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Abstract

In this thesis we discuss the evidence for scattering at right angles of two vortices
in a head-on collision. The evidence is given in terms of the approximate solutions
of the equations of motion or the Euler-Lagrange equations

W + ~ ( H 2-i)=o0,
diFij + -{PD’t - =0
where D, = (d; —1A)and = dJA] —djA and (/1,-(a;),9XX) describe the gauge

potentials and Higgs fields respectively.

The case A= 1 describes the case where there are no net forces o1l the vortices
but we also extend the analysis to the case of a small net repulsive force between the
corresponding static vortex configurations where A > 1. The ordinary differential
equations, which result from the ansatz for the approximate solutions, are solved by
Taylor series at the origin and asymptotic series at infinity.
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Chapter 1

Introduction

In 1911 Heike Kamerlingli Onnes was surprised to find that mercury cooled by lig-
uid helium to four degrees Kelvin lost all electrical resistance; this phenomenon
is superconductivity. Many materials when cooled below a critical temperature TcC,
(wliich is different for each material) exhibit this phenomenon. The superconduct-
ing state is characterized by three macroscopic properties. First, electric currents
flow without resistence. Second, magnetic fields vanish inside the superconducting
medium; this is known as “flux expulsion” or the Meissner effect. Third, no net
energy is released in the transition from the normal state to the superconducting
state.

The potential applications of superconductivity are vast and various, extending
from the production of high-intensity magnetic fields to lossless power-transmission
lines. The developement of practical superconductors has, however, been retarded,
mainly because of the prodigous engineering challenges involved. Once these prob-
lems are overcome the envisioned applications are numerous, generators and motors,
energy storage, magnetically levitating trains and magnetic-reasonance imaging be-
ing but a few. In many of the applications the behaviour of the superconductor in a
magnetic field (an external field or one generated by the supercurrent) is important.

An important development of recent years has been the investigation of the
dynamical beha,viour of magnetic flux structures and the discovery of the intimate
connection between flux motion and the transport properties of superconductors.
Motion of the magnetic flux structure (vortex) can be induced experimentally, hence
we consider the theoretical work on the scattering of vortices to be of particular
importance. Futhermore vortices can be considered as soliton-like objects because
of their stability. This is another reason to investigate their dynamics.

In Chapter 2 we give an overview of the theory of Ginzburg and Landau and
outline the theory involved in solving the problem. In Chapter 3 we review the
evidence for scattering, at right angles, of slowly moving vortices between which
the nett force is zero. The ansatz chosen leads to ordinary differential equations
which we solve in Chapter 4 using Taylor series at the origin and asymptotic series
at infinity. In Chapter 5 we investigate the case for which the nett force between
the static vortices is not zero and A> 1. In Appendix A we include the derivation
of the energy density while Appendix B contains all the computer programs and
Numerical procedures which were used in preceding chapters.



Chapter 2

Vortices in the Ginzburg
Landau Theory

2.1 Introduction

A phenomenological theory for dealing with superconductors has been developed
by Ginzburg and Landau. This theory is based on Landau’s theory of second or-
der phase transitions in which the important concept of the order parameter was
introduced. In superconductor phase transitions the order parameter is a complex
quantity. Its absolute value | 4X) | is connected with the local density of supercon-
ducting electrons (which have combined to form Cooper pairs). The phase of the
order parameter is needed for describing supercurrents. The free energy density is

expanded in powers of | |2 and | V<KI) |2>assuming 0 and g@are small. The
minimum energy is found from a variational method leading to a pair of coupled
differential equations for and the vector potential A(r), of the magnetic field

into which the superconductor has been placed. The emerging theory is a gauge the-
ory with gauge group U(1). The space of its finite-energy solutions is topologically
nontrivial. The topological nontrivial finite-energy solutions are flux tubes called
vortices.

2.2 Free Energy and the Ginzburg-LandauEquations

In the simplest case, we assume the order parameter ) to beconstant and the
local magnetic flux density hto be zero throughout the superconductor. For small
values of @ ie. T —>Tc,the free energy / can be expanded in the form

/=/n+aor)m2+ FF I md+ ... Q.0

Stability of the system at the transition point (at which <= 0) requires / to attain
a minimum for €= 0. Therefore, in the expansion of / only even powers of @pcan
appear. For the minimum of / to occur at finite values of | £|2, we must have @> 0,
otherwise the lowest value of / would be reached at arbitrarily large values of | d)|2.
For a > 0 the minimum occurs at | #|2= 0 corresponding to the normal state and
the case T > Tc. On the other hand, for a < 0 the minimum occurs at

| [2=1 $0[2= 1] (2.2)



corresponding to T <TC.We note that a must change its sign at T = Tc, using the
expansion a(T) = o(T - Tc), where a> 0 is a constant, (2.2) then reduces to

i P= -n @ 3)

representing a rather general result characteristic of a second order transition. Sub-
stituting (2.3) into (2.1) we can approximate very close to TC

f=m+a() | W2= In~ Tc-TTF
yielding
a ~ = m (T*-n (24)
to first order in (Tc- T). We see that for T —»Tc we have indicating

a phase transition of at least second order.

We now relax our assumptions, allowing spatial variations ofthe order parameter,
however first still keeping h— 0. To the free energy expansion of (2.1) we now add
terms of the form, (§/)2, (8")(ff )>etc>"ie first significant terms being second order,
since in the absence of a magnetic field the equilibrium corresponds to 9= aIst
For spherical symmetry we have the expansion

/=u +o() k-B T FIGD2 2+ (D3+"m @9

with r> 0 for T = Tc. Equation (2.5) is the basis of Landau’s general theory
of second order phase transitions. Finally, we also need toinclude the presence of
magnetic fields h = aurlA. Then the free energy density can beexpanded in the

form

="M+ a(T) PP E37 I(Ev * eR)<> R+~ - 2.6)

Note that for #= 0 we have / = fn+f 52 the free energy density of the normal state.
Here m and e are the mass and charge of an electron respectively with m* = 2m

and e* = 2e.
The fourth term in the expansion of (2.6) becomes clearer by writing €in the

form
<f>=\t\eie.

It then becomes

cLFr2¢v 1&h2+ (&V0 - N A)2 1P} Q.7

The first contribution represents the additional energy arising from gradients in the
magnitude of the order parameter. The second contribution contains the kinetic
energy density of the supercurrents, as we can see by identifying | €2 with n* (the
number density of Cooper pairs). The kinetic energy density is then

where the supercurrent velocity VSis given by

Vs = ps—EA = frl9 — A (2.8)
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and psis the generalised particle momentum.

Having obtained the expression (2.6) for the free energy density, we must now
find its minimum with respect to spatial variations of the orderparameter 4XF)and
the magnetic field distribution A(r). Following the standardvariationprocedure,
one finds the Ginzburg Landau differential equations

ab+ | P2 (7V- MA)XX=0 (2.9)

and the current

for the equations of motion
dOA” i = 1,2,3,. (2.11)
The variational procedure requires the introduction of the boundary condition on
the magnetic potential of
("V - ~A)24=0 412)

The above theory provides a macroscopic description of the system described
microscopically by the theory of Bardeen, Cooper and Schrieffer (BCS). In this
theory the onset of superconductivity is due to the formation of bound electron pairs
(Cooper pairs). With respect to small applied forces the electron pairs interact as
a single entity, a particle with twice the charge of a single electron, therefore in the
Ginzburg Landau theory we must take m* = 2m and €% = 2e where m is the mass
of an electron and e is the charge of an electron.

2.3 The Abelian Higgs Model-A Gauge Theory

We now include time-dependence into the formulas (2.6), (2.9), (2.10) and (2.11)
and discuss the resulting model.
First, to simplify (2.6) we add a constant, redefine the fields and write

= ¢ (AAV ) + \FFN+ A (#* - 1)2 (2.13)

where the new fields £>and A{ are given in terms of the old fields @ildand A°H
in (2.9)- (2.11), as

and
[/ = fdd+c, c= constat,
with A= /3/2 = —4a.The covariant derivative DikP>and the field F{j are defined as

Dkb= @ - W),  FAij = diAj - djAL.



Time dependence is introduced by considering an electric potential AOas well as the
magnetic potential A and XQas the time coordinate. In terms of (AO,A) and (0O,X)
the Lorentz invariant Lagrangian in Minkowski space corresponding to (2.13) reads

C="{DMDAr - - )2 (2.14)
The covariant derivative D L§rand the fields FMuare
D¥Y>=@,- W)Y, Fv- - dp, §i,u=0,1,23. (2.15)

Indices are lowered and raised with the metric tensor g — diag(-1-1,-1,-1, —1).

The variational techniques that were used in the previous section to derive (2.9)
and (2.11) can also be used to derive the Euler Lagrange equations from (2.14).
Using

dx” dA,,,n dAu

and
4§, a4 0 (2.17)
where AP = and @Q"— we find the coupled differential equations
% (r) = y_i&DvP—PM), (2-18)
DADN) = ~1)- (2-19)

For AO = 0andtime independent fields, these equations reduce tothe equa-
tions(2.9) and(2.11)of the Ginzburg-Landau theory. The theory given by the
Lagrangian (2.14) is called the Abelian Higgs model.

We will now show that the Abelian Higgs model is a classical gauge field theory.
A gauge theory is characterized by a group of symmetries but the symmetry group
is not associated with any physical coordinate transformation in space-time. Gauge
theory is based on an ”internal” symmetry transformation under which the fields
change. The properties of a gauge theory is gauge invariance ie. under a gauge
transformation the equations of motion transform covariantly. If the original fields
were solutions of the equations of motion so are the gauge transformed fields. The
coordinate used to describe the internal symmetry is the phase of the wave function.
The change of phase will not affect any observable quantity provided that the gauge
transformation for the fields combine to leave the Lagrangian invariant and therefore
also the equations of motion. Hence, a gauge transformation transforms the Higgs
field gpin the Lagrangian (2.14) to

Bx) = UM (ke

where UQX) = e~IBX\ That means here U is an element of U(1), the multiplicative
group of complex numbers ofunit modulus. Clearly, 4%F* = @ and the Higgs
potential in (2.14) isinvariant under gauge transformations of this kind. If we can

achieve that = Deh), ie.,

OM - iA'AU* = U(d" - iAf)(D Q21)



then obviously also (D™ (DIE = OD(DEY)* is invariant. Condition (2.21)
holds if

a; = ua™u-1- {{dpuyj-1. @22
for U = e~t9X\ the gauge transformation (2.22) reduces to
Ah= Aft— ditg, (2.23)

which leads to

Kv = d*A%~d-K = M * - ~ (2.24)

therefore the Lagrangian (2.14) is invariant under the gauge transformations (2.20)
and (2.22), where U = e~f* £ U{1). Hence the Lagrangian (2.14) gives a U(1)
gauge theory. For other gauge theories the definition of FMvis suitably modified so
that the FAF” term is invariant under the gauge transformation (2.22).

2.4 Other Features of the Abelian Higgs Model

The property of any gauge theory is the gauge invariance of the Lagrangian. The
ground state, however, in many cases, like that of the Superconductor, is not gauge
invariant. The mechanism by which the symmetry is broken in superconductors is
called ”Spontaneous Symmetry Breaking” because it does not require any explicit
mass term in the Lagrangian to manifest itself. A mass term of the form in
the Lagrangian would break its gauge invariance. We will now show that the ground
state, the time-independent state of lowest energy into which the system eventually
settles, is not gauge invariant.

First, it is always possible to gauge away Aq by choosing g(<0,X) such that
AD= Ag—dog = 0. Then, for time- independent fields, the energy density reads

£= +(A-40(£>Vr + +o(#* - 12 (2.25)

The energy density is positive definite and zero for A{ = 0<9-00o = 0, (@ = 1,2,3)
and | 0o |= 1- In the ground state, (g = €kpholds and clearly dais not invariant
under the gauge transformation (2.20). In fact, 4= e®~9"  q for ff(*) L2
We conclude that the theory given by the Lagrangian (2.14) has a gauge symmetry
which is not displayed by the ground state. This phenomenon is called spontaneous
symmetry breaking or hidden symmetry.

Since the ground state is given by <o =elly the physical fields,relative to the
ground state, are A{ and 7= ¥—00- In terms of 77, the Lagrangian reads

c = ""{DADNy - i AMN + iAW
+ PAA*O{dft - iAfj)rj+ |00 R AMA*
- \F,UF™ - ~ M 2 Akbo+ f?>0)2. (2.26)

The Lagrangian has acquired a mass term \<RRAMNAN =2 mMAMA*1for the magnetic
field, the photon field, which leads to a term in the equations of motion. The
effect of this term is that the electromagnetic field becomes short ranged. This can
be understood as follows. The solution to the equation

-Aip = 69, Xe&3 (2.27)



for a point source at the origin is 1= 1/(47rla:|), ie., the field falls off like 1/r and
has long range. On the other hand, the equation

Alp+ m2ip= 609, >&R3 (2.28)

for a point source at the origin with mass term, has the solution ip: e_mr/(47rla;]),
ie., the field fails off exponentially and has short range. Physically, for the super-
conductor, this means that the magnetic field cannot penetrate far into the super-
conductor, which is called flux expulsion or the Meissner effect.

The Higgs potential has a further consequence. The following discussion is based
on Coleman [9]. For a rigorous detailed analysis see Jaffe and Taubes [11], First,
we restrict our attention to finite energy configurations since these are the only
configurations which can be realized in an experiment. ”Reasonable” finite energy
configurations must go to a unimodular number at infinity. Otherwise A/8(] ¢ |2
—l)2 does not go to zero at infinity and the energy, the integral of the energy density,
diverges. Second, we consider a superconductor in a long cylindrically symmetric
magnetic field in the z-direction. Then to a good approximation, none of the physical
quatities depend on 2 and we can write in two space dimensions. In two space
dimensions, the above condition on the energy leads to a a map from the circle at
infinity S1in 52 to the circle of unimodular numbers 61 in C:

Ar,0) — <M0)=eMel r—>00. (2.29)

Clearly the continous maps <ao fall into different classes depending on the number

(2.30)
N can also be written in terms of the field strength Fi2 as

(2.31)
This can be explained as follows: if the energy is to be finite, then as r—»00, \f\—al

and (@ — I)E—0. Thus asymptotically

(2.32)

(2.33)

for some integer N . Continuous variations of the fields, subject only to the constraint
of finite energy, cannot change Nj it is a topological invariant. From (2.32) and (2.33)
it follows that



using Green’s theorem, where the line integrals are to be taken around a contour at

infinity. Equation (2.31) shows that for N ~ 0,-Fi2 goes like 1/r2at infinity, and of

course, is independent of z, which means it describes a flux tube, a vortex.
Futhermore, for A= 1, if we use integration by parts to rewrite (2.13) we find

E=J £dx=\Jd [ @ifa+ M<h) T (5202 - A20i)]2
+ [($201 + A202) + (102 — 0l)]2
+ M2+ AT+ A2 D2

| xFi2, (2.35)

where 0i and 02 are the real and imaginary parts of the scalar field 0. The integrand
in the first integral is positive semi-definite while the second integral is simply a
multiple of the winding number N. Taking the upper or lower sign according to
whether N is positive or negative yields

E>INITT (2.36)

with equality if

Fx2= TA(0*0- 1). (2.37)

These equations are known as the Bogomolny equations for vortices and have solu-
tions for all N . They form a pair of coupled first order differential equations and
their solutions solve (2.18) and (2.19), the equations of motion, for A= 1.



Chapter 3

A 90° Scattering Process

3.1 Introduction

In this chapter we consider, for A= 1, a special scattering process of vortices inside
a superconductor. To do this we look for approximations to the gauge potentials
and the Higgs field X)) which have finite energy given by (2.13) and
satisfy the equations of motion (2.18), (2.19).

The approximations considered here are of the form

</>=0°+0, (3.1)
and
Ai = Ai 4-Ai,
Ao = Ao=0, (3.2)

where (Aoi, OO) is the static solution for two vortices sitting on top of each other, and
the perturbations on the static case (Ai,0) are represented by (@B, E&). These are
small so that the equations for (5,-,”) can be linearized. In the following, the static
solution, the assumption that (tB{,t£X) are small and the solution of the equations
for (B1,EN) will be discussed. Our discussion is based on work by Ruback [15] and
Weinberg [16]. We discuss the scattering process from shortly before to shortly after
the collision in terms of the differential equations only. This will make it possible to
discuss scattering away from the Bogomolny limit in Chapter 5.

3.2 The Static Solution
Consider thegauge potential Ao = 0, Al(I, 6) andtheHiggs field 0(r, 9). It has been

shown byPlohr [14], thatto find N vortices superimposed atthe origin the solution
can be written in the form

4
)

A M -eyx .pr) (33)

We know that (A,-,0) satisfy the equations (2.18), (2.19) if they are solutions to
the Bogomolny equations (2.37). Substition of (3.3) into (2.37) yields

10



I0p = 7/2,

D = 1(fF- nabeN]em\ (3.4)
Fl2 = ~a-".
and therefore
/m= V(-
»<' = TAi[2- 1) (3.5)

Here we take the upper sign if N> 0 and the lower if N < 0. To show the egs. (3.5)
have finite energy solutions, we argue as follows: Consider the time-independent
Euler-Lagrange equations

AA~+A~AO(O|2-1)= O,

diFij+ (if2)(0DJ0 - <EWD) = 0. (3.6)

where we sum over the spatial indices only. The ansatz (3.3) yields

DiD'<t> = (rr'Y_«\r/’ 2,
diFg = xirer(-y, (3.7)
. /*
HDE—4D4> = XiVAj— (a —1). (3-8)

and therefore

G/ . tL{a_1D2_ fal(/2_'= o

39

Plohr [14] has shown that there are functions (/, & which minimize the energy

E = J [(1/2){DIGDOWr+ (1/4) (M) 2+ (A8)(#* - 1)ZkX (3.10)

and thus solve the corresponding Euler-Lagrange equations (3.9). On the other hand,
it can be seen that solutions of (3.5) satisfy (3.9). And Jaffe and Taubes [11] have
shown that all finite energy solutions of (3.9) are solutions of (3.5). This establishes
the existence of a finite energy solution of (3.5). For n = 2, this is our configuration

(A/Hh -



3.3 The Approximations

IFwe substimteome fields (3.1) and (3.2) into the equations (2.18), (2.19),use the

0
fact that (Av, 4> solve the time-independent equations and keep only linear terms
in (Ai,<>) we find that they become

DiiD <4~ 2iAn D 14 ~i $d~A» + ~0(J0°|2-1) + ~ 0 (00 + 0°0) = O,

and
+A?lor+][oD i 4D o+ D 0- Cif 0 = O, G.1D)
where
oU O 0
X0 = $d”-iA),
G-
and
4>(t,r,d) = t£(,0),
Ai(t,r,0) = tBi(r,6) G.13)

wheret £ (—e,e),e<C1 and £?',0) = £i + (£2 This means that we are studying the
scattering process only from the time shortly before the position of superposition of
the two vortices until a time shortly after. Thus, we obtain

- DiDi £+ii diBi+ ~(]0]2-1)+]| 0(0?+ 00 = 0. @3.14)

The sign changes in the above are due to the form of the metric as outlined in
Chapter 2. The second set of equations (3.11) become forv —j

diF« - Bi |02 £ ®-tD 00+0 Ib"£- D 1i1]=o0 @G.15)
because
do/0?= 0 (3.16)
by definition above and for v = 0 (3.11) becomes

(diBi + [k - 0 £]D= O. @G.1D)

Equations (3.14), (3.15) arealso obtained by substituting (3.1), (3.2) and (3.13) into
the time-independent equations (3.6). Solutions of the Bogomolny egs. (2.37) solve
egs. (B.6) , ifwe put (B.D, (3-2) and (3.13) into egs. (2.37) keep only the terms
linear in (B,-.£)) and solve the equations, we have solved (3.14) and (3.15).
To solve (3.17) ,we write (B»,£,*) in the form
= ncosné6f(r)h\(r, 6) — nsinnof(r)h,2(r, 0),
£2 = ns'mnOf(r)hi(r, 6) + n cos ndf(r)h,2(r,0),
B\ = — F sin9b(r, 0) + cos 9c(r, O)1, (3.18)
r

B2 = 11 [cos#6(r, 6) + sin#c(r, 0)]-

12



Where the perturbed fields take the form

0 =0 +tf, (3-19)
Ai = Ai +tBi.
Substituting (3.18) into (3.17) we find that

a.n- = +
rdr r286’

A[O°E- 7] = ~2f2h2.

Therefore (3.17) becomes

IFwe substiwteothg perturbed fields (3.19) into the Bogomolny egs. (2.37) and use

the fact that (A,<t>) are solutions to the unperturbed case we find that egs. (2.37)
become

Di et ¢2 G- i(BL+iB2)0 = O, G.2D)
A2 + ¢(E0+7?0) = o G.2)
where
£ = 2/(cos20 + ¢sin2#)(/ii + ih2),
Bi = —2(-beinj + cf,),
H2 = d\B2—d2B\
and
di = - eij— dg.
r

Substition of (3.18) into (3.21) gives

0 a J /i, 2th(l - a) ./dh,,
DiZz = e [XI(fh+ f— )+ 2ix2(C— + *7TA)]»
* 0 > nor_m«/ rdh. _ . 21i(l —a) J dh.n
iD2£ = e [2ix2(f h+ /— )+ 2xi( + X7 N)].
-iBi 0 = — (-x 2b+ x\c)e2tof,
r
B2 O = -(@?i6+ x2c)e2l0f.

(CR))

Equation (3.21) must be separated into real and imaginary parts and one must also
remember that h = hi + ih2 then we get

£+ GB.5)



The second of the perturbed Bogomolny equations (3.22) must now be calculated.
It can be seen that

2db 2 ac
F2 = 1dr n8’

Therefore (3.22) becomes

. ) o —
II’CIF rIZ + /% = «, (3.26)

The four equations (3.20), (3.24), (3.25), (3.26) are the equations for the four un-
known functions (b,c,hi,h2). Solutions to these equations will describe the type of
motion and scattering to be found in superconductors.

3.4 Translational Motion

Consider equations (3.24), (3.25), (3.26). Ifwe substitute (3.24) and (3.25) into (3.26)
we find

+ "> = 0 @20
and if we substitute those sametwo equations into (3.20) we find

1 d dhan 1d2h2, & n /oocA
-;(*rsr) -p ar +/ =0 (328)
which we can write as
1. d dh 1 dzh ol nr>\
frhdrTdr/r~ +fh =0 n )}

for h= hi + 1IR2.1f we now Fourier expand h,

h(r,8 —~ h\cos kd+ h\sin I6. (3.30)

k=0

we obtain

=° ¢ )
for 1= 1,2;k=10,1,2

Solutions of this equation will behave like C\r~k+ C2rkat the origin and like
Cse~T+ Cer as — 00 . The perturbation of must be non-singular. It is clear
from (3.5) thatf(r) has an nth order zero at the origin. Therefore h(r) may be as
singular as r-n. It can thus be seen from the solutions of (3.31) and (3.5), in order
that 0 be non-singular, K< n. Thus for K< n we can always obtain an acceptable
solution to (3.31) by choosing the proper behaviour as r—oo.

In our case we only consider the N = 2 vortex solution, in which case we can find
solutions if the Fourier expansion for h(r,0) contains cos 8,sin 6,cos 26 and sin 26
terms. Ifin (3.30) we take only the case K= 1 and set all other hk— 0 we are then
left with a single term fourier expansion namely

h{r, 8 = A\cos 8+ h\sin#. (3.32)
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Now ifwe also set h\ = ih\ = -j, which is a solution of (3.31), and then multiply
across by a + if} we find that the function h(r, 6) becomes

h(r,9) = hi+ ih2=j(a + i/3)e~ie. G.B)

Our aim now is to show that perturbations of the form (3.19), where h(r, 8) is of the
form (3.33) and b,c can be calculated from equations (3.20), (3-24), (3.25) and (3.25),
describe translational motion of the vortices (ie. the vortices move together in the
same direction.) To do this we first show that the guage invariant quantity |9 |2 is
the same after translation as it is with addition of the perturbation (3.33).
Consider a translation of the form

/ 3P —>K x fex + 71,

5 :& Yy y+72 GB-3D
and a gauge transformation (2.20) which does not changethe physics. Ifwe apply
a translation and a gauge transformation to the given Higgs field we get

0 (x,y) ex@n® (x + 71,14 72)- (G-3)

IFwe now write
i (r,9) = el2ef(r) (3.36)

then

B + 10,V + 72) = eRarcen(i+ A Y ((az+ 7i)2+ (y + 72)2 )» @.30

0
Since we consider small deviations only we can also expand & (x + ji,y + 72) ina

Taylor expansion. To first order, this corresponds to

o] 0 0 0
O (x+ 71wy + 72)=0 (z,y) + dx & ,2DTi+ dy (>(x,y).72 + __. GB-3®

where dx and dy are the partial derivatives with respect to x and y respectively. As

i(z,y) = ei2?™ W f(rx2+ y2)-

dx i (x,y) el29f (r) - 2'V.+ el29f'(r)-;
xi + yl r

dy Hx,y)

ei20f (r) -~ " + ei2efXr)n,

by substitution into (3.38) we find that

0 f
d(x+ 71,3+ 72) = et2ef(r)[l + —(cos $7! + sin#72)

+—r (-sin07i+cos072)+ ..]. G309

Ifwe now consider the form of the perturbed field 4>as in (3.19) we see that it
takes the form

0Ce,y) = et2ef + 2el2df\r)[toL cos6 + t(3sin9 + i(t/3 cos9 —ta sin0)]. (.40
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After inspection of the gauge invariant quantities
I (x + 71,y+ 72) B= /72[1+ “3“(7i cos9 + 72 sin(] (3.41)

and
10(&,y) = 721+ cosO + /?sin0)] (G.42)

we see thatif2at = 71,2(3t = 72 then the above equations areequal_.From this
result, wedetermine the gauge transformation, ie. we find a functionX(Xi tl) such
that

$£=e-ix*VU- (€59))
If
/m 2
X(x,y) = -9, G449
Xi = ﬁ (3.45)

and we Taylor expand e [t'3XI'Y3NT 1r)? @ 43) becomes

</

[L-ieijXijjtj - (3.46)
£ = ~itijxajfij- - * } . @40

0
because of the 7 j there axe no higher terms other than 0 because 7ja or 7j/3 represent

quadratic terms. If (3.40) is substituted into the above we find that

fi 2i
)l = et26f(r)[I + —/ (cos#71 + sin#72)H (- sin#71 + cos#72))],
r

H = B(x +Ti g/ + 12) (€al))

From allthe abovewe can see that with the introduction of a gauge transfor-
mgtion and a transformation of the form (3.34) the perturbed field O and the field

£ (x + 71,27+ 72) are the same up to gauge transformation. Now we also have
to prove that for the same gauge the gauge potential A{(x,y) is the same as the
translated gauge potential up to gauge transformation. To do this we need to prove
that

Ai(x,y) =Ai (x + 71,7+ 72)+ 9ix(x,y) (3-49)
where
0
Ai(x,y) = Ai +tB{,
= G50

The gauge potential Ai(x,y) after the spatial transformation takes the form
i_\ M \/ + 71)2 + + ,
Al Gy A7y = neidlg +71) (@AY GED
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To sinplify this we Taylor expand to get

Al (*+ 71,y+72) = Al +71-DL Al +12D2 Al,
a a L2 4a._. M
= ~ - exnkXk{" - jj) (352

The second term in (3.49) becomes after expansion
diX(x,y) = 0 ejkxjxilk%. ~ ila) - (3-53)
On addition of (3.52) and (3.53) we find that
Al X+ 71,2 + 72) + dIX(K,Y) = -2e1pF— - 4e47j "
— ("3 PKIK+ £JkxIXFK)- (3.54)

But GpPK K+ cjkxixjlk — rzeijlj therefore it can be seen from (3.50)and (3.54)
that
AIGGY) =AT X+ 11,y + 72) + diX- (3.55)

The proof is now complete. We have shown that up to gauge transformation the
Higgs field and the gauge potential as in (3.19) using the perturbation (3.33) describe
translational motion.

3.5 90° Scattering

Up to now we have considered the perturbation which described translational motion
but by far the more interesting of the two modes is the splitting of the vortices and
their subsequent scattering at right angles. This time we consider the k= 2 terms
in (3.30) in the special form

h(r, 6) = k(NA+ 1B)e~2e. (3.56)
On substitution of the above into (3.20), (3.24), (3.25) and (3.26) we can calculate

b(r,0 = —(Bsin 26+ A cos 0){&+ rKi),
ar,6) = (Bas2B-— Asin26)(2k + rkl), (3.57)

where k(r) satisfies (3.31) for K= 2. The perturbation to the original system is

4> +tE1 + itf 2
Al +Bi, (3.58)

9
Al

therefore using (3.18), (3.56) and (3.57) it can easily be seen that

£1 + *2 = 2O NN(,9),
= 2kF(A+ iB) (3.59)

B1l+ iBi = ?eiZXC+ D),

2
- I(—:-~—ie(2k+ rk)(A+ iB). (3.60)
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In the followving, we consider the case A = 1,B = O.Inthe case A= 0,B — 1
the analysis and theresults are analogous. As shown by Jaffe and Taubes [11]
the topological positions of the vortices are given by the zeros of the Higgs field
| B= O, for the unperturbed case §>= el2Sf(r), | () B= f2(r) =N €& B= 0 when
r = O indicating that both vortices lie together at the origin. To return to the case
at hand consider

€ = el2ef + 2kft,
1912 = /72 + 4kt cos28 + 4t2k2) = O,
= H(r,8),

where H (,9) issome surface described by r and 9. The point, or lire, of intersection
between H(r,6) and the (,9) plane indicates the position of the wortices. The field
is zero when

1+ 4kt cos 28 -F4/2A2 = 0. (3.6

Take t < O ie. pre-scattering

1-— 4kt cos20 + 4t2k2=0 (.62
consider the case 9 =

=>c0s28 = -1,

4tlk2+ 4tk + 1 = 0,

(2tk + D2 = 0,

-1

=k

2T

We can see that the intersection of H (r, 8) with the (,9) plane is always positive, as
it is a square. Therefore only the points 8 = = 7/2 ,r = k~I1(—I/2t), and not lires,
of intersection are allowable. We will now try the solution of H(r,8) when /> 0O,

4t2k2 + 4kt cos26 + 1 = O
This isonly possible if6 = O or 8 —ir. Then,

4t2k2 + 4tk -F1
@tk + 12 = 0,

For the incoming vortices (t < 0) the zeros of the Higgs fieldaxe at 6 = + /2 ,r =
k~1(—l/2t), for the outgoing vortices, they areat 0 = 0 and 8= Wr= k~1(-1/2t).
That k_1 exists will be shown later. That this is evidence of 90° scattering can
be seen as follons: microscopicly there is a current of superpairs flowing around a
vortex, sustained by and sustaining the magnetic flux. This configuration can only
be smooth if there are no Cooper pairs at the centre of the flux tube. Hence, the
zeros of the Higgs field give the locations of the centers of the vortices. Furthermore,
as Fig. 3.1 illustrates head-on oollision can be considered as the limit of a sequence
(and of itsmirror image) of collision with nonzero impact parameter. This leads to a
leftright symmetry in a head-on oollision which rules out scattering at angles other
than 0°,90° and 180°. (If there is any deflection at any impact parameter, as pre-
sumed in Fig. 3.1, one alsowould not expect 180° scattering.) The above arguments
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clearly discriminate in favour of 90° scattering against 0° and 180° scattering. To
understand better what happens during the oollision we study the energy density.
The energy isgiven by

E =J [iDrfDit + \ £% + N(#* - 1)2}d2x 3-63)
and the energy density is given by

£{r, 9) = \Di<>Di<f>+ + £(#* - 1)2 (3.6
where i,j aresummed overspatial indices 1,2 only.Concentrating on the more

interesting mode, asindicated at the beginning of this section, theremainder of this
thesis will be confined to scattering whose perturbations take the following forms:

6 + »6

ZfS(r)/(r),
Bx+ iB2 = . e~ie(2k + rk').

The perturbed gauge potentials and Higgs fields become

na
— hjj&j o 5

= eldf{r) + tii + itE2- 3.65)

B{ can be written using summation notation and the Pauli spin matrix a given by

© = (iov (366)
This means that (3.65) becomes
A = Cixy zrmikskefit 4 28,
0 = eRV(r) + 2f/i, @.67)

ifwe set A = 1.
The calculation for the energy density islong and has been included in Appendix
A and only the result is included here

£r,9) = (—)(1 - a2)+ 8 (~~)2+ 16(")2akt(a - 1)cos 29
+ 2t2ik'f + —r/\-(l — Q)2+ 212f 2{k' + — )2(1 + 4kt cos29+ kt)2)
r
8 2k
— - f2t cos 29{k' +—-)[@—- D + tka cos29 + tk{a — 1) cos29 + 2t2k2a]
Ok 1
— At2f 2k'(k' H )sin226 + -{f2— D)2+ f 2kt cos29 (f2+ 2 f2kt cos 29— 1)
+ é\(/2+ 4k f2t cos 29 + (2kft)2 — D2. (3-698)

Given the form of the energy density, we can check the finiteness of the energy by
investigating each term individually. In the next section, we will show that

/far2, ,a&r2, k«I~2 as r—»0 (3.69)
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and
/«er, ,FIRicr, £~er as r—oo. (3.70)

Ifwe examine both cases as r -4 oo and r — 0 it can easily be seen that the
energy density is indeed finite. In the case where r —#00 all the terms in (3.68)
die exponentially fast therefore never become infinite, however in the case r —+ 0
the leading behaviour of f(r) always compensates for the k(r) terms. Consider for
example terms of the form k' -F2k/r ifwe substitute in the approximate values
for k and k' we find that they exactly cancel each other and all combination terms
involving /7 and k combine insuch away that they are finite. So we can conclude that
the energy density never does become infinite. The asymptotic behaviour of k also
shows that k~1| exists. For large r, k is strictly monotonic decreasing. Assume that
this isnot the case for allr > 0. Then, there exists a point ro with fc@o) > 0, fc"(o) =
0 and k"(ro) < 0. This would be inconsistent with (3.31) and (3.56). Therefore, k is
strictly monotonic decreasing on (0, 00) as r increases and A-1 exists.

Finally we study the potential energy density in the collision process. The Kinetic
energy density is radially symmetric and does not alter our argument. The potential
energy density was graphed using the numerical results found for /7(r),a(r) and k(r)
in Appendix B. Then a simple driver program was written in Fortran to calculate
the potential energy density and plot it as a function of x and y. The situation

£{x.y)

Figure 3.2: Static solution with both vortices situated at the origin, t = 0

depicted in Fig 3.2 is the static solution where both vortices lie at the origin. This
plot shows that there isa local minimum at the center and a maximum lies in a ring
around the axis, so that the vortex is mainly concentrated in a toroidal region.

Fig 3.3 shows the pre-scattering case where t = and the vortices are about
to ocollide. The view in this plot is not directly along the x axis (this is just so that
the two vortices can be distinguished).



Figure 3.4: Post—scatteringwitht = N
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Fig 3.4 depicts the position of the vortices after the oollision. A comparison
between Fig 3.3 and Fig 3.4 does indeed show that the vortices scatter at right
angles substantiating evidence discussed earlier.

There are at least still two problems which have to be addressed. First, a solution
fort G (—e, e), isnot a scattering solution. However, we can take the configuration
for t = 0 as initial data of a solution for t G (—00,00) which we know exists B].
Fort G (—g©),e <C 1, the linearization which leads to equations (3.11) should be
Justified and the solutions we discussed should be an approximation fort G (—c,©)
to the scattering solution for t G (= 00,00). The second problem is concerned with
the experimental realization of the 90° scattering process. We have given evidence
for 90° scattering, by presenting special approximate solutions, which require special
initial data. However, since the parameter space for static vortices is 4-dimensional
and we have found a 4- parameter family of approximate solutions (3.33) and (3.56),
which all describe 90° scattering possibly with a spatial translation, we expect 90°
scattering for slowly moving vortices for all initial data which lead to a collision.
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Chapter 4

Series Solutions

4.1 Introduction

In Chapter 3 we found two first order coupled differential equations for /(r) and a(r),
and a second order differential equation for k(r). In this Chapter we will investigate
the series solutions of these equations at zero and infinity. In the vicinity of zero we
use Taylor series and at infinity we use asymptotic power series. The results obtained
in this Chapter are then used in Appendix B to aid in the numerical investigation
of the respective functions.

4.2 The Taylor Expansions at Zero

Consider the Bogomolny equations for the n = 2 case

f = i_.). @.D
r
al= "~ (f - D. 4.2
Taylor series take the form
@
f =Y1 fnrn = fir + hr2+ f3r3+ eee
n—i
@
a="2 = air+ a2r2 + a3"3H -

n=1
Substition of the above into (4.1) and (4.2) and solving for the respective coefficients
we find that

fi =0, ax =0,

2 =12, a2 =
h=0 (®=o
/4= -a2f2, «4 =0,

fs = 0) a5 =0,
fQ = 202/2? ®6 - 24

The Taylor series for the solutions about zero for the functions f(r) and a(r) are
therefore

f(r) =hr2- ~f2rd+ " j 2 +

(4.4)
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and
*>=rJ- "N e+ NV +.-

where /72 is unknown.
From the equations it can easily be seen that all odd powers of Fseem to be lost.
To investigate wheitherthis is true for all higher powers of rconsider

[(r) =f; fran+ Fr2\+1 + o(r2iv+2),

n=1

°(r) = '5Lan<2n,
71=1

substituting these into (4.1), we find that

N N
J22n/nr2n+ (2N + 1)Fr2av+l = 2 /.12 + Fr2NH
n=| n=I
N n
- 2" A~ Ffmanim,ni +2
m=1 A,ni ,U2>1
+ Feerron 2/v4+27i2+ (4-5)

but by definition

e2n2V+2n2+1 = 0

always and by comparison of coefficients in (4.5) we see that

{2N-1)F = o,
=>F =0

Therefore there are no odd terms in the expansion of f(r). If we assume on the other
hand that

N+1

/IM = £ Ur2
71=1

and
a7>) = "2 anrh+ Ar2\HL £ o(r2\N+2).
n1
Substituting these into (4.2) we obtain

N N n
4]1T>a,r2'-1+ 2N+ DAr2v = - £ £ I iGN+t (4.6)
n=I n=l m,@2>1

Equating cocefficiatts reveals
N+ DA =0,
=A=0
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and therefore we see that there are no odd terms in the expansion around zero of

a(n).

We can then write the general forms of the series in the form

(e 0] (0]
/0) = Yj fnr2n®  °(r) = X) anr<n, 4-7)
n=1

n=1

respectively. To find a general expression for the nth coefficient of the Taylor series
we proceed as folloas: substitute (4.7) into (4.1) and (4.2) to iind that

£ 2nfnr2n=2£ fnr2n(l - £ anr2n).
n=I n=1 n=1
(CRS))
Simplifying this we find that

2 7= 1

fn " / 7> 1,
1-n g,
and
00 00 n—1
4N 2nanr2n 1= -2~ N fmfn-mr2n+1l
n=1 n=1w =1
which reduces to
_jn=2
= T ,fm fn—m—1 7n> 1.
8n n{‘:| m fn —m )

These represent the recursion relations for the coefficients of /(r) and a(r) respec-
tively, where /2 is an arbitrary constant and a2 — 1/8.

After finding the Taylor expansions and the recursion relations for f(r) and a(r)
we will now consider the second order equation for k(r)

r2k" + rk' - k(4+ r2f2) = 0. 4.9
Using the result for /, we see that the solution near zero of the equation behaves
like
k(r)= c\r~2+ c2r2

leaving us reason to believe that yet again only even terms of the Taylor expansion
survive. Proceeding as before we know that

N+l
/M = E /nrzZ’
71=1
and we assume that

N
jfe) = Y

n

J K n+ Kr2\+H + o(r2N+2).
-
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Then we have

N
k'(r) = 2nfenr2n 1+ (2N + 1)K r2N

n=—1

k"(r) = ~ 2n(2n — Dfnr2n-2 + 2N (2N + Di2iv-1.

n=—1

IFwe substitute these into (4.9) we find that

vV 1\
53 (@n2 - A)knr2n + (47V2+ AN - 3)ICr2N+l =
n=— n=—

[ ) A In-ifn2kns”n,ni+n2+ri3+|
ni,n2,7i3>1

+ X/  Ini/n222n,2ni+2n2+2iV+I]
JV,m n2>1|

but by definition
~2n2ni+2n2+ 281 = 0

always, therefore comparing coefficients gives

(AN2 +AN -3)K 0,
=K = 0.

Again we have shown that no odd terms exist in the Taylor expansion at zero. We
now need to find a general recursion relation for the coefficients in the expansion of
k(r). Following the same procedure as for f(r) and a(r) and using (4.9) we find that

kn = _ 4 y / Zill/n2Mi37n, ni+n2+713+1 * “4.10
' ni,n2,ri3>I

4.3 Convergence of The Series Solutions at Zero

To prove the convergence of the Taylor series at zero we now show by induction that

Ik 1< *<»-1; 4.1
M k

lak |< (k + 1y , k<n- 1; 4.12)
M k

Ih < (k +-\y2' k<n- 1, “4.13)

hold for sufficiently large k and M > 1. For this purpose consider

T A—%

il A AN /miem22n,mitra2”
\ i, pe>1

Taking the absolute value and using equations (4.11) and (4.12) we find that

1 M mi M n~mi
fn 00 by nosi i+ D2(n-ml+ 1I)2
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where n = mi + m2 from ¢n,mi+m2- Therefore

M n n_1
I -1l _n I i@i+0D20O-mi+ 12° (4U)

To complete the proof by induction consider the integral
A
a2 L1+ a)2n- x+1)2°
We need to show that the tangents to the above integrand always fall below the
curve and then it follows that
N 1 n-12 dx
n" 1 (@mi+ D2(n-mi + 1)2 ~ J1/2 (I+x)2(n- x+ D2°

In order that we might do this consider
_ |
y= aA+x)2{n—x+ 02"
Then
7\1: 20 1 1 1.
dx (n—x+ D21+ a3 (1+x)2(n—x+ N3

Equating this to zero we find the critical point to lieat x = j. Using the second
derivative test it can easily be seen that this isa minimum point. IFwe examine
the curve over the respective interval we see that it is symmetrical about the point
x = j ,that the first derivative is increasing and that the second derivative is always
greater than zero. Then we can say that the tangent always falls below the curve
and the inequality (4.14) holds. To calculate the integral use partial fractions. We
find that

y 1 1 4 1 1 1 2n+1
Lo d@mi + D2¢c—mi +1D)2 —-(n+2)2 3 @+ 1D n+2n 3
Therefore from (4.14),(4.15)and (4.11) we see that

.. Mn . 4 1 1 1 2n+ 1.
1fmi~ 101—m) 1(h+2)23“ 2N+ 1)+n+2n—3~m

M n
n+ 12°

This proves the inequality (4.11) and convergence of the series /(r) forr <
Similarly for an we find that

M n
lan 1~ 1_gn | Ifmt 1 fm2 |
m=
IWn-1 n-~2 1 1
|“" 1 £ .+ 1R (»-"i)2”

5 1 1ftv @

M n
~ (n+ N2°



This proves the inequality (4.12) and convergence of the series a(r) forr < ~=.
It now remains to calculate the convergence of the series for k(r). From (4.10)
we have

= id 2_ A) /r>i/M2 3 in,ni+n2+n3+1 m
toA " 7riH2,713>1

By taking the absolute value of both sides and separating the summation we find
that

1 M m3 M mi M n~mi -7713-1

1K I=1tin* - 1)1 (ms + D27 (ml+ I)M«=-»_.,-"3)2
but this simplifies to

L] 1 v- M nB3 M n~m3~1
4n2- 1) M 1(m3+ 1)2(n- m3)2'

Therefore ifwe use (4.15) we see as in the cases for f{r) and a(r) above that

Ao U m)(n +D)*K1>
M n

(nh+ D2

Therefore all the coefficients of the Taylor expansions at zero are convergent, itnow
remains to investigate the behaviour of the functions at infinity.
4.4 Asymptotic Power Series

Consider yet again the Bogomolny equations (4.1) and (4.2) but this time note the
boundary conditions at infinity:

Um /(r)

1 1
= e
=

Iim a(r
I—o0 ()

From Plohr [14] we see that the solutions to (4.1) and (4.2) for large r are

f(r) 1 -ako(r)(l + ofe~r)) + ~(r)]2,

1+ fi(r)e~T+ F2(r)

a(n 1 - ~rki(r)(l + o(e~r)),

1+ al(r)e~r + A2(r)

where kfl isa Bessel function of order Ziwhich issubdominant at infinity. This means
that fi(r) and ai(r) are polynomially bounded and that F2{r) and A 2(r) approach
zero faster than rme~T for any power of m.

Consider now the second order differential equation for k(r)

r2k" + rk' — (r2/ 2+4)k — 0. (4-16)
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To leading order k(r) satishies
r2k" + rk' - (@2 + 4)k = 0. @1

This is a modified Bessel equation of order two but can be easily transformed to a
Bessel equation using the transformation

z=r, w(z) = Kk(r).
From Abramovitz and Stegun [I] (4.17) then becomes
z2w" + zw' + (z2- 4)w —O.
This is a Bessel equation of order two with a general solution of the form
w(z)= ciJ2(z) + c2Y2(z)

where J2(z) is a Bessel function of the first kind and Y2 is a Bessel function of the
second kind. From Olver [13] w(r) can also be written as a linear combination of
Hankel functions as

ffw

j2(z) +iY2(z)» ~J eH ~)}

H {2 h - Y2 ~JTe-«’-*?7),
@ = h{z) - IV2(2) ~ JTe-«’-*?)
=k(r) = AH”l) + BH"].
However in order that we maintain finite energy B = 0 and k(r) takes the form

k{r) = ki(r)e~T+ K 2{t)

where k\(r) is polynomially bounded and K 2{r) approaches zero faster than rme~T
for any power of m.
Using the induction hypothesis we assume that

f(r) = E f*e~kr+ W | fo = 1, (4.18)
k=0
n—1

a(r) = "2 ake~kr + An(r), ao =1, 419
k=0
n—1

Kr) = E kke~KkT + Kn(r), 4.20)
k=0

where fk,ak and k* are polynomially bounded and Fn,An and K n allapproach zero
faster than rme-(n~1)r for any m. We now need to prove thatFn(r)behaves like
fne~T and similarly for An(r) and Kn(r).

Ifwe now change the variables such that f = 1+ F and a = 1+ A and substi-
tute (4.18) and (4.19) into (4.1), (4.2) then simplifying we find that (4.1) becomes

F'= -"A(1 +F) “.21)
and (4.2) becomes

A'= - fF{2 + F). 4.2
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To decouple the differential equations, differentiate (4.21) and substitute In (4.22)
to eliminate the A! term. Then we get

F'+-F'-F = I £2+ "A 2+ |-F3+ % A2F. “.23)
r 2 rz 2 H
Consider firstly the homogeneous equation
F*"+ -p'- F=0 425
r
which is a Bessel equation of order zero the solution of which can be written as
F = AHMir) + BH”\ir)

where B is zero to maintain finite energy. Hence by simplifying the Hankel functions
F can be written in the form

F = h{r)e~T+ F2(r).

If we substitute (4.18) and (4.19) into (4.23) keeping only leading terms we find
that (4.23) becomes

T
Fn + ~Fn = [ fnifn22n,ni+n2
TW,712=1
4 (00] 1 00
+ A E Ani N27n,m +ri2 + 2 E fnifn2frii*n,ni+n2+n3
ni,Ti2=l ni,n2,ri3=l

’6 fv-2 anio'n2fn3”n,n1-i-n2+n3]s
ni ,r21"3=1

=: an{r)e~nr. “4.25)
Ifwe now substitute (4.18) and (4.19) into (4.22) we find that (4.22) becomes

00
K = -\fn{r)e~nr - A 53 inJn2Kn,+n2e-n\ “4.20)
ni ,2=1

= :f3(r)e~nr. @.2n

Analogously the second order equation for k(r) (4.16) can be rewritten using the
same change of variables as for the /(r) equation to find that it becomes

K"+ ~K’- (L- ")K = 2FK + F2K. “.28)

Ifwe substitute (4.18) and (4.20) into this equation it reduces to

1 4 ~
K"+ -K>- (1--)K = R ~» fnikn2Sntni+n2
ni, =1
00
fnifn 2kni&n,n\-\-n2-\-n3\6 >
ni,n2,re=1
=2 7n{r)e~nr. 4.9
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In order to find the full sollution to (4.25) consider the Greens function

g(r O\ - { airHo\ir) + a2zrH”*2\ir), (0 <r < p)
>\ birH™ir) + 2rHQAIP), (@< r< o)

In order that this Green’s function describe the situation at hand three conditions
must hold, firstly

_lli%g(r,p) = 0 =3ub\ = b2 = 0.

Secondly the Green’s function must be continuous ie.

g(p+,p) = g(p~,p),
=eai = aH$\ip),
a2 = -aH”™\ip). (4.30)
Therefore
g(r,p) = a[Hi2lip)H"(ir) - H™M\ip)H {&ir)}, 0 <r <p) (4.31)
and finally
~rg(p-.p) = L
=* _ja[HA2\ip)H  \ip) - HM\ip)H {2\ip)} =1. (4.32)

From Abramovitz and Stegun [1] we know that
HP Nip) = -H[n\ip),

and substituting this into (4.32) we find that

ia[H{2ip)Hf\ip) —H$\ip)H{2ip)} = 1 (4.33)
Since the determinant

H["\ip)H$\ip) - H$\ip)H[2ip) = ~

7p

is non-zero (Abramovitz and Stegun [1]) this system is solvable and we find that

17Tp
Now we can say that
Fr{r)= LR 9(r.pan@e-dp (4.34)
¢
and expanding out the Green’s function we find that (4.34) becomes
Fn@ = ~ £ p[HN\Ip)H K r)-H)Ap)HDI)\ape-npch.  (4.35)

Similarly for I(nh we find the Green’s function of the form

o(r.p) = H{r- p¥%-[H\ip)H™\ir) - H\ip)H\Ir)} (4.36)
and therefore we can write Knin the form
Kn(r) = p[H?{ip)H\Ir) - K\IpHN\IrnNYM@e1pdp  (4.37)

where 7n(p) is given in (4.29). We have now found in terms of Green’s functions
the form of the three series. All that remains to do is to investigate whether or not
these series converge at infinity.



4.5 Convergence of the Asymtotic Power Series

To prove the convergence of the asymptotic series at infinity, we assume there exist
numbers cq,M and R such that

supT>R |r/,,(Ne_ir |< ~ ° ~ 2, 4.3
supr>R |r2an{r)e” i '|2 "CgAlin"Z (4.39)
P (n + J)Z ’ )
supr>R | r&én(MNe_2r |< > “@40)

for large enough n. For this purpose consider g(r, p) and an(p) as calculated in (4.31)
and (4.25) respectively. Then

supr>R |r/n(r)e_IT | = supr>R \rFn(r)e |
“4.4D)

by definition and using (4.25) and (4.31) we find that

supT>R\rFn{r)ef\< supr>R"\\] [HA\Nip)HA\ir) - HMip)HA™M\ir)]
e_nLn=zl dp” “4.42
< supr>R-7”Oan(r)\{a—22€|
SUPr>Rf #® 2ip)H™M\ir) - frw (ip)Fi2)(ir)|
dp (CES))

Taking R large enough, we can bound \H”*'2\ir)\ by ce&r)/\/r, (4.43) then reduces
to

aupr>R™M\r2an(r)e~"\.supT>H j (ep~T+ eT~p)e dp - 4.45

Calculating the integral in the above equation we find that

[°°, . r_ 0s-nPr) , r -2 _ [n-2DE1 2 _(tDEH)
| («" + «")« 1 ~ = 1 s ¥
ns—4 .

Then we can say that
Sup?>fljr/n(r-)e_~1 < ™ 42 p r>fik 2Qi«(Me~"1]- (4-46)

Using the induction hypothesis and substituting for an(r) we find that (4.46) be-
comes

Tn >Ri8 B sTMI\.< 7m il . A 1 1
n2_ 4SuPr>Rirzan(ne nT_ 4 2 A@i+ 12 (= n\ + 1)2



Kn , Mn
- n2-4 (n+2)2 ~
-2 J

+M" A (Cnl+ D2(n-nl+ 22°@F

N TIT7TiM” r 1 .. 1
- nZ'2t (n+ 2)2 + (@T+ 32N
M n
< @4 2 @-47)

This proves the inequality (4.38) and convergence for r > R and r > 2logM.

Similarly for kn we find that
S«Pr>Flk*n(» )c_" ] = 8UpT>R\rKne%'\t (4.48)
<supr>R\r2'in{r)e~$\2J (ep~r + er~p)e dp{4.49)

where 7,,(r) isgiven in equation (4.29) and the Greensfunction for kn(r) issimilar to
that for /,,. Proceeding in exactly the same way as we did for fn we find that (4.49)
is less than or equal to

T

—
S
s

2 1 A2 i
+ 1S (l+ D)L, E M2+ D2(ir-»1-»2 + D21°(450)
451)

M n
< (iTiji- <4'52>

This proves the inequality (4.40) and convergence for r > i7and r> 2logM. I
now remains to calculate the convergence of the series for a(r). Prom (4.39) we have

supr>R\ran(r)e~" | = «ttpr>/iJrAn(r)eTl], 4.53)
/<0
< supr>R 7/ IFYS,,(/Q)e_%p\e~ Zr(D_d?) “@.59
Jr
2 n(fir)
< supr>R\r(In(r)e 'r e 2 @.55)
n
2 nr
= Hsupr>/i|r/?h(r)e_l2:| (4.55)

where /h is given by (4.27). We notice that the term r/3n(r) contains the term
T2fn (f) which cannot be controlled by the inequality (4.38). Therefore, we make a
change of variables of the form

An— tAh, an— \(h,

this means that equation (4.26) becomes

~ /1~ fl 1 co 1
An+-An = <.-¢n - 7 Y_] fnijn 2&n,nx+n23€“"l’, @.57)
r [ £ 4 m, na=I
=: /3,e-"'r. “4.%8)



The Green’s function for this equation is J@,p) = ~H(p —r)& Tlie solution of the
above equation is then of the form

A,(r) = ) e pPMe'rdp. (“4.59)

To prove the convergence of this consider

supr>/ijm'n(Ne“T1] = s?ipr>R|rAn(r)ey |, (4.60)
< supT>R\rPn(r)e~!f'\J e~nfg* Adp, 4.6D)
i/ Mn Mn 1
N2(n+ N2+ 4 H 1D2(n - ni+ 1)2j M4'GN
M n
4.63

Therefore all the coefficients of the asymptotic series at infinity are convergent for
some r> R and r> 2logM.



Chapter 5

The Case A>1

The theoretical predictions for the scattering of soliton-like objects are very exciting.
For static vortices the only degrees of freedom are the positions of the vortices and
any unusual behaviour would hence be due to their soliton-like nature. Left-right
symmetry in a head-on collision would only allow scattering at an angle of 0°,90°
or 180° as shown in Chapter 3. For slowly moving vortices at the point between
type | and type Il superconductivity (where A= 1) we have shown that the vortices
do indeed scatter at right angles. If the repulsion between the vortices increases
and they cannot come close anymore, we would expect to see a switch over to back
scattering at a certain value of the repulsion. There is numerical evidence that
for fixed repulsion an increase in the velocity can bring the vortices close enough
together again to produce scattering at right angles. In this thesis we now change
the strength of repulsion.
Consider the equations of motion

iVA+AA0(|0]2—1) = 0,

-WW) =0 (5.1)
and the fields
0 -
4>=(f) +0,
=Ai \A{ (5.2)

0 o
where (AImD)is the static solution for two vortices sitting on top of each other
and (N, are the perturbations on the static solution. When A = 1 all internal
forces balance so to introduce a small repulsive force consider A= 1+ A A<C 1. If we

substitute (5.2) and Ainto (5.1), use the fact that (AI><)solve the time-independent
equations and keep only terms linear in the perturbation we find the equations of
motion become

DiD 4~2IAID i -1 i 8iIA+ (| #2- D+ P 0+ P 9P
+ +tA<M|<H2-1) =0, (5.3)
Dj4> -4>(Djiy+ i*Dj 4>-i (Dj %
+dIFj + Aj| @1+ —0, (5.4)

d% A+ i [/ dot-i do&4% = 0, (5.5)
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0

where Di= di —i Al and Fij = diAj - djAi and

FEI= AP -f B
A& = Aat(x) + T0X) (5.6)

where @8+A"y>,A'i + Aa,) satifies the static equations of motion linearized in A
Hence (At/?, Aa,) is a solution of the inhomogeneous system of equations (5.5) and
again we have a 4- parameter family of solutions which is what is required for 90°
scattering. The homogeneous system is the one which had to be solved in the case
A= 1. Therefore, also in the case 1< A= 1+ A A< 1, we find the approximate
solutions which describe 90° scattering. This is important because in an experiment
A= 1can never be exactly realised. Our argument shows that if the net repulsion is
small enough, slowly moving vortices can overcome it and will scatter at right angle.
Here, slowly moving means slow enough for the approximation to apply, which is a
very indirect way of quantifying the velocity.
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Chapter 6

Conclusions

We used results of Weinberg [16] and Ruback [15] to construct approximate solu-
tions to the partial differential equations which describe vortex-vortex scattering.
Together with a simple argument, which rules out scattering at angles other than
0°,90° or 180°, this provides further analytical evidence for 90° scattering. Our
method makes it possible to extend the analysis to the case of a small net repulsive
force between the corresponding static vortex configurations. Wc have also studied
the ordinary differential equations, which result from the ansatz for the approxi-
mate solution. These equations are solved by Taylor series at the origin and by
Asymptotic series at infinity.



Appendix A

The Energy Density

The potential energy density is given by
E(r,6) = {DMmDM>+-\If] mA(H* - 1)2

where i,j are summed over the spatial indices only. The Kinetic energy density is
1

In this section we calculate the energy density for the perturbed state that describes
90° scattering ie. we consider (>and A; of the form

<fi(r,0) = e,nfff(r) + 2tk(r)f(r),

4 ,na s ams 2K
5 ) - NijX) 2(7TikXktyk € )

as can be seen in (3.67).To proceed with the calculation

DOf>= dog = 2kf ((W))
and
D> = (di —iAi)(),
= -€ij—de+ XidT+ ieijXj— + i2aikxkt(k' + — ){ein6f + 2tkf)
r r r
where di = -Cij*dg + £idr and for convenience we write f(r),a(r) and k(r) as /,a

and k respectively. Then
Di(f>= ieijxj[einB?f (a~ 1) + 22 h 1] + xi(einOf + 2k'ft + 2kft)
r r
- 2k,
+ i20ikxkt(k' A—— ){etn9f + 2kft)

where Di(j> is the complex conjugate of Di<j). Then

D> = )+ (2" 1Y 4 skaca - DIC ") cosns

+ AtF{Kk'f + f'k) cosn6 + t2(2k'f + 2f'k)2

ok ok
+ 4(k'H  )22(/2+ 4tkf2+ {2kft)2) — 16afix2(k' H  )tk'f2sinn6

2k 1
F4("2 — xi){k' 4 )tf2~[(nf(a —1))2 - 2kTtcos NQ -F4nak2A2

+ 4kanf2t cosnff]



where

icijXj.icifeXfc — a2 +~® — 1»

(TijXjOifcXk = 1,
(ijX00lkx%k = X\ - X\,

- 0,

X{x{ = 1,

XiCTikX'k = 2X1X2-
The second term of the energy density is calculated as follows:

Fij = d,Aj - djAi

where

Ai{r,e) = -CijXj— - Zcrikxki{k' + —)
and

K Ir0) = -tjixit® . zajkxkefe’+ 24,
Therefore

Al = ~gis° GRKENR) 252 + 5)

” ” 2&.. f ra . luV
(GjkXkXiy ~ I AN MON2 NikXKkXjny-n)

> k' 2k. n Akt 2k,
< 2ayi(- + T2)~ 2A%*fCK|(- + 77) %

This becomes

K « /0 v, 2/;..
> €ijr&i - X2)(~ + A2
with
~ ¢i)
_ 2,
(*ik«j ~ Cjkxi)xk = "ijxkxk =
CJA-FI - 6ikXj)xk = Cij(a:f - &Dr-
Now we can say that
led 1710 .0 9/79 AOV"

#E = BF - B Ry + THL (i - F )T +

and

ifg=2¢"+y) 2.

The final term in the expansion for the energy density is

NU" - D2z ((/2+4%/Ticos20 + (21:/()2- 1)2

A-2

V4

(A.2)



Before we consider the full form of the energy density consider the substitutions we
can make ie

r

a - _
on ® 1.

k! 2k.. 1. 1,, 4,.
<7 +72) ="~ + F * -?2*)nm
= FA’

x\2 —x22 = cos20

and also n = 2 everywhere as we are only considering the n = 2 case. The firal
answer for the potential energy density is then given by

£(r,8) — N+ 8(aN ~)2+ l16akt(—)2(a - 1)cos26
+ 2t2(k'f + "N -(1 = a))2+ 212f 2{k' + — )2(1 + Akt cos20 + Qki)2)
r t

8 2k
— - cos26tf2{k' H—)[@—- 1)+ 2kat cos20 — tk cos20 + 2ak2t2]
r r

Ok 1
— 4t2k'f2(k' 4——)sin220 + - (/2—- D2+ /2&icos20(2cos26f2kt + f2- 1)
+ 6r(/2+ 4ktf 2cos20 + (2kft)2- D2.

This equation isused in both Chapter 3 and Appendix B. In Chapter 3 the finiteness
of the potential energy density is demonstrated for this particular perturbation and
in Appendix B itisused to calculate the potential energy density using the numerical
results obtained for the functions /,a and k respectively.

The Kinetic energy density is

Ok
gkin(r, 6) = 2k2f 2 + 2{k' + — )2. A.3)

We see that Skin is independant of 0. That iswhy only the potential energy density
was studied in Chapter 3. We also have to show that the addition of E*in can be
considered as a small perturbation of the configuration (3.3) of two static vortices.
This is the case, because (4.9) for k is linear, and we can always multiply any solution
k by a small parameter such that Skin ismuch smaller than the energy density for
the configuration (3.3) of two static vortices.
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Appendix B

Numerical Analysis

B.l Introduction

The mathematical problem can be considered in three stages. Firstly we must solve

/s =1(1-a), @.D
a=-j(f-1 (B.2)
subject to
lim f(r) = lima(r) - 0, ®B-3)
M 1) = M) = 1 @0
Then we substitute f(r) into
- -7 +(l2+£)*=0 (8.-5)
where
k(r)—+oo as r —m0, (B-6)
i o® = 0. ®.7

We need both /s(and k'(r) for the fimal stage whichis tofind the approximate
energy-density fortheinterval 0< r < 00,0 < 0 < 2irTo do thisve use (3.68), the
equation for the energy-density as calculated in Appendix A.

Problems (B.-1) (B-2) and (B.5) cannot be solved analytical ly over the full domain
however perturbationapproximations can be obtained at the origin and infinity.
These proved critical for the numerical problem solutionand aredetailed in Chapter
4 with the series solutions.

B.2 The Numerical Problem

(B-1) and B-2with boundary conditions (B-3) define aninitial value problem
(IVP). Substitution of the boundary conditions into (B.1) and(B-2)shows that
f = a' = 0 at the boundary points, which implies the boundary points are fixed
points and so any 1VP integrator will never move away from either set of initial
conditions and so would never solve them. The next obvious approach is to treat



both equations as a boundary value problem (BVP). It isbecause of the ~ in (B.1)
that this isdiffiault near r = 0.

To get over the latter we can use the Taylor series expansion near r = O and
match these up with the numerics at r = re, some small value near zero. The
problem with this is that we do not know a, the unknown coefficient in the Taylor
expansion for f(r) about r = 0.

It turns out that the second order problem for a(r) iseasily solved over r€ < r <
Too, where we use

a(foo) = 1 (B-8)

as boundary conditions. Since
a()=j +0(r6) B.9
we choose re such that r\ so that a(r)= ”~ isan accurate approximation. In

the program rc = 10~8.
The idea is to solve the second order problem for a(r) and then to fixr at some
small value (r = 0.1 in fact) to get an := a(0.1). We then solve

0= T(a) = aN - a£(0.1), (8.10)

where aj\r) is the Taylor series approximation to a(r), which depends on a. The
program uses the NAG finite difference routine DO2RAF to solve the second or-
der problem for a(r), and a simple bisection method to find the value of a which
solves (B.10). Once we have a we can produce values for f(r) and a(r) near the
origin. The program uses the Taylor series values over 0 < r < 0.1

Next the program solves (B.1) and (B-2) over 0.1 < r < 100 using the collocation
package COLSYS. This gives us back functional representations for f(r) and a(r)
over the range, and combined with the Taylor series we have f(r) and a(r) over
0 < r < 100 which iseffectively 0 < r < o00.

The final stage is to solve the second order problem for k(r) and write out a
range of values for r,k(r), f(r),a(r),k'(r) to a file to be used later in the numerical
calculation of the potential energy density.

The easiest way to find k(r) isto use k(r) = e~T near infinity to move away from
the fixed point at k(o00) = 1. In the program infinity is approximated by 34 as e~35
is practically zero. We use double and quadruple precission where necessary in the
programs to achieve the required precission. The program uses the NAG routine
DO02QBK integrator to integrate back from 34 to 0. Between r = Oand r = 5 we
output values as described above at intenvals of 0.1. The interval [0,5] was chosen
after some initial experimentation. Once we have all the required values the program
E-DENSITY generates the points (x,y,E (x,y)) for a 3D graphics program.

B.3 Program Listings

B.3.1 SOLUTION
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O 0

OO0 00O0

OO0 0000O0

program solve

implicit none

real*16 alpha,alval,a2val,flval,f2val
real*8 fspace,rO.rinf,r,avl,av2,fv
integer ispace

dimension fspace(100000), ispace(6000)

common /alpha/Zalpha

common /colspace/fspace, ispace
common /soln/alval,a2val,flval,f2val
common /rbegin/r0

common /rend/rinf

rO is chosen so that r**2 » r**6

then A(r)=r**2/8 - See Taylor series for A(r)

rOo=1.0d-8

Here infinity is approximated by 100.0 (!!). This isjustified

by observing the values for A and A’ which areidentically
from the output of DO2RAF, at 100.0.

rinf=100.0d0
call get alpha
call collocate fa

call get k

end

subroutine get_alpha

implicit none

real*16 alpha,r,alval0,a2val0
real*8 dr ,dalval ,da2val

real*16 hdelta,halpha,p,flp,f2p,a,fa,b,fb,
ftalval ,a2val ,f1val ,f2val ;funi, fun2 £f1,fF2 ,hfl,hf2

common /alpha/Zalpha
common /soln/alval ,a2val ,flval ,f2val

funlO=alvalO-alval
fun2 0=a2val0-a2val

At r=0.1:
alpha» 2.361459634210712q-1

1.249997680814110D-03 A(2) =2 .499986093580511D-02
2.358509655613953D-03 F(2) =4.711123048028515D-02

AC)
F(D

dr=0.1d0
call get_a val(dr,dalval,da2val)

1.0 and 0.0,



Use

r=gext(dr)
alvalO=gext(dalval)
a2valO=gext(da2val)

first terms from Taylor series to get initial estimate for ALPHA
alpha=qsqrt(-24.0q0*(alval0-r*r/8.0q0)/r*=*6)

hdelta=1.0g-18
halpha=0.01q0

a=alpha-halpha
b=alpha+halpha

call taylor_fa(r,a)
fa=funl

call taylor_fa(r,b)
fo=Funi Q

p=1.0q0

f1p=1.0q0
2p=1.000

hf1=1.0q0
hf2=1.0q0

write (%, (/1x,a)”)’ Alpha A1VALO-A1VAL
& A2VALO-A2VAL FI-Diff F2-Diff’

do while((gabs(flp).gt.hdelta).or.(gqabs(f2p).gt.-hdelta).or.
& (gabs(hfl) .gt.hdelta) .or. (gabs(hf2) .gt.hdelta))
ffi=flval
ff2=f2val

p=(a+b)/2.0q0
call taylor_fa(r,p)

Fflp=funl
f2p=fun2Q
hfl=Flval-ffl
hf2=f2val-ff2

if ((Flp*fa).gt.0.0q0) then
a=p
fa=Flp
else
b=P
fo=Flp
end if
write(*, " (Ix, 1pd25.18,4(3x, Ipd10.3)) Dp, Flp,f2p,hfl ,hf2
end do

alpha=p

write(*,"(/Ix,a,lpdll.4))’At r =7,r

write(™,” 2(Ix,a,1pd22.15),a)”) "A() =7,alval0>> A(2) =>,a2Talo,
f© - From DO2RAF”

write(*,”(/2(1x,a,1pd22.15)),) ,A(1) -".alval,” AR =>,a2val
write(™*,”(Ix,a,1pd22.15)) D) F(1) -~.FflTal,” F@) =7,f2val

end
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subroutine taylor_fa(r,alpha)

implicit none
real*16 r ,alpha

real*16 i,a,fv,av,fvd,avd hi ha hfd,had,sum
integer i.n.it

common /soln/av,avd,fv fvd
dimension f(0:1000),a(0:1000)

£(0)=0.0q0
F(1)=0.0qg0
T(2)=alpha
£(3)=0.0q0
f(4)=-1(2)/8.0q0

a(0)=0.0q0
a(1)=0.0q0
a(2)=1.0q0/8.0q0
a(3)=0.0q0
a(4)=0.0q0

v=F@*r*r+f(4)*r=*4
av=a(2)*r*r

fvd=2 0q0*F(2)*r+4 0qo*f(4)*r**3
avd=2 .0g0*a(2)*r

do vhile((n.1t.1000).and. (it.1t.20))
n=n+2
sum=0.0gq0
do i*2,(n-4)
sum=sum+F(i)*F(n-i-2)
end do
a(n)““-sum/ (4.0q0*qgfloat(n))

aum=*0.0q0
do 1«2,(n-2)
sum=sum+F(i)*a(n-i)
end do
T (n)=-2.0q0*sun/ (gFloat (n)-2. 0g0)

hf=F(n)*r**n
ha=a(n)*r**n

hfd=gext(n)*F(n)*r**(n-1)
had=gext(n)*a(n)*r**(n-1)

fv=Fv+hf
av=av+ha



fvd=fvd+hfd
avd=avd+had

if ((qabs(ha).lt.gabs(av)*1.0g-22).and.

ft (gqabs(had) .1t.gabs(avd)*1.0g-22).and.
ft (qabs(hf) .1t_gabs(fv)*1.0g-22).and.
ft (gabs(hfd) . 1t.gabs(fvd)*1.0g-22)) then
it=it+Hl
else
it=0
end if
end do
end

subroutine get a val(rcheck,alval,a2val)

implicit none
real*8 rcheck,alval ,a2val

real*8 rbreak,deleps,tol,r0,h,hmesh,abt(2),work(310100),
Ftr(10000),y(2,10000) ,rinf

integer i ,ifail,ijac,init,j ,liwork,mnp n ,np,humbeg,nummix,lwork

integer iwork(60100)

common /rbegin/roO
common /rend/rinf

external afcn.abcs,d02gaz,d02gay,d02gax

tol=1.0e-18
Iwork=310100
liwork=60100
mnp=10000
n=2

np=1002
numbeg=I
nummix=0

rbreak=20.0d0

r(1)=0.0d0
r (np) =rinf

h=(rbreak-r(1))/dfloat(np/2-1)
hmesh=h

do i=l,np/2
r(D)r(D+dfloat(i-1)*h
if (r(i).1t.dsqrt(8.0d0)) then
y @, i)=r (i)*r(i)/8. 0do
y(2,1)=2.0d0*r(i)/8.0d0
else
y (@, i)=1.0d0
y(2,1)=0.0d0
end if
end do



h»(r(np)-rbreak)/dfloat(np/2)

do j=1,(np/2+1)
i*»j-1+np/2
X (i)=rbreak+dfloat(-1)*h
y(l,i)=i.0d0
y(2,1)=0.0d0
end do

do i=l,np
il (r(i) ge.rcheck) then
if (dabs(r(i)-rcheck).gt.hmesh/4.0d0) then

do j=np,i,-I
rg+bh“r@
end do
np=np+1
end if

r(i)=rcheck
h=dabs(r (i))*1.0d-12
goto 1
end if
end do

r()=ro

init=1
deleps=0.0d0
ijac*0
ifail=I11

call dO2raf (n,amp,np humbeg niuunix,tol ,init,r,y,
k2,abt ,afcn,abcs,i jac,d02gaz ,d02gay ,deleps,d02gaz ,d02gax,
ftwork,1«ork,ivork,liwork,ifail)

do i=l,np
if (dabs(r(i)-rcheck).lt.h) then
alval=y(l,1)
a2val=y(2,1)
goto 2
end if
end do

return

end

subroutine afcn(r,eps,y,f,n)

real*8 f(n),y(n)
real*8 eps,r
integer n

f(DH-y@
T(2)»5.0d0*y(2)/r-4.0d0*y (1)*y (2)/r+y(1)-1.0d0

return
end
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subroutine abcs(eps,ya,yb,bc,n)

real*8 eps
real*8 ya(n),yb(n),bc(n)
integer n

real*8 roO

common /rbegin/r0O

be (D)=ya(1)-r0*ro/8.0do
be(2)=yb(1)-1.0d0

return
end
c
e ok ek ok ek K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Rk
c
subroutine collocate _fa
C ___________
c
implicit none

real*8 ispace,aleft,aright,zeta(2),tol(2),z(2),u(2),err(2),
ftroreak,flbc,albc,rinf
integer 1i,ncomp,ispace,m(2),ipar(1l),lItol(2),iflag

dimension fspace(100000) . ispace(6000)

common /colspace/fspace, ispace
common /fa_bcval/flbc,albc
common /rend/rinf

external fafcn, jacfa,fabcs,fajacbhc3,dummy

rbreak=0.1d0
call get_fa(rbreak,flbc,albc, -true.)

ncomp=2
m(D=I
m(2)=1
aleft=rbreak
aright=rinf
zeta(D=aleft
zeta(2)=aright
do 10 i1-1,11

10 ipar(i)=0
ipar (1)=1
ipar(2)=7
ipar(3)=50
ipar(4)*2
ipar (5)=100000
ipar(6)=6000
ipar (7)=-1
do 20 i=1,2

Itol(i)=i

20 tol(i)=1.0d-17

call colsys(ncomp,m,aleft,aright,zeta, ipsir,ltol,tol,
ftduamy,ispace, fspace,iflag, fafcn, jacfa, fabcs, fajacbcs ,dummy)
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if (iflag.ne.l) then
write (*,,(/Ix,a,i12)”) *COLSYS: The value of iflag is ’,iflag
stop

endif

return
end

subroutine dummy

end

subroutine fafcn(r,z,f)

real*8 r,z(2),f(2)

F(1)=2.0d0*z(1)*(1.0d0-z(2))/r
F(@)=-r*(z(1)*z(1)-1.0d0)/4 .0d0

return
end

subroutine jacfa(r,z,df)

real*s8 z(2),df(2,2).r

df(1,1)=2.0d0*(1-z(2))/r
df (1,2)— 2.0d0*z(1)/r
df(2, D=-z(1)*r/2.0d0
df(2,2)=0.0d0

return
end

subroutine fabcs(i,z,q)

implicit none

integer 1
real*8 z(2),9

real*8 flbc,albc
common /fa_bcval/flbc,albc
goto(1,2),i

1 g=z(1)-flbc
return
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2 g“z(2)-1.0d0
return

end

subroutine fajacbcs(i,z,dg)

implicit none

real*8 z(2),dg(2)
integer i

integer j

do 10 j-1,2
10 dg(§)*0.0d0

goto(l,2),i

1 dg(1)=*1.0d0
return

2 dg(2)=1.0d0
return

end

R R R

c
subroutine get_fa(r,fv,av,usetaylor)

implicit none
real*8 r,fv,av

real*16 alpha,alval ,a2val ,flval ,f2val
real*8 fa(2),fspace

integer ispace

logical*l usetaylor

dimension fspace(100000), ispace(6000)

common /soln/alval ,a2val ,flval ,f2val
common /colspace/fspace, ispace
common /alpha/alpha

IT ((r.1e.0.1dO) .or .usetaylor) then
call taylor_fa(gext(r).alpha)
fv*dbleq(flval)
av=dbleg(alval)

else
call appsIn(r,fa,fspacetispace)
fvefa(l)
av*fa(2)

end if

return
end
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subroutine get k

implicit none

real*8 tol,r,rend,fa(?) ,cin(?) ,y(@) ,f(2 ,cout(16) ,com(5) ,
&const(5),w(2,22) ,pw(2,2) ,fspace,fv,av.rlast,rstart
integer i,ifail,j,mped,n,nout,iw, iwl,ispace

dimension fspace(100000), ispace(6000)

common /colspace/fspace,ispace

external kfcn.dummy

rstart=5.0d0
open(unit=1,status="unknownl,file="rkfa dat~)

Here infinity is approximated by 34.0 (1!1I11)_ This is necessary since
if r>=35.0 exp(-r) is effectively zero (10**(-16)), which causes problems
for the integrator.

r=34.0d0
y(1)=dexp(-r)
y(2)=-dexp(-r)

n=2

w=2

iwl=22
mped=0
tol=1.0d-18
rend=1.0d-4
ifail=I

do i=1,5
cin(i)=0.0d0

end do

do i=1,5
comm(i)=0.0d0
const(i1)=0.0d0

end do

cin(1)=1.0d0

comm(4)=1.0d0

call do2gbf(r,rend,n,y,cin,tol, kfcn,comm,const,cout,mped,
frdummy ,pw,w ,iw,iwl ifail)

it (r.gt.rstart) then
rlast=r
ifail=I
goto 10

end if

if ((rend.lt.r) .eird. (ifail.eq.0)) then
if (dabs(r-rlast).ge.0.01d0) then
rlast=r
call get fa(r,fv,av,.false.)
write(d,”GUX,1IpdI8.11)) DHr,y(D),fv,av,y(2)
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goto 10

else
ifail=1
goto 10
end if
end if
c
if (ifail.ne.0) then
writei*,*(Ix,a,i2)”) ’IFAIL from DO2QBF is 7,ifail
srite(*, “(Ix,a,lpdll.4) *) "The value of cin(l) is ~,cin(l)
stop
end if
c
return
end
c
c
subroutine kfcen(r,k,f)
c
implicit none
c
real*8 r,k(2),f(2)
c
real*8 fv,av
call get _fa(r,fv,av, .fTalse.)
c
D=k
F()®-k(Q)/r+(Fv*fv+4.0d0/ (r*r))*k(l)
c
return
end

CRxHhkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkk ok ok kkkkkkkkkx

B.3.2 E-DENSITY

program edensity

c
implicit none
c
real*8 eden,q,pi,twopi,f.,a,kl,k2,r,density,hq,t
integer j.nq.itr
logical*l use
c
pi~4.0d0*datan(1.0d0)
c
open(unit=3,status»’old’,file="rkfa.dat’ .readonly)
open(unit=4,statu8=""unknown” ,file="testl2_dat”)
c
write(4,”(2(1x,i2)) ")83,83
c
tsopi=2.0d0*pi
ng=83
hg=twopi/dfloat(ng-1)
c
use>=. false.
itr=5
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do while(.not.use)
use=_true.
read(3,*,end=Dr,kl,f,a,k2
use=_false.
1 itr=itr+l
if ((itr.eg.6).or.use) then
itr=0
t=1.0d0/2.0d0
do j=I,nq
g=dfloat (J-1)*hqg
density=eden(r,q,f,a,kl,k2,t)
write(4,”B(x,Ipdl4.7)) ) r*dcos(q),r*dsin(q) -density
end do
end if
end do

stop
end

real*8 function eden(r,q,f,a,kl,k2,t)
implicit none
real*8 r,q,f,a,kl,k2,t

real*8 term(10)
integer i

term(1)=4.0d0*f*F*(1.0d0-a)**2/ (r*r)

term(2)=8.0d0*(kl*a*f*t/r)**2

term(3)=2.0do*t*t* (k2*f+2.0d0*kl*f*(1.0d0-a)/r)**2

term(4)=-4.0d0*(k2+2 .0do*kl/r)*t*t*k2*f*f*dsin(2.0d0*q)
ft*dsin(2.0d0*q)

term(5)=2.0d0*t*t*(k2+2.0d0*k1/r)**2* (f*f+4 _0d0*f~f*Kkl
ft*t*dcos(2.0d0*q)+4 .0dO*KI*KI*F*f*t*t)

term(6)=dcos(2.0d0*q)*f*F*kl*t*(2.0d0*dcos(2.0d0*q)*f*f
FeekI*t+f*f-1_0d0)

term(7)=-8.0d0*dcos(2.0d0*q) *f*f*t*(k2+2.0d0O*k1/r)*
f(2.0d0o*a*k 1 *kI*t*t/r-
Ftkl*t*dcos(2.0d0*q)/r+2 .0dO*kI*a*t*dcos(2.0d0*q)/r+(a-1.0d0)/r)

term(8)=(f*f-1.0d0)**2/8.0d0

term(Q)=(f*f+4 .0do*F*F*kl*t*dcos(2.0d0*q)+(2.0dO*t*F*kl)**2
ft-1.0d0)**2/8.0d0

term(10)=16.0d0*kl*a*f*f*dcos(2.0d0*q)*(a-1,0d0)*t/(r*r)

eden=0.0d0

do i=1,10
eden=eden+term(i)

end do

return
end
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