
Dublin City University
School o f Computer Applications

Implementing Metrics
For Process Improvement

Angela B. McAuley

A thesis submitted as a requirement for the degree of
Master o f Science in Computer Applications.

August, 1993

Supervisor. Renaat Verbruggen

Declaration
I hereby certify that this material, which I now submit for assessment on the
programme of study leading to the award of Master o f Science in Computer
Applications, is entirely my own work, and has not been taken from the work of
others, save and to the extent that such work has been cited and acknowledged within
the text o f my work.

Signed:

Acknowledgment
I would like to thank my Supervisor, Renaat Verbruggen, for his encouragement and
guidance throughout the course o f this research. I am grateful to Michael O'Callaghan,
General Manager, Microsoft Ireland (Worldwide Product Group), who gave me
encouragement and support, in terms of time and resources to complete this project, over
the past two years. I would like to take this opportunity to thank all those within
Microsoft Ireland who were involved either directly or indirectly with implementing the
metrics system over the past year, for their valuable help and comments, particularly those
on the 'metrics team' who devised the initial set o f measures.

I would like to thank my parents, Michael and Rosemary, for their constant
encouragement and support throughout the course o f this project; my friends for their
everlasting patience, and my siblings for their help with the house and garden, while I was
writing up this thesis.

Implementing Metrics for Process Improvement
Angela McAuley

Abstract

There is increasing interest in the use of metrics to control the software
development process, to demonstrate productivity and value, and to identify areas
for process improvement. Research work completed to date is based on the
implementation of metrics in a 'standard' software development environment, and
follows either a top-down or bottom-up approach. With the advent of further
European unity, many companies are producing localised products, ie products
which are translated and adapted to suit each European country. Metrics systems
need to be customised to the processes and environment o f each company. This

thesis describes a 12-step process for metrics implementation, using an optimum
approach which is a combination o f top-down and bottom-up approaches, with a

set o f applicable metrics, covering the software development process, which can be
adapted for any development environment. For the case study, a software
localisation company, the suggested implementation process is followed, and
relevant measures are adapted to suit the different environment, with a particular

emphasis on quality metrics. This thesis also demonstrates that a metrics system is
itself subject to continuous improvement, and rather than being a once-off
implementation, it is an evolutionary process, changing as the software

development process comes under control.

CONTENTS

1. PREFACE...1

2. INTRODUCTION.. 2
2.1 Software Management...4
2.2 The Capability Maturity M odel..5
2.3 Defining Measures To Facilitate Process Improvement... 10
2.4.Summary o f Metrics w.r.t the Process Maturity Fram ework 1 1

3. METRICS IMPLEMENTATION PROCESS... 13

3.1. Map the software development process.. 14

3.1.1 Define The Process... 14
3.1.2 Chart The Process..17
3.1.4 Identify Current Maturity Level...19

3.2. Define the corporate improvement g o a l...20
3.2.1 A Sample Goa!... 20
3.2.2. The Goal - Question - Measure approach.. 21

3.3. Conduct an employee and a customer survey....................... 23
3.3.1 Customer V iew ..24
3.3.2 Staff view.. 26

3.4. Define applicable metrics categories... 28

3.4.1 Metrics Categories... 29
a) Size M etrics..30
b) Productivity:..32

c) Rework Metrics..34

d) Effort and Schedule M etrics.. 35
e) Quality Metrics... 36

3.4.2 Level-specific metrics..38
3.5. Break corporate goal into a specific goal for each category............................... 40

3.6. Define specific measures.. 42

3.7. Prepare Data Sheets...43

3.8. Provide necessary training... 44
3.9. Measure current processes and products......................... 46

3.10. Set improvement targets..48

3.11. Automate the system ... 49

3.12. Review the effectiveness o f the metrics...51

4. SPECIFIC MEASURES TO IMPLEMENT.. 52
4.1. Specification/Code-based Measures.. 52

a) Halstead's Software Complexity M easure... 52
b) McCabe's Cyclomatic Complexity M etric... 54
c) DeMarco's Bang M etric... 56
d) Constructive COst MOdel...58

e) Function Point Analysis:... 60
4.2 Project Management Measures..63

4.2.1 Schedule:.. 63
4.2.2 Effort:.. 72

4.2.3 Productivity Measures..75
4.2.4 Rework:...76

5. QUALITY MEASURES... 77
5.1 Defect reporting...78

5.2 Defect Metrics.. 80
a) Halstead's bug prediction formula... 80
b) McCabe's Complexity M etric.. 81

c) Musa's Software Reliability M easurem ent.. 82
d) Using defect rates to predict product stability.. 86
e) Distribution o f Active defects over tim e..89

f) Defect Severity... 90

5.3 Defect Resolutions.. 91
5.4 Pareto analysis.. 92
5.5 Measures/Metrics after project completion... 93

5.6 Causal Analysis.. 95

6. CASE STUDY: IMPLEMENTING M ETRICS.. 96
6.1 - Map the software development process...97
6.2: Define the Corporate Improvement G oal..99
6.3: Conduct an Employee and a Customer survey.. 100

6.4: Define applicable metrics categories.. 102

a) Size m etrics:...102
b) Productivity..................................... 104
c) Rework.. 105

d) Effort & schedule..106

e) Quality... 107

6.5: Break corporate goal into a specific goal for eacli category 108
6.6: Define specific measures.. 109
6.7: Develop data sheets...109
6.8: Provide necessary training... 110
6.9: Measure current process and products...112
6.10: Set improvement targets...114
6.11: Automate the system... 115

7: PRESENTATION OF LOCALISATION M ETRICS... 116
7.1 SOFTWARE... 118

7.1.1 Planning..118
7.1.2 Localisation:... 119
7.1.3 Software Testing.. 123
7.1.4 Releasing... 13 1

7.2 DOCUMENTATION.. 132
7.2.1 Translation.. 132

7.2.2 Formatting.. 134

7.2.3 Art Preparation...135

7.2.4 R elease... 135
7.3 Summary..136

8. ANALYSIS OF RESU LTS...137
8.A. - Process...137

8.A. 1 Map the software development process... 137

8.A.2 Define the Corporate Improvement G oal... 138
8.A.3 Conduct an Employee and a Customer survey...................................... 138

8.A.4 Define applicable metrics categories... 139
8.A.5 Break corporate goal into a specific goal for each category...................140
8.A.6 Design specific m easures... 140

8. A.7 Develop data sheets.. 141

8.A.8 Provide necessary training...142

8.A.9 Measure current process and products..143
8.A. 10 Set improvement targets.. 144

8. A. 11 Automate the system ;.. 144

8.B - Specific Measures.. 146
a) S ize... ¡46
b) Productivity.. 146
c) Rework.. 147
d) Effort..14 S
e) Schedule.. 148

f) Quality..149
9. CONCLUSIONS and FUTURE W ORK..153

9.1. Implementation Time.. 154

9.2. Process................................. 154
9.3. Metrics...156
9.4. Metrics w.r.t. Improvement... 157
9.5. Future w o rk ... 15S

1. PREFACE

"When you can measure what you are speaking about and express it in
numbers, you know something about it;
but when you cannot measure it, when you cannot express it in numbers,
your knowledge is o f a meagre and unsatisfactory kind. "

[Lord Kelvin]

When speaking of metrics with respect to software, computer professionals often
think in terms of code-level metrics. Most of these metrics surfaced in the late 70's
and early 80's, the most widely used ones are the factor analysis models such as
COCOMO [Boehm81] and complexity models [Halstead77]; [McCabe76],

During the 1980's there was much research conducted into the usefulness of these
metrics. Now the 1990's has become a decade where the Quality o f software is the

most important factor concerning today's developers and users. The subject o f
metrics has expanded considerably since the effort and complexity metrics first

emerged in the 1970's.

Quality is a concept which has been with us in the Western world for the past 2

decades, but mainly in the manufacturing area. Up until recent years, Software
development was viewed as a 'black art', and therefore any attempt to measure the

quality o f the process or the resulting product was deemed to interfere with the
creativity o f the developers. The primary concern of software companies is to

develop a process to systematically and consistently produce Quality software.

In order to improve the process, it needs to be measured, otherwise, as the process
changes, there will be no objective means of determining whether or it is
improving. What gets measured gets done... Even imperfect measures provide an
accurate strategic indication o f progress, or lack thereof. [Peeters89], The

introduction o f a Metrics system is an evolutionary process, starting with basic

global measures, and moving towards more detailed measures as time goes by.

De Marco said "you can't control what you can't measure". [DeMarco82] I'd

expand on this to state "you can't improve what you can't control". Therefore,

companies must firstly measure to control their processes, then use these measures

to improve.

Page 1

2. INTRODUCTION

Implementing a comprehensive set of useful measures is a difficult 1 ask. The
measurement system should provide data to help with project planning, process
and project control, and intra & inter project analysis. One reason many
measurement programs fail is that they are implemented in a 'quick-fix' manner,

without focussing on the main issues. The measurement system should fit into an
overall framework, with the following aims:

• Enable effective Planning
• Enable control o f the process
• Determine project progress
• Enable benefits o f new tools/methods to be stated in quantifiable terms

• Identify areas in need of improvement
• Enable improvement goals to be set in quantifiable terms
• Demonstrate improvement

Metrics are normally introduced in a company within the context of process

improvement - a quality culture provides a positive environment for measurement.
The concept o f process maturity is introduced in this chapter, which provides the
background information and understanding for the process developed, to

implement metrics that satisfy the aims listed above.

Metrics are a static picture o f the process at a point in time, and will provide an
indication o f the current health of a process or product. Measures themselves will

not improve the process. My dissertation describes a method for the successful
introduction o f an initial set of measures, which will provide quantitative

information on the important process areas, but a process improvement program
needs to be addressed as a separate entity, to be initiated in conjunction with the
metrics system. Thus both the qualitative (organisational culture, improvement

teams) and quantitative (metrics) sides o f Quality Management would be

addressed.

Metrics should cover the entire product development cycle. They are firstly used

for initial estimating o f a project-, in terms of effort, time and cost. As the project
progresses, measures are used to keep track o f effort, time and cost, as well as

measuring the quality o f the product. Finally, measures are used at the end of the

Page 2

project, to measure total time, effort and cost against the original estimates, and to
quantify the quality o f the developed product.

Traditionally, the time and cost for a project is first estimated, then development of
the software commences. Invariably, the original estimates are way off. One way
of getting closer estimates is to first estimate what it should ideally take, then
multiply this estimate by a factor, say 2. One still won't be able to substantiate
these estimates to customers, though. So why can't software companies seem to
get it right? There are several reasons put forward by [CSE92]: lack of expertise;

new projects; personal bias; lack o f standards; lack o f data; constraints, and

political decisions.

Lack o f expertise is directly related to lack of practice. Because egos are often
involved, people tend to underestimate when it comes to estimating the time or
cost o f the project. Estimates fall prey to the 'wishful thinking' scenario.

New projects refers to the fact that there is no data from previous experience to go

by, hence there is nothing there to measure by. The estimator must start from
scratch without knowing the potential project and planning risks.

Personal bias ties into the lack of expertise area described above - people often

think that they are better than they are, or subconsciously want to complete
something in a shorter time than someone else, hence the estimation is incorrect.

Lack o f standards refers to ambiguities and subjective decisions that are a result of
depending on the individual project managers, rather than on a stable process.

Lack o f data refers to the lack o f historical data, either because the project is new,
or because there are no measures kept historically. This ties in with the 'new

projects' category above.

Constraints refer to the numerous constraints upon a project, particularly with

respect to a release deadline, or resource constraints.

Political decisions in this context refer to an instance where a manager will decide

to make a loss-making bid, and then force the estimates to match the bid figures.

Page 3

2.1 Software Management

Projects must be on time and within budget, and not contain bugs. Planning the
project, then measuring what actually happened, against the plan, is the key to

success. This dissertation shows how an initial metrics system can be implemented
in order to gauge where a company is now and then to set targets for where they
want to go, as part o f a corporate process-improvement program, which should be
initiated around the same time as the metrics system. Success comes from detailed
prior planning and using measurement to learn from each project. Measurement in
itself is not a silver bullet, but is an essential factor in process improvement
activities, which will also include qualitative factors such as introduction of Total

Quality Management concepts, and Process Improvement teams.

The Management puzzle contains several interdependent pieces, which can be
categorised under the headings, o f People Management, Resource Management,
Process Management, and Quality Management [Choppin91], These categories

have been amended, below, to suit the software development environment:

The People Management category could contain sub-categories such as personal

motivation, teamwork, communication, customer attitudes. Measures to use here
are the subjective, 'soft' measures, which measure perception and attitude.

Resource Management covers management o f all resources - money, machines,
manpower, etc. This category includes sub-categories like project planning,

productivity, configuration management, hardware and software environment, data

control, cost and schedule control.

Process Management includes areas such as tools, techniques, methodologies,
standards, test management, acceptance testing.

Quality Management refers to the management o f the quality system, and ties in
with the other three categories. This area should include sub-categories o f cost

and schedule estimation, quality planning, bug analysis.

The central problem o f management in all its aspects ... is to understand
better the meaning o f variation, and to extract the information contained
in variation

[W.E. Deming]

Page 4

2.2 The Capability Maturity Model

The Capability Maturity Model (CMM) [SEI91-TR24] was developed by the

Software Engineering Institute, based in the Carnegie Mellon University. The
framework was originally developed to enable the United States Department of
Defense to assess the capability of their software contractors. The first draft was
available in September 1987, and was amended and updated several times, to

produce version 1.0 which was published in August 1991. Both the Software
Capability Evaluation program (used by US government agencies to assess
contractors), and the process assessment program (used by organisations to assess
their own process) were developed in parallel. The Capability Maturity Model is
designed to provide organisations with guidance on how to gain control of their
process for developing and maintaining software and how to evolve towards a
culture of software excellence. It does this by serving as a model against which an
organisation can determine its current process maturity and by identifying the key
issues critical to software quality and process improvement.

The CMM contains five levels of Software process maturity: Initial, Repeatable,

Defined, Managed and Optimising. Each level contains a list o f key practice areas,
which include many o f the management areas listed in section 2.1 above. Full
details o f the CMM can be found in [SEI91-TR24], an overview of each level is

provided here.

Level 1, Initial:

An organisation at this level is without a stable environment for developing and

maintaining software. Controlled progress in process improvement is not possible,

as there is no metrics system in place. There are few stable software practices in
place, and performance is predicted by individual, rather than organisational,
capability. In other words, a project might be successful, but if the Project
Manager leaves, or some key individuals in the team move to another team, the

earlier successes are unlikely to be repeated.

Level 2, Repeatable:

An organisation at this level has some basic measures in place i.e. stable processes

are in place for planning and tracking the software project. Costs, schedules and

functionality are tracked, and problems in meeting commitments are identified

Page 5

when they arise. Software configuration management procedures are used.
Project standards exist, and the software QA group ensures that they are followed.
There is a stable, managed working environment. The Key Process Areas for

Maturity Level 2 are: Requirements management, Software project planning,
Software project tracking and oversight, Software sub-contract management,
Software quality assurance, and Software configuration management.

Level 3, Defined:

An organisation at this level has a standard process for developing and maintaining
software across the organisation. The process no longer depends on individuals
for success. A Software Engineering Process Group facilitates software process

definition and improvement efforts. An organisation-wide training program is
implemented to ensure that both staff and managers have the knowledge and skills
required to see their responsibilities through. Projects use the organisation-wide

standard software process as a template for their own project. Each project uses a
peer review process to enhance product quality. The Key Process Areas for
Maturity Level 3 are: Organisation process focus, Organisation process definition,
Training program, Integrated software management, Software product

engineering, Intergroup co-ordination, and Peer reviews.

Level 4, Managed:

An organisation at this level sets quantitative quality goals for software products.
Productivity and Quality are measured for important software process activities

across all projects in the organisation. There is a comprehensive metrics system in
place, measuring both the software products and process, which is seen as part of

the process, rather than an additional activity. The data is gathered automatically
wherever possible, as manually collected data is subject to error. The metrics are
analysed and the results used to modify the process to prevent problems and

improve efficiency. The Key Process Areas for Maturity Level 4 are: Process
measurement and analysis, and Quality management.

Page 6

Level 5, Optimised:

An organisation at this level focuses on continuous process improvement. The
organisation identifies the weakest process elements and strengthens them, with the
goal of preventing the occurrence of defects. Metrics concentrate on the process
rather than on the product. Continuous process improvement is a result of working
on the areas identified from the process metrics information, and testing innovative
ideas and new technologies. At this level, defect prevention is the all-
encompassing goal o f the organisation. The Key Process Areas for Maturity Level
5 are: Defect prevention, Technology innovation, and Process change

management.

The Capability Maturity Model is useful for determining the areas o f a company's
process that require most improvement. In theory, a company should fit neatly

into one of the five maturity levels. In practice, different parts o f the software
process could be at different levels, or two projects could be at different levels.
Terry Bollinger and Clement McGowan [Bollinger91] conclude that the

assessment rating system is seriously flawed due to its reliance on the unproven
maturity model. Their two main points are that the model itself favours
maintenance processes with relatively narrow product definitions, and that the
information recorded as a result o f assessments is limited - the final reports do not

show how the process is structured and controlled. Their final recommendation is
that whilst the process assessment program itself has made an outstanding
contribution to the software industry, the current grading system o f five distinct

process-maturity levels is so fundamentally flawed, that it should be abandoned.

In response to the Bollinger-McGowan article, Watts Humphrey and Bill Curtis

[Humphrey91a] defend the process maturity model and the assessment
questionnaire. They state that the process maturity model is based on the widely-

accepted quality improvement principles o f W.A Shewhart, W.E. Deming, and
J.M. Juran, and therefore it is a proven model. They say this framework, like the

other models widely accepted in manufacturing industry, models the stages that an
organisation must go through to establish a culture o f engineering excellence.

Each model stage lays the foundation on which effective practices for the next level
are built.

Page 7

My own views on the Capability Maturity Model are that it has both good points
and points which need to be addressed further. The fact that the maturity model is
itself subject to continuous improvement is a good one, and 1 believe the current
issues people have with it will be ironed out in due course.

Points for:
• It's a good place to start - by determining a company's maturity

level, some obvious immediate improvement opportunities are

recognised. •
• Similar to evolutionary models available for other industries, which

have been proven.
• Key Practices information suggests interim improvement goals and

progress measures, which makes it easy to use as the basis of a

company's improvement program.

Points against:
• Developed for US DoD, with large systems, and needs some

adaptation for Irish/European software industry.

• There is too large a gap between some of the levels - eg between 3
and 4. The levels could be further defined, so that they each level

can be attainable within say two years o f reaching the previous

level.
• The Key Practices are too distinct, by belonging to just one maturity

level, eg Metrics are only mentioned at level 4, whereas different

levels o f metrics should be used from level 1 upwards.

Overall recommendation:
• Use the Capability Maturity Model as an initial guideline to gauge the

company's current process level. It provides some good pointers for

companies at the lower maturity levels.
• Once the base level is determined, the correct level/granularity o f measures

to use should be chosen. The higher the capability level, the more detailed

are the measures required.

Page 8

Watts Humphrey uses the example o f Hughes Aircraft [Humphrey91b] to describe
the successful implementation o f a process-improvement program with respect to
the Capability Maturity Model. This program saw the Software Engineering
Division o f Hughes Aircraft move from level 2 to a strong level 3. The article
demonstrates that the overall objective of the Capability Maturity Model is to
achieve a controlled and measured process as the foundation for continuous
improvement.

Sum m ary

The Capability Maturity Model is a useful framework to provide a guideline for
process-improvement activities. This dissertation concentrates primarily on metrics
to introduce in a company at level 2, and also provides guidance for companies at
levels 1 and 3. Metrics for companies at the higher levels o f 4 and 5 are not

included as it is not intended to demonstrate how a company can move from one

level to the next, through the use o f metrics. To enable a company to identify the
tasks currently requiring most improvement, and to quantify any resultant

improvements, suitable measures are required throughout the software
development process. Section 3.4.2 lists the types of metrics that could be used
at each o f the maturity levels 1 to 3.

Page 9

2.3 Defining Measures To Facilitate Process Improvement

Measurement is a critical factor in quantifying the current health of the

development process. The process involved in implementing a successful metrics
system, to facilitate process improvement is an evolutionary one, as it is a cultural
change that needs to be effected. It would be naive to expect it all to work out at
the first go. If a company starts simple, and builds on the metrics as time goes by,
and as the employees come to fully understand their usefulness, then the system

will be successful and will support any continuous improvement efforts. To
support evolution, [SEI91-TR16] states there is a need to plan for regular reviews
of all aspects of the measurement program (goals, implementation, use, delivery,
cost effectiveness). The authors report that the most successful programs they
observed supported experimentation and innovation. Follow the process described

in chapter 3 to implement the initial metrics system, then start to improve the
process in accordance with whichever Quality philosophy is chosen. The measures

should be amended as each company sees fit, as the process comes under control
and improvements are made. What is described forms the corner stones for the
initial measurement o f current projects and processes, assuming a process
improvement program will be introduced either in parallel or subsequently.

The Pyramid Consortium state that there are three vital things to remember when
introducing metrics [Pyramid91] - Be goal oriented, Use simple global indicators,

and Be patient.

1. Be goal oriented. Always start from quality or productivity improvement
objectives. Measurement should only be a means to evaluate attainment of

these objectives. Measurement on its own, without related goals is no use.

2. Use simple, global indicators. Start small, and stick to global indicators

which cover the whole process. Some companies start with just one measure
- defects. Other companies will start with measures in several categories.

Typical measures to start with are effort (manhours), size/complexity (lines of

code, function points), and quality (defects).

3. Be patient. Some companies expect to see improvements instantaneously.

However, it takes time to go around the feedback loop. Typically, according

to Pyramid, it takes at least two years before the first big improvements in
quality and productivity are properly established.

Page 10

For software metrics,
"The goal should be a set o f measures
that can be justified theoretically,
that can be supported empirically, and
that can be used with confidence by both
programmers and project managers. " [Shen83]

2.4 . Summary of Metrics w .r.t the Process Maturity Framework

The Contel technology Centre [Pfleeger90] suggests a set of metrics for which
data should be collected and analysed, based on the Capability Maturity Model.
The article recommends that metrics are to be implemented step by step in five
levels, corresponding to the maturity level of the development process. Level 1
metrics provide a baseline for comparison as improvements are sought. Level 2
metrics focus on project management; level 3 metrics focus on the products
developed; level 4 metrics measure the process itself in order to control it, and
level 5 metrics focus on the process with feedback loops in order to change and

continually improve the process.

The Software Engineering Institute have written a Technical Report which
describes in detail appropriate measurement indicators to use for each of the key
process areas for each maturity level [SEI-92TR25], They have chosen to discuss
measurement indicators, (ie type of measure) rather than specific documented

metrics (ie what measures to use and how to use them). The reason is that, for
example, an indicator o f size allows a discussion of trends in size changes and their
implications, whether size is measured using lines o f code, function points or pages

o f documentation.

The following table shows a summary of the process maturity framework, with
some level-appropriate metrics, based on a chart from [Pfleeger90], which has
been adapted based on my interpretation of the applicable measures.

Page 11

Level Characteristics Metrics
5 - Optimising Improvement fed back to process

- defect prevention
Measurement of all processes (on a
continuous, integrated basis) rather than
products, to facilitate continuous
improvement of the development proccss.

4 - Managed Processes are measured, with
feedback from early activities
feeding into later activities

Measurement of processes begun to allow
greater control of these processes.
Measurement and control of sub-
processes.

3 - Defined Processes are defined and stable Product measures, including detailed
internal and external quality and
usability measures

2 - Repeatable Process dependent on individual
experience/ expertise

Project Management metrics (schedule,
effort, progress curvcs, productivity,
product stability, complexity and quality
measures)

1 - Initial Ad Hoc Baseline metrics to identify areas most in
need of improvement and to demonstrate
improvement in these areas as time goes
by (eg product size, total effort and basic
quality metrics, ie bug analysis)

In theory, segregating measures into the five maturity levels is a good idea.
However, I think that the measurement types should not be so strictly categorised,
and should have some product measures at level 2, some project management
measures at level 3, and some process measures at levels other than at level 4.

Since this dissertation describes a process for implementing an initial set of

measures, the assumption is that most readers belong to companies at the lower
levels of process maturity. The maturity distribution o f 59 sites, representing 296

projects [SEI92-TR24] shows 81% of the sites at level 1, 12% at level 2, and 7%
at level 3. Therefore, the measures described in chapters 4 and 5 are primarily
those suggested for companies at levels 1, 2 or with some projects at level 3. Any

companies at level 4 would already have a complete, successful metrics system in

operation.

Page 12

3. METRICS IMPLEMENTATION PROCESS

There are twelve steps in the metrics implementation process. The order in which
they are here is that which should give the best outcome, although a few of the
steps could be interchangeable, (eg steps 10 & 11), depending on the company

and its metrics goals. The 12 steps are:

1. Map the software development process.

2. Define the corporate improvement goal

3. Conduct an employee and a customer survey

4. Define applicable metrics categories

5. Break corporate goal into a specific goal for each applicable category

6. Define specific measures

7. Prepare data sheets

8. Provide necessary training

9. Measure current process and products

10. Set improvement targets

11. Automate the system

12. Review the effectiveness o f the metrics

Each of these steps is described in detail, quoting appropriate references where
applicable. A description o f how the steps were implemented in a Software

Localisation environment follows this.

Page 13

3 .1 . Map the software development process

In order to successfully improve, and to direct all efforts in the same direction,
companies must first clearly define what they are doing. Until everyone fully

understands the current process, and its inherent problems, the improvement
efforts will be mis-directed, with wasted effort on areas of little importance to the
overall process. For initial success, it is important to concentrate on areas where
the improvements will make most gain. Using the Pareto principle, one should
concentrate on those areas where 20% of the effort will produce 80% of the gain.

3.1.1 Define The Process

Watts Humphrey [Humphrey88] states that an important first step in addressing
software problems is to treat the entire development task as a process that can be
controlled, measured and improved. He defines a process as a sequence o f tasks
that, when properly performed, produces the desired result.

Within the context o f Total Quality Management, a process is defined as:

"A repetitive and systematic series o f legitimate actions or operations on an
input directed toward the achievement o f a goal or outcome " [Qualtec91]

The components o f this definition can be further clarified:

Legitimate: Individuals have clear responsibility for the process,
which has been authorised through the appropriate

channels.

Have Inputs/Outputs: Every process must have both inputs and outputs.
These can take the form of people, material,
equipment or methods. The output, or goal o f the

process is clearly defined and measurable.

Have actions or operations: A clearly defined set o f activities is associated with
the process. These activities can be observed and

defined.

Page 14

Be repetitive: The actions and/or operations are ongoing and are

performed on a regular basis.

At this stage, the full project life-cyle for the company should be defined This is
the highest-level view of the company's process. Each company will identify its
own life-cycle phases, depending on its particular business, but in general, the
following major process stages will be present.

Requirements definition; Design; Development; Testing, and Implementation.

Each company has its own definitions for the activities within each o f these process
areas, and its own methods. In very generic terms, the phases can be described as:

Requirements Definition: During this phase, the customer requirements are

analysed and quantified. The overall system concept is developed, together with a
development plan and a resource plan. A project specification document is

produced.

Design: Once the project has been approved, the design phase is entered. Firstly,
the overall system design is developed, from which detailed program and module

designs are developed.

Development: This phase primarily involves coding the system as designed in the

previous stage.

Testing: The testing phase involves a number o f sub-phases. These are unit test,
integration test, and system test. The code is debugged during the testing process.

Implementation: This phase involves implementing the fully functional system for

the customer, and includes an acceptance testing process.

When the life-cycle has been defined, a company can progress to defining the

process in more specific detail.

Page 15

The following steps describe how to map the process:

1. Define each o f the activities in the process, and who is responsible for

completing each activity.
2. Define the inputs to and outputs from each activity.
3. Define any decisions that are made between activities.
4. Finally, chart the process, from start to finish.

Sandhiprakash Bhide [Bhide90], presents a process stage model that is a natural
extension of the customer-supplier process model outlined above. The process

exists of the following elements:

Process stage: A state o f evolution of the product, eg. designing, testing,
implementation.

Task or Work Activity: The specific activity that transforms the process inputs to

the process output.

Suppliers: The Supplier supplies the necessary inputs to the process
under defined input conditions

Customers The Customer receives the output of the process in

accordance with specified output requirements

Input and Input
Requirements

The inputs in the requested input format are necessary to
perform the task or work activity and produce the output in

the output format

Output and Output
requirements

These are what the customers define as the necessary

requirements

Page 16

Process Stage Diagram

Input and Input
Requirements PROCESS STAGE Reciuirements

Output and output

Supplier) 7T 7 Customer
Task or W ork ActivityT

M etrics In-process

M etrics

P ost-Activity

M etrics

3.1.2 Chart The Process

It is easier to interpret the process if the flowchart is drawn/arranged either as a
conventional flowchart, as a PERT network, or within a frame of rows and
columns - the rows representing each process stage, and the columns representing
each team involved in the process, although this can be very time-consuming to

complete.

Using different shapes/sizes/colours o f Post-It notes for the exercise makes it quite

easy to accomplish the task o f process mapping, as Post-Its can easily be stuck
onto a large wall, table or board and rearranged without causing delay or rework.
Once the Post-Its are in place, the map layout can be transferred to a more
permanent form, either on paper or using a suitable software package.

With the process charted, the weak links in the process can be more easily

identified. The graphical representation helps show process areas and support
structures that are more stable than others. The Capability Maturity Model helps

to further classify the areas that need to be improved, and prioritises these by
arranging them in the appropriate level (ie achieve objectives from the lower levels

The level o f detailed required in the process chart depends on at what level of
detail the process is still global. At a very detailed level, there may be differences

between projects in terms o f tools and specific methods employed. The aim is to

achieve the lowest common denominator across all projects, and map this process.

first).

Page 17

The following chart shows a portion o f a high-level view of a sample software
development process. A PERT network is more suitable and easier to produce, for

a more detailed process chart.

Department/
Process stage

Customer Development Testing -

Req. Defn. Define

Requirements
and review
specification

Develop
requirements
specification

Develop draft
Master Test
Plan

System design Review
Master Test

Plan

Develop Design
Specification

Develop
detailed Master

Test Plan

Program Design Develop
program
structure and
module
specifications

Develop
integration test

spec and system
test spec

Programming - Code and debug Module Test -

Integration Test Debug Test w.r.t.
integration test

spec and report
bugs

_
- - - -

Page 18

3.1.4 Identify Current Maturity Level

Once the overall development process has been mapped, the appropriate maturity
level of the processes needs to be identified. Therefore, the next task after
mapping the process is to ascertain the company's process maturity level.

The Capability Maturity Model [SEI91-TR25] identifies key process areas for each
maturity level. This initial CMM documentation states that the key process areas

of a particular level must all be satisfied before the next stage of maturity can be
commenced. A company currently at level 1 would need to work on the key
process areas o f level 2, and to be fully in control of each o f these areas before

moving on to tackle the key process areas o f level 3. Section 2.2 explains that this

is not necessarily so in practice - different parts o f the software process could be at
different levels, or two projects could be at different levels. This is also the
assumption made in a later SEI technical report [SEI-92TR25], which shows how

individual measures can be applied to each o f the Key Process areas. This
document also states that a metric which is discussed in the context of a higher
maturity may be used by a project at a lower maturity, although the data may be

less accurate. I strongly agree with this newer approach, and most o f the
suggested measures (used from levels 1 through to 3) are based around the key
process areas for level 2, the repeatable level, ie project planning, tracking, and

Quality Assurance.

The Key Process Areas for level 2, repeatable:

Software Configuration Management

Software Quality Assurance
Software Sub Contract Management
Software project Tracking and Oversight
Software Project Planning

Requirements Management

3 .2 . Define the corporate improvement goal

At this stage, the current process is known, with an idea o f the current maturity
level, and some of the areas that should be concentrated on. All process
improvement books and papers categorically state that before proceeding with any

form of process improvement initiative, a company must firstly define a goal for
itself. This section describes the establishment of the overall corporate
improvement goal, and section 3.5 defines the specific improvement goals to a
greater degree o f granularity. Tom Peeters [Peeters89] says that it is imperative to
consider bold goals for the corporate improvement programme. He goes on to

state:

"Such non-incremental goals, which will require you to 'zero-base'
the business and seek completely new ways of organising everything
- from accounting systems to organisational structure to training to

equipment layout and distribution network relations - are a

common-place necessity today."

3.2.1 A Sample Goal

A company may have a general process-improvement goal, or a more specific

corporate strategic goal. This goal then needs to be further broken down into
smaller more specific goals. Metkit is one o f the CEC sponsored ESPRIT
projects, which has devised a 'kit' for the implementation of metrics, and

concentrates on the area o f metrics education using case studies. A good general
goal from the Metkit Consortium [Metkit92a] that they suggest should be applied

to all companies is:

Continuous improvement o f all processes which leads to better use o f our resources,

improved efficiency o f our processes, improved productivity o f our project teams

and improved quality o f our products.

The bottom line is customer satisfaction. The corporate goal should strive towards

complete customer satisfaction - this effectively means reducing errors, being more

productive, and less costly.

Page 20

As an example o f a bold long-term goal that works, Motorola has a quality
improvement program that it applies to all of its operations, called Six Sigma. Its
goal is to reduce defects in all areas o f operation to 3.4 defects per million units.

Dwight Davis [Davis92b] reports that Motorola have come up with new schcmes

to quantify defects in IS operations. The example quoted is that instead of
tracking system availability on a percentage uptime basis, they track how many

transactions fail to occur during narrow time slices throughout the day. The
number o f transactions that don't get done becomes their defect unit for that
measure. The success rate quoted to date is to increase system availability from 4
sigma to 5.5 sigma since the Six Sigma IS program began in 1988, which is a move

from 6,210 to 32 defects per million units, and in percentage terms is an increase in
uptime from 96.3% to 99.98%.

3.2.2. The Goal - Question - Measure approach

The Goal-Question-Measure approach, originally developed by Victor Basili,
University o f Maryland, for evaluating defects for a set of NASA projects, is
recommended by the Metkit consortium [Metkit92a], It is a philosophy of

software measurement which uses a top-down approach in order to put useful,
meaningful measures in place. It ensures that the metrics that are implemented

relate to the corporate goals and are not superfluous or non-relevant. Two of its
main strengths are that it does not rely on any standard measures and it can cope

with any environment.

a) Goal

The goals should be defined in terms of

• what is wanted
• who wants it

• why it is wanted
• when it is wanted

An example would be 'to improve the quality o f our released software to maintain

our client base, over the coming two years'

Page 21

b) Question

The goal is then refined into a set o f questions that require quantifiable answers
Some questions for the above goal would be 'what are our current pre-release and
post-release defect rates?' 'How much effort do we spend on bug fixing?'

c) Measure
Finally, the qualitative goal is transformed into a quantifiable goal
The above goal, 'to improve the quality of our released software to maintain our
client base, over the coming two years', could be rewritten as: 'to halve both our
pre-release and post-release defect rates within two years, with a corresponding
reduction in bug-fixing effort'. The measures to be put in place would therefore be
pre-release defect rates, post-release defect rates, and bug-fixing effort.

The AMI project (Application o f Metrics in Industry) is also an ESPRIT project
based on the goal-oriented approach, in order to allow the metrics to be defined
according to each company's goals [AMI92], The main benefit o f the AMI
approach is that it is a tried and tested method which couples the use o f metrics to
the achievement and improvement objectives of an organisation. This is also a top-
down goal-based approach consisting o f four main activities:

• Assess the environment to allow for the primary definition o f goals
• Analyse the assessment conclusions to build the goals tree and to identify

the most suitable metrics
• Metricate by implementing a measurement plan
• Improve as the measures are exploited and actions are implemented

Establishing the high-level corporate goal is the starting point, but before specific
goals can be established, all employees and the most important customers should

be involved in establishing the current state of the process.

Page 22

3.3 . Conduct an employee and a customer survey

The more information collected upfront, the better the direction that can be

provided to the improvement activities. Involving as many people as possible in
the early stages enables a solid baseline to be established from which to improve

and to measure these improvements.

In order to make a journey, three things are required - a known starting point, a
known objective, and a way of making the journey. A map on its own is of no use.

I f you don't know where you are, a map won't help [Watts S. Humphrey]

It is necessary to pinpoint the current location on the map, before one can see the
direction in which he/she should travel in order to reach the chosen destination.
All companies do some things exceptionally well, some things very badly, and
manage somehow to get through the rest. It is very beneficial to know which

working practices come under which heading. There is no point in spending large
amounts of effort in making small improvements to good practices, when others

are in a mess. Neither is it a good idea to spend time and effort on improving non-
important areas that will show no tangible benefit to the company.

Therefore, a health-check is required. The first thing to do is to identify who and
what should be included. The health check would be in the form of surveys and

would concentrate on the following areas:

1. What is our customers' view o f the quality o f our service?
(This is a customer evaluation o f the service to them)

2. What is the staffs understanding of the meaning o f quality w.r.t. our

process?
(What impact do project planning, risk assessment, etc., have on quality
now, and how important are these perceived to be by the company
employees?)

Conducting a survey serves several purposes. Firstly, it establishes the baseline, ie
provides 'soft' measures, and helps focus effort on measuring the areas that matter

most. Secondly, it involves each employee and thirdly, it gives valuable feedback

from the customers.

Page 23

3.3.1 Customer View

No matter what a company's business, the most influential factor on whether or not
it will be successful is its customers. A company might be a world leader in project
planning, cost and productivity rates, and at the same time have customers that are
extremely dissatisfied with their services. It is possible to be brilliant at doing the
wrong things, and therefore if a company is to flourish, it must ensure that its

customers are fully satisfied with its services.

Customer satisfaction can be very difficult to measure precisely and consistently,
by its very nature o f being a subjective measure. An application might be
functionally perfect, but veiy clumsy to use. The best way to understand how the
customers perceive a company's services is to send out a survey/questionnaire at
regular intervals, ideally a few months after the implementation o f a new product.

The format o f the survey will depend entirely on the nature o f each company's
business and who their customers are. A customer may be a sales subsidiary who
in turn has its end-user customers, large banks, educational institutions, small

companies, or individuals.

Everyday users of software packages don't use metrics and concepts to measure
the quality o f software packages in the same way as developers do. In

[Dehnad90], it states that these users are more likely to express their perception of
quality by such statements as "you can learn it in less than an hour", "you only need
to read the first few chapters o f the manual", "it does everything you might need".

Conduct a survey of the main customers, listing the areas o f most important
interaction between the software supplier and the customer. The sample form

overleaf lists many communications elements such as 'we're kept up-to-date with
schedules', 'our queries are answered in a timely manner', and 'we are kept

informed of progress, problems and solutions throughout the project'. The type of
statements that each company will use in its survey will depend on the company's

process and its agreed obligations to its customers.

The information gathered from the survey will help pinpoint areas that need most

improvement with respect to the customers' perceptions. Statements that
consistently receive a 'sometimes' or 'never1 response require specific action. These

areas in particular will need some meaningful measures applied to them.

Page 24

Customer
PROCESS FEEDBACK FORM

COMPANY NAME:

BATE:

CONTACT NAM E:

Please fill out the evaluations below, and return to:

Please rate the statements below as follows:
4 -A L W A Y S
3 - M O STLY
2 - S O M E T IM E S
1 - N EV ER

PROCESS evaluation

Statement U -t"'' 11 Rating Comments
The requirements specs, are received on time,
to enable feedback to be given
The Test plans are received on time,
to enable feedback to be given
We are kept up-to-date with schedules
on a fortnightly basis
The agreed release dates are met

Our queries are answered in a timely manner

Our input is taken into consideration while
developing the product
Beta copies of the software are received as agreed
Feedback on beta versions is acted upon •
We are kept informed of progress, problems and
solutions throughout the project
Overall, the service we receive throughout the
development of products meets our requirements

COMMENTS:

Page 25

3.3.2 Staff view.

Software Quality means different things to different people. To a programmer, the
modularity of a program's source code might be important, whereas a Project
Manager might view productivity as a higher priority. If a metrics system is to be

introduced into a company, the only way to get it to work is to directly involve the
staff, getting their views of current processes, and how important these processes
should be in order to produce quality software.

One reason for conducting a process survey is to find out where the process is
broken most (this is a bottom-up approach to metrics implementation). Another
very important reason is to demonstrate that it is the project that is being
measured, not the individual programmer. If metrics are used to evaluate a single
programmer, that person is encouraged to work for the numbers instead of the
quality o f the system. In the Mythical Man Month [Brooks75], it mentions that on
the OS/360 project, productivities in the range o f 600 to 800 debugged
instructions per man-year were achieved by control program groups, and 2,000 to
3,000 debugged instructions per man-year by language translator groups. The
problem with using program size as the basis for productivity is that the same

function can be written efficiently in 10 lines o f code, or could take 50 lines of
sloppy code. The 50 lines o f code gives higher productivity, and therein lies the
danger o f programmers working for numbers rather than the quality o f the output.

Karen Hooten, [Hooten92] uses Isaac Asimov's novels to further illustrate this
point. In his foundation series, there is a mathematical model that predicts the
future. The guardians o f the model are careful not to tiy to apply the model to
anything smaller than an entire society. They further guard the secret so that the

knowledge o f the plan doesn't affect the outcome. The same cautions should be
used when implementing a metrics system.

To glean the information from the survey overleaf, some calculation is required
when the completed forms have been returned. Firstly, add up all responses to
each statement for both the 'current practices' and the 'importance' columns, for
each function, and calculate the averages. Subtract the average 'current practice'

figure from the average 'importance' figure for each statement. The greater the
difference, the more urgent the employees view the improvement o f the process

area represented by the statement. Generate a prioritised list by ordering the

statements from the highest calculated difference to the lowest difference.

Page 26

Employee
PROCESS FEEDBACK FORM

DEPARTMENT:

DATE:

CURRENT PROJECT (if applicable):

JOB FUNCTION:

Please Jill out the evaluations below, and return to:

Please rate the statements below as follows:

Rate the current practices in your experience

How important are these practices to our success, in
your opinion?

4 = Strongly Agree
3 — Agree
2 *= Disagree
1 * Strongly Disagree

4-= Essen t ia l
3 = Q u I t c I m p o r t a n t
2 = N o t I m p o r t a n t
l= N o relevance

PROCESS evaluation

Statement Current
Practices

Importance
in your
Opinion

Project Planning plays an important role from the start of the project
Quality planning plays an important role from the start of the project
Schedules are realistic and kept updated
There are enough resources (people and machines) to enable project
completion on schedule.
Risk assessment is used throughout the Development process
Post Mortems are used to learn from one project to the next, and
across projects
Customer involvement is ongoing throughout the process
There is a concentrated effort to ensure that errors are not introduced
during the Development process, rather than spending a lot of effort
on testing for and correcting errors later on.
Standard methods and procedures are used throughout the
Development process
Standard tools are used across projects
Training in the process is timely
Tools training is timely
Process measurements are recorded and play an important role in
identifying areas for improvement

COMMENTS:

Page 27

3 .4 . Define applicable metrics categories

The results from the questionnaires above, along with the key process areas
information from the Capability Maturity Model will help focus on areas that need
particular attention, and should point to metrics categories that would most benefit

the process improvement effort.

"A company can be considered as an imperfect bucket that is used to take
water out o f a well. A certain amount leaks. Some water slops over the
top. Because o f all these losses, the water carrier has to devote
additional effort to lifting water. In other words, he lifts considerably
more water than the value o f the water achieved. Stopping up the holes
in the bucket is not enough. The user has to understand how the holes
came into the bucket in the first place, and take sufficient steps to ensure
that they do not reappear elsewhere." [Choppin91]

Part o f the understanding o f the holes in the 'bucket' is to be able to identify them,
measure their size, and measure the amount o f water that is leaking out.

Translating this to a company's process, it is to identify the process areas that are
most in need o f repair, and to introduce measures that will tell both the extent of

the problem and the cost o f these problems to the company. These measures must
also be able to demonstrate improvement as time progresses.

An exhaustive list o f metrics will have such an overhead to implement, that success

would not be likely. Therefore, it is best to start small, proving the value of
process metrics, and increase the number and type o f metrics as time goes by.

Trying to do everything at once is impossible, so an evolutionary approach should
be taken. Start simple, with basic measures, and work towards more detailed

measures as the process matures.

For suitable measures to be chosen for the company, the applicable metrics
categories need to be understood. The next section describes the broad categories

that could be implemented, and section 3.6 describes specific measures to various

levels o f granularity that can be implemented, depending on the current maturity

level o f the process.

Page 28

3.4.1 Metrics Categories

Suggested metrics categories, which are described in the following pages, are:

• Size • Productivity

• Rework • Effort
• Schedule • Quality

Which measurement categories to concentrate on, and the granularity o f measures
depends on the capability maturity level o f the development process, and on the
development life-cycle itself. Each company must decide for itself what to include
for the initial measurement programme - the metrics described in chapters 4 and 5

are primarily suitable for a level 2 company, with a subset o f these suitable for a
level 1 company, and a superset suitable for level 3 projects. Metrics are expensive
to implement, in terms o f the overhead involved in capturing the data on a regular
basis, and providing meaningful reports. Therefore the fewer metrics a company
choses the easier and the less expensive it is to implement them. However, having
too few metrics might not work either. The key is to have the right measures for

the right areas.

The Software Engineering Institute also recommend a list o f metrics categories to
be used in conjunction with the Capability Maturity Model [SEI92-TR25]. They

choose the following metrics categories, which look different to the list above, but
are in fact fairly similar. Areas important to DoD systems, but not quite as

important to the 'average' software development environment, such as stability, are
not included in the above list. That list contains the important categories for
implementing a metrics system with a primary focus on process improvement.

Progress • Stability
Effort requirements stability

Cost size stability

Quality process stability

SAV QA audit results • Computer Resource Utilisation

review results • Training

trouble reports
peer review results

defect prevention

Page 29

a) Size Metrics

Size metrics are normally expressed in terms of physical source lines and logical
source statements. They are used to help planning, tracking and estimating of

software projects. They are also very useful in computing productivity metrics, to
normalise quality indicators, and to derive measures for memory utilisation and test
coverage. The size o f a software project is commonly expressed in term of Lines
O f Code. However, this can be somewhat ambiguous - should comments be
included? should declarations? compiler directives?. The Software Engineering
Institute o f Carnegie Mellon University has published a framework for constructing
and communicating definitions o f size [SEI92-TR20], Included are checklists for
defining and describing the coverage o f Source Lines of Code and logical source

statements. The checklists allow companies to include or exclude an exhaustive
list of elements in the definitions.

Lines Of Code is the simplest metric, but as explained in section 3.3.2, the number

o f lines of code might not be a very relevant metric, as what one programmer
writes in 50 lines o f code, may take another programmer only 10 lines o f code to
write. Boris Beizer [Beizer84] suggests that using lines o f code to measure
complexity is no more scientific than weighing the listing, or measuring it with a
ruler (assuming that all paper is supplied by the same vendor and all listings are

done under the same operating system). My belief is that lines o f code can be a

fairly useful measure if there is some consistency in coding standards across

projects.

Other measures relating to size, and very useful at the project planning phase are
metrics used to aid estimation, such as complexity metrics and function point
analysis. Using function points instead o f lines o f code leads to better, more
accurate estimates o f how long a program will take to develop, based on its

complexity. Lines o f Code are not appropriate to a 4GL environment, whereas
function points are suitable. Complexity measures will be discussed with

productivity metrics in the next section.

Page 30

An alternative to using lines of code as a basis for measures is to use Function
Point Analysis, developed by Allan Albrecht in IBM, 1979. Function Point
Analysis includes three factors that affect the end result - information processing

size, technical complexity and environmental factors. You assign a value (function
count) based on the amount of information processed and provided by the resultant
system (no. o f input fields, no. logical files, no. of output fields, no. files accessed,
and no. online inquiries). That value is multiplied by a numeric rating o f the
technical complexity o f the project (the weighting factors are according to three
complexity types - simple, average or complex). Finally, this value (total
unadjusted Function Points) is multiplied by a numeric rating of 14 environmental
factors (eg transaction rate, installation ease, end-user efficiency, etc.). A full
description on how to calculate function points is in section 4.1 e).

Function points measure the units of work a program actually delivers to end users,

thereby avoiding the shortcomings associated with metrics based on lines o f code.
Albrecht [Albrecht83] gives three major reasons for using function points as a

measure:

• The function points count can be developed relatively easily in discussions
with the customer/user at an early stage o f the development process

• It makes needed information available - since a statement o f basic
requirements includes an itemisation o f the inputs and outputs to be used

and provided by the application from the user's external view, an estimate
may be validated early in the development cycle using function points.

• Function points can be used to develop a general measure o f development
productivity, eg function points per person-month, or person-hours per
function point.

My view is that using Function Points can aid communication with customers, as
their requirements can be translated into numbers o f function points, which is a

tangible entity. Customers can then get a better appreciation of the demands they

are placing on the developers. Function points is best suited to data-intensive

systems, with low procedural complexity.

Page 31

b) Productivity:

Productivity metrics are normally expressed in terms o f quantity of work per
person-day or person-month on the project. These can help answer questions such
as 'has changing over to a 4GL environment made things better?' Process
improvement efforts normally have a positive effect on productivity rates, in
conjunction with improvements in other areas, such as quality and cost.

Productivity measures on their own can be too simplified, and only come into real
significance when used in conjunction with effort metrics and staffing levels.
Robert Green [Green92] compares Western software development projects with
dam building projects in China, that is managers throw lots of people at the
projects in the hope that productivity will rise and the projects will finish on time.
There is a minimum number of programmers required to build a system, but it is
not true that an increase in programmers will aid productivity. There is a point in
most software development projects where the addition o f staff will reduce

productivity. Brooks' Law [Brooks75] states:

Adding manpower to a late software project makes it later

The Project Manager realises that the proposed schedule will not be met at current
progress rates, and therefore decides to add more staff to try to alleviate the
problem. Adding staff increases the number o f communication paths within a
team, which results in more breakdowns and lapses in communication. Brooks

[Brooks75], says that if there are n workers on a project, there are n(n - l)/2
interfaces across which there may be communication, which means that three

people require three times as much intercommunication as two, and four people

require six times as much as two.

As an example, assume a product o f an estimated 20,000 Lines of Code. Take a

productivity rate of 20 LOC per programmer-day. This gives an estimated effort

of 1000 person-days, or 5 person-years. If productivity and effort were a matter of
simple mathematics, then 2 people over a period o f 2.5 years, or 5 people for one
year or 10 people for 6 months would get the job done equally well. If this were

true, it could be extrapolated even further to say that it would take 20 people 3
months to complete the same project. Common sense says that this simply won't

work, although more people are often thrown at a project to try to get it out of

trouble. Quoting Brooks once more [Brooks75], he states that one cannot get

Page 32

workable schedules using more people and fewer months. He says that the number
of months of a project depends upon its sequential constraints. The maximum
number of people depends upon the number of independent subtasks.

Boehm considers it impossible to compress the schedule below 75% of the nominal
schedule, which is defined by the COCOMO schedule (TDEV) equations
[Boehm81], The COCOMO models are described in more detail in section 4.1 (d),
so the basic equations are used here without explanation.

Using the Basic COCOMO equations (organic mode) on the simple example
above, gives:

MM = 2.4(KDSI)1 05 = 55.75
TDEV = 2.5 (MM)0-38 = 11.52

MM/TDEV gives an average staffing o f 5 people (Full-time-equivalent Software

Personnel).

If we want to reduce the schedule by the maximum, ie to 75% of the original
estimated schedule, we're setting TDEV = 8.64. Boehm gives the development
Schedule Constraint overall Effort Multiplier (SCED) for maximum schedule
acceleration as 1.23, which gives effort (MM) = 68.57. Average staffing for this

scenario is therefore 8 people.

The above example gives a nominal figure o f 5 people for eleven-and-a half
months, or for an accelerated schedule, the figure of 8 people for just over eight-
and-a half-months. In this example, reducing the schedule by 25% implies

increasing the personnel by 60%. Further schedule compression is not possible.

By improving the process, productivity rates may increase. This can be due to new

tools or alternative methods. As an example, if a company decides to adopt a re­
use philosophy, the amount o f time necessary to develop a product using
previously implemented and thoroughly tested code segments will be less than the

time necessary to design and implement the features from scratch. Another

company might move to a 4GL development environment, which should show

improvements in productivity rates for new projects.

Page 33

c) Rework Metrics

Rework metrics can be expressed in % of total effort, % o f total work completed,
or % of the project cost. A useful metric might also be number o f rework hours
per thousand Lines o f Code. Phil Crosby, on his Quality courses, states that in
service industries, at any time, up to 40% of the people are re-doing things that

should have been done right in the first place.

Rework metrics answer questions such as 'what is it costing us to re-do things?'

'What processes give us the worst rework rates?', and ’where should we
concentrate our improvement efforts to get the most benefit in the least time?'

Sometimes rework metrics can be very difficult to calculate, as the rework may be

due to several different causes - one being mistakes made by the developers
themselves, another being change requests from the customers. Issues that need to
be addressed by any organisation before measuring rework is what is to be

included in the rework metrics category, and if there are several categories, what

level o f granularity makes the most sense?

Rework metrics require particular caution when implementing them, as there is a
very strong temptation to use them as a measurement o f individual programmer

performance. One must not succumb to this temptation, and has the additional
task o f assuring the programmers and other individuals that the rework metrics are
for improving the development process, and are never going to be used to hold
individuals to ransom. A culture should exist in the organisation, which encourages
people to raise issues as early as possible in the process, rather than covering up

mistakes. A mistake costs magnitudes more if found and corrected at the testing

stage. Never shoot the messenger.

Rework measures provide an excellent insight for process improvement efforts. If
a 'right-first-time' approach is taken to development, then the amount o f time spent

on rework should decrease. 'Right-first-time' in the context o f software
development is somewhat different to its perception in manufacturing. For
software development, it means adopting the attitude o f each person checking their

own work thoroughly before declaring that it is complete. This approach should
be adopted by all project personnel, from requirements definition right through to

implementation of the completed system.

Page 34

dì Effort and Schedule Metrics

Effort metrics are of two kinds. The first relates to the early phases o f the project,
and help in project planning, eg. Boehm's COCOMO metrics, Halstead's Software
Science Metrics and McCabe's Cyclomatic Complexity Metric. These metrics are
also considered as size metrics.

The second type of effort metric relates to tracking effort as the project progresses,
and relating this to what was planned.

Effort and schedule metrics are expressed in terms of % time, person hours, and
activities completed against what was planned. They help in estimating the cost of
the project. They quickly point to areas where corrective action is needed. The

Software Engineering Institute has published a framework report on schedule and
effort measurement [SEI92-TR21], which contains checklists for defining staff-
hours, and defining which tasks are included in the measurements.

Effort and schedule measurements answer questions such as 'will the project be
completed on schedule, and if not, when will it be completed?' and 'will the project

be completed within the planned amount o f effort, and if not, how much effort will

be needed? In terms of process improvement, the actual vs. planned effort and
schedule measures should show an improvement in correlation over multiple

project releases. If the process is under control, initial project estimates should be
fairly accurate. As the development process improves, the effort required, and the
related project costs will be reduced.

Effort metrics display expended resources over time, which shows current status,
and can forecast actual effort expended at completion. They show actual versus

planned person-hours expended for the current and past time periods - a reasonable

time period to use would be by month.

Schedule metrics, also known as progress metrics, use measures o f work scope to
track and show the progress toward completing activities, tasks and work

packages. (These metrics are explained in detail in section 4.2.1). Schedule
metrics provide a quantitative basis for managing a project by reflecting actual

schedule progress against planned schedule progress for current and past time

periods.

Page 35

e) Quality Metrics

Quality metrics answer questions such as: 'How stable is the product?'; 'How many
operational faults were found?'; 'How effective is our test strategy?1. Probably the
most important question they help answer is 'How effective is our development
process? Quality measures can be expressed in terms of defects per thousand lines
of code, defect find rate, paths that have been tested, code coverage, etc.

Quality metrics relate to the number and type o f defects in the product. They are
the basis for defect prevention techniques. Defect data for each project should be
kept in a database, from which the relevant metrics can be calculated. Analysing

the data related to defects:

• Helps determine when to stop testing the system and release it

• Identifies error prone modules and development activities

• Helps assess the effectiveness o f testing and development techniques.

To improve the process, the Quality measures will provide the best indicator of
areas that require most immediate attention. It is also easy to compare projects
and demonstrate improvement from one product version to the next using quality
measures. Quality Metrics are presented in detail in Chapter 5 - applicable quality

sub-categories are briefly mentioned here.

Firstly, there are the models used for planning purposes, to predict how defect-

prone the modules are before commencing testing, and encourage individuals to

spend more time testing those modules that are most error-prone, and/or enable
them to stop testing when a certain level o f defect density has been reached. These

measures include Halstead's bug prediction formula, McCabe's complexity metric
and Musa's failure intensity objective.

The second quality sub-category is measuring defects as testing progresses in terms

o f type and severity, to help pinpoint problem areas, and provide historical data.
Other measures used here would be defect resolution per module, lifetime o f active

defects, and defect rate with respect to program execution time, ie mean-time

between failure.

Page 36

The final category comes into effect when the software has been released. This
category includes release measures such as post-release defect counts, number of
product re-releases, and analysis of the total bugs reported for the project to
produce pareto charts (ie 80% of the bugs are in 20% o f the modules, and 80% of
the bugs are from 20% of the causes). This information is then fed back into the
process in order to improve for the next project.

The following defect data categories are commonly used:

• Defect Count is a simple measure of the number o f defects found in the
product, reported at the end o f the project.

• Defect Find Rate shows the number of defects found per time period. The
number o f new bugs found in each time period shows how stable the product
is, and indicates whether or not the team are close to producing a release
candidate.

• Defect Distribution shows the distribution of defects per module or per phase
o f development.

• Defect Density is the number o f defects per KLOC, (function points can be

used instead of Lines o f Code). It is very useful for comparing defect ratios
across different projects.

Page 37

3.4.2 Level-specific metrics

Section 2.4 gives a tabular summary o f the types o f metrics to implement at each

process level, based on some research done by the Contel Technology Centre
[Pfleeger90], In Section 3.4.1, the suggested measurement indicators, ie
categories, are listed. This section expands on what was described in these two
previous sections, with my interpretation o f the metrics suitable for each o f the
levels 1 to 3, followed by a table summarising the applicable measures (each of
these measures are explained in chapters 4 and 5). The metrics evolution process
in going from level 1 to 3 is noticeable here - the same categories are used, but the
metrics become more specific and granular.

a) For level 1 organisations, the important measures are those that will
demonstrate when software projects are beginning to come under control.
These would be defect counts, basic productivity measures, basic effort
measures, and basic size measures. The SEI does not include level 1 metrics in
their report. The measures for the initial implementation in a level 1 company

are those collated at the end of the project, ie to perform full project post­
mortems. The aim is to learn from one project to the next, and to compare

across projects.

b) For an organisation at level 2, the metrics will become more granular in each

o f the categories. These measures include actual vs. planned cost, schedule
progress, defect metrics, complexity metrics, etc. The key here is being able to

measure actual vs. planned, and to be able to introduce successful

countermeasures where results are not as planned.

c) An organisation at level 3 would have a fairly good metrics system in place,

and would work on further refining it. The granularity o f the measures and the
number o f measures will be greater than previously. A full set of project

metrics would be implemented at this stage, and measures would be analysed
throughout the product lifecycle. One of the key issues here is to show
distribution o f the metrics over a range o f values, and to be able to act on the

information, implementing counter-measures, as the project progresses, ie as
early in the project lifecycle as possible. The cost o f implementing and

sustaining such a metrics system is very high, so the concentration here will

also have to be on automating the metrics collection and analysis processes.

Page 38

Category Level 1 Level 2 Level 3

Size/
Complexity

Lines o f Code Choice of:

Lines of Code

Halstead's tokens

McCabe's Cyclomatic
Complexity

De Marco's Bang
Metric

Function Points

Choice is same as
Level 2

Productivity Productivity rates
per function - end
of project

Actual vs. planned
productivity per
function per phase

Actual vs. planned
per function/phase
within approved
range, based on
work packages
complete

Rework Total rework
quantity - end of
project

Rework quantity and
effort expressed as a
% of total

Rework effort and
quantity per cause
category and as %
o f total

Effort Total effort per
function - end of
project

COCOMO

Per function per area
(actual vs. Planned)

Non-cumulative Effort
distribution (monthly)

Automated effort
tracking system

Cumulative Effort
Distribution

Schedule Simple Gantt
chart

Gantt chart with %
complete, on monthly
basis

Progress curves
categorisation
throughout project

Cumulative Work
Packages Complete

Quality Total defects

Defect density

Defect find rate profile
by week

Defect density

Defect severity

Pareto analysis o f type

Musa's software
reliability measures

Defect find rate
profile (by day)

Defect density

Defect severity

Pareto analysis by
cause

Age of defects

Page 39

3 .5 . Break corporate goal into a specific goal for each category

The overall corporate goal for improvement needs to be broken down into further
goals. Section 3.2 describes how the overall corporate improvement goal is

defined, using the Goal-Question-Measure approach. At this point, the goal can be
broken down into goals o f further granularity, ie from the corporate goal to goals
of Managers and to project team goals.

These goals would be defined in terms of each metrics category, so that progress
towards them can easily be monitored. The goals would be further broken into
more specific goals for the projects in terms of improvement targets. Each
function on the project team would have their performance goals expressed in
terms of metrics that were directly related to them. If this is successful, there
would be an objectives chain from the top o f the company to the bottom. These
objectives/goals would serve as the basis for day-to-day improvement.

Section 3.2 above states that the approach adopted by the Metkit consortium
[Metkit92a], defines goals in terms of

• what is wanted
• who wants it
• why it is wanted
• when it is wanted

Taking each metrics category, a company should come up with a corporate goal
that clearly states the expected outcome and the timeframe. Taking the rework
category as an example, one might state the goal as:

To reduce the coding rework as a result o f programming defects by 50% in 18
months.

To reduce the amount o f rework, due to changes in customer requirements within
1 month o f the expected delivery date, to zero within a year.

Knowing the goals, questions can then be asked relating to each goal, in order to
identify the specific metrics to be defined and implemented in the system.

Page 40

A software reliability goal is used to demonstrate how specific measures can be
selected via the Goal-Question-Measure approach, as described in [Ashley91]

The GOAL-QUESTION-MEASURE Approach

QUESTIONS MEASURES

Page 41

3.6 . Define specific measures

This is done, based on the goals established and the questions that have resulted
from these goals. The 6 metrics categories: Size, Productivity, Rework, Effort,
Schedule, and Quality should also be kept in mind. The metrics definitions must be
clear, concise, unambiguous and understood by all involved. Two people taking

the same measures on the same items should get the same results - this is known as
interrater reliability. And secondly, two different methods used to determine the

same metric on the same items should also get the same results, which is known as
intermethod reliability. In order to satisfy these criteria, metrics must be very
precisely defined. Chapters 4 and 5 detail specific measures that can be
implemented in each metrics category.

The Mermaid Project, [Mermaid91], identifies 11 principles for determining

metrics. The six that are most relevant to the process measures described are:

1. Define clearly what the metric is supposed to measure, ensuring that different

issues are not raised in the same metric.

2. The process o f metrication should be as objective as possible

3. Natural language is inherently ambiguous. Extreme care must be taken to
minimise the likelihood of the metrics definitions being misunderstood, eg.
avoid using 'usually1, 'fairly', 'likely', 'often'.

4. Where external standards or formalised methods are being referred to, it must
be ensured that all those who will be using the metric know to what/whom
the standard and/or formalised methods refer.

5. Where possible, avoid making comparative assumptions about knowledge of

the requirements o f previous projects.

6. Once the metrics are in use, the response patterns should be examined
regularly for intrinsic error:

If there are a number o f respondents, then the pattern of one

individual's response which is consistently different to that of his

colleagues, may be due to two reasons. Firstly, his projects may be

markedly different; secondly, he may be intentionally optimising the

values in order to improve his position within the organisation.

Page 42

3.7 . Prepare Data Sheets

Data sheets need to be prepared once the important metrics categories, for the
organisation to implement, have been identified. These should be intuitive, easy to
understand and fill in, with the responsibility of who is to fill what in, clearly stated
and understood by all involved. Ultimately, the data should be entered directly into

a database, which would generate the appropriate metrics reports on request.

However, since a company should always plan to throw one away [Brooks75], the
chosen metrics should be implemented manually, on a three-month basis, and then
reviewed. Some will prove more useful than others, some will take too much time
to gather the data, and other will need some adjustment. Only then should the
system be automated. Otherwise, the rework rate involved in amending the

automated system will be too high.

The following is an example of a data sheet for effort and defect counts (Add-ins
are executables included in the product, along with the main executable).

'1 earn Leader Name. Proje£||$âme;.IÉî
D ate Reporting Period-

Effort

Component ID Testing Effort Defect Removal Effort

Main Executable

Help File

Install Program

Add-ins

Component ID Requirements
Specification

Design
i

Code User
»

Documentation

Main Executable

Help File

Install Program

Add-ins

Defect Counts

Page 43

3 .8 . Provide necessary training

The objective o f metrics training is to promote the understanding and use of
metrics so that all employees take ownership for the implementation of metrics on
their project. The amount and level of training each employee should receive
depends on their function and their responsibility for metrics collection and
reporting.

A training plan should be drawn up to encompass the differing needs of each
function. All employees should understand the basic principles of measurement,
the categories o f measurement that will be implemented in the organisation, and

their usefulness in helping to understand, control and improve the development
process. Managers need to understand the role o f measurement in helping them to
manage their projects, and they need to understand the costs and benefits of
implementing a metrics system. It is also likely that new methods and tools will be
introduced for metrics determination, collection and reporting, which will require
training for specific functions. Examples o f such new methods could be Function

Points Analysis, Pareto analysis, Software Reliability Measurement, etc.

A training grid would be a useful aid in identifying who should receive what
training. This would be a spreadsheet, with the columns representing each staff
function, and the rows representing each training module, a sample section o f the

grid could be as follows:

Module SAV M anager SAV Dev. Engineer SAV Test Engineer

Metrics costs

and benefits
V

Metrics
Principles

V V V
Metrics
Categories

V V
Size Measures V.
Quality
Measures

V V
etc.

Page 44

Instead o f each company developing its own training modules, they could use
training modules that have been developed by the MetKit Consortium. MetKit is
an Esprit II project (no. 2348), sponsored by the CEC, the result of which is a
series of training modules for both education and industry. The Industrial package
consists of a total o f 18 modules. Each module pack consists o f all materials
required to deliver the course in-house (including slides, teacher notes, student

notes, and Questions and Answers)

The modules are:
1. Measurement As A Management Tool
2. Introduction To Software Engineering Measurement
3. What Is Measurement?

4. Procuring Software Systems
5. What Can We Measure In Software Engineering And How?
6. Estimating The Cost O f Software Development
7. Establishing A Cost Estimation Measurement Programme
8. Cost Estimation Strategy
9. The Case For A Standard Work Breakdown Structure

10. Principles O f Function Point Analysis
11. Process Benchmarking
12. Process Optimisation Measures
13. Specifying And Measuring Software Quality

14. Usability Assessment
15. Defect Analysis As An Improvement Tool
16. How To Implement A Measurement Program
17. Case Study - Setting Up A Measurement Programme
18. Software Engineering Measurement In Industry

Page 45

3 .9 . Measure current processes and products

In order to set realistic targets for short-term improvements, the company needs to
know where they are now, with respect to each o f the goals and metrics. Imagine
some people from a company have been brought to a place, which could be
anywhere in the world, from where they need to travel to somewhere in Ireland
within a week, ie they have a general idea o f their ultimate destination and the

timeframe. They have also been supplied with a map and money, ie a way of
getting there. Now, in order to make it to Ireland, they would like to split the
journey into several legs, say to cover a certain distance each day, ie split the
journey into manageable portions. If they don't know where they currently are,
having a map and knowing the destination will be o f no use to them. Therefore,
before setting out on the journey, they need to find out where they currently are.
At this stage, they only have a general idea o f their destination - section 3.10
describes how to define the ultimate destination and to choose the places they
should pass through on the way there.

So how does a company find out where they are? The starting point is to measure
projects just completed, to establish the baseline, and to answer some of the
questions posed by the Goals-Question-Measure approach described in sections

3.2.2 and 3.5. The same measures can be used at the end-of-project (ie to measure
past projects) as are used throughout the process, without using time as the basic
unit. Use as many of the measures selected for the company measurement process
for this exercise.

A very useful exercise to carry out is a Pareto analysis o f defects found on previous

projects, to help identify areas for improvement, and to give a graphical

representation o f the current quality o f developed software. Pareto analysis is
explained in section 5.4.

Current Cost of Quality

A good exercise to complete is to measure the Cost O f Quality as a percentage of
overall operating costs. It is next to impossible arid would cost too much in terms

of time and effort to get a fully accurate cost o f quality, but a good approximation

is all that would be required for the purpose o f implementing metrics for process
improvement. Managers need to know where the more significant costs are to be

found, and then work to severely curtail or eliminate them.

Page 46

The Quality Costs should be classified into types, from which the areas in which
effort should be concentrated to maximise improvements can be identified.
Companies have more control over some areas than others (direct costs vs. indirect
costs), and should strive to eliminate rework costs, whilst increasing planning and
defect prevention activities. Measuring the cost of quality on an annual basis,
using the figures received from the implemented metrics system, gives an objective
measure of the cumulative effect/benefit of the process improvements efforts.

The two main categories o f quality costs are direct costs and indirect costs. The
direct costs are the easier ones to measure, as the indirect costs are things like loss
of market share, lost customer goodwill, cancelled orders, etc., which realistically

are rather vague.

Direct costs are comprised of the cost o f conformance (i.e. achieving satisfactory
results) and the cost of non-conformance (ie dealing with failure - rework costs).

The cost of conformance can be further broken down into prevention costs and
appraisal costs. Prevention costs are those that are incurred before the process,
thus preventing failure - i.e. planning, training, etc. Appraisal costs are the costs of
those activities taking place during and after the process, such as Testing, etc.

The cost o f non-conformance is further sub-divided into internal failure costs and

external failure costs. Internal failure costs are those that occur before and during
release, i.e. bug fixing, regression testing, all rework. External failure costs are

those involved in fixing problems after release.

The following diagram gives a graphical representation o f the cost o f quality
calculations. It provides the top-level indicator o f the development process, and
can be expressed as a percentage o f total operating costs, on an annual basis.

Cost Of Quality

Direct
Costs of Quality

Cost of
Conformance

Cost of
Nonconformance

Loss of Market Share

Prevention Internal Failure
Loss of Customer goodwill

s
, Lost Opportunities

Appraisal External Failure

Page 47

3 .10 . Set improvement targets

I f you don't know where you're going, any road will do
- Chinese Proverb

Section 3.9 above describes how to find out where a company is now. This section

describes how to set out where they are going. This document as a whole will
show them how to get there.

The example from section 3.9, o f some company employees being taken to a place
which could be anywhere in the world, from where they have to travel to Ireland in
a week, is continued. At this stage, they have established where they are, they
have a map, and they know the destination is somewhere in Ireland. The next step

is to find out where exactly they are going - Dublin? Athlone? Belfast? Tralee?
This is important, as they will have to divide the journey into manageable stages,
and to get to Tralee could mean a slightly different itinerary, or mode of transport,
than required to get to Dublin.

In section 3.5, the Corporate goal is further defined into a specific goal for each

metrics category. Taking a combination o f the corporate goals and the knowledge
o f where they are now with respect to the chosen metrics, it should be relatively

straight forward to define specific targets for 6 months, 1 year and 2 years' time.

Many organisations have unrealistic expectations when first starting out with a

measurement program. If they are not too ambitious, and adopt an evolutionary
approach, it should work out.

To tie it all together, take the goals defined in section 3.5 together with the

measures selected for the process and take the current process metrics obtained
from the projects just completed (section 3.9). Examine the goals in the light of

what the measures o f the current process show, and state the long-term goals in

terms o f what these measures should show when these goals have been
successfully achieved. From there, take each long-term goal, and express it as a
series o f short-term goals with specific quantitative targets and a timeframe.

Taking the example o f the journey again - the company has to decide exactly where

they are going to, in terms o f co-ordinates on the map. They already know exactly

Page 48

where they are, so using the map, and knowing their own abilities and limitations,
each leg of the journey can be planned.

3 .1 1 . Automate the system

The first implementation of the system will be a manual one (using spreadsheets
and documents), as there will be several changes, and it is better to plan to
automate the second system, rather than spending the time automating the first
system, then having to spend effort reworking the system for the changes - as

Brooks says:

Plan to throw one away; you will, anyhow
[Brooks75]

In an automated process-metrics system, there should be, at a minimum, a project
management module, an effort-tracking module, a defect-tracking module, and a
reports module. The project management module would contain the size,
complexity and schedule information. The time tracking module would contain
effort information, and would tie-in with the schedule information. The defect-
tracking module would contain all defect information, as described in section 5.1.
The reports module would contain all the required reports which would be
generated by performing the necessary calculations by accessing the data from each

o f the other modules.

The development o f the defect database, described in section 5.1, should be
completed first. The project management module should use a project
management product, which will be able to produce Gantt charts and PERT
networks o f the planned vs. the actual schedule. The automation o f the effort data
collection and metrics reporting modules should take place about three months
after the manual implementation o f the system. The easiest form of automation is
to use a database for data collection. This is particularly suitable for collecting the

effort d a ta .

The project management module should contain two types o f data - firstly, the size
and complexity information should be contained in_a template (this could be kept in
a database, separate from the schedule information), which would be used as a

method of measuring actual vs. planned quantity o f work, and will be used as a

basis for calculating many o f the metrics - (eg productivity, defect density);

secondly, the development process as specified in section 3.1 should form the basis
o f the work breakdown structure for the schedule. The system should allow

Page 49

schedules to be created, maintained by recording % complete data, viewed without
making changes, and should produce reports such as a Gantt chart, Pert network,
critical path list, etc.

The effort-tracking system tracks actual effort, in man-hours expended on each
task. The first screen of the effort-tracking system should contain the employee
name, number, project, function, etc. The next form to be displayed should depend
on the entry given for Function.

Name Ü Employee No.

Project Function

The following is a generic example of an entry form, at its simplest.
would have a drop-down list o f legal values, depending on the function and project
selected on the first screen. Week number is the current calendar week number;
Project phase would contain the phase being worked in; the legal values for task
would be dependent on the project phase and function, and in the task hours field,

the number o f days spent on that specific task would be entered.

Week No. ■ W.

Project Phase

Task !* à

Task Days |

Metrics calculation is a matter o f dividing one set of data by another, to produce a

result which can be compared across several projects. Many o f the metrics
described in chapters 4 and 5 require some calculation, either based on time or

based on quantity o f work completed. The metrics reports generated from the data
should be in a standard format, for inter-project comparisons, and the frequency of
such reports should be agreed with the teams concerned. Some reports are most
useful at project-end, whilst others should be produced every month, or more

frequently. The frequency o f the reports depends on the size o f the project, and
the number and usefulness o f the metrics to the project team. Reports should only

be generated if they are required, and if they will add value to the process at that
time.

Page 50

3 .1 2 . Review the effectiveness of the metrics

How can the effectiveness of the measures be ascertained? One way is to use
further measures, such as the percentage o f 1-year targets that were met within the
year. Another method is to ask specific questions within 3 months, 6-9 months and
1-1.5 years of implementing the metrics system.

The questions asked after three months should ascertain which of the measures are
too time-consuming to collect vs. the gain obtained from them. The three-month
review aims to weed out the non-relevant metrics and provide a concise listing of
what will be measured and why. A common tendency o f companies is to be overly

optimistic at first, and they try to measure too much at the first attempt. A
company new to measurement should start with end-of project effort, schedule and

quality metrics, and to build on these to include in-process measures and a further
granularity o f measure after about a year, as outlined in section 3.4.2. The system

can be automated after the three-month review, as described in section 3.11.

The 6-9 month evaluation asks - have the metrics identified the correct areas for
process improvement? Further adjustments may need to be made at this stage to
the metrics or the improvement goals themselves. Different reports may also be
required than those implemented after the 3-month metrics review.

After 1 to 1.5 years, some o f the benefits should begin to show in improvements to
the development process. The questions to be asked at this stage aim to
demonstrate the improvements, ie by how much has the process improved? The
project post-mortems should provide an objective measure of the process
improvements, as the actual vs. planned measures should be provided, and

compared against the end-of-project figures for the previous version of the
product. At this stage, some further metrics may be required, to measure more

processes, or to measure to a finer granularity.

The metrics system should be continually assessed and improved upon.
Measurement should become an integral part o f the process, just as Hitachi,
Toshiba, NEC and Fujitsu have accomplished [Cusumano91], These four Japanese

companies have successfully organised the design and development o f large

software projects using statistical methods adapted for software from the more

established engineering disciplines.

4. Specific Measures to implement

4.1. Specification/Code-based Measures

The measures described under this category all help in the planning process. These
measures are used to estimate project size, complexity, time and effort. They
provide a means whereby good estimates can be made from the detailed
specification or design. As the development process becomes more under control,

and more stable, the accuracy of these estimates should increase. A number of
measures are described under this category - which one(s) to choose depends on

the current development process and methods in use.

a) Halstead's Software Complexity Measure

Halstead considers a program as a collection o f tokens (operators or operands)
[Halstead77]. The measurements o f the program are based on counts o f these

tokens. He has proposed a number o f quantities - those that are described briefly
here are the Volume metric, the length estimation, the effort estimation and finally

the time estimation. The bug prediction formula will be described briefly in the
Quality metrics section.

All o f Halstead's metrics are based upon the following parameters:

nt = the number o f unique operators in the program (eg. keywords)

n2 = the number o f unique operands in the program (eg. data base objects)

Nj = the total occurrences o f operators in the program
N2 = the total occurrences o f operands in the program

His program volume metric, V, is defined as:

V = (N, + N2) log2 (nj+rij) - The unit o f measurement o f volume is bits.

The vocabulary o f a program is the number of distinct operators and operands:

n = nj + r»2

The length o f a program is the sum of the actual operators and operands:

N = N t + N2

Page 52

The program length can also be estimated knowing only the program's vocabulary,
before the program is written. If a program is written after a data dictionary
already exists, then it should be relatively easy to estimate the keywords used (n,)
and the data base objects referenced (n2).

The length's estimator, N, is defined as:

N = n^ogjnj + n2log2n2

An example, from [Beizer84], states that the validity o f the relation o f the
estimated length, N, to the actual length, N, has been experimentally confirmed
over a wide range o f programs and languages. The example given is:

If a program is written using 20 keywords out o f a total o f 200 in the language,
and it references 30 objects in the database, then its length should be 20!og220 +
30log230 = 233.6, which Beizer states is very close to the actual length measured

on the program.

Another one o f Halstead's quantities is the Effort metric, E, which is defined as

E = Nn1N2(log2n)/(2n2)

since V = Nlog2n, the above equation can be simplified to:

E = (n1N2V)/(2n2)

T, Time Estimation, is:

T = E/S, where S is approximately 18

Vincent Shen, [Shen83], concludes that the 'real-world' use o f Halstead's software
science measures must be done very carefully. One of the difficulties cited is that
the very base o f software science (counting operators and operands) is weak, due
to ambiguities concerning what should be counted and how. He states that serious
difficulties have been the failure to consider declarations and input/output

statements and (possibly) counting a "GO TO label" as a unique operator for each

unique label.

My view is that just counting the operators and operands in the program (ie n,, n2,
N , , N 2) should suffice as a good indicator o f size, from which comparisons can be

made across projects, and rough rule-of-thumb estimates can be made for effort

and time estimates, without having to perform detailed calculations.

Page 53

h) McCabe's Cyclomatic Complexity Metric

McCabe's cyclomatic complexity metric [McCabe76] is described in relation to
graph theory, and is based on the number o f decisions in a module (it equals the

number o f decisions in a module, plus one). The cyclomatic complexity is
independent o f a module's physical size - adding or subtracting functional
statements leaves complexity unchanged. Also, basing complexity solely on the
number o f paths in a module can be misleading, as nested IF-THEN statements
lead to an exponential increase in the number of possible paths.

The cyclomatic complexity metric quantifies a basic number of paths in the
program, that have the following properties [Ward89]:

1. They visit each node in a graph of the program and they visit every edge in

the graph
2. When taken together, the basic paths can generate all possible paths in the

program

McCabe [McCabe76] defines the cyclomatic complexity number o f a graph as :

V(G) = e - n + 2p

where:

e = the number o f edges
n = the number o f nodes
p = the number o f connected components

(A connected component is a code module (function or procedure) from start to

end)

However, B. Henderson Sellers [Sellers92] states that the above equation only

holds true for p= l, and that the cyclomatic complexity o f a modularised program

with p>l, is defined as:

V(G) = e - n + p + 1

Page 54

In McCabe's equation, the cyclomatic complexity number increases with
modularisation, so that a program written as three separate modules has a higher
complexity than the same program unmodularised. McCabe gives the complexity
of a collection of control graphs as the sum of their individual complexities - ie if

module A has a complexity o f 6 (five decisions) and module B has a complexity of
7 (six decisions), their sum has a complexity o f 13. Assuming p is the number of
connected components, and i = 1 to p, McCabe gives the complexity of the
collection of components, V(G) as:

V(G) = £ V(Gi)

Sellers ascertains that in modularisation, the number o f decisions remains
unaltered, and since the cyclomatic complexity should always reflect the number of
decisions plus one, there should be no difference between the complexity of the
modularised and non-modularised program. The complexity of a collection of
control graphs given by Sellers is the sum of their individual complexities, plus one
minus the number o f connected components.

V(G) = S V(Gi) + 1 - p

hence, he concludes that the sum of the parts exceeds the system value by (p- 1).

Tolerances for the Cyclomatic Complexity metric are given in [Henry90], A V(g)
o f up to 10 is acceptable (safe zone), from 11-20 should raise a flag - i.e. the
additional complexity should be verified to be manageable and/or justified, and a

V(g) o f over 20 should sound an alarm.

The uses as expressed in [Ward89] are:

• Automatic identification o f potentially faulty software before actual testing is

started
• Automatic identification o f code modules that could benefit from code

inspections
• Automated generation o f test case data for all software modules
• Well-defined coding standards accepted throughout the lab
• Effective code defect prevention strategies based on restructuring o f overly

complex code.

Page 55

c) DeMarco's Bang Metric

[DeMarco82] says that the highly structured specification model o f a project
describes the requirement o f that project. A quantitative analysis of the model will
provide a measure o f the true function to be delivered as perceived by the user.
This is what he terms Bang, which is a measure o f total function delivered by the
project per dollar investedfrom project beginning until the system is retired. Bang

is an implementation-independent indication o f system size. The central hypothesis
is that the information content o f the coded system is a well-behaved function of
the specification. Needless to say, the metrics derived from the specification model
are only as good as the model itself.

Using a highly structured specification modeling standard, and ensuring there is no
single redundant statement in the entire set o f lowest-level model components,
ensures that the size (information content) o f the model is a direct measure of
usable system function to be delivered (ie gives a direct measure o f Bang).

To calculate Bang, the specification model is firstly broken down into a number of

primitives - elements that cannot be further subdivided. The Specification model,
which contains the function model, plus the retained data model, plus the state
transition model, is successively divided and sub-divided until the primitive level is
reached. There are six types o f primitive which may result from these partitioning

activities:

Partitioning o f the function model leads to functional primitives and data elements.
Each functional primitive represents an undivided element o f user policy governing
transformation o f input data into output data at one node of the network (Data

Flow Diagram). Data elements are indivisible numbers, strings and discrete
variables (contained in the data dictionary)

Partitioning o f the retained data model leads to objects and relationships, and
partitioning o f the state transition model gives states and transitions.

These primitives are known as p-counts - there are_12 essential p-counts, o f which
four are most useful in calculating Bang: FP, the count o f functional primitives
lying inside the man-machine boundary; OB, the count o f objects in the retained

data model; TCj, the count o f data tokens (data item that need not be subdivided

within the primitive) around the boundary o f the /th functional primitive (evaluated

Page 56

for each primitive), and REj, the count o f relationships involving the /th object of
the retained data model (evaluated for each object).

There are two ways to calculate Bang, depending on whether the system is

function-strong, or data strong. The base measure for function strong systems is
the count of functional primitives (FP), whereas the base measure for data strong
systems is the count o f objects in the database(OB). Since some functions and
objects cost more to implement (in terms of complexity and size) than others, there
are some weighting factors involved in each formula.

To calculate Bang fo r function-strong systems:
Compute the Token Count around the boundary o f each functional primitive. Use
this count to look up the table for size correction o f functional primitives, to get a
value for the Corrected FP Increment (CFPI). For each functional primitive,

allocate it to a class (eg simple update, edit, display, etc.). There is a table
provided for weightings according to class o f function. Calculating Bang is then a
matter o f the total sum o f the product o f CFPI and the complexity weighting for

each functional primitive, ie, for / = 1 to FP:

Bang = Z(CFPI/*complexity weighting/)

To calculate Bang fo r data-strong systems:
Compute the relationship count involving each object. Use this count to look up
the table for the relation rating o f objects, to get a value for Corrected OB
Increment (COBI). Bang is the sum o f the corrected OB increments over all

objects, ie, for /' = 1 to OB:

Bang = ZCOBIy

The main uses o f bang are that it is used as an early, strong indicator o f effort, and
helps project development costs. Another use is the Project Bang Per Buck
metric. As project performance improves, this number will increase. De Marco

recommends collecting data on a number o f projects to establish standards for
Bang Per Buck (BPB) performance. This figure can then be used to set goals for

the process improvement effortst Parts o f the BPB that are in the future can be

predicted, and this information used to keep project members aware o f how well
they are performing as the project progresses.

Page 57

d) Constructive COstMOdel

Boehm's COCOMO metrics [Boehm81] are widely used for size, effort and
schedule estimation. There are three models - Basic, giving ball-park figures;
Intermediate, and Detailed. The three development modes are organic: small to
medium-sized projects in a familiar in-house environment; Embedded: ambitious
and tightly constrained projects; and semi-detached: between organic and

embedded.

Effort = a (size)b x product o f cost drivers

where there is a list o f cost drivers for the intermediate and detailed models, and
the values of a and b depend on the mode of development.

There are fifteen cost drivers used in the intermediate and detailed COCOMO

models which are grouped into the four categories o f software product attributes,
computer attributes, personnel attributes, and project attributes, as follows:

• Software Product Attributes
RELY Required Software Reliability
DATA Data Base Size
CPLX Product Complexity

• Computer Attributes
TIME Execution Time Constraint

STOR Main Storage Constraint
VIRT Virtual Machine Volatility
TURN Computer Turnaround Time

• Personnel Attributes
ACAP Analyst Capability

AEXP Applications Experience

PCAP Programmer Capability

VEXP Virtual Machine Experience
LEXP Programming Language Experience

y

Page 58

• Project Attributes
MODP Modem Programming Practices
TOOL Use o f Software Tools
SCED Required Development Schedule

The basic COCOMO Model for effort estimation (Organic mode) is

MM = 2.4(KDSI)105
TDEV = 2.5 (MM)0-38

Where:
MM = Manmonths,
KDSI = Thousands o f Delivered Source Instructions,
TDEV = Tome for Development

Basic COCOMO is good for quick, early, rough order o f magnitude estimates of
software costs, but its accuracy is necessarily limited because of its lack o f cost
factors to account for differences in hardware constraints, personnel quality and
experience, use o f modem tools and techniques, and other project attributes known

to have a significant influence on software costs. Both the intermediate and
detailed models cater for these cost factors.

The Intermediate model is effective for most cost-estimation purposes, but has two
main limitations when it comes to detailed cost estimations for large projects; its
estimated distribution o f effort by phase may be inaccurate, and it can be very
cumbersome to use on a product with many components (because o f the separate

cost driver ratings for different product components)

The detailed model provides a set o f phase-sensitive effort multipliers for each cost

driver attribute. These multipliers are used to determine the amount o f effort
required to complete each phase. The detail model also provides a three-level

product hierarchy - effects that vary with each bottom level module, are treated at
the module level; effects which vary less frequently, are treated at the subsystem

level, and effects such as total product size, are dealt with at the system level.

Use the basic or intermediate models, as the increased effort required for the

detailed model is not worth the investment for the purpose o f objectively

measuring improvement in the planning/estimating process.

Page 59

e) Function Point Analysis:
Function Point Analysis is briefly mentioned in section 3.4.1 under the productivity
metrics heading. Unlike the traditional lines-of code counts, Function Point
Analysis measures the size of the problem rather than the size o f the program. It
measures a system's logical process characteristics, such as the number and
complexity of its internal logical files and external inputs and outputs.

The calculation o f Function Points is further described here. Alan Albrecht

[Albrecht83] states that the function points measure is accomplished in three

general steps:

• Classify and count the five user function types
• Adjust for processing complexity
• Make the function points calculation

In the first step, complexity at the individual function level is assessed. Step two
assesses overall system complexity.

To count function points, firstly count the number o f functions provided by the
system under five function types - the number o f external inputs (eg transaction

types); the number o f external outputs (eg report types); number o f logical internal
files (eg files as perceived by the user, rather than physical files), number of
external interface files (files accessed by the application but not updated by it), and
number o f external inquiries (types o f online inquiries supported). Each identified
function is classified as simple, average or complex. The count o f functions within
each function type is classified by complexity, and multiplied by a weighting factor

which represents the usefulness o f the function to users.

The following table, from the International Function Point Users Group

[Sprouls90] shows an example o f complexity assignment for external outputs (they
rate complexity as low, average and high).

1-5 Data Element

Types

6-19 Data Element

Tvpes

20+ Data Element

Types

0-1 file types referenced Low Low Average
2-3 file types referenced Low Average High
4+ file types referenced Average High High

Page 60

The table below, from Albrecht's function points calculation worksheet, shows the
weighting factors that each count is multiplied by, to give an unadjusted FP count
by function type. These are then summed to give the total unadjusted FP count.

Type
ID

Description Simple
Complexity

Average

Complexity

Complex
Complexity

TOTAL

IT External Input*3=..... *4= *6=.....
OT External Output*4=.....*5=..... *7=.....

FT Logical Internal File*7=......*10=.....* 15=......

ET Ext Interface file*5=.....*7=..... *10=.....

QT External Inquiry *3=.....*4=..... *6=.....

FC Total Unadjusted Function
Points:

For step two, estimate the degree of influence o f each of 14 characteristics, on the
value o f the application to the user, as listed in the table below. The degree of
Influence measures are from 0, for 'not present, or no influence if present', to 5, for

'Strong influence, throughout'. Sum the 14 Degrees of Influence and calculate the
Processing Complexity Adjustment factor, as follows:

PCA = 0.65 + (0.1 T o ta l DI Points)

ID Characteristic D I ID Characteristic DI
Cl Data Communications C8 Online Update

C2 Distributed Functions C9 Complex Processing

C3 Performance CIO Reusability
C4 Heavily Used Config C l l Installation Ease

C5 Transaction rate C12 Operational Ease

C6 Online Data Entry C13 Multiple Sites

C7 End User Efficiency C14 Facilitate Change

PC Total Decree o f Influence

To Calculate the total Function Points, multiply the unadjusted Function Points
(FC) by the Processing Complexity Adjustment.

FP = FC * PCA

Page 61

Albrecht based his theories on Halstead's software science formulas (see section
4.1a), demonstrating that software science formulas originally developed for small
algorithms only can also be applied to large applications [Albrecht83], He shows
that function points can be interpreted to mean the weighted sum of the top level
input/output items, eg screens, reports, files, that are equivalent to (n2*), where

(n2*) in software science terms is the no. o f conceptually unique inputs and outputs
in an algorithm, and for applications, Albrecht says can be interpreted to mean the
sum of overall external inputs and outputs to the program.

Function Points Analysis was developed to estimate the amount o f effort required
to design and develop custom application software. An early Function Points
Analysis based on a project's initial requirements definition can give developers a
good ball-park estimate of its size. FPs can be used instead o f Lines O f Code, as a
general measure o f programmer productivity, as it does not suffer from the same
limitations (see section 3.3.2 and section 3.4.1).

There are very few tools available to help calculate the project size in Function
Points, which can mean a lot o f time is spent by the organisation concerned. A

study, involving Productivity Analysts in McDonnell Douglas [Bock92], reported
that it frequently takes 40 hours to count a medium-sized system (800 - 2400 FPs).
Another drawback is that the counting can be subjective in assigning complexities

to function types, which means that two individuals performing an FP count for the

same system are unlikely to generate the same result.

To overcome these difficulties, several simpler methods have been researched and
presented recently. One of these methods, known as the FP-S method [Bock92],

eliminates the function-type complexity classification, thus eliminating the
subjectivity o f the counting procedure in step one o f Albrecht's method. With the
subjective evaluation removed, the process can be more easily automated. The
second method uses logical models, (Entity-Relationship Models and Data Flow

Diagrams), as the basis o f the counting process [Kemerer93], This approach uses
the E-R model to count Internal Entities as Logical Internal Files, and External

Entities as Logical External Interfaces. The DFDs are used to identify External

Inputs, External Outputs and Inquiries.

[Davis92] states:
The bottom line is that function point analysis is beginning to transform the black

art o f estimating into something more like an engineering discipline

Page 62

4.2 Project Management Measures

4.2.1 Schedule:

Cheops' Law states:

Nothing ever gets built on schedule, or within budget

At their simplest, schedule metrics show progress and slips as a measure against

the original project completion/release date. This can be shown graphically by a
simple Gantt chart. The Gantt chart below shows percent completion (dark line)

for tasks on a project which started on 22nd April, with a dotted line showing
'today's date', 29th April. The dark bars represent non-critical tasks, whereas the
bars with diagonal lines represent tasks on the critical path.

ID Nam e Duration

April 2 5 April 2 M ay

W T F S S M T W T F S S M T W T

1 Task 1 2d

2 Task 2 2 .7 5 d

3 Task 3 6d

4 Task 4 4d m m m m
5 Task 5 3d

The main measure here is to calculate the percentage over-runs on the project, or

at each major milestone. This is particularly useful where a company has identified
generic milestones for all projects. Improvement targets can then be set against
particular milestones - these improvements may be a combination o f planning,

productivity and rework improvements.

The two categories described below, cumulative work packages complete, and
progress curves categorisation, require a lot more thought and effort on the part of

the Project Manager upfront, at the start o f the project.

The graphs produced by schedule metrics show per-milestone progress (y-axis)

represented in percentile or the absolute value and of timeframe (x-axis), either
day, week or month being selected according to management requirements.

Page 63

a) Cumulative Work Packages Complete

The work to be completed is broken down into sections o f equal size in terms of
time to complete, known as work packages. The cumulative work packages
complete metric is measured by total work packages completed by a point in time.
The actual versus planned total number o f work packages complete is charted.
[SEI91a] describes this metric in detail, and includes a section on some variants
that can be used, such as measuring rework and measuring progress per

development phase.

Cumulative Work Packages Com plete

Time

The graph above shows that from the start o f measuring, the actual progress was
less than the plan. However, the rate o f progress has increased for period 6,

which shows that the actual and the plan curves are beginning to converge, rather
than diverge further. The primary use o f this graph is to determine whether or not
the planned completion date for the project is realistic. At any point in time, the
percentage variation o f actual vs. the plan can be obtained. As the process
improves, the variation between actual and plan should decrease, as the process

comes under full statistical control.

Page 64

By charting the plan for the full duration o f the project, and the actual work
packages completed to date, and extrapolating the slope of this curve out, the
likelihood of meeting the scheduled completion date can be deduced (see chart
below). The example used shows that the schedule will not quite be met, at
current progress rates. The options are to either change the planned completion
date by one and a half time periods, or else increase the number o f work packages
completed by 50% (to 18 per time period), by changing staffing levels, experience

levels, etc.

Pla n
Actúa I

Cumulative Work Packages Com plete (b)

80Work
Packages 60
Completed 40

* - c \ i n ,< * L n c o r ^ o o C T)
Time

Page 65

b) Progress Curves Categorisation

NEC Telecom Systems, Japan [Kadota92] analysed various types of discrepancy
between plans and actual progress curves, and found that the characteristics of
progress curves, despite their great variety in appearance, could be classified into
either one of six patterns, or a combination o f them.

The six patterns are delayed start; progress delay increase; progress plateau due to
work interruption; progress drop due to rework; progress stagnancy due to work
difficulty, and slow progress at earlier stages. Each identified pattern also has
suggested counter measures, so that when a pattern is identified as the project
progresses, the correct countermeasure can be taken. This is the optimum
implementation of continuous process improvement.

The completed graph, after project completion, can be used in the project post­
mortem analysis, to identify learning points, and to establish areas where

improvements can be made for the next project. O f utmost importance is to
effectively plan the project before it commences, based on previous experience and
from the information the metrics provide.

Pattern A: Delayed start

Delayed Start

-------■— - Pianned
- Actual

Time

This situation results from delayed receipt o f deliverables, resource availability, etc.
In other words, work from previous stages is not yet complete.

The countermeasures are to clarify completion o f the previous phases and expected

hand-off dates, and to negotiate earlier with those responsible for the previous
phase to urge deadlines to be met.

Page 66

Pattern B: Progress delay increase

Progress Delay Increase

Time

---■— - Pianned
- Actual

The discrepancy between the plan and the actual graph increases, which is a result,
o f mismatching effort and productivity. It occurs when people are less experienced
than expected, or when there are many unforeseen complex issues involved in the

project.
The countermeasures are to increase effort (eg. overtime) when the complex issues
have delayed productivity, or assign experienced people where the cause is lack o f
experience.

Page 67

Pattern C: Progress plateau due to work interruption

Progress Plateau

Time

---■— - Pia nned
- Actua 1

This occurs when people are assigned to higher priority projects, urgent support
work, and their manager also assumes they are working on the current project.
Everyone on the project will be working to their full capacity, yet the project is not
progressing.

The countermeasures are to watch everyone's daily work contents carefully,
monitor interruptive work, reassess priorities o f all tasks and monitor these
tasks/priorities on a weekly basis, and revise people's work assignments. If effort
is being tracked, watch out for the support activities, or the time spent in non-

project specific areas.

Page 68

Pattern D: Progress drop due to rework

Pro g re ss Dro p - Re wo rk

Time

This pattern is shown when additional work occurs which originates from either a
previous phase or the current phase. Progress drop can occur when a careless
Developer hands off modules to testing which are regarded as 'finished1, but

without first unit testing them. This occurs when a tight milestone deadline
approaches, and rather than miss the deadline, the Developer skips testing, and
delivers 'on time'. The modules, previously marked as finished, may be returned to
the Developer for proper completion.

The countermeasures here are to examine methods and contents o f the reviews in

the previous stage, if this is the cause, or to introduce frequent reviews in the
current phase, if this is the cause. Everyone should check the quality o f their work
thoroughly before it goes to the next phase.

Page 69

Progress Stagnancy

Pattern E: Progress stagnancy due to work difficulty

1 2 3 4 5 6 7
Time

This is the classic 90% complete forever chart. The progress curve is consistent
with the plan until the project is 90% complete, followed by increasingly slower

progress. Major causes are complex technology which is unfamiliar to the project
personnel, and left unresolved; and work starting with the necessary conditions

unspecified. The ninety-ninety rule o f project schedules is appropriate here:

The first ninety percent o f the task takes ninety percent o f the time,
and the last ten percent takes the other ninety percent.

The countermeasures are for experienced and skilled people to join or support the
project team, and also to confirm conditions, ie plan effectively, at the start of the

project.

Slow progress a t start

Pattern F: Slow progress at earlier stages

Time

Insufficient understanding at the start o f the project causes progress delay, and as

time goes by, the progress speed increases, as the project team gains familiarity,

and as undefined conditions settle.

The countermeasures are to specify undefined work contents as early as possible,

and ensure that adequate training and support are given to all members o f the
project team.

Page 71

4.2.2 Effort:

Effort metrics show the man-hours per time period (normally per month). Two

variants described in [SEI91a] are Non-Cumulative Effort Distribution, and
Cumulative Effort Distribution.

Non-Cumulative Effort Distribution shows the effort per time period, so that peaks
and troughs can be seen. This can also be used for cost accounting purposes by
multiplying the effort for each job function by the manmonth cost (including
overhead costs), which gives the project cost for each month.

Non-Cum ulative Effort

"Time

---■— - Pla n
- Actua 1

The graph above shows that the project was understaffed at first, then became
overstaffed in order to try to catch up on planned progress. Comparing this graph

with the Cumulative Work Packages Complete graph in section 4.2.1 (a), gives a

good picture o f the current and future project performance.

Page 72

Cumulative Effort distribution enables the relationship between total actual effort
expended and total planned effort expended at a point in time, to be viewed. This
metric is used to determine a project's performance towards meeting the planned
amount o f effort.

Cumulative Effort Distribution

Time

------■— - Pia n
— Actua 1

The graph above shows that at time period 3, the amount of planned effort
equalled the amount o f actual effort for the project. Referring back to the schedule

progress graphs in section 4.2.1 (a) again, it is seen that only approximately two-
thirds o f the work packages planned were actually completed in time period 3.
This says that although the planned amount o f effort has been expended, the
progress is only about 66% of planned.

Page 73

Comparing the Cumulative Effort Distribution (CED) metric with the Cumulative
Work Packages Complete (CWPC) metric identifies the following four key
conditions explained in [SEI91a]:

a. CED actual > CED planned and CWPC actual > CWPC planned
b. CED actual <= CED planned and CWPC actual > CWPC planned
c. CED actual > CED planned and CWPC actual <=CWPC planned
d. CED actual <= CED planned and CWPC actual <= CWPC planned

Condition a is quite optimistic, in that schedule is better than planned, with effort
being greater than planned. The expectancy here is that the project would be
completed ahead o f schedule, with the expected total amount o f effort planned
(which would show actual CED higher than planned for each time period).

Condition b is the best condition - the project completed ahead of schedule with
less effort than planned.

Condition c is probably the most frequent condition observed - less schedule
progress than expected, with more effort than planned. This leads to delayed
project completion, and extra staff on the project or excessive overtime.

Condition d shows less progress than expected, but also indicates an understaffing
problem. The planned completion date will not be met, yet the project may well be

completed within the planned amount o f effort.

Page 74

4.2.3 Productivity Measures

These measures show how the underlying process can affect the progress o f a
project. Process improvement efforts can be demonstrated by the use of
productivity metrics. However, care must be taken when determining productivity
measures to use (section 3.3.2 explains why Lines o f Code are not a useful
measure o f programmer productivity). Another potential pitfall is the fear of
individuals being measured. Productivity measures should be a measure of the
total effort expended against the total progress to date for each major activity.

Productivity measures can be in the form o f the number o f days per amount of
work (eg 4 days per work package), or the amount of work completed per person
per time period (eg 2 work packages per person week). Function Points can be
used as the basis for determining work packages, as described in section 4.1(e).
The example below uses the Non-Cumulative Effort Distribution divided by the
Work Packages completed per time period, expressed in person days. For

productivity metrics o f this type, the work packages must be roughly equal in size
w.r.t. effort required for completion.

Productivity

Time Period

Page 75

4.2.4 Rework:

In a software development environment, rework is expressed in terms o f time (or
cost) to amend systems due to requirements changes, or in order to correct errors
found. It is one measure that often goes unnoticed and unmanaged within the
development process, possibly because rework is expected - it has become an
integral part o f the process. The uses o f rework measurement are described briefly
in section 3.4.1 (c). Mosher's Law of Software Engineering states:

Don't worry i f it doesn't work right. I f everything did, you'd be out o f a job.

Rework metrics are tied in very closely to schedule and productivity metrics.
Unexpected changes in requirements cause rework which will affect both schedule
and productivity measures, (see chart o f progress due to rework, Section 4 .2 .1(b)

- chart D). Errors in project specifications are a major cause of rework, identified
during the testing phase. Each rework cause needs to be addressed, and the cost
o f rework should be measured in conjunction with the schedule, productivity and
quality measures.

Probably the best way to measure rework is to measure time and effort spent per
rework cause. The basic measures recommended are a total measure o f rework per

project, expressed as a percentage o f total project effort, and as a percentage of
total project time. The next level o f granularity suggested is to split the time and
effort spent on rework into its major constituent causes. The most basic
implementation would be to categorise rework cause into internal (ie due to errors

introduced by the project team itself) and external causes (due to customer
requirements changes, etc.). Working on eliminating internal causes is easier, since
the team has direct control over these. I f the team takes a right-first-time approach
to specification at the requirements definition stage, the 60% of defects reported

that originate in this stage, such as missing, erroneous, ambiguous or conflicting
specifications, can be eliminated [Oates92],

Page 76

25%
2 0 %

1 5 %

10%

5 %

0 %
P io]« o I 1 P io ¡a o I 2 P ro |« o t 3 P r o jn o t 4

T im •

5. QUALITY MEASURES

As explained above, software defects make a significant direct contribution to the
total rework costs o f a project. Measurement o f the defects can help the team to
understand where and how they occur, and by pinpointing the problems, can
provide guidance in detecting, preventing and predicting defects. Defect

measurement is one o f the most important metrics for process improvement, as it
provides a direct measurement of the process and products.

The terms Quality and defects are both difficult to define. The SEI have defined a

software defect as any flaw or imperfection in a software work product or software
process [SEI92-TR22], The terms software work product and software process
are defined in [SEI91-TR25],

A software work product is any artifact created as part o f the software
process, including computer programs, plans, procedures and associated

documentation and data.

A software process is a set of activities, methods, practices and
transformations that people use to develop and maintain software work

products.

The number andfrequency o f problems and defects associated with a software
product are inversely proportional to the quality o f the software [SEI92-TR22],

Carole Jones [Jones85], says that internal test problems are veiy expensive if you
consider the cost o f screening the problem, debugging it, developing and applying

the fix, and verifying its correctness. She says this normally costs a minimum of
nine hours for the most simple problem, when all factors are considered.

Page 77

5.1 Defect reporting

In order to manage defect measurement efficiently and effectively, the defects
should be written to a database in a structured manner. Several texts suggest
formats for bug reports - [Jones85] describes a format for IBM; [SEI92-TR19]
describes in detail a method for the DoD, which includes checklists for clearly
defining defects. The description provided here is based on the bug-reporting
mechanism in Microsoft.

Each defect goes through a life-cycle o f Active - Resolved - Closed. A defect is
active when it is first reported, and remains active while it is being evaluated.

When it has been fully evaluated, and fixed or otherwise dealt with, it is resolved,
and assigned back to the Tester who Activated it for rechecking, and the Tester
then closes the bug. Each field in the database is described in accordance with

each of the defect lifecycle phases:

ACTIVE

Bug Number: The system assigns a bug number, in sequence, to each bug

entered
Status: Assigned to Active, Resolved or Closed, according to defect

lifecycle phase
Opened date: The date the bug was entered

Opened by: The name o f the person who opened the bug
Title: A unique title for the bug
Environment: The full hardware and OS configuration used
Severity: Select severity from 1 to 4. Severity 1 indicates a crash/data

loss; Severity 2 indicates impaired functionality o f the product;
Severity 3 indicates cosmetic problems, and severity 4 indicates a

trivial bug such as minor cosmetic problems.
Type in the software build number the defect is reported against

Urgency to fix, rated from 1 to 4, where 1 is top priority, ie
essential, and priority 4 is 'fix if time'. The priority o f a bug
depends on the development phase and the proximity o f the

release date. A priority 4 close to release may be a priority 3

earlier in the process.
Description: A full description of the defect is provided with detailed steps to

reproduce it included

Build Number:
Priority.

Page 78

Defects are categorised according to 6 keywords, which are named and defined by
the Test Manager before the database is set up. Each keyword has a set of
standard values, from which one value is selected when entering the defect report.
The six keywords were chosen specifically to enable the defect metrics information
to be obtained easily through a series o f standard reports. Four o f the keywords
(area, sub-area, type and test case) are used when opening a defect report. The
other two (origin and time) are filled in at the resolution phase.

Area: The highest-level product component, eg. .exe, helpfile, install
Sub-Area: Describes the sub-area of the selected component in which the

bug was found.
Type: Describes the bug type, which gives an indication o f the bug

cause. Examples o f values for type would be text appearance;
mathematical function; discrepancy between program and
specification; crash/hang; error messages, etc.

Test Case: The number o f the test case used to reproduce the bug

RESOLVED
Resolution:

Fixed. The problem has been fixed, and will not reoccur. The Fixed Rev

field must also be filled in, and a full description of the fix given.
Duplicate. The bug has already been reported. The Related Bug field

must also be filled in.
By Design. The software works according to its design. This is not a bug.

Not Repro. The bug cannot be reproduced. More information needed.
Won’t Fix. The problem will not be corrected. It may be either too
difficult to fix with the available resources or too trivial to worry about.

Postponed. The problem will be resolved in a later product revision.

Fixed Rev: The build number o f the software containing the fix
Related bug: The number o f the other bug of which this bug is a duplicate

Resolved date: The date the bug was resolved

Resolved by: The name o f the person who resolved the bug
Origin: Stage o f development where the error was created
Time: Time taken to evaluate and resolve the defect

CLOSED
Closed date: The date the bug was closed
Closed by: The name o f the person who closed the bug

Page 79

5.2 Defect Metrics

Keeping track o f the defects found is the most important element of defect metrics.
Consistency o f reporting methods between projects helps to compare metrics
across several projects. This section concentrates on the use o f metrics to predict
bug densities, which in turn helps to determine when to stop testing.

a) Halstead’s bug prediction formula

A lot of work has been done to predict defect density from the program size and/or
complexity. In section 5.2 (a) several o f Halstead's quantities are described, which
are based on the numbers o f operators and operands in a program. One other
formula he devised is the bug prediction formula:

B = (Nj + N 2) log2 (n, + n2)/3000

where:
n, = the number o f unique operators in the program (eg. keywords)
n2 - the number o f unique operands in the program (eg. data base

objects)
Nj = the total occurrences o f operators in the program
N2 = the total occurrences o f operands in the program

Boris Beizer, [Beizer84], uses an example of a program which accesses 75

database items a total o f 1300 times, and which uses 150 operators a total of 1200

times. The expected number o f bugs for this program would be:

B = (1300+1200) log2 (75+150)/3000

= 6.5 bugs

Beizer says that there is solid confirmation of the correlation o f the predicted bug
count using Halstead's metric, and the actual bug count. This equation provides a

good rule-of-thumb measurement, but for determining when to stop testing, it's
better to use Musa's software reliability models, which are described further on in

this section.

Page 80

b) McCabe's Complexity Metric

McCabe's complexity metric is described in detail in Section 5.2 (b), for
ascertaining the complexity o f a module. This section illustrates how this
cyclomatic complexity number can be used to aid testing.

The cyclomatic complexity o f a module can be expressed as a number, or drawn as
a flow graph. A cyclomatic complexity o f greater than 10 can mean a defect-prone
module. Modules that have a cyclomatic complexity o f less than 10 are well-
constructed with the resultant expectancy o f a low defect density.

In [Ward89], McCabe describes how the cyclomatic number and the accompanying
program control flow graph can be used to identify test cases for the well-known
triangle graph problem, where three integers are entered, and the system
determines what type o f triangle they represent. He says that the cyclomatic
complexity number corresponds to the number o f test paths, and these in turn
correspond to the basic paths derived from the control flow graph. From this
information, the test cases for the program can be generated. For example, a
program with a complexity o f six would mean there are six test paths for the
program. Each test path is then identified, by reference to the control flow graph.
Finally, the test conditions for these test paths are written, from which the test data

can be generated to satisfy these conditions.

Ward, [Ward89], claims that the test-case generation capability o f the McCabe
methodology has been very useful, in the Waltham Division o f Hewlett Packard, in
establishing rigorous module testing procedures. He says the cyclomatic

complexity values have been used as an indicator o f which modules should be
subjected to the most testing by the test group. The most extensive testing is

performed on modules with abnormally high complexity values.

Page 81

c) Musa's Software Reliability Measurement

Software reliability measurement is a statistical process to provide quantitative
guidance on the reliability o f a system with respect to execution time. John Musa
uses execution time as the basic dimension o f reliability measurement because it
accurately reflects software stress:

A piece o f software that is never executed never fails
[Musa89],

Software failure occurrence is modelled by a Poisson process - a Poisson process
can be characterised by its expected value function. In software reliability
measurement, this is the cumulative number o f failures expected to occur by the

time the software has experienced a certain amount o f execution time.

Musa describes three models, depending on whether or not the faults found are
fixed, and the impact that fixing the faults has on the software. The first model
{static execution-time model) is for software that does not change, eg firmware. In

this model, the likelihood of failure as execution time increases is constant, since
the same bug can reoccur. The second model (basic execution-time model) is for
software where faults are being corrected when they are found, and assumes that

all faults are equally likely to cause failures. The third model {logarithmic Poisson
execution-time model) is similar to the second in that faults are corrected, but

assumes that some faults are more likely to cause failures than others, and by fixing
these, there is an exponential improvement in the number of failures w.r.t.

execution time.

The variables used in the functions are t , which represents execution time, and n(x)
which represents the cumulative number o f failures. The failure intensity function,

which is a measure o f the instantaneous rate of failure, is denoted by X(x).

Musa's models help determine when to stop testing. The method is quite simple to

follow - select test cases; record, at least approximately, the amount of execution
time between failures, and continue until the required failure-intensity level has

been met to the desired level o f confidence. The quality of the software can be
quantified in statistical terms, ie. the probability o f 1,000 CPU hours of failure-free

operation in a probabilistic environment can be .stated.

Page 82

T h e s t a t i c e x e c u t i o n - t i m e m o d e l

In this model, the software is not changing as defects are found. Therefore, the

number o f defects increases linearly with time.

fi(x) = Xt, where X is a constant.

and, since the software is unchanged after defects are reported, the likelihood of a

failure occurring remains constant.
X(x) = X

Mr) X

Page 83

BASIC ¡iXHC UTION- TIME MODEL

In the second model, the faults in the software are being fixed, and are equally
likely to cause failures, which means that failure intensity should decrease by the

same amount whenever a correction is made. The function is:

nCO = v0 [1 -exp {- (V vo)CO}]
where:
XQ is the initial software failure intensity at the beginning o f the observation period
v0 is the total number o f failures that will be experienced in an infinite amount of
execution time

and for failure intensity versus execution time:

X (t) = X0 exp [-(V vo)(T)l

Page 84

LOGARITHMIC POISSON EXECUTION-1 'IMF. MODEL

For this model, where the improvement in failure intensity with each correction
declines exponentially as corrections are made,

(i(x) = (1/0) In (A.o0t +1)

and failure intensity is defined as:
>-(t) = X0 / (\ O0T +1)

Page 85

The required failure-intensity objective should be the optimal figure that minimises
the overall life-cycle cost o f failure. A very low failure-intensity level (high quality)
will have high software development costs, whereas one that is too high (low
quality) will have high maintenance costs. To select a failure-intensity objective,
select the lowest total cost, and drop a vertical line to the x-axis, where the line
crosses the x-axis is the optimum failure intensity level.

Selecting a failure-intensity objective

d) Using defect rates to predict product stability

Knowing when the product is stable can be a difficult task. James Walsh,

[Walsh93] says that one o f the great mysteries o f any software development
project is how many bugs are left in the program - the number of bugs found to
date on a project is simple to obtain from bug reporting records, but estimating the

number of bugs remaining in the product is a much more difficult number to

quantify.

So how can defect densities be used to determine when the product is ready to

ship? One method could be to divide the number o f defects fixed by the expected

number of defects in the module. An answer near to one indicates a stable system.

Page 86

A more precise method involves using Musa's basic model, but graphing defects
per unit time against the total number o f defects found. From this, the total
number o f defects in the program can be predicted, and therefore the number of
defects remaining to be found. This model suggests that if a straight line is drawn
through the curve describing the decline in defect rate, this line will intercept the x-
axis at a point corresponding to the total number o f defects in the program (ie, the

slope of the line = Initial rate/Total defects). In the chart below, the initial defect
discovery rate is on the left-hand-side, and the total number o f defects occurs

where the line crosses the X-axis.

9ope = Initia I rate/Tota I defects

James Walsh, [Walsh93], uses Musa's model to measure the defect discovery rate

(number o f new defects found divided by the amount o f testing time) and its rate of
change, in order to predict the total number o f bugs in a project he worked on,
known as the Rational Rose project. He found that there are three patterns within
the defect discovery rate curve, corresponding to three product phases -
integration, alpha test, and beta test. The curve has a leading edge, where the

discovery rate is rising, a plateau where the discovery rate is constant, and trailing

edge where the discovery rate rapidly declines.

The defect discovery rate is initially low, as there are likely to be several serious

crashing bugs present during the integration phase, preventing some of the
underlying system to be tested until these bugs are fixed. The plateau during alpha

testing is due to the rate at which the bugs can be found and reported by the test
team - the breadth o f the plateau, rather than its height, gives an indication of how

buggy the software is. The sharp decline in the defect discovery rate during the
beta test/customer ship phase is due to the extra testing required to find the fewer

remaining bugs in the product.

Page 87

Defect discovery rate as a function of cumulative defects

Defects per
KSec CPU time

Cumulative defects

By graphing the defect discovery rates over the project life-cylce, against the
cumulative number o f defects discovered, the number o f defects remaining can be

inferred.

e) Distribution of Active defects over time

The software reliability metrics above are very useful for determining the number
of bugs in the product and when to stop testing. However, these metrics take
some effort to implement, and execution time, which is the basis for the metrics,
can be difficult and cumbersome to measure. A quick and efficient way to start
measuring defects to help determine the stability o f the product is to measure
active defects against the cumulative defects reported. The length of time a defect
remains active is also a good indicator o f quality (and o f developer productivity).
This is also known as the 'age' o f the defects. As the release date approaches, the
number o f new bugs found should show a decreasing trend, whilst the number of
Active, ie open, bug reports should diminish towards zero (ie the 'total bugs' trend
upwards should slow down dramatically, and the 'active bugs' trend downwards

should increase).

In a process improvement environment, the number o f bugs reported in the next
version should decrease, and the number o f active bugs should always remain low,

with a shorter average 'age' of bug.

Total vs. Active bugs

350
300I/)

§• 250
t 200o
S 150
| 100
z 50-

0
1 2 3 4 5 6

Time

/IT]

0

0 Defect Severity
Another simple measure is to measure defect severity over time. A severity 1
defect involves a system crash or serious data loss. Severity 2 represents major
loss o f functionality. Severity 3 defects are minor functionality problems. Severity
4 defects represent trivial errors or cosmetic defects.

As the release date approaches, the severity distribution should move from
predominantly severity 1 and 2 bugs reported, to predominantly severity 3 and 4
bugs. Also, from one version of a product to the next, the number o f severity 1
and 2 bugs should decrease, assuming one o f the process improvement goals is to
say, decrease the number of severity 1 and 2 bugs found by 20%.

The following chart shows the relative percentage o f each bug severity at each time
period throughout the test phase. This chart could also be displayed in absolute

numbers, rather than as a percentage.

Defect Severity distribution over time

100%
90%
80%
70%
60%
50%
40%
30%
20%

10%
0%

1 2 3 4 5 6 7
Time periods

■ Severity 4
■ Severity 3
CD Severity 2
U Severity 1

Page 90

5.3 Defect Resolutions

The following chart shows bug resolution per module. The interpretation of the
categories is: Fixed means that the program was altered to fix the defect. By
design refers to the fact that this is not a defect, but a feature o f the program - it's
supposed to work this way. Postponed refers to those defect that cannot be fixed
in this release, but will be fixed in a maintenance release. These defects are usually
severity 4 (trivial) defects, such as an untidy looking message, which is much too
expensive to fix close to the release date. Not repro refers to a defect that was not
reproducible by the developer to whom it was assigned, in the same build number
as that for which it was reported.

Bug Resolution per Module

□ Fixed

■ By Design

■ Postponed
E3 Not Repro

1 2 3 4 5 6

Page 91

5.4 Pareto analysis

Pareto analysis is a method of organising data to highlight the major factors that
make up the subject being analysed. It is based on the 80-20 rule; 80 percent of
the problems result from 20 percent o f the causes. It can be used for a variety of

defect metrics - where I find it most beneficial, is in analysis o f defect type. This
helps to highlight the 'vital few' areas that must be addressed, as opposed to the
'trivial many'. Pareto analysis o f bug type is used to eliminate the most common

bug type. An alternative chart could be to do a pareto analysis o f bug cause (ie
why the bug was introduced), then to work to eliminate that cause for the next

version o f the product.

To construct a pareto chart:

• Identify defect types to be used
• Categorise the defect data into the selected defect types
• Place the types in decreasing order o f magnitude
• Calculate the percentage o f the total defects for each defect type,
• and the cumulative percentages (starting with the highest percentage)

• Draw the bar graph, so that:

The left y-axis represents the count of actual data
The right y-axis represents the percentage o f total defects
The bars represent the number o f defects
The line represents the cumulative percentage

Pareto Analysis o f D efectType

0)>*-0)
X)

o
Z

90
80
70
60
50
40
30
20
10
0

/

100%
90%
80%
70% £
60% g
50% S2 z> E30% 3
40%

o
20%
10%
0%

Type 1 Type2 Type3 Type4 Type5 Type6

Page 92

5.5 Measures/Metrics after project completion

The project post-mortem is where a transfer of learning takes place. It is where
the problems and issues of the project are highlighted, so that they can be
eliminated, helping to ensure the same problems and errors do not re-occur in the
next project. End-of project metrics use the same categories as described for in-

progress measures. Quality metrics are probably the most important, and easiest to
obtain, measures for the end-of-project analysis. The highest-level post-release
quality metric is the number o f re-releases and maintenance releases during the
productive lifetime of the product.

If someone is watching their weight, they are advised to weigh themselves at the
same time of day each time, and preferably no more often than once a week.
Similarly, it is easiest to compare projects using post mortem data, in order for
objective comparisons across projects and levels o f improvement against the
previous project to be accurately assessed. The project post mortem provides the

real view o f process improvement, and also provides the data as a baseline from
which further improvements will be sought.

Rather than having time as the x-axis, post-project measures are a static
representation of the project in its entirety, and will normally have the values o f the
measurement category itself, or each module, as the X-axis. The following graph

shows the relative severity of the bugs found in each of four modules o f a product.

D efect severity per module

3
2.5
2

Density per
KLOC 15

1

0.5
0

2 3 - 4

Defect Severity

□ Module 1

■ Module 2

■ Module 3

E Module 4

Page 93

The defect count does not diminish to zero once the product has been released. It
goes into another phase o f testing, with the customers reporting bugs as they use
the system. Post- release Defect Density (no. bugs per KLOC), shows the number
of defects found by the customer(s) after release, and can be shown on a graph,
with pre-release defect density, as shown below:

Defect Density per Module

oo

Module 1 Module 2 Module 3 M odu le 4

I | Pre-release

B Po st-re le a s

Page 94

5.6 Causal Analysis

Many companies use the defect metrics above to determine error-prone modules or
process stages. IBM have gone a step further, as described in [Jones85], They

take full advantage of their data by augmenting these metrics with an in-depth
study o f the errors themselves and what causes them. Once they have evaluated
the root cause of each error, they put plans in place to remove these causes. This
process is referred to as Causal Analysis, which is centred on three concepts:

• Programmers should evaluate their own errors

• Causal analysis should be part of the process
• Feedback should be part o f the process

To enable implementation o f the above three concepts, the project team should
hold causal analysis sessions at the exit step o f each process stage. An action team
should also be set up, to ensure management and implementation o f the suggested
improvements. The format o f a causal analysis session, using the defect data from

the defect database, would be as follows:

1. Compare defect results against acceptable quality standards.
2. Evaluate all defects - i.e. read through, discuss the defect, its category and the

cause, ensuring all team members understand why the error occurred and what
the root cause was. Error causes are likely to fall into the following broad

categories:
♦ Communications (breakdown of communications within the team, from the

customer, across functions, etc.)
. Education (can be further subdivided into misunderstanding of a function,

lack o f tools knowledge/training, misunderstanding of the development

process, lack o f specific technical knowledge)
« Oversight (where everything is not considered, eg. an error condition is

missed)
♦ Transcription (where the Programmer knows and understands fully what to

do, but for some reason just makes a mistake, eg types in the wrong label)
3. Create an action list of error prevention actions to be taken, by whom and the

date for completion. This list is generated by asking how could the error have
been avoided? and what corrective actions are recommended?

4. For common errors, create a 'common error list', to be used at each project

start-up, and which can be accessed by project teams throughout each project.

Page 95

6. CASE STUDY: IMPLEMENTING METRICS

The above twelve steps were undertaken in my case study - a Software
Localisation environment o f just over 400 employees, in which PC software
packages are 'localised' into up to 13 different languages. Localisation involves
adapting the software and documentation for a particular local market, and
includes the translation o f the user interface, changing national language support
settings (date, time, currency formats, etc.) and adapting examples to fit in with the
different cultures, eg. a blueberry muffin company would be a great example
company to use for a US-bound product, but would need to be changed to, say, an
example o f a pasta company for Italy, and a car manufacturer for Germany.

A cross-departmental metrics team was set up to introduce a set of measures that
would firstly determine the current status of the localisation process, and which
could subsequently be used to support process improvement efforts. The set of
measures would be used to identify areas for improvement, and would then be used
to demonstrate and quantify improvement for the next product version. The

metrics themselves only provide information, and process improvement efforts are
a different entity, which should have a positive effect on the measures that are
recorded. A comprehensive set o f measures covering all aspects o f the localisation

process was required, so that a full picture from planning to release could be
obtained, including the costs, and to provide the ability to identify when things start
to go wrong so that counter-measures can be applied as early as possible. At the
time the team was set up, the aim was to get measuring all major activities as soon

as possible, with a time span o f six months seen as the life o f the metrics
implementation project. The metrics decided on were presented within the time

period allotted, however because o f the size of the company, it took an additional
six months to get agreement from team leaders and Managers that this is what they
wanted to measure, to make some amendments to the measures, and to implement
measurement as one o f the weekly/monthly activities.

The metrics that were chosen for the localisation process are fairly similar to those
that apply to a straight-forward software development process, although several
cannot be used. Since localisation is performed after much o f the code has been
written, and does not involve changing the code, the specification and code

measures described in section 4.1 are not applicable to a localisation environment.
This chapter reports on each o f the 12 steps explaining how each step went, and

how the metrics were used, in the case study.

i'

- Page 96

6.1 - Map the software development process

Several versions of a process map already existed, from the efforts of the Software
Process Improvement team, the Documentation Localisation team, and the
Methods Group in the US parent company. Therefore, the Metrics team did not
have to draw a process flowchart from scratch. Post-It notes were stuck to the
wall, which also helped eliminate some of the steps that had been identified in
previous process maps. The team kept to a fairly high-level view of the process.
Looking at the Capability Maturity Model, the company was identified at level 2,
although a few projects were at levels 1 or 3.

Because of confidentiality issues, the full localisation flowchart cannot be
reproduced here. However, a high level view of the localisation of a Computer

Based Training (CBT) module is shown:

O f importance to the Metrics team were the individual processes within the overall
localisation process, and identification o f customer/supplier interactions where files

and information are exchanged (so-called hand-offs). Measurement at hand-off

stages helps in schedule measurement and quality measurement.

Page 97

At the very highest level, the processes identified were the software process and
the documentation process. The Computer Based Training and Help modules are
considered as on-line documentation, and follow a hybrid process between
documentation and software. They are in here as following the software process,
although they are normally regarded as following the documentation process with a
testing phase added. The main reason for including online documentation with the
software process here is that the Quality metrics described for software are equally

applicable to the help and Computer Based Training modules.

Software Description
Planning/preparation involves preparing localisation and test plans; setting up the

localisation compile kit; extracting files and strings to be

localised, preparing schedules.

Localisation of the main program; the helpfiles; the Computer Based
Training program; the Setup program, and any other addins.

Testing of all components that have been localised and recompiled.

Bug Fixing of all bugs found during testing.

Releasing of disks to manufacturing for mass duplication.

The major handoffs identified were from the US to Ireland at the planning/setup
phase, from Localisation to Testing and from Testing to Manufacturing.

Documentation Description
Planning/preparation vendor selection; preparing documentation for translation;

preparing schedules.

Translation of the documentation by the vendors

Formatting of the translated documentation

Art Preparation taking screendumps o f the localised software, and placing

into the translated documentation

Review o f the documentation - translation, formatting and artwork

Release of film to the printing Vendor via Manufacturing.

The major handoffs were from the US to Ireland, from the Translation Vendor to

User Education, and from User Education to Printing.

6.2: Define the Corporate Improvement Goal

The long-term qualitative goal defined in [Metkit92a] was adopted, which also
states that this goal should be the goal of any company, no matter what their

business is, which makes it a very general goal, needing further definition:

Continuous improvement of all processes which leads to
better use o f our resources, improved efficiency o f our processes,

improved productivity of our project teams and
improved quality of our products.______________

In further discussions, it was decided that the primary goal was to produce
localised software products that meet the users' expectations, and that do not
contain any bugs that were introduced as a result o f the localisation process. It
was also discussed that the users' perception o f the product's value depends on
when it is available to them (ie how soon after the US version of the product has

released). The four main quality goals are to consistently produce localised

products which:

♦ meet customer requirements
. do not contain additional bugs that impact the users
♦ are localised within reasonable cost constraints
. are localised efficiently and timely

The only way to ensure continued user satisfaction is to continually improve the
process so that the company produces localised products o f the required quality
(zero localisation bugs which impact functionality in any way), within the shortest
timeframe after the US version has released, and at a reasonable cost. In order to
improve the areas o f the process where 20% o f the improvement effort will

produce 80% of the gains, specific measures must be introduced throughout the

process.

The ultimate aim is to increase the number o f localised versions that can be

released within two months o f the release date o f the English product, by
streamlining the process in terms o f quality, time and costs. There are several

goals which quantify the number o f products that should be released within 30 days
and within 60 days o f the English language- product, with specific timeframes

specified in each of these goals.

Page 99

6.3: Conduct an Employee and a Customer survey

These surveys were conducted to get a general impression from both the
employees and the sales subsidiaries o f their perceptions o f the current practices.
The survey also asked respondents how important they think each of the elements
are to the future success o f the company. The employee surveys were collated and
put in a spreadsheet, from where a summary was produced in order of priority (as
described in section 3.3.2) and an analysis o f what the results mean was written
for each statement. A difference of more than 1.0 between current practices and
importance shows that these areas need to be worked on. The data was collated
for each job function, and for each Department (Product Unit) as a whole. The
following shows an example o f the type o f information collated and reported for a
Product Unit.

2.
3.

Resource planning Diff: 1.4

Metrics Diff: 1.25

Realistic Schedules Diff: 1.2
Defect prevention Diff: 1.1

5. Project Post Mortems Diff: 0.95
6. Standard methods/procedures DifF: 0.9
7. Quality planning Diff: 0.9

8. Timely process training Diff: 0.8

9. Project planning Diff: 0.8

10. Schedules are updated regularly Diff: 0.75

11. Subsidiary Evaluations Diff: 0.7
12. Timely tools training Diff: 0.7
13. Subsidiary involvement Diff: 0.65

14. Risk Assessment Diff: 0.4
15. Standard tools Diff: 0.3

Survey results such as these demonstrate the need for improvement in resource
planning and scheduling, acknowledges that metrics really need to be implemented,

and shows that defect prevention is an area that requires some work. Therefore,

Page 100

with results like these, metrics efforts should be focussed on quality (ie defect
metrics), effort, and scheduling.

The 'customer' survey is a different type o f survey, in that it is ongoing and not a
once-off survey. It gives a measure o f the quality o f each localised product. The
survey consists of a product section, and a process section, and is filled out by each
o f the subsidiaries about three months after the relevant product is released.

There are two levels o f rating - a top level, which gives a rating of 1 to 5 per
product area, and a detailed level, giving a rating o f ¡(strongly disagree) to 4
(strongly agree) against a list o f statements. The top-level table is reproduced
here. Refer to Appendix B for a sample o f the full subsidiary evaluation form..

5 - E X C E LL EN T
4 - G O O D
3 - SA TISFA C TO R Y
2 - IM P R O V E M E N T NEED ED
1 - U N A C C EPTA B LE

Evaluation per IVoduet Area Quality Rating
Software

Packaging

Help

Printed Documentation

CBT

Timeliness

Both the employee and subsidiary surveys ask the respondents for their subjective
opinions. However, a collection o f these subjective opinions still gives an objective

measure. By repeating the surveys in six months' or a year's time, the
improvement, if any, in each o f these areas will be quantified. The internal project
metrics system should also provide a meaningful objective measure of the main

areas covered in each o f the surveys.

Please rate the quality of the product below by area
as follows:

Page 101

6.4: Define applicable metrics categories

a) Size m e tr ic s:

Since the traditional Lines Of Code measures are not applicable in a localisation
environment, an alternative measure was sought that would allow us to normalise
quality indicators and to compute productivity measures, across several projects,
for comparison purposes.

Traditionally, there had been attempts at calculating project complexity for
planning and scheduling purposes. The complexity factor was a rating from 1 to
five, where 1 was easy to localise, and 5 was very difficult to localise. This rating
was derived by a combination o f the size o f the product, the technical difficulty to
localise it, whether it was a new product or an update, its known localisability
problems, and which languages it was to be localised into (eg Eastern European
languages had a higher complexity due to the different character set used). These
complexity numbers were too difficult to calculate, still fairly subjective, and

generally only useful as a guideline for strategic planning.

The measure first suggested for size was the number o f translatable strings in a
product. Some strings have only one word which is easy to translate, whilst

others are a full line o f text, which take longer, but it was reckoned that overall it
would work out fairly evenly across projects. After some further thought, it was
decided that the number o f translated words might be a better estimate o f size to
start with. Both words and strings were used for the first metrics, and then

evaluated to see which one gives more accurate estimations. At the time of

deciding to use these measures, there was no quick way to count words or strings,
so a simple tool was written that counts both words and strings to be localised
from a directory o f files. This was a good starting point. A complexity rating could
be introduced at a later stage to take into account the number of dialog boxes,
menus, hotkeys, etc. which have to be localised as well as the words, ie to count

the number o f words, and add to this, the number o f menus and dialogs which have
been multiplied by a weighting factor, as localising menus and dialog boxes
involves more effort than just translating words^ In mathematical notion, this

would be:

Size = W + Mx + Dy

Where: W= Words; M= Menus; D=Dialog Boxes;
x, y = weighting factors

Page 102

For help files, the measure o f size was words o f translation, which can also be
converted into approximate numbers o f pages and screens. Complexity also comes
into play with help files - the number of bitmaps to be localised adds to the
complexity. With the help, measures chosen were similar to those for the software

- start with words and pages as the unit o f measure, and perhaps move on to using
some form of complexity weighting factor at a later phase in the improvement

process.

For Computer Based Training (CBT) modules, ie tutorials, the number o f screens
was used as the size to start with, but this changed to number of words, to fit in
with the way cost was defined. It is difficult to compare CBTs across projects, as
some are much more detailed and more technically complex to localise than others,
and they often use entirely different sets of tools. Without a sensible complexity
rating system, comparison of some CBT measures across projects are difficult, and
straight comparisons o f effort and productivity across different departments cannot
be made.

The aim in defining size measures is to use them as the basis for all estimations and

calculations throughout the process. Thus, the cost estimates, defect density
calculations and productivity rates will all be based on the same sizing information.
Each category o f use, eg pricing, headcount, scheduling, productivity etc. used to

report figures against a slightly different unit o f size, and a full cohesive picture
was difficult to get from each of the pieces o f information. As an example, help
size could be referred to in words, pages, screens, or KBytes. The aim was to

change this, and to encourage standardisation on one size measure for all

categories.

Page 103

B) PRODUCTIVITY

When planning, managers tended to subconsciously apply productivity measures to
estimates. For example, they'd say 'it takes one manweek to format 250 pages of
documentation, therefore this product has 2000 pages, so we'll allow two man-
months'. The testing effort estimation was less scientific, although it always
worked out close to what had been planned - here, they'd say 'it's a big project,

which we haven't localised before, being done in 6 languages, so going from past
experience, let's have a team of 8 people for 8 months'. For the purpose of the
metrics, this was formalised - if process improvements are introduced, then it is
necessary to be able to state the benefits in terms o f increased productivity, within
a reasonable timeframe.

As stated in section 3.4.1 (b), productivity metrics on their own are too simplified -
if one can format 250 pages o f documentation per manweek, then why not put 8
people on 2,000 pages o f documentation for one week? In the testing example, if
6 languages of a large project can be tested and released in 8 months with 8
people, then why not do it in 2 months with 32 people, assuming non-concurrent
testing of the languages? The simple answer for the testing example is that the
testing & bug-fixing cycle cannot be compressed by so much, ie to about 1.5
weeks per language. Also the communication overheads with this number of

people would be quite ridiculous.

Care had to be taken to ensure that everyone involved realised that it was the
project, not the individual, that was being measured. If people think they are about

to be measured, and that these measures will be publicised, there can be some
resistance. Because o f the nature o f the work, which is in localisation teams,

people were informed that the information would be collected and collated for the
team as a whole before being made available to others outside the team. The other
point that was stressed was that the measures were for use primarily by the team
itself. Section 7.1.3 b) contains details o f the tracking system most o f the

departments use to track effort, from which productivity rates can be calculated.

Page 104

c) R e w o r k

There are several causes of rework, due to the number of interactions with other
groups outside of the project team's control, as well as rework due to internal
mistakes. Rework on Documentation was the area that traditionally caused
problems - rework could involve anything from 50% to 100% of the number of
pages originally planned. A lot of rework arises out o f updates from the US
groups, much o f which is grammatical or cosmetic changes to the documentation,
and it is very time-consuming to sort out functional changes from cosmetic
changes, so often all changes will be implemented in each localised version. One
change in the original US version could mean at least nine (sometimes more)
repeats o f the change as it is implemented in each o f the current localised versions.

Rework on the software side is more difficult to define - should bug-fixing time be
included as rework? Can the software rework be measured in the same way as the
documentation rework (ie count the number o f strings rather than pages?). In a
simultaneous-ship environment (ie when the US version and several other versions
are shipped to customers within a few weeks o f eachother), updates can be
expected right up to two weeks before release.

It was decided that rework was one o f the most important factors for the process
improvement efforts, therefore both quantity o f rework and effort spent on rework

should be measured, as a percentage o f the total quantity o f work and project
effort. From a cost perspective, the invoiced cost o f rework from the translation

vendors should also be recorded and reported, to give a full perspective o f the
rework on each project.

Page 105

d) E f f o r t & s c h e d u l e

It was necessary to measure the effort spent on each project, the duration o f the
project, and at any time, know the current status of each major task/activity. This
was achieved through a combination o f effort and schedule measures. In order to
improve the process, where the time is being spent on each part o f each project,
and where the greatest over-runs are w.r.t. the proposed schedule should be
known. It was a general feeling that in the month before release, things become
chaotic, with people generally working 60 to 80 hours each week. In order to
control then improve the situation, both schedule and effort throughout the project
should be measured, and then improvement targets set.

Paul's second law is an appropriate quote:

The sooner you fall behind, the more time you will have to catch up

The effort metrics would also be the basis for keeping track of the internal costs of
the project, and would be linked with manmonths costs for this purpose.

The schedule metrics would tie in with the information required by the project
managers to manage the product schedules.

To measure effort, it was decided to introduce a time-tracking system, where each
person would enter his/her time, in days, against a list o f activities/tasks. This

would be rolled up each month to get the total time worked on each area o f the

project.

Schedule tracking was based on a project-management system as a starting point.
The work breakdown structure was based on the current localisation process, and
standard milestones were set for each project. The Program Managers could then

track the actual schedule versus the planned schedule, and the percentage
completion o f each task. See section 7.1.2 c) for further detail.

Page 106

e) Q u a l it y

The highest level are the release metrics - ie how many products were released?
What percentage o f products met their published delta? What percentage of
products were re-released due to a process error? How many disks were released
for duplication, and how many were re-released? These quantities ideally should

all be zero.

The other level is the bug recording and analysis of bug type distribution. The

following questions needed to be answered - what areas had the most bugs? What
was the distribution o f each category of bug? Did the bug-fixes require code
changes or changes to the localised strings? What was the ratio o f bugs found to
time spent testing?

The measures implemented include defect density, defect discovery rate, bug type
analysis, and bug cause analysis. Quality measures are the most important
measures for identifying areas that require improvement. The benefits o f new tools
or methods for localisation are discussed in terms of impact on the product quality.
For example, is a certain type o f bug eliminated by using this tool/method? is the

number o f bugs reduced? is less testing time required as a result?

Section 7.1.3 b) explains each o f the Quality Metrics that have been adapted for
and adopted in the localisation environment, and explains their usefulness in

evaluating the quality o f products, and in identifying areas for improvement.

The quality metrics chosen were at two levels.

6.5: Break corporate goal into a specific goal fo r each category

The tangible, measurable overall goal is to be able to consistently release 20
products, with zero localisation errors, within 60 days o f the English version,

within a 3-year timeframe. Each sub-goal must keep this overall goal in mind.

There are a set of sub-goals in each metrics category defined, some of which have
been further defined as a result of the 'measure current process and products' step
(section 6.9). A general outline o f some improvement goals is given here, rather
than a full description o f each, for confidentiality reasons:

To reduce the amount of testing required for each project by 50% within a
year, by automation and risk assessment methods, in combination with

improved localisation methods and tools.

To reduce the time spent bug-fixing, by dramatically reducing the number

o f errors introduced during the localisation process

To reduce hotkey errors to zero on windows projects from the next version

onwards

The above are examples o f goals on which some progress has been made, since

the achievements can now be expressed in terms o f tangible numbers.

Page 108

6.6: Define specific measures

Chapter 7 defines each measure that was implemented for each process stage. This
is the most time-consuming and difficult area o f the entire metrics implementation
process. A quote from Albert Einstein is appropriate here:

"Not everything that counts can be counted, and not
everything that can be counted counts"

A variety o f different measures have been tried, and as it is an evolutionary
process, a company will not get it completely right at the first attempt. The aim is
to take a set to start with, and then further amend this set to suit the organisational
needs. The set to start with should cover the areas that require most urgent
improvement. The principles o f continuous process improvement can also be
applied to the implementation o f a metrics system.

6.7: Develop data sheets

Before any training can take place, data sheets need to be set up for the collection
o f the measures. These should contain all o f the required elements, yet not be too
complex to fill in. The purpose o f these was to provide a temporary repository for
the information over a three-month period, until the measures could be firmed up a

bit more, and the collection o f data and the reporting o f the measures/metrics on a
monthly basis could be automated. The data sheets were split into separate sheets

for each major process area. This led to a total o f 4 sheets, which were amended
to suit each project being measured. The following is a brief explanation of what
each of the four sheets contains. A detailed explanation o f what each sheet

contains is in Appendix F.

Release: Containing all software and documentation release information (product,

disk and film releases and re-releases), as well as the current product delta

Software Localisation: Containing all effort, productivity and schedule measures

for the localisation o f the software.

Page 109

Software Testing: The testing and bug-fixing effort is contained here, along with

all bug information (categories, types, and density).

Documentation: This sheet contains all information for the documentation

localisation process. This includes effort, productivity and rework measures for
the formatting, art preparation and documentation review stages o f the process.

These sheets were designed as spreadsheets, which each team leader could fill in
for their team at the end o f each month. Each project would have its own set of
four spreadsheets for each month. The granularity suggested was to record time in
mandays, and in order to get a cumulative figure, ie total-to-date, the spreadsheets
for each month could be consolidated together, and the corresponding cell in each

month's spreadsheet summed together.

The four spreadsheets were provided to each department, and they could arrange
their own directory structure and metrics collection/reporting plan.

6.8: Provide necessary training

W orkshops

To get full involvement and to ensure that everyone had the same interpretation of

the metrics, workshops were held for those responsible for the collection o f the
metrics. A half-day workshop-type course was developed, and made available on

request. The following paragraphs give a brief outline o f the course content.

Each person got a copy o f the metrics user guide and the data sheets. The session
commenced with a very brief presentation on why metrics are necessary for

process improvement, and the benefits o f measuring for each person in the group

present.

It was stressed that the metrics were for their own use as a team primarily, and it
was not something they had to do primarily for someone else. The information
gathered would be used by those who collected th i metrics to improve the projects
that they themselves work on. A second reason for the metrics system is to

demonstrate process improvements to superiors in the US. Metrics quantify the

benefits o f any process changes.

Page 110

After the presentation, the group in attendance was split into two groups, and each
of the four data sheets was studied in detail, with one group acting out the role of
the unconvinced, who didn't want the extra work involved. They were to find the
holes in the system, ie act as though they were opposed to the system. The other

group had to defend the proposed measures, and sell the benefits to the cynics.

The result of the workshops was that those who attended felt they had a say in the
system, and some changes were made to the definitions o f measures as a result of
the workshops.

Users guide
The users guide was an attempt at matching the data sheets to the metrics to be
collected, and the benefits that each measure would give. It starts by stating the
need for metrics and the reasons behind the introduction o f a company-wide
system. It briefly explains each metrics category, then goes into a detailed table
covering each measure. The benefits/trends column in Appendix F explains the
usefulness o f each of the measures.

Page 111

6.9: Measure current process and products

Before fiiture improvement goals could be set, the current processes had to be
measured. This involved getting estimates of measures for projects just completed.
It was decided that 80% accuracy would be good enough, for the purpose of

identifying trends, as further accuracy would take much longer to collect. The
measures of interest were primarily productivity, rework and quality measures.

Productivity and rework measures were calculated restrospectively for projects
that had just completed. Going back to the previous version of every project was
not feasible, as the data was not available for many o f these projects. The data
obtained was used to form the baseline, so that it was known how long it took to
localise 200 dialog boxes in project x, and the percentage o f rework on project y.
From there, the effort, rework and productivity measures for each project are
compared against the measures obtained for the previous version in order to

quantify improvements.

Regarding quality measures, bugs have always been reported in a database, as
detailed in section 5.1, so this information was not too difficult to collect. Defect

densities were calculated for the last version o f each product, by counting the
number o f words, diving this number into the number o f localisation bugs reported,

and multiplying by 1,000. The bug analysis was a bit more difficult to extract.
Unfortunately, the fields that had been used to report the bugs were not what
needed to be measured, ie the types were not defined the same for each buglist. It
took two full months o f work to extract the required category information for 50

bug databases, so that clear comparisons could be made. The data was represented

on pareto charts which show the number o f bugs in each category in decreasing
order, with the cumulative percentage also displayed. The information it provided
was very useful, and gave the improvement process a good kickstart, by identifying

the areas where most bugs were clustered.

As an example, it was found that there were a lot of duplicate hotkey errors, which
could easily be eliminated by developing an automated hotkey checker. On
completion o f translation o f the extracted text files, the localisers themselves now

run a hotkey checker on the product, and correct any errors they themselves find,

before stating localisation has been completed. First measurements on some
projects showed only a 50% improvement, but later projects showed the number of

hotkey errors down to almost zero.

Page 112

Another area found to be very high was untranslated text in error messages, so
now all error messages are extracted from the localised product, and the list is
browsed through looking for any English text. Again, this check is done before the
Localiser states the localisation o f each section is complete. As a result, the

number of bugs reported against untranslated text has diminished.

If the current process and products had not been measured, to obtain a baseline

measure from which the company could set out to improve, managers would not
be in a position to claim that they have improved the process in the last year.
They would know some improvements had been made, but this is not much use if
the improvement cannot be demonstrated in quantifiable terms.

After this exercise, the bug database keywords were subsequently redefined, so
that this information, and several other categories o f data could be extracted by
writing a very simple query, which would report the required numbers within a
matter o f seconds. Section 7.1.3 b) explains the keywords standardised on.

The following chart shows an example pareto chart for a localised product. It is a
typical example o f a product which was not developed for global markets - ie there
are many international functionality bugs, and truncated text problems.

Pareto Analysis of defect type

funct Text ns. Box y bugs

Page 113

6.10: Set improvement targets

Once where the process is now was identified, improvement targets in each area
could be set. These tied in with the goals set earlier (see section 6.5). The
improvement targets were set per project, as the data from each project showed
variations in results, and some projects were able to improve in certain areas
quicker than others, due to different start dates, methods, tools, experience levels
o f staff, etc. Some example improvement targets are reproduced here, although
these targets have not yet been reached.

1. Reduce testing effort (manmonths) on version B of product X to 50 % of the
testing effort on version A through a combination o f risk assessment, reduced
functionality testing and increased automation o f localisation testing.

2. Reduce the bug density on version B o f product X to under y defects per
thousand words, as compared with z defects per thousand words in version A.

3. Increase the bug per manmonth ratio on version B o f product X by 30% as

compared with the ratio achieved on version A.

And a general improvement target is to find a higher percentage of the bugs earlier
in the process. It's difficult to express in terms o f numbers, but can easily be
observed by charting the number o f bugs found each week, and noting the change

to the shape/slope o f the chart. (See section 7.1.3 b).

One of the product teams has started working towards goal no. 1 above. The
current test plan estimates a 50% reduction in the number o f testing manmonths

compared with the previous version o f the product. This was made possible by
analysing each o f the metrics for the previous product in detail, and determining

where improvements could be made in each area. Improvements include further

automation of localisation testing; reducing the amount o f core functionality
testing, based on the functionality bugs found for the previous version measured

against the time spent testing core functionality; proper risk assessment of each

product area, and planning test time accordingly, and automating the testing for the

most common bug types found in the previous version. The combination of these
improvements should show a testing time reduction, fewer test passes required,

bugs found earlier in the process, etc. ie goal no. 3 above should also be satisfied.

Page 114

6.11: Automate the system

The metrics system started off as a manual system, as some changes were expected
to be made after the first few months. Automation involves setting up a database
system for collecting and reporting on the measures. There are really three distinct

areas involved in the system.

Firstly, there is a project scheduling system, which is based upon a standard work-
breakdown structure (from the process mapping activities). Direct involvement
with this initiative was minimal, except for attending one o f the meetings to give an
overview of schedule metrics. More details o f this system are provided, under
scheduling metrics, in Section 7.1.2 c).

Secondly, there is an effort-tracking system, which is based on a system developed

by a tester on one o f the test teams. The format o f the system is fairly similar to a
system that was in operation about two years ago, but which was too cumbersome
to use, and had to be completed by Managers only, which took up a lot of
management time unnecessarily. This system was further defined using the work
of the metrics team, and the middle managers in the company. The necessary

amendments were made to enable it to be used company-wide. A further
description can be found under effort metrics in section 7.1.2 a). One of the

departments has continued to use the original spreadsheets, and imports the data
on a monthly basis to a database, from where reports are generated.

Thirdly, there is a simple database report system to extract the bug analysis data

from any bug database, in a matter o f seconds:

F o rm , fy r m l

l l i i i i l l i i lC\V. y; \\ % i

Tc*«f Butfi Rtpotted

1 2 : <%•<
1RES0URCE FIX 11
JUS ORIGIN 1 | d

SlTEXt TKA/iSL ■ ■ ■ 1■ ■ ■ ■ M M 1 3
2 _

SjMlSSiNG TExf 1
iSHOHtY
fijGRAtt<lC >
UFUMCllUN i
SICOSMUIC I XT *» 1

Page 115

7: PRESENTATION OF LOCALISATION METRICS

Paragraph 4 describes measures in terms of the categories they belonged to, rather
than per process stage, as different process stages may use the same measure
which makes it difficult to describe the appropriate measures. However, when
defining specific measures to be implemented in a company, this should be done by
process stage, and choosing the appropriate measures from chapters 4 and 5. The
measures are reported here by process stage, and cross-referenced to metrics
described earlier, where appropriate, rather than being repeated in several places.

As already stated, in the introduction to Chapter 6, the localisation process
assumes the coding of the product has already been completed, and is primarily
concerned with changing the user interface, to look as if the product was
developed for each specific country in which it is sold. The project development
phases in a localisation environment are different to the traditional phases, although

there is a strong similarity.

For this reason, the traditional size and effort metrics, eg. Halstead's Software
Complexity Measure, McCabe's Cyclomatic Complexity Metric and Boehm's

Constructive COst MOdel were not used in the case study.

The measures described here are an initial set o f measures, which were introduced
in the company. They were introduced in order to control the process, monitor the
costs, and then to provide information as to areas that needed improvement. Some
projects/departments have implemented more o f the measures than others, as the
company is too large (400+), and the projects too diverse (home products to

advanced network systems) to implement all measures at the one time. Typically,
measurement is introduced as new projects start, and projects that were already in

progress when metrics were introduced just report end-of-project measures, as in-
process measures would not have been worthwhile to introduce half-way through.

Appendix F gives a full explanation o f each o f the measures/metrics originally
suggested. Appendix H shows the minimum set o f measures currently gathered, 6

months later.

Page 116

The phases identified in section 6.1 were:

Software Description
Planning/preparation involves preparing localisation and test plans; setting up the

localisation compile kit; extracting files and strings to be
localised, preparing schedules.

Localisation of the main program; the helpfiles; the Computer Based
Training program; the Setup program, and any other addins.

Testing of all components that have been localised and recompiled.

Bug Fixing of all bugs found during testing.

Releasing of disks to manufacturing for mass duplication

Documentation Description
Planning/preparation vendor selection; preparing documentation for translation;

preparing schedules.

Translation of the documentation by the vendors

Formatting o f the translated documentation

Art Preparation taking screendumps o f the localised software, and placing
into the translated documentation

Review o f the documentation - translation, formatt ing and artwork

Release of film to the printing Vendor via Manufacturing.

Taking each phase as above, the applicable metrics that were selected in each case

are described in detail in the following sections.

Page 117

7.1 SOFTWARE

7.1.1 Planning

The highest level planning metric is the measure o f the time difference between the
release o f the US product and the release o f the localised product. This number is
expressed in the number o f elapsed calendar days, referred to as the 'delta'. A delta
o f zero for the major languages o f all main products is the ideal situation. Rather
than stating a specific release date at the start o f the localisation effort, the delta is
published. This allows for any changes in the US release date, which has a knock-
on effect on the release date for the localised versions, (i.e. the release date may
change due to circumstances outside the team's control, but the delta must be met).

Release Goals are set using the 'delta' as the measurement. A goal may be to
release the first five language versions with a delta o f 30 days, the next five with a
delta o f 60 days, and so on, until a required delta has been set for each language.

Measuring the current delta against the published delta tells whether or not the
team is on target. Measuring and reporting the deltas gives the ability to work out
the average delta for each language version o f the products across the Product
Unit or across the company. The sales subsidiary in each country plans its

marketing campaigns around the expected delta for each new product.

Accompanying the delta is the expected release date for each version of the
product (starting with the US product). The release date is given a confidence
factor, which helps the planning o f resources for projects and the planning of

product launch exhibitions. With a confidence factor o f High, (-1/+1 week), it is
fine to plan a marketing campaign, or plan for the people working on the project
to start a new project, the week after the expected release date. Whereas, a
confidence factor o f Low (-0/+4 weeks) gives the likelihood of the expected

release date to slip by up to 4 weeks, so it would be unwise to base important

scheduling decisions on the published release date.

All o f these measures are recorded in a spreadsheet which is a very top-level view
o f the schedule for each project in each o f the Product Units. This spreadsheet is

updated each fortnight, and contains basic information such as the product name,
language, version, project start date, release to manufacturing (current vs.

planned), shipdate (current vs. planned), the delta and the confidence factor.

Page 118

7.1.2 Localisation:

A) . E F F O R T :

The number of manweeks o f effort spent localising each section o f the software is
measured. The software was divided into several elements, including the
localisable strings and dialog boxes in the main program, the Computer Based
Training modules, the helpfiles, and any add-ins included in the product (macros,
sample files, etc.). Effort is recorded at the individual level, in a database. The
database system tracks effort for all functions, and is currently being implemented
company-wide. This database was originally developed by a Tester in one of the
Product Units, and has subsequently been expanded to cater for all other functions.

Page 119

This system has a series o f forms and tables, in which the required information is
entered and stored. After a successful login, the user sees the main menu, where
the desired option can be selected. Different task entry forms will appear,
depending on the function o f the person entering the data. Each functional screen
has its own set o f categories against which to enter time information. There have
been several iterations o f what 'should' be included in the effort tracking system.
Appendix G contains the most recent set o f tasks against which effort is measured.

Both Cumulative and Non-Cumulative Effort distribution can be calculated and

charted, from the reports printed from this system. The time period to use would
be by month, as weekly reporting and charting would take up too much time, and

is not necessary.

Effort tracking is also tied in with cost tracking. The effort recorded in persondays

is multiplied by the average cost for each function, to get the project cost
information, which is reported to the parent company in the US.

Page 120

11). PRODUCTIVITY:

The quantity o f items localised was recorded, ie project size, and divided by the
number o f manweeks o f effort, to get the productivity rates. The number of strings
and dialog boxes localised, the number of CBT screens and the number o f help
pages were counted, and the effort expended on each of these activities. All add­
ins are different, and cannot be quantified, hence one can only measure the time
taken to complete each add-in, and not productivity as such.

These productivity measures are reported at the end o f the project, rather than
throughout the project on a weekly or monthly basis. Frequent monitoring
throughout the project lifecycle would be very useful, and would help identify
potential problems before they occur. However, this is a goal for a future
expanded implementation o f metrics. A good metrics infrastructure should be in

place first.

• Strings translated: The number o f strings translated divided by effort spent by
the Localiser. This gives a ball-park figure o f how long it takes to localise files
o f extracted strings, and will measure the efficiency o f new tools as compared

to a fully manual process. The number of dialog boxes prepared and effort
spent was originally suggested as a separate categoiy to strings translated.
Software Localisers spend most o f their time either translating tokens or sizing
dialog boxes, but it was later decided that it should be considered as all the one

activity, to start with.

• CBT Lessons: The number o f CBT screens localised divided by effort spent.
This shows throughput for the project. Because different development
methodologies are used for CBTs across different projects, straight

productivity rate comparisons are not feasible, but this metric will demonstrate
any major differences in productivity due to the differing tools/methods used.

• Help Pages: The number o f pages o f Help prepared divided by effort spent

• Add-ins: The time taken to localise each add-in. Add-ins cannot be measured

in quantity in the same way as the other elements, but can take up a substantial
amount o f time to complete,, and therefore should be thoroughly planned for.

A productivity measure would be the number and type o f add-in that can be

localised in a manmonth.

Page 121

C). SCHEDULE:

One o f the process improvement teams took the process map, and made it into a
standard work-breakdown structure, which is used as a template for scheduling
localisation projects. This system was developed using Microsoft's project
planning product, MS Project 3.0 for Windows. It consists o f several different

modules - Create a Schedule; Maintain a Schedule; View a Schedule and Print a
Report.

Create a Schedule
This module is used to create a new schedule or to make extensive changes to an
existing schedule. This module uses the template containing the standard work-
breakdown structure, including generic project milestones, from which to build

schedules.

Maintain a Schedule
This module tracks the project as it progresses. Tracking data for all incomplete
tasks can be entered, and the status o f all milestone dates viewed. It will give the
current status o f each task, % complete, etc. as a Gantt chart. This module is the

most useful for the metrics purposes.

View a Schedule
This module allows various views o f the schedule data, with read-only access.
Critical tasks can be viewed, tasks assigned to a particular person, different levels

o f tasks - milestones, top level tasks, all tasks, etc.

Print a Report
This modules has options to print a variety o f reports. Again, most interesting for
the schedule metrics is the Gantt chart showing actual vs. planned completion by
task. Other reports include the PERT network, critical tasks, tasks assigned to a

particular person, milestones, full task list, etc.

At the beginning o f each project, the total expected quantity o f each item is stated,
and as the project progresses, the cumulative effort and amount completed to date
is known. From the % complete figure, and using the productivity metrics, the

remaining tasks can be scheduled effectively.

Page 122

7.1.3 Software Testing

A) . E F F O R T :

This is measured in terms o f mandays per area/task, and the number o f test passes
per area. The areas that are defined include the main executable, the setup
program, the CBT, the helpfiles and the add-ins (such as macros, 3rd party
executables, sample files, etc.) Another area that is measured (primarily in the bug
reporting database) is the time involved in fixing the bugs found. The Resource
Tracking system has already been explained. The following table gives the main
categories used - there were some other categories, such as 'meetings' and 'other',
which are not particularly useful, and will be deleted for future implementations.

Main Exe Add-ins

Project preparation Setup

CBT Wizards

Bug Fixing (Engineering) Help

Cue cards Tools/Research

Note that 'bug-fixing' is listed as a separate phase in the table at the start o f chapter

7, but is included here, as only effort expended on bugfixing is measured, and there

is no need for a separate section to discuss this measure.

B) . Q u a l i t y :

Section 5.1, defect reporting, explains the need for a bug-reporting system, and

briefly describe the fields such a system could contain. It mentions that there are
six keywords, which may be amended by the Test Manager for each project. For

localisation projects, the values contained within four o f these keywords are

standardised for Ireland. The first two keywords, Main Area and Sub Area are
defined by the US Test Manager, and often are known by different titles too. The
other four keywords are described here.

Page 123

Definition of'Type'

The 'type' keyword describes the category o f the reported bug. There are twelve
categories in total defined for this keyword, o f which the main options are

explained here:

Text Errors
There are two sub-categories o f text bug - cosmetic anomalies, and translation
errors. The cosmetic option covers: missing text; incorrectly displayed text;
incorrect formatting or alignment, and truncated text. Translation errors include
untranslated text, incorrectly translated text, mixed languages, spelling and
punctuation errors.

Dig. Box Errors
This covers any misalignment, missizing or mispositioning errors concerning either

dialog boxes or their components (check boxes, buttons etc.)

Hotkey Errors
These include missing, inconsistent or duplicate hotkeys.

Macro Errors
This option covers macro recording problems, and errors in the supplied sample

macros.

Functional Errors
These are further broken down into sub-categories such as crash/hang bugs,

problems with National Language Support (ie incorrect sort order, date format,

etc.), and product functions that will not work

Help Errors
Many errors found in the help files can be classified under the other 'type' options,
with the exception o f help jump/popup errors, which is another option within the

'type' keyword. Within helpfiles, one should be able to select a topic, and get the

correct topic displayed on the screen, ie it will 'jump' to the topic. A popup is a

small screen accessible from selecting a highlighted word within a topic which

explains the word or phrase.

Page 124

Definition of'Origin'
Origin Values for this keyword are fixed and are comprised of the following:

CODE FIX International bug requiring source code fix.
COMPILE ERR. Bug that occurred due to an error in the compile process.
RESOURCE FIX Localisation bug requiring resource/token file fix.

US ORIGIN Bug that affects the functionality o f the US product.

Definition of 'Fix Time'
This keyword is filled in when the bug has been resolved. It applies to the amount
of time it took to solve and verify a fix. It refers to the time expended on the bug,
rather than the elapsed time. From a metrics point o f view, this keyword is used to
get a profile o f approximately how long it takes to fix each category (or severity)
o f bug, rather than obtaining exact time information. The options under this
keyword are: < 1 hour; 1 - 4 hours; 4 - 8 hours; > 1 day, and > 1 week.

Definition of Keyword 6
The sixth keyword definition is left to the discretion of the test team. Some teams
use it to record the Test Case # which was used to uncover the bug, and some
other teams, working on cross-platform products, use it to record the platform on

which the bug occurs (ie options are Win, Mac, DOS, and All).

TOTAL NUMBER OF BUGS:

This is the total number o f bugs in the bug database on the last day of each month.
This gives an indication o f the quality o f the product, since the fewer bugs the

better. Number o f additional bugs per month should decrease as the shipdate
approaches. The total bugs per language should decrease as the releases proceed.
Improving the localisation process should produce fewer total bugs from one

release to the next.

Page 125

B u g F i n d r a t e

The bug find rate shows the number of new bugs entered into the buglist each
week. A typical chart should show the total number o f bugs start off low, increase

rapidly, form a plateau, then decrease rapidly towards release (see section 5.2 d)).
Functionality bugs will be found first, and the reason for the slow start is that some
functionality bugs must be fixed before parts o f the software can be tested, and this
pattern can also be due to a relatively clean first handoff o f software, with a large,
buggy handoff coming several weeks later. The plateau occurs at the optimum bug
finding/reporting rate. This depends on the number o f people on the team, and the
average time it takes to find and report an obvious bug. The rapid decline towards
the end occurs when the software is relatively defect-free. This chart should be
updated each week by the Test Team, to show progress.

Sarrple Bug Profile by V\feek

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Wfeekto

■ hfelp/CB

I Locéisatìo

D Functionality

The graph above shows the status o f the bug database over a twenty week period,

with the weeks numbered consecutively from 1 to 20. Looking at the graph, it can

be deduced that the software is not yet ready to release - large numbers of
localisation 'user-interface' type bugs are still being found, although the pattern for
functionality bugs shows that the product is functionally stable. Localisation and

help/CBT bugs are easy and very quick to fix relative to functionality bugs, and so
if week 20 of the localisation testing effort has just completed, and week 21 has

started which, say, shows a sharp decline in the number o f new bugs reported, then

the estimate is that the software will be released in about three weeks' time.

Page 126

N u m b e r o f a c t i v e b u g s :

The number o f active bugs, as compared with the total number gives an indication
of how near to release the product is. The age o f active bugs is also an indication
of the stability of the product. This is easy to calculate by subtracting the 'opened
date' from the 'resolved date', and expressing in days. Categorise the bugs
according to the numbers o f bugs of each 'age'.

B u g s p e r m a n m o n t h (m a n d a y) :

The number o f bugs per manmonth (manday) shows the cost o f testing the product
- the higher the number, the better the testing methods. This number on its own
can be a bit misleading, so the total number o f bugs must also be looked at (ie a
really bad quality localisation may also give a high number, but may not necessarily
mean that the testing methods are wonderful). A very good quality product with
few bugs should take less time to test, and fewer test passes, hence the number
should still be high. The bugs per manmonth number is obtained by dividing the
total bugs by the total testing effort (in manmonths/mandays). The total number of
bugs are all those in the database, excluding 'duplicate', 'by design’ and 'not
reproducible' bugs. The total manmonths includes time spent testing the product,
and excludes all testing preparation/familiarisation/training time.

C a t e g o r i s a t i o n o f b u g o r i g i n :

In the localisation o f software, there are four bug categories, the three main
categories are: those found in the original product, and are not as a result o f the
localisation process; those that result from trying to localise the product, but which
may need some source code changes to fix them (ie they also originate with the US
product, but are only an issue with the localised product - eg. not supporting a

country's date format or its sorting order); and those that are introduced during the
localisation process itself - text alignment, untranslated text, duplicate hotkeys.
The fourth category is bugs due to a compile/build error, ie pressing the FI
function key to access the Help no longer works in the current build.

• US bugs: Shows the number o f bugs which also occur in the US version.

• Code Fix: Gives a measure of the localisability bugs remaining in the code.
• Resource fix: Shows the number o f bugs introduced during the localisation

process. Helps focus the improvement efforts on the main causes o f these

errors. The number o f localisation bugs should decrease as the process
improves.

• Compile Error: Shows the bugs due to errors in the compile process

Page 127

B u g D e n s i t y (B u g s p e r KLOC)
To find out the quality o f the localisation effort, bug densities were measured.
Instead of using Lines o f Code, localisable strings and words were used. The
principal is the same. Bug Density is the total number o f bugs in the database
divided by the size o f the product in words, expressed per thousand words. It is
calculated at the end o f the project, and gives a good indicator of the quality o f the
localisation. The total number of bugs includes all localisation bugs and
international functionality bugs, but excludes bugs of US Origin, ie those bugs that
also impede on the functionality o f the US product. Also excluded are duplicate

bugs and those that are resolved as 'by design' or 'not reproducible'.

This measure is great for comparing the quality o f two different products, of totally
different size. It is also excellent for determining the relative quality of product
upgrades, eg is version 3.0 o f a product has a total o f 200 bugs, with 20,000
words, the density is 10 bugs per thousand words. I f version 3.2, 9 months later,

had 60 bugs, then on the surface the quality might seem fine. However version 3.2
might only have involved the localisation o f 4,000 words, which is a defect density
o f 15 bugs per thousand words, which is o f worse quality than version 3.0.

Page 128

b u g S e v e r i t y

This gives a distribution o f bug severities across different modules or by bug type,
as below. Most localisation bugs fall into the severity 3 or severity 4 category,
whereas functionality bugs are more likely to be severity 2 and severity 3, and
occasionally severity 1. This graph can also be depicted in terms o f the % of the

total bugs in each category.

Functionality Localisation Help/CBT

T e s t P a s s e s :

The number o f test passes gives an indication o f the quality o f the software (the
higher the number o f test passes, the poorer the quality o f the localised software.)
In an ideal world, there would be 2 test passes (the first one and the regression
pass). The number o f test passes for each test area should be monitored monthly,
and reported at the end o f the project. The total number o f bugs per test pass can

also be measured, which is has similar uses to the bugs per manmonth metric.

Page 129

Types of localisation error:
Because Microsoft Ireland's business is the localisation o f products, the localisation
bugs needed to be further classified. The categories chosen were text bugs, hotkey
bugs, dialog box errors and help jumps to start with. Analysis o f current projects is
in accordance with the definition of the 'type' keyword, in section 7.1.3 (b).

This shows the type of bugs present in the software, and their relative percentages.
It helps to concentrate effort on localising the next version o f the product in certain
areas to eliminate the most common bug types, and helps indicate where testing
effort should be spent. The chart below shows that the team should concentrate on

eliminating text errors for the next project.

Sample Analysis per Bug 'Type'

Page 130

7.1.4 Releasing

Q uality M etrics

Ideally, the products should be released once, and not re-released as a result o f
bugs introduced into the product during the localisation process. This is the
measure that the subsidiaries rate the project team on, and that which is most
visible. Ideally the number of product and disk releases per month should increase,

whilst the number o f re-releases should be zero.

The measures chosen on the software side were the number o f product re-releases

as a percentage of the releases, and the number o f disk re-releases as a percentage
of the number o f disks released. These metrics needed precise definition, to avoid

confusion and ambiguity.

Measuring the number o f product and disk releases and re-releases will give an
indication o f the amount of rework involved after release. Correcting errors at this
stage costs infinitely more than finding and correcting them on the first test pass.

The release measures, reported in monthly status reports, are:

• Product Releases: The number o f product releases this month
• Product Re-releases: The number o f product re-releases this month (ie new

part numbers generated)
• Disk Releases: The number o f disks released this month
• Disk Re-releases: The number o f disks re-released this month

A product is released when the paperwork is completed, signed off by the relevant
people, and ready for duplication in the manufacturing facility. A product re-

release occurs when a new part number is required for any disk due to a change in

the software contained on that disk.

A disk is released when a copy o f the disk image is transferred to the Trace
duplication system in Manufacturing. A disk is re-released if, for any reason a disk

has to be resent to Manufacturing, necessitating a Master Disk Control number
change, whether or not the software on the disk has changed. A disk re-release is

counted before the product is signed off, whereas a disk re-released after the

product is signed off also constitutes a product re-release, as defined above.

Page 131

7.2 DOCUMENTATION

The documentation process lends itself relatively easily to measurement, as the
process is easy to define, and quantities can easily be counted, in terms of words or

pages. There are no specific planning measures in documentation - the planning
measures explained in section 7.1.1, such as the ‘delta1, are also relevant here.

7.2.1 Translation

Translation o f the documentation is the responsibility o f the translation vendors, so
the measures defined here are a measure o f the quality of their translation. At a
later date, the vendors should provide information on productivity metrics.

A). Rew ork:

It was decided to measure rework that is sent out to the translators, as traditionally
this has been very high. The reason for this is the large number o f updates coming

from the technical writers who develop the US documentation. These changes are
sometimes functional changes that must be implemented, other times there are

cosmetic changes that make a sentence more aesthetically pleasing, which are also
included in these updates. The measure decided on was the number of pages that
have changes on them that are sent to the translators.

B). Q uality:

Quality Assurance spotchecks are performed on the documentation (about 10% of

it is checked), with error counts recorded and compared against 'acceptable'
criteria that have been defined.

• The translated documentation must be a clear and technically correct

description o f the actual functionality o f the localized software. The
translated documentation must contain culturally adequate adaptation of
names, locations, scenarios etc., and must adhere to technical and
country specifications. For Help and CBT also: Layout and functionality

o f translation must be equivalent to the US version.

• The translated documentation must be completed by overtyping without

adjusting appearance o f text, removing or changing in any way the
paragraph formatting or layout o f the document or deleting any

elements, e.g. index codes, art references, etc.

Page 132

• The translated documentation must be complete as to its contents,
adhering to the Microsoft Linguistic Guidelines, and linguistically
correct according to recognised rules and recommendations.

R ating A l-to-5 rating scale, in 0.5 increments, is used for the Vendors.
The goal is to achieve a quality level o f 3.0 or higher for all

components, and in all categories.

The global rating definitions are:

5 Exceptional quality, no errors
4 Excellent quality, very few errors

3 Good quality, few errors
2 Needs improvement, many errors
1_____Unsatisfactory, many serious errors

Further details o f the rating system and categories used are in Appendix E.

C) . L o c a l i s e r r e v i e w

When the documentation comes back from the translation vendor, the localiser

performs a technical review, to ensure that the software and the documentation
match eachother. At this stage, they often find errors made by the translation
vendor, which they correct. The number o f pages that have to be reworked as a

result o f translation error is therefore measured. The second rework category is
due to updates from the US, which has already been discussed. Another factor of
rework is rework due to localiser error. Again, this is measured in terms o f the

number o f pages affected.

Doc rework: - should decrease and approach zero

2. Translate: No. pages reworked due to errors introduced by the translations

vendors.
3. Update: No. pages reworked by the Localiser due to updates from the US

group.

4. Loc: No. pages reworked by the Localiser due to Localisation error.

Page 133

7.2.2 Formatting

The editors format the localised documentation in a standard style, and generate
the index for each manual. The documentation consists of several manuals, covers,
flyers, etc.

A) . E f f o r t :

It was decided to measure the amount o f effort spent on formatting the
documentation in terms o f mandays/weeks per month. This is also recorded in the
Resource Tracking System as described in section 7.1.2.

B) . P r o d u c t i v i t y :

The number o f pages o f documentation formatted is divided by the number of
manweeks o f effort, to get the number o f pages per manweek. This is completed at
the end o f the project, rather than by month throughout the project.

In order to calculate productivity, the following are calculated at each project-end:

• Resources: The number o f each function who worked on the documentation.

• Pgs. formatted: The number o f pages formatted by the Editor(s) and the total
effort spent.

• Pgs. reworked: The number o f pages reworked and the effort spent.
• Loc QA: The number of pages QA'd by the localiser, and the effort involved.
• PTL QA: The number o f pages QA'd by the Production Team Lead, and

effort.

c) S c h e d u l e :

At the beginning of each project, the total expected quantity o f pages to be
formatted is stated, and as progress is made through the project, the cumulative

effort and amount completed to date is known. See section 7.1.2 c) for a
description of the schedule measures.

D) R E W O R K :

Formatting rework is due to errors made by the editor when formatting the
documentation, or can be due to changes that the translation vendor made to the
formatting or hidden codes. The number o f pages reworked as a result o f

formatting errors was measured.

Page 134

7.2.3 Art Preparation

Art Preparation involves shooting screen-dumps of the localised product, and
preparing call-outs, then linking the art to the appropriate places in the manuals.
The measures originally suggested included art as a separate entity to
documentation, but since it is an integral part o f the documentation process, it was
later decided to merge art with documentation for metrics purposes. The
following paragraphs explain the measures originally agreed for the art.

A) EFFORT:

As with all other phases, the effort involved is recorded in the Resource Tracking

System database.

B) PRODUCTIVITY: .

The number o f screendumps shot and the number o f pieces o f art prepared divided
by the respective number o f manweeks, gives the average throughput per
manweek.

C) REWORK:

Art rework is measured in a similar way to documentation rework, according to its

causes. Again, there is rework due to updates from the US, and then there is
internal rework - that due to localisation error, leading to screen dumps having to

be reshot, and rework as a result o f formatting error during the preparation o f the
art by the artists. Both the quantity o f rework and the effort involved are recorded.

Art rework: - should decrease and approach zero
1. Format: No. pieces reworked by the Artist due to formatting errors.
2. Update: No. pieces reworked by the Artist due to updates from the US.

3. Loc: No. pieces that were reshot due to errors in the original dump.

7.2.4 Release
The documentation is released when the files have been handed over to the print

production group, to be sent out to the printing vendors. A re-release of
documentation occurs when new files or film is sent to the printing vendor. The

number o f pages that have been re-released and the severity o f the error also need

to be recorded

Page 135

7 .3 Summary
The following is a summary o f the implementation phases for localisation metrics.
The first column contains the minimum measures that should be implemented on a
project, ie those started before the metrics were implemented. The second column
represents the full initial set o f measures, and the third column represents the set of
measures that should be implemented in the next phase o f implementation.

Category Minimum Full initial System Next Phase
Size/

Complexity

Localisable
Words

Localisable Words Localisable Words
with complexity
factor for menus,
dialog boxes, etc.

Productivity Productivity
rates per
function - end
of project

Actual vs. planned
productivity rates per
function per phase -end
o f project

Actual vs. planned
per function/phase
within approved
range, measured
monthly

Rework Total rework
quantity - end
o f project

Rework quantity and
effort expressed as a % of
total measured quarterly

Rework effort and
quantity per cause
category and as % of
total effort, monthly

Effort Total effort per
function - end
of project

Per function per area
(actual vs. Planned) - end
o f project

Effort distribution per
task (monthly)

Fully automated
effort tracking and
reporting system -
monthly

Schedule Delta

Simple Gantt
chart

Delta

Gantt chart with %
complete against generic
milestones, on monthly
basis

Delta

Progress curves
categorisation/
cumulative work
packages complete,
throughout project

Quality Total defects

Defect density

Pareto analysis
oftype

Categorisation
o f origin

Defect find rate profile by
week

No. active bugs by week

Pareto analysis o f type

Categorisation o f origin

Defect density

Defect severity

Bugs found per testing
manmonth

Software reliability
measures

Defect find rate
profile (by day)

Pareto analysis of
cause

Age o f defects

Other Quality
measures same as full
initial system

Page 136

8. ANALYSIS OF RESULTS

8 .A. - Process

The 12-step process was followed, which went quite well. The results o f each step
in the metrics implementation process are analysed in the following pages. The

step which gave the most payback was to measure current products and processes.
Probably the largest area for improvement is in the effort tracking area, in that too
much was measured too soon, despite knowing and realising that this was a pitfall.
Keeping track o f the plans for implementation of measures on all projects was
difficult, due to the size o f the company and the number o f active projects, if each
language version is considered as a separate project. Implementation o f the
metrics should have been on a pilot project over a duration o f three months, or on
just one project in each Department (Product Unit) rather than a company-wide
implementation.

8.A.1 - M ap the software development process

As explained in section 6.1, several other process improvement groups had defined

the current software process, which could be leveraged off. Process charting is an
excellent method to gain full understanding o f the process, and the resultant chart
should be used as the basis for effort tracking. There are a few important learning
points for this activity:

• For initial metrics purposes (which will be relatively high level to start with), a

fairly high-level process map will suffice, ie too much time should not be spent
going into minute detail. The process map should contain about 30 steps in
total, covering all functions.

• Different projects use different tools for certain process steps, so it is important

to map what happens (the process), rather than how each step is performed
(the methods).

• Make the map simple, and easy to upgrade, as-it will change as improvements
are made.

• Display the process where it will be visible to all employees, and keep it

updated, so that progress in process improvement is visually demonstrated.

Page 137

8.A.2: Define the Corporate Improvement Goal

Section 6.2, states that the company had a generic goal, to improve or processes in
term of time, cost and quality, and a more specific longterm goal, to consistently
release 20 products in 60 days within a given timeframe. These goals were defined
by the CEO, and explained to all employees at a company meeting.

The two important issues here are

• Keep the goal longterm (as in the ultimate goal o f the improvement efforts)
• Establish a measurable goal (in order to measure progress as time goes by)

Implementation o f the metrics system would have been smoother, and less isolated
if there was a full Quality Management System (QMS) tied in with the Corporate
improvement goal. This includes the qualitative cultural activities as well as the
quantitative metrics activities. Nevertheless, in order to reach the longterm goal,
the metrics that were firstly introduced were to control the projects, it is only then

that a more comprehensive umbrella QMS becomes necessary, to provide
company-wide direction.

8.A.3: Conduct an Employee and a Customer survey

These surveys were excellent for gathering current perceptions. In order to
improve, everyone must be involved, and to solicit their feedback on the process is

an important first step to establishing the areas that are highest priority for
improvement. A few points on the employee survey are:

• It was kept anonymous, so that honest feedback was given.
• The survey should be performed once a year, to measure the perception of

improvement
• All those who responded to the survey received a copy o f the survey

results/analysis

• Measures were introduced in the process for the areas that the survey results
showed needed most improvement.

One area noted was that under the 'comments' section of the form, some people
wrote comments in the form o f 'I often fill out survey forms, and never hear

anything back. Will we see the results o f this one?' It is important that people do
not view it as another survey that will go into the black hole.

Page 138

On the customer survey, the feedback form (see Appendix B) is sent to each
Subsidiary three months after releasing each product. This highlights any issues
that need to be addressed either for the next version of that product (ie from the
product ratings), or for the communication/project management processes in
general (from the process ratings). Again, the subsidiary must feel that their ratings

and comments will be heeded, and some positive actions will be taken to improve
the areas with low scores.

8.A.4: Define applicable metrics categories

These were really easy to define. From the process charts, it is obvious that there
has been a lot of rework, so rework was one of the categories.

A lot o f time is spent testing a product, and then the next version o f the product in
the same manner, without analysing the number and types o f defects, their causes,

and the improvement from one version to the next. Improvement was required in
many areas, but there was no method o f prioritising these. Therefore Quality
metrics were needed.

Project durations, staffing requirements, etc. are initially planned over a year in
advance o f the start o f the project, but traditionally guesstimates o f the
productivity rates have been used. Effort estimates were often increased linearly

with the perceived size o f the product, ie there will be 50% extra features, so both
localisation and testing should be increased by 50% also. Documentation estimates
were a bit easier to devise, as the sizes are generally known when calculating the
durations and staff requirements. To enable accurate cost estimates and better
project management, it was decided that a combination of size, effort and

productivity measures was needed.

One other area where improvement was necessary, which was made obvious by the

process surveys was project scheduling, and resource planning. Hence, some

schedule measures were included.

These measurement categories, .(size, productivity, effort, rework, schedule and
quality) are those that were suggested in section 3.4.1, which I believe are fully
adequate for an initial metrics system. Results to date demonstrate that these

categories are adequate for the company's needs.

Page 139

8.A.S: Break corporate goal into a specific goal for each category

The corporate goal has been broken down into more specific goals, which are
disseminated throughout the company to the appropriate people responsible for
achieving them. I involved myself in this step up to the stage where there were

enough goals to define some specific measures, and then handed responsibility over
to the Product Units. Care had to be taken to ensure that it did not become a
system that I was introducing, rather than a system that all Managers understood,
needed and wanted. As already discussed (section 8.A.2, above), an overall
Quality philosophy would have made the system more cohesive.

Each Manager has a set o f goals, which can be broken down further to provide
goals for their staff, and so on down the chain, so that each person has his/her own
set o f goals (ie quality, productivity, schedule goals), which together tie in with the
corporate improvement goal. Some examples o f management goals are described
in section 6.5.

On the down side, the complete picture o f the goals for each category are not
necessarily known by everyone, ie everyone is aware o f their own goals, and their
team goals, but it would be nice to show how the goals o f each functional team fits
together, which is important for a co-ordinated process improvement effort. The
main result o f this is that the reason for introducing the metrics sometimes loses
some focus and understanding, and it's back to the situation o f measuring because
someone says so, rather than for oneself, and the team.

8.A.6: Design specific measures

This step took up a lot o f time, as it involved analysing the specific goals, asking

the relevant questions, and defining the measures. Other sections o f this document
state that one should not try to implement too many metrics at once. Despite this,
there was still what would be considered as too much to measure, in the effort

metrics categoiy, at the first attempt. However, this fact was recognised quite
early on, and rather than say 'no, that's far too . much', it was left up to each

department to decide on the granularity o f implementation, ie collection/reporting
weekly, monthly, or project-end; and using mandays, manweeks or manmonths.

As long as the high-level measures were available, no-one minds if a further level

o f granularity was desired by some Managers. In this way, each Department

Page 140

understands what's needed and what's superfluous, themselves. At the time of
writing, everyone realises that the extra granularity is more o f a hindrance than a
help, and the company is in the process of moving back to measuring effort at the

highest process level, see Appendix G.

In order to transfer ownership to the groups who are directly responsible for
completing their projects, effort was concentrated on defining what should be
measured, in order to help the process improvement efforts, rather than how they
should be collected. Hence, different Departments tried reporting the metrics in
different ways, ie some expressed their measures in terms o f manmonths at the end

o f the project, and others measured progress per month, throughout the duration
of the project. Each Department adapted the datasheets to suit their projects, and
their metrics implementation method. The message to each Department was that
for initial metrics implementation, the numbers do not have to be 100% correct.
80% accuracy should suffice to show trends initially, in order to show areas where
improvement is most necessary, and to obtain estimates for project planning and

cost projections.

The most difficult measures were the progress and productivity measures which it

was originally suggested should be reported at the end o f each month, throughout
the project, for software localisation. The problems were due to the lack of tools
that could easily and accurately count the number o f dialog boxes, menus, etc. that
were localised in the last month. Instead, most projects opted for measuring
productivity at the end o f each project. Section 8.B describes the implementation

o f each measure in more detail.

8.A.7: Develop data sheets

The initial data sheets were designed so that the data could be collected, for later
insertion into an automated database system. These data sheets included all the

initial recommended measures, and were to be completed each month for a period

o f about four months, until the system was reviewed and automated.

It was left up to each Department to amend these sheets to suit their requirements,
and stressed that the granularity o f measures was their own decision, based on
what they thought was necessary to enable good decisions to be made, and areas

for improvement to be highlighted. Each project had its own set of sheets.

Page 141

One criticism of the sheets is that they were- designed in accordance with the main
process areas, rather than by distinct function (see initial documentation, Appendix
F). If they were to be redesigned now, they would probably be produced
according to the person who is responsible for ensuring the data is collected (ie a
sheet for each Team Lead). The main problem with the sheets was that each sheet
had input from several people, and each person had to input to several sheets.
However, this problem was overcome when the sheets were adapted for each
project by each of the departments. This approach encouraged ownership o f the
metrics by each department, as if everything was handed to them ready to go, the

need for metrics would not have been internalised.

Whether or not this was an optimal approach is questionable. If a full Quality
Management System had been put in place at the same time, with all the cultural
philosophies normally associated with it, the metrics implementation would have

been a bit more cohesive.

8.A.8: Provide necessary training
Section 6.8 briefly outlines the training workshop developed. This was made
available company-wide, but the training was not delivered as widely as necessary -

the leads/managers from three departments (out o f six) received the training.

If the company was to start over again with implementing a metrics system, the
availability o f the course would be advertised more, and it would be compulsory

that all team leads and managers attend. People do not fully understand the

sometimes subtle difference between measures (raw data) and metrics. An
example o f data would be a total number o f bugs reported, whereas a metric would
be the number o f bugs reported per thousand localised words. Measures are very
useful especially for the project they are generated from, but information in the
form o f metrics is even more useful, allowing comparison across several projects.

Initial early discussion workshops would help overcome the difficulty with the
definitions and requirements, and hence would speed up the implementation

process. To date, the main effort has been on data collection, with metrics

reporting and analysis o f what they mean a bit further behind. -

Page 142

8.A.9: Measure current process and products
This step went very well, and heightened everyone's awareness o f the main issues
involved in improving the localisation process. I remained responsible for the bug
analysis and the defect ratio metrics, and left the productivity and rework measures
to the project teams to complete.

The Quality measures are an excellent source of information - they are very
important measures for process improvement activities. The two measures used
for measuring the.current process/products, defect density, and defect analysis,
were explained in section 6.9. The positive effects of this exercise were numerous:

• Rather than saying 'there were a lot of type x bugs', the actual quantities, and
relative percentage could be quoted

• Areas most in need o f improvement were made visible
• US Test Teams were asked to do a similar exercise, by the Exec VP for

Product Development

The only negative effect that was noticed was that some people were afraid that
the figures would show them up. This perception was somewhat overcome, by

stressing that the figures were for their own use, and that they themselves own
these findings, and were responsible for suggesting and implementing improved

methods on their projects. Some of the results were actually very embarrassing,
such as the number o f errors introduced due to carelessness, so the fear that there
might be repercussions was real. Senior Management in the parent company, who
were presented with the summary figures know better than to shoot the messenger,

and encouraged improvement in all aspects o f the process. This had a very

positive effect.

Because this step received so much visibility, certain areas for improvement had to
be immediately identified, and quantifiable targets specified. The next version of

each project is measured in the same way, in order to provide a true comparison,
and to quantify improvements.

Another general outcome o f this step, to measure current process and products, is
that metrics which are difficult to calculate will be identified, which allows time to

either change the metric definition, to change the way some data elements are
reported or to write a tool that helps collect the data or to calculate the required

metric.

Page 143

8.A.10: Set im provem ent targets
Most improvement targets were set as a result o f the 'measure current process and
products' step. Some of the results were somewhat surprising, so some very
specific targets were set for each project as well as some more general targets for
the company as a whole. An example o f a specific improvement target is to have
zero duplicate hotkeys in software handed off to testing. There are also some
good examples o f generic goals that each Manager has, which have been further
defined, and given to the Leads, and further defined again, and given to the

Localisers/ Editors/ Testers as a specific goal.

Section 6.10 explains that the metrics recorded on a project are analysed in detail
to help plan the next version of the project, and to pinpoint areas where
improvements can be made. The example given is how testing effort could be

reduced by 50% from one major release to the next.

Section 3.3.2, in discussing programmer productivity, states that sometimes people
will work for the figures rather than the quality o f the product. It is important to
have a variety o f measurement criteria in order to get the full picture. An example
is that in order to improve the quality o f the localised software, the Testers will
help the Localisers to test the product, before it is officially handed off for beta
testing. While this is an excellent idea, the bugs found should still be counted, if
the Testers are spending their effort on it, (although reported in less detail), as the
process is still 'do now, fix later' rather than what is known as 'do it right first time'.

Taken to an extreme, the official handoff could be delayed until all the localisation
testing has been completed, ie, a week before release and hence have no bugs

reported. However, when the measure o f the number o f bugs reported is coupled
with the bugs per manmonth (manday) o f testing effort, a better picture is
obtained. Therefore, to optimise one measure (ie decrease bug density), will show
a bad result for another one (ie small number o f bugs per manmonth).

8.A.11: Automate the system

Section 6.8 explains the current automated system, which is implemented in three
different parts. It includes reporting bug analysis information,-effort tracking, and
schedule tracking. The implementation o f the metrics system has taken much

longer than originally anticipated, with the related problem of some new projects

waiting for an automated system, before collecting the necessary data (i.e. they are
collecting the minimum set o f metrics, as defined in section 7.3). Different

Page 144

departments have implemented the measures in slightly different ways (ie
personhours vs. persondays), and some have gone as far as automating the
production of monthly reports, which is an area not yet fully defined for the
company as a whole.

The bug analysis portion is fine as an initial reporting module, but could be
enhanced by including the other defect metrics, and printing out reports with any

combination o f the metrics from several projects.

The effort tracking system in its current implementation is a great system, but the
information is a bit too detailed. The initial set o f measures was too granular (see
section 8.A.6) in terms of the number o f effort categories. Another issue with the
system is that it counts hours spent on each task, rather than being less granular,
such as number o f days, which would suffice. The latest suggested effort

categories are listed in Appendix G. The previous granularity o f the data collected
will be useful for the team itself for very detailed analysis of where time was spent,
and the reports that are produced can give very specific information, such as how
long was spent on testing hotkeys, and more general information, such as the total
time spent localising the product into each language.

Looking at some reports to date, a lot o f time is reported in the 'other' category or

under 'non-project-specific work'. If one o f these categories is present, people will
be tempted to report their time under it as it requires less effort than deciding

which category to place their days under, if not immediately obvious. Categories
such as these therefore should not exist. One department, which is still working
with the original data sheets, agreed with my suggestion and has recently deleted
the 'other' category, in order to get more accurate effort and cost information.

The effort data on its own is not all that useful for planning and improvement

purposes. When effort data is used to calculate metrics such as productivity rates
for each function, across all projects, its uses become apparent. An effort tracking
system can also be used to measure the cost o f the project, by function or by task.

Hence, a separate metrics category of'cost' metrics is not required.

The schedule module, explained in section 7.1.2 c), was developed by a different
process team, made up o f Program Managers. It's a very good system, with a

standard template, which can give current progress information against the planned

schedule. Progress curve charts could also be generated from this information.

Page 145

8.B - Specific Measures

a) Size

Using number o f words as the basis of size is a good idea. This allows fairly
accurate quality and productivity comparisons across projects. The accuracy of
these metrics can be further improved upon, by adding other factors such as the
number o f menus and the number o f dialog boxes to the word count, as menus and
dialog boxes require more work to localise than words within an error message,
but this can wait for a later implementation o f metrics.

The same size measures are used for cost estimates, productivity rates, and defect
densities, which makes everything easier to equate and understand. If the cost
system requires a change to the definition o f product size, then the metrics

definitions should follow suit. So far, the use o f localisable words as the measure
of size is working well, particularly for documentation and help size estimates.

b) Productivity

As predicted, productivity measures during the project received some resistance.
Some fair criticism was that the number o f dialog boxes, pages formatted, number
of words, etc. completed in the month, on a per month basis would take too long

to calculate for each person. One department tried to overcome this problem,
however, with the reasoning that the total number of words/dialogs/pages in the

project is known before the team starts, and one can calculate the amount o f work
completed each month without too much difficulty, as follows. At the end o f each
month, how much work remains to be done in the project should be known,

therefore by subtracting the amount to be done from the total, what has been

completed to date is calculated. I f a figure for the amount of work completed in
any given month is needed, subtract the previous month's total-to-date from the

required month's total-to-date.

For an initial metrics system, end-of-project productivity rates will suffice. All that
is required is total effort spent per area, and the total quantity o f work items

involved in each area. It is then a simple matter o f dividing the quantity by the
effort, and expressing the number as a quantity per manmonth. This approach is

the one that has been adopted by most departments, and is giving good results.

Page 146

The main benefits experienced are better project planning & control, and the ability

to quantify the benefits of new tools in terms of increased productivity.

c) Rework
Documentation is where this rework problem is most noticeable and can cause
scheduling problems. Counting the number o f pages that contain the errors is
coupled with the number of errors found. The main cause of rework is updates

from the US, which Ireland currently has no control over. Keeping note o f the
quantity o f updates in the US documentation has prompted managers to look at the
content o f these changes, before deciding to implement them. If they are purely
cosmetic or style changes, then they are ignored, whereas functional changes, such
as explanations o f how the product works, must be implemented. On one product,
it was decided to retranslate the entire documentation, rather than to implement the

1600 changes received in one update. The aim is to decrease the amount of
rework involved in each project, expressed as a % of total quantity and total effort.
To date, using the combination o f quantity and effort provides a great objective
measure o f the cost o f rework - due to both internal and external causes.

The focus o f this metric has been amended since what to be included was first
defined. External translation vendors are now responsible for formatting the
documentation, so that on receipt, a QA check o f it is completed, and the vendor is
rated according to the quantity o f errors found, (see QA rating criteria and

definitions, Appendix E).

When the quantity o f rework from the Vendors, was first counted, the granularity
o f the defect types was too high, as people were counting every incidence o f very
minor defects, such as having two spaces between words, instead of one space.

This was taking a lot o f time to check and report. Having to quantify and report
on the quantity o f errors found, and the time spent checking the documentation,

and fixing the errors found, made it easy to spot that too much time was being

spent on this activity.

In order to reduce the time spent checking and reworking the documentation, the

categories were changed to make them less granular. The. idea of severity of

documentation error was also included - ie a deleted screendump is serious,
whereas an extra space between words is trivial. The current categories against
which the documentation is checked are explained in the Vendor Quality Criteria

and Definitions document in Appendix E.

Page 147

For an initial metrics system, rework measures are very important, and ideally
should not be left till the end of the project for reporting them. The rework
quantity and effort should be reported on a quarterly (or even monthly) basis for

each project, so that timely corrective action can be taken.

d) Effort
Effort measures are used to calculate other metrics, such as productivity and some
quality measures, they are also used to calculate internal project costs, and
therefore form the hub of any system. The implementation in Microsoft Ireland has
recently become a time-tracking system for some departments, which traditionally
is not part o f the Microsoft culture - some o f the fields, such as time spent at
meetings, and the 'other' field, should be totally removed. This system is described
in some detail in section 7.1.2 a) and its usefulness is analysed in section 8. A. 11.

For an initial metrics system, I recommend keeping track on a monthly basis of
each team's effort, in terms o f mandays spent on the highest-level project areas.
Splitting the tasks into about four or five categories per function should suffice, as

any more detailed than this, and it is back to counting the number of hours spent
on each minor task. A suggested set o f categories is included in Appendix G for a
localisation environment. The effort tracking system should be based on the steps
identified in the process mapping stage (assuming it shows a fairly high-level view

of the process).

For future phases o f implementation, the system should be fully automated, able to
give both a cumulative and non-cumulative analysis o f effort, and provide the

required reports.

e) Schedule
In the employee process surveys, the fact that the schedules were not perceived as
realistic was high on the list o f areas that required attention. The main problem
here was keeping track of % complete information as the projects progress, at a

meaningful level o f detail.

The top-level schedule metric, the delta, as described in section 7.1.1, is a great

measure, which was originally defined as the difference in elapsed days between the

US shipdate and the localised version shipdate. More recently, the delta was
redefined to mean the difference between the US and localised release dates. This

Page 148

metric is one that has been implemented for years, and which has worked really
well. If the process is successfully improved, more products should be released
within a shorter timeframe (ie. with smaller deltas). This is the main goal, hence

some more detailed measurement o f the schedule is required, so that projects can

be monitored and controlled effectively, from the start.

On the more detailed scheduling measures, the system described in section 7.1.2(c)
provides a high-level view o f progress against the plan, as shown in section 4.2.1.
Producing such a Gantt chart on a monthly basis, and making the schedule
available to all project team members, on a read-only basis makes progress visible,
and corrective action can be taken early.

A further enhancement would be to produce progress curve charts, and put them
on view on the walls where the team-members are situated, and update the chart
for each project each month. Patterns can be easily recognised, with good and bad
trends being easy to see, and any corrective actions undertaken where necessary.

For an initial metrics system, the minimum schedule metric required is percentage

progress against the plan, which can be shown as a Gantt chart. Future
implementations would involve further granularity within the schedule, and using
the schedule information in conjunction with the effort measures to get a good

picture o f the current status o f the project, eg. progress may be on target, but
effort may be 20% greater than planned. The Cumulative Work Packages
Complete metric (section 4.2.1(a)) and the Cumulative Effort Distribution metric

(section 4.2.2) are ideal for this purpose.

1) Quality
The bulk of effort was spent on defining and implementing quality metrics, and as
shown, this is the most important category to point to areas/processes requiring

improvement. The software quality measures are explained in section 7.1.3 (b),
and the quality measures for Vendors are defined in Appendix E.

The number o f active bugs and the total number o f bugs at the end o f each month
are static numbers, which have been reported per project each month. Each of
these measures on its own does not provide very much information, but the

number o f active bugs as a percentage o f the total bugs indicates how stable the
product is. This is very easy to implement, and team leads keep track of the bugs

on all projects.

Page 149

The bug find rate, ie bug profile by week, is a metric introduced on a pilot project,
to see how useful it would be. It is useful to show how stable the product is as
testing progresses, and the release date comes closer. It also gives a visual
breakdown o f each bug type, over each week of the project duration. It is useful
both during the project and after the project has released, ie as a post-mortem
measure. Both a monthly and a weekly bug profile were tried. In the monthly
profile, the data was not accurate enough to give a good picture o f whether or not
the team were near to being able to release the product. A useful addition to this
metric would be to graph active bugs against the total bugs found per week.

Bugs per manmonth (manday) is another metric introduced on a pilot project. It is
a useful measure o f testing efficiency. Section 8. A. 10 explains that the number of
bugs reported may be reduced, by involving Testers in performing a full

localisation pass on the product, with the Localisers, before handing it off to beta
testing. This was done for the help files on one language o f the pilot project,
which gave a number o f 5.3 bugs per manmonth on the help files for that language,
against 27 bugs per manmonth on the other language, which had not been 'pre­

tested' by the Testers quite as much. Looking at these figures, one would say that
5.3 help bugs per manmonth indicates a lot o f time wasted testing the project, as
the total number o f help bugs could have been found in less than a manweek. This
number should increase as the process improves. As an example, automating the
testing for a common bug type should ensure that the bugs are found early, and

take less time to find (since the tool can be run overnight). Hence, the number o f
bugs found per manmonth o f testing is useful to demonstrate the effect of

increasing the amount o f automated testing.

The best implementation of the bugs per manmonth metric is to report it at the end
of each project, and then use this metric to aim for a higher number o f bugs per
manmonth on the next version o f the product.

Categorisation o f bug origin is a simple measure, which can be produced monthly

or at the end o f the project. This has been implemented for all projects. A product
with a high number o f bugs requiring a code fix indicates that firstly these issues

should be communicated to the US Development team so they can produce global
code, and also time should be spent testing for international functionality issues,
whereas on a product with none or .very few o f these errors, an automated

Page 150

functionality acceptance test run against each build would suffice, along with
localisation-specific testing.

Bug Density is based on the well-known Bugs/KLOC metric, and has been

calculated retrospectively for the previous version o f each o f the major products.
It makes it possible to compare quality of localisation across products o f different
size and type. Again, it is a very simple measure, ideally reported at the end of
project to start with. On recent products, there has been a decrease in the bug
density as compared with the previous version.

Bug severity is another end-of-project metric, which is useful for getting an
overview of the bugs found, and is similar in use to the bug origin measure. It has
been implemented on several projects, in conjunction with the bug origin measure,
to get a more detailed view.

Defect analysis, ie types o f localisation error is probably the most useful quality
measure that has been implemented. As explained in section 8.A.9, this

information was obtained and charted as pareto charts for the previous version of

all major projects (over 50 databases in total were queried). This went extremely
well, and provided details o f areas that needed a lot o f improvement, such as text
errors, eg small oversights such as mis-spellings, untranslated text and duplicate

hotkeys. This defect analysis activity led to some causal analysis activities, which
in turn has led to some new tools being developed and new methods introduced, to

reduce/eliminate some bug types.

The following table gives a summary o f the main benefits o f each metrics category

introduced on the projects.

Page 151
V

Measurement Category Main Benefits
Size/Complexity Used as basis for calculating other measures

Allows normalisation of measures to enable cross-

project comparisons
Helps Project Planning

Productivity Helps Project Planning and Control
Measures effects o f new processes/tools

Rework Identifies Cost o f Non-Conformance

Identifies areas for improvement

Effort Helps Project Planning and Control
Helps track Project Cost

Schedule Helps Project Planning and Control
Determines Project Progress

Quality Helps determine when to stop testing
Identifies areas for improvement
Measures effects o f new processes/tools

Page 152

9. CONCLUSIONS and FUTURE WORK

In order to first control the process, then to improve it, a measurement system
should be introduced. The measures chosen should help point to areas that require
improvement; improvement goals should be set using these measures; new
improved methods should be introduced, and then their effects quantified using the
same set o f measures. For an initial metrics implementation, global, end-of-project

measures should be introduced. As the process becomes under control and

matures, more detailed measures should be implemented, in phases.

Metrics systems should be kept simple to start with, and then expanded and built
upon when the need arises, ie when the implemented measures on their own are
not sufficient to measure the changed process, or when the process will support
more detailed measurements.

The initial 3 months o f implementation should be as a pilot project. A project of

average size and complexity should be chosen, with the project team reporting the
suggested metrics for the three-month period, along with issues and problems
encountered in collating and reporting the data. Process improvement is a separate

activity to metrics implementation, so the 3-month trial should concentrate on
determining if the chosen measures:

• Enable effective Planning
• Enable control o f the process

• Determine project progress

If the measures firstly enable control o f the process, then the same measures can be

used to quantify process improvement efforts. Ideally, quality management
activities should be implemented alongside the metrics, to ensure full benefit from

each of these processes, as follows:

• Enable benefits o f new tools/methods to be stated in quantifiable terms

• Identify areas in need o f improvement
• Enable improvement goals to be set in quantifiable terms
• Demonstrate improvement

Page 153

9.1. Implementation Time

In order to implement a metrics system which will be a success, all the process
steps described must be implemented in full. It will take time to implement these,

and there is no quick fix available. Failing to implement any o f the steps in full can
lead to some problems further on. For example, training only half of the people
leads to lack o f understanding of the quantity and granularity o f measures required
for successful implementation, which leads to slower implementation of the metrics
system.

The time required to implement a metrics system, which is customised to the
methods and processes o f each company, will depend on the size o f the company,

and the current availability o f required data. A company should allow at least 6 to
9 months for going through the 12-step process, and introducing the first simple
measures. Hofstadter's law is an appropriate quote here:

It always takes longer than you think, even taking Hofstadter's law into account

The metrics implementation process should be managed in the same way as a
normal development project, and has similar schedule compression constraints. The

main reason that it cannot be compressed into, say, 1 month, is that it takes time
for all employees to internalise the need for measurement, and its benefits in terms
of improving the process. However, if a quality culture is already firmly in place,
metrics implementation will be easier than if it is all a new endeavour, or if the

quality culture comes later.

9.2. Process

The 12-step process defined will work for a variety of development environments.

The metrics described can be adapted for use in a localisation environment, as
demonstrated, and a similar adaptation could also be achieved for a software

maintenance environment, or any other variation o f the process. There are a few
other metrics implementation models, but they tend to be either distinctly top-
down (based on the organisational goals only) or distinctly bottom-up (based on

the current process only), which both have some inherent flaws. The 12-step

process presented is an optimal approach, as it addresses the issue from both ends.

Page 154

Books, seminars and conferences often concentrate on explaining the need for
metrics, and briefly describe a few measures, but my experience has been that a
transfer o f learning does not take place, ie the readers/attendees leave without
knowing how to implement these measures in their own company. At a recent
conference, the attendees who attended the 'implementing metrics' tutorial were
very disappointed with it, as it covered things they already knew and had
internalised, such as why metrics are useful, followed by a long list o f popular
measures. What these people wanted was a process they could adapt to their
environment, in order to implement a useful metrics system, with a full explanation
o f how the measures are used. This dissertation successfully addresses this need.

It is useful to know what the metrics are, but how to implement them, and what
information they give with respect to the development process is even more useful
to seminar attendees. There is a Chinese proverb, which is appropriate to metrics
implementation:

Give a man a fish, and you feed him fo r a day;
Teach him how to fish, and you feed him fo r life.

The key to successful metrics implementation is to keep it simple, ie measure
neither too much nor too little, and understand why each measure/metric is being

used. The right amount is determined primarily by the process map, the current
capability maturity level, and the corporate improvement goals. Focus on the

needs, and the implementation will be successful.

The metrics system should be designed by a group o f people, who in turn solicit
feedback from and provide progress reports to a group o f other employees, so that

each of the company employees is kept informed. Involve as many people as
possible in the metrics definition process, so that full understanding of the issues is

obtained as early as possible, which gives the metrics system a good chance of
survival. This group should define what will be measured, with the final decision

on granularity, and collection responsibility being the decision of the managers in

each Department.

Page 155

9.3. Metrics
The Metrics definitions sections (chapters 4 and 5), concentrate on describing hard
measures, eg, based on lines o f code, time spent, and bugs reported, ie those that
can be extracted from data that is physically available. One of the early process
steps (Section 3.3) involves soft measures, eg the employee and customer surveys,
ie those that are based on attitude or perceptions concerning the process or
product. Both hard and soft measures are useful and effective in getting a full
picture o f the process, from planning through to implementation.

Soft measures can be hard to implement, as the emphasis is on individual
expectations and requirements. The surveys are very useful for evaluating current
perceptions, and providing/receiving feedback.

A combination o f measures is required for the metrics system to effectively point to
areas where process improvement is required, and to quantify the improvement,

when the process is changed. Measuring and optimising only one aspect of the
process is similar to squeezing one part of a balloon - the other parts will pop out.
For example, if defect density is used to measure the quality o f the product, and
effort is not measured, the defect density might decrease by 50%, but with an

increased effort o f 70%. I f effort is not also measured, there will be a false sense
of security.

For a company new to metrics implementation, and looking for the optimum
metrics to start with, to enable basic evaluation o f the current processes, leading to
some initial process improvement work, I would suggest basic effort, schedule and

productivity measures, with some detailed quality and rework measures. Some
level-specific metrics are suggested in section 3.4.2.

Page 156

9.4. Metrics w.r.t. Improvement

Many companies have a lot of the required data available in some format, but it is
not used as a measure for process improvement. For example, many companies
record time spent on various project activities for cost accounting purposes, which
can be adapted and used for both effort and schedule metrics. The same can be

said for bug reports - most companies have some form of written bug reporting
method, which could form the basis for the quality metrics.

A Quality culture provides a positive environment for measurement and process
improvement. A metrics system, without the infrastructure o f a quality/process
improvement culture may fail within a short time o f implementation, or at least
take much longer to implement. A quality culture involves rewarding, rather than
shooting the messenger. People must feel free to be honest about all the measures,
and be encouraged to bring issues into the open as early in the process as possible.

Another important issue is the feedback loop. Give feedback to the people
providing the data about how it's being used, the benefits o f the measures

collected, and the results o f using these measures. Reporting data every month or

at the end o f the project, that is never heard o f again, is not conducive to a process
improvement culture/environment.

The most beneficial way of implementing the measures for process improvement is
to measure current processes and products first, as described in sections 3.9 and
6.9. This provides excellent baseline data, from where improvement targets can be

quantified, then measured as time progresses. This step provides the historical

data, by measuring past projects retrospectively, using the defined measures.

The improvement targets obtained from looking at the worst results o f past and
current metrics are the best ones to start with, as this helps focus the 20% of the
improvement effort to give 80% of the results. Start with something easy to show

some improvement in, demonstrate this improvement, and build on the resultant

success.

By following the process described, and implementing a subset o f the metrics that
have been explained, a successful metrics system to facilitate improvement will be

implemented.

Page 157

9.5. Future work

As the metrics for my case study were being implemented, the focus of the
localisation effort was changing. In some instances, the focus changed almost
overnight, and resulted in a re-organisation of one o f the Departments. The focus
here has changed to external vendors completing all o f the localisation, including
software localisation, so some measures needed to change and now have a
different focus for that department. Over the next two years, other departments
will follow suit. I have begun to address this need, by devising a Vendor QA

system, containing both hard (no. errors found, amount o f rework) and soft (two-
way feedback on project management processes) measures. An example o f the
feedback form the vendor sends back is in Appendix C, and an example o f the
project follow-up form sent to the Vendor is in Appendix D. Rework and quality
are the most important measures o f the vendors, as described in Appendix E.

Future work in the vendor area includes a Vendor certification/approval system,

based on the clearly defined measurement criteria, and process capability
assessment, based on the Capability Maturity Model.

From the viewpoint o f my own work in Microsoft Ireland, I have started to work
further on the format o f how, when and to whom each metric will be reported.
The main area o f further work is to enable the seamless comparison of measures
across projects in different departments. For this to happen, I need to firstly devise
a standard project post-mortem template (see draft template, Appendix I), and

secondly to design and implement a database system containing the metrics
calculated for each project, from which desired reports could be generated

whenever required. Different levels o f information would be available, so that
summary information can be obtained, and further levels o f detail would then be

available if more specific information is desired.

The bug analysis portion of the work on measuring current processes and products

has been adopted by several Test Teams in the US parent company. An additional
step would be to encourage them to introduce some more o f the suggested

measures, particularly the quality measures, using the implementation process as

described here.

Page 158

Appendix A

Glossary o f Terms

Benchmarking

Bug

CBT

Defect

Deliverables

Dialog box

Executable

Handoffs

Headcount

KLOC

Localisation

Localisability

Localiser

Measure

Metric

A process whereby specific quantifiable standards are set in
terms of metrics, which all products are compared against.

A difference between the way the product behaves and the
expected behaviour as described in the product specification

Computer Based Training program, ie Tutorial system.

I use the term defect as a synonym for bug

Completed work items which are returned by an external
company, ie Vendor to the contact person in our company

A graphical box containing a variety o f options to choose
which appears when a menu option is selected in a product
with a Graphical User Interface

A compiled file containing programs, screens and menus which
can be executed. Executable files have a .EXE file extension

The name given to deliverables which originate internally

Required staff numbers

Thousand Lines o f Code

The process o f translating all parts o f a product (software,

documentation, help, templates, etc.) into a particular language

and making sure that all examples and currency/date formats
used are appropriate for the specified market

The ease with which a product can be localised, without

introducing functional bugs

An employee responsible for localising a product into a target

language

A standard or unit o f measurement, ie dimension of something

I generally use the term metric as a synonym for measure

Appendix A Page i

Milestone

NLS

Pareto Chart

Popup

Priority

PU

PUM

Release date

RTS

Screendump

Severity

Shipdate

Subsidiaries

Team Lead

Work Package

Vendor

A point in time for which a specific project goal has been set,

in terms o f quantity completed, etc.

National Language Support. Date/time/number formats and

sorting order specific to each language

A method of charting information which displays categories in
decreasing order, and as a percentage o f the total.
Demonstrates that 80% of the errors are due to 20% of the

causes

In a helpfile, by selecting a highlighted word/phrase within a
topic, a small box appears on the screen which explains the

word or phrase

The level o f importance o f a defect, in terms o f how quickly it

needs to be fixed

Product Unit, a department responsible for a specific category
o f localisation products

Product Unit Manager

The date when the software is signed off to our manufacturing

facility for subsequent duplication and shipment

Resource Tracking System. Internally developed effort

tracking database

A bitmap picture o f a screen showing part o f the user interface

o f a product

The level o f impact a defect has on the use o f the system

The date the product leaves the manufacturing facility after
being duplicated and shrink-wrapped

Companies around the world which market and sell our

localised products

A first-line Manager, responsible for the activities o f his/her

team on a specific product

Detailed small-job, many o f which form the total work for the
project. They tend to be o f roughly-equal effort to complete

A company contracted to localise software or translate

documentation or help files for a specific product and language

Appendix A Page ii

Appendix B
SUBSIDIARY

PRODUCT EVALUATION FORM

PRODUCT NAM E & VERSION: LANGUAGE:

SUBSIDIARY: SUBSIDIARY PM:

RELEASE DATE O F PRODUCT:

Please f i l l out the evaluations below fo r both PRODUCT and PROCESS, and return to:

WPGI PRODUCT UNIT MANAGER:

PRODUCT Evaluation Summary

Please rate the quality of the product 5 = EXCELLENT
below by area as follows: 4 =J 3 = SATISFACTORY

2 = IMPROVEMENT NEEDED
1= UNACCEPTABLE

Evaluation per Product Area Quality Rating
Software
Packaging
Help
Printed Documentation
CBT
Timeliness

OVERALL PRODUCT QUALITY RATING

Appendix B Page I

PRODUCT Equation Detail

Please rate the statements below as
follows:

4 = STRONGLY AGREE with the statement
3 = AGREE
2 = DISAGREE
1 = STRONGLY DISAGREE

SOFTWARE
Statement for Product Area Exe Add-ins Setup
The localization is stylistically correct
The approved terminology was used
The page/screen layout matches the English product
The localization is functionally correct
Examples and templates have been appropriately localised
Overall, the localization is of good quality
Other comments

USER EDUCATION
Statement for Product Area Doc CBT Helps ¡Packaging
The localization is grammatically correct
The approved terminology was used
The page/screen layout visually matches the English product
The localization is functionally correct
The product terminology is correct
Examples and templates have been appropriately localised
The indexes are comprehensive and accurate N/A N/A

Overall, the localization is of good quality and meets market
requirements
Other comments

OVERALL PRODUCT COMMENTS
With which 2 or 3 items were
you particularly pleased?

COMMENT:

Which 2 or 3 items caused
the most number of PSS calls?

COMMENT:

Appendix B Page U

Statem ent Kilting Comments
The glossaries were received on time,
to enable feedback to be given
The design specs, were received on time,
to enable feedback to be given
The localization specs, were received on time,
to enable feedback to be given
We were kept up-to-date with schedules
on a fortnightly basis
The agreed delta was met
Our queries were answered in a timely manner
Our input was taken into consideration while
localizing the product
Beta copies of the software received as agreed
Feedback on beta version was acted upon
Feedback from PSS has been taken into account
We were invited to participate in the
Black Team testing
We were kept informed of progress, problems
and solutions throughout the project
Overall, the service we received throughout the
localization of this product met our requirements

PROCESS evaluation

OVERALL PROCESS COMMENTS
With which 2 or 3 items, relating
to process, were you particularly
pleased?

COMMENT:

Which items, if any, caused you
difficulty?

COMMENT:

Appendix B Page ili

Appendix C
:: " Vendor- Microsoft Feedback Report ■ ■ ■■■ ■ |

COMPLETED BY: DATE:

PRODUCT NAME & VERSION: LANGUAGE:

VENDOR: VENDOR PM:

RELEASE DATE OF PRODUCT: WPGI PM:

GENERAL v.; ■■■: ..:;I?::: f : j : ~ ' ■ :.:: ; : : . :1 : t : 1
Please tick the appropriate numbered reference below.

Glossaries:
[] 3 Software and General Glossary received during Vendor preparations phase; approved prior to

Vendor localization by Language Services and Subsidiaries; updated systematically throughout
the project, enabling costs to be maintained and acceptable quality achieved on schedule.

[] 2 Software and General Glossary received prior to Vendor localization; approved by Language
Services and subsidiary, not finalized; but updated systematically throughout project, costs
increased up to 10% of original cost; acceptable quality achieved on schedule.

[] 1 Software and General Glossary not received until after Vendor localization started; not approved
by Subsidiaiy or Language Services, causing poor quality; delays, rework and increased cost of
Vendor localization greater than 10% of original cost.

Comments Vendor Project Manager:

International Specifications:
[] 3 International Specifications received prior to Vendor localization; updated systematically

throughout the project, in anticipation of Vendor localization issues; enabling costs to be
maintained and acceptable quality achieved on schedule.

[] 2 International Specifications received prior to localization; not finalized; but updated throughout
project in, but requiring Vendor inquiiy of Specification issues; costs increased up to 10% of
original cost; acceptable quality achieved on schedule.

[] 1 International Specifications not received until after localization started; not updated, requiring
constant Vendor inquiiy, delays in Vendor localization; rework; and increased cost of Vendor
localization greater than 10% of original cost.

Comments Vendor Project Manager:

Deliverables:
[] 3 Preliminary delivery dates and Localization Kit * planned during Vendor preparations phase,

deliveries achieved according to all agreed dates, milestones and costs, facilitating project
management̂ in the Vendor and quality standards to be maintained

[] 2 Deliveries re-scheduled during Vendor localization, agreed with Vendor, causing project
management issues in the Vendor to arise in order to maintain quality standards; and costs to
increase up to 10% of original costs.

[] 1 Deliveries not communicated clearly to Vendor or agreed in advance, deliveries laic, causing
serious project management issues in Vendor to arise, causing costs to increase greater than 10%
of original costs, and compromising quality to achieve major project dates and milestones.

Comments Vendor Project Manager:

* Tools, source filet, beta software.
Resource planning, scheduling o f workloads, quality maintenance, cost control,

and delivery targets.

A ppendix C Page i

Training/Inst ructions:
[)3 Training needs identified. Training and Instructions were planned in advance of localization;

needs were identified to meet Localization goals, timely, supported during Localization,
evaluation acted upon.

[1 2 Training needs identified. Training and Instructions received after Localization start, useful to
meeting Localization goals but not directly relevant to project specifics, further instructions
required during Localization causing non-critical delays and rework.

[] I Training and Instructions not received or needs identified, instructions not provided, rework and
delays to major milestones caused.

Comments Vendor Project Manager:

Feedback:
[] 3 Quality Assurance checks carried out throughout localization, concise actionable feedback

supplied. Vendor feedback evaluated and acted upon,.
[] 2 Quality Assurance checks carried out through localization, feedback unclear, requiring further

clarification and rework, no clear response to Vendor feedback requiring re-work, but not critical
to project.

[] 1 No Quality Assurance checks carried out after Main QA, no further feedback, Vendor feedback
not responded to, causing project rework and slips in major milestones.

Comments Vendor Project Manager:

Communications:
[] 3 Weekly status report and schedule update from PM, informing of upcoming deliveries, progress

and forthcoming issues needing Vendor attention; frequent contact with Vendor teams during
Localization, ensuring progress and redressing critical issues within 24 hours.

[] 2 Irregular status report and schedule updates, intermittent contact with Vendor teams, some delays
in communicating information, but not causing Vendor project management issues.

[] 1 No status reports and schedule updates, poor contact with Vendor teams, causing project
management problems in Vendor and rework. Queries not responded to causing rework and
major milestones to slip.

Comments Vendor Project Manager:

WHAT WENT WELL?
Which 2 or 3 items do you think
went particularly well?

COMMENT:

W H A T S H O U L D B & I M P R O V E D ? Ill
Which items caused you most
difficulty and should be changed
for the next project?

COMMENT:

Signed: Date: 21 September, 1993

Appendix C Page ii

Appendix D
PROJECT FOl.I.OVV Ul>

Project M anagement, Formatting, Functionality, Language

PRODUCT NAME: VERSION:

LANGUAGE

PROGRAM MANAGER:

ORIGINAL RTM: ACTUAL RTM:

DID PERFORMANCE MEET OVERALL BUSINESS OBJECTIVES?:

SIGNED: DATE:

PROJECT MANAGEMENT ■ Æ-h?.^ v:-. : : ^ ^ ̂ .V |
Please tick the appropriate numbered reference below that most fils the description o f how the project was handled by the Vendor

General Project management:
[] 3 Understand and comply with agreed instructions, training and process; seek support and

information where necessary; achieve all major project dates and milestones, remain flexible to
change; adhere to all quality standards maintain cost control, add value to MS first time

[] 2 Understand and comply with agreed instructions, training and process; require extra support and
information to meet quality standards and project dates and milestones , negotiate over changes
and costs.

[] 1 Do not follow process, training an instructions, fail to make project dales and milestones and
quality standards, do not seek support and information where ncccssary, cannot accept change,
costly to MS, add no value to MS.

Comments MS Program Manager:

Timeliness:
[] 3 Deliver according to all agreed major project dates and milestones; maintaining quality standards

and costs.
[] 2 Deliver according to newly agreed dates during localization, adjustment required to dates in

WPGI but not affecting major dates and milestones; maintaining quality standards and costs.
[] 1 Do not deliver on time, do not inform WPGI of pending slip, cause project release/ship date to

slip.
Comments MS Project Manager:

Communication:
[] 3 Send weekly status report to PM accept and provide feedback, maintain two-way contact with

teams during localization, seek information and support where necessary, identify problems and
communicate issues to WPGI, facilitating delivery of acceptable quality product.

[] 2 Sometimes send weekly status report, intermittent contact with teams during localization,
feedback not always acted upon, do not seek information and/or implement changes until after
QA results received in order to maintain quality standards.

[] 1 Send no reports, maintain poor contact with teams, do not act on any feedback causing rework,
recurrence of problems and unacceptable quality.

Comments MS Project Manager:

Appendix D Page i

^ Ü D O R EVALUATION SU M M A R Y

Category Overall Rating
Language
Formatting
Functionality

Category Overall Rating
Language
Functionality/formatting

DOCUMENTATION

HELP

CB T/CUEO ARiI?W iZARDS I

Catepory Overall Rating
Language
Functionality/Formatting

SOFTWARE

Category Overall Rating
Language
Functionality/Formatting

Appendix D Page II

Appendix E
Vendor Quality Criteria
and Definitions

Language Criteria A ccuracv o f Translation/Localisation.
Does the translated/localised text factually covcr the English sourcc text, has
all necessary text been translated/localised, does the software contain spelling
errors, typing errors?
Terminology.
Does the translation/localisation adhere to the glossary, have non-glossary
terms been translated appropriately and is the terminology consistent within
the product family?
Style.
Is the translated/localised text clear and concise, is the tone direct, modern
and friendly, have all examples been localised appropriately?
Language.
Are grammar, spelling and punctuation correct?
Country.
Have all country-related (NLS) data been implemented correctly?
Index. (Documentation only)
Has the index been translated/adapted correctly?________________

Help/CBT/
Cuecards/Wizards

Formatting and
Functional Criteria

Topic Errors
Are there any broken links for jumps or pop-ups? (Use YETI to check).
Footnote Errors
Is there any missing footnote information, or formatting problems in the
footnotes? (Use FOOF to check).
Graphics Errors
Are the art pieces displayed at the proper places, and are all pieces included?
(Use HlpDrv. to step through); are the art picces completely visible,
completely translated, and displayed correctly on the required display units?
(compile a Help file which only contains the art, and view this help file with
the winhelp engine).
Layout Errors
Does the layout obscure the meaning of the text? (Use HlpDrv. to step
through); Is the layout affected by resizing the window of the Help file? (Use
HlpDrv. to step through, and resize the screen to approx. 40% of its normal
size).

A ppendix E Page i

Documentation
Formatting and

Functional Criteria

Font Errors
Have the correct standard fonts been used throughout the documentation?
Are type sizes all correct?
Template Errors
Have standard templates been used, and not cliangcd? Arc page margins
correct?
Format Errors
Has overtyping been performed correctly? Arc words and paragraphs
formatted and spaced according to standard practice?
Page Format Errors
Is page numbering correct? Are the page-breaks where they should be? Arc
all page headers correct?
A rt Errors
Are art references correct, and art picces in the appropriate positions?
Index errors
Are all index codes present? Are all paragraph tags present?
Output Errors
Are postscript files naming conventions followed and are the files in the
correct file format? Is the runlist information correct?
Inconsistencies
Is the documentation consistent with the software, Help, CBT, Cuccards, and
Wizards with respect to hotkeys, status bar, alert messages, etc.?
Graphic Errors
Are all art pieces correctly localised, appear in the appropriate places, with
accurate callout references?
Localisation Errors
Is the localisation technically accurate, showing a thorough understanding of
the product by the vendor? _

Software
Formatting and

Functional Criteria

Text Errors
Is required text present and displayed correctly, with correct formatting and
alignment, not truncated and no garbage, 'funny-facc', characters present?
Die. Box Errors
Are there any misalignment, missizing or mispositioning errors concerning
either dialog boxes or their components (check boxes, buttons etc.)?
Hotkey Errors
Are there any missing or duplicate hotkeys?
M acro Errors
Can macros be recorded correctly, and do supplied macros run without error?
Functional Errors
Does the software function according to expectations?_____________

Appendix E Page ii

Quality Definitions

Ratings and Rating
Parameters

5 Exceptional Quality
Language:

Formatting:

Functionality:

Language:

Formatting/Functionality:

Language:

The ratings resulting from the QAs are based on:
10.000 words of Documentation
5.000 words of Help
5.000 words of CBT, Cuccards, Wizards

Doc, Help, CBT, Cuecards, Wizards:
Describes functionality very accurately. Info very accessible, consistent
terminology, style. No grammar, punctuation, spelling errors. All page refs
correct. Complete index. Correct NLS data.
All standard fonts and templates used. No paragraph style or character
formatting errors. All art referenced correctly. No index or TOC formatting
or reference errors. Help is complete with perfect alignment and no display
errors.
Documentation and help fully consistent with software. Correct art pieces
inserted throughout, with all callout references in documentation accurate.
Technically accurate localisation, with no misleading statements, showing a
thorough understanding of the product. No topic or footnote errors in help.
Software, Setup:
No language bugs. Completely, accurately localised. Examples very well
localised. UI terms consistent, adhering to MS guidelines, accurately
describing functionality. Fully correct NLS data.
Dialog boxes all correctly sized. No duplicate hotkeys. All text items
localised, aligned correctly and fully visible on screen. Macros correctly
localised and fully functional.
Packaging:
Info very accessible. Very well written, consistent, well localised. No
language, terminology errors. Fully correct NLS data.

Appendix E Page Hi

4 Excellent Quality
Language:

Formatting:

Functionality:

Language:

Formatting/Functionality:

Language:

3 Good Quality
Language:

Formatting:

Functionality:

Language:

Formatting/Functionality:

Language:

Doc, Help, CBT, CuecarJs, Wizards:
Describes functionality accurately. Most info readily accessible. Consistent
terms, style. Most examples well localised. Very few grammar, punctuation,
spelling errors. Very few inconsistencies. Very few errors in page refs or
index. No critically wrong NLS data.
All standard fonts and templates used. Documentation well-formatted with
few style or character formatting errors. Art correctly referenced. Help is
complete with good alignment and few minor display or graphics errors.
Documentation and help very consistent with software. Localisations
adequate and technically accurate, demonstrating a good understanding of
the product. Correct art pieces inserted throughout, with accurate callout
references. Help functionally correct with no noticeable topic or footnote
errors.
Software, Setup:
No language bugs. Completely, accurately localised. Examples well localised.
Few UI terms inconsistencies. No critically wrong NLS data.
Macros correctly localised and functional. Localisation docs not break any
aspects of functionality. Software contains no severity 1 or severity 2
localisation bugs. Few minor or trivial errors present.
Packaging:
Most info accessible. Well written, consistent, well localised. Very few
language errors. No terminology errors. No critically wrong NLS data.

Doc, Help, CBT, Cuecards, Wizards:
Describes functionality adequately. Info generally accessible, writing style
acceptable; terms generally consistent. Examples localised fairly well. Few
grammar, punctuation, spelling errors. Few inconsistencies, errors in page
refs or index. Fully correct NLS data.
Adequately formatted for market needs. Contains no major formatting errors
which impact on the user's ability to understand the
documentation/help/CBT. Few errors in character, paragraph and index
formatting.
Functionally correct, meeting market requirements. Few localisation
inconsistencies, in non-significant areas.
Software, Setup:
No language bugs. Adequately localised. Examples adequate. UI terms
adequate. Few errors in NLS data.
Software well-localised, with few user interface errors which do not impact
on the product's ability to satisfy the user's requirements. Functionality not
impaired as a result of localisation.
Packaging:
Info generally correct. Writing style acceptable, consistent. Acceptably
localised. Few language, terms errors. Few errors in NLS data.

Appendix E Pag« Iv

2 Needs Improvement
Language:

Formatting:

Functionality:

Language:

Formatting/Functionality:

Language:

1 Unsatisfactory
Language:

Formatting:

Functionality:

Language:

Formatting/Functionality:

Language:

Doc, Help, CUT, Cuecards, Wizards:
Does not adequately describe functionality/describes some incorrectly. Info
difficult to access. Writing style not appropriate, consistent; terms not always
consistent. Many examples not well localised. Many grammar, punctuation,
spelling errors. Many inconsistencies, errors in page refs or index. Many
errors in NLS data.
Some changes made to standard fonts/templates supplied. Many format
errors. Needs general improvement to comply with market requirements.
Contains obvious errors that should have been caught and corrcctcd before
handoff.
Help contains topic and footnote errors, demonstrating that tools provided
have not been used properly. Several inconsistencies found between
documentation, help and software.
Software, Setup:
Language bugs. Inadequately localised. Examples inappropriate. UI terms
often inconsistent. Many errors in NLS data.
Contains some severity 1 or 2 localisation bugs. The number of minor
localisation errors found shows that the software has not been adequately
tested before handoff.
Packaging:
Info difficult to access. Poor writing style, inconsistent. Not well localised.
Many language, terms errors. Many errors in NLS data.
Doc, Help, CBT, Cuecards, Wizards:
Product difficult to use (lack of info), no. of discrepancies between s/w and
doc. Info difficult to access. Writing style poor; terms inconsistent. Few
examples well localised. Numerous grammar, punctuation, spelling errors.
Many serious inconsistencies, errors in page refs or index. Unacceptable
errors in NLS data.
Difficult to use due to some serious formatting and layout errors. Standard
templates/fonts not adhered to. Requires a significant amount of rework to
comply with market requirements.
Many inconsistencies between doc, help and software. Several jumps/popups
not functioning in help. Poor understanding of product, leading to
inadequate technical localisations throughout.
Software, Setup:
Seriously inadequate localisation. May present significant usability problems.
Inconsistent UI terms. Unacceptable errors in NLS data.
Contains a significant number of localisation bugs. It takes longer to report
the bugs than to test the product, demonstrating the lack of any QA check
before handoff. Significant amount of rework required to bring the software
to an acceptable standard.
Packaging:
Info not accessible. Writing style very poor, inconsistent. Poorly localised.
Very many language, terminology errors. Unacceptable number of errors in
NLS data.

Appendix E Page v

Implementing Metrics

What
The Metrics arc broken down into the main functional areas of each project. Within each functional
area, the main activities have been defined. The data collected is a measure of the project, not of
individual performance. The metrics are collected for the use of the project team itself, as will be
explained further in this document. Any measures that are not applicable to a particular project should
be shaded out in the data sheets by the person in the PU who sets up the files for each project.

Who
Generic metrics sheets are provided for each Unit to adapt to include the names of their projects.
Different people are responsible for different areas of the metrics sheets, although the responsibility for
the accuracy of the data belongs to everyone on the team.
The metrics can be prepared and analysed for several recipients. First and most importantly for the
team working on the project, secondly for the PUM and thirdly for people outside the PU, ie those in
Ireland and in Redmond that are interested in the progress of the localisation process. We need to be
able to show all interested parties how we have improved and how well we are doing.

When
In order to keep track of most of the metrics, a weekly sheet should be filled in, which will be rolled up
monthly to provide data for monthly reports, and give a good insight as to where the project is currently
at. Some of the measures are only required monthly, whilst a few arc entered at the end of the project.
At the end of the project, the metrics will form a major part of the Post Mortem report.

Where
Each PU will create its own directory structure on one of their servers, and will create files for each
week and each month of the project for the specific metrics categories. At the end of the project, all
sheets should be available so that a detailed analysis can be carried out and the relevant reports on
productivity rates, schedule, rework and quality can be produced.

Why
Our overall company goal is to improve our localisation process in terms of time, quality and cost. In
order to do this, we must have some tangible measures of success. The metrics that have been selected
are indicators that will help us identify our improvements against the following specified goals:
• Reduce the cost of rework
• Improve the quality of our localised products
• Improve the productivity of our teams
• Improve the accuracy of the estimates of effort and timescales for projects

How
The following pages contain guidelines for filling in the data on each of the metrics sheets, in addition,
the following general guidelines should be noted:
1. For data on Personweeks, include all time spent working on the area, including overtime. 8 hours

constitutes one day. Round the number of weeks to the nearest week. This is not a time tracking
system, so if there are 2 people who were formatting for the month, one of whom was in for the four
weeks, with no O/T, and the other person was out sick for 1 of the weeks, then the total to be
entered is 7 person weeks.

2., Rework causes are important and should be as accurate as possible, so that we can work to eliminate
the major causes.

3. Unapplied time is defined as time spent on areas other than project work, eg when someone is
between projects, and waiting for something from the US.

4. Bug analysts will be automated and the standard queries provided on the RAID servers.
A ppendix F P age i

Releases

Measurement
Item'

Entry
required ::

Definition H " Who Whèn Benefits/trends Useful calculations for
reports

Product
Releases
' ...

Number of
releases

The product is released when it has
been fully signed off to
Manufacturing

Program
Manager

Monthly

Software Re-
releases 11....

No. Software
re-releases

A product re-release occurs when a
new part number is generated for
one or more disks of the product

Program
Manager

Monthly This measure shows us the true
quality of our software output.
Ideally, this number should decrease
and approach zero

no. re-releases divided
by no. releases, as a
percentage

No. of film re-
releases

A film re-release occurs when new
film is generated for the product, as
a result of an error made by WPGI

Program
Manager

Monthly This measure shows us the true
quality of our film output. Ideally,
this number should decrease and
approach zero

no. re-releases divided
by no. releases, as a
percentage

. . s:::

Number of
disks released

The number of Golden Master Disks
signed off to Mfg - all media.

Program
Manager

Monthly

Disk Re*
releases:

No. disks re-
released

A disk re-release occurs when only
the MDC# changes, not the part
number

Program
Manager

Monthly This number should decrease and
approach zero

no. re-released disks
divided by no. released
disks, as a percentage.

Ddta: Current Delta The delta is the difference between
the US release date and the localised
product release date, expressed in
elapsed days

Program
Manager

Monthly As our processes improve, the deltas
should get shorter.

Obtain from Project
Status Report

A ppen dix F P age 2

Documentation

Measurement Entry Definition . * u ,1 ¡ I I I When Benefits Useful calculations for
reports 118

Effort - Person > No. p/weeks
weeks format

No. weeks Editors spent formatting
the documentation (include O/T)

PTL Monthly Measuring effort spent has two main
uses - firstly, it improves planning,
costing and scheduling of the project,
secondly personweeks is used as the
basis for the productivity metrics below

1 i |^ No. p/weeks
add-ins

No. weeks Editors spent on mi sc add­
ins (if applicable)

PTL

No*p/weeks No. weeks Artists spent prepping art PTL

■ > , .
No. weeks Localisers spent reviewing
the documentation

LTL

.. ^ i weeks
No. weeks Editors, Artists and
Localisers spent on rework

PTL &
LTL

i p i i m No. weeks Editors, Artists, Localisers
were not working on the project

PTL &
LTL

No-pages The total originally planned no. pages PM Project
start

formatted

j p M B j W

The number of pages formatted (ie
edited/cleaned up, etc.) by the
Editors)

PTL Monthly Measuring throughput will confirm
productivity improvements as a result
of process or tool improvements, eg
how will the MSD affect the no. of
pages that can be formatted in a
personweek? The cumulative % of the
total to be formatted will assist in
managing the project.

Pages formatted
divided be the
personweeks (s) of
effort
and cumulative pages
as a % of total to be
formatted

Pgs. reworked: No. Pages
■ ■■

The total number of pages rework PTL Monthly should decrease and approach zero Pages reworked,
divided by the total
planned pages,
expressed as a %

Add-tnS 'IS ilf^ i No. pages of
(¡f applicable) add-ins

The quantity of add-in items, such as
misc. fliers, offers, etc.

PTL Monthly Much time and effort on some projects
is spent on areas not covered by the
formatting and art prep columns, which
should be measured in order to see
where improvements can be made

Loe Review: No. pages
h'M ' - - reviewed

The number of pages reviewed from
translation by the localiser

LTL Monthly Ideally, this should decrease and
approach zero, if the translators are
getting it right first time.

Pages reviewed divided
be the no. of pages
translated, as a %

A ppendix F Page 3

Measnî entli
n e m m m m m ïà t

Entry
require<i:;ltlll

Definition Who : When Benefits Useful calculations for
reports

Pieces planned No. Dieces The total originally planned no. pieces PM Project start
Actual Art

i.p- :
: ...

No. art pieces
completed

The number of pieces of art completed
(ie shot and prepped).

PTL Monthly New art procedures and techniques may
impact the efficiency with which art can
be completed, hence the need to
measure the current throughput.

Actual art divided be
the personweeks of
effort; and cumulative
art as a % of the total
planned

Art Re­
worked:

No. Pieces The total number of pieces of art
reworked

PTL Monthly should decrease and approach zero

LocQA: : No. Pages The number of pages QA'd by the
localiser.

LTL Monthly If the Quality of the original work
increases, the QA checks should go
much faster, hence throughput of pages
will be higher.

Pages QA'd divided be
the personweeks of
effort

No. Pages The number of pages QA'd by the
PTL.

PTL Monthly If the Quality of the original work
increases, the QA checks should go
much faster, hence throughput of pages
will be higher.

Pages QA'd divided be
the personweeks of
effort

Art Reviewed

¡¡¡III
No. Pieces

1

The number of pieces of Art reviewed
by the PTL

PTL Monthly If the Quality of the original work
increases, the art reviews should go
much faster, hence throughput of pieces
will be higher.

Pieces reviewed
divided by the
personweeks of effort

Documentation
Rework Causes

.
f|illi

. v :?a .'4

No. Translate
No. Format:
No. Update:
No. Loc:

No. pages reworked due to errors
made by the translation vendor
No. pages reworked by the Editor due .
to formatting errors.
No. pages reworked by the Localiser
due to updates
No. pages reworked by the Localiser
due to Localisation error.

LTL
PTL
LTL
LTL

Monthly Knowing the amount and type of
rework, we can concentrate on
eliminating the major root causes of the
rework

Pages reworked due to
each category, as a
percentage of the total
reworked

Art
Rework Causes

No. Format:

No. Update:
No. Loc:

No. pieces reprepped by the Artist due
to formatting errors in the prepping
process
No. pieces reworked by the Artist due
to updates
No. pieces that were reshot due to
errors in the original dump.

PTL

PTL
LTL

Monthly Knowing the amount and type of
rework, we can concentrate on
eliminating the major root causes of the
rework

Pieces reworked due to
each category, as a
percentage of the total
reworked

A ppen dix F P age 4

Software

Measurement ?
S í l ' l

Metric ;,;
-

Definition
1111 «-ho When Benefits Useful calculations for

reports
Effort * Person

I vl

No. P/weeks
Test

The no. of p/weeks Test Technicians
spent working on testing each section
of the Software - exe, setup, cbt, help,
wizards and add-ins
Also time spent by Engineers and
Localisers in bugfixing effort

TTL Monthly Measuring effort spent helps improves
planning, costing and scheduling of the
project

No. P/weeks
Eng fix

Time spent by Engineers in bugfixing
effort

SWM

No. P/weeks
Locfix

Time spent by Localisers in bugfixing
effort

LTL

m
m

m
m The TOTAL number of bugs in the

database on the last week of the
calendar month

TTL Monthly Number of additional bugs per month
should decrease as the shipdate
approaches. The total bugs per language
should decrease as the releases proceed.
Improving the localisation process
should produce fewer total bugs over
time.

Obtain from RAID

No. Bad Bugs The no. of bugs with resolved = not
repro, duplicate or by design

TTL Monthly

No. Active
bugs ;

No. Active
bugs

The number of bugs with STATUS =
Active on the last week of the calendar
month

TTL Monthly Should decrease closer to ship date Divide Active bugs by
the Total number of
bugs, expressed as a %

US bugs: " No. US bugs The number of bugs found which also
occur in the US version, and were not
introduced during Localisation

TTL End of
Project

Obtain from RAID

International?
functionality:

No. Inti
Funct. bugs

The number of bugs that were caused
by the US code not being developed
for ease of localisation

TTL Monthly This gives a measure of the
localisability bugs remaining in the
code

Obtain from RAID

Localisation
■

::

No.
Localisation
bugs

A localisation bug is one which was
introduced during the localisation
process.

TTL Monthly This shows us the number and % of
bugs that were introduced during the
localisation process. The number of
localisation bugs should decrease.

Obtain from RAID

A ppendix F P age 5

No. bugs per
thousand
localisable
items

Cost in time of
each category
of bug

Current test
pass

Break down the total number of
Localisation errors into these
categories
Hotkey (duplicate or missing)
Dialog box (missizings;
misalignments)
Text: (missing; alignment, incorrect;
untranslated, punctuation)
Int'l F: (hard coding; macro func),
Average elapsed time between
activating and closing the bug report
for each bug category

This shows the current test pass
number for each element, to include
regression passes - .exe, setup, cbt,
help, wizards and add-ins

TTL

TTL

TTL

TTL

Project end

Project End
to start
with.
Monthly
once it is
automated

Project end

Monthly

This help us compare bug densities
across projects and across PUs

This is one of the most important
metrics and the bugs are further broken
down into the most common categories.
This helps us focus our improvement
efforts on the main causes of these
errors.

This shows us the amount of time being
spent finding, fixing and regressing
each category of bug, hence where most
time savings can be made by reducing
the number of certain types of error
Ideally, there should be 2 test passes
(the first one and the regression pass).
From month to month, we can also see
the increase in the total number of bugs
per test pass.

Divide no. of
localisation bugs by the
number of localised
items, (KItems) and
express per thousand
Bugs in each category,
as a percentage of the
total localisation bugs

Obtain from RAID

For planning purposes,
divide the no. of
personweeks by the test
pass no. to get average
test pass duration for
each element of the
software

No. P/weeks No. weeks Testers were not working
on the project_____________

TTL Monthly Will help improve planning, costing
and scheduling____________

A ppendix F Page 6

Measoranent
w m m m

Metric Definition:■ ■. 7 s W.-;1 1 i
Who When Benefits Useful calculations

for reports
Effort** bersonv.xîvb', vx---. y...: %weeks

y m

No. p/weeks
Localisation

The no. of localiser personweeks spent
working on each section of the Software,
as defined below

LTL&
SWM

Monthly Measuring effort spent has two main
uses - firstly, it improves planning and
scheduling of the project, secondly is
used for the productivity metrics below

Personweeks used as
basis for the other
measures

Tokens
translated:
- *** -

' :
m

No. tokens
translated

The number of strings translated by the
Localiser in the month.

LTL Monthly This gives us a ball-park figure of how
long it takes to localise token files, and
will measure the efficiency of new tools
such as Glossman as compared to a fully
manual process. The cumulative %
complete also aids project management.

No. strings divided be
the personweeks of
effort; and cumulative
strings as a % of total

No. DBs and
no. Hotkeys

The number of dialog boxes prepared in
the month and the corresponding no. of
hotkeys localised

LTL Monthly Again, improvements in the process
should be reflected here. Software
Localisers spend most of their time
either translating tokens or sizing dialog
boxes. The cumulative % complete also
aids project management.

No. DBs divided be
the personweeks of
effort; and cumulative
DBs as a % of total

m |
No. Screens

1

The number of CBT screens localised in
the month

LTL Monthly New CBT procedures and tools may
impact the efficiency with which CBTs
can be localised. The cumulative %
complete also aids project management.

No. screens divided
by the personweeks
of effort; & cum.
screens as a % of total

Help Pages: .
;r -i;;- -

v | V J.-;

No. pages and
no. words

The number of pages of Help prepared in
the month and the corresponding number
of words.

LTL Monthly New Help procedures and tools may
impact the efficiency with which Helps
can be localised, which needs to be
measured. The cumulative % complete
also aids project management.

No. pages divided be
the personweeks of
effort; and cumulative
pages as a % of total

Adkins: .g •
. ■’■ ■ ■.

No. P/weeks The time taken, to localise each add-in
(add-ins to be specified on the sheet)

LTL Monthly Add-ins cannot be measured in the same
way as other elements, but take up a
substantial amount of time, and should
be thoroughly planned for.

Cumulative
personweeks as a %
of the planned
personweeks

Unapplied!!,..
P/weeks

No. P/weeks No. weeks Localisers were not working
on the project

LTL as above Will help improve planning, costing and
scheduling

Engineer
P/weeks

No. P/weeks No. weeks Engineers spent setting up the
project and helping with the localisation

SWM as above

Project planned
totals

No. tokens,
pages, words,

The number of each item originally
planned for the project

PM project
start

A ppen d ix F P age 7

Appendix G

Suggested categories for an effort-reporting system

Aren
Localiser E ngineer Tesi P roduction T cch Spcc PM

Total
Glossaries 0 n/a n/a n/a n/a n/a
Main.cxc 0 0 0 n/a n/a n/a
Add-ins 0 n/a 0 n/a n/a n/a

Help 0 n/a 0 n/a n/a n/a
CBTAVizards 0 n/a 0 n/a n/a n/a

DTP n/a n/a n/a 0 n/a n/a
Indexing/proofing n/a n/a n/a 0 n/a n/a

Rework 0 n/a n/a 0 n/a n/a
Vendor QA 0 n/a 0 0 0 n/a

Vendor Project Mgnit. n/a n/a n/a n/a 0 0
Vendor Support 0 0 0 0 0 0
Vendor Training 0 0 0 0 0 0

Internal Project Support n/a 0 n/a n/a 0 n/a
Project Management n/a n/a n/a n/a n/a 0

Total

This gives a total of 14 activity areas, with 35 possible combinations between all
functions.

Note that there should be no 'other' category, 'vacation/sick time', etc. Also, time
should be recorded in mandays, not in hours, then rolled up each month to give
information in manweeks.

A ppendix G Page i

A p p en d ix H - C u rren t M e tr ic s

Category Description Source
Reporting

m echanism

Size: Num ber localisable words in main .exe and associated .dlls PM Post M ortem

budget, forecast. Num ber localisable m enus and dialog boxes in m ain .exe, etc- PM Post M ortem

shipped & w orked on Num ber localisable words in Setup, Add-ins PM Post M ortem

Num ber words Help PM Post M ortem

Number pages Doc PM Post M ortem

Number pieces Art PM Post M ortem

Number words/screons CBT PM Post M ortem

Number cartons PM Post M ortem

Num ber covers/m isc docs PM Post M ortem

Timeliness Actual vs. planned absolute release date PM Post M ortem

Actual Delta vs. planned Delta PM Post M ortem

Releases Num ber products released PM M onth report

Number disks released PM M onth report

Number pages film released PSM M onth report

Number products re-released PM M onth report

Num ber disks re-released PM M onth report

Number pages film re-released PSM M onth report

Cost vs forecast total project cost C alculated P ost-M ortem

& vs budget overall project cost per word by elem ent Calculated Post-M ortem

internal costs Calculated P ost-M ortem

external (invoiced costs) Calculated Post-M ortem

Invoiced cost of rework Calculated Post-M ortem

Q uality Number localisation bugs per bug origin RAID Post M ortem

Num ber bugs, broken dow n by 'type' keyw ord RAID Post M ortem

Num ber loc bugs per K loc words, broken d o w n by severity Calculated Post M ortem

S oftw are quality rating Subsidiary Sub Eval Form

CBT quality rating Subsidiary Sub Eval Form

Help quality rating Subsidiary Sub Eval Form

Docum entation quality rating Subsidiary Sub Eval Form

Packaging quality rating Subsidiary Sub Eval Form

Effort Num ber days project m anagem ent RTS Post M ortem

(report both m onthly Number days spent in glossary preparation RTS Post M ortem

and in Post M ortem) Num ber days so ftw are localisation RTS Post M ortem

Num ber days Docum entation localisation RTS Post M ortem

Num ber days help localisation RTS Post M ortem

Num ber days C B T/W izards localisation RTS Post M ortem

Num ber days add-ins localisation RTS Post M ortem

Num ber days S oftw are Engineering RTS Post M ortem

Num ber days docum entation dtp RTS Post M ortem

Num ber days docum entation indexing/proofing RTS Post M ortem

Num ber days S o ftw are Testing RTS Post M ortem

Num ber days Help Testing RTS Post M ortem

Num ber days C B T/W izards Testing RTS Post M ortem

Num ber days add-ins testing RTS Post M ortem

Num ber days rework RTS Post M ortem

Appendix H • , Page 1

A p p e n d ix H - C u rren t M e tric s

Num ber days Vendor Project M anagem ent RTS Post M ortem

Num ber days Vendor Support RTS Post M ortem

Num ber days Vendor Training RTS Post M ortem

Num ber days Vendor QA RTS Post M ortem

Num ber days internal project support RTS Post M ortem

Throughput Num ber words S oftw are localised per m anm onth Calculated Post M ortem

Numbor help pages localised per m anm onth Calculated Post M ortem

Num bor CBT screens localised per m anm onth Calculated Post M ortem

Num ber pages docum entation released per editor m anm onth Calculated Post M ortem

Percentage re-use docum entation pages Calculated Post M ortem

Percentage re-use help pages Calculated Post M ortem

Percentage re-use CBT pages Calculated Post M ortem

Percentage re-use pieces Art Calculated Post M ortem

Num ber of bugs found per Testing m anm onth Calculated Post M ortem

Num ber of test passes TTL Post M ortem

Rework Num bei w ords/pages help reworked PM Post M ortem

Num ber w ords/pages doc reworked PM Post M ortem

Num ber w ords/screens CBT reworked PM Post M ortem

Vendor rating S oftw are Vendor QA Post-M ortem

S oftw are language rating Vendor QA Post-M ortem

S oftw are form atting rating Vendor QA Post-M ortem

S oftw are functionality rating Vendor QA Post-M ortem

D ocum entation Vendor QA Post-M ortem

Help language rating Vendor QA Post-M ortem

Help form atting rating Vendor QA Post-M ortem

Help functionality rating Vendor QA Post-M ortem

Help Vendor QA Post-M ortem

D ocum entation language rating Vendor QA Post-M ortem

Docum entation form atting rating Vendor QA Post-M ortem

Docum entation functionality rating Vendor QA Post-M ortem

CBT / W izards Vendor QA Post-M ortem

CBT language rating Vendor QA Post-M ortem

CBT form atting rating Vendor QA Post-M ortem

CBT functionality rating Vendor QA Post-M ortem

Language Vendor QA Post-M ortem

Test Vendor QA Post-M ortem

Engineering Vendor QA Post-M ortem

DTP Skills Vendor QA Post-M ortem

Project M anagem ent / com m unication Vendor QA Post-M ortem

Tim eliness Vendor QA Post-M ortem

Appendix H . Page 2

Appendix I
Draft Post Mortem Template

Date:

Project Name:

Languages:

PM(s):

S/W Engineer(s):

Localisation Team:

Testing Team:

Production Team:

PPS:

Translation Vendors:

Contents

EXECUTIVE SUMMARY................ .
Project Management....................
Documentation.......................
Software...........................
Testing............................
Appendix A - Project Costs.................
Appendix B - Quality Measures............. .
Appendix C - Effort measures.............. .
Appendix D - Internal cfficicncy m etrics.......................... .

Appendix E - Vendor Localisation Ratings........................

A ppendix / Page i

EXECUTIVE SUMMARY

Project Overview

Introduction paragraph to projcct.

Schedules

Explain variations in actual vs. original. What went well and what to change for next version, in
bullet form

LANGUAGE Original Actual RTM Original Actual
RTM DELTA DELTA

US n/a n/a

Cost

Explain variations in actual vs. budget and vs. forecast. Reference detailed costs, Appendix A.

Budget Forecast Actual
Internal costs
External costs_______ ____________________
Total Projcct

Localisation strategy

Summary paragraph on strategy/methods used to localise the product, eg Vendors, in-house,
some of each.

Project Mangement
Summary of project management issues

Vendors
Summary' of vendor strategy, usefulness, quality, etc.

Resources
Comment on resources - machines and people.

A ppendix I P age li

Tools
what tools were used - how this affectcd quality, timeliness, cost - what to change for
version.

Summary of Recommendations for next project

• (Bullet points, in order of priority)

A ppendix I Page Hi

Project Management
Contact:

Summary

Intro paragraph here. Keep il brief and lo-lhc-point. Include how work with Vendors went, etc.

COST

Budget Forecast Actual
Cost per word S/W
Cost per word Doc
Cost per word CBT
Cost per word Help______________________ _______

Software

Printed Documentation

Online Documentation

Vendors

Vendor Project Management Ratings

Vendor Name Pro} M gm t Timeliness Commun. Lang Eng Test D TP
-

A ppendix I P age iv

Areas for improvement

{Issue #1}
Summary of issue

Recommendation or Action Item
Specific recommendalion or action item for next project.

{Issue #2}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next projcct.

Things that worked well

{Success #1}
Summary of successful practice

{Success #2}
Summary of successful practice

Appendix I Patfe v

Documentation
Contaci:

Summary

Intro paragraph, commenting on resources, schedules, tools.

Size measures

UK Element Hud gel Forecast Localised Reused Reworked Shipped
Number pages DOC
Number pieces Art
•Number words/pages Help
•Number words/screens CBT

* indicate whether words or pages arc being quoted.

Printed documentation

Schedules

Vendors
Includc Vendor overall documentation rating

Resources

Tools

Packaging

Areas for improvement

{Issue #1}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

{Issue #2}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

Things that worked well

{Success #1}
Summary of successful practice
{Success #2}
Summary of successful practice

Online documentation

A ppendix I P age vi

Schedule

Vendors
Include vendor overall CBTand Help ratings
Resources

Tools

Areas for improvement

{Issue #1}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

{Issue #2}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

Things that worked well

{Success #1}
Summary' of successful practice

{Success #2}
Summary of successful practice

A ppendix I Page vii

Software
Contact:
Summary

Summary paragraph should contain details of the compilo kit, tools, and interaction with other
groups in WPGI and Redmond. Keep to 1 page max.

Size measures

Software Element ßuduct Forecast Actual
Words in Main.cxc
Menus in Main .cxc
Dialogs in Main .cxc
Words in Selup/Add-ins
Words in Text flics

Localisation/Vendors
Schedule

Vendors
Include vendor overall software rating

Resources

Tools

Engineering

Schedule

Resources

Tools

Areas for improvement

{Issue #1}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

{Issue #2}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

Things that worked well

{Success #1}
Summary of successful practice
{Success #2}
Summary of successful practice

A ppendix I Page viii

Testing
Contact:

Summary

Start with a summary paragraph of the testing strategy, and commcnt on interaction with
localisation and the US Test group, automation, resources and schedules.

Schedule

Resources

Tools
Include summary of automation strategy.

Quality
Reference pareto chails and bug density metrics in Appendix B.

Software

Language 1 1 1 ! 1
Resource f ix
Code-fix
Compile Error
US Bug

Total
Include summary of software quality and conclusions from bugs info above

Add-ins

Language 1 1 1 1 1
Resource f ix
Code-fix
Compile Error
US Hug

Total
Includc summary of add-ins quality and conclusions from bugs info above

Help

Language I t i l i
Resource f ix
Code-fix
Compile Error -
US Rug

Total
Include summary of help quality and conclusions from bugs info above

A ppendix / • Page ix

CBT/Wizards

I Ain gnagu I I I I I
Resource f ix
Code-fix
Compile Error
US Hug

Total
Includc summary of CBT/Wizards quality and conclusions from bugs info above

Bugs per Tester day (Testing efficiency)
divide number of bugs by number of tester days

Language I I I I !
Software
Add-ins
Help
car

Total

Areas for improvement

{Issue #1}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

{Issue #2}
Summary of issue

Recommendation or Action Item
Specific recommendation or action item for next project.

Things that worked well

{Success #1}
Summary of successful practice

{Success #2}
Summary of successful practice

A ppen dix I Page x

Appendix A ■ Project Costs
(attach Exccl Spreadsheet containing the following info, per language

C ategory Software D ocum entation Help CUT Total
Total cosi

In v o iced re w o rk

Genera l observations and conclusions o f Cost measures:

Appendix B - Quality Measures

Pareto Chart of Bug Type (per language)
(import this from an Excel Chart/Spreadsheet, having obtained the info through a RAID query)

Bug Density
Number o f bugs per thousand localisable words
(divide number of localisation bugs by number of localised words for each of software, add-ins,
CBT and Help, and multiply by one thousand. Note, setup may be included with add-ins, or
different types of add-in may be separated. It may also be useful to separate severity 1/2 bugs from
severity 3/4 bugs)

Language 1 1 1 1 1
Software
Add-ins
Help
CBT

Total

General observations and conclusions of Quality measures:

• (bullet form)

A ppendix I Page x i

Appendix C ■ Effort measures

Attach spreadsheet or charts containing the cftbn measures for eacg project category
G enera l observations and conclusions o f E ffo r t

measures:

• (bullet form)

Appendix D ■ Internal efficiency metrics

Attach spreadsheet containing the following info, which has been calculated from the software
size and the total effort.

Internal Efficicncy Stats Software Words Help pages CBT scrccns Doc pgs. reviewed
No. per person-month

Appendix E - Vendor Localisation Ratings

Attach the following information in the form of a report from the vendor database.
Vendor Name /.augnane Formattine Fund. Vendor Name Language Formatting Fund.

Software Software
Documentation Documentation
Kelp Help
CBT c u r
Packaging Packaging

Vendor Name Language For malting Fund. Vendor Name Language Formatting Fund.
Software Software
Documentation Documentation
Help Help
CBT CBT
Packaging Packaging

Vendor Name Language Formatting Fund. Vendor Name Language Formatting Fund.
Software Software
Documentation Documentation
Help Help
CBT CBT
Packaging Packaging

G eneral observations and conclusions of V en d o r
measures:

• (bullet form)

A ppen dix I Page x ii

B IB L IO G R A P H Y

[Albrecht83]

[AMI92]

[Ashley91]

[Beizer84]

[Bhide90]

[Bock92]

[Boehm81]

[Bollinger91]

[Brooks75]

[Choppin91]

[Cusumano91]

[CSE92]

Software function, source lines o f code, and development
effort prediction: a software science validation, Allan J.
Albrecht and John E. Gaffney Jr., IEEE Transactions on
Software Engineering, Vol. SE9, No. 6, pp. 639-648,
November 1983.

Metric Users' Handbook, The AMI Consortium, South Bank
Polytechnic, London, England, 1992

Measurement as a Management Tool, Nicholas Ashley,
proceedings o f seminar 'Management and Testing o f Software
for Quality', Unicom Seminars Ltd., London, Feb. 1991

Software System Testing and Quality Assurance, Boris Beizer,
Van Nostrand Reinhold, New York, 1984

Generalised Software Process-Integrated Metrics Framework,
Sandhiprakash Bhide, Journal of Systems and Software, vol.
12: pp 249-254, 1990

FP-S: A Simplified Function Point Counting Method, Douglas
B. Bock and Robert Klepper, Journal o f Systems and
Software, Vol. 18, pp245-254, 1992

Software Engineering Economics, B.W. Boehm, Prentice-Hall,
Englewood Cliffs, New Jersey, 1981

A Critical look at Software Capability Evaluations, Terry
Bollinger and Clement McGowan, IEEE Software, July, 1991

The Mythical Man-Month, Frederick P. Brooks, Addison
Wesley, 1982

Quality through People, Jon Choppin, IFS Publications,
London, 1991

Japan's Software Factories, Michael A. Cusumano, Oxford
University Press, New York

Proceedings o f the Colloquium on Cost Estimation, 31 March,
1992, Centre for Software Engineering, Dublin City
University.

[Davis92a]

[Davis92b]

[Dehnad90]

[DeMarco82]

[Green92]

[Halstead77]

[Henry90]

[Hooten92]

[Humphrey88]

[Humphrey91a]

[Humphrey91b]

[Jones85]

[Kadota92]

[Kemerer93]

Develop applications on time, every time, Dwight B. Davis,
Datamation,, v3S, n22, pp85-88 Nov 1, 1992

Does your IS shop measure up?, Dwight B. Davis,
Datamation, v3S, n 1 8, pp 26-32, Sept. 1, 1992

Software Metrics from a User's perspective, Khrosrow
Dehnad, J. Systems Software 1990; 13: pp 111-115

Controlling Software Projects, T. De Marco, Yourdon Press,
Englewood Clifts, New Jersey, 1982

Fewer programmers produce fewer bugs, Robert Green,
Government Computer News, vl 1 n 16 p81, Aug 1992

Elements o f Software Science, M. H. Halstead, Elsevier N-
Holland, 1977

Integrating Metrics into a Large-Scale Software Development
Environment, Sallie Henry and John Lewis, J. Systems
Software 1990; 13: pp 89-95.

Management By Numbers, Karen Hooten, Computer
Language, Dec 1992, v9 n l2 p93, Miller Freeman Publications
Inc.

Characterising the Software Process: A Maturity Framework.
Watts S. Humphrey, IEEE Software, March 1988.

Comments on 'A Critical Look', Watts S. Humphrey and Bill
Curtis, IEEE Software, July 1991

Software process Improvement at Hughes Aircraft, Watts S.
Humphrey et al, IEEE Software, July 1991

A process-integiated approach to defect prevention, Carole L.
Jones, IBM Systems Journal, Vol. 24, No. 2, 1985

Software Development Management Based On Progress
Curves Categorisation, Yasuhiro Kadota et al, proceedings of
the 3rd European Conference on Software Quality, Madrid,
November 1992

Reliability o f Function Points Measurement - A Field
Experiment, Chris F. Kemerer, Communications of the ACM,
Vol. 36, No. 2, February 1993

[Mennaid91]

[Metkit92a]

[Metkit92b]

[McCabe76]

[Musa89]

[Oates92]

[Peeters89]

[Pfleeger90]

[Pyramid91]

[Qualtec91]

[SEI91 a]

[SEI91-TR16]

[SEI91-TR24]

[SEI91-TR25]

[SEI92-TR19]

Description o f (he Knowledge Base, deliverable ref: D4A,
MERMAID - ESPRIT project P2046, 1991

Case Study - Setting up a Measurement Programme -
Metkit/ICSP/SN/ISSUE2, Esprit project 2384, Metkit
Consortium, 1992.

Defect Analysis as an Improvement Tool -
Metkit/IDFA/SN/ISSUE2, Esprit project 2384, Metkit
Consortium, 1992.

A Complexity Measure, T. McCabe, IEEE Transactions on
Software Engineering, Vol. SE2, No. 4 pp. 308-320,
December 1976.

Quantifying Software Validation: When to stop Testing?, John
D. Musa, IEEE Software, May 1989

Quality Starts at specs: open files, Joe Oates, Software
Magazine, vol. 12, no. 11, pp6-7, August, 1992

Thriving on Chaos, Tom Peeters, Pan Books, London, 1989

Software Metrics in the Process Maturity Framework, Shari
Lawrence Pfleeger and Clement McGowan, Journal of
Systems and Software, Vol. 12, pp255-261, 1990

Quantitative Management: get a grip on software!,
PYRAMID Consortium, ESPRIT project EP5425, 1991

Planning and Implementing TQM (Participant Workbook),
Qualtec Inc., 1991

Software Project Effort and Schedule Measurement (Draft),
Carnegie Mellon University, 1991

Measurement in Practice, Stan Rifkin and Charles Cox,
CMU/SEI-91-TR-16, Carnegie Mellon University, 1991

Capability Maturity Model fo r Software, M. C. Paulk et al,
CMU/SEI-91-TR-24, Carnegie Mellon University, 1991

Key Practices fo r the Capability Maturity Model, C. V. Weber
et al, CMU/SEI-91-TR-25, Carnegie Mellon University, 1991

Software Measurement for DoD Systems: Recommendations
for initial core measures, Anita D. Carleton et al, CMU/SEI-
92-TR-19, Carnegie Mellon University, 1992

[SEI92-TR20]

'. /

[SEI92-TR21]

[SEI92-TR22]

[SEI92-TR24]

[SEI92-TR25]

[Sellers92]

[Shen83]

[Sprouls90]

[Walsh93]

[Ward89]

Software Size Measurement: A Framework For Counting
Source Statements, R. E. Park et al, CMU/SEI-92-TR-20,
Carnegie Mellon University, 1992

Software Effort Measurement: A Framework fo r Counting
Staff Hours, W. B. Goethert et al, CMU/SEI-92-TR-21,
Carnegie Mellon University, 1992

Software Quality Measurement: A Framework fo r Counting
Problems and Defects, William A. Florae, CMU/SEI-92-TR-
22, Carnegie Mellon University, 1992

An Analysis o f SEI Software Process Assessment Results:
1987-1991; D.H. Kitson, S. Masters, CMU/SEI-92-TR-24,
Carnegie Mellon University, 1992

Software Measures and the Capability Maturity Model, J. H.
Baumert, M. S. McWhinney, CMU/SEI - 92-TR-25, Carnegie
Mellon University, 1992

Technical Correspondence, B. Henderson Sellers,
Communications of the ACM, Vol. 35, No. 12, December,
1992

Software Science Revisited: A Critical Analysis o f the Theory
and Its Empirical Support, Vincent Y. Shen et al, IEEE
Transactions on Software Engineering, Vol. SE9, No. 2, pp
155-165, March, 1983

IFPUG Function Point Counting Practices Manual Release
3.0, J. Sprouls, International Function Point Users Group,
Westerville, Ohio, 1990

Determining Software Quality, James Walsh, Computer
Language, Vol. 10, no. 4, pp 57-62, April 1993

Software Defect Prevention Using McCabe's Complexity
Metric, William T. Ward, Hewlett-Packard Journal, April
1989.

