Y)) + Sqr(v]2]);
if{(unitLength - »qgrt(unitLength)) 1- 0.0)

(
ford - X;i < Wji++)

(
xUnit(ll - vtij / unitLength;

void PointMatrixMullp,ra,newP)

point ‘H

Matrix a;

Point newP;

[k K Kk Kk K Rk K Kk Kk kK R R K Kk Kk kK Rk K Kk ok KRk K Rk K Kk ok Kk kK Rk K Kk ok kK Rk K K Kk kK K

* *
r* M.ultifly the point #p# by the matrix 'in’ and place the result in 7
newPl, /
1* * */
|
int i

ford - X;i < byi+>

(nowPIi) - nI3)[i]i
forg - X < M;j++)

(new?[ij 4- plj) <« nljllilj
>

1I

Matrix.c

Appendix A

void VectorMatrifcHul{v*ra,newVi
Point v;

Matrix mi

Point newv;

B ErEa R R EEEEEERRREEEEEEEEERE -....---.------...---.........-....---.------...---...----..-.....--..r)
/+ Multiply the voctor '\Ffay the matrix rm* and place the reault in *7
/m *n«¥V'. *<

S

int i.
"
wJ

or(i - X;i < Mii+«-)

‘o] - OCF

for (j - X;J <

InevV|i.] +- vI1jd .

void MAk©Vector(pi.p2.v)
Point pi,

p2:
s
/*

//* Return, the direction vector from point pi to point p2, *
.

i - Xfi < K:i*4)

vl]i) - p2in - pltil;
3)

double VectorDot(a,b)

Vector ﬁ:

*
*

R

//1:,c Return the dot productof vector a.b
Joe

Baktie > aiaiains

int if

double dot - 0.0,*
I--1

fttr(i - Xfi < Wfi++)

dot +- atij * bfiu

return(dot) ;

)

double PointVectorDot(a,b)
Point a;
Vector b/
Fa...........

.

1%
/* Return the dot product of a.b
1%

1

int if

double dot - 00
1%

forfi - Xfi < Mfi+4)

(dol e afij =b(il;

)
return(dot)e

double PointDot(a.b)
point

/+ Return the dot product of i,b

(Int

double dot ~ 0,0.*

1%/

f?r(i - XFi < *™»ji+)
dot ¢- a[i] * btijf

)re)lurn(dal);

*/

*1

Matrix.c

Appendix A Matrix.c

void VectorCras»(a,b,cross)
Vector a,

b,

cross;

Return the erosa product of vector aXb

erosal[X] - (a[Y] *b(zZ)) - (a[21 *“ b[Y])
cross(Y] - (a[z] * b{X]) - (a[X] *b[Z])
cross[Z] - <a[X] 4 b[Y]) - (a[Y] *b[X])

double Distance(ptO,ptl)
Point ptO,
pti;

Get the distance between two world points.

return(sqrt(pow ((ptlIX] - ptO[XJ),2.0) +
powUptim - ptO[Y]),2.0) +
pow((ptl[Z] - ptO[Z]),2.0)));

Appendix A

Memory,c

: y Vv
MallocO and FreeO front-end functions that catch memory >/

* allocations bugs. */
FKkkk *kkk y

¢include <alloc.h>
¢include <stdlib.h>

¢+define MallocArraySize 500 /* Hax number of mallocs at any moment. */
/* Can be increased if not large enough. */

extern void Error(char *msg);

void *Malloc(size t size).
Free(void *bTock),
FreeAll(void);

int MemoryEmpty(void);

static unsigned int numMalloc - 0,
numFree - 0,
mallocArraysize - 0;

static void ‘mallocArray[MallocArraysize];

void *Malloc(9ize)
ize_t size;
T ...

//::,c Same as mallocO

{/oid ‘block;

7’Q§cifned int i - 0;

block - malloc(size);

w{ile((mallocArray[l] - NULL) ii (i < mallocArraysize))
T++

ifli >—mallocArraysize)
C'wallocArraySize++;

iI)i > MallocArraysize)

{rror("Malloc(): Too many mallocs for mallocArray[]");

mallocArray[i] - block;
numMalloc++;

}eturn(block) H

void Free(block)
void ‘block;

10

I Same as free().
10

/..MM
unsigned int i — 0;
1**]
while((mallocArray[i] !- block) ii (i < mallocArraysize))
¢
i++;

if(i >- mallocArraysize)
(
Error("Free(): Attempt to Free a block currently not Malloced");
>
free(block);
mallocArray[iJ - NULL;
if(i — (mallocArraysize - 1))
while((mallocArray[mallocArraysize - 1] — NULL) ii (mallocArraysize > 0

mallocArraysize— ;

)

numFree++;
>

ynt HoiBoryEmpty (void)

-

—~F

If allMalloc'shavebeen Free'd return 1, else return 0.
)return((numFree — numMalloc) if (mallocArraysize — 0))?1:0;

void FreeAll(void)

//;‘ Freeall unFreed memory.
1.

for(i - Q;i < mallocArraysize;i++)

if{'nallocArray[i] 1- NULL)
ree(mallocArrayl[i]);

)

*

)

g

X

Appendix A Modele

Main modulo for the modelling of object! in tho scene. This
cells functions that create the objects from primstive types,
places these objects in world coordinite space, and assigns to
each object its texture and hue information.

extern void InitFiles(void),
OpenFiles(void)#
CloseFiles(void).
AddObj(char <fileName),
AddToObjList(int nun),
CopyObj(char *srcObj,char “destObj,char *copyFile),
AddMap(char *mapFile),
FreeAll (void),
Error(char *rosg),
Message(char *msg);

oxtern int MemoryEmpty(void);

void main(void);
void main(void)

Modol the scene to be ray tracod

Message(“Initialising Files");
InitFiles();

OpenFiles();

Message("Building model of scene"):
AddObj("dl.txt");

AddToObj List(1);

Message("Adding model texture™);
AddMap("Mapl.txt");
AddMap("Map2.txt");
AddMap(“"Map9.txt");
AddMap("Map4.txt"
AddMap("Map!.txt");
CloseFiles();

i f{! MomoryEmpty())

reeAll();
Error ("main () : Number of Mallocs !- Number of Frees");

\

Avvendix A

/* Module: Obj (Objects)

I» Various functions needed for objects in the scene.

linclude <string.h>
s¢include <stdlib.h>
s¢include <stdio.h>
¢include “define.hM
¢include "paths.h"
¢include “"prim.h"
¢include "ray.h"
¢include "obj.h"
¢include "tList.hM
¢include "light.h M
¢include "global.h"
¢include "map.h"

extern FILE ‘primFile,
cobjListFile;

extern void Error(char *rasg),
*Malloc(size t size)r
Free(void »bTock),

Transform (PrimPt prim,Vector s,Vector t,Point

double rX,double rY,double rz),

CSG(ObjPt obj, TListPt »tList,RayPt ray,FILE

TListDel(TListPt »tList),
VectorCopy{Vector a,Vector b),
AddPrira(ObjPt obj),
MatrixCopy(Matrix a.Matrix b),
MatrixMul(Matrix a,Matrix b),

PointMatrixMul(Point v,Matrix ra,Point newV),

Inverse(Matrix c,Matrix b),

Rotate(Matrix m,double rX,double rY,double

ReadPrim(int num,PrimPt prim),

tfritePrim (int num,PrimPt prim),

Scale(Matrix m,Vector s).

Translate(Matrix m,Vector t);
extern double Roundoff(double num);

extern int CopyPrim(PrimPt srcPrimrint rRRSTFileNum),

NewPrimNum(void),
AddBound(ObjPt obj);

int GetObj(long »offset);

void ReadObj(int num,0ObjPt obj,FILE »objFile),
AddObj(char »objData),

TranaferObj (FILE »objFile,double s [3],double

AddToObjList(int num),

pivot,

»objFile);

rZ),

t [3], double

CopyObj(char »srcObj,char »destobj,char »copyTxt),

WriteObj(int num,ObjPt obj,FILE »objFile),
Closeobj(FILE »objFile),
GetHue(int objNum,HuePt hue);

IntersectObj(RayPt ray,int objNum,int »primNum,

int *surfType,Vector n);

»OpenObj(int num);

void AddObj(objData)
char »objData;

/f> Add the info in the file objData to the dataBases of the system
»

/» NOTE: info in objData is read in starting at ree 0,

char tmpStr[40],
tmpStrl [40J;
int i,
char ,
FILE »textFile NULL,
cobjFile NULL,
»srcObjFile NULL;
ObjHeaderPt header NULL,
srcHeader NULL;
ObjPt obj NULL,
srcObj NULL;
PrimpPt srcPrim NULL;
Dl
obj - (ObjPt)Malloc(aizeof(Obj));
srcPrim — (PrimPt)Malloc(sizeof(Prim));
srcObj - (ObjPt)Malloc(aizeof(Obj));
header - (ObjHeaderPt)Malloc(sizeof(ObjHeader));,
srcHeader - (ObjHeaderPt)Malloc(aizeof(ObjHeader)),

strcpy(tmpStr,ObjPath);
atrcat(tmpStr,objData);

tmpStr[16] - 'H'; /» Get hue info */
if((textFile - fopen(trapstr,M")) — NULL)

Error("AddObj()s Obj text file does not exist.”);

fscanf(textFile,"% IfH, theader->hue.kDR) ;

fscanf (textFile,"% If", 4header->hue.kDT) ?

fscanf(textFile,"% If% If% If" ,theader->hue.fDR[R],
4header->hue.fDR[G],
<header->hue.fDR[B]);

fscanf(textFile,"% IfH ,theader->hue.tT) ;

fscanf(textFile,"% IfH 4header->hue.kRH);

fscanf(textFile, MoIfMfiheader->hue.kTH) ;

fscanf (textFile, ®%If", cheader->hue.indx) ;

fclose(textFile);

tmpStr[16] - "
if((textFile - fopen(tmpStr,"r")) — NULL)

Error ("AddObj () : Obj text file does not exist.");

fscanf(textFile,"»d",4header->nuraEntries) ;
tmpStr[17] - "\0';

ie

like an

r [3],double pivot [3]),

Obj.c

Appendix A Obj.c

tmpsStr[16] - 'O";

1;
\I/v{ile((ch - objData[i]) !- '.")

mopstr[i + 17] - "\0';
tmpStrli++ + 16] - ch;

o?jFiIe - fopen(trapStr,"w+b");
fclose(objFile);
for(i - 17;i < strlen(trapStr>;i++)

trapstrl[i - 17] - tmpStr[ill

osziIe - fopen(tmpstr,H+b");

i - 0;

fwrite(header,aizeof(ObjHeader).1,0bjFile);
ile(i < header->numEntriea)

facanf(textFile , Mos",obj->opCode);
av(itch (obj->opCode[0])
case '+':
case ' ;
case '4':

facanf (textFile, "%d%d", 4obj->1,40bj->r);
break;

case
case

o
o
«
@
<H4z0®m0O

ca{e
acanf(textFile,"% d",iobj->1);

obj->r - 0;
AddPrim(obj);
break;

case 'O ":

facanf(textFile,"id",40bj->1);
facanf(textFile,"% d",40bj->r);
break;

default:

erur("switch case fell to default. Module AddObj. Program obj");
break;

Vv)ri!eObj(i, obj,objFile);

i++;

f)loae(objFile);
objFile - fopen(trapStr,"r+b");
for(i - 0;i < header->nuraEntries;i++)

(leadobj(i,ohj,objFile);
iftatrcmp{obj->opCode,"0O") — 0) /* equal */

itoa(obj->I,tmpStrl, 10
atrcat(tmpStr,tmpStrl);
arcObjFile - fopen(trapStr,"rb");

fread(arcHeader,sizeof(ObjHeader),1,srcObjFile);

atrcpy(trapStr,ObijtPaj_h); /* for Object */

ReadObj(0,srcObj,arcObjFile); *
srcObj->1 +- (header->nuraEntries -1); /* point to EOF /
srcObj->r +- (header->nuraEntries - 1);
WriteObj(i,arcObj,objFile);

k - header->nuraEntries;

- l;j < arcHeader->numEntries;j++)

forij
Q?eadobj(j,srco bj,srcObjFile);
itch(arcObj->opCode[0])

srcObj->1 +- (header->numEntries - 1);
srcObj->r +" (header->nuraEntries - 1);
)break;

ca(;e ‘P
eadPrim(srcObj->1, srcPrim);
srcObj->1 - copyPrim(srcPrira,obj->r);

break;
ds{aull H
rror ("switch caae fell to default. Module AddObj. Program obj'");

j)reak:

W)riteO bj(k,srcObj,objFile);
K++;

fclose(srcObjFile);

)header—>nuraEnIries +- (srcHeader->nuraEntries - 1);
facanf(textFile,”%s",obj->opcode);
ifiatrcrap(obj—>opCode,"HULL") — 0)

header->boundVol - -1;

e%e /* bound vol exists */

Lc

anf(textFile,”%d", 4o0bj->1);
header->boundVol - AddBound(obj);

fseek(ObjFile,0OL,SEEKSET);
fwrite(header,sizeof(ObjHeader),1, 0bjFile);
fclose(textFile);

fcloae (objFile) *

Appendix A Obj.c

Free(obj);
Free(srcPrim);
Free(srcObj);
Free(header);
Free(srcHeader);

)

void CopyObj(srcObjrdestobj,copyTxt)
char *srcObj,

sdestobj,

*copyTxt;
* B
l/’;,c Make a copy of an object. :_7/

char tmpStr[80],
uffer[256];
double [31,

r 3],
pivot[3];

FILE »srcObjFile,
«destObjFile,
scopyTxtFile;

size t numBytes;

i,};t/” i

strcpy(trapStr,ObjPath);

atrcat (tmpStr, srcObj);

srcObjFile - fopen(trapStr,“rb");

strcpy(tmpStrrObjPath);
strcat(tmpStr, destobj) ;
destObjFile - fopen(tmpStr,"w+b");
w{ﬂile(feof(srcObjFile)

umBytea - fread((void *)buffer,sizeof(char) ,256,srcObjFile);
fwrite((void *)buffer,sizeof(char),numBytes,destObjFile);

fclose(destObjFile);
fclose(srcObjFile);
destObjFile - fopen(tmpStr,"r+b");

strcpy(tmpStr,ObjcopyPath);
strcat(tmpStr,copyTxt);

copyTxtFile - fopen(tmpStr,"rH);
fscanf(copyTxtFile,"% If% If%If" fcs[X],fis[Y],fis[Z]);
fscanf(copyTxtFile,"% If% If% IfTMFfit[XJ, fittY],it[2]);
fscanf(copyTxtFile, Hu IfIIf% If"ffir[X], fir[Y], fir[Z]);
fscanf(copyTxtFile,"% If%ir% If" fipivot[X], fipivot(Y], fipivot[2]);
fclose(copyTxtFile);
TransferObj(destObjFile,s,t,r,pivot);
fclose(destObjFile);

>

void ReadObj(num,obj,objFile)
int num;

ObjPt obj;

FILE »objFile;

P

*
/* Read field number 'num' from 'objFile'into 'obj"'. o/
//’;_ Ifno such field exists thenit isan error g

(
if(fseek(objFile,(long)(num * aizeof(Obj) + sizeof(ObjHeader)),SEEK SET) !- D) /* bad news </

Error("ReadObj()s Invalid read attempt");

exit(0);
]
fread(obj,sizeof(Obj),1,0bjFile);
)
void WriteObj(num,obj,objFile)
int num;
ObjPt obj;

FILE ‘objFile;

I Write ‘obj' into field number 'num' into ‘objFile". */
/*If no such field exiata in the file, then it's an error,

(
if(faeek(objFile,(long)(num * sizeof(Obj) + sizeof(ObjHeader)),SEEK SET) 1I- I*bad news */

Error("HriteObj(): Invalid write attempt");

>fwrite(obj,aireof(obj),l,objFiIe);

FII£ *OpenObj(num)

int num*

*
//9c Set the open object to being 'num’. */
i

char objFileName[40],

tmpStr[40] ;
/.*/ p [40]
atrcpy(objFileName,ObjTxtPath) ;
itoa(num ,tmpStr,10);
strcat(objFileName,tmpStr);
}elurn(fopen(objFiIeName,M+b"));

Appendix A Obj.c
void CloseObj(objFile)
FILE *objFile;
/%(:Ioseanobjeclflle .. v
{lclose(objFiIe);

)

int GetObj(offset)
long ‘offset;

Sikeke

/* Return the obj number of the next obj in 'objList'. If no obJexls!s */
1, then return -1; ’.)J
oo /

(llq‘(/num:
fseek(objListFile, ‘offset, SEEK SET) ;
if(1feof(objLiatFile))

(fread(finura,sizeof(int),l,ohjListFiIe);
»offset - ftell(objLiatFile);
if(ifeof(objListFile))

return(num);

fseek(objListFile, OL,SEEK_SET);
‘offset — OL;
return(-1);

2

fseek(objListFile, OL,SEEK_SET)?
‘offset - OL;
return(-1);

void AddToObjList(objHum)
int objNum;

//*‘ A the object 'objNum' to the object list. ;"/

{seek(objListFiIe,OL,SEEKiEND);
)fwrite(ioijum,sizeaf(int),l,objListFiIe);

void Transfcrobj(objFile,s, t,r,pivot)
FILE »objFile;
double af[3],

t(3)#
r(3).
pivot[3]; /
..*/
Is* Create a new transformation matrix for a copied obj. :_//
/.(.........
int i
ObjHeaderPt header;
ObjPt obj;
7“@/“ prim;
header - (ObjHeaderPt)Halloc(sizeof(ObjHeader));
obj - (ObjPt)Malloc(sizeof(Obj));

prim- (PrimPt)Halloc(sizeof(Prim));

fread(header,sizeof(ObjHeader),1,0bjFile);
fo(;(i - 0;i < header->numEntries;i++)

eadObj(i,obj,objFile);
iffobj->opCodel0] — 'P")

ReadPrim(obj->1,prim);

Transform(prim, lht,pivot, r[X]1,r[Y],r[Z1J);
Inverse(prim->transform,prim->inverse);
obj->1 - NewPrimNumoO ;
ifrite0bj (i, obj,objFile) j
WritePrim(obj->1,prim);

ifiheader->boundVOI m -1)

ReadPrim(header->boundVol,prim);

Transform (prim, s,t, pivot, r (X],r [Y],r [Z]);
Inverse(prim->tranaform,prim->inverse);
header->boundVol » NewPrimNumO;
IfritePrira(header->boundVol,prim);
fseek(objFile, OL,SEEK_SET);
fwrite(header,sizeof(ObjHeader),1,0bjFile);

Ffee(prim);
Free(obj);
)Free(header);

Appendix A

doubla IntersectObj (ray, objNum, primNum, surfType, n)
RayPt ray;

int objNum,
‘primNum,
*surfTypo;
Vector n;

If an intersection between ray and obj exists, this functionreturns */
/* the *t' value of the nearest point of intersection betweenray andobj */
/I else returns 0.0 =l
I *
/+« 1If an intersection does exist then the color of the primative which */
/+is the nearest intersection between ray and obj is placed in »primNum, */
/* and the normal at the point of intersection is in the 1n"'. */
/* 1f no intersection occurs then ‘primNum is undefined. */
TListPt tList - NULL;
FILE ‘objFile;
double t - 0.0;
?b*?l obj;
)
obj - (ObjPt)Halloc(sizeof(Obj));
objFile - OpenObj(objNum) ;
ReadObj(0,0bj,objFile) ;
CSG(obj,itList,ray,objFile);
if{ILiSt I— NULL)
- tList~>val;
*primNum - tList->primNum;
esurfType - tList->surfType;
VectorCopy(tList->norm,n);
TListDel(itLilt);
fclose(objFile);
Free(obj);
)return(t);
void GetHue(objNum,hue)
int objNum;
HuePt hue;
MM L MM LML
/s v
/* Get the hue information for objNum. *
I. */
/MMMMMMMMMMMMMtMM .M. MMMM.MMM.M . MMMMMMMMMMM/

ILE

*objFile;

7’@*79aderpl header;

header
objFile

(ObjHeaderPt)Halloc(sizeof(ObjHeader));
- OpenObj(objNum);

fread(header,sizeof(ObjHeader),1,0bjFile);
hue->kDR - header->hue.kDR;

hue->kDT - header->hue.JtDT;

hue->fDR[R] - header->hue.fDR[R];
hue->fDR(G] - header->hue.fDR[GJ;
hue->fDR[B] - header->hue.fDR[Bj;

hue->tT

- header->hue.tT;

hue->kRH - header->hue.XRH;
hue->kTH - header->hue.kTH;
hue->indx - header->hue.indx;
fclose(objFile);

)

Free(header);

Appendix A

/* Module: Prim (Primativei) o/
l« Various functions for manipulatingprimitives. */
/" NOTE: Primitives are the basic cubes,spheres,cylinders etc. that are */

lﬁ,c used to create objects. ;J/
R FLoxdk (kA KRRk Kk Rk k Kk kKR K |

¢include <stdio.h>
s¢include <stdlib.h>
sinclude <Btring.h>
¢include "define.h"
¢include "obj.h"

¢include "prim.h"

¢include "paths.hH

extern void *Malloc(size t size).
Free(void *bTock),
Error(char *msg),
Transform(PrimPt prim,Vector s,Vector t,Point pivot,

double rX,double rY,double rz),

Rotate(M atrix m,double rX,double rY,double rz),
Scale(Matrix m,Vector s).
Translate(Matrix m,Vector t),
MatrixCopy(Matrix a,Matrix).
MatrixMul(Matrix a,Matrix bj
Inverse(Matrix c,Matrix b);

int laPrira(ObjPt obj),
CopyPrim(PriraPt srcPrim,int rRRSTFileNum),
NewPrimNum(void);

void AddPrim(ObjPt obj),
ReadPrim(int num,PrimPt prim),
WritePrim(int num.PrirePt prim);

extern FILE ‘primTextFile,
*primFile;

int IsPrim(obj)
[ok kAR Kk Sk KR Kk Kk K R ok K Kk ok Kk kK K Rk ok K Kk ok ok K Rk kK K Rk K Kk ok K Rk kK R R R K K Rk ok K Kk kK K Rk

/' 1If obj holds a primitive leaf (as opposed to being an operator on two *
5* other objs) then return TRUE, else return FALSE. *5
* *

kKK ok kK K K K Kk k K K Kk ok ok kK K K K K K ko kR R K K K K K ok ok kR R K K R K K ko k ok Kk ok kR kK K K [

OtPt obj;
>elurn((ubj—>opCode[0] — 'P ")?TRUE:FALSE);

void AddPrim(obj)
ObjPt obj:
T*

Kok ok ke ok ok Rk Kk ok ok ko k ok ok ok ok ok ok ok ok ok ok kkkk ok kA Ak k ok k ok ok ok ok ok ok ok ok k ok k

I* */
/* Add a new primative to the primFile. rRRST, map, priority etc. info */
//* got in Textfile made up of obj->opcode[0], obj->1 and .TXT ’:’é
.
* * »yne*r
FILE ‘primTextFile;

PrimPt prim;
char tmpstr[40),
*UnpStrl [40];
Vector s, /* scale */
t; /* translate */
Point pivot; /* pivotabout which we rotate */
double rX,
ry,
rzZ;
int primNum,
i

/“/ !‘urface;

prim - (PrljiiPt)Malloc(8izeof (Prim));
strcpy(tmpStr,PrimPath);
strcat(tmpStr,obj->opCode);
itoa(obj~>1,tmpStr1,10);

strcat(tmpStr,tmpStrl);

strcat (tjnpstr, Mtxt");

primTextFile - fopen (tjnpstr, "r") ;
fseek(primTextFile,OL,SEEK_SET);
fscanf(primTextFile,"%c",iprira->type);
fscanf(primTextFile,"% 1f% If% If",is[X],is[Y],4s[Z]):
fscanf(primTextFile,* % I1f% If% IfMit[X],4t[YJ,4t[Z]);
fscanf(primTextFile,"% If% If*IfMirX trY, irz);
fscanf(primTextFile,"% If% If% If",ipivot[X],4pivot[Y],ipivot[Z]);
switch(prim->type)

case *S'l

Surface - 1;
break;

case 'B':

surface — 6;
break;

case 'C':

surface - 3;
break;

case 'N ':

surface - 2;
break;

calse *Y's

surface - 5;
)break;

Prim e

Appendix A Prim.c

default:

Error("switch case fell to default. Module AddPrim. Program obj");
break;

f)rd - 0;1 < surface;i++)
fscanf (primTextFile, "%d%d", tprim->mapl[i] [Out],iprira->raap[i] [In]);

fcanf(primTextFile,"%d",iprim->priority);
fclose(primTextFile);
for(i * 0;i < 4;i++) /* Copy ldentity matrix into prim->transform */

(,o(l

r(- 05 < 43j++)

f{i -
rim->transforral[i] [j] - 0.0;
>

else

) rira->transform [i]J[j] - 1.0;

T)ansform(prim,s,t,pivol,rx,rY,rZ);
Inverse(prim->transforra, prim->inverse);
primNum - NewPrimNumO ;

IfritePrira (primNum, prim);

obj->1 - primNum; /* assign primative number to primative. */
obj->opCode[0] - 'P";
Free(prim);

)

int CopyPrim(srcPrim,rRRSTFileNum)
PrimPt srcPrim;
int rRRSTFileNum;

[kKK K K K K K Rk K K K K K K K kK KK K K K K K K K R R K K K K K K Kk kR Rk kK

/* Get a copy of srcPrin and writeit to the primFile
/* manipulate the copy by the infoin the file made
I» up of 'A', rRRSTFileNum, .TXT

I* Return the number of the prim in primFile.

Rk ok kK g KKK K (kR Rk kK K Kok ok kK K K K Kk kR kK Rk Kkt Rk kK ok ok ok ok ok K K kK

{rimPt destPrim;
char tmpStr[40],
tmpStri[40]?
int i
Vector s,

t;
double rX,

ry,

rZ;
Point pivot;

7&[5@7 ‘TrRRSTTextFile;

destPrim - (PrimPt)Malloc(sizeof(Prim));
strcpy (tmpStr,PrimTxtPath);
itoa (rRRSTFileNum,tmpstrl, 10) > /* get the rrrst values */

strcat(tmpStr,tmpStrl);

strcat(tmpStr,MtxtM);

rRRSTTextFile - fopen(tmpStr,"r+b");
fscanf(rRRSTTextFile H% If% If% If",is[X],ts[Y],is[Z]);
fscanf(rRRSTTextFile,"% If% If% If" it[X],it [Y], it [Z]);
fscanf(rRRSTTextFile,"% If%If% If" irX, irY,irz);
fscanf (rRRSTTextFile, "% If% If*If", ipivot [X],ipivot [Y],ipivot [Z]);
HatrixCopy (srcPrim->inverse, destPrira->transform) ;
Scale(destPrim->transform,s);
Rotate(destPrim-»transform,rX,rY,rZ) ;
Translate(destPrim->transform ,t) ;
MatrixMul(destPrim->transform,srcPrim->transforra) ;
Inverse (destPrim-»transform, destPrim->inverse) ;
fo(dr(i " 0;i < MaxSurface;i++)

estPrim->raap[i][Out] - srcPrira->raap[i][Out] ;
destPrim->mapl[i][In] - srcPrira->map[i][In];
déstPrim->priority - srcPrira->priority;

i - NewPrimNumO;
WritePrimd, destPrim) ;
fclose(rRRSTTextFile);
Free(destPrim);

)retu rn(i);

*5
*

NewPrlmNum(vold)
K K ok KK Kk K KKKk K K K KKK ok o K KKK ok K K KK

<

/* Returns the next available number for a new prim. This number is
I always unigque for prims written to priraFile.
T T T P I I I A A

(divit result;

yg(lk/ fileSize;

fseek(primFile, OL,SEEK END);
fileSize - (int)ftell(primFile);
result - div(fileSize,sizeof(Prim));
)relurn(resuil.quct

Appendix A Prim.c

void BoidPrim (num*prim}
int num:
PrimPt prim;

Read ‘prim' number 'num' from database PrimFilo.
If no such prim exist9 then it-s an error.

G
iféfseek(primFile, <longJ{num * sireof (Prim))#SEEK_SET} 1* 0) /* bad news ‘/
Error("ReadPriraOs Invalid read attempt")i

}froad(prim,aieeof(Prim),l, prim File)t

void WritePrim(num,prim)
int num;
PrimPt prim;

/. A
/* Write 1prim' number ‘numl into primFile. *
;* if no such 'num' exists in primFile, then it's an error, *

if(fseeX (primFile,(long)(num * sizeof(Prim)),SEEK_SET) f- 0) /' bad news '/
{Error("WritePrimOi Invalid write attempt")**

|€wri!e (prim., si¢goof(Prim) fl,.prin"ile) i

Appendix A
[restom

.

/¥ Module

/O Functions needed to generate reflected and transmitted rays,

/* Mao the function needed to »hot these ray# into the world

/' coordinate scene.

0]

[-»*eee™sy

¢include <stdlib.h>

¢include <stdio.h>

¢include <raath.h>

¢include “"define.h"

¢include "ray.hM

¢include "prim.h"

¢include "tList.h"

¢include "obj.h"

¢include "light.h"

¢include "global.h"

extern RGB background;

extern void ‘Malloc(size t size),
Free(void ‘block),
GetHue(int objNum,HuePt hue),
ReadObj(int num,ObjPt obj,FILE ‘objFile),
VectorCopy(Vector a,Vector b)r
MakeVector(Point pi,Point p2,Vector v),
ReadPrim(int num,PrimPt prim),
TransformRay(PriraPt prim,RayPt ray.RayPt newRay),
VectorMatrixMul(Vector v,Matrix m,Vector newV),
UnitVector(Vector v,Vector xUnit),
GetUVCube(Vector n,double *u,double *v,int ‘surface),
GetUVPyramid(Vector n,double *u,double *v,int ‘surface),
GetUVCylinder(Vector n,double ‘u,double v,int »surface),

GetUVCone(Vector n,double *u,double ‘v,int
GetUVSphere(Vector n,double ‘u,double
CSG(ObjPt obj, TLiatPt

TListDel(TListPt *tList),
ProcessColor(HuePt hue,RGB surfColor,RGB colorReflected,
sT,Point surfPt,

RGB colorTransmitted,double

*tList,RayPt

Vector v,Vector n,Vector

Error(char ‘msg);
extern FILE ‘OpenObj(int nun);
extern int GetObj(long ‘offset),

IntersectObjBound(RayPt ray,int objNum),

ColorNum(RGB rgbcolor) *

extern double IntersectObj(RayPt ray,int

Sgr(double x),

objNun,int

ray ,FILE

r,Vector

‘surface),
*v,int

»surface);

‘prinNun,in

‘objFile),

t,RGB color).

ReadMap(int mapNum,int lambda,double u,double v),

Roundoff(double x),
VectorDot(Vector a,Vector

void CaatRay(RayPt ray,intdepth,RGB
ReflectedRay(RayPt ray,double
TransmittedRay(RayPt ray,int

double indx,double

const double Infinity - 1E100;

void CastRay(ray,depth,color)
RayPt ray;

int depth;

RGB color;

*

/* Recursively follow a ray backwards from the

/'* Return the color of the ray.
//* Only recurse 'MaxDepth' times.

Vector tmpV,

n,
unit,
nearestNorm;
double nearest - Infinity,
u,
v,
t - 0.0,
sT;
long offset - oL;
RayPt reflectedRay,
transmittedRay,
newRay;
HuePt hue?
PriraPt prim;
ObjPt obj;
int i,
colorShadow,
objNum,
nearestObj,
primNum,
surfType,
nearestPrim,
nearestSurfType,
surface; /* The Intersected
Point surfPt;
RGB surfColor,
colorReflected,
/*k/ colorTransmitted;
newRay - (RayPt)Halloc(sizeof(Ray));

reflectedRay -
transmittedRay -
hue -
obj -
prim -
UnitVector(ray->
w

if(IntersectObjB

if{(t - IntersectObj (ray, objNum, fiprimNum, 4turfType, n))

(RayPt)Malloc(sizeof(Ray));
(RayPt)Malloc(sizeof(Ray));
(HuePt)Malloc(sizeof(Hue));
(ObjPt)yMalloc(sizeof(Obj));
(PrimPt)Malloc(sizeof(Prim));

D, ray->xD);
le((objNum - GetObj(toffaet)) J- -1)

ound(ray,objNum) — 1)

if(t < nearest)

rgb),
t,Vector

n,RayPt newRay),
objNum, double t,Vector n,

‘distance,RayPt newRay);

origin

into

the

world scene.

MMMM. MMM

surface of a prim */

1- 0.0)

t ‘surfType,Vector

*

“/
“l
’-)}é

!

Ravs.c

Appendix A

nearest -t
neareatPrira - primNum;
nearestObj - objNum;

neareatSurfType - surfType;

¥
y)

if)(nearest - Infinity)

/* get color of nearest

ReadPrim(nearestPrim,

TransforroRay(prim,ray,newRay);
for (i - X;i < W;i++)

surfPt[il - ray->xO[i] +nearest
ItmpV[i] - newRay->xO[i] + nearest

switch(prim->type)
|

caie 'St
nitVector(tropV,n

GetUVSphere(nr*u,
break;

UnitVector(n,nearestNorm);

prim);

fv,isurface);

intersection point */

* ray->xD[i];

caQe rB'j
etUVCube(tmpV , *u,iv,Esurface);

)break;

etUVPyramid(tmpV tu,4v,fcsurface) ;

{
3
8

etUVCylinder(tmpV tu, tv ‘tsurface);

reak;

o
o
o q
z

etUvCone(tmpV,iu,*v,Asurface) ;

break;

default:

~ Ot

Error("switch case
Ibreak:

>
GetHue(nearestObj,hue)

fell to default. Module CastRay. Program

VectorMatrixMul (nearestNorm ,prim->tranaform,n);

UnitVector(n,n);
surfColor[R] -
surfColor[G] -
surfColor[B] -

ReflectedRay(ray,nearest,n,reflectedRay);
TransmittedRay(ray,nearestObj,nearest,n,hue->indx, £aT,transmittedRay);

if(depth++ < MaxDepth)

CastRay(reflectedRay,depth,colorReflected);

f

else

Isf(' 0;i 3it+)
or(i - 0;i < 3;i++
(

colorReflected(i]
colorTransmitted[i]

- 0.0;
0,0;

CastRay(transmittedRay,depth,colorTransmitted);

* newRay->xDJi];

ReadMap(prim->map[surface][nearestSurfType],R ,u,v);
ReadMap(prim->map[surface][nearestSurfType], G, ,u,v);
ReadMap(prim->raap[surface][nearestSurfType],B,urv);

/* recursively follow
/* reflected and
/* transmitted rays

ProceasColor(hue,aurfColor,colorReflected,colorTransmitted,sT,su

)
I

e

%

e

color[R] - background[R];
color[G] - background[G];
color[B] - background[B];
>

Free(newRay);
Free(reflectedRay);
Free(transmittedRay
Free(hue);
Free(obj);
)Free(prim);

void ReflectedRay(ray,t,n,re
RayPt ray;

double t;

Vector n;

RayPt reflectedRay;

*

M Calculate the origin and

* Apply "Heckbert's Method"

(RayPl tmpRay;

flectedRay)

direction of

for reflecte

int i;

ouble twoDot;

[

tmpRay - (RayPt)Malloc(aizeof(Ray));

twoDot - VectorDot(ray->xD,n) * 2.0;

folr(i - X< Whit+)
reflectedRay->xO[i] - ray->xO[i] + t

fPt,
ray—>xD,n,reflecledRay—>xD,1ransminedRay—>xD,chor)

the reflected

d rays.

* ray->xD[i];

)reflectedRay—>xD[i] - ray->xDJ[i] - (n[i] * twoDot);

ray,

Intersect”);

*/
o/
*/

Rays

Appendix A

Unitvector(reflectedRay->xD ,reflectedRay->xD);

fo (i - X ii < Wii++)
TeflectedRay~ >x0 [i]

Free(tm pRay);

)

¥ -

reflectedRay->xD [i];

void TransmittedRay(ray,objNura,trn,indx,distance ,tranam itRay)

RayPt ray,;

int objNura;

double t; /* as
Vector n;

double indx,

in x0 + "t" * xD */

»distance; /* The
/* ray

RayPt transm itRay;

Calculate the origin and direction of the transmitted ray upon its exit
from the obj through which it has been transm itted. Also find the
distancence it travels through the obj
NOTE: This function handles Total Internal Reflection.
Apply "Heckbert's Method” for transm itted rays.
int i,
ok;
double cl,
c2,
indxlInv;
TListPt tList - NULL;
FILE ‘objFile;
ObjPt obj;
?E¥7t tmpRay;
tmpRay - (RayPt)Malloc(sizeof(Ray));
obj - (ObjPt)Malloc(sizeof(Obj));
objFile - OpenObj(objNum);
ReadObj(0,0bjfobjFile);
sdistance - 0.0;
indxIlnv - 1.0 / indx;
cl - -VectorDot(ray->xD,n);
c2 - sqrt(1.0 - Sqr(indxinv * (1.0 - Sqr(cl)d);
fo{(i - X< Wiit+)
ransmitRay->xD[i] - indxInv * ray->xD[i] + (indxlnv * cl - c2) ® n[i];
ItransmilRay->><O[i] - ray->xO[i] + t * ray->xD[i] - transraitRay->xD[i];

ok - FALSE;

distance travelled by the */
through the refraction obj */

4tle(!ok)

SG(obj,ttList,transmitRay,objFile);
cl - VectorDot(transmitRay->xD,tList->next->norm);
if((7;€— (1.0 - Sqr(indx) * (1.0 - Sqr(cl)))) < 0.0)
{ Total internal

reflection occur

s */

f({'(- X5io< Whit+)
ransmitRay->xO[i] +- tList->next->val * transraitRay->xDti];
transmitRay->xDJ[i] +- 2.0 *cl * -

,?transmitRay~>xO(i] — transmitRay-

istance +- tList->next->val;

TListDel(ttList) ;

tList - NULL;

)

e

c2 - sqrt(c2);
ok - TRUE;

)

for(i - Xji < Wji++)

transmitRay->x0[i]
transmitRay->xD[i]

ft}r(i - X;i o< Hjit+)

ransmitRay->x0[i]

TListDel(ttList);
fclose(objFile)
Free(tmpRay);
i:ree(obj);

+-

+-

sdistance +- tList->next->val;

tList->next->val
indx * transmitR
(indx * cl - c2)

tList->next->norrali];
>xD[i);

* transmitRay->xD[i];
ay->xDI[i] +
* -tList->next->nonnl[i];

transmitRay->xD[i] ;

Ravs.c

Appendix A

/'* Module: RayTrace

Ip Main calling module.
1

¢include <conio.h>
¢include <string.h>
¢include <stdio.h>
¢include <alloc.h>
¢include <math.h>

¢include "define.h"
¢include "paths.h"
¢include "ray.h"

extern int SetScrCoordsX{double normalisedx),
SetScrCoordsY (double norraalisedY),
ColorNum(RGB rgbColor.int graphType),
MeraoryEmpty(void);

extern void CloseFiles(void),
CastRay(RayPt ray,int depth,RGB color),
InitLighting(void),
InitBackground(void),
Error(char *msg),
*Malloc(size t size).
Free (void kbTock);
FreeAll(void),
MakeVector(Point pi,Point p2,Vector v),
OpenFiles(void),
ExitOnEsc(void),
HaitForEsc(void),
ClearBuffer(void),
CloseGraph(void),
InitGraph(int graphType),
PutPixel(int x,int y,int color);

extern void AssignScrPts(ScrPoint uLScr,ScrPoint IRscr,

double xMin,double yMin,double xMax,double yMax),

AssignWPts(Point wLPt,Point WRPt);
extern double Distance(Point ptO,Point ptl),
WorldStepSize(double xO,double xIl.int numPixels);

void main(void);

double SourceX - 500.0, /* ray source x,y,z coords. */
SourceY - 500.Q,
SourceZ - -1500.0;

\l/oid main()

/* Main function for ray tracing a modelled scene.

/=

int i,
j.
k,
color,
depth.
graphType - 1, /* 0 - DETECT 1 - IBH8514HI */
numPixAcrosB,
numPixDown;
char tmpStr[40];

ScrPoint uLsScr, upper left pixel coords of screen display window

IRScr;

Point wLPt, /+ The upper left and upper right coner points

WRPt, /* world coordinate system.
startPt,
curPt,

curAcross, /* The distance traveled across form startPt to

curDown,
wstepAcross,
wStepDown;
RGB rgbColor;
RayPt ray;
FILE escrFile;
e
clrscr () ?
InitGraph(graphType);
OpenFiles();
ClearBuffer();
InitBackground();
InitLighting();
AssignWPts(wLPt,wRPt);
AssignScrPts(uLScr,IRScr,0.66,0.0,1.0,1.0) ;
ray - (RayPt)Malloc(sizeof(Ray));

ray->xO[X] - SourceX;
ray->xO[Y] - SourceY;
ray->x0[ZJ - SourceZ;
numPixAcross - IRScr[X] - uLScr[X];
numPixDovn - IRScr[Y] - wuLScr[Y];
for(i - X;i < Hji++)
<
wStepAcross[i] - ((wWRPt[i] - wLPtfi]) /(double) (numPixAcross));
wStepDown[i] - (-wLPtTij !/ (double)(numPixDown));
atartpt[i] -curPt[
- WLPt[i];
curAcross[i] - curDownl[i]
- 0.0;
sCrFile - fopen(GraphFile,"w+b");

fwrite («graphType,sizeof (int),1,scrFile) ;
fwrite («numPixAcross,sizeof (int),1,scrFile) ;
fwrite («numPixDown, sizeof (int) ,1, scrFile) ;
for(i - uLScr[YJ;i <- IRScr[Y];i++)

fl{(j - uLScrIX];j <- IRScr[X];j++)

xitOnEsc();
for (k - X;k < W;k++)

of */

*/

curkPt

%21

XX N

*/

*/

RayTrace.c

Appendix A RayTrace.c

curPtlkJ - atartPt(k) ¢ curAcrosafk] + curDownlk);

MakoVector(ray->xO.curPt.ray->xD);

CastRay(ray,0,rghColor);

color - ColorNura(rghColor.graphType);
fvrite(tcolor,aizoof(int).1.acrFile); I+ write pixel to a file </
PutPixol(j.i,color);

for (k - X;k < H;k**)

)curAcroas(k) ¢- vStepAcroaalk];

for(k - X;k < W;k+4)

(rurDownIk] +- wStepDown(k];
)curAcrosg(k) - 0.0;

f)loae(schlle);
CloseFiloa();
CloseGraphO ;

Free(ray);
if{!MeraoryEmPW())

reeAll ();

Error("mainO : Number of »alloca !- Number of Frees");
p)intf("program completed successfully");

)H aitForBscO ;

Appendix A

/*Module: TextureHp
1* Various function# needed to create andaddtexture

maps to the

* model along with function* to do inversemappingof these maps

1* onto the various primitive types.

e¢include <math.h>

¢include <stdlib,h>

sinclude <stdio.h>

¢include <string.h>

¢include "define.h"

¢include "paths.hM

¢include "raap.h"

extern void *Malloc(size t size),
Free(void ‘block)
Error(char "mag),
UnitVector(Vector a,Vector n),
VectorCross(Vector a,Vector b,Vector cross);

extern double Roundoff(double x),
PointVectorDot(Point a,Vector b),
VectorDot(Vegtor a,Vector b),
Sqr(double X),

void AddMap(char *textFilo),
GetUVPoly(Vector n,int a,Point rl.Polygon pol

GetWPyramid (Vector n,double *u,double *vfint
GetUVCyUnder (Vector n,double *u,double *v,in

*/
*/
o/

y,double *u,double
GetUVCube(Vector n,double au,double ‘'v~Ant ‘surface),

ssurface),

t *surface),

GetUVCone(Vector n,double ‘u,double *v#int *surface),

GetUVSphere(Vector n,double “u,double *v,int
double ReadHap(int mapHua, int lambda, double u, double

const double Pilnv - 0.318309886, /* pi div 1.0 »/
TwoPilnv - 0.1591549;

void AddMap(textFileName)
char *textFileName;

»surface)/
v);

//;c Add a new texture map to the system as a binary mapFile.

FILE ‘textFile,
*raapFile;
int mapNum, /* The number to be assigned to this map file, */
i,
insertPos,
numEntries;
double color;
char mapFileStr[40],
mapNumStr[40];
eaderPt header;
2R,
header - (MapHeaderPt)Malloc(sizeof(MapHeader));
strcpy(mapFileStr,MapPath);
strcat(mapFileStr,textFileName),
if{E(textFile - fopen(mapFileStr,"r")) — NULL)
) rror("AddMap(): Map TextFile does not exist");
strcpy(mapFileStr,MapFile);
fscanf(textFile,"%d",4raapNum); /* Get the mapFile number. */
itoa (mapNum, mapNumStr, 10);
strcat(mapFileStr,mapNumStr);
strcat(mapFileStr, .mapl); /* leave space in name for R, G B */
insertPos - strlen(mapFileStr) - 5;
fscanf(textFile,"%d %d",Sheader->uScale,*header->vScale);
numEntries - header->uScale * header->vScale;
fog (i - Q;i < lji++) I/» for each of r,g and b */
itch (i)
case R:
mapFileStr[insertPos] - 'R";
)break:
ca{e G;
mapFileStr[insertPos] - 'G°';
ﬁreak;
ca(se B:
mapFileStr[insertPos] - 'B';
break;
default:
rror("AddMap: Fell into case default");
mapFile - fopen(mapFileStr,"w+b");
fclose(mapFile);
mapFile - fopen(mapFileStr,"r+b");
fwrite(header,sizeof(MapHeader),1,mapFile); /* Write uv values. */
f({(j - 0;j < numEntries;j++) /m get map colors */
scanf(textFile,"% If",Ccolor);
fwrite(«color,sizeof(double),1 , mapFile); I* Hrite rgb value. */

fclose(mapFile);

Free(header);
)fclose(texlFile);

*

TextureM.c

Appendix A

double ReadMap (mapNura, lambda, u,v)

int raapNum, . The number of the map file. */
lambda; /* Wavelength being read */
double wu.
/* Return the color number at relative position uv in mapfile */
]
\
char mapFiIeName[AO],
tmpStr [40];
FILE *raapFile;
int newUy,
newV;
double color;

&&readerPt header;

header - (MapHeaderPt)Malloc(sizeof(MapHeader));
itoa(raapNum,tmpStr,10);
strcpy(mapFileName,MapFile) ;
strcat(mapFileName,tmpStr);

itch(lambda)

ca{e R:
trcat (mapFileName, "_R.mapH) ;
break;

Strcat (mapFileName,
break;

y

{e B
trcat (mapFileName, "_B.map");

_G.map");

break;
d?{ault:
rror("ReadMap: Fell into default case statement");
)break;
mapFile - fopen(mapFileName,"r+b");
fread(header,sizeof(MapH,eader),1 , mapFile);
newU - (int)Roundoff(u (double)header->uScale)?
newV - (int)Roundoff(v (double) header->vScalfs) ?

if{wewu < 0)
ewU - 0;
fseek(mapFile,(long)
(long)(sizeof(MapHeader) +
sizeof(double) * (double)(newU + (header->uScale) * newV)),
SEEK_SBT); .
fread(tcolor,sizecf(double),l,mapFiIe),
fclose(mapFile);
Free(header);
)relurn(color);

void GetUVSphere(n,u,v,surface)

Vector n;

double %

.)

int »surface;

* *

l/;_ Return the uv inverse mapping value for a sphere. X/

Vector cross - (0.0,1.0,0.0); /* VectorCross(pole,equator,cross) */
double alpha,

/**/ beta;

»surface - Q; /* Only one surface ie element 0 */
alpha - acos(Roundoff<-n[Z]));
if(((»v - alpha * Pilnv) — 0.0) || (*v — 1.0))
<

*u - 0.0;

eI()
eta - acos (Roundoff (n[X] / sin (alpha))) * 1.0 * Pilnv ;
if{\'/ecmrDot(cross,n) > 0.0)

u - beta;

e){’e
)u 1.0 beta;

TextureM.c

Appendix A

void GetuvCube(n,u,v,lurface)
Vector nj
double *u#

*Vi
int ‘surface;
10
/% Return the uv inverse mapping value for a cub«.
/**u.*u

if(Roundoff(n[X)) — 0.0)
“u - 1.0 - n[£];

*v - 1.0 - n[Y);
ssurface * 3;

return;
if)(Roundoff tnlY)) — 0.0)
I

*u - n[X];

*v - n{Z];

ssurface « S;

return;
if(Roundoff<n12J) — 0.0)
“u - ntXl;

v - 1.O - n(Y];
«B'urface - 0;

return;
if(Roundoff(n(X]> — 1.0)
v - 1.0 - n[Y);

eu - nfz};

esurface « 1;

return;
if(Roundoff(nlYJ) — 1.0)

- nfXi

v - 1.07- n(Z);

esurface - 4;

return;
if(Roundoff<n(z]) — 1.0)
I

*u - 1.0 - n(X];

*V - 1,0 - Y);
*surface —

)retu rn;

void GetUVCylinder|n,u,v(surface)

Vector
double *u,
*y:
int »sueface;
[+ o]
/* Return the uv inverse mapping value for a cylinder. o/
1* o/
G
if (Roundoff(n[2)) — 0*0)
<
esurface - 1:
v - sqrt(Sqr(n(XJ) + Sqr(n{Y)));
*u - acosin[X] sqrt(sqr(n[X)) + SqrtniY]))) * TwoPilnv;
if<ntY) < 0.0)
\
*u - 1 - *u;
)
)
else
if\(Roundoff(n(ZJ) — 1.0)
ssurface - 2;
ev - 1.0 - sqrt(Sqr(n[X]) ¢ Sqr(n(Y]));
su - acoa(n{X] / sqrt{Sqr(n(X]) f Sqr(niY)))) + TwoPilnv;
if(n|Y] >- 0.0)
(
*u - 1.0 - *u;
else f* intersect« main body »/
esurface - 0;
v - n|ZlI;
*u » acos(Roundoff(nIX])) * TvoPilnv;
if(n (Y] < 0.0)
*u ® 1.0 - "u;
)
I >
void Getuvconein,u,v,surface)
Vector n;
double *ut
*vi
int »surface;
o
1* */
/+ Return the uv inverse mapping value for a cylinder. */
Ie o/

ifiRoundoff(niZ]) — 1.0)

TexturcM.c

Appendix A TextureM.c

*surface - 1;

-v - 1.0 - sqrt(Sqr(n[X]) + Sqr(n[Y)));

*u - 1.0 - acos(n[X] / sqrt(Sqr(n[X]) + sqr(n[Y]))) * TvoPilnv;
if(n[Y] < 0.0)

)*u -1 - ru;

e /» intersects main body */

»surface - 0:
*vo - on[Z];

if{n[Z] 1-0.0)

)

| :

u - acos(Roundoff(n[X] / n[Z])) * TwoPilnyv;
0.0;

] < 0.0)
1.0 - *

u;

void GetUVPyraraid(ri,u,v,surface)

Vector ri; /» intersection point */
double *u,

*y
int »surface;

Return the uv inverse mapping value for a cube.

vector n;
Polygon poly;
PF

if(Roundoff(rl1Y]) — 0.0)

*u - ri[X]
*v - rl[zZ]
»surface -
return;

4

I* front */
if(Roundoff((ri[Y] » 0.44721359499950) - (rl[Z] * 0.894427190999916)) — 0.0)

polyl0][X] -
poly[O0][Y) -
poly[0] 1Z] -
pﬂllyglll)(x) -
poly -
poly 1115.?) -
poly 12][X] -
poly(21(Y1l -
poly12]12] -
n[X] - 0.0;
n(Y) - -0,447213595499958;
n[Z] - 0.894427190999916;
UnitvectoriIn,n
GetUVPoly(n,3,rl,poly,urv);
»surface - 0;

ocroopgrooo
nowOpoooo

)return;

I* right */
if(Roundoff((rI[X] * 0.894427190999916) +

(rI[Y] * 0.44721359499958) - 0.894427190999916) — 0.0)
poly(0)[X] - 1.0;
poly{0]J[Y] - 0,0;
poly[0] [z] - 0.0/
poly[1][X] - 1.0;
poly 11][Y] - 0.0;
polynj tzZ] - 1.0;
poly(2][X] - 0.S;
poly[2]iY] - 1.0;
poly(2)[Z] - 0.5;

n[X] - -0.894427190999916;
n[Y] - -0.44721359499958;
n[z] - 0.0;

GetUVPoly (n,3,rl,poly, u,v) *
‘surface - 1;

}r‘elurn;

I» back */

if(Roundoff((ri[Y] » 0.44721359499958) +

(r11Z] * 0.894427190999916) - 0.894427190999916) — 0.0)
poly[0] [X] - 1.0;
poly[[Y] - 0.0;
poly[[z) - 1.0;
poly 11][X] - 0.0;
poly[1] 1Y] - i .
poly [1] [2] - 1. U
poly[2][X] - 0.5;
poly [2] [Y] - 1.0;
poly 12) [2] - 0.5;
n[XIl - 0.0;
n[Y] - -0.44721359499958;
n[Z] - -0.894427190999916;
GetUVPoly(n,3,rl,poly,u,v);
esurface - 2;

return;

Appendix A TextureM.c

le left o/
if(Roundoff(<ri[X] * 0.894427190999916) - (ri[Y] * 0.44721359499950)) — 0.0)
polytO][X] - 0.0i
poly[O][Y] - 0.0/
poly[O0][z] - 1.0/
poly [1] [X] - 0.0/
poly[1][Y] - 0.0;
poly[1][z] - 0.0;
poly[2] [X] - 0.5;
poly[2] - 1.0;
poly[Z]‘? - 0.5;
n[X] - 0.894427190999916;
n[y] - 447213595499958;
n[z] - 0.0;
GetUVPolyin,3,rl,poly,u,v);
ssurface - 3;
return;

¥

void GetUVPoly(n.numPoints,rl,poly, u,v)
Vector n;
int numPoints;
Point rl;
Polygon poly;
double ot
1

>

lr Get the uv map coordinates for a polygon with numPoints vertices.
*
(lnl i;
double du[3],
dvi3],
trap,
dux,
duy,
dvX,
avy,
kA,
kB;
Point pA,
pB,
pC,
pD;
Vector nA,
nB,
nC,
quX,
quy,
qvX,

*

ke ok K ok ok ok ok ok ok K ok ok ko ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok ko

iftnumPoints ~ 3) /* deal with triangangular polygon */
for (i - X;i < W;it+)

)p0|Y[3][i] - poly[2][i];

fl)lr(i - X< Whi++)

pA[i] -poly[O][i] -poly[I][+ poly[2][ij - poly[3][i];
pB(i] -poly[I][i] - poly[0][ij;

pCli] -poly[3][i] - poly[0][

)PD[I] - poly[o]ti);

/* Get *u */

VectorCross(pA,n, nA);

VectorCross(pC,n,nC);

dU(X] - PointVectorDot(pD,nC)/

dU[Y] - PointVectorDot(pD, nA) + PointVectorDot(pB,nC);
dU[Z] - PointVectorDot(pB,nA);

ifidU{Z] I- 0,0) /* polygon is HOT a parallelogram */

for(i - X;i < W;i++)

qUX[i] - nA[i] / (2.0 * dU[zZ]);
qUYTI[i] - -nC[i] [/ dU[Z];

dUX - -dU[Y] / (2.0 * du[z]);

duy - dUIX] / dU[z];

kA - Roundoff(dUX + (PointVectorDot(rl,qux)));
kB - Roundoff(dUY + (PointVectorDot(rl,quY)));
trap - sqrt (Sqr (kA) - kB);

if(<((*u - kA - tmp) > 1.0) || (*u < 0.0))

kA + tmp;

)’
sl)(e /* polygon is a parallelogram */
*u - (VectorDot(rl,nC) - dU[X]) / (dU[Y] - (VectorDot(rl,nA)));
»

I* Get *v */
VectorCross(pB,n,nB);

dV[XI] - PointVectorDot(pD,nB);

dV[Y} - PointVectorDot(pD,nA) + PointVectorDot(pC,nB);

dV[Z] - PointVectorDot(pC,nA);

if(dV[Z] i- 0.0) /* polygon is NOT a parallelogram */
(i - X5i < Wji++)
GVX[i] - nA{id / (2.0 * dV[Z));
qVY[i] - -nB[i] / dV[Z);

dv)x dv[Y) / (2.0 * dv{z]);

dvy - dV[X] / dV[Z];
kA - dVvX + (PointVectorDot(rl,gVX));

Appendix A

kB - dVY + (PointVectorDot (rl, qVY));
tmp - sqrt(Sqr(kA) - kB);
if(((*v - 1.0 - (kA - tmp)) > 1.0) || <*v < 0.0))

*v - 1.0 - (kA + tmp);

e)se /* polygon. Laa parallelogram */

ev - 1.0 - ((VvectorDot(rl,nB) - dV[X]) / (dV[Y]

e,

(VectorDot(rl.nA)))) ;

TextureM.c

Appendix A

/+ Module: Transfrm (Transform)
//:k Various 3-D transformation functions.

¢include "define.hH
¢include "prim.h"
¢include "ray.h"

extern void PointMatrixMul(Point p,Matrix m,Point newP),
VectorMatrixMul(Vector v,Matrix m,Vector newV);
extern double Roundoff(double nun),
Sin(double num),
Cos(double num);
void Transform(PrimPt prira,Vector a,Vector t,Point pivot,

double rX,double rY,double rZ),

Rotate(Matrix ®,double rX,double rY,double rz),

RotateX (Matrix m,double rX),

RotateY (Matrix m,double rY),
RotateZ(Matrix m,double rz),
Scale(Matrix m.Vector 9),
Translate(Matrix m,Vector t),
TransfonnRay (PriraPt prim,RayPt ray,RayPt

void Transform (prim,a,t,pivot,rX,rY rZ)
PrimPt prim;

Point s,
t,
pivot;
double rX,
ry,
rzZ;

10

newRay);

/* Aquire the data for the scaling, translating, rotating about X Y and
/* axes of the Identity matrix. Place this data into prim.

v,

c,

v,
/**/ tmpPivot;
for(i - X;i < Wji++)

(mpPivct[i] - pivot[i];
tmpPivottij *- —s[il];

ScCale(prim->tranaforra,s);
Translate(prim->transform ,tmppivot);
Rotate(prim-»transform,rX,rY rZ);

Translate(prim->transform,t); /* translate from origin */

void Rotate(m,rX,rY,rZ)

Matrix m;
double rX,
ry,
rZ;

*

/> Rotate the matrix m around the X, Y and Z axes by rX,

iolatex(m,rx);

RotateY (m,rY);
RotateZ(m,rZ);

)

void RotateX(m,rX)
Matrix m;
double rX;

[%nk%e

/* Rotate the matrix re around the X axis by rX degreea.

(’nt i<
double t&n,
Pl

c - Roundoff(Cos(rX));
- Roundoff(Sin(rx));

fu{(i - 050 < 4ji++)
mp -m[i] [Y];

ml[i] [Y] -(tmp « c) - (ratillZ] *a);
rm[i] (2] -(m[i][Z) *c) + (tmp -« a);

rY, rZ degrees.

Transfrm.c

Appendix A

/e *
I» Module: tList */
lf)CVariaus low level functions involving the manipulation of tLists.*/

I !
einclude <stdio.h>

¢include "define.hH

¢include "TList.h"

extern void ‘Malloc(size t size),
Free(void »block),
VectorCopy(Vector from,Vector to);
void TListDel(TListPt ‘tList),
Add(TListPt *pt).
Rill(TListPt ‘pt),
Copy(TListPt ‘from,TLiatPt ‘to),
AddToTList(TListPt ‘tList,double tl,double t2
Vector nin,Vector nOut,int primNum);

extern TListPt tListPos;

void AddToTList(tList,tl,t2,nln,nOut,primNum)
TListPt »tList;

double tl,
t2;
int primNum;

Vector nin,

I Add data to a tList node,
»

(etList) - (TListPt)Malloc(sizeof(TList));
(»tList)->val -t
(“tList)->primNum - primNum?

(»tList)->surfType - Out;
VectorCopy(nln,(»tList)->norm);

(‘tList)->next - (TLiatPt)Malloc(sizeof(TList));
(etList)->next->val - 12
(»tList)->next->primNura - primNum;
(»tList)->next~>surfType - In;

VectorCopy(nOut, (‘tList)->next->norra);

(‘tList)->next->next - NULL;

void TListDel(tList)

TListPt ‘tList; I

lfjc Free the memory being used by a tLiat. */
>,

[?Li tPt tmpPt - NULL;

)
while(‘tList !- NULL)
\
tmpPt — “tList?
etList - (‘tList)->next;

free(tm pPt)?
)

void Copy(from,to)
TListPt »from,
»to;

»

//§< Copy data from on tList to another. :}é/

(

(*to)->val « (‘from)“>val;
(*to)->primNum - (‘from)->primNum;
(*to)->surfType - (»from)->surfType?
VectorCopy((*from)->norm, (»to)->norm);

void Add(pt)
TListPt »pt;

...... A /
k3 L/
/» Add anode to thetList linked list. */
')% * * »i

ListPoB->next - »ptf

tListPos - (*pt)->next;

»pt - (*pt)->next->next;

)lLislPos—>next - NULL;

void Kill(pt)
TListPt ‘pt;

7% * - W ou o Wk ik ok kK kR kR

/» Remove anode from the tList linked list'. */
/*’{_71Pt tmp;
tap - *pt;
*pt - (*pt)->next->next;

Free(tmp->next);
Free(tmp);

TList.c

Appendix A

void RotateY(m,rY)
Matrix m;

double rY;
~M M

Rotate the matrix ra around the Y axis by rY degrees.
(]
MM . MMMMM.MMMM.MMMMMMMMMMMMM .M

R

int i;
double trap,
[

¢ - Roundoff(Coa(rY));
s - Roundoff(Sin(ry));
foa (i - 0;i < 4;i++)
{mp - rali] [X];
re[iJ[X] - (trap * ¢) + On(il[Z] -+ a);
m[i] [Z] - (ra[il[Z] * c) - (trap * s);
1)

void RotateZ(ra,rz)
/O E K e M M M M M M M OM M OMOMOMOM.momom.mommm

]
//:kRolate the matrix m around the Z axis by rZ degrees.

/MMMMMMMMMMMMMMMMMMMMMMMMMMM
Matrix ra;
doluble rz;
int i;
double trap,
g.
P
c - Roundoff(Cos(rz));
A- Roundoff(Sin(rz));

fog (i - 0;i < 4;i++)
{rap -ra(i] {X];

ra[i] [X] -(trap * c) - (ra[i] [Y] * s);
)fa[ij [Yl -(ralil [Y] *c) + (trap * s);
void Scale(ra,s)

Matrix ra;
Vector s;
I/MMMM.MMMMMMMMMMMMM

/* Scale the matrix ra by a factor s.

/mo.m mmmm .mommmommmom .mom
mt i;
for(i - X;i < W;i++)

101 *- s[i];
)ra
)

void Translate(ra,t)
M atrix ra;
Vector t;

//"*Translale the raatrix ra by the factor t.
/M. MMMMMM.MMM..EMMMM.MM>.
nt i;
fog (i - X;i < Wjit+)
m[3][i] +- t[i];
)

»

void TransformRay(prim,ray,newRay)
PriraPt prira;
RayPt ray,

newRay;
/*

I** Given the source of ray <ray->xQ) and a pt .along ray (ra.y->xD) in

L* world coordinates transform ray into the objCoordinatea of prim. As a
/. result of this function xO will contain the source and x| will contain
/' the unit direction vector of the ray in objCoordinate* of prim.

/(MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

ointMatrixMul(ray->xO,prim->inverse,newRay->x0);
VectorMatrixMul(ray->xD,prim->inverse,newRay->xD);

Transfrm.c

Aimendix A

‘A
e Various user interface functions. */

L] -
¢include <dos.h>

#include <epnig*'h>

«include <stdio.h>

einclude <stdlib.h>

einclude “"define.h"

edefine WAIT while(getchO 1- (char)27)

Int KBEmpty(void);

void ClearBuffor(void),
Error(char 'jmsg),
Messags(char »mag),
ExitOnSflcivoid)t
W aitForEsc(void) m

int KBErapty(void)

/¥ Return TRUE if keyboard is empty, FALSEotherwise,)

[o

Qnion REGS xr;

xr.h.ah - 1;

int86i0xi$,ixr, «xr); /* zF is bit 3 of REGS.x.flogs */
)relurn((xr.x flags 1 (Cix4)) 1- 0);

void ClearBuffer(void)
1, clearkeyboardbuffer. =L
2 Y

t

union REGS xr;
xr.h.ah - 0xOc:
xr.h.al - 0x0;
)int86(0x21.«><r,ixr)t

void Error(msg)
7“315*2?3,&1 *
/ o

()
;' Print resgandex itfroffi the prograre. *
.

printf {wlsH>raag);
WAIT;
exit(l);

void Messageinuj)

char .fnsg;

T .

/* Clear screen and print mag. o/

ciracro |
printf ("wait.
\prin!f (Mn\n\n% s*\m»g) *

void ExitCfnEsc (void)

program execu ey is

’III
if(!KBEmpty() «« ((getchO) — (char)27)>

1)

exit (1);

void WaitForEsc(void)

key to be hit.

User

io.e

