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Abstract

Information from the many kinds of spectroscopy used by chemists and 

physicists is fundamental to our understanding of the structure of materials. 

Numerical techniques have an important role to play in the augmentation of the 

instrumentation and technology available in the laboratory, but are frequently 

viewed as separate from the laboratory procedures. We examine the model 

approaches which are currently applied in spectroscopy and determine their 

applicability to piezo-spectroscopic data. Typically, in piezo-spectroscopic 

modelling the analyses in question are required to handle large complex secular 

matrices, to distinguish between components in the experimental results, and to 

identify the transition types as rapidly and as efficiently as possible. The method 

proposed is based on providing a shell to the Powell or Fletcher-Reeves 

minimisation algorithms, and gives favourable results compared to those 

previously used.

Additionally, the statistical properties of the least-squares estimator used in the 

Powell-shell are examined and implications for nonlinear model functions are 

discussed. We also show that the least squares estimator performs well for 

piezo-spectroscopic data compared to those currently used in multi-response data 

analysis.

Finally we describe the development of a software tool which incorporates all 

features of fitting piezo-spectroscopic data.
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Chapter 1 

General Overview and Introduction

1.1 Introduction

The study of electronic and optoelectronic materials has been intensive for 

decades. This reflects the central role of materials analysis and characterisation 

in the improvement and development of device technology. For these materials, 

much of the research has been directed at obtaining a full understanding of the 

properties of defects. This applies equally to defects deliberately produced for 

device optimisation and to unwanted defects which degrade device performance. 

Spectroscopic techniques, of which electron paramagnetic resonance and 

photoluminescence are good examples, possess high sensitivity and accuracy and 

are widely used in the study of defects in materials. The power of spectroscopic 

measurements can be considerably enhanced by applying known perturbations 

to the system under study, Fowler (1968). Hydrostatic and uniaxial stress, and 

magnetic and electric fields are widely used perturbations in conjunction with 

optical spectroscopy. From the effects produced by perturbation, much detailed 

information on the physical structure and electronic state of the defect may be 

obtained.

The fitting of all types of spectroscopic data is however a topic which is 

characterised by a lack of coherent reporting in the literature. This is due both 

to the diversity of current experimental techniques and applications and the 

obvious corollary of the lack of a common forum in terms of reporting on the



analyses performed. Such considerations have ensured that the effort of 

reconciling common features in the underlying linear models is non-trivial, even 

where such models have long been employed by mathematicians, statisticians 

and computer scientists. Similarly, an informed discussion of the scope of the 

optimisation technique used is usually lacking, since the primary aim is to 

interpret the values obtained for the parameters defining the problem rather than 

to assess the efficiency of the estimation process. The wider aspects of 

achieving a good fit to spectroscopic data have not, of course, been entirely 

ignored and notable examples include Rusling and Kumosinki(1991), Femenias 

and Cheval (1992) and Leurgans and Ross(1992).

In this thesis, we address the central issues of fitting spectroscopic data and in 

particular Piezo-spectroscopic data. General spectroscopic fitting techniques are 

reviewed with a view to implementing them in piezo-spectroscopy, and the 

background to piezo-spectroscopic data generation is given. Methods for fitting 

piezo-spectroscopic data to date have principally involved finding the roots of 

a characteristic polynomial (i.e. the eigenvalues of an energy shift), but these do 

not always yield directly the quantities of interest, namely the parameters 

defining the optical transition. The alternative approach which we have 

developed involves the provision of a discrete shell to the Powell or Fletcher- 

Reeves algorithm, Walsh(1975) Press et al.(1991). The method is used both to 

re-examine previously published data and to analyse new data. We also 

investigate the appropriateness of the least squares estimator which is the basis 

of the Powell-shell and compare it to equivalent estimators also used for Multi

response data. An assessment of the error assumptions for the Powell-shell is 

also given and their value as diagnostics discussed.
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1.2 General Fitting Procedures

1.2.1 Piezo-spectroscopic data

Owing to the fact that a finite number of possible point defect configurations 

exists for crystals, general equations, which describe the effects of an applied 

stress on cubic crystals, are known for all possible configurations, 

Kaplyanski(1963). These equations have been derived for stresses along <001>1, 

<111> and <110> crystallographic directions. In practice, data is recorded for 

stresses along these three directions and a best fit is sought between the data and 

the appropriate equations. The equations are expressed in terms of several 

parameters (in units of energy per unit stress or shift rates) and values of these 

parameters which produce the best overall fit are extracted. The parameters in 

question are related to the bulk moduli of the solid. The values obtained for a 

particular defect indicate the extent to which the characteristics of the defect 

depart from those of the bulk solid. In addition, the symmetry properties of the 

electron energy states and (in favourable cases) the nature of the defect 

vibrational modes may be obtained.

1.2.2 Fitting Piezo-spectroscopic data

Methods used in the fitting of transitions have not been investigated in great 

detail and publications relating to them have been limited. As an illustration, 

Hughes and Runcimann(1967) describe a simplistic but still widely used fitting 

technique for a Tetragonal E->E example. In this case for stress measurements 

in the <100>, <111> and <110> directions, nine experimentally measured shifts 

are obtained to fit four parameters, giving (i.e.) an over-determined set of 

equations, which may in principle be solved for a best fit. The energy shifts

1 <xyz> denotes the x,y and z axes co-ordinates of the relevent stress vector.
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correspond to the eigenvalues of a matrix, known as a secular matrix, where 

each element of this matrix corresponds to the probability of a transition 

between two individual energy levels of the complete transition. The authors 

maintain however, that the error involved in the measurements does not warrant 

a sophisticated approach, so that in order to see if a consistent set of parameters 

can be obtained, the results for each direction are considered separately and each 

parameter determined from each of the resulting three sets of equations. A 

consistency check is then made between results from different stress directions, 

since each parameter is determined at least once.

Extensive tabulations have been prepared for the effects of uniaxial stresses on 

optical centres in cubic crystals, Kaplyanski (1964)a),b), Hughes and Runciman 

(1967), Davies and Nazard (1980). However, these tables are relevant primarily 

to absorption spectroscopy. When the optical measurements are made using 

photoluminescence the relative intensities of the stress-split components of the 

transition may be very different from the intensities of the same stress-split 

components in absorption, Mohammed et al.(1982). These authors give 

equivalent limited tabulations for the effect of uniaxial stresses on the 

photoluminescence transitions.

For both sets of transitions the tabulations give the individual stress energy 

equations for an equivalent experimental energy emission. The tables provide an 

immense contribution in obtaining fits for data, particularly where only one 

transition is suspected, and in this case the approach of Hughes and 

Runcimann(1967) can be readily applied. Unfortunately, for real data, a number 

of factors may influence the complexity of the problem and there may well be 

more than one potential transition, see e.g. do Carmo et al.( 1988). Typically the 

analysis is then required to handle high ordered complex secular matrices, to 

distinguish between components in the experimental results, and to identify the 

transition types as rapidly and efficiently as possible.

4



1.2.3 General Spectroscopy

Other methods are numerous and include multi-linear modelling of spectroscopic 

data, e.g. the biochemical examples of Leurgans and Ross(1992). In this case the 

different components of a particular chemical are again analysed using 

photoluminescence, but the approach is multivariate since there are numerous 

independent variables, including line energy, which accounts for the intensity of 

light being emitted during luminescence. (This contrasts with the case for piezo- 

spectroscopic data where stress is the single explanatory variable dominating the 

characterisation of the transition). Other multivariate approaches such as 

principal components, Windeg et al.(1991) and Gelsema et al.(1992), are also 

commonly applied as are methods which require deconvolution of the complete 

spectral profile, Seraydarian et al.(1992). A distinction may also be made 

between the spectral profile approach and that which involves modelling 

realisations of the spectrum e.g. Davies et al.(1990), Diaz et al.(1991). We 

discuss further details of these methods and their appropriateness for piezo- 

spectroscopic data in the next chapter.

1.3 Scope of Thesis

The organisation of the material in this thesis is as follows:

Chapter 2 "Spectroscopic Techniques "

In this chapter we discuss the current spectroscopic modelling techniques which, 

in particular are applied in the Physical and Chemical sciences. We group these 

into three different categories, namely Potential Energy Curve Fitting, Spectral 

Profile and Multivariate approaches. Finally, we outline the current approaches

5



used to analyse Piezo-spectroscopic data.

Chapter 3 "Transition Identification"

In this chapter we provide the physical background to the models and describe 

the steps involved in the identification of a transition.

Definitions of physical terms, and details of the generation of piezo- 

spectroscopic data are also given.

Chapter 4 "Method o f Fitting the data"

We describe here a general methodology for the identification of transitions and 

common approaches to obtaining parameter estimates. We discuss alternative 

fitting techniques to those commonly used, and in particular recommend a 

method based on a "shell" supplied to Powell’s or Fletcher-Reeves algorithms 

in order to obtain a non-linear least squares fit between the experimental data 

and the eigenvalues of a suspected secular matrix.

Chapter 5 "Error Analysis”

In this chapter, we evaluate the precision and accuracy of the parameter 

estimates obtained from the Powell-Shell through a consideration of the 

diagnostics of the fits. We discuss the appropriateness of other estimators and 

compare their relative merits to the least-squares approach of the Powell-Shell. 

Finally, we investigate the degree of non-linear behaviour of the model 

parameters and the expectation surface obtained using the Powell-Shell.

Chapter 6 "The Tool"

Specification and development of a software tool using the alternative "shell" 

are given. An analysis of convergence times for this algorithm is also reported 

on numerous machines and for problems of varying complexity.

6



Chapter 2

Spectroscopic Modelling Techniques

2.1 Introduction

In order to determine a method for fitting piezo-spectroscopic data and hence 

to identify the appropriate transition, we review the current methods used to 

model general spectroscopic data. These include modelling the complete 

spectrum using multivariate and spectral profile techniques, and modelling 

realisations of the spectrum, using methods such as potential energy curve 

fitting, Diaz et al.(1991), and electronic model identification, Kober and 

Meyer(1984).

2.2 Spectroscopic Data Models

Information from many kinds of spectroscopy used by chemists and physicists 

is fundamental to our understanding of the structure of materials. Numerical 

modelling techniques have an important role to play in the augmentation of the 

instrumentation and technology available in the laboratory, but are frequently 

viewed as separate from laboratory procedures. In this section we review the 

current literature on spectroscopic modelling. Of interest are methods of analysis 

which share common features with and which may be applicable to, our 

particular type of spectroscopic data.

Generally, the majority of work involved in modelling chemically-derived 

spectroscopic data is concerned with the detection of elements or components 

in a substance. Similarly in physics, Russ (1977) summarised the different

7



approaches that were in use in the late seventies and suggested that modelling 

techniques which are simple to interpret should be given equal weight to those 

that involve incredible complexity and computation. Over the years analysts

Energy
Figure 2.1 A simple vibrational spectrum with two peaks PL and PR.

have applied numerous techniques to spectroscopic data, depending on the 

required information. Generally, however, these may be broadly classified into

(i) Multivariate, (ii) Spectral Profile fitting techniques and (iii) Potential energy 

curve fitting. With respect to the spectrum shown in figure (2.1), methods (i) 

and (ii) would be applied to the complete spectrum but would differ in the 

underlying theory. Method (iii) deals with realisations of the spectrum which in 

this example might correspond to the two peaks PL and PR.

An example of an application of a multivariate technique, is given by the 

modelling of Electron Energy Loss Spectroscopy (EELS). This spectroscopic 

method investigates the physical properties of a material, by detecting the 

presence of specific elements in a particular specimen, Gelsema et al. (1992). 

In addition, discriminant analysis and partial least squares regression have been 

used to choose samples for near infrared spectroscopy calibrations for

8



agricultural products, Shcnk and Westerhaus (1991). Alternatively, a spectral 

fitting example might involve applying non-linear regression to a function of the 

sum of numerous gaussians in the analysis of heat deposition profiles. These 

profiles are crucial to all transport analysis of beam heated discharges, 

Seraydarian et al.(1992). The construction of potential energy curves from 

vibrational spectroscopic data is also an important problem since many physical 

properties may be calculated from an accurate knowledge of such curves. 

Potential energy curve fitting is based on perturbation theory and can be 

described as applying an appropriate numerical integration algorithm to the 

potential energy function such that iterative corrections are obtained until the 

eigenvalues of the Schrodinger equation agree with the realisations of the 

spectrum energy peaks, Diaz et al.(1991). Such techniques can be categorised 

under the heading of modelling realisations of the spectrum.

We now briefly discuss these general fitting techniques under our headings (i) 

to (iii) above.

2.2.1 Multivariate techniques

One of the most widely used group of techniques in the investigation of 

spectroscopic data is multivariate analysis. The approach incorporates a number 

of useful procedures which are well described in the literature, although not 

always particularly well differentiated - factor analysis and principal component 

analysis is a notorious example. As an illustration of multivariate techniques in 

spectroscopic analysis we therefore consider the factor analysis/ P.C.A 

approaches. Principal component analysis searches for the best fitting orthogonal 

axes to replace initially correlated variables, Dillon and Goldstein (1984). The 

vector of principal components can be described by the following:

Y = P'X (2.1)

where Y corresponds to the vectors of orthogonal principal components, the

9



elements of P are contributions of the i'h variable to the j ,b component and the 

X vectors are the original correlated variables. Principal components analysis 

(PCA) is a variance-oriented method, where the components, (typically linear 

combinations of the original variables), are usually determined by obtaining the 

eigenvalues of the covariance or correlation matrix, Chatfield and Collins(1980). 

The correlation matrix is used when the variables are from different scales. The 

benefits of such an analysis can only be seen if the deterministic variables are 

truly correlated. Factor analysis on the other hand is a method that accounts for 

the covariance between variables, i.e the factors determine the variables and can 

be expressed by the following:

where Xj corresponds to the initial variables, X- to the factor loadings, fj to 

common factors and et to the unique factors. The factor loadings in the Factor 

Analysis (FA) can be obtained using methods such as the "Principal Factor 

Method" or "Maximum Likelihood Estimators", Dillion and Goldstein (1984). 

The confusion between PCA and FA appears to arise from the use of the 

correlation matrix and from the estimation procedures used in both techniques. 

Methods of Factor analyses e.g. the Principal Factor Method may appear very 

similar to PCA which adds to the difficulty. However in the PFM each diagonal 

element of the correlation matrix is replaced by the respective variable’s 

communality estimate and the loadings are calculated in a staged process. (A 

communality measures the amount of variance of a variable accounted for by 

a set of common factors). If R* is the original correlation matrix with the 

diagonal elements substituted with communalities, then the first factor loading 

is as follows:

where Fj is the factor loading, is the eigenvalue of R* and Y, is the

Xj= ^ f j+e, (2.2)

(2.3)
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corresponding eigenvector. The second factor loading is estimated using the 

same procedure with the augmented matrix R*i; given by

R \  = R* - F j.F / (2.4)

This procedure is earned on until the elements of the augmented R* matrix are 

close to zero. In PCA the diagonal element measures the variable’s individual 

variance or correlation, and is identical to the PFM method only if the 

communalities are set to one. In the spectroscopic literature there are numerous 

examples of dimensional reduction, e.g. Piepponen and Lindstrom (1989) use 

PCA to determine the source of the pollutants Al, As, Cd, Co, Cr, Cu, Fe, Hg, 

Mn, Pb, Sb, Ti, V in mussel shells from atomic absorption spectroscopy. 

Further, a special form of PCA called Correspondence Analysis is used for 

element detection in EELS, Gelsema et al.(1992). ( The difference between 

correspondence analysis and PCA is that in correspondence analysis we deal 

with the orthogonal projections of the frequencies generated from a contingency 

table of X as opposed to directly orthogonalising the covariance or correlation 

matrix of X.). Other variants of PCA are also common; for example Windig et 

al.(1990) describe a staged multivariate technique which incorporates the PCA 

method in order to determine the chemical components of a substance. 

Subsequently, Windig et al.(1991) also discuss a method which incorporates 

PCA with visually orientated variance diagrams on data obtained from pyrolysis 

mass spectrometry of biomass feedstocks. It is difficult, however, to evaluate 

this particular research since the mathematical description of PCA in this paper 

seems to be essentially FA, (specifically the Principal Factor Method, see e.g. 

Chatfield and Collins(1980)).

A more elaborate form of analysis on FA principles has been put forward by 

Leurgans and Ross(1992), who use Multilinear models to obtain mathematical 

decomposition of chemical data sets. The multilinear model is an extension of 

a bilinear model of spectroscopic absorbance data where this is given by

11



A[i,j] = I  ef[i]cf[j]L (2.5)
f

where A[i,j] corresponds to the absorption, ef[i] is the extinction coefficient of 

a chromophore1 f at wavelength ^  and cf[j] is the concentration of f in 

circumstance j, Leurgans and Ross(1992). This model is often described as a 

factor analysis model where the common factors correspond to the 

chromophores and the extinction coefficients of the chromophores relate to the 

loadings and is similar to the unilinear model described in equation (2.4). An 

additional fluorescence factor known as fluorophores can be incorporated into 

the above model to give a trilinear model, Leurgans and Ross(1992). This model 

is analogous to a complex parallel factoring model and the parameters of such 

a model can be obtained using nonlinear regression analysis2. The form of the 

model as a simple extension of equation (2.5) is then

A[i,j,k] = Z ef[i]qf[j]cf[k] (2.6)
f

where cf[k] is the concentration of chromophore f in circumstance k, ef[i] is the 

relative absorption cross section of chromophore f at wavelength and qf[j] 

is the relative emission detection at wavelength Xjex. Leurgans and Ross(1992) 

discuss the geometry of the model and the difficulty of obtaining good fits and 

estimates of the parameters in some detail. A criticism of the FA approach in 

general would of course be the somewhat arbitrary choice of model forms, but 

the authors justify this, in this in the example given above, (as in others found 

in spectroscopic literature), by stating that the model form is readily available 

from prior scientific knowledge.

1 An isolated functional group that show s absorption o f  a  characteristic nature in the ultraviolet 
or visible region, is ca lled  a  c.hromphore, Chanda(1979).

2
I f  the derivative with respect to any param eters o f  a m odel contains any other param eters, 

then the m odel is deem ed to be N on-linear, Bates and W ates(1988).
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2.2.2 Spectral Profile Fitting

The second broad category of spectroscopic analyses is Spectral fitting which 

specifically relates to the process of obtaining a direct functional fit to spectral 

data and to breaking the spectrum down into individual components using 

deconvolution techniques. Nonlinear regression is also used here in conjunction 

with Fourier deconvolution algorithms, with a view to, say, resolving severely- 

overlapped component bands in protein Fourier Transform infrared (FT-IR), 

spectra, Rusling and Kumosinki(1992). Deconvolution techniques are also used 

with combinations of Galatry and Voigt functions, each corresponding to an 

individually overlapped spectrum and fitted by least squares, Ouyang and 

Varghese (1989). Nonlinear modelling is also used by Beamson and 

Briggs(1992) to show how a comparison of spectra for a solid phase polymer 

and that for the corresponding small molecule in the gas phase can assist 

interpretation of the polymer data.

To illustrate some of the ideas involved, we discuss briefly the example given 

by Rusling and Kumosinki(1991). The authors describe proteins as biopolymers 

consisting of polypeptide chains of amino acid molecules linked in a linear 

fashion, hi biological systems, proteins function as catalysts for life supporting 

chemical reactions and as structural components of living organisms. In their 

native state, polypeptide chains fold in a complicated manner which is essential 

to their biological function. Folding patterns of proteins may be characterised 

by periodic structures such as helices. Other structural units include a variety of 

turns, loops and disorder coils. Determination of the way the protein is folded 

is called secondary structural analysis.

Secondary protein structures can be determined by several types of instrumental 

methods such as X-ray crystallography, nuclear magnetic resonance and 

infrared spectroscopy. Since the development of commercial FT-IR 

spectrometers, methods for analyzing IR data are being developed which give

13



a high degree of accuracy for determination of global secondary structure of 

proteins.

Individual peaks for vibrational transitions are severely overlapped in FT-IR 

spectra. This overlap needs to be resolved before a complete structural analysis 

of the protein can be made. The spectrum is the sum of a variety of individual 

component bands which can be identified using a Fourier deconvolution 

technique, Rusling and Kumosinki(1991), and then applying a nonlinear 

regression to the following equation:

A = Z hj [exp {- (x-Xj)2/2Wj]. (2.7)
j

where A is absorbance, Wj is peak width, Xj is frequency in cm"1, and hj is peak 

height. Wj, Xj and hj are the parameters optimised by regression.

All the above spectral fitting techniques involve a priori resolution of the spectra 

whereas it is often more appropriate or convenient to work directly with 

principal spectral features such as peak intensities. This brings us to the final 

group of modelling techniques.

2.2.3 Modelling Realisations of the Spectrum

Realisation methods rely specifically on taking spectral features e.g. peaks over 

a range of values of the independent variable, deriving an appropriate model and 

finding its parameters using a minimisation technique.

Potential Energy Curves

A commonly occurring situation in perturbation spectroscopy, and one of the 

fundamental problems in vibrational, impedance and piezo spectroscopic data, 

is the representation of atomic or molecular behaviour in microscopic terms as 

a function of the experimental variables. Examples include the construction of 

potential energy curves from the peak intensities, Figure (2.1), Diaz et al.( 1991), 

and identifying the transition occurring from a particular set of piezo-



spectroscopic data, e.g. Do Carmo et al.(1989).

The construction of potential energy curves as in Diaz et al.(1991) has many 

parallels and variants, such as determining the set of inverse-power coefficients 

defining the potential equation of a given molecular state, Davies et al.(1990). 

In this case, the experimental energy peaks are fitted to the potential equation 

to determine its inertial rotational constants (Bv’s). Following the authors, the 

potential between two atoms as the sum of inverse power terms is given by

V(R) = D - S C m/R (2.8)

where D is the energy at the molecular dissociation limit, the powers m are 

positive integers, and the electronic states of the atoms yielded on dissociation 

determine which terms contribute to this sum. The basis for obtaining estimates 

of Cm and later Bv is an iterative non-linear least-squares-fitting technique on the 

peaks of the spectrum.

In the Diaz et al.(1991) example, the authors describe the potential energy curve 

in molecular terms as a power series expansion in the reduced variable x = (r- 

re)/re:

V(a,x) = a0x2[l+ Z a ixi] (2.9)

where ^  are the parameters to be estimated, V(a,x) is the potential energy curve, 

r is the intemuclear separation and re is the equilibrium distance.

Parameter estimates of this equation are given by solving the Schrodinger 

equation

\|/"(x)=Q(a,£,x)\|/(x) (2.10)

in which Q(a.,E,x)= V(a,x)-E, E  being the energy. The best values of the

potential parameters a are those for which the eigenvalues E„ E2, ,EM of

equation(2.10) agree most closely with the corresponding experimental

vibrational-rotational energies E1; E2, ,EM. More precisely, we want to obtain

a0,a1; ,aN.j N<M, so that the sum

S(N,M)= X (Ej - E )  (2.11)



is as small as possible. If we change the potential parameters from a to a+e, 

where e={e0,e^...,en.j} , every eigenvalue will change accordingly and we can 

expand E(a) in a Taylor series around e = 0 as follows:

E(&+^=E($+Ii&%+V2l,&i'i)£iEi+...... (2.12)

where the superscript(i,j,..) stands for the derivative with respect to a ^ , . .  . This 

sort of expansion is common in perturbation theory. Terms of higher order than 

two will be negligible since < 1/2, so that on substitution of equation (2.12) 

into equation (2.11) we can minimise with respect to £. In this way we obtain 

an iterative perturbation scheme to improve the potential V(a,x) systematically. 

Stages in the procedure are therefore : firstly, to choose a set of potential 

parameters a, solve the Schrodinger equation and obtain the required eigenvalues 

and their derivatives with respect to a; secondly, to minimize S(N,M) and obtain 

a set of corrections £ and, finally, to solve the Schrodinger equation with a+£ 

instead of a. The procedure is then repeated until the correction is less than a 

specified tolerance. In every step the roots of the system of nonlinear equations

8S(N,M)/5ej = 0, i= l,2,...,N -l (2.13)

are obtained by means of the linear Newton-Raphson algorithm, Diaz et 

al.(1991). The methods of Davies et al.(1990) and Diaz et al.(1991) are thus 

similar in that they obtain fits of nonlinear equations to realisations of 

spectroscopic data. The fitting approaches differ in that Davies et al.(1990) use 

a direct fitting approach to the potential energy equations while Diaz et al.(1991) 

fit indirectly using Taylor series approximations to the eigenvalue equations.

Electronic Model Identification

An additional application which involves working with realisations of the 

spectrum is that of an electronic structural model for the emitting of Metal 

Ligand Charge Transfer excited states of Ru(bpy)32+ and Os(bpy)32+, Kober and 

Meyer(1984). Here the long term goal is the description of those features that
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control the various excited-state properties. The excited-state lifetimes of both 

complexes are temperature dependent and increase rather dramatically as the 

temperature decreases. The behaviour has been successfully interpreted in terms 

of a thermally equilibrated Boltzmann population of several low-lying excited 

states whose lifetimes are temperature independent. The ultimate test of the 

localised hypothesis is to develop an electronic structural model which would 

result in explicit identification of the electron state assignments that are 

consistent with the various Raman spectroscopic experimental data. The 

localised excited-states model describes the energy shifts which can be 

represented by the following spin-orbit coupling matrix:

F+K  -A/2 -A /2 

-A/2 - k  -A/2  

-A/2 -A/2 G -K

where F, K, G are parameters to be estimated which represent the relative 

energies of the singlet and triplet3 excited states, and X is the spin orbit 

coupling constant.

The eigenvalues and eigenvectors of these matrices then give the relative 

energies and compositions, respectively, of the excited states in terms of the 

pure triplet and singlet states. The method of obtaining the parameters of such 

a model can be considered as reasonably simplistic. Initially known values are 

taken for X and K based on related analysis for similar studies, whereas no 

reliable predictions are available for F and G and these are treated as variables, 

Kober (1983). Consequently, the relative energies of the states as a function of 

F and G may be examined over a given range, (0< | F,G | < 4000 cm'1, 

Kober(1983)).

g
Singlet and Triplet states represent the dim ensionality o f  the orb it occupied  by the an 

electron.



2.2 Summary

It is clear from the preceding discussion that the three general approaches of 

modelling spectroscopic data span a wide range of applications. It is equally 

clear that no single ‘best’ method exists or is universally acceptable. The 

complexities inherent to spectroscopic data as a whole, the subsidiary factors 

and variables affecting spectrum production in many cases, all combine to make 

the modelling of the principal features a non-trivial matter. The use of 

multivariate techniques is clearly appropriate where the particular application 

relies heavily on information from a large set of variables which cannot, apriori, 

be reduced to one or two. On the other hand, dealing directly with the spectral 

profile is indicated in those cases where component analysis is completed by 

modelling the spectrum using a Fourier series or the sum of numerous Gaussian 

curves. Finally, where an understanding of basic electronic properties of the 

material is required, (e.g. the behaviour of excited states), it is frequently 

advisable to work with dominant spectral features, which reflect more distinctly 

the changes taking place at microscopic level.

We now consider in detail the generation of Piezo-spectroscopic data and 

determine into which of the modelling categories the transition identification 

problem falls.
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Chapter 3 

Piezo-Spectroscopic Data 

And 

Transition Identification 

3.1 Introduction

Piezo-Spectroscopic data is generated from the realisations of the energy peaks 

from stress-luminescence data. The object of applying stress to crystals is to 

identify the transitions taking place between energy levels of the crystal when 

a defect is present.

In this chapter we discuss the physical problem, define the terminology used 

and provide a description of the way in which piezo-spectroscopic data are 

generated. An outline only of the theory is provided, since this is the subject of 

a number of texts and papers, e.g. Rudden and Wilson(1980), Myers (1990), 

Huges and Runcimann (1967) and Mohammed et al.(1982). We also briefly 

discuss the current method, used to reconcile the experimental results with the 

theoretical predictions, Hughes and Runcimann (1967). Finally we evaluate the 

relative merits of the general spectroscopic modelling techniques with respect 

to the piezo-spectroscopic problem.

3.2 What is a Defect ?

An ideal crystal would consist of an array of atoms which possess a regular
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lattice structure within the whole bulk of the crystal, Figure (3.1).

Any departure from such perfect regularity is a defect in the structure.

Accordingly, a defect may be:

(i) a simple misplaced atom or group of atoms, within a crystal structure,

(ii) a missing atom, atoms or a group of atoms in an otherwise perfect crystal,

(iii) an atomic impurity or atoms inserted into an otherwise perfect crystal.

For example, point defects, such as atom vacancies, can be described as 

removing or introducing new atoms into the crystal structure. Figure (3.2) shows 

an atom being introduced (an interstitial atom) between regular lattice sites.

Perfect Crystal

Figure 3.1 Formation of a 
perfect crystal.

Interstitial Atom

Lattice V acancy

Figure 3.2 Two important point defects are 
the lattice vacancy and the 
interstitial atom.
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The introduction of an atom into a perfect crystal, for example, will disturb the 

electronic patterns of the crystal and may cause electrons to move from one 

orbital to another. By studying the movement of the electrons and hence their 

energy emissions we can obtain information on the defect. Electron motion can 

be described using Wave Theory and numerous introductory texts are available 

in the literature (see e.g. Rudden and Wilson(1980)). We give only a brief 

synopsis of the principal points in what follows.

3.3 Wave Theory

The description and mathematical formulation of the time-independent 

Schrödinger wave equation, is given, Rudden and Wilson (1980), by

d V  + 2m. (E-V)y = 0. (3.1)
dx2 i>2

where m represents the mass,

E the total energy,

V the potential energy of the particle and is equivalent to that estimated in 

equation (2.9),

>i = h lln  where h is Planck’s constant.

The symbol \|/ represents a complex quantity with real and imaginary parts. It 

is related to the requirement that it must completely represent the motion, and 

must specify where the electron is and what energy it has at a given time. 

Typically, the solution of the Schrödinger equation, equation (3.1) for a particle 

in a 1-dimensional box is explained using the following assumptions and 

equations.

V(x) = for 0 > x > L (3.2)

= 0 for ()<= x <= L
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where L is a constant equivalent to the boundary of the particle and

V is the potential function, and the choice of V(x) =0 between 0 and L is quite

arbitrary and only serves as a constant reference level.

In this restricted interval the wave equation becomes

d V  + 8TC2m.E\i/(x) = 0. (3.3)
dx2 h2

Any periodic function will satisfy this equation, and for the sake of simplicity 

a sine function can be chosen. Thus

\|/(x)=Asin(kx) (3.4)

will be a satisfactory solution, provided that k=n7c/L where n is a positive 

integer, since this condition reduces the wave function to zero at both the 

boundaries. Substitution of this solution into equation (3.2) gives

E=h2k2 = h V  (3.5)
87T2m 8mL

Where n is thus equivalent to the quantum number of the simple Bohr model 

and effectively determines the energy of the particle.

The model can be extended to 3 dimensions without much difficulty. The 

following wave equation is proposed

82\|/(x,y,z) + 52\i/(x,y,z) + 8V(x,y,z) + 87T2m.Evi/(x,v,z)=0 (3.6)
8x2 8y2 8z2 h

and yields the following solution,

\|/(x,y,z)=Asin(k,x)sin(k,y)sin(k,z) (3.7)

where kI=n17i/L,k2=n27c/L,k3=n37r/L

Each number nj,n2 and n3 can take an integral value from one to infinity. The

energy term is therefore governed by 3 quantum numbers such that

E=h^. (n 12+n22+n32) (3.8)
8mL2

These quantum numbers also determine the form of the wave function which by
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convention can be written as Y u i,^ -  One important consequence is that several 

combinations can yield equivalent energy values. For example, suppose one of 

the quantum numbers is equal to 2 the others being unity. Three possible 

combinations of the quantum numbers lead to the same value of energy, E.

1) nx= l, n2= l, n3=2.

2) nx= l, n2=2, n3= l.

3) nx=2, n2= l, n3= l.

The corresponding wave functions are then

but in each instance the energy is exactly the same

E=6tf (3.12)
8mL2

That is the wave functions \|/112, \|/121 and \|/211 are said to be degenerate in 

energy. The presence of degeneracy adds complications to the identification of 

the defect, since we may be unable to determine the number of energy shifts 

occurring.

The above theory can be used to explain in mathematical terms the background 

to a transition between two electron waves and hence the corresponding 

difference in energy.

3.4 Transition in Piezo-spectroscopic Data

3.4.1 General Considerations

Referring to the crystal structure and underlying theory described in the previous 

section, it is clear that electrons may move between orbitals, gaining or losing 

energy in the process. For example when an electron makes a p to s transition,

12=A. sin (rcx/L) sin (rcy/L) sin (2tiz/L) 

\|/j 21=A. sin (ttx/L) sin (27iy/L)sin (tcz/L) 

\|/211=A.sin(27tx/L)sin(7i:y/L)sin(TCz/L)

(3.9)

(3.10)

(3.11)
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i.e. moves from a p-orbital to the single s-orbital it loses energy, which is equal 

to the difference in energies associated with the p and s states (orbitals). It is 

also possible that the electron may go from a low energy state to a higher state 

as a consequence of excitation. This process is known as "absorption" and is the 

opposite to that previously described. The pure and perfect crystal will have 

characteristic emission and absorption energies. The presence of a defect in the 

crystal structure changes the emission/absorption energy. The energy emissions 

can be measured using spectroscopic techniques, providing information on the 

defect, and on the host material.

Using wave theory we can explain in mathematical terms the background to a 

transition. A transition can be defined as the change in wave function and 

hence the difference in energy, as the electron moves from one energy level to 

another, and can be described in probabilistic fashion by equation (3.10),

\]/a, level one.

\|/b, level two.

where p is the probability of going from level a to b, o is an operator which 

represents the stimulation or impetus required to move the electron, i.e. the 

perturbation employed,

V is a perturbational operator and is equivalent to the potential energy of the 

transition.

The difference in energy is described as Eb-Ea, where Eb and Ea correspond to 

the energies of the \|rb and \|/a wave equations respectively.

3.4.2 Electronic Transitions in Solids

For atoms in crystals, the symmetry of the crystal structure at the site of an 

atom plays a major role in determining the details of the electron wave 

functions. Group theory is fundamental to the results, and labels of electron

(3.13)
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wave functions retain much of the nomenclature of group theory mathematics. 

The groups of interest here are those formed by rotations and reflections which 

leave the defect in the solid unchanged. One dimensional states are labelled A 

or B, two dimensional are labelled E and three dimensional are labelled T. As 

we show below, it is the effects of a reduction in symmetry which provide a 

powerful spectroscopic tool.

Degeneracy can occur as either orientational or electronic degeneracy. 

Orientational degeneracy occurs due to geometrical features within the crystal 

lattice. Electronic degeneracy occurs due to the fact that an electron can lie in 

equivalent orbitals of equal energy. By applying stress we may change the 

energy of one or more of the orbitals and hence remove at least some of the 

degeneracy.

3.5 Applying a Perturbation

3.5.1 Splitting and Shifting

The application of a perturbation such as stress on crystals is a well known 

technique used in the identification of the transition type in a crystal. Atoms in 

a particular state are characterised by a particular energy. Thus if Ea denotes the 

energy level of the atoms when they are in an unexcited or stable state and E,, 

denotes the energy level of the atoms in an excited state, then the energy 

emitted in a transition can be denoted by the difference in the energy levels, E,, - 

Ea = E. In the simplest case applying stress to this crystal may cause the energy 

levels to shift, then we arrive at the situation illustrated in Figure (3.3a).
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E  ' b

J l

Zero
Stress

7\

E+Ô

\ /
Finite

Stress

Figure 3.3a Shift in energy between the
and Ea levels to the E’b and E’a levels.

Here the two energy levels shift to E 'h and E'n, resulting in an overall energy 

shift of 8:

E 'b-E'# = E+8. (3.14)

This shift can be described by the Energy versus Intensity diagram (spectrum) 

for zero stress being displaced from peak Pn to P, by the application of stress. 

P0 and P, represent the energy peaks at E and E+5.

no stress 

stress

Energy

Figure 3.3b Spectrum diagram for the situation described 
in Figure (3.3a).
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It can happen, however, that the line will split as well as shift, Figure (3.3c). 

In  this situation the application of stress has removed some degeneracy within 

the transition, and the E,, level has split into two levels E ’bl and E’b2. The 

equivalent spectrum will show two peaks at PL and PR and will have two 

energy shifts 8t and S2, Figure (3.3d).

Eb

-a Az

z e ro
Stress

IK
E'b i

E+6 !

T -
E+Ò
I P

E b

V eV

Finite
Stress

Figure 3.3c The occurrence of a level splitting as 
well as shifting.

no stress

Figure 3.3d Spectrum diagram related to Figure
(3.3c), where we see two peaks at P, and PR.
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3.5.2 Mixing of States

Mixing of states may occur when we have two levels lying closely together.

Stress

Figure 3.4 Two non-interacting transitions.
Initial energies denoted Ex and 
E2.

They can also be referred to as "nearly degenerate" states. In the unstressed 

situation the spectrum would show more than one intensity peak, e.g. do Carmo 

et al. (1988). If we apply stress, one of two things may occur.

(I) The two lines might not interact with each other so they split independently. 

On an Energy difference versus Stress diagram (fan diagram) we would see a 

stress split component react linearly with increasing stress. Figure (3.4) shows 

this occurrence, with two sets of different lines indicating that the nearly 

degenerate states do not have to be the same type.

(II) Alternatively the two states might interact with each other to give non-linear 

behaviour such as that illustrated in Figure (3.5).

It is also possible that while one line is evident in the zero-stress 

situation, perturbing influence of stress may reveal that a further state is present, 

i.e. line-splitting occurs at some stage other than at low stress values. This is 

explained in terms of the application of stress causing a normally disallowed 

transition to occur. This is due to mixing in components of states between which

28



transitions are allowed.

Figure 3.5 Interacting transitions. Again, 
zero stress positions arc at E, 
and E,.

3.6 Experiment And Theory: Reconciling the theory with Piezo- 

Spectroscopic Measurements

Even when we know theoretically how the transition occurs it is not necessarily 

the case that the defect will always give rise to the expected number of lines in 

an experimental situation. In order to find the experimental splittings, a general 

rule is to apply stress parallel to the <1()0>, <111> and < 1 1()> directions -shown 

with respect to the unit cube in Figure (3.6). By applying stress in the above 

directions we are able to obtain considerable information about the defect 

involved.

Additionally, given the geometry involved, stress may have to be applied in 

additional directions in order to obtain a complete description of the 

splitting. These additional directions however will belong to the same 

geometrical family as those above.
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Figure 3.6

An initial description of the geometry of the defect and crystals can be found 

in Group Theory. Tinkham(1964) describes in tabular format each geometrical 

group possible. As an example, we consider the pure crystal of cubic symmetry 

and a trigonal4 defect, Kaplyanskii(1964), in this crystal which has a symmetry 

group described by Tinkham and reproduced in Table(3.1). The column headers 

represent the basis transformations for a particular symmetry, the row headers 

describe the wave functions that are needed to describe the waves of the 

symmetry and the table elements correspond to the traces of the transformation 

matrices.

Table (3.1)

C-3V E 2C3 35v

Ai 1 1 1

a 2 1 -1 -1

E 2 -1 0

C3v is a point group that describes the symmetry elements for a particular set of 

molecules. In geometrical terms it implies that the trigonal defect has a principal 

C3 axis, an axis rotated by 120°, and 3 vertical planes labelled 8V, which leave

Trigonal refers to the sym m etrical and m athem atical properties o f  the geom etry o f  the defect.
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the defect apparently (.indistinguishable from its original position, Vinccnt( 1977).

Figure 3.7 Depicts the body diagonals of a 
unit cube.

The C, axis corresponds to any of the body diagonals of the unit cube, 

Kaplykanskii (1964), and is illustrated in Figure (3.7).

Figure 3.8 <100> Applied stress

Looking at the three families of directions il is clear that under stress from ihe 

< I ()()> direction, Figure (3.8), we would expect the above body diagonals to be 

all perturbed by the same amount, and hence no splitting would occur under 

stress. Mathematically, by calculating the dot product' of the stress direction 

with the body diagonals, and comparing the result of each calculation, the

The dot product corresponds to the displacement ratio o f one vector upon another.5



number of stress groupings can be noted. So for the <110> direction results are 

as follows:

From the above results, Kaplyanskii(1964), it is clear that the four body 

diagonals split into two groups of two for a trigonal E-> A defect. Equivalently, 

it can be shown that for the <111> direction the axis will split into one group 

of one and one group of three. The effects of applying stress in the <110> and 

<111> directions are illustrated in Figures (3.9) and (3.10).

For each defect there is a particular set of directions such that when stress is 

applied, the results of the energy emissions will help in the identification of the 

transition. Having applied stress in all relevant directions it is possible to 

produce three different fan diagrams and from these three cross-sectional views, 

to identify which transition is occurring. It is known that each transition must 

belong to a set of specified types. Each defect type is characterised by a 

particular set of transition types, which are determined by the symmetry

< 1 1 0 > .< lll> = 2 //6 , 

< 1 1 0 > .< in > = 2 //6 , 

<110>.<1U>= 0

< 110> .< lT l>=  0

Figure 3.9 <110> Applied stress Figure 3.10 <111> Applied 
Stress
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properties of the defect - its "symmetry group".

3.7 Identification of a transition in Piezo-Spectroscopy

3.7.1 Setting-up the Problem

Given a particular set of experimental data we now need to use all available 

information on symmetry and stress features in order to identify the transition. 

Table (3.2), Fowler(1968), shows all the possible defects that are permitted by 

group theory and the transitions that are applicable within each one of these 

defects. Each diagram on this table describes the possible splitting for any 

particular transition. Hence for trigonal A->A transition we would expect to see 

one line in the <100> direction, 2 in the <111> direction and 3 in the <110> 

direction, and if the experimental fan diagrams showed the above pattern we 

would presume that the transition occurring was a trigonal A<->A.

A problem with this method is that each set of diagrams does not correspond to 

a unique transition, i.e. more than one type of transition produces very similar 

results. In order to obtain an identification of the appropriate transition from the 

experimental data, the first stage is to use Fowler’s tables to identify a set of 

potential transitions. This is done by comparing the experimental lines to those 

found in the tables. Having done this it is sometimes possible to further narrow 

down the search by using polarisation intensities to find the particular symmetry 

group of the defect in question. However polarisation intensity measurements are 

often difficult to obtain in luminescence experiments since the light radiating out 

from the defects tends to get reflected on the internal surfaces of the sample and 

at the edges so that the polarisation information becomes somewhat scrambled.
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In addition to the use of polarisation intensities we can derive the theoretical 

results for each transition and compare them to the experimental data. Apart 

from the effort involved, this is also not guaranteed to uniquely identify the 

transition due to experimental error. For each transition type we can assume that 

a particular stress Hamiltonian exists, equation (3.15). This stress Hamiltonian 

effectively determines the shift of the initial energy levels when stress is applied 

and it takes the following form:

i i  = j i ,  + V (3.15)

where R, is the Hamiltonian operator that fully describes the system in the 

absence of stress and V is known as the potential equation, a perturbational 

operator that describes the effect of stress on the transition, as defined in 

equation (3.10). For defects of trigonal symmetry, Hughes and Runcimann 

(1967), the perturbation term V is given by

V  =  A ^ S ^  +  Syy+S^) +  A ^ S y ^ S ^ + S ^ + Z i ^ l S ^ - S ^ - S y y )

+ Ex'(2SXy-SZX-Syj +V3£'y(SXX-Syy) +  ̂3 ̂ y' (S y Z ' S/x ) (3.16)

where Als A2, Ex, Ey, Ey', Ey' are parameters to be estimated and represent the 

dimensional scope of V, Sy = | P | ,cos(P,i).cos(P,j), | P | is the magnitude of the 

applied stress and Cos(P,i) is the cosine of the angle between the stress direction 

and the crystal axes i, McGuigan(1989).

Having decided upon the possible transition/defect type, it is necessary to derive 

a matrix called a secular matrix. Each element of this matrix corresponds to the 

probability of a transition between two individual energy levels of the complete 

transition, with its eigenvalues determining the theoretical energy shifts. The 

potential equation and the operator Hs are used to determine the elements of 

such a matrix. In the case of a transition from an E state to an A state at a 

trigonal centre we consider first the influence of the stress Hamiltonian on the 

two-dimensional E state, Hughes and Runcimann (1967), McGuigan(1989). This 

can be represented by the secular matrix, Table (3.3).
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Table 3.3

Hs Ex Ey

Ex <EX V Ex> <EX V Ey>

Ey <Ey V Ex> <Ey V Ey>

Where Ex and Ey are the basis states of the two dimensional E state and the 

elements of this matrix take the form

<EX | V | EX>=<EX | Aj | Ex>(Sxx+Syy+S J  +<EX | A2 | Ex>(Syz+Szx+Sxy)+

<EX I K  | Ex>(2Szz-Sxx-Syy)+<Ex | Ex | Ex>(2Sxy-Szx-Syz)+

<EX | V3£y | Ex>(Sxx-Syy) + <EX | V3E '  | Ex>(Syz - S2X) (3.17) 

The eigenvalues of this matrix correspond to the energies of the degenerate 

levels. We can monitor the effect of the stress on the levels by evaluating the 

eigenvalues as a function of stress. Obviously it becomes a very arduous task 

if an equation of form (3.14) must be substituted for each element of the secular 

matrix in order to obtain the eigenvalues. Fortunately the secular matrix can be 

simplified by applying a theorem called the "Wigner-Eckart Theorem" to each 

of its elements, Griffiths (1961).

3.7.2 The Wigner-Eckart Theorem

The elements of equation (3.14) can be simplified to constants or zero by the 

use of the Wigner-Eckart theorem. This theorem states that

<Eq | 07tr | ES>=[E | | O | | EJ<7t,Es | EC|> (3.18)
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Where <Eq | OnT \ Es> corresponds to the probability that a state Es will go to a 

state Eq when operated on by the operator Onr. The square-bracketed term, 

[E | | O | | E] is called the reduced matrix element which represents a generalised 

probability value, and <ïïrEs | Eq> is similar to a constant of proportionality 

between the above two operators, and is also known as the Clebsh-Gordon 

coefficient or coupling co-efficient. This theorem enables us to identify those 

same sub-operators (<EX | V | Ey> for example) of V which will have a zero or 

non-zero contribution to the secular matrix element. If the coupling coefficient 

for this matrix element is zero then we need not include that sub-operator in the 

corresponding secular matrix element. If the coupling co-efficient is non-zero 

then that sub-operator must remain, McGuigan(1989).

Thus for example, the <EX | V | Ex> element in the trigonal E->A secular matrix 

splits into equation (3.15). Consulting the coupling co-efficients of Griffiths 

(1961), the sub-operators of this equation can be broken down in the following 

fashion:

<EX > s* V ii m 1 A j |E ) . l = A 1 (3.19)

<EX A /  Ex> = ( E | I V 1 E ) .l

3ii (3.20)

<EX Ex 1 Ex> = ( E | 1 Ex | E ).(- 1/V"2) = -B (3.21)

<EX Ex' 1 Ex> = ( E | | e x'| | E ) .( - l/ /2 ) = -C (3.22)

<EX Ey Ex> = ( E | ! 1 E ). 1 = 0 (3.23)

<EX e ; | ex> = ( e | | e ; | 1 E ).l = 0 (3.24)

Aj, 2A2, B, and C are all real parameters. Substituting the above results back into 

equation (3.15) :

<EX | V | Ex>= A 1(Sxx+Syy+Szz)+2A2(Syz+Szx+Sxy)

- B ^ + S ^ S J  - C(Syz+Szx-2Sxy) (3.25)

If we define a  = A ^S ^  + Syy + Szz)+2A2(Syz + Szx + Sxy),

B = B (2SXX - Syy -2SZZ) + C (2Syz - Szx -2Sxy). 

and y = BV3(SXX - Syy) + cV3(Syz -Szx).
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We can rewrite (3.14)

<EX | V | Ex> = cc-B, (326)

similarly we find

<Ey | V | Ey> = a+B, (3.27)

<EX | V | Ey> =<Ey | V | Ex> = B'l3(Sxx-Syy)+C'l3(Syz- S J ,  (3.28)

< E j V | Ey> =<Ey | V | Ex> = y (3.29)

So we can rewrite the secular matrix as

Table (3.4)

Hs Ex Ey

E, a-B 7

7 a+B

3.7.3 Theoretical Energy Values

By obtaining the eigenvalues of this matrix, obtained from Table (3.4), which 

coincide with the theoretical energy values, and comparing them to the 

experimental data we can determine whether the transition is applicable or not. 

Hughes and Runciman(1967) describe sets of equations which arc derived from 

the differing stress directions for the above matrix, by obtaining its determinant:

a-B-A y 

7 a+B-A
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i.e X = a ± ( f  + p2)16

We need now only calculate the values of X under the different

obtain the theoretical values. Recall

a  = A,(SXX + Syy+S77) + 2A2(Sy7 + S7X + Sxy),

B = B(SXX - Syy -2 S J  + C(Sy7 - S7X -2Sxy), 

y = BV3(SXX - Syy) + cV3(Sy/ -S7X), and 

Sy = | P | ,cos(P,i).cos(P,j),

So we must apply stress along 5 directions and they are as follows:

(1) Stress along the <!()()> axis:

Sxx = 1 and all other Ŝ  = 0

X = A, ± 2B

(2) Stress along the <111> axis :

=» Sjj = 1/3 for all i,j

=> X — A, + 2A2

(3) Stress along the < lT 1 > axis :

Sxx = Syy = SZ7 = Sxz = 1/3

and Sxy = Syj. = -1/3 

=> X = A, - 2/3A2 ± 4/3C

(4) Stress along the < 1 10> axis:

^  Sxx = Syy = Sxy = 1/2

all other Sy = 0

X = A, + A2 ±(B -2C)

(5) Stress along the < 1 1()> axis

=> Sxx = Syy = 1/2, Sxy =-1/2

all other Ŝ  = 0

X = A, + A2 ±(B + 2C)

(3.30)

stresses to

(3.31)

(3.32)

(3.33)

(334)

(3.35)
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We now have a set of equations for each stress direction from which the 

theoretical eigenvalues can be calculated. However to do this, estimates of 

parameters A1; A2, B, C for the trigonal defect must be obtained.

3.8 Choosing an Appropriate Model for Piezo-Spectroscopic 

data

3.8.1 Multivariate and Profile Methods

We now consider the applicability of the fitting methods discussed in Chapter 

2 to the problem outlined above. The questions to be addressed are, firstly, 

whether the information available from a knowledge of the physical theory and 

the experimental results support modelling through multivariate or spectral 

forms. For example, the need to build a tri-linear model implies that more than 

one independent explanatory variable has a major influence on response. For all 

such examples complete information of the spectrum must be generated and not 

just realisations. Secondly, how useful is a complete analysis of spectral 

components in terms of identifying piezo-spectroscopic transitions. Even if 

variables other than the direct perturbation (stress in this case) were considered, 

the model forms seem unnecessarily complex, (Leurgans and Ross (1992) and 

equation (2.6)), and do not yield directly solutions to equations of the form 

given in Section 3.7.3.. It would appear, similarly, that spectral fitting provides 

considerable information which is not directly relevant to a solution of the given 

problem. It is thus not obvious that full information is necessary or even 

desirable in obtaining the parameter estimates which describe the transitions. 

For Piezo-spectroscopic data the key information in identification is based on 

the definite peak intensities and the analysis, thus falls most readily into the 

broad category of method (iii), (section (2.2.3), depending on limited
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information or realisations of the spectrum. In support of this view, the testing 

of different model forms is the basis of transition identification since, due manly 

to degeneracy and hidden transitions, these are unlikely to be known exactly 

before fitting takes place.

3.8.2 Using Realisations of the Spectrum

While, the application of the more general multivariate and spectral profile 

analyses to piezo-spectroscopic data is unattractive, however non-linear 

modelling still has a role to play, e.g. Davies et al.(1990) and Diaz et al.(1991). 

The data described by these authors has many similarities to data generated in 

piezo-spectroscopy, not least multiple emissions or multi-response for a given 

value of the independent variable (section 3.7.3). Additionally the form of the 

model is generally known in outline only and must be ascertained in both cases. 

The parameters of the problem discussed by Davies et al.(1990) are determined 

directly by applying a least-squares technique, where in any iteration of the 

fitting procedure, it is necessary to know the partial derivatives of each of the 

calculated quantities with respect to each of the parameters being fitted. 

Additionally the authors describe how to obtain initial values for such a 

procedure, although this is subject to alteration depending on the application and 

functional form.

Diaz et al.( 1991), give an alternative indirect fitting technique based on 

obtaining a Taylor series of the eigenvalues and deriving values of the 

increments, e, (equation (2.12)), needed for the individual parameters in order 

to minimise the sum of squares.

Both methods rely on minimising the sum of squares of a system of non-linear 

equations and in order to do this the derivatives of these equations with respect 

to the appropriate parameters need to be derived. Both methods could be applied 

to piezo-spectroscopic data if it were not for the intrinsic problems of missing
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data, degeneracy and non-continuous measurements. It is with the inclusion of 

these aspects that both methods fail, since degeneracy implies that experimental 

lines have to be matched to actual lines before a sum of squares function can 

be calculated, which is far from trivial when missing points are taken into 

account since associating points to lines increase the model complexity. In the 

following chapter we discuss in detail the additional difficulties which arise due 

to these features.

Finally, the procedure used in Electronic model identification is similar to that 

applied in conventional piezo-spectroscopic data, Hughes and Runciman (1967), 

which relies on the selection of different initial parameter values for one or 

more particular stress directions. These values are manipulated until a reasonable 

fit is found. Having established a "best" fit for one particular direction, these 

parameter values are fitted to the secular matrix for the other stress directions 

and a revision of the parameter estimates is then made on the basis of the 

overall fit. However the Electronic model identification problem differs from 

that described for piezo-spectroscopic data in that no interaction terms are 

included i.e there is no mixing of states. This allows one to easily develop 

eigenvalue equations and hence the fitting is relatively straightforward. Piezo- 

spectroscopic data, however, frequently deals with matrices of much higher 

dimension and a correspondingly greater level of complexity.
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3.9 In Summary

The approach outlined by Hughes and Runcimann (1967) has the merit of 

simplicity but can often in practice take many manual iterations to achieve a 

satisfactory fit. Furthermore, matrices of a very high order clearly involve a 

prohibitive number of such manipulations. It appears that the inaccuracies are 

very large and the mathematical framework is less than ideal.

It is clear, nonetheless, that the problems discussed by Davies et al.(1990) and 

Diaz et al.(1991) represent the more suitable modelling approach, rather than 

those utilising multivariate and spectral fitting techniques. In order to investigate 

in more detail the appropriateness of spectral realisation methods and hopefully 

to improve upon them, we must be clear as to the objectives of the analysis. 

Clearly a method is required which generates for piezo-spectroscopic data an 

overall solution for all the stress directions and is capable of dealing with large 

matrices. It is also essential to obtain in a short period of time, the solutions for 

different defect types for a specific experimental data set, since the transition 

will probably not be obvious unless the experimental data are very good. In the 

following chapter, we address the question of finding an appropriate model 

structure and method of solution which fulfil the above requirements for any 

transition problem. We include a brief discussion of the advantages and 

disadvantages of implementing the various approaches dealt with here.

43



Chapter 4

Method of Fitting The Data

4.1 Introduction

It is evident from the discussion of models and methods in Chapter 2 that these 

cover a wide range over the many fields in which spectroscopy is a common 

tool. There is rarely a single universally used method even for one particular 

application and this is also for piezo-spectroscopic analysis. The method of 

Hughes and Runcimann(1967), has been described briefly and is perhaps the 

most commonly used but can only be described as sufficient for problems with 

secular matrices of limited dimensions. In order to develop a more general 

approach we start by considering the limitations of this method. The primary 

drawback is that it requires the manipulation of the parameters with respect to 

each individual stress direction, and the review of these estimates with respect 

to the remaining stress directions. This manipulation involves a long tuning 

period when approaching an acceptable fit. Such a method which may be 

described as an heuristic approach, Taha (1987), neither guarantees optimality 

nor achieves particularly good precision.

To arrive more systematically at a global solution the method of transition 

identification developed should ensure the generation of an overall solution by 

obtaining simultaneous parameter estimates for all stress directions and have the 

capability of dealing with large secular matrices.

44



The fitting procedure currently used, section (3.8.2), has been identified as an 

integral part of the overall transition identification process, Figure(4.1). 

Nevertheless its effectiveness when dealing with multiple transitions is limited. 

This problem can however, be resolved by the procurement and implementation 

of suitable fitting procedures. We now discuss the development of such piezo- 

spectroscopic models.

4.2 The Global Fit
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Clearly, we need to minimise the differences between the experimental energy 

values and the eigenvalues generated from the suspected secular matrix to 

achieve a good fit. One of the simplest solutions to such problems where there 

is a single dependent variable, is the method of Ordinary Least Squares (OLS), 

Neter and Wasserman(1974). However the problem outlined in the previous 

chapter shows one distinct difference, in that it requires a method which deals 

with multiple dependent variables. This feature relates to the fact that for each 

stress value within a particular stress direction, several energy values are 

possible, so that a multidimensional model, Judge et al.(1985), seems indicated. 

Any proposed method must not only be able minimise the Sum of Squares 

(SSq) between the experimental and theoretical energy values, with respect to 

the parameters of the secular matrix, but deal with all stress directions at the 

same time. The SSq function for such a model will take the following form:

SSq = E ^ E ^ Y ^  - E(Yijk))2 (4.1)

where Yijk coincide to the iUl energy value at a stress value of j Mpa1 for the k"' 

direction, and E(Yijk) corresponds to the expected energy values or eigenvalues 

of the proposed matrix. Methods used to minimise equation (4.1) require the 

nature of the relationship between each of the Y variables to be established. 

Recall the matrix for a trigonal E->A symmetry, Hughes and Runciman(1967), 

specified in Table (3.3). We can generate the eigenvalues of this matrix by 

obtaining its determinant, section (3.7.3), which is equivalent to equation (3.30). 

Equation (3.30), reproduced for convenience, (equation (4.2)), is of appropriate

form to describe the corresponding energy value for a specified stress direction.

X = a  ± ( f  + (4.2)

where

a  = Aj(Sxx + Syy+Szz)+2A2(Syz + Szx + Sxy),

6 = B (2SXX - Syy -2SZZ) + C(Syz - S2X -2Sxy),

1 M pa or M ega Pascals is a unit as a  m easurem ent o f  stress
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Y = Ba/3(Sxx - Syy) + c V 3 ( S yz -Szx), and 

Sy = | P | .cos(P,i).cos(P,j), 

and À, corresponds to the theoretical energy values. From section (3.7.3) there 

are five equations, equations (3.31) - (3.35), that are derived from equation

(4.2) which describe the defect in every individual stress direction. From section

(3.8.2) we see that a method which will globally solve equations (3.31) - (3.35) 

is required. The form of equations (3.31)- (3.35) is linear and the set can be 

described as a multidimensional linear model, Johnston(1984). Generally 

however, the form of a multidimensional Unear model has the following 

functional specification

Y l +  P l2^2  +  Y l^ i  +  Yl2^2  =  Hi- ( 4 .3 )

P l2^ i  +  Y 2 +  Y21X 1 +  Y23X 3 +  Y24X 4 =  P2- ( 4 .4 )

where Yt correspond to the eigenvalues of the secular matrix,

Xj correspond to possible applicable stresses,

P and y correspond to the parameters of the secular matrix and 

^  corresponds to a stochastic error between the experimental energy values and 

the predicted eigenvalues.

Although equations (4.3)-(4.4) are not immediately comparable to equations 

(3.31) - (3.35) its reduced form2 seems more appropriate, Johnston (1984). 

From equations (4.3)-(4.4) the Y variables are of current interest, the X variables 

are pre-determined and each equation can be described as a structural relation. 

The general form of this model can be given by equation (4.5)

Byt + Txt = ut t = l,...,n. (4 .5 )

Where B is a GxG matrix of co-efficients of current variables, T  is a GxK

matrix of coefficients of predetermined variables, and yt, xt and ut are column

The reduced fo rm  is obtain by solving the m odel so as to express each current endogenous 
variable solely in terms o f  exogenous variab les and lagged endogenous variables. The term inology 
originates from  the m ore usual applications o f  sim ultaneous models.
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vectors of G, K, and G elements respectively, Johnston(1984).

Assuming that B"1 exists, the reduced form of equation (4.5) is

yt = 7txt + vt t = l,...,n (4.6)

where n  depends on the matrix co-efficients for yt and xt i.e. B and F 

respectively such that 7t= - B ' \ r  and vt=B_1.ut.

In general there will be an infinity of B and T  structures corresponding to any 

given 7i matrix. We can illustrate however with the Trigonal E->A symmetry 

case outlined earlier. Recall equations (3.31) - (3.35) with an extra term on each 

equation in order to incorporate stress and with each equation describing the 

individual energy shifts, yt;

where Pll corresponds to stress parallel to a particular axis, Als A2, B and C are 

the parameters to be estimated.

(1) Pll<100>

=> y, = (A, - 2B).S (4.7)

=> y2 = (Aj + 2B).S (4.8)

(2) P lk l 11>

y3 = (Aj + 2A2).S (4.9)

(3) P lk l 11>

(4) Pll<110>

y4 = (Aj - 2/3A2 - 4/3C).S (4.10)

y5 = (Aj - 2/3A2 + 4/3C).S (4.11)

y6 = (Ax + A2 -(B -2C)).S (4.12)

y7 = (Aj + A2 +(B -2C)).S (4.13)

(5) Pll<110>

y8 = (Aj + A2 +(B + 2C)).S (4.14)
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Each equation corresponds to a particular stress direction, with each eigenvalue 

representing a predicted energy value. Formulating with respect to the general 

problem we see that the B matrix will correspond to a 9x9 identity matrix. This 

implies that :

7t = r

With the only pre-determined variable being the stress component, implying 

K =l. Thus in the case of transition identification, equation (4.6) becomes

yt=7T.St + vt t=l,...,n. (4.16)

where St denotes the stress component, the predetermined variable , 

yt corresponds to the current variable, 

vt = ut since B is an identity matrix, and 

k takes the following form:

n T = [a b  c] (4-17)

where a,b and c take the following form;

a T = [A, +2B A, - 2 B A 1+ZA2] (4.18)

b T = [Ar 2/3A2+4/3C A ,-2 /3 A 2-4 /3 C  A,+A2+{B-2C)] (4.19)

c T = [A,+A2-{B -2 C ) A ^-A 2+(B+2C) A ,- A 2-(B+2C)\ (4.20)

Techniques for solving this type of problem are well known in fields such as 

Econometrics, Judge et al.(1985), and include variations of least squares and 

maximum likelihood which come under the broad headings of limited and full 

information estimation. For the estimation of a structural equation in limited 

information techniques, complete information on all other structural equations



in the model is not taken into account, whereas with full information techniques 

all such equations are considered together or simultaneously.

The general form outlined earlier leads to a statistical identification problem, 

where obtaining unique estimates of B and T  from the estimation of n  will 

prove to be impossible unless an appropriate number of restrictions can be 

incorporated, Johnston(1984). Information on the secular matrix or knowledge 

of the boundary conditions is required in order to uniquely identify the set of 

parameters. Do Carmo et al.(1988) describe a transition identification where the 

energy shift and the effect due to spin orbital are measured directly from the 

data.

Various approaches to obtaining solutions for the secular matrix are now 

discussed with a view to using the formulation above to obtain the set of 

parameter estimates.

4.3. Characteristic Polynomial

The characteristic polynomial method entails building up a system of equations 

for each applicable stress direction, which correspond to the characteristic 

polynomials of the secular matrices of each direction.

We refer in what follows to our previous example of a trigonal E->A, 

Kaplyanskii(1964), Table (3.3). We can define the characteristic polynomial Q 

for this secular matrix by obtaining the determinant, where this is given by

Q = det | Hs - M  | (4.21)

Here I is the identity matrix and the \ ’s are the experimental energy values. 

From equation (4.21) the characteristic polynomial can be given as follows :

(a-p-X1)(a+P-?i2)-'/ = 0 (4.22)

with A| and X2 as the experimental energy values, 

a ,6 and y denoted as in equation (4.2).
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This characteristic polynomial can be manipulated in such a way as to give a 

regression equation with dependent variable Yi-Y2 and independent variables 

stress, Yi and y2, for which we can estimate the parameters of the secular matrix. 

Before this can happen all unique stress directions must have their characteristic 

polynomial derived. From Chapter 3, the defect of a trigonal transition lies along 

the body diagonals of a crystal cube, which as already described, implies there 

are five unique stress directions, 100, 111, 111, 110 and 110. Each one of these 

stress directions has a characteristic polynomial similar to equation (4.22). Each

equation has a number of unknown parameters, Ax A2, B, C and three

independent variables, stress, and It can happen that and X2 have the

same value due to degeneracy leading to difficulties in allocating energy values

to the eigenvalues of matrices of order greater than 2. Thus in general (4.22)

becomes

(a,-Px)2-(a,-Px)(Alx+A2x)-T2x=AlxA2x (4.23)

Where x takes the values 100, 110, 110, 111 and 111 .

From equation (4.23) we can formulate the complete system given by the

expression

ClI I x i = fXstress^A^+E; for (i=l,...,n) (4.24)
i=l

where ^  are the experimental energy values, 

a are the parameters to be estimated, 

e, are the errors corresponding to each regression equation, 

n is the number of stress directions applicable 

and d is the dimension of the secular matrix.

Expression (4.24) describes a system of equations with common parameters. 

Techniques applicable to this general class of models, Judge et al.(1985), can
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thus in theory be used to obtain fits on the experimental data for various 

transition possibilities. However, difficulties can arise in terms of associating the 

experimental energy values (embedded in equation (4.24)) with the theoretical 

values describing the transition. Further details on the equation structure are 

clearly desirable.

4.4. Derivation of eigenvalue equations

This method is an extension of the characteristic polynomial method, where we 

seek to solve the system of eigenvalue equations generated for each stress 

direction, instead of the characteristic polynomial of the matrix. Noting in 

equation (4.24) that \  is included in the function statement, we can reformulate 

the equation such that

-  R( stress; , a ) + e; (i=l,..,n) (4.25)

where X,, a and £  are defined as previously.

This is effectively an equation that gives the eigenvalues for a particular secular 

matrix and proves more useful than the previous method, since the problem of 

allocation of energy values to eigenvalues is lessened as we have more 

knowledge of each equation.

For a low dimensional problem, e.g. the trigonal A->E, McGuigan(1989), we 

can fairly readily use the eigenvalue approach to fit such a system of equations 

to the experimental data lines. Mohammed et al.(1982) present a detailed 

tabulation of the effect of uniaxial stresses on photoluminescence transitions 

occurring at optical centres found in cubic crystals. The elements of this table 

depict the eigenvalue equations that are appropriate for each transition and are
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equivalent to the form outlined above. An example of the format of these tables 

for a monoclinic I A->A symmetry can be seen in Table (4.1).

Table 4.1

Typ e  o f Centre s |  |< 001> s | |< 111> s | |<110>

M onoclin ic I  
A -A

A, 1/3 (A ,+ 2A 2+ 2A 3) A 2+ A 3

•̂ 2 1/3 (A ,+ 2A 2-2 A 3-4 A 4) 1 /2 (A ,+ A 2-2A 4)

1 /3 ( A , +2 A 2- 2 A 3+ 4A 4) 1 /2 (A ,+ A 2+ 2A 4)

a 2-a 3

Each equation is multiplied by the stress applicable and is equivalent to the 

energy shift generated by the stress applied. Hence to obtain an appropriate fit, 

simultaneous regression techniques would be quite feasible, although recovering 

the desired parameters from the reduced form of the model is again a problem. 

Additional complexity e.g. looking at the identification of transitions which 

involve the mixing of states, (section (3.6)), exacerbates this difficulty. As an 

example of the difficulties of identification in a transition which involves mixing 

of states we consider the situation where we have two E->A trigonal states. Each 

individual state will have a secular matrix like that described in Table (3.3). 

However if the experimental data show the possibility of an interaction between 

the states3, then the corresponding secular matrix that represents this situation 

will have to accommodate both transitions, McGuigan(1989).

Table 4.2

Hs Ex Ey Ex’ Ex’

Ex a-ß Y <Ej V | Ex’> <Ej V |E/>

Ey Y a+ß <Ey | V | Ex’> <Ey| V |E/>

Ex’ <E/ 1 V | Ex> <EX’ | V | Ey> a ’-ß ’ Y
Ey’ <e;  I v I ex> <e;  I v I Ey> r a ’+ß’

An interaction betw een tw o states is usually represented by a non-linear fan  diagram.
3
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Table (4.2) demonstrates this situation, where we can see that the diagonal 

blocks are similar to that of Table (3.3). The off-diagonal blocks are similar to 

the diagonal blocks in functional form but will possess different parameters. 

They represent the amount of interaction that can occur between the two states. 

Hence if off-diagonal terms are zero, we expect the two states to have no 

interaction and behave linearly. If, however, they are not zero then we expect 

an interaction to occur and the stress energy relationship, will be non-linear.

In summary, the additional feature of mixing of states further complicates the 

use of the eigenvalue equations and characteristic polynomials as a means of 

fitting experimental data.

4.5. Powell-Shell : Method of Solution

To date the approaches studied in the identification of transition data have dealt 

specifically with generating individual relationships between the experimental 

energy values and the functions proposed to evaluate their corresponding 

eigenvalues. In the following we describe a method which enables us to obtain 

simultaneous parameter estimates for the defect of interest without having to 

derive either eigenvalue equations or characteristic polynomial equations. This 

reduces analytical processing time compared to that needed for the methods 

described in sections (4.3) and (4.4). Even with modem mathematical 

manipulators, the time taken to derive the characteristic polynomial for a high 

order matrix can be prohibitive. The approach described here also resolves the 

problem of parameter identification because we deal directly with the parameters 

within the secular matrix. We have denoted it the "Powell-Shell" algorithm. 

The underlying principle is again to obtain a match for the eigenvalues of a
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potential4 secular matrix with the actual experimental energy values.

4.5.1 Methodology

For each transition type there is a corresponding secular matrix. However when 

transitions interact it is far harder to identify the transition types which are 

actually involved. Using the transition identification scheme illustrated in Figure 

(4.1) we can narrow the selection of transitions that are applicable and hence 

find the best fit for each potentially applicable secular matrix . Using the 

Powell-Shell as a fitting technique we require:

1) To match each eigenvalue generated from the secular matrix of the suspected 

transition type to a corresponding experimental value. This is necessary, since 

degenerate problems often hide many of the characteristics of the transition 

occurring and hence imply a non one-to-one correspondence between the 

experimental and theoretical domains.

2) Rank each experimental and eigenvalue (predicted value) according to the 

highest value and accordingly deal with the problem of missing data, since (as 

noted in Chapter 2) the application of stress does not always produce a 

measurable result corresponding to the suspected transition, (even where this 

transition is appropriate). An extreme case of such an occurrence is where a 

transition interacting with another transition is completely un-observable within 

the experimental stress boundaries. An example of such an occurrence is given 

by the data set and solution described in section (4.6.3).

3) Obtain a fit between the experimental and predicted lines of data.

4) Acquire "good" initial estimates in order to start the algorithm. (Clearly 

convergence is more rapid where initial estimates are closer to actual values. 

However, we demonstrate that even relatively poor initial estimates give

4 It is probab le  fo r  com plex cases in particu lar that m ore than one transition m ay be exam ined  
and hence m ore than one secu lar m atrix may be fitted .
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convergence within a reasonable period using this approach).

4.5.2 Matching Problem

The presence of degeneracy complicates further the difficulty of matching an 

unequal amount of experimental points with the predicted eigenvalues generated 

for an equivalent application of stress.

As an example, we consider the problem of a trigonal centre, with a non

degenerate orbital ground state and two orbital doublet excited states, Do Carmo 

et al.(1988). This has an 8 x 8 secular matrix but for the <100> direction there 

are only four energy emissions reported. Since we are trying to obtain a fit 

between the estimated and actual data points, we need to assign the estimated

E

N

E
R
G
Y

•  •
•  • • • Rank 1

• • • Rank 2

© © Rank 3
• •

• Rank 4

Stress

Figure 4.2

lines to the actual line emissions. Obvious difficulties arise in terms of 

performing this assignment. We realised, however, that the number of 

comparisons between both sets of lines could be limited by a consideration of 

the ranks of both the actual and estimated data points. By ranking in such a 

manner it becomes obvious that we are no longer dealing with lines but with 

ranked points, and associations will no longer be made according to line 

membership but by ranked position. Figure (4.2) shows how the actual lines 

look having been ranked according to highest value. We can see that the highest
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ranking estimated data points can only be compared to the highest ranking actual 

data points. If we compared them instead to the second highest actual data 

points it would mean that none of the lower ranking estimated data points could 

be compared to the highest actual data points and hence the algorithm would 

tend to only estimate the lower values.

Using this technique we are able to draw up a scheme, as shown in Figure (4.3), 

of the comparisons that have to be checked. So for example, we check the 

second highest ranked estimated data points, E2 against the first(A,) and 

second(A2) ranked actual data points and make our decision on the basis of 

which actual values were closest5 to the E2 data points. Figure (4.3) shows the 

allocation of actual lines to their possible estimated lines, where the E /s  are

estimated energy values of the chosen secular matrix ranked from highest to 

lowest and Aj’s are the actual experimental values. With such a scheme it is 

obvious that Ej is associated with A,, E2 with A,, A2, E3 with A,, A2, A3 , E4

and Eg with A4. We need to complete the above procedure for each stress 

direction. However for the <110> and <111> directions there are 2 directions

B — A 4

Figure 4.3

We determ ined the closeness o f  the estim ated data po in ts to the actual data poin ts by using 
the error sum o f  squares between the tw o data sets as usual.
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within the particular families of directions. For <110> the two directions are 

<110> and <110>, and for <111> they are <111> and <111>. Within each 

family we generate the corresponding eigenvalues. The eigenvalues from each 

data set within a particular family are then ranked as if belonging to one data 

set, before we can complete an association to the actual experimental values.

4.5.3 Missing Values

From our description of the above matching procedure, a knowledge of the 

ranked position of the data values is a fundamental requirement. This however 

becomes a problem if :

1) some of the actual experimental data points are not measured at high stress 

values i.e. we have missing data values,

2) complete transitions do not appear within the experimental data.

The traditional solution to problem 1) is to visually interpolate the line to the 

maximum stress values and then rank accordingly. The accuracy with which this 

is done depends to a large extent on individual skill. In Chapter six, we describe 

the development of a graphical computer system which will allow an 

inexperienced user to obtain accurate ranking data schemes for any particular 

data set.

For the second difficulty we demonstrate in our system a mechanism that 

permits inclusion of transitions within the secular matrix that have not been 

experimentally detected. The basis for such an inclusion is to rank the data 

available in such a manner that the fitting technique will recognise the missing 

data for the un-observable transition as belonging to the transition which cannot 

be observed experimentally.

4.5.4 The fitting technique

The fit is obtained by checking each estimated line against each of the actual
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lines proposed by the matching technique shown in section(4.5.2). The pairing 

with the lowest residual sum of squares is accepted and is added to the overall 

sum of squares (NSSq(P), where P corresponds to the parameter vector). Since 

we do not have an analytical expression for NSSq(P), due to the ranking 

involved in the matching procedure, numerical approximation of the derivatives 

for large and complex problems prove to be inaccurate and involve a large 

number of extra function evaluations. We discuss two optimisation techniques 

one based on non-derivative and the other on discrete derivative information. An 

appropriate algorithm for the optimisation of NSSq(P) when not relying on 

derivative information is the Powell algorithm, Walsh(1975), Press et al.(1990). 

Powell’s algorithm is not the only one known with that property, but it was 

selected for its robustness and availability in numerous numerical libraries such 

as Press et al.(1990) and NAG(1988) and hence we decided it was a good 

choice here.

Alternatives using discrete derivative information are known as conjugate 

direction methods of which the Fletcher-Reeves and the Polak-Ribiere, Press et 

al.(1990), are the two most important algorithms.

4.5.5 The Minimisation Algorithm

The search for the optimum vector P is performed in a number of iterations. 

Each iteration, which normally involves many evaluations of NSSq(P), consists 

of p (sometimes p+1) one-dimensional searches in different directions in the p- 

dimensional space defined by the parameter coordinates, Erup and Harris(1988). 

The execution of each linear search is illustrated in Figure (4.4). NSSq(P) is first 

calculated at the starting point (point A) and at a point separated from it by a 

given step size (B). The initial starting points are user specified. The values of 

the initial points and step sizes are updated during the optimisation process. If 

the function value at B is lower than at A, a further step in the same direction
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is taken to calculate a third point. If, as is the case Figure (4.6), the value at B 

is worse(larger) than at A, the third point is calculated at a point one step to the 

other side of A (point C).

Figure 4.4

Next, a parabola is fitted through the three points ( curve a). Assuming that this 

parabola has a minimum, the abscissa thereof is taken as a predictor for the 

minimum point on the actual curve. The function is calculated at this point (D) 

and a new parabola (not shown) is fitted using the last point and the best two 

of the previous points. A new minimum is predicted from this second parabola, 

a new function value calculated there, etc., until a stop criterion is satisfied, 

Brent (1973). If we combine the individual («,) linear searches, the following 

algorithm, Press et al.(1990), can be repeated until the function NSSq(P) stops 

decreasing:

•Save the starting position as P0.

•For i = 1 move P;., to the minimum along direction u, and call 

this point Pj.

•For i = l,...,p-l, set ut <— ui+l.

•Set up <r- Pp - P0.
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•Move P to the minimum along direction up and call this Point P0. 

where ut corresponds to a set of N mutually conjugate directions which relate 

to the direction of each individual linear search and are initialised to the basis 

vectors.

We emphasise that this method as we said earlier is not based on derivative 

information. In order to examine the appropriateness of the Powell algorithm a 

comparison with other algorithms is necessary. Fletcher and Reeves and later 

Polak-Ribiere, Press et al.(1990), devised conjugate gradients techniques which 

rely on derivative information in order to obtain the conjugate directions. 

Although the sum of squares does not posses analytical derivatives a finite 

difference scheme can be used to calculate the gradients of the sum of squares 

function. In addition to this we can use the Hessian matrix of the sum of squares 

function to obtain covariances of the parameter estimates, (discussed further in 

Chapter 5). However in order to obtain the derivatives necessary for the 

Fletcher- Reeves algorithm we now outline the differencing scheme used.

4.5.6 Discrete Derivatives Using Finite Differencing Schemes.

The majority of optimisation routines rely on the availability of second 

derivatives of the model function, Bates and Watts (1988), Seber and Wild 

(1989) and the Levenbergg-Marquadt technique, Press et al.(1991). In our case, 

however, because we are unable to complete the derivation of eigenvalue 

equations for problems with high ordered matrices, we will be unable in each 

iteration to obtain the Hessian of data that is ranked since the data will be of a 

discontinuous nature. Additionally, in the least squares technique applied in the 

Powell-Shell we need to obtain the Hessian of the least-squares equation in 

order to obtain the covariance matrix.

The lack of information about the analytical form of the least squares equation 

inherent in fitting our ranked data implies that a differencing scheme similar to
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that discussed by Smith(1985), should be used to obtain the Hessian of the least 

squares equation. For example for a function of a single parameter the Taylor

series expansion is of the following form

U (x+h)=U (x)+hU'(x)+ l/2h2U"(x)+ l/6h3U '"(x)+.... (426a)

U(x-h)=U(x)-hU'(x)+l/2h2U"(x)-l/6h3U'"(x)+.... (426b)

U(x+h)+U(x-h)=2u(x)+h2U "(x)+0(h4) (4.27)

where U(x) is the function being differentiated and h is the differencing scheme 

increment which is <1/2.

If the final terms (h4 onward terms will become increasingly small if h is < 0.5) 

tend to zero then

U"(x)= {U (x+h)-2u(x)+U (x-h) }/h2 (4.28)

this can be expanded for functions of several variables using the following

notation where U(x,y) is a function of x and y.

U"(x)= {U(x+h,y)-2u(x,y)+U(x-h,y)}/h2 (429a)

U"(y)= {U(x,y+i)-2u(x,y)+U(x,y-i) }/i2 (429b)

Ux;'(x,y)=[U(x+h,y+i)+U(x-h,y-k)-2U(x,y)-Ux/'(x ,y )h2-Uyy"(x,y)i2|/hi (4.30) 

where i is similar to h.

The above differencing scheme in conjunction with a conjugate gradient 

minimisation technique, Press et al.(1990), can be used to minimise NSSq(P) 

and obtain estimates of P. These methods of Feltcher and Reeves and of Polak 

and Ribiere rely heavily on the initial estimates given. The Powell algorithm 

although a relatively robust algorithm, Walsh (1979), also relies to some extent 

on the choice of initial estimates. We now discuss a procedure for obtaining 

initial estimates for both methods.

4.5.7 Initial Estimates

In order to achieve an accurate fit using the Powell algorithm the provision of 

reasonable initial estimates clearly speeds convergence. The initial estimates of
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any mathematical model require a knowledge of the possible range of each 

parameter. Within this range therefore we must decide upon values which are 

consistent with the physical situation. It should be noted here that if a problem 

is more complex, requiring non-linear6 models, it is possible to obtain initial 

estimates by simplifying the model to a linear form, Bates(1988), either by using 

a temporarily truncated experimental data set or by looking at one particular 

transition if mixing of states has occurred. From this we use least squares on the 

simplified model to obtain initial estimates and hence give a reasonable starting 

point. Alternatively we can look at contour plots of the sum of squares function 

in order to obtain parameter estimates corresponding to the sum of squares 

function, SURFER(1989), Bates (1988). The importance of finding good initial 

estimates cannot be over emphasised when dealing with non-linearity, since a 

wrong choice can lead to a local minimum rather than a global minimum and 

hence to inaccurate estimation. However, the Powell-shell tool we have 

developed has shown itself to be reasonably robust to even a poor initial choice 

of parameter estimates. When derivative information is included the 

minimisation is more volatile as in the case of the Fletcher-Reeves algorithm.

4.6 Analysis

In what follows we compare the results of an analysis using the three potential 

methods of Sections (4.3)-(4.5) for obtaining solutions to the secular matrix and 

ultimately identifying the transitions taking place. For the Powell-shell method 

discussed in Section (4.5) we also outline the performance of the Powell-shell 

and the least-squares estimators solutions to the problems discussed by do 

Carmo et al(1988), Campion et al.(1993) and Kehoe (unpublished), and discuss 

comparisons between the Powell and fletcher-reeves algorithms in Chapter 6.

6 N on-linear m odels are m odels where the param eters as w ell as the variables can take a non
linear form .
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4.6.1 Characteristic Polynomial & Eigenvalue Equation Methods

Estimating a characteristic polynomial for the physical problem described in 

Section (4.2) is a long and tedious task. Using the package MACSYMA(1988) 

to derive a characteristic polynomial for a general 8 x 8  matrix requires 

approximately 2 megabytes in disk space, McCarren and Ruskin(1991). Since 

the ultimate aim is to deal with matrices of order 24x24, the implications for 

consumption of CPU time are immense and not practical for on-line analysis. 

This is also the case for the eigenvalue equations which are even more 

analytically complex than the characteristic polynomial equation, and hence use 

a greater amount of CPU time.

As an illustration of these shortcomings, we consider the trigonal defect with a 

non-degenerate orbital ground state and two orbital doublet states described in 

section (4.5.1). We noted that this has an 8x8 secular matrix, and in the <100> 

stress direction only 4 energy emissions were observed, do Carmo et al.(1988). 

If we look at the characteristic polynomial of this equation then 8 X terms 

would appear in this equation. However when we perform regression analysis, 

we must assign 4 experimental energy values to 8? t variables. This leads to 

a problem of finding the correct allocation of experimental values to the X 

(dependent) variables. Currently the only way of finding the optimum allocation 

is by testing each possible allocation in separate regressions of the characteristic 

polynomial, which is clearly unacceptable in terms of the time involved for an 

on-line system.

In addition the association of the matrix parameters to the parameters obtained 

using the characteristic polynomial and eigenvalue equations, causes 

considerable difficulty, since the development of both sets of equations for a 

matrix gives rise to the problem of unique identification of the parameters in 

equations (4.24) and (4.25). Consequently, having optimised the fits, we may 

expect that recovering the results to the physical solution is not a trivial task.

64



4.6.2 Analysis by the Powell-Shell Method.

An illustration of the performance of the alternative Powell-Shell method can 

also be given using the example cited in the previous section , do Carmo et 

al.(1988). The advantages of using this problem is that it involves an experiment 

with data that suggested a non-linear fit was required, and included imaginary 

components in the secular matrix due to spin orbital interaction. We can deal 

with such matrices relatively simply since they will at worst be Hermitian, Press 

et al.(1985). In order to deal with these matrices using eigenvalue routines 

normally based on real symmetric matrices we can apply a transformation of the 

Hermitian matrix into real and complex parts, Press et al(1990).

C = A + iB (4.31)

where C is an n x n matrix corresponding to the Hermitian matrix,

A is an n x n matrix corresponding to the real elements of C and 

B is an n x n matrix corresponding to the complex elements of C.

If C is a Hermitian matrix , then

(A + z'B).(w + z'z)= X ( w - h z )  (4.32)

is equivalent to the 2n x 2n real problem

(4.33)

where the 2n x2n matrix in equation (4.31) is symmetric since AT = A 

and BT = - B

Corresponding to a given eigenvalue X, we have the eigenvector

A B w w
= k

B A z z

-w

z
(4.34)

We can find the optimum fit using the Powell-Shell method on the symmetric 

real matrix C, in two distinct stages. In the first stage, Table (4.3) describes 

the process of finding initial estimates to be used on the Powell-shell method.
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Each column header represents the current stage of estimation. Within each cell 

the corresponding value of the parameters used to find S(0) are given, where 

S(0) corresponds to a functional evaluation of sum of the squares function, and 

is not a full implementation of the Powell-Shell method.

In stage two the final estimates generated in stage one are used as initial 

estimates for the Powell-shell method with a limited number of experimental 

points. The estimates generated from this are then used as initial estimates for 

the complete data set.

Stage One:- Initial Estimates

(1) Initially we start with speculative crude estimates as shown in column (1) 

of Table (4.3).

(2) Tuning these estimates is achieved by using 10 points for each stress 

direction until the estimated points take on the shape of the experimental data, 

keeping the E and L parameters as constants, do Carmo et al.(1988), since these 

signify the energy shift between interactions and spin orbital effect respectively, 

and can be reasonably measured from the data set.

(3) The progress of the tuning technique can be seen through Table (4.3). We 

then use the estimates given in Column 12 as initial estimates for the Powell- 

shell method for 10 points in each direction in stage 2.
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Table 4.3

C o l N o. 1 2 3 4 5 6 7 8 9 10 11 12

Parameter

A , 1 0.5 -0.5 -0.5 -0.5 -0.05 -0.05 -0.005 0.005 -.0005 -0.005 -0.005

A 2 1 1 1 0.1 0.01 -0.01 0.01 0.001 0.001 -0.001 -0.001 -0.01

B , 1 1 1 0.1 0.01 0.01 -0.01 -0.01 -0.01 -0.01 -0.01 0.01

b 3 1 1 1 0.1 0.01 0.01 0.01 0.001 0.01 0.01 0.01 -0.01

E 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7

L 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45

s(0) 81212.9 74511.5 90962.9 534.546 26.45 27.0802 27.1 2.297 3.949 3.459 3.476 1.256



Stage two Estimation

(1) Table (4.4) describes the progress of the procedure from the choice of the 

column 13 in Table (4.3) as estimates, shown again in column 1 of Table (4.3). 

In each column header the number of experimental points that are used in the 

estimation procedure is described.

(2) Column 2 describes the estimates derived using column 1 as the initial 

estimates.

(3) Column 3 describes the sum of squares value, S(0), when all the 

experimental points were included.

(4) Noting the values in column 3, the values described in column 4 are used 

as the initial estimates for the Powcll-Shell method, with all the experimental 

points included.

(5) Column 5 describes the estimates derived by the Powell-Shell method with 

the complete data set. The final fits can be seen in Figures (4.7) to (4.9), noting 

that S(0) is approximately 24 using the parameters described in do Carmo et 

al.(1988) as opposed to 9.5183 using the Powcll-shell method.
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<100> Direction <111 > Direction <110 > Direciion

5TEE5S1

□ denotes actual data paints 
- d e n o t e s  e s t i m a t e d  lines

STEESSl

□ denotes actual data points 
- d e n o t e s  e s t i m a t e d  lines

STRESSI

o denotes actual data points 
- d e n o t e s  e s t i m a t e d  lines 

de n o t e s  do C a r m o s  lines

Figure (4.7) Figure (4.8) Figure (4.9)



Table 4.4 shows the path used to find final parameter estimates using the 

initial estimates derived .

1 2 3 4 5

C o l No. 001 10 10 33 33 33

Parameter 111 10 10 48 48 48

110 10 10 55 55 55

A, -0.005 -0.00696 -0.006963 -0.006963 -0.006271

a 2 -0.01 -0.0126 -0.012608 -0.012608 -0.014872

B , 0.01 0.0113 0.0113009 0 .0113009 0.009456

b 3 -0.01 0.00003 0.000036 0 .000036 -0.009456

E 2.7 2.66953 2.66953 2.7 2.70

L 0.45 0.6088 0.6088 0.45 0.45

s(0 ) 1.256 0 .527665 32.0266 30 .8732 9.5183

Table 4.5.

Parameters Do Carmo et al(1988) Powell-Shell Method

A, -5.4 meV/Gpa -6.27 mev/Gpa

A2 -15.7 meV/GPa -14.872 meV/GPa

B, -12.4 raeV/GPa -9.456 meV/GPa

b 3 8.7 meV/GPa 9.456 meV/GPa

E 2.7 meV 2.7 meV

L 0.45 meV 0.45 meV

s(9) 24.2767 meV2 9.5183 meV2

The difference between the two sets of parameter estimates is not substantial, 

as can be seen from Table (4.4), but a comparison of the accuracy of the fit to 

the experimental data shown in Figure (4.9), is interesting. Figures (4.7) and 

(4.8) show the results for <100> and <111> stresses; for these cases, the fits 

cannot be distinguished. For <110> stresses, shown in Figure (4.9), the fit 

produced is clearly improved giving more precise parameter estimates and
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identifying the transition type satisfactorily in a reasonable time period. 

Convergence times and related considerations are discussed in Chapter 5.

4.6.3 Further Examples of the Method - New Data

Other examples using Zeeman data, McGuigan(1989), and Beryllium impurities 

in Silicon, Campion et al.(1992), were tested. The Zeeman data was a fairly 

simple problem in terms of fitting since excellent initial estimates were 

available, McGuigan (1989), and the overall results obtained by the Powell-Shell 

were in agreement with those obtained by the basic method. The Beryllium 

impurities (previously unidentified) were successfully identified by our approach 

with a tetragonal defect with a E->A transition, McCarren et al.(1994). The 

results of both these examples are shown in Appendix A.

In addition to the above, our method has also recently been tested on Indium 

implanted Silicon data, Kehoe(unpublished), which is suspected of having a 

trigonal A->A symmetry with an additional interacting trigonal E->A state. An 

interesting feature of this data is that only one transition is observable from the 

experimental data. The reason that interaction of transitions is suspected is that 

the data in the <100> and <110> directions, become non-linear under the 

application of stress, Figures (4.10)-(4.12). This effect usually implies that 

mixing of states has occurred as noted previously, and hence indicates the 

presence of at least one additional transition. The fits, the experimental data and 

details of the transitions are shown in Figures (4.10)-(4.12). The secular matrix 

employed for this fit is shown in Table (4.6),McGuigan (private 

communication), and the parameters we obtained are given in Table (4.7).

A similar example described by Daly (unpublished) which includes missing 

transitions is also described in Appendix A.
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Table (4.6) secular matrix for a Trigonal A->A interacting with a 

Trigonal E->A symmetry.

Hs A Ex Ey

A a e 0

Ex e E +a’-fi’ Y
Ey 0 Y E+a’+IS’

where a=A |Sii+2A2Sij,

a '= A /S ii+2A2,Sij, 

6,=B/S8+C/Sfl-, 

Y’=BV 3Se+ C '/3S C< 

<j)=D, /  2Sr+D2/ 3 S (,, 

0=D1Sh+D2S9-)

and Sii=Sxx+Syy+SZ3„

Sij=Sxy+Syz+Sx2,

Se=Sxx+Syy-2Sja,

°0—°yzT0zx

SE=Sxx_Syy and 

Sg,=Syz-Szx.

Table 4.7 Results for the Indium implanted Data with C and D2 held at 

Zero.

Parameters A, A2 A ,’ A, B P i E

Results -0.0053 0.0041 -0.006 -0.0412 -0.0169 0.0428 19.1
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<100> Direction <111 > Direction <110> Direction

STEESS1 STRESSI STRESSI

C i r c l e  d e n o t e  a c t u a l  d a t a  p o i n t s  C i r c l e  d e n o t e  a c t u a l  d a t a  p o i n t s  C i r c l e  d e n o t e  a c t u a l  d a t a  p o i n t s
J o in t  L ines d enote  es tim ated  p o in t s  J o i n t  L ines d en ote  es t im ated  p o in t s  J o i n t  L in es  d en ote  es t im a ted  p o in t s

Figure (4.10) Figure (4.11) Figure (4.12)



4.7 Summary

From the analysis in Section (4.6) the Powell-Shell method clearly performs 

well in terms of fitting this type of experimental data and enabling identification 

of transition-type for piezo-spectroscopic measurements. The data manipulation 

described in Section (4.6) and also in McCarren et al.(1994), while requiring 

some considerable initial effort, leads to good precision of estimation and 

systematic refinement where initial estimates are poor. The software tool we 

have developed (Chapter 6 and Appendix G) is thus flexible and reasonably 

comprehensive.

The Powell-shell method also effectively allows us to account for non-linearity 

in the form of multi-response functions, where this involves questions of bias. 

Where interaction effects are zero, the implications for good final parameter 

estimates may be negligible, but for more complex examples this is not the case. 

While transition identification is the ultimate goal, it is clearly important to 

determine the effect of increased complexity on the accuracy of the 

identification, on the errors involved in the fitting process, and on the speed of 

convergence. Clearly, these considerations are particularly important where data 

is missing or of poor quality.
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Chapter 5

Error Analysis 

5.1 Introduction

The strength of the Powell-Shell method is based upon its ability to model the 

experimental situation while keeping the amount of bias to a minimum. Even 

for relatively simple models, failures in the assumptions can result in 

considerable bias and lack of precision and where nonlinearity is a feature these 

problems can be considerably exacerbated. In particular, an iterative approach 

(which incorporates its own approximations and hence uncertainties) is usually 

necessary. Diagnostics are thus a key requirement in assessing model limitations 

and interpreting the analysis. In what follows, we therefore interpret the 

diagnostic situation of two recognised models, Campion et al.(1992), do Carmo 

et al.(1988), and discuss the implications for their physical interpretations. We 

also investigate a further problem communicated by Kehoe(unpublished), for 

which nonlinear effects are marked.

5.2 Multi-Response Estimation

The methodology of the Powell-Shell is equivalent to a multi-response problem 

measured on N experimental runs, equations (4.7)-(4.14), where the models for 

the m responses depend on a total of p parameters, 0 and

Yum = fm(Stressn,0p)+Zlim (5.1)

for n=l,...,N ; m=l,...,M  and
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where Ymil is the random variable associated with the measured value of the mth 

energy value for the nth stress, fm is the model function for the mth energy value 

(response) depending on some or all of the stress settings and on some or all of 

the parameters 0, and Zmn is the disturbance term. In the analysis of 

piezo-spectroscopic data we assume that the N experimental points for stress, 

m=l,....,M  are fixed and known, so we can form the NxM observation matrix 

Y with the (n,m)th element Ymn and the NxM expected response matrix H(0) 

with the (n,m)th element fm(Stressn,0). From Y and H(0) we create the residual 

matrix

Z(0) = Y-H(0) (5.2)

The parameter estimates 0' are given by the values of 0 which optimise some 

criterion based on Z(0) in the same way that the least squares estimates in uni

response parameter estimation minimises | | Z(0) | | 2, the length of the error 

vector squared. The criterion will depend on assumptions about the disturbance. 

For example, if we make the stringent assumption that the Zlim are normally 

distributed and independent with the same variance a 2, then least squares is 

appropriate and we find 0' which minimises the sum of squared residuals of all 

NM responses. That is, the estimation criterion would be to minimize the trace 

of Z*Z, tr(ZlZ), Bates and Watts (1988).

The assumptions leading to the trace criterion may not be realistic. It could be 

reasonable to assume that the variances of different measurements on the same 

response are constant, but not that variances of different responses are equal. 

Furthermore, the assumption of independent disturbances for different 

measurements in the same experimental run may not be justified. For example, 

in chemical experiments where the concentrations of a number of different 

chemical species are measured from the same sample then, for the situation 

where only the relative concentrations can be determined, different 

measurements on the same sample may be correlated, Bates and Watts (1988).
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Box and Draper (1965) give the usual disturbance term for a normal distribution

E [Z J = 0  (53)

E\Z  z  5̂-4)
mn ri [0 n o r )

where Emi is a fixed MxM covariance matrix. Generally for multi-response 

problems, we assume that measurements from different experiments are 

independent but measurements from the same experiment are correlated.

5.3 Estimators : some alternatives

The underlying assumptions described in the previous section imply that the 

least-squares estimator is not the maximum-likelihood estimator. Bates and 

Watts (1988) describe the maximum-likelihood and Bayesian estimator as that 

which minimises the | ZTZ | . However this estimator proves to be inappropriate 

when missing values are included. Bates and Watts(1988) recommend that when 

the number of missing data points is at a minimum we should proceed in two 

stages where the first is based on fixing the missing residuals at zero, and 

estimating the parameters, the second on reversing the procedure once the 

missing residuals have been estimated. Where the number of values missing is 

large, the parameters can be obtained by minimisation of an alternative estimator 

due to Stewart and Sorensen (1981) and given by,

S(0,X)=(M+l)ln | X | +Zln | Zu | +Zi:E5min{Ynm-fum(0)}{Yui-fui(0)} (5.5) 

where Xn is obtained from X by substituting

s  _ l  1 m=i [ 
m,_{ 0  m o i J

whenever the data for case (n,m) or (n,i) is missing, and the term 8mi is the
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(m,i)th entry of Z'1,,. This approach requires us to obtain estimates of the 

covariances between the responses. This is a difficult problem because of the 

number of parameters to be estimated, Bates and Wates(1988). An alternative 

approach, Seber and Wild(1988), which is based on estimating 0 and E using 

a two-stage procedure is as follows

1. Minimise | | y(j)-fj(stress,0) | | 2 with respect to 0 to obtain 0'(j), for each 

j=l,2,....,d. where j corresponds to the response.

2. Calculate ej and obtain an estimate of Z=[ars] using a rs=e/res/n (r,s=l,2...d)

3. Minimise

T[0]=[y-f(0)]’(T 1 x IJ[y-fi(0)] 

w.r.t. to 0 to get 0'.

This method is primarily used for complete data sets and does not perform well 

when data are missing. An additional drawback is the number of calculations 

required.

5.3.1 Derivation of Stewart and Sorensen Estimator for the Piezo- 

Spectroscopic Case.

The estimator described by Stewart and Sorensen(1981) is specific to multi

response cases were the m responses are correlated within each experimental 

run. The unbiased multivariate Normal probability density, Wilks(1962), can be 

given as follows :

pv,\e >=n i e„ i ■w-«p(-4zx , "o <5-7)
n =1 2

with Z a positive definite covariance matrix. Here Z  ̂is as described above with 

dummy zeroes inserted wherever observations are missing; Zn is obtained from 

X by substituting elements of a unit matrix when an observation Yni or Yuj is 

missing. Equation (5.7) may be derived for the full m-variate density by
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maximising the density with respect to the missing error values, Stewart and 

Sorensen(1981). The joint observation density function for n experiments in any 

particular stress direction corresponds to substituting equation (5.1) into (5.7) to

give the following :

N N M M
p(y2|0 ,E f)=n 2rc‘m” 1 “1/2.cxp<-¿E E E ’

n = 1 n=li=\j=  1

where 1 is the stress direction and the elements Zijnl are obtained from the matrix 

X_1ni, fni(0) represents fj(xn,0) and is called the likelihood function 1(0,Z\Y). 

Factoring p(0,£), Stewart and Sorensen(1981), show that

p(0,X)=p(0)p(Z) (5.9)

with a uniform density p(0) in the permitted region of 0. This requires some 

care in the reparameterisation of the model. A noninformative prior density p(D) 

is used, Seber and Wild(1989), in the "permitted" region of X :

p ( L ) o c  | £  | - ( ' " + i y 2  ( 5 - 1 0 )

which on application of Bayes theorem then gives the following posterior 

density in the permitted region (0,2),

p(0,S\Y)=p(0,E)l(0,S\Y) (5.11)

Estimates of 0 and X can be obtained by maximising the posterior density or by 

minimising the log-likelihood function, equation (5.4).

When all three stress directions are included together we get the joint density 

function for nl experiments in 1=3 directions as follows :

P(Yv Y2,Y3\B,G)=P(Y1\Q,G).P(Y2\Q ,a).P(Y3\Q ,a) (5.12)

where independence is explained by the fact that estimated eigenvalues are 

generated independently for each stress direction. Thus when using the log- 

likelihood function this relates to minimising the following
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E
1=1

(5.13)

where S[(0,E|) is equivalent to that described in equation (5.5).

If we were to try and minimise equation (5.11) for the problem described by do 

Carmo et al (1989) then the number of parameters to be estimated would be so 

large as to be prohibitive. For example in the <110> and <111> directions of 

this problem the covariance matrices are 16x16, which implies that 1024 

parameter estimates would be required for each direction, hence we would have 

more parameters to be estimated than experimental data points. This 

minimisation problem can be simplified somewhat if  we assume that there is no 

real correlation between the error vectors Z of the differing responses, i.e.

3 3
£ S ( e , 2 ) = £  
1=1 1=1

Ni Ni M i
(M +1 ) £  K +l) ln (a ,)+£  £

¿=1 j= l i= l

, (5.14)

where nn is the number of points for response i and direction 1.

If the assumptions of constant variance within any particular response and 

constant variance between responses hold, then the above reduces to the least- 

squares estimator, Stewart and Sorensen(1981).

In order to examine these assumptions we consider some of the examples 

discussed in the previous chapter with parameter estimates obtained using our 

Powell-shell method.

5.4 Covariances, Correlation and Auto-correlations

5.4.1 Correlations Between Responses In Multi-Response Data.

The merit of the least squares estimator of the Powell-Shell is clearly its relative 

simplicity when compared to that described by Stewart and Sorenson(1981).
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However, we obviously need to investigate the validity of the underlying 

assumptions, e.g. the properties of the errors within and between the individual 

responses. The underlying assumptions of least-squares, (section 5.2)), relate to 

the Z,^ normally distributed and independent with the same constant variance, 

a 2, where Zmn = Ylim - fm(Stressn,0p) (5.15)

We look first at the correlation matrix of the errors. Under the least-squares 

assumption, the errors corresponding to any particular response should not be 

correlated with the errors of any other response. To illustrate this we look at the 

physical problem discussed by Campion et al.(1992), and analyse the correlation 

matrix of the errors, shown in Table (5.1).

Table (5.1) : Correlations between the errors of pairs of responses for the 

Campion et al.(1992) example.

Correlation for Direction <111 >
1.0000 -0.8614 

-0.8614 1.0000 
Correlation for Direction <100>
1.0000 1.0000 -0.0596 0.3660
1.0000 1.0000 -0.0596 0.3660

-0.0596 -0.0596 1.0000 -0.0065
0.3660 0.3660 -0.0065 1.0000

Correlation for Direction <110>
1.0000 0.9265 0.7998 -0.4932
0.9265 1.0000 0.5002 -0.4238
0.7998 0.5002 1.0000 -0.3380

-0.4932 -0.4238 -0.3380 1.0000

Table (5.1) shows the correlations between the errors of the individual response 

with all other responses in the respective stress direction. On inspection of this 

table, we can see that no major correlation exists between the errors for 

direction <111>. In direction <100> we see that the errors between the first two 

responses and the first actual experimental line are completely correlated. This 

occurs because of degeneracy, since experimentally we only see three responses 

for this direction but in reality there are four including two equivalent responses, 

Appendix (A-5). For direction <110>, Appendix (A-6), we see a similar
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situation to that described in the <100> direction. Once again the fits make it 

clear that this is due to degeneracy and again the error assumptions hold. Thus, 

for the case discussed by Campion et al.(1992) the assumption of no correlation 

of the errors between responses seems to be upheld. For the further example 

given in Chapter 4, Kehoe(unpublished), we have noted the occurrence of 

undetected or non-measurable responses. The correlation matrices for the errors 

in each direction are given in Table (5.2).

Table (5.2) : Correlations of the errors between pairs of responses for the 

Indium implanted silicon data, Kehoe(unpublished).

Correlation for Direction <100>
1.0000

Correlation for Direction <111>
1.0000 -0.2909 

-0.2909 1.0000 
Correlation for Direction < 1 10>

1.0000 -0.6076 
-0.6076 1.0000

The matrices for all three directions of this example do not show any serious 

correlation of the errors between responses. Similar results were found for the 

example described by do Carmo et al.(1988), Appendix B. In this last example 

however there are many missing values which has the effect of reducing the 

number of correlations that can be calculated. This is due to the fact that only 

points with corresponding stress values can be compared. Inevitably, some 

spuriously high correlations were obtained, but in all cases these related to cases 

where the number of points was very small1.

5.4.2 Auto-correlation Detection

In order to investigate the variance of the errors for each response it is usual to

1 A correlation value w as calculated between two error vectors i f  the num ber o f  matching po in ts w as grea ter  
than 4.
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plot the standardised error against the independent variable. For the example 

described by Campion et al.(1992) the error versus stress graphs for the two 

lines in the <111> direction are shown in figures (5.1-2), in figures (5.3-5) for 

the three lines in the <001> direction, and in figures (5.6-9) for the four lines 

the <110> direction. For this particular example the number of data points used 

for both lines is small, but patterns appear to be emerging within the error plots 

for both figures (5.1) and (5.2). This would suggest that auto-correlation and/or 

curvilinearity may exist in the error terms. This may occur, in part, due to the 

fact that the width of the spectrum peaks becomes larger as stress increases, 

hence the margin for error when picking a peak intensity is increased. Similar 

diagrams are described for the do Carmo et al.(1988), Kehoe(unpublished) and 

Daly(unpublished) examples in Appendix C.

Autocorrelation or serial correlation within a model can be described as the 

serial correlation of the error terms and this implies invalidation of the 

independence assumption. If we consider the nonlinear model with additive 

disturbances

Yu=f(Stressu;B)+ eu (5.16)

which corresponds to a single response of a multi-response piezo-spectroscopic 

model described in section 5.2, then if autocorrelation exists, the simplest form 

of the error distribution can be described by a first order autoregressive model, 

equation (5.17).

e n =  "1<P<1 (5’17)

where p is the correlation between the error terms and p,, is IID with N(0,g2). 

The presence of autocorrelation within the error terms of a linear model implies 

that the ordinary least squares regression coefficients are still unbiased, but no 

longer have the minimum variance property and may be quite inefficient, and 

that the Mean Square Error (MSE) may seriously underestimate the variance of
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The Campion et al.(1992) example in the < 111 > direction.

Plot of Error Versus Stress
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Figure 5.1 Error versus Stress for first line in < 111 > . Figure 5.2 Error versus Stress for second line in < 111 > .



The Campion et al.(1992) example in the < 001>  direction.

Plot of Error Versus Stress
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Figure 5.3 Error versus Stress for First Figure 5.5 Error vs Stress for the third Figure 5.4 Error versus Stress for seconc 
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The Campion et al.(1990) example in the < 111> direction.

Plot of Error Versus Stress

Figure 5.6 Error versus Stress for first line 
in <110>

Plot cf Error Venus Stress

Figure 5.7 Error versus Stress for second 
line in < 110 >

Plot of Error Versus Stress

Figure 5.8 Error versus Stress for Third 
Line in < 110 >

Plot of Error Versus Stress

STRESS

Figure 5.9 Error versus Stress for Fourth 
Line in < 110 >
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the error terras, Neter et al.(1985) and Bates and Wates(1988). Also the standard 

deviation of the parameter estimates calculated according to ordinary least- 

squares procedure may seriously underestimate the true standard deviation, and 

the confidence intervals and tests using the t and F distributions, are not strictly 

applicable, Neter et al.(1985).

In order to determine if there is a significant amount of serial correlation 

between the error terms in a linear model we use the Durbin-Watson statistic, 

Neter et al(1985), of form

N

E 1)2
D = t=2 (5.18)

N

E e<2
t=i

An exact procedure is not available, but Durbin and Watson have obtained lower 

and upper bounds dL and du such that a value of D outside these bounds leads 

to a definite decision.

The above procedure is appropriate when the model is linear. For the case of a 

non-linear model, Kobayashi (1991) describes a procedure to determine if serial 

correlation exists for a uniresponse model. The basis of the procedure is similar 

to that of Durbin-Watson except that the p is calculated by maximising the log- 

likelihood conditional upon the initial disturbance e0 under the assumption of a 

normal distribution. Neglecting the constant term, this may be written

L(p,0)=-(l/2)S[{yu-f(stressn;0)}-p{y11.1-f(StressQ_1;0)}]2/G2 (5.19)

The test statistic p is obtained by maximising with respect 0 and p. The estimate 

of g2 is not included since it can be estimated from the errors generated as it is 

effectively related to p. Kobayashi(1991) shows that Ho(p=0) is accepted if

-«  < p < Zj_a-n'1/2K (5.20)
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rejected if

Z,_a+n'1/2K< p <-oo (5.21)

and inconclusive if

Z1_a-n"1/2K< p <Z1„a+ n 1/2K (5.22)

where Z,_a is the (l-a)th  quantile of the standardized normal distribution and 

K corresponds to the number of parameters.

Obtaining exact critical values for this test is complex for the piezo- 

spectroscopic case since it depends on obtaining the derivatives of the individual 

response functions which are discontinuous in our case due to missing data and 

ranked data points. However, an approximation of the statistic can be 

constructed based on the acceptance and rejection regions. The assumption here 

is that no correlation exists between responses, hence each response can be 

treated individually. Maximising the Liklihood function for the multi-response 

problem is equivalent to minimising the following

S(p,0)=(l/2)SZ[{ymn-fm(stressn;0)}-p{y„lu_1-f(Stress11.1;0)}]2/o 2 (5.23)

This model is similar to the one described in section (5.2) with constant and 

equal variance assumed for each response. A problem with this method in 

practice is that the test often gives inconclusive results. In such situations we 

assume the worst case situation and model the data as if the particular p > 0.

5.4.3 Derivation of Auto-Correlation Estimators using a Two-Stage 

Procedure

The accuracy of parameter estimates of any function obtained using any 

minimisation algorithm decreases as the number of parameters increases, 

Walsh(1974). In relation to the minimisation techniques used in chapter 4 this 

is illustrated for example by the Powell which becomes ineffective for more 

than 15 parameters, but which could then be satisfactorily replaced by Fletcher- 

Reeve. In order to complete a minimisation of equation (5.23) we need to carry
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out the procedure in two-stages, e.g. Huang-Huang(1991) use such a two-stage 

procedure to estimate linear and non-linear parameters separately. To implement 

a two-stage procedure on a multi-response model with autocorrelated errors, the 

primary task is to obtain initial estimates of the 0 and p. This is done by using 

the estimates of 0, 0', when no autocorrelation, is considered, and by estimating 

p, r, using the following

N

E  ( w  i)2
r. = t l   (5.24)

N

Ev>2
7=1

where m is the number of responses and i=l,..,m .

Using the r( as initial estimates to the first stage and keeping 0 constant we 

implement either the Powell or Fletcher-Reeves algorithms. On completion of 

this stage we then estimate 0, keeping r constant. This procedure is continued 

until

S(^,i'j)-S(0i_1,rj.1) < A (5.25)

where A is a specified tolerance and j corresponds to the current iteration.

For the example described by Campion et al.(1992) the number of estimates in 

the 0 vector is 4 while there are 10 estimates in the r, vector. For the example 

discussed by do Carmo (1988) there are six 0 and 40 r parameters2. For this 

example even the two stage procedure broke down, although when an initial 

estimate was in the acceptance region discussed by Kobayashi(1991) we did not 

estimate for that parameter, in an endeavour to keep the number of parameters 

to a minimum.

There are 16  param eters in the < 111>  and < 110>  directions and 8 in the < 0 0 1>  direction.
2
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5.4.4 Incorporating Auto-Correlation Results

Having incorporated the autocorrelation terms by the method described in the 

previous section, the resulting error versus stress diagrams are shown for the 

<110> direction for illustration in Figures (5.10) -(5.13), with the remaining 

Figures described in Appendix D. The resulting 0 and p estimates are shown in 

Table 5.3 where r  ̂ corresponds to the estimated auto-correlation parameter in 

direction i for response j.

Table (5.3) : Autocorrelation estimates for Campion et al.(1992).

Parameter Estimate

al 0.015219

a2 -0.012612

b -0.002815

cm 0.031976

<111>
in 0.91376

ri2 0.63315

<100>

f21 0.9675

r22 0.9678

r23 0.4421

r24 -0.0964

<110>

r31 0.8965

r32 0.9627

r33 1.2253

r34 -0.1812

The above estimates give the fits shown in Figures (5.14)-(5.16) showing a 

considerable overall improvement compared to the results when no 

autocorrelation is included, (shown in Figures (5.17)-(5.19)). The results for the 

example discussed by do Carmo et al.(1988) with the autocorrelation parameters
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Campion et al.(1992) with autocorrelation terms included.
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Figure 5.10 Error versus Stress for first 
line in < 110 >
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Figure 5.12 Error versus Stress for Third 
Line in < 110 >
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Campion et al.(1992) fits with autocorrelation terms included.
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Campion et al.(1992) fits with no autocorrelation terms included.
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included are shown in Appendix E and show a marked improvement on Figures 

(4.7-4.9). Additionally we give amended fits for the Kehoe(unpublished) and 

Daly(unpublished) examples in Appendix E.

5.5 Variance and Outliers

Given our evidence that the errors for the individual responses are independent 

and having dealt with the individual autocorrelations for each response we now 

need to examine the assumption of a constant variance between the responses. 

If the variance of individual responses were significantly different then the least- 

squares estimator would not be valid. Several formal tests are available for 

studying whether or not m responses have equal variance, Neter et al.(1985). 

In addition to the assumption of constant variance and often distorting the 

picture is the presence of outiiers within the data set. We now outline Bartletts 

test and implement it on the examples described by Campion et al.(1992) and 

do Carmo et al.(1988), and then use it in conjunction with the error diagrams 

of the examples to identify possible outliers. In addition, when a particular data 

set shows non-constant behaviour of the variance, we look at the implementation 

of a general multi-response estimator, Stewart and Sorensen (1981), Section 

(5.3).

5.5.1 Bartletts test

The basic principle underlying the Bartlett test is simple. If we let S]2„ „ „ s r2 

denote the sample variances from m normal populations of spectroscopic peak 

intensities, and let dft denote the degrees of freedom associated with the sample 

variance Sj2 taken from the experimental data, then the weighted arithmetic 

average of the sample variances using the associated degrees of freedom dfs as 

weights is the mean square error:
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where

M

df, = E (Jf,
i= l

(5.27)

Similarly, the weighted geometric average of the s}2, denoted by GMSE, is:

GMSE  =  W '- Y
(5.28)

The two averages arc equal if all s 2 are equal; the greater the variation between 

the s 2, then the further apart the two averages will be. Hence, if the ratio 

MSE/GMSE is close to 1, we have evidence that the population variances are 

equal. If the ratio is large, it indicates that the population variances are unequal. 

The same conclusions follow if we consider log(MSE/GMSE)=logMSE- 

logGMSE.

Bartlett has shown that a function of logMSE-logGMSE approximately follows 

a chi-squared distribution with m-1 degrees of freedom for large sample sizes, 

when the population variances are equal. The lest statistic is;

dfT
B =  -± (\o g M S E -\o g G M S E ) (5.29)

where

C = 1+.
3 ( r - 1 ) E —

h dfi dfT
(5.30)

The term C is always greater than 1, Netcr et al(1985). For deciding between:



H0: ct12=c22=...=ctm2 

Ha: not all a 2 are equal 

we calculate test statistic B. The appropriate decision for this test is then:

if B<= X2(1-a;r-1)5 conclude H0 

if B> xW -i)«  conclude Ha 

For the models described in Campion et al.(1992) and do Carmo et al.(1988) the 

results of Bartletts test are given in Table (5.4).

Table (5.4): Bartlett test results for the examples described by Campion et 

al.(1992) (Cam.) and do Carmo et al.(1988)(do C.) where P.C.Y is the 

approximate probability above the critical value for the chi-squared 

distribution.

Direction Chi-square Degrees of Freedom P.C.V

do C. Cam. do C. Cam. do C. Cam.

<100> 14.66 4.94 7 3 @5% @25%

<111> 64.74 0.17 15 1 @0% @50%

<110> 43.44 12.83 15 3 @0% @0.5%

From Table (5.4) it is clear that the we cannot reject H0 for the three directions 

of the example describe by Campion et al.(1992), although the result for the 

<110> direction appears significant. We would consider on balance that the 

performance of the least squares estimator is not completely satisfactory in this 

case. For the example described by do Carmo et al.(1988) we see that at the 

1% level we have a significant result for directions <111> and <110>, implying 

that the application of the least-squares estimator is still less good. We have, 

therefore, also investigated the possibility of outliers and the distortion that these 

may give rise to. From Appendices C and D we see that at high stress the errors 

for this more complex example tend to increase for certain responses even when
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complex do Carmo et al. case even with the improvement effected by the 

omission of probable outliers. We therefore further investigate for this example 

the possible influence of unequal variance on the parameter estimates by 

implementing the Stewart and Sorenson estimator (section 5.3).

5.5.3 Implementation of Stewart and Sorenson for the do Carmo et al.(1988) 

Example

Minimisation of the Stewart and Sorensen estimator can only be completed 

using the Powell algorithm with the assumption that the error covariance matrix, 

Z equation (5.4), is a diagonal matrix in each direction. Here we estimate the 

elements of the E'1 in each function evaluation by substituting the current 

parameter estimates, 0 ', into S(0,E), then estimating Z accordingly. The 

parameter results on minimisation and their standard errors, (in brackets) are 

given in Table (5.6).

Table (5.6) Parameter Results

Parameter Stewart & Sorenson 
using Powell

Least-Squares 
using Powell

-0.005698(0.000055) -0.005672(0.001)

a 2 -0.015231(0.00002) -0.015327(0.001)

0.008613(0.000063) 0.008819(0.0014)

b 3 -0.006720(0.000068) -0.006844(0.003)

Using results of the Fletcher-Reeves minimisation algorithm on the do Carmo 

et al. example with the outliers excluded and the autocorrelated terms included, 

as initial estimates, Table (5.6) shows that the final parameter estimates for both 

the Stewart and Sorensen and the least-squares estimators are similar. However 

the covariance matrix of the Stewart and Sorensen estimator shows less variance
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within each of the parameter estimates. On the other hand, it seems clear that 

the improvement in the estimates obtained using the Stewart and Sorensen 

method is not sufficient to make its use worthwhile when compared with the 

simpler least squares approach. A choice of either estimator should also lead to 

identification of the correct transition on the basis of the percentage differences. 

The difference in the variances, however, could be due to non-linearity in the 

expectation surface or in the parameters, which must be independently assessed 

for least-squares. We go on to do this in what follows.

5.6 Covariance Matrix of Least-Squares Estimator

On completion of the minimisation procedure for the least-squares estimator we 

can use the final hessian matrix for estimation of the covariance matrix,

covCO^a1 (5.31)
where Cl is the hessian matrix of the sum of squares function with respect to the 

parameter vector 0, Stewart and Sorensen(1981). Additionally

( e - e ) TQ ( e - e ) < x 2, (a )  (5 -3 2 )

roughly approximates the 100(1-a) percent Highest Posterior Density region for 

any k-dimensional subset of the estimated parameters, conditional on the values 

0r for all other parameters. The intervals

I M J  < Z a \ 2 ^ y m  ( 5 3 3 )

roughly approximate the 100(1-a) percent HPD intervals of the marginal 

distributions for the individual estimated parameters. Here Za/2 is the critical 

argument for the one-sided standard normal distribution at the a/2 significance 

level.

The results for the correlations of the parameters for the Campion et al.(1992) 

example are given in Table (5.7) and for do Carmo et al.(1988) are given in
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Table (5.8).

Table (5.7) : Parameter Correlation Matrix for Campion et al.(1992) data.

Correlation Ax a 2 B C

Ai 1.0 0.74 0.79 0.59

a 2 0.74 1.0 0.89 0.68

B 0.79 0.89 1.0 -0.73

C 0.59 0.68 0.73 1.0

Table (5.8) : Parameter Correlation Matrix for do Carmo et al.(1988) data.

Correlation A j A2 b 3

A, 1.0 -0.18 -0.11 0.48

a 2 0.18 1.0 0.22 -0.52

B, -0.11 0.22 1.0 -0.22

b 3 0.48 -0.52 -0.22 1.0

Both Tables (5.7) and (5.8) we can see that correlation between the parameters

for each for the proposed models is not excessively high, i.e < 0.9.

Table (5.9) : Parameter standard errors for Campion et al.(1992) and do 
Carmo et al.(1988)

Do C. Ai=-0.00575 A2=-0.01525 B^O.00875 B3=-0.00662

0(0) 0.001 0.001 0.001414 0.002

Cam. A,=0.0152 A2=-0.0126 B=-0.0028 C=0.0319

0(0) 0.002 0.0014 0.0024 0.0014

Table (5.9) gives the parameter estimates for each of the problems and the 

appropriate estimated standard errors g(0) for each parameter. For the Campion 

et al. example there are 42 independent points from which we have 41 degrees 

of freedom for each parameter. For the case described by do Carmo et al. we 

have 136 independent stress values. Using the standard normal as a close
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approximation for both examples we see that the B parameter of the Campion 

et al. example is not significantly different from 0. For the do Carmo example 

all the parameter estimates are significantly different from zero using the 

marginal HPD intervals, and are also significantly different from zero using a 

Joint HPD interval on the complete parameter set. This implies that we can 

tentatively accept that there is a significant relationship between the data and the 

model specified by do Carmo et a l.(l988). Often however the parameter and 

variance estimates can become biased using a multiresponse model. This could, 

as in the Campion et al. example severely over estimate the parameter variances 

and hence imply that individual parameters do not contribute significantly, 

whereas they may be important for a multi-response fit,

5.7 Assessing the Non-linearity

To apply tests normally appropriate for linear regression, such as t-tests or F- 

tests, to a problem where a degree of nonlinearity is anticipated we need to 

decide how nonlinear the model actually is. We can identify the nonlinearity of 

a function by inspecting the sum of squares surface p lo t . In the linear case we 

would expect the surface to be smooth and to exhibit an obvious global 

minimum, Figure (5.20), with the equivalent contour plots of this surface 

displaying elliptical patterns, Figure (5.21). For a model with some degree of 

nonlinearity, e.g. Campion et al.(1992), the surface plot and contour plots will 

bend and show possibly many local minima, Beale(1960) and Goldberg et 

al.(1983) and Figures (5.22) and (5.23). To determine the amount of nonlinearity 

present in a specific problem (if any) we need a basis for comparison. This is 

usually the linear model and we can therefore refer to any departure from the 

simple form in terms of "closeness to linearity".

1 0 1



3D Plot of Linear Model

Figure 5.20 3-D surface plot of an artifically derived linear sum of squares. X and Y are
linear parameters and Z is the sum of squares.
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Contour Plot of linear model

X

2 2 2 2 2

6 5  3 2
9 4 9 5
1 4  7 0

Y

Z ------------------  G . 3 4  ------------------ 0 .  8 0
-----------------------------  1 , 2 5  ------------------------------1 . 7 1

2 . 1 6    2 . 6 2
------------------ 3  . 0 8

Figure 5.21 Contour plot of an artifically derived linear sum of squares.
X and Y are the linear parameters and Z is the sum of squares.
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3D Plot of Non -  Linear model
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Figure 5.22 3-D surface plot of Beryllium Doped Silicon sum of squares, Campion et
al.(1992), where B and C are parameters and Z is the sum of squares.
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Contour Plot of Non-linear model

B
0 . 0 0 4 2

0 , 0 0 0 6

- 0 . 0 0 3 1

- 0 , 0 0 6 7

- 0 , 0 1 0 3

Z

Figure 5.23 Contour plot of beryllium Doped silicon sum of squares, Campion et al(1992),
where B and C are parameters and Z is the sum of squares.
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5.7.1 Surface Plot and Contour Plots

The surface and contour plots of the sum of squares function for the beryllium 

doped silicon, Campion et al.(1992), illustrate the situation where the B and C 

parameters are included. Here we notice that the surface is highly indented and 

there seem to be at least four local minima. To get a clear image of the sum 

of squares function, additional plots of all combinations of the parameters must 

be taken, Appendix F. The value of such images are clearly to give approximate 

locations of local minima, allowing the experimentalist to assess the complexity 

and nonlinearity of the expectation surface. Additionally, when we inspect the 

surfaces of this problem, Appendix F, in more detail we find that close to the 

optimal parameter values the surfaces are quite well behaved. This implies that 

linear tests could well be applied in this case provided we have reasonable 

initial estimates. However, it should be noted that the linear tests apply to 4- 

dimensions in this case as opposed to just the two illustrated in the 2- 

dimensional plots. Further, looking at the surfaces plots for the do Carmo et al. 

case, also given in Appendix F, it again seems evident that the surfaces are close 

to linear for parameters E and L fixed, (section 4.6.2).

Given the amount of detail necessary to interpret several views, we also provide 

surface plots for a sample of the parameters for the Kehoe(unpublished) example 

in Appendix F, showing surfaces with highly non-linear characteristics. Given 

that this situation arises even for two parameters, then we would expect the sum 

of squares function to be far from planar with additional dimensions4. In order 

to make a decision on this situation we need a measure which takes account of 

the full dimensionality of a particular problem.

4 In all these exam ples the linear tests apply to n-dimensions w here n = 4  fo r  Campion et al. and  
n = 7  fo r  Kehoe(unpublished).



5.7.2 Acceleration Arrays

Generally, when modelling nonlinear data we need to determine the rate of 

change on the expectation surface and the parameters. If the expectation surface 

is planar or close to linear then we can say that the model is intrinsically linear, 

with the equivalent term for the parameter surface known as parameter effects 

linearity. When the model is intrinsically close to linear, then a 

reparameterisation of the model function can give improved parameter 

estimation and model fit, hence Unear tests can more readily be applied. Bates 

and Watts (1980) describe a technique to determine the parameter effects and 

intrinsic nonlinearity. Measurement of these terms is based on the estimation 

of Velocity and Acceleration vectors, and can be described for a single response 

model as follows :

where f(Xu,0) corresponds to the function response for independent vectors xu 

and parameters 0).

The intrinsic and parameter effects measurements are then obtained by taking 

a QR decomposition of the acceleration and velocity vectors. If the intrinsic 

nonlinearity is acceptably low, there may nevertheless be significant parameter- 

effects non-linearity and the modeller may wish to seek an appropriate 

reparameterisation. The parameter-effects measure offers no guide however, to 

a suitable reparameterisation, and in a multi-parameter situation does not identify 

which parameters may be mostly responsible for the nonlinear behaviour, 

Ratkowsky(1983). On the other hand, if the estimator has small bias, a 

distribution close to normal and minimum variance, it seems reasonable to

. 8/(X ,0)
{V} — xo—tip oo;j

(5.34)

s 2M ,> e)
' V  89,56,

(5.35)
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assume that it is ‘close to linear’. A problem with estimation of the velocity 

vectors for the Piezo-spectroscopic data, which does appear to exhibit some 

degree of non-linear behaviour is, however, the inclusion of multiple responses 

and allowance for discontinuities within the expectation surface of the model. 

Estimates of the parameter effects and intrinsic non-linearity can be completed 

for each response separately, but interpreting the results for the completed model 

involves additional complications and may lead to undesirable reparameterisation 

given that direct relation to the physical quantities of interest is our goal. An 

alternative way to investigate the nonlinearity of the parameters and the model 

is to investigate the properties of the model using various simulation studies, 

Ratkowsky (1989).

5.7.3 Lowry’s Test

The plots of the sum of squares function do indicate the presence of nonlinearity 

of the estimates in some cases. An approach which specifically determines the 

amount of bias that is present in the parameter estimates is needed. We now 

examine a measure of bias and non-linearity due to Lowry, Ratkowsky(1983), 

(developed originally on unireponse models) and propose its application to the 

multi-response case. Consider the regression model

Ym=f(Stress11,0) + em (5.36)

where f(Stressu,0) (n=l,..,N) may be linear or nonlinear in the parameter vector 

0. Assuming that 0 is known, we can generate a series of independently

identically distributed Normal (NID) errors em (m=l,....,M) having mean zero

and variance o 2 corresponding to S tressj, resulting in a set of random variables 

denoted Ym+, that is

Ym+=f(Stressu,0)+em (5.37)

The LS estimate of 0 corresponding to this generated model/data set 

combination is denoted 0/+. By subtracting the error term from the individual
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responses we can get the following equation

Ym=f(Stressn,0)-£m (5.38)

With the LS estimate of 0, equal 07 For a linear model it is true that for each 

parameter 0j (i=l,2,...,p)

(0 'i+-0i)=-(0'i -0i) (5.39)

For a non-linear model this is not true, Ratkowsky(1981). It follows that the 

statistic can be used to measure the nonlinear behaviour of the LS estimator of

¥ .= (0/ i - 0l) +(0/7-0j) (5.40)
2

0j, Since the distribution of 0'* is identical with the distribution of 07, each 

being an alternative LS estimator of 0i; denoted 07  it follows that

EQ¥) =E(Q']-B) =£(07 -0.) =Bias(Q'.) (5-41)

By obtaining the correlation between 0't+ and 07, equation (5.42), we can 

determine the linearity of the model. For non-linear models, the correlation will 

vary between -1 and 0, with close-to-linear models producing values close to -1.

+ + Cov(Q']Q'~J 
Corr(Q ¡Q ¡)= v 1 1 _  (5.42)

^Var(Q'*i) Var(Q' ■)

5.7.4 Results of Lowry’s Test

Simulation runs for the examples described by do Carmo et al.(1989), Campion 

et a l.(l992) and Kehoe(unpublished) are given in Table (5.10). The results show 

how the non-linearity changes according to problem type.
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Table (5.10) : Lowry Correlation Coefficients (L.C.C.) for the problems of 

Campion et al.(1992), do Carmo et al.(1988) and Kehoe(unpublished).

Cam pion, L .C .C do Carm o L .C .C Kehoe L .C .C .

A i -0.79 A-i -0.68 A , -.926

A-2 -0.95 a 2 -0.72 A ', -0 .317

B -0.97 B , -0.60 A 2 -0.988

C -0.78 b 3 -0.39 A 'a -0.159

B -0.206

D , -0.903

E 0.3916

For the example described by Campion et al.(1992) (and similarly for that of do 

Carmo et al.(1988)) the L.C.C. estimates show high negative correlation 

indicating that the parameters are not far from linear. However, this cannot be 

said to be the case for the example of Kehoe(unpublished). Here, some of the 

correlation coefficients are extremely close to zero indicating that these 

parameters possess considerable nonlinearity. An interesting point with respect 

to the do Carmo et al. example arises when the E and L parameters are 

considered as estimated by the model as opposed to being separately obtained, 

section 4.6.2. Here the degree of non-linearity markedly increases, as illustrated 

by the surface plots, Appendix F. This suggests that when such parameters are 

estimated directly from the fit, as for example is also the case for the Kehoe 

data, then the model is markedly less linear. Experimentally, estimation of these 

where possible, prior to obtaining an overall fit, clearly greatly improves the 

stability of the set of parameter estimates as a whole. However, determining the 

unstable parameters or those most likely to adversely influence the fit is a 

difficulty. In many cases, they will be known to the experimenter because they 

relate to an aspect of the physics for which the expected behaviour is well 

known, which is supported by exact theory or for which independent
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measurement is possible. However, this is not always the case and it is 

reassuring to note that our method did  achieve identification of the correct 

transition and reasonably accurate parameter estimation in the do Carmo case, 

even when we allowed E and L to vary. Additionally, the exclusion of the 

autocorrelation terms increases the L.C.C. estimates, Table (5.11).

Table (5.11) : The L.C.C. estimates for the do Carmo example when the 

autoccorelation terms are not included.

Parameter A, A2 Bi b 2

L.C.C -0.90 -0.67 -0.96 -0.80

5.7.5 Other Simulation Results

The results from the L.C.C indicate that the parameters for the Campion et al. 

and do Carmo et al. models do not possess a significantly high degree of 

nonlinearity. This agrees with the surface plots discussed in section 5.7. 

However, for the Kehoe(unpublished) example we find that the L.C.C.s and 

surface plots indicate marked nonlinear tendencies. An alternative method to 

determine the appropriateness of the parameters for each of the models, is to 

investigate the properties of the distributions of each of the parameters through 

a simulation study as mentioned earlier, Ratowsky(1983),(1989). For a normal 

distribution we would expect the coefficient of skewness to be approximately 

normally distributed with mean zero and standard deviation (24/N)1/2. The 

coefficient of kurtosis for large N is approximately normally distributed with 

mean 3 and standard deviation (24/N)1'2. Table (5.12a) and (5.12b) give the 

mean, standard deviation and coefficients of skewness and kurtosis for the 

Campion et al.(1992) example and do Carmo et al. (1988) examples.
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Table 5.12a : Distributional properties of the Campion et al. example taking 

1000 simulations.

C a m p io n a l a2 b c

mean 0.01519 -0.0126 -0.00281 0.32

a (6 ) 0 .0 0 0 3 " 0 .00015“ 0 .000189“ 0 .0 0 0 2 9 9 "

Skewness -0 .12496 0.0406 0.0458 0 .8 3 7 "

Ku rtosis 5 .0 " 0 .362” -0 .04921“ 4 .06“

Note *Probability< 0.05; "Probability < 0.01.

Table 5.12b : Distributional properties of the do Carmo et al.(1988) 

example taking 200 simulations.

do C a rm o a l a2 b c

mean -0.00568 -0.01529 -0.008741 0.006729

o (6 ) 0 .0 0 0 1 0 8 " 0 .0 0 0 1 1 5 " 0 .0 0 0 1 2 2 " 0 .0 0 0 2 2 8 "

Skewness 0 .39332 -0 .825“ -0.471 1.5533“

Ku rtosis 0 .438“ 0 .357“ 3.636 1 .5 0 3 3 "

Note *Probability< 0.05; "Probability < 0.01.

The results for the Campion and do Carmo examples show that the variance and 

kurtosis properties of the distributions of the parameters are significantly biased 

but that the mean and skewness properties are not, so that we would conclude 

that variance is over estimated. Such effects commonly occur in nonlinear 

models and might typically suggest a reparameterisation of both models. 

However, in the Campion et al. case it already relies on a reduced or minimal 

linear form for which expansion results in an expression having little physical 

meaning. Consequently, reparameterisation seems to be ruled out in terms of its 

likely value in explaining these distributional features. The conclusion then must 

be that the model possesses some level of intrinsic nonlinearity. For the do
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Carmo example we see that a reparameterisation would be equally difficult for 

a problem of such high dimensions and equally unsuitable in terms of the 

physical interpretation. We conclude that the model parameters are not far from 

linear since the means are all unbiased and the surface plots show close to linear 

properties near the minimum, but that they again possess some intrinsic 

nonlinearity, which would generally be expected in any event in multiresponse 

models, Bates and Watts(1988).

The results for the Kehoe data (unpublished) are not so difficult to interpret 

since the covariance matrix of the estimates, equation (5.31), shows distinctly 

non-linear properties (i.e. the inverse of the hessian matrix gave some negative 

results on the diagonal elements). This may be due to the mesh routine which 

is used to approximate the hessian of the S(0) or the fact that the function is 

highly nonlinear in at least one of the 7-dimensions. However, the results 

obtained here are in agreement with the surface plots and the L.C.C estimates. 

We can therefore conclude that, as with the other piezo-spectroscopic models, 

there is some intrinsic nonlinearity. Furthermore, in the absence of any 

independent estimates of subsets of the parameters, it is not possible to rule out 

the presence of a parameter effects component, since an alternative transition, 

implying a redefinition of the parameters, may be appropriate if unlikely.
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5.8 Conclusions

The performance of the least-squares estimator and the Powell-Shell technique 

in modelling piezo-spectroscopic data is encouraging compared to those 

described by Stewart and Sorensen (1981), Bates and Watts(1988) and Seber 

and Wild(1989). Both ease of computation and time taken to achieve a good fit 

to the data are considerably improved. The parameter results show little 

difference when compared to estimates obtained by the Stewart and Sorenson 

method, although nonlinearity is not specifically accounted for. We can conclude 

therefore, that no correlation exists between responses and that the variance 

within responses is constant for piezo-spectroscopic models.

One of the predominant features of such data is auto-correlation which we have 

demonstrated can be handled satisfactorily using a two-stage process on a first- 

order autocorrelation model. Nonlinear features are less straightforward to 

assess and are highly data dependent. Estimating as many parameters as 

possible, independently and prior to overall fitting, clearly reduces the 

difficulties, but does not solve them. Bias in the parameter estimates may be 

assessed, and, and in the case of close-to-linear models, results of linear tests 

may be regarded as reasonably robust. This is confirmed by the results given by 

the surface plots and the Lowry coefficients. However the underlying 

characteristics of the simulation studies suggest that there is some intrinsic 

nonlinearity in piezo-spectroscopic models, which would bear further 

investigation.

The Stewart and Sorenson covariance estimator applies only asymptotically to 

close-to-linear models. Consequently the bias it produces is likely to be 

excessive when obtaining covariance estimates for piezo-spectroscopic models 

and should not therefore be considered to be particularly reliable in the majority 

of our examples. Inflation of the parameter variance estimates in such cases is
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to be expected.



Chapter 6 

The Tool

6.1 Introduction

In order to identify an appropriate defect for spectroscopic data, the approach 

summarised in Figure (4.1) was proposed. The fitting technique proposed in 

Chapter 4 seeks to facilitate and enhance the identification process. Some initial 

steps prior to optimisation must be carried out, which can be categorised as 

follows :

I) Reduction of the list of potential transition-type by comparison of the data set 

to known transitions, Fowler(1968).

II) Ranking the data in order to find a line matching pattern such that the 

minimum number of comparisons between the predicted eigenvalues and the 

experimental energy values will take place, section (4.5.2).

III) Seek good initial estimates for the Powell-Shell method, section (4.5.6). 

We then proceed to obtain the estimates for the secular matrix using the Powell- 

shell method, section (4.5.4).

A system incorporating this approach has been implemented successfully for 

various data sets, described in Chapter 4. We have developed appropriate user 

interfaces to execute the initial data manipulation procedures, to supply 

parameters to the Powell-Shell optimisation and to select for the basis of these 

results the appropriate transition type. Additionally, we have incorporated a 

further matrix interface facility to enable the user to build his/her own secular 

matrix and enable a preliminary identification to be obtained.

In this chapter we describe the specification of Tranld, demonstrate an
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implementation of the system as an identification tool, analyze the speed of the 

method with respect to mainframe and PC machines, and finally discuss the 

software and hardware environments for the implemented tool.

6.2 System Design and Specification.

From previously, Figure (4.1), the precision of the fitting procedure has been 

recognised as an enhancement to the task of identification of spectroscopic data. 

This procedure requires data sorting and a database of possible transitions. Using 

this information we can then obtain a fit and hopefully identify the transition 

occurring.

Data

i
Possible 
T ransitions 

Require 
a Fit

Figure 6.1 Basic system description

In the design of the system the user requirements are the initial starting point. 

Figure (6.1) describes the simplified system requirements as a subset of those 

shown in Figure (4.1). Elements of the various components have the following 

features ;

Data, for which there are two potential sources:

117



I) Manual entry of each record corresponding to the stress value applicable and 

the corresponding energy (experimental) value,

II) Importation of the previously set-up file,

Transition Box :

From the database of potential transitions we can focus on possibilities by:

I) identifying which points belong to individual lines,

II) comparing these lines to Table (3.2) to short-list the possible transitions. 

Fitting:

Finally when a suspected transition type or types is short listed, estimates of its 

parameters can be obtained by fitting.

Figure (6.2) describes the data flow through the prospective system, 

corresponding to the above processes. This diagram corresponds to a Data Flow 

Diagram (DFD) which is a network representation of a system, De Marco 

(1979), and is made up of only four basic elements:

• data flows, represented by named vectors,

• processes, represented by circles or "bubbles",

• files, represented by straight lines,

• data sources, represented by boxes.

The DFD is useful in describing the overall specification of the system, and in 

particular explain the functionality of each of the above black boxes.
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However in order to develop a suitable system it was clearly necessary to obtain 

detailed specifications from the proposed end user, Jones(1980). We discuss 

details of the specifications worked out with the D.C.U. solid state/optronics 

group in what follows.

6.3 Automation in the identification 

of transition data

In this section a broad overview of the most important points needed to 

automate identification of a transition are given. Initially we look at data entry, 

then move to data to line association and from there to initial parameter 

estimation. Final parameter estimation is then described together with a set of 

procedures to evaluate the statistical implications of the proposed parameter 

estimates.

6.3.1 Data Selection

For the first step, two methods for entering and selecting the data set from any 

particular experiment are permitted.

I ) T h i s  allows the user to enter a complete data set for the experiment through 

a screen data entry facility. There are five columns in which the user will be 

able to enter the experimental data. Each column corresponds to Stress, Energy, 

Line number, polarisation intensity and line width respectively, as in Table (6.1).
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Table (6.1)

Stress Energy Line No. Polarisation

Intensity

Line

Width

II) A facility to import a file created with just stress and energy as its 

columns is also included. This file is checked to see that it conforms with the 

Tranld file format, and if so, is assigned a signature name that uniquely 

identifies it.

6.3.2 Selecting a Transition

Having entered a data file into the system the next procedure to be undertaken 

is the association of data points to their corresponding line numbers. Two 

methods are available to the user.

I) The first approach enables the user to manually enter the line numbers 

associated with each data record through the procedure described in section 

(6.2 .1).

II) The second method is a manual graphical procedure which allows the user 

to draw the lines on the screen with the aid of the mouse. The points are then 

associated to the nearest lines. The line numbers are then sent to the data files 

were they are associated to their corresponding stress - energy points.

Crossed lines will give rise to inaccurate fits since the eigenvalues generated 

from the selected matrix will all be ranked according to highest energy value. 

This implies that points should be assigned by rank as opposed to slope, 

McCarren and Ruskin (1994).
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Here the user can start a new line by applying the <F4> key, Figure (6.3), and 

continue the line by moving the right or left arrow keys (<— and —»). When 

satisfied with the match of points with the actual lines the user can then initiate 

a new line by pressing the <F4> key again or leave the option by pressing the 

<ESC> key. When this process is fulfilled for the three families of directions a 

choice of possible transitions is given. From this list of transitions1 the most 

likely candidate can be selected, with each choice corresponding to a pertinent 

file (TRD file), which describes the secular matrix of the transition in question. 

This file comprises the most recent initial estimates, data files applied to this 

transition, the applicable family of directions and the description of the 

transition. If a transition is selected then it’s description will appear at the 

bottom of the screen.

P I

4

Energy 0.1 

Stress is 60 

Line No- 2
3

-2

-3
0

20 40 60 80 100 120 140

Stress MPa

F4 Start New Line Return to add Point DEL to delete Point

Figure 6.3 The line matching technique.

The list o f  transitions given is stored  in a  f ile  denoted Base.dat.
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6.3.3 Obtaining a Fit

Having defined which points belong to which line the user must then obtain 

initial estimates for the parameter values and then obtain a fit based on the 

initial estimates. The reason for doing this is that even where non-linearity is 

present in these models, quite reasonable initial estimates can be obtained for 

the complete set of data by using the estimates derived from a fit on a subset 

drawn from the linear or close-to-linear part. A description of the processes and 

requirements needed to obtain a fit is given:

I) The user has the option of selecting the number of points that they perceive 

to be relevant to the initial estimation. This is done graphically by accepting 

certain points to the left of the line, Figure (6.4).

£

&
%
W

Stress MPa 
F4 Begin Block Return To End Block

Figure 6.4 The data capture interface.

i.e by moving the line from left to right the user can select the relevant data by 

just clicking the mouse on the point where they wish the initial estimation of the 

parameters to be carried out.

II) The user can also select a subset of data by specifying in the secular matrix
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file, n points from the N total stress points applicable. The first n points only 

will then be used for initial estimation.

In order to complete an estimation of the parameters the user has to choose a 

secular matrix or matrices which are likely to be appropriate.

III) The system automatically selects a matrix or matrices on the basis of the 

information known, but allows the user to confirm or reject the choice. The 

system’s choice of transitions is performed by comparing the number of lines 

obtained in each data file to a database of transitions and their corresponding 

secular matrices similar to those given in Table (3.2).

IV) The user can also select and build alternative secular matrices by using the 

secular matrix generating routine.

Having completed the above tasks an estimation of the secular matrix 

parameters can now be carried out.

6.3.4 Machine Specification

In order to implement the user specification we need to take into account the 

environment within which the final product should be implemented. Typical 

requirements include:

• availability of computer hardware to the client,

• hardware cost,

• implementation speed,

• graphics capabilities,

• the number of users for the system.

The above points and the client’s requirements can be satisfied by implementing 

the software on a PC system running on DOS 3.3 or above, since D.C.U. 

optronics have access to numerous PC’s running on the DOS environment. 

Further if the group require the software to be run on higher performance
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equipment then the cost of updating their current hardware will not be a major 

consideration, since the cost of high performance PC’s has reduced considerably 

in recent years. Additionally the processing speed (section 6.5) and graphical 

capabilities of these machines are favourable with respect to a mainframe 

environment.

Setting up the data and secular matrices will require a finite period of time 

compared to the fitting technique which requires no user interaction once started, 

implying that a single user system is appropriate.

Additionally, the core C software has been implemented on PC,VMS and Unix 

enviroments, indicating that the system is not specific to any particular 

enviroment.

6.4 Tranid Requirements

6.4.1 Software Requirements

The Powell-Shell method was originally implemented on prototypes written in 

Borland’s Turbo Pascal(5.5) and Vax Pascal(2.0), Appendix G. The final system 

software was however written in the Borland’s Turbo C programming language, 

Barakati(1989). The implementation of this software followed as closely as 

possible the ANSI conventions, Kcmighan and Ritchie (1988), deviating only 

when the Borland’s graphics facilities were implemented. Appendix G gives the 

code written in C for the Powell-Shell fitting technique. It can be compiled on 

any operating system without major changes in the code and requires the data 

files and TRD files in to be in Tranid format, Appendix G.

The software libraries used to implement the Powell and eigenvalue algorithms 

are described in the numerical recipes routines NRUTIL.C and NR.C, Press et 

al (1990) and the menu libraries included in the software were designed in 

conjunction with the Parker menu system, Parker (unpublished). Additionally an 

interface between Tranid and Surfer(1989) was used to obtain the 3-dimensional
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surface plots and the 2-dimensional contour plots and to implement the Surfer 

software two batch files contourl.bat and contour2.bat were used, Appendix G.

6.4.2 Hardware Requirements

Section (6.2.1) recommends the proposed software to be executed on a single 

user PC. In order to obtain fits in a reasonable time compared to that of a 

mainframe machine we propose that the PC possess a 486 microprocessor, with 

a minimum 640k of RAM. The disk space required to use the system is minimal 

but a minimum of 2 Megabytes is preferable due to inclusion of the graphic 

font files, the database of transitions file, the executable code and a comfortable 

amount of space for numerous TRD and data files.

6.5 Timing Analysis of Software

The implementation of the software of Tranld on the PC environment requires 

an analysis of times to convergence of the Powell-Shell method on the various 

harware environments. Using column 4, Table (4.6), as initial estimates with 

a full data set, we obtained a final solution given in column 5, Table (4.6), in 

1 hr 37 minutes 46 seconds on a Dell 486 PC running on the microsoft Dos 

operating system, and 1 hrs 3 minutes and 35.9 seconds on a VAX mainframe 

running on the VMS operating system, using the Powell minimisation algorithm. 

For the Powell versus Fletcher-Reeves algorithms, the convergence times and 

initial and final estimates of the Powell-shell are given in Tables (6.2a) and 

(6.2b) for both the do Carmo et al.(1989) and the Campion et al.(1992) 

problems.
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Table (6.2a)

Parameter Powell-

Initial

Final-

Estimates

F. Reeves 

Initial

Final-

Estimates

A, -0.005 -0.00634 -0.005 -0.00625

a 2 -0.01 -0.01496 -0.01 -0.0148

B 0.01 0.009164 0.01 0.009466

C -0.01 0.0057 -0.01 -0.00584

E 2.7 2.7145 2.7 2.6999

L 0.45 0.6136 0.45 0.45002

Time 3:12:59:62 2:21:8:19

NSSq Min 8.63932 9.5295

Table (6.2b)

Parameter Powell-

Initial

Final-

Estimates

F. Reeves 

Initial

Final-

Estimates

At 0.0175 0.0162 0.01 0.0162

A2 -0.015 -0.0125 -0.01 -0.0125

B -0.002 0.00311 -0.001 0.00311

C 0.01 0.0329 0.01 0.0329

Time 1:36:17 0:57:56

NSSq Min 0.18342 0.18348
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A comparison of tables (6.2a) and (6.2b) show that Fletcher-Reeves algorithm 

comes to convergence quicker for both problems, since it uses fewer functional 

evaluations of NSSq(P). However for the do Carmo et al.(1988) example, table 

(6.2a), the final estimates found by the Powell algorithm gave a lower final 

NSSq(P) value. The initial estimates given in the Campion et al.(1993) example 

are different. This is because the sum of squares surface for this particular 

problem has several possible global minima, Figure (5.19). (diagram of 

Campion et al. sum of squares 3d surface ) For example when the intial 

estimates used for both algorithms were alternated the final NSSq(P) value was 

approximately equal to 0.32, in both cases.

Using the Norton Utility "System Information " a comparison of the 486 to the 

lowest range of IBM compatible XT microprocessor is pertinent. The 486 gives 

a computing index of 55.1 compared to the XT processor. This implies that the 

486 machine can compute and process information 55.1 times faster than the XT 

processor.

To compare different processing times on the PC platform, two problems are 

examined: The first deals with a relatively large matrix, (size= 8x8 including a 

spin orbital interaction, do Carmo et al(1988)) and the second with a relatively 

small matrix (size= 2x2, Campion et al (1992)), on 486 and 387sx2 machines 

respectively. Table (6.3) contains the details of the comparison between the two 

machines.

2 The 387sx refers to a machine with a 386sx m icroprocessor w ith an 80387  maths coprocessor  
installed, running a t approxim ately 15 times fa s te r  than the X T  machine.



Table (6.3)

Test Machine Problem No.

Parm

No of Points in 

100 111 110.

Time to 

converge.

1 486 * 6 33 48 56 1:43:0.0

2 486 * 5 L 33 48 56 1:29:0.0

3 486 * 4 LE 33 48 56 0:44:28.23

4 486 * 5 E 33 48 56 0:52:26.7

5 486 ** 4 Full Data Set 0:0:15.76

6 486 ** 4 5 :0:14.78

7 486 ** 4 10 0:0:30.0

8 387sx * 6 33 48 56 7:17:32.0

9 387sx * 5 L 33 48 56 5:57:0.0

10 387sx * 4 LE 33 48 56 2:54:55.8

11 387sx ** 4 Full Data Set 0:1:12.72

12 387sx ** 4 10 0:2:26.87

13 387sx ** 4 5 0:1:9.20

Here the first two columns indicate number of test and machine type and 

column 3 indicates the problem tested (i.e. (*) do Carmo et al.(1988) and (**) 

Campion et al.(1992)). Column 4 describes the number of parameters included 

in the problem, and lists the parameters previously estimated by direct 

measurement. Finally columns 5 and 6 give respectively the number of stress 

points used in each stress direction and the time to convergence for the
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parameter estimation.

From Table (6.3) the dimension of the matrix given by do Carmo et al.(1988) 

accounts for the bulk of the time taken in the parameter estimation. For example 

a comparison between tests 1 and 5 shows a difference of approximately 1 hour 

42 minutes 45 seconds on the 486 machine, between a 16xl63 and 2x2 matrix. 

However the difference between tests 8 and 11 is approximately 7 hours 16 

minutes and 20 seconds on the 387sx . Clearly the effect of machine type is also 

considerable. Nevertheless the times taken to converge decrease dramatically 

for the dimension of the matrix. Time consumption can be partitioned even 

further, since the number of parameters to be estimated also slows convergence. 

Tests 2 and 3 show a time variation of almost 45 minutes, yet only one 

parameter is held constant. The consequence of keeping a parameter constant 

will obviously depend on which parameter or parameters are involved (tests 2 

and 4). However the cause of the reduction in time can in some instance (or 

"all" instances of exclusion from overall estimation) be explained in terms of the 

number of functional evaluations involved. This number is known to be directly 

related to the number of parameters in the functional form of the model for the 

Powell algorithm, Walsh (1975),Press et al.(1990).

An interesting apparent contradiction arising from the experiment summarized 

in Table (6.2) is that the time to convergence does not necessarily decrease as 

the number of points in the estimation decreases, (tests 12 and 13). In these 

cases this may be rationalised by the observation that the functional form of the 

sum of squares is changed owing to the truncation of the data set and hence 

initial estimates are not particulary good.

This matrix effectively doubles because o f  the inclusion o f  spin orbita ls and hence a com plex com ponent is 
introduced. From section 3.7.3, a  herm itian m atrix is equivalent to a real sym m etric matrix o f  double dimensions.
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6.6 R ev iew

In this chapter a specification of appropriate user, machine and software 

specifications has been given and the tool developed to meet these requirements 

has been described, namely the software system known as Tranld. From this a 

demonstration of times to convergence for different problems showed that size 

of matrix, number of parameters and capability of hardware had an adverse 

effect, whereas size of data set is fairly unimportant.
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In this thesis, the three general approaches to modelling spectroscopic data have 

been reviewed and assessed with respect to their relevance for piezo

spectroscopy. The approach which was found to be the most appropriate 

involved working with realisations of the spectrum, although no single method 

within this group was immediately applicable to piezo-spectroscopic data. 

From the analysis of Chapter 4 it appears that while a more concise format for 

the characteristic polynomial or the eigenvalue equation may well prove 

satisfactory, the Powell-Shell approach of working directly with the secular 

matrix has been the most successful for the application described. Positive 

improvements with respect to time of convergence and parameter estimation 

have been obtained together with accurate transition identification in all cases. 

The use of two core algorithms, namely the Powell and Fletcher-Reeves has 

enabled us to independently confirm results for any particular problem. The 

Powell appears to be more robust with respect to initial estimates, but the 

Fletcher-Reeves is favourable with respect to time of convergence, since it uses 

considerably fewer functional evaluations. A further development should 

concentrate on reducing the number of functional evaluations required in 

locating a global optimum by imposing boundaries on parameter estimates with 

the optimisation algorithm.

The Powell-Shell primarily uses a least-squares estimator for multi-response 

models. The principal estimators for such data use the determinant criterion, 

Bates and Watts(1988) or the extension described by Stewart and 

Sorensen(1981) . The latter has been widely used for modelling multi-response 

data with missing values, Malcata et al.(1993), which is a feature of piezo- 

spectroscopic analyses. The Stewart and Sorensen estimator is, however, 

cumbersome to use with respect to the estimation of a large number of

Conclusions and Further Work
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parameters, while the least squares estimator is simpler, has other favourable 

characteristics and performs equally well in most cases. The interpretation of the 

parameters obtained in a physically meaningful way and the identification of the 

underlying transition has proved possible for all examples considered.

A major component of the errors in piezo-spectroscopic data analysis is the 

presence of autocorrelation and we have modelled this successfully using a two- 

stage procedure. The inclusion of extra autocorrelative parameters increases the 

complexity of modelling any data set and the use of multi-response estimators 

will in general have to allow for nonlinearity. Unfortunately, such estimators are 

frequently quite poor in close-to-linear models, which occur quite frequently in 

piezo-spectroscopic data and consequently, have a tendency to influence the 

parameter variance estimates. Some nonlinearity, which is probably intrinsic, 

does appear to be present in piezo-spectroscopic models and suggests that 

further investigation of the statistical properties of multi-response models with 

missing data would be desirable. In particular, diagnostic analysis has received 

scant attention to date and is predominantly confined to error plots and 

covariance estimates, Malcata et al.(1993). Additionally, it is not particulary 

clear if nonlinearity measures such as intrinsic and parameter effects, Bates and 

Watts(1988), are wholly applicable to multi-response problems, and these have 

yet to be seriously addressed in the current literature.

Finally, incorporating all the features discussed in Chapters 4 and 5, we have 

developed a complete software system. As part of this system a user interface 

was designed to allow the matching of experimental data points to proposed 

lines through the aid of a mouse. This procedure, however, is dependent on the 

user’s interaction and experience in handling piezo-spectroscopic data and, 

during the course of our investigation, we also considered complete automation 

of this process. The matching was based on a function of a given point’s 

horizontal distance, vertical distance and slope with respect to all other
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previously matched data points. In general, however, this procedure was very 

unstable with respect to the ratio chosen between the three variables and proved 

inadequate as an all purpose matching procedure. The inclusion of additional 

explanatory variables in this function may improve this process.
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Appendix A
The fits obtained using the Powell-shell for the problems outlined in 

Mcguigan(1989), Figures (A .l) to (A.3) and Daly(unpublished) Figures (A.4) 

to (A.6) are given below.
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Campion et al.(1992) fits with no autocorrelation terms included.
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Appendix B

The correlation matrices for the errors of the multi-responses in each of the three directions 

for the do Carmo et al(1988) example. Values marked ****** indicate that there were 

insufficient matching data points for the two vectors to obtain a correlation.

Correlation for Direction <001 >
1.0000 1.0000-0.4737-0.4737 ****** ******-0.6755-0.6755
1.0000 1.0000-0.4737-0.4737 ****** ******-0.6755-0.6755 

-0.4737-0.4737 1.0000 1.0000 ****** ****** 0.2508 0.2508 
-0.4737-0.4737 1.0000 1.0000 ****** ****** 0.2508 0.2508
****** ****** ****** ****** 1,0000 1.0000 ****** ******
****** ****** ****** ****** 1.0000 1.0000 ****** ******

-0.6755 -0.6755 0.2508 0.2508 * * * * * * * * * * * * 1.0000 1.0000
-0.6755 -0.6755 0.2508 0.2508 * * * * * * * * * * * * 1.0000 1.0000
Correlation for Direction < 111 >
1.0000 1.0000 1.0000 1.0000 0.2640 0.2640 0.4245 0.4245 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

1,0000 1.0000 1.0000 1.0000 0.2640 0.2640 0.4245 0.4245 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

1.0000 1.0000 1.0000 1.0000 0.2640 0.2640 0.4245 0.4245 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

1.0000 1.0000 1.0000 1.0000 0.2640 0.2640 0.4245 0.4245 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0.2640 0.2640 0.2640 0.2640 1.0000 1.0000 0.9418 0.9418 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0.5142 0.5142
0.2640 0.2640 0.2640 0.2640 1.0000 1.0000 0.9418 0.9418 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 0.5142 0.5142
0.4245 0.4245 0.4245 0.4245 0.9418 0.9418 1.0000 1.0000 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0.4245 0.4245 0.4245 0.4245 0.9418 0.9418 1.0000 1.0000 * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

* * * * * * ****** ****** ****** ****** ****** ****** ****** 1.0000 1.0000 ****** ****** 0.3223 0.3223 ****** ******
* * * * * * ****** ****** ****** ****** ****** ****** ****** 1.0000 1.0000 ****** ****** 0.3223 0.3223 ****** ******
* * * * * * ****** ****** ****** ****** ****** ****** ****** ****** ****** 1.0000 1.0000 ****** ****** -0.3148 -0.3148
* * * * * * ****** ****** ****** ****** ****** ****** ****** ****** ****** 1.0000 1.0000 ****** ****** -0.3i48-O .3i48
* * * * * * ****** ****** ****** ****** ****** ****** ****** 0.3223 0.3223 ****** ****** 1.0000 1.0000 * * * * * * ******
* * * * * * ****** ****** ****** ****** ****** ****** ****** 0.3223 0.3223 ****** ****** 1.0000 1.0000 * * * * * * ******
* * * * * * ****** ****** ****** 0.5142 0.5142 ****** ****** ****** ****** .0,3148 -0,3148 ****** ****** 1.0000 1.0000
* * * * * *  * * * * * *  * * * * * *  * * * * * *

Correlation for Direction <  110 >
0.5142 0.5142 ****** ****** ****** ******-0.3148-0.3148 ****** ****** 1.0000 1.0000

1.0000 1.000 0.9392 0.9392 ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******
1 000 1 0000 0.9392 0.9392 ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ****** ******
0.9392 0.9392 1.0000 1.0000 ****** ****** 0.1450 0.1450 0.4554 0.4554 ****** ****** ****** ****** ****** ******
0.9392 0.9392 1.0000 1.0000 ****** ****** 0.1450 0.1450 0.4554 0.4554 ****** ****** ****** ****** ****** ******
****** ****** ****** ****** 10000 1.0000 ****** ****** 0.2837 0.2837 ****** ****** ****** ****** ****** ******
****** ****** ****** ****** 1 0000 1.0000 ****** ****** 0.2837 0.2837 ****** ****** ****** ****** ****** ******
****** ****** 0.1450 0.1450 ****** ****** 1.0000 1.000-0.7172-0.7172-0.9506-0.9506 ****** ****** 0.9698 0.9698 
****** ****** 0.1450 0.1450 ****** ****** 1.000 1.0000-0.7172-0.7172-0.9506-0.9506 ****** ****** 0.9697 0.9697 
****** ****** 0.4554 0.4554 0.2837 0.2837-0.7172-0.7172 1.0000 1.0000 0.1185 0.1185 ****** ******-0.3854-0.3854
****** ****** 0.4554 0.4554 0.2837 0.2837-0.7172-0.7172 1.0000 1.0000 0.1185 0.1185 ****** ******-0.3854-0.3854
****** ****** ****** ****** ****** ****** -0.9506 -0.9506 0.1185 0.1185 1.0000 1.0000-0.0628-0.0628-0.5061 -0.5061 
****** ****** ****** ****** ****** ******-0.9506-0.9506 0.1185 0.1185 1.0000 1.0000-0.0628-0.0628-0.5061 -0.5061 
****** ****** ****** ****** ****** ****** ****** ****** ****** ******-0.0628-0.0628 1.0000 1.0000 0.0190 0.0190
****** ****** ****** ****** ****** ****** ****** ****** ****** ******-0.0628-0.0628 1.0000 1.0000 0.0190 0.0189
****** ****** ****** ****** ****** ****** 0.9698 0.9697-0.3854-0.3854-0.5061 -0.5061 0.0190 0.0190 1.0000 1.0000
****** ****** ****** ****** ****** ****** 0.9698 0.9697-0.3854-0.3854-0.5061-0.5061 0.0190 0.0189 1.0000 1.0000
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Appendix C

Plots of error versus stress with the autocorrelation terms excluded are shown in Figures (C. 1) - 

(C.19) for do Carmo et al.(1988), in Figures (C.20)-(C.24) for Kehoe(unpublished) and in 

Figures (C.25)-(C.31) for Daly (unpublished).
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Error versus Stress plots for each response in the < 001 > direction for the do Carmo et
al.(1988) example with the autocorrelation terms excluded.
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Figures C.5-C11 give the Error versus Stress plots in the < 111>  direction, with the
Autocorrelation terms excluded, for the do Carmo et al.(1988) example.
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Figure C.12 to C.19 give the Error versus Stress plots for the individual responses in the 
< 110 > direction for do Carmo et al.(1988) example, with the autocorrelation terms excluded.
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Error versus Stress Plots for the < 111 > and <001 >  directions for Kehoe(unpublished), with the auto-correlation terms excluded.
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Error versus stress for the <  110 >  direction in Kehoe(unpublished), with the autocorrelation 
terms excluded.
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Error versus Stress Plots for the individual responses in the <001 >  and <  111 >  directions for 
the Daly(unpublished) example with the autocorrelation terms excluded.
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Error versus Stress plots for the individual responses in the <  110 >  direction for the Daly(unpublished) example with the autocorrelation terms 
excluded.
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Appendix D

Error versus stress plots with the autocorrelation terms included are shown in Figures(D. 1)- 

(D.19) for do Carmo et al.(1988), in Figures (D.20)-(D.24) for Kehoe(unpublished), in 

Figures(D.25)-(D.31) for Daly(unpublished) and in Figures(D.32)-(D.36) for Campion et 

al.(1992).
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Error versus Stress plots for each response in the < 0 0 1 >  direction for the do Carmo et 
al.(1988) example with the autocorrelation terms included.
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Figures D.5-D.11 Error versus Stress plots in the < 111 > direction, with the autocorrelation
terms included, for the do Carmo et al.(1988) example.

Plot of Error Versus Stress

211.0 E
0.14 " +0.13 -
0.12 -
0.11 -
0.10 -
0.09 -
0.08 -
0.07 +
0 .0 6  “
0.05 *
0.04 -
0.03 - +
0.02 -
0.01 - +
0. oo ■
-0.01 -
-0.02 ■
-0.03 ’
-0.04 ‘
-0.05 - +  +-0.06 '
-0.07 -
-0.08 - +  +  +  ^-0.09 - +
-0.10 “T 1 1 l I

0 10 20 30 40
STUSS

Plot of Error Versus Stress

EEHCE
0.10 - +0.09 -
0. 08 -
0. 07 *
0.06 -
0.05 ■
0,04 * +
0.03 -
0.02 - +
0.01 ' +  4-0. 00

-0.01 *
-0.02 -
-0.03 -

+-0.04 -
-0.05 ■
-0.06 ■ +
-0.07 ’ +-0.08 -
-0.09 -
-o.io ■
-0.il ■
-0.12 - +
-0.13 - +  +
-0.14 -

0 20 40 60 80 100
&TÙESS

F i g u r e  D .5  F i g u r e  D .6

Plot of Error Versus Stress

11101U. i 'A
0 li
0 10
0 09
0. 08
0 07
0 06
0 05
0 04
0 03
0.02
0,01
0.00
-a 01 -
-a 02 -
-0 03 -
-0. 04 -
-a. OS -
-□ 06 -
-o. 07
-o. 00 -

09
-0. 10 *

-0. 11 -
-0. 12 *
-0. 13 -
-0. 14 -

+

+ +
40 60
57RE55

Plot of Error Versus Stress

Figure D.7 Figure D.8

D-3



Rot of Error Versus Stress
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Figures D.12 to D.19 : Error versus Stress piots for the individual responses in the < 110>
direction for the example given do Carmo et al.(1988), with the auto-correlation terms included.
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Plot of Error Versus Stress
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Error versus Stress Plots for the < 111 >  and <001 > directions for Kehoe(unpublished), with the autocorrelation terms included.
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Error versus stress for the < 110 > direction in Kehoe(unpublished), with the autocorrelation
terms included.
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Error versus Stress Plots for the individual responses in the < 001 >  and <  111 >  directions for 
the Daly(unpublished) example with the autocorrelation terms included.
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Error versus Stress plots for the individual responses in the <  110> direction for the Daly(unpublished) example with the autocorrelation terms 
included.
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Error versus Stress plots in Figures (D.32)-(D.33) for the <001> 
direction and in Figures (D.34)-(D.36) for the <111> direction for 
the Campion et al(1992) example with the autocorrelation terms 
included.
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P l o t  o f  E r r o r  V e r s u s  S t r e s s
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Appendix £

The fits obtained using the Powell-shell with the autocorrelation terms included for 

each response for the problems described by do Carmo et al(1988), Figures (E. 1)- 

(E.3), Daly (unpublished), Figures (E.4)-(E.6) and Kehoe (unpublished), Figures 

(E.7)-(E.9). These should be compared with Figures (4.7)-(4.8) for do Carmo et 

al.(1988), Figures (4 .10)-(4.12) for Kehoe(unpublished) and with Figures (A. 4)- 

(A.6) for Daly(unpublished).
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Appendix F

A selection of the surface plots described in section 5 .7 are shown in Figures (F. 1)- 

(F.4) for Campion et al.(1992), in Figures (F .5H F.8) for do Carmo et al.(1988) 

with E and L excluded, in Figures (F.9)-(F.12) for Kehoe(unpublised) and in 

Figures(F.13)-(F.16) for do Carmo et al.(1988) with E and L included.
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A selection of surface plots for Campion et al. (1992), where SSq corresponds to the Sum
of Squares.

Figure (F.l)
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A selection of surface plots for do Carmo et al.(1988), where SSq corresponds to the
Sum of Squares, and E and L are excluded.

Figure (F.5)
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A selection of surface plots for Kehoe(unpublished), where SSq corresponds to the
Sum of Squares.
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A selection of surface plots for do Carmo et al.(1988), where SSq corresponds to the
Sum of Squares, and E and L are included.
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Appendix G

The following are the list of files located on disk A.

Proto.c C prototype.

Proto.pas Pascal prototype.

Tran.txt Tranld Format.

Coutourl.bat Surfer batch program for surfaces plots.

Coutour2.bat Surfer batch program for contour plots.

Man.txt : A brief user manual
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Piezo-spectroscopic data analysis: a PC tool

A.L. McCarren
H.J. Ruskin 
K.G. McGuigan 
M.O. Henry

Indexing terms: Piezo-spectroscopy, Powell algorithm, Spectroscopic data analysis

Abstract: Information from the many kinds of 
spectroscopy used by chemists and physicists is 
fundamental to our understanding of the structure 
of materials. Numerical techniques have an 
important role to play in the augmentation of the 
instrumentation and technology available in the 
laboratory, but are frequently viewed as separate 
from the laboratory procedures. We describe an 
integrated PC-based approach for obtaining 
directly the parameter estimates of transition types 
in piezo-spectroscopic measurements of crystalline 
materials. Typically, the analyses in question are 
required to handle complex secular matrices, to 
distinguish between components in the experimen
tal results, and to identify the transition types as 
rapidly and as efficiently as possible. The method 
described, based on providing a discrete shell to 
the Powell algorithm, is shown to give both accur
ate identification of the transition type in the case 
of new data and improved fits (i.e. reduction in 
residual variation) when compared with results 
obtained via standard procedures. In addition it is 
flexible with respect to the language used and pos
sesses a high degree of portability. We illustrate 
the success of the approach using (i) data pre
viously reported on the solution of a trigonal 
defect which includes both mixing of states and 
spin orbit interactions and (ii) new data obtained 
for a defect related to beryllium impurities in 
silicon.

1 Introduction

The fitting of spectroscopic data is a topic which is char
acterised by a lack of coherent reporting in the literature. 
This is due both to the diversity of current experimental 
techniques and applications and the obvious corollary of 
the lack of a common forum in terms of reporting on the 
analyses performed. Such considerations have ensured 
that the effort of reconciling common features in the 
underlying linear models is nontrivial, even where such 
models have long been employed by mathematicians, sta
tisticians and computer scientists. Similarly, an informed 
discussion of the scope of the optimisation technique

©  IEE, 1994
Paper 9936A (El), received 6th July 1993
A.L. McCarren, H.J. Ruskin and M.O. Henry are with the School of 
Com puter Applications and School of Physical Sciences, Dublin City 
University, Dublin 9, Eire
K.G. McGuigan is with the Department of Physics, Royal College of 
Surgeons in Ireland, Dublin 2, Eire

used is usually lacking, since the primary aim is to inter
pret the values obtained for the parameters defining the 
problem rather than to assess the efficiency of the estima
tion process. The wider aspects of achieving a good fit to 
spectroscopic data have not, of course, been entirely 
ignored and notable examples include References 1-3 and 
references cited therein.

In this paper we describe a PC-based approach to the 
fitting of data obtained in piezo-spectroscopic measure
ments of crystalline materials. The central issues are 
those of obtaining the best fit, i.e. the most precise estim
ates of the problem’s parameters, and identifying the 
transition which produces the spectrum. The require
ments for the tool include flexibility, good interactive 
facilities and comparable performance to that achieved 
on a mainframe, (VAX/VMS 6230 clustered with Vax 
Stations), for a reasonable choice of PC. Procedures for 
analysis of data of this type typically involve obtaining 
initial estimates by preliminary manipulation of the data 
and the application of an optimisation technique which 
finds the roots of the characteristic polynomial (i.e. the 
eigenvalues of the energy shift matrix) [4], In the present 
instance, however, these methods do not yield directly the 
quantities of interest, namely the parameters defining the 
optical transition. The alternative approach which we 
describe involves the provision of a discrete shell to the 
Powell algorithm [5, 6]. The method is used to re
examine published data for a defect related to iron impu
rity atoms in silicon [7] and to analyse new data for a 
defect in beryllium doped silicon [8].

2 Background p h ysics

The study of electronic and optoelectronic materials has 
been intensive for decades. This reflects the central role of 
materials analysis and characterisation in the improve
ment and development of device technology. For these 
materials, much of the research has been directed at 
obtaining a full understanding of the properties of 
defects. This applies equally to defects deliberately pro
duced for device optimisation and to unwanted defects 
which degrade device performance.

Spectroscopic techniques, of which electron paramag
netic resonance and photoluminescence are good exam
ples, possess high sensitivity and accuracy and are widely 
used in the study of defects in materials. The power of

We thank J. Campion for making his data avail
able to us prior to publication. We are also 
indebted to Dr. C. Do Carmo for several useful 
discussions.
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spectroscopic measurements can be considerably 
enhanced by applying known perturbations to the system 
under study. Magnetic fields and both hydrostatic and 
uniaxial stresses are widely used perturbations in con
junction with optical spectroscopy. From the effects pro
duced by the perturbation, much detailed information on 
the physical structure and electronic state of the defect 
may be obtained. The effects of a uniaxial stress on a 
crystal containing randomly distributed defects and pos
sessing an axis of symmetry may be as simple as a shift of 
the spectral line position; this occurs when all defects 
have the same projection on the stress axis and the initial 
and final states of the transition producing the spectral 
line are both nondegenerate. Where the stress axis is not 
oriented equally to the symmetry axis of all defects, the 
orientational degeneracy of the defects is lifted under 
stress and a line splitting will be observed. Further com
plications may occur when the states are degenerate 
and/or adjacent states interact.

Since only a finite number of possible point defect con
figurations exist for crystals, general equations, which 
describe the effects of an applied uniaxial stress on cubic 
crystals, have been obtained for all possible config
urations [9-11]. These equations, expressed in terms of 
several parameters (in units of energy per unit stress or 
shift rates), are known for stresses along <001), <111) 
and <110) crystallographic directions. In practice, data 
are recorded for stresses along these three directions and 
a best fit is sought between the data and the appropriate 
equations. In a successful fit, the symmetry of the defect, 
the symmetry properties of the electron energy states, the 
dipole nature of the transition and (in favourable cases) 
the nature of the defect vibrational nodes may be 
obtained. The difficulty, of course, lies in reconciling ‘less 
than perfect’ data with a set of equations describing a 
particular transition. Common occurrences include data 
missing for high stress values and overlapping spectral 
lines, leading to additional complexity in terms of both 
fitting and identification.

The basis of the mathematical method used to model 
the data is perturbation theory. It is assumed that the 
effect of the stress is a small perturbation to the zero- 
stress Hamiltonian for the defect. First order effects only 
are considered in general. In cases where the effect of the 
stress is to produce line shifts which are linear in the 
stress, the eigen-value equations may be derived analytic
ally and the parameters estimated from the data in a 
straightforward manner. It is not uncommon, however, 
for a spectrum to consist of several closely spaced lines 
involving adjacent electron energy states, which may 
interact under stress [7, 12, 13]. Although these inter
actions can be formally deduced in an analytical solution, 
the parameters for each state will become imbedded in 
the solution. Consequently, recovery of the original 
parameters, (the physically meaningful results being 
sought), becomes difficult and is frequently compounded 
in situations, (see previously), where fewer experimental 
values than expected can actually be observed. The 
secular matrix containing the information on the energy 
shifts is then of order n x n, whereas data may be avail
able only for m <  n lines. The problem of matching a 
particular data point to a particular eigenvalue clearly 
becomes more complicated with increasing n in this situ
ation.

The Hamiltonian with stress included may be 
expressed as

H = H0 + H’ (1)

where H' is the perturbation produced by the stress. The 
form of H' depends on the crystal structure and defect 
type, and suitable forms have been derived for commonly 
occurring situations. For the case considered below, a tri
gonal defect in a diamond type lattice, the perturbation 
may be expressed, from Reference 4 as

H' = +  Syy +  S J  +  d\(Syz +  Szx +  Sxy)

+  EX(SXX +  Syy -  2 S J  +  E'X(SXX +  Syy -  2 S J  

+  7(3 )Ey(Sxx -  Syy) +  V(3)E’y(Syz -  Szx) (2)

where a t , a\, Ex , Ey , E'x , E'y are operators, and Stj =
| P I cos (P, i) cos (P, j) with | P | the magnitude of the 
applied stress and cos (P, i) the cosine of the angle 
between the direction of P and the crystal axis i. In the 
absence of H' a transition between two states 4/J , 'Pi, of 
energy Wa and Wb, respectively, involves a photon of 
energy W  =  Wa — Wb. For the case where 'Pa and 4/(j are 
nondegenerate and when H' is included the energy of the 
photon becomes

W ' =  Wa -  Wb +  <.'¥a \H' \ '¥a' > - ( ' ¥ b\H ' \ ' ¥b> (3)

Accordingly, the energy shift observed in the measure
ment under H' is the difference of the shifts of the initial 
and final states and is given by the last two terms. The 
analysis of the data in general involves calculating matrix 
elements of the form <4/m | H' | where H' typically 
takes the form of eqn. 2 above and the *Pm state vectors 
may be one, two or three-dimensional. Fortunately, 
group theory arguments simplify the calculations con
siderably by enabling factors which do not contribute to 
be identified and ignored. For the first example con
sidered here (transitions between two-dimensional (£) 
states and one-dimensional (A) states at a trigonal defect 
in silicon), the effect of H' on the E states [4] is given by

H 'P1 y
¥A X a -  P y
A y y a +  P

where

a. =  A ^ S ^  +  Syy +  Szz) +  2A 2(Syz -I- Szx +  Sxy)

P =  B(SXX +  Syy -  2SZZ) +  C(Syz +  Szx -  2Sxy) 

y =  V(3)B(SXX -  Syy) +  yJ(3)C(Syz -  Szx) (4)

and Tj, are the basis functions for the two- 
dimensional E state. A u A 2 , B and C  are derived from 
the operators in eqn. 2 [14], and are parameters which 
describe the line shifts with units of energy/stress.

The shifts observed for components of a spectral line 
due to transitions between an E and an A state are linear 
combinations of a, P and y given by solutions and X2 
to the characteristic polynomial

for the different stress directions. For the case of E to A 
transitions at a trigonal defect, there is a total of five 
characteristic polynomials, two each for stress along 
<1 10) and <11 1> directions and one for < 001> stress. 
The measured values of the shifts may be used to fit 
simultaneously for each component and stress direction 
and to obtain best estimates of the parameters A u A 2 , B, 
C. A simple system of this type is readily solved but 
seldom arises in practice. Factors which add to the com

186 I EE Proc.-Sci. Meas. Technol., Vol. 141, No. 3, May 1994



plexity were noted previously and include stress-induced 
interactions between adjacent energy states, overlap and 
crossover of components of lines when there are several 
closely spaced energy states. As a consequence, it is fre
quently difficult to relate experimental results to com
ponents of known transitions.

3 So lv ing  fo r com plex syste m s: P o w ell shell

Obtaining the characteristic polynomials or eigenvalue 
equations for each individual stress direction in a system 
can be facilitated by using models of the form

W, =  nP, +  v, for t = 1 ,.. . ,  n (6)

where P, denotes the stress component, (the predetermi
ned variable), Wt corresponds to the current variable 
(energy) and v, is a stochastic error between the experi
mental energy values and predicted eigen values.

The matrix n takes the following form

nT =  [a b c] (7)

where a is given by

a r  =  [ A 1 + 2 B  A t - I B  A l + 2 A 2]  (8)

and correspondingly for b and c.
Parameter estimates for such models can be readily 

obtained by using simultaneous regression methods but it 
is evident from the form of eqns. 4 and 5 and following 
remarks that neither the eigenvalue nor characteristic 
polynomial approach will yield directly the physical 
parameters of interest, but will imbed these within the 
overall solution. Unfortunately, both are also highly 
spendthrift of computer time, since models of the type 
described by eqn. 6 require evaluation of the determinant 
of high order matrices.

A computer-based solution, while not essential for 
simple systems of the type described in eqn. 2, is clearly 
highly desirable for problems of increased complexity. It 
seems obvious therefore that an efficient method, which 
does not imbed the parameters but permits direct associ
ation with the experimental results, should be sought. We 
have found that the ‘Powell-Shell’ approach meets these 
requirements. The ranking involved in the matching pro
cedure, (described below), means that we do not have an 
analytical expression for the overall residual sum of 
squares, where numerical approximation of the deriv
atives would involve a large number of extra evaluations. 
However, knowledge of the partial derivatives is not 
required for the class of optimisation procedures which 
include the Powell algorithm and its robustness and 
general applicability make it a good choice [5, 6, 15],

The matching of experimental to theoretical values is a 
lengthy procedure which can be minimised by ranking 
both sets of data from the highest to the lowest at each 
stress value. Effectively we define which experimental 
energy values belong to which ‘line’. Having done this we 
associate experimental data points with eigenvalues, and 
avoid the problem of matching lines as such and hence 
the problems of ‘cross-over lines’ since associations now 
depend on ranked position. The number of comparisons 
is clearly sensibly diminished, since the highest ranked 
theoretical points need only be compared to the highest 
ranked actual data observations and similarly for the 
lowest ranked points, since otherwise we would be left 
with unassociated values. Thus for, say, eight expected 
values fVj of the given secular matrix and four experimen
tal measurements M;-, the scheme of comparisons 
includes Wt associated with M t ; W2 with M x, M 2\ W3
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with M j, M 2, M 3; W4 with M u M 2 , M 3, M4; Ws with 
Afj, M 2, M3, M4; W6 with M 2 , M3, M4; W1 with M 3, 
M4 and Wa with M4. The method generalises readily to 
matrices of any order.

This process is then carried out for all appropriate 
stress directions. The least squares fit is then obtained by 
checking each estimated line against each of the actual 
lines proposed by the matching technique described and 
the pairing with the minimum residual sum of squares is 
accepted and added to the overall residual sum of 
squares, (5(0)), dependent on 6, the parameter vector. The 
search for the optimum vector 0 is accomplished in a 
number of iterations, each one of which normally 
involves many evaluations of S{6) and consists of p (or 
p +  1) one dimensional searches in the p-dimensional 
space defined by the parameter set. Values of the initial 
points are user specified, but are updated together with 
step sizes during the optimisation process. Three con
secutive points are used to fit a parabola and the abscissa 
of the minimum is used as a predictor for the minimum 
point on the actual curve. The function is calculated at 
this point and a new parabola is fitted using this last 
point and the best two previous points. The process is 
repeated for the new parabola and so on until a stopping 
criterion is satisfied. Individual linear searches are com
bined to obtain the global minimum. For cases where 
more than one transition type appears possible on the 
basis of experiment, the matching procedure also pro
vides considerable information on the influence of subsets 
of the data on the overall fit and transition identification. 
Typically, piezo-spectroscopic experiments are character
ised by well defined data at low stress values providing 
good initial estimates as a basis for fitting the data for all 
stress directions, but convergence is found to be satisfac
tory even when these initial estimates are quite poor. We 
include an analysis of performance with a range of condi
tions of estimation in the following section.

4 P o w ell-S h e ll resu lts and perform ance  
assessm ent

In the following, we consider results obtained using the 
Powell-Shell for the problem described in Reference 7. 
The defect involved is observed in the photoluminescence 
spectrum of iron-doped silicon, when the sample is 
rapidly cooled from temperatures in the region of 1000°C 
to room temperature. Such rapid cooling rates prevent 
the usual precipitation of impurities such as iron and 
copper into clusters. This and other properties of these 
metallic impurities in silicon are discussed by Graff [16]. 
The results obtained by Do Carmo et al. [7] indicate that 
photoluminescence occurs at a defect of trigonal sym
metry involving E  to A transitions. Particular features of 
the defect include adjacent interacting E states and the 
occurrence of a splitting attributed to spin-orbit inter
actions in one of the E states. This leads to a complex 
interaction matrix and provides an excellent test of the 
Powell-Shell procedure.

The parameter values obtained are compared with 
those of Do Carmo et al. [7] in Table 1. Note that the

Table 1: Comparison of results obtained using the Powell- 
Shell and those described in Reference 7

Parameters A , A 2 8 , = - f l2 f l , j  F  i.

Do Carmo era/. -5 .4  -15 .7 -12.4 8.7 2.7 meV 0.45 meV
Powell-Shell -6 .4  -14 .7 -9 .4  6.1 2.7 meV 0.45 meV

All units are in m eV/GPa unless otherwise stated.
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values of E and L are fixed by the spectroscopic data and 
that the physical significance of the parameter values is 
fully discussed in Reference 7. The differences between the 
two sets of values are not substantial, but a comparison 
of the closeness of the fit to the experimental data, shown

We present one further example here which consists of 
new experimental data obtained for a defect related to 
beryllium impurities in silicon [8]. Fig. 2 shows the fit 
obtained to these data assuming E to A transitions at a 
tetragonal defect. Although the form of the secular matrix

Fig. 1
o

-5  b-------------- 1________ I________ L_ -5  Ll__________ i__________ i__________ L -5
0 50  100 150 0 50 100 150 0

a b
applied stress, M P a  ap p lied  stress,M P a

Results fo r stresses in (a) the <0 0 1 )  direction, (b) the < / 1 1 > direction and (c) the < / 10} direction 
data points
fit ob ta ined  in this study
fit ob ta ined  w ith param ete r values from  Reference 7

50 100 150
c

applied stress, MPa

in Fig. 1, is revealing. Figs. la  and b show the results for 
<001) and <111) stresses; for these cases, the fits 
cannot be distinguished. For <110) stresses, shown in 
Fig. 1 c, the amount of residual variation has clearly been 
reduced leading to more precise estimates of the required 
parameters. The procedure uses as initial estimates the 
relatively crude values for a subset of the data at low 
stresses, the fitting procedure is then applied and 
resulting parameter estimates initialise the fit for the 
complete data set.

is simpler here, the quality of the fit and parameter esti
mation is good and satisfactorily supports identification 
of the assumed transition in this previously untried case.

We also present an overview of the performance of the 
Powell-Shell, Table 2, in terms of an analysis of times to 
convergence on alternative choice of PC for different 
initial conditions. For a given set of initial estimates with 
a full data set, we obtain a final solution (Table 1) in 1 h 
37 min 46 s on a Dell 486 PC running on the microsoft 
DOS operating system and 1 h 3 min and 35.9 s on a

2 h

50  100
a

ap p lied  stress, MPa applied s tress , MPa

a)
E

>
a>
E

cn
ao
Eo

<b c 
<1»

applied stress,MPa

F ig . 2  Results for stresses in (a) the < 00  7> direction, (b) the <7 I 7 )  direction and (c) the <7 7 0)  direction
O  d a ta  po in ts  from  Reference 8 

----------  fit ob ta ined  in this study, identified as a  transition  between E and  A  s ta tes  a l a defect w ith te tragonal (D 2(i) sym m etry
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