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Abstract

The development of a fibre optic oxygen sensor based on the fluorescence quenching of 
ruthenium complexes entrapped in a sol-gel-derived microporous silica film is presented. The 
sensor is based on evanescent wave excitation of the sol-gel film which is coated on a declad 
portion of optical fibre. Theoretical considerations concerning the efficiency of evanescent wave 
excitation of fluorescence and its collection are discussed in detail. Experimental measurements 
which investigate these predictions are presented. The principles of fluorescence quenching are 
outlined and sensing based on measuring fluorescence intensity or fluorescence decay time are 
described. In particular the advantages of the phase fluorimetric method of decay time 
monitoring are highlighted. The ruthenium complex [Ru“-tris(4t7-diphenyl-1,10-phenantroline)] 
was chosen for this work and was immobilised in a microporous glass, produced by the low 
temperature sol-gel process. The advantages of using this method of reagent capture are 
explained and the method of sensor fabrication described. A number of experimental systems 
have been employed. The progress from an air-cooled argon-ion laser/PMT characterisation 
system to a compact LED/photodiode system is detailed. The oxygen sensor was found to 
exhibit fast response times of less than 5 seconds, high sensitivity to oxygen and good 
repeatability. Sensor response, including dependence on oxygen concentration, temperature and 
humidity are discussed and the viability of manufacturing this type of sensor as an industrial 
product is examined. In addition, related work leading to the development of fluorescence-based 
evanescent-wave immunosensor is presented. Lactate dehydrogenase, a clinically important 
diagnostic marker enzyme, is detected in concentrations as low as 30ng/ml.
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Chapter One - Introduction

1.1 Introduction

The word ‘sensor’ is derived from sentire meaning ‘to perceive’. A sensor is a 

device capable of continuously recording a physical parameter or the concentration of a 

chemical or biochemical species. The industrial field has always been dependent on 

sensors for the measurement of physical parameters. For this reason, the technology of 

sensors and transducers has a long tradition. Wilhelm Von Siemens built one of the first 

sensors in 1860, when he made use of the temperature dependence of a resistor made of 

copper wire for temperature measurements. Between 1920 and 1940, the intensive 

expansion of large scale processes created problems in measurement and control 

technology. However, the development of semiconductor technology in the 1950’s 

enabled electronic signal processing and control techniques to be established. Since this 

time the sensor market has thrived.

A sensor provides a usable output in response to a specified measurand. In 

terms of analogue and digital electronic instrumentation, a usable output has to be some 

form of electrical signal which lends itself to digital processing or data acquisition. It is 

generally the case that the specified measurand is inherently different from the desired 

output signal. Thus to convert the former quantity to the latter, at least one transduction 

principle is required to make the sensor work. The sensing process can be explained in 

terms of conversion of energy from one form to another as illustrated in figure 1.1. These 

transduction principles are physical or chemical effects. In 1984, Schubert compiled a 

dictionary containing more than 350 such effects [1]. It is convenient to group these 

effects in terms of the form of energy in which the signals are received and generated. 

The six classes of signals with some examples are shown in table 1.1.

figure 1.1 The sensing process
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Energy Sensing parameter

Mechanical length, area, volume, force, pressure, acoustic wavelength and intensity

Thermal temperature, entropy, heat flow, conduction

Electrical voltage, current, charge, resistance, capacitance, polarization, electric field

Magnetic field intensity, flux density, magnetic moment, permeability

Chemical composition, concentration, reaction rate, pH

Radiant intensity, phase, wavelength, polarization, fluorescence lifetime, 
fluorescence, reflectance, transmittance, refractive index

table 1.1 Sensing parameters associated with various energy forms.

The classification of sensors may also be achieved using the energy labels of 

table 1.1. In recent years there has been considerable emphasis on research and 

development of sensing techniques based on radiant or optical effects. Optical sensors 

have many operational advantages over other methods. These advantages include:

i) Optical sensors do not present a significant risk of sparking, and are

therefore more suitable for use in potentially explosive areas e.g. mining and petroleum 

industries.

ii) Because the primary signal is optical, it is generally not subject to 

electrical interference.

iii) Analysis may be performed in real-time.

iv) The ability to measure the radiant parameters listed in table 1.1, offers an 

extensive range of possible measurands e.g. position, temperature, chemical composition, 

sound, radiation, vibration, electric and magnetic fields

v) As well as the ability to carry out point sensing, optical sensors offers the

ability to perform open path sensing. This offers advantages in certain applications

including a reduction in maintenance and installation costs.

vi) The ability to use optical fibres in conjunction with optical sensors offers 

the possibility of miniaturisation, remote sensing, distributed sensing, invasive sensing as 

well as many other advantages inherent in optical fibre use (see section 1.2).
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However, optical sensors are not without some disadvantages, among which 

are the interference of ambient light, the lack of light sources in the UV to IR spectrum, 

and the expense of certain optical components. In the specific case of optical chemical 

sensors, disadvantages may also include the ability to successfully immobilise reagents, 

the long term instability due to reagent washout or photobleaching and the lack of 

selective indicators for various analytes of interest. Despite these and other limitations, 

optical sensors have the potential of becoming an attractive alternative to other sensing 

methods and to perform diagnostic, environmental, or clinical functions better, faster, 

more accurately, and less expensively than existing approaches.

1.2 Optical fibre sensors

The availability of optical fibres has had a significant impact on some scientific 

disciplines including that of optical sensing. Optical fibres became widely available for 

use, as an offshoot of the communications industry which emerged in the late 1960’s. An 

optical fibre is a thin low loss glass rod, in which total internal reflection of a beam of 

light entering at one end, causes the beam to be transmitted completely along the fibre. 

Step index fibres consist of a core of refractive index m, surrounded by a cladding of 

lower refractive index n2, as illustrated in figure 1.2. Several other new technologies have 

accelerated the development of fibre optic sensing. Lasers are now available for routine 

applications, the range of light emitting diodes (LED’s) covers the 400 to lOOOnm 

spectrum with some also available in the mid-IR. Photodetectors and amplifiers have

n
m ---------

n2 ■ ----------------------------

1.0 •  ---------------------------------

a b
r

figure 1.2 Variation of the index of refraction n with the radius r of an optical 
fibre
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become routinely available at low prices. Optical fibres are ideal for sensor systems 

because they are immune to electromagnetic interference that is present in the industrial 

environment. Among the advantages of using optical fibres for sensing purposes are that 

they are easy to install, they are non electrical, small in size and can be interfaced with 

data communications systems if required.

Fibre optic sensors can be divided into two basic categories: phase-modulated 

and intensity modulated sensors [2]. Intensity modulated sensors detect a change in the 

amount of light that is a function of a perturbing environment as illustrated in fig 1.3(a). 

The change in the amount of light can be associated with transmission, reflection, 

absorption, scattering or fluorescence within the fibre. Phase modulated sensors have 

attracted considerable research attention because of the extremely high sensitivity 

achievable using this approach. Generally, the sensor employs a coherent laser light 

source and two single mode fibres. The light from the laser is then split as illustrated in 

figure 1.3(b) and launched into each fibre. If a measurand perturbs one fibre relative to 

the other, a phase shift occurs that can be detected very precisely. The four better known 

interferometric configurations are the Mach-Zehnder, the Michelson, the Fabry Perot and 

the Sagnac.

Optical fibre chemical sensors, which are sensors based on the detection and 

determination of chemical species combine the advantage of the optical fibers with the 

specificity of chemical reagents for the analyte species of interest. A thorough review of 

optical fibre chemical sensors has been carried out by Wolfbeis [3,4]. Optical fibre 

chemical sensors may be categorised as intrinsic or extrinsic sensors. An extrinsic fibre 

sensor uses the optical fibre purely as an optical signal carrier and often requires coupling 

optics to interact with the optical sensing device. Extrinsic fibre optic chemical sensors 

have been designed to measure or detect temperature [5], oxygen [6], pH [7], as well as 

many other chemicals. An intrinsic optical fibre chemical sensor on the other hand, is one 

in which the light is perturbed within the fibre, by the parameter to be measured. The
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fibre itself is an integral part of the sensing device. Diagrammatic representations of both 

an intrinsic and extrinsic fibre optic chemical sensor are shown in figure 1.4. Examples of 

intrinsic fibre optic chemical sensors are i) refractometric sensors which can be used to 

measure e.g. liquid levels, concentration of dissolved solids or the moisture content of 

skin [8], ii) core-based sensors developed to sense e.g. relative humidity [9] and ammonia 

[10], and iii) evanescent wave sensors [4, 11], Evanescent-wave interactions forms the 

basis of the work described in this thesis.

The evanescent wave is a consequence of total internal reflection and can be 

generated at the interface between any two dielectric materials such as the core/cladding 

interface of an optical fibre. The motivation for using the evanescent wave approach in 

fibre optic sensing, is derived from a number of advantages offered by the technique in

figure 1.3 (a) Intensity sensor (b) phase modulated sensor
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particular applications [10]. These advantages include: i) the absence of coupling optics,

ii) the confinement of the evanescent field to a short distance from the guiding interface 

thereby enabling discrimination to a large extent between surface and bulk effects, iii) the 

possibility of carrying out full or quasi-distributed sensing, iv) the ability to control 

interaction parameters such as interaction length, sensing volume and response time. 

Evanescent-wave spectroscopy is treated in detail in chapter 2.

figure 1.4 (a) Extrinsic and (b) Intrinsic fibre optic chemical sensors

1.3 Oxygen sensing

The principal gas hazards encountered in confined places, mining tunnels and 

heavy industries are a lack of oxygen, and the presence of flammable or toxic gases. In 

the industrial sector, oxygen detection is important both for anaerobic processing and for 

quality control (e.g., for monitoring combustion efficiency in car engines [12]). The 

detection of molecular oxygen, both gaseous and in solution is also of great importance 

for environmental and biomedical analysis. In the environmental field the concentration of 

dissolved oxygen in surface water is directly related to the presence of phosphates and 

nitrates, so that its measurement can give an estimate of pollution of the ecosystem. In 

the biomedical field, the measurement of the oxygen partial pressure of blood allows the 

diagnosis of pulmonary diseases and diseases of the respiratory system. Its monitoring is 

also very important during surgical operations. Moreover, by oxygen measurements it is 

possible to detect, in an indirect way, many important physiological parameters, such as 

glucose [13], cholesterol [14], and lactate [15].
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The main criteria required for an oxygen gas sensing device may be 

summarised as follows:

i) Regions of interest in oxygen gas sensing include the 17% to 23% region 

important for personal monitoring systems. Normal oxygen concentration in the air is 

20.9%. Oxygen deficiency is a cause of death resulting in the importance of providing an 

alarm before oxygen levels become too low. Crowcon Detection Instruments provide an 

alarm at 18% - 19% since at oxygen levels below 17% abnormal behaviour is likely to 

occur [16]. The enrichment of oxygen in the atmosphere is also dangerous. Oxygen 

becomes toxic at high concentrations and the flammability of materials also increases. 

High oxygen concentration alarm level is normally 23% [16]. Other oxygen 

concentrations of interest include the 0% to 5% range required for monitoring anaerobic 

processes and the 95% to 100% range which is important for aerobic processes. 

However, there also exists the necessity for sensing oxygen concentrations other than 

these regions for specific industrial processing requirements. In most applications the 

oxygen sensing device would require a measurement accuracy of at least 0.5% of oxygen 

concentration.

ii) Fast response times of the order of a few seconds are required, especially for 

the personal monitoring system. Commercial literature for a Citicel electrochemical 

oxygen cell quotes a response time of >20secs, for a 95% signal response in the 0% to 

25% range [17].

iii) A problem with many types of sensors is their lack of immunity to ambient 

temperature variation. Citicel quotes a 0.2% signal change per degree Celsius in the 

temperature range from -15°C to +40°C for a specific oxygen sensing electrochemical 

cell.

iv) The response of the sensor should be independent of the presence of other 

gases. CO2 is a particular problem in the case of electrochemical cells as described below.

v) The sensor response should be repeatable with oxygen concentration, 

exhibiting high long term stability, resulting in ease of sensor calibration.

vi) Fabrication of the sensing device should be compatable with large scale 

manufacturing.

One of the most common laboratory methods of measuring dissolved oxygen 

concentration is the Winkler method [18]. The sample being tested is treated with an
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excess of manganese(II), potassium iodide and sodium hydroxide. Manganese(II) 

hydroxide is formed and reacts with the dissolved oxygen to give manganese (III). When 

acidified, the manganese(III) oxidises iodide to iodine. The liberated iodine can be titrated 

using a standard procedure. However, to achieve accurate results the concentration of 

oxygen in the sample has to remain constant for the duration of the titration. The major 

problem is that the procedure is quite lengthy. An alternative method of oxygen detection 

was developed by L.C. Clark in 1956. It consisted of an electrode that could measure the 

partial pressure of gaseous oxygen, and of oxygen in solution by measuring the current 

flow between electrodes [19]. Clark cells are to-day the most common device used to 

detect and measure oxygen concentration. A schematic drawing of a typical Clark 

electrode is shown in figure 1.5 [17]. At the cathode, oxygen is reduced to hydroxyl ions 

according to the equation

0 2 + 2H20  + 4e 4 0 H 1.1

The hydroxyl ions in turn oxidise the metal anode according to the equation

2Pb + 40H ' -» 2PbO + 2H20  + 4e 1.2

Anode

< z >

Load resistor

Electrolyte Cathode

Diffusion barrier

}  Air supply

figure 1.5 Clark electrode
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The current produced is proportional to the rate of consumption of oxygen, and the 

oxygen permeability of the diffusion barrier. The response time of the sensor is also 

limited by the diffusion barrier. Problems associated with the use of such electrodes are as 

follows:

i) The cells have limited lifetimes and require replacement when the lead anode 

has been totally oxidised. This lifetime varies with cell usage and typical lifetimes are in 

the range of 1 to 2 years.

ii) When the carrier gas mixture has a mean molecular weight significantly 

different from nitrogen, a calibration of the output signal has to be carried out. This is due 

to the different diffusion rates caused by the molecular weights involved (Graham’s law).

iii) Acid gases such as CO2 and SO2 can be slightly absorbed by the electrolyte 

and tend to increase the flux of oxygen to the electrode. This results in an enhanced 

output signal.

iv) The cells cannot be used in conditions where condensation may occur. 

Under these conditions, liquids may form in the region of the gas access holes within the 

membrane, and this may restrict the flow of O2 to the sensor.

v) Oxygen is consumed during detection, and this can have undesirable effects 

when small volumes of gas are under investigation.

vi) The signal from a typical cell is slightly non-linear and can be described 

using the following expression

where S is the output signal, C is the fractional concentration of oxygen, and K is a 

constant that varies from cell to cell.

Optical oxygen sensors offer a number of advantages over amperometric type 

electrodes such as the Clark electrode. These include small size, lack of oxygen 

consumption and reference cells, and immunity against sample flow rates [3], In 1968,
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Bergman described one of the first oxygen sensors based on fluorescence quenching of 

long lifetime fluorescence compounds [20]. He used the polycyclic aromatic compound 

fluoranthene as an indicator. In the past few years, a number of groups have published 

works describing the use of optical fibres in monitoring oxygen gas and dissolved oxygen 

in water. In most of these investigations, absorption dyes [21,22] or fluorescence type 

indicators [6,23,24] have been immobilised in an organic matrix and attached to an 

optical fibre. The quenching of fluorescence is the process by which a fluorophore 

molecule is de-excited by collision, or other means, resulting in non-radiative decay of the 

excited state. The quenching of fluorescence can then be correlated with oxygen 

concentration. For fluorescence compounds with long excited-state lifetimes, the 

probability of a collision that will result in quenching is much higher than for one with a 

short lifetime. An increasingly important class of fluorescence indicators used in these 

sensors has been luminescence transitional metal complexes, especially those of 

ruthenium. Ruthenium complexes known as metal to ligand charge transfer (MLCT) 

materials (see chapter 3), have long lifetimes (in the order of hundred of nanoseconds to 

tens of microseconds) and high quenching efficiencies which make them suitable for 

oxygen sensing. The photo-physical and photochemical properties of these compounds 

have been extensively studied by Demas et al. [25].

One of the problems associated with most of the optical oxygen sensors has 

been poor chemical and photochemical stability of the sensors due to the use of polymers 

as host materials for immobilisation of fluorescence indicators. For example, both 

polystyrene and polyethylene degrade when exposed to environments containing organic 

solvents or temperatures above 60°C. Both polymers fluoresce in the blue or violet when 

exposed to UV radiation. The development of inorganic host materials with superior 

chemical and photochemical stability and good optical properties for immobilisation of 

organic dyes for sensor applications, has been the subject of much research during recent 

years. One of the more promising approaches is the use of the sol-gel process for the 

encapsulation of optically active organic compounds into a silica glass matrix. Compared 

to polymers, glass provides improved properties as a sensor substrate, such as high 

surface area, ruggedness, high chemical, photochemical and thermal stability and low
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absorption in visible and near infrared range. This approach for reagent immobilisation is 

pursued in the work reported in this thesis.

1.4 The sol-gel process

The sol-gel process is a method of preparing glasses and ceramics at near 

ambient temperature by hydrolysis and polymerisation of organic precursors [26]. 

Materials can be prepared in a variety of forms (i.e. bulk, powder, wire, aerogel, 

monolith, fibre, thin film etc.) with a wide range of optical, structural and electroceramic 

applications. The process typically involves a metal alkoxide, water, a solvent and 

frequently a catalyst, which are mixed thoroughly to achieve homogeneity on a molecular 

scale. Chemical reactions (hydrolysis and polymerisation) lead to the formation of a 

viscous gel, which is an amorphous porous material containing liquid solvents in the 

pores. Low temperature (typically < 100°C) curing expels most of the liquids and leaves 

the porous oxide. Further curing at higher temperatures leads to the densification of the 

material. Silica, titania and silica-titania thin films and monoliths can be routinely 

fabricated by this process. The sol-gel process is particularly attractive in that it allows 

the user a great deal of flexibility. By alteration of the process parameters and precursors, 

it is possible to alter a range of material properties such as refractive index and porosity 

[26], The sol-gel process provides a means of coating an unclad optical fibre with a 

porous cladding, within which an analyte-sensitive reagent is entrapped [27]. Under 

appropriate process parameters the reagent cannot be leached out, but smaller analyte 

molecules can permeate the interconnecting microporous pores. The sol-gel produced 

thin films offer many advantages over other immobilisation techniques [10]:

i) Sensor fabrication is simple and involves straight-forward dip-coating of the 

unclad optical fibre followed by curing at low temperatures.

ii) Curing produces a tough, inert porous film which is considerably more 

resistant than alternative polymer films.

iii) The flexibility of the sol-gel process enables a range of critical sensor 

parameters to be optimised, including the coating speed which determines the coating 

thickness [25],
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iv) The technique is particularly suited to gas sensing because the high specific 

area (i.e. 100m2/g) of the microporous structure enhances the sensitivity considerably.

The application of the sol-gel process to fibre optic chemical sensors was first proposed 

by Badini et al. [28] in 1989, followed by Zusman et al. [29] in 1990. In Badini’s work, 

silica gel incorporating fluorescein isothiocyanate was prepared and coated on a silica 

glass slide and used as a pH sensitive substrate. However, cracks developed for most of 

the coatings when heated, and difficulties in the detection of any spectral change were 

also reported in their work. The idea of using the sol-gel coating technique for application 

in fiber optic chemical sensors was finally accomplished by two groups in 1991, one by 

MacCraith et al. [30] and the other by Ding et al. [31]. Both these groups developed fiber 

optic pH sensors which were the first intrinsic fiber optic chemical sensors prepared by 

the sol-gel technique. MacCraith’s group immobilised the pH sensitive fluorescent 

indicator fluorescein on a silica fibre. The pH range of interest in their work was in the 

region of pH3.5 - 6.5. In the approach taken by Ding et al. two absorption type pH 

indictors (bromocresol green and bromocresol purple) were co-immobilized into silica 

gel, which was then coated as a thin film onto a porous core silica glass fiber. A dynamic 

range of pH3-9 was achieved in this work. The work presented in this thesis describes the 

sol-gel method of immobilisation of fluorescent dyes, for the sensing of gaseous oxygen.

1.5 Thesis overview and objectives

In defining the objectives of this project it should be noted that industrial 

sponsorship was provided by Sieger Ltd., Poole, England. It was crucial that the 

completed oxygen gas sensing devices were miniature so as to allow portability, suitable 

for personal sensing devices. The possibility of carrying out battery operation would also 

be envisaged. Sensor performance, in particular sensitivity to gaseous oxygen and sensor 

response time of the completed device, should compare favourably to the specifications 

of currently available electrochemical cells, which were outlined in section 1.3. Both 

temperature and relative humidity studies of the oxygen sensor were to be performed.

The work presented in the thesis describes the development of fibre optical oxygen 

sensors based on evanescent wave excitation of a ruthenium complex entrapped in a thin
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microporous coating fabricated by the sol-gel process. The sensors are based on the 

quenching of fluorescence from ruthenium complexes. A laboratory based 

characterisation system, using an argon-ion laser as excitation source, PMT as detector 

and a commercial lock-in amplifier is described. The fluorescence intensity is monitored 

as a function of oxygen concentration. The same system is tested in phase fluorimetric 

mode. The detected phase shift as a function of frequency, is compared to the 

fluorescence lifetimes of the immobilised ruthenium complexes. Comparison between 

fluorescence intensity and phase fluorimetric operation is carried out as a function of 

frequency. The development of a portable version of the sensor, using a high intensity 

blue LED source, and photodiode detection is then described. The miniaturised hand-held 

oxygen gas sensor exhibits fast response times of less than 5 seconds, high sensitivity to 

oxygen and good repeatability. Sensor response, including linearity to oxygen 

concentration, temperature response and humidity dependence are discussed, and the 

viability of using this type of sensor for industrial production is examined. Finally, the use 

of the evanescent wave technique for carrying out immunoassays is treated in the final 

chapter.
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Chapter Two - Evanescent Wave Sensing

2.1 Introduction

Newton [1] was one of the first to note the existence of the evanescent field. He 

observed that total internal reflection in a prism could be frustrated by bringing a second 

prism close to the point of total reflection. This phenomenon is today known as frustrated 

total reflection (FIR). However, the properties of the evanescent wave were not 

discussed in detail until 1933, when Taylor [2] outlined the potential of the evanescent 

wave for spectroscopic and refractive index measurements. In the early 1960’s Fahrenfort 

[3] and Harrick [4] used total internal reflection as a spectroscopic tool and developed 

what is today known as internal reflection spectroscopy (IRS). Harrick described IRS as 

the technique of recording the optical spectrum of a sample material that is in contact 

with an optically denser but transparent medium. Their published work sparked off a 

flurry of research into internal reflection spectroscopy, which also became known as 

attenuated total reflection (ATR). The sensitivity of ATR spectroscopy is normally much 

less than conventional direct absorption spectroscopy because the interaction occurs at 

the point of total internal reflection over a relatively short path length. Increasing the 

number of interaction points, however, increases the sensitivity of ATR in an analogous 

way to increasing the path length in direct absorption. Optical fibres and waveguides are 

ideal substrates of use in ATR spectroscopy, because light propagates by means of total 

internal reflection with a high number of reflections per unit length. An optical fibre has a 

definite advantage over the planar geometry in this regard, since the internal reflections 

are confined to two of the three dimensions rather than one. Two distinct approaches 

may be adopted in evanescent wave sensors. Firstly, the evanescent wave can interact 

directly with the analyte if the interrogating wavelength coincides with the absorption 

band of the species. Such direct spectroscopic evanescent wave sensors are of particular 

interest in the infrared region, where many species absorb strongly. In 1987, Tai et al. [5] 

demonstrated evanescent wave absorption, to determine the concentration of methane 

gas, using a tapered optical fibre. This work was followed by a large number of others, 

using both visible and infra-red transmitting fibres for liquid and gas sensing. In 1994 

Sanghera et al. [6] published work in which telluride glass fibres were used, to measure
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the evanescent absorption spectra of water, methanol, isopropanol, acetone, ethanoic 

acid, hexane and chloroform. An alternative sensing technique to direct spectroscopy is 

the use of an intermediate reagent which responds optically (e.g. by fluorescence, or 

absorption change) to an analyte. This analyte is attached to the waveguide to carry out 

reagent-mediated sensing. The main thrust of the work described in this thesis, is based 

on the use of such analytes or dyes, whose fluorescence characteristics alter in the 

presence of a measurand. This family of optical sensors is known as evanescent wave 

fluorosensors.

2.2 Review of sensors based on evanescent wave excited fluorescence

Evanescent wave fluorosensors based on the principle of total internal reflection 

were first described by Hirschfeld [7] in 1965, wherein fluorescein was excited using the 

planar geometry of either a prism or waveguide. Kronick et al. [8] in 1975 and 

Sutherland et al. [9] in 1987 used evanescent wave excitation, but collected the 

fluorescence emission in free propagation. Evanescent excitation and evanescent 

collection using an optical fiber was first proposed by Block and Hirshfeld in 1984 

[10,11]. In 1985, Sutherland et al. [12] and Andrade et al. [13] described 

fluoroimmunosensing experiments in which serum- or water-based samples replaced a 

conventional cladding. The subject of evanescent-wave theory is reviewed by Harrick 

[14] and a detailed description of the optical characteristics of optical fiber evanescent 

wave fluorosensors is described by Wise and Wingard [15].

2.3 The evanescent field

An evanescent wave is generated when the conditions for total internal reflection 

are satisfied. Although geometric optics provide the conditions for total internal reflection 

to occur, it offers no explanation of the phenomenon or any information about the energy 

distribution at reflection. The results of electromagnetic theory must be applied to the 

case. A representation of a plane wave reflection at an interface is shown in figure 2.1. 

The monochromatic incident plane wave shown is polarised normal to the plane of 

incidence. In order to obtain a mathematical description of what occurs at the interface, it 

is convenient to take the simple case of linear, isotropic, homogeneous and non-magnetic
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nt > n2

Medium 1

figure 2.1 Plane wave reflection from a dielectric interface is 
represented in terms of the E, H and k vectors (®  represents 
the direction perpendicular to the page)

dielectric media. The incident (i), reflected (r) and transmitted (t) plane waves are then 

represented by the following equations:

E, = A , .e- ;(k' r- “ ' ) 2.1

E , = A ,-c _-'<k,r"“ ‘) 2.2

E, = A ,.< r ''(k' ™ 0 2.3

where A is the electric field amplitude, k is the propagation vector of the plane wave with 

angular frequency co, the components of r specify the co-ordinate point at which the field 

is observed and t is the time. Using Maxwell’s equations, it can be shown that the 

tangential components of the E and H fields must be continuous across the boundary 

between the two media i.e. the phase variation along the interface must be the same for 

the incident, reflected and transmitted fields. That is, at the interface and neglecting time 

variance

k, r = kr r = k, r 2.4
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Each wave propagation vector may be resolved into cartesian components kx, ky and k2

where x and z are oriented as in figure 2.1 and y is the direction perpendicular to the

page. The interface is defined as the yz plane at x = 0. The co-ordinate system has been 

drawn with the incident k vector in the xz plane, and therefore the y component of kj is 0. 

In this situation the phase variation along the interface depends only on z. Equating the 

phases of the incident, reflected and transmitted waves at the interface results in

fc, sin0; = kr sin0r = k, sin0( 2.5

which are the z components of the incident, reflected and transmitted vectors 

respectively. Since the incident and reflected waves are in the same medium, kj = kr, we 

can conclude that

0,. = 0 r 2.6

i.e. the reflected and incident angles measured with respect to the normal are equal. 

Further, using the relation km = 2nnJXo (where km is the plane wave propagation 

constant in medium m, nm is the refractive index of the medium and the subscript m 

denotes medium 1, or 2) and equation 2.5, it can be shown that

n ,s in 0 ; — n2sin0,
2.7

«

=>sin0( = n12sin0;

which is commonly known as Snell’s law.

Total internal reflection occurs at the interface between two media where n2 is less 

than ni. This happens in a step-index fibre at the core-cladding interface. As the angle of 

incidence, 0*, is increased, the transmitted angle, 0t , also increases. When ni > n2 , 0t is 

greater than 0i. There is therefore a critical angle of incidence, 0C, for which 0t = 90°. 

For incident angles greater than this critical angle, no light propagates into medium 2. 

The equation for the propagation vector in medium 2 is
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kr = ktx+ktz = kt cos0( + k, sin0, 2.8

Using Snell’s law and the trigonometric identity cos20 + sin20 = 1, we may write1 cos0t = 

[1 - (ni2)2 sin20i)]1/2. The x and z components of the propagation vector of the transmitted 

wave can then be described in terms of the angle of incidence and the refractive indices of 

media 1 and 2

kb = fc,sin0( = ktnn  sin0. 2.9

ka = &( cos0, = A:,(l-nn 2 sin2 0 ;)1/2

= fc,/212(sin20 c - s i n 20 ;)
1/2

2.10(a)

2.10(b)

For incident angles 0i greater than the critical angle, 0C, where 0C = sin'1(n2i), the x

component, kta, of the propagation constant is complex and may be written as i8 where 8

is real. The transmitted wave electric field is then given by

E, = A, V ' < ^ si,'(9'>z- ““>e±8* 2.11

where

8 = A:((n[22 sin20 ; - l ) 1/2 2.12

8 is known as the attenuation constant and can take positive or negative solutions. The 

solutions are physically constrained such that the product 8x is negative; otherwise the 

field would increase exponentially with distance into the second medium. This solution 

describes a non-propagating electric field which decays exponentially in medium 2. The 

exponentially decaying field is called the evanescent field. The penetration depth of the

1 n12 = ni/n2 and n2i = n2/nt
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evanescent field dp , is defined as the distance required for the electric field amplitude to 

fall to exp(-l) or 37% of its value at the interface and is expressed as

= Ì 2nn2 (nl22 sin2 0 - 1)1/2
2.13(a)

2 q  \ 1/227tn1 (sin 0 -  sin 0 c )
2.13(b)

where kt has been written in terms of the free space wavelength Xo. The direction of 

propagation of the evanescent field is parallel to the dielectric interface, as indicated by 

the arrows in figure 2.2.

In evanescent wave sensing, it is often important to optimise penetration depth to 

achieve high sensitivity. According to equation 2.13, the factors that influence the 

penetration depth are the wavelength of the incident light, the refractive index ratio and 

the launch angle 0*. Although dp is typically less than Ao, it is clear from equation 2.13(b) 

that its value rises sharply as the angle of incidence approaches the critical angle 0C = sin' 

^ 21, indicating the transition from an evanescent wave to a refracting wave in the 

surrounding medium. Figure 2.3 illustrates the dependence of penetration on angle of 

incidence for various refractive indices. It is clear from the graph that the penetration

figure 2.2 The field amplitude of the evanescent wave decays exponentially further 
from the media interface, its direction of propagation is parallel to the interface as 
illustrated [16],
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figure 2.3 Penetration depth dependence on incident angle for various refractive indices 
as shown. ncore = 1.46, wavelength of incident light 450nm.

depth is maximum when the angle of incidence approaches the critical angle. This 

dependence will be taken into account in the design of the optical system which is 

described in chapter 5.

2.4 Evanescent wave interactions

The penetration of the evanescent field into the rarer medium as described above 

may lead to evanescent wave interactions. There are two distinct ways in which 

perturbations of the evanescent fields can result in a reduction of the reflected optical 

power. These are frustrated total reflection (FTR) and attenuated total reflection (ATR). 

If a lossless dielectric with a refractive index n3 overlaps the exponentially decaying field 

in medium two and if n3 > nisinOj, where 0; is the angle of incidence of the wavefront, 

then the evanescent condition is not satisfied and kz in medium 3 is real. Therefore the 

wave propagates in medium 3. This reduces the intensity of the reflected wave and so the 

reflection condition is frustrated. By controlling the distance between medium 1 and 

medium 3, or the angle of incidence of the plane wave, the amounts of transmitted and 

reflected light may be adjusted [14,17].
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The case of ATR is depicted in figure 2.4, where medium 3 is replaced with an 

absorbing medium with a complex refractive index n3, with real component n3r < nisin0j. 

The reflected wave is attenuated as the lossy medium absorbs a portion of the optical 

power through interaction with the evanescent field. Power absorption is a function of 

the absorption coefficient of the material and the depth of penetration of the evanescent 

field in the medium. The evanescent wave can also be used to excite electronic transitions 

in molecules located sufficiently close to the waveguide, while molecules located at 

distances large reladve to dp will not experience the evanescent wave, and so remain 

unaffected. If the absorbing species are capable of re-emitting the absorbed energy by 

means of fluorescence decay, then the evanescent wave may be employed as an excitation 

source. This technique is often referred to as total internal reflection fluorescence (TIRF). 

In this situation medium 2 is normally very thin compared to medium 3 as illustrated in 

fig 2.4, or else does not exist. A review of the theory behind this phenomena forms the 

basis for the next section of this thesis [17].

figure 2.4 ATR geometry, ni sin0|> n2 >n3r [17].
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2.5 Theory of Evanescent W ave Excitation and Detection of Fluorescence

2.5.1 Introduction

Love et al. [19] used ray-optics to analyse the excitation and collection of 

fluorescence from thin coatings on short optical fibre probes. The theory developed, in 

his work was shown to be in good agreement with experimental results. However, the 

approach is accurate only when the waveguide diameter is very large compared to the 

wavelength of light. A review of this work is carried out in section 2.5.2. A more 

complete approach based on the electromagnetic wave theory was described in 1988 by 

Marcuse using the weakly guiding approximation for optical fibres [20]. His results were 

applied to a sensor described by Lieberman at al. [21], from which agreement between 

theory and experiment was within an order of magnitude for a single experimental data 

point. The development of Marcuse’s model is outlined in section 2.5.3. Marcuse’s 

model, however, can not predict the behaviour of a fibre that has a large difference 

between the core and cladding indices of refraction. More recently, however, Marcuse’s 

model has been extended by Egalon to include the case of waveguides with arbitrarily 

large refractive index difference [16]. He has calculated evanescent power collection 

efficiency using the exact field solution of the optical fibre. Egalon’s work is described in 

section 2.5.4.

2.5.2 Evanescent coupling efficiency - geometric optic approach

A detailed description of the physical parameters involved in developing a model of 

evanescent wave excitation and fluorescence detection was carried out by Love et al. in 

1991 [19]. In this model, a cylindrical sensor is approximated as a planar interface where 

the waveguide diameter, d, is much greater than the wavelength of light. It is also 

assumed that a geometrical ray optics approach is valid. The fluorescent molecules are 

situated on the lower refractive index side of the planar dielectric interface. In the absence 

of absorbing molecules, light is reflected off the interface for incident angles 0i > 0C, so 

that total internal reflection occurs without loss of power. However, power may be 

removed from the incident beam as a result of the interactions between evanescent field 

and the electric dipole moments located in the medium of lower refractive index. The 

power absorbed from a ray, is calculated using the magnitude of the electric field
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obtained from the Fresnel transmission coefficients, and the optical absorption coefficient 

of the fluorescent medium. Assuming each ray to be randomly polarised as it approaches 

the interface, and using Beer-Lambert’s absorption law, an expression for the local power 

absorption, Pahs, at a distance 8 from the interface and for a ray at incident angle 0, was 

derived [19]

Pabs ( 5 ; 0 )  =  2 y /  COS0

nl2 exp^-28  ^

v dr y
nl2 - 1 [l + g(9)] 2.14

with

l + s(0) =  ! + W ^ - l  2 . 1 5

(n12 + l)sin  0 - 1

where y  is the absorption coefficient for the cladding material and Iray is the power flux of 

the ray normal to the interface. The quantity ni2 = m/n2 and dp is the evanescent 

penetration depth as defined in section 2.3. The factor 1 + g(0) arises from averaging the 

2 possible incident polarizations and is found to vary by about 2% over the range of 0 

values of interest. This calculation also assumes that the absorbed power is small 

compared to the incident power. Equation 2.14 allows the incident flux of the ray and the 

absorption factor to be factored out, and thus one can define a dimensionless 

‘geometrical absorption factor’ F ^  by
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^ ( 8 ; 6 )  

YI« ,® )
2.16

= 2cos0

' - 2 8 ^
n \2 eXP

d\  p J

n n - 1
[1 + ̂ (0)]

The most significant feature of equation 2.16 is its exponential dependence on -5/dp i.e. 

the absorption factor is much greater for angles near the critical angle. A plot of Fabs 

versus incident angle for various distances from the interface, 8, is shown in figure 2.5, 

for the specific case where ni = 1.46, n2 = 1.43 (i.e. 0C = 78.36°) and X0 = 450nm.

There is also a finite probability that radiation emitted by a dipole located in the 

medium of lower refractive index will propagate as a plane wave above the critical angle

Incident angle (e) /  deg

figure 2.5 Calculated geometrical absorption factor FabS, for various values of 5, as a 
function of angle of incidence.
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within the denser medium. The emission probability into any range of solid angles is 

obtained from the classical radiation pattern for a dipole near a dielectric interface. This 

has been calculated in detail by Lukosz et al. [22,23]. The optical power emitted in a 

given direction per unit solid angle for the specific case of angles within the region 0C < 0 

< Till was found to have the form

dP f cn.k D,
d£l I 6n

nn  cos0 

V nn ~ 1
exp

-26

v J
[l + g(9)] 2.17

where D0 is the dipole strength. The probability of injection into a bound mode was found 

to be maximum near the critical angle, and to exhibit a rapid decrease with angle for large 

ô/À, in the evanescent region. Using the cylindrical co-ordinates of the specific waveguide 

and by taking the angular probability distribution for photon emission into account, the 

total probability that a photon emitted by a dipole will propagate as a detectable forward 

ray was found to be described by a function pCmit(8;0omax), given by

p - ( 5 ; e ° " “ ) = ( i l ^ os‘ ,& X f D sin(W6

where 0omax is the maximum incident angle of the launch and detection lens, and 0min is its 

corresponding incident at the core-cladding interface. Pt<* is the power radiated in all 

directions by the fluorescent sources. Analysis of equation 2.18 shows that pemit becomes 

large for a collection cone with a maximum angle approaching the critical angle. This 

situation is similar to the response found for the absorption function (i.e. equation 2.16) 

which also indicates the importance of high angle collection.

The fluorescence signal, IfiUOr, per unit area of interface from a single incident 

plane wave may be calculated from equations 2.16 and 2.18. IfiUOr is the power absorbed 

at a depth, 6, in the fluorescent medium times the probability that a photon emitted at 5 

will propagate as a detectable ray. For a bulk fluorescent medium, IfiUOr may be given by 

[19]
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' £ ? ( e )  = T /„ ,( e ) J ^ ,(8 ;0 )p ,- (8 ;0 r ) r f5
0

2.19

For the case of a thin fluorescent layer of thickness h, IfiUOr is obtained by integrating over 

the layer. If h is smaller than the wavelength so that Pabs and pemit are approximately 

constant over the layer then Inuor may be written as [19]

C ( 6 )  = W „,(e)F*(S=0;e)p™ ,(8=0;er)<i5 2.20

Equations 2.19 and 2.20 consider only the signal from a single reflection from a given 

ray. The total signal from such a ray may be calculated by taking into account the number 

of reflections from such a ray. The rays that are excited into the waveguide are dependent 

on the illumination of the fibre end face. Love et al. assume that the fibre end is 

illuminated by a diffuse Lambertian light source. The light is focused so that it uniformly 

illuminates a spot centered on the end face of the fibre. The radius of the spot is rmax, 

where rmax is less than or equal to the radius of the fibre as illustrated in figure 2.6. The 

optical flux per unit area with in the spot, per unit angle dQ, is given by [19]

figure 2.6 Definition of launch variables; incident ray angles are described by 60, 
\\r, and the fiber end faces described by polar co-ordinates r,<J>; r max < fiber radius 
a [19],
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dPinc = 70 cosG 0 dA dCl 2.21

where 0o is the polar angle measured from the fibre axis, dA is the area element on the 

fibre end face and Io is the optical radiance of the source. The launch lens has a NA that 

cuts off the power at an angle 0omax. The polar co-ordinates (r,cf)) define the position of 

the entering ray on the fibre end face and (0,\|O describe the spherical polar directions for 

rays entering at the point (r,\|/).

Using mainly equations 2.19 to 2.21 and invoking standard trigonometric 

relationships, Love et al. obtained an expression for the total fluorescence signal, Stot, 

over the rays launched within the illuminated spot on the fibre end face and within the 

cone of angles 0O< 0omax [19]

=
V a n i J

2k e;
j  rdr jd\\r J sin2 0 0 cos0 0 dQ (

2.22

x
j  F * (5 ;9[8 o , r/a])p,„„ (8 ;8 "“  ) ¿8
0

h x F* (S = 0;6 [9 „ ,<p, r/a])p„,„ (8 = 0;9 r  )

{bulk case)

(thin — film  case)

The dependence of the normalised fluorescence signal, St<*, on sin0omax was 

obtained by numerical integration of equation 2.22, for a bulk solution of fluorescence 

molecules and also for two surface coatings of thickness 0.1 A. and 0.01 A,. The relationship 

between Stot and sin0omax displayed an approximately eighth power dependence, except 

for the bulk case at higher values of sin0omax. This agrees closely with experimental results 

also published by Love et al. [24], where they carried out a series of experiments to 

consider the effect of launch angle, spot size and numerical aperture of the material 

(NAmat) upon the detected fluorescence signal, Stot. It appears from these data that there 

is very litde difference in detected fluorescence signal between a surface coating of 0.1 X 

and the bulk situation. The evaluation of detected fluorescence signal, Stot, for various 

spot sizes, rmax/a, was also carried out by Love et al. [19]. Results indicate an 

approximate (rmax/a)2 dependence which agrees with their experimental measurements.
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Finally, Stot was found to be proportional to NAraau"*for surface molecules, and to NAmat/

- NAmati'7 for the bulk case over the range 0.6 to 0.45 for NAmat|. Their experimental

which are attributed to adsorption of the fluorescein dye to the fibre surface. Therefore, 

for fluorescent molecules close to the core-cladding interface, the total fluorescence 

signal is given by

Equation 2.23 emphasises the importance of launching and maintaining high angle light 

through the fibre. Sensitivity with an eight power dependence on launch aperture was 

also demonstrated by Hirschfeld [24], and the importance of maintaining high angle light 

propagation for maximum fluorescence signal was demonstrated both experimentally and 

theoretically by Glass et al.[18]

2.5.3 Evanescent coupling efficiency - Weakly guiding approximation

A number of workers studied the particular issues of collection of fluorescence 

into guided modes of an optical fibre. A more rigorous approach to this problem of 

evanescent wave coupling efficiency based on electromagnetic wave theory, was carried 

out by Marcuse in 1988 [20]. He used the weakly guiding approximation and Maxwell’s 

equations to model the coupling efficiency of light into the cores of optical fibres, from 

fluorescent sources that are located in its cladding region. In his work the ‘collection 

efficiency’ is defined as the ratio of light collected in the fiber core relative to the total 

amount of light radiated by the fluorescent sources. The fiber was assumed to have an 

infinite cladding and both positively and negatively guiding fibers, i.e. i w  > nciad and nciad 

> IW  were treated. Assuming each source in the cladding to be an infinitesimal electric 

current, with random phase and orientation, which excite radiation fields and bound 

modes, Marcuse analysed two different source distributions:

1. sources that are concentrated in the core cladding boundary

2. sources that are uniformly distributed in the cladding

results tend to agree more consistently with the surface case i.e. a NA4 dependence,

tot oc 2.23
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The bound modes are trapped inside the core and propagate in both forward and 

backward directions [25].To calculate the power only in the forward propagating modes, 

the total electric field in the core, E, can be expressed as the superposition of the modal 

fields, E > , with expansion coefficients c„ [20,25].

E = £ c „ E „  2-M
D

The sum in equation 2.24 extends over all propagating modes; the modal fields E„ are 

given by Snyder and Love [25] in table 12-3. The expansion coefficients of the modes are 

obtained as an integral over the product of the source current density j  and the electric 

field vector of the mode [25]. They can be expressed as [20]

- = —  f j.E„dV
A P  JVsource \>

2.25

where Vsource is the volume occupied by the cladding sources and P„ is the power carried 

by each mode. Taking the sum over all modes, the total power due to the bound modes, 

Pcore, is given by

Poore = 2.26

However, since there are many sources distributed in the cladding and they have random 

phase and orientation, the ensemble average of the total power of the field can be written

K .r ,  =  £ ( k f ) p’ 2.27
V

The correlation function of the current density vector of the light sources is assumed to 

have the form [20]
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( j ( r ) j ( r ' ) )  = / S 8 ( r - r ' ) 2.28

where S indicates the source strength, I is a unit tensor and ô(r - r ') is a three 

dimensional Dirac delta function. The ensemble average of the absolute square of the 

field expansion coefficients follows from equations 2.25 and 2.28 as [20]

<N’) =
2 dV 2.29

The volume integral extends over the region occupied by light sources. Therefore the 

power injected into bound modes may be written as follows [20,27]

2.30
\) lwlti v’ sourct

Marcuse has shown that the source strength, S, is related to the power, R, that is radiated 

by a unit volume of source filled material into the unit element of solid angle in 

homogeneous space filled with the cladding material, as follows [26]

S = -16K R 2.31
co|i.0nA

where |!o is the magnetic permeability of the vacuum. The total power radiated into the 

homogenous space of refractive index n by sources uniformly distributed between radii a 

and b along a length L of fibre is related to R as follows [20]

Prad = 4 n 2(b2 - a 2)LR 2.32
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Using equations 2.30 to 2.32 and the weak-guidance approximation1 for the description 

of a guided modes, the excitation efficiency of the positively guiding fiber, for an 

infmitesimally thin source-filled region at the core-cladding interface is described by [20]

P CBre =  1 y  QW ) 2 J \ ( U )  2 3 3

where J„ is the Bessel function of order x>, V is the normalised frequency parameter2. The 

propagation constant, p, of the mode for a core of radius a, is related to its radial 

propagation constant by

U = a jn cJ k 2 - $ 2 2.34

while the cladding decay parameters of the guided mode field in the cladding is defined as

W = a ^ 2 - n clad2k 2 2.35

Marcuse also treats the case in which the sources are uniformly distributed between radii 

a and b, where the outer radius b is large enough to ensure that the evanescent field tails 

of the modes have decayed to insignificant values. He calculated the collection efficiency 

in this case to have the following form [20]:

2 n ^ k * V * ( b * - a ' ) ^  y/„_,(£/)■/„.,((/)! K l(W )
2.36

1 The magnitude ni and n2 are assumed to be close together, so that the waveguide is weakly guiding i.e. A = (n i2 - n22)/2ni2 
< 1, where A is the refractive index difference.

2 Normalised frequency parameter, or fibre V-number is defined as V=(2ita/>,o)NA, where X0 is the vacuum wavelength, a is 
the core radius and NA is the numerical aperture.
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V-number

figure 2.7 Light collection efficiency of a positively guiding fiber as a function of V. The 
wavelength and core radius are set at 1.3nm and 10^im. The light sources are distributed 
between a < r < b with b/a = 5 [20].

*core
P . rad

V-number

figure 2.8 . This data is similar to figure 2.7 except that the light sources are concentrated in a 
thin layer at the core-cladding interface [20],
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where K„ is the modified Bessel function of the second kind of order u.

Analysis of Marcuse’s work shows that the cladding to core coupling coefficient 

increases linearly with V-number for the bulk film case as shown in figure 2.7. However, 

a parabolic dependence was found for the thin film situation as shown in figure 2.8. The 

coupling coefficient also scales inversely as the cladding cross sectional area and the 

square of the wavenumber of light. The thin film case was found to have a coupling 

coefficient higher than the bulk by a factor of 103. The jagged appearance for the bulk 

case is due to the fact that a sharp increase occurs in the penetration depth as the mode 

group approaches cut-off.

2.5.4 Evanescent coupling efficiency - Exact solutions to the fields

Egalon extended Marcuse’s work in a treatment of positively guiding fibers for 

both thin film [27] and bulk distribution [28] of fluorescence sources within the cladding. 

Egalon used the exact solution of the cylindrical optical fibre with an infinite cladding and 

thus allowed arbitrary differences between the refractive indices of the core and cladding 

to be taken into account. Such an approach is not limited to weakly-guiding fibres. The 

derivation of the expressions for the power associated with both the radiation field, Prad, 

and bound modes, P«,«,, can be found in publications by Egalon [16,27,28] and are given 

by

^  = 2-37 

Pm, = j s |E „ , ( r ) |V  2.38
w “  '  sourct

where L is the length of the fibre coated with fluorescent sources, S is the source 

strength, k is the wavenumber of the fluorescent light, ndad is the refractive index of the 

cladding, E„iM. is the modal electric field as described by Synder and Love[24] , and r^t 

and Tin are the inner and outer radii of source distribution as illustrated in figure 2.9.

As previously defined, the power efficiency for a fibre coated with fluorescent
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figure 2.9 Sources uniformly distributed in 
the cladding between r!n and rout [28]

sources at the core/cladding interface, where Prad »  Pcore can be written as [27]

core V£0  ̂M’O 2.39

where 8 is the thickness of the fluorescent film. For the weakly guiding case, the integral 

in equation 2.39 has the same functional form for every mode and when calculated is 

similar to those of Marcuse [20] i.e. equations 2.33 and 2.36. However, for the exact 

case, the integral in equation 2.39 has to be calculated for each mode separately i.e. 

transverse electric (TE0̂ ), transverse magnetic (TM0i|X) and hybrid modes (HE0iM. and 

HEoiM). The results for a thin-film distribution [27] and bulk distribution [28] were 

developed by Egalon.

Egalon uses his model to examine the behaviour of coupling efficiency while 

varying the fibre V-number parameters. Marcuse increased the V-number in his work, by 

increasing the difference in the core-cladding index difference i.e. An, with the other fibre 

parameters held constant. Egalon examined variations in V-number by changing
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wavelength, core diameter and refractive index difference, and also included the case 

where the V-number is kept constant by changing two of its variables.

Egalon’s model predicts that a thin film distribution in the core-cladding boundary 

is more efficient than a bulk one. However, the total power radiated by the thin film is 

lower than in the bulk case, because there are fewer sources present. The highest 

probability of excitation into bound modes is found, when the thin film is closest to the 

core-cladding interface as would be expected. However, Egalon found that for bulk 

distribution, the longer the wavelength the higher the power efficiency i.e. the lower the 

V-number the higher the power efficiency, which is contrary to the predictions of 

Marcuse’s model. In the case of a thin film distribution, the coupling efficiency remains 

almost constant over the spectrum of values chosen by Egalon. In a similar way, Egalon 

varied the core radius for both thin film and bulk film distributions and examined its 

dependence on coupling efficiency. For a bulk distribution he found that the power 

efficiency decreases with increasing core radius. This result is also contrary to Marcuse’s 

model in that the coupling efficiency decreases with V-number. A sharp increase in 

coupling efficiency was found for thin film distribution at low V-number, but was found 

to stabilise as the core radius was increased. Egalon also investigated the dependence of 

power efficiency on An, for both bulk and thin film distributions at constant V-number. 

The model predicted that the greater the difference between the indices of refraction, the 

higher the power efficiency. Figure 2.10 shows the dependence of the coupling efficiency 

on An for constant V-numbers for a thin-film situation [16]. The results were obtained for 

four different V-numbers and are plotted on a log-log scale. Using a linear equation, 

Egalon found a correlation coefficient of 1.0 for the first three V-numbers. For the fourth 

V-number of 62.83, the correlation coefficient was found to be 0.998 for a linear 

equation and 1.0 for a quadratic one i.e. the higher the V-number the more the graph 

deviates from a linear equation on a log-log scale. These data show that the high value of 

coupling efficiency at high V-number is not due to the increase in V-number but to the 

bigger differences between the indices of refraction. In 1994 Albin et al. [29] published 

work that verified this dependence on refractive index difference. The data in figure 2.11 

simulates a bare fibre core coated with a thin film of fluorescent material of refractive 

index 1.0. As expected, the coupling efficiency was found to increase with iw .  The
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increase in coupling efficiency was found to be almost linear with An. Table 2.1 

summarises the results of Egalon’s model.

Egalon has also carried out an investigation of the dependence of coupling 

efficiency on the polarization of the fluorescent emission [30]. Results show that sources 

polarized parallel to one another and perpendicular to the axis of the fibre couple 

fluorescence emission to guided modes approximately 1.2 times as well as do randomly 

orientated sources, and nearly twice as well as do sources, that emit photons with their 

polarisation vectors parallel to the axis of the fibre.

INCREASING
PARAMETER

X a An

BULK Pa« increases Pe(( decreases Pen increases

THIN FILM PSff constant Pa« increases at small values, 
then remains constant

Petf increases

table 2.1 Factors affecting evanescent coupling efficiency, Pe«, from cladding to core [16].

2.6 Conclusion

The concept of the evanescent wave and evanescent wave spectroscopy has been 

introduced. A geometric optic approach to describe the parameters that influence the 

total captured signal of a fibre optic evanescent wave fluorosensor has been described. 

The analysis suggests that the captured fluorescent signal increases, i) linearly with length 

of fluorescent coating, ii) to the square of launch spot size, iii) to minus the fourth power 

of the material numerical aperture, iv) to the eighth power of sin of the launching angle. 

The third parameter here describes the effect of increasing the difference between 

refractive index of fibre core and cladding, whereas the fourth parameter emphasises the 

importance of designing fluorosensors with high angle collection. A different approach 

based on the electromagnetic wave theory which describes the coupling efficiency, 

cladding to core, of fluorescent sources has also been treated. This model uses the weak- 

guidance approximation and concludes that the coupling efficiency of both thin films and 

bulk films increase with V-number of optical fibre. This model was later extended to
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licore " laclad

figure 2.10 Coupling efficiency of a thin-film distribution of sources versus the difference nCOra - 
nciad. The core radius and the wavelength are held fixed at 6.0pm and 0.6|i.m respectively 
[16,29],

core

rad

Ufore

figure 2.11 Coupling efficiency of a thin-film distribution of sources versus the index of 
refraction of the core n COre. The core radius, the wavelength and the index of refraction of the 
cladding are held constant at 5.0pm, 0.6pm and 1.0 respectively [16,29].
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include arbitrary differences between the refractive indices of the core and cladding. This 

work which calculates the coupling efficiency of each separate mode shows that the 

fluorescence coupling efficiency does not necessarily increase with fibre V-number. 

However, it was found to increase with the difference between the refractive index of 

fibre core and cladding, which is in qualitative agreement with the predictions of the 

geometric optic model. Experimental evidence of this was reported in 1994. A similar 

experiment is described in section 5.4.4
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Chapter Three - Fluorescence Spectroscopy

3.1 Introduction

The sensors investigated in this work all involve fluorescence emission. The 

fluorescence process can be explained by the emission of a photon of light, from a 

molecule which has been placed in the excited state by the absorption of another photon. 

The emitted photon is generally of a lower energy than that of the absorbed photon due 

to energy loss encountered during internal conversion. General features of the absorption 

and emission of light can be illustrated using an energy level diagram as shown in figure 

3.1. Each molecular decay step is characterised by its own rate constant, k. (It is 

important to note that by convention, the symbol k is used both for the rate constant 

which is used throughout chapter three, and the propagation constant of an 

electromagnetic wave used in chapter two). The electronic states of the system are 

depicted by S0, Si and S2 respectively. At each of these electronic energy levels the 

fluorescent substance (fluorophore) can exist in a number of vibrational states as 

illustrated. The excited state molecule rapidly relaxes, with very high efficiency, to the 

lowest excited electronic state (Si). The energy stored in the excited state may then be 

released in several ways. The electron may return to the electronic ground state with the 

release of heat, i.e. non-radiative decay (knr). After relaxing thermally to the lowest
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figure 3.1 Energy level diagram showing molecular and electronic energy levels
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vibrational level of the Si state, the electron may return to the So state with light emission 

i.e. fluorescence or radiative decay (kr). Some type of reaction which may occur with 

another species present may result in de-energization of the excited state i.e. a quenching 

process. Alternatively, if the molecule is sufficiently long lived in the Si state, it may cross 

into a lower energy triplet state (Ti). Relaxation from this triplet state to the ground state 

can also occur with light emission, this is known as phosphorescence.

The probability of light absorption or emission from a particular energy level is 

related to the characteristics of the states involved and particularly to their spin quantum 

number. Each electron in a molecule carries a spin angular momentum with a spin 

quantum number s = Vi. The total spin angular momentum possessed by a many electron 

atom or molecule is represented by the total spin quantum number S, which may be 

calculated as the vector sum of all the individual contributions from each electron. Two 

electrons possessing s = Vi may be present with their spins parallel or opposed. If the 

spins are opposed the total spin quantum number S is zero. If the electron spins are 

parallel the total quantum number is 1. The spin multiplicity gives the number of states 

expected in the presence of an applied magnetic field and is given as 2S+1. Thus a 

molecule with all electrons spin-paired possesses S = 0 and a spin multiplicity of 1. Such 

an electronic state is referred to as a singlet state e.g. So, Si and S2 of figure 3.1. If 

however, there exists a means of changing the spin of the excited electron so that it 

becomes aligned parallel to the electron “left behind”, the excited state will be generated 

with a total spin quantum number of 1, and therefore a spin multiplicity of 3. This is 

termed a triplet state, e.g. Ti of figure 3.1. Transitions from the ground state to excited 

states having the same spin value are allowed and give rise to intense absorption bands, 

whereas transitions to excited states of different spin values are forbidden and can hardly 

be observed in the absorption spectrum. Fluorescence and internal conversion are spin 

allowed steps whereas phosphorescence and intersystem crossing are spin-forbidden steps 

and are therefore less likely to be observed [1,2].

As previously stated, all the sensors in this work involve fluorescence emission. 

A method for monitoring the variation of the concentration of oxygen is by the change of 

fluorescence intensity or the fluorescence lifetime of a quenchable fluorophore. Oxygen is 

well known to be a dynamic quencher of fluorescence and can thus be monitored by
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fluorescence methods [3]. The observed fluorescence intensity of a fluorophore, in the 

observation wavelength interval Ai to can be described by the following expression

iK , = n  3.1
x2

where

U  = j / * W -  3-2
»■4

and where r| is the fluorescence quantum yield, fem(X) the spectral distribution of the 

fluorescence spectrum, fabs( )̂ the spectral distribution of the absorbance of the 

fluorophore, Iex(A.) the spectral intensity of the source, and T  a geometrical factor. The 

fluorescence quantum yield is defined for a particular fluorophore as the ratio of the 

number of photons emitted to the number absorbed and can be written in terms of the 

radiative and non-radiative decay constants as follows:

T| = ------r-—  3.3
K + k

It is clear from equation 3.3 that as fluorescence quenching increases, the fluorescence 

quantum yield decreases. Therefore, from equation 3.1 we can write

2k _ i  3.4
n  i

where rj0 is the fluorescence quantum yield in the absence of oxygen, rj is the 

fluorescence quantum yield in the presence of oxygen, I0 is the fluorescence intensity in 

the absence of oxygen and I is the fluorescence intensity in the presence of oxygen.
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An important parameter in fluorescence spectroscopy is the fluorescence lifetime. 

The fluorescence lifetime of an excited state is by definition the time required for the 

excited state population to decay to 1/e of its initial value, following excitation by an 

impulse of light. The impulse response function, I(t), in the simplest case of a single 

exponential will have the following form:

I(t) = 70 exp(-kf) 3.5

where Io is the intensity at t = 0 and k  represents the overall relaxation rate for the probed

excited state. The value of k  is given by

k  = kr + knr 3.6

where kr and are the radiative and non-radiative decay constants. From equation 3.5 it

follows that the fluorescence lifetime can therefore be written as [5]

x = ----------  3.7
K  + Kr

The fluorescence lifetime typically has a value in the order of tens or hundreds of 

nanoseconds. Fluorescence quenching may also take place, during which the excited 

states are deenergized, without the emission of a photon. This results in a lower 

fluorescence intensity and a shorter fluorescence lifetime. Demas et al. have shown that a 

variety of ruthenium(II), osmium(II) and iridium(III) complexes are very susceptible to 

oxygen quenching in solution [6]. Ruthenium polypyridyl compounds have been shown to 

be particularly attractive as oxygen sensing species (see section 3.2). The fluorescence 

quenching process of any such complex, when entirely collisional, can be described by the 

Stem-Volmer equations, which relate the variation in fluorescence intensity, I, and 

fluorescence lifetime, T, with oxygen partial pressure i.e.

70 /7  = 1 + Ksv[02] 3.8
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x 0 1 x — 1 + Ksv \0 2 ] 3.9

where Io and To are, respectively, the fluorescence intensity and excited state lifetime in 

the absence of oxygen, KsV is the Stem-Volmer quenching constant, k is the bimolecular 

quenching constant and [O2] is the oxygen concentration. The bimolecular quenching 

constant is the product of D, the oxygen diffusion coefficient in the fluorophore 

environment and, a , the oxygen solubility factor in the environment of the fluorophore 

[7].

In this chapter, the chemistry of oxygen sensing transition metal complexes is 

discussed. The process of fluorescence quenching and its dependence on ambient 

temperature is examined. The influence of heterogeneous environments, such as that of 

the sol-gel structure, on the fluorescence lifetime of the complex is also discussed. 

Finally, the principle of phase fluorimetry as a method of lifetime measurement is 

outlined.

3.2 Transition metal complexes for oxygen sensing

Organic dyes [8,9] and polycyclic aromatic hydrocarbons [10] have been used in 

the past as luminescent indicators for oxygen sensing. However, an increasingly 

important class of sensor materials is luminescent metal complexes, especially those of 

the platinum metals (i.e. Ru, Pd, Os, Ir, Pt). The photochemical and photophysical 

properties of these materials have been studied extensively by Demas et al. [11,12], Juris 

et al. [2], Van Houten et al. [13] and Durham et al. [14], These materials have many 

desirable features for use as sensing probes. These include high quantum yields and long 

unquenched lifetimes (microseconds), resulting in high sensitivity as indicated by 

equations 3.8 to 3.10. Long lifetimes are much simpler and less expensive to measure. 

These complexes also can absorb intensely in the blue-green region of the spectrum, for 

which a wide range of suitable laser and light emitting diodes (LED) are available, and

K sv = k x 0 = a D x 0 3.10
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have a large Stokes shift. They also tend to be thermally, chemically and photochemically 

stable, thus reducing the problem of photodecomposition resulting in extended sensor 

lifetime [12].

Transition metal complexes are characterised by partially filled d orbitals. The 

emissive properties of these complexes are determined by the occupancy of these orbitals. 

A simplified orbital and spectroscopic state diagram, for a typical octahedral structured 

complex is shown in fig 3.2. The octahedral crystal field of the ligands, splits the five 

degenerate d orbitals by an amount A, into a triply degenerate t2 level and a doubly 

degenerate e level as illustrated. The splitting arises because the e orbitals are directed 

toward the six ligands and the remaining t2 orbitals points between the ligands. The 

amount of the crystal field splitting A, can therefore, be controlled by altering the ligand 

geometry or central metal ion [12]. This allows the chemist to control the luminescent 

properties of the complex to an extent. The distribution of electrons between the t2 and e 

levels is strongly affected by A. If A is large, it is energetically more favourable to pair 

electrons in the t2 level than to keep them unpaired by distributing them throughout the t2
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figure 3.2 Simplified orbital and state diagrams for a d6 metal in an octahedral 
environment [12].
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and e levels. This pairing scheme contradicts Hund’s Rule [15]. The ligands have k and o  

orbitals but only the n orbitals are spectroscopically important for visible and near ultra 

violet absorption and emission. There are both n bonding and n antibonding (n ) levels; 

however, only the 7t bonding levels are filled [12].

Within such an octahedral environment, three types of excited states are of 

spectroscopic importance. Firstly, a d electron can be promoted to another d level i.e. a 

d-d transition. Secondly, an electron from a 7t bonding orbital can be promoted to a n* 

antibonding orbital i.e. a k-k transition. Thirdly, a d electron can be promoted to a n* 

antibonding orbital, or an electron in a n bonding orbital can be promoted to an unfilled d 

orbital. These last two options are known as metal to ligand charge transfer states 

(MLCT) and ligand to metal charge transfer state (LMCT), respectively [12].

The lowest ligand excited states are n-n states derived from promoting a bonding 

k electron to a tt* level. There are triplet and singlet states possible, the triplet being 

always below its analogous singlet state. These transitions are localised on the organic 

ligands and are spectroscopically similar to those of the free ligand [12]. Similarly, singlet 

and triplet d-d states arise from promoting a t2 electron to an e level, d-d transitions are 

formally forbidden, even for the allowed singlet-singlet ones, thus d-d emissions are 

characterised by long radiative lifetimes and a high susceptibility to environmental 

quenching. This results in low luminescence yields at room temperature [12]. Charge 

transfer transitions, however, tend to be more strongly allowed and are less susceptible to 

intermolecular and environmental quenching. The molar extinction coefficients of the 

spin-allowed transitions are large, which makes these charge transfer states easier to 

pump optically [12].

The control of the luminescence properties of the complexes hinges on the control 

of the relative energies of the excited states and on the nature and energy of the lowest 

excited state [12]. Choice of an appropriate ion and ligand are factors that determine the 

relative energies of the excited states. Optimum oxygen sensing characteristics are 

achieved when the relative positions of the 3d-d, 3n-n* and 3MLCT states are as shown in 

fig 3.3, i.e. the metal to ligand charge transfer transition has the lowest energy with 

respect to the other possible transitions. This state is therefore largely responsible for the 

absorption and emission characteristics of the transition metal complex. The relatively
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long lifetimes of the charge transfer states are responsible for the high susceptibility to 

oxygen quenching. Any d-d states must be well above the emitting level so that they 

cannot be reached by thermal excitation from the emitting state. Thermal excitation of the 

d-d states results in photochemical instability and excitation state deactivation (see 

section 3.2.4). In the design of these luminescence probes it is also important that the 

emitting state is not too close to the ground 

state in energy. The energy gap law states that 

radiationless process become more efficient as 

the emitting state approaches the ground state 

[2].
a-diimine ligands such as bipyridine, 

phenanthroline and tris-diphenylphenanthroline 

(see figure 3.4), with ruthenium as a central ion, 

have appropriate crystal field strengths for the 

energy displacement shown in figure 3.3 to 

occur. Because these ligands are easily reduced, the system involves only MLCT 

transitions. The ruthenium complexes most widely used as oxygen sensitive materials are 

as follows

i) Ru(II) - tris (2,2'-bipyridine) - Ru(bpy)32+

ii) Ru(II) - tris (1,10-phenanthroline) - Ru(phen)32+

in) Ru(II) - tris (4,7-diphenyl-l,10-phenanthroline) - Ru(Ph2phen)32+

The photochemistry of these complexes will be discussed in the next section.

3.2.1 Photochemistry o f oxygen sensing ruthenium complexes

The bidentate heterocyclic complex Ru(bpy)32+, has absorption maxima peaks at 

450, 344, 322, 285, 240 and 185nm and has a fluorescence peak at 608nm [2]. The 

absorption bands at 185nm and 285nm have been assigned to n-n transitions. The 

shoulders at 322nm and 344nm are due to d-d transitions. The intense absorption bands 

at 450nm and 240nm, are assigned to MLCT transitions [2]. Inter system crossing (ISC) 

can occur from the singlet MLCT state to the triplet MLCT state as illustrated in figure

3d-d
3MLCT

So

figure 3.3 Lowest triplet state ordering 
for 0 2 sensing

52



2-2"-bipyridine (bpy) 1,10-phenanthroline (phen)

4,7-diphenyl, 1,10-phenanthroline (Ph2phen)

figure 3.4 a-diimine ligands

3.5. Fluorescence emission is due to the radiative decay (kr) of this excited 3MLCT state 

[2,12]. Non-radiative emission (kn,.), however, can also take place from this level.Another 

de-activating pathway to the ground state is by de-population via the metal centred (3d-d) 

excited state. This can give rise to either radiationless deactivation Ow) or to 

photodecomposition of the complex (see section 3.2.4). The relatively long lifetime of the 

3MLCT state, gives the fluorophore its characteristic long lifetime of 685ns1 at room 

temperature [2], It is this long lifetime of the excited state which results in the dye being 

oxygen sensitive. The quantum yields of fluorescence for Ru(bpy)32+ are given as 0.062 in 

aerated solution and 0.100 in degassed solution at 25°C [14]. Ru(bpy)32+, however, is not 

the most suitable of oxygen sensing luminescence probes, because, as mentioned 

previously, the population of the 3d-d state can lead to photodecomposition and 

photochemical instability of the complex. Another disadvantage of the Ru(bpy)32+ is that 

the excited state is chemically active [14]. Since the excited state is easily oxidised into 

Ru(bpy)33+, it will easily form intermediary compounds which change the photophysical 

properties of the molecule. The oxidised Ru(bpy)33+ is also an efficient quencher of

1 water used as solvent
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Ru(bpy)32+ by the same quenching process as oxygen [16] and as such can be mistaken as 

oxygen in a probe designed with Ru(bpy)32+. The Ru(bpyh2+ is also easily reduced to 

Ru(bpy)3+. This can lead to another alternative path for non-radiative energy loss. By 

altering the ligand system around the ruthenium (II) centre, it is possible to improve the 

ground-state and excited-state properties of the complex.

The Ru(phen)32+ complex is quite similar in structure to that of Ru(bpy)32+, 

differing only by the type of ligand. As a result, the photophysical characteristics are also 

quite similar. The Ru(phen)32+ has absorption peaks at 446, 417, 263 and 224nm [14]. 

The fluorescence peaks at 603nm and has an excited state lifetime of 962ns in water [2]. 

The quantum yields are given as 0.0086 in aerated solution and 0.014 in degassed 

solution at 25°C [14], The excited state lifetime for Ru(phen)32+ is about 40% longer than 

that for Ru(bpy)32+ and as a result has a potentially greater sensitivity to collisional 

quenching by oxygen.

However, greater susceptibility to oxygen quenching is found for Ru(Ph2phen)32+. 

A fluorescence lifetime of 5.611s1 was measured for this material [17]. The excitation and 

emission wavelengths of this complex immobilised in sol-gel derived glass were measured 

to be 450nm and 607.5nm respectively [20,21], with a fluorescence quantum yield of 0.5 

[29]. A molar extinction coefficient of 30,000 M' 1 cm' 1 implies a 52% higher absorption 

than that of the bipyridine complex (see table 3.1) [29]. The increase in stability, and 

stronger absorption coupled with a greater oxygen response makes the Ru(Ph2phen)32+ a 

more efficient dye for use in oxygen sensors. A summary of some relevant photochemical

1 sol-gel immobilised in 0% oxygen at room temperature
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paramters of oxygen sensitive ruthenium complexes is shown in table 3.1, where e is the 

molar extinction coefficient and AE is the activation energy. References are noted in the 

brackets.

Ru. Complex T0 (ns) e ( M ' W 1) A E  (cm ' ) ^ab. (nm) K m  (nm ) Quantum yield

Ru(bpy)3" 685 [2 f 14600 [1 9 f 3960 [18]' 453 [2 f 608 [2]1 0.376 [22]

Ru(phen)3Z+ 962 [2 f 3157 [18]1 446 [14] 603 [2]1 0.584 [22]

Ru(Ph2phen)3‘i+ 5600 [17f 30000 [29 f 450 [20]a 607 [21f 0.5 [29]4

table 3.1 Photochemical parameters of oxygen sensitive complexes

3.2.2 Quenching of fluorescence

Fluorescence quenching is the general term for extrinsic processes which 

depopulate the excited state without the emission of a photon [23]. Five common types 

of quenching that are observed in fluorescence processes are temperature, solvent, 

concentration, impurity and oxygen quenching [24]. Depending upon the system, the 

quenching of the fluorescent emission may result from energy transfer, complex 

formation, or collisional quenching. It may also result from oxidation or reduction of the 

excited state. The mechanism by which oxygen quenches fluorescence has been the 

subject of much research. It is clear, however, that contact between the oxygen molecule 

and the fluorophore is a requirement for quenching [23]. Quenching resulting from 

collisional encounters between the fluorophore and quencher is called collisional or 

dynamic quenching. One of the best known collisional quenchers is molecular oxygen 

[25]. Collisional quenching of fluorescence is described by the Stem-Volmer equation of 

section 3.1. The collisional quenching process involves the formation of a non fluorescent 

complex between the fluorophore and oxygen. This complex sometimes known as an 

exciplex [26], absorbs the energy from the excited state and results in the non radiative 

decay of the fluorophore.

1 water used as solvent
2 ethanol - methanol mixture (4:1) used as solvent
3 sd-gel immobilised
4 measured in an ethanol-methanol (4:1) glass at 77°K 
6 measured at 452nm
' measured at 450nm
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The second type of fluorescence quenching by oxygen is known as static 

quenching. This process occurs as a result of the formation of a non-fluorescent ground 

state complex between the fluorophore and quencher. When this complex absorbs light it 

immediately returns to the ground state without the emission of a photon.

The lifetimes or temperature dependence of the quenching processes can be used 

to distinguish the static and collisional quenching contributions. In the case of collisional 

quenching, the excited state is depopulated resulting in an equivalent decrease in 

fluorescence intensity and fluorescence lifetime [23], i.e.

3.11

In the case of static quenching a fraction of the fluorophores is removed from 

observation. The complexed fluorophores are non-fluorescent and the only observed 

fluorescence is from the uncomplexed fluorophore. The uncomplexed fraction is 

unperturbed and therefore the fluorescence lifetime in the presence of the quencher 

remains equal to the lifetime in the absence of the quencher [23], i.e.

= 1 3.12
x

From equation 3.8 it is clear that Io / I  is expected to be linearly dependent upon the 

concentration of quencher, with an intercept of 1 on the Io /I axis, and a slope of K s v .  I f ,  

however, both static and dynamic quenching are present, equation 3.8 may be rewritten 

as [27]

I J I  = l + (Ks v + K eq)[Q] + KeqKsv[Q]2 3.13

where K«, is the dissociation constant for the binding of the quencher to the luminescent 

species. I f  the x jx  and Io/I plots versus [Q] are linear and coincide, quenching is purely 

collisional i.e. K«, = 0. However, if Io / I  is everywhere greater than Xo/X, static quenching
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is present. Therefore, from the analysis of both intensity and lifetime quenching data, the 

determination of the static and dynamic quenching contributions may be carried out.

An alternative method of determining the relative contributions of dynamic and 

static quenching is by examining the influence of temperature on the Stem Volmer curve. 

For collisional quenching, an increase in temperature results in the quencher molecule 

having greater energy and thus a greater probability of a collisional encounter. This 

means that the dynamic quenching process is more efficient at higher temperatures. For 

similar reasons, other quenching processes such as solvent quenching come into effect at 

higher temperatures. In contrast, an increase in temperature is likely to result in decreased 

stability of complexes and thus lower static quenching contributions. These effects can be 

seen on a Stem Volmer plot as an increase in slope for dynamic quenching, and as a 

decrease in slope for static quenching. This is illustrated in figure 3.7 [23].

(a) Dynamic quenching (b) Static quenching

figure 3.7 Increasing temperature influence on dynamic and static quenching

3.2.3 The Stern-Volmer Equation

The Stem-Volmer equation (i.e. equation 3.8) relates the extent of collisional 

quenching (Io/I) to quencher concentration [Q]. The derivation of the Stem-Volmer 

equation can be carried out as follows [28]. When a fluorophore is excited by a pulse of 

light of suitable wavelength, a certain fraction of the fluorophore population will be 

excited. The excited molecules will then de-excite according to equation 3.5 with a rate 

constant, K, where K is composed of a sum of several rate constants:
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where kr and km- are respectively the radiative and non-radiative decay constants, kt is the 

rate constant for the transfer of energy from the excited fluorophore to the quenching 

agent and [Q] is the concentration of quencher molecules in the bulk fluorophore. It can 

be shown, from equation 3.3, that the fluorescence quantum yield, rj, is given by:

When the only available de-excitation process is fluorescence, k^ and kt are equal to zero, 

giving rj=l. However as the de-excitation processes characterised by k„r and kt become 

available r\ diminishes. Therefore, the ratio of r |0 (the fluorescence quantum yield in the 

absence of quencher, e.g. oxygen) to r| (the fluorescence quantum yield in the presence of 

quencher) can be expressed as:

3.14
kr + knr + fc,[Q]

n0 _ { K ' K + K r )
T1 (kr / k r +knr+k'[ Q])

1 + 3.15

1 + t 0£,[Q] 3.16

Then using equation 3.4 gives the Stem-Volmer expression

I J I  = 1 + KSV[Q] 3.17

where Ksv ( = k tT o) is the Stem-Volmer constant. Further, in the case of dynamic 

quenching Io/I =  T o / x , and therefore



A linear Stem-Volmer is generally indicative of a single class of fluorophore, all 

of which are equally accessible to the quencher. However, if two fluorophore populations 

are present, and one is less accessible to the quencher than the other, then the Stem- 

Volmer plot deviates from linearity. This result is frequently found when Ru(II) 

complexes are immobilised in microheterogeneous environments such as silicone rubber 

[27], polymeric material [29], silica [29] or silica gel [30]. In this situation the Stem- 

Volmer quenching equation is often rewritten in terms of a two-site model as follows[27]

where the f0i and fo2 are the respective fractions of the total emission from each of the 

two components under unquenched conditions and the K s v ’s are the associated Stem- 

Volmer quenching constants for each component.

3.2.4 Temperature dependence o f  fluorescence

One of the potential disadvantages of using luminescent based sensing techniques 

is that many fluorescent compounds are very sensitive to temperature variation. For 

accurate fluorescence-based sensing measurements, it is necessary either to provide 

temperature regulation or to incorporate temperature compensation within the signal 

processing of the sensing system. The temperature dependence of fluorescent transition 

metal complexes has been studied extensively [13, 30]. Because the deactivating 3d-d 

state (see figure 3.5) is thermally activated, there is an increase in the deactivation rate as 

the temperature is raised. Thus Ru(bpy)32+ shows a strong change in lifetime above room 

temperature [32]. A thermal deactivation model which describes the temperature 

dependence of fluorescence lifetime has been described by Van Houten et al. [13] and by 

Demas et al.[31], Assuming kt = 0, then the observed fluorescence decay constant, Kobs, is 

given by

I0 / I
1 3.19

/ 01 / (1 + Ksvl [Q]) + / 02 /  (1 + * s, 2 [Q])

K obs -  kr + knr + knr.(T) 3.20
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where k ^ T )  is the temperature dependent non-radiative decay constant and km- and kr are 

respectively the temperature independent decay rate constants for non-radiative decay 

and radiative decay, (see section 3.2.1). The temperature dependent term, k^, can be 

written in terms of the Arrhenius equation as follows [31]:

k , ,(T )  = A, exp(“ ^ r )  3.21

where Ai is the Arrhenius pre-exponential factor for thermal activation of the 3d-d state, k 

is the Boltzmann constant, T is the absolute temperature and ÀE is the energy gap 

between the 3d-d state and the emitting 3MLCT state. The observed fluorescence lifetime 

Tobs is then given by

Kobs kr + knr + A; exp(—AE / kT)

This model assumes that decay from the 3d-d state occurs much faster than return to the 

3MLCT state. Equation 3.22 was used successfully by Van Houten et al. [13] and by 

Demas et al. [31] to model the lifetime dependence on temperature. However, the 

suitability of this model for microheterogeneous environments remains to be tested. In 

this work, temperature dependence studies were carried out on a sol-gel immobilised 

Ru(Ph2phen)32+ complex and are detailed in section 7.9.

3.2 Fluorescence lifetime sensing

Most optical oxygen sensing detection systems monitor the quenching of the 

intensity of fluorescence emitted by an appropriate fluorophore. Although these 

fluorescence intensity-based sensors exhibit promising results [33,34,35,36,37], they are 

susceptible to a number of errors including photobleaching of dye, possibility of fouling, 

leaching of indicator, and any parameter that can alter the intensity of the detected signal 

independently of oxygen concentration. The signal, Si, obtained from a fluorescence 

intensity sensor can be expressed as follows [37]:
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Si = l s kn  (1 - 1 0 “^  )cp x 10 ce^  {kn sd ) 3.23

where Is is the intensity of the light source, ku the light throughput of the optical system 

in the excitation spectral region, c the concentration of the indicator, ee the absorptivity of 

the indicator at the exciting wavelength, U the optical pathlength for the exciting light in 

the sensor element, cp the fluorescence quantum efficiency, ef the absorptivity of the 

indicator at the emission wavelength, lf the optical pathlength in the sensor for the emitted 

light, kn  the light throughput of the optical system in the emission spectral region and Sd 

the detector sensitivity. Every parameter in equation 3.23 contributes an uncertainty to 

the sensor response. This results in the need for frequent recalibration and other 

corrections [37]. To avoid these problems wavelength ratiometric probes have been 

developed, where the ratio of signals at two excitation or emission wavelengths are 

measured [38,39]. An alternative and more advantageous measurement method is one 

that depends on the luminescent lifetime of an indicator rather than its intensity 

[37,40,41,42], The fluorescence lifetime, x, of an excited-state population does not 

depend on any of the parameters of equation 3.23. The measured signal of a lifetime- 

based sensor, in the most general case can be written as [37]:

Sx — S(ts, kxi,x , kT2> kd) 3.24

i.e. the sensor signal depends not only on the decay time x but also on the time constant ts 

of the light source, any time distortions in the excitation and emission optics represented 

by kTi and k^, respectively, and the rise time of the detector, td. The lifetime measuring 

sensor output should therefore be independent of indicator concentration, excitation 

source intensity, and photobleaching of dye. As lifetimes are absolute quantities such an 

approach offers the possibility of inherent referencing. Fluorescence lifetime-based 

sensors have now been developed for many important analytes including pH [43,44,45], 

calcium [45], glucose [46] and potassium [45]. Since oxygen quenching reduces the mean 

fluorescence lifetimes of fluorophores, such as ruthenium complexes, according to
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equation 3.9, it is clear that oxygen concentration can be monitored by measuring the 

quenched lifetime.

Fluorescence lifetime measurements are frequently necessary in fluorescence 

spectroscopy since they can reveal, for instance, the frequency of collisional encounters 

with quenching agents, the rate of energy transfer or the rate of excited state reactions 

[23], There are two widely used methods for the measurement of fluorescence lifetimes. 

These are the pulse method and the phase-modulation method. In the pulse method the 

fluorescence sample is excited with a short pulse of light, and the time dependent decay 

of the fluorescence intensity is measured (see equation 3.5). The fluorescence lifetime can 

then be determined from the slope of the natural log of the intensity curve following 

pulsed excitation. Although this method of lifetime measurement is accurate, it requires 

the use of rather sophisticated equipment. The pulsed method is also a slow process that 

is unsuitable for real-time lifetime sensing. In the alternative phase modulation method, 

the fluorescent sample is excited with a sinusoidally modulated light. The resultant 

fluorescence is phase shifted and is demodulated, relative to the incident light and may be 

used to calculate the fluorescence lifetime. This method of lifetime measurement is 

known as phase fluorimetry and is discussed in detail in the following section.

3.3 Phase fluorimetry

In 1927 Gaviola described the use of a continuous, sinusoidally modulated 

excitation combined with phase sensitive detection, as a method of fluorescence lifetime 

measurement [47]. In this method, the fluorescence species is excited with light having a 

time dependent intensity, E(t), of the form

E(t) ■= fi + AsintOi 3.25

where B is the d.c. intensity component of the exciting light (see figure 3.8). The degree 

of modulation is defined as M = A/B, and co is the angular modulation frequency (co = 

2nf, where f is the linear modulation frequency). The resultant time-dependent emission is 

modulated at the same frequency as the excitation. Because of the finite lifetime of the
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excited state, the modulated emission is delayed in phase by an angle <|>, relative to the 

excitation. Furthermore, the emission is demodulated relative to the excitation as 

illustrated in figure 3.8. The resultant phase shifted fluorescence emission, R(t), is written 

as follows for the specific case of a single exponential decay

R(t) = b + asin(a)i-<|)) 3.26

Either the phase shift <|>, or the demodulation factor m, [where m = (a/b)/(A/B)] can be 

measured and used to calculate the fluorescence lifetime x. The following relationships 

have been shown to exist between phase shift, demodulation factor and modulation 

frequency [42].

0  = arc tan (cox) 3.27

m = [l + co x 2 ] - 1' 2 3.28

figure 3.8 Schematic description of phase and modulation lifetime measurements. (In 
general, b *  B.)
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log (modulation frequency)

figure 3.9 Demodulation factor, m, and phase shift, <|> versus modulation frequency

These well known phase fluorimetric relationships are derived in appendix A. A phase 

fluorimetric system response illustrating the variation of absolute phase shift, <J>, and 

demodulation factor, m, with modulation frequency f  is shown in figure 3.9. From the 

diagram it is clear that the phase shift increases with frequency whereas the degree of 

modulation decreases with frequency. The experimental apparatus for this type of 

fluorescence lifetime sensing is detailed in sections 6.3.2 and 6.3.3.

3.3.1 Multi-exponential decays

When a fluorophore exhibits multi-exponential decay, such as is observed when a 

Ru(H) complex is immobilised in a microheterogeneous environment, the observed decay 

is expressed as a sum of i exponential functions

F(t) = ^ a ; e x p ( - i /x ;) 3.29
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where ocj is the pre-exponential factor representing the fractional contribution to the time- 

resolved decay component with a lifetime X\. The fractional intensity values (f), of each 

contribution can then be given by [23]

3.30

It is important to note that solid state matrices such as polymers or gels may provide 

numerous different kinds of environments for a fluorophore [48,49]. There may generally 

be a distribution of distances between the fluorophore molecules and the interacting parts 

of the immobilising matrix (i.e. spatial disorder) as well as a distribution of interaction 

energies ( i.e. energetic disorder) [50]. These types of disorder may cause fluorescence 

decay distributions which are non-exponential in profile. James et al. [51] have shown 

that such type of complex decay profile can, with the usual achieved level of accuracy, be 

fitted to a sum of two exponential functions. It is important to realise that the quantities 

oti, a 2 and X \ ,  X 2 ,  in this case, may have no physical significance with respect to the 

environment of the fluorophores.

For multiexponential decays, the phase fluorimetric relationships of equations 

3.27 and 3.28 are expressed as follows, where the resultant phase shift ((()), and the 

resultant demodulation factor (m) are given by [23]

n
2/;sin(t),.cos<)),. 3.31
i=[

n
X  f i c o s 2  4* /<=i

3.32
V '=1 /  V  ¡=1 /

where <|>i is the phase angle associated with the decay time xt. Therefore, if the lifetimes of 

the individual components of a multi-exponential decay are known, it is possible to



predict the resultant phase shift and degree of modulation. This type of analysis is carried 

out for sol-gel immobilised ruthenium complexes in section 7.4.

3.4 Conclusion

Ruthenium complexes have been introduced and their suitability for optical 

oxygen sensing has been described. Two methods of using these complexes have been 

described. These are the measurement of fluorescence intensity, and the monitoring of 

their fluorescence lifetimes. The latter method has been shown to be potentially the more 

advantageous, due to the fewer number of variable parameters within such a measuring 

system. Finally, phase fluorimetry as a method of real-time lifetime measurement has been 

treated, both for a single exponential lifetime decay and the more realistic situation of a 

multi-exponential decay. This method of fluorescence lifetime sensing has been be applied 

by us to oxygen sensing, and is described experimentally in chapter 6 .
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Chapter Four - The Sol-Gel Process

4.1 Introduction

In 1846, Ebelmen made the first observation of the sol-gel process [1], 

However, it was not until the mid-seventies that this new technology began to attract 

considerable research interest. The sol-gel process may be described as a chemical 

phenomenon in which a single or multi-component metal oxide so/ution undergoes 

ge/ation to form a coherent rigid network of the oxides present [2], The reason it is of 

interest is that it can be used to produce ‘tailor-made’ glasses and ceramics with wide 

ranging applications. Furthermore, it allows for lower temperature treatments than is 

normally possible in the production of conventional glasses [2], Sol-gel literature is 

concerned almost equally with the production of bulk glasses, fibres, monoliths and thin 

films. A number of industrial applications of the process have been reported, including the 

development of rear view mirrors for automobiles, anti-reflective coatings, lenses, and 

optical filters [3,4,5,6 ]. The sol-gel process is to-day a potentially inexpensive route to 

the manufacture of a wide variety of devices which depend on the integration of new 

materials and technologies. These include Y-couplers, gratings, sensors, frequency 

doublers, lenses, interferometers, étalons, amplifiers and thin films [6 ].

The preparation of glass substrates by traditional methods of melting silica require 

extreme temperatures. In contrast, the sol-gel process involves low temperature 

hydrolysis of an alkoxide precursor followed by condensation to yield a polymeric Si02 

network. During the process molecules of the corresponding alcohol are liberated. The 

initial hydrolysis and polycondensation reactions occurring in localised regions lead to 

formation of colloidal particles. As the connectivity of these particles increase, the 

viscosity of the sol starts to increase and leads to the formation of a solid gel. Although 

the nature of individual events is random and the geometry and pore-size distribution of 

the final gel are difficult to determine, the nature of the final polymeric gel can be 

regulated to a certain extent by controlling the rates of the individual steps [7].
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4.2 Details o f  process

The main reaction components in a typical sol-gel process are a metal alkoxide1, 

water, a solvent and a catalyst. Preparation of sol-gel glasses is based on the hydrolysis 

and condensation polymerisation of the metal alkoxide solution, followed by a 

temperature programme which controls the glass densification process. There are three 

distinct stages to the sol-gel process:

i) Mixing of the precursors in solution to achieve intimacy on a molecular scale.

ii) Gelling of the solution in a manner which will retain the chemical homogeneity 

achieved in step (i).

iii) Thermal treatment to further age the gel or to convert the gel to a glass.

The chemistry and physics of sol-gel processing is well documented in the literature [2,8]. 

In this chapter some of the relevant details of the process are discussed under the 

following headings: i) hydrolysis and condensation polymerisation, ii) influence of catalyst 

and pH, iii) influence of solvent, iv) influence of water, v) gelation, vi) aging, vii) drying, 

viii) stabilisation of microstructure, ix) encapsulation of organic molecules in a sol-gel 

glass, and x) preparation of a Ru(Ph2phen)32+ doped gel.

4.3 Hydrolysis and condensation polymerisation

The formation of a typical silica sol-gel can be described by the following

reactions.

Hydrolysis

Si(OR) 4  + nH20  Si(OR)4_n (OH)n + nROH 4.1
Estérification 

Alcohol condensation

=Si-OH + RO-Si= ^  =Si-0-Si= + ROH 4.2
Alcoholysis 

W ater condensation

=Si-OH + OH-Si= ^  =Si-0-Si= + H20  4.3
Hydrolysis

In the preparation of such a sol-gel derived silica, one starts with an appropriate alkoxide 

[e.g. Si(OC2H5)4, tetraethylorthosilicate or TEOS] which is mixed with water. A mutual 

solvent such as alcohol is normally used as a homogenising agent, due to the fact that

1 MOR, where M is any electropositive element and R is an alkyl group CxH2x+i
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water and alkoxysilanes are immiscible. Hydrolysis reactions lead to the formation of 

silanol groups (i.e. Si-OH). These species are intermediates as they further react to form 

siloxane groups (i.e. Si-O-Si). The processes of hydrolysis and condensation are, in 

general, difficult to separate [9], There are several parameters that influence the rate of 

hydrolysis and condensation polymerisation reactions including the ambient temperature, 

the solution pH, the presence of a catalyst, the particular alkoxide precursor, the solvent, 

and the relative concentrations of the alkoxide precursors, water and solvent. The relative 

rates of the hydrolysis and condensation reactions are considered to be the parameters 

that define the initial nature of the gel [10]. It is therefore important to be able to control 

the relevant reaction rates.

As the metal alkoxide and water are mixed, hydrolysis and polycondensation 

reactions initiated at numerous sites within solution. The mechanisms for the hydrolysis 

of a silicon alkoxide have been widely investigated and depend on the reaction conditions. 

Possible reaction pathways under acidic and basic conditions are generally accepted as 

follows: For acidic conditions hydrolysis takes place by a molecular Sn2 nucleoplilic 

substitution reaction. In this reaction, the alkoxide is protonated by the acid, thus 

increasing the acidity of the group and allowing the central silicon atom to be attacked 

from the rear by a water molecule as illustrated in figure 4.1(a). The positive charge of 

the protonated alkoxide is correspondingly reduced, making alcohol a better leaving 

group [11]. The rate of reaction will not be particularly sensitive to the inductive effect of 

other groups bonded to the silicon atom, since the flow of charge will be predominantly

(a) RO RO OR
\  fM- I &+■ /

HOH + RO—Si OR HO Si- - OR ^  HO— Si—OR + ROH
/ i f  «  /  \  H \  h *

RO RO RO OR

(b)

OH"
*  R?  *■ _  /OR 

RO—Si OR HO " S i - - O R  H0 Si—OR + OR

RO RO RO 0R

figure 4.1 (a) Acid and (b) base catalysed mechanisms for hydrolysis of a sol-gel mixture
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from the protonated alkoxy to the water molecule. The ease with which electrophiles can 

approach the silicon complex will, however, have a significant effect on the rate of 

reaction and so steric factors will have the greatest effect on the hydrolysis reaction [2 ].

Under basic conditions, water dissociates to produce a nucleophilic hydroxyl 

anion. The hydroxyl atom then attacks the silicon atom. Because the silicon atom aquires 

a negative charge in the transition state (see figure 4.1(b)), the mechanism is quite 

sensitive to inductive charge as well as steric effects. Keefer [12] proposed an Sn2 

nucleophilic substitution reaction mechanism, in which the OH” displaces OR”.

The most widely accepted mechanism for the condensation reaction involves 

the attack of a deprotonated silanol on a neutral silicate species:

=Si-0" + Si(OH) 4 ^  =Si-0-Si= + OH" 4.4

This reaction pertains above the isoelectric point of silica i.e. pH = 2 (where the electron 

mobility and the surface charge is zero) where surface silanols may be deprotonated 

depending on their acidity. The acidity of a silanol group depends on the inductive effect 

acting on the silicon atom.

4.4 Influence o f Catalyst and pH

Hydrolysis is most rapid and complete when catalysts are employed. Changing 

the catalyst can have large influence on the microstructure of the gels formed as well as 

on the rate of the gelation process. The most commonly used catalysts are HC1, HF, 

NH4OH and KF. Pohl et al. [11] carried out an investigation to determine the influence of 

pH on hydrolysis. The rate constants obtained for y-glycidoxypropyltrialkoxysilane are 

shown in figure 4.2 as a function of pH. The hydrolysis appears to be both hydronium ion 

specific and hydroxyl ion specific i.e. hydrolysis rate is greatest for low pH and high pH.

The pH-dependence of the time to gelation is often used as a measure of the 

overall condensation rate for sol-gel systems (gel time °c 1 / (average condensation rate)). 

Such a study carried out by Coltrain et al. is shown in figure 4.3 [13]. The minimum at -  

pH2 corresponds to the isoelectric point of silica. As a result, in an acid catalysed 

reaction, condensation is likely to occur before the monomer is fully hydrolysed and the
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pH

figure 4.2 Hydrolysis rate as a function of pH [11].

pH

figure 4.3 Average condensation rates (1/time to gelation) for TEOS as a function of pH [13].

resulting polymer will tend to be lightly cross-linked i.e. primarily linear. In the base 

catalysed reaction, however, the hydrolysis of the alkoxide molecule tends to go to 

completion, such that the condensation will result in a more densely crosslinked polymer 

giving rise to branched clusters. Porosity, which is related to the extent of cross-linking, 

is therefore, one property which may be controlled by the appropriate choice of pH [2],
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4.5 Influence o f Solvent

The solvent most commonly reported in sol-gel work is ethanol. The influence 

of the solvent is important not only because it can take part in the reverse of reactions 4.1 

and 4.2, but also because its removal during drying determines to a great extent the final 

morphology of the gel. Solvents may generally be classified as polar or non-polar and as 

protic1 or aprotic. The important characteristics of solvents with regard to solvating 

power are its polarity and the availability of labile protons. The polarity largely 

determines the solvating ability for polar and non-polar species. The availability of labile 

protons determines whether anions or cations are solvated more strongly through 

hydrogen bonding and whether or not the solvent can participate in dissociative reactions 

such as alcoholysis or hydrolysis. Because hydrolysis is both hydroxyl and hydronium ion 

catalysed, solvent molecules which hydrogen bond to hydroxyl ions or hydronium ions 

reduce catalytic activity under basic and acidic conditions, respectively. Therefore, 

aprotic solvents, which do not hydrogen bond to hydroxyl ions, have the effect of making 

hydroxyl ions more nucleophilic, whereas protic solvents make hydronium ions more 

electrophilic. The availability of labile protons also influences the extent of the reverse 

reactions (equations 4.1 to 4.3): reesterfication, alcoholysis or hydrolysis. Aprotic 

solvents do not participate in reverse reactions such as reesterification, because they lack 

sufficiently electrophilic protons and are unable to be deprotonated to form sufficiently 

strong nucleophiles. Therefore, compared to alcohol or water, aprotic solvents such as 

THF or dioxane do not take part in sol-gel processing reactions [2].

The vapour pressure of the solvent has an important effect on the time 

required to gel and on the surface area of the resulting gel. When the vapour pressure is 

low, the solution gels with a larger amount of liquid, so the dried gel has a more porous 

structure.

4.7 Influence o f water

Another parameter that influences the relative hydrolysis and condensation 

rates is the R value2. A R value of 2 is theoretically sufficient for complete hydrolysis and 

condensation to yield anhydrous silica as shown in the net reaction [2 ]:

1 Containing a labile proton
2 The relative concentration of water and alkoxide precursor is often referred to as the R value i.e.

R=[H20]/[TE0S]
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nSi(OR) 4 + 2nH20  -> nSi02 + 4nR0H 4.5

Generally, however, the reactions do not go to completion under these conditions 

because of the formation of intermediate species [2]. The most obvious effect of 

increasing the R value is the promotion of hydrolysis according to equation 4.1. 

Equations 4.2 and 4.3 suggest two further effects of the R value. With ‘under- 

stoichiometric’ additions of water (R<2), the alcohol-producing condensation reaction is 

favoured, whereas the water-producing reaction is favoured when R>2. Excess water, 

however, is expected to promote depolymerization according to the reverse of equation

4.3. Although increased R values generally promote hydrolysis, when R is increased while 

maintaining a constant solvent: silicate ratio, the silicate concentration is reduced. This in 

turn reduces the hydrolysis and condensation rates, causing an increase in the gelation 

time. This effect has been shown by Colby et al. [14] (see figure 4.4) and by McDonagh 

et al. [15],

R

figure 4.4 Gelation time as a function of R-value[14].

4.7 Gelation

When sufficient interconnected Si-O-Si bonds are formed in a region, they 

respond co-operatively as colloidal particles or a sol1. With time the colloidal particles

1 A suspension containing colloidal particles is called a sol.
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and the condensed silica species link to form a 3-dimensional network. The gelation point 

is marked by a sharp increase in viscosity and the result is a solid structure in the shape of 

the mould. The product of this process at the sol-gel transition is called an alcogel. After 

the sol-gel transition, the solvent phase is removed from the interconnecting pore 

network. If it is removed by conventional drying the gel network is drawn together due to 

capillary forces, resulting in considerable shrinkage of the gel. In effect, the gel material 

becomes more condensed with smaller pores because of the drying. Air-dried gels, which 

are known as xerogels, may shrink up to one-eighth of their original gel volume [7]. 

Further heating at higher temperature of xerogels leads to the formation of a densified 

glass structure equivalent to fused quartz or silica. The steps involved in the sol-gel 

processing of a densified glass are illustrated in figure 4.5.

LIQUID PHASE

hydrolysis, condensation I

SOL

aging I

GEL

drying i

XEROGEL 

high T -I

DENSIFIED GLASS

figure 4.5 Steps involved in the manufacture of a sol-gel glass

4.8 Aging

Aging, also known as prepolymerisation, is the term used to indicate the on­

going hydrolysis and polymerisation reactions in a sol-gel system both before and after 

gelation has taken place. During aging, the gel structure is evolved resulting in the 

thickening of interparticle necks and decreases in porosity. Much work has been carried 

out to model this process. Some of the mechanisms that have been reviewed include

alkoxide precursor

colloidal submicron particles

3D network

large area small pores
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treating the system with percolation theory, molecular orbital calculations and molecular 

dynamic simulations [2 ].

4.9 Drying

During drying the liquid is removed from the interconnected pore network. If 

the pores are small (<20nm) large capillary stresses develop during drying. These stresses 

may cause the gels to crack catastrophically unless the drying process is controlled by 

decreasing the liquid surface tension by the addition of surfactants, by elimination of very 

small pores by hypercritical evaporation, or by obtaining monodisperse pore sizes by 

controlling the rates of hydrolyses and condensation. The process of drying of a porous 

material can be divided into 3 stages.

i) The first stage of drying is called the constant rate period because the rate 

of evaporation per unit area in independent of time [2]. The compliant gel network is 

deformed by the large capillary forces. The body shrinks by an amount equal to the 

volume of liquid that evaporates and the liquid-vapour interface remains at the exterior 

surface of the body. As the gel shrinks, the tension in the pores increases and the vapour 

pressure of the liquid in the pores decreases. If the network remains compliant, shrinkage 

could continue until the pores collapse completely. In practice, however, the network 

stiffens as it shrinks, and at some point becomes able to withstand the capillary pressure. 

Shrinkage stops at the critical point [9],

ii) The second stage is known as the first falling rate period. This begins 

when the body becomes too stiff to shrink and the liquid recedes into the interior, leaving 

air-filled pores near the surface. During this stage the rate of evaporation decreases. As 

air invades the pores, a continuous funicular liquid film supports liquid flow to the 

exterior, so evaporation continues to occur from the surface of the body [9].

iii) As the meniscus recedes into the body, the exterior does not become 

completely dry right away, because liquid continues to flow to the outside surface. This 

continues as long as the flux of liquid is comparable with the evaporation rate, and the 

funicular condition is preserved. However, as the distance from the exterior surface and 

meniscus increases, the flux decreases. Eventually, it becomes so slow that the liquid near 

the outside of the body is isolated in pockets, so flow to the surface stops and liquid is 

removed from the body only by diffusion of its vapour. The temperature of the surface

79



now approaches ambient temperature and the rate of evaporation becomes less sensitive 

to exterior conditions. At this stage, drying is said to enter the second falling rate period 

[9]-

One of the problems with using sol-gel derivatives is that they are liable to 

crack. If the pressure in the liquid within the gel network were uniform, there would be 

no tendency for the gel to crack. However, the low permeability of the gel gives rise to a 

pressure gradient, so the tension in the liquid is greater near the drying surface and the 

contraction of the network is consequently greater. The difference in shrinkage rates 

between the inside and the outside of the body is the cause of drying stress which can 

lead to cracking. Brinker and Scherer have shown quantitatively that it is the difference in 

shrinkage rate between the inside and outside of a drying body that results in a tensile 

drying stress [2], They show that the tensile stress (ox) as a function thickness (L) can be 

expressed as follows:

a x(L) -  4.6
'  3 D

where r|L = viscosity of the liquid, V e  is the evaporation rate, and D is the permeability of 

the network. This equation shows that as the thickness of a gel (L) increases or the 

evaporation rate , V e , increases, the probability of cracking increases. Cracking may also 

be attributed to the existence of a pore size distribution in the gel. When larger pores are 

emptied by evaporation, the wall between adjoining pores is subjected to uneven stress 

that can cause cracking. Cracking during stage 1 of the drying process is rare unless the 

gel has not been sufficiently aged and therefore does not posses the dimensional stability 

to withstand the increasing compressive stress. Most failure occurs after the critical point. 

The possibility of cracking occurring at this stage is high due to the high stresses and low 

strain tolerance of the material.

However, there exists a number of methods to alleviate the problem of 

cracking. Firstly, the aging of a gel before drying helps to strengthen the network and 

thereby reduce the risk of fracture (see section 4.4). Surfactants can be added to the pore 

liquid to reduce the interfacial energy and thereby decrease the capillary stress. The 

shrinkage at the critical point is also reduced by the surfactant. This will have a beneficial
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effect on the permeability of the gel and also reduces the stress that occurs during stage

1. Another group of chemicals, known as drying control chemical additives (DCCA), 

reduce the risk of occurrence of cracks. Examples are formamide (NH2CHO) or glycerol, 

which replace some of the solvent ordinarily used. The resulting gel is found to be harder 

and to have a larger and more uniform pore size. All of these features help to reduce 

cracking. The success of this type of chemical additive is attributed to coarsening of the 

microstructure and strengthening of the network. They also provide a medium through 

which volatile components (e.g. water and alcohol) can diffuse, thereby allowing 

diffusion to reduce the pressure differential with in the body.

Since shrinkage and cracking are produced by capillary forces, Kistler [16] 

reasoned that these problems could be avoided by removing the liquid from the pores 

above the critical temperature and critical pressure of the liquid. During this process no 

interfacial tension is created. However, the high temperatures and pressures make the 

process expensive and dangerous. Glass structures produced using this technique are 

known as aerogels. An alternative method of avoiding the presence of the liquid-vapour 

interface is to freeze the pore liquid and sublime the resulting solid under vacuum. This 

type of glass is called known as cryogel.

4.10 Stabilisation of microstructure

It is imperative to achieve thermal and chemical stabilisation of the sol-gel 

derived glass structure before it can be used as optical component. Chemical stabilisation 

involves the removal of remaining silanol groups to a level which the surface does not 

rehydroxylate during use. Thermal stabilisation involves reducing the surface area

sufficiently to enable the material to be used at a given temperature without reversible

structural changes occurring.

A problem in producing silica optical components is the removal of gel surface 

hydroxyl groups and hydrogen bonded water. These entities give rise to atomic 

vibrational energy absorption in almost the entire of U.V. to I.R. wavelengths and so 

decrease the optical application of silica gel monoliths. To achieve dehydration it is

necessary to recognise that water is present in two forms, i.e. physisorbed and

chemisorbed water. Dehydration at temperatures up to a few hundred degrees centigrade
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is reversible and physisorbed water is readily removed. Chemisorbed water is more 

difficult to remove and does not take place to any significant extent until temperatures 

higher than 400 C are used [2],

4.11 Encapsulation o f organic molecules in a sol-gel glass

Sol-gel technology is being considered for a number of applications among which 

is as a support matrix in fibre optic chemical sensors. Because sol-gel manufacture is a 

low temperature process, organic and biological molecules with poor thermal stability 

may be encapsulated intact in the organic glass. Zusman et al. [17] have shown the 

potential of doped gels for chemical analysis. They entrapped a range of dyes sensitive to 

selected analytes in sol-gel derived glass blocks. By monitoring the characteristic colour
• 3 * 3+  2+  . 2 1

changes in the doped gels, they showed that metal ions such as Fe , Al , Co , Ni , 

Cu2+ and Pb2+ as well as changes in pH could be detected successfully, albeit with long 

response times. Recent research has also demonstrated that silicate glasses obtained by 

the sol-gel method, can provide matrices suitable for the immobilisation of biomolecules, 

such that they retain many of the characteristics of the liquid state, despite the fact that 

the molecule is trapped in a solid material [2,18,19,20]. In 1991, the first fibre optic 

chemical sensors prepared by sol-gel thin film coatings were reported by MacCraith et 

al.[21] and shortly afterwards by Ding et al.[22]. Both groups immobilised pH indicators 

in a silica gel matrix as described in section 1.4. The work presented in this thesis uses the 

sol-gel process to immobilise oxygen sensitive ruthenium complexes in films attached to 

optical fibres. The advantages of sol-gel derived glass as an immobilisation technique for 

chemical reagents in optical sensor applications can be summarised as follows:

i) The glass matrix is transparent down to 250nm, making it suitable for 

quantitative spectrophotometric and spectrofluorimetric studies [16]

ii) The glass is chemically inert, and suitable for chemically harsh environments

[23],

iii) The manufacturing process is inherently simple without the need for expensive 

equipment.
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iv) Sol-gel manufacture offers the ability to vary the chemical nature of optical 

materials, in order to tailor the properties of the microstructure (e.g. refractive index, 

porosity/pore size, pH and hydrophobicity).

v) The sol-gel process allows the synthesis of materials of controlled porosity 

which can be impregnated by optically active organic dyes. The open porosity makes 

these molecules accessible to other reagents.

However some disadvantages of the process should be noted:

i) Complex nature of interdependencies of process parameters.

ii) A complete knowledge of the effect of varying the chemical and physical 

parameters of the sol-gel process is still evolving.

4.12 Preparation o f a Ru(Ph2phen)32+ doped gel

A typical preparation of a dye doped gel is shown by the following reaction:

HC1
TEOS + 2H20  + 3C2 H5OH + (DYE) -> (S i02)n : Dye 4.7

pHl

This particular recipe was obtained from a collaborating group working in the 

Department of Pure and Applied Physics, Dublin University, Trinity College Dublin. It 

emerged from a systematic study of the sol-gel process parameters, the main criterion 

being the ability to achieve good optical quality thin films. The method of preparation is 

as follows: 0.0324 grams (27.67 (imoles) of ruthenium dye was placed in a clean vial. To 

the vial 3.9803 grams (0.086 |imoles) of ethanol were added. These were stirred using a 

magnetic bob until the ruthenium dye dissolved. 1.0375 (0.058 ^imoles) of water was 

then added. The pH of the water was adjusted to 1 using hydrochloric acid. This was 

then stirred for a few minutes, taking care that no splashing occurred. Finally, 6.0000 

grams (0.028 ¿¿moles) of TEOS was added dropwise. The mixture was stirred for one 

hour in the vial. Aging of the sol was carried out at a temperature of 70°C for a duration 

of about 16 hours. During this time, it was important to keep the vial tightly sealed. 

However, the plastic covered vials were punctured with a pin, to allow a certain amount 

of evaporation to take place. If the sols were left uncovered, they were found to solidify
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A parameter of importance in the preparation of these gels is the ruthenium dye 

concentration. It is difficult to define exactly the final concentration of ruthenium 

complex in a thin film. However, there exists a number of possible methods to express 

this e.g. i) molarity with respect to the total precursor solution, ii) molarity with respect 

to TEOS, and iii) parts per million of ruthenium complex with respect to silicon. The 

third method is used throughout this thesis. In the preparation just described 0.0324 

grams of ruthenium complex corresponds to 40,000ppm of ruthenium weight per weight 

of silicon. An investigation into the optimum Ruthenium dye concentration is discussed in 

section 5.3.2.

4.13 Conclusion

The sol-gel process and the parameters that control the rates of the chemical 

reactions involved, have been described. The choice of using the sol-gel method as an 

immobilization technique over other possible methods, has been primarily governed by 

the fact that the process is inherently simple to carry out, and that it offers the possibility 

of altering the physical nature of the final glass structure by varying the reaction 

parameters. However disadvantages of using the technique include the fact that there 

exists many variables in the production of the glass and that the complexities of the 

process are not completely understood. Questions that need to be addressed with regard 

to the use of the sol-gel immobilization technique for sensing applications include the 

effect of temperature and relative humidity (and other environmental conditions) on the 

glass structure. These questions are addressed in section 7.5.
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Chapter Five - Fibre Sensor Fabrication

5.1 Introduction

The fabrication of the fibre sensor devices forms an important section of 

the work undertaken in this thesis. The aim of this investigation is to develop a method of 

producing sol-gel coated optical fibres which are suitable for use as oxygen sensors. 

These sensors should be capable of detecting low concentrations of oxygen, have fast 

response times and have good long term stability. Among the parameters involved in 

producing such a device is the sol-gel process itself, which has been described in chapter

4. Other preparation steps involved include polishing of fibre ends, optimisation of sol-gel 

coating length and thickness, as well as optimisation of the ruthenium dye concentration 

within the sol-gel glass layer. Optimisation of the optical parameters, including the 

numerical aperture of launch/collection lens is also discussed as well as the effect of 

tapering the optical fiber.

5.2 Preparation o f optical fibres for fluorescence sensing

The type of fibre used in this work is a plastic clad silica (PCS) fibre, of 

core/cladding diameter 600/760|im which is manufactured by Ceramoptec Inc., Enfield, 

CT, U.S.A. (NA = 0.4; IW  = 1.460; £3.50 per meter). Reasons for choosing this 

relatively large silicone cladded step-index fibre are as follows:

i) It is relatively easy to remove the cladding material from a plastic cladded fibre.

ii) The large fibre is relatively easy to handle and is more durable than smaller fibre 

such as single moded fibre.

iii) Even though the coupling efficiency decreases for the bulk case, with core 

diameter according to Egalon’s treatment (see table 2.1). It would be expected that the 

overall captured fluorescence signal would increase with core diameter which is 

suggested by equation 2.23.

iv) Larger fibre diameters permit ease of coupling of light from semiconductor 

sources.
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figure 5.1 Plan view and side view of polishing chuck

As standard fibre optic cleaving tools are not available to accommodate this relatively 

large diameter fibre, the fibres must first be broken and then polished at each end. The 

fibre was cut using a fibre cutter with due care taken to ensure that minimum damage 

occurred during the cutting procedure as this reduced the polishing time. A typical fibre 

length was 11cm. Approximately 40 of these rods were put into a chuck and held firmly 

in place using a cementing wax. The rods were left standing proud of the polishing chuck 

by approximately 4mm. Caution was taken to ensure the fibre ends were parallel to the 

lower face of the chuck. Three of these chucks were then placed in a chuck holder as 

illustrated in figure 5.1. The chuck holder containing all of these rods was then placed on 

a Logitech PM2A polishing rig as shown on figure 5.2. The rig has two large polishing 

plates available for different applications (a steel plate for use with both 9 (im and 3 (im 

polishing suspensions and a polyurethane plate for use with a 0.125[im suspension). A 

cam linkage system links a mechanical arm which sweeps across the radius of the 

polishing plate. The function of this arm is to induce a spinning action into the chuck 

holder thereby enhancing the uniformity of the finished polished fibres. The chuck holder 

is kept in place by a semi-circular arm and the motion of the polishing wheel. The 

machine also has a rotating drum mechanism which is used to deposit polishing 

suspensions onto the rotating wheel. Various grades of polishing fluids are supplied with 

the polisher. The 9|im A120 3 fluid was initially used until the majority of the cracks were 

removed from the fibre end face. The grinding action of this fluid, combined with the 

rotation of the cast iron polishing plate for a duration of about 3 hours, polishes the end

88



faces of the rods. The process was then continued using the 3|im A I 2 O 3  solution. At this 

point the steel wheel was replaced with the polyurethane wheel together with a 0.125[im 

polishing suspension. The feed rate for this suspension was controlled by restricting the 

flow tube of a gravity feed system. After approximately 3 hours and microscopic 

examination, the rods are then taken out of the chucks, inverted and the above is repeated 

for the other end face. The result is a bundle of 10 cm long PCS rods with both end faces 

polished.

Each rod is then cleaned, first with water and then with alcohol, to remove the 

remaining aluminium oxide and cementing wax. The rods are then examined individually 

for the polishing quality. Any non-standard rods are rejected. The primary coating is then 

carefully removed from ~8cm of the fibre length using a scalpel, ensuring that the fibre 

core is not damaged in the process. The silicone cladding is removed by etching with a 

commercially available chemical solvent (Lumer, Bagnolet, France), based on a 

methylene chloride / sulphuric acid mixture. The rods are left in contact with the etchant 

for about 15 minutes and are then washed in water. The rods are quickly placed in 

ethanol and each rod is then cleaned with an ethanol soaked lens tissue. Care is taken to 

prevent direct excitation of the fluorescent coating, by covering the tip with a black 

opaque epoxy resin (Epo-tek, Epoxy technology Inc., Billerica, MA, U.S.A.). (See figure

5.4.)

figure 5.2 Plan view of polishing rig
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5.3 Dip-coating of fibres

Compared to conventional thin film forming processes, such as CVD, evaporation 

or sputtering, sol-gel film formation is much simpler and requires considerably less 

equipment. In general three methods of liquid coating that are available when laying 

down thin layers of precise thickness [1]. These are spin and dip coating, which are the 

most widely used, and meniscus coating which is comparatively new. The method used in 

this work is the dip-coating technique also known as drain-coating. An illustration of the 

apparatus used is shown in figure 5.3. It consists of a vertically moveable platform, in 

which a container of coating sol is firmly held. The movement of the platform is 

controlled using a D.C. motor which rotates a threaded bar, and thus moves the platform

up and down as required. A P.C. controls the direction and speed of movement. To 

achieve good quality films the motor should be of the highest quality with an absolutely 

smooth movement. The apparatus is placed on vibration damping mats to ensure that the 

liquid surface remains completely stable during the dipping process. The optical fibre is 

held vertically in place using a septum. The platform is raised such that a certain length of 

the optical fibre is immersed in the sol. The platform is then dropped at a constant 

velocity, leaving a sol-gel thin film on the fibre. The fibre is then carefully removed and 

put in an oven to dry, typically at 70°C for 16 hours. A typical sensor structure obtained 

in this manner is shown in figure 5.4
septum

figure 5.3 Dip-coating apparatus
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figure 5.4 Typical sensor configuration

5.2.1 Thin film thickness

A number of parameters affect the thickness of the sol-gel film. Scriven who has 

carried out detailed work on the dip-coating process, divides it into five stages: 

immersion, start-up, deposition, drainage and evaporation [2], With volatile solvents such 

as alcohol, evaporation normally accompanies the start-up, deposition and drainage steps. 

As illustrated in figure 5.5, the moving sol-container entrains liquid in a fluid mechanical 

layer carrying some of the liquid toward the deposition region A, and some of the liquid 

out of the container with the substrate. The boundary layer is then split in two. The inner 

layer moves upwards with the substrate, while the outer is returned to the container. The 

thickness of the deposited film is related to the position of the streamline dividing the 

upward and downward moving layers. Up to six forces in the film deposition region 

govern the film thickness and position of the streamline [2]. These include i) the viscous 

drag upward on the liquid by the moving substrate, ii) gravity, and iii) the inertial force of 

the boundary layer liquid arriving at the deposition region.

When the liquid viscosity (r|) and substrate speed (U) are high enough to lower 

the curvature of the meniscus, the deposited film thickness (t) is the thickness that 

balances the viscous drag (°<=r|U/t) and gravity force per unit area (pgt), where p is the 

density of the liquid and g the acceleration due to gravity. Therefore at balance

where the proportionality constant ci, is about 0.8 for Newtonian liquids [3], When the 

substrate speed and liquid viscosity are not high enough, as is often the case in sol-gel

t = c ^ U / p g ) ^ 2 5.1
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processing, this balance is modulated by the ratio of viscous drag to liquid vapour tension 

( Y l v )  according to the following relationship [4].

t = 0.94(îiC//y lv/ 6(t\U /  p g / 2 5.2

rearranging these terms gives

_  0.94(11 U fj

=  Ï Ô < M > *

Equations 5.2 to 5.3 assume constant Newtonian viscosity and ignore the effects of 

evaporation. However, to a first approximation the dependence of film thickness on 

process parameters can be written as follows:

1

IS—

immersion
Ì

start-up

drainage evaporation

figure 5.5 Stages of the dip coating process [2].
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thickness <x 5.4
(liquid density)

Clearly, if the viscosity and density remain constant, the film thickness is proportional to 

the withdrawal rate to the power of 0 .6 . i.e. thicker coatings are obtained at higher 

withdrawal rates. Several studies have been carried out on the thickness-withdrawal rate 

relationship. The power dependence of the thickness was found to be between 0.5 and 

0.65 on the withdrawal rate [5,6].

A thickness-withdrawal rate dependence study was carried out in this laboratory 

to examine the validity of equation 5.4. A range of sol-gel films were prepared at pH 1 

for R values of 2,4,6 and 7, respectively. Sol aging time was 5 hours in each case. R =

4,6 and 7 films were found to have a 0.6 ± 0.02 power dependence, while the R=2 had a

0.4 ± 0.03 power dependence[7],

5.3 Optimisation o f physical parameters

5.3.1 Ruthenium concentration

The ruthenium dye concentration was varied with in the sol-gel coating in order 

to identify the optimum concentration. Optimisation criteria were first maximum 

fluorescence intensity from the doped sol-gel, and, second, maximum quenching of signal 

in the presence of oxygen.

In solution, the fluorescence signal from a fluorophore is related to the dye 

concentration by the following equation:

where I0 is the intensity of the incident radiation, e is the molar extinction coefficient, L is 

the optical path length in the sample, c is the dye concentration and r| is the fluorescence 

quantum efficiency. For low concentrations ( e r |c « l) ,  the fluorescence intensity is 

directly proportional to the dye concentration i.e.

If  = r |/0 [l-exp(-eL c)] 5.5
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I f  =  T|/0£Lc 5.6

However, at higher concentrations the observed fluorescence intensity is no longer 

linearly proportional to the dye concentration. This is due to a number of factors, 

including: i) the inner filter effect, ii) photodecomposition and iii) quenching. The inner 

filter effect results in a reduction in observed fluorescence, due to the overlap between 

the fluorescence and absorption spectral distributions. The effect is also observed at high 

fluorophore concentrations as each layer of the of the sample absorbs some of the 

excitation light, such that the incident intensity is progressively reduced as it passes 

through the sample. The photo-decomposition process also competes with the emission 

process. A complete understanding of this process is not available, however, it is thought 

to be mainly due to the photon energy being comparable with the band disassociation 

energy of the absorber. The absorber molecule does not recover from photo­

decomposition and it is thought that the structure of the fluorescent molecule is 

irreversibly damaged.

In the case of a fluorescence intensity sensor, the observed signal can be written 

as follows [8]:

where kn is the light throughput of the optical system in the excitation spectral region, £e 

the molar absorptivity of the indicator at the exciting wavelength, Le the optical 

pathlength for the exciting light in the sensor element, r\ the fluorescence quantum 

efficiency, ef the molar absorptivity of the indicator at the emission wavelength, Lf the 

optical pathlength in the sensor for the emitted light, ki2 the light throughput of the 

optical system in the emission spectral region and Sd the detector sensitivity. This 

expression takes account of absorption and emission contributions of a fluorescence 

sensor but ignores the effect of quenching and photo-decomposition. The following 

investigation was carried out to identify an optimum ruthenium complex concentration in 

a sol-gel film for use in fluorescence-based oxygen sensing.

5.7
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The ruthenium dye concentration was varied within the sol-gel films from 

5000ppm (weight of ruthenium complex relative to silica), up to 60000ppm. This 

concentration range was chosen as values less than 5000ppm were found to give weak 

fluorescence signals; 60000ppm was chosen arbitrarily. Three optical fibres were coated 

at a speed of 0.97mm/sec (see section 5.4.3) from the appropriate sols. After drying, the 

fibres were placed in the experimental system described in section 6.3.2 and a 

fluorescence intensity reading was recorded for each fibre in the presence of ambient air. 

The results are plotted in figure 5.6, where the standard deviation of the recorded 

measurements from 3 fibres are illustrated by the error bars. The results indicate that the 

greatest increases in fluorescence signal with ruthenium concentration, occur at the lower 

concentration levels. However, the rate of increase levels off to an extent, at the higher 

concentration levels as suggested by equations 5.5 and 5.6.

It is important to emphasise that as the ruthenium concentration in the sol-gel 

increases, it is expected that the refractive index of the sol-gel cladding, as well as its 

thickness, also increase. These effects were recorded while using the commercially

ppm /  weight of Ru on Si

figure 5.6 Captured fluorescence signal as a function of Ru(Ph2phen)32+ concentration, in 
a sol-gel coated fibre.
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ppm /  weight of Ru on Si

figure 5.7 Percentage fluorescence signal quenching observed for Ru(Ph2phen)32+ doped 
sol-gel coated optical fibres, during a change from a N2 to an 0 2 environment.

available sol-gel known as Liquicoat [9] Films manufactured using this material were 

doped with varying concentrations of the same ruthenium complex. As the percentage by 

weight of dopant in the SiC>2 liquicoat was varied from 0 to 0.6, the refractive index was 

found to change from 1.431 to 1.454 . The film thickness of the same samples increased 

from 140nm to 245nm for a coating speed of 0.97mm/sec [9]. These measurements were 

carried out using ellipsometric techniques on coated silicon wafers. In the data shown in 

figure 5.6, the percentage ruthenium complex in TEOS was varied from 0.067 for 

5000ppm, to 0.809 for 60000ppm. This change in ruthenium concentration would be 

expected to result in a similar change in the refractive index and film thickness of the 

coated optical fibres. The effect of the refractive index change would lead to a decrease 

in An, or a decrease in the fluorescence coupling efficiency as predicted by Egalon’s 

work. (A more detailed investigation of the effect of changing An is presented in section 

5.3.4). In conclusion, the data in figure 5.6 may be considered as a combination of 4 

effects.

i) An increase in fluorescence signal as predicted by equations 5.5, 5.6 and 5.7.

ii) A decrease in coupling efficiency due to the increase in cladding refractive 

index, or a decrease in An.
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iii) An increase in evanescent absorption according to equation 5.9.

iv) The fourth effect is due to change in film thickness resulting from the increase 

in ruthenium concentration. However, as described in section 5.3.3, such a change in film 

thickness results in very little change in captured fluorescence signal and may therefore be 

neglected in the interpretation of this data.

The percentage fluorescence signal quenching due to a change from a nitrogen to 

an oxygen environment was also monitored for the same fibers using the system 

described in section 6.3.2, and is shown in figure 5.7. The data exhibit an increase from 

76.1% quenching at 5000ppm to 81.6% at 60000ppm, with an optimum quenching of 

83.7% occurring at 40000ppm. The error bars show the standard deviation of 3 fibres. 

The exact interpretation of these data is not trivial. However, the following explanation is 

proposed. At low ruthenium complex concentrations, the probability of quenching 

interactions occurring will be relative low resulting in a low percentage quenching being 

detected. As the concentration reaches zero, the percentage quenching being detected 

will go to zero such that the curve in figure 5.7 will intersect the origin. As the ruthenium 

complex concentration is increased, we would expect to observe an increase in 

percentage quenching or oxygen sensitivity as indicated by the first two points in figure 

5.7. At the higher concentrations, however, the circumstances are unclear. The data 

might suggest that an equilibrium has been reached between ruthenium complex 

concentration and the probability of a quenching interaction occurring. However, a 

decrease in observed quenching at the higher concentrations observed. As already 

mentioned, a full interpretation of the underlying processes has yet to be established. 

Throughout the work presented in this thesis, a concentration of 40000ppm weight of 

ruthenium complex on silica, was used as the dopant concentration in the fabrication of 

the oxygen sensors.

5.3.2 Coating length

An investigation was also carried out to determine the relationship between sol- 

gel film coating length and captured fluorescence signal. As previously carried out, each 

set of three optical fibres was coated with a different length of film. The recorded data 

are shown in figure 5.8, where the error bars illustrate the standard deviation of the three 

fibres for each coating length. From the treatment of Love et al., one would expect to see
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figure 5.8 Captured fluorescence signal from an optical fiber, as a function of sol-gel 
coating length.

a linear dependence of captured fluorescence signal on length of fluorescence coating. 

However, a log/log plot of the experimental data here shows that captured fluorescence 

signal has a 0.43 power dependence on coating length. This deviation from linearity is 

probably due to the decrease in transmitted power by the optical fibre, caused by the 

absorbing sol-gel medium [10], which is unaccounted for in Love’s analysis (which 

assumes low absorption). The power transmitted by such an optical fibre whose cladding 

has been replaced locally by an absorbing medium may be written in the form

P(z) = P(0 )exp(-7 z) 5.8

where z is the distance along the declad length, P(0) is the power transmitted in the 

absence of an absorbing species and y is an evanescent absorption coefficient. This 

phenomenon could be seen by closely examining an optical fibre which was being excited 

by an appropriate light source (see chapter 6 ). It was noted that the excited region of the 

fibre did not have a uniform intensity along its length, rather, the region closest to the
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excitation source glowed brightest. If however, the excitation power was evenly 

distributed along the sensing region of the fibre, one would expect to observe uniform 

fluorescence intensity along the fibre length. In this situation the captured fluorescence 

signal would be expected to be directly proportional to the coating length. It should also 

be noted that the feed-through of the optical filter combination which is discussed in 

detail below may account for the D.C. offset inherent in the data i.e. If a straight line is 

fitted to the data in figure 5.8 and is extrapolated to zero coating length, then the line 

would intersect the Y-axis at a point above the origin. The distance between the 

intersection point and the origin would give an indication of the amount of light 

transmitted through the filter combination. However, this was not checked 

experimentally.

The same fibres were examined in terms of dependence of oxygen sensitivity on 

coating length. It was expected to find an independent relationship. On the contrary, 

however, it was discovered that greater sensitivity to oxygen was noted for longer sol- 

gel coating lengths. The data shown in figure 5.9 exhibits this dependence where the Re­

value (i.e. fluorescence signal measured in the presence on nitrogen divided by

sol-gel coating length /  mm

figure 5.9 Oxygen sensitivity measured in terms of R-value as a function of fluorescence 
coating length.
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fluorescence signal in an oxygen environment) is plotted as a function of length. The 

standard deviation of measurements performed on three fibres is shown by the error bars. 

These results may possibly be accounted for by examining the experimental system which 

is detailed in section 6.3.2. The filter combination A and C of figure 6.9 was chosen to 

have a low transmittance. However, 0.1% transmittance does occur at 580nm and this 

results in a background signal in addition to the fluorescence signal. Consequently, for a 

short coating length, a larger D.C. background due to transmitted excitation light will be 

present. Similarly, for long lengths this background will be much smaller. This may result 

in an apparent higher quenching ratio for longer coating lengths than for the shorter 

lengths. If it were possible to achieve zero transmittance for the filter combination a 

constant Rfl-value would be expected to be seen.
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5.3.3 Coating thickness

We know from equation 5.4 that the sol-gel film coating thickness may be varied 

by adjusting the speed of the dip-coating apparatus. For an undoped sol-gel prepared 

with an R-value of 2, film thicknesses were found to vary linearly from 350nm to 600nm 

by adjusting the dipping speed from 0.49mm/sec to 1.66mm/sec [11]. These values were 

measured using ellipsometry techniques on sol-gels that were aged for 17 hours and dried 

for 17 hours. Using both the same range of dipping rates and curing parameters, optical 

fibres were coated with ruthenium doped sols (40000ppm) and were examined for 

variation in absolute fluorescence signal and oxygen sensitivity using the experimental 

configuration as described in section 6.3.2. The results of the experiment are shown in 

table 5.1.

Coating rate 
(mm/sec)

Film thickness (nm) 
from ref. [11]

Fluorescence signal 
(arb. units)

O2 sensitivity (%)

0.49 362 ± 20 70.87 ±11.53 91.1 ±0.71

0.97 433 ± 20 56.43 ±3.50 92.0 ± 1.1

1.38 560 ± 20 54.60 ±8.55 80.6 ± 0.50

1 . 6 6 602 ± 2 0 84.77 ± 17.17 84.6 ± 3.5

table 5.1 Variation of absolute signal and oxygen sensitivity of fibres with dip-coating speed.

The table also shows undoped sol-gel film thicknesses taken from reference [11] As 

mentioned in section 5.3.1, the doped films would be expected to have thicknesses in the 

order of lOOnm greater than those cited from reference [11], The third column of the 

table shows the absolute fluorescence signal as measured in an nitrogen atmosphere for 

the optical fibre sensors ± the standard deviation of 3 such samples. No obvious trend can 

be interpreted from the data shown. Similarly, the data recorded for the oxygen 

sensitivity of the fibres shows no obvious trend. The erratic nature of the data seems to 

be more of an artefact of the variation from fiber to fiber rather than a function of film 

thickness. Parameters which may account for this variation, assuming that those of 

equation 5.7 are held constant include the following:
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i) Fibre polishing quality:- Even though fibre quality is examined prior to usage, 

it may occur that cracks within the optical fibre cause variation in the fluorescence signal 

from fibre to fibre. This variation in fluorescence signal would not be expected to be 

present in the phase fluorimetric measurement system.

ii) Launching position of fibre:- The ability to position an optical fibre at the 

correct working distance from the launching microscope objective is critical in achieving 

fibre to fibre repeatability. In an attempt to alleviate this problem Feldman et al. described 

a system in which they used a perforated mirror which was placed between the launching 

optics and the proximal end of a fibre probe [12]. A pair of achromat lenses then formed 

a real, magnified image of the fiber face, which could be viewed using a microscope 

eyepiece. This system allows one to adjust accurately the position of the fibre relative to 

the working distance of the fibre probe. However, in the case of the oxygen sensor being 

described, this approach is not practical, as the miniaturisation of the optical system is a 

priority.

iii) Other parameters that may account for the irregular nature of the above data 

include the error in achieving equal sol-gel coating lengths on the optical fibres, as well as 

the ability to repeatably obtain good quality sol-gel films on the optical fibres.

iv) It should also be noted that at the slower coating rates, films of lesser quality 

are produced. This is due to the fact that stepping movement of the D.C. motor becomes 

more pronounced at these speeds.

Furthermore, it is known that the slowest coating speed of 0.49mm/sec produces 

a thin film of the order of 450nm which approximately equals the penetration depth of the 

evanescent wave (see equation 2.13). Changes in captured fluorescence signal due to film 

thickness variation would therefore be expected to occur for films thinner than this. To 

achieve this the dipping apparatus would have to be altered by either introducing a gear 

mechanism, or by alternatively by replacing the motor with a finer step movement.

5.3.4 Refractive index of coating

In 1989 Thompson at el. described an experiment in which they investigated the 

effect of varying the V-number on the sensitivity of an evanescent wave fiber optic
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biosensor. [13]. They argued that two important sensor parameters possess different 

dependencies on the fibre V-number. Firstly there is the proportion of power present in

where P C|ad, and Ptot are respectively, the optical power in the cladding and the total 

power in the fibre. Secondly, there is the efficiency with which fluorescence excited by 

the evanescent wave at the core surface is coupled back into the fibre. As described in 

chapter 2, this efficiency, increases with V-number according to Marcuse [15]. More 

specifically, Egalon’s treatment shows that it increases with An [16], According to 

Thompson et al., these opposite V-number dependencies suggest that there may be an 

optimum V-number (or range of V-numbers) for a specific fibre sensor. They tested this 

hypothesis by labelling a declad silica fibre, with a fluorophore, and measuring the 

evanescent-excited fluorescence while systematically varying the V-number of the fibre. 

This was done by immersing the labelled fibre end either in oils having accurately known 

refractive indices, ethanol or air. This procedure afforded V-numbers ranging from 100 

for a 200fxm core fibre to greater than 3500 for a 600[im fibre in air. The normalised 

fluorescence intensities were found to go through maxima corresponding to particular V- 

numbers for each fibre tested. These results suggest that the above hypothesis is valid.

A similar type of experiment was reported in 1994 by Albin et al [17]. This work 

was carried out in an attempt to experimentally verify Egalon’s theory, which predicts an 

increase in the coupling efficiency for higher differences in refractive indices between 

core and cladding. The experimental apparatus consisted of a declad optical fibre 50cm 

long, coated with a thin film of europium-doped yttrium oxide. The configuration differs 

from the work of Thompson et al. in that the fluorescent material, in this case, is excited 

with side illumination, perpendicular to the fibre axis. (Thompson et al. used evanescent 

wave excitation.) Part of the excited fluorescence was injected into the core and guided 

to a detector. The signal was measured for several different cladding refractive indices.

the evanescent wave which decreases with V-number according to Gloge1 [14].

4V2 5.9r
3V

’ This ratio was later corrected to 4/3V [18],
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The cladding consisted of sugar dissolved in water and the refractive index was changed 

by varying the sugar concentration in the solution. The results indicate that the power 

injected into the rod, due to evanescent wave excitation, increases with difference in 

refractive index, which is in qualitative agreement with theory.

An attempt was made to repeat this experiment using the commercially available 

sol-gel, known as Liquicoat. (E. Merck, Darmstadt, Germany). By mixing Liquicoat 

Silica and Liquicoat Titania in specific ratios the refractive index of the sol-gel was be 

accurately controlled between the values of 1.42 and 1.90 [9]. It was also observed that 

as the percentage T i02 in Si02 was increased, the sol-gel film thickness decreased. 

Therefore, throughout this experiment, the coating speed of the fibres was adjusted so as 

to maintain a constant film thickness of 250nm from fibre to fibre. The Liquicoat fibers, 

all doped with the same Ru(Ph2phen)32+ concentration were tested in the experimental 

apparatus shown in figure 5.10. An argon-ion laser (À = 488nm) was directed 

perpendicularly onto the coated end of optical

Laser 488nm
Sol-gel coating on 

optical fibre

laser line filter

collection
lens

fluorescence tranmission filter

detector

figure 5.10 Experimental configuration used to measure fluorescence signal 
as a function of n cora-n dad.
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figure 5.11 Variation of captured fluorescence signal against the difference in refractive 
in d e x , ncore'ndad-

fibre and the resultant fluorescence was focused through a band pass filter onto a 

detector. Care was taken to ensure that each fibre was placed in the same position, 

relative to the laser beam and detector. The resulting data is plotted in figure 5.11. With 

the exception of data point #4, it was found that the captured fluorescence signal 

increased with An, which again is in qualitative agreement with Egalon’s predictions.

5.4.5 Conclusion

With regard to the optimisation of the principal parameters involved in sol-gel 

based fluorescence sensors, the following conclusions may be deduced from the 

investigations described above:

i) The fluorescence signal from a typical sol-gel coated optical fibre increases 

with concentration of ruthenium complex in the sol-gel coating. Clearly this effect will 

reach saturation at sufficiently high concentrations.
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ii) The oxygen sensitivity of fibre sensors increase with ruthenium complex 

concentration. This increase in sensitivity levels off at a concentration of ~20000ppm 

weight of ruthenium complex on silicon.

iii) The fluorescence signal from a fibre increases with sol-gel coating length 

over the short lengths examined here.

iv) Oxygen sensitivity was also found to increase with sol-gel coating length. 

This unexpected effect is related to the feed-through of the optical filter combination used 

in the measurement system.

v) No substantial change in fluorescence signal or oxygen sensitivity was 

recorded as a function of film thickness. This, however is probably due to the fact that the 

thin film thicknesses examined were all greater than the evanescent wave penetration 

depth.

5.5 Optimisation of optical parameters

5.5.1 Numerical aperture of launch/collection lens

An experiment was carried out to examine the modal dependence of fluorescence 

coupling efficiency of a coated fibre. In particular, the angles at which the fluorescence is 

coupled out of a typical sol-gel coated optical fibre. The experimental configuration was 

set-up as shown in figure 5.12. Light from an argon-ion air-cooled laser was expanded as 

shown, using microscope objective X and biconvex lens Y, to fill the 0.65 numerical 

aperture microscope objective Z. The doped sol-gel coated optical fibre was positioned at 

the working distance of the microscope objective for launching. A rotation stage was 

positioned centrally underneath the distal tip of the fibre. The rotation stage allowed 

measurements of rotation angles to 0.5 degree accuracy. The signal from the apertured 

( - 1 mm) photodiode attached to the rotation stage was amplified, and synchronously 

detected using a lock-in amplifier as illustrated. It is noted that the fibre optic sensor 

configuration of figure 5.4 is not suitable to observe the fluorescence modal pattern. The 

reason for this is that fluorescence from the sol-gel coating on the side of the fibre 

swamps the fluorescence signal of interest, originating from the core of the fibre. To 

overcome this, the fibre structure shown in figure 5.12 was used in the experiment i.e. the
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figure 5.12 Experimental configuration to measure polar distribution of fluorescence from 
a sol-gel coated fibre.

primary coating was removed from the central section of a fibre, leaving approximately 

15mm of primary coating at both launching and distal ends. Cladding etching was 

carefully carried out in a petri dish, in a manner which the etchant did not come into 

contact with the remaining primary coating. With this sensor positioned in the 

experimental system, all the red/orange fluorescence reaching the photodiode originates 

from the fibre core. Holding white paper behind the red glass filter showed that the 

fluorescence modal pattern is predominately in the high order modes. The measurement 

of this pattern was carried out and the data recorded are shown in figure 5.13. Two sets 

of data are shown, one recorded in the presence of a nitrogen atmosphere and one in the 

presence of oxygen. The fluorescence quenching in the presence of oxygen in obvious 

from the data shown. A number of important points may be deduced from these data:

i) Evanescent wave excited fluorescence couples predominately into the high order 

modes of the fibre.

ii) From measurements and manufacturers data we know the refractive index of the 

sol-gel coating and cladding to be approximately 1.43 and 1.40, respectively.
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Consequently, the V-number or NA of the sensing region is less than the V-number of the 

cladded fibre. Therefore one can assume that, all the fluorescence coupled via the 

evanescent tail of the guided modes into the fibre, exits the distal end (see section 5.5.2). 

In addition we can deduce the NA of the sol-gel coated region of the fibre to be 0.34. 

This yields a refractive index of 1.42 for the sol-gel coating. This value corresponds 

favourably to ellipsometric measurements of 1.43 [11].

iii) The NA of 0.34 (in the vicinity of 600nm) for the sol-gel coated fibre implies 

that a collection lens of NA > 0.35 is sufficient to collect all the fluorescence light exiting 

the end of the optical fibre. However, it also suggests that an excitation numerical 

aperture > 0.35 is sufficient.

iv) Figure 5.13 also suggests that a higher degree of quenching due to change from 

a nitrogen to an oxygen environment may be measured by inserting an annular modal 

mask within the collection optics so as to block the lower angle modes and transmit the 

higher ones. The influence of such a mask was interpreted by integrating the area under 

the curves in figure 5.13. The results are plotted in figure 5.14, where the X-axis shows 

the maximum blocking angle of the mask in degrees. Zero degrees correspond to having 

no mask in place. As the mask diameter increases, the analysis shows that the percentage 

quenching should increase from 71.1% at a mask angle of 0.6° to a maximum of 91.2% 

at 34.6°. However, increasing the mask angle also has the effect of reducing the overall 

detected fluorescence signal. An increase from 0.6° to 34.6° in mask angle reduces the 

overall unquenched fluorescence signal by 96.5 %. The choice of optimum mask angle 

would depend on the particular SNR and sensitivity requirements of each application.

5.5.2 Tapering o f optical fibre

One of the problems that may arise during evanescent-wave fibre optic fluorescence 

sensing is mismatch between the V-number of the sensing region of the fibre, V«™, and 

the cladded region of the fibre, VC|ad. The only function of the remaining cladding is to 

enable holding of the fibre without absorbing evanescent wave energy. In many 

biosensing applications the sensing region is immersed in aqueous samples which have a 

refractive index less than that of the optical fibre cladding. This causes an abrupt change 

in the V-number between the sensing region and the cladded fibre, resulting in
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figure 5.13 Polar distribution of evanescently excited fluorescence light from fibre core, 
measured both in nitrogen and oxygen atmospheres.
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figure 5.14 Percentage quenching and fluorescence signal in nitrogen as a function of mask 
angle. Data taken from figure 5.13.
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fluorescence light guided by the high order modes being lost. This problem is 

compounded by the fact that the fluorescence which couples into the fibre is carried 

primarily by the high order modes, as confirmed by the data in figure 5.13. Two methods 

have been examined in an attempt to overcome this problem.

i) Lackie et al. discussed a method of overcoming this problem by removing the 

cladding and using a thin ring to hold and align the proximal end of the fibre while 

preserving the NA of the sensing region [19].

ii) The alternative and more widely used method is to taper the fibre core. This was 

first proposed by Thompson et al. in 1989 [13]. The principle of tapering involves the 

reduction of the fibre sensing radius r ^ ,  so as to produce a V-number less than or equal 

to that of the cladded fibre [20]. The radius should be reduced such that

V < V . ,  5.10sens clad

and therefore

* r cl
[”J  ~ nd )  

(nco2 ~ n sens2)
5.11

to avoid signal loss from V-number mismatch between the sensing region and the cladded 

region of the fibre. Anderson et al. reported a 10-fold increase in detection limits by using 

a continously tapered fiber rather than a non-tapered one [21]. Taper geometries have 

been controlled by varying the speed at which the optical fibre is immersed in a HF 

solution [21]. An alternative method of producing quality fibre tapers for relatively large 

diameter fibres has been described using butane torches to heat the fibre core which is 

then exposed to tensile stress [22].

In the analysis of the current situation, it was found unnecessary to taper the fibre 

probe due to the fact that the refractive index of the sol-gel layer is greater than that of 

the fibre cladding.
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5.6 Conclusion

The processes involved in the fabrication of a sol-gel based fibre optic oxygen sensor 

have been discussed. Parameters which require optimisation include dye concentration 

within the sol-gel layer, coating speed of optical fibre and length of sensing region have 

been detailed. The investigation of optical parameters has also been carried out. Issues 

such as the optimisation of the numerical aperture of the collection lens, the effect of 

using a modal mask, and the effect of tapering fibres have been identified and their 

relevance discussed in specific applications.
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Chapter Six - Experimental Systems

6.1 Introduction

The requirements of the experimental systems to measure the fluorescence 

intensity and phase fluorimetric response of the sol-gel coated fibres are discussed in this 

chapter. A schematic diagram of a typical fluorescence intensity measuring system is 

shown in figure 6.1. It consists of a light source of a particular wavelength range which 

overlaps the absorption band, AA.^, of the fluorescent material. An optical arrangement is 

usually necessary to couple light from the source into the fluorescent material, along with 

an excitation filter which transmits the excitation band of wavelengths, AA,ex, while 

blocking any tight in the fluorescence region. The fluorescence emitted from the material 

at the higher wavelength band, AXcm, is then captured and focused onto a suitable photo­

detector. The emission filter is used to prevent excitation light from reaching the 

detector. The photo-detector and associated processing electronics thus record the 

fluorescence intensity of the material as a function of time. This type of system can be 

changed to a phase fluorimetric type system by modulating the light source and adjusting 

the detection electronics to measure the phase shift between the modulator and the 

detected fluorescence. A phase fluorimetric system thus records phase angle as a function 

of time.

In setting up such experimental systems, the first requirement is to choose a 

suitable light source. As the sol-gel immobilised ruthenium complex was found to have a 

broad absorption band with a maximum occurring at 450nm (see figure 6.2), an argon- 

ion air-cooled laser with a 488nm line was suitable to excite its fluorescence. The 

complete experimental systems using the laser as excitation source in fluorescence 

intensity mode and in phase fluorimetric mode are described in sections 6.2.1. and 6.2.2, 

respectively. Although a laser is shown to work well as an excitation source, a number of 

disadvantages are noted:

i) the physical size of the laser lends itself for use only in a laboratory based 

measurement system.
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Excitation filter Emission filter

figure 6.1 Typical fluorescence intensity measurement system

ii) the high power consumption of such a laser results in relatively high 

running costs.

iii) the system is relatively expensive.

iv) optical density filters are often required to reduce the effect of photobleaching 

in fluorescent material.

v) modulation of excitation light is required to carry out lock-in detection. 

Alternative excitation sources for use in fluorescence sensors were therefore

investigated. The use of light emitting diodes (LED’s) as radiation sources is an attractive 

alternative. LED’s have many operational advantages over other sources:

i) because direct electronic intensity modulation is feasible, moving parts are 

not required.

ii) they are inexpensive due to mass production.

iii) they are small in size and mechanically stable.

iv) their low power consumption makes them suitable for battery operation.

v) they have stable output intensities.

A lot of research is currently being carried out to develop LED sources in the blue region 

of the spectrum. Up to recently, although LED sources at longer wavelengths have been 

readily available, blue LEDs were not available. In 1992, 15 mcd blue LED’s, 

manufactured by Ledtronics Inc, CA, U.S.A., became available commercially. In 1993, 

the maximum luminous intensity of these devices was increased to 30 mcd. These blue 

LEDs with a peak wavelength of 467nm (see figure 6.2) matched the absorption of the 

immobilised ruthenium complexes extremely well. The availability of these LEDs allowed
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Wavelength /  nm

figure 6.2 Spectroscopy of oxygen sensor showing emission overlap both of a silicon 
carbide and a gallium nitride blue LED with the absorption spectrum of a sol-gel 
immobilised ruthenium complex. The fluorescence emission from such a complex is also 
shown, where \p eai< = 607nm.

the construction of miniaturised optical oxygen sensors. However, their very low 

emission intensity required the use of a photomultiplier tube or equivalent to achieve 

adequate signal to noise ratios (SNR). In early 1994, further improvements in blue LED 

technology resulted in the availability of a 1000 mcd device. This resulted in an increase 

from 0.5|iW to lmW in total output power of the LEDs, for a forward current of 35mA. 

These new devices also had the advantage that their peak power was at 446nm which 

matched exactly the absorption peak of the ruthenium complexes as shown in figure 6 .2 . 

Their availability made possible an all-solid-state portable oxygen sensor. Fluorescence 

signals from a typical sol-gel coated fibre were now found to yield high SNRs when 

detected using a standard photodiode. Section 6.3 describes the use of these LEDs in an 

experimental system that measures both the fluorescence intensity and the phase 

fluorimetric response of the fibre optic oxygen probes. The construction of an all-solid- 

state portable sensing device is completed by the use of a balanced demodulator as a 

lock-in amplifier. This work is detailed in section 6.4.
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The final sections (6 .6 , 6.7) of this chapter includes a discussion on the various 

techniques used in phase measurements which were used in the phase fluorimetric 

experimental system.

6.2 Laser based system

6.2.1 Fluorescence intensity mode

The laser based experimental system used to characterise the multimode oxygen 

sensors in terms of fluorescence intensity variation is shown in figure 6.3. The 

experimental system shown is equivalent in principle to that illustrated in figure 6.1. Light 

at a wavelength of 488nm from an air-cooled argon-ion laser (Cathodeon, Oxford, U.K.), 

is passed through expanding optics, microscope objective X and collimating lens Y, as 

shown, and is then reflected from a Raman holographic edge filter C, (Physical Optics 

Corporation, Torrance, CA, U.S.A.), via a microscope objective, Z, to the coated 

PCS600 fibre which is mounted in a gas cell. The expanded and collimated laser beam is 

signified using the thicker dotted line in the diagram. The holographic filter is designed to 

be used off-axis from 5-20 degrees. Mirrors A and B are therefore adjusted such that the 

angle a  has a value of 12°. This corresponds to 0% transmission at 488nm and 80% 

transmission at 607nm (see appendix B for specifications of filter), the peak fluorescence 

wavelength of the sol-gel-immobilised ruthenium complex (see figure 6.2). The gas flow 

system consists of a combination of cylinders of oxygen, nitrogen and air (if required), 

mass-flow controllers and a mixing unit, which enables precise gas mixtures to be passed 

at selected flow rates, through the gas cell. The gas cell is held in a metal frame which is 

attached to a X-Y-Z positioner, thus allowing optimisation of the launching position of 

the fibre. The evanescent field of the guided radiation excites the entrapped ruthenium 

complex and a fraction of this resultant fluorescence is captured by the fibre. Some of this 

guided fluorescence is transmitted back through the holographic edge filter, which rejects 

scattered or reflected laser radiation, and is then focused onto the scanning 

monochromator slit (or optical filter arrangement). The focal length of lens W is 100mm, 

which combined with a diameter of 25mm, closely matches the f-number of the 

monochromator. The ruthenium complex fluorescence is detected by a Hamamatsu PMT 

(serial number R1414), whose signal is amplified using an Ithaco current sensitive
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figure 6.3 Fluorescence intensity measurement system using an argon-ion laser as 
excitation source

amplifier (model number 1642), and fed into a lock-in amplifier (Stanford Research 

Systems, model SR510), for synchronous detection. Software was written to control a 

Bytronics mutifunction input/output card (model number MPIBM3), which converts the 

detected analogue signal to digital format, which is then passed to the P.C. for storage. 

Software was also written to control the monochromator such that, if required, a 

fluorescence spectra of 0.90nm resulution could be obtained using a slit width of 150|im.
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However, during normal mode of operation the monochromator is replaced with a 

longwave pass filter (catalogue number SOG-550, CVI Laser Corporation, 

Albuquerque, N.M., U.S.A.). This filter has a transmission of 99% above 600nm. The 

only signal therefore being detected by the lock-in amplifier should be the fluorescence 

signal from the evanescently excited ruthenium complex. However, in practice this is not 

entirely the case, as some of the scattered 488nm light is detected by the PMT. This leads 

to a D.C. background level in the detected fluorescence signal. One way of reducing this 

offset is by placing the chopping wheel between the microscope objective Z, and the 

optical fibre as carried out by Ligler et al. [1]. However, due to the high fluorescence 

signals that were being detected and the short working distance of lens W, this was not 

carried out. Alternatively, the D.C. background level can be eliminated by using the 

‘offset’ function within the lock-in amplifier. The fluorescence signal is recorded as a 

function of time. The gas in the cell is alternated between oxygen and nitrogen or a 

controlled mixture of the two gases. As the oxygen enters the cell environment and 

displaces the nitrogen, a dramatic decrease in detected signal is observed, due to the 

quenching process. The observed response of the oxygen probes is presented in chapter

7.

6.2.2 Phase fluorimetric mode

The experimental apparatus used in characterising the optical fibre oxygen sensor 

in phase fluorimetric mode is very similar to that illustrated in figure 6.3. However, due 

to the mechanical limitation in modulation frequency of the chopping wheel (maximum of 

-2kHz), an alternative method of light modulation had to be used. An acousto-optic 

modulator (Hoya Electronics Co., Ltd., Tokyo, Japan) was therefore used to modulate 

the light. The experimental set-up is illustrated in figure 6.4. The radio frequency 

generator sets up an acoustic wave in the tellurite crystal, which behaves like a sinusoidal 

grating [2], The incident laser beam passing through this grating is thus diffracted into 

several orders as illustrated [3]. Analogue modulation of the radio frequency results in 

the transmitted laser beam being modulated. Due to the fact that only one of the beams 

can be used, an iris is required to block the remaining beams. By appropriate adjustment 

of the analogue signal from the signal generator, square wave or sinusoidal wave
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modulation of the laser beam can be achieved up to frequencies of -10MHz as required. 

The light that passes through the iris is then expanded to a beam diameter of 5mm (so as 

to fill microscope objective Z), as shown in figure 6.3. The remaining phase fluorimetric 

experimental system is equivalent to that of figure 6.3. The sole difference is that the 

lock-in amplifier is replaced with a phase detector which monitors the phase angle 

between the modulating excitation beam and the detected fluorescent light. As oxygen 

replaces nitrogen in the gas cell, a decrease in phase shift occurs between the modulation 

of the excitation beam and the resultant fluorescence. The phase shift that occurs can be 

measured using a number of approaches. Various phase detecting systems are discussed 

in section 6 .6 .

To expanding 
optics

figure 6.4 Acousto-optic modulation of laser beam

6.3 LED based system

6.3.1 Introduction

Because of their many advantages, there is a strong desire to use LED’s in optical 

systems. Commonly available LED’s cover a wavelength range from about 555nm to the 

near-infrared spectral region. However, most fluorescence chemistries require excitation 

wavelengths of less than 500nm. The typical semiconductor materials used in the 

manufacture of these longer wavelength LEDs are III-V compounds such as gallium
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arsenide phosphide (GaAsi.xPx), gallium phosphide (GaP) and gallium aluminium arsenide 

(Gai.xAlxAs) [4], For emission in the blue region of the spectrum, these materials are not 

suitable because their band gaps are too small. However, there are alternative compounds 

that are of interest in the production of blue LED’s. These include gallium nitride (GaN), 

zinc sulfide (ZnS), zinc selenide (ZnSe), and silicon carbide (SiC) [4]. The low intensity 

LEDs of 15 mcd and 30 mcd, which were previously mentioned, are fabricated from 

silicon carbide, whereas the newer ultra bright blue LEDs use gallium nitride.

figure 6.5 LED based fluorescence intensity system (I)

6.3.2 Fluorescence intensity mode

The LED-based fluorescence intensity system was originally set-up using the 

weaker SiC blue LEDs. To achieve SNRs of the order of 1000, a PMT was required. The 

system is illustrated in figure 6.5. A signal generator was used to modulate the LED for 

lock-in amplification and detection. Various configurations for launching the LED light 

into the optical fibre were investigated. The simplest coupling scheme, whereby the fibre 

is butted directly against the surface of the LED, is not very efficient because the beam 

diameter of the LED at the dome surface, is in the order of 4 times greater than the fibre 

core diameter. Significant launching improvements which involving either tapering the 

fibre end or placing a microlens between the LED and fibre have been reported in the
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past [5]. However, in the present situation, it was found necessary to use the optical filter 

X, between the LED and fibre to remove the portion of the LED emission that overlaps 

the region of the fluorescence. Optimum launching of the LED light was achieved, by 

first polishing the 5mm diameter LED down to a level close to the emitting surface.

angle /d e g  angle /deg

figure 6.6 Polar distribution of radiation from (a) an unpolished SiC LED and (b) a polished 
SiC LED.
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Various grades of optical polishing paper were used to achieve a good quality finish on 

the LED surface. The effect of polishing the dome of the LED can be seen from the polar 

distribution of light intensities shown in figure 6 .6 . In figure 6 .6 (a), the majority of the 

radiation from the unpolished LED is directed within a 10° light cone. However, 

polishing the LED dome removes this high directivity, and results in a highly diffuse 

emitting surface as shown in figure 6 .6 (b). The dip in intensity observed at 0° is due to 

the circular structure of the semi-conductor junction. A 10mm focal length convex lens 

was placed 10mm from the LED surface, to achieve a collimated beam of diameter 5mm, 

which filled the aperture of the microscope objective lens B. Filter X (Infrared 

Engineering, Essex, London) is a band pass filter (Xcut-on = 400nm and A,cut̂ ff = 505nm, see 

appendix C for specifications). A scan of the blue LED emission, plus filter X is shown 

in figure 6.7. Light from the 0.65 NA microscope objective was launched into the fibre. 

The fluorescence coupled back into the fibre was then collected through the glass 

window U. A convex lens C, of diameter 25mm and focal length 20mm was used to 

collimate the collected fluorescence (NA = 0.52, which is sufficient to collect all the 

fluorescence, see section 5.5.1). This was

350 400 450 500 550 600

wavelength /  nm

figure 6.7 Blue LED emission with and without filter X

123



figure 6.8 LED based fluorescence intensity system (II)

then focused onto the PMT through filter Y. (Filter Y is equivalent to the fluorescence- 

transmitting filter used in the laser based system). It is important that the filter 

combination XY has close to zero transmittance. A spectrophotometer was used to test 

this. The results showed that a maximum of 0.1% transmittance occurred at 580nm.

An alternative LED based experimental arrangement was also investigated. Up to 

this point the fluorescence has been excited from the proximal end and collected at the 

distal end of the fibre. Since the fluorescence photons in the waveguide have no 

preferential direction, the signals that exit the opposite ends of the fibre are equal in 

power [6 ]. There are a number of advantages in collecting the fluorescence from the 

proximal end, just as was carried out in the case of the laser excitation:

i) in the order of 90% of the excitation light launched into the waveguide exits 

at the distal end. Therefore the signal-to-background ratio is higher for 

proximal end than for distal end collection.

ii) having the distal end free makes the installation and alignment of the sensor 

easier.

iii) only the proximal end requires focusing optics.

iv) it allows for the use of long fibre lengths, suitable for remote sensing 

applications.
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The introduction of the higher power LEDs also made the set-up and alignment of this 

experimental system easier to accomplish. The new system is illustrated in figure 6 .8 . 

Corresponding components of this system are equivalent to those used in figure 6.5. 

However, high SNRs were achievable using a photodiode as detector. The photodiode 

used was a Hamamatsu silicon detector (type number SI 133-14). A portable 4-rail 

structure was designed and constructed, onto which all the components could be placed. 

Linear adjustment of the components was easily achieved. This rail system is shown in 

Appendix B. The remaining optical component in figure 6 . 8  which has not already been 

discussed is filter Z. It is a colour separation filter with a transmission range from 535 to 

2600nm and a blocking range from 443 to 565nm (Reynard Corporation, San Clemente, 

CA, U.S.A.). This filter reflects the incident blue light into the microscope objective lens 

B and into the optical fibre. The resultant fluorescence then passes through filter Z and is 

focused onto the photodiode. The response of this experimental set-up to oxygen is 

discussed in chapter 7.

6.3.3 Phase fluorimetry mode

The modulation of LEDs at the frequency required for phase fluorimetric 

characterisation is not a problem as it can be carried out electronically. The GaN LED 

has a frequency response of 4-5Mz [7]. However, it was necessary to use a low bias 

current operational amplifier to amplify the signal detected by the photodiode. The 

OPA128 device manufactured by Burr Brown, Tucson, AZ, U.S.A. allows an 

amplification of up to 108 and has an ultra low bias current of 75fA [8 ]. These amplified 

signals were then fed into a phase sensitive detector. The experimental configuration for 

phase fluorimetric measurements is identical to that depicted in figure 6 . 8  with direct 

detection replaced by phase-sensitive.

6.4 All-solid-state system

Due to the availability of high intensity blue LED’s, it was now feasible to 

construct an all-solid-state fluorescence-intensity monitoring device. The remaining 

commercial instruments used in the experimental system and which needed replacement 

were the frequency generator to drive the LED, and the lock-in amplifier. The frequency 

generator can be replaced by a voltage-to-frequency converter circuit, using an integrated
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circuit manufactured by Analog Devices (i.e. AD654). Appendix C illustrates the 

electronic circuit lay-out. Discrimination against ambient light may be carried out using 

the Analogue Devices Balanced Modulator/Demodulator (AD630), which can be 

configured to operate as a lock-in amplifier. The circuit was built as shown in appendix 

D. The frequency of modulation of the LED is set at 780Hz due to the fact that optimum 

operation of the AD630 i.e. is at frequencies up to 1 kHz [9], The D.C. output voltage of 

the lock-in amplification circuit was fed to a local display (31/2 digit LCD digital panel 

meter, RS 255-979), which gives a voltage reading that corresponds to the fluorescence 

intensity of the immobilised ruthenium complex. The portable fluorescence intensity 

oxygen sensor with local display is shown is appendix D.

figure 6.9 long term stability instrument

6.5 Instrument for long term stability studies

During the course of the work it was necessary to build a instrument which could 

monitor the long term stability of the doped sol-gel coatings. With this in mind an 

instrument was constructed which is based on the all-solid state system. An illustration of 

the system is shown in figure 6.9. A section (5mm x 15mm) of a microscope glass slide 

was dip-coated in a sol-gel containing a ruthenium complex. The slides were prepared
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exactly as described in the case of optical fibres. It was unnecessary to polish the LED 

dome in this case, as the 10° diverging LED beam was sufficient to excite the coated 

slide, which was placed at an angle of 45° to the incoming beam. A biconvex lens (C), 

was used to collect a portion of the fluorescence and focus it onto the photodiode. An 

offset adjustment feature was also put in place such that the baseline could be adjusted if 

required. The detected voltage which represented the fluorescence intensity of the 

immobilised ruthenium complex was stored using a data-logger. The complete system 

with data logger was placed in light-tight box and placed in a room for monitoring over a 

period of time. The recorded data could be down-loaded from the data-logger to a P.C. 

and analysed. Data obtained from this system is discussed in detail in section 7.2.4.

6.6 Phase measurement systems

6.6.1 Introduction

In the phase fluorimetric systems described, it is necessary to be able to measure 

the phase angle between two sinusoidal signals. There are many methods of carrying out 

this measurement. In the work presented in this thesis, two techniques of phase 

measurement were investigated. Firstly, a dual phase LIA is used to measure the phase 

angle. The second technique employed 2 zero cross detectors with an exclusive OR gate. 

This system is detailed in section 6.6.3.

6.6.2 Dual phase U A

A dual phase lock-in amplifier can be used to measure the phase difference 

between two sinusoidal signals. The principle of operation of such a phase measuring 

system is described as follows. The signal waveform, sig, and reference waveform, ref, 

can be represented by the following expressions[1 0 ]:

sig = s in ((D ^i+ e^) 6.1

ref 6.2
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where V Sig and V ref are respectively the signal and reference amplitudes, and CQfe and ov are 

respectively the signal and reference frequencies. A lock-in amplifier amplifies the signal 

waveform and then multiplies it by the reference using a phase sensitive detector or 

multiplier. When the frequencies of both signals are equal i.e. when ow = Giig, the low 

pass filtered output of the phase sensitive detector ( V p s d i)  is a D.C. signal which can be 

expressed as follows:

Vp* 1 -  yrefVsig cos(e^ - e re/) 6.3

In a dual phase lock-in amplifier, a second phase sensitive detector (PSD2) multiplies the 

signal by the reference phase-shifted by 90°. The output can then be expressed as

V p sd i x  s in (e^  - e re/) 6.4

Vpsdi and Vpsd2 represent the signal as a vector relative to the lock-in reference, where 

Vpsdi, the ‘in phase’ component is X, and Vpsd2, the ‘quadrature’ component is Y, as 

shown in figure 6.10. The phase between the signal and lock-in reference can thus be 

measured according to

-1  Vpsdi= tan
Vpsdi

6.5

Two dual phase lock-in amplifiers were available 

for use during the work carried out, i) EG&G 

Princeton Applied Research, model #5210 and ii) 

Stanford Research Systems, DSP model #SR630. 

One of the advantages of using the dual phase

Vpsd2

lock-in amplifier to measure phase angle is that fjgure 6.10 Vector representation of dual 

very low signals (nanovolts) can be measured. P^ase Ll̂ _______________________

Furthermore, the LIA outputs are calibrated with respect to angle e.g. 18°/1V.
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6.6.3 Zero-crossing system

A circuit containing two zero cross detectors (ZCD), an exclusive OR gate 

(ExOR) and a lowpass filter was built for the purpose of relative phase measurements. A 

diagrammatic representation of the circuit is shown in figure 6.11. The two sinusoidal 

waveforms are connected to the inputs of the zero cross detectors, which give a 

corresponding square wave output. The ExOR gate output goes high when the incoming 

square waves are in phase. The low pass filtering of this signal produces a D.C. voltage 

signal corresponding to the in phase components of the original sinusoidal waves. A 

calibration curve of the circuit is shown in figure 6.12. Calibration was carried out by 

measuring the circuit output with signals supplied from a variable phase oscillator.

For this instrument to work satisfactorily, it is necessary to have very little noise 

in the detected fluorescence signal i.e. the SNR must be above parity and preferably much 

higher. To accomplish this, it was found necessary to use a photomultiplier tube as 

detector. To further decrease noise inherent in the sensor output signal, it is possible to 

increase the low pass filter time constant. However, this competes with the sensor 

response time. The use of a photodiode as detector is considered possible only if a 

frequency filter is incorporated prior to the ZCD, so as to remove noise in the signal.

figure 6.11 Schematic diagram of phase measurement circuit using two zero cross 
detectors with an ExOR gate with low pass filter.
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figure 6.12 Calibration curve of ZCD and ExOR phase sensitive detector

6.7 Phase locked detection o f fluorescence

An alternative method of measuring the fluorescence lifetime of the ruthenium 

complex was developed in collaboration with the department of Electrical, Electronic and 

Information Engineering, City University, London [11], The system, based on phase 

locked loop technology, measures the fluorescence lifetime and converts it to a repetitive 

signal, which also serves as the modulation signal for the excitation source. Therefore 

lifetime measurements, or oxygen concentration determination, can be made by 

monitoring the period, or modulation frequency of this repetitive signal. These are 

parameters which can be measured with high precision.

The phase locked detection system is presented schematically in figure 6.13. A 

rectangular pulse, Q2, is used to excite the fluorescence material. The rectangular pulse 

carries more excitation power from the light source than a sinusoidal one, and therefore a 

higher SNR can be achieved from the corresponding fluorescence response [11]. Using 

the theory of linear phase locked loops, Zhang et al., have shown that the introduction of 

a phase lag, a , between the modulation and reference signal results in the system being 

theoretically immune to excitation source leakage [11]. They show mathematically that
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optimum responses from such a phase sensitive detection system are achieved, when the 

phase lag has a value of 0.117. A phase lag of 0.125 is introduced in the present system, 

between modulation signal Q2, and the reference signal Q1 using a dual D-type edge- 

triggered flip flop (LS74) and a bit binary counter (LS93) as illustrated by the timing 

diagram in figure 6.14. Zhang et al. also found that by introducing an analogue switch, 

better measurement reproducibility was achieved. This switch is incorporated in the 

electronics by using the dual monolithic analogue switch HI200 (RS 309-559). The 

output of the phase sensitive detector is now only determined by the decay process of the 

fluorescence material. The resulting modulation waveform has a period proportional to 

the lifetime of the fluorescent material. This system was implemented and built as shown 

in appendix E.

To measure the period of the this signal a tachometer was used. A tachometer 

was built based on an i.c. available from Radionics (RS 302-047) [12]. A calibration

figure 6.13 Pulse modulated phase locked detection with two reference 
signals.
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figure 6.14 Timing diagram for phase sensitive detection of fluorescence system [11]. 
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curve of such a tachometer is shown in figure 6.15.

6.8 Conclusion

In chapter 6  the various experimental systems used in this work are detailed. The 

progress from the initial laser/photomultiplier tube laboratory based system to a 

LED/photodiode hand held portable sensor is described, for both fluorescence intensity 

and phase fluorimetric measurements. Various techniques of phase measurement have 

been described. The response of the various systems to oxygen is presented in chapter 7.
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Chapter Seven - Experimental Results

7.1 Introduction

The experimental results obtained from the investigation of evanescent wave- 

excited fluorescence from ruthenium complex doped sol-gel coated optical fibres are 

presented in this chapter. The primary use of the data is to determine the possibility of 

producing a viable evanescent wave gas sensor. Criteria for such a sensing device have 

been established and are detailed in section 1.3. In this chapter, the performance of the 

evanescent-wave fiber optic sol-gel based oxygen sensor is investigated in the context of 

these criteria. The progress from the initial laser/PMT based characterisation system to 

the LED/photodiode system is detailed in terms of a direct fluorescence intensity 

monitoring system and also in terms of the various fluorescence lifetime monitoring 

systems, which have been described in chapter 6 . Sensor characterisation is also carried 

out in terms of long term stability, temperature and relative humidity dependencies, cross- 

interferents and response time.

When considering the results presented in this chapter, it should be noted that 

experiments were not always carried out using the same sol-gel coated optical fibre (due 

to breakages and fibre damage). Therefore, film-to-film and fibre-to-fibre variability may 

give rise to some variation in sensor performance.

7.2 Fluorescence intensity monitoring

7.2.1 Laser based system

A laser based experimental system was first used to characterise the fiber optic 

oxygen sensors in terms of fluorescence intensity variation. This fluorescence intensity 

measurement system was set up as illustrated in figure 6.4. A bright orange/red glow was 

clearly visible from the sol-gel coated region of the optical fibre. Using mass flow 

controllers, nitrogen gas was passed at a rate of 500cm3/min, through the gas cell 

containing the sol-gel coated fibre. Fluorescence intensity data obtained from sensors 

with sol-gel doped bipyridine (Ru(bpy)32+) and diphenyl-phenanthroline (Ru(Ph2phen)32+)
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figure 7.1 Response of sensor coated with sol-gel film containing Ru(bpy)32+ complex; 
measured using the laser based system.

tim e /se c

figure 7.2 Response of the sensor coated with sol-gel containing Ru(Ph2phen)32+; measured 
using the laser based system.
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complexes are shown in figures 7.1 and 7.2. As the nitrogen in the gas cell is replaced 

with air, fluorescence quenching occurs as expected. Further quenching is observed when 

the air is replaced by oxygen. The ratio Rn = Io/Iioo, where Iioo represents the detected 

fluorescence signal in 1 0 0 % oxygen and Io is the fluorescence signal in 0 % oxygen, can be 

used as an approximate measure of the oxygen sensitivity of the sensor. In figure 7.1, the 

performance of a sensor coated with a sol-gel film containing bipyridine complex is 

shown (To = 685ns). The sol-gel recipe used to prepare these films is as detailed in section

4.7, i.e. ruthenium complex concentration of 40,000ppm, and a water/TEOS ratio of 2:1. 

Although the response varies in a repeatable manner with oxygen concentration, the 

sensitivity is relatively low with an Rn value approximately of 2.0. The diphenyl- 

phenanthroline complex, known to have a longer excited-state of lifetime than the 

bipyridine complex (to = 5600ns), would therefore be expected to show higher oxygen 

sensitivity. This is confirmed by figure 7.2 where the response of a sensor coated with a 

film containing the diphenyl-phenanthroline complex is shown. An increase in Rfl value to 

approximately 3.7 was observed. Both plots show high values of signal-to-noise ratios 

with little evidence of photobleaching or hysteresis. The plots may not be used to deduce

concentration of oxygen (%)

figure 7.3 Typical Stern-Volmer plot obtained using laser based system.
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the sensor response time, as the transition regions are mostly indicative of the time taken 

to achieve manually adjusted stable gas concentrations. A more detailed discussion on the 

sensor response time is presented in section 7.7.4. A typical Stem-Volmer plot obtained 

using the diphenyl-phenanthroline material is shown in figure 7.3. Two features should be 

noted from these data. Firstly, the data is approximately linear over most of its range; the 

source of its deviation is unclear. Secondly, the highest sensitivity to oxygen using this 

particular sol-gel coating is obtained in the range 0 % to 1 0 % oxygen, as predicted by the 

Stem-Volmer equation (i.e. equation 3.17).

7.2.2 Blue LED based system

When LEDs of sufficient output power became available, they were used to 

replace the argon-ion laser source of the previous section. A LED based fluorescence 

intensity characterisation system was set up based on the illustration shown in figure 6 .6 . 

Initially 15 mcd and 30 mcd silicon carbide blue emitting LED’s were used as excitation 

sources. However, results from the higher power gallium nitride (lOOOmcd) LED are 

shown here, with the exception of the data of figure 7.5 which was recorded using the

wavelength / nm

figure 7.4 Fluorescence quenching of Ru(Ph2phen)32+ in the presence of oxygen.
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lower power silicon carbide LED. With the photomultiplier tube in place as shown in 

figure 6.5, and the longwave pass filter Y (99% transmission above 600nm) replaced by a 

monochromator, the fluorescence spectrum of a sol-gel coated optical fibre in a nitrogen 

atmosphere was recorded. Oxygen was then passed through the gas cell containing the 

optical fibre. The fluorescence spectrum from the fibre was again recorded. Results 

demonstrate fluorescence quenching of the entrapped ruthenium dye as expected. Both 

spectra are shown in figure 7.4. The sol-gel entrapped ruthenium complex fluorescence 

was found to peak at 607.5nm. A high degree of quenching of 89.8% was found, 

corresponding to an Rn value of 9.8. This value corresponds to a substantial increase in 

sensitivity from the laser based system, which possibly is partially due to the improvement 

in spectral filtering in the LED-based system, and also due to improvements in producing 

better quality sol-gel thin films.

Real-time fluorescence signal monitoring was carried out with the longwave pass 

filter Y in place of the monochromator. The sensor response at 10% intervals over the 

range 0%-100% oxygen is shown in figure 7.5. The lower power silicon carbide blue 

LED was used as an excitation source in the recording of these data with photomultiplier
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figure 7.5 Sensor calibration data in 10% increments from 0% to 100% oxygen : LED 
excitation/PMT detection.
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concentration of Og (%)

figure 7.6 Stern Volmer plot of data shown in figure 7.5

tube as detector. These data show a high level of repeatability of the measurement 

process and a high signal-to-noise ratio (-300 for 100% nitrogen). The extremely high 

sensitivity of the system in the lower oxygen concentrations would be very suitable for 

use in either the anaerobic or personal sensing systems as discussed in section 1.3. A 

Stem-Volmer plot of this data is shown in figure 7.6. The Stem-Volmer data was found 

to be linear over most of the oxygen concentration range. The source of the deviation 

from linearity at low oxygen concentrations in unclear, however it may be accounted for 

by considering the multiple exponential nature of the immobilised ruthenium complexes. 

Section 7.3 describes the lifetime analysis of a typical sol-gel-coated fibre, for which a 

good mathematical fit is found for a double exponential decay. The bimolecular 

quenching constant k, of each fluorescent lifetime component, which characterises the 

non-linear quenching response, depends on the rate of diffusion of the oxygen molecules 

through the microporous structure. By adjusting the sol-gel process parameters, it should 

be possible therefore, to control the coating microstructure in order to optimise 

sensitivity in a concentration region of interest.
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7.2.3 All-Solid state system

The all-solid-state fluorescence intensity monitoring system described in section

6.4 was built and used to test sol-gel coated fibres in a manner equivalent to above. The 

system response to alternate environments of 1 0 0 % nitrogen and 1 0 0 % oxygen is shown 

in figure 7.7, and to intermediate oxygen/nitrogen values in figure 7.8. Synchronous 

detection with the LED pulsing signal is achieved by use of a balanced demodulator 

(AD630) which enables effective lock-in detection and discrimination against ambient 

light. These data again show the high level of repeatability of the measurement process. 

The combination of the LED light source, photodiode detector and balanced demodulator 

lock-in amplifying system is a major advancement of the system from the initial laser- 

based design, in terms of sensor performance, cost effectiveness and portability.

7.3 Lifetime Analysis

Fluorescence decay analysis was performed by exciting the sol-gel coated fibres 

with 15ns pulses from a frequency-doubled Nd:YAG laser (A.=532nm). The resultant 

fluorescence decay profiles were captured and averaged using a 100MHz oscilloscope 

(HP 54600A). This data was then down-loaded to an Apple Macintosh for analysis using 

Kaleidagraph. The immobilised fibres were mounted in the gas cell and a range of oxygen 

partial pressures was achieved by precise mixing of 1 0 0 % oxygen and 1 0 0 % nitrogen 

using mass flow controllers and a mixing unit. All measurements were carried out on 

diphenyl-phenanthroline complex doped sol-gel fibres. Figure 7.9 shows fluorescence 

decay curves for the sol-gel immobilised ruthenium complex in the presence of 1 0 0 % 

oxygen and 1 0 0 % nitrogen respectively.

As expected, the observed fluorescence decays were not single exponential. The 

lifetime data measured at a range of concentrations from 0 % to 1 0 0 % oxygen, were 

analysed, and in all cases the data provide an approximate mathematical fit to a double 

exponential decay. This behaviour may be considered consistent with a two-site model 

for ruthenium complexes, where the two sites have different levels of accessibility to 

oxygen. Alternatively, this behaviour may represent an approximate fit to a continuous 

distribution of lifetimes due to a heterogeneous sol-gel enviroment. For each oxygen 

concentration, short and long lifetime components were extracted from the lifetime data.
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figure 7.9 Soi-gei immobilised ruthenium fluorescence decay curves corresponding to (a) 
quenched lifetimes of 356ns and 2.217^is in 100% 0 2 and, (b) unquenched lifetimes of 933ns 
and 5.613ns in 100% N2.

modulation frequency/ KHz

figure 7.10 Phase shift as a function of modulation frequency calculated using equation 3.31 for 
oxygen and nitrogen.
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In 100% nitrogen, values of 5.613ns (R = 0.9803)1 and 933ns (R = 0.8590), respectively, 

were found to give the best fit. Short and long lifetime components of 2.217jis (R =

0.9742) and 356ns (R = 0.7839), respectively, were found for 100% 0 2. Pre-exponential 

factors were also determined from the analysis [3],

Using the measured lifetime data and equations 3.21 and 3.22, the expected phase 

shift for 0 %  and 1 0 0 %  oxygen concentrations can be calculated for a given modulation 

frequency. The phase shift will be smallest for a concentration of 100% oxygen and 

greatest for a concentration of 0% oxygen. Software was written based on equation 3.31 

such that the fluorescence lifetime data and calculated pre-exponential factors could be 

used to generate the phase shift both for oxygen and nitrogen as a function of modulation 

frequency. Figure 7.10 shows the calculated phase shifts between modulation signal and 

resultant fluorescence for oxygen and nitrogen environments. The data shows that the 

phase shift increases with modulation signal and that the phase shift will be smallest for a 

concentration of 1 0 0 %  oxygen (())oxy), and be greatest for a concentration of 0 %  oxygen 

(<jw), i.e. 100% nitrogen. The calculated phase shift difference between these two 

extremes of the measurement range, <|)diff, where <(><«» =  <j)nit  - <|)oxy, is plotted as a function 

of modulation frequency in figure 7.11. From the diagram, it is noted that, for a change 

from an oxygen to a nitrogen environment a maximum phase difference of 27° is 

predicted to occur at 48kHz, and that the response levels off close to 100kHz.

The optimum modulation frequency for maximum phase shift was also determined 

experimentally to an accuracy of 0 . 1  of a degree, using the dual-phase lock-in amplifier 

and LED based phase fluorimetric system as described in section 6.3.3. The LED 

modulation frequency was varied by adjusting the LED driving circuitry. For each 

frequency, the resulting phase difference was recorded as the sensor environment was 

alternated between 0% and 100% oxygen. These experimental phase difference results 

are also plotted in figure 7.11. Given the approximation inherent in the double 

exponential decay model used, these results are in reasonable agreement with the 

theoretical predictions. The agreement is sufficiently close to enable selection of the 

optimum operating frequency range when a decay time analysis has been performed.

1 Where R represents the correlation coefficient
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Modulation Frequency/kHz

figure 7.11 Theoretical and experimental phase difference, (}>diffP between the phase shift for 
0 2 and the phase shift for N2, plotted against modulation frequency.

7.4 Phase Fluorimetric Sensor Performance

7.4.1 Laser based system

Fluorescence signals from the laser-based phase fluorimetric system were 

recorded on an oscilloscope and are shown in figure 7.12. The nitrogen signal is phase 

shifted by an amount, from the excitation signal. A smaller phase shift, (jVy, exists 

when the oxygen replaces nitrogen in the gas cell. The real time response of the sensor 

when exposed alternately to environments of 1 0 0 % oxygen and 1 0 0 % nitrogen is shown 

in figure 7.13. These results were also obtained using the laser-based phase fluorimetric 

system with the laser modulated sinuisoidally at a frequency of 48kHz. Although it is 

clear from the data in figure 7.11 that a slighdy greater phase difference could have been 

achieved at higher modulation frequencies, the measurement system exhibited lower 

signal-to-noise ratios at these frequencies. An explanation for this is given in section 7.6. 

The data shown in figure 7.13 illustrates a number of important features of the sensor.
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First, the sensor exhibits a high level of repeatability and short response time. A typical 

calibration curve for sensors fabricated in this manner is shown in figure 7.14. The data 

have been offset to yield a phase angle of 0° at 100% oxygen concentration. The sensor 

again exhibits greatest sensitivity at the lowest oxygen concentrations (0 % - 1 0 %), as 

predicted by the Stem-Volmer equation.

7.4.2 LED based system

A LED/photdiode based phase fluorimetric system was set-up as described in 

section 6.3.3. The system response to alternate environments of 100% oxygen and 100% 

nitrogen is shown in figure 7.15. These data are again offset such that in an oxygen 

environment a phase shift close to 0° occurs. At a modulation frequency of 48kHz a 

maximum phase shift of 24° was recorded. This value matches closely the experimental 

and theoretical values of figure 7.11. It should be noted however, in comparing these 

values that the data was recorded from different optical fibres. The all-solid-state phase 

fluorimetric system exhibits a high SNR, good repeatability and fast response time. This 

is the first reported intrinsic phase fluorimetric solid-state sensor using LED excitation 

and photodiode detection. Even though, these data were recorded using a commercial 

dual phase lock-in amplifier, other phase measurement systems which lend themselves to 

miniaturisation may possibly be configured in the system. Such systems are investigated 

in the following section.
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figure 7.12 Phase fiuorimetric response of sensor; including laser modulation and resulting 
phase shifts of fluorescence in the presence of 100% oxygen and 100% nitrogen.

t im e /sec

figure 7.13 Phase fiuorimetric sensor laser excited / PMT detected.
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figure 7.14 Calibration curve for the phase fluorimetrie oxygen sensor.
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figure 7.15 Phase fluorimetrie sensor LED excited/ photodiode detected.
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7.5 Alternative methods of lifetime sensing

7.5.1 Zero crossing system

A circuit for measuring the phase shift between a reference modulation signal and 

resultant fluorescence signal containing two zero cross detectors, an exclusive OR gate 

and lowpass filter was built as shown in figure 6.11. The system produces a voltage 

output which increases with the in-phase component of the two sinusoidal signals, as 

shown by the calibration curve of figure 6.12. The laser excitation combined with the 

PMT detection phase-fluorimetric characterisation system, which is detailed in section 

6.2.2, was set up so as to test the zero crossing system in sensing mode. The phase shift 

between the reference signal from the acousto-optic crystal and the detected fluorescence 

signal was monitored as a function of modulation frequency in the presence of nitrogen 

and oxygen respectively. The response of the system is shown in figure 7.16. The phase 

shift for oxygen and nitrogen was found to increase with modulation frequency in a 

manner similar to figure 7.10. A range of measured phase shifts for specific modulation 

frequencies using the zero crossing system are compared to the theoretical values of 

figure 7.10 and are shown in table 7.1. The voltage signal from the zero crossing system

modulation frequency/ KHz

figure 7.16 ZDS + ExOR system response to frequency variation for oxygen and nitrogen
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Modulation
Frequency

(kHz)

ZCS + ExOR1 Theoretical values2 Dual-phase LIA

<Mdeg) <t>diff(deg) (jVxyCdeg) <tw(deg) <t>diff(deg) <M<ïeg)

1 0 8 .2 16.3 8.1 5.69 17.71 12.01 8.5

2 0 15.3 33.1 17.8 1 1 . 1 2 31.82 20.70 17.22

40 30.7 57.5 26.8 20.43 48.33 27.91 24.14

60 45.2 71.7 26.5 27.29 56.07 28.77 27.62

80 59.4 85.4 26.0 32.07 60.26 27.49 28.57

table 7.1 Comparison of phase shift and phase difference values measured using the zero 
crossing system, and theoretical values which were calculated from the fluorescence lifetime 
analysis of a fibre. Phase difference values recorded using a dual phase LIA are also included 
which were extrapolated from figure 7.11.

was converted to degrees using the calibration curve of figure 6.12. The difference, (J)diff, 

between the phase shift in the presence of oxygen, <|)oxy, and the phase shift in the 

presence of nitrogen, (jw, was found to increase with frequency and stabilise above 

40kHz approximately. This is in close agreement with both the theoretical and 

experimental data presented in figure 7.11, as illustrated by table 7.1. The measured 

values of phase difference are also compared to those values measured using the more 

reliable method of a dual-phase lock-in amplifier. Good agreement was found between 

the three sets of data. It must be noted, however, that when comparing the data in table 

7.1, that each experiment was carried out using different sol-gel coated fibres. To 

conclude, this analysis shows that a zero crossing system, which may be easily built using 

standard electronic components is a possible method of performing phase angle 

measurements. The system performance compared well to theoretical phase 

measurements and also to an independent method of carrying out phase measurements, 

that of a dual-phase LIA. Even though the system lends itself to high performance phase 

measurements, system miniaturisation and inexpensive manufacture, it does require SNR 

levels which are higher than those achievable from a LED/photodiode based system. 

However, by using a frequency filter set at the operational modulation frequency for the

1 Phase shifts calculated using calibration curve of figure 6.12
2 Theoretical values of phase shift were extrapolated from figure 7.10.
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specific measurement system, unwanted frequencies components may be removed 

resulting in the production of higher SNR’s, thus possibly allowing the use of a 

LED/photodiode based phase fluorimetric system in conjunction with a zero crossing 

phase measurement system.

7.5.2 Phase locked detection o f fluorescence lifetime

An alternative method of oxygen sensing based on the phase locked detection of 

fluorescence lifetime of the ruthenium complex was investigated. The phase locked 

detection of fluorescence experimental system, was constructed as described in section

6.7. A tachometer circuit was built to monitor frequency changes as a function of oxygen 

concentration. The calibrated response of this system is shown in figure 6.15. A LED 

excited, PMT-detected characterisation system was set up and configured as illustrated in 

figure 6.13. A typical response of such a system to various oxygen concentrations is 

shown in figure 7.17. Using figure 6.25 to calibrate against frequency, a frequency 

change from 2.8 kHz in oxygen to 4.6 kHz in nitrogen was measured. This frequency was 

found to be dependent on the signal amplification used in the detection part of the

time /s e c

figure 7.17 System response to various oxygen concentrations
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system. In order to carry out absolute fluorescence lifetime measurements, a sample of 

known fluorescence lifetime would first be required to calibrate the system against 

lifetime. The phase locked detection system response could then be used to directly 

monitor lifetime changes as its output is directly proportional to fluorescence lifetime [4], 

Response time of the system was found to be of the order of a few seconds for a change 

from 100% nitrogen to 100% oxygen. System repeatability was also found to be high. 

Maximum sensitivity to oxygen concentration was found to be in the lower oxygen 

concentration region as predicted by the Stem-Volmer equation. The SNR of -63 is 

considerably lower than that of the fluorescence intensity measurement systems or lock-in 

amplification based phase fluorimetric systems, resulting in a higher limit of detection 

using this system. A compromise, however, between SNR and sensor response time may 

achieved by adjusting the time constant of the tachometer circuit to suit the specific 

requirements of the measurement being performed.

7.6 Optimisation of modulation frequency for fluorescence intensity 

measurement system

During the phase fluorimetric analysis, it was observed that a fall off in SNR 

occurred at the higher modulation frequencies. In an attempt to explain this observation 

the following experiment was carried out using the LED / photodiode fluorescence 

intensity system of section 6.4. During the experiment, the fluorescence intensity was 

recorded as a function of modulation frequency in the presence of nitrogen and air. The 

results are shown in figure 7.18. The data suggest that an optimum modulation frequency 

exists close to 5kHz. At this frequency a maximum oxygen sensitivity is observed i.e 

greatest decrease in signal was measured by changing from a nitrogen to an air 

environment. Maximum fluorescence signal, both for nitrogen and air environments, was 

also measured at this modulation frequency. The decaying part of the curves is predicted 

by equation 3.32, where a decrease in demodulation factor, or fluorescence intensity 

occurs with modulation frequency. The exact source of the initial increase in fluorescence 

signal with frequency up to 5kHz is unclear.

We may conclude, however, that an optimum modulation frequency for a 

fluorescence intensity based sensor is close to 5kHz, whereas in the case of a phase 

fluorimetric sensor, optimum phase shift occurs close to 45kHz (from figure 7.11).
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However, the higher the frequency the lower the SNR, therefore a compromise between 

high SNR and magnitude of phase shift has to be taken into consideration for each 

specific measurement.

16 r '----- 1----- '----- 1----- '----- 1----- '----- 1----- 1----- 1----- '----- 1----- ■----- 1----- 1-----

14 r

figure 7.18 Frequency response of fluorescence intensity system

7.7 Summary o f the various oxygen sensing techniques

The performance of the various oxygen sensing systems may be tabulated as 

shown in table 7,2.

irw o a o 6-------o-
2 0  3 0  4 0  5 0  6 0  70

modulation frequency/ kHz

-0
80t)
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Sensing
Configuration

Characterisation
System

Optimum
Operational
Frequency

S/N
Minimum 

detectable 0 2 
conc. in the 20% 

region

Fluorescence
intensity

laser/PMT - 6 kHz 284 .007%

LED/photodiode ~6 kHz 237 .008%

Phase 
Fluorimetry 

(Dual Phase LIA)

laser/PMT ~48kHz 60 .033%

LED/photodiode ~48kHz 82 not measured

Phase 
Fluorimetry 

(ZCS) *

laser/PMT 30 - 40kHz not measured not measured

Phase Locked 
Detection

LED/PMT NA 63 0.32%

t a b le  7 .2  S u m m a r y  o f  p e r f o r m a n c e  o f  v a r io u s  o x y g e n  s e n s in g  s y s te m s

154



7.8 Sensor characterisation

7.8.1 Long term stability studies

In order to determine the long term stability of the sol-gel coatings doped with 

ruthenium complexes, the system described in section 6.4 was built. Sol-gel-coated 

microscope glass slide sections were placed in the instrument and their fluorescence 

emission was monitored as a function of time and of ambient temperature. Typical data 

retrieved over a 16 hour period are shown in figure 7.19. The upper plot shows the 

ambient temperature variation and the lower plot represents the measured fluorescence 

output. Close examination of this data reveals an increase of 3.6% in fluorescence signal 

over the monitoring period. For the same period a decrease of 3.6°C occurred in the 

ambient temperature. This decrease in fluorescence intensity with temperature would be 

expected according to the discussion in section 3.2.4. These data suggest the necessity of 

carrying out temperature compensation in real oxygen sensing applications. This subject 

is discussed in detail in section 7.7.2. Subsequent measurements on the temporal stability

CD
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O

time

figure 7.19 Long term stability instrument response, and ambient temperature for a period 
of 16 hours.
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of film thickness indicated that for the recipe used, the film microstructure was still 

evolving during the period of these tests. These findings are further discussed at the end 

of section 7.7.2.

7.8.1 Temperature and relative humidity dependence studies

In order to investigate the viability of using the sensors in various climatic conditions, a 

range of environmental tests were carried out on the probes. These included investigations to 

determine the susceptibility to temperature and relative humidity (RH) variation as well as to 

potential interfering gases. All temperature and relative humidity studies of the sensor were 

carried using in a climatic chamber (Fisons, type 22280CT/C/R10/IND). Using this chamber it 

was possible to pre-program any desired temperature variation (0°C to 100°C), over a period 

of time. Unfortunately, the RH controller in the instrument was not in proper working order 

and therefore could not be used. Consequently, the RH varied with temperature. To monitor 

the two parameters a Vaisala temperature/RH probe (model #MI 32) was used. This 

produced voltage outputs proportional both to the temperature and RH values being 

measured. The optical block and fibre sensor of the all-solid state system were placed in the 

climatic chamber for the duration of a temperature cycle. A data logger was used to 

simultaneously monitor variation of the sensor output, temperature and RH.

The initial temperature studies were carried out by measuring the fluorescence intensity 

from the sol-gel immobilised ruthenium complex. All sol-gel coated fibres were doped with 

the diphenyl phenanthroline complex, immobilised in a 2:1 water/TEOS sol-geL It should be 

noted that the measured fluorescence signal is the temperature/RH combined response of the 

complete optical system, i.e. response of the LED, photodiode and optics are included. Figure 

7.20, shows a typical temperature/RH dependence of the system. From the data a 59% signal 

decrease occurred while increasing the temperature from 0.98°C to 67.60°C, The relative 

humidity changed as shown.

Two questions to be answered when considering temperature/RH dependence are as 

follows. Firstly, is the fluorescence signal repeatable with temperature? Secondly, does the 

oxygen sensitivity of the sensor change after exposure to a temperature program? 

Experiments were carried out to examine these questions under the following conditions:
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50

temperature / °C

figure 7.20 Sensor response to temperature and humidity variation.

i) 0°C - 70°C ; RH off1

ii) 10°C - 50°C ; RH off

iii) 10°C - 40°C; RH off

i) 0°C - 70°C ; RH off

The response of the complete optical block plus fibre sensor to a 0°C - 70°C 

temperature cycle is shown in figure 7.21. The following temperature programme was used: 

0°C - 3 hours; 30°C - 2 hours; 70°C - 2 hours 

The temperature cycle was set to begin during the 0°C to 30°C transistion. It should also be 

noted that the response time of the climatic chamber was not instantaneous and that a certain 

amount of time was required for the chamber to reach the programmed temperature. This 

delayed temperature response of the chamber is obvious from the middle plot of figure 7.21. 

The measured fluorescence signal is plotted on the top plot of figure 7.21, temperature on the

1 RH controller was turned off, resulting in the RH not being constant, rather it followed temperature 
variation
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middle plot and relative humidity on the lower plot of figure 7.21. The scan has a duration of 

about 2.96 days. As can be seen from the sensor output, the sensor response varies in a 

repeatable manner with temperature and RH. However, the overall signal drops considerably 

for the first three 9 hour temperature cycles or so, before a more gradual decrease in signal is 

observed. This behaviour can be seen more clearly in figure 7.24 in which the peak 

fluorescence signal of each 9 hour cycle is plotted against time. Sensitivity to oxygen, 

however, was found to change considerably during this temperature program. Prior to the 

temperature program, sensitivity of -65% was measured for the specific fibre sensor. This 

decreased to 2 2 % within 1 hour and immediately following the program the sensitivity 

measured 6 %. This decrease in sensitivity to oxygen is also shown in figure 7.24.

ii) 10°C - 50°C ; RH off

Figure 7.22 shows a similar experiment, where the temperature programme set as 

follows:

10°C - 2 hours; 30°C - 2 hours; 50°C - 2 hours 

In this case, the fluorescence signal again stabilises over the first day. The fluorescence peak 

signal of each of the 6  hour temperature cycles are plotted in figure 7.24. The rate of decrease 

in signal is quite significantly less than the previous experiment. Oxygen sensitivity changes 

from an initial value of 70% to 23% at 15 hours to a final value of 20%.

iii) 10°C - 40°C ; RH off

The equivalent experiment was carried out for a temperature range of 10°C to 40°C, 

for a duration of 18 hours. The system performance is shown in figure 7.23. A sensitivity

change from 82% to 67.4% was recorded over the duration of the experiment. This decrease

is quite a small change when compared to the two previous experiments as displayed in figure 

7.24. It is also obvious from the graph that the variation in fluorescence signal is quite 

repeatable with temperature and therefore offers the potential of temperature compensation. 

This is in contrast with the two previous environmental tests during which decreases in 

fluorescence signal were observed over the same measurement periods. It seems likely that the 

repeatability with temperature is due to the narrower temperature range to which the sensor

158



time / 32 second intervals

figure 7.21 Sensor response to a 0°C to 70°C temperature cycle over a period of 2.96 days; temperature and relative humidities are included.



tim e/56 sec intervals

figure 7.22 Sensor response to a 10°C to 50°C temperature cycle over a period of 2.78 days; temperature and relative humidities are included.



time / 56 second intervals

figure 7.23 Sensor response to a 10°C to 40°C temperature cycle over a period of 0.75 days; temperature and relative humidities are included.



has been exposed. This temperature response of the sensing probe to the less harsh 

temperature cycle may possibly be related to the evolution of the sol-gel microstructure of 

sensor.

As previously mentioned, the RH controller of the climatic chamber was not in proper 

working order. However, one experiment was carried out using an alternative chamber which 

had RH control. During the experiment, the temperature was kept constant at 25.5°C, and the 

RH was varied as shown in the lower plot of figure 7.25. It is clear from these data that the 

sensor output is very dependent on the relative humidity.

It is difficult, to arrive at precise conclusions from the temperature/RH dependency 

studies which have been presented. If it were possible to completely separate temperature and 

RH dependencies a clearer understanding might be achievable. However a number of 

important points can be noted from these experimental results:

i) Fluorescence intensity does decrease with temperature as predicted by equation

3.14.

ii) Significant changes in sensor response occurred during the harsher temperature 

programs of 0°C to 70°C and 10°C to 50°C including large decreases in oxygen sensitivity 

and decreases in overall fluorescence signal

iii) The 10°C - 40°C temperature programme had very little effect on the 

repeatability of absolute fluorescence intensity and only slightly effected its oxygen sensitivity. 

This temperature range is typical of the quoted operating range of -15° to 440°C of 

electrochemical oxygen sensing cells [2], Most sensors have a certain amount of variation with 

temperature. However, it is critical that the variation is repeatable so as to allow proper 

temperature compensation. Figure 7.23 suggests that temperature compensation is possible 

over that specific temperature range.

iv) The sensor response to RH variation at a constant temperature is shown in 

figure 7.25. From these data it is possible to determine the sensors dependence on RH 

variation. However it is unclear from the data, if the variation between the two parameters is 

totally repeatable. To clarify this, a RH cycling programme such as those carried out to test 

the temperature dependence of the sensor would be necessary. The data of figure 7.25 suggest 

the need of a RH sensor for use with the oxygen sensor. A decrease in fluorescence signal 

with a decrease in RH may possibly be accounted for by the fact that at low RH the sol-gel 

pores are free from condensation and therefore allow the diffusion of oxygen throughout the
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porous structure. This results in fluorescence quenching taking place and a decrease in sensor 

output signal as observed. At high RH the opposite would be expected to occur Le. the 

formation of condensation within the sol-gel structure will force oxygen molecules from the 

microstructure and will also impede the diffusion of oxygen molecules within the structure. 

This would be expected to result in an increase in fluorescence signal as was observed. There 

are however, a number of possible means by which this problem can be alleviated. Firstly, the 

use of a hydrophobic membrane around the optical fibre would restrict moisture from forming 

on the sol-gel layer. Alternatively the use of a heating element close to the fibre would also 

restrict the formation of condensation. This method of restricting condensation is used by 

Sieger Ltd., in the design of their infrared gas sensor - Searchpoint [5]. Finally, a third 

possibility is to silanise the sol-gel surface and thus make it hydrophobic.

The susceptibility to RH and temperature of the sol-gel sensor could retard the future 

commercialisation of such an optical sensor. It would be hoped that the sensing sol-gel layer 

would be completely stable during its use and if not, then vary in a repeatable manner with 

temperature and RH. It should be noted that the temperature cycles of figures 7.21, 7.22 and 

7.23 may reflect, firstly, the temperature dependence of the ruthenium complex which is 

expected according to equation 3.22. This variation with temperature would be expected to 

be repeatable. The second source of variation with temperature, which possibly may account 

for the lack of repeatability of fluorescence signal which was observed in figures 7.21 and 

7.22, may be attributed to recent investigations at Dublin City University into the temporal 

evolution of the sol-gel glasses microstructure. These studies have suggested that 2:1 

water/TEOS sol-gel coatings are unstable as previously discussed in section 4.6. This 

instability has been attributed to unreacted silanol groups hydrolysing with water molecules 

from the atmosphere. It has also been discovered that the 2:1 sol-gel film thickness reach 

equilibrium over a period of 50-60 days. This suggests that the sol-gel films used in the above 

temperature/RH studies had not yet reached equilibrium with regard to stabilisation of their 

microstructure. Had they reached equilibrium, it might be plausible to assume that less of a 

variation with temperature and RH would be observed. More stable sol-gel films are now 

routinely being produced with a higher TEOS/water ratio. These films were found to stabilise 

over a 10 day period. Susceptibility to temperature variation remains to be tested.
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trne/ hours

figure 7.24 Peak fluorescence signal and sensitivity to oxygen variation of above temperature 
programs.

tine/13 second intervals

figure 7.25 Sensor response to humidity variation cycle over a period of 18 hours; temperature 
was kept constant at 25.5°C.

164



7.8.3 Gas interferent studies

The susceptibility of the sensor to other gases potentially interfering gases was also 

investigated. The all-solid state sensor system response was tested in the presence of 50% 

LEL methane in air and in 50% LEL butane in air. No detectable change was observed in 

fluorescence intensity, and no poisoning of the sensor occurred. An interference test was also 

carried out with C 02. Pumping 5% CO2 in nitrogen reduced the fluorescence signal by 3%, 

and reduced the fibre sensitivity by 7%. When the concentration of CO2 was increased from 

5% to 50% in nitrogen, the fluorescence signal decreased by a further 1%. However, its 

sensitivity was found to have reduced by a further 31%. In the interpretation of this data it 

should first be noted that the percentage by volume of CO2 in dry air is 0.03 [6]. Therefore, 

the variation of CO2 in air around 0.03% will possibly have very little effect on the sensor 

output. The testing of the interference of CO2 could not be carried out at these low 

concentrations as the mass flow controllers used allow an accuracy of 1%. Finally, it should 

also be noted that manufacturer’s data for typical oxygen sensing electrochemical cells state 

that the presence of C 02 results in an enhanced sensor signal of about 0.3% per 1% CO2.

7.8.4 Sensor response time

Throughout the analysis of the oxygen sensor, a flow rate of 500cm3/min was 

achieved using mass flow controllers. In order to analyse the sensor’s response time, 

solenoid valves were included in the gas flow system. The use of these valves allowed the 

switching of the flowing gases to occur instantaneously rather than with the adjustment of 

the mass flow controllers as was previously required. Gas piping length was kept to a 

minimum between the switching valves and the oxygen sensor, such that the effect of 

their filling time could be minimised. The LED / PMT fluorescence intensity system was 

set up using a commercial lock-in amplifier to discriminate against background light. The 

time constant feature of the lock-in amplifier was reduced to a value of 10ms such that 

the true response time of the sensing material would be detected. Using a flow rate 

500cm3/min of nitrogen through the sensing cell, the fluorescence signal was monitored 

as the flowing gas was changed to oxygen. The quenching signal was recorded as a 

function of time as previously described in section 6.2.1. Neglecting the switching time of 

the solenoid valves, a response time of 3.1 seconds was measured for the sensor output
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to change completely from a stable nitrogen signal to a stable oxygen signal. A slower 

time of 13.3 seconds was measured for a transistion from oxygen to nitrogen at the same 

flow rate. The same experiment was carried out for various gas flow rates as shown in 

figure 7.26. At a flow rate of 15.6 cm3/ min, a large difference of 268 seconds occurred 

between a N2 to O2 transistion and an 0 2 to N2 transistion. The interpretation of these 

data may be carried out as follows:

i) A major parameter in the interpretation of the above data, is the physical size 

of the gas cell in which the oxygen sensor is held, i.e. the gas cell filling time should be 

considered. At the maximum flow rate of 500cm3/min, the time to fill the gas cell (volume 

= 30 cm3) is about 0.06 seconds. Whereas at the minimum rate of 15.6cm3/min the gas 

cell filling time is in the region of 2 minutes. At the low flow rates the length of extra gas 

piping also affect the measured response times. Taking these parameters into 

consideration it is difficult to extract true sensor response times from the data in figure 

7.26. However, at the maximum gas flow rate, the gas cell filling time is negligible when 

compared to the sensor response time. The values of 3.1 seconds for the turn-on time

gas flow rate /  (cm3 /  min)

figure 7.26 Sensor turn-on and turn-off times as a function of gas flow rate.
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and 13.3 seconds for the turn-off time are therefore closest to the true response times of 

the sensing material.

ii) One obvious feature from the data, however, it the fact that the sensor 

turn-off time is much greater than its turn-on time. These data may reflect the greater 

affinity of oxygen for the water layer over nitrogen within the sol-gel microstructure, as is 

evident by their differing mole fraction solubility values1 for water (oxygen : 2.756 x 10'5, 

nitrogen : 1.386 x 10'5 [7]). In addition it may also reflect the greater reactivity of oxygen 

compared to nitrogen. The ratios of turn-off to turn-on response times, as a function of 

flow rate, are shown in table 7.3. Greatest errors in the measurements would be expected 

to be present in ratio-values calculated for the fast response times. Therefore, if the first 

two data points in the table are neglected, a near constant ratio of sensor turn-off time to 

turn-on time would result. A more accurate method of determining response times of 

fluorescence coatings, which allows an accuracy of up to 10[is has been described by 

Baron et al. [8]. Using a system such as this, less of a deviation from the average ratio 

would be expected to be observed.

Flow rate ccm/min turn-off / turn-on
500 4.3
250 7.7
125 10.3
62.5 11.4
31.3 13.7
15.6 9.8

table 7.3 Gas flow rate as a function of the ratio of sensor turn-off response time to sensor turn­
on response time.(Data taken from figure 7.26).

7.9 Conclusion

Chapter seven describes the response of a sol-gel derived evanescent-wave fiber 

optic oxygen sensor. High sensitivity to the presence of oxygen has been demonstrated 

using a laser / PMT characterisation system. Greatest sensitivity to oxygen was reported

1 Values refer to a partial pressure of 101.325 KPa and a temperature of 288.15°K.
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using the diphenyl-phenanthroline ruthenium complex which has a relatively long 

fluorescence lifetime. Good repeatability of signal, high SNR and fast response times 

were also demonstrated for the same system using the phase fluorimetric measurement 

technique. This system was shown to possibly be more advantageous than the direct 

fluorescence intensity measurement system. The laser excitation source was replaced with 

the recently available high intensity blue LEDs combined with photodiode as detector. 

This miniaturised, all-solid-state portable system was shown to operate again with high 

signal repeatability, good sensitivity to oxygen, high SNR and fast response times for 

both a direct fluorescence intensity and a phase fluorimetric type measurement system. 

This is the first reported intrinsic phase fluorimetric all-solid-state sensing system. In the 

analysis the frequency response of the system for both measurement configurations have 

been examined. Alternative measurement techniques which are based on the fluorophore 

lifetime are also detailed.

Sensor characterisation was also carried out in terms of susceptibility to 

temperature and relative humidity variation using the all-solid-state fluorescence intensity 

monitoring system. A number of temperature cycling tests were performed on the oxygen 

sensor. The data shown exhibited a lack of repeatability for both a 0°C - 70°C and a 10°C 

- 50°C temperature programme. However promising results were found for a 

temperature programme of 10°C - 40°C where good repeatability of fluorescence signal 

from the sensor was recorded with temperature variation. Possible methods of 

temperature compensation have also been discussed. The sensors response to variation in 

relative humidity was detailed. A fall-off in fluorescence signal was recorded as the 

percentage relative humidity decreased. This was attributed to the formation of 

condensation within the sol-gel microstructure, resulting in the expulsion of air from the 

sol-gel environment and therefore a reduction in fluorescence signal. The sensor was also 

characterised in terms of potential interfering gases and sensor response time.
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Chapter Eight - Evanescent Wave Biosensing

8.1 Introduction

Biosensing is an emerging technology that has been shown to have 

practical applications in fields such as clinical diagnostics, environmental monitoring and 

process control [1,2,3]. In a biosensor, biological molecules provide the recognition of a 

substance to be detected. The use of such biological molecules, especially antibodies, 

offers excellent selectivity for detecting many analytes of interest, for example enzymes, 

proteins, hormones and toxins. The basis for the specificity of immunoreactions is the 

antigen-antibody binding reaction, which is a key mechanism by which the immune 

system detects and eliminates foreign matter from the body. Antibodies are complex 

biomolecules made up of hundreds of individual amino acids arranged in a highly ordered 

sequence [1], and are also known as proteins. The antibodies are produced by immune 

system cells, when such cells are exposed to molecules which are called antigens. The 

antibodies produced following antigen exposure have recognition/binding sites for 

specific substructures of the antigen. This unique property of antibodies results in their 

particular suitability for use in sensors their use in sensors, which can identify an analyte 

of interest, present even in an extremely small amounts. Fluorescence-based fibre-optic 

immunoassays have been the subject of much research in recent years with some groups

figure 8.1 Fibre optic fluorescence immunosensor based on the evanescent 
wave technique
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being particularly prominent [4,5]. In this chapter work similar to this, which has been 

carried out in collaboration with the School of Biological Sciences in Dublin City 

University is described. The system utilises the evanescent wave of a fibre optic 

waveguide, in combination with a sandwich immunoassay which is performed at the 

surface of an optical fibre. Antibodies specific for an analyte of interest are immobilised 

on the exposed silica based core of the optical fibre as shown in figure 8.1. The analyte of 

interest (antigen) binds to this immobilised antibody, removing the molecules from 

solution and holding them with-in a few hundred angstroms of the fibre core. The rate of 

antigen - antibody binding is proportional to the antigen concentration present, as long as 

the immobilised antibody is in excess. A second antibody labelled with a fluorophore 

(M IC, i.e. fluorescein isothiocyanate) binds to the antigen and the fluorophore is 

detected due to its interaction with the evanescent wave. Evanescent wave radiation at 

the appropriate wavelength excites the fluorescent molecules within its penetration depth. 

Fluorescently labelled antibodies in the bulk solution are therefore generally not excited. 

They may however, lead to a constant D.C. background level. The rate of increase of the 

fluorescence can therefore be direcdy related to the antigen concentration. Antibody- 

antigen binding can thus be measured in real-time.

Optically detected signals from evanescent wave fluorescence immunoassays are 

typically derived from a number of sources, as illustrated in figure 8.2. The background 

signal is composed of scattered excitation light ( 1 ), fluorescence from the waveguide 

itself (2), and unbound labelled antibody in solution (3). These background contributions 

will vary from system to system depending on for example, the spectral filtering and

figure 8.2 Origin of evanescent wave immunoreaction signals [6].
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choice of fibre. Initiation of the immunoreactions is taken as the point when the gradual 

increase in detected fluorescence signal occurs. The slope of the signal response curve, 

which corresponds to the initial rise of the number of labelled antibodies attracting 

themselves via the antigen molecules to the immobilised antibodies on the fibre surface, is 

proportional to the concentration of antigen in solution.

The work described here concerns the detection of Lactate Dehydrogenase 

(LDH). LDH is a clinically important diagnostic marker enzyme for many diseased states. 

Different isoenzyme forms of LDH are found in different organs and tissues of the body. 

Damage to these tissues will result in increased levels of certain isoenzymes in the blood. 

LDH is generally measured on the basis of its activity 24-48 hours following tissue 

damage. Such results, however, should be viewed with caution as the catalytic activity of 

such enzymes decrease with sample age. Because of the immunoassay’s lesser 

susceptibility to conformational changes at the active site, measurement on the basis of 

mass content rather than catalytic activity is more suitable for diagnostic measurements

8.2 Sensor preparation

PCS optical fibre of 600|im diameter was cut into 11cm lengths, polished, 

partially declad and etched as described previously in chapter 5. The exposed silica core 

was acid-cleaned using a 1:1 mixture of concentrated HC1 and methanol. Following 

washing several times with ultra pure water, the fibres were immersed in concentrated 

H2SO4 for 30 minutes and washed again in ultra pure water for further cleaning. The 

fibres were then hydroxylated by placing them in a bath of boiling ultra pure water for 30 

minutes. The fibres were then allowed to air-dry.

In the past, antibodies have been attached to glass, by surface adsorption or by 

covalent attachment directly to surface hydroxyl groups [8]. However, a method of 

immobilisation of antibody onto the optical fibre surface based on the silanisation of the 

fibre surface has been described by Bhatia et al. [8]. This process was carried out on the 

optical fibres by co-workers in the School of Biological Sciences. Dublin City University.
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figure 8.3 chemistry of antibody immobilisation [8],

The heterobifunctional crosslinker1 y-maleimidobutyric acid N-hydroxysuccinimide ester 

(GMBS) is coupled to the silane (3-mercaptopropyltrimethoxysilane i.e. MTS) through 

one end, and the free end of the crosslinker is reacted with a terminal amino group of the 

antibody via an amide linkage. A schematic diagram of the chemistry of this process is 

shown in figure 8.3 The prepared fibres were stored in phosphate buffered silane (PBS), 

containing preservative until required for use.

8.3 Experimental system

The system used to carry out this work is essentially equivalent to that described 

in section 6.2.1. Figure 8.4 shows the absorption spectrum of FITC for emission at 

520nm, which is suitable for excitation at 488nm using an argon-ion laser. Its

1 A molecule with different reactive sites on each end
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wavelength /  nm

figure 8.4 FITC absorption and fluorescence bands

fluorescence peak occurs at 517nm. A glass filter which blocks 488nm to 0.01% and 

transmits 520nm at 95% was used in place of the monochromator shown in figure 6.4

Figure 8.5 shows the glass flow cell which has both ends threaded. It is important 

that the fibre is held firmly in place in the flow cell, such that it is not moved out of 

position during the flow of liquid through the cell. Rubber septa are used on either side of 

the cell as illustrated, to position the optical fibre along the cell’s central axis. The 

septums are held in position by two screw-on plastic caps. Sample waste was reduced by

figure 8.5 Immunoassay flow chamber
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I

keeping the cell volume to a minimum (1.5cm3). Samples were passed through the cell 

using a peristaltic pump. Care was taken to ensure that air bubbles did not enter the 

sample flow stream during usage. The glass structure was mounted in a X-Y-Z micro­

positioner to enable the adjustment of fibre launching position.

8.4 Control experiment

There are at least three possible sources of fluorescence signal when a fibre probe 

is exposed to a solution containing fluorescently labelled antibody [10]. The first is due to 

specific binding of antigen to antibody. The second is non-specific binding of antigen due 

to proteins or other substances on the fibre probe. However, the occurrence of this 

process is more or less eliminated by the use of Tween20, which is a detergent that 

disrupts weak bonds and therefore minimises the effect of any such non-specific binding. 

As previously mentioned the probe may generate a signal originating in the bulk solution. 

When a fibre coated with anti-LDH antibody is exposed to a non- specific antigen, no 

specific binding should take place. Thus any detectable signal would be due to non­

specific binding or would originate in the bulk solution. Figure 8 . 6  shows

tim e /sec

figure 8.6 Fibre specificity for LDH
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an example of the results when the probe was exposed to non-specific antigen. No 

response was observed. After flushing, the probe was then exposed to specific antigen, to 

ensure that the null result was not due to a defect in the probe or in the optical 

instrumentation. Based on the absence of any signal except when the probe was exposed 

to specific antigen, the conclusion is that the signal in figure 8 .6 , is due to specific binding 

of the FITC labelled anti-LDH to the LDH.

8.5 Two step Immunoassay

Optical fibres with anti-LDH antibodies immobilised on their surface were 

incubated with various concentrations of LDH (30-1000ng/ml) for 2 hours at room 

temperature to ensure equilibrium was established. The fibres were then washed 3 times 

with a PBS/Tween20 mixture. The fibres were stored in 0.1M PBS, pH 7.3 on ice until 

they were ready for use in the evanescent wave fluorescence characterisation system. 

Alignment of the fibre was carried out in the optical system and the flow chamber was 

filled with 1% bovine serum albumin (BSA) so that a baseline could be monitored. D.C. 

background signals were nulled by using the ‘offset’ feature of the Lock-in amplifier.

LDH conc. (ng/ml)

figure 8.7 Two-step immunoassay
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Once a steady baseline was obtained, an excess of FU C labelled anti-LDH (~20jlg/ml) 

prepared in 1% BSA was pumped into the flow cell until the fibre was completely 

immersed in the second antibody solution. The rate of fluorescence signal accumulation 

was monitored for 4.5 minutes.

Figure 8.7 shows the initial slope (measured over 100 seconds) obtained in such a 

two step immunoassay evanescent wave experiment, for various LDH concentrations. 

The samples were run in triplicate. Standard deviation of the 3 samples is depicted by the 

error bars. Such results are typical of this type of assay [11].

8.6 One-step Immunoassay

The sandwich immunoassay was also performed as a one-step process with 

similar results. Various LDH concentrations were prepared in 1% BSA. The anti-LDH 

coated fibres were aligned in the flow cell and the baseline monitored until a steady 

baseline was observed. The LDH sample to be tested, was premixed with an excess of 

FITC labelled anti-LDH antibody just prior to injecting it into the flow cell. The binding

LDH conc. (ng/ml)

figure 8.8 One-step immunoassay
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of the LDH/FITC anti-LDH complex to the capture antibody was monitored via the 

resulting fluorescence signal.

Figure 8 . 8  shows the initial slope obtained in the one-step evanescent wave 

immunoassay experiment for various LDH concentrations. The samples were again run in 

triplicate, and calculated standard deviations are depicted by the error bars. Sensor 

response again increases with concentration except for the high concentration of 

lO^g/ml. This departure from linearity may be explained by the fact, that at these high 

concentrations, there may not be enough fluorescently labelled antibody present in the 

system to bind to all the antigen, resulting in the decrease of fluorescence signal as 

observed. To overcome this problem a higher concentration of labelled antibody would 

be required in the assay.

Errors in this type of assay are often analysed in terms of coefficient of variance 

(CV). Most modem day assays performed in the laboratory would be expected to exhibit 

a maximum CV of 5% [11]. Both the one-step and two-step immunoassay experiments 

have an average CV of double this value ranging from 3% to 16% However, when 

considering the number of experimental variables present, these can be considered quite 

reasonable values. Sources of error include; i) alignment of fibre, ii) air bubbles in the 

flow chamber, iii) cleaning and polishing of fibres, iv) chemical immobilisation of capture 

antibody, v) contamination and degradation of biomolecule samples.

8.7 Conclusion

The use of silane with a heterobifunctional crosslinker was shown to be a 

successful method of immobilising antibodies on optical fibres for immunoassay 

development. Specific antibody-antigen binding was displayed, leading to a method of 

detection of the enzyme LDH. Evanescent wave excitation and collection of the 

fluorescence from the labelled antibody was carried out successfully, using the laser based 

optical system which has been described in chapter 6 .
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Chapter Nine - Conclusion

The work presented in this thesis describes the development of fibre optic oxygen 

sensors based on evanescent-wave excitation of ruthenium complexes which are 

encapsulated in thin microporous coatings fabricated by the sol-gel process. The sensing 

process is based on the quenching of fluorescence from ruthenium complexes. In the 

work described, Ru(II) tris(4,7-diphenyl-l, 10-phenanthroline) was chosen as the sensing 

species due to its particularly long unquenched lifetime of ~5(is and its strong absorption 

in the blue-green region of the spectrum.

The sol-gel process and the parameters that control the rates of the chemical 

reactions involved, were described. The choice of using the sol-gel method as an 

immobilization technique over other possible methods, has been primarily governed by 

the fact that the process is inherently simple to carry out, and that it offers the possibility 

of altering the physical nature of the final glass structure by varying the reaction 

parameters. However, some disadvantages of using the sol-gel immobilization technique 

were found to exist. These include the fact that there exists many variables in the 

production of such a glass substrate and that a complete knowledge of the chemical and 

physical processes involved is still evolving.

Parameters which require optimisation in the fabrication of fluorosensors, 

including dye concentration within the sol-gel layer, coating speed of optical fibre and 

length of sensing region were investigated. It was found that the fluorescence signal from 

a sol-gel coated fibre increases with concentration of ruthenium complex within the sol- 

gel coating, and that it reaches saturation at higher concentrations. It was also found that 

oxygen sensitivity of the optical fibre sensors increased with ruthenium complex 

concentration before reaching saturation. No substantial change in fluorescence signal or 

oxygen sensitivity was observed as a function of thin-film thickness. This was probably 

due to the fact that the thicknesses of the films examined were greater than the 

penetration depth of the evanescent wave. Both the fluorescence signal and oxygen 

sensitivity were found to increase with sol-gel coating length. The increase in oxygen 

sensitivity was attributed to the feed-through of the optical filter combination used in the 

measurement system. The optimisation of relevant optical parameters was also carried
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out. The theoretical prediction of the coupling of fluorescence into the higher order 

modes was verified experimentally which may be used as means of achieving higher 

sensitivity.

Two methods of measurement which may be used with fluorosensors were 

studied. Firstly, the direct monitoring of fluorescence intensity and secondly, the 

monitoring of the phase shift between a sinuisoidally exciting signal and its resultant 

fluorescence signal (i.e. phase fluorimetry), were characterised. Both the degree of 

fluorescence quenching and the phase shift were shown to be dependent on the 

fluorescence lifetime of the fluorophore, and therefore on the oxygen concentration. 

However, the latter method was shown to be potentially more advantageous, due to the 

fewer number of variable parameters within such a measuring system. Phase fluorimetry 

as a method of real-time lifetime measurement was treated, both for a single exponential 

lifetime decay and the more realistic situation of a multi-exponential decay. This method 

of fluorescence lifetime sensing was applied to oxygen sensing. A fluorescence lifetime 

analysis of the sol-gel immobilised ruthenium complex was carried out, from which a 

good mathematical fit was achieved for a double exponential decay profile. The measured 

lifetime components were applied to predict a phase shift for the phase fluorimetry 

characterisation system. Good agreement between the predicted values and 

experimentally determined values was found. Alternative circuits for phase shift 

measurements, were also developed and were both shown to operate as accurately as 

commercially available phase angle measurement systems, and also to lend themselves to 

the construction of inexpensive, miniaturised fluorescence lifetime-based measurement 

systems. Sensor characterisation was initially performed using a laser excitation source 

with photomultiplier tube detection. However, these rather bulky and expensive 

components were later replaced with the recently available high intensity blue LEDs 

combined with photodiode detection.

The oxygen sensor exhibited high sensitivity to the presence of oxygen using a 

laser / photomultiplier tube fluorescence intensity characterisation system. The presence 

of 100% oxygen was shown to produce a decrease in fluorescence signal of about 75%, 

with highest sensitivity in the lower oxygen concentration region, as predicted by the 

Stem-Volmer equations. High sensitivity to oxygen (-27° phase shift at a modulation 

frequency of 48 kHz), good repeatability of signal, high SNR (-150 for 100% nitrogen)
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and fast response times (<3 seconds) were also demonstrated for the same system, using 

the phase fluorimetric measurement technique. The all-solid-state (LED with photodiode) 

system was also shown to operate with good sensitivity to oxygen (-80% decrease in 

fluorescence signal in 100% oxygen), high signal repeatability, high SNR (-300 and -200 

for 1 0 0 % nitrogen in the fluorescence intensity and phase fluorimetric systems, 

respectively) and fast response times (<3 seconds) both for a direct fluorescence intensity 

and a phase fluorimetric type measurement system. This is the first reported intrinsic 

phase fluorimetric all-solid-state sensing system. In the analysis, the frequency response 

of the system for both measurement configurations was examined and shown to have an 

optimum value of 5kHz and 45kHz for the fluorescence intensity and phase fluorimetric 

systems, respectively.

Sensor characterisation was performed in terms of susceptibility to temperature 

and relative humidity variation using the all-solid-state fluorescence intensity monitoring 

system. A number of temperature cycling tests was performed on the oxygen sensor. The 

results presented exhibit a lack of repeatability for both a 0°C - 70°C and a 10°C - 50°C 

temperature programme. However, more promising results were found for a temperature 

programme of 10°C - 40°C where good repeatability of fluorescence signal from the 

sensor was recorded with temperature variation. The sensor output as a function of 

relative humidity was also detailed. A decrease in fluorescence signal was recorded as the 

percentage relative humidity decreased. This was attributed to the formation of 

condensation within the sol-gel microstructure, resulting in the expulsion of air from the 

sol-gel environment and therefore a reduction in fluorescence signal. The sensitivity to 

oxygen as a function of relative humidity was not examined.

The main challenge in the possible future commercialisation of sol-gel based 

evanescent-wave oxygen sensors is in the production of ruthenium complex doped sol-gel 

films which are immune to temperature and relative humidity variation. As discussed in 

chapter seven, the unrepeatable nature of the variation of the sensor response with 

temperature, may possibly be due to the fact that the sol-gel films had not reached 

structural stabilisation at the time of measurement. Had the sensors responded in a 

repeatable manner to temperature variation, then the realisation of temperature 

compensation would be trivial, resulting in the ability to perform evanescent-wave 

oxygen sensing during variations in ambient temperature. The temperature and relative
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humidity response of newly developed stabilised sol-gel films has yet to be investigated. 

Other possible future work which would be of interest may include the development of a 

distributed oxygen sensor, using the work described in this thesis as a basis. The 

development of sol-gel-derived oxygen planar waveguide sensors would also be of 

potential interest.
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Appendix A :
Derivation of Phase shift formula.

This treatment is taken from Lakowicz, reference [41], chapter three. If the excitation of 

a fluorophore with an infinitely short pulse of light is considered, which results in an 

initial population, N0, of fluorophores in the excited state. Then the rate of decay of the 

initially excited population is

^  = - (k ^ + k J N G )  A.l
dt

where N(t) is the number of excited molecules at time t following excitation, kr and k^are 

the radiative and non-radiative decay constants respectively. If the excitation of the 

sample fluorophore, is considered, with sinusoidally modulated light whose time- 

dependent intensity is

E(t) = a + bsincot A. 2

The fluorescence emission is forced to respond with same frequency, but is phase shift 

and modulation will be different. It is assumed that

N(t) = A + B sin(cot—<))) A.3

The determination of the relationship between fluorescence lifetime and the phase shift 

((()) and the modulation (m) may be carried out as follows. Under conditions of sinusoidal 

equation A.l becomes

• N(t) + E(t) A.4
dt x

Substitution of equation A.3 into equation A.4 yields
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= [A h- B sin(cot —<)))] 4- a + b sinœt
dN(t) 

dt x

= B cos(cot-(|))
A.5

Expansion of the sine and cosine functions, followed by equating the coefficients of sincot, 

cosiot, and the constant terms, yields

a — [ — IA = 0
, X .

ct)cos<j> - 1 - 7  ]sin<|> = 0  

b /Bcosin + | — ]cos<J) =

A. 6  

A.7 

A . 8

From equation A.7 one obtains the relation

sind)
— 3 1 = tan<|> = cox
COS(J>

A.9

Squaring equations A.7 and A.8 , followed by addition , yields

to2 + 1  — A. 10

Recalling from equation A . 6  that A = ax, we obtain

B / A r 2 2  T Ylm = -------  = 1 + CÙX
b /a  L J

A. 11

which is the usual relationship between lifetime and the demodulation factor.
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Appendix B :
Specifications of Raman Holographic Edge Filter.

OD %T %T OD
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Appendix C :
Specifications of Wide Band Pass Filter.
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Appendix D :
Photograph of stand-alone LED/photodiode fluorescence intensity- 

based oxygen sensor.
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Appendix E :
LED driver circuit design using AD654.

+15V +15V
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Appendix F :
AD630 based lock-in amplication circuit design.

+15V 0.1 mF
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Appendix G :
Circuit design of phase locked detection of fluorescence system.

INPUT
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