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T h e  case A =  1 describes th e  case w here th ere  are no net forces on the vortices 
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eq u a tio n s, w hich resu lt from  th e  ansatz  for th e  approxim ate solutions, are solved by 
T aylor series a t  th e  origin and a sy m p to tic  series a t  infinity.
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Abstract

In this thesis we discuss the evidence for scattering at right angles of two vortices 
in a  head-on collision. The evidence is given in terms of the approximate solutions 
of the equations of motion or the Euler-Lagrange equations

W + ^ ( H 2 -i) =  o,

diFij + '-{PD’t  - = 0
where D, = (d; — iAi) and = djAj — djA, and (/l,-(a;),</>(x)) describe the gauge 
potentials and Higgs fields respectively.

The case A =  1 describes the case where there are no net forces 011 the vortices 
but we also extend the analysis to the case of a small net repulsive force between the 
corresponding static vortex configurations where A > 1. The ordinary differential 
equations, which result from the ansatz for the approximate solutions, are solved by 
Taylor series a t the origin and asymptotic series at infinity.
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C h ap ter  1 

Introduction

In 1911 Heike Kamerlingli Onnes was surprised to find th a t mercury cooled by liq­
uid helium to four degrees Kelvin lost all electrical resistance; this phenomenon 
is superconductivity. Many materials when cooled below a critical temperature Tc, 
(wliich is different for each material) exhibit this phenomenon. The superconduct­
ing state is characterized by three macroscopic properties. First, electric currents 
flow without resistence. Second, magnetic fields vanish inside the superconducting 
medium; this is known as ’’flux expulsion” or the Meissner effect. Third, no net 
energy is released in the transition from the normal state to the superconducting 
state.

The potential applications of superconductivity are vast and various, extending 
from the production of high-intensity magnetic fields to lossless power-transmission 
lines. The developement of practical superconductors has, however, been retarded, 
mainly because of the prodigous engineering challenges involved. Once these prob­
lems are overcome the envisioned applications are numerous, generators and motors, 
energy storage, magnetically levitating trains and magnetic-reasonance imaging be­
ing but a few. In many of the applications the behaviour of the superconductor in a 
magnetic field (an external field or one generated by the supercurrent) is im portant.

An im portant development of recent years has been the investigation of the 
dynamical beha,viour of magnetic flux structures and the discovery of the intimate 
connection between flux motion and the transport properties of superconductors. 
Motion of the magnetic flux structure (vortex) can be induced experimentally, hence 
we consider the theoretical work on the scattering of vortices to be of particular 
importance. Futhermore vortices can be considered as soliton-like objects because 
of their stability. This is another reason to investigate their dynamics.

In Chapter 2 we give an overview of the theory of Ginzburg and Landau and 
outline the theory involved in solving the problem. In Chapter 3 we review the 
evidence for scattering, at right angles, of slowly moving vortices between which 
the nett force is zero. The ansatz chosen leads to ordinary differential equations 
which we solve in Chapter 4 using Taylor series at the origin and asymptotic series 
at infinity. In Chapter 5 we investigate the case for which the nett force between 
the static vortices is not zero and A > 1. In Appendix A we include the derivation 
of the energy density while Appendix B contains all the computer programs and 
Numerical procedures which were used in preceding chapters.
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C hapter 2

V ortices in th e  G inzburg  
Landau T heory

2.1 Introduction

A phenomenological theory for dealing with superconductors has been developed 
by Ginzburg and Landau. This theory is based on Landau’s theory of second or­
der phase transitions in which the im portant concept of the order param eter was 
introduced. In superconductor phase transitions the order param eter is a complex 
quantity. Its absolute value | 4>(r) | is connected with the local density of supercon­
ducting electrons (which have combined to form Cooper pairs). The phase of the 
order param eter is needed for describing supercurrents. The free energy density is 
expanded in powers of | |2 and | V<Kl) |2> assuming 0 and sjcj) are small. The
minimum energy is found from a variational method leading to a pair of coupled 
differential equations for and the vector potential A(r), of the magnetic field 
into which the superconductor has been placed. The emerging theory is a gauge the­
ory with gauge group U( 1). The space of its finite-energy solutions is topologically 
nontrivial. The topological nontrivial finite-energy solutions are flux tubes called 
vortices.

2.2 Free Energy and the Ginzburg-Landau Equations

In the simplest case, we assume the order param eter <p(r) to be constant and the
local magnetic flux density h to be zero throughout the superconductor. For small 
values of (f>(r) ie. T —> Tc, the free energy /  can be expanded in the form

/ = /n +  a o r ) m 2 + f f l m 4 + ... (2.i)

Stability of the system at the transition point (at which </> = 0) requires /  to attain 
a minimum for <f> =  0. Therefore, in the expansion of /  only even powers of (j> can 
appear. For the minimum of /  to  occur at finite values of | </> |2, we must have (3 > 0, 
otherwise the lowest value of /  would be reached at arbitrarily large values of | cf) |2. 
For a > 0 the minimum occurs at | </> |2= 0 corresponding to the normal state and 
the case T > Tc. On the other hand, for a < 0 the minimum occurs at

I <t> |2= l  <\>o |2=  1 j  (2.2)
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corresponding to T <TC. We note tha t a must change its sign at T = Tc, using the 
expansion a (T ) = o(T -  Tc), where a > 0 is a constant, (2.2) then reduces to

i P= - n  (2.3)

representing a rather general result characteristic of a second order transition. Sub­
stituting (2.3) into (2.1) we can approximate very close to Tc

f = fn + a(T) | <f>0 |2=  In ~ Tc - Tf

yielding

- a ^ = m (T‘ - n  (2-4)

to first order in (Tc -  T). We see tha t for T  —► Tc we have indicating
a phase transition of at least second order.

We now relax our assumptions, allowing spatial variations of the order parameter, 
however first still keeping h — 0. To the free energy expansion of (2.1) we now add 
terms of the form, (§^)2, (§ ^ )(ff  )> etc> ^ ie first significant terms being second order, 
since in the absence of a magnetic field the equilibrium corresponds to  <p =  const. 
For spherical symmetry we have the expansion

/ = U + o(T) I 4> I2 1 * I* +T[(§|)2 + )2 + (|j)2] + " ■ (2-5)
with r > 0 for T = Tc. Equation (2.5) is the basis of Landau’s general theory 
of second order phase transitions. Finally, we also need to include the presence of
magnetic fields h =  curl A. Then the free energy density can be expanded in the
form

f = fn + a(T) | <j> |2 | <f> |4 | ( £ v  “  e~A)<f> |2 + ^ -  (2.6)

h2Note tha t for <f> =  0 we have /  = fn -f- g^, the free energy density of the normal state. 
Here m  and e are the mass and charge of an electron respectively with m* =  2m 
and e* =  2e.

The fourth term in the expansion of (2.6) becomes clearer by writing <t> in the 
form

<f>=\t\eie.

It then becomes

¿ [ f r 2(v I <t> I)2 + (&V0 - ̂ A )2 I <t> I2]- (2.7)

The first contribution represents the additional energy arising from gradients in the 
magnitude of the order parameter. The second contribution contains the kinetic 
energy density of the supercurrents, as we can see by identifying | <f> |2 with n* (the 
number density of Cooper pairs). The kinetic energy density is then 
where the supercurrent velocity vs is given by

m*vs =  ps — —A =  fry  9 — — A (2.8)
— c — c
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and ps is the generalised particle momentum.
Having obtained the expression (2.6) for the free energy density, we must now 

find its minimum with respect to spatial variations of the order param eter 4>(r) and
the magnetic field distribution A(r). Following the standard variation procedure,
one finds the Ginzburg Landau differential equations

a<f> +  /? | <j> |2 <f> +  ¿ ( 7 V  -  ^A)2<t> = 0 (2.9)

and the current

P-io)

for the equations of motion

d 0 A ’ ¿,¿ =  1 ,2 ,3 ,. (2 .11)

The variational procedure requires the introduction of the boundary condition on 
the magnetic potential of

(^v - ~ A ) 2<t> = 0 (2-12)

The above theory provides a macroscopic description of the system described 
microscopically by the theory of Bardeen, Cooper and Schrieffer (BCS). In this 
theory the onset of superconductivity is due to the formation of bound electron pairs 
(Cooper pairs). W ith respect to small applied forces the electron pairs interact as 
a single entity, a particle with twice the charge of a single electron, therefore in the 
Ginzburg Landau theory we must take m* =  2m  and e* = 2e where m  is the mass 
of an electron and e is the charge of an electron.

2.3 The Abelian Higgs Model-A Gauge Theory

We now include time-dependence into the formulas (2.6), (2.9), (2.10) and (2.11) 
and discuss the resulting model.

First, to  simplify (2.6) we add a constant, redefine the fields and write

/  =  ¿ ( A ^ V )  +  \f 3F^ +  ^ ( # *  -  l ) 2, (2.13)

where the new fields </> and A{ are given in terms of the old fields (j)old and A°ld 
in (2.9)- (2.11), as

<f>

Ai

and

/  = fold +  c, c =  constant, 

with A =  /3/2 =  —4a.The covariant derivative Di<f> and the field F{j are defined as 

Di<t> = (di - iAi)<f>, Fij =  diAj - djAi.

P*- old
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Time dependence is introduced by considering an electric potential A0 as well as the 
magnetic potential A and xQ as the time coordinate. In terms of (A0, A) and (x0,x) 
the Lorentz invariant Lagrangian in Minkowski space corresponding to  (2.13) reads

C = ^ { D M D ^ r  - -  l ) 2. (2.14)

The covariant derivative DIL(j> and the fields F̂ u are

D̂ 4> = (3,, - iAfj)#, F̂ v - -  d̂ Ap, ¡i, u = 0 ,1 ,2 ,3 . (2.15)

Indices are lowered and raised with the metric tensor g — diag(-1-1, - 1 , - 1 ,  —1).
The variational techniques tha t were used in the previous section to derive (2.9) 

and (2.11) can also be used to derive the Euler Lagrange equations from (2.14). 
Using

d x ^  dA„,n d A u

and

0 (2.17)dxfj, d<t>

where A„)P, =  and (j)̂ — we find the coupled differential equations

8 -i
dx ( ^ )  =  y & D vP - P M ) ,  (2-18)

D^D^)  = ~ I)- (2-19)

For A0 =  0 and time independent fields, these equations reduce to the equa­
tions (2.9) and (2.11) of the Ginzburg-Landau theory. The theory given by the
Lagrangian (2.14) is called the Abelian Higgs model.

We will now show that the Abelian Higgs model is a classical gauge field theory. 
A gauge theory is characterized by a group of symmetries but the symmetry group 
is not associated with any physical coordinate transformation in space-time. Gauge 
theory is based on an ’’internal” symmetry transformation under which the fields 
change. The properties of a gauge theory is gauge invariance ie. under a gauge 
transformation the equations of motion transform covariantly. If the original fields 
were solutions of the equations of motion so are the gauge transformed fields. The 
coordinate used to  describe the internal symmetry is the phase of the wave function. 
The change of phase will not affect any observable quantity provided tha t the gauge 
transformation for the fields combine to leave the Lagrangian invariant and therefore 
also the equations of motion. Hence, a gauge transformation transforms the Higgs 
field <j> in the Lagrangian (2.14) to

<f>\ x) = U(x)<j>(x) (2.20)
where U(x) = e~l9̂x\ That means here U is an element of U( 1), the multiplicative 
group of complex numbers of unit modulus. Clearly, 4>'<f>'* = (fxp* and the Higgs
potential in (2.14) is invariant under gauge transformations of this kind. If we can
achieve tha t = UD̂ cf), ie.,

(0M - i A ' ^ U *  = U(d^  -  iAfj,)(f) (2.2 1)
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then obviously also (D^(D11 (f>)* = (D̂ 4>l)(,Dtil<j)')* is invariant. Condition (2.21) 
holds if

a; =  u a ^u -1 -  {{dpuyj-1. (2.22)

for U = e~t9̂x\ the gauge transformation (2 .22) reduces to

A-'n = Aft — dftg, (2.23)

which leads to

Kv  = d*A'v ~ d-K  =  M *  -  ^  (2.24)

therefore the Lagrangian (2.14) is invariant under the gauge transformations (2.20) 
and (2.22), where U = e~iĝ  £ U{ 1). Hence the Lagrangian (2.14) gives a U( 1) 
gauge theory. For other gauge theories the definition of F̂ lv is suitably modified so 
tha t the F^F^  term  is invariant under the gauge transformation (2 .22).

2.4 Other Features of the Abelian Higgs Model

The property of any gauge theory is the gauge invariance of the Lagrangian. The 
ground state, however, in many cases, like tha t of the Superconductor, is not gauge 
invariant. The mechanism by which the symmetry is broken in superconductors is 
called ’’Spontaneous Symmetry Breaking” because it does not require any explicit 
mass term in the Lagrangian to manifest itself. A mass term of the form in
the Lagrangian would break its gauge invariance. We will now show that the ground 
state, the time-independent state of lowest energy into which the system eventually 
settles, is not gauge invariant.

First, it is always possible to gauge away Aq by choosing g(x0,x) such that 
A'0 = Aq — dog =  0. Then, for time- independent fields, the energy density reads

£ =  ±(A -40(£>Vr +  +  ¿ ( # *  -  I)2. (2.25)

The energy density is positive definite and zero for A{ =  O,<9,-0o = 0 , (i =  1,2,3) 
and | 0 o |=  1- In the ground state, (¡>q =  el<p holds and clearly d>a is not invariant 
under the gauge transformation (2.20). In fact, <t>'Q =  ex̂v~9̂  ̂  <po f°r ff(*) i1 2irn. 
We conclude tha t the theory given by the Lagrangian (2.14) has a gauge symmetry 
which is not displayed by the ground state. This phenomenon is called spontaneous 
symmetry breaking or hidden symmetry.

Since the ground state is given by </>o = ellp, the physical fields, relative to the
ground state, are A{ and 77 =  <f> — 0o- In terms of 77, the Lagrangian reads

c = ^ { D ^ D ^ y  -  i A M ^  + iA )̂v*

+ i A ^ * 0{dft -  iAfj)rj+ | 0o I2 A ^ A *

- \F,UF^  -  ^  M 2 +V<t>o +  f?>o)2. (2.26)

The Lagrangian has acquired a mass term \ <f>a \2 A^A^ =: m^A^A*1 for the magnetic 
field, the photon field, which leads to a term in the equations of motion. The
effect of this term is tha t the electromagnetic field becomes short ranged. This can 
be understood as follows. The solution to the equation

-Aip = 6(x), xe&3 (2.27)
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for a point source at the origin is tp =  l/(47r|a:|), ie., the field falls off like 1 /r  and 
has long range. On the other hand, the equation

Aip + m 2tp =  6(x), xê R3 (2.28)

for a point source at the origin with mass term , has the solution ip = e_mr/(47r|a;|), 
ie., the field fails off exponentially and has short range. Physically, for the super­
conductor, this means that the magnetic field cannot penetrate far into the super­
conductor, which is called flux expulsion or the Meissner effect.

The Higgs potential has a further consequence. The following discussion is based 
on Coleman [9]. For a rigorous detailed analysis see Jaffe and Taubes [11], First, 
we restrict our attention to finite energy configurations since these are the only 
configurations which can be realized in an experiment. ’’Reasonable” finite energy 
configurations must go to a unimodular number at infinity. Otherwise A/8(| </> |2 
— l ) 2 does not go to  zero at infinity and the energy, the integral of the energy density, 
diverges. Second, we consider a superconductor in a long cylindrically symmetric 
magnetic field in the z-direction. Then to a good approximation, none of the physical 
quatities depend on 2 and we can write in two space dimensions. In two space 
dimensions, the above condition on the energy leads to a a map from the circle at 
infinity S1 in 5?2 to  the circle of unimodular numbers 6*1 in C:

Clearly the continous maps <poo fall into different classes depending on the number

^ r ,0) —  < M 0) = e ^ e\ r —> oo. (2.29)

(2.30)

N  can also be w ritten in terms of the field strength Fi2 as

(2.31)

This can be explained as follows: if the energy is to be finite, then as r —► 00, \<j>\ —»■ 1 
and (di — iA{)(p —> 0. Thus asymptotically

(2.33)

(2.32)

for some integer N . Continuous variations of the fields, subject only to the constraint 
of finite energy, cannot change N; it is a topological invariant. From (2.32) and (2.33) 
it follows that



using Green’s theorem, where the line integrals are to be taken around a contour at 
infinity. Equation (2.31) shows th a t for N  ^  0,-Fi2 goes like 1/r2 at infinity, and of 
course, is independent of z, which means it describes a flux tube, a vortex.

Futhermore, for A =  1, if we use integration by parts to rewrite (2.13) we find

E = J  £d2x = \Jd2x [ (difa + M<h) T (¿>202 -  A20 i)]2

+  [ ($ 2 0 1  +  A 2 0 2 )  ±  ( ^ 1 0 2  — 0 l ) ] 2

+ [^12 ±  ̂ (^l +  ̂ 2 _ I)]2

J *
xFi 2, (2.35)

where 0 i and 0 2 are the real and imaginary parts of the scalar field 0. The integrand 
in the first integral is positive semi-definite while the second integral is simply a 
multiple of the winding number N. Taking the upper or lower sign according to 
whether N  is positive or negative yields

E  > | N  I 7T (2.36)

with equality if

Fx2 =  T ^ ( 0 * 0 -  1). (2.37)

These equations are known as the Bogomolny equations for vortices and have solu­
tions for all N . They form a pair of coupled first order differential equations and 
their solutions solve (2.18) and (2.19), the equations of motion, for A =  1.

9



C h a p ter  3

A 90° Scattering P rocess

3.1 Introduction

In this chapter we consider, for A =  1, a special scattering process of vortices inside 
a superconductor. To do this we look for approximations to the gauge potentials 
and the Higgs field x)) which have finite energy given by (2.13) and
satisfy the equations of motion (2.18), (2.19).

The approximations considered here are of the form

</>=0°+0, (3.1)

and

Ai =  A i 4-Ai,

Ao = Ào= 0, (3.2)

0 0
where (Ai, 0 )  is the static solution for two vortices sitting on top of each other, and 
the perturbations on the static case (A i,0) are represented by (tBi,t£{). These are 
small so tha t the equations for (5 ,-,^ ) can be linearized. In the following, the static 
solution, the assumption that (tB{,t£i) are small and the solution of the equations 
for (Bi,£i) will be discussed. Our discussion is based on work by Ruback [15] and 
Weinberg [16]. We discuss the scattering process from shortly before to  shortly after 
the collision in terms of the differential equations only. This will make it possible to 
discuss scattering away from the Bogomolny limit in Chapter 5.

3.2 The Static Solution

Consider the gauge potential Ao =  0, Ai(r, 6) and the Higgs field 0(r, 9). It has been
shown by Plohr [14], tha t to find n vortices superimposed at the origin the solution
can be w ritten in the form

4> =
A M )  = - eyx . p r )  (33 )

We know th a t (A,-,0) satisfy the equations (2.18), (2.19) if they are solutions to 
the Bogomolny equations (2.37). Substition of (3.3) into (2.37) yields

10



I0 I2 = /2,
Di<j> = i(nf -  naf)e-^]ein\ (3.4)

F 12  = ^ a ' .

and therefore

/' =  ± V (1 -
»«' =  T ^ i / 2 -  1). (3.5)

Here we take the upper sign if n > 0 and the lower if n < 0. To show the eqs. (3.5) 
have finite energy solutions, we argue as follows: Consider the time-independent 
Euler-Lagrange equations

A ^ + ^ A 0(|0 | 2 - 1 ) = 0, 

diFij +  (if2)(0JDJ0 -  <f>W4>) = 0. (3.6)

where we sum over the spatial indices only. The ansatz (3.3) yields

«V,DiD'<t> = (rf'Y — — l ) 2,
r

diFij = xinei:i(-y, (3.7)

_ .   /*
(j)DJ (f> — 4>Dj4> =  XiVÆij— (a — 1). (3-8)

and therefore

(,/')' . t L {a _ 1)2 _ £ a / ( / 2  _ ! =  o_

(3-9)

Plohr [14] has shown tha t there are functions ( / ,  a) which minimize the energy

E = J [(1/2){Di(j>)(Di(/>r + (1 /4) ( ^ ) 2 +  (A/8) ( # *  -  1 )2]d2x (3.10)

and thus solve the corresponding Euler-Lagrange equations (3.9). On the other hand, 
it can be seen tha t solutions of (3.5) satisfy (3.9). And Jaffe and Taubes [11] have 
shown tha t all finite energy solutions of (3.9) are solutions of (3.5). This establishes 
the existence of a finite energy solution of (3.5). For n = 2 , this is our configuration

(À/H h -
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If we substitute the fields (3.1) and (3.2) into the equations (2.18), (2.19),use the 
0 0

fact that ( A v ,  4>) solve the time-independent equations and keep only linear terms 
in (Ai,<j>) we find that they become

D iiD  <t> ~  2iAn D 14> ~ i  <i> d^A» +  ^0(|0°|2 -1) +  ~ 0 ( 0 0 +  0°0) =  0,

and

3.3 T he A pproxim ations

+  A? 10 12 +|[0 D i  -4>D 0° + 0° D  0- 0° if 0] =  0, (3.11)

where
0U O 0

X) 0  =  <f> (d ” -  i  A  ),
(3.12)

and

4>(t,r,d) = t£(r,0),
A i ( t , r , 0 )  = t B i ( r , 6) (3.13)

where t £ (— e, e),e <C 1 and £(?", 0) =  £i +  ¿£2 This means that we are studying the 
scattering process only from the time shortly before the position of superposition of 
the two vortices until a time shortly after. Thus, we obtain

-  D iD i  £ + i i  diBi  + ^ ( | 0 | 2 -1) + |  0 (0  ?  + 0 0  = 0. (3.14)

The sign changes in the above are due to the form of the metric as outlined in 
Chapter 2. The second set of equations (3.11) become for v  — j

d i F« - B i |0°|2 £  0° - t D  0 0 + 0  l5' £- 0° D  i] = o (3.15)

because
do/0-? =  0 (3.16)

by definition above and for v = 0 (3.11) becomes

(d iBi +  l- [ k -  0 £]) = 0. (3.17)

Equations (3.14), (3.15) are also obtained by substituting (3.1), (3.2) and (3.13) into
the time-independent equations (3.6). Solutions of the Bogomolny eqs. (2.37) solve 
eqs. (3.6) ,so if we put (3.1), (3.2) and (3.13) into eqs. (2.37) keep only the terms 
linear in (_B,-,£j) and solve the equations, we have solved (3.14) and (3.15).

To solve (3.17) , we write (£»,£,•) in the form

= n cos n 6 f ( r ) h \ ( r ,  6) — n sin n 0 f ( r )h , 2 (r,  0),

£2 = ns 'm n O f  ( r ) h i ( r ,  6) + n cos n d f ( r )h , 2 ( r , 0 ),

B \ = — [— sin 9b(r, 0) + cos 9c(r, 0)], (3.18)
r
Tl

B 2 = — [cos#6(r, 6) + sin #c(r, 0)].

12



0 = 0  + tf ,  (3-19)

Ai =  Ai +tBi.

Substituting (3.18) into (3.17) we find that

a .n - = +
r  d r  r 2 8 6 ’

^[0°£- ?] = ~ 2 f 2h 2.

Where the perturbed fields take the form

Therefore (3.17) becomes

If we substitute the perturbed fields (3.19) into the Bogomolny eqs. (2.37) and use
O °

the fact that (A,<t>) are solutions to the unperturbed case we find that eqs. (2.37)
become

D i e± ¿ 2  Ç -  i ( B 1 ± i B 2) 0 = 0, (3.21)

^ 2  +  ¿(£0 +  ? 0) = o (3.22)

where

£ = 2/(cos20 + ¿sin2#)(/ii + i h 2), 
2

Bi  = - ( -be i jX j  +  c f,),

-F12 = d \ B 2 — d2B \

and

di = - ei j— dg.
r

Substition of (3.18) into (3.21) gives

0 a J / i ,  2fh(l — a) ./d h „
DiZ = e [2Xl(fh + f— ) + 2ix2(------------   +  * 7 ^ ) ] »

• 0 > nor ■ « / rd h .  2 / / i ( l  —a) J  dh.^
i D 2 £ = e [2ix2( f  h +  /— ) +  2xi(   + *7 ^)].

- i B i  0  =  —- ( - x 2b +  x\c)e2t9f ,  
r

B 2 0° = -(a?i6 +  x 2c)e2l0f .

(3.23)

Equation (3.21) must be separated into real and imaginary parts and one must also 
remember that h = h i + i h 2 then we get

£  + (3.25)

13



The second of the perturbed Bogomolny equations (3.22) must now be calculated. 
It can be seen tha t

F \2 = -
2 db 2 dc
t dr r2 80 ’

Therefore (3.22) becomes

i f - I | +  / % = « ,  (3.26)
r dr rz off

The four equations (3.20), (3.24), (3.25), (3.26) are the equations for the four un­
known functions (b,c,hi,h2). Solutions to these equations will describe the type of 
motion and scattering to be found in superconductors.

3.4 Translational Motion

Consider equations (3.24), (3.25), (3.26). If we substitute (3.24) and (3.25) into (3.26) 
we find

+ '**> = 0 (3-27)
and if we substitute those same two equations into (3.20) we find

1 d dh2N 1 d2h2 , c2u n /oocA
- ;(* r sr) - p  a r  +  / = 0 (3-28)

which we can write as

1 . d dh 1 d2h oi nr>\
“ r ^ d r T d r ^ ~  + f h  = 0  ̂ )

for h = hi + ih2. If we now Fourier expand h,

OO
h(r, 8) — ^  h\ cos kd +  h\ sin k6. (3.30)

k = o

we obtain

= ° (“ )
for i =  1,2; k =  0 ,1 ,2 ___

Solutions of this equation will behave like C\r~k +  C2rk at the origin and like 
Cse~T +  Ĉ er as r —> oo . The perturbation of <f> must be non-singular. It is clear

from (3.5) tha t f(r) has an nth order zero at the origin. Therefore h(r) may be as
singular as r~n. It can thus be seen from the solutions of (3.31) and (3.5), in order 
tha t 0 be non-singular, k < n. Thus for k < n we can always obtain an acceptable 
solution to (3.31) by choosing the proper behaviour as r —> oo.

In our case we only consider the n = 2 vortex solution, in which case we can find 
solutions if the Fourier expansion for h(r,0) contains cos 8, sin 6, cos 26 and sin 26 
terms. If in (3.30) we take only the case k =  1 and set all other hlk — 0 we are then 
left with a single term  fourier expansion namely

h(r, 8) =  h\ cos 8 +  h\ sin#. (3.32)

14



Now if we also set h\ =  i h \ = -j, which is a solution of (3.31), and then multiply 
across by a  + if} we find that the function h(r,  6) becomes

h(r,  9) = h i + i h 2 = j ( a  +  i/3)e~ie. (3.33)

Our aim now is to show that perturbations of the form (3.19), where h(r,  8) is of the 
form (3.33) and b,c can be calculated from equations (3.20), (3.24), (3.25) and (3.26), 
describe translational motion of the vortices (ie. the vortices move together in the 
same direction.) To do this we first show that the guage invariant quantity | <j) |2 is 
the same after translation as it is with addition of the perturbation (3.33).

Consider a translation of the form

/ : 3? —> K  : x -*• x +  7 1,
5 : &  : y ^  y  + 72 (3.34)

and a gauge transformation (2.20) which does not change the physics. If we apply
a translation and a gauge transformation to the given Higgs field we get

0 ( x , y ) e,x(a:,!/) 0° (x +  7 1,1/ + 72)- (3.35)

If we now write
i  ( r ,9 )  = el2ef ( r )  (3.36)

then

4> (* + l i , V  + 72) = el2arctan(i+ ^ )/(\/(a: +  7i)2 +  (y + 72)2 )• (3.37)
0

Since we consider small deviations only we can also expand cf> (x +  j i , y  +  7 2 ) in a 
Taylor expansion. To first order, this corresponds to

o 0 0 0
0 (x + 71»y +  7 2) = 0  (z,y) + dx 4> (x,2/).7i +  dy (j> ( x , y ).72 + ... (3.38)

where dx and d y are the partial derivatives with respect to x and y respectively. As

i ( z , y )  = ei2^ ™ W f ( ^ x 2 + y 2)-

dx i  ( x , y )  = el29f ( r ) - 2' V + el29f ' ( r ) - ;
x i +  y l r

dy H x , y )  = ei20f ( r ) - ^ ^  +  ei2ef X r ) ^ ,  

by substitution into (3.38) we find that
0 f

cf) (x +  7 1 , 3/ +  7 2 ) =  et2ef( r )[ l  +  — (cos $7 ! +  s i n #7 2 )

+ — (-sin07i+cos072) + ...]. (3.39)
r

If we now consider the form of the perturbed field 4> as in (3.19) we see that it 
takes the form

0(:e, y ) = et2e f  + 2el2d f \ r )[ toL cos 6 + t(3 sin 9 + i(t/3 cos 9 — t a sin 0)]. (3.40)
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|0° (x + 7 1, y +  72) |2= /2[1+ “J“(7i cos 9 +  72 sin0] (3.41)

and
I 0(æ,ÿ) |2= /2[1 + cos 0 + /? sin 0)] (3.42)

we see that if 2 a t =  7 1,2(3t = 72 then the above equations are equal. From this
result, we determine the gauge transformation, ie. we find a function x ( x i tl) such
that

<f>' = e- ix^ ’vU - (3-43)

If
/' 2

X ( x , y )  = -  -), (3.44)

After inspection of the gauge invariant quantities

Xi
Xi = —  

r
(3.45)

and we Taylor expand e lt '3Xl'y3^iT r)? (3.43) becomes

<f/ = [1 - i e i j X i j j t j  - (3.46)

<f>' = ~  i t i j x a j f i j -  -  *) }  . (3.47)

0
because of the 7 j there axe no higher terms other than 0 because 7j a  or 7 j/3 represent 
quadratic terms. If (3.40) is substituted into the above we find that

fi 2 i
tj)1 = et26f ( r ) [ l +  — (cos #71 + sin #72) H (- sin #71 + cos #72)],

/ r

4> = (f> (x + 7i,j/ +  72)- (3-48)

From all the above we can see that with the introduction of a gauge transfor­
mation and a transformation of the form (3.34) the perturbed field 0 and the field 

0
<f> (x + 7 1,2/ +  72) are the same up to gauge transformation. Now we also have 
to prove that for the same gauge the gauge potential A { ( x , y ) is the same as the 
translated gauge potential up to gauge transformation. To do this we need to prove 
that

A i ( x , y )  = A i  (x + 7 1,?/ + 72) + 9 i x ( x , y ) (3.49)
where

0
A i ( x , y )  = A i  +tB{ ,

= (3-50)

The gauge potential A i ( x , y ) after the spatial transformation takes the form

, j \ ( M \ / ( x +  7i)2 +  (tf + 72)2) „  K1v
Ai (* + 71 ,y  + 72) = -nei3(Xj + 7j) ((g +  ̂ 2  + (y + 72)2) '• (3‘51)
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Ai (* +  7 1, y +  72) =  Ai + 7 1-D1 Ai + I 2 D 2 Ai,

To simplify this we Taylor expand to get

a a ,2a' 4a. tn
=  ~ -  eaxnkXk{^ - jj). (3.52)

The second term  in (3.49) becomes after expansion

—2a ,2a' 4a , .
diX(x,y) = -  ejkxjxiIkî z ~ ^ ) -  (3-53)

On addition of (3.52) and (3.53) we find that

Ai (x +  71 , 2/ +  72) +  dix(x,y) = -2eijXj—  - 4e,-j7j ^

— ("^3 jxklk + £jkxix ĵk)- (3.54)

But CijXjXk'Jk +  cjkxixjlk — r'2eijlj therefore it can be seen from (3.50)and (3.54) 
that

Ai(x,y) =Ai (x +  1i,y + 72) +  diX- (3.55)

The proof is now complete. We have shown tha t up to  gauge transformation the 
Higgs field and the gauge potential as in (3.19) using the perturbation (3.33) describe 
translational motion.

3.5 90° Scattering

Up to now we have considered the perturbation which described translational motion 
but by far the more interesting of the two modes is the splitting of the vortices and 
their subsequent scattering at right angles. This time we consider the k =  2 terms 
in (3.30) in the special form

h(r, 6) = k(r)(A +  iB)e~2ie. (3.56)

On substitution of the above into (3.20), (3.24), (3.25) and (3.26) we can calculate

b(r,6) =  — (B sin 26 +  A cos 26){2k +  rk1),
c(r,6) =  (B cos 28 — Asin26)(2k + rk1), (3.57)

where k(r) satisfies (3.31) for k =  2. The perturbation to the original system is

<j) = 4> +t£ 1 + i t£ 2,

Ai = Ai +tBi, (3.58)

therefore using (3.18), (3.56) and (3.57) it can easily be seen that

£1 +  *£2 =  2 e'29f(r)h(r,8),
= 2 kf(A +  iB) (3.59)

B1 + iBi = -ei29(c + ib), r
_2i

=  e~ie(2 k + rk')(A + iB). (3.60)
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In the following, we consider the case A  = 1, B  =  0. In the case A  = 0, B  — 1
the analysis and the results are analogous. As shown by JafFe and Taubes [11]
the topological positions of the vortices are given by the zero’s of the Higgs field 
| (p |2= 0, for the unperturbed case <j> = el2Sf ( r ) , | (j) |2= f 2( r) =̂ | <f> |2= 0 when 
r = 0 indicating that both vortices lie together at the origin. To return to the case 
at hand consider

<P = el2ef  + 2k f t ,

| cj) |2 = /2(1 + 4k t cos 28 + 4t2k 2) = 0,
=  H (r ,8 ),

where H (r, 9) is some surface described by r and 9. The point, or line, of intersection 
between H ( r , 6 ) and the (r, 9) plane indicates the position of the vortices. The field 
is zero when

1 +  4k t cos 28 -f 4/2A;2 = 0. (3.61)
Take t  < 0 ie. pre-scattering

1 — 4k t cos 20 + 4t 2k 2 = 0 (3.62)

consider the case 9 =

=> cos 28 

4 t1k 2 + 4 t k  + l  

(2 tk +  l)2

=> k

W e  can see that the intersection of H (r, 8) with the (r, 9) plane is always positive, as 
it is a square. Therefore only the points 8 = ± 7r/2,r =  k ~ l ( — l / 2 t ) , and not lines, 
of intersection are allowable. We  will now try the solution of H ( r , 8 ) when / > 0,

4t2k 2 +  4k t cos 26 +  1 = 0

This is only possible if 6 = 0 or 8 — ir. Then,

4t 2k 2 + 4tk -f 1 = 0,
(2 t k + l)2 = 0,

For the incoming vortices ( t < 0) the zeros of the Higgs field axe at 6 = ± 7t/2, r = 
k ~ 1( —l / 2 t ) , for the outgoing vortices, they are at 0 = 0 and 8 =  ir,r = k ~ 1( - l / 2 t ) .  
That k _1 exists will be shown later. That this is evidence of 90° scattering can 
be seen as follows: microscopicly there is a current of superpairs flowing around a 
vortex, sustained by and sustaining the magnetic flux. This configuration can only 
be smooth if there are no Cooper pairs at the centre of the flux tube. Hence, the 
zeros of the Higgs field give the locations of the centers of the vortices. Furthermore, 
as Fig. 3.1 illustrates head-on collision can be considered as the limit of a sequence 
(and of its mirror image) of collision with nonzero impact parameter. This leads to a 
left-right symmetry in a head-on collision which rules out scattering at angles other 
than 0°,90° and 180°. (If there is any deflection at any impact parameter, as pre­
sumed in Fig. 3.1, one also would not expect 180° scattering.) The above arguments

= - 1 , 
= 0,
= 0, 

- 1  
2T '
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clearly discriminate in favour of 90° scattering against 0° and 180° scattering. To 
understand better what happens during the collision we study the energy density. 
The energy is given by

E  = J [iD r f D i t  +  \ f % +  ̂ ( # * - 1 )2}d2x (3.63)

and the energy density is given by

£{r,  9) = \Di<t>Di<f> +  +  £(#* - l)2 (3.64)

where i , j  are summed over spatial indices 1,2 only. Concentrating on the more
interesting mode, as indicated at the beginning of this section, the remainder of this
thesis will be confined to scattering whose perturbations take the following forms:

6  + »6 = 2 fc(r)/(r),
9 •

B x + i B 2 =  e~ie(2 k +  rk' ) .
r

The perturbed gauge potentials and Higgs fields become
na

— ^ij&j o' 5

<t> = el2d f { r ) +  t i i +  i t£2- (3.65)

B{ can be written using summation notation and the Pauli spin matrix a given by

'  =  ( io V  (3-66)

This means that (3.65) becomes

na „ - f i t 2& .A{ — CijXj—y 2(TikXkt{k -|- ),

0 = ei2V(r) + 2fc/i, (3.67)

if we set A  = 1 .
The calculation for the energy density is long and has been included in Appendix 

A  and only the result is included here

£(r, 9) = (— ) ( 1  -  a2) + 8 ( ^ ~ ) 2 + 16 ( ^ ) 2a k t (a  -  1) cos 29

+ 2t 2i k ' f  +  — ^-(1 — a))2 + 212f 2{k' +  — )2(1 +  4k t cos 29 + (2 k t ) 2)
r r

8 2k
— - f 2t cos 2 9{k' -|---)[(a — 1) +  t k a cos 29 +  t k { a  — 1) cos 29 +  2 t 2k 2a]

Ok 1
— At2 f 2k ' ( k ' H ) sin2 26 + - { f 2 — l)2 + f 2k t cos 2 9 ( f 2 +  2 f 2k t cos 29 — 1)

+ ^ ( / 2 + 4k f 2t cos 29 +  ( 2 k f t ) 2 — l)2. (3.68)
8

Given the form of the energy density, we can check the finiteness of the energy by 
investigating each term individually. In the next section, we will show that

/far2, , a & r 2, k «  r~2 as r —► 0 (3.69)
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and
/ « e r, ,flRic r, /c ~ e r as  r —> oo. (3.70)

If we examine both cases as r -4 oo and r —* 0 it can easily be seen that the 
energy density is indeed finite. In the case where r —*■ 00 all the terms in (3.68) 
die exponentially fast therefore never become infinite, however in the case r -+ 0 
the leading behaviour of f ( r )  always compensates for the k ( r ) terms. Consider for 
example terms of the form k ' -f 2 k / r if we substitute in the approximate values 
for k and k ' we find that they exactly cancel each other and all combination terms 
involving / and k combine in such a way that they are finite. So we can conclude that 
the energy density never does become infinite. The asymptotic behaviour of k also 
shows that k ~ l exists. For large r, k is strictly monotonic decreasing. Assume that 
this is not the case for all r > 0. Then, there exists a point ro with fc(ro) > 0, fc'(ro) =  
0 and k"(ro)  < 0. This would be inconsistent with (3.31) and (3.56). Therefore, k is 
strictly monotonic decreasing on (0, 00) as r increases and A;-1 exists.

Finally we study the potential energy density in the collision process. The Kinetic 
energy density is radially symmetric and does not alter our argument. The potential 
energy density was graphed using the numerical results found for /(r),a(r) and k ( r )  
in Appendix B. Then a simple driver program was written in Fortran to calculate 
the potential energy density and plot it as a function of x and y. The situation

£{x,y)

Figure 3.2: Static solution with both vortices situated at the origin, t = 0

depicted in Fig 3.2 is the static solution where both vortices lie at the origin. This 
plot shows that there is a local minimum at the center and a maximum lies in a ring 
around the axis, so that the vortex is mainly concentrated in a toroidal region.

Fig 3.3 shows the pre-scattering case where t =  and the vortices are about 
to collide. The view in this plot is not directly along the x axis (this is just so that 
the two vortices can be distinguished).
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Figure 3.4: Post-scattering with t = ̂
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Fig 3.4 depicts the position of the vortices after the collision. A  comparison 
between Fig 3.3 and Fig 3.4 does indeed show that the vortices scatter at right 
angles substantiating evidence discussed earlier.

There are at least still two problems which have to be addressed. First, a solution 
for t G (— e, e), is not a scattering solution. However, we can take the configuration 
for t =  0 as initial data of a solution for t G (— 00,00) which we know exists [8]. 
For t G (— e, e), e <C 1, the linearization which leads to equations (3.11) should be 
justified and the solutions we discussed should be an approximation for t G (— c, c) 
to the scattering solution for t G (— 00,00). The second problem is concerned with 
the experimental realization of the 90° scattering process. W e  have given evidence 
for 90° scattering, by presenting special approximate solutions, which require special 
initial data. However, since the parameter space for static vortices is 4-dimensional 
and we have found a 4- parameter family of approximate solutions (3.33) and (3.56), 
which all describe 90° scattering possibly with a spatial translation, we expect 90° 
scattering for slowly moving vortices for all initial data which lead to a collision.
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Series Solutions

C hapter 4

4.1 Introduction

In Chapter 3 we found two first order coupled differential equations for /(r) and a(r), 
and a second order differential equation for k(r) . In this Chapter we will investigate 
the series solutions of these equations at zero and infinity. In the vicinity of zero we 
use Taylor series and at infinity we use asymptotic power series. The results obtained 
in this Chapter are then used in Appendix B to aid in the numerical investigation 
of the respective functions.

4.2 The Taylor Expansions at Zero

Consider the Bogomolny equations for the n  = 2 case

f  =  i _ „), (4.1)
r

a1 = ^ ( f  - 1). (4.2)

Taylor series take the form
OO

f  = Y 1  f n r n = f i r  + h r 2 +  f 3r3 + • • •,
n —1
oo

a = ^ 2  = air +  a2r2 +  a3^3 H •
n =  1

Substition of the above into (4.1) and (4.2) and solving for the respective coefficients 
we find that

f i  = 0, ax = 0,
Î2 = Î2,  a2 =
h  =  0 , Û3 =  o,

/ 4 = - a 2f2, «4 = 0,
f s = 0) a5 = 0,

fQ = 202/2? ®6 — 24 '

The Taylor series for the solutions about zero for the functions f ( r ) and a ( r) are 
therefore

f ( r )  = h r 2 -  ^ f 2r4 + ^ ¡ 2^  +

(4 .4 )
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* > = r J- ^ e+ ^ v +.- ,

where /2 is unknown.
From the equations it can easily be seen tha t all odd powers of r seem to be lost. 

To investigate wheither this is true for all higher powers of r consider

/ ( r )  =  f ;  fnr2n + Fr2N+1 +  o(r2iV+2),
n = I

°(r) = ' 5 L an'<'2n,
71=1

substituting these into (4.1), we find that

N N
J2 2n /nr 2n +  (2N  +  1 ) F r 2iV+1 =  2 / „ r 2" +  Fr2N+l
n=l n=l

N n
—  2 ̂  ^ ' fm ani ̂n,ni +"2

m=1 /V,ni ,U2>1
+ Fa>n2 ̂ 2n,2/V+27i2+l (4-5)

but by definition

¿2n,2JV+2n2+l =  0

always and by comparison of coefficients in (4.5) we see tha t

{2N-1)F =  0,
=> F = 0.

Therefore there are no odd terms in the expansion of f(r). If we assume on the other 
hand tha t

N+1
/ M  = £  U r 2"

71= 1

and

a(7>) =  ^2 anr2n +  Ar2N+l -f- o(r2N+2).
n- 1

Substituting these into (4.2) we obtain

N N n
4 ] T > a „ r 2" - 1 +  (2JV + l)A r2/v = -  £  £  fnJ n26n>ni+n2+t. (4.6)

n=l n=l m ,«2 > 1

and

Equating coefficients reveals

(2N + l)A =  0, 

=> A =  0
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and therefore we see that there are no odd terms in the expansion around zero of 
a(r).

W e  can then write the general forms of the series in the form
oo oo

/O') =  Y j  fnr2n’ °(r) =  X )  anr<2n, (4-7)
n = 1 n = 1

respectively. To find a general expression for the n th coefficient of the Taylor series 
we proceed as follows: substitute (4.7) into (4.1) and (4.2) to iind that

£  2n f n r 2n = 2 £  f nr 2n( 1 - £  anr 2n).
n = l  n=l n=l

(4.8)

Simplifying this we find that

71— 12 —  I

f n  " T /  71 >  1 ,1 — n ■“m=l 

and
oo oo n —1

4 ̂  2n a n r 2n 1 = - ̂  ^  f m f n - m r 2 n + 1

n=l  n = l  w = l

which reduces to
_  j n—2

=  7: /  , f m f n —m —1 ) 71 >  1 .
8n “

m = l

These represent the recursion relations for the coefficients of / ( r )  and a(r) respec­
tively, where /2 is an arbitrary constant and a2 — 1/8.

After finding the Taylor expansions and the recursion relations for f ( r ) and a(r) 
we will now consider the second order equation for k(r)

r 2k" +  r k '  -  k (4 + r 2f 2) = 0. (4.9)

Using the result for /, we see that the solution near zero of the equation behaves 
like

k ( r) =  c \ r ~ 2 + c2r 2

leaving us reason to believe that yet again only even terms of the Taylor expansion 
survive. Proceeding as before we know that

N+l
/ M  =  E  /nr2”

71=1

and we assume that
N

jfe(r) =  Y j k̂ n +  Kr2N+l +  o(r2N+2).
n= —1
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N

Then we have

„2Nk ' ( r) = 2nfcnr2n_1 + (2 N  + l ) K r 2
n = —1

N
k " ( r) = ^  2n(2n — l)fcnr2n-2 + 2 N ( 2 N  + l)i£>2iv-1.

n = —1

If we substitute these into (4.9) we find that 
TV TV

53 (4n2 - A)kn r 2n +  (47V2 +  A N  -  3)ICr2N+l =
n= —1 n= —1

[ )   ̂ /n -i f n 2 k n s  ^ n ,n i+ n 2 + r i3 + l
n i ,n 2 ,7i3>l

+  X /  / n i / n 2 ^ 2 n , 2 n i + 2 n 2+ 2 iV + l]  
JV,m ,n2 > l

but by definition

2̂n,2ni+2n2+2Â +l = 0

always, therefore comparing coefficients gives

( A N 2 + A N  - 3 ) K  = 0,
=> K = 0.

Again we have shown that no odd terms exist in the Taylor expansion at zero. We  
now need to find a general recursion relation for the coefficients in the expansion of 
k(r) . Following the same procedure as for f ( r ) and a ( r) and using (4.9) we find that

kn =  _  4") y  / /ill /n2 ̂ii3 ̂ n,ni+n2+713+1 * (4.10)
'  n i ,n 2 ,r i3 > l

4.3 Convergence of The Series Solutions at Zero

To prove the convergence of the Taylor series at zero we now show by induction that

I f k  1< * < » - 1 ;  (4.11)

M k
I ak |< ( k  + 1y , k < n -  1; (4.12)

M k
I h  |< ( k -+ -\ y 2 ' k  < n  -  1, (4.13)

hold for sufficiently large k and M  > 1. For this purpose consider
n —1■ĵ /l —  X

= i l _  ̂ ^ ̂ /mi®m2 n̂,mi+ra2'\ «1, mo>1mi ,m2 >1

Taking the absolute value and using equations (4.11) and (4.12) we find that

1 M mi M n~mi
fn l-l i _ n I Emum2>i (m i + I)2 ( n - m 1 + l)2
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where n = mi +  m 2 from ¿n,mi+m2- Therefore

M n n_1
I l-l 1 _ n I r̂ i (mi +  1)2 (n - mi + l)2 ' ( 4 ‘U )

To complete the proof by induction consider the integral
¿a;

rj  1//1 /2  (1 +  a:)2(n -  x +  l ) 2 ’

W e  need to show that the tangents to the above integrand always fall below the
curve and then it follows that

^  1__________  n - 1/2  dx________
n" 1 (mi + l)2(n - mi + l)2 ~ J 1 /2 (1 +  x ) 2( n  -  x +  l)2'

In order that we might do this consider
I

y = (I + x ) 2{n — x +  I)2 ’
Then

*1 = _ 2[ 1 1 1.
dx (n  — x +  1 ) 2(1 + a:)3 (1 +  x ) 2(n  — x +  l)3

Equating this to zero we find the critical point to lie at x = j .  Using the second 
derivative test it can easily be seen that this is a minimum point. If we examine 
the curve over the respective interval we see that it is symmetrical about the point 
x  = j , that the first derivative is increasing and that the second derivative is always 
greater than zero. Then we can say that the tangent always falls below the curve 
and the inequality (4.14) holds. To calculate the integral use partial fractions. We 
find that

y .1 _________ 1 4 1 1 1 2 n + l
„“ ■l (mi + l)2(rc — mi + l)2 — (n +  2)2 3 (2 n + 1) n +  2 n 3

Therefore from (4.14), (4.15) and (4.11) we see that
. . .  M n . 4 1 1 1 2n + 1.
1 fn 1 ~  1 (1 — n) 1 (n +  2)2 3 “  (2n +  1) +  n +  2 n — 3 ~ ■

1 1 s  '

M n
(n + l)2 ’

This proves the inequality (4.11) and convergence of the series /(r) for r < .
Similarly for an we find that

M n
I an I ^  I _ g n I I f m 1 II f m2 I

m = 1
IWn-l n~ 2 1 1

l “" 1 £ (™. + 1 )2 (»-™i)2’

5 1 1 f t V (1)'
M n 

~  (n + l)2 ’
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This proves the inequality (4.12) and convergence of the series a(r) for r  < ^=.
It now remains to calculate the convergence of the series for k(r). From (4.10) 

we have

=  id 2 _  A.) /r»i/n2^n3 in,ni+n2+n3+l ■
'  ^  '  7ri,H2,713>l

By taking the absolute value of both sides and separating the summation we find 
that

1 M m3 M mi M  n~mi - 7 7 1 3 -1

1 K  1 = 1 t i n *  -  1) 1 (ms +  l)2^  (m 1 +  l ) M « - » . , - ™ 3 )21

but this simplifies to

l_| 1 v- M m3 M n~m3~ 1
4(n2 -  1) m̂ 1 (m3 +  l ) 2 (n -  m 3)2 '

Therefore if we use (4.15) we see as in the cases for f { r ) and a (r ) above that

^ ° U n̂ ) (n  + 1)*K 1>
M n

(n +  I)2-
Therefore all the coefficients of the Taylor expansions at zero are convergent, it now 
remains to investigate the behaviour of the functions at infinity.

4.4 Asymptotic Power Series

Consider yet again the Bogomolny equations (4.1) and (4.2) but this time note the 
boundary conditions at infinity:

Um /( r )  =  1,

lim a(r) = 1 .r—>oo

From Plohr [14] we see that the solutions to (4.1) and (4.2) for large r are

f ( r )  = 1 - a k 0( r ) ( l + o{e~r)) +  ̂ ( r ) ] 2,

=  1 +  f i ( r ) e ~ T +  F 2(r)

a(r) = 1 - ̂ r k i ( r ) ( l + o(e~r )),

=  1 + a 1(r )e~ r + A 2( r)

where k fl is a Bessel function of order /i which is sub dominant at infinity. This means 
that f i ( r ) and ai(r) are polynomially bounded and that F 2{r) and A 2(r) approach 
zero faster than r m e~ T for any power of m.

Consider now the second order differential equation for k(r)

r 2k" +  rk ' — (r2/ 2 +- 4 )k — 0. (4-16)
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r2k" + r k '  -  (r2 + 4)k  = 0. (4.17)

This is a modified Bessel equation of order two but can be easily transformed to a 
Bessel equation using the transformation

z = i r , w (z ) =  k(r ) .

From Abramovitz and Stegun [1] (4.17) then becomes

z 2w" + z w ' + ( z 2 -  4 )w  — 0.

This is a Bessel equation of order two with a general solution of the form

w ( z) = ci J 2(z) + c2Y2( z )

where J 2( z ) is a Bessel function of the first kind and Y 2 is a Bessel function of the 
second kind. From Olver [13] w (r ) can also be written as a linear combination of 
Hankel functions as

f f W  = j 2(z) + iY2 ( z ) ^ ^ J eH ^ ) }

H {2) = h { z )  -  iY2(z ) ~ J T e - « ’ -*?) ,V 7rz

=> k ( r) = A H ^ l) + B H ^ ].

However in order that we maintain finite energy B  = 0 and k ( r ) takes the form

k{r ) = k i ( r ) e ~ T + K 2{t )

where k \ ( r ) is polynomially bounded and K 2{r) approaches zero faster than r m e~T 
for any power of m.

Using the induction hypothesis we assume that

f ( r )  = E  f * e~ kr +  W ,  fo = 1, (4.18)
k=0 
n — 1

a (r ) = ^ 2 a ke~kr + A n(r) ,  ao = l , (4.19)
k= 0 
n — 1

K r )  = E  kk e~ kT +  K n(r) , (4.20)
k= 0

where f k , a k and k^ are polynomially bounded and F n , A n and K n all approach zero
faster than r m e- ( n~1)r for any m. W e  now need to prove that F n (r) behaves like
f ne~ T and similarly for A n (r) and K n (r).

If we now change the variables such that f  =  1 + F  and a = 1 +  A  and substi­
tute (4.18) and (4.19) into (4.1), (4.2) then simplifying we find that (4.1) becomes

F '  = - ^ A ( 1  + F ) (4.21)

To leading order k(r) satisfies

and (4.2) becomes

A ' = - r- F { 2  +  F). (4.22)
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To decouple the differential equations, differentiate (4.21) and substitute in (4.22) 
to eliminate the A! term. Then we get

F "  + - F '  - F  = I f 2 +  ̂ A 2 + l - F 3 +  % A 2F. (4.23)
r 2 r z 2 H

Consider firstly the homogeneous equation

F " +  - p '  -  F  = 0 (4.24)
r

which is a Bessel equation of order zero the solution of which can be written as

F  = A H ^ \ i r )  + B H ^ \ i r )

where B  is zero to maintain finite energy. Hence by simplifying the Hankel functions 
F  can be written in the form

F  = h { r ) e ~ T + F 2(r).

If we substitute (4.18) and (4.19) into (4.23) keeping only leading terms we find 
that (4.23) becomes

1 3 00
Fn +  ~  Fn =  [— 53 fni fn2^n,ni+n2

TL\ ,712 =  1

4 00 1 00
+  ^  E  ^ n i  7̂12 ^ n ,m  +ri2 +  2  E  f n i  f n 2 f r i i ^ n , n i + n 2 + n 3

ni,Ti2=l ni,n2,ri3=l

4 v2'^2 f  - aniO'n2fn3^n,n1-i-n2+n3]s ,
ni ,ri21^3=1

=: a n {r)e~nr . (4.25)

If we now substitute (4.18) and (4.19) into (4.22) we find that (4.22) becomes
. OO

K  = - \ f n { r ) e ~ nr - -A 53 i n J n 2 K n , +n2e - n\  (4.26)
ni ,n2 = l

= : f3n ( r )e~ nr. (4.27)

Analogously the second order equation for k ( r ) (4.16) can be rewritten using the
same change of variables as for the /(r) equation to find that it becomes

K "  + ~ K ’ - (1 - ̂ ) K  = 2 F K  +  F 2K . (4.28)

If we substitute (4.18) and (4.20) into this equation it reduces to

1 4 ~
K " +  -K > -  (1 - - ) K  = [2 ^  f n i k n2Sntni+n2

ni ,n2= 1 
oo

f n i  f n 2 k n i& n ,n \- \ -n 2 - \-n 3 \6  >
ni,n2,n3=l

=: 7n{r)e~nr. (4.29)
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g(r  0 \ -  {  a i r H o \ i r )  +  a2r H ^ 2\ i r ) ,  (0 < r  < p)
’ \ birĤ îr) + b2rHQ2\ir), (p < r < oo)

In order th a t this Green’s function describe the situation at hand three conditions 
must hold, firstly

lim g ( r , p ) =  0 =$■ b\ = b2 = 0 .T—►OO
Secondly the Green’s function must be continuous ie.

g(p+,p) = g(p~,p),
=>• ai = a H $ \ i p ) ,

a2 = - a H ^ \ i p ) .  (4.30)

Therefore

g ( r , p )  = a[H i2\ i p ) H ^ ( i r )  -  H ^ \ i p ) H {2\ i r ) } , (0 < r < p) (4.31)

and finally

- - ^ ( g ( p - , p ) )  = l,
=* - i a [ H ^ 2\ i p ) H ^ \ i p )  -  H ^ \ i p ) H {2)\ i p ) }  = 1. (4.32)

From Abramovitz and Stegun [1] we know tha t

H [o ]\ i p )  = - H [ n\ i p ) ,  

and substituting this into (4.32) we find tha t

ia [H {2\ i p ) H f \ i p )  - H $ \ i p ) H {2\ i p ) } =  1. (4.33)

Since the determinant

H [ ' \ i p ) H $ \ i p )  -  H $ \ i p ) H [ 2\ i p )  = ~7T p
is non-zero (Abramovitz and Stegun [1]) this system is solvable and we find that

In order to find the full solution to (4.25) consider the Green’s function

Ï7T p

Now we can say tha t

Fn{r)= f g(r,p)an(p)e~(n)pdp (4.34)
¿TO

and expanding out the Green’s function we find tha t (4.34) becomes

Fn(r) = ^  £  p[H^\ip)H^]{ir)-H^)(ip)Ĥ ){ip)\an{p)e-npdp. (4.35)

Similarly for I(n we find the Green’s function of the form

g(r,p) = H{r- p)%-^-[H^\ip)H \̂ir) - H^\ip)H^\ir)} (4.36)

and therefore we can write Kn in the form

Kn(r ) = p[H?{ip)H^\ir) - H^\ip)H^\ir)Yfn(p)e~npdp (4.37)

where 7n(p) is given in (4.29). We have now found in terms of Green’s functions 
the form of the three series. All tha t remains to do is to investigate whether or not 
these series converge at infinity.
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s u p r>R | r 2an {r)e "r |< ^ ° |-|̂ 2, (4.39)

4.5 Convergence of the Asymtotic Power Series

To prove the convergence of the asymptotic series at infinity, we assume there exist 
numbers cq, M  and R  such that

s u p T>R | r/„(r)e_ir |< ^ ° ^ 2, (4.38)

_  ILL | ^ Cq A ^ 71

(n +  l)2

s u p r>R | r&n(r)e_2r |< > (4-40)

for large enough n. For this purpose consider g(r,  p) and a n(p) as calculated in (4.31) 
and (4.25) respectively. Then

s u p r>R | r / n(r)e_IT | = s u p r>R \ r F n ( r ) e |
(4.41)

by definition and using (4.25) and (4.31) we find that

s up T>R\rFn{ r ) e f \ <  s u p r>R^ \  J  [ H ^ \ i p ) H ^ \ i r )  -  H ^ \ i p ) H ^ \ i r ) ]

e _nLn=zl d p ^ (4.42)
7T i O / v _ 2£.< s u p r>R- \ r  a n (r)e 2 |

suPr>Rf  14 2\ i p ) H ^ \ i r )  -  f rW (ip )F i2)(ir)|

dp (4.43)

Taking R  large enough, we can bound \ H ^ ' 2\ i r ) \ by ce& r) / \ / r , (4.43) then reduces 
to

aupr>R ^ \ r 2a n ( r ) e ~ !̂ \ . s u p T>H j  (ep~T +  eT~p)e dp. (4.44)

Calculating the integral in the above equation we find that

[°° , . r_0s - n(P- r) , r -2 _ [n-2)(g=r) 2 _(n+2)(p-r)
I  ( « "  +  « " ) «  1 ^  =  1 ’ )“

4" (4.45)
n2 — 4 ’

Then we can say that

5'up7.> fl|r/n(r-)e_ ^ 1| <  ™  4 ^ p r> fik 2Qi«(^)e~ ^ 1|- (4-46)

Using the induction hypothesis and substituting for a n (r) we find that (4.46) be­
comes

7rn , o , . s l . 7rn rll . 1 1
-supr>R\r2 a n (r)e  ™ \ < —2— ^n2 — 4 n2 — 4 2  ̂(ni + l)2 (n — n\ +  l)2



■Kn , M n . . 
-  n2 — 4 (n +  2)2 ^

71 — 2 j
+ M " ^ ( n 1 + l)2 (n-n1 + 2)2°(1)]’

7l 1  =

^  7 T 7 i M ” r 1 . . 1

- n2"^! (n +  2)2 + (rc +  3)2^
M n

< r 4 i * -  (4-47)(n + l)2

This proves the inequality (4.38) and convergence for r > R  and r > 2 log M .  
Similarly for k n we find that

S«Pr>flk*n(»,)c_^:| = 8UpT> R \rK n e%'\t (4.48)
< s u p r>R\r2' in {r )e~ Ŝ \ 1̂ J  (ep~r + er~p)e dp{4.49)

where 7„(r) is given in equation (4.29) and the Green’s function for k n (r) is similar to 
that for /„. Proceeding in exactly the same way as we did for f n we find that (4.49) 
is less than or equal to

n —1 1 1i t t  nr i 7T T l _ n  v — ^ J. 1
s u p r > M r K „ e  ,  |  <  ^ - ^ [ 2 M  ^  -  1 ) 2  -  _  ^  -  y 2

71—2 -1 71—711—2 i

+  “ I S  (»1 +  I)" „ £  (n2 +  l)2 (ir-»l- » 2  +  l)2l’(4-50)

(4'51)
M n

< ( ¡ T i j i -  <4'52>

This proves the inequality (4.40) and convergence for r > i? and r > 21ogM. It
now remains to calculate the convergence of the series for a(r). Prom (4.39) we have

s u p r>R\ran ( r ) e ~ ^  | = «ttpr>/i|rAn(r)eT1|, (4.53)
/•CO ŷp n( p—r)

< s u p r>R / |p/3„(/9)e_ 2 \e~ 2 dp, (4.54)
Jr

< s u p r>R\r(1n (r)e "r
2 n(fi-r)

 e 2
n

(4.55)

2 nr= — supr>/i|r/?n(r)e_I2:| (4.56)
n

where /?n is given by (4.27). We  notice that the term r/3n (r) contains the term 
T 2 f n ( f ' )  which cannot be controlled by the inequality (4.38). Therefore, we make a 
change of variables of the form

An — tAh, an — v(Tn,

this means that equation (4.26) becomes

~ / l ~  f l  1 co 1
A n + - A n = < - ~ f n  -  7  Yj f n j n 2 & n ,n x + n 2 } e“ "r , (4.57)

r [ £ 4 m, na=l J
=: /3„e-"r. (4.58)
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The Green’s function for this equation is <j(r,p) = ~H(p — r)&. Tlie solution of the 
above equation is then of the form

A„(r) =  p P M e ' ^ d p .  (4.59)
? Jt

To prove the convergence of this consider

5upr>/i|m'n(r)e“T1| = s?ipr>R|rAn(r)ey |, (4.60)

< supT>R\rPn(r )e~!f ' \  j e ~ nL£̂ A dp, (4.61)

i / i
n |2

M n M n 1
2 ( n +  l ) 2 +  4 H- I )2 (n -  n i  +  I )2 j  4̂'G2̂

(4.63)

ni
M n

(n+ 1)2‘

Therefore all the coefficients of the asymptotic series at infinity are convergent for 
some r > R and r >  21ogM.
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T he C ase A > 1

C hapter 5

The theoretical predictions for the scattering of soliton-like objects are very exciting. 
For static vortices the only degrees of freedom are the positions of the vortices and 
any unusual behaviour would hence be due to their soliton-like nature. Left-right 
symmetry in a head-on collision would only allow scattering at an angle of 0°,90° 
or 180° as shown in Chapter 3. For slowly moving vortices at the point between 
type I and type II superconductivity (where A =  1) we have shown that the vortices 
do indeed scatter at right angles. If the repulsion between the vortices increases 
and they cannot come close anymore, we would expect to  see a switch over to back 
scattering at a certain value of the repulsion. There is numerical evidence that 
for fixed repulsion an increase in the velocity can bring the vortices close enough 
together again to produce scattering at right angles. In this thesis we now change 
the strength of repulsion.

Consider the equations of motion

i V ^ + ^ A 0 ( | 0 | 2 —1) =  0,

- W W )  = 0 (5.1)

and the fields
0 ~

4>=(f) + 0,
=Ai -\-A{ (5.2)

0 o
where (Ai■></>) is the static solution for two vortices sitting on top of each other
and (Ai,<j>) are the perturbations on the static solution. When A =  1 all internal
forces balance so to introduce a small repulsive force consider A =  1 + A, A <C 1. If we

0  °substitute (5.2) and A into (5.1), use the fact tha t (Ai> <j>) solve the time-independent 
equations and keep only terms linear in the perturbation we find the equations of 
motion become

DiD 4> ~ 2iAi D i  -i i 8iA*' +  ^ ( |  4> |2 -  1) +  ^  <p 0*+ <p $)

+ ± A < M| < H 2 - 1 )  =  0, (5.3) 

Dj4> - 4 > ( D j i y +  i * D j  4 > - i  (D j  j>)*]

+dlF{j +  Aj  | (p I + — 0, (5.4) 

d % Ai+ i  [ /  dot- i  do4>*} = 0, (5.5)
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o Q ~ ~
where Di= di — i Ai and Fij =  diAj - djAi and

<j>(t,x) = A<p(x) -f l£(x)
A{(t,x) =  Aat(x) +  t0(x) (5.6)

o „ „
where (</> +Ay>, Ai +  A a,) satifies the static equations of motion linearized in A. 
Hence (At/?, Aa,) is a solution of the inhomogeneous system of equations (5.5) and 
again we have a  4- parameter family of solutions which is what is required for 90° 
scattering. The homogeneous system is the one which had to be solved in the case 
A =  1. Therefore, also in the case 1 < A =  1 + A, A <  1, we find the approximate 
solutions which describe 90° scattering. This is im portant because in an experiment 
A =  1 can never be exactly realised. Our argument shows tha t if the net repulsion is 
small enough, slowly moving vortices can overcome it and will scatter a t right angle. 
Here, slowly moving means slow enough for the approximation to apply, which is a 
very indirect way of quantifying the velocity.
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C onclusions

C hapter 6

We used results of Weinberg [16] and Ruback [15] to construct approximate solu­
tions to the partial differential equations which describe vortex-vortex scattering. 
Together with a simple argument, which rules out scattering at angles other than 
0°,90° or 180°, this provides further analytical evidence for 90° scattering. Our 
method makes it possible to extend the analysis to the case of a  small net repulsive 
force between the corresponding static vortex configurations. Wc have also studied 
the ordinary differential equations, which result from the ansatz for the approxi­
mate solution. These equations are solved by Taylor series at the origin and by 
Asymptotic series at infinity.
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A p p e n d ix  A

The E nergy D en sity

The potential energy density is given by

l- D im 4 > + \ r °  ■ A '

where i , j  are summed over the spatial indices only. The Kinetic energy density is

E(r,6)  = -Di4>Di4>+ - I f j  + - ( # *  -  l ) 2

1

In this section we calculate the energy density for the perturbed state that describes 
90° scattering ie. we consider (j> and A; of the form

<fi(r,0) = e,nfff ( r )  + 2 t k ( r ) f ( r ) ,
4 „ na „ „ ,,, 2 k .
*(̂ 5 ) — ^ijXj  2(7ikXktyk -(- )

as can be seen in (3.67).To proceed with the calculation
D 0(j> = d0<j) = 2 k f  (A.l)

and

Di<f> = (di - iAi)(j),

= - € i  j — de +  XidT + ie i jXj—  +  i2aikx kt ( k '  + — ){ein6f  + 2 t k f )  
r r r

where di = - C i j ^ d g  + £ id r and for convenience we write f ( r ) , a ( r ) and k ( r ) as /, a 
and k respectively. Then

D i(f> = iei j x j [einB? f (a ~ 1') + 2̂ h l ]  + x i ( e in0f  +  2 k ' f t +  2k f t )  
r  r
2 k ,+  i2o ikx kt ( k '  -\--- ){etn9f  + 2 k f t )

where Di(j> is the complex conjugate of Di<j). Then
, n f  2 , 2 t a n k f . 2 . n f ,Di<f)Di<f> =  (— ) + ( —  ) + 4ka(a — l)i(— ) cos n6

+ 4 t f ' { k '  f  + f ' k )  cos n6 + t 2( 2 k ' f +  2 f ' k ) 2
9k 9 k

+ 4 (k ' H )2/ 2( / 2 + 4t k f 2 +  { 2 k f t ) 2) — 16afix 2(k ' H ) t k ' f 2 sin n6

2k 1
-f 4(^2 — x i ) {k ' -I ) t f 2~[(n f ( a — I))2 — 2knt cos nQ -f 4nak2t2

+ 4 k a n f 2t cos nff]
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where

i c i jX j . i c i f c X f c  — a;2 ~\~ ®i — 1»

(Tij XjOifcX k = 1 ,
(.ijX0OlkX~k =  x \  -  x \ ,

—  0,
X { X {  =  1,

XiCTikX'k =  2X 1 X 2 -

The second term of the energy density is calculated as follows:

Fij =  d,Aj - djAi

where

and

Therefore

Ai{r,6) = -CijXj—  -  2crikx ki{k'  +  —  )

, , - n a „ * /, / 2A\A_,(r,0) = - t j i X i —  -  2ajkx kt{k + —  ).

_  na  .  , a . k '  2k.
Fij =  ~€ji~2 ejk%k%in(-̂ 2 ) — 2<7j,-Z(— + —y )

na„ „ 2&.. f « «  . / u \/ 
¿G jk X k X iy  ~  "1"  ̂ { ^0 ^2 ^ikX kX jn y - ^ )

-> ,k! 2 k . n  ̂ , k '  2k. ,
~  2a y i ( -  +  72 ) ~  2 ^ * * f c * j( -  +  7 7 )  *•

This becomes

with

r-, « / *0 v , ^  2/;..,
—  €,j ~  €ijr(xl — X2)(~ +  ̂ 2^

~  ¿ij )
—  2,

(*-ikx j  ~  Cjkx i)x k = ^i jx kXk =
(¿jA.fi - 6ikXj)xk = Cij(a:f - æ|)r.

Now we can say tha t

1 r-i9 1,71(1 . O // ~0 V  , 2fc./ 9/^9 A 0\//̂  ^̂ \/\9 '
4^5 = ¿0—)’ -  ”“ <*? - *’)(7  + T?)1 +r (il -  *  )«7 + ) 4

and

ifg = 2(*' +  y ) 2.

The final term in the expansion for the energy density is

> •  - *  = 5\(U' - l ) 2 = ; ( / 2 + 4 * / ! icos20 + (2 l:/()2 -  l ) 2.

2

(A.2)
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Before we consider the full form of the energy density consider the substitutions we 
can make i.e.

r
a —

2 n œ  - 1 ),
, k '  2 k . . 1. 1,, 4,.
<7 + 72 ) =  ^ + F * -?*)■

= - A ,r
x \ 2 — x 22 =  cos 20

and also n = 2 everywhere as we are only considering the n = 2 case. The final 
answer for the potential energy density is then given by

£ ( r , 8 )  — ^  +  8( a^ ~ )2 + 1 6 a k t ( —)2(a -  1 ) cos 26

+  2t 2( k ' f +  ̂ ^ - ( 1 — a))2 +  212f 2{k' + —  )2(1 +  Akt cos 20 + (2 k i )2) 
r t

8 2k
— -  cos 26 t f 2{k' H--- )[(a — 1 ) +  2ka t cos 20 — t k cos 20 +  2a k2t2]r r

Ok 1
— 4t 2k ' f 2(k ' -|--- ) sin2 20 + - ( / 2 — l)2 +  /2&i cos 20(2 cos 2 6 f 2k t  + f 2 -  1 )

+  7r( / 2 + 4k t f 2 cos 20 + ( 2 k f t ) 2 -  l)2.O
This equation is used in both Chapter 3 and Appendix B. In Chapter 3 the finiteness 
of the potential energy density is demonstrated for this particular perturbation and 
in Appendix B it is used to calculate the potential energy density using the numerical 
results obtained for the functions /, a and k respectively.

The Kinetic energy density is

Ok
£kin(r,  6) = 2 k 2f 2 + 2{k' + —  )2. (A.3)

W e  see that Skin is independant of 0. That is why only the potential energy density 
was studied in Chapter 3. W e  also have to show that the addition of E^in can be 
considered as a small perturbation of the configuration (3.3) of two static vortices. 
This is the case, because (4.9) for k is linear, and we can always multiply any solution 
k by a small parameter such that Skin is much smaller than the energy density for 
the configuration (3.3) of two static vortices.
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A p p e n d ix  B

N um erical A nalysis

B .l  Introduction

The mathematical problem can be considered in three stages. Firstly we must solve

/' = 1 ( 1 - a ) ,  (B.l)

a' = - ¡ ( f  -  1) (B.2)

subject to

lim f ( r )  = lim a ( r) - 0, (B-3)
r— »0 r— 1-0

lim f ( r ) = lim a(r ) =  1. (B.4)
r—*oo r— * oo

Then we substitute f ( r ) into

- - 7  + ( / 2 +  £)* =  0 (B.5)

where

k ( r) —+ oo as r —»■ 0, (B-6)
lim fc(r) = 0. (B.7)T—*00

W e  need both /s(r) and k ' ( r ) for the final stage which is to find the approximate
energy-density for the interval 0 < r < oo,0 < 0 < 2ir. To do this we use (3.68), the
equation for the energy-density as calculated in Appendix A.

Problems (B.l) (B.2) and (B.5) cannot be solved analytically over the full domain 
however perturbation approximations can be obtained at the origin and infinity.
These proved critical for the numerical problem solution and are detailed in Chapter
4 with the series solutions.

B.2 The Numerical Problem

(B.l) and (B.2) with boundary conditions (B.3) define an initial value problem
(IVP). Substitution of the boundary conditions into (B.l) and (B.2) shows that
f  = a'  = 0 at the boundary points, which implies the boundary points are fixed 
points and so any IVP integrator will never move away from either set of initial 
conditions and so would never solve them. The next obvious approach is to treat
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both equations as a boundary value problem (BVP). It is because of the ̂  in (B.l) 
that this is difficult near r = 0.

To get over the latter we can use the Taylor series expansion near r =  0 and 
match these up with the numerics at r = re, some small value near zero. The 
problem with this is that we do not know a , the unknown coefficient in the Taylor 
expansion for f ( r ) about r = 0.

It turns out that the second order problem for a(r) is easily solved over r€ < r < 
Too, where we use

(B.8)

as boundary conditions. Since

a(r) = j  + 0 ( r 6) (B.9)

we choose re such that r \ so that a ( r) = ^  is an accurate approximation. In
the program rc = 10~8.

The idea is to solve the second order problem for a ( r) and then to fix r at some 
small value (r = 0.1 in fact) to get an  := a(0.1). W e  then solve

0 = T ( a )  = aN - a£(0.1), (B.10)

where a j \ r ) is the Taylor series approximation to a(r), which depends on a. The 
program uses the N A G  finite difference routine D02RAF to solve the second or­
der problem for a(r) , and a simple bisection method to find the value of a which 
solves (B.10). Once we have a we can produce values for f ( r )  and a(r) near the 
origin. The program uses the Taylor series values over 0 < r < 0.1.

Next the program solves (B.l) and (B.2) over 0.1 < r < 100 using the collocation 
package COLSYS. This gives us back functional representations for f ( r ) and a(r)  
over the range, and combined with the Taylor series we have f ( r )  and a ( r) over 
0 < r < 100 which is effectively 0 < r < oo.

The final stage is to solve the second order problem for k( r ) and write out a 
range of values for r , k ( r ) ,  f ( r ) , a ( r ) , k ' ( r ) to a file to be used later in the numerical 
calculation of the potential energy density.

The easiest way to find k ( r) is to use k ( r ) = e~ T near infinity to move away from 
the fixed point at k (oo) = 1. In the program infinity is approximated by 34 as e~35 
is practically zero. W e  use double and quadruple precission where necessary in the 
programs to achieve the required precission. The program uses the N A G  routine 
D02QBK integrator to integrate back from 34 to 0. Between r = 0 and r = 5 we 
output values as described above at intervals of 0.1. The interval [0,5] was chosen 
after some initial experimentation. Once we have all the required values the program 
E-DENSITY generates the points (x , y , E ( x , y )) for a 3D graphics program.

B.3 Program Listings 

B.3.1 SOLUTION

a(foo) = 1
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program solve

implicit none

real*16 alpha,alval,a2val,flval,f2val 
real*8 fspace,rO.rinf,r,avl,av2,fv 
integer ispace

c
dimension fspace(lOOOOO),ispace(6000)

c
common /alpha/alpha 
common /colspace/fspace,ispace 
common /soln/alval,a2val,flval,f2val 
common /rbegin/rO 
common /rend/rinf

c rO is chosen so that r**2 »  r**6
c then A(r)=r**2/8 - See Taylor series for A(r)
c

rO=l.Od-8
c
c Here infinity is approximated by 100.0 (!!!). This is justified
c by observing the values for A and A’, which are identically 1.0 and 0.0,
c from the output of D02RAF, at 100.0.
c

rinf=100.OdO
c

call get_alpha 
call collocate_fa 
call get_k

c
end

c

c
subroutine get_alpha

c
implicit none

c
real*16 alpha,r,alval0,a2val0 
real*8 dr,dalval,da2val

c
real*16 hdelta,halpha,p,flp,f2p,a,fa,b,fb, 
ftalval,a2val,f1val,f2val,funi,fun2,ff1,ff2,hf1,hf2

c
common /alpha/alpha
common /soln/alval,a2val,f1val,f2val

funlO=alval0-alval 
fun2 O=a2val0-a2val

c
c At r=0.1:
c alpha» 2.361459634210712q-l
c
c A(l) = 1.249997680814110D-03 A(2) = 2.499986093580511D-02
c F(l) = 2.358509655613953D-03 F(2) = 4.711123048028515D-02
c

dr=0.ldO
call get_a_val(dr,dalval,da2val)
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r=qext(dr) 
alvalO=qext(dalval) 
a2val0=qext(da2val)

c Use first terms from Taylor series to get initial estimate for ALPHA 
alpha=qsqrt(-24.OqO*(alval0-r*r/8.OqO)/r**6)

c
hdelta=l.Oq-18 
halpha=0.OlqO

c
a=alpha-halpha 
b=alpha+halpha 
call taylor_fa(r,a) 
fa=funl()
call taylor_fa(r,b) 
f b=f uni ()

c
p=1.0q0 
f lp=l.OqO 
f2p=l.OqO

c
hf1=1.OqO 
hf2=1.OqO

c
write (*,’(/lx,a)’)’ Alpha A1VAL0-A1VAL
& A2VAL0-A2VAL Fl-Diff F2-Diff’

c
do while((qabs(flp).gt.hdelta).or.(qabs(f2p).gt.hdelta).or.
& (qabs(hf1).gt.hdelta).or.(qabs(hf2).gt.hdelta))

ffl=flval 
ff2=f2val

p=(a+b)/2.OqO 
call taylor_fa(r,p)

c
flp=funl() 
f2p=fun2() 
hfl=flval-ff1 
hf2=f2val-ff2

c
if ((flp*fa).gt.O.OqO) then 

a=P
fa=flp 

else 
b=P 
fb=flp 

end if
write(*,’(lx,lpd25.18,4(3x,lpdlO.3))’)p,flp,f2p,hfl,hf2 

end do
c

alpha=p

write(*,'(/lx,a,lpdll.4)’)’At r =’,r
write(*,’(2(lx,a,lpd22.15),a)’)'A(l) =’,alvalO>> A(2) =>,a2TalO, 

ft' - From D02RAF’ 
write(*,’(/2(lx,a,lpd22.15)),),A(1) -'.alval,' A(2) =>,a2val 
write(*,’(2(lx,a,lpd22.15))’)’F(l) -’.flTal,’ F(2) =’,f2val

c
end

c
c*******************************************************************************

c
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implicit none
c

real*16 r ,alpha
c

re al*16 i,a,fv,av,f vd,avd,hi,ha,hfd,had,sum 
integer i.n.it

c
common /soIn/av,avd,fv,fvd

c
dimension f(0:1000),a(0:1000)

c
f(0)=0.OqO 
f(l)=0.0q0 
f(2)=alpha 
f(3)=0.0q0 
f(4)=-f(2)/8.OqO

c
a(0)=0.0q0 
a(l)=0.0q0 
a(2)=l.OqO/8.OqO 
a(3)=0.OqO 
a(4)=0.OqO

c
f v=f(2)*r*r+f(4)*r**4 
av=a(2)*r*r

c
f vd=2.OqO*f(2)*r+4.OqO*f(4)*r**3 
avd=2.OqO*a(2)*r

c
n=4

c
ha=l.OqO 
hf=1.OqO

c
it=0

c
do vhile((n.lt.1000).and.(it.It.20)) 

n=n+2 
sum=0.OqO 
do i*2,(n-4)

sum=sum+f(i)*f(n-i-2) 
end do
a(n)“-sum/(4.OqO*qfloat(n))

c
aum=*0. OqO 
do i«2,(n-2)

sum=sum+f(i)*a(n-i) 
end do
f (n)=-2. OqO*sum/ (qf loat (n) -2. OqO)

c
hf=f(n)*r**n 
ha=a(n)*r**n

c
hfd=qext(n)*f(n)*r**(n-1) 
had=qext(n)*a(n)*r**(n-1)

fv=fv+hf 
av=av+ha

subrout ine tay lor_fa(r,alpha)

c

c
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fvd=fvd+hfd
avd=avd+had

if ((qabs(ha).It.qabs(av)*l.Oq-22).and. 
ft (qabs(had).It.qabs(avd)*l.Oq-22).and.
ft (qabs(hf).It.qabs(fv)*l.Oq-22).and.
ft (qabs(hfd).It.qabs(fvd)*l.Oq-22)) then

it=it+l 
else 

it=0 
end if 

end do
c

end
c
c*******************************************************************************
c

subroutine get_a_val(rcheck,alval,a2val)

c
implicit none

real*8 rcheck,alval,a2val
c

real*8 rbreak,deleps,tol,r0,h,hmesh,abt(2),work(310100), 
ftr(lOOOO),y(2,10000),rinf 
int eger i,if ail,ij ac,init,j,liwork,mnp, n ,np,numbeg,nummix,1work 
integer iwork(60100)

common /rbegin/rO 
common /rend/rinf

c
external afcn.abcs,d02gaz,d02gay,d02gax

c
tol=l.0e-18
lwork=310100
liwork=60100
mnp=10000
n=2
np=1002
numbeg=l
nummix=0

rbreak=20.OdO
c

r(l)=0.0d0 
r (np) =rinf

h=(rbreak-r(1))/dfloat(np/2-1) 
hmesh=h

c
do i=l,np/2

r(i)^r(l)+dfloat(i-l)*h 
if (r(i).It.dsqrt(8.OdO)) then 

y (1, i)=r (i)*r(i)/8. OdO 
y(2,i)=2.0d0*r(i)/8.0d0 

else
y (1, i)=l. OdO 
y(2,i)=0.0d0 

end if 
end do
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h»(r(np)-rbreak)/dfloat(np/2)

do j=l,(np/2+l) 
i*»j-l+np/2
x ( i)=rbreak+df 1oat(j-1)*h 
y(l,i)=i.OdO 
y(2,i)=0.0d0 

end do

do i=l,np
ii (r(i).ge.rcheck) then

if (dabs(r(i)-rcheck).gt.hmesh/4.OdO) then 
do j=np,i,-l 

r(j+l)“r(j) 
end do 
np=np+l 

end if 
r(i)=rcheck 
h=dabs(r (i))*1.Od-12 
goto 1 

end if 
end do

c
1 r(l)=rO
c

init=l
deleps=0.OdO
ijac*0
ifail=lll

c
call d02raf (n, amp, np, numbeg,niuunix, t ol, init ,r,y, 
k2,abt,afcn,abcs,ijac,d02gaz,d02gay,deleps,d02gaz,d02gax, 
ftwork,1«ork,ivork,liwork,ifail)

c
do i=l,np

if (dabs(r(i)-rcheck).lt.h) then 
alval=y(l,i) 
a2val=y(2,i) 
goto 2 

end if 
end do

c
2 return 

end
c

c
subroutine afcn(r,eps,y,f,n)

c ---------------
c

real*8 f(n),y(n) 
real*8 eps,r 
integer n

c
f(l)-y(2)
f(2)»5.OdO*y(2)/r-4.OdO*y(1)*y(2)/r+y(1)-1.OdO

c
return
end

************************************************************************
c
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real*8 eps
real*8 ya(n),yb(n),bc(n) 
integer n

c
real*8 rO

c
common /rbegin/rO

c
be(1)=ya(1)-r0*r0/8.OdO 
be(2)=yb(l)-l.OdO

c
return
end

c
c* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
subroutine collocate_fa

c -----------
c

implicit none
c

real*8 ispace,aleft,aright,zeta(2),tol(2),z(2),u(2),err(2), 
ftrbreak,flbc,albc,rinf 
integer i,ncomp,ispace,m(2),ipar(ll),ltol(2),iflag

c
dimension fspace(100000).ispace(6000)

c
common /colspace/fspace,ispace 
common /fa_bcval/flbc,albc 
common /rend/rinf

c
external fafcn,jacfa,fabcs,fajacbc3,dummy

c
rbreak=0.ldO
call get_fa(rbreak,flbc,albc,.true.)

c
ncomp=2 
m(l)=l 
m(2)=l 
aleft=rbreak 
aright=rinf 
zeta(l)=aleft 
zeta(2)=aright 
do 10 i-1,11 

10 ipar(i)=0
ipar (1)=1 
ipar(2)=7 
ipar(3)=50 
ipar(4)*2 
ipar (5) =100000 
ipar(6)=6000 
ipar (7)=-l 
do 20 i=l,2 

ltol(i)=i 
20 tol(i)=1.0d-17

call colsys(ncomp,m,aleft,aright,zeta,ipsir,ltol,tol, 
ftduamy,ispace,fspace,iflag,fafcn,jacfa,fabcs,fajacbcs,dummy)

subroutine abcs(eps,ya,yb,bc,n)

c
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if (iflag.ne.l) then
write (*,,(/lx,a,i2)’)’COLSYS: The value of iflag is ’,iflag 
stop 

endif

return
end

c
c*******************************************************************************
c

subroutine dummy 

end
c
c******************************************************************************* 

subroutine fafcn(r,z,f)

c
real*8 r,z(2),f(2)

c
f(I)=2.0d0*z(l)*(1.0d0-z(2))/r 
f(2)=-r*(z(1)*z(1)-1.OdO)/4.OdO

c
return
end

c
c******************************************************************************* 

subroutine jacfa(r,z,df)

c
real*8 z(2),df(2,2),r

c
df(1,1)=2.OdO*(1-z(2))/r 
df (1,2)— 2.0d0*z(l)/r 
df(2,l)=-z(l)*r/2.0d0 
df(2,2)=0.OdO

c
return
end

c
c*******************************************************************************
c

subroutine fabcs(i,z,g)

c
implicit none

c
integer i 
real*8 z(2),g

c
real*8 flbc,albc

c
common /fa_bcval/flbc,albc 

goto(1,2),i
c
1 g=z(l)-flbc 

return
c
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2 g“z(2)-1.0d0
return

end
e
C * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
subroutine fajacbcs(i,z,dg)

c
implicit none

real*8 z(2),dg(2) 
integer i

c
integer j

c
do 10 j-1,2 

10 dg(j)*0.0d0
c

goto(l,2),i
c
1 dg(l)=*1.0d0 

return
c
2 dg(2)=1.0d0 

return

end

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

c
subroutine get_fa(r,fv,av,usetaylor)

c
implicit none 

real*8 r,fv,av
c

real*16 alpha,alval,a2val,f1 val,f2val 
real*8 fa(2),fspace 
integer ispace 
logical*l usetaylor

dimension fspace(100000),ispace(6000)
c

common /soln/alval,a2val,flval,f2val 
common /colspace/fspace,ispace 
common /alpha/alpha

c
If ((r.le.0.ldO).or.usetaylor) then 

call taylor_fa(qext(r).alpha) 
fv*dbleq(flval) 
av=dbleq(alval) 

else
call appsln(r,fa,fspacetispace) 
fv“fa(l) 
av*fa(2) 

end if

return
end

c
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* * * * * * * * * * * * * *  * * * * * * * * * * * *
c

subroutine get_k 
c ----

implicit none
c

real*8 tol,r,rend,fa(2) ,cin(7) ,y(2) ,f (2) ,cout(16) ,comm(5) ,
&const(5),w(2,22),pw(2,2),fspace,fv,av.rlast,rstart 
integer i,ifail,j,mped,n,nout,iw,iwl,ispace

c
dimension fspace(100000),ispace(6000)

c
common /colspace/fspace,ispace

c
external kfcn.dummy

c
rstart=5.0d0

c
open(unit=1,st atus=’unknown1,f ile=’rkf a.dat’)

c
c Here infinity is approximated by 34.0 (!!!!!!). This is necessary since
c if r>=35.0 exp(-r) is effectively zero (10**(-16)), which causes problems
c for the integrator.

r=34.OdO
y(l)=dexp(-r)
y(2)=-dexp(-r)

c
n=2
iw=2
iwl=22
mped=0
tol=l.Od-18
rend=l.0d-4
ifail=l

c
do i=l,5

cin(i)=0.0d0 
end do 
do i=l,5

comm(i)=0.0d0 
const(i)=0.OdO 

end do
cin(l)=1.0d0 
comm(4)=1.OdO

c
10 call d02qbf(r,rend,n,y,cin,tol,kfcn,comm,const,cout,mped, 

ftdummy,pw,w,iw,iwl,ifail)
c

if (r.gt.rstart) then 
rlast=r 
ifail=l 
goto 10 

end if
c

if ((rend.lt.r) .eind. (ifail.eq.0)) then 
if (dabs(r-rlast).ge.O.OldO) then 

rlast=r
call get_fa(r,fv,av,.false.)
write(1,’(5(lx,lpdl8.11))’)r,y(l),fv,av,y(2)

c
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goto 10 
else

ifail=l 
goto 10 

end if 
end if

c
if (ifail.ne.O) then

writei*,*(lx,a,i2)’)’IFAIL from D02QBF is ’,ifail 
srite(*, ’ (lx,a,lpdll.4) ’) 'The value of cin(l) is ’,cin(l) 
stop 

end if
c

return
end

c*******************************************************************************
c

subroutine kfcn(r,k,f)

c
implicit none

c
real*8 r,k(2),f(2)

c
real*8 fv,av

call get_fa(r,fv,av,.false.)
c

f(l)=k(2)
f(2)®-k(2)/r+(fv*fv+4.0d0/(r*r))*k(l)

c
return
end

c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

B.3.2 E-DENSITY

program edensity
c

implicit none
c

real*8 eden,q,pi,twopi,f,a,kl,k2,r,density,hq,t 
integer j.nq.itr 
logical*l use

c
pi~4.0d0*datan(1.OdO)

c
open(unit=3,status»’old’,file=’rkfa.dat’.readonly) 
open(unit=4,statu8='’unknown’ ,file=’testl2.dat’)

c
write(4,’(2(lx,i2))’)83,83

c
tsopi=2.0d0*pi
nq=83
hq=twopi/dfloat(nq-1)

use>=. false. 
itr=5

c
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do while(.not.use) 
use=.true.
read(3,*,end=l)r,kl,f,a,k2 
use=.false.

1 itr=itr+l
if ((itr.eq.6).or.use) then 

itr=0
t=l.OdO/2.OdO 
do j=l,nq

q=dfloat (j-l)*hq 
density=eden(r,q,f,a,kl,k2,t)
write(4,’(3(lx,lpdl4.7))’)r*dcos(q),r*dsin(q).density 

end do 
end if 

end do

stop
end

c
c*******************************************************************************
c

real*8 function eden(r,q,f,a,kl,k2,t)
c

implicit none
c

real*8 r,q,f,a,kl,k2,t
c

real*8 term(10) 
integer i

c
term(1)=4.OdO*f*f*(1.OdO-a)**2/(r*r) 
term(2)=8.0d0*(kl*a*f*t/r)**2
term(3)=2.0d0*t*t*(k2*f+2.0d0*kl*f*(1.OdO-a)/r)**2 
term(4)=-4.OdO*(k2+2.0d0*kl/r)*t*t*k2*f*f*dsin(2.0d0*q) 
ft*dsin(2.0d0*q) 
term(5)=2.0d0*t*t*(k2+2.0d0*kl/r)**2*(f*f+4.0d0*f*f*kl 

ft*t*dcos(2.OdO*q)+4.0d0*kl*kl*f*f*t*t) 
term(6)=dcos(2.OdO*q)*f*f*kl*t*(2.OdO*dcos(2.OdO*q)*f*f 
ft*kl*t+f*f-l.OdO) 
term(7)=-8.OdO*dcos(2.OdO*q)*f*f*t*(k2+2.OdO*kl/r)* 
ft(2.OdO*a*kl*kl*t*t/r-
ftkl*t*dcos(2.OdO*q)/r+2.OdO*kl*a*t*dcos(2.OdO*q)/r+(a-l.OdO)/r) 
term(8)=(f*f-l.0d0)**2/8.OdO
term(9)=(f*f+4.0d0*f*f*kl*t*dcos(2.0d0*q)+(2.0d0*t*f*kl)**2 
ft-1.OdO)**2/8.OdO 
term(10)=16.OdO*kl*a*f*f*dcos(2.OdO*q)*(a-l,OdO)*t/(r*r)

c
eden=0.OdO 
do i=l,10

eden=eden+t erm(i) 
end do

c
return
end

c
c*******************************************************************************
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