
by

Thom as S. Leahy B.Sc.

i
»

A Thesis presented to 

Dublin City University

For the Degree of D octor of Philosophy

February 1998

School o f Physical Sciences 

Dublin City University 

Ireland

A Unified Approach to Statistical Estimation and Model

Parameterisation in Mass Calibration



I hereby certify that this material, which I now submit for assessm ent on the 

programme o f study leading to the award o f Doctor of Philosophy is entirely my own 

work and has not been taken from the work o f others save and to the extent that such 

work has been cited and acknowledged within the text o f my work.

Signed: S  • ID tyo.: °\1> \ I !

Date: I ^  /  °[ j  ____________



A Unified Approach to Statistical Estimation and Model

Parameterisation in Mass Calibration

“Dishonest scales are an abomination to th e  L o r d  

but a just weight is his delight”

Proverbs 11:1



Acknowledgements

There are several people and institutions who have contributed much-valued 

expertise to this research whose help I  gratefully acknowledge.

Dr. M ichael Glaser o f PTB has provided much help and facilitated two training 

visits to the mass calibration facilities at PTB, Braunschweig. H e has provided 

valuable insights into several aspects o f the experimental work and is responsible for 

pointing out the correlation between low humidity and calculated mass values 

discussed in Chapter 10.

Dr. Rom an Schwartz, also at PTB, gave valuable assistance at various stages. 

The data used in Exam ple II o f Chapter 10 was obtained at PTB with his help.

I  also had a  valuable discussion w ith Dr. Klaus W eise and Dr. W olfgang W oger 

at PTB which greatly increased m y understanding o f Bayesian probability theory and 

its applications in scientific analysis which has proved invaluable.

Dr. W alter Bich o f IM GC has helped by supplying several publications and 

useful com ments which inspired m uch o f the further development reported in this 

thesis.

Dr. R ichard'D avis at the BIPM , Paris was also very helpful in arranging time for 

me to visit the laboratories and in discussing the work carried out there.

Dr. Brian Lawless, my supervisor at DCU, has been instrumental in encouraging 

the work at all stages and has provided assistance and advice too numerous to 

mention! Prof. Eugene Kennedy, H ead o f the School of Physical Sciences at DCU, 

has also provided significant help, not least in facilitating me carrying out this 

research work at DCU, and also in reading and proofing previous drafts o f the thesis.

The National M etrology Laboratory in Forbairt, Dublin and its staff have been 

most helpful in m aking crucial laboratory time available for experimental research and 

in providing support for training and travel.

Various post-graduate students past and present deserve to be thanked, in 

particular m ention m ust be made o f Steve, with whom I shared an office for two years 

and who helped to keep me sane, and M ick who unfailingly solved my various 

computer problem s and rescued me from  several potential technological tragedies !!

Finally I m ust acknowledge my parents whose undying support and 

encouragement throughout the years has brought me thus far today.

Thom as S. Leahy 

January 1998





Contents

Introduction 2

Chapter 1 Modelling & Parameterising Experimental Data 9
1.0 Summary 9
1.1 Introduction 10
1.2 Term inology 11
1.3 Basic Statistical Terms 12
1.4 Uncertainty Propagation 15
1.5 Subjective Probabilities & M axim um  Entropy 22
1.6 Conclusion 27

Chapter 2 Parameterising Mass Calibration Experiments 28
2.0 Summary 28
2.1 Introduction 28
2.2 System M odelling— The "W eighing Equation" 29
2.3 Uncertainty Propagation 31

Chapter 3 The Evaluation of Air Density 35
3.0 Summary 35
3.1 The Functional Relationship 36
3.2 Uncertainty Propagation 38

Chapter 4 Mass Dissemination/"Within-Group" Comparisons 42
4.0 Summary 42
4.1 Introduction 43
4.2 M ultiVariate Functional Relationship 43
4.3 Im portant Statistical Terms in M atrix Form  45
4.4 An Exam ple 48
4.5 Uncertainty Propagation in the W eighing Equation 49

Chapter 5 Parameter Estimation Techniques in Mass Calibration 53
5.0 Summary 53
5.1 Introduction 55
5.2 Least Squares M ethods 56
5.3 Restrained Least Squares 58
5.4 D iscussion 61
5.5 The Augmented Design Approach 66

Chapter 6 A Generalised Estimation Method 71
6.0 Summary 71
6.1 Introduction 72
6.2 The G eneralised Gauss-M arkov M odel 72
6.3 Results on the G-Inverse 75
6.4 Covariance in the GGM  M odel 77

Abstract 1



Chapter 7 GGM Theory in the Mass Model 79
7.0 Summary 79
7.1 Introduction 80
7.2 Determ inistic Constraints 80
7.3 Stochastic Constraints 84

Chapter 8 Maximum Likelihood Estimation 86
8.0 Summary 86
8.1 Introduction 87
8.2 M axim um  Likelihood 88
8.3 Bayes' Theorem & M axim um  a Posteriori Estimation 90
8.4 Covariance matrix of the MAI? Estim ator 94
8.5 Relationship with other M odels 95

Chapter 9 Parameter Estimation Techniques in Action 99
9.1 Introduction 99
9.2 Exam ple I 99
9.3 RLS 103
9.4 Bayesian Estimation 107
9.5 Significance of Covariance Terms 114

Chapter 10 Further Examples 128
10.1 Exam ple II 128
10.2 Analysis of the Estim ator’s Capability 133
10.3 M ore on the Influence of the Prior Information 141
10.4 Exam ple m 147
10.5 Correcting the Prior Information 151

Chapter 11 Experimental System 154

Chapter 12 Conclusion 170

Appendix 1 The Partial Derivatives of the Air Density Equation A.l

Appendix 2 Data Processing Software A.6

Appendix 3 Glossary of Selected Terms A.14

Appendix 4 Bibliography and Citation List A.21

Appendix 5 Publications A.33





Abstract

This thesis presents a unified and homogenous system of data analysis and 
parameter estimation. The process is applied to mass determination but the underlying 
principles are general and the philosophy applies to any data reduction process.

Two main areas are covered: uncertainty analysis via the recom mendations of 
the ISO Guide and secondly param eter estimation o f over-determined measurement 
systems. Application to mass determination of the ISO-recommended procedures and 
also param eter estim ation in mass calibration have'been treated previously. W hat is 
done here is an innovative attempt to link these two areas together by focusing on the 
measurement philosophy underlying each and producing a Unified A pproach to 
parameter estimation in mass determination. A unique feature is the application o f the 
ideas of classical probability theory to uncertainty analysis and mass metrology, 
particular emphasis being placed on em ploying a consistent and logically coherent 
analysis. C riteria of consistency from  classical probability theory are used as a basis 
for much o f the work, and some useful definitions with respect to subjective 
information and unbiased analysis are presented which form a useful contribution to 
the metrology o f uncertainty theory.

W ith respect to param eter estimation techniques novel methods recently 
proposed in the literature are investigated on a mathematical level and it is shown that 
the minimum variance estimator used is in fact an application o f Bayesian techniques 
to parameter estimation. This provides a useful link to the ISO Guide on uncertainty 
analysis, which is mathematically based on a Bayesian view o f probability.

The traditional least squares m ethod of param eter estimation which has been 
previously shown to be internally inconsistent in its view of the reference information, 
is shown in this work to be incompatible with the ISO Guidelines and the consistency 
criteria mentioned above. The benefits of applying the Unified Approach are amply 
seen in the im proved estimates and lower covariances achievable with the Bayesian 
estimators.

The capabilities of Bayesian estimators are explored in some detail with 
experimental data. This provides some new insight into the estimation technique and 
discusses how robustly it can deal with inaccurate data and also attempts to quantify 
the maximum im provem ent in uncertainty that is achievable through recalibration and 
sequential estim ation with this method.

The conclusion reached is that a Bayesian view of probability, w ithout the 
restriction of m aintaining a separation between random  and systematic uncertainties 
leads to a much im proved system of data analysis.
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Introduction

To ensure the accurate transmission o f measurement inform ation arising from  

both the calibration o f standards and dissemination of units, and also from  

experimental research, it is of great importance that there should be an accepted 

method for describing data and measurement uncertainties. Such agreement is critical 

among Primary Standards Laboratories which play a pivotal role in establishing 

measurement links between communities.

However, it is not ju st sufficient that all involved in the dissem ination o f 

measurement data use a common approach. It is equally vital that the method used has 

a sound mathematical basis which is as objective as possible and which is an accurate 

description of the physical reality being modelled.

In the past there have been many and various data analysis models in use (Dieck 

(1997) list a few for example). Currently a consensus has form ed in the metrology 

communities around the International Standards Organisation's Guide to the 

Expression of U ncertainty in M easurement (ISO, 1993) which lays down extensive 

guidelines for m odelling data and calculating uncertainties.(Arri (1996), Bich (1996), 

(1997), EAL (1997), Fritz (1995), Orford (1996)). This approach requires an accurate 

parameterisation o f the measurement process in a way which includes all input values 

needed to obtain the desired quantity. The existence of such a mathematical 

relationship then allows an uncertainty evaluation to proceed in a uniform  manner.

The essential feature o f this uncertainty analysis lies in treating all uncertainty 

components equally, the functional relationship allows the evaluation o f sensitivity 

coefficients which dictate the contribution each individual term makes to the overall 

combined uncertainty. For each individual influence quantity, variance and covariance 

information is needed which requires distributional information on all the terms. 

Herein has been m uch controversy since it has been traditionally felt that 

distributional inform ation can best be obtained via repeated measurements and an 

examination o f relative frequencies. These lead to random uncertainties in the 

conventional approach. Such uncertainties can be arbitrarily reduced by taking an ever 

larger sample of measurements from  which to estimate the so-called "true value". A 

systematic uncertainty cannot be analysed in this way in the conventional approach 

and must be treated as fixed, since it usually arises in data which cannot be subjected 

to repeated measurements. It is in the combination of these two that many past 

difficulties have arisen and it is to overcome this problem that the idea of treating all 

components equally has been proposed.
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In  th is  m e th o d , D egrees o f  B e l ie f  a b o u t a p a ram e te r are m o re  im p o r ta n t th an  

in fo rm a tio n  based on  an e x a m in a tio n  o f  R e la tiv e  F requenc ies , th e  la t te r  b e in g  s im p ly  

a m eans o f  c o n tr ib u t in g  in fo rm a t io n  to  th e  fo rm e r. H ence , based  on  w h a te v e r  is  

k n o w n  a bo u t a pa ram ete r, som e p ro b a b il i ty  d is t r ib u t io n  can be  ass igned  to  i t  and 

va rian ce  in fo rm a tio n  ob ta ine d .

In  the  im p le m e n ta tio n  o f  any  e x p e rim e n t, th e re  are th ree  p r in c ip a l aspects: th a t 

o f  d e s ig n in g  the  e x p e r im e n t and  th e  necessary e q u ip m e n t, p e r fo rm in g  th e  e x p e r im e n t 

and th en  f in a l ly  da ta  re d u c tio n  to  e x tra c t th e  re q u ire d  in fo rm a tio n . In  th is  th es is , o u r 

p r im a ry  in te re s t lie s  in  the  la s t o f  these areas. T o  th a t end, the co nce p ts  o u tlin e d  in  the  

p re ced ing  parag raphs are im p le m e n te d  in  th e  s p e c if ic  e xa m p le  o f  M ass  D e te rm in a tio n  

at the  le v e l o f  th e  P r im a ry  S tandards L a b o ra to ry . W e  in tro d u c e  th e  id e a  o f  a Unified 
Approach to  data  ana lys is . B y  'U n if ie d ' is  m e a n t a m e th o d o lo g y  w h ic h  is  in te rn a lly  

co ns is te n t and  fo l lo w s  a g iv e n  p h ilo s o p h y  a t a ll t im es . T he  p h ilo s o p h y  is  based on  a 

B ayes ian  v ie w  o f  p ro b a b il i ty  and the  IS O  re co m m e n d a tio n s .

In  m ass d e te rm in a tio n , the re  are tw o  p r in c ip a l areas: f i r s t ly  m o d e l 

p a ra m e te risa tio n  and  u n c e rta in ty  a na lys is  to  c o rre c t ly  d esc rib e  the  e x p e rim e n ta l 

in fo rm a tio n  ( i.e . m ass d iffe re n ce s  re s u lt in g  f ro m  c o m p a ris o n  e x p e rim e n ts ) ; and 

se con d ly  p a ra m e te r e s tim a tio n  to  d e te rm in e  o p t im u m  va lues fo r  th e  pa ram ete rs  (m ass 

va lues o f  the  s tandards) based o n  th e  in fo rm a tio n  p resen ted  b y  th e  set o f  

in te rco m p a riso n s  a m o n g  th e  standards. T h e  co m p a riso n s  are u s u a lly  c a rr ie d  o u t in  an 

o ve r-d e te rm in e d  des ign  schem e so th a t th e re  is e x tra  in fo rm a tio n  p re sen t a m o n g  the  

param eters a llo w in g  s ta tis tic a l a d ju s tm e n t to  be  im p le m e n te d .

I t  is  the  goa l o f  the  research p resen ted  here  to  u n ify  b o th  o f  these aspects o f  the 

process, so th a t an o v e ra ll package  is  p resen ted  h a v in g  a c o m m o n  p h ilo s o p h y  and  an 

in te rn a lly  c o n s is te n t m e th o d o lo g y . O f  cou rse  i t  is  a lso  des ired  th a t the  p rocess  sh o u ld  

be p h y s ic a lly  ju s t i f ia b le  and a v a lid  re p re se n ta tio n  o f  a ll the  a v a ila b le  in fo rm a tio n .

I;
T h e  f i r s t  fo u r  chap ters  dea l w ith  u n c e rta in ty  ana lys is . T h e  th e o ry  o f  the  IS O  

G u id e  is  p resen ted  in  C h a p te r 1, in t ro d u c in g  the  m a in  m a th e m a tic a l and  s ta tis tic a l 

te rm s needed, and  fo c u s in g  on  th e  im p le m e n ta tio n  o f  the  G u ide 's  u n c e rta in ty  ana lys is . 

A  u n iq u e  fe a tu re  o f  th is  thes is  is  the  e x p l ic i t  a p p lic a tio n  o f  p ro b a b il i ty  th e o ry  as 

extended  lo g ic  (Jaynes 1983, 1996) to  u n c e rta in ty  ana lys is  in  genera l and mass 

c a lib ra tio n  in  p a r t ic u la r . I t  is  in  th is  c o n te x t th a t the  a ssum ptions  and p h ilo s o p h ie s  o f  

the  IS O  m e th o d  are d iscussed  and ju s t if ie d ,  v a rio u s  o b je c tio n s  a lso  b e in g  cons ide red . 

A  p a r t ic u la r ly  h e lp fu l c o n tr ib u t io n  in  th is  area concerns th e  them es o f  unbiased 
estimates ve rsus subjective assessments. In  th is  regard , the  bas ic  C r ite r ia  a nd  L o g ic  o f  

C lass ica l P ro b a b il ity  T h e o ry  are o u tlin e d  and  s h o w n  to  be s u ita b le  d es ide ra ta  fo r  any
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data ana lys is  system . A n  u nb ia sed  ana lys is  is  d e fin e d  as one  w h e re  th e  dem ands o f  

co ns is te n t re a so n in g  o f  p ro b a b il i ty  th e o ry  are im p le m e n te d  w h ile  th e  use o f  s u b je c tiv e  

in fo rm a tio n  is., s im p ly  a re a lis t ic  re f le c t io n  o f  th e  f in i te  k n o w le d g e  a v a ila b le  in  any 

e xp e rim e n ta l s itu a tio n . T h e  IS O  app roach  is  s h o w n  to  m ee t these  e ssen tia l c r ite r ia  and 

the M a x im u m  E n tro p y  th e o ry  is  e x p lo re d  as a ro b u s t and u s e fu l e x te n s io n  to  the  

G u ide . T h e  C r ite r ia  o f  C o n s is te n cy  h ig h lig h te d  here  w i l l  be  c o n t in u a lly  m e n tio n e d  

th ro u g h o u t the  re m a in d e r o f  the  w o rk .

C hap te rs  2 &  3 s h o u ld  be  co n s id e re d  to g e th e r and p resen t th e  a p p lic a tio n  o f  the  

U n if ie d  A p p ro a c h  to  th e  m o d e l p a ra m e te r isa tio n  • o f  m ass c o m p a ris o n  data. T he  

genera l m o d e l o f  C h a p te r 1 is  m ade  s p e c if ic  here  as the  e x p e rim e n ta l sys tem  and 

necessary s ys te m a tic  c o rre c tio n s  are d escrib e d . I t  s h o u ld  be  n o te d  th a t th e  equ a tio ns  

presented  here  re f le c t  th e  sys tem  in  use in  the  la b o ra to ry  w h e re  th e  e x p e rim e n ta l w o rk  

was ca rr ie d  o u t and  is  th us  s p e c if ic  to  th a t s itu a tio n . In  a n o th e r la b o ra to ry , w ith  o th e r 

in s tru m e n ta tio n , th e  m o d e l w o u ld  perhaps be  d if fe re n t,  b u t th e  m e th o d  can  be adapted 

to  dea l w ith  any  p h y s ic a l s itu a tio n  b y  a p p ro p ria te  in c lu s io n  o f  a ll  k n o w n  in f lu e n c e  

qua n titie s . C h a p te r 2  dea ls w ith  th e  m ass c o m p a ris o n  process and  d e ve lo p s  a sca la r 

ve rs io n  o f  th e  W e ig h in g  E q u a tio n — the  fu n d a m e n ta l re la t io n s h ip  fo r  d e te rm in in g  the  

mass d iffe re n c e  te rm s. C ha p te r 3 deals w ith  the  e v a lu a tio n  o f  a ir  d e n s ity . T he  

e va lu a tio n  o f  the  w e ll-a c c e p te d  a p p ro x im a te  re la t io n  fo r  a ir  d e n s ity  in  a S tandards 

L a b o ra to ry  is  p resen ted  and the  genera l e rro r  p ro p a g a tio n  th e o ry  o f  the  IS O  G u id e  is 

app lie d  to  e va lu a te  its  s tanda rd  u n c e rta in ty .

T h is  is  an e x a m p le  o f  the  c o n s is te n t app roach  to  da ta  a na lys is  b e in g  em phas ised  

in  th is  thes is : th e  a ir  d e n s ity  e q u a tio n  has o f  course  been ta c k le d  m a n y  tim e s  be fo re , 

b u t in  the  m a jo r ity  o f  cases the  u n c e rta in ty  ana lys is  is  p resen ted  w ith  ra n d o m  and 

sys tem atic  co m p o n e n ts  trea ted  d if fe re n t ly .  H e re , h o w e ve r, w e  m a in ta in  a s im p le r  

u n ifo rm  a pp roach  and sh o w  the  p o w e r  o f  the  genera l e rro r  p ro p a g a tio n  th e o ry  (o fte n  

ca lle d  the  G auss ian  P ro ced u re ) in  p re se n tin g  da ta  in  a co he re n t m an ne r. T h is  a llo w s  

us to  c o m b in e  a ll the  in f lu e n c e  q u a n titie s  in to  a s in g le  re la t io n  to  p ro d u ce  th e  o v e ra ll 

c o m b in e d  s tandard  u n c e rta in ty  o f  th e  m ass d if fe re n c e  te rm .

C ha p te r 4  ta ck les  the  m o d e l p a ra m e te r is a tio n  f ro m  a m u lt iv a r ia te  p o s it io n . T h is  

lays the  fo u n d a tio n  fo r  the  p a ram e te r e s tim a tio n  techn iques  d iscussed  in  C hap te rs  5 to  

8. W e  sh ow  h o w  the  W e ig h in g  E q u a tio n  is  d e ve lo p e d  in  m a tr ix  n o ta tio n  and  h o w  the  

u n c e rta in ty  a na lys is  o f  the  G auss ian  P ro ced u re  is  d eve loped  in  th is  m u lt id im e n s io n a l 

case. W e  are c a re fu l to  p o in t  o u t here  h o w  the  va riances  and s tanda rd  u n c e rta in tie s  are 

assigned to  the  m easu rand  es tim a tes  and  n o t to  the  u n k n o w n  e rro rs  o r  c o n tin g e n c ie s  

a ffe c tin g  the  e x p e rim e n t. T h e  e qu a tio ns  p resen ted  here  p ro v id e  a no the r v in d ic a t io n  o f
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the  U n if ie d  A p p ro a c h  o w in g  to  th e ir  s im p lic i ty  and  conc iseness w h ile  neve rthe less  

p ro v id in g  a c o m p le te  tre a tm e n t o f  a l l  the  re le v a n t data.

O ne  aspect o f  p a r t ic u la r  in te re s t is  th e  in c lu s io n  o f  th e  u n c e rta in ty  due  to  the  

sys tem a tic  b u o y a n c y  c o rre c t io n  in  th e  ana lys is . In  m a n y  tre a tm e n ts  th is  u n c e rta in ty  

te rm  is e ith e r  n e g le c te d  o r in c lu d e d  a fte r  th e  p a ram e te r e s tim a tio n  has been ca rr ie d  

out. In  th e  app roach  p resen ted  here  th is  need n o  lo n g e r  happen  s ince  i t  is  v e ry  s im p le  

to  in c lu d e  a ll u n c e rta in ty  in fo rm a t io n  in  th e  ana lys is . T h e  re s u lt is  an o b se rva tio n  

ve c to r and  co va ria n ce  m a tr ix  w h ic h  c o m p le te ly  describes a ll th e  a v a ila b le  in fo rm a t io n  

fro m  the  c o m p a ris o n  e x p e rim e n t. '

C hap te rs  5 to  8 ta c k le  the  second m a jo r  aspect o f  da ta  a na lys is  in  mass 

d e te rm in a tio n , th a t o f  pa ram e te r e s tim a tio n  b y  s ta tis tic a l a d ju s tm e n t. T h e  U n if ie d  

A p p ro a c h  d e ve lo p e d  in  th e  f i r s t  fo u r  chap te rs  is  c o n tin u e d . T h e re  are tw o  sets o f  

in fo rm a tio n  to  be  c o m b in e d : th e  e x p e rim e n ta l in fo rm a t io n  d e te rm in e d  in  the 

co m p a riso n  e xe rc ise  and any p re v io u s ly  k n o w n  p a ra m e te r va lu es  f r o m  o th e r 

ca lib ra tio n s  o f  th e  standards. W e  f in d  th a t th e  c o n v e n tio n a lly  a p p lie d  app roach  is  

in c o n s is te n t in  its  use o f  th is  p r io r  in fo rm a t io n  w h ile  the  U n if ie d  A p p ro a c h  a llo w s  

e x tra  b e n e fits  n o t o th e rw is e  p o ss ib le .

C h a p te r 5 co ns ide rs  th e  L e a s t Squares e s tim a tio n  m e th o d , s u b je c t to  co n s tra in ts  

needed to  o b ta in  a p a r t ic u la r  s o lu tio n  (R e s tra in e d  L ea s t Squares). T h e  inadequac ies  o f  

the  m e th o d  are h ig h lig h te d  in  its  use o f  the  c o n s tra in t in fo rm a t io n : th e  p re v io u s ly  

d e te rm in e d  es tim a tes  o f  the  co n s tra in ts  are co n s id e re d  as d e te rm in is t ic  constan ts  to  

ob ta in  a s o lu tio n , w h ile  b e in g  trea te d  as s to ch a s tic  q u a n titie s  to  o b ta in  th e  p ro p e r 

co va ria n ce  m a tr ix  o f  the  pa ram e te r estim a tes. T h is  app roach  can pe rhaps be  ju s t if ie d  

in  te rm s o f  the  c o n v e n tio n a l m e th o d  o f  sepa ra ting  ra n d o m  and sys tem a tic  

u n ce rta in tie s  b u t is  n o t accep tab le  in  a U n if ie d  A p p ro a c h  to  da ta  ana lys is . T h e  c r it iq u e  

o f  R es tra in e d  L e a s t Squares in  th is  ch a p te r p ro v id e s  a c ru c ia l l in k  w ith  e a r lie r  chapters 

w here  the  c r ite r ia  o f  c o n s is te n t ana lys is  are d iscussed.

W e  th en  n o te  th e  fu n d a m e n ta l d is t in c t io n  th a t is  m ade  b y  s im p ly  tre a tin g  the  

co n s tra in t in fo rm a t io n  as p r io r  da ta  h a v in g  its  o w n  co va ria n ce  m a tr ix . T h is  can be 

augm ented  w ith  th e  c u rre n t in fo rm a t io n  to  p ro d u c e  a data  set w h ic h  can  be  e a s ily  

e s tim a ted  u s in g  th e  L ea s t Squares C r ite r io n , o r  th e  G a u s s -M a rk o v  T h e o re m . V e ry  

in te re s tin g  resu lts  are p ro d u ce d  b y  th is  e s tim a to r, w h e re in  a s m a lle r  u n c e rta in ty  is 

assigned to  th e  p r io r  in fo rm a t io n  and  its  va lues  are a d jus ted  to o . T h is , w h ile  c o u n te r

in tu it iv e  to  th e  co n c e p t o f  a f ix e d  s tandard , is  e n t ire ly  ju s t i f ie d  i f  th e  s tandard  v a lu e  is  

co ns ide red  as an e s tim a te  w ith  g iv e n  degrees o f  b e l ie f  a ttached . T h e  co m p a riso n
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exerc ise  su p p lie s  e x tra  in fo rm a t io n  and  th e  m in im u m  va ria n c e  c h a ra c te r is t ic s  o f  the  

e s tim a to r re s u lt in  a s m a lle r co va ria n ce  m a tr ix  fo r  th e  p a ra m e te r e s tim a tes .

C hap te rs  6  &  7 im p le m e n t a g en e ra lise d  pa ram e te r e s tim a tio n  te ch n iq u e  to  

e x p lo re  th e  re la t io n s h ip  b e tw e e n  d e te rm in is t ic  and  s to cha s tic  c o n s tra in t in fo rm a t io n . I t  

is  sh ow n  h o w  a d e te rm in is t ic  v ie w  o f  th e  co n s tra in ts  leads to  the  sam e re su lts  as does 

Least Squares w ith  res tra in ts  w h ile  a s to ch a s tic  v ie w  leads to  an id e n t ic a l s o lu tio n  as 

the  augm en ted  d es ign  o f  C h a p te r 5. T h is  d e v e lo p m e n t is  im p o r ta n t as i t  show s f r o m  a 

th e o re tic a l bas is  w h y  th e  tw o  m e th od s  g iv e  d if fe re n t re su lts  and  u n d e rlin e s  the  

im p o rta n c e  o f  p ro p e r ly  u n d e rs ta n d in g  th e  na tu re  o f  a ll the  in fo rm a t io n  used in  the  da ta  

ana lys is  p rocess. T h e  U n if ie d  A p p ro a c h  re q u ire s  a ll da ta  to  be tre a te d  e q u a lly  and  w e  

show  h o w  advantageous th is  is  in  p a ra m e te r e s tim a tio n  s ince  b e tte r es tim a tes  can  be 

o b ta ine d  fo r  th e  pa ram eters . O f  co u rse  th e  app roach  rem a in s  v a lid  i f  som e o f  the  

in fo rm a tio n  is  d e te rm in is t ic  s ince  th e n  i t  has a n u ll c o v a ria n c e  m a tr ix  and the  

gene ra lised  e s tim a tio n  te c h n iq u e  d iscussed  in  these tw o  chap ters  w i l l  dea l a dequa te ly  

w ith  i t ,  a lth o u g h  ad jus ted  p a ra m e te r va lu e s  and s m a lle r  va riances  and  co va ria n ces  fo r  

the  d e te rm in is tic  in fo rm a t io n  w i l l  n o t be  p o s s ib le  in  such cases.

C ha p te r 8 in tro d u ce s  a n ew  p e rs p e c tiv e  b y  im p le m e n tin g  a M a x im u m  a 

P o s te rio ri e s tim a to r w h ic h  uses the  M a x im u m  L ik e l ih o o d  c r ite r io n  a lo n g  w ith  B ayes ' 

theo rem . T h is  m e th o d  is  id e a lly  s u ite d  to  p a ram e te r e s tim a tio n  in  m ass c a lib ra t io n  

s ince  i t  v ie w s  th e  m easurem ents  as s im p ly  u p d a tin g  the  p r io r  k n o w le d g e  on  the 

param eters. H e n ce  a ll in fo rm a t io n  is  s to cha s tic  and  once aga in  th e  p o s te r io r  estim a tes 

show  s m a lle r  va rian ce s  and  upd a te d  p a ra m e te r va lues . T h e  te c h n iq u e  is  v e ry  f le x ib le  

and can e a s ily  dea l w ith  any  s itu a tio n . F o r  e xa m p le , new  standards w ith  no  p re v io u s  

c a lib ra tio n  h is to ry  can be ass igned  v e ry  la rg e  o r  in f in i te  va ria n c e  in  the  p r io r  

in fo rm a tio n  and  th e  e s tim a tio n  m e th o d  w i l l  th e n  update  th is  in fo rm a t io n  based u p o n  

w h a te ve r is  lea rn e d  f ro m  the  c o m p a ris o n  e x p e rim e n t. W e  sh o w  h o w  in  m o s t cases th is  

e s tim a to r w i l l  p ro d u c e  the  sam e p a ra m e te r va lu e s  as does th e  aug m e n ted  d es ign  o r  the  

genera lised  e s tim a to r. T h is  ch a p te r o nce  aga in  re tu rn s  to  a c o n s id e ra tio n  o f  the  na tu re  

o f  p ro b a b il i ty  as d iscussed  in  C h a p te r 1. W e  p o in t o u t th a t a ll p ro b a b ilit ie s  are in  

som e w a y  d ependen t on b a c k g ro u n d  in fo rm a t io n  and th a t re a lis in g  th is  p e rm its  a m o re  

lo g ic a l a na lys is  o f  the data. T he  B a ye s ia n  te chn iqu e  is  th e re fo re  the  p re fe ra b le  

approach  to  use in  o rd e r to  il lu s tra te  th e  U n if ie d  A p p ro a c h  and so co nc lud es  o u r 

in v e s tig a tio n  o f  p a ram e te r e s tim a tio n  te chn iqu es .

In  C hap te rs  9 and 10 w e  p re sen t e x p e rim e n ta l case s tud ies to  i l lu s tra te  the  

U n if ie d  A p p ro a c h . T h re e  m a in  e xa m p le s  are g iv e n  and ana lys is  is  c a rr ie d  o u t b y  b o th  

the  C la ss ica l and  B a yes ia n  U n if ie d  A p p ro a c h . W h i le  such c o m p a ra tiv e  e xam p les  have
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been p u b lis h e d  in  th e  lite ra tu re  b e fo re , w h a t is  s ig n if ic a n t he re  is  th e  d e ta ile d  

e x a m in a tio n  o f  th e  p e rfo rm a n c e  o f  th e  e s tim a to rs , in  p a r t ic u la r  th e  B a ye s ia n  one.

W e  il lu s tra te  thé  ina de qu a c ie s  o f  the  C la s s ic a l E s t im a to rs  in  d e a lin g  w ith  

"suspect" o r  in c o rre c t data  and  e x p lo re  in  d e ta il h o w  th e  B a ye s ia n  E s t im a to r  p e rfo rm s  

m uch  b e tte r u n d e r such c ircu m s ta n ce s . T h e  d ependency on  th e  re la t iv e  accu racy  o f  the  

p r io r  and c u rre n t in fo rm a t io n  are a m o n g  the  fea tu res  h ig h lig h te d . W e  f in d  th a t the  

e s tim a to r behaves as w e  w o u ld  e x p e c t w ith  m o re  accura te  in fo rm a t io n  e x e r t in g  a 

g rea te r in f lu e n c e  on  th e  re su lt. T h u s  i f  in c o rre c t in fo rm a t io n  is  ass igned  a h ig h  degree 

o f  b e lie f, i t  w i l l  a dve rse ly  in f lu e n c e  the  resu lts ; h o w e v e r, w e  f in d  th a t p o o r  ag reem en t 

w ith  e ith e r p r io r  o r  c u rre n t in fo rm a t io n  w i l l  h ig h lig h t  th e  e x is te n ce  o f  a p ro b le m . O n  

the  o th e r hand  w e  sh o w  h o w  th e  B a ye s ia n  e s tim a to r can e a s ily  a d ju s t in c o rre c t 

in fo rm a tio n  i f  i t  is  assigned a lo w  degree  o f  b e lie f. T h e  robustness o f  the  e s tim a to r  is  

thus h ig h lig h te d  in  te rm s o f  th e  s ta b il i ty  o f  the  o u tp u t in  th e  fa ce  o f  p e rtu rb a tio n s  in  

the  p r io r  in fo rm a t io n , o r  in i t ia l  c o n d it io n s .

H a v in g  n o te d  the  a d ju s tm e n ts  to  the  p r io r  da ta  in  th e  p o s te r io r  es tim a tes , 

co n s id e ra tio n  is  g iv e n  to  th e  range  o f  a d ju s tm e n t— in  p a r t ic u la r  to  th e  va rian ce s—  th a t 

is  p o ss ib le  fo r  th e  g iv e n  p r io r  in fo rm a t io n  ( in it ia l  c o n d it io n s ) . W e  sh o w  th a t the re  are 

th e o re tic a l l im its ,  b o th  u p p e r and  lo w e r, and  th a t s p e c if ic a lly  w ith  reg a rd  to  the  lo w e r  

l im it ,  a n u m e r ic a l te ch n iq u e  is  re q u ire d  to  app roach  i t .  S uch a te c h n iq u e  is ado p te d  b y  

m eans o f  s c a lin g  the  a ccu racy  o f  the  c u rre n t in fo rm a t io n  o v e r  a w id e  range, and 

g ra p h ic a lly  p re s e n tin g  the  resu lts  fo r  the  param eters  o f  in te res t.

T h is  show s h o w  a lo w e r  l im i t  is app roached  fo r  th e  p o s te r io r  va rian ce s , the  

u lt im a te  im p ro v e m e n t c o rre s p o n d in g  to  the  c u rre n t in fo rm a t io n  h a v in g  ze ro  

u n c e rta in ty  in  a s in g le  tr ia l.  T h is  o f  co u rse  does n o t o c c u r in  p ra c tic e  b u t g ive s  us an 

es tim a te  o f  w h a t w i l l  be  th e  bes t im p ro v e m e n t p o s s ib le  and w e  can  co m p a re  any g iv e n  

im p ro v e m e n t in  a ccu racy  w ith  th is  b e n ch m a rk . In  se qu en tia l e s tim a tio n , th e  p o s te r io r  

e s tim a te  fo rm s  th e  n ew  p r io r  da ta  fo r  a n o th e r c a lib ra tio n , la te r  in  tim e . W e  p o in t  o u t 

h o w , w ith  th e  sam e d es ign  schem e and standards, th e  subsequen t p o s te r io r  va ria n ce  

estim ates w i l l  te n d  to  co n ve rg e  to  a lo w e r  l im i t ,  b e lo w  w h ic h  n o  fu r th e r  im p ro v e m e n t 

in  accuracy  w o u ld  be p o ss ib le  w ith o u t  in t ro d u c in g  a d d it io n a l e x te rn a l in fo rm a tio n .

W e  a lso  f in d  th a t th e  u p p e r l im i t  o r  ‘ w o rs t case’ co rresp on ds  to  no  change  to  the  

p r io r  co va ria n ce  m a tr ix  and w o u ld  o c c u r in  the l im i t  o f  ‘ in f in i te ly  inaccurate’ c u rre n t 

in fo rm a tio n . T h u s  w e  see th a t the  e s tim a to r has the  c a p a b ility  to  add  n e w  s to cha s tic  

in fo rm a tio n , le a rn e d  in  th e  c o m p a ris o n  exe rc ise , w ith o u t  a d d in g  “ n o ise ”  o r 

u n c e rta in ty  to  th e  f in a l o u tco m e ,
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A  lo t  o f  e f fo r t  is  e xpe nd ed  in  these tw o  chap ters  d is c u s s in g  the  in f lu e n c e  o f  the  

p r io r  in fo rm a tio n . T h is  is  q u ite  in  o rd e r s ince  in  the  U n if ie d  A p p ro a c h  the  p r io r  

in fo rm a tio n  p la ys  an im p o r ta n t ro le , m oreso  than  in  the  L e a s t Squares m e thods . W e  

c o n s id e r the  p ro b le m  o f  d r i f t  o n  m ass standards in  C h a p te r 10, w h ic h  w o u ld  have  a 

s ig n if ic a n t e ffe c t u p o n  th e  p r io r  in fo rm a tio n , s h o w in g  h o w  th e  e s tim a to r can  dea l w ith  

th is  p ro v id in g  th e re  is  som e accura te  in fo rm a t io n  p resen t in  th e  e x p e rim e n t. In  o th e r 

w o rds , i f  a ll  o f  th e  s tandards have  been su b je c t to  d r i f t  i t  is  n o t p o s s ib le  to  rescue the  

s itu a tio n . In  th is  w a y  w e  are b e in g  p h y s ic a lly  re a lis t ic  a b o u t the  c a p a b ilit ie s  and 

l im ita t io n s  o f  th e  B a ye s ia n  e s tim a to r, re m in d in g  us th a t any  m a th e m a tic a l m e th o d  is  

a lw ays l im ite d  b y  th e  in fo rm a t io n  s u p p lie d  b y  the  a na lys t. A  s o lu tio n  m a y  be 

m a th e m a tic a lly  p o s s ib le  b u t m a y  n o t be  p h y s ic a lly  m e a n in g fu l.

In  th is  reg a rd  w e  once  aga in  in v o k e  th e  c r ite r ia  o f  c o n s is te n c y  in  ana lys is , 

p o in t in g  o u t th a t a ll  th e  re le v a n t in fo rm a t io n  w ith  resp ec t to  th e  standards in v o lv e d  in  

a c o m p a ris o n  e xe rc ise  m u s t be  co n s id e re d  in  o rd e r to  a c c u ra te ly  m o d e l a n y  p o te n tia l 

d r if t .  In  th is  w as w e  p ro v id e  a u s e fu l l in k  w ith  the  s ta rt in g  p o s it io n  o f  C h a p te r 1. W e  

also em phasise  the  im p o rta n c e  o f  re la t iv e  accu racy  a m o n g  the  v a r io u s  sets o f  

in fo rm a tio n : ‘ suspec t’ p r io r  in fo rm a t io n  can be ass igned  a lo w  degree o f  b e l ie f  and 

then  in  the  p o s te r io r  e s tim a te  its  va ria n ce  w i l l  be g re a tly  red uce d , w h ile  its  assigned 

va lu e  w i l l  o n ly  be  ad jus ted  i f  th e  a v a ila b le  ev id en ce  dem ands it .

T hu s  a u s e fu l q u a n tity  o f  n e w  in fo rm a tio n  a b o u t th e  p e rfo rm a n c e  o f  th e  

B ayes ian  e s tim a to r is  p resen ted  in  these tw o  chap ters , h e lp in g  to  c o n f irm  th a t i t  is  

ind ee d  a ro b u s t and  re lia b le  m eans o f  tre a tin g  o v e r-d e te rm in e d  c a lib ra t io n  p ro b le m s  o f  

th is  natu re . T h e  p h ilo s o p h y  o f  in c lu d in g  a ll k n o w n  in fo rm a tio n  in  the  ana lys is , and n o t 

ju s t  som e o f  i t ,  is  v in d ic a te d , in  ag reem ent w ith  w h a t w e  w o u ld  e xp e c t on  the  basis 

th a t b e tte r c o n c lu s io n s  and d e c is io n s  can be m ade w ith  f u l l  in fo rm a t io n  ra th e r than  

p a rtia l in fo rm a tio n .

C ha p te r 11 is  th e  f in a l  ch a p te r and g ives  a sh o rt d e s c r ip t io n  o f  th e  e x p e rim e n ta l 

system  used to  o b ta in  th e  da ta  d iscussed  in  C hap te rs  9  &  10. A  co m p u te r is e d  

m easurem ent system  w as  im p le m e n te d  to  ga the r data  f r o m  th e  a u tom a ted  m ass 

com para to rs . T h e  p ro c e d u re  used is  describ e d  and som e o f  th e  s o ftw a re  is  d iscussed. 

T he  m o d e l p a ra m e te r is a tio n  o f  C hap te rs  2 &  3 w as d e v e lo p e d  fo r  th e  system  

described  here. S om e  e x a m p le  da ta  graphs are in c lu d e d  to  i l lu s tra te  the  k in d  o f  

ana lys is  th a t w as c a rr ie d  o u t.
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1. Modeling & Parameterising Experimental Data

1.0 Summary

T h is  o p e n in g  ch a p te r d eve lo ps  a m e th o d o lo g y  fo r  a n a ly s in g  e x p e rim e n ta l data  in  

o rd e r to  p resen t re su lts  and  u n c e rta in tie s  in  a co h e re n t m an ne r. T h e  p h ilo s o p h y  o f  the  

In te rn a tio n a l S tandards O rg a n isa tio n 's  "G u id e  to  the  E x p re s s io n  o f  U n c e r ta in ty  in  

M e a su re m e n t" ( IS O , 1993) is  fo l lo w e d , ta k in g  an e s s e n tia lly  B a ye s ia n  v ie w  o f  

p ro b a b il i ty  and  im p le m e n tin g  th e  G e ne ra l L a w  o f  E r ro r  P ro p a g a tio n , o fte n  c a lle d  the  

'G aussian  P rocedure '. 1

O ne  o f  th e  k e y  p o in ts  th a t w i l l  be  n o tic e d  is  the  u n ifo rm  m a n n e r in  w h ic h  a ll 

in f lu e n c e  q u a n titie s  Eire p rocessed: the re  is  n o  m a th e m a tic a l d is t in c t io n  a llo w e d  

be tw een  "ra n d o m " and  "s y s te m a tic " u n c e rta in tie s . T h e  ju s t if ic a t io n  fo r  d o in g  th is  is  

presented, b y  s h o w in g  h o w  w e  seek to  im p le m e n t th e  c r ite r ia  o f  c o n s is te n cy  

u n d e r ly in g  c la s s ic a l p ro b a b il i ty  th e o ry  and p o in t in g  o u t th e  im p o rta n c e  o f  v ie w in g  

p ro b a b il i ty  in  te rm s o f  D egrees o f  B e l ie f  a b o u t an even t, o r  p a ram ete r, ra th e r th an  

bas ing  i t  o n  R e la tiv e  F re q ue nc ies  o bse rved  in  som e e x p e rim e n t o r  tr ia l.  H o w e v e r, 

such e x p e rim e n ta l in fo rm a t io n  is  neve rthe less  o fte n  an im p o r ta n t m eans o f  g a in in g  

a d d it io n a l k n o w le d g e  a b o u t th e  param eters . A s  a re s u lt o f  th is , i t  is  necessary, in  th is  

m e th od , to  e s tab lish  a d is t r ib u t io n  fu n c t io n  fo r  each in f lu e n c e  q u a n tity  based on  

w h a te ve r in fo rm a tio n  is  a v a ila b le  at the  tim e . T h e  P r in c ip le  o f  M a x im u m  E n tro p y  is  

d iscussed in  th is  c o n te x t, s h o w in g  h o w  i t  a llo w s  an u nb ia sed  e s tim a te  to  be  o b ta in e d  

f ro m  s u b je c tiv e  in fo rm a tio n . B y  th is  w e  m ean  s im p ly  u s in g  a ll  the  g iv e n  in fo rm a t io n , 

w ith o u t a ssum in g  a n y th in g  e lse, in  a co n s is te n t and  lo g ic a l m an ne r. W e  p o in t  o u t h o w  

the  M a x im u m  E n tro p y  th e o ry  p re d ic ts  the  tw o  m o s t c o m m o n ly  used  d is tr ib u t io n s  in  

u n c e rta in ty  ana lys is  : th e  U n ifo rm  and N o rm a l D is tr ib u t io n s .

W ith  th is  i t  is  p o s s ib le  to  o b ta in  the  va ria n c e /c o v a ria n c e  in fo rm a t io n  a b o u t the  

in f lu e n c e  q u a n titie s  needed  fo r  u n c e rta in ty  ana lys is . I t  w i l l  be  n o te d  th a t the  

d is tr ib u t io n  in fo rm a t io n  is  co n s id e re d  in  re la t io n  to  the  param ete rs  them se lve s  and  n o t 

the  u n k n o w n  ra n d o m  e rro rs  re sp o n s ib le  fo r  c re a tin g  th e  d is t r ib u t io n  o f  va lues 

observed. F ro m  the  m a th e m a tic a l fu n c t io n a l re la t io n s h ip  a m o ng  the  in p u t q u a n titie s  

w h ic h  generates the  p a ra m e te r o f  u lt im a te  in te re s t, i t  is  th e n  p o s s ib le  to  e s ta b lish  the  

c o n tr ib u t io n  o f  each  te rm  to  th e  o v e ra ll u n c e rta in ty  o f  th e  f in a l  p a ram e te r va lu e . F ig . 

(1 .0 .1 ) o v e r le a f g ive s  a ‘ f lo w -d ia g ra m ’ fo r  th e  ana lys is  process th a t is  used. T h e  

va rio u s  te rm s are e x p la in e d  in  d e ta il w i th in  th e  chap te r.
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1.1 Introduction

W h e n  w e  w is h  to  in v e s tig a te  a p h y s ic a l p ro cess /p h en om en on  b y  e x p e rim e n ta l

m eans i t  is  essen tia l to  a d e qu a te ly  d esc rib e  the  s itu a tio n  u n d e r in v e s tig a tio n . In  o th e r

w o rd s , a m a th e m a tic a l m o d e l is  needed w h ic h  in c lu d e s  all in f lu e n c e  q u a n titie s

a ffe c tin g  th e  o u tp u t o r  re su lt. T h is  s h o u ld  co m p ris e  b o th  d ire c t ly  m easu red  q u a n titie s ,

in d ire c t q u a n titie s  such as da ta  f r o m  ta b le s /p u b lis h e d  in fo rm a t io n  e tc. and  a lso  any

sys te m a tic  e ffe c ts  w h ic h  m u s t be  in c lu d e d . T o  take  a s im p le  e x a m p le , th e  m easured

le n g th  o f  an o b je c t at te m p e ra tu re  t is  re la te d  to  a s tanda rd  le n g th  a t te m p e ra tu re  tstd
and the  th e rm a l e xp a n s io n  c o e ff ic ie n t a b y :

Lmeas = Lstd ( l + Oc(t — tsld ))
o r, fo r  e xa m p le , Pt = f2R0(\ + a(t - 10) ) fo r  th e  p o w e r  d iss ip a te d  a t te m p e ra tu re  t b y  a 

c u rre n t I f lo w in g  in  a re s is to r  w h o se  res is tance  is  k n o w n  to  be  R0 a t te m p e ra tu re  t0. In  

essence, w h a t is  re q u ire d  is  a Functional Relationship a m ong  th e  in f lu e n c e  q u a n titie s , 

w h ic h  generates th e  re q u ire d  o u tp u t q u a n tity . T h a t is

y  =  f { x x, x 2, , x n)
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1.2 Terminology

A t  th is  p o in t  w e  s h o u ld  pause to  co n s id e r w h a t w e  re a lly  m ean  b y  "q u a n tit ie s " , 

"va lu e s ", "m e asu re m e n ts " e tc ., s ince  i f  w e  do  n o t d e fin e  o u r  te rm s  p ro p e r ly  i t  w i l l  be 

d i f f ic u l t  to  p roceed .(S ee  M a r i  (1 9 9 6 ))  F o l lo w in g  the  s p ir i t  o f  th e  IS O  G u id e  (IS O , 

1993), w e  in te rp re t the  measurand to  be  a "s p e c if ic  q u a n tity  s u b je c t to  m ea su rem e n t", 

o r, abou t w h ic h  q u a n tita t iv e  in fo rm a tio n  is  re q u ire d . A  measurement on  the  o th e r 

hand  is  a lo g ic a l p ro ce d u re , h a v in g  as its  a im  the  d e te rm in a tio n  o f  the  m easurand. 

Influence Quantities are those  q u a n titie s , secondary  to  the  m easu rem en t, b u t 

neverthe less a ffe c t in g  its  re s u lt, w ho se  e ffe c ts  m u s t be  co n s id e re d  in  o rd e r to  p ro p e r ly  

a rr iv e  at the  m easurand . In d e e d , a f u l l  s ta tem en t o f  the  p ro b le m  w i l l  in d ic a te  the 

q u a n tity  to  be o b ta in e d  [th e  m ea su ran d ] and  u n d e r w h a t c o n d it io n s  [e .g . tem p e ra tu re , 

b a ro m e tric  p ressure  e tc .] th is  is  to  be  done. N o te  th a t th e re  are m a n y  in f lu e n c e  

q u a n titie s  o f  a s h o rt te rm  na tu re , o f  w h ic h  the  e x p e rim e n te r is  n o t aw are , w h ic h  as a 

re s u lt o f  'la c k  o f  k n o w le d g e ' are in te rp re te d  as "ra n d o m " f lu c tu a tio n s . A s  a re s u lt, a 

f u l l  s ta tem ent c o m p le te ly  d e s c r ib in g  th e  m easurand  is  im p o s s ib le  w ith o u t  an in f in i te  

a m o un t o f  in fo rm a t io n ; and hence, apa rt f r o m  in t r in s ic  cons tan ts  o f  n a tu re , the  

m easurand  re m a in s  p o te n t ia l ly  u n k n o w n  and u n k n o w a b le . T h is  id e a  leads us n a tu ra lly  

to  concepts o f  "u n c e r ta in ty " and  " a ccu ra cy ".

T o  the  e x te n t th a t w e  c a n n o t f u l ly  m o d e l a ll  in f lu e n c e  param ete rs  e ffe c t in g  o u r 

d e te rm in a tio n  o f  th e  m easu rand , w e  m u s t in tro d u c e  a q u a n tita t iv e  m easure  o f  the  

re s u lt in g  "u n c e r ta in ty "  in  o u r  e f fo r t .  T he  m easurand  i ts e lf  is  d e te rm in is t ic  b u t i t  is  a lso 

in d e te rm in a te — the  d is t in c t io n  b e tw e en  these tw o  b e in g  im p o r ta n t. W e  m ean  b y  th is  

th a t the  m easu rand  has a re a l, d e fin ite , va lu e  a t th e  in s ta n t o f  m easu rem en t, w h ic h  can 

neve r be d e te rm in e d  w ith  in f in i te  accuracy.

In  o th e r w o rd s , because o u r  m o d e l p a ra m e te r isa tio n  is  im p e rfe c t, w e  m u s t re fe r 

to  the  re s u lt in g  'co rre c te d  m easured  va lu e ' [w h ic h  is  o u r  m e a su rem e n t s u b je c t to  

w h a te ve r sys te m a tic  c o rre c tio n s  w e  k n o w  a b o u t] as an E S T IM A T E , and  as such, w e  

need to  e s tab lish  Degrees of Belief, o r  Plausibility fo r  it .  W e  need Dispersion 
Characteristics fo r  the  e s tim a te , in  o rd e r to  g iv e  an in d ic a t io n  o f  th e  range  o f  va lues  i t  

c o u ld  reasonab ly  ado p t— a ny  one  o f  w h ic h , based on  the  in fo rm a tio n  w e  have , c o u ld  

be  the  m easurand  u n d e r s c ru tin y . W e  are in te res te d , in  th is  chap te r, in  see ing  h o w  w e  

can a rr iv e  at such a m easure , bas ing  o u r  in v e s tig a tio n s  on  th e  to ta li ty  o f  the  

in fo rm a tio n  a v a ila b le  to  us. W e  te rm  the  d if fe re n c e  b e tw een  such  a va lu e  and  the 

m easurand, as the  error. C le a r ly  the  re a l v a lu e  o f  th is  is  a lso  u n k n o w a b le , as a re s u lt 

o f  the  m easurand  b e in g  in d e te rm in a te . I t  s h o u ld  be  an a im  o f  any e x p e r im e n t to  ensure 

th is  e rro r is s m a ll. Just because  the  D is p e rs io n  m easure  is  s m a ll, does n o t m ean  the
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e rro r is  s m a ll— i t  s im p ly  m eans th a t th e  e v id e n ce  f ro m  e x is t in g  k n o w le d g e  is  accura te  

to  w ith in  t ig h t  b ou nd a ries  w h ile  sa y in g  n o th in g  a b o u t o th e r p o s s ib le  [s y s te m a tic ] 

in fo rm a tio n  w h ic h  m a y  have  been u n re co g n ize d . I t  m a y  be p o s s ib le  to  d o u b le -c h e c k  

fo r  th is  ty p e  o f  s itu a tio n  b y  p e r fo rm in g  a n o th e r e x p e rim e n t based on  d if fe re n t  p h y s ic a l 

p r in c ip le s  and  re -d e te rm in in g  an e s tim a te  o f  the  m easurand. Reproducibility is  the 

degree to  w h ic h  these tw o  es tim a tes  are in  agreem ent, g o o d  re p ro d u c ib i l i ty  su gg es tin g  

the  e rro rs  are s m a ll. 'G o o d  agreem ent' w o u ld  be d e fin e d  as ag ree m e n t to  w ith in  the  

c o m b in e d  d is p e rs io n  ch a ra c te ris tic s  o f  th e  tw o  es tim a tes .

1.3 Basic Statistical Terms
W e  m u s t n o w  tu rn  o u r a tte n tio n  to  th e  id e n t if ic a t io n  and  q u a n t if ic a t io n  o f  the  

d isp e rs io n  c h a ra c te r is t ic s  o f  o u r e s tim a te  o f  the  m easurand. A s  w e  w o u ld  e xp e c t, these 

w i l l  depend  u p o n  th e  d isp e rs io n  c h a ra c te r is t ic s  o f  th e  v a rio u s  in d iv id u a l q u a n tit ie s  

in v o lv e d  in  g e n e ra tin g  the  co rre c te d  re a lis e d  q u a n tity  (o u r e s tim a te ). F o l lo w in g  the  

tre a tm e n t o f  e .g. B e c k  &  A rn o ld  (1 9 7 7 ), E a d ie  (1 9 7 1 ) o r  R oss (1 9 7 2 ), w e  use the  

p ro b a b ility  d e n s ity  fu n c t io n  pz(z) f o r  a p a ra m e te r Z  (u s u a lly  c a lle d  a c o n tin u o u s

ra n d o m  v a r ia b le  in  th is  c o n te x t)  to  d esc rib e  the  range  o f  p o s s ib le  va lu es  the  pa ram e te r 

c o u ld  adopt. T h is  fu n c t io n  is  n o rm a liz e d  such  th a t

T he  p ro b a b il i ty  d is t r ib u t io n  fu n c t io n  Pz(z) g ive s  th e  p ro b a b il i ty  th a t the  ra n d o m  

va ria b le  Z  is less than  som e v a lu e  z■ T hu s

percentage. T h e re  are som e im p o r ta n t ‘ s ta tis t ic s ’ associa ted  w ith  a p ro b a b il i ty  

d is tr ib u t io n  w h ic h  w e  can n o w  d e fin e .

E x p e c ta tio n  V a lu e : F o r  a c o n tin u o u s  ra n d o m  v a ria b le , z, w e  have

T h a t th is  is  an u n b ia se d  e s tim a to r can be seen b y  c o n s id e r in g  th a t, i f  £[z,.] = /xz V i 
h o lds , then :

(1 .3 .1 )

Z

(1 .3 .2 )

w he re  P r(x ) is  the  p ro b a b il i ty  assoc ia ted  w ith  the  v a lu e  x, exp ressed  as a fra c t io n  o r

(1 .3 .3 )

N o te  th a t E[z] is  a l in e a r  ope ra to r, i.e .:

(1 .3 .4 )
i=i ¡=i

&  E\ax +  by\ =  a E[x\ + b £'[>’]

T h e  e x p e c ta tio n  va lu e  can  u s u a lly  be e s tim a te d  b y  the  a r ith m e tic  m ean

(1 .3 .5 )

(1 .3 .6 )
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B p l - t - i U H f t  (1 -3 -7 )
1 = 1  n

T h a t an e s tim a to r is  u nb ia sed  is  a p a r t ic u la r ly  d es ira b le  fe a tu re  and  one  to  w h ic h  w e  

w i l l  re tu rn  m a n y  tim e s  in  the  fu tu re  w h e n  lo o k in g  at m o re  c o m p le x  pa ram e te r 

e s tim a tio n  techn iqu es . A  b ia sed  e s tim a to r is  re a lly  n o t an e s tim a to r  o f  the  d es ired  

m easurand at a ll.

V a ria n ce : T h is  is  the  second p r in c ip a l te rm  o f  in te res t. T h e  v a ria n c e  o f  a ra n d o m

v a ria b le  is  d e fin e d  as :

v[z]=o2{z)=E 
= E

\(z -4 z ])2l (1-3-8)

f e - A O 2] '

= j(z-Hz)2Pz(z)dz (1 .3 .9 )

T h is  in d ica te s  th a t the  V a r ia n c e  is  the  E x p e c ta tio n  V a lu e  o f  th e  squared  cente red  

ran do m  v a ria b le  ( z - /j,z) . W e  m u s t be aw are  th a t v a ria n ce  is  not a l in e a r  o p e ra to r! F o r

e xam p le , fo r  a co n s ta n t a w e  f in d :

V[ax\ - E[ax -  £ '[a ;c]]2

=  a2E[x -  £ [ x ] ] 2 =  a2V[x\ 
also, fo r  constan ts  a & k w e  f in d  V[ax + k] = a2 V[x]. F o r  z as d e fin e d  in  (1 .3 .6 ), w e  

have

V [z ] =  ^ ! M  (1 .3 .1 0 )n
w here  V[z,] =  cr2(z) V i ' e ( l  n). A  v a lid  e s tim a te  o f  a2(z), o b ta in e d  f ro m  n
obse rva tion s  o f  z is:

i 2 ( z ) = f — y x ( zi - 2 ) 2 (1 .3 .1 1 )
\  a  i  / , = 1

in  w h ic h  s(z), th e  p o s it iv e  square ro o t o f  (1 .3 .1 1 ), is  u s u a lly  re fe rre d  to  as th e  's tandard  

d e v ia tio n ' o f  th e  ra n d o m  v a ria b le  z. T h is  s ta tis t ic  is  used to  q uo te  an u n c e rta in ty  fo r  an

estim a te  o f  jlz. E s s e n tia lly , E [z] is  a lo c a t io n  param ete r, g iv in g  th e  p o s it io n  o f  a

d is tr ib u t io n  o f  va lues  w h ile  V [z ] is  a sca le  pa ram e te r fo r  the  d is p e rs io n  ch a rac te ris tics  

associated  w ith  the  p a r t ic u la r  d is t r ib u t io n . I f  jiz is  k n o w n , ra th e r th an  e s tim a te d  b y  z ,

(1 .3 .1 1 ) becom es:

n j ; =i= 1

W e  can see im m e d ia te ly  h o w  th is  k in d  o f  in fo rm a tio n  s h o u ld  be  v e ry  u s e fu l in  

e s ta b lis h in g  accu racy  c r ite r ia /u n c e r ta in ty  l im its  on  an e x p e rim e n ta l m easurem ent, 

sh ou ld  w e  be ab le  to  co m p u te  i t  fo r  a g iv e n  e x p e rim e n ta l s itu a tio n . W h e n  w e  can 

ca rry  o u t repea t m easurem ents  in  c ircu m s tan ces  w h e re  u n c o rre c ta b le  ra n d o m  

flu c tu a t io n  o ccu rs , i t  is  then  p o s s ib le  to  c o m p u te  (1 .3 .6 ) &  (1 .3 .1 1 ). (F o r  a n o th e r v ie w  

on u n c e rta in ty  m easures, see A lla n ,  (1 9 8 7 )) . In  o rd e r to  e s ta b lish  a p ro b a b il i ty
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d is t r ib u t io n  f r o m  th is  in fo rm a t io n  in  a c o n s is te n t m an ne r, as a dvo ca te d  b y  th e  “ u n if ie d  

approach”  o f  th is  thes is , w e  m u s t tu rn  to  th e  M a x im u m  E n tro p y  P r in c ip le  as d iscussed  

in  S e c tio n  1.5.

C ova ria nce : I f  th e re  are tw o  ra n d o m  v a ria b le s  d e fin e d  on  th e  sam e sa m p le  space, th e ir  

co va ria n ce  is  d e fin e d  as:

Cov[y, z] = E [(y  -ny)(z-fit)] = v (y , z) (1 .3 .1 3 )

= JJ (? -  ̂  > Kz “  ̂  z)dydz (1.3.14)
w he re  p(y,z) is  th e  jo in t  p ro b a b il i ty  d e n s ity  fu n c t io n . T h e  c o v a ria n c e  can be  e s tim a ted  

fro m  n s im u lta n e o u s  o b se rva tio n s  o f  y &  z b y : ’

= {—V l Z O ’; ~y\zi -z) (1 .3 .1 5 )\n — 1 y i=i

y & z b e in g  th e  re sp e c tive  a r ith m e tic  m eans.

C o rre la t io n : T h e  c o rre la tio n  c o e ff ic ie n t is  d e fin e d  as:

P M =  V(y’ z) (1 .3 .1 6 )

U s in g  e s tim a tes , (1 .3 .1 6 ) becom es:

r(y,z) = r(z,y) = ̂ -  (1 .3 .1 7 )
s(y )s(z )

\/y,z as sam p le  e lem en ts  f r o m  th e  space o f  y , z va lues . N o te  th a t -1  < r(y, z) < + 1 , as 

the  c o rre la tio n  c o e ff ic ie n t is  a p u re  n u m b e r, in d ic a t iv e  o f  th e  re la t iv e  m u tu a l 

dependence o f  th e  tw o  va ria b le s  y &  z. T h u s  i t  g ive s  th e  e s tim a te d  change  in  one 

va ria b le  l ik e ly  to  re s u lt f r o m  a g iv e n  change  in  th e  o the r. A ls o , w ith  respect to  

cova riance :

V\ax +  by\ = a 2V [x ] +  b2V\y\ + 2abCov\x,y\ (1 .3 .1 8 )

Eqs. (1 .3 .6 ), (1 .3 .1 1 ), (1 .3 .1 5 ) &  (1 .3 .1 7 ) a llo w  th e  e v a lu a tio n  o f  the  ce n te r and 

spread o f  a d is t r ib u t io n  w h ic h  is  th o u g h t to  charac te rise  the  m easurem ents  m ade  to  

d e te rm ine  the  p a ra m e te r o f  in te re s t, a lo n g  w ith  the  in te ra c tio n s  b e tw e e n  any p a ir  o f  

s im ila r  p a ram ete rs . In  m a n y  e x p e rim e n ta l cases the  d is t r ib u t io n  so d e sc rib e d  m a y  ve ry  

w e ll be N o rm a l, o r  G auss ian , b u t th is  s h o u ld  n o t a priori be assum ed. H o w e v e r, 

depend ing  u p o n  o u r k n o w le d g e , i t  can  be  s a tis fa c to r ily  c o n firm e d  u s in g  the  M a x im u m  

E n tro p y  P r in c ip le . In  s itu a tio n s  w h e re  repea ted  da ta  is  o b ta in e d  w i th  th e  m easurem ent 

in s tru m e n ta tio n , an e x a m in a tio n  o f  re la t iv e  freq ue n c ie s  in  the  re su lts  a llo w s  b o th  

m ean va lues  and  va riances  to  be e s tim a te d  and  as w e  sh ow  in  Sec. 1.5, m a x im u m  

e n tro p y  does p re d ic t a G auss ian  d is t r ib u t io n  in  these c ircu m s tan ces . T h e re  are, th o u g h , 

m an y  cases w h e re  such  da ta  is  n o t a v a ila b le , and  one m u s t assign a d is t r ib u t io n  first in  

o rd e r to  e s tim a te  a va rian ce . H o w e v e r, b e fo re  lo o k in g  a t these s itu a tio n s  in  m o re  

d e ta il, w e  m u s t c o n s id e r th e  p ro p a g a tio n  o f  m easurem ent u n c e rta in ty  v ia  the  

fu n c t io n a l re la t io n s h ip  fo r  th e  m easu rand  es tim a te . S in ce  th e  d e s ire d  pa ram ete r
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depends on  severa l, i f  n o t m any , in p u t q u a n tit ie s , i t  is  necessary to  in v e s tig a te  h o w  the  

in d iv id u a l va rian ce s  c o n tr ib u te  to  the  f in a l one. I t  w i l l  be in  th is  c o n te x t th a t w e  m ake  

fu r th e r  re m a rks  abo u t th e  d e te rm in a tio n  o f  va ria n ce  and  the  a ss ig n m e n t o f  c o n fid e n c e  

in te rva ls .

1.4 Uncertainty Propagation (F ollow ing the ISO Guide's treatment (ISO, 1 9 9 3 ))

A ssu m e  th a t a pa ram e te r z is  d e te rm in e d  f r o m  a fu n c t io n a l re la t io n s h ip  g iv e n  by:

z = f(x1,x2,...,xN) (1 .4 .1 )
i

i.e . z depends u p o n  N in f lu e n c e  q u a n tit ie s , each o f  w h ic h  is  e ith e r  d e te rm in e d  in  the  

c u rre n t m ea su rem e n t p ro ced u re , o r  is  k n o w n  in i t ia l ly  f ro m  a no the r source. W e  fu r th e r

assum e th a t d is p e rs io n  in fo rm a tio n  is  a v a ila b le  on  a ll the  N in f lu e n c e  q u a n tit ie s — w e

w i l l  c o m m e n t la te r  on  h o w  th is  m ig h t be  ob ta ine d .

A  T a y lo r  series e xp a n s io n , to  O rd e r 1, o f  (1 .4 .1 ) w i l l  y ie ld :

(z +  & )  =  z +  ^ - ^ - & ,  (1 -4 .2 )
i=l

fo r  Sz &  5x, s m a ll d e v ia tio n s  fro m  z &  x-L re s p e c tiv e ly . So an e v a lu a tio n  o f  (1 .4 .2 ) w i l l  

g ive  an e s tim a te  o f  th e  d e v ia t io n  o f  o u r e s tim a te  z f r o m  the  m easu rand  va lu e , 

p ro v id in g  w e  k n o w  d e v ia t io n  e s tim a tes  fo r  the  in d iv id u a l in f lu e n c e  q u a n tit ie s . F o r 

each in f lu e n c e  q u a n tity  w e  can ass ign  a p ro b a b il i ty  d is t r ib u t io n  d e s c r ib in g  the  range  o f  

poss ib le  va lu e s  i t  c o u ld  adopt. T h e re fo re , f r o m  S e c tion  1.3, w e  w i l l  have  an 

e xp e c ta tio n  v a lu e  and  va ria n ce  to  d esc rib e  th e  q u a n tity .

H ence  i f  w e  w r ite

&  =  ( * - £ [ * ] )  ( l-4 .3 a )

&  Sxj = (x, -  E\xi ]) (1 .4 .3 b )

W e  can then  re -w r ite  E q . (1 .4 .2 ) as:

=  ( * , - £ [ * , ] )  (1 -4 -4)
,=i'dx,

S q ua rin g  b o th  s ides g ives :

df
{z -  E[z]f = <| (*,- -  E[x{D

i = 1

= S  f  - * F + 2 1  Z  f  (1.4.5)
dx, y t t  ,“ i i  dx, dxji=i

N o w  ta k in g  e x p e c ta tio n  va lues o f  (1 .4 .5 ):

df dfN f  g y  Y  „ AM  N

4 Z- ^ ] ] 2 =  l f  (1-4 .6)
,= 1  V ° X  i J f = l  7=1+1 V-X i V X j

B u t s ince  f r o m  E q . (1 .3 .8 ), E[z - E[ẑ  - a], th e  va ria n ce  o f  z, w e  can w r ite  (1 .4 .6 ) as:
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(1.4.7)

(1 .4 .7 ) can be ..further expressed  as:

b e in g  the  c o rre la tio n  c o e ff ic ie n t

In  c o m m e n tin g  o n  th is  d e ve lo p m e n t, w e  can p o in t  o u t th a t E q . (1 .4 .8 ) is  a

on  a k n o w le d g e  o f  th e  d isp e rs io n  ch a rac te ris tics  o f  the  in f lu e n c e  param eters  and a lso  

on  th e ir  c o rre la tio n s , i f  any. T he  p o s it iv e  square ro o t o f  (1 .4 .8 ) g ive s  the  C o m b in e d  

S tandard  U n c e rta in ty  and  th is  serves as an adequate m easure  o f  the  u n c e rta in ty  in  the  

m ea su rem e n t/an a lys is  p rocess—based on the currently available knowledge and  is  

accurate  as an e s tim a te  o f  th e  p o s s ib le  v a r ia t io n  b e tw e en  o u r  k n o w le d g e  and th e  v a lu e  

o f  the  m easurand  in  q u e s tio n , assum ing  no  k n o w n  sys te m a tic  e ffe c ts  have  been 

in a d v e rte n tly  o m itte d . E x p e c ta tio n  va lues and V a ria n ce s  have  been used in  the 

ana lys is  and i t  is  e n t ire ly  genera l. E q  (1 .4 .8 ) is  re c o g n iz e d  as the L a w  o f  P ro p a g a tio n  

o f  U n c e rta in ty  ( IS O , 1993) o th e rw is e  k n o w n  as the  G auss ian  P rocedure  fo r  E r ro r  

P ro pa ga tion  (see W e is e , 1985 &  1987). I t  is  i l lu s tra te d  in  F ig . (1 .0 .1 ), page  10.

O ne o f  th e  k e y  aspects o f  th is  p ro ced u re  is  th e  u n ifo rm  m an ne r in  w h ic h  i t  trea ts 

a ll va rian ce  c o m p o n e n ts . T ra d it io n a lly  u n c e rta in ty  co m p on en ts  are d iv id e d  a m o n g  so- 

ca lle d  "ra n d o m " and  "s y s te m a tic " co m p on en ts . T he  fo rm e r  are those w h ic h  can be 

e s tim a ted  b y  e x a m in a tio n  o f  re la t iv e  fre q u e n c ie s  in  a set o f  data, w h ile  the  la tte r  are o f  

a m o re  co n s ta n t n a tu re — th e y  do  n o t decrease w ith  in c re a s in g  sam p le  s ize  fo r  

e xam p le . H o w e v e r, th a t w h ic h  is sys te m a tic  in  one e x p e rim e n t m a y  v e ry  w e l l  be 

ra n d o m  in  ano the r, so th e  d is t in c t io n  can be c o n fu s in g .

In  th e  la n g u a g e  o f  th e  IS O  G u id e  ( IS O , 1993) th e  p o s it iv e  square  ro o t o f  a 

va riance  c o m p o n e n t is  re fe rre d  to  as a Standard Uncertainty. I t  is  the  bas ic  b u ild in g  

b lo c k /c o m p o n e n t fo r  e rro r  p ro p a g a tio n  th e o ry  and s ince  i t  is  a m a th e m a tic a l te rm  

there  is no  need  fo r  fu r th e r  d iv is io n s  in to  ra n d o m /s y s te m a tic  sections.

In  u n d e rs ta n d in g  the  IS O  G u id e  app roach  to  u n c e rta in ty  ana lys is  i t  is  h e lp fu l to  

lo o k  at the  bas is  o f  C la s s ic a l P ro b a b ility  T h e o ry , w h ic h  is  e s s e n tia lly  In d u c t iv e  

L o g ic — th a t is , g iv e n  e ffe c ts , w e  w a n t to  dec ide  a m o ng  severa l p o ss ib le  causes w h a t is  

the  m os t l ik e ly  c a n d id a te  to  e x p la in  the  o bse rve d  phenom ena.(see , e .g., B u c k  &  

M a ca u la y , (1 9 9 1 ) and  G a re tt, C ha p te r 6 in  ibid).

complete d e s c r ip tio n  o f  the  d isp e rs io n  ch a ra c te ris tic s  o f  z as s p e c ifie d  in  (1 .4 .1 ); based
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T h is  fra m e w o rk  is  id e a l fo r  a n a ly s in g  e x p e rim e n ta l da ta  in  w h ic h  w e  have  

e ffe c ts  (da ta  o r  o b se rva tio n s ) fo r  w h ic h  w e  need to  k n o w  causes (hyp o th e ses , m o d e ls , 

pa ram ete r va lues , e tc .). In  s ta tin g  th a t w e  des ire  to  f in d  “ the  m o s t l ik e ly ”  cause, w e  are 

im m e d ia te ly  in v o k in g  the  id e a  o f  ‘p la u s ib i l i t y ’ o r  ‘ l ik e l ih o o d ’ o r  ‘ t ru th  v a lu e ’ o r  som e 

such te rm  in d ic a t in g  the  e x te n t to  w h ic h  w e  b e lie v e  a g iv e n  h yp o th e s is  o r  p ro p o s it io n  

is  the  best e x p la n a tio n  o f  the  o bse rved  e ffe c ts . T h u s  w e  can say th a t th e  p ro b a b il i ty  o f  

the  p ro p o s it io n  b e in g  true  is  the  sam e as the  Degree of Rational Belief a b o u t the  

p o s s ib il i ty  o f  the  p ro p o s it io n  b e in g  tru e , and  i t  is  th is  in te rp re ta tio n  o f  p ro b a b il i ty  

w h ic h  is  c ru c ia l to  a c o rre c t u n d e rs ta n d in g  o f  th e  tre a tm e n t o f  u n c e rta in ty  d e ve lo p e d  

in  th is  thesis. (See, e.g., Jaynes, 1957, Jaynes, 1982, C o x , 1946)

R e fe rr in g  to  a p ro b a b il i ty  as a D e g re e  o f  B e l ie f  re m in d s  us th a t p ro b a b ilit ie s  

s h o u ld  n o t be  co n s id e re d  a bso lu te ! A  degree o f  b e l ie f  w i l l  a lw a ys  be  te m p e re d  b y  the  

to ta li ty  o f  k n o w le d g e  w e  have  a b o u t a sub jec t. T h u s  p ro b a b ilit ie s  are a lw a ys  

c o n d it io n a l on  o the r, b a c k g ro u n d  (p r io r )  in fo rm a tio n . I t  is  im p o r ta n t to  re a lise  here 

th a t c o n d it io n a l p ro b a b ilit ie s , w h ic h  assum e p r io r  in fo rm a tio n , rep re sen t Logical 
conn ec tio ns , ra th e r th a n  Causal ones. F o r  e xa m p le , i f  o u r  a v a ila b le  k n o w le d g e  leads 

us to  be sure  p ro p o s it io n  A  is  true , th e n  w h a t does th is  lo g ic a l ly  im p ly  fo r  som e o th e r 

p ro p o s it io n  B ?  In  th is  w a y  p ro b a b ilit ie s  rep resen t e p is te m o lo g ic a l k n o w le d g e  ra th e r 

than  o n to lo g ic a l in fo rm a tio n . T h e y  d esc rib e  w h a t w e  k n o w  a b o u t the  e ve n t o r  

p ro p o s it io n , based on  the  e v id e n ce  a t hand , and a llo w  us a fra m e w o rk  fo r  rea son ing  in  

the  absence o f  c e rta in ty . ( See Jaynes, 1983, L e v in e  &  T r ib iu s ,  1979).

I t  is c le a r f ro m  th e  fo re g o in g  parag raphs th a t w e  h ave  c a re fu lly  a v o id e d  any 

re fe rence  to  the  id e a  o f  R e la tiv e  F re q ue nc ies  in  repeated  tr ia ls  o f  an e x p e rim e n t in  

c o m in g  to  o u r  d e f in it io n s  o f  p ro b a b il i ty .  I t  is  p re c is e ly  th is  w h ic h  has le d  to  th e  charge  

o f  ‘ s u b je c t iv is m ’ b e in g  le v e le d  aga ins t th is  approach . I t  is  th o u g h t th a t a l is t  o f  re la t iv e  

frequenc ies  p ro v id e  a d e f in ite  m easure  o f  o b je c t iv e  re a lity  w h ic h  can  be c o m p le te ly  

re lie d  upon . H o w e v e r, th is  can  be o b je c te d  to  o n  severa l g ro un ds , n o t leas t o f  these 

b e in g  the  p ro b le m s  a ttached  to  e n s u rin g  repeated  tr ia ls  are in d e e d ' re p ro d u c in g  

“ ra n d o m ”  e rro rs . A  m o re  fu n d a m e n ta l p ro b le m  is  to  assum e th a t th is  “ ran do m n ess ”  is  

a p ro p e rty  o f  n a tu ra l system s, e x is t in g  in  an o n to lo g ic a l m anner. T h e  v ie w  o f  

p ro b a b il i ty  b e in g  h ig h lig h te d  here  has no  such  re q u ire m e n t. R a the r, random ness 

s im p ly  is  an e x p la n a tio n  o f  o u r  la c k  o f  k n o w le d g e — w e  do  n o t k n o w  a ll th e  fo rce s  and 

in flu e n ce s  a ffe c t in g  o u r sys tem  and  th e re fo re  canno t p re d ic t w ith  100%  c e rta in ty  

e x a c tly  w h a t w i l l  happen. T h u s  w e  say the re  are “ ra n d o m  e rro rs ”  a ffe c t in g  th e  system . 

O th e r p ro b le m s  a rise  in  the  fre q u e n tis t a pp roach  w he re  w e  m u s t im a g in e  a la rg e  set o f  

p o ss ib le  o u tco m e s  w h ic h  could have  happened  (b u t d id n ’ t ! )  o f  w h ic h  o u r  sm a ll set o f  

o bse rva tion s  is  a m em be r, (see, e.g. Jaynes, 1996)
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I f  th is  approach  s h o u ld  seem  e x c e ss ive ly  s u b je c tiv e  and th us  dependen t u p o n  th e  

in d iv id u a l ’ s ana lys is , i t  s h o u ld  be re a lise d  th a t D egrees o f  B e l ie f  are based o n  ¡th  th e  

re le va n t in fo rm a t io n  th a t is  a v a ila b le . T hu s  tw o  p e o p le  p re sen te d  w ith  th e  sam e 

in fo rm a tio n  s h o u ld  ass ign  th e  sam e p ro b a b ility ;  (C o x , 1946) a n o th e r p e rson  w ith  

d if fe re n t in fo rm a t io n  o r  o b s e rv a tio n a l e xp e rie n ce  m a y  w e l l  m a ke  a  d if fe re n t 

d iagnos is— hence w e  see aga in  th a t p ro b a b ilit ie s  are always c o n d it io n a l on  the  

a va ila b le  b a ckg ro u n d  in fo rm a tio n . In c id e n ta lly , w e  can  fu r th e r  p o in t  o u t th a t w e  

a lw ays speak o f  a ss ig n in g  p ro b a b ilit ie s , n o t d e te rm in in g  th em . T h is  is  because 

p ro b a b ility  is  a m a th e m a tic a l d e s c r ip tio n  o f  w h a t w e  k n o w  a b o u t the  sys tem  and n o t 

som e in h e re n t p ro p e rty  o f  th e  system .

In  im p le m e n tin g  a p ro b a b il i ty  ana lys is  based o n  th is  p h ilo s o p h y  th e re  are severa l 

C r ite r ia  w e  need to  enu m e ra te  w h ic h  w i l l  fo rm  th e  bas is  fo r  e n s u rin g  th a t e v e ry th in g  

w e  do  m a in ta in s  a co h e re n t approach . F o l lo w in g  Jaynes (1 9 9 6 ), w e  can sta te  these  as 

fo llo w s :

1). D egrees o f  P la u s ib il i ty  sh o u ld  be  represen ted  b y  re a l n um be rs . T h is  w e  have  

a lready h in te d  at b y  n o t in g  th a t p ro b a b il i ty  th e o ry  s im p ly  g ives  a m a th e m a tic a l 

s ta tem ent o f  w h a t w e  k n o w .

2). S e con d ly  the re  s h o u ld  be  Q u a lita t iv e  A g re e m e n t w ith  C o m m o n  Sense, w h ic h  w e  

w o u ld  e xpe c t o n  the  bas is  o f  L o g ic a l R eason ing .

F in a lly , and m o s t im p o r ta n t ly ,  w e  have  severa l D e s id e ra ta , o r  C r i t e r ia  o f  

C o n s is te n c y . These are as fo l lo w s :

3a). I f  a c o n c lu s io n  can be  reached  in  m o re  th a n  one w a y , th en  e ve ry  p o s s ib le  

avenue o f  lo g ic  s h o u ld  lea d  to  the  sam e resu lt.

3b). A l l  a v a ila b le  e v id e n ce  re le v a n t to  a q u e s tio n  m u s t be co n s id e re d . P o rtio n s  

canno t be a rb it ra r i ly  le f t  o u t, c o n c lu s io n s  b e in g  based  o n ly  o n  w h a t rem a ins .

3c). E q u iv a le n t states o f  k n o w le d g e  m u s t be  rep resen ted  b y  e q u iv a le n t 

p la u s ib ilit ie s . H en ce  in  tw o  p ro b le m s , i f  the  sam e sta te  o f  k n o w le d g e  e x is ts , the  sam e 

p la u s ib il i ty  m u s t be ass igned  to  each.

These c r ite r ia  u n d e rp in  the  bas ic  ru les  o f  p ro b a b il i ty  th e o ry , f r o m  w h ic h  can  be 

es tab lished  a c o n s is te n t and  lo g ic a l da ta  ana lys is . W e  w i l l  lo o k  a t these ru le s  in  m o re  

d e ta il la te r w h e n  w e  c o n s id e r B a yes ia n  P a ram ete r E s t im a tio n  in  C h a p te r 8. H e re  w e  

ju s t  w a n t to  p o in t  o u t th e  e ssen tia l fea tu res o f  p ro b a b il i ty  ana lys is  and sh o w  th a t these 

c r ite r ia  e x is t as d e s ira b le  goa ls  to  be a im e d  at in  a n y  ana lys is . W ith  th a t in  m in d , w e
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I

can co n s id e r aga in  th e  u n ifo rm  m an ne r in  w h ic h  the  G auss ian  E r ro r  p ro p a g a tio n  

p rocedure  deals w ith  a ll  th e  in f lu e n c e  q u a n titie s  in  a fu n c t io n a l re la t io n s h ip . T h is  

U n if ie d  A p p ro a c h  c e r ta in ly  m akes ana lys is  easy, b u t w e  w a n t to  ensure  th a t i t  is  

ju s t if ie d  in  th e  l ig h t  o f  th e  c r ite r ia  o f  c o n s is te n t re a so n in g  u n d e r ly in g  p ro b a b il i ty  lo g ic .

In i t ia l ly  w e  p o in t  o u t th a t i t  is  w id e ly  accep ted  th a t som e e rro rs  are ra n d o m  in  

na tu re— th a t is  th e y  can  be a rb it ra r i ly  reduced  in  s ize  b y  in c re a s in g  the  n u m b e r o f  

sam ples taken— w h ile  o the rs  w i l l  re m a in  co n s ta n t and  are n o t a ffe c te d  b y  repea ted  

m easurem ents. (B o h m  (1 9 8 4 ) u s e fu lly  d e fin e s  e rro rs  as b e in g  ‘due to  c o n tin g e n c ie s  

o u ts id e  th e  c o n te x t o f  th e  e x p e r im e n t’ ) .W e  re ite ra te  th a t these " e r ro r s " -o f  w h a te v e r 

n a tu re -a re  d e v ia tio n s  b e tw e e n  the  m easurand  and e ith e r th e  re a lise d  o r  co rrec ted  

rea lised  q u a n tity . A s  such, th e y  are o f  course  u n k n o w a b le  (o th e rw is e  w e  c o u ld  co rre c t 

fo r  th em  and th e y  w o u ld  n o  lo n g e r be e rro rs ) and  th a t is  w h y  w e  rep resen t the  

m easurand  e s tim a te  b y  a p ro b a b il i ty  d is t r ib u t io n , w h ic h  is  a s ta te m e n t e ith e r 

n e g a tiv e ly  o f  lack o f  k n o w le d g e , o r  p o s it iv e ly ,  o f  th e  e x te n t o f  o u r  k n o w le d g e /o u r  

degree o f  b e l ie f  a bo u t the  m easu rem en t ju s t  m ade  (B o lo n i,  1997). N o te  th a t a ll o f  

these d is tr ib u tio n s  are se lected  on  th e  bas is  o f  a v a ila b le  in fo rm a t io n — w e  ca n n o t 

p os tu la te  data  th a t does n o t e x is t. A n y  n e w  da ta  can be  co m p a re d  w ith  th e  p re v io u s ly  

accepted d is t r ib u t io n a l in fo rm a t io n  and  a p o s te r io r  e s tim a te  c o n s tru c te d  a c c o rd in g ly , 

re fle c tin g  any changes th e  n e w  in fo rm a tio n  m ig h t im p ly .

So w e  can see th a t th is  u n ifo rm  app roach  to  p ro b a b il i ty  a ss ig nm e n t is  a v a lid  

and accep tab le  m e th o d , in  v ie w  o f  th e  ty p e  o f  ( in c o m p le te )  in fo rm a t io n  a v a ila b le . T he  

fa c t th a t w e  assign  d is t r ib u t io n a l p ro p e rtie s /d is p e rs io n  ch a ra c te r is tic s  to  a co ns ta n t 

sys tem atic  e rro r  is  s im p ly  a n u m e ric a l d e s c r ip t io n  o f  w h a t w e  k n o w  a b o u t the  

sys tem atic  e rro r  and  n o t an in fa l l ib le  s ta te m e n t a bo u t its  tru e  n u m e r ic a l va lu e . O f  

course, to  the  e x te n t th a t a sys te m a tic  e rro r  is  k n o w n  to  e x is t, a c o rre c t io n  s h o u ld  be 

m ade fo r  i t  on  the  bas is  o f  w h a te v e r in fo rm a t io n  le d  to  the  c o n c lu s io n  th a t i t  e x is te d  

and c o u ld  be q u a n tif ie d  (See W e is e  &  W o e g e r, 1992 and  a lso  1994 fo r  an a p p lic a tio n  

o f  B ayes ian  u n c e rta in ty  ana lys is ).

I t  is  im p o r ta n t to  rea lise  in  the  U n if ie d /G a u s s ia n  th e o ry  th a t w e  are n o t d e a lin g  

w ith  d is tr ib u tio n s  o f  e rro rs , b u t w ith  d is tr ib u t io n s  a ttached  to  the  p a ram e te r estim a tes. 

T h is  is because w e  k n o w  n o th in g  a bo u t th e  e rro rs  so ra th e r w e  c o n s id e r the  

d is tr ib u t io n  as a s ta te m e n t o f  o u r  degrees o f  b e l ie f  in  o u r  p a ram e te r e s tim a te . T h is  is 

q u ite  a d if fe re n t a pp roach  p h ilo s o p h ic a lly  (w h ic h  m a y  w e ll lea d  to  the  sam e n u m e r ic a l 

resu lts  in  m a n y  cases) w h ic h  show s c le a r ly  w h y  the  ra n d o m /s y s te m a tic  d is t in c t io n  is 

redundan t— w e 're  d e a lin g  w ith  param eters , n o t e rro rs
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T h e  G u id e  does, h o w e v e r, p e rm it  th e  c la s s if ic a t io n  o f  th e  m e th o d s  o f  o b ta in in g  

standard u n c e rta in tie s  in to  T y p e  A  (those  based o n  s ta tis tic a l m e th od s— n e a rly  a lw a ys  

in v o lv in g  d e a lin g  w ith  repea ted  data /an  e x a m in a tio n  o f  re la t iv e  fre q u e n c ie s ) and T y p e  

B  (those  based o n  "o th e r"  m e th od s— i.e . n o n -s ta tis t ic a l m e th o d s ). T h e  need  fo r  T y p e  

B  m ethods arises as a re s u lt o f  the  re q u ire m e n t to  p ro v id e  a S tan da rd  U n c e r ta in ty  in  

a ll cases: i f  an a na lys is  o f  repea t m easurem ents  is  n o t p o s s ib le , a distribution  m u s t be 

e s tim a ted  in  som e w a y  f i r s t  and th en  a va ria n ce  a p p ro p r ia te  to  th is  d is t r ib u t io n  can  be  

ob ta ined . I t  m a y  w e ll  be  th a t l i t t le  in fo rm a t io n  is  a v a ila b le  a b o u t the  d is p e rs io n  o f  the  

estim a te , b u t re m e m b e r in g  to  in te rp re t p ro b a b il i ty  as D egrees o f  B e lie f ,  th en  w h a te v e r 

d is tr ib u t io n  can  be d e c id e d  u p o n  is  s im p ly  a re f le c t io n  o f  w h a t k n o w le d g e  e x is ts  a t the  

t im e  abou t the  es tim a te , be  th a t m o re  o r  less {S ee  A n n e x  E  in  IS O , 1 9 9 3 }.

T h e  o v e ra ll g o a l o f  th is  U n c e rta in ty  P ro p a g a tio n  P rocedu re  is  to  generate  a 

s im p le  V a ria n c e /S ta n d a rd  U n c e rta in ty  fo r  th e  o u tp u t q u a n tity , w h ic h  can th en  be 

e as ily  in c o rp o ra te d  in to  o th e r ana lyses, and  is  c le a r ly  u n d e rs to o d . M a n y  p ro b le m s  can 

arise i f  an e s tim a te  is  c la im e d  to  have  an u n c e rta in ty  o f  x  w ith  a y%  c o n fid e n c e  le v e l. 

U n less so m e th in g  is  k n o w n  a bo u t th e  d is t r ib u t io n  o f  x, i t  is  im p o s s ib le  to  p ro p e r ly  

unders tand  the  q u o te d  u n c e rta in ty . (See a lso  M u e lle r ,  1984).

H o w e v e r, i f  a C o m b in e d  S tanda rd  U n c e r ta in ty  is  g iv e n  ( i.e . p o s it iv e  square  ro o t 

o f  (1 .4 .8 )), then  a va ria n ce  is  im m e d ia te ly  a v a ila b le  fo r  in c lu s io n  in  subsequen t w o rk . 

I t  is  n o t necessary to  g iv e  c o n fid e n c e  le ve ls  fo r  th e  re su lt, b u t th is  is  o fte n  co n s id e re d  

to  be u s e fu l in fo rm a tio n . T o  do  th is  th o u g h , re q u ire s  k n o w le d g e  a b o u t th e  shape and 

type  o f  the  d is t r ib u t io n  o f  th e  es tim a te , and th is  w i l l  depend  on  a c o n v o lu t io n  o f  a ll  the  

p ro b a b ility  d is tr ib u t io n s  o f  the  in f lu e n c e  q u a n tit ie s  in v o lv e d  in  g e n e ra tin g  the  

estim ate. T h is  c o n v o lu t io n  can be d i f f ic u l t  to  e va lu a te  i f  there  are m a n y  d if fe re n t types 

o f  d is tr ib u tio n s  ass igned  to  the  va rio u s  param ete rs . H o w e v e r, in  m a n y  cases the  o u tp u t 

d is tr ib u tio n  w i l l  be  a p p ro x im a te ly  N o rm a l, e ven  i f  the  in p u t d is tr ib u t io n s  are n o t 

e x a c tly  N o rm a l. T h is  is  a consequence  o f  th e  c e n tra l L im i t  T h e o re m  (B e c k  &  A rn o ld ,  

1977), (E ad ie , 1971). I f  th e re  is  a la rge  n o n -N o rm a l d is t r ib u t io n  e le m e n t p resen t in  the  

in p u t, the  c o n d it io n s  b ecom e  less fa v o ra b le  to  th e  C e n tra l L im i t  T h e o re m  and  its  

v a lid ity  ca nn o t be guaran teed. H o w e v e r i t  is  c o m m o n  p ra c tic e  to  in c lu d e  a s o -ca lle d  

"coverage  fa c to r" ,  u s u a lly  o f  k  =  2, to  g iv e  an E x p a n d e d  U n c e rta in ty  w h ic h  o fte n  has a 

co n fid e n ce  le v e l o f  the  o rd e r o f  9 5%  i f  th e  d is t r ib u t io n  is  a p p ro x im a te ly  N o rm a l. T he  

use o f  h ig h e r co ve rag e  fa c to rs — e.g. k  =  3 fo r  - 9 9 %  c o n fid e n c e  is  h a rd  to  ju s t i f y  s ince  

th is  resu lts  in  the  w id e n in g  o f  the  u n c e rta in ty  b ra c k e t to  in c lu d e  p o s s ib le  va lu es  to  

w h ic h  a v a n is h in g ly  s m a ll p ro b a b il i ty  o f  o ccu rre n ce  has a lrea d y  been assigned.

A s id e  (C o rre la t io n ) : W e  have  seen in  (1 .4 .8 ) h o w  to  e va lu a te  cr2^ )  

w h e re z, = f ( x l , . . . x N) , i.e . z} is  a fu n c t io n  o f  (som e  o f ) the  N p a ram ete rs  Xj....xN. N o w
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i f  w e  have  a n o th e r m ea su ran d  e s tim a te d  b y  z 2 = g ( x v . . . x N) ,  w e  can o f  co u rse  a lso  

eva lua te  er2(z2) . H o w e v e r, any  te rm s  c o m m o n  to  b o th  z1 and  z2 w i l l  re s u lt  in  th e  

p o s s ib il i ty  o f  a  c o rre la tio n  b e tw e en  th e  tw o  fu n c t io n s , w h ic h  c o u ld  be  s ig n if ic a n t i f  

th e y  w ere  to  be  la te r  c o m b in e d  in  a th ird  e v a lu a tio n . In  gen e ra l, th is  c o v a ria n c e  is 

eva lua ted  by :

( 1 A 9 )i=l vXj COCj

T hu s  fo r  any  xt n o t c o m m o n  to  b o th  z1 &  z2, one  o r  o th e r o f  th e  p a r t ia l d e r iv a tiv e s  w i l l  

be zero , and  i f  n o  te rm s are c o m m o n , there  w i l l  be no  c o rre la tio n .
j

T o  c o n c lu d e  th is  s e c tio n  w e  h ig h l ig h t  th e  p r in c ip a l p o in ts  o f  th is  U n if ie d  

M e th o d  o f  m o d e l p a ra m e te r is a tio n  and  u n c e rta in ty  a na lys is . T h e  m easu rand  m u s t be  

c le a r ly  d e fin e d : the  c ircu m s ta n ce s  o f  m easu rem en t, p h y s ic a l c o n d it io n s  e tc . m u s t a ll 

be stated. T h e  fu n c t io n a l fo rm  o f  the  rea lise d  q u a n tity  f r o m  th e  e x p e r im e n t s h o u ld  be  

set d o w n  and a ll  k n o w n  c o rre c tio n s  fo r  va rio u s  s ys te m a tic  b iases m u s t be in c lu d e d  to  

o b ta in  the  co rre c te d  re a lis e d  q u a n tity — th is  is  th e  e s tim a te  o f  th e  m easu rand  d es ired . 

T h e n  an in v e s tig a tio n  o f  the  d isp e rs io n  ch a ra c te r is tic s  o f  th e  v a r io u s  in f lu e n c e  

q u a n titie s  m u s t be  c a rr ie d  o u t in  o rd e r to  o b ta in  the  d is p e rs io n  c h a ra c te r is t ic s  o f  the  

o u tp u t q u a n tity .

T h e  k e y  to  the  a pp ro ach  is  to  e s tab lish  a v a ria n c e  fo r  a ll  th e  p a ram e te rs , the  

p o s it iv e  square  ro o t o f  w h ic h  is  te rm e d  a S tan da rd  U n c e rta in ty . T h e  va rian ce s , and 

any k n o w n  co va ria n ces , are trea ted  b y  the  G auss ian  P ro ced u re  to  o b ta in  the  C o m b in e d  

S tandard  U n c e rta in ty  o f  the  e s tim a te  o f  the  m easurand . (See A r r i ,  1996 &  C o x , 1996 

fo r  co m m en ts  on  m ea su rem e n t p ro ced u re  and m o d e l p a ra m e te r is a tio n )

C ove rage  fa c to rs  m a y  be  in c lu d e d  at th is  stage, to  g iv e  an expanded uncertainty 
as i t  is  te rm e d  in  the  IS O  G u id e , b u t care s h o u ld  be e xe rc ise d  in  d o in g  th is  and the  

w a y  in  w h ic h  i t  is  done  s h o u ld  be tra n sp a re n t to  ensure  th a t no  a m b ig u ity  arises. 

C ove rage  fa c to rs  can  te n d  to  have  a so m e w h a t "s le d g e h a m m e r" e ffe c t o n  th e  w h o le  

process, w h ic h  em phas izes  realistic e s tim a tio n  o f  u n c e rta in tie s , ra th e r th an  so -c a lle d  

"sa fe " es tim a tes. (O th e r th o u g h ts  on  coverage  fa c to rs  are g iv e n  in  G o de c  (1 9 9 7 )) . In  

o the r w o rd s  o u r  u n c e rta in ty  m easures s h o u ld  o n ly  be based on  th e  e x te n t o f  o u r  

a va ila b le  k n o w le d g e  and  n o t on  "g ue ss tim a te s " w ith  no  ju s t if ic a t io n  f r o m  th e  c u rre n t 

data. T h e  reason  fo r  th is  can be fu r th e r  re in fo rc e d  b y  c o n s id e r in g  th a t w h a te v e r 

d is tr ib u t io n  th e  e s tim a te  takes, in c lu d in g  a co ve rag e  fa c to r  im p lie s  p u s h in g  the  

boundaries  o f  p o s s ib le  va lu e s  o u t in to  the  ta ils  o f  th e  d is t r ib u t io n , w h ic h  b y  th e ir  v e ry  

na tu re  are co n s id e re d  h ig h ly  im p ro b a b le .
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In  th e  U n if ie d  A p p ro a c h  i t  is  p e rm is s ib le  to  p o in t  o u t th a t th e  c o m b in e d  s tandard  

u n c e rta in ty  co n ta in s  co m p on en ts  f r o m  v a rio u s  sources and to  ite m iz e  these. Such 

in fo rm a tio n  c o u ld  be  u s e fu l to  an end -use r o f  th e  c a lib ra t io n  in fo rm a tio n  in  c o m p a r in g  

the  q uo ted  u n c e rta in ty  f r o m  tw o  d if fe re n t e s ta b lish m e n ts , as i t  is  n o t a lw a ys  easy to  

id e n t ify  h o w  th e  o r ig in a l c a lib ra to r  a rr iv e d  at th e  sta ted  u n c e rta in ty . H o w e v e r , no te  

th a t the  fu n c t io n a l re la t io n s h ip  w i l l  d ic ta te  the  Sensitivity Coefficients (p a rt ia l 

d e riva tive s  o f  the  fu n c t io n a l fo rm )  and  these m u lt ip l ic a t iv e  fa c to rs  w i l l  a ffe c t the  

o v e ra ll c o n tr ib u t io n  o f  each te rm  to  th e  f in a l c o m b in e d  s tanda rd  u n c e rta in ty . P erhaps a 

good  m e th o d  w o u ld  be  to  state the  fu n c t io n a l re la t io n s h ip  and th e n  to  ta b u la te  the  

standard  u n c e rta in tie s  o f  each c o m p o n e n t and  th e ir  c o n tr ib u t io n  to  the  o v e ra ll resu lt. 

Such a su gg es tio n  is  in d e e d  b u t fo rw a rd  in  E A L  (1 9 9 7 ).

1.5 Subjective Probabilities and Maximum Entropy

T h e  U n if ie d  A p p ro a c h  to  da ta  ana lys is  in  m ass m e tro lo g y  d e ve lo p e d  in  th is  

thesis in c lu d e s  an a pp ro ach  to  u n c e rta in ty  a na lys is , aspects o f  w h ic h  have  been the 

cause o f  m u c h  c o n tro v e rs y  in  the  m e tro lo g ic a l c o m m u n ity . T h is  in  p a r t ic u la r  conce rns  

the  m an ne r in  w h ic h  i t  rem oves th e  d is t in c t io n s  be tw een  ra n d o m  and sys te m a tic  

u n c e rta in ty  co m p o n e n ts . W e  have  s h o w n  a bo ve  h o w  the  m e th o d  is  ju s t i f ie d  b y  a 

c o rre c t u n d e rs ta n d in g  o f  p ro b a b il i ty  th e o ry  and  o f  the  na tu re  o f  the  in fo rm a tio n  

a va ila b le  to  th e  a n a lyse r o f  e x p e rim e n ta l data . T h e  p o in ts  w e  have  ra ised  w i l l  be 

re le va n t to  the  re m a in d e r o f  th is  thes is  and w e  w i l l  see th e  em phasis  on  a U n if ie d  

A p p ro a c h  and  a C o n s is te n t A n a ly s is  m a n y  tim e s  in  th e  su ccee d ing  chap ters , 

p a r t ic u la r ly  in  d iscu ss io n s  on  P a ram ete r E s t im a tio n  m e thods  and da ta  a na lys is  o f  m ass 

c a lib ra tio n  e x p e rim e n ts . (See B re tth o rs t (1 9 8 9 ) fo r  a h e lp fu l tu to r ia l on  a p p lic a tio n s  o f  

B ayes ian  p ro b a b il i ty  th e o ry  to  pa ram e te r e s tim a tio n . F rô h n e r (1 9 9 7 ) has fu r th e r  u s e fu l 

in fo rm a tio n ) .

H o w e v e r, the  above  c o n s id e ra tio n s  o f  P ro b a b il ity  L o g ic  n o tw ith s ta n d in g , the  

m a jo r  c o n tro v e rs y  has cen te red  on  the  a ss ig n m e n t o f  P ro b a b il ity  D is tr ib u t io n s  to  

e xp e rim e n ta l data , th e  c la s s ic a l ana lys ts  h o ld in g  r ig id ly  to  a sepa ra tion  o f  sys te m a tic  

and ran do m  v a ria b le s , c la im in g  th a t the  u n if ie d  app roach  is  to o  s u b je c tiv e  to  be 

re a lis tic  (e.g. C o lc lo u g h , 1987). F ro m  o u r  e a r lie r  co m m e n ts  o f  course , w e  can c la im  

th a t a ll p ro b a b ilit ie s  are su b je c tiv e , d e p e n d in g  as th ey  d o  o n  a v a ila b le  in fo rm a t io n  in  

rea ch in g  a d e c is io n . I t  can indeed  be  a rgued  th a t the  tra d it io n a l app roach , to o , m u s t 

use s u b je c tiv e  assessm ents in  e s ta b lis h in g  u n c e rta in tie s  fo r  suspected  sys te m a tic  

e rro rs , abou t w h ic h  v e ry  l i t t le  p r io r  k n o w le d g e  m a y  be a va ila b le .
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H ence  o u t ta s k  n o w  is  to  ensure  th a t the  p ro b a b il i ty  ass ignm ents  w e  d o  reach  are 

c o m p le te ly  u nb ia sed  w ith  resp ec t to  th e  a v a ila b le  in fo rm a t io n . B e in g  ‘u n b ia s e d ’ is  

q u ite  d if fe re n t to  m a k in g  a ‘ s u b je c t iv e ’ assessm ent: th e  la tte r  is  s im p ly  a re f le c t io n  o f  

o u r f in ite  k n o w le d g e ; w h ile  th e  fo rm e r  is  an assurance th a t o u r  dem ands o f  

cons is te ncy  are m e t (C o x , 1946 ): a ll a v a ila b le  k n o w le d g e  is  used, w e  do  n o t a rb it ra r i ly  

ig n o re  som e o f  i t ,  and n e ith e r  do  w e  assum e o th e r in fo rm a t io n  n o t w a rra n te d  b y  the  

g iv e n  data  and k n o w n  h is to ry .

In  m a n y  cases i t  is  p o s s ib le  to  e s ta b lish  a d is t r ib u t io n , o r  a t leas t a va ria n ce  

estim a te , e m p ir ic a lly ,  b y  an e x a m in a tio n  o f  re la t iv e  fre q u e n c ie s  f r o m  repea ted  

e xp e rim e n ta l data. W h e re  such  in fo rm a t io n  is  a v a ila b le  i t  is  o f  co u rse  v a lid ,  b u t in  

o th e r cases an e s tim a te  o f  d is p e rs io n  ch a ra c te r is tic s  m u s t be e s ta b lish e d  b y  in v o k in g  

such c r ite r ia  as “ e xp e rie n ce ” , “ a v a ila b le  in fo rm a t io n ”  o r  som e s im ila r  idea . So h o w  

can w e  be sure th a t such  an e s tim a te  is  th e  b es t w e  can  do? W e  need  som e p ro ce d u re  

w h ic h  can guaran tee  w e  have  done  the  best, m o s t o p t im u m , a na lys is  w i th  th e  s u p p lie d  

in fo rm a tio n . R e m e m b e r th a t w e  v e ry  m u c h  d es ire  “ o p t im a l e s tim a tio n ”  o f  

u n ce rta in tie s— n o t a ‘ s le d g e h a m m e r’ a pp roach  o f  coarse  l im its  w h ic h  m u s t c o n ta in  

the  m easurand, and  n o t e ith e r, e x c e s s iv e ly  o p t im is t ic  n a rro w  l im its .

T h e  easiest w a y  to  ass ign  p ro b a b ilit ie s  is  b y  in v o k in g  th e  “ P r in c ip le  o f  

In d iffe re n c e ” : i f  i t  is  p o s s ib le  to  b re a k  th e  p ro b le m  u p  in to  a set o f  m u tu a lly  e x c lu s iv e  

and e xh a u s tive  p o s s ib il it ie s , th e n  the re  is  e s s e n tia lly  n o  reason to  ass ign  a ny  one  o f  

th e m  a h ig h e r p ro b a b il i ty  th a n  any o th e r and w e  a rr iv e  at a U n ifo rm  D is tr ib u t io n ,  

w h ic h  is in tu i t iv e ly  th e  s im p le s t w e  can im a g in e . H o w e v e r , o fte n  w e  do  have  

in fo rm a tio n  to  suggest th a t som e p ro p o s it io n s  (o r  da ta ) are m o re  l ik e ly  th a n  o thers . 

W h a t do w e  d o  then?  H o w  do  w e  p ro cee d  in  a m a n n e r w h ic h  takes a cco u n t o f  th is  

m o re  s p e c ific  in fo rm a t io n  w h ile  at the  sam e t im e re m a in in g  u n b ia se d  and  n o t m a k in g  

u n w a rra n te d  a ssu m p tio n s  a b o u t the  o th e r u n k n o w n  in fo rm a tio n ?  (see Jaynes, 1985)

W e  k n o w  th e  U n ifo rm  D is tr ib u t io n  to  be  the  m o s t n o n -c o m m itta l w i th  reg a rd  to  

a ll p o s s ib ilit ie s , w h ile  a p e r fe c t ly  sharp  fu n c t io n  (e .g . D e lta  F u n c tio n )  is  a b s o lu te ly  

d e fin ite  as to  th e  p a ra m e te r ’ s va lu e . W e  need som e m e th o d  w h ic h  can re p ro d u c e  b o th  

o f  these s itu a tio n s  w h i ls t  a lso  s p a n n in g  the  c o n tin u u m  b e tw een  th e m  in  a m a n n e r 

w h ic h  is  m a x im a lly  unb ia sed . A g a in  le t us re - ite ra te  w h a t is  m ea n t b y  ‘u n b ia s e d ’ : w e  

m ean adherence to  the  ru le s  o f  co n s is te n cy  such th a t n o  a tte m p t is  m ade  to  assum e 

k n o w le d g e  w e  do  n o t have . T h u s  any d is t r ib u t io n  s h o u ld  be as vague  as p o s s ib le  w h ile  

ta k in g  accou n t o f  a ny  k n o w n  da ta  (tes tab le  in fo rm a tio n ) .

E v e ry  p ro b a b il i ty  ass ig nm e n t can  be lo o k e d  u p o n  as e xp re ss in g  h o w  m u ch  

u n c e rta in ty  w e  h ave  a b o u t th e  p ro p o s it io n , o r  p a ram ete r. T h is  is  n o t to  be in te rp re te d
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n e g a tive ly , b u t ra th e r as a fa ir  e xp ress io n  o f  the  l im ita t io n  in  o u r  k n o w le d g e . W h a t w e  

need is  a n u m e r ic a l m easure  o f  th e  “ a m o u n t o f  u n c e rta in ty ”  rep resen ted  b y  a 

d is tr ib u t io n  w h ic h  te lls  us h o w  l i t t le  w e  k n o w . T h e  m o s t c o n s is te n t p ro b a b il i ty  

ass ignm ent w i l l  th e n  be  th e  one  w h ic h  m a x im is e s  th is , su b je c t to  the  c o n s tra in t o f  

w h a te ve r w e  do k n o w — i.e . w h a t te s ta b le  in fo rm a t io n  do  w e  have?  T h e  u n c e rta in ty  

co n te n t is  la rg e s t fo r  a U n ifo rm  m easure and  ze ro  fo r  a D e lta  fu n c t io n .

S uch  a m easure  does e x is t, and  is  te rm e d  th e  Entropy o f  a p ro b a b il i ty  

d is tr ib u tio n . (See, e.g., W o e g e r, 1987, S iv ia , 1996, L ie u , 1987). I t  is  a m easure  o f  the  

u n c e rta in ty  o r  a lte rn a tiv e ly , the  In fo rm a t io n  C o n te n t o f  a d is t r ib u t io n  and  can be  g iv e n  

by:

S = - J p ( ; t ) l 0 g ^ ^ k  (1 .5 .1 )

fo r  p(x) the  d is t r ib u t io n  in  q u e s tio n  and m(x) a fu n c t io n  re p re se n tin g  p a r t ic u la r  p r io r  

in fo rm a tio n  a v a ila b le  a b o u t th e  p ro b le m . M a x im is in g  S su b je c t to  the  c o n s tra in ts  o f  

any k n o w n  te s ta b le  in fo rm a t io n  w i l l  y ie ld  th e  bes t p ro b a b il i ty  a ss ig nm e n t th a t can  be 

m ade. I t  te lls  us h o w  m u c h  w e  d o n ’ t  k n o w  a b o u t th e  pa ram ete r, o r  h o w  U n ifo rm  is  the  

p ro b a b il i ty  d is t r ib u t io n . N o te  th a t i t  does n o t te l l  us w h ic h  d is t r ib u t io n  is  a b s o lu te ly  

r ig h t, b u t s im p ly  is a m eans o f  in d u c t iv e  re a so n in g  in  th e  absence o f  c e rta in ty  w h ic h  

te lls  us w h a t c o n c lu s io n s  are the  m o s t p la u s ib le  in  the  c o n te x t o f  the  c u rre n t ly  

a va ila b le  in fo rm a tio n . S om e  u s e fu l in fo rm a t io n  w ith  respect to  the  re la t io n s h ip  

be tw een  th e rm o d y n a m ic s  and  data  ana lys is  /  in fo rm a t io n  p ro ce ss in g  is  fo u n d  in  

T re b b ia  (1 9 9 6 ).

T he  gene ra l a pp ro ach  to  e v a lu a tin g  5 ^  is  as fo l lo w s :  (Jaynes, 1996) w e  ta ke  a 

d iscree t case w h e re  w e  have  a set o f  p o s s ib le  va lues (x],x2, xn) fo r  a p a ra m e te r x
and a c o rre s p o n d in g  p ro b a b il i ty  d is t r ib u t io n  (p{,p2,.......p„). T h e re  m a y  be a set o f  m
fu n c tio n s  o f  th e  da ta  w ho se  m ean  va lues  w e  k n o w . T h is  is o u r te s ta b le  in fo rm a tio n . 

T hus  w e  have  a set o f  fk ( * )  fo r  1 <  k < m and  a lso

Fk=E[fk(x)] = ̂ Pifk(xi) (1 .5 .2 )
i=l

So o u r co n s tra in ts  in c lu d e , f i r s t ly  n o rm a lis a tio n  o f  th e  d is tr ib u t io n , p. = l  and  a lso  a 

set o f  Fk g iv e n  b y  E q . (1 .5 .2 ). I f  w e  d e fin e

Q  =  S  +  X 0(l -  X P i) +  K  (^i -  X P i f i  (x i ))+ .........................-  X P ifm (*«)) (1 -5 .3 )

w he re  S is  n o w  g iv e n  in  the  d isc ree t case b y  S- -  Y  p: log— , th e n  in  the  L ag ra n g e  

V a r ia t io n a l m e th o d  w e  re q u ire  —  =  0 in  o rd e r to  m a x im is e  S s u b je c t to  th e  (m+\)
¿Pi

co ns tra in ts . T h a t is , w e  need:
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(1.5.4)

(1 .5 .5 )

(1 .5 .6 )

(1 .5 .7 )

(1 .5 .8 )

fo r  C = e“(1+Ao). T h u s  k n o w in g  the  L ag ra n g e  p aram ete rs  A„ and A , Am a llo w s  the

p ro b a b ility  d is t r ib u t io n  to  be  d e te rm in e d . T h is  in v o lv e s  s o lv in g  (m+1) s im u lta n e o u s  

equa tions  w h ic h  m a y  re q u ire  n u m e ric a l m e thods .

T h e  fu n c t io n  p(x) g iv e n  b y  E q . (1 .5 .8 ) generates the  m o s t co n s is te n t p ro b a b il i ty  

ass ignm ent fo r  th e  k n o w n  in fo rm a tio n . I t  is  ‘ s u b je c t iv e ’ to  th e  e x te n t th a t i t  is  a 

m easure o f  o u r  ‘u n c e r ta in ty ’ o r  la c k  o f  k n o w le d g e , b u t i t  is  a c o m p le te ly  o b je c t iv e  use 

o f  the  a v a ila b le  da ta  on  the  p ro b le m .

W e  w i l l  lo o k  n o w  at ju s t  tw o  s itu a tio n s  w h ic h  w e  w i l l  f in d  are s u f f ic ie n t  fo r  the 

subsequent ana lys is  in  th is  thes is  (S iv ia , 1996). In  th e  f i r s t  case w e  co n s id e r, th e re  are 

no k n o w n  co n s tra in ts  and m(x) is  a U n ifo rm  M ea su re — th a t is , w e  are c o m p le te ly  

n o n c o m m itta l a b o u t the  p o ss ib le  p a ra m e te r va lues, o n ly  k n o w in g  tha t
M

=1 => m i = j /M  b y  the  In d iffe re n c e  P r in c ip le . T hu s  in  E q . (1 .5 .7 ), th e  second
1=1

e x p o n e n tia l reduces to  u n ity  and w e  have:

Pi -m ,.e " (1+Ao) (1 .5 .9 )
n

W e  k n o w  th a t ^  p: =1  b y  n o rm a lis a tio n  so th e re fo re  w e  f in d :
r=l

' l o (1 _ £ ^ ) = 0

M
B u t g iv e n  th a t =1  w e  f in d  th a t A„ = - 1  fo r  a n o n - t r iv ia l s o lu t io n  and th us  fro m

1=1

E q. (1 .5 .9 ), Pi =mi o r, in  the  c o n tin u o u s  case, p(x) = m(x) . T h is  is  o f  course  in tu it iv e  

and te lls  us th a t, in  th e  absence o f  any o th e r in fo rm a t io n , excep t n o rm a lis a t io n  o n  p(x) 
and an u n in fo rm a tiv e  p r io r  m(x), th e  bes t w e  can e xpe c t is  ju s t  such  a u n ifo rm  

d is tr ib u t io n  fo r  w h ic h  :

— \ “ X P i lo S ~  +  X° ( l - X Pi )'+  X XJ ~  X P i f j (* ')
m  i=i mi x j = i

= 0
V 1=1

= X  i - 1 -  log -^ -  -  -  X  x j f j  (x i ) r = 0
i=i ;=i

H ence  fo r  each pi w e  have:
f  \  /m, 'exp m

- X 0 -  'Z%jfj {x i )
y=i

= e

O r, in  c o n tin u o u s  fo rm :

p { x )  = m(x)  C  exp
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w ith  a va ria n ce  o f

m(x)  =
forxrain

otherwise

(1 .5 .1 0 a )

( * max * min) (1 .5 .1 0 b )(*) = v '  12

T hu s  w h e n  w e  k n o w  n o th in g  e xce p t th e  b o u n d a rie s  fo r  x,  m a x im is in g  the  

E n tro p y  p re d ic ts  a U n ifo rm  D is tr ib u t io n ,  w h ic h  w e  w o u ld  in  any  e v e n t e xpec t, b o th  

in tu it iv e ly  and  b y  the  P r in c ip le  o f  In d iffe re n c e .

i
A  second  c o m m o n  s itu a tio n  arises w h e n  w e  k n o w  a m ean  v a lu e  E[x\  =  fi and  a 

va rian ce  o f

^ ( x - | a . ) 2J =  c 2 =^{x-\x)L p{x)dx (1 .5 .1 1 )

O nce a ga in  w e  need n o t have  any  p r io r  reason  to  se lec t one  d is p e rs io n  c h a ra c te r is t ic  

o v e r a no the r so w e  can h ave  m(x) as a u n ifo rm  d is t r ib u t io n . T h u s  E q . (1 .5 .8 )  g ives , fo r  

the  m a x im u m  e n tro p y  d is t r ib u t io n

p ( x )  =  m(x)e~{l+Xo)e~X'{x̂ )2 (1 .5 .1 2 )

since  w e  have  ju s t  one  c o n s tra in t fl(x) = (x-p)2 w i th  e x p e c ta tio n  v a lu e

F{ = E[f (x ) ]  =  J / [  (x)p{x)dx. W e  can  w r ite  E q . (1 .5 .1 2 ) as

p ( x )  = C e ~ Xl{x~il)1 (1 .5 .1 3 )

s ince  m(x)  is  a c o n s ta n t(u n ifo rm ) d is tr ib u t io n . W i th  th is  v a lu e  fo r  p ( x )  w e  can go b a ck  

to  the  c o n s tra in t e q u a tio n  (1 .5 .1 1 ) to  f in d :

a 2 =  J ( jc - | x fCe'^-^dx (1 .5 .1 4 )

w he re  the  (-°o, °o) l im its  can be  set un less w e  h ave  fu r th e r  c o n s tra in ts  to  th e  c o n tra ry .

E v a lu a tin g  th is  s tandard  in te g ra l y ie ld s :

,  cVrc

w h ile  the  n o rm a lis a tio n  c o n s tra in t g ive s  ano the r s tandard  in te g ra l:

1 =  ] W M ^ )2dx (1 .5 .1 6 )

C«Jn
d .5 .1 7 )

S o lv in g  E qs. (1 .5 .1 5 ) &  (1 .5 .1 7 ) as s im u lta n e o u s  equ a tio ns  y ie ld s  va lues  fo r  A, &  C:

(1 .5 .1 8a )
2 (7

C = —̂ =  (1 .5 .1 8 b )
c w  271

T hus  w e  f in a l ly  h ave  fo r  E q . (1 .5 .1 3 ):
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a 5 - 1 9 )

w h ic h  w e  can, re co g n ise  as a G auss ian  D is tr ib u t io n . T h is  show s us th a t th e  G auss ian  

D is tr ib u t io n  is  th e  m o s t h o n e s t d e s c r ip tio n  w h e n  w e  k n o w  n o th in g  e x c e p t a m ean  

va lu e  and a va ria n c e  e s tim a te .

T h is  d e v e lo p m e n t is  s ig n if ic a n t s ince  w e  sa id  e a r lie r  th a t even  th o u g h  a m ean  

va lu e  and va ria n c e  e s tim a te  c o u ld  be  c o m p u te d  f r o m  an e m p ir ic a l e x a m in a tio n  o f  

re la t iv e  fre q u e n c ie s , w e  c o u ld  n o t a u to m a tic a lly  assum e a N o rm a l D is t r ib u t io n  

app lie d . F u r th e r  in fo rm a t io n  w o u ld  be  needed w e  th o u g h t; h o w e v e r, he re  w e  see th a t 

in  fa c t a N o rm a l D is t r ib u t io n  is  the  bes t w e  can do  w h e n  p re sen te d  w ith  such 

in fo rm a tio n .

1.6 Conclusion

T h is  co n c lu d e s  o u r  s tu d y  o f  th e  fu n d a m e n ta ls  o f  p ro b a b il i ty  th e o ry  and  its  

a p p lic a tio n  to  u n c e rta in ty  a na lys is . T h e  concep ts  w e  h ave  d e v e lo p e d  here  are c ru c ia l 

to  w h a t fo l lo w s  and w e  w i l l  see h o w  the  genera l p h ilo s o p h y  o f  a u n if ie d  a pp ro ach  and 

a co ns is te n t ana lys is  is  a p p lie d  to  a ll  subsequen t c a lc u la tio n s .

W e  have  seen in  th is  ch a p te r h o w  the  L a w  o f  E r ro r  P ro p a g a tio n  p ro v id e s  a 

c o n v e n ie n t and  m a th e m a tic a lly  co nc ise  (as w e l l  as a ccu ra te !) re p re se n ta tio n  o f  the  

u n c e rta in ty  in f lu e n c e  o f  a ll  in v o lv e d  param ete rs  o n  th e  f in a l  o u tco m e . C r ite r ia  o f  

C on s is ten cy  u n d e r ly in g  p ro b a b il i ty  th e o ry  p ro v id e  a f i r m  ju s t i f ic a t io n  fo r  th is  

approach  and sh ow  th a t a re lia n c e  on  re la t iv e  fre q u e n c ie s  is  unnecessary  as these are 

o n ly  a subset o f  th e  e x ta n t in fo rm a t io n  on  th e  sub jec t.

A  c ru c ia l p o in t  fo r  th e  IS O  p ro ce d u re  is  th e  e s ta b lis h m e n t o f  va ria n ce  

com ponen ts  fo r  a ll  te rm s  in  th e  fu n c t io n a l re la t io n s h ip . T h e  M a x im u m  E n tro p y  

F o rm a lis m  in d ic a te s  a U n ifo rm  m easure  w h e n  o n ly  u p p e r and  lo w e r  l im its  fo r  a 

pa ram ete r are k n o w n , w h ile  a G auss ian  D is tr ib u t io n  bes t describes  p a ram e te r 

estim ates fo r  w h ic h  m eans and  va riances are a v a ila b le . T hese  tw o  cases ade qu a te ly  

describe  the  in fo rm a t io n  p resen ted  in  su ccee d ing  chap te rs , and so w e  can p roceed , 

c o n fid e n t th a t th e  U n i f ie d  A p p ro a c h  can be  m a in ta in e d .
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2. Parameterising Mass Calibration Experiments

2.0 Summary

In  th is  ch a p te r and  the  n e x t w e  a p p ly  the  p r in c ip le s  o f  co n s is te n t rea son ing  

d eve loped  in  C h a p te r 1 to  an ana lys is  o f  the  issues a r is in g  in  m ass c a lib ra t io n  b y  

co m p a riso n  e xp e rim e n ts . T h e  b as ic  m easurand  to  be d e te rm in e d  is  th e  m ass difference 
o f  tw o  s tandards o r ensem b les  o f  standards. T h e  da ta  is  o b ta in e d  f r o m  'in -a ir ' 

co m p a rison s  w ith  a u to m a te d  m ass co m p a ra to rs , re s u lt in g  in  th e  need fo r  v a rio u s  

c o rre c tio n s  ( in f lu e n c e  q u a n tit ie s )  to  be  in c o rp o ra te d  in  th e  o v e ra ll fu n c t io n a l 

re la tio n s h ip . W e  i l lu s tra te  th e  d e v e lo p m e n t o f  a sca la r v e rs io n  o f  th e  W e ig h in g  

E q u a tio n ’, th e  k e y  fu n c t io n a l re la t io n s h ip  in  mass m e tro lo g y . In c o rp o ra te d  in  th is  are 

w e ll-k n o w n  c o rre c tio n s  fo r  b u o ya n cy , c e n te r-o f-g ra v ity  d iffe re n c e s  and v o lu m e  

e xpa ns ion  c o e ff ic ie n ts .

W e  th e n  il lu s tra te  h o w  th e  u n c e rta in ty  ana lys is  is  c a rr ie d  o u t a c c o rd in g  to  the  

p r in c ip le s  o f  th e  IS O  G u id e . T h is  is  a n e w  d e v e lo p m e n t w h e re  w e  a do p t th e  u n if ie d  

approach  and d o  n o t separate th e  co m p o n e n ts  in to  ra n d o m  and sys te m a tic  te rm s  as is  

t ra d it io n a lly  done. T h e  e xp ress io ns  fo r  the  s tandard  u n c e rta in ty  thus  d e ve lo p e d  can 

th en  e a s ily  be in c o rp o ra te d  in to  o th e r w o rk  as re q u ire d .

2.1 Introduction

W e  w is h  to  a p p ly  the  th e o ry  d e ve lo p e d  in  C ha p te r 1 to  th e  a na lys is  o f  c o m p a ris o n  

e xpe rim en ts  in  m ass c a lib ra t io n . T h e  e x p e rim e n ta l p ro ce d u re  is w e l l  k n o w n  and  w i l l  

n o t be to u ch e d  on  here, a lth o u g h  som e d e ta ils  are g iv e n  in  C h a p te r 11. F o r  o u r 

purposes n o w  i t  w i l l  be  s u ff ic ie n t to  no te  th a t co m p a riso n s  are c a rr ie d  o u t b e tw een  

n o m in a lly  e qu a l m ass s tandards, o r  ensem bles o f  m ass s tandards, the  re s id u a l mass 

d iffe re n c e  b e tw e e n  th e  p a ir  b e in g  th e  m easurand  o f  in te res t. D a ta  is  o b ta in e d  w ith  

E le c tro m a g n e tic  F o rce  C o m p e n s a tio n  co m p a ra to rs  and v a rio u s  c o rre c tio n s  m a y  be 

re q u ire d  to  the  re s u lt in g  data. F o r  e xa m p le , o p e ra tin g  in  a ir  im p lie s  a c o rre c t io n  fo r  

the  d iffe re n c e  in  b u o y a n t fo rc e , s h o u ld  the  tw o  s tandards have  d if fe re n t dens ities . 

T he re  m ay  a lso  be c o rre c tio n s  due  to  cen te r o f  g ra v ity  d iffe re n c e s  and perhaps 

d if fe re n t v o lu m e  e xp a n s io n  c o e ff ic ie n ts . T he re  can a lso  be  issues a ris in g  fro m  

m a g n e tic  p ro p e rtie s  o f  s tandards (see, e .g., D a v is , 1992b , 1993, 1995a, M y k le b u s t, 

1995, B a lla n tin e , 1996).

28



2.2 System Modeling—The 'Weighing Equation'

W h e n  a ll necessary in f lu e n c e  q u a n titie s  h ave  thus  been id e n t if ie d , th e  fu n c t io n a l 

re la tio n s h ip  can  be  e s tab lished , a llo w in g  an es tim a te  o f  th e  m ea su ran d  and associa ted  

s tandard  u n c e rta in ty  to  be c a lc u la te d  f ro m  the  a p p ro p r ia te  e x p e rim e n ta l 

m easurem ents. F o r  the  case o f  th e  o ne -pan  e le c tro n ic  c o m p a ra to r w e  can w r ite

(M, - PaVs)g-(Mx-paVx)g = Fs (2 .2 .1 )

w he re  M s is th e  p h y s ic a l m ass o f  th e  standard  w e ig h t;

Vs is  its  v o lu m e ;

Mx &  Vx are the  (u n k n o w n )  m ass and v o lu m e  o f  the  c o m p a ra to r ’ s in te rn a l ta re  

w e ig h t (o n ly  re s id u a l d iffe re n c e s  in  a pp a ren t1 m ass are  m easu red .) 

pa is  the  a ir  d e n s ity  at the  t im e  o f  m easurem ent;

Fs is  the  e le c tro m a g n e tic  re s to r in g  fo rc e  e xe rte d  b y  th e  c o m p a ra to r to

com pensa te  fo r  th e  re s id u a l in -a ir  mass d if fe re n c e  (a p p a re n t m ass d iffe re n c e ) 

be tw e en  th e  in te rn a l ta re  w e ig h t and th e  e x te rn a lly  a p p lie d  w e ig h t.

(See Jaeger &  D a v is  (1 9 8 4 ) fo r  e xa m p le ). I f  the  c o m p a ra to r in d ic a t io n  fo r  th is  

m easurem ent is  W i, i t  w i l l  be  re la te d  to  the  fo rc e  Fs b y

Ws = kFs (2 .2 .2 )

w he re  k is  an in s tru m e n t cons tan t, f ix e d  w he n  th e  c o m p a ra to r is ca lib ra te d . W e  can 

in te rp re t Ws as th e  apparen t m ass d iffe re n c e  (o r  “ w e ig h t- in -a ir ”  d if fe re n c e )  be tw een  

Ms and Mx. In  d o in g  th is  w e  can n e g le c t a s m a ll c o rre c tio n  fa c to r, d e p e n d in g  on  th e  a ir  

d e n s ity  w h e n  the  c o m p a ra to r  w as c a lib ra te d  and  a lso  on  the  d e n s ity  o f  the  c a lib ra tio n  

w e ig h t used (S c h w a rtz , 1995), p a r t ic u la r ly  s ince  Ws is  a re s id u a l m ass d if fe re n c e  and 

thus sm a ll. A n y  c o rre c t io n  w o u ld  then  be less than  the  c o m p a ra to r ’ s re s o lu tio n . 

R ep ea ting  the  m e a su rem e n t p rocess w ith  a test w e ig h t w e  have

(Ml -paVl)g-{Mx-paVx)g = Fi (2 .2 .3 )

(F o r s im p lic i ty  w e  assum e a ir  d e n s ity  re m a in s  unchanged  b e tw e e n  these tw o

m easurem ents). T h e  c o m p a ra to r in d ic a t io n  in  th is  case w o u ld  be  Wt. I f  w e  n o w

eva lua te  the d if fe re n c e  b e tw e en  (2 .2 .1 )  &  (2 .2 .3 ) w e  can e lim in a te  th e  u n k n o w n  tare 

w e ig h t te rm  to  o b ta in :

(M,. -  p uVt)g-(M,-paVl)g = Fs-Fl (2 .2 .4 )

W e  can d e fin e

W=WS-W, (2 .2 .5 )

as the  apparen t m ass d if fe re n c e  b e tw e en  the  s tanda rd  and test w e ig h ts . U s u a lly  th is  

te rm  is e va lu a te d  b y  a d o u b le -s u b s titu tio n  co m p a riso n .

1 Note: In this thesis, when we use the term ‘apparent m ass’ we mean the resulting measured mass from 
a measurement in air of a particular density, before any buoyancy corrections are made. We will 
sometimes refer to ‘apparent mass difference’ as ‘Weight-in-Air’ difference.
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N o w  i t  m a y  o c c u r th a t the  centers o f  g ra v ity  o f  th e  s tandard  and  test w e ig h ts  d o  n o t

c o in c id e  in  w h ic h  case w e  w o u ld  have  to  w r ite  (2 .2 .4 )  as

(Ms -  paVs)gs -  (M< -  paVt)g, = A Wg, (2 .2 .6 )

w he re  w e  have  co n s id e re d  A W  as a m ass ( in  e ffe c t o f  d e n s ity  8 0 0 0  kgm3 s ince  

co m p ara to rs  are u s u a lly  c a lib ra te d  fo r  conventional mass ( O IM L  IR  33  &  S c h w a rtz  

(1 9 9 5 ) )  w h ic h  w o u ld  ‘b a la n ce ’ the  fo rc e  e q u a tio n  o f  Eq. (2 .2 .4 ). F o r  c o n ve n ie n ce  w e  

have co ns ide red  its  cen tre  o f  g ra v ity  to  c o in c id e  w ith  th a t o f  th e  test w e ig h t. N o w  w e  

can no te , fo l lo w in g  the  tre a tm e n t o f  g ra v ita tio n a l e ffe c ts  in  A im e r  &  S w if t  (1 9 7 5 ), 

th a t the  g ra v ita tio n a l fo rc e  e xp e rie n ce d  b y  tw o  m asses, Mi &  M2 is:

= ( 2 2 7 a )  

F2 - ^ ^  = M 282 (2 .2 .7 b )
( re + d )

F o r Me &  re th e  m ass and ra d iu s  o f  the  earth  and d the  d is tance:

(ce n te r o f  m ass)! - (ce n te r o f  m ass)2 

N o w  i f  these fo rce s  are e qu a l w e  f in d :

2dMl d2M,Fx =F2=*M2 = M} + -------- -  + — ^  (2 .2 .8 a )
r e r e

&  —  =  —  (2 .2 .8 b )
Mi g2

=> i L  =  i  +  ̂  +  ̂ _  (2 .2 .9 )
82 re re

b u t s ince  d ~ lcm u s u a lly  and re ~ 6 .4 x l0 6m, th e  th ird  te rm  o n  the  rhs o f  (2 .2 .9 ) is

v a n is h in g ly  s m a ll and can s a fe ly  be ig n o re d . F o l lo w in g  (2 .2 .9 ), (2 .2 .6 ) can  be re 

expressed as:

(g \
( M , - p aVt ) -  ~{Mt~PaVt) = AW (2 .2 .1 0 )

V  S i  /

S u b s titu tin g  (2 .2 .9 ) in to  (2 .2 .1 0 ) and re -a rra n g in g  g ives :

. , 2dM 2dpaVs{Ms-M,)-pa{V,-V,) + i -  i ^  =  A W
r e r e

, v 2 dM, 2dpV=>(Ms-Mt) = AW + pa(Vx-Vt)---------- -  +  —
v r

(2.2 .11)

T h e  las t te rm  on the  r.h .s . o f  (2 .2 .1 1 ) is  som e 4  to  6 o rders o f  m a g n itu d e  less than  the  

o thers  and th us  can be  n eg le c te d  so th a t th e  fu n c t io n a l fo rm  fo r  o u r  in f lu e n c e

param eters can be  expressed  as:
2 dM,AM = AW + paAV   (2 .2 .1 2 )

w here  AM is th e  p h y s ic a l m ass d if fe re n c e  o f  the  standards.
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E q u a tio n  (2 .2 .1 2 ) is  th e  w e ll-k n o w n , " w e ig h in g  e q u a tio n ", a lth o u g h  th e  e x tra

h o w e v e r i t  can a m o u n t to  som e 3 ox 4 fig w h ic h  is  e a s ily  m ea su rab le  w ith  m o d e m  

com para to rs  and  so does need to  be in c lu d e d  fo r  th e  m o s t accura te  w o rk . Ms w i l l  be

taken  as the  n o m in a l mass o f  the  standards fo r  th is  c a lc u la tio n s . In  m o s t cases th e  

standards are e ith e r  c y lin d r ic a l,  o r  v e ry  c lose  to  c y lin d r ic a l so th a t d, th e  ce n te r o f  

g ra v ity  d iffe re n c e , w i l l  be h a l f  th e  d if fe re n c e  in  h e ig h t o f  the  tw o  c y lin d e rs . H o w e v e r, 

D a v is  (1 9 9 5 ) has d esc rib e d  a d e v ice  a llo w in g  the  cen tre  o f  m ass o f  a s ta nd a rd  O IM L  

mass (O IM L ,  1994) to  be  d e te rm in e d  q u ite  eas ily . N o te  th a t w h ile  i t  is  n o t u n c o m m o n  

to  e m p lo y  s e n s it iv ity  w e ig h ts  in  the  e x p e rim e n ta l process (e.g. D a v is , 1987) le a d in g  to  

e x tra  te rm s in  E q . (2 .2 .1 2 ), th is  has n o t been  done  here  s ince  th e y  are  n o t e m p lo y e d  in  

the  e x p e rim e n ta l sys tem  used in  th is  w o rk , to  be d escrib e d  la te r.

O ne  fu r th e r  in f lu e n c e  w e  can add to  (2 .2 .1 2 ) is  th a t due  to  th e  te m p e ra tu re  

dependence o f  v o lu m e s  o f  the  standards (See S c h w a rtz , 1991):

w he re  at t a lso , b u t can be  taken  to  be co n s ta n t o v e r th e  n a rro w  range  o f  

tem pera tures w h ic h  w i l l  be enco un te re d  in  th e  c a lib ra tio n  la b o ra to ry . A ls o  a, is 

m a te r ia l dependen t, b u t s ince  w e  w i l l  o n ly  e n co u n te r s ta in less s tee l w e ig h ts  in  th is

w o rk , w e  can use a f ix e d  v a lu e  o f  a , and w r ite  (2 .2 .1 2 ) as:

AM is  the  m easu rand  o f  f in a l in te re s t fo r  o u r  purposes. F o r  b as ic  c a lib ra t io n , th is  is 

n o t s tr ic t ly  tru e  s ince  AM = Mx -  M, and  mt is the  u n k n o w n  to  be e s tim a ted . In  tha t 

case, w h a t is  re q u ire d  is Mt =  Ms - AM. H o w e v e r , w h a t w e  are in te re s te d  in  is  ju s t  

mass differences w h ic h  w i l l  be used in  th e  E s t im a tio n  P rocedures to  be d escrib e d  

la te r, in  o rd e r to  e s tim a te  mass values.
(

2.3 U ncertainty Propagation

T h e  a na lys is  o f  S e c tio n  2 .2  has d e sc rib e d  one fo rm  o f  th e  w e ll-e s ta b lis h e d  

W e ig h in g  E q u a tio n . N o w  w e  a p p ly  the  u n if ie d  approach  to  e v a lu a tin g  the  standard  

u n c e rta in ty  o f  (2 .2 .1 4 ). N o te  in  p a r t ic u la r  th a t w e  w i l l  n o t s p li t  the  in f lu e n c e  q u a n titie s  

in to  those  c o n tr ib u t in g  ra n d o m ly  and s y s te m a tic a lly  to  the  o v e ra ll u n c e rta in ty . W e  

m u s t e va lua te  E q . (1 .4 .7 ), resta ted  here  fo r  c o n ve n ie n ce  as:

te rm  5 , th e  c o rre c t io n  due to  d if fe re n t centers o f  g ra v ity  is  n o t a lw a ys  in c lu d e d ;

V(f) = V (2 0 ) { l+ a (( f - 2 0 ) } (2 .2 .1 3 )

(2 .2 .1 4 )

(2 .3 .1 )
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w here  the  sy m b o ls  have  th e ir  usua l m ea n in gs  and AM = f(xl7...xN). F ro m  (2 .2 .1 4 ), 

th is  can be  w r it te n  as AM = f(AW,pa,Vs,V„t,d). W e  m u s t w r ite  AVr =  ( y t - V ( ) s ince

there w i l l  be  a s tandard  u n c e rta in ty  assoc ia ted  w ith  each v o lu m e  b u t Aw is  ju s t  an 

in s tru m e n t in d ic a t io n . F o r  Ms in  E q .(2 .2 .1 4 ) w e  can  use th e  n o m in a l v a lu e  o f  the  

standard  s ince  ty p ic a l d e v ia tio n s  o f  a fe w  mg f r o m  th is  n o m in a l v a lu e  w i l l  m ake  

in s ig n if ic a n t d iffe re n c e s  o f  th e  o rd e r o f  ~ 1 0 fig to  th e  G ra v ita t io n a l C o rre c tio n . 

F u rth e r, re, th e  earth  ra d iu s  can be  trea ted  as a co ns ta n t here fo r  s im ila r  reasons.

B e fo re  p ro c e e d in g  to  the  e v a lu a tio n  o f  (2 .3 :1 ), w e  need to  c o n s id e r co va ria n ce

e lem ents w h ic h  w i l l  resu lt. O n  a m a th e m a tic a l le v e l, th e  p o s s ib le  co va ria n ce s  w h ic h

can arise  a m o n g  the  in f lu e n c e  q u a n tit ie s  in  th e  fu n c t io n a l fo rm  o f  Am are:

¿(AW, p B)  , s(AW,Vs) , í(A W ,V ;)  , ¿ (A W ,/) , í(A W ,¿ );

» ^(Pa’^i) ’ 5(Pa’ 0  » J(Pa’^)> 

s{Vs’Vt )  , s(Vs, t ) , s(Vs,dJ, 

s(Vt , t ) ,  s(V„d); 

s(t, d).

I t  is  v e ry  im p o r ta n t w h e n  c o n s id e r in g  c o rre la tio n s  to  c o n s id e r w h e th e r  o r  n o t th e y  are 

p h y s ic a lly  m e a n in g fu l: i t  is  a lw a ys  p o s s ib le  to  m a th e m a tic a lly  e va lu a te  a c o rre la tio n  

c o e ff ic ie n t o r  co va ria n ce  a m ong  sets o f  data, b u t one m u s t a lw a ys  c h e c k  w h e th e r such 

a re la tio n s h ip  can be  p h y s ic a lly  ju s t if ie d .  I t  is  easy to  m ake  p ro n o u n ce m e n ts , based on  

such s ta tis tic a l ana lyses, w h ic h  do  n o t have  any fo u n d a tio n  in  p h y s ic a l re a lity .

W e  can im m e d ia te ly  say th a t a ll  c o rre la tio n s  in v o lv in g  th e  v o lu m e s  are ze ro  

since the  v o lu m e s  are d e te rm in e d  in d e p e n d e n tly  b y  a h y d ro s ta tic  w e ig h in g  e x p e rim e n t 

at ano ther t im e  and  ano the r p la ce . (See, e.g., B o w m a n  (1 9 6 7 ), S p ie w e c k  &  B e tt in  

(19 92 ), H e ie r l i  ( 1 9 9 7 ) )  T h e  p o s s ib il i ty  o f  c o rre la tio n s  between th e  tw o  v o lu m e s  m a y  

be specu la ted , b u t as a ru le , in fo rm a t io n  abou t th is  is  n e ve r a v a ila b le  to  the  

e x p e rim e n te r d o in g  m ass c a lib ra tio n s  and so ca nn o t be in c lu d e d . S im ila r ly ,  the 

co va ria n ce  s(pa,d) can be  d ism isse d , as can s(Aw,d) and s(t,d). S in ce  pa / - a m o n g

o the r v a r ia b le s -a  c o v a ria n c e  b e tw e en  these tw o  does n o t arise, b u t ra th e r, the re  is  a 

d ire c t c o n tr ib u t io n  to  the  c o m b in e d  va ria n ce  o f  pa f r o m  the  v a ria n c e  o f  t, o f  w h ic h  

m ore  w i l l  be  sa id  in  C h a p te r 3. A s s u m in g  steady state c o n d it io n s  d u r in g  the 

m easurem ent p e r io d -w h ic h  is  reasonab le  in  a h ig h  accu racy  la b o ra to ry  -  the re  w i l l  be 

no  c o rre la tio n  b e tw e e n  th e  w e ig h t d iffe re n c e , Aw, and t o r  pa, w h ic h  are 

m ea su red /ca lcu la ted  b y  o th e r in s tru m e n ta tio n .

T he  im p o r ta n t p o in t  o f  th e  fo re g o in g  c o n s id e ra tio n s  is  th a t w e  have  taken  on  

b o a rd  a ll in fo rm a t io n  th a t is  to  h an d  a bo u t th e  e x p e rim e n ta l p rocess. In  th e  absence o f  

any in fo rm a tio n  to  th e  c o n tra ry  w e  h ave  no  reason to  assum e th a t a co va ria n ce  e x is ts  

be tw een  the  v o lu m e s , fo r  e xa m p le . I f ,  h o w e v e r, the  v o lu m e  c a lib ra t io n  da ta  in d ic a te d
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such a co va ria n ce , th en  i t  w o u ld  o f  course  h ave  to  be in c lu d e d . T h e  sam e a p p lie s  to  

the  o th e r v a ria b le s  in  E q . (2 .2 .1 4 ). T h e  re s u lt is  th a t, h a v in g  co n s id e re d  th e  p h y s ic a l 

s itu a tio n , in  the  absence o f  a n y  in fo rm a tio n  to  th e  c o n tra ry , w e  can ass ign  a ze ro  va lu e  

to  the  co va ria n ces  a m o ng  the  in p u t pa ram ete rs . A g a in  th is  is  an e x a m p le  o f  

im p le m e n tin g  a p h ilo s o p h y  o f  c o n s is te n t re a so n in g  in  the  ana lys is . So n o w  (2 .3 .1 )  can 

be eva lua ted  to  g ive :

(  Bf n2 f
'(AM )  =

3 /

dAW j  (A W ) +

+
' a f ' 2

dV, \ V ' ) +
)

\  dp* )

s \ t )  +

!( p j+ 3 L
dV.

r a / V  ( V '
(2 .3 .2 )

s \ d )

and u s in g  (2 .2 .1 4 ) fo r  the  fu n c t io n a l fo rm  o f  AM w e  o b ta in  the  e xp re ss io n  in  (2 .3 .3 ).

s2(AM )= s2(AW)

+ s2(pa)(Vs-V,)2{l + a ( t - 2 0 ) f  

+ (s2(Vs) + s2(Vt)) p 2 ( l  +  a ( i - 2 0 ) ) 2

+ * 2« p ^ . - v () V  
/   ̂ , \ 2

(2 .3 .3 )

T he  p o s it iv e  square  ro o t o f  (2 .3 .3 ) is  th e n  th e  c o m b in e d  s tandard  u n c e rta in ty  o f  Am. In  

p ra c tice , the  la s t tw o  te rm s, due  to  th e  sys te m a tic  co rre c tio n s , w i l l  e va lu a te  to  5 o r  6 

orders o f  m a g n itu d e  less th an  the  o the rs  and  thus  c o n tr ib u te  n e g lig ib ly  to  th e  o v e ra ll 

u n c e rta in ty  te rm . F o r  e xa m p le , in  D a v is  (1 9 9 5 b ), i t  is  sh ow n  th a t th e  ce n tre  o f  m ass 

can be d e te rm in e d  to  perhaps 3 ¡mi w h ic h  w o u ld  lea d  to  an u n c e rta in ty  c o n tr ib u t io n  o f  

a round  1 x 1CT3 ¡ig fo r  a 1 kg standard.

W e  n o w  need  to  c o n s id e r the  p o s s ib il i ty  o f  co rre la tio n s  between tw o  separate 

e va lua tion s  AMi and  AMj, w h ic h  c o u ld  a rise  as a re s u lt o f  c o m m o n  in f lu e n c e  

q ua n titie s  in  each. R e c a ll th a t the  c o rre la tio n  can be  e va lua te d  fro m :

( \ V  $  2( ^

fo r  yj =f(xl,....xN) (2 .3 .4 )

& y k =  g (x i

w here  n o t a ll th e  in f lu e n c e  q u a n titie s  m a y  n ece ssa rily  o c c u r in  b o t h / &  g. C o v a ria n c e  

te rm s w i l l  a rise  o n ly  as a re s u lt o f  those  te rm s  w h ic h  are c o m m o n  to  b o th . In  the  

p resen t case, f r o m  E q . (2 .2 .1 4 ), w e  m a y  have , fo r  exam p le :
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AMt =  AW, +pai{Vl -  Vm){\ + a(ti-2 0 ))-^ ^
o a  m  t2 -3 -5 )/ v/ / w 2a,A?

AMj - AWj +  puj ( V„ -  V , ) ( l  + a (tj -  2 0 ) )  *— L
rt

C le a rly , AWt &  AWj n e ve r b o th  o c c u r in  the  sam e fu n c t io n , the  sam e a p p ly in g  to  p , &

pj and a lso tt &  tj. a is  co n s id e re d  co n s ta n t s ince  its  v a r ia b i l i t y  w i l l  have  n e g lig ib le

in f lu e n c e  so i t  ca n n o t c o n tr ib u te  any c o v a ria n c e  e ithe r. T h u s  th e  o n ly  p o s s ib il i ty  fo r

covariances b e tw e e n  AMi &  AMj arises as a re s u lt o f  w e ig h ts  b e in g  c o m m o n  to  b o th  

com parisons. F o r  e xa m p le , i f  A M ; =Ml -M2 &  AMj =  M , -  M 3 ,w e  can see th a t M1 is

used in  b o th  c o m p a riso n s  and  so V1 w i l l  appear in 1 b o th  equ a tio ns  in  (2 .3 .5 ) above.

T hus  w e  f in d  th a t th e  co va ria n ce  te rm  can  be  expressed  as:

=  £  — •- — L s2{V„) (2 .3 .6 )
*=1 V k A  ° Vk

'P' in  (2 .3 .6 ) is  th e  to ta l n u m b e r o f  w e ig h ts  used  in  th e  tw o  co m p a ris o n s  and  the  

d e r iv a tiv e  p ro d u c t is  o n ly  n o n -ze ro  in  cases w he re  a w e ig h t is  used  in  b o th

com parisons.

So, b y  a p p ly in g  th e  IS O  P rocedure  to  the  W e ig h in g  E q u a tio n , w e  have  been ab le  

to  generate  tw o  e q u a tio ns  { (2 .3 .3 )  &  (2 .3 .6 )}  w h ic h  p ro v id e  a ll th e  necessary 

in fo rm a tio n  to  e va lu a te  th e  va rio u s  u n c e rta in tie s  re s u lt in g  f r o m  the  c o m p a ris o n  

e xpe rim en ts . T h is  has been  done  in  a u n if ie d  m a n n e r w ith  respec t to  the  tre a tm e n t o f  

the va rio u s  in f lu e n c e  te rm s  and w e  have  so u g h t to  u p h o ld  dem ands on  c o n s is te n t 

reason ing  in  the  a na lys is . W ith  th e  fu n c t io n a l re la t io n s h ip  e s ta b lish e d  as s h o w n  in  E q .

(2 .2 .1 4 ), w e  o n ly  need to  f in d  va ria n ce  co m p o n e n ts  fo r  each in f lu e n c e  q u a n tity  in  

o rd e r to  c o m p le te  the  e rro r  p ro p a g a tio n  ana lys is . W e  have  seen in  C h a p te r 1 h o w  

M a x im u m  E n tro p y  co n s id e ra tio n s  a llo w  th is  to  be  done  in  a “ m a x im a lly  u n b ia se d ”  

m anner. F o r e x a m p le , q u a n titie s  l ik e  Aw w h ic h  are e s tim a te d  b y  repeated  

m easurem ents can be  co n s id e re d  to  have  a N o rm a l D is tr ib u t io n , s ince  a m ean  va lu e  

and va riance  are a v a ila b le . Q u a n titie s  f r o m  o th e r c a lib ra tio n s  (such  as v o lu m e  

d e te rm in a tio n s  fo r  e x a m p le ) s h o u ld  h ave  been  p rocessed  a c c o rd in g  to  IS O  p r in c ip le s , 

in  w h ic h  case a s ta nd a rd  u n c e rta in ty  w i l l  be  a v a ila b le  w h ic h  w e  can be  c o n fid e n t in  

in s e rt in g  in to  subsequen t c a lc u la tio n s . H o w e v e r, i f  i t  is  n o t c le a r h o w  th e  q uo ted  

u n c e rta in ty  w as d e te rm in e d , w e  m u s t use M a x im u m  E n tro p y  co n s id e ra tio n s  to  assign 

the  leas t c o m m itta l d is t r ib u t io n  th a t is c o m p a tib le  w ith  the  s u p p lie d  data. V e ry  o fte n  

th is  w i l l  s im p ly  be  a U n ifo rm  d is tr ib u t io n .

B e fo re  p ro c e e d in g  to  lo o k  at c o m b in a tio n s  o f  co m p a riso n s , as used in  

d is s e m in a tin g  the  m ass sca le , w e  m u s t f i r s t  co n s id e r th e  u n c e rta in ty  p ro p a g a tio n  

ana lys is  fo r  th e  a ir  d e n s ity , p a.
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3. The Evaluation of Air Density

3.0 Summary

H e re  the  m o d e l p a ra m e te r is a tio n  fo r  m ass c a lib ra t io n  o f  C h a p te r 2  is  c o n tin u e d . 

T he  c a lc u la tio n s  re la t in g  to  a ir  d e n s ity  are in c lu d e d  here  and are  k e p t separate f ro m  

the c o n s id e ra tio n s  o f  C h a p te r 2  fo r  c la r ity .  H o w e v e r, th e  tw o  co m p o n e n ts  fo rm  an 

in teg ra te d  p rocess, as can be  seen in  F ig . (3 .0 .1 ) b e lo w  w h ic h  illu s tra te s  th e  m e th od . 

T he  d e v e lo p m e n t o f  th e  a ir  d e n s ity  e q u a tio n  o u tlin e d  in  th is  c h a p te r is  the  accep ted  

a p p ro x im a te  re la t io n s h ip  fo r  use in  a ty p ic a l S tandards L a b o ra to ry , so m e tim e s  re fe rre d  

to  as the  'B IP M  F o rm u la '. W h a t has been done  here  h o w e v e r, is  to  ensure  th a t i t  is  

trea ted  a c c o rd in g  to  th e  U n if ie d  A p p ro a c h  to  u n c e rta in ty  a na lys is  as o u tlin e d  in  

C hap te r 1. T h e  fu n c t io n a l re la t io n s h ip  g iv e n  is  fo r  d ire c t m easurem ents  o f  

tem pera ture , b a ro m e tr ic  p ressure , re la t iv e  h u m id ity  and  p o s s ib ly  C02 le v e l;  as w e ll  as 

im p o rte d  va lues  fo r  th e  Gas C o n s ta n t R, and  the  m o la r  masses o f  m o is t and  d ry  a ir.

T h e  G auss ian  p ro ce d u re  is  a p p lie d  to  th is  fu n c t io n a l fo rm  in  o rd e r  to  o b ta in  the  

standard u n c e rta in ty  o f  th e  a ir  d e n s ity  es tim a te . T o  e va lua te  th e  p a r t ia l d e r iv a tiv e s  

(s e n s it iv ity  c o e ff ic ie n ts )  o f  th e  fu n c t io n a l fo rm  is  a l i t t le  d i f f ic u l t  s ince  w ith in  i t  there  

are severa l p o ly n o m ia l te rm s  w ith  im p l ic i t  dependencies on  th e  in f lu e n c e  q u a n titie s  

and thus the  s e n s it iv ity  c o e ff ic ie n ts  are them se lve s  fu n c t io n s  o f  the  in f lu e n c e  

qua n titie s  to  be  m easured . In  A p p e n d ix  1 d e ta ils  are sh ow n  o f  c o m p u te r  s im u la tio n s  

b y  m eans o f  w h ic h  th e  'ty p ic a l' va lues  o f  th e  s e n s it iv ity  c o e ff ic ie n ts  used in  th is  

chap ter w e re  eva lua ted .

In  c o n c lu s io n , a gen e ra lised  e xp re ss io n  fo r  the  va ria n ce  o f  the  a ir  d e n s ity  

estim a te  is  g iv e n  f r o m  w h ic h  the  a c tua l u n c e rta in ty  can be e v a lu a te d  i f  the  d e ta ils  o f  

the e q u ip m e n t used  are a va ila b le . A n  e x a m p le  is  g iv e n  fo r  the  e q u ip m e n t used in  the  

e x p e rim e n ta l pa rts  o f  th is  research.
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Fig. 3.0.1: Schematic of complete data processing for mass comparison calibrations

3.1 The Functional Relationship
T he  p ro ce d u re  fo r  e v a lu a tin g  a ir  d e n s ity  has been d esc rib e d  in  the  lite ra tu re  e.g.

G ia co m o  (1 9 8 1 ), D a v is  (19 92 a ), Jones (1 9 7 8 ). A  b r ie f  s u m m a ry  o f  th e  c a lc u la tio n

fo llo w s . S ta r t in g  f r o m  the  id e a l gas la w :

PV = nRT (3 .1 .1 )

fo r  a gas o f  v o lu m e  V a t pressure  P and  th e rm o d y n a m ic  te m p e ra tu re  T, c o n ta in in g  n 
m oles. R is  th e  m o la r  gas constan t. F o r  a rea l gas one  has:

PV = nZRT (3 .1 .2 )

Z  b e in g  the  c o m p re s s ib il ity  fa c to r. S in ce  the  gas d e n s ity  is p = m/v  i f  its  m ass is  m, w e

can say p  =  s ince  nM =  m fo r  M the  m o la r  m ass. T he n , f r o m  (3 .1 .2 ):

P M

ZRT (3 .1 .3 )

H o w e v e r, a ir  is  co m p o se d  o f  b o th  d ry  a ir  and  w a te r va p o u r. I f  th e  m o le  fra c t io n  o f  

w a te r v a p o u r is  xv and  its  m o la r  m ass is Mv, w h i le  the  m o la r  m ass o f  d ry  a ir  is  Ma,
w e have:

M  =  M  11 - x J  1 M,

In  th is  case th e  d e n s ity  can be  expressed  as:

=  ( l - x v) M a + x vM v (3 .1 .4 )

(3 .1 .5 )
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Eq. (3 .1 .5 ) is  th e  essen tia l e q u a tio n  fo r  c a lc u la tin g  th e  d e n s ity  o f  m o is t a ir  f ro m  

m easurem ents o f  P, T and a k n o w le d g e  o f  Mv, Ma Z & xv. Ma is  o b ta in e d  fro m  a 

k n o w le d g e  o f  th e  c o n s titu e n ts  o f  d ry  a ir  and  th e ir  re la t iv e  abundances:

N

Ma=   (3 .1 .6 )
2 j x i

w here  jc,- is  the  m o le  fra c t io n  o f  the  ith gas m o le c u le  h a v in g  m o la r  m ass mt. T a b u la te d  

va lues {e .g . D a v is  (19 92 a ), Jones (1 9 7 8 )}  lead  to  (3 .1 .6 ) h a v in g  the  va lu e

Ma =  28.9635x  10-3 k g /m o l.  (3 .1 .7 )

assum ing , h o w e v e r, th a t the  le v e l o f  C02 is  cons tan t, and ind ee d  th a t xCOi =  0 .0004 . 

T h is  o f  course  m a y  n o t be so, and  xCOi m ig h t be m easured  in  the  lab , in  w h ic h  case i t  

is p o ss ib le  to  p ro v id e  an a d ju s tm e n t to  Ma to  a ccou n t fo r  m easured  depa rtu res  o f  xCOi 
f ro m  th e  assum ed re fe ren ce  le v e l. T h is  can be a ch ieve d  u s in g  the  w o rk in g  

a p p ro x im a tio n  th a t the  su m  o f  02 and  C02 in  the  a ir  rem a in s  co ns ta n t, (G ia c o m o

(19 81 ), Jones ( 1 9 7 8 ) ) th a t is  m o re  C02 im p lie s  less 0 2 so tha t:

x co2 + x o2 = constant =0 .2 09 79  (3 .1 .8 )

w he re  k n o w n  ta b u la te d  va lues  fo r  the  abundance  o f  each have  been used. T hen :

Mo2xo2 "*■ MCo2xco2 =  31.9988x02 +  44.0098.eCO2 (3 .1 .9 )

can be w r it te n , f r o m  (3 .1 .8 ), as:

M0ix0i +MCOixCOi =  12.01 l x C02 + 6 .7130  (3 .1 .1 0 )

so:

S ( M a) = S [ M 0 i x02 + M C02jcC0J =  12.01 l5 (x C0J  (3 .1 .1 1 )

— i.e . a ssum ing  a ll the  o th e r c o n s titu e n ts  re m a in  cons tan t, o r  at leas t do  n o t change b y  

a n y th in g  o the r th an  in f in ite s im a l a m oun ts , then  the  v a r ia t io n s  in  Ma w i l l  be due to

C02 v a r ia t io n , and thus w i l l  be g iv e n  b y  12.011 tim es  the  v a r ia t io n  in  C02 abundance.

12.011 b e ing , o f  course , the  a to m ic  w e ig h t o f  ca rbon . W e  can d e fin e

$ ( x co2) =  (x co2 -0 .0 0 0 4 )  (3 .1 .1 2 )

w he re  0.0004 =  x^  , a re fe ren ce  C02 le v e l, and x'COi is  a m easured  C02 le v e l. In  tha t 

case w e  have  M ' =  +  S(Ma ) w h e re  Mrf  is  the  d ry  a ir  m o la r  m ass fo r  re fe rence

C02 le v e l. T hus :

M = 2 8 .9 6 3 5 x lO -3 k g /m o l.  + 1 2 . 0 1 1 ^ - 0 . 0 0 0 4 ) x l O '3 k g /m o l. (3 .1 .1 3 )

H o w e v e r, in  o u r case, w e  w i l l  use (3 .1 .7 ) ra th e r than  (3 .1 .1 3 ) s ince  fa c il i t ie s  fo r  

m ea su ring  C02 c o n te n t o f  the  a ir  are n o t a v a ila b le  in  the  la te r e x p e rim e n ta l w o rk .

Mv is  s im p ly  the  m ass o f  w a te r  v a p o u r in  the  a ir, i.e .:

M „ =  2 x  Mh +  M„ (3 .1 .1 4 )

So, w ith  (3 .1 .7 ) &  (3 .1 .1 4 ), (3 .1 .5 ) becom es:
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p m£MsLh-0318xv) Z R T \ (3 .1 .1 5 )

T h e  e v a lu a tio n  o f  xv, the  m o le  fra c t io n  o f  w a te r v a p o u r, p roceeds f r o m  a m ea su re m e n t 

o f  e ith e r re la t iv e  h u m id ity ,  o r  d e w  p o in t  te m p e ra tu re  (G ia c o m o , (1 9 8 1 ) ,W e x le r  &  

W ild h a c k  (1 9 6 5 ))  In  o u r  case, the  %  R e la tiv e  H u m id ity  is m easured , and  w e  no te  

re la t iv e  h u m id ity  is  d e fin e d  as the  ra tio :

h = xyC (3 .1 .1 6 )
/  .TV

w he re  xsv is  th e  m o le  f ra c t io n  o f  w a te r v a p o u r in  sa tu ra ted  m o is t a ir  a t th e  sam e 

tem pera tu re  and  p ressure. N o w  jcjv can be  c a lc u la te d  fro m :

fM Psv(t) ‘ « 1 1 ^
*.rv= - (3 .1 .1 7 )P

fo r  Psv(t) th e  s a tu ra tio n  v a p o u r  p ressure  (W e x le r , 1976) and  f(p,t) a c o rre c t io n  c a lle d  

the  'enhancem ent fa c to r1. (G reenspan , 1976, H y la n d , 1975) T h u s  xv = hxsv f r o m  

(3 .1 .1 6 ) and f r o m  (3 .1 .1 7 ):

hfP„xv= (3 .1 .1 8 ) P
w here  h  is expressed  as a f ra c t io n , ra th e r than  a percen tage .

F in a lly ,  a p p ro x im a te  p o ly n o m ia ls  have  been d e ve lo p e d  (G ia c o m o  (1 9 8 1 ), D a v is

(1992a)) fo r  Psv, f  and  Z , w h ic h  are v a lid  o v e r th e  n a rro w  range  o f  s tandard  c o n d it io n s

encoun te red  in  the  c a lib ra t io n  la b o ra to ry :

f  = a + $ P + yt2
Psv =lPaxexp(AT2 +BT + C + DT~l) (3 .1 .1 9 )

Z = 1 ja0 + a lt +  a 2t 2 +  {b0 + b lt ) x v +(c0 + c1)x  ̂j+i— (d  +  ex^jT V T
Equations (3 .1 .1 9 ), (3 .1 .1 8 ) &  (3 .1 .1 5 ) a llo w  fo r  an e v a lu a tio n  o f  a ir  d e n s ity . W e  use 

T=(273.15 +  t) K w h e n  t is  m easured  in  °C. E q . (3 .1 .7 ) p ro v id e s  the  v a lu e  o f  Ma and 

R is taken  f ro m  C oh en  &  T a y lo r  (1 9 8 7 ) as R =  8.314510 J/Mol.k.

3.2 U ncertainty Propagation

W e  m u s t n o w  e va lu a te  a S tanda rd  U n c e r ta in ty  fo r  pa. F ro m  an a na lys is  o f  the  

above e xpress ions, i t  can be  seen tha t:

pa=f{T,P,h,R,Mv,Ma) (3 .2 .1 )

W e  do  n o t have  any in fo rm a tio n  to  suggest p o s s ib le  c o v a ria n c e s /c o rre la tio n s  b e tw e e n  

these in f lu e n c e  q u a n tit ie s  so w e  can n e g le c t th e m  in  th e  ana lys is , in  p a r t ic u la r  s ince  

separate in s tru m e n ta tio n  is  used to  m easure  each o f  T, P and  h, and  R, Mv and  Ma 
com e fro m  e n tire ly  separa te  analyses. T h u s  w e  can  say:
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T h e  p a r tia l d e r iv a tiv e s  can be  e va lu a te d  i f  th e  va rio u s  co ns ta n ts  are in se rte d  and 

a p p ro p ria te  va lues  o f  T, P &  h chosen. W h ile  the  p a r t ia l d e r iv a tiv e s  are s t i l l  fu n c t io n s  

o f  T, P and  h, i t  w as fo u n d  th a t fo r  a w id e  range  o f  va lues , c o v e r in g  th e  range  o f  

in te res t w h ic h  c o u ld  p o s s ib ly  be  e nco un te re d  in  the  la b o ra to ry , co n s ta n t va lu es  c o u ld  

be taken  (see A p p e n d ix  1). T h e  va lues  in  (3 .2 .3 a ) b e lo w  are  adopted . s(Ma)/Ma is 

g iv e n  as c o m p ris in g  th e  te rm s 4 x l 0 -5 ra n d o m  &  3 x  10~5 s y s te m a tic ; w h ile  s(Mv)/Mv 
is  dec la red  to  be  sys te m a tic  w ith  v a lu e  5 x 1 0 ^  (See Jones (1 9 7 8 ) fo r  d e ta ils )  In  the  

U n if ie d  A p p ro a c h  b e in g  d e v e lo p e d  in  th is  thes is  w e  do  n o t need  such d is t in c tio n s , so 

w ith  no  fu r th e r  in fo rm a t io n  a v a ila b le  and  seek ing  to  m a in ta in  a co n s is te n t ana lys is , w e  

can o n ly  co n s id e r the  sys te m a tic  co m p o n e n ts  to  rep resen t l im its  o f  p o s s ib le  p a ram e te r 

va lues w h ic h  leads to  a U n ifo rm  d is t r ib u t io n  fro m  th e  M a x im u m  E n tro p y  

co n s id e ra tio n s  o f  C h a p te r 1. T h u s  w e  o b ta in  the  fig u re s  q u o te d  in  (3 .2 .3 b ) b e lo w .

^ l = -4.4x 10-3 dt
^ -  =  + 1 1 .2 x l0 ~ 6 dP
^ •  = -10.5xl(T3 dh
^ .  =  -0 .1 4 4  dR
^  = +0.5dMv

T/--1 -3K  .mg.cm 

P a '1, m g.cm "3 

m g .cm '3

J '1 .m o l.K .m g.cm '3 

kg "1.m ol.m g.cm"3 

kg V m o l.m g .cm "3

(3 .2 .3a )

S(R) =7 x  1(T5 J .K ^ .m o l"1

Kk )=  4 .3 6 x lC T 5Ma
=> s{Ma ) =  1.26 x  10~6 kg. m o l"1

<MV)= 2.9x1^Mv
=> s (M v) =  5.22 x  1(T6 kg. m o l"1

(3 .2 .3 b )

W ith  the  da ta  in  (3 .2 .3 ), (3 .2 .2 ) becom es:



l ( p >
'd p . ' 2

dt , (0  +  i — ]  s2(P)+ —  j 2( /i)  +  2 .7 6 x l0 ” 9[m g .c m '3] 2 (3 .2 .4 )
3D ZlL L -IdP )

3 p a

dh
F o r the  e q u ip m e n t used in  th is  research, describ e d  in  C h a p te r 11 th e  fo l lo w in g  da ta  is

a v a ila b le  f ro m  c a lib ra t io n  c e rtif ic a te s :
¿ (0  =  0.06 K  

s(P) =  15.0 Pa 

s(h) =  2% =  0.02

Thus:

¿2(p a) =  ( l4 2 *1 0 -9 +  2 .7 6 x l0 _9)[m g .cm "3] (3 .2 .5 a )

=  1 4 5 x 1 0
-9 [m g. c m '3]

or:

¿(pa) =  3 .8 x 1 0 ^  m g .cm '3 (3 .2 .5 b )

Eq. (3 .2 .5 a ) in d ica te s  th a t the  co m p o n e n ts  due  to  the  m easurem ents  o f  T, P &  h d u r in g  

the c a lib ra t io n  e x p e rim e n t s u p p ly  a m u c h  g rea te r a m o u n t o f  th e  f in a l s tanda rd  

u n c e rta in ty  than  do  those  due  to  the  im p o r te d  da ta  f ro m  o th e r e v a lu a tio n s — i.e . R, Mv, 
and Ma.
O ne f in a l p o in t  w e  m u s t ch e ck  is  the  p o s s ib il i ty  o f  c o rre la tio n s  between one 

e v a lu a tio n  o f  a ir  d e n s ity  and ano the r, s ince  the  th re e  te rm s R, Mv &  Ma, are c o m m o n  

to  each. A lth o u g h  w e  h ave  e a r lie r  s ta ted  th a t such  c o rre la tio n s  d o  n o t e x is t (Sec. 2 .3 ), 

w e  w is h  here  to  v e r i fy  th a t th e y  are n e g lig ib le . T h e  co va ria n ces  can be c a lc u la te d  

fro m :

y(Pu, ’Pa2 ) dR
dp.a 2

dR s\R) + dPa,
[dMv

dp
\ M V) + d_ P ,

dM„
dpa2
dM„ \Ma) (3 .2 .6 )

b y  E q . (2 .3 .4 ) e a r lie r. B u t  o f  course  the  exp ress io n  fo r  p u| is  the  sam e as th a t fo r  pU2, 
so in  fa c t w e  have  fo r  the  co va ria n ce :

<3-2-7>

w h ic h  fro m  o u r da ta  in  (3 .2 .3 ) m ay  be  e va lua te d  as = 3 x 1 0  9[m g .c m '3] 2 . T h is  te rm

w i l l  be v e ry  in s ig n if ic a n t co m p a re d  to  th e  o th e r c o rre la tio n s  d e sc rib e d  in  E q . (2 .3 .6 ) 

due to  v o lu m e  e lem en ts  c o m m o n  to  tw o  m ass co m p a rison s .

A n  o b je c t io n  m ig h t be ra ised  th a t the  fu n c t io n a l fo rm  o f  th e  "W e ig h in g  

E q u a tio n ", (2 .2 .1 4 ), s h o u ld  be expa nd ed  to  in c lu d e  the  fu n c t io n a l fo rm  o f  the  a ir 

d en s ity  e q u a tio n , (3 .1 .1 5 ). T h e  c o m p le te  u n c e rta in ty  e v a lu a tio n  c o u ld  then  be 

processed w ith  the  expa nd ed  e q u a tio n . H o w e v e r, th is  w i l l  g iv e  the  sam e resu lts  as the  

p resent m e th o d  w h ic h  is  to  be  p re fe rre d  s ince  the  sepa ra tion  a llo w s  a c lea re r 

d iscu ss ion  o f  the  fo rm  o f  each e q u a tio n , and  a lso easier a na lys is  o f  the  va rio u s
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c o n tr ib u tio n s  to  th e  s tanda rd  u n c e rta in ty  o f  each. T h is  o f  co u rse  assum es th a t th e re  are 

no  co va ria n ces  b e tw e e n  th e  in f lu e n c e  q u a n titie s  o f  E q  (2 .2 .1 4 ) and  those  o f  E q .

(3 .1 .1 5 ). T h e  p o s s ib il i ty  o f  such  has been  d isp ose d  o f  e a r lie r.

T h u s  E qs (2 .2 .1 4 ) and  (3 .1 .1 5 ) a llo w  a co m p le te  e v a lu a tio n  o f  th e  m easurand—  

the  m ass d if fe re n c e  o f  tw o  o r  m o re  standards, w h ile  eqs. (2 .3 .3 ) &  (3 .2 .5 ) a llo w  an 

e v a lu a tio n  o f  th e  s tanda rd  u n c e rta in ty  o f  th is  es tim a te .

W e  m u s t n o w  p ro ce e d  to  lo o k  a t th e  case o f  m u lt ip le  c o m b in a tio n s  o f  such  m ass 

d iffe re n ce s , th e  e v a lu a tio n  o f  w h ic h  is  necessary to  a llo w  s ta tis t ic a l pa ram e te r 

e s tim a tio n  o f  th e  m ass values [as opposed  to  differences]  o f  th e  s tandards, w h ic h  is 

the  f in a l  g o a l o f  o u r in v e s tig a tio n s . T o  e s tab lish  th e  in p u t in fo rm a t io n  in  such cases 

w e  re q u ire  less cu m b e rso m e  to o ls  th a n  th e  ones so fa r  d eve lo pe d , and  w e  n o w  p roceed  

to  d e ve lo p  th e  U n if ie d  M o d e l in  a m o re  e le ga n t fo rm a lis m  u s in g  m a tr ix  a lgebra .

»1# t j k  > J j k b  » t *  >1« k b  mS* i | 4  % *3* *1 * «î« k U  k !«  t l j  «X*
•J»  »J» «I»  • (»  ̂  r («  * {«
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4. Mass Dissemination /  "Within -Group ComparisonsM

4.0 Summary

In  th is  ch a p te r w e  in tro d u c e  th e  G ro u p  C o m p a r is o n  C a lib ra t io n s  used  in  m ass 

d isse m in a tio n  as w e ll  as o th e r  c a lib ra tio n  exerc ises. T hese  in v o lv e  m a n y  co m p a riso n s  

b e ing  ca rr ie d  o u t a m o n g  a g ro u p  o f  standards re s u lt in g  in  a se t o f  w e ig h in g  e q u a tio ns  

each o f  w h ic h  w i l l  y ie ld  a m ass d if fe re n c e  te rm . W e  in tro d u c e  m a tr ix  a lg e b ra  as a 

c o n v e n ie n t w a y  to  rep resen t th e  da ta  and a lso  to  e va lu a te  th e  m easurands and  th e ir  

s tandard  u n c e rta in tie s . •

W e  f i r s t  sh o w  h o w  the  s itu a tio n  can be expressed  in  m a tr ix  th e o ry , and  g iv e  the  

W e ig h in g  E q u a tio n  in  th is  fo rm . W e  then  in tro d u c e  the  im p o r ta n t s ta tis tic a l to o ls  

needed in  u n c e rta in ty  a na lys is , in  p a r t ic u la r  th e  covariance matrix w h ic h  encapsu la tes 

a ll the  v a ria n c e  and co va ria n ce  in fo rm a tio n  a bo u t a c o rre s p o n d in g  v e c to r  o f  

param eters and  a lso  th e  Jacobian w h ic h  is  a m a tr ix  o f  p a r t ia l d e r iv a tiv e s  o f  a 

fu n c t io n a l re la t io n s h ip  a m o n g  a set o f  in f lu e n c e  q u a n titie s .

B e fo re  d e v e lo p in g  th e  th e o ry  fo r  the  W e ig h in g  E q u a tio n , an e x a m p le  is  g iv e n  

u s in g  e le c tr ic a l m easu rem en ts , taken  f ro m  th e  IS O  G u id e  ( IS O , 1993) b u t re -w o rk e d  

here in  m a tr ix  n o ta tio n .

T he  e v a lu a tio n  o f  th e  C o va ria n ce  M a t r ix  o f  th e  W e ig h in g  E q u a tio n  is  then  

deve lo pe d  re s u lt in g  in  a s in g le  e q u a tio n  f r o m  w h ic h  the  c o m p le te  c o v a ria n c e  m a tr ix  

o f  the  set o f  m easurands (m ass d iffe re n ce s  f r o m  the  c o m p a ris o n  c a lib ra tio n s )  can be 

e as ily  eva lua ted .

T he  g re a t advan tage  o f  the te ch n iq u e  is  th a t a ll  the  in f lu e n c e  in fo rm a tio n  is  then  

in c lu d e d  in  one  m easu rand  v e c to r  and  one c o v a ria n c e  m a tr ix .  W e  w i l l  see in  C hap te rs  

5 to  8, w he re  w e  dea l w ith  pa ram e te r e s tim a tio n  te chn iqu es , ju s t  h o w  c o n v e n ie n t th is  

is. O th e r approaches have  m o re  d i f f ic u l t y  in  in c lu d in g  a ll a v a ila b le  in fo rm a t io n , in  

p a rtic u la r  the  se con da ry  in f lu e n c e  q u a n tit ie s  such as those  due to  the  b u o y a n c y  

co rre c tio n , see fo r  e x a m p le  S ch w a rtz  (1 9 9 1 ). T h e  p re sen t te c h n iq u e  has n o t been 

w id e ly  used in  m ass c a lib ra t io n  to  date, b u t is  to  be h ig h ly  re co m m e n d e d  on  accou n t 

o f  b o th  its  m a th e m a tic a l conciseness and in d e e d  its  u n if ie d  a pp roach  to  u n c e rta in ty  

ana lysis.

F ig . (4 .0 .1 ) b e lo w  is a sch em a tic  o u t l in e  o f  th e  ana lys is  p rocess used. T h e  

va rio u s  te rm s  are e x p la in e d  in  d e ta il in  the  b o d y  o f  the  chap ter.
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4.1 Introduction

O ne o f  th e  c ru c ia l fea tures a b o u t c o m p a r is o n  c a lib ra tio n s , f r o m  an e x p e rim e n ta l 

p o in t o f  v ie w , is th a t the  co m p a riso n s  are c a rr ie d  o u t b e tw e en  n o m in a lly  equa l 

standards. T h u s  o n ly  re s id u a l d iffe re n c e s  are m easured w ith  re s u lt in g  g rea te r 

accuracy. In  e s ta b lis h in g  a m ass sca le , w e  are s ta rt in g  f ro m  a p ro to ty p e  o f  n o m in a l 

va lu e  1kg. T h u s  co m p a riso n s  o f  m u lt ip le s  and  s u b -m u lt ip le s  o f  th is  u n it  re q u ire  

c o m b in a tio n s  o f  standards to  be b u i l t  u p  in  o rd e r to  ensure  co m p a ris o n s  a m o n g  u n its  

o f  n o m in a lly  e qua l v a lu e . T hese  are u s u a lly  c a lle d  "W ith in -G ro u p "  C a lib ra tio n s , s ince  

there  is a g ro u p  o f  u n k n o w n s , and u s u a lly  o n ly  one k n o w n  s tandard . A t  th is  p o in t  w e 

d e fin e  o u r pa ram ete rs  to  be the  m ass values o f  these va rio u s  a rtifa c ts . N o te  c a re fu lly  

th a t these param ete rs  are to  be d is t in g u is h e d  f ro m  the m easurands d iscussed  

p re v io u s ly . A s  w as s ta ted  then , the  m easurands are the  mass differences w h ic h  are 

d e te rm in e d  f ro m  e x p e rim e n t. H o w  th e  param eters  are c a lc u la te d  f r o m  the  co rrec ted  

e x p e rim e n ta l re a liz a tio n s  o f  the  m easurands is  the  su b je c t o f  la te r  sec tions  o f  th is  

w o rk . A t  th is  stage w e  are ju s t  in te re s te d  in  e v a lu a tin g  the  e s tim a tes  o f  the 

m easurands and  th e ir  s tanda rd  u n c e rta in tie s . (F o r  fu r th e r  d is cu ss io n  o f  mass 

d is s e m in a tio n  see K o c h s ie k  (1 9 8 4 ), D a v is  (1 9 8 5 ) and a lso  P ro w se  (1 9 8 2 )) .

4.2 MultiVariate Functional Relationship
C o n s id e r the  fo l lo w in g  e x a m p le  o f  a ty p ic a l set o f  co m p a riso n s :

Am, -  ml - m 2 =

A m2 = m 1 -  m3 =  (4 .2 .1 )

Am 3 =  m2-  m3 =  y3

43



T he  above  in d ica te s  the  p o s s ib le  co m p a riso n s  w h ic h  c o u ld  be  c a rr ie d  o u t w ith  th ree  

mass standards o f  va lu e  m y, m 2 &  m3. I f  w e  in tro d u c e  the  w e ig h in g  e q u a tio n , (2 .2 .1 4 ), 

w e  rea lise  th a t (4 .2 .1 ) becom es:

3>i =  A w , +  p ,  (v, -  v2X l +  « ( i j  -  2 0 ))~  2 ^ m L

^2 =  Aw2 +  p 2 (v, -  va X l +a(t2-  20)) -  L (4 .2 .2 )

=  Aw3 +  p 3(v2 -  v3 X l +  a(t3 -  2 0 ) ) - -— ^ -

In  (4 .2 .2 ), m " is  the  t'iA n o m in a l m ass in  each case. S ince  d e v ia t io n s  fro m  n o m in a l 

va lu e  are a lw a ys  o f  th e  o rd e r o f  mg o r  | ig ,  the  d if fe re n c e  to  th e  g ra v ita t io n a l c o rre c t io n  

re s u lt in g  f r o m  u s in g  n o m in a l ra th e r th an  actua l m ass va lu e  w i l l  be  n e g lig ib le . W ith o u t  

the  w e ig h in g  e q u a tio n , (4 .2 .1 ) can a lso  be  expressed  in  m a tr ix  te rm s  as:

Y  =  x p  (4 .2 .3 )

F o r Y  an nx 1 v e c to r  o f  co rre c te d  rea lise d  data, p a  p x 1 v e c to r  o f  pa ram ete rs  and X  

an n x p d es ign  m a tr ix  d e s c r ib in g  the  fo rm  o f  the  c o m p a riso n s . E q . (4 .2 .3 ) can be 

re fe rre d  to  as the  " sys tem  m o d e l" fo r  th e  m easu rem en t process. In  th e  e x a m p le  above, 

w e  w o u ld  have  (w h e re  ¿>; = mi ):

1 -1 0 ' b i
X  = 1 0 -1 ; P = b 2 & Y  = yi

0 1 -1 _^3 _ y j .

C o n tin u in g , i t  w i l l  be n o te d  th a t (4 .2 .2 )  can be expressed  in  m a tr ix  n o ta tio n  (B ic h  et al 
1993 /94 ) as:

Y  =  A w  +  {(1 -  2 0 a ) In +  a  T } p X V  - D M . (4 .2 .4 )

w h ic h  is the  m a tr ix  fo rm  o f  the  w e ig h in g  e qu a tio n , w he re :

Y  is an « x  1 v e c to r  o f  m easu rand  es tim a tes.

A w  is an n x  1 v e c to r o f  e x p e r im e n ta lly  rea lise d  ( i.e . u n c o rre c te d  ) q u a n titie s , 

p =  d ia g { p a } is  an n x  n m a tr ix  w h e re  p a  is  an n x  1 v e c to r o f  a ir  dens ities .

X  is  an n x  p m a tr ix  g iv in g  the  d es ign  schem e fo r  the  com p a rison s .

V  is an p x  1 v e c to r  o f  v o lu m e s  o f  the  standards 

I n  is an id e n t ity  m a tr ix  o f  o rd e r n
T  =  d ia g {  t } is  an / i x n  m a tr ix  w h e re  t  is  an n x  1 v e c to r o f  a ir  tem pera tu res , 

a  is  a sca la r co ns ta n t, the  v o lu m e  e xp a n s io n  c o e ff ic ie n t o f  s ta in less  steel.

D  =  d ia g { d }  is  an n x n m a tr ix  w h e re  d  is an n x  1 v e c to r o f  ce n te r o f  g ra v ity  

d iffe re n ce s  b e tw e en  th e  s ta nd a rd  and test ensem bles.

M n  is an n x  1 v e c to r  o f  n o m in a l m ass va lues  fo r  each o f  the  n co m p a riso n s  

in v o lv e d  in  the  c a lib ra t io n  exe rc ise .
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O bserve  th a t, le a v in g  aside  the  v o lu m e  c o rre c t io n  fa c to r, th e  te rm  X V  generates 

the re q u ire d  v o lu m e  d iffe re n c e s  fo r  each co m p a ris o n . I t  is  necessary to  re -exp re ss  pa 
as a d ia g o n a l m a tr ix  in  o rd e r to  fa c ilita te  th e  re q u ire d  m a tr ix  m u lt ip l ic a t io n — th e  o th e r 

a lte rn a tiv e  w o u ld  be  to  use th e  H a d a m a rd  m a tr ix  fo rm a lis m , b u t w e  w i l l  re ta in  the  

c o n v e n tio n a l e xp ress io ns  fo r  c la r i ty  and ease o f  u n d e rs ta n d in g .

4.3 Important Statistical Terms in Matrix Form
W e  n o w  w is h  to  e va lu a te  th e  va riances and  co va ria n ces  o f  th e  da ta  d e sc r ib e d  b y

(4 .2 .4 ). F irs t  w e  n o te  th a t the  sca la r fo rm s  o f  e x p e c ta tio n  v a lu e  and 

va ria n ce /co va ria n ce  m u s t n o w  be  su pp la n ted  b y  th e ir  v e c to r /m a tr ix  e q u iva le n ts . (See 

A ll is y ) .  F o r  e xam p le , fo r  a c o lu m n  v e c to r Anxl,

E[ A ] =

' e m

£(«,) a 2

• fo r  A  =

“ n.

(4 .3 .1 )

S im ila r ly  to  ¿2(y) = £[;y -  E \ y ] ] 2 , w e  can d e fin e  the  va ria n c e -c o v a ria n c e  m a tr ix  b y :

c o v (A „x i) =  £ { ( A  -  £ [A ] ) ( A  -  E[ A ] ) T }  (4 .3 .2 )

the  r ' d e n o tin g  m a tr ix  tra n s p o s itio n . T h e n  (4 .3 .2 )  can be  e xpanded  to  g iv e :

co v (A ) =  E
a 2 - E [ a 2\

\ a x- E [ a x] a 2 - E [ a 2] . . a n - É [ a n]]

=  E

an ~ Elan ]_

{a, — Zsja, ]}2 - £ [% ]}  • •

[ a 2 -  E [a 2 ]}{«i -  E[ ax ]} [ a 2 -  E[a2 ] f

s2(a i) s ( a l , a2) .
s (a2, a l ) s 2(a2)

■ s (au a n)

(4 .3 .3 )

_s(an>1a i)  52(a„)

T hus  the  c o v a ria n c e  m a tr ix  o f  A ,  c o v (A ) ,  co ns is ts  o f  d ia g o n a l e le m e n ts  g iv in g  the  

va rian ce  co m p o n e n ts  o f  A ,  w h ile  the  o f f-d ia g o n a l e lem en ts  g iv e  the  co va ria n ces  

be tw een  the  c o m p o n e n ts , so th a t fo r  e xa m p le , i f  b =  a l + a 2 then
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s2 (b) = S 2 (a, ) +  s2 (a2 ) +  2 ( j ( a ! , a2 ) ) .  T h e  te rm s  fo r  th is  can  then  be  e a s ily  e x tra c te d  f ro m

th e  m a tr ix  in  (4 .3 .3 ). W e  w i l l  see in  succeed ing  sec tions  th a t th is  m a tr ix  p la y s  a v e ry  

im p o r ta n t ro le , in  the  P a ram e te r E s t im a tio n  T e ch n iq u e s  w e  w i l l  in v e s tig a te  la te r.

O ne im p o r ta n t p ro p e rty  o f  the  co va ria n ce  m a tr ix  w h ic h  w e  s h a ll need  is  the 

co va ria n ce  o f  l in e a r  c o m b in a tio n s . C o n s id e r:

Z  =  X Y  (4 .3 .4 )

w he re  X  is  a co n s ta n t m a tr ix  and  Y  is  a v e c to r o f  s u b je c tiv e  in fo rm a t io n  ( i.e . f in ite ,  o r  

lim ite d -a c c u ra c y  in fo rm a tio n , hence n e e d in g  degrees o f  b e l ie f  o r  d is t r ib u t io n a l 

in fo rm a tio n  ass igned  to  each o f  its  co m p o n e n ts .) W q  w is h  to  e va lu a te  c o v (Z ) :  

c o v (Z ) =  £ [ { Z  -  £ [Z ] } { Z  -  E[ Z ] } T ]

=  E [ {X Y  -  £ [X Y ] j { X Y  -  £ [ X Y j } T ]

=  £ [ X { Y - £ [ Y ] } { Y - £ [ Y ] } TX T] (4 .3 .5 )

w here , fo r  a m a tr ix  p ro d u c t A B ,  one has ( A B ) T =  B TA T . S ince  X  is  a co ns ta n t, Eq. 

(4 .3 .5 ) can be  fu r th e r  expressed  as:

Xe[{Y  -  ¿ M y  -  E [\f  J x t  (4  3 6)

=  X \|/y  X T

w here  \|/Y =  c o v (Y )  f r o m  (4 .3 .2 ) above. T h is  im p o r ta n t re la t io n  w i l l  appear fre q u e n tly  

in  w h a t fo l lo w s .

In  m o s t s ta tis tic a l trea tm en ts , one co ns ide rs  th e  v e c to r  Y  to  c o n ta in  a d d it iv e , 

ze ro -m ean  e rro rs  such th a t Y  =  r | +  e w h e re  £ [e ] =  0 ; c o v [r|] =  0  &  c o v [ e ]  =  \ | / . In  o th e r

w o rd s  r | is  the  " tru e  v a lu e " and  e represents the  ra n d o m  e rro rs  o n  the  m easurem ents . 

In  th a t case th e  d is t r ib u t io n s  are a ttached  to  the  e rro rs  ra th e r than  to  th e  param ete rs . 

H o w e v e r, as has been re p e a te d ly  p o in te d  o u t in  the  u n if ie d  app roach , w e  do  n o t k n o w  

r| and can n e ve r k n o w  it ,  so i t  is  n o t re a lly  m e a n in g fu l to  use it .  T h e re fo re  w e  co n s id e r 

Y  to  be a s u b je c tiv e  e s tim a te  based on  w h a te v e r in fo rm a t io n  has been to  h a n d  and  w e  

co n s id e r o u r  d is t r ib u t io n a l in fo rm a tio n  to  be based a ro u n d  o u r e s tim a te , Y . H e n ce  in  

the  fo l lo w in g  w e  do  n o t em phas ise  the  ro le  o f  ra n d o m  e rro rs  and  can le a ve  the 

ana lys is  m u c h  m o re  genera l. (R e fe r aga in  to  C h a p te r 1 fo r  fu r th e r  co m m e n ts  o n  the

m ea n in g  o f  s u b je c tiv e  in fo rm a t io n  in  p a ram e te r e s tim a tio n ).

L e t us n o w  co n s id e r:

Z  =  / ( U )  (4 .3 .7 )

w he re  U T = [u ,  u2 . . un] are th e  n in f lu e n c e  q u a n tit ie s  in v o lv e d  in  the  co rre c te d  

fu n c t io n a l re la t io n s h ip . R e c a ll th a t in  the  sca la r case w e  s ta rted  f r o m  a T a y lo r  series 

e xpans ion  to  O rd e r 1, i.e .:
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This can be w ritten  as:

z,+&, = zt+^M-Suj 
M  J

s  (*» -  % ] ) s  Ê £ - ( m; -  4 “ j D
7=1 “ j

(4 .3 .8 )

(4 .3 .9 )

In  m a tr ix  n o ta tio n  w e  can w r ite :

( Z - £ [ Z ] )  =  J u ( U - £ [ U ] )  (4 .3 .1 0 )

W h e re  the  Ja cob ia n  J u is  d e fin e d  b y  th e  fo l lo w in g  mxn m a tr ix  o f  p a r t ia l d e r iv a tiv e s :

3/i

3 3 u2 3 un
3/2 3/a

J u ^ V uU T = 3«, 3 u2

d /m
■

dfm
3 M, 3 un

Zl = f  (M1 >m2> ••■Un)
z2 = fl (M1 > M2 ’ ■■Un)

w h e re  w e  have  assum ed th a t '

z == fm(U 1 > M2> - « „ )

th a t som e, o r  a ll o f  the  fu n c t io n s  / 7.. ,.fm are id e n tic a l

(4 .3 .1 1 )

is  true . O f  co u rse  i t  m a y  w e ll  be

(4 .3 .1 0 ) and take  e xp e c ta tio n s  w e  f in d :

E[{Z  -  £ [Z ])(Z  -  E [ Z ] f  ] = E[  J„ (U -  £ [U ]) ( ju (U  -  Z?[U]))T

F ro m  (4 .3 .2 ) &  (4 .3 .6 ) w e  see th a t th is  is  in  fa c t the  co va ria n ce  m a tr ix  o f  Z :

cov(Z) = J„cov(U )J^

w h ic h  w e can w r ite  as:

(4 .3 .1 2 )

Yz = J u ¥ u J u  | (4 .3 .1 3 )

E q u a tio n  (4 .3 .1 3 ) is  th e  G auss ian  L a w  o f  E r ro r  P ro p a g a tio n  in  its  m o s t genera l fo rm  

(com pare  w ith  th e  sca la r fo rm  in  (1 .4 .8 )) . Its  s im p lic i ty  and  c la r i ty  h ig h lig h t  the  

su p e rio r c o n ve n ie n ce  o f  the  m u lt iv a r ia te  app roach  to  the  p ro b le m . \|/u w i l l  l is t  a ll  the  

va riances and  co va ria n ces  o f  th e  in f lu e n c e  q u a n tit ie s ; J u g ive s  a ll  the  s e n s it iv ity  

c o e ff ic ie n ts  (p a rt ia l d e r iv a tiv e s ) and th en  \]/z g ive s  the  c o m p le te  va ria n c e /c o v a ria n c e  

m a tr ix  fo r  the  o u tp u t q u a n titie s .
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B e fo re  p ro c e e d in g  w ith  th e  a p p lic a tio n  o f  (4 .3 .1 3 ) to  the  w e ig h in g  e q u a tio n -E q .

(4 .2 .4 )-w e  pause to  quo te  a u s e fu l e x a m p le , i l lu s tra t in g  the  m e th o d . T h is  e x a m p le  is 

taken  f ro m  A n n e x  H .2  o f  th e  G u id e  (IS O , 1993), h o w e v e r here  w e  have  changed  i t  

s lig h t ly  to  p resen t th e  in fo rm a tio n  in  m a tr ix  n o ta tio n . ( A  s im ila r  e x a m p le  is  g iv e n  in  

W e ise  (1 9 8 5 ) ) .  W e  rep ro du ce  th is  e xa m p le  here because o f  its  e x c e lle n t i l lu m in a t io n  

o f  the concepts  o f  th e  p re ce d in g  sec tion .

C o n s id e r an e x p e rim e n t w h e re  m easurem ents  are m ade  o f  v o lta g e , V, c u rre n t I 
and phase ang le  <p in  som e c irc u it .  S in ce  ’ the  m easurem ents  are m ade 

c o n te m p o ra n e o u s ly  o n  the  one  c irc u it ,  co va ria n ces  and c o rre la tio n s  can be  expected  

be tw een  these th re e  in p u t q u a n titie s . T h e  m easurands o f  in te re s t are:

V

4.4 An Example

R esis tance , R = —cos(p, 
V

R eactance , X  =  y  sin <j>, (4 .4 .1 )

Im pe da n ce , |Z| = =  ( f l 2 + X
2 /2

Thus fo r  Y  =  f ( U )  w e  have:

~R~ ' V

Y  = X ; U  = I &  f ( U )  = / 2( V , / ,0 )

Z A / 3( K / , 0 ) .

W e  w is h  to  e va lu a te  \|/Y F irs t  w e  ca lcu la te :

J u —

W e  n o w  need to  e va lu a te  \|/u. T o  do  th is  w e  re a lise  that:

V ( V )  s(V,I) i(V,<|>)

(4 .4 .2 )

(4 .4 .3 )

f t f t " cos (p -V co sij) ■ J----- sin <bIdV d l dip I 12
dfi dfi sin</> - V  sirup V  a  — cos <pId v d l d(j) I I2

ÿf-j ^ 3 %L
1 - V

0
d v d l d(p 7 12 -

Vv s ( I , V ) , 2( / )  i(/,<t>)
2 i

(4 .4 .4 )

s(<t>,V) i(<t>,/) ■y2((t))

T he  co m p on en ts  o f  th is  m a tr ix  are e v a lu a te d  fro m  the  actua l da ta  o b ta in e d  in  the 

e xp e rim e n t, u s in g  th e  exp ress ions  fo r  va rian ce s  and co va ria n ce  g iv e n  in  C h a p te r 1. 

E q . (4 .3 .1 3 ) can th e n  be  e va lua te d  to  g ive :

V y =

s 2 ( R ) s(R,X) s(R,Z) 
s(X, R) s2(X) s(X,Z) 

s{Z,R) s{Z, X) s2(Z)
(4.4.5)
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E ach te rm  o f  th is  m a tr ix  eva lua tes  to  g iv e  q u ite  c o m p le x  a lg e b ra ic  e xp ress io ns , i f  

ca lcu la te d  th e o re tic a lly . F o r  e xam p le ,

v 1 J u  J v 1 '  (4 .4 .6 )
_ 2  j W i t ( v  / ) _ 2  V'm^ c p . » s ( y  I ) + 2  V2s in ^ c o s » i ( / . 0 )

is the  c o m p le te  exp ress io n  fo r  the  va ria n c e  o f  the  e s tim a te  o f  R, in c o rp o ra t in g  the  

va riance  co m p o n e n ts  due  to  V, I, (j) and  th e ir  re sp e c tive  co va ria n ce  te rm s.

4.5 Uncertainty Propagation in the Weighing Equation

A t  th is  p o in t  w e  w is h  to  p ro cee d  and  a p p ly  th e  E r ro r  P ro p a g a tio n  T h e o ry  to  E q .

(4 .2 .4 ), th e  m a tr ix  fo rm  o f  the  w e ig h in g  e q u a tio n .(B ic h  et al (1 9 9 3 /9 4 ))  F ro m  E q .

(4 .2 .4 ) w e  can see th a t

Y  =  / ( A w ,p ,X , T ,V ,D ,M n,a )  (4 .5 .1 )

H o w e v e r, X ,  M n &  a are co nstan ts  and  so c o n tr ib u te  n o th in g  to  th e  c o v a ria n c e  o f  Y  

[o f  course  a  is  n o t re a lly  a co n s ta n t b u t the  in f lu e n c e  o f  its  v a ria n ce  w o u ld  be so s m a ll 

th a t w e  can n e g le c t i t ]  T hus:

U  =  [A w  pa Y  T  D ]t (4 .5 .2  a )

is  the  v e c to r  o f  in f lu e n c e  q u a n tit ie s  o f  in te re s t and:

Ju [Jaw J t ; J d ] (4 .5 .2 b )

is  the  m a tr ix  o f  s e n s it iv ity  c o e ff ic ie n ts  to  be  eva lua ted . W ith  (4 .2 .4 )  w e  can n o w

estab lish  the  s u b -m a trice s  o f  (4 .5 .2 ):

J  Aw

d d A  w 2

¿^2 <?y2
d Aw, d Aw7

Since d Aw

dyx
d Aw„

» ,  
d Aw„

■ =  1 when i - j  and =  0 w h e n  i * j ,  the re  are thus  n o  o ff-d ia g o n a l

=  I„ (4 .5 .3 )

te rm s in  (4 .5 .3 )  and  hence j Aw =  I n . S im ila r ly ,  fo r  th e  n e x t te rm  in  (4 .5 .2 b ) w e  get:
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Jpa =

fo l

3 P -

0

3y2
3p«2

dyn

(4.5.4)

W h ic h  can be  e va lu a te d  in  th e  l ig h t  o f  (4 .2 .4 ), to  y ie ld :

J p =  diag[{( 1 -  2 0 a ) In +  a T } X V ]  

T h e  n e x t te rm  in  (4 .5 .2 b ) is :

(4 .5 .6 )

J v  “

<b\
dvx dv2 dv„

dyn

(4 .5 .7 )

T h is  te rm , u n l ik e  th e  p re c e d in g  tw o , w i l l  n o t be  d ia g o n a l: the  e xa c t fo rm  w i l l  depend 

u p o n  the  standards used  in  each co m p a ris o n , b u t w e  can e xp e c t th a t som e o ff-d ia g o n a l 

te rm s  w i l l  e x is t on  each ro w . W h ic h  s tandards are used in  each c o m p a ris o n  depends 

u p o n  the  fo rm  o f  X .  So w e  w o u ld  e x p e c t J v X  . Indeed , the  g ene ra l fo rm  o f  (4 .5 .7 ),

f r o m  (4 .2 .4 ) is :

J v = '{(1  -  20oc)In +  ocT}pX  (4 .5 .8 )

S ince  the  te m p e ra tu re  m easurem ents  are in d e p e n d e n t w e  can  e xp e c t n o  c o rre la tio n  

be tw een  t: &  t, so tha t:

J t —

dy\
dtx

dy2
dt2

0
dyn
dt.

(4 .5 .9 )

and fro m  (4 .2 .4 )  w e  f in d  th e  s p e c if ic  fo rm  o f  J T to  be:

J T =  a  diag{pXY} 

and s im ila r ly  f o r  J D w e  s im p ly  have:

J d =
 ̂2 ̂

diag{Mn]

(4 .5 .1 0 )

(4.5.11)
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N o w  w e  can expand (4 .5 .2 b ) to give:

r  :

Ju - l A
L  i

d i a ^ { (  1 -  20a) I „  +  a T }X V ] {(1 -  2 0 a )I„  +  a  T }p X a d ia g jp X V }
\ re

diag( Mn)

(4 .5 .1 2 )

T he  d im e n s io n s  o f  th is  augm en ted  m a tr ix  are (n x  (4n+p)).
N o w  fro m  (4 .5 .2 a ) w e  can see th a t c o v (U )  is:

\\rv  =  dia g  { y  Aw > Y P, Y  v  - Y t  > Y d  j  (4 .5 .1 3 )

w here , s im ila r ly  to  the  u n iv a r ia te  case, w e  have  assum ed the re  are n o  co va ria n ces  

be tw een  th e  in p u t in f lu e n c e  q u a n titie s  in  U . W e  fu r th e r  assum e th a t each  o f  the  sub 

m a trices  in  (4 .5 .1 3 ) is  i t s e lf  d ia g o n a l, as each represents the  c o v a ria n c e  m a tr ix  o f  a

v e c to r o f  in d e p e n d e n t q u a n titie s . N o te : i t  m a y  be  re c a lle d  f r o m  S e c tio n  3 .2  th a t w e  
stated th a t a c o v a ria n c e  d id  e x is t b e tw e en  pa, & paj due  to  th e  c o m m o n  te rm s  o f  R,
the  gas co ns ta n t, Mv th e  w a te r v a p o u r m o la r  m ass and  Ma, the  d ry  a ir  m o la r  m ass, 

w h ic h  te rm s  appear in  th e  fu n c t io n a l fo rm  o f  th e  a ir  d e n s ity  e q u a tio n  (3 .1 .5 ). T h u s  \ j/p 

in  (4 .5 .1 3 ) above  s h o u ld  be  c o m p le te ly  n o n -d ia g o n a l; h o w e ve r, as w as p o in te d  o u t in  

E q . (3 .2 .7 ), th e  c o n tr ib u t io n  to  \j/Y due  to  th is  co va ria n ce  is so s m a ll co m p a re d  to  th a t 

w h ic h  arises f r o m  th e  v o lu m e  te rm s  in  the  w e ig h in g  e q u a tio n , th a t its  n e g le c t is 

e n tire ly  ju s t if ie d .  W e  n o w  eva lua te  (4 .3 .1 3 ) w ith  (4 .5 .1 2 ) &  (4 .5 .1 3 ) as fo l lo w s :

Y y  =  J u Y u  J u

diag{[( l - 2 0 a ) I „  + a T ]X V } [ ( l - 2 0 a ) I n + a T ]p X a. diag{pXV}
r 2 '

diag{M^}

Y aw

YP
Yv

Y t

Y d

diag{[{ 1 -  2 0 a )In +  a T ]X V } 

X TpT[ ( l - 2 0 a ) I „  + a T ]

a  diag{ p X V }

— diag(Mn)

(4.5.14)

w here  w e  h ave  n o te d  th a t s y m m e tr ic  m a trice s  re m a in  unchanged  on  tra n s p o s itio n . 

E v a lu a tin g  and  s im p l if y in g  (4 .5 .1 4 ) y ie ld s :

Y y  =  Y aw

+  diagQ. ..]. X V }  p diaĝ .. . ]X V }

+ [ ” -]Px y v x t p t [...]

+  ( a ) 2 diag{pX\}\\rTdiag{pX\ }

^2
+ d i a g { M a}\]fDd i a g { M n }

(4 .5 .1 5 )

w here  [...] rep resen ts  [(1 -  2 0 a ) In +  a T ]  w h ic h  is  a s y m m e tr ic  m a tr ix .



E q u a tio n  (4 .5 .1 5 ) g ive s  the  co m p le te  c o v a ria n c e  m a tr ix  fo r  Y  in  te rm s  o f  the  

co va ria n ce  m a tr ice s  o f  the  in f lu e n c e  q u a n titie s . W h i le  w e  h ave  assum ed a ll o f  the  

la tte r  (\|/p, \j/Aw etc. ) to  be d ia g o n a l, v|/y  is  none the less  not d ia g o n a l as a re s u lt o f  the  

th ird  te rm  on  th e  r.h .s . o f  (4 .5 .1 5 ). T h is  is th e  te rm  due  to  the  v o lu m e  in f lu e n c e .

W e  can s im p l if y  th in g s  q u ite  a b i t  i f  w e  assum e the  tw o  s m a ll sys te m a tic  

co rre c tio n s , due  to  v o lu m e  e xp a n s io n  c o e ff ic ie n ts  and  cen te r o f  g ra v ity  d iffe re n c e s , 

can be  neg lec ted . T h e n  w e  w o u ld  o b ta in , ins tead  o f  (4 .2 .4 ) and  (4 .5 .1 5 ):

Y  =  A w  +  pXV~l (4 .5 .1 6 )

I

¥ y =  V aw + ^ q g { X V } \ | / p^ a g { X V }  +  p X y v X Tp T |  (4 .5 .1 7 )

So equa tions  (4 .2 .4 ) &  (4 .5 .1 5 ) o r  (4 .5 .1 6 ) &  (4 .5 .1 7 ) p ro v id e  c o m p le te  a n a ly t ic a l 

to o ls  fo r  e v a lu a tin g  a ll the  necessary in fo rm a t io n  a bo u t o u r m easurand  e s tim a tes , the  

A m ; , o r  mass d iffe re n c e s , fo r  a set o f  co m p a riso n s  a m ong  v a rio u s  c o m b in a tio n s  o f

mass standards. F ig . (4 .0 .1 ) at the  b e g in n in g  o f  th is  ch ap te r n o w  p ro v id e s  us w ith  a 

u s e fu l c o n c lu s io n : the  th re e  stages o f  the  p rocess are h ig h lig h te d — i.e . f i r s t  id e n t ify in g  

the  in p u t q u a n tit ie s  and fo rm in g  th e  w e ig h in g  e q u a tio n ; se co n d ly  e v a lu a tin g  the  

s e n s it iv ity  c o e ff ic ie n t m a tr ice s  and  the  in p u t co va ria n ce  m a tr ice s ; and f in a l ly  

e v a lu a tin g  the  c o n tr ib u t io n  o f  each o f  these to  th e  o v e ra ll co va ria n ce  m a tr ix .

W e  m u s t n o w  p ro cee d  to  the  rea l task  a t hand , w h ic h  is  to  use th e  in fo rm a tio n  

presented b y  th e  m e th od s  described  here to  e s tim a te  the  values o f  th e  param ete rs  

them se lves, i.e . the  mjk in  Am, =  X my -  X  mk ■

In  o rd e r to  do  th is  w e  m u s t n o w  tu rn  o u r  a tte n tio n  to  the  s tu d y  o f  P a ram ete r

E s tim a tio n  techn iques .
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A t  th is  p o in t  w e  h ave  es tab lish ed  re la tio n s h ip s  fo r  c a lc u la tin g  th e  m easurands 

(mass d iffe re n c e s ) and th e ir  co m b in e d  s tandard  u n c e rta in tie s  b o th  in  u n iv a r ia te  and 

m u lt iv a r ia te  fo rm . T h is  has been done  in  a g en e ra lised  and  u n ifo rm  m a n ne r, tre a tin g  

a ll in f lu e n c e  q u a n tit ie s  e q u a lly  and  in c lu d in g  a ll k n o w n  in fo rm a tio n  in  th e  ana lys is .
I

B e fo re  p ro c e e d in g  w e  need to  id e n t ify  som e te rm s: as s h o w n  in  F ig . (5 .0 .1 ) 

b e lo w , w e  h a ve  f i r s t  th e  in f lu e n c e  q u a n titie s  le a d in g  to  th e  m easu rand  v ia  the  

fu n c t io n a l re la t io n s h ip . In  the  case o f  m ass c a lib ra t io n  the  m easurands are m ass 

d iffe ren ce s  re s u lt in g  f r o m  c o m p a ris o n  c a lib ra tio n s . H o w e v e r, u lt im a te ly  w e  re q u ire  

mass va lues ( th e  p a ram e te rs ) so fu r th e r  ana lys is  is  needed. T h e  series o f  co m p a riso n s  

ca rr ie d  o u t is  d e sc rib e d  b y  a system  m o d e l w h ic h  re la tes the  e x p e rim e n ta l m easurands 

to  the  param eters  v ia  a d e s ig n  m a tr ix .

5. Param eter Estimation Techniques in M ass
Calibration

5.0 Summary

W ith  th is  m u c h  e s tab lish ed , i t  is  o u r  p u rpo se  in  the  n e x t fo u r  chap te rs  to  

in ve s tig a te  the  E s t im a tio n  M e th o d s  a p p ro p ria te  fo r  d e te rm in in g  the  p a ram e te r v e c to r 

and its  co va ria n ce  m a tr ix . S in ce  the  d es ign  m a tr ix  w i l l  be chosen  so as to  h a ve  an 

o ve r-d e te rm in e d  sys tem  w e  can im p le m e n t s ta tis tic a l e s tim a tio n  techn iques.

W e  f ir s t  in v e s tig a te  the  Least Squares (L S )  m e th o d  and  f in d  i t  in a p p ro p ria te  

since  the  o b s e rv a tio n  v e c to r  o f  m easurands o n ly  co n ta in s  d iffe re n c e s  a m o n g  the 

param eters and th us  a b so lu te  va lues ca n n o t be  d e te rm in e d  w ith o u t  som e e x tra  

in fo rm a tio n . T h is  leads us to  L S  su b je c t to  c o n s tra in ts — R e s tra in e d  L ea s t Squares 

(R L S ), in  w h ic h  th e  c o n s tra in ts  used are th e  p re v io u s ly  d e te rm in e d  va lues o f  one  o r 

m o re  o f  the  standards in v o lv e d  in  th e  c a lib ra t io n  exerc ise . F ig . (5 .0 .2 ) b e lo w  

illu s tra te s  the m e th od .
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Fig. 5.0.2: The RLS method of Parameter Estimation in Mass Determination

A n  e x ten de d  tre a tm e n t is  g iv e n  o f  R L S  s ince  a d iscu ss io n  o f  c o n s tra in ts  is 

c r it ic a l fo r  E s t im a tio n  T e ch n iq u e s  in  M ass  D e te rm in a tio n . I t  is  s h o w n  h o w  R L S  treats 

the  co ns tra in ts  (p r io r  in fo rm a tio n ')  d e te rm in is t ic a lly  le a d in g  to  a s o lu t io n  v e c to r  w ith  

an in c o m p le te  c o v a ria n c e  m a tr ix . A  f in a l s o lu t io n  is  then  fo u n d  b y  c o m b in in g  the  

co rrec t c o n tr ib u t io n  o f  the  p r io r  va ria n c e /c o v a ria n c e  in fo rm a t io n  as d e te rm in e d  b y  the 

e s tim a tio n  m e th od . T h e  m e th o d  is d iscussed  a t som e le n g th , tw o  s ig n if ic a n t f la w s  

b e ing  h ig h lig h te d : F irs t ly  the  c o n s tra in t in fo rm a t io n  is trea ted  in c o n s is te n tly , b e in g  

v ie w e d  as f ix e d , o r  d e te rm in is tic  to  o b ta in  a p a ram e te r e s tim a te , b u t th e n  v ie w e d  

s to c h a s tic a lly  to  ge t a co m p le te  co va ria n ce  m a tr ix .  T h is  is s h o w n  to  be  m a th e m a tic a lly  

u nsa tis fac to ry . S e c o n d ly  the  approach  is a n y th in g  b u t u n ifo rm  in  its  tre a tm e n t o f  the 

va rious  data  sets. R a the r, i t  is  sh ow n  to  be  in  ag ree m e n t w ith  the  p o lic y  o f  sepa ra ting  

ran do m  &  sys te m a tic  u n c e rta in ty  co m p on en ts  as in  c o n v e n tio n a l ana lys is  and  ind ee d  

can perhaps be ju s t i f ie d  in  th a t lig h t.  H o w e v e r, th e  goa l in  th is  w o rk  is  to  p ro d u c e  a 

u n if ie d  ana lys is  at a ll stages so i t  is  n o t a ccep tab le  to  trea t the  c o n s tra in t in fo rm a t io n  

in  th is  m anner. C o m p a re  F ig . (5 .0 .2 ) w ith  F ig . (1 .0 .1 )  to  see the  u n d e r ly in g  d iffe re n ce s  

betw een  the  approaches.

W e  th en  p re sen t an a lte rn a tiv e  m e th o d , th e  A u g m e n te d  D e s ig n  a pp ro ach  (A D ) ,  

B ic h  (19 92 ), in  w h ic h  th e  fu n d a m e n ta l d if fe re n c e  is  th a t the  co n s tra in ts  are co n s id e re d  

as ju s t  e x tra  data  needed to  ge t a s o lu tio n . T h u s  its  co va ria n ce  in fo rm a t io n  can be
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in c lu d e d  in  the  e s tim a tio n  p rocess, le a d in g  to  c o m p le te  s o lu tio n s . F ig . (5 .0 .3 )  

illu s tra te s  the  m e th o d , s h o w in g  h o w  th e  a ugm en ted  da ta  is  p ro du ced .

T h e  s ig n if ic a n t fe a tu re  o f  th is  m e th o d  is  th a t i t  leads to  a smaller c o v a ria n c e  

m a tr ix  than  does R L S , and  ind ee d  reduces the  u n ce rta in tie s  o f  the  R e fe ren ce  

Standards (the  p r io r  in fo rm a tio n ) . T h is  seems s u rp r is in g  at f i r s t  b u t can  be in te rp re te d  

b y  re m e m b e rin g  th a t the  co n s tra in ts  are ju s t  b e in g  v ie w e d  as e x tra  s to ch a s tic  data. 

Three  e xam p les  are in c lu d e d  in  th is  chap te r, trea te d  b y  b o th  R L S  &  A D  to  h ig h l ig h t  

the a ttr ib u tes  o f  each, and a lso  th e ir  k e y  d iffe re n ce s .

5.1 Introduction

W e  have  a lre a d y  es tab lish ed  th e  fo rm  o f  the  F u n c tio n a l R e la tio n s h ip  used in  

co m p a rison  c a lib ra tio n s  in v o lv in g  m ass standards and have  c a lc u la te d  the  

co rre sp o n d in g  c o v a ria n c e  m a tr ix .  W e  have  n o te d  th a t a f in a l a im  o f  the  p ro c e d u re  is 

the  e v a lu a tio n  o f  mass values, w h ile  the  e x p e rim e n ta l m e th o d  a llo w s  us to  e s tab lish  

mass differences. S om e fu r th e r  data  re d u c tio n  is  n o w  needed. F ro m  E q . (4 .2 .4 ) w e  

k n o w  that:

Y  =  / ( A W ,  V ,p ,T ,D ,M n,X )  (5 .1 .1 )

w h ic h  g ives  us the v e c to r  o f  m ass d iffe re n c e s :
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v Am,

[Y ]  =
3*2 =

Am 2

yn. Am„_

Y  =  X .p  (5 .1 .2 )

as o u r system  m o d e l d e s c r ib in g  th e  m easurem ents . T h e  nxp m a tr ix  X  is  the  d es ign  

m a tr ix , in d ic a t in g  th e  fo rm  o f  the  co m p a riso n s , w h ile  (3 is  a p x  1 v e c to r  o f  the  

re q u ire d  p aram ete rs  ( i.e . the  m ass va lu es  o f  the  s tandards). T o  e s tim a te  the  

param eters, th e  m in im u m  re q u ire m e n t is  th a t X  s h o u ld  c o n ta in  a t le a s t p in d e p e n d e n t 

ro w s— ind ee d  th e re  can  o n ly  be  p in d e p e n d e n t ro w s  in  a sys tem  w ith  p pa ram ete rs , 

b u t there  c o u ld  be  less, in  w h ic h  case the  sys tem  w o u ld  n o t be  so lva b le .

Because o u r  o b se rva tio n s , Y ,  are s to ch a s tic  in  na tu re , i t  is  b e n e fic ia l to  m a in ta in  

the  re d u n d a n t in fo rm a t io n  p resen t in  an o v e r-d e te rm in e d  d e s ig n  schem e w h e re  

lin e a r ly  dependen t ro w s  are p resen t in  X . T h is  a llo w s  the  ex tra , s ta tis tic a l, in fo rm a t io n  

so presen ted  to  be  used  v ia  som e p a ram e te r e s tim a tio n  te ch n iq u e  in  o rd e r to  e s ta b lish  

so -ca lle d  "bes t f i t "  va lu es  fo r  the  param eters . O u r p u rpo se  n o w  is  to  e x a m in e  severa l 

such e s tim a tio n  te ch n iq u e s  in  o rd e r to  f in d  one w h ic h  is  m o s t a p p ro p ria te  to  the  

s itu a tio n  at hand.

5.2 Least Squares Methods
P ro b a b ly  th e  m o s t w id e ly  k n o w n  and  used p ro ced u re  is  the  w e ll-k n o w n  

O rd in a ry  L ea s t Squares (O L S ) S o lu tio n  w h ic h  in v o lv e s  a m in im is a t io n  o f  th e  sum :

S „ = ( Y - X P ) T ( Y - X P )  (5 .2 .1 )

fo r  a m o d e l g iv e n  b y  (5 .1 .2 ). T h e  e s tim a to r s a tis fy in g  th is  c r ite r ia  is  th e  O L S  e s tim a to r

(see fo r  e.g. B e c k  &  A rn o ld  (1 9 7 7 ), E a d ie  (1 9 7 1 ), L u e n b e rg e r (1 9 6 8 ), Z e le n  (1 9 6 2 ) &

M a n d e l (1 9 6 4 )):

W e  also have:

pols=(xTx)_1xTY (5 .2 .2 )

T he  o n ly  im m e d ia te  re q u ire m e n t here  is  th a t n > p so th a t the  p ro d u c t X TX  is  n o n 

s ing u la r. F o r th e  e s tim a tio n  to  p ro d u ce  any  in fo rm a t io n  th a t c o u ld  n o t be  o b ta in e d  b y  

s im p le  a lgeb ra , w e  fu r th e r  need to  h ave  n > (p +1). I f  X  &  P are n o n -s to c h a s tic  and  the

d isp e rs ion  c h a ra c te r is t ic s  o f  Y  im p ly  a d d it iv e , ze ro -m ea n  e rro rs , i t  th e n  fo l lo w s  th a t

4 M=p <5-2 -3)

o r, the  O rd in a ry  L e a s t Squares E s t im a to r  is  u nb ia sed  w ith  respect to  the  param eters . 

N o t in g  th a t (5 .2 .2 )  can be expressed  as:

Pols =  A  Y  w ith  A  =  (X TX ) -1X T
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we have, fro m  (E q  4 .3 .6  ) that:

cov[pols] = ¥ - b =A¥ y At = (xTx) 'xT Vy x(xTx)_1 (5.2.4)

in  w h ic h  X TX  is  a s y m m e tr ic  m a tr ix . H o w e v e r, (5 .2 .4 ) w i l l  n o t be  a m in im u m  

va riance  e s tim a to r w ith o u t  th e  added  re s tr ic t io n  th a t

T hus  p ro v id in g  (5 .2 .3 ) &  (5 .2 .5 ) are sa tis fie d , (5 .2 .2 ) &  (5 .2 .6 ) g iv e  the  B e s t L in e a r  

U nb iase d  E s t im a to r  ( B L U E  !) fo r  (5 .1 .2 ). ’

W e  need  to  c h e c k  o f  course , th a t th is  is  re a lly  v a lid  b e fo re  p ro ce e d in g . I t  is  m o s t 

u n lik e ly  th a t (5 .2 .5 )  w i l l  h o ld  s ince  th e  d ia g o n a l te rm s o f  \|/Y w i l l  n o t u s u a lly  be

"w o rs t case" la rg e s t va rian ce , b u t th is  is n o t v e ry  sa tis fa c to ry  s ince  w e  do  p la ce  som e 

im p o rta n c e  o n  a c h ie v in g  optimal e s tim a tio n  w h ic h  w i l l  be  a re a lis t ic  re f le c t io n  o f  

w h a t w e  h ave  obse rved . In  any e ven t, th is  p ro b le m  is  e c lip se d  b y  th e  m u c h  g rea te r 

d if f ic u l ty  o f  \|fY b e in g  n o n -d ia g o n a l; as w e  n o te d  in  Sec. 4 .5 , the  fo rm  o f  \|/Y is  such

tha t there  are u s u a lly  s ig n if ic a n t o ff-d ia g o n a l te rm s  present.

T he re  are tw o  m e th od s  o f  d e a lin g  w ith  th is  p ro b le m : one is  to  in v o k e  W e ig h te d  

Leas t Squares (W L S ) , and  the  o th e r a ttacks the  p ro b le m  v ia  the  G auss M a rk o v  

T h e o re m  (see L u e n b e rg e r (1 9 6 8 ), Z e le n  (1 9 6 2 ), R ao  (1 9 7 3 )). In  b o th  cases i t  is  

assum ed that:

w he re  the  fo rm  o f  Q  is  k n o w n  b u t a 2 m a y  n o t be. In  o th e r w o rd s , \|/Y is  k n o w n  to  

w ith in  a m u lt ip l ic a t iv e  co n s ta n t (a ) .  In  th is  case the  es tim a to rs  becom e:

H o w e v e r, w h ile  th is  m e th o d  c irc u m v e n ts  th e  p ro b le m  w ith  c o n d it io n  (5 .2 .5 ), and 

a llo w s  B L U E 's  to  be o b ta in e d , a n o th e r o bs ta c le  appears in  th a t |xTx| =  0 .  T h is  is

u n a vo id a b le  w h e n  o n ly  d iffe re n c e s  in  pa ram ete rs  are m easured. T h e  in e v ita b le  la c k  o f  

in fo rm a tio n  re s u lt in g  in  such cases leads to  th e  s in g u la r ity  in  X TX  above , and  the 

param eters b e in g  n o n -e s tim a b le — th a t is n o  u n iq u e  s o lu tio n  to  (5 .2 .8 ) can be  fo u n d .

\j/Y = o 2I (5 .2 .5 )

re s u lt in g  in

(5 .2 .6 )

id e n tic a l in  p ra c tic e , a lth o u g h  th e y  c o u ld  be  a p p ro x im a te d  as id e n t ic a l b y  c h o o s in g  a

(5 .2 .7 )

(5 .2 .8 )

(5 .2 .9 )
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5.3 Restrained Least Squares

In  o rd e r then  to  o b ta in  a s o lu tio n , i t  is  necessary to  in c lu d e  som e e x te rn a l 

in fo rm a tio n , (see C am ero n  et al, (1 9 7 7 ) B ic h  (1 9 9 2 ), N ie ls o n  (1 9 9 7 ) and  fo r  ano the r 

approach  H u g h e s  &  M u s k , ( 1 9 7 2 ) ) .  T h a t is , th e  es tim a to rs  ¡3 s h o u ld  s a tis fy  som e set

o f  l in e a r ly  in d e p e n d e n t re s tra in ts  such th a t:

A T P - R  =  0 (5 .3 .1 )

w he re  A  is  th e  "d e s ig n  m a tr ix "  o f  c o n s tra in ts  and  R  is  the  v e c to r  o f  co n s tra in ts . T h e re  

m ay  be  m such  co n s tra in ts  such th a t R  is  o f  o rd e r m x  1. T h e n  fo r  th e  p pa ram eters  

one w o u ld  have : '

a l l P l  + a I 2 ^ 2 +  + a l p P p  = r \

(5 .3 .2 )

amlPl + am2p 2+.......+ampP p ~ Vm

so th a t w e  have :

a l l  a l2 • V 73." V
a 2 \ P 2 •

a ml ®mp A . _r m „

(5 .3 .3 )

In  o u r p ra c tic a l case th is  im p lie s  th a t th e re  are som e lin e a r  c o m b in a tio n s  o f  the  p 
param eters [m ass s tandards ] w ho se  va lu es  are k n o w n  a priori and  are n o t l in e a r ly  

re la ted  to  the  c o m b in a tio n s  rep resen ted  b y  X .p .  In  p ra c tice , th is  p r io r  k n o w le d g e  

w o u ld  o fte n  be  the  p re v io u s ly  d e te rm in e d  va lues  o f  som e o r  a ll o f  th e  param eters . 

T hen  the  e lem en ts  o f  A T w o u ld  be  e ith e r 1 o r  0.

I t  is  n o w  necessary to  so lve  th e  m in im is a t io n  o f  the  su m  g iv e n  in  (5 .2 .1 )  su b jec t 

to  the  c o n s tra in t in  (5 .3 .1 ). N o te  th a t because o f  (5 .2 .7 ), w e  w r ite  (5 .2 .1 )  n o w  as:

(5 .3 .4 )5  =  / ( P )  =  ( Y - X P ) 1 n  ( Y - x p )

and f ro m  (5 .3 .2 ) w e  have:

g(P ) =  A T p - R  =  0 (5 .3 .5 )

In  the  L ag ra n g e  U n d e te rm in e d  M u lt ip l ie r s  m e th od , w e  h ave  th e  fo l lo w in g

s im u ltan e ou s  e qu a tio ns :

(5 .3 .6a)

* ( M = o (5 .3 .6 b )

w here :

< > (p )= /(p )+ 2 * t f (p ) (5 .3 .6 c )
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A. b e in g  a (p x  1) v e c to r  o f  L ag ra n g e  m u lt ip l ie rs .  T h e n  the  s o lu t io n  w i l l  be fo u n d  fro m :

Vp | ( y  -  xp)T sr1 (y-xp)+ 2̂ t(atp-r)}
p=px=i

= 0 (5 .3 .7 )

W e  f i r s t  no te  som e p ro p e rtie s  o f  V p w h e re  p  is  a p x  1 ve c to r: I f  C  is  a p x  1 v e c to r 

w h ic h  is  n o t a fu n c t io n  o f  p  then :

V p C T p =  C (5 .3 .8a )

A ls o , i f  B  is  a p x  m  m a tr ix  w h ic h  is  n o t a fu n c t io n  o f  P then :

Vp p T B  =  B  (5 .3 .8 b )

T 3
F u rth e rm o re , i f  Q  =  A  O A  w h e re  A  is  an n x  1 v e c to r and O  is an n x  n s y m m e tr ic

m a tr ix , then , i f  A  is  a fu n c t io n  o f  p  and  O  is  n o t, w e  have:

V p Q  =  2 (V p A t ) 0 A

I f  A  =  X P  fo r  X  an n x  p m a tr ix ,  as o fte n  occurs  in  lin e a r  e s tim a tio n , the  above 

exp ress io n  becom es:

V p Q =  2(Vp PT X T ) <D X  p

= > V p  Q  =  2 X T O X P  (5 .3 .8 c )

w he re  (5 .3 .8 b ) has been used.

W ith  these 3 e q u a tio n s , w e  can n o w  e va lu a te  (5 .3 .7 ):

Vp (y t £2_1 Y  -  Y Ti r ‘X p  -  p TX Ti2 " ‘Y  +  p TX Ti r ' x p  +  2A,TA Tp -  2X,t r ) =  0

• o -  xTn _I y -  x Ta -1 y +2xTa -1xp+2A i  -  o = o
o r - 2 X Ti r 1Y  +  2 X TXP  +  2 A i  =  0 

So w e  ge t the  tw o  e qu a tio ns :

x Ta -1x p  +  AA, =  x T£ r lY  

&  A Tp =  R

T h is  can a lso be  expressed  as:

" x x i2 -1x A
" A “

P X T£ r ‘Y "

1 > H 0 A R

T hus  i f  w e  d e fin e :

w e  can th en  say:

Cj c2" x Ta _1x A
T

c 2 c 3 a t 0

-i

C 1 c 2 X Ti2 -1Y
—

T
_ C 2  C 3 R

(5 .3 .9 )

(5 .3 .1 0a )

(5 .3 .1 0 b )

(5 .3 .1 1 )

(5 .3 .1 2 )

(5 .3 .1 3 )

(A s id e : w e  w i l l  see th is  ty p e  o f  ana lys is  aga in  la te r  w he n  w e  e x a m in e  p seudo -inve rses  

and G e n e ra lise d  L e a s t Squares (see C h a p te r 6 ).)

N o w  i f  w e  p re -m u lt ip ly  the  l.h .s . o f  (5 .3 .1 2 ) b y  the  inve rse  its  r.h .s . w e  get:
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XTß _1X a '

=> XTß _1Xcj + Ac2 = I

= I =
I 0

0 I

XtQ~‘Xc2 + Ac3 = 0 

ATCl = 0 
Atc2 = I

N o w  because ( x Tf i  ’x )  is  s in g u la r - th e  reason fo r  th is  app roach  in i t ia l ly -  

m ake  th e  fo l lo w in g  d e f in it io n  in  o rd e r to  p roceed:

XTf ì_1X = a„ + DAAt

w here  a 0 is  a n o n -s in g u la r  d ia g o n a l m a tr ix .  W e  can choose  D  =  - I  so th a t:

XTQ _1X = an-A A T

S u b s titu tin g  th is  in to  (5 .3 .1 4 a ) and  n o t in g  (5 .3 .1 4 c ) resu lts  in :

c i = a o1(I - A -c 2 )

S im ila r ly ,  s u b s titu t in g  (5 .3 .1 6 ) in to  (5 .3 .1 4 b ) and n o t in g  (5 .3 .14d) y ie ld s :

c2 = a0 A(I — c3 )

P re -m u lt ip ly in g  (5 .3 .1 8 ) b y  A T g ives :

ATc2 = (ATa01 A)(l -  c3) = I by (5.3.14d)

c 3 =  I - ( a V a ) _I

W e  can n o w  use E qs. (5 .3 .1 7 ) - (5 .3 .1 9 ) in  (5 .3 .1 3 ) to  o b ta in :

y a o ^ I - A c J )

â _ ( l - c 3)TA Ta -

XTÍ2-1Y

R

N o te  that:

c1 = a 01( l - A ( A Ta01A) ‘ATa01 

& c2 = aQ1A^ATaQ1Aj

E v a lu a tin g  (5 .3 .2 0 ) resu lts  in :

a  i

ß =  a o Xt£2~'Y + A(ATa¡x A)“' {r  -  ATa01XTf í -1 y }

& ^ = R + (ATa^A ) 1{ATa01XTQ “1Y -R }

w ith  the  a id  o f  (5 .3 .2 4 ), i t  is  a lso  p o s s ib le  to  w r ite  (5 .3 .2 3 ) as:

ß =  aö1 Xt£1_1Y + a (r - 1 )

(5 .3 .1 4 a ) 

(5 .3 .1 4 b ) 

(5 .3 .1 4 c ) 

(5 .3 .14d) 

■we need to

(5 .3 .1 5 )

(5 .3 .1 6 )

(5 .3 .1 7 )

(5 .3 .1 8 )

(5 .3 .1 9 )

(5 .3 .2 0 )

(5 .3 .2 1 )

(5 .3 .2 2 )

(5 .3 .2 3 )

(5 .3 .2 4 )

(5 .3 .2 5 )
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So E qs (5 .3 .1 6 ), (5 .3 .2 4 ) &  (5 .3 .2 5 ) a llo w  a R es tra in e d  L e a s t Squares e s tim a te  o f  the  

pa ram e te r v e c to r P in  Y  =  X p ,  s u b je c t to  th e  co n s tra in ts  in  A TP =  R . I t  w i l l  be  n o te d  

fro m  (5 .3 .1 3 ) th a t, in  fa c t, /3 takes the  fo rm :

P =  C !X T£2_1Y  +  C2R  (5 .3 .2 6 )

T h is  is s ig n if ic a n t,  because, i f  c o m p a re d  w ith  (5 .2 .8 ), w he re :

P gm= P wls= ( x TQ - 1x ) _1X T£ l - 1Y

i t  can be seen th a t in  (5 .2 .8 ), the  p a ram e te r estim a tes are a l in e a r  c o m b in a tio n  o f  the  

obse rva tion s , i.e .:

P =  L Y  j (5 .3 .2 7 )

w h e re  L  =  (xTi2_1x)”1 X Ti T 1

B u t in  (5 .3 .2 6 ) w e  have:

P =  M Y  +  c 2R  (5 .3 .2 8 )

w ith  M  =  c xX t Q _1 .

C o m p a rin g  (5 .3 .2 7 ) &  (5 .3 .2 8 ), th e  c h ie f  d if fe re n c e  is th a t a lin e a r  c o m b in a tio n  o f  the  

co ns tra in ts  is  a lso  added  to  th e  lin e a r  c o m b in a tio n  o f  the  o b se rva tio n s  fo r  pu rposes o f  

e s ta b lis h in g  th e  p a ra m e te r estim a tes. H en ce  the  co n s tra in ts  need to  be  chosen  to  be 

so m e th in g  p h y s ic a lly  m e a n in g fu l w ith  respect to  the  param ete rs  u n d e r s c ru tin y .

N o w  w e  need  to  lo o k  at the  c o v a ria n c e  m a tr ix  fo r  ¡J as g iv e n  b y  (5 .3 .2 6 ) o r  (5 .3 .2 8 ).

W e  can say tha t:

c o v jp j =  Y p  =  M \(rYM T (5 .3 .2 9 )

since  the  co n s tra in ts  are co n s id e re d  to  be d e te rm in is t ic , o r  co ns ta n t; o th e rw is e  the  

Lag range  m e th o d  w o u ld  n o t be  a p p ro p ria te . So f r o m  (5 .3 .2 6 ), (5 .3 .2 9 ) becom es:

y -  - C jX ^ V y ^ ' X c^ (5 .3 .3 0 )

N o te  th a t \ j /Y =  c2Q. and  th a t in  m a n y  p ra c tic a l cases w e  can  assum e a 2 =  1— i.e . th a t

£2 is fu l ly  k n o w n . In  these  c ircu m s tan ces  w e  f in d :

\|/- = c 1X r Q _1Xc?' (5 .3 .3 1 )

A s id e  : W e  w i l l  see la te r  th a t in  fa c t Cj is  a g-inverse o f  X T£2-1X  and  so, s ince  c x is  a 

s y m m e tr ic  m a tr ix  i t  fo l lo w s  th a t y/. =  c x , b u t m o re  on  th is  la te r. (See Secs. 6 .2  /  6 .3 )

5.4 Discussion (R e fe r  aga in  to  F ig . 5 .0 .2 )

W e  n o w  ana lyse  th e  R L S  m e th o d  in  th e  l ig h t  o f  th e  g ene ra l c r ite r ia  fo r  the  

u n if ie d  app roach  th a t w e  w is h  to  es tab lish . B y  in t ro d u c in g  the  c o n s tra in t w e  have  

p e rm itte d  a s o lu tio n  to  be  fo u n d  and a lso  a co va ria n ce  m a tr ix . T h a t /3 is u n b ia se d  in  

sp ite  o f  the  e x tra  c 2R  te rm  in  (5 .3 .2 8 ) can be  v e r if ie d  b y  c o n s id e r in g  ( f ro m  E q . 

(5 .3 .2 5 )):

£ [p ]  =  a “ 1X Ti2 " 1£ [Y ]  +  a ^ A E [R ]  -  a J^A E p -] (5 .4 .1 )
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N o w , w e  k n o w  £ [Y ]  =  x p  f ro m  (5 .1 .2 ) a nd  £ [R ]  =  A Tp f ro m  (5 .3 .1 ). So (5 .4 .1 )

becom es:

tf[|p ] =  a '1X TQ _1x p  +  ao1 A A t P -  a “ 1 A

=  a ” 1 ( x Ta _IX  +  A A T)p  -  a ’ 1 A  (5 .4 .2 )

F ro m  (5 .3 .1 6 ) w e  h ave  a 0 =  X T£2_1X  +  A A T S o  then :

^ ^ P - a ^ A ^ ]  (5 -4 .3 )

S im ila r ly ,  f r o m  (5 .3 .2 4 ),

£ [X ]  =  E[R ] +  (A Ta (;1A ATa~1XTil~l E[Y ] -  ( a ' V a ) ” ' E[R ] (5 .4 .4 )

=  [l  -  ( A Ta ‘ 1 A ) “ ' j  £ [R ]  +  ( A X 1 A ) ' ’ A Ta^1X TQ " 1 £ [Y ]

=  ( i  -  (A Ta ^  A )-1 ̂ ATp +  (A Tao1 A ) '1 A Tao1X TQ “1XP

[^AT - ( A Tao1A ) " 1A T + ( A Tao1A ) " 1A Tao1X Ta ' 1X  p  (5 .4 .5 )

b u t X T£2-1X  =  a 0 -  A A t , so then :

E[i] = [ a t  -  ( a V a ) ' *  A t  +  (A  V a ) ~ ’ A Ta fl- 1a 0 -  ( A Ta " I A ) " 1 ( a ^ ^ ' a J a 7 ]

= > £ [^ ]  =  a T “ a T = 0  (5 .4 .6 )

So fro m  (5 .4 .3 ), £ |p j  =  p , s ince  th e  second  te rm  is  ze ro  b y  (5 .4 .6 ) and  w e  can

co n c lu d e  th a t the  e s tim a to r is  unb iased . A p p lic a t io n  o f  E q .(5 .3 .2 8 ) (see e xam p le s

b e lo w ) show s th a t th e  c o n s tra in t in fo rm a t io n  re m a in s  unch an ge d  b y  th e  e s tim a tio n

process. T hu s  a n y th in g  w h ic h  w as f ix e d  b e fo re  the  e x p e rim e n t re m a in s  u nch an ge d

a fte rw ards  in  sp ite  o f  w h a te v e r in fo rm a t io n  m ig h t  have  su rfaced  to  suggest o th e rw is e ;

and so i t  appears th a t w e  are n o t m a x im is in g  the  in fo rm a tio n  p o te n t ia l ly  a v a ila b le

fro m  the e x p e rim e n t. W h e n  co n s id e re d  th is  w a y , w e  can see a p h ilo s o p h ic a l w eakness

w ith  the  e s tim a to r. H o w e v e r, i t  is  c e r ta in ly  internally consistent in a s m u c h  as the

d e te rm in is t ic a lly -v ie w e d  c o n s tra in t in fo rm a t io n  w o u ld  n o t be  e xpe c ted  to  change  in

the  L a g ra ng e  M u lt ip l ie r s  ana lys is . W e  w o u ld  th e re fo re  n o t e xp e c t to  lea rn  a n y th in g

n ew  a bo u t th e  c o n s tra in ts  in  th e  e x p e rim e n t. T h is  is  fu r th e r  e m phas ised  in  the

co va ria n ce  m a tr ix ,  w h e re  the re  is  no  te rm  due  to  the  R  v e c to r  p resen t [see (5 .3 .2 9 ) &

(5 .3 .3 1 ) fo r  e x a m p le ]. T h e  re s u lt o f  th is -s e e  e xam p le s  here  and in  C h a p te r 9—is th a t

\y- is  in c o m p le te : va ria n c e  and  c o v a ria n c e  te rm s due to  the  e lem en ts  o f  R  are

m iss in g . S om e h ave  p ro po sed  a d es ign  m a tr ix  X  such th a t X T . X  is  o rth o g o n a l (see 

P row se  &  A n d e rs o n  (1 9 7 4 ), G rabe  (1 9 7 8 ), Z u k e r  e t a l (1 9 8 0 ) &  M ih a i lo v  &  

R o m a n o w s k i (1 9 9 0 )) , in  w h ic h  case w o u ld  be e xpec ted  to  be  d ia g o n a l, b u t in  the 

p resen t case th is  is  n o t so, and  thus the  c o v a ria n c e  m a tr ix  is  in c o m p le te . Indeed  

o rth o g o n a l system s m a y  n o t a lw a ys  be a g o o d  idea. See fo r  e xam p le . M o r r is  (1 9 9 2 ).
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A n o th e r  aspect on  D e s ig n  Schem es to  dea l w ith  p h y s ic a l p ro b le m s  in  c a lib ra t io n  such  

as a d so rp tio n  on  m e ta l su rfaces is  g iv e n  in  Ik e d a  (19 86 a ) &  (1 9 8 6 b ). T h e  in te rn a l 

cons is te ncy  m e n tio n e d  above  is  o b ta in e d  w ith  the  p r ic e  o f  a f la w e d  and  im p ro p e r  v ie w  

o f  the  tru e  s itu a tio n , in  w h ic h  the  s tandards are n o t d e te rm in is t ic , and  thus  v io la te s  

one o f  o u r ke y  c r ite r ia  o f  co n s is te n cy  b y  n e g le c tin g  v a lid  in fo rm a t io n . W e  w i l l  say 

m o re  abou t th is  s h o r t ly  b u t n o w  le t us c o n s id e r tw o  e xam p les .

E x a m p le  I

A s  an exam p le , c o n s id e r th is  d es ign  fo r  th re e  param eters :

1 -1 o' V i
y\

x = 1 0 -1 p = b2 Y  = yi
_ 0 1 -1 A. _y3.

(5 .4 .7 )

T o  keep  th in g s  s im p le , w e  can  le t y/y =  a 2. I . N o w  suppose the  c o n s tra in t is  the

k n o w n  va lu e  o f  one  p a ram e te r, bj, such th a t b} = mj and  then  w e  have

' 1"

A  =

E v a lu a tin g  E q . (5 .3 .2 3 ) n o w  y ie ld s :

&  R  =  [m ,]

P  =

bi mi
2  1 1

« « . - 3 * - 3 * +  3 *  

1 2 1

(5 .4 .8 a )

w h ile  i/a . =  a 2.

0 0 0

0 * I
3 3

0 i 1
3 3.

(5 .4 .8 b )

In  th is  case th e  e s tim a te d  va lu e  o f  bj re m a in s  unch an ge d  f r o m  the  c o n s tra in t va lu e  

and, a c co rd in g  to  (5 .4 .8 b ), i t  has no  v a ria n ce  o r  co va ria n ce  te rm s.

E x a m p le  I I

A s  a second e x a m p le , le t  the  c o n s tra in t in fo rm a t io n  be:

b] + b3 = m13 (5 .4 .9 )

T h is  is  so m e w h a t u n l ik e ly  in  m ass c a lib ra t io n , b u t is  nonethe less v a lid  as an exam p le .

Y

&  R  =  [m 13]A  =

W e  n o w  o b ta in :
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b\
' !  1 / \"

0 =
A

2
A

=

by
^•w i3 ” ( *  + 2 yz  +3'3)

' l r

(5 .4 .1 0 a )

w hile y  - = o  .
6

0 i  0

—  0 
6

1

6

(5.4.10b)

From (5.4.10a) it is apparent that the sum bx + b2 - m 13 remains unchanged and the

combined variance o f  the sum is s2(b^ + s2[b3'j + 2 s\bl,b3} = 

again showing that the constraint information is unchanged.

i +I +2 - i
6 6 I 6

.a 2 = 0;

N ow  there is a big problem here because it is well known that the constraint 

information is really just the result o f a previous calibration and is thus not a 

deterministic quantity, but rather a stochastic one with a particular (previously 

estimated) dispersion characteristic. This o f course presents no problem to the 

traditional view  o f uncertainties since the uncertainty o f the constraints-usually called  

"standards"-is treated as a systematic uncertainty and therefore considered as 

something which cannot be altered by the experiment and so does not need to be 

included in the analysis. It is simply added to the overall uncertainty figure at the end 

as a "systematic" component. In the formalism presented above, that component can 

be calculated from (5.3.28) where w e have P = MY + c 2R . W e have already developed

the first component, so what is now needed is the complete uncertainty, including that 

due to the constraint information:
¥ s = M ¥ y M + c 2y[î r c 2 (5.4.11)

From (5.3.22) we know c2 = a^A^A^a^A) Fig.(5.4.1) gives c2 for the two

examples and Fig. (5.4.2) gives the resulting "systematic" uncertainty term. Note that 
y /R = a 2 in Eg. I while y /R = 0 , in Eg. II since there is just one piece o f constraint

information in each case.

'1 1 1
l l f 4 4 4

7 1 1 1
l l l cz . --

r 13 4 4 4
l l l 1 1 1

4 4 4

Eg. I Eg. II

Fig. 5.4.2 - "Systematic Components"
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Combining (5.4.8b) & (5.4.10b) with their corresponding “system atic” terms from  

Fig. (5.4.2), we find the respective complete covariance matrices can now be given as 

in Fig. 5.4.3:

“
f1 ^ 1 2 1 2 1 2 1 22 2 2 —  0 + 1 Q — a r “ Or — a

a n CTr, 4 r‘3 6 4 r‘3 4 r" 6
2 2 2 2 2 2 2 1 2 1 2 1 2 1 2

r + o ' — a + a r
3 4

— a r + — a
4 13 2 4

2 1 2 2 2 2 . 2 1 2 1 2 1 2 1 2 .  ̂ 2
Or — a + a r — a + a r — a r — a -o. — a r + 1 ct

3 3 .4 13 6 4 ri3 4 r'3 6
Eg. I « Eg. II

Fig. 5.4.3 - Complete Covariance Matrices

However, this method is in serious disagreement with the Unified Approach to 

Uncertainty Analysis which w e have developed in Chapters 1 & 2 and indeed 

contravenes the criteria o f Consistent & Logical Reasoning which have been 

established. What w e see here is the constraint information being treated 

deterministically in order to find a solution, and then being treated stochastically in 

order to find the correct final covariance matrix as shown in Fig. (5.4.3). This is at 

best an inconsistent approach and at worst a thoroughly inaccurate one! Since there 

are dispersion characteristics associated with the constraint vector, surely this 

information should be included in the estimation algorithm, as it may well influence 

the results obtained? This is an exam ple o f neglecting valid information which a 

priori is available, and thus contrary to the traditional view  o f being objective, would  

rather seem  to be distinctly biased.

W e will see in succeeding chapters several other estimation techniques which 

fully take account o f all available information, including uncertainties/variances o f the 

constraints, which are just treated as prior information to be included. W e should 

observe that ‘prior’ in this context can be interpreted in a logical., rather than 

chronological manner; although in practice with mass standards it is in fact both. The 

results o f doing this are a very distinct improvement over the Restrained Least 

Squares method outlined so far. In fact it is possible to im prove the uncertainty 

estimate o f the prior information through the new information obtained in the 

experiment. Thus the rationale for treating the prior uncertainties as "systematic" or 

"fixed" is undermined.
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5.5 The Augmented Design Approach
The essential point about this new method (see B ich, (1990), Bich (1992) for 

e.g.) is that the constraints-necessary to obtain a solution-are view ed sim ply as data, 

for which expected values and variances are available. The fact that this data was not 

obtained in the current experiment is no obstacle as it is logically  prior information. In 

the unified approach all information is a reflection o f what w e know about the 

parameters under investigation: whether this is new information or previous 

information is o f  no consequence. (Aside: there is plenty o f  evidence in mass 

metrology that mass standards drift over time. This additional information w ill m odify 

our prior knowledge, som etim es significantly, and hence can affect the resulting 

parameter estimates. W e w ill look at this in more detail in Chapter 10, w hile here we 

will develop the underlying theory.) The crucial point now is that w h ile we still have

Y  = x p  with cov[Y] = \|/y

we now have for our constraint, or prior, information:

R = A Tp with cov[R] = \|/R

W e now augment both o f  these together to give:

z = wp

(5.5.1)

(5.5.2)

(5.5.3)

(5.5.4)

W e assume there are no correlations between the m ass differences from the current 

experiment and the m ass values  from the prior data and hence y/z above is diagonal. 

Such correlations could be possible if  the same instrumentation and reference 

standards were in use in each case, but unless they are carefully estimated and shown 

to be physically m eaningful they should not be assumed, w'w is now no longer 

singular so we can so lve the Gauss-Markov M inimum Variance, or W eighted Least 

Squares Estimator directly:

Y X V v  0 ‘
or

R > T_
P while \|fz =

1C*>

‘ 
o

l

p = (w V w ) ' 'w V i

& V p = ( w Tv|/z1w )"1

(5.5.5)

(5.5.6)

If we evaluate (5.5.5) w e find, for W , \|/z & Z as given in (5.5.4), that:

p = [(x tV y X) + A\|/r1A t ]"1 [x t\ / y Y + A\|î r r ] (5.5.7)

This illustrates how  the prior information features prominently in the estimates 

obtained via the augmented design— both R  & \j/R are present. Thus w e expect this to 

be a com plete solution giving adequate minimum variance estimators and,
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importantly, a com plete covariance matrix for these estimators. Eq. (5.5.7) indicates 

that the singularity o f  ( x Ty  y‘x ) is no longer an issue, since the term to be inverted

requires only the non-singularity o f  [ ( x ^ y ' x j + Axj/j^A7 J; and since the

constraint/prior information is still linearly independent o f  the observation data, this 

condition w ill always be met.

This estimation method has som e interesting properties. If we apply it to 

Example I in Sec 5.4 above, w e w ill get the same estimates and a com plete covariance 
matrix. W e have ysR = o 2 and

Z =

3̂i nl - 1 o '

1
0 to 0 0 0 "

3*2 1 0 - 1 0 a 2 0 0
; W = ; ¥ z  =

3>a 0 1 -1 0 0 o 2 0

m, 1 0 0 _ 0 0 0 ° 2r.

(5.5.8)

Resulting in:

P =
mr C2r G2 C| T 

(O 

---
---

*

2 1 1
* > - 3 » - 3 * +  3 * & w-p = a 2 - o 2 + c 2

3
2 2 2 - c  + a;
3

1 2 1 7 1 2 . 2 2 2 . 2
« , - 3 » - 3 * - ^ <*r —a + a t

3
—a + a ,
3

(5.5.9)

— obtained directly with Eqs. (5.5.5) & (5.5.6), without the need for any further 

processing. The prior information remains unchanged as it must since it is not 

possible to determine any further information about just one constraint.

Likewise for Exam ple II o f Sec. 5.4, Z and \j/z remain as given in (5.5.8) and

W =

-1

0

1

0

0

-1

-1

1

which is still just one piece o f prior information. As before w e obtain:

P =

1 1 / V- m r + - ( y l + 2y2 + y 3)

1 h  \
~ m r - 7 U  + 2 y i  +  3'3) 
Z  O

1 2 , 1 2 —a,. + —a  4 r 6 
1 2
4 ° '

- c 2 - - c 2 
4 6

1 2 1 2— +  — o  4 2
1 2
4 ° '

1 2 1 2— a, — a 4 ' 6
1 2
4 ° '

—cr2 + —a 2 4 ' 6

(5.5.10)

These results are indeed the same as those obtained with Restrained Least 

Squares, but they have been obtained by a much more mathematically acceptable-not 

to mention sim pler-m eans. The inclusion o f the prior information in  the estimation 

process, rather than just using it as a restraint on  the estimation process is a much 

more unified and consistent use o f  the known information.
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N ow  if we have more than one piece o f independent prior information, the 

power of this method becom es much more apparent, because it is now possible to 

obtain extra knowledge on the prior information in the experiment, through extra 

comparisons; the minimum variance characteristics o f the estimator then causing a 

new estimate o f the prior information, o f lower variance, to be obtained! This really 

shows what happens when w e build the variability o f  the prior information into the 

model. If the constraints are not w holly deterministic why should we pretend they are? 

The example below  shows the benefits o f treating the constraints stochastically. W e 

will first calculate the estimates by restrained least squares for comparison purposes.

Example III: W e have four parameters:

P =

A

x=

"1 -1 0 o '
1 0 -1 0 y  2
1 0 0 -1

Y  = y-i
0 1 -1 0 y  4
0 1 0 -1 ys
0 0 1 -1 J 6.

(5.5.11)

There are thus six observations on the four parameters. W e take the covariance matrix 
o f the observations to be \|rY = g 2.I 6 for convenience. The constraint information

concerns the values o f bj & b4. Thus w e have:

1 01

A =
0  0 m , V  o  ‘

0  0
; R =

1
T}-

£
1

; =

i
O 

j

Q

i

(5.5.12)

0 1

from which we can see that the two "reference" standards are not correlated. The 

restrained least squares solution now yields:

m.

(3 =
-  (4m, + 4m4 - 3yt - 2y2 + 2y4 + 3;y5 + y6 )
O

_ ( 4 m, + 4m4 - y , -  3y2 -  2y4 + y5 + 3y6)

mA

(5.5.13a)

while for the covariance information w e have:

— CXX Y Y  XCj — Cj —

'0 0 0 O' '1 0"

0
3 2 1 2 0

1 1
— G -G — —

0

8

- a 2

8

V 0
& c2 = 2

1
2
1

8 8 2 2
0 0 0 0 0 1

(5 .5 .1 3b )

and for the constraint information, the uncertainty contribution is:
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C2Y rC2 —

a r
0

ri
2  r ‘ 2  *

1  2
1

2  2  \ 1 <  2 , 2  \ 1  2

4
K + a J

4

+  < * J
—  G r

2  r i

1  2
1

( 2  2  \
1

i  2  , 2  \ ^  r r 2

4
K + ( m

4
[ ° n + < M

~ 2  2

0 1  r r 2
—  r

2  r i

1  r r 2  
—  C5 r

2  r2
<

(5 .5 .1 3 c )

Thus, as expected, the values o f  b l & b4 remain unchanged, as do their variances. The 

much simpler calculation of the augmented design schem e uses the follow ing inputs:

W  =

'1 -1 0 0* ' y i~
1 0 -1 0 y%
1 0 0 -1 >3
0 1 -1 0

; z  = >4
0 1 0 -1 ys
0 0 1 -1 y6
1 0 0 0 ml

0 0 0 1 m4_

&  Y z  =

a 2 .!« 0

<  0 
0 a l

(5.5.14)

to yield the (more com plex!) results given below:

4(m4cr2 + )+  2 m ,a 2 + g 2 (y, +  y2 + 2y3 + y5 + y6)

2(2(7̂  + 2a\  + a 2)
+ m ,a \  )  + 4 g 2 (mi + m4 ) + 4 g 2 ( -y t + y3 + y4 + 2y5 + y6) + 4 a \  (~2yt -  y2 -  y3 + y4 + y5) + g 2 (~3>i ~  y2 + 2y4 + 3y5 + 3Vi)

P =
8(2cr^+2cr̂ +CT2)

ic(m4cr̂  + »1)0-^) + 4cr2 (mt + m4) + 4 a \  (~y2 + y3 -  y4 +  y5 + 2y6) + 4a \  (~yt -  2y2 -  y3 -  y4 + y6) ■+ a 2 (~yt -  3y2 -  2y4 + y5 +  3y6)

s(2<72 + 2ct2 +<t2)
4(m4<T2 + mt<T̂ ) ■+ 2m4tr2 + a \  (-y , -  y2 -  2y3 -  ys -  y6) 

2(2ff2 + 2ff2 + a 2)

o2M + ° 2) < ( 4 < + a 2)
2oJ + 2a 2 + o 2 2(2a 2 + 2a 2 + a 2)

rl Z '  rl  2 '

8 q 2 (2q;i + a 2) + a 2(8o2 + 3 o 2) 

8(2o 2 + 2o 2 + a )

q 2(4a2 + q 3) 
2(2a 2 + 2al  + a 2)

(4a2 + a2 fra2 + a2) 
8(,2o2 +2a2 +o2 j

2c ,  o'rl r2
2a + 2g + a 2M r2

o 2 (4 o 2 

2(2 a2 + 2o2 +02)
+ 02)

8 a 2 ( 2 o ^ + o 2) + o 2(8o2 + 3 p 2) a 2 (4 a 2 + c 2)

8(2o 2 + 2a2 + 02) 2(2o 2 + 2o 2 + a 2)

< ( 2°r ,+ g 2)
2(2a 2 + 2 a 2 + o 2j
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W e can see from this that b l & b4 have been changed from their previous values.

This is merely reflecting their status as "observations" with a mean and variance; so it

is not surprising that it is possible to change their values if  new information com es to 
light. What is particularly interesting is the covariance matrix, above, from  which

w e can see that:

a 2
c 2 'v r ( 2 a 2r + a 2)(¿0= %---4-<c2 (5.5.15)

'  '  2 a 2 + 2 ( j 2 + a 2h ri

Since the denominator 2 a 2 + 2a^  + a 2 > (2c | + o 2) which appears in the

numerator. Thus the new estimated variance for h  w ill be sm aller  than the variance
1 » ----------------------------

for the original bv

So w e can see that the Augmented D esign approach, which is a more 

appropriate way to view  the problem considering the true, stochastic nature o f all the 

information available, is also a superior method inasmuch as it can effect a reduced 

covariance matrix, which Restrained Least Squares cannot do. This is as a result o f  

making full use o f  all the available information. It is also, as w e have already 

remarked, a more agreeable method, in v iew  o f our Uniform Approach to Uncertainty 

Analysis already used to calculate \j/Y, the covariance matrix o f the input data. Further 

numerical exam ples w ill be given in later sections to highlight these methods.

But now  w e proceed to look at a more generalised estimation technique, o f  

which the two methods outlined in this section are special cases. W e w ill see the 

significance o f  a proper view  o f  the extra constraint information in what follow s.
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6. A Generalised Estimation Method

6.0 Sum m ary

A  different, generalised estimation technique, with a different theoretical basis 

to either o f the two methods discussed in Chapter 5 is introduced in this chapter. The 

method is developed by Rao (chapter 4 in Rao (1973)) and known as the Generalised 

Gauss Markov method. W e w ill see that this model is entirely general and does not 

make any assumptions about the data, the input covariance matrix or the system  

model. (In contrast to RLS which requires constraints, and A D  which needs an 

invertible covariance matrix). The GGM technique utilises the matrix theory o f  

generalised inverses  (som etim es called pseudo-inverses, or s-inverses)

W e show how the method is implemented by forming an augmented matrix, as 

shown in Fig. (6.0.1) below . The details o f the estimation technique are discussed  

within the chapter, but the principal point to note here is the form o f  the solutions 

obtained, illustrated in the figure below. N ote that, in the presence o f  constraints, an 

extended m odel can be written down in terms o f  Z, W  & (3 as in Fig. (5.0.3), rather 

than Y, X  & (3 as below. The GGM m odel can deal with either. The exact form of the 

solutions will depend upon the details o f the input data and we leave these specifics to 

Chapter 7.
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So far we have seen two principal parameter estimation techniques: RLS & the 
AD method. In the former, the singularity in (x ’V y x ) dealt with by solving the

normal equations subject to a set o f constraints which are linearly independent o f  the 

observations. The constraints used in mass calibration are usually the previously 

known values o f  [som e of] the parameters. This allows a solution to be found, but we  

pointed out that it is both inconsistent and inaccurate in its use o f  the constraint 

information which is in fact not deterministic but has previously determined 

dispersion characteristics.
i

W e then saw how the A D  method allow s this additional know ledge to be 

utilised in obtaining a full solution requiring no further post-estim ation calculations 

and indeed allow ing the possibility o f arriving at a smaller dispersion matrix for the 

parameters than would otherwise be possible.

One would wonder if  the A D  method could be applied even if  the constraints 

are considered deterministic. Perhaps in this case an estimate could indeed be 

obtained but no further information on the prior knowledge could be found since it is 

considered fixed. This, unfortunately, is im possible since the solution

Pad = (x > y1x )~1x V ; 1y

determined to be the BLUE by the G-M  theorem, cannot be so determined if  i|/Y is 

singular, as the G-M  theorem does not hold under such conditions. For exam ple, with 

our model Y  = X.f3, and prior information A T.p =  R , we form the augmented design:

6.1 Introduction

" X 1 Y > Y  0 ’

1
<

1

; Z —
R ; & ¥ z  = o

But if  R  is deterministic then V|/R = 0 and then w e would have

> y  0]

M o  o.

which is clearly singular and we can proceed no further. So w e need a General 

Solution which can deal with the possibility o f a singular covariance matrix, \)/Y, and it 

is to the developm ent o f  such a method that we now turn.

6.2 The G eneralised G auss-M arkov M odel (See Chapter 4 in Rao, 1973)

W e consider the m odel Y  = XP where Y  is a vector o f  experimental 

observations subject to a dispersion matrix \|rY =  a 2G. W e wish to find the best-i.e. 

Minimum Variance-linear unbiased estimator o f  (3. Let this estimator be p such that:
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4 p tp J = p tp  (6 -2 -1)

for som e suitable vector p. N ote this is m ost general and in many cases we need not 

be concerned about the form o f  p, but w e leave it here for generality. Our observations 

however, are the vector Y, so our parameter estimate must com e from this source as 

this is all the information on which w e can make decisions (although w e do not 

exclude the possibility that there may be a constraint vector, R, needed as w ell.) Thus 

w e need an estimator L  such that our estimator is a linear combination o f our 

observations:
£[LTY] = pTp (6.2.2)

i.e. Lt x p  = pT[3 

or LTX = pT

=>Xt L = p  (6.2.3)

This means that p is a linear combination o f  X T, or that p lies in the vector space 

spanned by the columns o f X TX .

N ow  L in (6.2.2) has been chosen such that it is a linear unbiased estimator o f pT(3, 

but we want the minimum variance estimator out o f the class o f all possible unbiased 

estimators. H ow do we find this? Observe that the variance o f our estimator is:

var[LTY] = o 2LTGL (6.2.4)

since g2G = var[Y ], Thus the best estim ate for L  is the one for which (6.2.4) is 

minimal. Suppose this optimum choice is M , chosen such that:

X t L = X t M (6.2.5)

which o f course follow s from (6.2.3) since all the valid estimators are among the class 

of linear unbiased ones and therefore satisfy (6.2.2) & (6.2.3). Then w e can say:

Lt GL = [(L - M )  + M]X G[(L -  M) + M] (6.2.6)

= (L -  M )t G(L -  M) + (L -  M )t GM + M tG(L -  M) + M t GM (6.2.7)

Note, as an aside, that given A B = C for A, B & C appropriate matrices, that in

general (A B )T = B TA T = CT. Thus in (6.2.7) we have:

( L - M ) t GM = [m tG (L -M )]' (6.2.8)

where G is symmetric. N ow  with the strict condition that:

iff M t G (L -M ) = 0 when X T(L -M )  = 0 (6.2.9)

— which latter we know is true from (6.2.5); then we can say that:

Lt GL = ( L - M ) tG (L -M )  + M t GM (6.2.10)

since if  (6.2.9) is true, both M TG (L -M ) & ( L - M ) TGM are zero when M  is such 

that (6.2.5) is true. Therefore w e can see that:
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l ‘g l > m tg m

which means that the particular estimator M  is always o f lower covariance than any 

estimator L; in other words it w ill generate the minimum variance estim ate o f  p Tp, 
which is pTp . From (6.2.9), the condition for this to be true is that

MTG (L -M ) = XT(L -M ) = 0 (6.2.12)

or that Mt .G is som e linear combination o f XT. W e can then say:

(6.2.11)

Mt G = - k TXT 
or GM = -X k

(6.2.13)

for some appropriate matrix k. From (6.2.5) & (6.2.3) we know that XTM = p , so we  

can now write the two equations:

GM + Xk = 0 (6.2.14a)
XTM = p (6.2.14b)

or
G X M 0

x T 0 k .P.
(6.2.15)

~M" ‘Cl c2 " 0

k _C3 C4 _ .p.

for M  a BLUE o f  ß in the m odel Y = Xß with vjfY = a 2G. N ote that w e made no 

assumptions so far about the form o f  G or indeed about the form o f  XTX as do both 

AD & RLS. From (6.2.15) we can say:

p.- 1 TO
(6.2.16) 

. (See also

Goldman & Zelen (1964)) For any matrix A, its g-inverse is denoted A", and is 

defined such that AA A = A. If A is o f full rank then it is not singular, and A" is the

normal inverse. If A is not o f  full rank, or rectangular, then independent rows, H, can 

be added to A so that:

Cj c2 G X'
where is the Generalised Inverse-or g-inverse-of

_C3 -C 4. XT 0_

A a =

Then the inverse o f the augmented matrix

A

H*

A '
H

H

0

■ A H -1
Cl

T  ~1
c2

1 a *4 0 _C2 C4 _

exists and in fact

In this case Cj is a g-inverse o f A and ACjA = A. Note: this procedure is essentially  

analogous to that em ployed in Restrained Least Squares where A = XTX and H is the 

design matrix o f  the constraints in H(3 = R. (See Section 5.3).
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In this theory, however, a g-inverse is not unique. Any matrix H  which allows 

the inverse o f the augmented matrix above to be computed w ill be sufficient to 

evaluate Cj| however, in application, H  would o f course have to be chosen so as to be 

physically meaningful since it directly influences the results obtained.

In the present problem, without going into the details o f  the evaluation o f  the g- 

inverse, we can immediately say that (6.2.16) gives:

M ' C2 P
k 1 1 c i

or
M = c2p 
k = - c 4p

(6.2.17)

W e will investigate the evaluation o f c2 & c4 for 'specific exam ples in Chapter 7. 

Recall from Eq. (6.2.2) that we chose a linear unbiased estimator L such that:

LTXp = pTp

and we chose M  as the best (i.e. minimum variance) linear unbiased estimator-that is, 

the best form o f L -w h ich  led to the conditions expressed in (6.2.9), (6.2.12) & 

(6.2.13). Since this is the best estimator, w e must be able to equate (6.2.2) & (6.2.1) 

for M:

£ [p tP] = £ [m ty ] = p t P (6.2.18)

where p is the BLUE for p, i.e. pTp = M TY Thus from (6.2.17), we have:
T n  T T-i-r

P P = P c2Y

P = c 2 ■ Y (6.2.19)

This is a generalised solution for the best parameter estimate for a Generalised 

Gauss-Markov model; where we have Y  = X p and a covariance matrix \|/Y = o 2G  

whose form is as yet unspecified. W e also need to get the covariance matrix o f ft and

then look at the specific form o f c2, c4 for our experimental problem; but before we do 

this we need som e results on the g-inverse in (6.2.16)

6.3 Results on the G-inverse

For some variables a & b, we may write:
Ga + X b - 0 (6.3.1a) 

(6.3.1b)

— analogous to Eqs (6.2.14a) & (6.2.14b), for som e appropriate d. In other words:

X Ta = X Td

G X' a *  0 "

XT 0 b _XTd_

a c, c 2 ' 0
—

X r .db C3 “ C,,
(6 .3 .2 )
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Cj C2 ’ G X
where = is

_C3 ~ C 4_ XT 0

(6.3.2):
a c2X Td '
bj - c 4X Td

is a g-inverse as before. Then w e have from

(6.3.3)

(6.3.1a) & (6.3.1b) can be expressed as:

Gc2X d -  Xc4X d = 0 

& X Tc2XTd = X Td

=> G c2X t = X c 4X t (6.3.4a) —> Result (a) 

(6.3.4b) ->  Result (b) 

The latter o f course im plies that c2 is a g-inverse o f  X T. N ow  noting that A .B .A  = A

X t c2X t = X t

=» A tBtA t = A t , w e can write

G X 1 

X 0

, T  „ T  
“ 1 3

. T  T

G X 1 

X 0

(in which G is o f course symmetric) which means that 

inverse and therefore:

G X T"

X 0

'i C2

:3 -c ,

, T

,T

Thus (6.3.4a) and (6.3.4b) now become:

Gc3X T = X c 4X T 

& X Tc3X T = X T

is also a g-

(6.3.5a)

(6.3.5b)

(6.3.6a) —> Result (c) 

(6.3.6b) —> Result (d)

If we multiply (6.3.6a) by X .c3 we get:

X c3G c^ X t = Xc3X c 4X T

= X c 4X t by (6.3.6b)

But c4 = c j  according to (6.3.5b) so (6.3.6b) now  indicates that X c 4X T is symmetric,

X c 4X T = X t c 4X t

Thus w e now have:

X c2X = X c3X = X Result I

— by means o f (6.3.4a) & (6.3.4b); and also:

X c4X t = G c 2X t = G c3X t 

= X c4X t = X c 2 G  = X c3G
R esult I I

Of course w e could also write (6.3.1a) & (6.3.1b) as:
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Ga + Xb = Xd 

& X Ta = 0

Treating these similarly to (6.3.1a) & (6,3.1b) gives:

a CjXd"
b c3Xd

which gives for (6.3.7a) & (6.3.7b):
Gc jXd + X c3Xd = Xd 

& XTCjXd = 0 

=> G c jX  +  X c j X ^ X

by Result I we have already established that X c3X = X  

that is, they are all null matrices.

GCjX =  X  CjX =  0

(6 .3 .7 a )

(6 .3 .7 b )

Result IE

6.4 Covariance in the GGM  Model

In (6.2.18) w e had £ [p TpJ = £ [M TY] = pTp to give the best estimator p via a

linear combination o f  Y. Further, analogous to (6.2.3) we have:
X M = p

Now in (6.2.19) we had P = c j Y ,

var|pTpj = var[pTC2Yj = var[MTXc2Y] by (6.4.1)

= a 2M TX c2 Gc2X TM as var[Y] = a 2G

= a 2M T(X cjG )c2X TM

= o 2M t (Xc4X t)c2X t M by Result II 

=  o 2M t X c 4( x t c 2X t ) m  

= g 2M tX c4X t M by Result I

[
rjr A I  2 T

p  p  = G  p  C 4p

var ffl = a 2c 4

(6.4.1)

(6.4.2)

So, in conclusion, in the General Gauss-Markov m o d el-G G M -{Y ,X .p ,a 2G }, 

we look for a BLUE for p, given by pT.p . This is estimated by a linear combination

of the observations, M TY such that:

i  r o i
for a suitable k.

G X M O'

X T 0 k .P.
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C j  c 2 G X'
Then for the g-inverse o f , one has M  = c 2 . p

_C3 —C 4_ X T 0

=> M t Y = pTCj Y = pTp ; giving us the best estimator P = c2 Y . It's covariance is then 

obtained from cov[j3j = o 2c4 since cov[pTp] = a 2pTc 4p Note that it is necessary for the

inverse of:
G X'

X T 0

to be calculable for this method to proceed— in other words, specifically with regard 

to the mass comparison problem, the method outlined above cannot be sim ply used  

with the design matrix X  and data Y; since, as w e know, this is insoluble by itself—  

there is just not enough information present to permit a unique solution, irrespective 

o f  what estimation method is used. Observe that the specific evaluation o f  C2 & c4 

depends upon the physical nature o f the problem to be solved. In this chapter we have 

not shown how to actually calculate C2  & C4 . So let us now proceed to investigate how  

w e can utilize this m ethod in the mass calibration parameter estimation process.
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7. GGM Theory in the Mass Model

7.0 Sum m ary

The GGM theory introduced in Chapter 6 is now applied to specific exam ples 

with application to mass calibration. There are two cases to be considered, depending 

upon whether or not the constraints are viewed stochastically. In both cases w e use an 

extended m odel— that is prior information must be included in the analysis in order to 

obtain a solution.
»

After som e mathematical manipulation, w e highlight how GGM generates 

solutions identical to RLS if  the prior information is view ed as constant, w hile the 

solution is the same as that due to A D  if  stochastic constraints are used (Bich, 1992). 

This is a significant result and from it w e can conclude that both RLS and A D  are 

special cases o f  a general theory, albeit GGM is derived from  an entirely different 

theoretical starting point. Thus RLS is appropriate to use in cases where constant 

constraints apply, but this is not so in m ass calibration  and thus, contrary to comm on  

practice in metrology, we conclude that the RLS method should not be used for 

parameter estimation in mass determination. Fig. (7.0.1) below illustrates the 

relationship between the models.
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7.1 Introduction

X Y >  Y 0 '
w = ; Z = ; & ¥ z  =

a t R 0 W

Having developed the GGM theory w e now have two cases to consider, which 

arise from our investigations in Chapter 5 with regard to mass calibration: either the 

necessary prior information w e must supply to obtain a solution is "uncertain" or it is

deterministic. In the first case w e have:

(7.1.1)

and we can use the extended m odel o f W , Z  & \j/z in the GGM model. W e w ill see
t _ __ _

below that this requires V|/z to be invertable— which it is. In this case GGM should be 

the same as the A D  solution, since consistency criteria dictate that different methods 

of analysing the same problem should yield the same solution, which is shown in this

chapter to be the case for these two m odels.

On the other hand, if  the constraints are considered deterministic, one now has

W  & Z as above, but:

V y  0  

0 0Vz = (7.1.2)

which is of course singular; the GM theorem does not hold now so the A D  method 

cannot be implemented, but GGM is not incapacitated by this and w e will show that it 

generates a solution identical with RLS. This should not surprise us since it shows that 

the two methods, A D  & RLS are but particular cases o f a general theory, depending 

on how one view s the constraints. W e have pointed out earlier that the deterministic 

constraint approach is inconsistent both with the known nature o f this prior 

information and also with our general philosophy of Uncertainty Analysis.

7.2 Deterministic Constraints

Let us first exam ine the GGM m odel with fixed, non-stochastic constraints, 

where we have:
Y = X(3 & v Y = G  (7.2.1a)

{for convenience w e assume a 2 =1!}. The restraints are:

R = A Tp & \|iR = 0  (7.2.1b)

Thus the m odel w e use is that given by (7.1.1) but with \|/z given by (7.1.2).

According to the GGM theory, what we need to do is evaluate the g-inverse:

> z w c2 "

W T 0 _C3 C4_
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then P = c2Z & \|/- = c 4 . In our case the augmented matrix H is given by:

V̂ y

0

T

a t

0

0 

0

X 1' A

however, to obtain the inverse o f H using the rule for inverting a partitioned matrix 

(see, e.g. Beck & Arnold, 1977), we must re-partition it first so that w e do not need to 

invert any singular sub-matrices. Thus:

H =

,1
 

1 ___ 0 X
-1

A B"-i A _1+ F E _1F t -F E  1
0 0 A t — —

- e _1f t E-1T ! b t c
X T | A 0

where E = C - B TF & F = A-1B and A “1 = 'FJ1 = G”1. Also:

B = [0 X]; C =
0 A 1 

A 0
; F = ¥ y1[0 X] = [o ¥ y'x ]

(7.2.3)

E = C - B tA _1B =
A - X TG"lX

from the definitions o f A ,B & C. So w e require E'1 to evaluate (7.2.3). If w e transform 

E  into D given by :

d J - XT(J  ^  Aj  (7.2.5)
A t 0

w e can proceed in a similar manner to the developm ent o f the RLS or GGM  theory. 

The transformation can be effected by:

D  I '

(7.2.4)

D = U _1EU where U =
I 0

(7.2.6)

W e may now proceed with D as follows: Let:

di d2
D -l

d j  d 3
so that DD 1 = I

i.e. - X TG_1Xdj + Ad2 = I

- X TG _1X d2 + A d 3 = 0

(7.2.7)

(7.2.8a) 

(7.2.8b) 

(7.2.8c) 

(7 .2 .8d)

N ow  because X TG _1X is singular we will run into problems in evaluating dj from

(7.2.8a) & d2 from (7.2.8b), So we define:
X t G-1X = a0 + DAAt (7.2.9)

for D  a non-singular diagonal matrix. W e can let D  = -I, so that for (7.2.8a) w e get:

A d ,  =  0

A Td2 = I
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w hile  fo r (7 .2 .8b ):

- ( a 0 -  A A t )dx =  I -  A d 2 

• -a „ d j +  A A Tdj = I -  A d 2 ; b u tA Td , = °  by (7.2.8c) 

. - . d ^ a ^ A d J - l ]

- ( a 0 - A A T).d 2 = - A d 3 

= - a 0d 2 + A A Td 2 = - A d 3 ; but A Td 2 = I from (7.2.8d) 

so a 0d 2 =  - A d 3 -  A  

or d 2 = aQ1A (d 3 + 1)

Also, pre-multiplying (7.2.10b) by A T gives:

A Td2 = A Ta01A(d3 + 1) = I by (7.2.8d) 

so d3 = (ATaQ1 a ) - 1

(7 .2 .1 0 a )

(7.2.10b)

(7.2.10c)

Thus the components o f  D-1 are evaluated in terms o f  X, G'1 & A. W e must now  

transform back to get E-1 by means o f E -1 = UD_1U _1 where U  is as given in (7.2.6). 

Then E'1 becomes:
j T "

E  = (7.2.11)
*3  2

h  d ,

with dj, d2 & d3 as given in (7.2.10a) to (7.2.10c). W e can now evaluate the 

components o f  the matrix on the r.h.s. o f  (7.2.3):

0

d2 d,

= G “1 + G 1Xd1X TG~1 

= G~1( l  + Xd1X TG “1)

A “1 + FE_1F t = G “1 + [0 G_1X]
X TG 1

FE [o - G -1x ]
d3

(HX5

= [-G _1Xd2 -G ^ X d JL J d2 d i J
L L 1J

(7.2.12a)

(7.2.12b)

- E _1F t =

i

^T"2 0 - d 2X TG-1

1 a d i . x t .g -x -d jX TG_1
(7.2.12c)

(Note that d i is in fact symmetric). Thus from (7.2.3), the inverse is as follows:

’G-1 + G -1Xd1X TG-1 ! - G _1Xd2 -G  'X d /

- d 2X TG _1

- d 1X TG _1

(7.2.13a)

l 2 d ,

Now , noting that w e re-partitioned in Eq. (7.2.3), from Eq. (7.2.2), w e can see that the 

terms c1; c2, c3 & -c4 w ill result from partitioning (7.2.13a) as follows:
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G 1 + G “1X d1X TG“1 - G _1X d2 i - G _1Xd

H = - d 2X TG-1 d3 ! d?

- d 1X TG -1 d2 j

(7 .2 .1 3 b )

W e are interested, in the GGM theory in just c2 &  -c4 so in fact w e m ust now deal

with

-G  Xdj
& c 4 = - d .

Our estimators are now:

¡3 = c2Z = [-d jX TG _1 d 2’j

P = -d jX  G Y + d2R (7.2.14)

N ow  with the aid o f (7.2.10a) to (7 .2 .10c) w e find (7.2.14) can be expressed as:

P = a ~ ^ X TG _1 Y + A(ATaû1A) 1 {r  -  a ’V x ’ G -1 y }J (7.2.15)

—which is identical with Eq. (5.3.23) obtaining for the restrained least squares 
analysis! This is a m ost interesting convergence since the two methods are based on 

different principles and establishes for us that the GGM is a general theory which is 

equivalent to RLS under the circumstances o f a m odel Y  = XP subject to deterministic 
constraints ATp = R . N ote that w e have taken care that a0 = X TG _1X + AAT is defined

like this for both expressions so that we can directly compare them.

For the covariance matrix in the GGM m odel we have \j/- = -d j  from (7.2.13b),

and with (7.2.10a) to (7 .2 .10c) this yields:

= a ; 1( l - A ( A V A ) “1A Ta-1} (7.2.16)

which is also identical with the RLS estimator o f covariance.

N ote: the reason for the somewhat protracted calculations above is so that (7.2.15) &

(7.2.16) are essentially expressed in terms of X , Y, R, A  & G; all o f which are known 

at the start o f the work. H owever, it is not computationally difficult to form the 

augmented matrices required by GGM. So for the G-M  m odel with restraints one 

would require to find the g-inverse:

V z w

WT 0

¥ y o !
i

X

= 0 0 1
J

a t

X T
1

A | 0

(7 .2 .1 7 )

Thus as usual v|/z Cj + W c2 = 1  

¥ z C 2 + W c 3 = 0
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W TCj =  0

W t c 2 =  I

ca = a i1( l-W c J )  (7.2.18a)

c2 = a ^ W ( l- c 3) (7.2.18b)

c3 = I - ( w Tao1w )" 1 (7.2.18c)

a0 =xl/ z + WWT (7 .2 .18d)

In fact c1 is redundant since w e require:

P = c j z  

& ¥p = - c 3

The augmented matrices \|/z  & W  can easily be formed and the estimators then found  

without difficulty.

F ro m  these w e get:

7.3 Stochastic Constraints:
On the other hand, if  the constraints are not deterministic, we have A Tp = R  &  

\|/R 0 and w e can use the expanded m odel o f (7.1.1) in the GGM analysis (i.e. W , 

\|/z & Z). Therefore, by Result I from Sec. 6.3, XcJX = X , or in this case, W c2 W  = W , 

since w e are dealing with the augmented matrix. N ow  by Result m  (Sec. 6.3):
V zc iW  = 0 

.•. \|/zCjW + W cJW  = W 

or, \|/zCi + W c2 = 1  (7.3.1a)

W e also know from Result IE that W TCjW = 0

^ ' w ’ c ^ O  (7.3.1b)

for a non-trivial solution.
Result II tells us that W c4W T = \|fzc 2W T

=> \|/z c 2 -  W c4 = 0 (7.3.1c)

By Result I again, W c2 W  = W

=» W tc2W t = W T

=>W tc2 = I  (7.3. Id)

From (7.3.1a) w e see that:

c ^ v ^ I - W c ? )  (7.3.2)

( Observation: Here w e see how  we can operate when \|/z is non-singular. If w e had
\)/R = 0, we would have |\j/z | = 0 and (7.3.2) could not be obtained. Thus this

development is based on non-deterministic constraints. N ote also that Eq. (7.3.2) 

above and indeed (7.3.4) below  can be derived by an identical analysis to that giving
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Eqs (7.2.17) - (7.2.18), except that ao would not be needed since \|/z is now directly 

invertible.)

Continuing, from (7.3.2):

W Tc 1 = W 1> z ( l - W < £ )  (7.3.3)

but W TCj = 0  by (7.3.1b) so:

W T\(iz1 = W T\|/^ W c2

or cI  = (W T\)/Z1W )-1W T\|/Z (7.3.4)

But in the GGM method, p = c2Z so w e can see that the estimator is:

P =  ( W T1| / ^ W ) _1W T¥ ^ Z  (7 .3 .5 )

—which is iden tica l to  the G -M  b ased  A D  approach ! (  Eq. 5 .5 .5), where Z is the 

augmented vector o f input data, i.e.:

Z =

From Eq. (7.3.1c), \)/zc2 = W c4

=> c2 — \|/z W c4

C4 =  ( ^ Z  w j  c 2

which becom es, using (7.3.4):

c 4 = ( ¥ z 1w ) ' 1( v i 1w ) ( w xv z 1w )"1

or, c 4 = ( w ’V ^ w ) -1 (7.3.6)

and since \|/. = c 4 , w e now  have a covariance estimator also identical with that

produced by the Augmented D esign approach.

In conclusion, this is an important chapter as it ties together a lot o f mathematical 

development, starting with Chapter 5, and highlights the two primary approaches to 

parameter estimation. W e have seen that A D  & RLS are both particular cases o f a 

generalised estimation technique operating on a linear m odel subject to restraints/prior 

information. The different formalisms result from different interpretations o f the 

nature o f this prior information. As we have pointed out several times before, our 

criteria o f logical consistency and a desire for a unified approach which takes adequate 

account o f everything w e know about the problem lead us to consider the extended  

model A D  solution, or the extended GGM  model with stochastic restraints, as a better 

interpretation o f the available information. Our next chapter is the final one on 

estimation techniques, and introduces the logic o f Bayesian Analysis as an even better 

diagnostic tool for analysing group comparisons in mass calibrations.
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8. Maximum Likelihood Estimation
8.0 Sum m ary

In this final chapter on parameter estimation methods we adopt the explicitly  

Bayesian approach o f M axim um  Likelihood Estimation (MLE) & M axim um  a 

Posteriori estimation (M AP). This approach is analogous to that used in uncertainty 

estimation as discussed in the first four chapters, insofar as one o f the key features is 

the selection o f  a distribution  to describe the observations (the corrected experimental 

data), and also the parameters, and in this respect is a convenient unification o f the 

preceeding analysis. The true conditional nature o f probability is pointed out and the 

basic rules o f probability theory are used to generate Bayes's theorem. W ith the 

M aximum Likelihood Criteria a posterio r distribution  for the parameters can be 

established, given the particular observations that were obtained and the available 

prior information. In this way the posterior distribution o f  parameters is the prior 

distribution updated by the new current information obtained during the experiment. 

Thus all known data is included in a unified manner, a desirable feature in mass 

determination, since w e have pointed out that the difference between data obtained in 

a previous calibration and that obtained in the current one is primarily one o f logical 

relationships insofar as inference and estimation are concerned. W e must ensure o f  

course that the full extent o f  prior knowledge is included which may mean considering 

the effect o f drift on the prior information. This will be explored in more detail in 

Chapter 10.

It will be shown in this chapter that the M AP estimator generates the same 

parameter estimate as does the A D  method if  a Normal Distribution can be used and 

the prior information is just the known values o f som e or all o f  the standards. 

However, if  the prior information comprised a combination o f two or more standards 

(e.g. a sum or difference term) the A D  method would provide an adequate estimate 

while the M AP method would not be possible as the prior vectors /  covariance 

matrices could not be constructed.

The M AP estimator also generates a reduced covariance matrix and does not 

depend for a solution on the form o f the design matrix, as does the LS method. Note 

in Fig. (8.0.1) below  that the system  model describing the relationship between 

parameters and observations is not used in the estimation process, but rather, the 

distribution function o f  the data and the prior information is used. N ote also in Fig. 

(8.0.2) that the process can be used in a sequential manner to continually update the 

parameters as more information is obtained. This latter aspect leads us to expect that
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information on the evolution o f  the mass standards over time can be easily explored  

with this analytical method.

Fig. (8.0.1): Essential Aspects of the Bayesian Estimation method.

8.1 In troduction

W e have so far considered parameter estimation techniques based on Least 

Squares, the Gauss-M arkov theorem, and a generalised estimation technique not 

relying on either o f the first two methods but encompassing them both in its scope. 

W e have seen how these methods can give different results, the essential difference 

being how they treat the prior information necessary to get a particular solution for the
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comparison calibration data. W e now wish to look at one more method, based on the 

completely different approach o f  Bayesian probability, which w e will see, is a very 

appropriate way o f dealing with the information w e have. First w e must exam ine the 

basis o f the method.

8.2 M axim um  Likelihood (See Beck & Arnold 1977)

The key point here is that, unlike Least Squares techniques which involve a 

minimisation o f the vector norm Y -X p ||,  or the GGM method which involves

finding a best estimator irrespective o f any judgements about p, Y or \)/Y; the methods 

now being presented are based upon an analysis o f  Distribution Functions. Thus, 

information must be available on the type o f distribution which best describes the 

dispersion characteristics o f the parameter under scrutiny. Essentially one requires, 

that for a m odel
Y = /(P )  (8.2.1)

one can choose from among the possible values for p, the set which m axim ises the 

probability o f  obtaining the set o f data, Y , which was in fact observed. Thus one is 

concerned only with the data set Y  which is known to exist, and not with the wider 

population o f Y  values o f which our vector might be a sample— i.e. the space o f  all 

data sets which might have been observed, but in fact were not! This policy is in 

accord with the Consistency Criteria o f Chapterl.

To do this one requires the conditional distribution /(* |0 )  which is the joint

distribution function for the x  values which could be observed for a particular 0 

value, or a particular distribution o f 8 values. It is important to realise that no 

probabilities are absolute: there is always a conditional dependence on som e existing  
or background information. (See discussion in Chapter 1). If (3 is given then /(Y |p ) is

a sampling  distribution which describes the dependence o f Y on fixed p. But it can 

also be considered for the case o f  a f ix ed  data set Y , in the light o f  possible values for 
p. In this context, /(Y|p) is termed the Likelihood Function for p, denoted by L(p).

This likelihood function can be m axim ised to give the most plausible P values for the 

Y  data which was obtained.

Before implementing such a method it is necessary to define a suitable

distribution. In our case, the m odel for Y  is just Y  = Xp. Here X is a constant while a

probability distribution describes the dispersion characteristics o f Y. Follow ing the

considerations o f Chapter 1 we can assume a Normal Distribution since w e w ill have

a mean value and covariance matrix for Y. Thus:
cov[Y ] =  \ |/y , which is fully known

& £ [Y ]  = XP (8.2.2)



/ W  =  - 7 = « d “ i — I \  ( 8 '2 -3 >

W e require to find estimators p such that the Likelihood function is m axim ised. For a 

variable x  o f  mean value Ji and variance a 2, the Gaussian distribution may be written

as:

If Y is an n x 1 vector, then the distribution function for Y, given by the conditions in

(8.2.2) will be:

/ ( v | P) - ( 2 , ) - ^ 7 e J - (Y - XP>T^ 1<Y - XP>l  <8.2.4,
V ,

Before the experiment is carried out, /(Y |P ) associated a probability density with each

outcome Y, for a fixed parameter vector p. After the data is obtained w e need to find

the particular (3 which would m axim ise the probability density function for the Y  we  
did get. Hence the Likelihood Function L(P|Y) is to be m axim ised. This w ill also

have the form of /(Y |p ) as in (8.2.4) but now P is considered variable and Y is fixed.

Taking the log o f (8.2.4) yields:

ln{L(P|Y)} -  -|[«ln(2TC) + ln|v|/Y| + SML] (8.2.5a)

where SML = ( Y - X p ) TVy (Y -X P ) (8.2.5b)

M axim ising this Likelihood function can be achieved by m inim ising ^ML as given in 

(8.2.5b), as this is the only term which has a p dependence. Hence w e require:

V p{y t \i/ y1Y - Y t \|/y X P - P tX t \|/y1Y  +  PTX tV|/y X P | p=- = 0  (8.2.6)

The value o f P = p which satisfies (8.2.6) will be the M aximum Likelihood Estimator 

we are seeking. Noting that:

V p(AB) = V p(A)B + Vp(BT)AT 

& Vp^AT(J)Aj = 2^VpAT<j)Aj; while V p(BT) = I 

we can evaluate (8.2.6) to get:

-2 X tV y Y + 2X t\i/ y XP = 0 (8.2.7)

and thus P m l = ( x t v ; 1x ) ' 1x t ¥ - 1y (8.2.8)

Noting that £[Y] = XP we can see easily that £^PML| = P and thus we have an 

unbiased estimator.

From (8.2.8) Pm l= L .Y  with L = (x tY y X)_1X tv|/y . Thus:

\|/-  = L\|/yLt

¥  = ( x t¥ y1x ) '1 (8.2.9)
Pmt. ' /
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So we can see that, providing the strict assumption holds that Y  can be characterised 

by a Normal Distribution, (and from M axim um  Entropy considerations w e can be 

confident in this assumption with the information w e have), the M L technique 

generates an estimator the same as that given by W LS, or the A D  method. Hence by 

the GM theorem w e can be assured that this is a minimum variance estimator.

However, while in this section w e have pointed out the conditional nature o f  

probabilities, and used this information to construct a likelihood function in order to 

establish a parameter estimate, we have not fully included all known information. 

Leaving the developm ent like this w ill not do as it violates our requirement for a 

unified analysis and in any case would not be solvable since ( x T\j/ÿl x ) is singular in

mass calibration problems. W e now need to carry the Likelihood technique further to 

the case where w e do know som e prior information about the parameters p. W e can 

incorporate this information with the aid o f Bayes' theorem......

8.3 Bayes' Theorem & Maximum a Posteriori Estimation

In this more com plete analysis w e want to explicitly identify any prior 

information that exists, and show how our probability functions depend on it. Again 

we highlight that there is no such thing as an absolute probability: all probabilities are 

conditional on som e background information. Analogous to human experience, w e do 

not discard all o f  yesterday’s information and deal only with the im m ediately  

observable: rather w e form a synthesis o f the totality o f our information. It is further 

necessary to be aware that this ‘background’ or ‘prior’ data is to be interpreted 

primarily as log ica lly  distinct from the current data. Chronological or causal 

relationships are by no means implied or required by the theory, albeit such may w ell 

exist in practice. “A-priori” probabilities, or data/information, are those which are 

known or available independently o f the current experiment. (Jaynes (1996), S ivia  

(1996)).

In general terms, scientific inference involves the situation o f a set o f  data, D, at 

hand along with various other prior information, the requirement being to associate 

probabilities with a set o f hypotheses in the light o f this information. The information 

may be “subjective” in the sense discussed in Chapter 1, i.e. that it is all that is 

available at the tim e but its dispersion characteristics will reflect the degrees o f  

belief/plausibility which can reasonably be attributed to this information.
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To proceed, we note the two fundamental rules o f probability theory, (see, e.g. 

Jaynes (1996), Frôhner (1997), Bretthorst (1989) or Cox (1946)) the Product & Sum

Rules: %

Product Rule :
p(AB\C)= p(A\C)p(B\AC)= p(B\C)p(A\BC) ' ' &)

which investigates the probability that two propositions A & B  could both be true 

given that background information C  is true.

Sum Rule :
p ( A  +  B\C)  =  p ( A \ C ) + p ( B \ C ) ~  p (A B \C )  ( 8 ‘3 ' lb )

J

which considers the probability o f either (A  or B) being true given the background 

information C. These two rules are derived as inescapable consequences o f the basic 

requirements that probability theory be consistent with the fundamental desiderata of 

rational belief and Aristotelian Logic.

Let us now consider the situation where w e have a vector | i (t o f  prior

information, a vector Y  o f current data, w hile our hypothesis takes the form o f  a 

vector P o f parameters we want to determine. So with the product rule o f Eq. (8.3.1a) 

we have:

/>(y P K )  = p ( y  |np )p(p| Y|Xp ) = p(p||Xp )p(y|P|xp ) (8.3.2)

which considers the probability that data vector Y  and some parameter vector P are 
both true given som e prior information (a.p. W e can rewrite this as:

(8.3.3)

and in this form alism  is com m only referred to as “B ayes’ Theorem”. The l.h.s is 

called a p osterio r probability , meaning that it is logically later in the inference process 

than the others. It gives us the probability that a particular p could occur given that 

both Y and are known with some specified degree o f belief. On the r.h.s /7(p|n.p) 

depends only on the prior information |o,p and as such is termed a p r io r  p robab ility ,

and deals with the possibility o f P existing in the light o f only the prior information.

The numerator in the final term on the r.h.s o f Eq. (8.3.3) is called the Likelihood for 
P, L((3), as in Section 8.2 above. This is not a probability but a term which when

multiplied by a normalisation constant and a prior probability would becom e a 

probability term. The denominator in the r.h.s. term, being the distribution for Y  and 

independent o f p provides this normalisation constant. So, we can say that the 

posterior probability is proportional to the prior probability m ultiplied by the 

likelihood function.
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W e can now consider our model as follows:

Y  = X p (8.3.4a)

with p(Y||xp)= > £ ’[Y] = Xp,var[Y] =  V Y  (8.3.4b)

while p(p|np)= > £[p ] = |Xp,var[p] = \|/p (8.3.4c)

This is the crucial difference from preceeding chapters: the parameter vector p, is 

considered to have a prior-known expectation value fip and a dispersion matrix \|/p. 

W e further expect cov(Y,p) =  0. W e are thus deciding that /?(p|fj.p j is a normal

distribution which we can write as

(p - A p)t V ( p - ^ ) (8.3.5)

where P is a p  x 1 vector o f parameters. Our Likelihood function for p is:

L(P) = p (y |P^p) (8.3.6)

since p (y |(i p j is really a constant term describing the probability distribution o f the

data. Thus we have:

L(p) = (2k ) exp
(Y - X P )  V y ( Y - X p )

(8.3.7)

which is the conditional probability distribution for the data, Y, from Eq. (8.3.4b). So 

we can write B ayes’ Theorem as:

p ( p |  Y M-p )  ^  p (p |M -p  )^(P) (8.3.8)

We need to m axim ise the l.h.s. o f Eq. (8.3.8) in order to find the parameter vector

which is the m ost plausible in the context o f the current information Y  and the prior 
information p,p . To do this w e must then m axim ise the product on the r.h.s o f Eq.

(8.3.8), which from Eqs. (8.3.5) & (8.3.7) is :

( 2 % y [n+p]̂ \ \ \ f J  /2 \v ’ y I ^ e x p
(Y -  Xp)T V y  (Y -  Xp) + (P -  p p )T (P -  Up )

(8.3.9)

The problem is now reduced to finding the estimator ¡3 which satisfies this 

maximisation. The m aximum o f the r.h.s. o f  (8.3.9) will occur at the same point as the 

maximum of its natural log -  i.e.:

- ^ ( n  + /7)ln27i + ln|\|/p| + ln|\|/Y| + 5Ai/1/)j (8.3.10a)

where SMAP = ( Y - X P ) V ? ( Y - X P )  + ( p - ^ p)T¥ p ‘( p -p p )  (8.3.10b)
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W e want to find an estimator (3 that m axim ises (8.3.10a); This can be done by 

m inimising (8.3.10b) with respect to (3. Thus w e need:

Vp[(YT- X T|3T) ¥ y ( Y - X P )  + (pT - ^ ) V p1(P-M-p)]|p=p = 0  (8.3.11)

which evaluates to:

2 (-X t \|/ y Y + X t \]/y XP + v ^ p  -  Yp’V p ) = 0 (8.3.12)

on noting that Vp(AB) = Vp(A)B + Vp(bt )a t  &

Vp^AT(|)A) = 2^VpAT<|)Aj; while Vp(BT) = I

Thus ( x V y X  + Vp1)^ = XT\|/^Y + \)/pVp (8.3.13)

^ ^ ( x ^ y X  + Vp1) ' ( X ^ v  Y + \(ipVp) (8.3.14)

B y adding and subtracting 2X t\|/y X|xp to (8.3 .12) w e can get another expression for

P:

2 ( - X T¥ ; 1Y  +  X T¥ - 1x p  +  V P - V p V p  + x W p - H p) =  0

= 2 ( - X > ; 1 [Y -  X ^  ] + (XTV y X + Vp1 )P -  (X V y  X + O ^ p  ) = 0 

=> (XTV v X + Vp1 )P = XT W  (Y -  Xnp ) + (x Tx|/-jX + Vp1 )|ip

P map ~ M-p + (x ' V y'X + M'p1)_1X > y (Y-X^p)

This estimator has som e interesting features: |ip was our prior estimate and it is 

apparent that the posterior estimate is sim ply the prior estimate updated by a term 

which depends upon the new current information. A lso PMAP is a biased estimator

since £ [p ] = |lp and therefore æ[PMap] - ^ p ■ 1° other words the distribution o f  j}MAP is

centered on the prior information and not the new experimental information. H owever 

this is not surprising, neither should it be considered a problem, since the process is 

focused on the prior information anyway— the new know ledge is considered as

updating what is previously known.

Another significant feature is that the existence o f PMAP depends only on the

existence o f ( x ^ ^ X + Y p 1) 1 and it is thus no longer a requirement that

|x T\j/Ÿ1x | *  0 . This is o f  particular significance in dealing with comparison calibration

experiments where X T.X w ill always be singular. Essentially this method is 

performing a similar operation to the AD or RLS or GGM m odels insofar as it is 

including extra information but the manner in which it does this illustrates clearly the 

role o f the prior information. W e shall investigate shortly under what conditions this 

estimator is identical to A D  or MLE. However, w e can note that if w e have no prior
information, |ip is undefined and ~ °° . Thus xi/p1 ~ 0 and we get:
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P m a p = ( x > y X ) _1X t W Y

which o f course is simply the MLE or A D  estimator. Under further, stricter 
assumptions that \(/Y =.<r2. I , w e are reduced to Least Squares once more. So M A P is

the most general estimator o f  which all the others are but special cases.

In mass calibration, there may not be com plete prior information available. In

such circumstances the unknown elem ents o f  |lp can be given arbitrarily assigned

values w hile their corresponding variances in \|/p are given infinite values. Thus if

there are no covariances at all in \j/p, its inverse is easily obtained by inverting its 
diagonal terms, resulting in zeros for the unkndwn terms in \|/p' . If there are

covariances, matters are not so trivial, how ever by letting s2{bk) ~ 1010 or som e similar

large number so that it w ill have negligible influence on the results. In Chapters 9 & 

10 w e w ill investigate the effect on the estimated parameter values o f  varying relative 

accuracies between \|/p and \|/Y.

8.4 Covariance Matrix of the MAP Estimator

In order to obtain the covariance matrix o f  the M AP estimate, w e w ill use the

equivalent form given in Eq. (8.3.14), restated here as:

P = PX t\)/y Y + Pv)/pVp (8.4.1a)

where P = ( x T\|/y X +  ̂ p1) 1 (8.4.1b)

N ow  from (8.3.4b) and (8.3.4c) we know that cov(Y ) = \\fY & cov(flp) = \|/p. So from  

(8.4.1a):

cov(p) -  (PXT¥  y1 )¥  v (PXT¥ - x )T + (PVp1 )Vp (Pvt/p1 )T

P X t\]/y X P  +  P V p 1?

(8.4.2)

(8.4.3)

Note that P  is a symmetric matrix. (8.4.3) can be expressed as:

p (x t\ | /y X P  +  y ^ p )

=  p ({x TV yXX  +  < } p )

But from (8.4.1a), this is just:

P (P  XP ) =  P

so V p = { x TV y X  +  Vp1}" 1

(8.4.4a)

(8.4.4b)

(8.4.5)

From this w e see that \|/- is made up o f components due to the prior information and

also components due to the new information obtained in the current experiment. The 

new estimate w ill have a lower covariance than the prior one as a result o f the

94



minimum variance characteristics o f the estimator. It is useful to note that this method 

lends itself naturally to a sequential estimation technique: for exam ple, w e can re

write (8.3.15) as:

ßt+1 = ß t + ( x Ty ? x + v r 1)~1x Tv ; 1( Y - x ß it) |  ( 8 4 6 )

and we would also have: x|rt+1= { ^ J +  X TW X } _1 (8.4.7)

so that the k,h estimate is updated to the ( k+ 1  )th estimate by means o f  the new data in 

Y  & \|fY.

This estimator, using either (8.3.15) & (8.4.5) or (8.4.6) & (8.4.7) w ill form the 

basis o f m ost o f  the later investigations in mass calibration reported elsewhere in this 

work. W e w ill look in particular at properties o f the estimator and how it deals with 

different types o f prior/current information; and how it responds to varying relative 

accuracies between the two.

8.5 Relationship with O ther Models

In Section 8.3 w e noted that M AP had som e similarities with the other methods 

we have discussed previously, in particular the A D  method which also includes prior 

information. W e wish now to consider the circumstances under which both o f  these 

methods would give the same solution, and indeed when they would differ. From Eq.

(5.5.7) we know that the A D  solution can be expressed as:

PAD = (XT¥ -Y1X + A ¥ > t [ ' ( x t ¥ -1Y + A Y r’r ) (8.5.1)

while the M AP solution can be given by Eq. (8.3.14) as:

Pmap = ( x Txi/yX + Vp1)“I( x TXKv Y + VpVp) (8-5.2)

where the various sym bols have their usual meanings in this thesis. Considering the 

form of the two equations, w e can see that they would produce the same parameter 

estimate if:

'¡'», = A v i ’AT (8.5.3)
and\ \fp (Ip =A\|/r R

According to this A  acts like a transformation matrix which transforms f g  , the

inverse covariance matrix o f  constraints in AD , into the inverse prior covariance 
matrix o f M AP, v ^ 1. The crucial point we must remember is that A  contains physical

information about the actual prior information that is known, in the form o f the m 
constraints, where usually m <  p  if  p  is the number o f parameters. So because o f this,
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the “transformation” o f (8.5.3) is increasing the dimensions o f  i|/R (m x m) up to those 

° f  Vp (P x P)- However, this cannot be adding extra information as w e do not know

anything else a-priori, so there will have to be extras rows /  colum ns o f  zeros in \|/pX

as we have already suggested in Section 8.3. To do this, A m ust only have one non

zero elem ent on each row, and this elem ent m ust be unity. In mathematics, such a 

matrix is som etim es referred to as a Hermite Canonical matrix. If we have prior 

information on anything from one up to all o f  the parameters, A w ill indeed satisfy 

this requirement and w e can expect both A D  and M AP to produce the same results. 

Indeed, if  w e do  have complete prior information then A =I and the conditions o f

(8.5.3) are imm ediately satisfied. An exam ple will help to develop the situation 

further. Suppose w e have four parameters such that

»1
b2

; x =
h

K

l - l 0 0
l 0 -1 0
l 0 0 -1
0 l -1 0
0 l 0 -1
0 0 1 -1

> i ’

& Y = • ; \|/Y — s I6 (8.5.4)

The prior information comprises the values o f bj & h4 only, so for A D  w e will have: 

A t P = R

i

o o o h mx
= while \|/R =

0 °  °  !_ b3 m4

A .

s 2 {m\ ) 

0

0 (8.5.5)

where we have assumed no covariances in the prior information. If w e were using 

MAP we would consider the prior variances o f b2 and bj to be infinite which means 

we can assume any prior value for them (we can use zero for convenience) and then 

we can write down the prior information as:

Pp =

m.

1
Co

1 fO 0 0 0

0 0 0 0 0

0
& M/p =

0 0 0 0

_mA 0 0 0 s 2 (m4

(8.5.6)

Using (8.5.5) & (8.5.6) it is now easy to show that (8.5.3) is satisfied in this case and 

thus M AP and A D  will indeed produce the same estimates.

N ow  we w ill make the situation a little more complicated by supposing there is a 

covariance, c, in the prior information such that for A D  we would have:

96



a t p  =  r

V

'000

h m,
— while \|/R =

0 0 0 1 3̂ m4

A .

j 2(m,) c 

c s> 4)

(8 .5 .7 )

Along with (8.5.4) we can now easily obtain a solution by AD . H ow ever for M AP, we  
cannot so easily write down \\rp1 since the off-diagonal elem ent means the inverse

matrix is no longer sim ply the inverse o f the diagonal elem ents. W hat w e can do is 

assign a numerically large prior variance to parameters b2 and b3 such as below:

V p  =

/ ( m , ) 0 0 c

0 1010 0 0

0 0 IO10 0

c 0 0 s 2 (m 4)^

(8.5.8a)

The inverse then evaluates to:

2/ \

v=

— C

s 2(m ,)  j 2(m 4) - c 2
0 0

s 2(m ,) i 2 (m 4) - c 2

0 10-10 0 0

0
- c

0

0

H-
4

0 
^ O 0

s 2 (m x)

s 2 (m { ) j 2(m 4) - c 2 s 2(m l ) i 2(ra4) - c 2

(8.5.8b)

The central two terms w ill obviously be practically negligible and can be 

approximated as zero. This does assume that w e can choose a value (like 101Q ) which 

is sufficiently large compared to the other information to be effectively infinite while  

still being computationally possible. In dealing with such extreme values there could  
be problems with numerical accuracy in results. N ow  evaluating \|/R from (8.5.7)

yields:

j2(m4)

¥ r =

- c

s 2^ )  s 2(ra4) - c i 2(m ,) s 2 (m 4 ) — c 2

____________________________________________  - r 2 ( m i )

s 2 (m, ) s 2 (m 4) -  c 2 s 2 (m, ) s 2 (m 4 ) -  c 2

2 (

—c
(8.5.9)

With A given in (8.5.7) and approximating the two tiny terms in (8.5.8b) as zero, we 

can once again verify that (8.5.3) is satisfied and so both methods w ill yield the same 

results.

Finally let us suppose that the prior information available concerns the sum S, 

and difference, D , o f  the two parameters b : Sc b4. In that case, the prior information 

for AD will be as follow s:
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a t p  =  r

b\

' 1 0  0 1 ' b2 'S ' n c
= while \|/R =

1 0  0 -1 h D . C r4.

A .
where for generality we have assumed there is a covariance between the two pieces o f  

prior information. This information being independent from that represented by the 

experimental data as in (8.5.4), w e can easily proceed with the A D  method and obtain 

a solution. However, A  as given in (8.5.10) above does not meet the requirements for
I

a Hermite Canonical matrix and so we cannot expect M AP and A D  to give the same

results in this case. In fact, w e cannot expect M AP to give a solution at all since w e in 
fact have no information to construct the prior vector (ip or covariance matrix Yp -

W e could ‘invent’ the information with the aid o f the A D  constraint data and 

equations (8.5.3), thus ensuring the two methods once again agreed, but the data we  

would generate would not be physically meaningful in terms o f the prior information 

and so this would not be sensible.

In conclusion then, we have shown that both A D  and M AP w ill give the same 

solutions in cases where the prior information comprises the values o f  som e or all o f  

the standards involved in the comparison exercise, and in such cases the M AP  

estimator is probably preferable since its Bayesian basis makes clear the type o f  

analysis that is being carried out. H owever if  we are not able to form a prior vector 

with at least one known parameter value, or if  we need to incorporate other types o f  

prior information, such as that expressed in (8.5.10) above— which does occur in 

some comparison exercises, particularly those involving primary standards— we must 

then use the A D  approach to adequately incorporate the data. In what fo llow s  

(Chapters 9 & 10) we will use the M AP method m ostly since the experimental case 

studies we w ill report are suitable for this, and the separation of prior and current data 

is more clearly highlighted than with the AD method.

98



9. Parameter Estimation Techniques in Action

9.1 Introduction
This chapter introduces our first case study using actual experimental data and 

shows an implementation o f the Unified Approach to Parameter Estimation and 

Uncertainty Analysis in mass calibration experiments. W e show how the information 

is presented and how the various vectors/matrices are constructed, in particular noting 
the various contributions to \jry , the covariance matrix o f  the experimental data.

W e consider the Restrained Least Squares solution and highlight its crucial short

comings, before proceeding to an in-depth analysis' o f  the Bayesian Estimator. W e 

probe the role o f  the prior information and show that relative accuracy and Degrees o f  

B elief are important in establishing the posterior estimates; w e see how the estimator 

would cope in the event o f inaccurate prior information being used, pointing out its 

robustness and capabilities for correcting errors.

W e also consider in som e detail the role o f the covariance matrix o f  the experimental 

data, and, o f particular interest, highlight a theoretical lim it on the improvements in 

accuracy that can be achieved with this estimator. W e em ploy a novel graphical 

technique to show the range o f values and the upper and lower bounds on the posterior 

parameter values and variances/covariances for a range o f values o f  the experimental 

covariance matrix.

9.2 Example I

Initially we look at a comparison experiment involving three standards o f  

nominal value 50g. The details o f how the data is obtained and processed are 

explained in Chapter 11. For our purposes here w e need simply state the data that is 

obtained and proceed to use it. Recall that the weighing equation is:

y, eeAw,.+ pa .Av; (9.2.1)

where we leave out the corrections for centre o f gravity differences and volum e 

expansion coefficients in order to sim plify things and also because their effects would  

not be significant with 50g standards. A long with the W eighing Equation w e also 

have the System  Model:

<9 -2 -2 )
7=1

for the ith comparison. Since the xtj  terms are either 1, 0  or -7, (9.2.2) indicates which 

of the j  parameters (bj) are involved in each comparison. In our case there are three 

parameters and our parameter vector and design matrix are as follows:
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— i.e. all possible combinations are carried out, where half o f them are simply 

reversed repeats o f the other half; the purpose o f this is to provide enhanced over- 

determinacy in order to get better information bn the statistical nature o f  the 

experimental process. Table 9.2.1 gives the Prior Information which is available on 

the three parameters— to be view ed either stochastically or deterministically according 

to the chosen model. (Data from Calibration Certificates in PTB (1994), NPL (1990) 

& South Yorks.(1 9 9 5 ))

Table 9.2.1 - Prior Information

Parameter Value (ng) Std. Dev.(|o.g) Volume (cm3) Vol. Std. Dev./cm3 OIML Class

b i -63.0 5.0 6.2202 0.0011 Ei

b 2 +34.0 15.0 6.3621 0.0009 e 2

b 3 + 186.0 15.0 6.3468 0.0009 e 2

By way of explanation, the 'Value' quoted in Table 9.2.1 above for each parameter is a 

deviation from nominal value, expressed as physical mass— in this case a deviation  

from 50g. Because mass standards are classified according to their maximum  

permissible error (OIML, 1994), it is conventional to tabulate them in terms o f their 

deviation, rather than absolute value. From the information in Table 9.2.1, we can 

form the vectors and matrices in Fig. 9.2.2 below.

-6 3 25 0 0

MP = 34 mb; ¥ p = 0 225 0
186 0 0 225

‘6.2202’ '1.21 0 0 "
V  = 6.3621 c m 3; Y v  = 0 0.81 0

6.3468 0 0 0.81

Fig. 9.2.2 : Prior Information

The variance o f each piece o f  information has been taken as the square o f its standard 

deviation quoted in Table 9.2.1. In particular note for \j/p and v)/v that w e are assuming 

no correlations exist between any of the volum es or between any o f the prior values o f
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the standards. \|/p in particular might not always be diagonal: should the previous 

calibration have been a so-called "within-group" calibration involving all three o f  the 

present parameters, they would almost certainly have been correlated. H owever in the 

present circumstances w e can only conclude that there are no correlations, based on 

the available information from calibration certificates. Here w e are using the 

reasoning of Chapter 1 inasmuch as w e must only use the information supplied, not 

basing decisions on hypothetical data.

The Experimental Information which is available is given in Table 9.2.2. Here 

the data quoted for the 'Weight-in-Air' difference (A W ) are mean values o f six 

experimental measurements in each case. From this the standard deviations o f  the data 

are obtained which are taken as experimental measures o f  the dispersion 

characteristics o f the comparator used in the comparison.

However, because the standard deviations are smaller than the resolution o f  the 

instrument [ljxg in this case], an extra dispersion term o f  +Q-Resolution j , taken to be

uniformly distributed, m ust be included with the standard deviation quoted for A W . 

(This type o f reasoning is consistent with the conclusions o f m axim um  entropy 

analysis as discussed in Chapter 1. See also Lira & W oger (1997), Yoneda (1996) ). 

The air density data given in each case is an average value for six measurements over 

the period of interest for each comparison. [See Chapter 11 for details]. From Eq. 

(3.2.5a) the variance o f the air density is evaluated as l - 4 5 x l 0 _7[mg.cm_3j for the

instruments used in the experimental work. The volum e difference is evaluated from  

AV = X V , with X & V  as given above. The Am term is calculated using Eq. (9.2.1).

Table 9.2.2- Experimental Information

A W  ( jig) Std. Dev (ug) p„ (mg/cm3) AV (cm3) A m  (|xg)

66.0 0.154 1.199856 -0.1419 -104.2

-109.0 0.379 1.202400 -0.1266 -261.2

-173.0 0.327 1.202216 0.0153 -154.6

-65.6 0.327 1.199876 0.1419 104.7

109.6 0.170 1.190610 0.1266 260.3

172.4 0.239 1.206947 -0.0153 153.9
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Y  =

'- 1 0 4 .2 ' '0.107 0 0 0 0 0
-261.2 0.227 0 0 0 0
-154 .6 0.190 0 0 0

104.7 ^  Y a w  = 0.190 0 0
260.3 symm 0.112 0
153.9 0.140_

Pa =

1.200
1.202
1.202
1.200
1.191
1.207

mg. c m 3 \ Y  = i 2( p j l e

P-g

Fig. 9.2.3: Current (Experimental) Information.

Note that \ |/AW in F ig.(9.2.3) above is evaluated from the standard deviation data in 

Table 9.2.2 and also the variance o f a rectangular distribution o f width ± 0 -5 |ig  which 

is the term due to rounding errors in the comparator display, as explained earlier.

W e need to evaluate \\fY the covariance matrix o f our input data for the 

estimation techniques. To do this recall Eq. (4.5.17) from Chapter 4:

¥ v  = Vaw + d ia g { X \]  y p ^ { X V }  + pX\|/vX TpT (9.2.3)

With the data in F igs.(9.2.1) to (9.2.3) we can now calculate Eq. (9.2.3) easily. W e 

need to be careful with units since those o f the second and third terms on the r.h.s. of 

Eq. (9.2.3) w ill evaluate in units o f m g2 since volum es are measured in cm3 and air 

densities in mg.cm'3. As we are using /ig , and /.ig2 as units in this analysis there must 
be a multiplicative factor o f 1 mg2 = l x l 0 6| i g 2 applied to terms 2 and 3 on the r.h.s. of

Eq. (9.2.3). Fig. (9.2.4) below  gives the evaluation o f term 2 (t2) & term 3 (t3) o f Eq.

(9.2.3) and also the com plete \j/Y. Note how t3 is the one which introduces 

covariances, and indeed also the largest variance components.

The great convenience of this unified approach is that Y  & \)/Y are now a 

complete description o f the corrected experimental data: there are no further 

calculations necessary at this level. The data can now be processed by an estimation 

technique to give complete covariances, assuming the method chosen is able to do 

this!
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'3 0 0 0 0 0
2.4 0 0 0 0

0.035 0 0 0 , „-3 2
t 2 — 3 0 0

X iU

symm 2.4 0
0.035

2.90 1.74 -1 .1 7 - 2 .9 0 -1 .7 3 1.17

2.92 1.17 -1 .7 4 - 2 .8 9 -1 .1 7

2.34 1.17 -1 .1 6 -2 .3 5 2
^3 — 2.91 1.73 -1 .1 7 w

symm 2.86 1.16
»

2.36

3.01 1.74 -1.17 -2 .90 -1.73 1.17
3.15 1.17 -1.74 -2.89 Î.17

2.53 1.17 -1.16 2.35 , 2
V ï 3.10 1.73 1.17 l-ig

symm 2.98 1.16

-
2.50

Fig.9.2.4: Last 2 terms of Eq. (9.2.3) & Complete Covariance Matrix

9.3 RLS

Initially w e will see how Restrained Least Squares handles the data. U sing bj as 
the constraint, w e have A T =  [l 0 o] and then with Eqs. (5.3 .23) & (5.3.31) w e get:

’-63.00 'o 0 0
41.91 R g; v Py = 0 2.95 1.75

196.98 _0 1.75 2.94

Fig. 9.3.1: Estimated Parameter Vector & Covariance 

Matrix using RLS & bj as constraint.

Two immediate observations from Fig.(9.3.1) are that (i) parameter b1 remains 

unchanged by the estimation process and (ii) its variance/covariance terms are zero. 

This is as expected since b I is treated by the RLS estimator as a deterministic 

"constant". O f course we know that this is not really so, thus in this approach we treat 

the variance terms o f the constraint as "systematic" uncertainties, i.e. those which 

cannot be affected by the experiment. From Section 5.4 we know that the "constraint 
contribution" to the overall covariance matrix is \j/„ = c2V r c 2 where \|/R is the

Pk

“systematic” covariance matrix o f the constraint information and 

c2 = a0IA(ATa 01A) ' .  Interestingly, this depends explicitly on the form o f A  & X— i.e.
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the form o f the experimental and constraint design matrices. It is these that govern the 
constraint contribution to y - . In this exam ple R  and \|/R are just scalars since the

constraint information is just one parameter. With a0 as given in Eq. 5 .3 .16 w e can 

easily evaluate the components as follows:

T Ì 1 f
c2 = l ;&  VpR= < 1 1 1

l 1 1 1

Fig. 9.3.2a: "Constraint Contribution" to 

Final Covariance Matrix

Noting from Table 9.2.1 that a 2bi =  2 5 |lg 2, w e find, with Fig. (9.3.1), that the final 

covariance matrix is:

25.0 25.0 25.0
25.0 27.95 26.75 fig"
25.0 26.75 27.94

Fig. 9.3.2b: Complete Covariance

Matrix with RLS Method

With the parameter estimates in Fig. (9.3.1), the estimated experimental observations 

and residuals are evaluated as in Fig. (9.3.3).

-104.913 " 0.813185“
-259.986 -1.2143
-155.073 / ~ \ 0.472518

104.913
p.g &  (Y -Y J  =  res =

-0.213185
259.986 0.314297
155.073 -1.17252

Fig. 9.3.3: Estimated Observations & Residuals

The residuals provide a useful measure o f  the agreement between the estimated data 

and the original data. In this case the agreement is acceptable since the residuals are 

mostly o f a similar order o f magnitude to the standard deviations o f the data in Table 

9.2.2. If there were systematic errors in the data, such agreement would not be 

observed.

Before making further comments we will indicate the solutions obtained if b2 or

b3 were used as constraints.
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' - 7 0 . 9 1 ' ‘ 2 . 9 5 0 1 . 2  '

3 4 . 0 0 &  ¥ „  =  
P y

0 0 0

1 8 9 . 0 7 1 . 2 0 2 . 3 9

Fig. 9.3.4a : RLS Solution using b2 as constraint

Ì " Ì 1 f ‘ 2 2 7 . 9 5 2 2 2 5 . 0 2 2 6 . 2 0 1 "

= 1

;  V = c i

1 1 1 &  h e n c e  ¥ p  = 2 2 5 . 0 2 2 5 . 0 2 2 5 . 0

1 1 1 1 2 2 6 . 2 0 1 2 2 5 . 0 2 2 7 . 3 9 1 _

Fig. 9.3.4b: Corresponding Constraint Contribution 8ç Complete Covariance Matrix

' - 7 3 . 9 8 5 7 ' ‘ 2 . 9 4 1 . 1 9 0

3 0 . 9 2 7 5
l ^ g  &  ¥ é  =

1 . 1 9 2 . 3 9 0

1 8 6 . 0
P y

0 0 0

Fig. 9.3.5a: RLS Solution using b3 as constraint

1 1 1 1 2 2 7 . 9 4 1 2 2 6 . 1 9 2 2 5 . 0

C 2  = 1

1

1

1

1

1

1

1

&  h e n c e  \ i / .  =  

Y P

2 2 6 . 1 9

2 2 5 . 0

2 2 7 . 3 9 1

2 2 5 . 0

2 2 5 . 0

2 2 5 . 0

Fig. 9.3.5b: Corresponding Constraint Contribution & Complete Covariance Matrix

It can be quickly verified that Y & res are the same as that given in Fig. (9.3.3) for the 

case where b1 is used as constraint. In other words, when just one constraint is used, 

the same apparent agreement is reached with the data irrespective o f  the value [or 

known accuracy] o f that constraint! Indeed this highlights a serious flaw with RLS, 

inasmuch as it cannot discriminate against bad constraint data. For exam ple, if  a value 

of by =  -2 0 0 jig  were used, which would be totally wrong of course, values o f p

would be produced which would agree equally as well with the experimental data as 

does the present prior information but which would be entirely wrong as absolute 

values for the parameters. N ow  such an error would quickly becom e evident in other 

comparison experiments with other standards, but the point remains that this 

experiment with this fitting method will fail com pletely to find a problem.

W e will see shortly how the other methods are much more robust in dealing with this 

situation. Although it should be borne in mind that with only one piece o f prior 

information no estimation technique can totally compensate for errors in this single  

prior value as there are not enough degrees o f  freedom to make adjustments. With that 

in mind let us see what happens if  w e increase the prior information to two known 

values. W e w ill see that this is not helpful where RLS is concerned, with this example,
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since there are only three parameters in total. Let the prior information be the first two  

parameters so that we have:

r  b. 1 [-63.01 ' l o'

to '■-A ol = 34.0
jig then A = 0 1 ; also \\f R = 0 225

Lo oj

Fig. 9.3.6: Constraint Information for 2 parameters

Then we find:

-63 .0  ’ "o 0 0
34.0 ■P 0-q 33> II 0 0 0

192.29 0 0 1.9

Fig. 9.3.7a: Estimated Parameter Vector & 
Covariance Matrix Using 2 Constraints

Here the two constraint values remain unchanged and contribute no variance or 

covariance terms to the resulting covariance matrix. W e can com plete the covariance 

information by evaluating the constraint contribution as before:

"l 0 "25 0 10.17" "25 0 10.17"
c 2 = 0 1

&  ¥ Ph =
0 225 133.4 | lg 2 , so that V - = 0 225 133.4

0.4 0.6
Hr

10.17 133.4 83.3 10.17 133.4 85.2

Fig. 9.3.7b: Constraint Contribution & Complete Covariance Matrix.

Again we can see that the prior information has remained unchanged in the process. 

The follow ing values obtain for Ÿ & res :

‘ -97 .0 ’-7.1
-255.292 -5.9
-158.292 A 3.69

97.0
[ig & Y -  Y = res =

7.7
255.292 5.0
158.292 -4 .39

Fig. 9.3.8: Estimated Observations & Residuals

So we can see from the residual vector that w e now have a worse fit with respect to 

the original observations. Indeed, should one o f the two fixed parameters be in fact in 

error, the posterior estimates deteriorate further. Suppose we have b, = -63/J.g as 

before but now b2 = 20/lg  rather than 34jig. This is an error, but w e are assuming the 

experimenter is not aware o f  it. W e then obtain the same posterior covariance estimate 

since we are not changing the prior information in that regard, but the fitted values and 

residuals w ill be as in Fig. (9.3.9):
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0 =

-63.0
20.0

183.991
M̂g; y =

'  -83.0 -21.1
-246.991 -14.2
-163.991 jig & res -

9.39
83.0 21.7

246.991 13.3
163.991 -10.09

Fig. 9.3.9: Estimated Values, Observations & Residuals

We can see the residuals have deteriorated further. This is because, by restraining b l & 

b2 to fixed priors, all the adjustment must now be done on b3, and any errors in the 

constraint information w ill be reflected in a bad fit to the data. W ithout further work it 

is not possible to know this since the experimenter may w ell conclude that the 

problem lies with the experimental data and not with the prior information. So in 

order to get good agreement with the experimental data it is best, with this estimation 

technique, to fix as little as possible o f the data. However, because it is not possible to 

include variance/covariance information about this prior information, the technique is 

always at a disadvantage.

9.4 Bayesian Estim ation

N ow  let us consider the same set o f  data treated by either M AP or AD. Since 

both will produce the same results for our present data as explained in Sec. 8.5, we 

will focus on M AP since its form is a little easier to analyse. The distinguishing 

feature o f this method is that we can include all our known information about the 

parameters in the estimation, as was explained in Chapter 8. This o f course includes 

variance/covariance information too. U sing the values for ftp, v|/p, X , Y  & \|/Y as given  

in Figs (9.2.1) to (9.2.4) above w e can now evaluate the posterior estimates for the 

parameters using Eqs. (8.3.15) & (8.4.5):

'- 6 4 .6 9 ' "20.53 20.11 20.11 "
40.07 &  V g =

P m a p

20.11 22.60 21.40
195.13 20.11 21.40 22.60

Fig. 9.4.1: Estimated Parameter Vector & Covariance Matrix using MAP

Where we can see that all three o f the parameters have been updated, the covariance 

matrix is com plete, and it is sm aller than any o f the combined covariance matrices 

achieved with the RLS estimators! (Compare Figs. (9.3.2b), (9.3.4b), (9.3.5b) for 

example.) Table 9.4.1 below gives a comparison between prior and posterior values 

for the parameters:



Table 9.4.1 - Prior / Posterior Values of the Parameters

Parameter

\

Prior Value

■W

Prior Std. Dev.

.

Posterior Value Posterior Std Dev.

..

bl -63.0 5.0 -64.7 4.5

b2 +34.0 25.0 +40.0 4.75

b3 +186.0 25.0 +195.1 4.75

From this table, w e can see that the standard deviations o f b2 & b3 have been reduced 

by the largest amount in the posterior estimates. Clearly the influence o f b n having the 

smallest standard deviation, is greatest. The fitted observations and residuals are:

'-1 0 4 .7 6 2 ' 0.662*
-259.819 -1.380
-155.057

fig & res = 0.456
104.762 -0 .062
259.819 0.480
155.057 -1.156

Fig. 9.4.2 : Estimated Observations & Residuals using MAP

So the Residuals are still acceptably small and indeed comparable to those obtained by 

RLS (See F ig.(9.3.3) above). But the smaller covariance matrix, and also the fact that 

it is complete by one calculation, make this method more desirable.

N ow  if  there is only one piece o f prior information, there is only one possible  

solution and all estimators w ill produce it. Thus if  this information is in error, so also 

will be the result, albeit a good fit with the experimental data may w ell be possible. If 

we choose b¡ as the prior information, w e then have:

'-6 3 .0 '

OOin
X

M-p = 0 jig  & Vp = 0 0 0 n g -
0 0 0 0

Fig. 9.4.3: Prior Information, using 1 parameter

According to this \|/p is not defined since vi/p1 is singular, but this is o f no consequence 

since we do not need it. This is simply how w e deal with a lack o f  information on 

parameters b2 & b3. The value o f zero assigned to them in [ip is also entirely arbitrary, 

since the de fa c to  infinite variance assigned to them ensures that these arbitrary, 

unknown prior values w ill have no influence on the result. W e obtain the same 

estimated values as does RLS, but with com plete covariance matrix:
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A -63.00 25 25 25

P = 41.91 fig; & \i/. = 25 27.95 26.75 M-g"
196.98 P

25 26.75 27.94_

Fig. 9.4.4a: MAP Solution using one prior value (b t )

-70.91 227.95 225 226.20

P = 34.00 M-g; &  V a  = 225 225 225 l^g2
189.07 226.20 225 227.39

Fig. 9.4.4b: MAP Solution using b2 as prior information

p=
’-7 3 .9 9 ' ’227.94 226.19 2 2 5 ’

30.93 ^ g ;

II<a
>

226.19 227.39 225
186.00j p 225 225 225

^ g

Fig. 9.4.4c: MAP Solution using b3 as prior information

Comments: It is clear that 'Degrees o f  B e lie f  about the prior information play an 

important part in establishing the estimates: prior information o f lower accuracy is 

adjusted much more than prior information o f higher accuracy. Thus in Fig. (9.4.1) the 
posterior variance o f b2 & b3 is reduced from 2 2 5 ^ 2 — 23|J,g2 and their values are

also adjusted more significantly than b I, w hose variance too is not adjusted so much. 

Fig. (9.4.4a) is an extreme case where there is no prior information on b2 & b3 and 

thus they are assigned infinite variance. In this case b1 is not adjusted w hile b2 & b3 

are adjusted even more than in Fig. (9.4.1) and their variance is reduced from  

~ w fig2 28¡±g2. In Figs. (9.4.4b) & (9.4.4c), b 1 is treated as having infinite

variance and is thus adjusted much more than in Fig. (9.4.1). Note that the variance 

cannot be reduced below  that o f the single piece o f prior information.

It would appear from Table 9.4.1 that b3 s prior value is the m ost in error, or in 

need o f updating, based on the current experimental information. If, for exam ple, we 
used ¿3 =  195flg as a single piece o f prior information instead o f 186(xg as in Fig.

(9.4.4c), we would find bI adjusted much less. In fact

P =

-64.98
32.92

195.0
US

would result. But this can only be seen by comparison with Fig. (9.4.1) where all three 

prior values were used. Consider the cases where only two prior values are used:
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’-6 3 .7 8 ' '22.59 22.24 22.35 '
41.00 M-g; & = 22.23 24.86 23.79

196.10
P

22.35 23.79 25.11

Fig. 9.4.5a: MAP Result using bi & b2 as Prior data

'-64 .08" '22.53 22.35 22.24'
40.75 M-g; &  V g = 22.35 25.12 23.79

195.77 22.24 23.79 24.85

Fig. 9.4.5b: MAP Result using b j  & b3 as Prior data

"-72.45" ’114.85 112.50 112.50’
32.47 ^ g ;  &  V g = 112.50 113.10 111.90

187.53
P 112.50 111.90 113.10

Fig. 9.4.5c: MAP Result using b2 & b3 as Prior data

These results show that whenever b1 (prior variance 25fig2) is included in the prior 

information (Figs 9 .4 .5a & b above), the posterior estimate for b , is only changed a 

little while b2 & b 3 ( prior variance 225fig2) are adjusted more significantly. But when 

b 1 is not included in the prior information, it is adjusted much more itself and b2 & b3 

to a lesser extent.

This shows us the influence o f prior information depends upon its relative 

accuracy: more accurate information w ill constrain the corresponding posterior 

estimate much more— indeed the case o f a single piece o f prior information is an 

extreme exam ple o f this. This leads us to consider the case o f incorrect prior 

information— could this cause in-error posterior estimates to be produced, and if so, 

would we have any indication that this has occurred?

1) Consider the case o f an error on b3, such that:

-63.0 25 0 0

■p TD
II 34.0 (Xg &  = 0 25 0

160.0 j 0 0 25

Fig. 9.4.6: Prior Information with an error on b3

so that we are considering all the prior information to be o f equal accuracy. U sing the 

same experimental information as before w e now obtain these posterior estimates:

’-77.08’ ’9.31 7.84 7.84’
27.16 M-g; &  Yp = 7.84 9.15 8.00

180.91 7.84 8.00 9.15

Fig. 9.4.7a: Resulting Estimated Values

110



So b3 has been adjusted significantly but the other two have also been altered by a 

relatively large amount compared with their prior standard deviations. W e do have a 

reduced covariance matrix, but can w e know that the data is valid? The D ifference  

Vector (difference between Prior and Estimated Parameter values, -  (3 j ) and

Residual vector are shown below:

14.09’
jig; while res =

i

" 0.155" 
-3.196 
-0.851

(m.p-P)= 6.83
-20.92

0.445
2.296
0.151

^ g

Fig. 9.4.7b: Difference Vector and Experimental Residuals

2) N ow  if  we maintain the prior value o f b3 (160/ig) but allow it a much larger prior 

variance as shown below , w e then find the results shown in Figs. (9.4.7c) & (9.4.7d).

25
0
0

0
25

0

0
0

900
M-g

’-6 7 .1 8 ' ’13.03 11.63 12.17’
37.28 ng; &  = 11.63 13.02 12.43

192.47
P

12.17 12.43 14.20

Fig. 9.4.7c: Alternative Estimate with larger b3 prior variance

K - p ) =
\ 4.18"

= -3.28
/ -32.47

|lg; while res :

0.363
-1.55
0.587
0.237
0.650

-1.287

Fig. 9.4.7d: Difference Vector & Resulting Residuals

In this case b3 is adjusted much more and the other parameters much less— reflecting 

the (incorrect) prior value o f b3 being given a “smaller” degree o f belief. This results 

in slightly better residuals— i.e. estimated values which are in better agreement with 

the experimental data. Compare the res vectors in Figs. (9.4.7b) & (9.4.7d).

However, it is still the case that the covariance matrix o f the experimental 

information is m uch smaller than the prior information— i.e. \|/Y «  \j/p. (Compare \|/Y 

in Fig. (9.2.4) with \[/p in Fig. (9.4.6) ). Let us consider the case where both are o f a
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similar order o f  magnitude and w e retain the “error” on the prior value o f  ¿»j. Fig

(9.4.8) gives the prior information while Figs. (9.4.9a) & (9.4.9b) g ive the resulting 

estimated values.

-63.0 4 0 0

Mp = 34.0 Mg &  Yp = 0 4 0
160.0 0 0 4

Fig. 9.4.8: Prior Information with smaller covariance (\|/p ~  V|/Y)

-7 3 .7 8 2.08 0.96 0.96

P = 28.21 Mg; &  ¥p = 0.96 1.98 1.06

176.58 0.96 1.06 1.98

Fig. 9.4.9a: Estimated Values & Covariance Matrix with incorrect prior b3 & \)/p ~  \|/Y

U -P )=
10.79

5.79

-1 6 .58

(Xg; while res -

- 7 .2

-3 8 .2

-2 8 .6

7.7

37.3

27.9

Mg

Fig. 9.4.9b: Difference & Residual vectors

Now the Difference Vector indicates less adjustment to the prior values w hile the 

residuals are large implying very poor agreement with the experimental data. This 

indicates that the incorrect value for b3 is now having a more significant effect upon 
the result. However, if  we let s2(b3) increase as shown below

Yp =

4
0
0

0
4
0

0
0

900
Mg

we get the data in Figs. (9.4.9c) & (9.4.9d) which indicate a big adjustment for b3 

while the others are adjusted much less A lso  the residuals are very much smaller 

indicating that improved agreement with the experimental information now exists.

"-65.959" r 2.53 1.45 1.89"
36.814 Mg; &  V a = 1.45 2.53 2.09

192.688
P

1.89 2.09 3.90

Fig. 9.4.9c: Estimation Data with s2{b3) large
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(m-p - p )

2.959
-2.814 [ig; w hile res  =  

-32.688

-1.327
-2.553

1.274
1.927
1.653

-1.974

Fig. 9.4.9d: Corresponding Difference & Residual Vectors

So w e can conclude that the relative accuracy o f the prior and current 

information is important as well as the relativeJ accuracy among the respective 

elements o f  the prior information. Incorrect prior information will have minimal 

influence on the posterior estimates if  all the prior information is o f lower accuracy 

than the current information. However, even then, it w ill exert som e influence if it is 

of equal or greater accuracy than the other elem ents o f [ip. On the other hand, if  the 

prior information is o f  similar accuracy to the experimental information, any errors in 

the prior information can have devastating effects on the posterior data. O f course all 

the same remarks apply to the reciprocal situation o f errors in the experimental data.

Thus the M AP Estimator is remarkably robust inasmuch as it can handle both 

"good" (consistent) data and can deal very w ell with inconsistent data too. In cases 

where it cannot correct for problems, it w ill nevertheless highlight them via 

significantly adjusted posterior estimates or large experimental residuals. It may not 

be possible, directly from such data, to decide whether prior or current data is at fau lt- 

this may require supplementary investigations-but nevertheless the existence o f a 

problem w ill be clearly highlighted. It should be noted that none o f this analysis is 

possible with the rigid RLS method!
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9.5 Significance of the Covariance Matrix, \|/Y

W e have seen that \j/Y contains two terms due to the buoyancy correction, pXV . 

(See Eq. (9.2.3) for exam ple). N ow  it has been com m onplace in mass calibration to 

leave these covariance terms out o f the estimation process and include them  

afterwards via som e other calculation (e.g. Schwartz, (1991)), or else to ignore them  

altogether, (Bich, (1989a), (1989b), (1993a)), considering them to be o f  no 

significance to the final uncertainty quoted. Indeed, \ |/Y = a 2.I is often used as a 

result. Som etim es, uncertainties due to the volum es o f  the standards are ignored too 

(e.g. Lewis et al (1990)). ,

H owever in our U nified Approach the dispersion characteristics o f all influence 

quantities must be included and since \|/Y appears in the estimation equation, this may 

have some effect upon the results.

Let the dispersion matrix be given by \y Y =  vj/AW, where y AW is as given in Fig.

(9.2.3), the two terms due to the buoyancy correction being ignored, (t2 & t3 in Fig.

(9.2.4)). Carrying out the Bayesian estimation now  results in:

■-64.71" ‘20.46 20.45 20.45"
40.24 M-g; &  = 20.45 20.49 20.46

195.18
P

20.45 20.46 20.49

Fig. 9.5.1: Estimated Values & Covariance Matrix when using \ | / Y =  \J/AW

These values are compared directly with Fig. (9.4.1) in Table 9.5.1 below  where we 

can see that the difference between the estimated values in each case is small while 

there is som e reduction in the variance and covariance terms. This is expected since 

\jrY is now much smaller. H owever because \|/p is so much bigger than \|fY, the effects 

of adjusting \j/Y are not m anifest very clearly. Later we w ill find that if  \|/p and \|/Y are 

of a comparable order o f magnitude a reduction in \|/Y has a more marked effect. What 

we wish to do first is consider the range o f variations in the posterior estimates that 

are possible with the given initial conditions (i.e. prior information).

Table 9.5.1 - Comparison of Estimated Values & Variances for y Y Diagonal /  Non-Diagonal

Variances (Hg)2 Values (|xg)

Parameter Fig. (9.4.1) Fig. (9.5.1) % Difference Fig. (9.4.1) Fig. (9.5.1) Difference

bi 20.53 20.46 -0.3% -64.69 -64.71 -0.02

b2 22.60 20.49 -9.3% 40.073 40.24 0.17

b. 22.60 20.49 -9.3% 195.13 195.18 0.05

Consider the case where we transform \|/Y according to \|/Y —» v .I where v is a 

scalar multiplier. U sing all the same data as before for \|/p and X w e obtain for \j/ - :
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25(450 +  v) 11250 11250

5 5 0 + v 5 5 0 + v 550 + v

V|/r
225(67500+ 1000v + v2) 101250(150 + v)

(550 + v)(l350 + v ) (550 + v)(l350 + v) 

225(67500+ lOOOv + v2)

Fig. 9.5.2a: Theoretical Form of \J/ -

(550 + v )(l350  + v)

for \y  y =  V. I
>

This is interesting as it shows that-for this particular \|/o data-the two lim iting cases 

are as given below  in Figs (9.5.2b) & (9.5.2c):

'20.45 20.45 20.45'
20.45 20.45 20.45 i VP
20.45 20.45 20.45

Fig. 9.5.2b: ij/ - for V  — > 0  (Current data infinitely accurate )

25 0 0
0 225 0 i V
0 0 225

Fig. 9.5.2c: for V —> 00 (Current data absolutely useless and inaccurate, no information!)

The latter figure shows that we are left with just the prior information as before. This

is useful as it provides a benchmark with which to compare Figs. (9.5.1) & (9.4.1). In 
fact we can see that \[i- in Fig. (9.5.1), obtained for \j/Y = V|/Mv, is very close to the

theoretical limit for improvements in accuracy obtainable by the estimation method.

Clearly when the variance/covariance information due to the buoyancy correction is 
included, a larger \|/Y results and so \j/ - w ill always be bigger than Fig (9.5.2b)

In considering the theoretical basis for what we have just seen, w e need to recall Eq.

(8.4.3) for the posterior covariance matrix:

¥ p  = ( x t V y X  +  \1/ p1) *

From this w e can see that the upper limit for a very large \\rY occurs 

w hen(x'xi/y Xj —> 0 and then the posterior covariance matrix \(/~ —>\|/p as suggested

by Fig. (9.5.2c) above. The lower lim it occurs for very accurate experimental

information where \\fY becom es very small, in which case ( x T\|/ÿ1x )  -»  «  and we find
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that the posterior covariance matrix\|/- —>( x T\)/yX ) 1 . However, w e cannot directly

compute this ow ing to the singularity in X TX , meaning that w e m ust utilise som e sort 

o f numerical method in order to approach this limit.This is what Fig. (9.5.2a) 

represents and which w ill be developed further in the follow ing pages

What w e have just done clarifies som e very important aspects o f  this Bayesian  

estimation technique. W e have pointed out that there is a lower lim it on the posterior 

variances for a given set o f prior information (initial conditions); an issue to be 

discussed further in what follow s. W e have additionally shown that the prior 

information represents what w e might call a “worst case” with regard to the posterior 

covariance matrix. What this means is that w e effectively have a system  where we can 

add new stochastic information (from the experiment) without adding noise or 

‘uncertainty’; a point which again highlights the utility o f this estimator.

Using the transformation \|/Y —> v .I is o f  course a sim plification, which makes 

computation easier. However, this is not a critical over-sim plification since w e are 

primarily interested in what happens at the lim its o f v —» 0 and v —» <*>. W e could also 
consider the transformation \j/Y —» v.\jrY which would use the actual experimental

information. (The algebraic form for this is given in Fig. 9.5.3 below ). If w e were 

interested in exploring the role o f the buoyancy correction variance/covariance terms, 
we could use \|/Y \|/AW +v(t2 + t 3) In Fig. (9.5.4) below, we have shown a simulation

o f s2{bi j for v  in the range v =  10”5 —» v = 1010— which for all practical purposes is

the range (0, ° ° ) . The graph shows the results using both v l and v\|/Y. The other 

possibility w e m entioned is in fact identical to the curve for \|/Y —> v .\|/Y because 

\ |/AW is so much smaller than the terms due to the buoyancy correction.

25(47.9038+  v) 1192.04(189.07 + v) 1203.17(187.32 + v)

58.5488+ v (58.5488+ v)(l88.195 + v) (58.5488 + v)(l88.195 + v)

225(8.30508 + v)(l20.612 + v) 15782.6(14.28 + v)

(58.5488 + v)(l88.195 + v) (58.5488 + v)(l88.195 + v)

225(8.33814 + v)(l20.134 + v) 

(58.5488+ v)(l88.195 + v) 

Fig. 9.5.3: Theoretical Form of \Ji - for \ | /Y —> V. \J/ Y

In Fig. (9.5.4) w e can see that as v —» °o and the current data’s accuracy decreases, the 

posterior variance reverts to that o f the prior data, while as v —> 0 the current data 

exerts an ever larger influence on the estimation process and w e see a lower lim it on
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the posterior variance for infinitely accurate experimental data1. W e also notice that 
(as we would expect) the curve for \j/Y —> v\|fY is everywhere larger than the one for 

\|/y —»vl except at the lim its where they converge. Fig. (9.5.5) below  illustrates the

same features for the posterior variances o f  parameters b2 and b3. W e w ill only use the 
transformation \\/Y —> vl from this point, as it is primarily the lim iting values w e are

interested in.

log,„v

Fig. 9.5.4: i 2 [by ) for \|/Y —> v l & \|/Y —> v\)/Y for values of v in the range ~ (0, °°)

Fig. (9.5.6) shows a similar simulation for the posterior covariance  between 

parameters bj & b2 and bj & b 3. There is no covariance in the prior information and so 

we see the graph approaches zero as v —» °o . On the other hand, as v —» 0 the 

experimental information exerts a larger influence and the effect o f  the correlation 

intrinsic to the mass comparison process becom es more pronounced in the posterior 

estimate.

The distribution o f covariance information is not always straight-forward as can be 

seen in Fig. (9.5.7) where we show the simulation for the covariance o f b2 & b3. W e 

need to recall that a covariance must always be considered in relation to two

1 The curve we have shown is in fact a Sigmoidal-type function and can be easily modelled as a
Ay A^

Boltzmann equation of the form y  = ------- 3 1- A2 where Ay & A2 are the limits of the function.
l  + ex x°
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parameters and thus the total variance information2 w ill always reduce (with this 

estimation technique) as the experiment becom es more accurate, albeit the correlation 

between individual parameters may increase. Recall also that w e did not design the 

comparison matrix X  specifically to m inim ise covariances in the posterior estimates.

l0g ,„v

Fig. 9.5.5: s 2 (b 2 \  &  for \(/Y —> V . I  for v in the range ~ (0 ,o o )

2 For example, the total variance information for the sum of two parameters & b 2 depends on both 

variance and covariance according to var(è j + b 2 ) =  s'1 {bx ) +  s 2 (b2 ) +  s(bx, b2 )
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-6 -4 -2 O 2 4 6 8 10 12

lQgiov

Fig. 9.5.6: s ( b l , b 2 '\&. s í b ¡ , b 3) for \ j /Y —»V. I with v in the range ~ ( 0 ,oo)

lQg.u v

Fig. 9.5.7: s ( b 2, b 3)  for \j /Y —> V .I with v in the range ~ (0 ,oo )
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W hile considering the estimator’s capabilities in regard to the covariance 

matrix, it is also interesting to look at the possible range in estimated parameter values 
which can occur when \j/v —>v.I for v in the range (0 ,°°). W hen v - * 0  and the

current data is exerting maximum influence, the largest adjustment to the prior values 

takes place, based on the information obtained in the comparison experiment; w hile at 

the other end o f the scale a s v - ^ «  the posterior estimates are unchanged from the 

prior information. Figs. (9.5.9) to (9.5.11) illustrate this information for parameters b t 

to b3. As we have already discussed in Section 9.4, the adjustment that can be carried 

out does depend significantly on the relative accuracy o f the prior information. So 

while Fig. (9.5.8) shows the general form o f  |3 for the given prior covariance matrix 
\j/p, a different prior covariance matrix would result in different lower bounds on the

posterior estimates ( i.e. as v - > 0 ) .  The upper bound a s v — woul d o f  course 

remain unchanged as the prior information.

-63(565.158 + v)

(5 5 0 + v)

34(688.912 + v)(l277.93 +  v)

(550 + v )(l350  + v)

186(572.786 + v)(l361.21 + v)

(550 + v )(l350  + v)

Fig. 9.5.8: General form of (J for the given data and \|/ Y —> V. I

>°gi„ v

Fig. 9.5.9: ¿>j values for v in the range (0, °°) when \]/Y - > v . I
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W e might note, as shown earlier, (Eqs. 8.4.6 & 8.4.7), that the M AP estimator 
can be written recursively, so that posterior estimates p t+1 & \|/Pt+i are produced from

prior knowledge & \|/Pt and new current data Y  & \|/Y. As w e have seen,

theoretically and experimentally, the posterior estimates always have lower covariance 

matrices than does the prior information. Since these posterior estimates w ill form the 

new prior information for subsequent estimations, as shown in Fig. (8.0.2) for 

example, we can expect the next posterior estimate to have still lower covariance. So, 

specifically in mass calibration, does this mean that every tim e we re-calibrate our 

standards we achieve lower covariance matrices each time? O f course w e will not! It 

is a fair assumption that \|/y  w ill not change all that rtiuch between one calibration and 

the next since probably the same equipment will be used. In that case, the posterior 

covariance matrix for successive calibrations will tend to converge to a lower limit 

after which no further improvements will be possible. In fact this lower lim it is none 

other than the one shown in the variance / covariance plots o f Figs (9.5.4), to (9.5.7), 
for the transformation \ |/Y —> v.I when v —» 0 .  W e can appreciate this by recalling

that v —> 0 corresponds to the experimental data being infinitely accurate. N ow  while  

this is a highly idealised proposition, it nevertheless corresponds to a situation where 

we could not learn anything new about the mass standards involved. Certainly in 

subsequent calibrations, it is highly likely that the standards w ill have drifted 

somewhat, an issue w e address in more detail in the next chapter, and therefore there 

will o f course be new information to learn about the standards them selves, but we can 

be sure that w e w ill not evaluate any posterior estimates to higher accuracy than that 

which occurs when v —» 0 in our simulation. W e should remark however, that this 

analysis would assume w e use the same parameters in subsequent evaluations. Should 

we introduce new parameters and change the design schem e the scope o f the problem  

is changed and new information o f higher accuracy may w ell be obtainable.

So far w e have shown, that for our exam ple data, the difference in final 

covariance matrix from leaving out the buoyancy correction variance/covariance terms 

in the analysis (Fig. (9 .5 .1)), is not enormous. W e then considered the possible  

variation which could occur for all possible values o f the input covariances and this 

led us to establish upper and lower bounds for the achievable accuracy. However, it 

will be recalled from Section 9.4, where w e discussed the technique's robustness in 

dealing with incorrect information, that the relative accuracy o f the prior/current 

information was significant in this regard. W e now want to see what happens to our 

covariance analysis when vj/p =  \|/Y. To do this w e w ill assume \|/p = diag[4,4,4] which 

is o f a similar order o f  magnitude to \|/y as given in Fig. (9.2.4) earlier. In this case,
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using \|/Y as given in Fig. (9.2.4) results in the estimated values o f  Fig. (9.5.12a), while  
if  w e let \j/Y =  \ |/AW, which eliminates in particular all the off-diagonal terms, we find

the results given in Fig. (9.5.12b):

"-67.52" "2.084 0.957 0.959"
35.08 ^ g  &  w ,  = 0.957 1.982 1.060

189.45
p 0.959 1.060 1.980

Fig. 9.5.12a: MAP results when = diag[4,4Al

"-69.25" r  1.349 1.326 1.325"
35.66 H g &  V a  = 1.326 1.550 1.324

190.59
P

1.325 1.324 1.350

Fig. 9.5.12b: MAP results when v|/p = diag[4,4&\  & 

Y y = Y aw

Table 9.5.2 - Comparison of Estimated Values & Variances for Vv Diagonal / Non-Diagonal - Now \i/fl ~ vi/v

Variances (|i.g)2 Values (|ig)

Parameter Fig. (9.5.12b) Fig. (9.5.12a) % Difference Fig. (9.5.12b) Fig. (9.5.12a) Difference

b, 1.349 2.084 -3 5 % -69.25 -67.52 1.73

b2 1.350 1.982 -3 2 % 35.66 35.08 -0.581

b3 1.350 1.980 -3 2 % 190.59 189.45 -1.14

Comparing with Table 9.5.1, w e can see that while there is not much difference in 

either case between the two pairs o f fitted values, there is now a big difference 

between the variances in the latter case, with a large reduction occurring as a result o f  

ignoring the variance/covariance terms of the buoyancy correction, highlighting the 

dangers o f doing this in cases where the prior and current information are o f similar 

accuracies. Clearly it is good practice-not to mention required by the consistency  

criteria outlined in this thesis-to  always include the full extent o f  all available 

information.

For com pleteness, let us now exam ine the situation for y Y—>v.I when we scale 

the multiplier v over a wide range o f  values from close to zero to very large. W e again 

obtain sigm oidal-type plots similar to those w e have seen already but now of course 

the lower and upper limits in each case are different. Figs. (9.5.13) to (9.5.17) shown 

below illustrate the relevant data.
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l o 8  10 v

Fig. 9.5.13:Estimated Posterior Variance for bp b2, b3 when \|/p = diag{4AA)  and \J/Y —> V . I

l0S .0 v

Fig. 9.5.14:Estimated Posterior Covariances for br  b2, b3 . when \|/p = diag{4AA} and Xjly-  ̂V.I

124







lQg 10 v

Fig. 9.5.17:Posterior Estimate for b}, when \y(! = diag{4,4A ] and \|/Y—> V.I

It is interesting to look  at the residuals in  the case o f  this transformation  

\ |/Y —> v. I . W e find  large residuals w hen  the current data is  considered  m uch less

accurate, i.e. as v — and P — In such a case w e find' the residual vector o f  

Fig. (9 .5 .18).

'  -7 .210"
- 1 2 .2 0 0

res = -2 .5 9 9
-7 .6 9 9
11.300

1.899

Fig. 9.5.18: res for [Ì

which is large and im p lies poor experim ental agreem ent— as w e  w ould  exp ect since  

the current data is h aving m inim al in flu en ce now .
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On the other hand, as v -> 0 and (5 —>

Fig. (9 .5 .19):

-69.38
35.72
190.67

|Hg w e find the residual vector o f

‘ 0.999'
-1.150

res —>
0.349

-0.399
0.250

M-g

-1.050

Fig. 9.5.19: res for v —> 0

— i.e. the experim ental inform ation is now  considered m axim ally  accurate and hence  

exerts greatest influence on the result, leading to good  experim ental agreem ent. T hese  

latter residuals can probably be considered  as a fairly intrinsic estim ate o f  the internal 

consistency o f  the data, or the extent o f  any system atic errors present, since there is 

m inim al influence on them from  any other source.

5̂ *4* ¡¡Jj *-* »1* ^  -ij
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Included in this chapter are tw o further case  studies in v o lv in g  experim ental 

com parison data, treated by  the M A P  estim ator, w ith  further investigation  o f  its 

characteristics. In particular w e g iv e  increased  consideration  to the idea  o f  inaccurate 

prior inform ation and note h ow  the estim ator cop es w ith  this situation. W e em phasise  

once again the role o f  relative accuracies am ong the various sets o f  inform ation and 

show  how  the estim ator can deal w ith  inaccurate inform ation i f  the accom panying  

variance/covariance inform ation perm its this. W e consider the robustness o f  the 

estim ator in terms o f  the stability o f  the so lutions in the presence o f  variations in parts"  ̂ I
o f the initial conditions. O ne lik e ly  cause o f  incorrect prior inform ation is  the 

phenom enon o f  drift and w e  investigate h o w  our estim ation techniques can respond to 

this situation. W e high light a fundam ental problem  in current m ass m etrology  where 

independent inform ation on drift m ay be hard to obtain. In this respect the estim ator 

must be treated realistically  in the light o f  the available physical inform ation.

10.1 Example II

W e now  take a calibration exam ple in vo lv in g  eigh t parameters and ten  

observations. T he available prior inform ation on all the parameters is as g iven  in 

Table 10.1.1 b elow . The prior deviations-from -nom inal, standard deviations and 

volum es are taken directly from  the available calibration certificates, w h ile  the 

volum e standard deviations are obtained from  an assum ed density uncertainty o f  

± 2kg. m~3 , taken to be uniform ly distributed.

10. Further Examples

Table 10.1.1: Prior Information

Parameter Nominal 
Value (g)

Prior Value 
(deviation) (mg)

Std. Dev 
(mg)

Volume 
( cm3 )

Vol. Std. Dev 
( cm3 )

bl 1000.0 2.0 0.25 125.9763 0.0188

b2 1000.0 0.9 0.75 119.0 0.01635

b3 500.0 -0.9 0.125 62.99 0.00916

b4 500.0 0.1 0.375 59.52 0.008179

b5 200.0 0.45 0.05 25.20 0.0045

b6 200.0 0.04 0.15 23.81 0.003271

h 100.0 1.07 0.05 12.74 0.00187

b8 100.0 -0.49 0.075 11.90 0.0016
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The prior vectors and m atrices, jip, \|/p, \j/v  &  V  can easily  be constructed  from  this 

inform ation. T he supplied  prior inform ation does not include data on  p ossib le  

covariances am ong the parameters so  w e  m ust assum e that V|/p is d iagonal under these  

circum stances. T he D esig n  M atrix X  is  g iven  in Fig. (1 0 .1 .1 ) b e lo w . T he experim ental 

data is g iven  in T able (10 .1 .2 ), from  w hich  w e  can construct the observation  vector Y  

and also \ |/AW and p a. In T able (1 0 .1 .2 ) the data AW and pa are m ean va lues from  6

experim ental m easurem ents. T he standard deviations in colum n 2 are thus th ose o f  

mean values o f  6 m easurem ents. T his data is used directly to com pute iy AW as show n

in Fig. (10 .1 .2 ). T he calibration data for the environm ent m onitoring instrum ents used  

in this case leads to the fo llo w in g  standard uncertainties:

j(0 =o-rc
s(P )  =  1 Torr = 133.3 Pa 

s(h ) =  5%

Thus u sing  Eq. (3 .2 .4 ) w e  evaluate the air density variance to be:

s 2 (pa ) =  3 X 10 6 [m g. cm ~3 )

'I -1 0 0 0 0 0 O'
1 0 -1 -1 0 0 0 0
0 1 -1 -1 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 1 0 -1 -1 -1 0
0 0 0 1 -1 -1 0 -1
0 0 0 0 1 -1 0 0
0 0 0 0 1 0 -1 -1
0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 1 -1

Fig. 10.1.1: Design Matrix

Once again w e evaluate the com ponents o f  i|/Y using Eq. (4 .5 .17):

V y +  d iag  {XV p d iag  {X V } +  pX\|r VX T p T

The first o f  these, \J/AW, w e  have already referred to, w h ile  the other tw o terms are 

shown in F igs. (1 0 .1 .3 ) and (10 .1 .4 ).T h e term t2 is the variance/covariance  

contribution due to \(/p, w h ile  t3 is that due to \|/v . T he total experim ental covariance  

matrix \|/Y is g iven  in F ig. (10 .1 .5 ).
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Table 10.1.2 : Experimental Information

A W  (mg) Std. Dev (mg) p„ (mg, cm'3) AV (cm3) Y  = A m  (mg)

-7.18333 0.044096 1.1814 6.9763 1.0660

-1.29647 0.031623 1.1818 3.4663 2.8000

5.86162 0.030732 1.1809 -3.51 1.7166

-5.27272 0.025 1.1809 3.47 -1.1750

-3.8867 0.058333 1.1896 1.24 -2.4116

1.84465 0.008333 1.1892 -1.39 0.1916

-1.35358 0.021972 1.2244 ' 1.39 0.3483

-0.851816 0.022161 1.2236 0.56 -0.1660

0.481667 0.020777 1.2249 -0.83 -0.5350

0.526504 0.008851 1.2244 0.84 1.5550

19.444 0 0 0 0 0 0 0 0 0
10.0 0 0 0 0 0 0 0 0

9.444 0 0 0 0 0 0 0
6.25 0 0 0 0 0 0

34.027 0 0 0 0 0
0.694 0 0 0 0

4.827 0 0 0
symm 4.911 0 0

4.316 0
0.783

Fig. 10.1.2: \|iAW X10"4 mg2

0 0 0 0 0 0 0 0 0‘
0.360457 0 0 0 0 0 0 0 0

0.369603 0 0 0 0 0 0 0
0.361227 0 0 0 0 0 0

0.046128 0 0 0 > 0 0
0.057963 0 0 0 0

0.057963 0 0 0
symm 0.009408 0 0

0.020667 0
0.021168

Fig. 10.1.3: t2 (= d ia g {X .V }.\(/p .diag{X . . \ }) X10"4 mg2
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8.4189 4.68837 -3.73054 0 0 0 0 0 0 0
6.7961 2.10455 -0.23725 -1.17952 -0.94021 0 0 0 0

5.8319 -0.237069 -1.17863 -0.939494 0 0 0 0
2.10294 1.17863 -0.939494 0 0 0 0

4- __ 1.57789 0.340936 -0.03933 -0.144104 -0.104914 -0.050979
^3 “ 1.32369 -0.03931 -0.157151 -0.117989 0.037857

0.361296 0.200756 -0.160475 0
synun 0.291953 0.091426 -0.013484

0.252064 -0.013498
0.091448

Fig. 10.1.4: t 3 (=p.X.\J/v.XT.p) xlO"4 mg2

'29.3123 4.68837 -3.73054 0 0 0 0 0 0 0
17.1566 2.10455 -0.23725 -1.17952 -0.94021 0 0 0 0

15.6348 -0.237069 -1.17863 -0.939494 0 0 0 0
8.71417 1.17863 -0.939494 0 0 0 0

35.6507 0.340936 -0.03933 -0.144104 -0.104914 -0.050979
V y = 2.07498 -0.03931 -0.157151 -0.117989 0.037857

5.24593 0.200756 -0.160475 0
symra 5.21136 0.091426 -0.013484

4.5894 -0.013498
0.89595

Fig. 10.1.5: \|/yXlO’4 mg2

U sin g  this data, w e now  apply the M A P  Estim ator o f  Eqs. (8 .3 .1 5 ) & (8 .4 .5 ) to 

find updated parameter estim ates as g iven  in Table 10.1.3 below . T his table sh ow s the 

prior data, posterior estim ated values, the D ifference V ector b etw een  these tw o, the 

prior and posterior standard deviations, and the com bined standard deviation  o f  the 

D ifference V ector. F ig. (1 0 .1 .6 ) g iv es  the estim ated covariance matrix w hile  

experim ental residuals are show n in T able 10.1.4. A s can be seen , the posterior 

estim ates have low er standard deviations than the prior inform ation. O f interest is the 

com bined standard deviation  o f  the D ifferen ce V ector, -  pj (last colum n o f

Table 10.1.3): this is at all points larger than the respective elem en ts o f  the d ifference  

vector (3rd colum n o f  T able 10.1 .3). T his is an important point, and one w e  w ould  

expect: since each value is ju st an estim ate based  on w hatever inform ation is available  

at the tim e, each should be subject to updating. H ow ever, since the standard deviation  

is taken as a m easure o f  the p ossib le  dispersion  in the values, one w ou ld  exp ect that 

any updated value should  lie  w ith in  this bound. Note: this does assum e, how ever, that 

the m easurand is in fact constant over time; in the case o f  m ass standards, drift is 
possib le and indeed observed  (see  Girard, (1994) for exam ple, also Sutton & Clarkson  

(1 9 93 /94 ), w h ile  D av is (1 9 9 0 ) provides a detailed  d iscussion  o f  the stability o f
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R eference and W orking Standards in one situation). A lso , B ich  (1 9 9 2 ), (1993b ) has 

pointed out that this drift can be m odelled  v ia  a Kalm an Filter type approach, but that 

is a different issu e , and although it can easily  be built into our m odel, for the present 

w e w ill m ake the assum ption that the m easurands/param eters are constant in tim e. 

(For applications o f  the Kalm an Filter and M LE to atom ic c lo ck  param eterisation see  

Tyron & Jones, (1 9 8 3 ) & Jones & Tyron (1 9 8 3 ) ). In the fo llo w in g  section  o f  this 

chapter w e  w ill m ake further com m ent on drift and how  w e  m ight deal w ith  it.

The standards w ere not calibrated as a group before, indeed they are taken from  

three different sets o f  quite different densities, and so  the prior standard deviations o f  

nom inally equally pairs (e.g. bl & b2 or b3 &  b4) are quite different. H ow ever, after the 

analysis, the estim ated standard deviations are m uch m ore uniform .

Table 10.1.3: Comparison of Prior. Posterior Data, after carrying out MAP Estimation ( data in me )

Up P ( n „ - p ) diag[y ̂ diag(y p)1/2 ^ P - P )

2.0 2.08008 -0.0800812 0.133485 0.25 0.283405

0.9 1.00608 -0.10608 0.134876 0.75 0.762031

-0.9 -0.934075 0.0340754 0.0673833 0.125 0.142005

0.1 0.220219 -0.120219 0.0671767 0.375 0.380969

0.45 0.429602 0.0203979 0.0276786 0.05 0.0571498

0.04 0.072579 -0.032579 0.0291039 0.15 0.152797

1.07 1.077 -0.0070027' 0.0153515 0.05 0.0523036

-0.49 -0.475644 -0.0143557 0.0153016 0.075 0.076545

'178.155 170.768 84.3603 84.2958 32.3125 34.3595 16.4158 16.8544 ~
181.926 85.5725 85.507 32.7766 34.853 16.6516 17.0965

45.3896 41.4927 15.9388 16.9485 8.12745 8.28316
45.1132 16.8989 17.9694 8.55494 8.84545

V 7.6588 6.34044 3.22181 3.18763
8.46778 3.46465 3.4287

symm 2.36719 1.91358
2.32835_

Fig. 10.1.6: Estimated Covariance Matrix \|f- ( m g 2 X10
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Table 10.1.4: Observations. Fitted Observations. Residuals and Measurement Std. Dev. ( me )

Y Y (Y -Y ) diag(\\fY)y2

1.0666 1.074 -0.00740112 0.05415

2.8 2.79394 0.00606211 0.04142

1.71666 1.71994 -0.00327677 0.03954

-1.175 -1.15429 -0.0207059 0.02952

-2.4166 -2.51326 0.101659 0.05971

0.191666 0.193682 -0.00201586 0.01440

0.348333 0.357023 -0.00869009 0.02291

-0.1666 -0.171756 0.00515636 0.02283

-0.535 -0.528779 -0.00622055 0.02078

1.555 1.55265 0.002353 0.08850

10.2 Analysis of the Estimator’s Capability
W e now  con sider the effec ts  o f  m aking the transform ation \ |/Y —> v. \ |/Y w here v

is a scalar m ultiplier w h ich  w e can vary in the range (0 ,°o ). T his is ju st a

com putationally con ven ien t m eans o f  varying the in fluence o f  the current data

betw een the tw o  extrem es o f  near-total and near-zero control over the posterior

estim ates, as exp la ined  in the last chapter. D o in g  this a llow s us to see  what type o f

adjustment to the prior data is p ossib le  and to com pare that w ith  what has been

achieved with the g iven  data. W e w ill see how  this can som etim es h igh light problem s

in the data that m ight not otherw ise surface. T he graphs show n b elow  are o f  the sam e

general sigm oidal type as those obtained in the analysis o f  Chapter 9, ,as w e  m ight

expect, illustrating lo w er  and upper bounds in each case. F igs. (1 0 .2 .1 ) & (1 0 .2 .2 )

g ive  the posterior variance estim ate for ju st b} &  b8 by w ay o f  exam ple; w h ile  F igs  
(10 .2 .3). & (10 .2 .4 ). g iv e  the posterior covariance matrix, y .  for the tw o cases,

v —» 0 & v —> oo, respectively .
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logi0 v

v —̂  0 v —̂  °°

Fig. 10.2.1: Variation in Estimated Variance of bj for \|/Y —> V.\|/Y

log.0 v

V —> 0  V —> °0

Fig. 10.2.2: Variation in Estimated Variance of b8 for \ | /Y —> v. \J/Y
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169.173 84.5865 84.5865 33.8346 33.8346 16.9173 16.9173
169.173 84.5865 84.5865 33.8346 33.8346 16.9173 16.9173

42.2932 42.2932 16.9173 16.9173 8.4856 8.4856
42.2932 16.9173 16.9173 8.4856 8.4856

6.76692 6.76692 3.38346 3.38346
symm 6.76692 3.38346

1.69173
3.38346
1.69173
1.69173

Fig. 10.2.3: Govariance Matrix, , when v —> 0 for the transformation \\fY —» v.Y[rY

( m g2 X10"4 )

0 0 0 0 0 0 0
5625 0 0 0 0 0 0

156.25 0 0 0 0 0
1406.25 0 0 0 0

25 0 0 0
synitn 225 0

25
0
0

56.25

Fig. 10.2.4: Covariance Matrix, i|/- , when v —» 00 for the transformation 

\j/Y->v.\|/Y ( mg2 x 10^)

Fig. (1 0 .2 .3 ) is the low er lim it and presents som e interesting features: from  it w e  

can quickly calcu late that the fo llo w in g  hold:

s 2{b j) J m. Y /(fe,) _ m . & s(b i tb j)  = m}

sl(bi ) \ ml ) '  S{bnbj) mi S(bnhk) mk
— where m ],m n m k are the nom inal m ass values o f  the i" \ j 'h,k ‘h parameters. Such

relationships often  appear w hen doing a "simple" fitting with ju st one p iece  o f  prior 

information [or u sing  R L S], when a fraction o f  the 'reference' uncertainty equal to the 

ratio o f  nom inal m asses is alw ays transm itted to the various standards. U sin g  the 

M A P estim ator w ith  fu ll prior inform ation, this does not autom atically m anifest itse lf  

unless it was already the case in the initial conditions; although an exam ination  o f  Fig. 

( 10. 1 .6) sh ow s that the posterior covariance matrix for the 'real' data o f  this 

experim ent does approxim ate these relationships. H ow ever, Fig. (1 0 .2 .3 ) sh ow s that 

in the lim it, th is estim ator w ill converge to exactly  this situation to w hich  other 

estim ators are tied. In Fig. (10 .2 .4 ) w e see  how  the prior variance/covariance  

information rem ains unchanged when v —> and the current inform ation is

effectively  rem oved.

F igs (1 0 .2 .5 ) & (1 0 .2 .6 ) b elow  illustrate the range o f  p ossib le  values that can be  

assum ed by the parameters b1 & b8, under the sam e conditions as those d iscussed
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above (i.e. \ |/Y —> v .\ |/Y with v e  (0,oo)). F ig. (10 .2 .7 ) show s the com p lete  parameter 

vector in the tw o lim iting cases. From  this inform ation w e  can see  the m axim um  

amount o f  adjustm ent to the parameters that is p ossib le  w ith  the g iven  initial 

conditions.

lo Sio v

Fig. 10.2.5: Estimated Value for b, with v in range (0 ,° ° )

logio v

Fig. 10.2.6: Estimated Value for bs with v in range (0 , °°)

136



' 2.082' ' 2.0 -
1.007 0.9

-0.934 -0.9
0.221
0.429 m g ; P =

0.1
0.45

0.073 0.04
1.077 1.07

-0.475 -0.49

( i ) ( ii)
i A

Fig. 10.2.7: Estimated Parameter Vcctor, (3

N ex t w e consider the perform ance o f  the M A P  estim ator in the case  o f  errors in 

the parameters in order to exam in e its robustness. In Table 10.2.1 b e lo w  w e sim ulate  

an error on  the prior k n ow led ge o f  b1 so  that its value is 1.2mg rather than 2 .0mg. W e  

can see that in  the updated data, b1 is adjusted significantly  m ore than the others, and 

indeed m ore than its prior, posterior or com bined  d ifference standard deviation. This 

o f course suggests a system atic error and can easily  be interpreted as such since none  

o f  the other parameters are adjusted so  much, suggesting that it is b1 (prior) w hich  was 

in error. A side: Shou ld  this situation have occurred it m ay perhaps have been due to 

drift, m eaning that the prior va lue o f  1.2mg is no longer a good  representation o f  the 

value o f ¿>7. W e w ill d iscuss this situation a little m ore in S ection  10.3.

Table 10.2.1: Estimated Parameter Values (bj prior in error ) ( data in me )
/N
P (m-p - P )

/ \ I/2 d ia g \y  -J d ia g { y  fl )1/2 * ( n P - p )

1.2 1.85201 -0.625006 0.133485 0.25 0.283405

0.9 0.787489 0.112511 0.134876 0.75 0.762031

-0.9 -1.04206 0.142061 0.0673833 0.125 0.142005

0.1 0.112318 -0.0123183 0.0671767 0.375 0.380969

0.45 0.388251 0.0617486 0.0276786 0.05 0.0571498

0.04 0.0286084 0.0113916 0.0291039 0.15 0.152797

1.07 1.05598 0.0140163 0.0153515 0.05 0.0523036

-0.49 -0.497208 0.00720808 0.0153016 0.075 0.076545

Fig. (10 .2 .8 ) sh ow s the range o f  values b1 can be assigned should  \ |/Y —> v .\y Y 

and v be scaled  as before. From  this w e  can see  that the b est adjustment that can be 

m ade to b1, w hen v —> 0 and the current inform ation is exerting m axim um  influence, 

leads to an estim ated value o f  1 .86568 mg, quite c lo se  to the "correct" prior value! 

Thus our data in T able (1 0 .2 .1 ) is quite c lo se  to the theoretically best value.
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•°g,o v

V —> 0 V —> oo

Fig. 10.2.8: for bx =  1.2mg & \ |/Y -> v.\|/Y

Table 10.2.2: Fitted Observations and residuals for Table 10.2.1 Parameter Values (data in ms)

Y Y res s (  Y) i(A W )

1.066 1.06452 0.00208232 0.054151 0.0440957

2.8 2.78175 0.0182513 0.041499 0.0316228

1.71666 1.71723 -0.000571033 0.0394783 0.0307316

-1.175 -1.15438 -0.020621 0.0296299 0.025

-2.4116 -2.5149 0.103304 0.0596984 0.0583333

0.191666 0.192667 -0.00100065 0.014548 0.00833267

0.348333 0.359643 -0.01131 0.0229062 0.021972

-0.1666 -0.170524 0.00392426 0.0228306 0.0221608

-0.535 -0.530167 -0.00483272 0.0214229 0.0207766

1.555 1.55319 0.00180818 0.00946546 0.00885061

In T able (1 0 .2 .2 ) above the posterior estim ated observations and residuals are 

presented, from  w hich  w e  can see  that the agreem ent w ith the experim ental data is 

still very good. In understanding this, it is helpful to note that the standard deviations
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o f  the prior data are about an order o f  m agnitude bigger than th ose o f  the experim ental 

inform ation (com pare colum n 5 o f  T able 10.2.1 w ith  colum n 4  o f  T able 1 0 .2 .2 ). Thus 

the experim ental inform ation is in fluencing  the results m ore than the prior 

inform ation, lead ing to greater robustness in  the face o f  p ossib le  errors in the prior 

information.

So let us n ow  reduce the prior standard deviations by a factor o f  10— -i.e. reduce 

the variances by  a factor o f  100. T he new  posterior results in  T able 10.2 .3  now  

indicate that b ,  is adjusted m uch less  but the difference betw een  prior and posterior  

values is n ow  outside the com bined standard deviations in all cases. Furthermore, in 

Table 10.2 .4  the corresponding residuals are som e one to tw o orders o f  m agnitude  

la r g e r  than they w ere before— so in fact w e  do not have a good  fit to  the experim ental 

data.

Table 10.2.3: Estimated Parameter Values ( b j prior in error and smaller prior Std. D evs ( data in ms )

^p P
<oEl̂1CO. d ia g ( y  p) / 1CO.

1.2 1.4347 -0.234701 0.021379 0.025 0.0328947
0.9 0.756997 0.143003 0.0334731 0.075 0.0821307

-0.9 -0.962738 0.062738 0.0110564 0.0125 0.0166882

0.1 0.109827 -0.00982681 0.0154644 0.0375 0.0405635

0.45 0.437496 0.0125036 0.00467686 0.005 0.0068463

0.04 0.0131579 0.0268421 0.00975751 0.015 0.0178944

1.07 1.06641 0.00359329 0.00430808 0.005 0.0065999

-0.49 -0.498196 0.00819559 0.00542494 0.0075 0.0092563

Table 10.2.4: Fitted Observations and residuals for Table 10.2.3 Parameter Values (data in ms)

■ Y res s (Y) s (AW)

1.066 0.677705 0.388895 0.054151 0.0440957

2.8 2.28761 0.512388 0.041499 0.0316228

1.71666 1.60991 0.106752 0.0394783 0.0307316

-1.175 -1.07256 -0.102435 0.0296299 0.025

-2.4116 -2.4798 0.068199 0.0596984 0.0583333

0.191666 0.157368 0.0342979 0.014548 0.00833267

0.348333 0.424339 -0.0760056 0.0229062 0.021972

-0.1666 -0.130715 -0.0358853 0.0228306 0.0221608

-0.535 -0.555053 0.0200533 0.0214229 0.0207766

1.555 1.5646 -0.0096023 0.00946546 0.00885061
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This te lls us that what w e learned from  the experim ent d isagrees w ith  our prior 

know ledge but w e  m ay not autom atically know  w hich  is in error. Shou ld  the prior 

know ledge have been  subject to drift, th is should have been accounted  for in |ip &  \j/p. 

A s m entioned before, good  quantitative inform ation on drift in  m ass standards is 

difficult to acquire, but w here inform ation is available it should  be taken into account. 

(Aside: A gain  w e  refer to a further d iscussion  o f  drift in S ection  10 .3 .)

In fact, p ossib ilities  lik e  drift w ou ld  need  a hard lo o k  should  the exam ple ju st 

cited occur in real data: i f  the prior inform ation is  "definitely" reliable and the 

experim ental procedure w ell understood and invariably perform s satisfactorily, the 

possib ility  o f  p hysical change to the artefacts w ou ld  need considering. T his is not to 

rule out the p ossib ility  o f  problem s in  either the m easuring m ethod  or the prior 

inform ation not heretofore im agined! (For exam ple drift during the m easurem ent can 

be a problem — S ee  Sutton &  Clarkson (1 9 93 /94 ). Surface contam ination  via  

adsorption is  relevant in the context o f  drift and has been d iscu ssed  w id ely  in the 

literature, for exam ple C um pson &  Seah  (1994), (1 9 9 4 /9 5 ), K och siek  (1 9 8 2 ), Seah et 

al (1994), Schw artz (1994a), (1994b ), Schwartz & G laeser (1 9 9 4 c). E ffects due to 

cleaning the standards to overcom e this drift are d iscussed  b y  P inot (1 9 9 4 /9 5 ) and 

Pinot (1997); clean in g  o f  standards is a lso  d iscussed  by Girard (1 9 9 0 ). In C um pson & 

Seah (1996) surface contam ination and clean ing o f  platinum -iridium  standards is 

considered in detail.

On the other hand, let us now  suppose that the prior va lue o f  b, is in fact a little  

suspect. In that case  w e m ay have s(b}) = 0 .5 mg, the others rem aining as originally  

given. W ith this situation, T able 10.2.5 results w here w e can see  bl adjusted by a large 

amount, indeed it returns very c lo se  to the original estim ate in T able 10 .1 .3 , w h ile  in 

Table 10.2 .6  w e see  the n ew  residuals are now  m uch sm aller again.

Table 10.2.5: Estimated Parameter Values (b, prior in error but with larger Std. Dev.~) ( data in me )

M-p P K - p ) I \1/2 
dtas y f ^ ) d ia g {y p); 4'm-p -P)

1.2 2.02933 -0.829335 0.150547 0.5 0.522173
0.9 0.957444 -0.0574438 0.150476 0.75 0.764946
-0.9 -0.958102 0.058102 0.0750124 0.125 0.14578
0.1 0.196211 -0.096211 0.0748154 0.375 0.38239
0.45 0.420402 0.0295984 0.0304204 0.05 0.0585269
0.04 0.0627956 -0.0227956 0.0320493 0.15 0.153386
1.07 1.07233 -0.00232604 0.0166381 0.05 0.0526956
-0.49 -0.480442 -0.00955782 0.0166571 0.075 0.0768275
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Table 10.2.6 : Fitted Observations and residuals for Table 10.2.5 Parameter Values (data in mg')

Y Y res s (Y ) i(A W )

1.066 1.07189 -0.00529107 0.054151 0.0440957
2.8 2.79123 0.00877418 0.041499 0.0316228
1.71666 1.71933 -0.00267475 0.0394783 0.0307316
-1.175 -1.15431 -0.020687 0.0296299 0.025
-2.4116 -2.51363 0.102025 0.0596984 0.0583333
0.191666 0.193456 -0.00178998 0.014548 0.00833267
0.348333 0.357606 -0.00927303 * 0.0229062 0.021972
-0.1666 -0.171482 0.00488222 0.0228306 0.0221608
-0.535 -0.529088 -0.00591176 0.0214229 0.0207766
1.555 1.55277 0.00223178 0.00946546 0.00885061

So the robustness o f  M A P  has on ce again been illustrated, although w e have 

seen that under som e circum stances it can on ly  point to p rob lem s/m issing  inform ation  

without rem oving the difficulty. RLS by contrast cou ld  not do any o f  this as it treats

the constraints as fix ed  and so can on ly  adjust whatever is left.

10.3 More on the Influence of the Prior Information

In our d iscu ssion s in this chapter w e  have several tim es m entioned  the problem  

o f  drift on m ass standards. E ssentia lly , w e  need  to know  if  w e  are estim ating a 

dynam ic quantity or a static one. W e should  note that this is a separate question  to the 

issue o f  w hether our estim ates are stochastic or determ inistic, sin ce  w e  are now  

thinking o f  the underlying measurand, rather than our estim ate o f  it. If the D ifference  

Vector, ^ p - p j ,  is substantially larger than the com bined standard deviation  o f  the

difference, -  p j , w e  are led  to the con clu sion  that the prior inform ation w as in

poor agreem ent w ith  the new  experim ental inform ation. In the m ethods described in 

this thesis, the prior inform ation certainly plays an important role and can influence  

the posterior estim ates to varying degrees, depending on relative accuracies, as has 

been explored  in detail already. W e have also considered p ossib le  errors in the prior 

inform ation in this context in order to probe their in fluence on the results, and w e  

have seen  that in  m any cases the estim ator is very robust. H ow ever, i f  the standards 

have physica lly  changed in the calibration interval, so that the prior values no longer
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properly describe the true situation, h o w  can w e be sure the posterior estim ates w ill 

not be detrim entally influenced  by the prior inform ation? It is  this p o ssib ility  w e  now  

w ish  to investigate.

Drift on m ass standards is generally a result o f  surface contam ination and so  

w ill be a function o f  surface area. It is easy  to see  that surface area, A is related to 

m ass m, by A « m 2/3 for a standard h avin g cylindrical geom etry. For exam ple, for a 

m inim um  surface area cylinder, for w hich  height is equal to diam eter, w e  find  A
proportional to m and density p  according to:

2

i -1 ' Am?
I 2 JU p J

w h ile for standard O IM L -classified  shapes (O IM L 1994) ) w hich  are geom etrically  

more com plex , a quick  calculation  sh ow s that approxim ately the sam e proportionality  

with m ass rem ains. Thus a 5 0 0 g  standard w ill have 0.5^ the surface area o f  a lOOOg 

standard, and m ight be exp ected  to suffer 0.5^ o f  the contam ination experienced  by 

the lOOOg standard. In the previous section  w e  considered  an error o f  0.8 mg on 

parameter bi. In order to generate so m e synthetic data for analysis w e  w ill now  

suppose this is  due to drift— i.e. the prior value o f  2.0mg is in fact updated to take 

account o f  drift s ince the last calibration, w h ile  a value o f  1.2mg w ou ld  be u sed  i f  no 

drift error w as suspected. A ssum ing the other standards to have been  affected  to the 

sam e degree, w ill lead to the “drift error” o f  Table 10.3.1 b e lo w , w here the 

(mass ratio)% approxim ate proportionality m entioned  above has been  used.

Table 10.3.1: Simulated Drift Error

Parameter 
Nominal Value

Drift Error

1000g +0.8mg
500g +0.5mg
200g +0.27mg
100g +0.17mg

If w e  assum e that the prior data o f  T able 10.1.1 is indeed correct at the tim e o f  

m easurem ent, then to sim ulate an error due to m ass-additive drift (typical for seldom - 

used R eference standards. Frequently u sed  W orking Standards on the other hand  

w ould probably drift dow nw ards due to w ear.), w e need to subtract the drift error o f  

Table 10.3.1 above from  the prior inform ation, leading to the prior and estim ated  

values o f  T able 10 .3 .2  b elow , w here \|fY and \jrp, have not been changed  from  the 

original values. T he estim ated observations and residuals are show n in T able 10.3.3.
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Tabic 10.3.2: Comparison o f Prior and Posterior Data, after carrying out MAP Estimation (data in me )

P K - p )
/ \V2 

d ia g \y -J d ia g ( \ \r ^ f2 ^ P- P )

1.2 0.980735 0.219265 0.133485 0.25 0.283405
0.1 -0.0973078 0.197308 0.134876 0.75 0.762031
-1.4 -1.48421 -0.0842149 0.0673833 0.125 0.142005
-0.3 -0.334454 0.034454 0.0671767 0.375 0.380969
0.18 0.206088 -0.0260877 0.0276786 0.05 0.0571498
-0.23 -0.148253 -0.0817469 0.0291039 0.15 0.152797
0.9 0.964285 -0.0642848

i
0.0153515 0.05 0.0523036

-0.66 -0.587362 -0.0726381 0.0153016 0.075 0.076545

Tabic 10.3.3: Observations. Fitted Observations. Residuals and Measurement Sid. Dev. ( me )

Y Y (y - y ) diag(\\rY )y2

1.0666 1.07804 -0.0120427 0.05415
2.8 2.7994 0.000596272 0.04142
1.71666 1.721364 -0.00476107 0.03954
-1.175 -1.14976 -0.025239 0.02952
-2.4166 -2.50633 0.0947344 0.05971
0.191666 0.195073 -0.00347339 0.01440
0.348333 0.354341 -0.00604082 0.02291
-0.1666 -0.170835 0.00483518 0.02283
-0.535 -0.525176 -0.009824 0.02078
1.555 1.55165 0.00335322 0.08850

From th ese tw o  tables w e  can see that w e still have a good  fit to the 

experim ental data and also a satisfactorily  sm all D ifference V ector w hen  com pared  

with the standard deviation  colum n in the right o f  Table 10.3 .2  above. However, we 
can also see that the estimated parameter values in the second column of Table 10.3.2 
above are nothing like those we obtained earlier! S o  in spite o f  the fact that the 

estim ation technique has perform ed w e ll w ith  the inform ation supplied , it has not 

been able to uncover the drift error at all. T his once again h igh lights a critical 

w eakness in calibration experim ents w h ich  on ly  supply d ifference inform ation about 

the parameters o f  interest and m eans that the external prior inform ation m ust provide 

absolute values for the parameters. I f  this prior data is absolutely w rong, w e have a 

fundam ental problem  w h ich  no estimator cou ld  hope to circum vent. Thus in any m ass 

calibration experim ent, it is essen tia l that at least som e o f  the standards have been
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recently calibrated to satisfactorily h igh accuracy for the current requirem ents. This 

may w ell seem  a self-ev ident statem ent, but is worth em phasizing  since the 

capabilities o f  the M A P  estim ator are such that it w ould  be p ossib le  to “calibrate” a 

group o f  standards w ith respect to th em selves only, on ce an initial calibration had 

been perform ed w ith  external standards. T he very real p ossib ility  o f  drift in the 

physical value o f  the standards renders this a dangerous idea indeed.

Therefore, let us am end the situation in our sim ulation by on ly  letting som e o f  

the standards be subject to drift. L ooking at the prior inform ation in T able 10.1.1  

show s that standard bi has higher accuracy than b2, and sim ilarly for the pairs b3 & b4, 
b5 & b6, ¿»7 & b8. S o  w e  w ill adopt the realistic situation that standards bi,b3,bs & &7 

are R eference Standards w hile the other four are T est Standards. In this case , w e w ill 

assum e the sam e drift error applies to these latter four only as applied to all eight in 

the first attempt above. T he prior and posterior values are show n in T able 10.3.4  

where the four “in-error” parameters have been  highlighted.

Table 10.3.4: Comparison of Prior and Posterior Data, after carrying out MAP Estimation (data in m it)

Up P (m-p-P) d i a g [ y ^ 4*p - p)

2.0 1.93936 0.0606411 0.133485 0.25 0.283405

0.1 0.862356 -0.762356 0,134876 0.75 0.762031

-0.9 -1.00357 0.103566 0.0673833 0.125 0.142005

-0.3 0.146919 -0.446919 0.0671767 0.375 0.380969

0.45 0.403082 0.0469178 0.0276786 0.05 0.0571498

-0.23 0.0420053 -0.272005 0.0291039 0.15 0.152797

1.07 1.06216 0.00783698 0.0153515 0.05 0.0523036

-0.66 -0.491863 -0.168137 0.0153016 0.075 0.076545

In this situation w e see  that the four parameters w ith an uncorrected sim ulated drift 

have had their prior values nearly perfectly  corrected by the estim ation  'process, and 

w e are returned to posterior values very c lo se  to those obtained in the first estim ation  

with “correct” prior data. (Table 10.1.3). Satisfactory agreem ent w ith the experim ental 

data has also been obtained, as show n in T able 10.3.5 below . O f course w e  have seen  

this situation already: what w e have is one set o f  prior values (b2,b4,b6 &  b8) having a 

larger prior variance than the other four. Therefore, i f  they are in error, they w ill easily  

be adjusted by the estim ator, as w e  have seen  in previous sections. If they have a 

larger variance and are not in error they w ill not be adjusted sign ificantly  but w ill 

sim ply have their posterior variance reduced by the estimator.
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Table 10.3.5: Observations. Fitted Observations. Residuals and Measurement Std. Dev. ( mg )

Y Y (y - y ) d ia g{\|/Y)1/2

1.0666 1.077 -0.011003 0.05415

2.8 2.79601 0.00399356 0.04142

1.71666 1.719 -0.00240348 0.03954

-1.175 -1.15048 -0.0245151 0.02952

-2.4166 -2.51082 0.0992168 0.05971

0.191666 0.193694 -0.00209389 0.01440

0.348333 0.361077 -0.0127769 0.02291

-0.1666 -0.167218 0.00121801 0.02283

-0.535 -0.528295 -0.00670505 0.02078

1.555 1.55403 0.000974214 0.08850

T o illustrate the situation m ore clearly, le t us set v|/p as in  F ig. (1 0 .3 .1 ) below  

where w e  have attached a sca lin g  parameter v to the prior variance o f  each o f  the 

parameters (b2,b4 ,b6 & bg).

'0.0625 0 0 0 0 0 0 0
(0.5625)v 0 0 0 0 0 0

0.015625 0 0 0 0 0
(0.140625)v 0 0 0 0

Vp - 0.0025 0 0 0
sym m (0.0225)v 0 0

0.0025 0
(0.005625)v

Fig. 10.3.1: Alternative Prior Covariance Matrix, \|/p

B y scaling v over a w id e range o f  va lues it is n ow  p ossib le  to adjust the in fluence o f

the four parameters in question. W e do this for tw o  cases: one in w hich  the sim ulated  
drift error is present on ( ip , and one for w h ich  it is not— i.e. the correct prior data, as

in Table 10 .1 .1 , is u sed— and w e  let v vary in the range ~(0,oo)for the tw o  cases. The

result, sh ow n  in F ig . (1 0 .3 .2 ), for ju st parameter b2, illustrates the situation very

clearly: prior data g iven  a low  degree o f  b e lie f  w ill be adjusted sign ifican tly  by the

estim ator, if the evidence demands it, and the posterior estim ate w ill be assigned  a

low er variance o f  course. If the prior inform ation in question is in good  agreem ent

with the rest o f  the ev id en ce (other prior data and current data) little adjustm ent to its

value w ill result w h ile  the large prior variance w ill be reduced. If on the other hand, as

w e have remarked several tim es before, the prior data in question is assigned  a very

high degree o f  b e lie f, little or no adjustm ent to its value w ill be p ossib le , irrespective

o f what m ight be required.
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L°g io M

Fig. 10.3.2: Posterior Estimate for b2 using as given in Table (10.3.4). Two cases are given:

“Using Incorrect Prior” refers to the simulated drift error on parameters (b2,b4,b6 & h8) as discussed in 
the text; the other curve shows the situation using the normal prior data as given in Table 10.1.1.

Thus, providing som e o f  our prior inform ation is know n to be accurate (w hich  

will be reflected  in its variance), inaccurate, or invalidated prior inform ation can be 

easily  dealt w ith providing its variance is m ade su fficien tly  large to a llow  any 

necessary adjustm ents. H ow ever, it m ust be pointed  out that there is a fundam ental 

problem here: h o w  do w e  d ecid e w hich  standards are the m ost accurate? S uppose that 

all standards in vo lved  in a com parison have very sim ilar prior variances. Then it m ay  

be m ore d ifficu lt to d ecide to increase the prior variance o f  som e, rather than others, 

the d ifference b etw een  the various options p ossib ly  affecting the posterior estim ates 

significantly, i f  there w ere indeed errors in the prior inform ation. (If there w ere no 

errors, the d ifference w ou ld  be m inim al.) T o answ er this d ilem m a w e  m ust turn to our 

criteria o f  log ica l reasoning: w e  m ust consider w hich  is physica lly  m ost lik e ly  to be 

subject to error (drift), based  on the treatment it has received  since the last 

calibration— and indeed, the tim e interval since the last calibration. W e m ust also  

consider any other calibrations any o f  the standards have been in vo lved  w ith, w hich  

m ight increase (or decrease!) the justification  for considering the prior inform ation to 

be still accurate. In m ass m etrology there is a natural hierarchy in reference standards 

which is generally used to answer this question, but the point rem ains that there could  

be potential d ifficu lties w hen w orking at one lev e l rather than betw een  lev e ls  in the 

calibration chain. T his issu e also has repercussions at the very top o f  the sca le at the
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level o f  the international primary standards, and is fundam entally in so lu b le  w ithout 

som e external inform ation— h ence the research thrust towards the non-artifact 

kilogram  standard! S ee  for exam ple B ecker et al, B eg o  (1995), D a v is  (1 9 8 9 ), Frantzus 

(1996), O lson  (1991), Quinn (1 9 9 1 ), R obinson & K ibble (1 9 9 6 ), (1 9 9 7 ), Steiner  

(1996), Steiner et al (1997), Taylor (1991).

10.4 Example III

In this final exam ple the sam e 10 x 8 design  schem e as u sed  in the previous 

exam ple is em ployed  (reproduced in Fig. (10 .4 .1 ) below ). T he sam e nom inal values o f  

parameters— i.e . lOOOg to lOOg are used , the important d ifference here b eing  that 

prior inform ation is on ly  available for the first tw o standards (the lOOOg standards). 

The rem aining eight are n ew  standards w hich have never been  calibrated before. This 

is reflected in the central tw o colum ns o f  Table 10.4 .1— the prior data. T his exam ple  

is also sim ilar to E xam ple I insofar as one o f  the standards (bj) has a m uch higher  

prior degree o f  b e lie f  than the other. Parameter ¿ 2 had not p reviously  been  calibrated  

for several years and w e w ill u tilise  this situation to exp lore p ossib ilitie s  for correcting  

drift on the prior inform ation in the con text o f  the M A P  estim ator.

1 -1 0 0 0 0 0 0
1 0 -1 -1 0 0 0 0
0 1 -1 -1 0 0 0 0
0 0 1 -1 0 0 0 0
0 0 1 0 -1 -1 -1 0
0 0 0 1 -1 -1 0 -1
0 0 0 0 1 -1 0 0
0 0 0 0 1 0 -1 -1
0 0 0 0 0 1 -1 -1
0 0 0 0 0 0 1 -1

Fig. 10.4.1: Design Matrix

Table 10.4.1: Prior Information

Parameter Nominal 
Value ( g )

Prior Value 
(deviation) (M-g)

Std. Dev 
(M-g)

Volume 
( cm3 )

Vol. Std. Dev 
( cm3 )

b l 1000.0 -960.0 75.0 124.219 0.01

b 2 1000.0 +2723.0 250.0 126.936 0.02

b 3 500.0 » 62.124 0.005
b4 500.0 _ _ 62.125 0.005

b 5 200.0 24.849 0.003

b 6 200.0 _ _ 24.849 0.003
by 100.0 - « 12.4261 0.0011

b 8 100.0 - - 12.4254 0.0011
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Fig. (1 0 .4 .2 ) b e lo w  illustrates the relevant prior vectors and covariance m atrices. 

O bserve that parameters b2 to b8 have prior values o f  0 fig accord ing to  (ip in Fig. 

(10 .4 .2), w h ich  m ight seem  strange since according to T able 10.4.1 w e  are not 

warranted in assign in g  any prior values to these parameters. H ow ever, note a lso  that 

w e have not sp ec ified  i|/p, but rather \|/p' in Fig. (10 .4 .2 ). From  this w e  can see  that

the prior variance o f  parameters ¿2 to b8 w ou ld  be 00 and h en ce w e  can assign  any 

prior value w e  lik e  as it w ill have no effec t upon the posterior estim ate. (O f course w e  

can on ly  easily  do this because \]/p is diagonal: for exam ple, i f  w e  had know n  

covariances betw een  parameters bl & b2, th ings w ould  not be com putationally  so  easy  

as w e w ould  be faced  w ith the problem  o f  sparse m atrices to deal w ith .)

-960.0' 177.77
2723.0 16

0 0 0
0 0

Hp = 0 = 0
0 0 0
0 0
0 0

124.219' '100
126.936 400 0
62.124 25
62.125 "I 25cm :
24.849 9
24.849 0 9
12.426 1.21
12.425

pg2xl0-6

(cm3)2 xlO"

1.21

The experim ental inform ation for the 10 com parisons carried out on  the 8  parameters 

is given  in T able 10 .4 .2  b e lo w  T he d iagonal elem ents o f  \ | /AW (F ig. (1 0 .4 .3 )) are 

constructed from  colum n 2 o f  T able 10 .4 .2  plus a {J/ ĵyig2 term  arising from  a

uniform  distribution o f  ± l | i g  representing the com parator d isp lay uncertainty 

(rounding/digitisation error).(See Lira & W oger (1997) ) A n  air density  variance o f  

i 2(pa)=  l - 5 x l 0 -7(mg.cm-3)2 is used , fo llo w in g  the considerations leading to Eq. 

(3.2.5a). Eq. (4 .5 .1 7 ) is used  to construct \j/Y . R ecall that air density  matrix p in Eq.

(4 .5 .17) is form ed w ith  the 3rd co lum n o f  T able 10.4.2 on  its d iagonal and that w e  

h a v e\|/p = / ( p a) .I J0 in this case. W ith this inform ation Fig. (1 0 .4 .4 ) g iv es  the second

term on the r.h.s. o f  Eq. (4 .5 .17); this is the contribution to \\rY due to the air density

148



term in the W eigh in g  Equation. F ig. (1 0 .4 .5 ) g ives the third term  o f  Eq. (4 .5 .1 7 )  

which is the contribution due to the v o lu m e term in the W eigh ing  Equation. O bserve  

that this latter term contributes by far the largest to the overall covariance m atrix, \|rY ,

which is show n in Fig. (10 .4 .6 ).

Table 10.4.2: Experimental Information

A W  Gig) Variance. (|ig)2 pa ( mg.cm'3 ) AV ( cm3 ) Y  = A m  ( ng )

-508.166 0.3611 1.197208 -2.717 -3760.98

-125.833 0.0944 1.194606 ’ -0.030 -161.67

392.833 0.2277 1.193389 2.687 3599.47

-32.5 0.18333 1.211381 -0.001 -33.7

62.166 0.16111 1.198981 -0.0001 62.0

86.66 0.2444 1.186522 0.0016 88.56

20.20 0.1777 1.211495 0 20.20

17.5 0.1166 1.209898 -0.0025 14.47

-1.0 0.1333 1.209051 -0.0025 -4.02

-6.166 0.4277 1.199339 0.0007 -5.32

0 0 0 0 0 0 0 0 0
0.4277 0 0 0 0 0 0 0 0

0.5611 0 0 0 0 0 0 0
0.5166 0 0 0 0 0 0

0.4944 0 0 0 0 0
0.5777 0 0 0 0

05111 0 0 0
symm 0.45 0 0

0.4666 0
0.7611

Fig. 10.4.3: Covariance matrix of the observations ( |Xg)2

t2 —

1.10731 0
0.000135

0
0
1.082995

symm

0 
0 
0
1.5*10

-7

0
0
0
0
1.5*10~

Fig. 10.4.4: t2 (= diag(X V )y pdiag(X V })(Ig2

o 
o 
0 
0
0
3.84*10

-7

0
0
0
0
0
0
0
9.375*10"

0
0
0
0
0
0
0

0

9.375*10~

0
0
0
0
0
0
0

0

0
7.35*10
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’ 716.653 143.019 -571.493 0 0 0 0 0 0 0
214.062 71.281 0 -35.808 -35.435 0 0 0 0

640.880 0 -35.771 -35.399 0 0 0 0

73.372 36.311 -35.933 0 0 0 0
63.554 25.607 0 -11.300 -11.293 -1.740IIfTi

■M

62.240 0 -11.183 -11.175 1.722
26.419 13.192 -13.182 0

symm 16.717 3.540 0
16.694 0

3.481

F ig . 10.4.5: t 3 (=  pX\j/vX T

143.019 -571.493 0 0 0 0 0 0 0
214.49 71.281 0 -35.808 -35.435 j 0 0 0 0

642.523 0 -35.771 -35.399 0 0 0 0
73.889 36.311 -35.933 0 0 0 0

64.0488 25.607 0 -11.300 -11.293 -1.740
62.8177 0

26.9293
-11.183

13.192
-11.175
-13.182

1.722
0

symm 17.1672 3.540
17.1605

0
0
4.2413

Fig. 10.4.6: Complete Covariance Matrix of the input data ( )ig )2

N ow , using th is inform ation w e  can evaluate the parameter estim ates and their 

respective covariances using Eqs. (8 .3 .1 5 ) &  (8 .4 .5 ). T hese are show n in T able 10.4.3  

along w ith the relevant prior data, for com parison purposes; w h ile  F ig .( 10 .4 .7) show s  

the com plete covariance matrix. From  T able 10.4.3 w e can see  that both prior 

parameters b1 &  b2 have been updated and assigned  low er variances, in the case o f  b2 
a significantly low er variance. This latter point illustrating that the m ost accurate prior 

inform ation exerts the greatest in fluence, a point that has been m ade several tim es  

before. N ote  a lso  that the adjustm ent in each case  lies  com fortably w ith in  the bounds 

o f the com bin ed  standard deviation o f  the difference. (Com pare colum ns 3 & 6 in  

Table 10.4.3). T able 10.4 .4  illustrates the fitted  observations and residuals.

Table 10.4.3: Comparison of Prior and Posterior Data, after carrying out MAP Estimation (data in us )

P K - p ) $ ) - P )

-960.0 -966.385 6.38515 71.8705 75.0 103.88
2723.0 2793.95 -70.9462 75.866 250.0 261.26

-418.804 _ 36.8421
-386.367 _ 36.8386 T

_ -180.183 _ 14.9852 *

_■ -199.719 14.9851
_ -100.591 7.40093 _ _

- -94.6731 - 7.40071 - -
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[”5156.37 5106.99 2576.83 2576.83 1030.73 1030.73 515.367 515.367'
5755.65 2618.51 2618.51 1047.39 1047.39 523.695 523.695

1357.34 1320.84 528.423 528.423 264.332 264.122
1357.08 528.579 528.579 264.099 264.43

224.557 211.198
224.553

105.679
105.68

54.7737

105.637
105.638 
52.7796 
54.7705_

Fig. 10.4.7: Complété Covariance Matrix of the Parameter Estimâtes (¡J-g)2.

Table 10.4.4: Observations, Fitted Observations, Residuals and Measurement Sid. Dev. ( us )

Y Ÿ ( Y - f ) diag(\\rY)V2

-3760.98 -3760.33 -0.648696 26.804
-161.67 -161.214 -0.455955 14.645
3599.47 3599.12 0.352741 25.348
-33.7 -32.4374 -1.262640 8.596
62.0 61.6888 0.311221 8.003
88.56 88.2079 0.352122 7.926
20.2 19.5357 0.664279 5.189
14.47 15.0815 -0.611459 4.143
-4.02 -4.45426 0.434262 4.142
-5.32 -5.91826 0.598264 2.059

10.5 Correcting the Prior Information

In S ectio n  10.3, w h ile  d iscussin g  E xam ple H, w e noted how  w e  cou ld  adjust the 

plausibility o f  the prior inform ation in order to take account o f  p ossib le  drift or other 

errors. In this exam ple, w e  see that parameter b2 has a m uch larger prior variance than 

does bu and indeed it is  adjusted by a com paratively larger amount. B y  increasing its 

prior variance still further, w e  w ou ld  approach the situation w here this prior 

inform ation about b2 exerts no in fluence on the posterior estim ates and w e  could  then  

see the m axim um  adjustm ent p ossib le . A s w e  have remarked before, i f  there was no 

disagreem ent b etw een  prior and current data, the adjustment w ou ld  be m inim al. To  

the extent that w e  g iv e  b2 a fin ite  prior variance, w e are attaching value to this prior 

inform ation and a llow in g  it to in fluence the posterior estim ates
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H ow ever, i f  w e  know  before carrying out the estim ation  that b2 has drifted, 

should w e  update the prior value first? Or w ou ld  this be pre-em pting the estim ator  

which should be able to h igh light the drift a posteriori? (P rovid ing o f  course that 

there is other, independent and indeed accurate prior inform ation also  !) W e can  

answer this question  by yet again stating that any known information must be included 
in the analysis. H ow  m uch value w e attach to it is decided by the variance w e  assign  

it. W hether such inform ation on drift obtains from  a careful em pirical analysis or the 

studied opin ion  o f  the “Expert Observer” it still m ust have som e validity. S o  the 

natural question  for us to ask concerns the possib ility  o f  such ‘prior adjustm ent’ 

vitiating the posterior estim ate. In other w ords, accurate correction for drift should  

actually help the estim ator, but w ou ld  over-enthusiastic correction hinder it?

T o investigate, w e shall replace s2(b2) in \ |/p w ith  vx s2(b2) w here v is on ce

again a m u ltip licative scalar, and com pare the posterior estim ate for a range o f  v 

values in situations o f  no drift correction, a moderate drift correction, and a m uch  

larger drift correction. T he situation is presented in Fig. (1 0 .5 .1 ) below .

l ° 910 (v)

Fig. 10.5,1: Posterior Estimates of b2 for 3 different ‘prior correction of drift’ situations. The x-axis 
parameter v controls the prior variance of b2, as discussed in the text.

T he con clu sion  w e  can draw from  this inform ation is  that the m ost important 

way to tackle the p ossib ility  o f  drift or other errors in parts o f  the prior inform ation is 

to ensure that its degree o f  b e lie f  is low er than that o f  the other prior inform ation, as 

w e have remarked before. Then any other adjustments to include suspected  drift
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cannot adversely affect the posterior estim ates. W e can see from  Fig. (1 0 .5 .1 ) above  

that a correction o f  +75fig results in very good  agreem ent w ith  the other inform ation  

since very little adjustm ent takes p lace irrespective o f  the prior variance. T he other 

tw o cases o f  no adjustm ent and what seem s to  be too m uch adjustm ent are largely  

corrected by the estim ator providing s2(b2)> s2(bl). This is quite intu itive as it sim ply

tells us that the m ore “accurate” inform ation exerts a greater in fluence, but it is 

important to draw attention to it, sin ce it highlights the log ica l nature o f  this 

estim ation technique and show s how  it does im plem ent criteria o f  p lausib le reasoning  

with whatever inform ation is supplied. T he im perative rests w ith  the experim enter to
J

supply physica lly  relevant data and to be aware o f  the lim itations o f  the m athem atical 

tools w hich  can on ly  operate on the supplied  inform ation.
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IT. EXPERIMENTAI, SYSTEM

In this chapter w e w ill consider the hardware and softw are u sed  in the 

experim ental w ork w hich  w as carried out at the N ational M etro logy  Laboratory, 

Forbairt, D ublin , and the data reduction carried out prior to the param eter estim ation  

process. W e w ill h igh light som e interesting experim ental results and poin t out the 

effects o f  various system atic problem s on the data w hich  lead  to inconsistencies  

am ong group com parisons and later problem s in the parameter estim ations. S om e  

sam ple data is g iven  to illustrate the m ethods used.
I

A t the heart o f  the calibration system  are the m ass com parators u sed  in the  

com parison experim ents. In this case , com m ercia lly  available, autom ated instrum ents 

based on the electrom agnetic force com pensation  principle are used . T h ese  are 

equipped w ith  m icro-position ing  turntables for alternately p lacing  each o f  the tw o  

w eights (or com binations o f  w eights) invo lved  in the com parison on the load  pan. A  

self-centring m echanism  and a lever arrangement in vo lv in g  flexu re strips (see , e.g . 

Quinn et al (1 9 8 6 /8 7 ) ensures high reproducibility can be ach ieved . A  standard R S 2 3 2  

serial interface is provided and a sim ple instruction set applies to all the instrum ents 

allow ing for easy com puter control to be im plem ented. Table 11.1 b e lo w  sh ow s the 

instruments u sed  in this study along w ith their respective ranges and accuracies.

Table 11.1

Instrument R ange Readability Rated Std. D ev .

Sartorius C 50s 10 g - ^ 5 0  g 1 MS 10g : 4  fig 
2 0 g  : 5 fig 
50g  : 6 fig

Sartorius C 1000s 100 g 1000 g ¿MS 100g, 2 0 0 g  : 2  fig
500g , 1000g : 5 fig

Sartorius C l0 0 0 0 s 2 kg —> 1 0  kg 0.1 mg 0.1 mg v

Sartorius C 2 0000 10 kg —> 2 0kg 1.0 mg 1.5 mg

Second ly , w e  need instrum entation to m onitor air temperature, barometric 

pressure and relative hum idity in order to calcu late air density and the system atic  

buoyancy correction. A gain  the instrum ents u sed  are equipped w ith serial interfaces 

and can be interrogated by the controlling com puter. Table 11.2  lists  the equipm ent 

used. T he 'system  accuracy' listed  in T able 11.2 below  is a standard uncertainty  

obtained from  instrum ent calibration certificates.
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Table 11.2

Instrument R ange R esolu tion S ystem

A ccuracy

Hart S cien tific  M od el 1502  

R esistance B ridge w ith M odel 1514  

PRT Probe

-100°C -4  +300°C 1 mK 60  mK

Druck M odel D P I 141 R esonant 

Sensor Barom eter

800 —» llO O m ßar 1 Pa 
(0 .0 1  mBar)

15 Pa

V aisala M od el H M P 233  

Capacitative H um idity Probe

5% 95% RHi
0.1 % 2 %

E xten sive softw are has been  sp ecia lly  written as part o f  this research w ork to 

allow  these instrum ents to be controlled  by a com puter.1 Here its principal features 

and m ode o f  operation w ill be described. B y  m eans o f  an eight-port serial interface 

card (Brain B o x es  L ynx 8-Port R S 232), it is  p ossib le for the com puter to control 

several instrum ents at once. S o  the com parator in u se  and the three environm ent- 

m onitoring instrum ents are all connected  to the on e com puter, w h ich  is physica lly  

located som e distance from  them  in order to reduce unw anted interference and heat 

generation. T he softw are can then lo g  the w eight-in-air d ifferences m easured by the 

comparator and the temperature, pressure and hum idity at the tim e o f  m easurem ent. It 

is possib le to se lec t the start-time for an experim ent and its duration in order to a llow  

experim ents o f  arbitrary length to be carried out at arbitrary tim es. T his is particularly 

advantageous as it is then p ossib le  to com m en ce a com parison experim ent at tim es 

when the laboratory is 'quiet', e.g. n ight-tim e. T he 'length', or duration, o f  a 

com parison is not set by tim e, but by the num ber o f  repeat com parisons to be carried  

out by the autom ated comparator. It is also p ossib le  to carry out several 'batches' o f  

com parisons w ith  arbitrary intervals betw een  each, w ithout the need  for an operator to 

initiate each one. T he softw are graphically d isp lays the m easurem ents in real-tim e so  

that it is p o ssib le  to see  at a g lance the current m ean value and standard deviation , and 

also the degree o f  stability or drift in the m easurem ents. T he availability  o f  these  

features has a llow ed  m any o f  the characteristics and dependencies o f  the m easurem ent 

process, described later, to be observed. F ig. (11 .1) below  illustrates schem atically  

how the various com ponents interconnect. N ote  that temperature and hum idity are 

m easured inside the enclosure o f  the com parator, and thus in the sam e m icro-clim ate  

as the standards them selves. Pressure is m easured at approxim ately the sam e elevation  

as the standards on an adjoining bench.

1 Unpublished software documentation and source code describes the details of this. See also the 
published work Software Applications in Mass Metrology reproduced in Appendix 5.
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Icinp. humidity’ ptlvSSlljV

PC

Fig. 11.1: Experimental System

W e now  w ish  to exam in e h ow  this system  deals w ith the data. Fig. (11 .2 ) b elow  

show s a typical "raw data" file . Currently, the softw are on ly  d isp lays the w eight-in-air  

values graphically, it does not sp lit up the other com ponents. In the file  fragm ent in 

Fig. (11 .2) there are 11 colum ns: the first is the tim e in seconds from  the start o f  the 

experim ent. T his is needed for graphing the data. If there are several sets o f  

com parisons in the file , each separated by  a tim e interval, this w ill a lso  be reflected in 

the tim e colum n, and thus the 'gaps' w ill appear in the graph. T he second  colum n  

show s the W eight-in -A ir d ifference (in ¡.Lg) o f  the tw o standards or sets o f  standards, 

as evaluated by  the comparator. The rem aining 9 colum ns g iv e  the clim ate data in 

three sets o f  three— one set for each o f  temperature, pressure and hum idity. The 

reason for this is as fo llow s: the com parator operates an A -B -B -A  com parison  

sequence and returns data to the PC  in tw o sets: A 1; B j & A 2, B 2. T he PC queries the 

clim ate-m onitoring equipm ent before the start o f  the sequence, in the m iddle o f  the 

sequence w hen the first pair o f  A , B  readings are returned, and again at the end o f  the 

sequence. Thus the third clim ate readings o f  set n and the first o f  set n+ 1 w ill be 

nearly identical since they are on ly  separated by m illiseconds.

This inform ation m ust n ow  be processed  in order to generate m eaningful data 

with w hich  to estim ate the parameters. This is done by m eans o f  a set o f  routines 

which form at the raw data into a set o f  file s  containing W eigh t in A ir data, 

temperature, pressure and hum idity data. Each file  so generated a lso  contains the tim e 

information, so  that the data sets can b e individually graphed. T he temperature, 

pressure and hum idity file s  are obtained by taking m eans o f  the three values in the raw  

data file— i.e. an average for each m easurem ent cyc le  is used. A  density calculation
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program form s an air density file  from  the temperature, pressure and hum idity files , by 

im plem enting the '8 1 /9 1  Equation for A ir D ensity  (D avis (1 9 9 2 )). F inally  a buoyancy  

calculation program takes the W eight in A ir file , the air density  file , and the 

appropriate vo lu m e difference for the com parison and evaluates the true m ass 

difference for the standards. Fig. (11 .3 ) sh ow s the format o f  this data processing  

arrangement. T he softw are routines are described in A ppendix  2.

1433. -118.0 20.624 20.624 20.631 1018.250 1020.450 1020.620 37.410 37.510 37.520
2009. -120.0 20.630 20.634 20.637 1020.680 1020.680 1020.760 37.520 37.540 37.540
2584. -122.0 20.637 20.639 20.644 1020.770 1020.770 1020.870 37.550 37.540 37.530
3160. -124.0 20.644 20.648 20.653 1020.930 1020.930 1020.920 37.520 37.490 37.480
3735. -121.0 20.653 20.656 20.660 1020.990 1020.990 1021.040 37.480 37.460 37.440
4310. -122.0 20.660 20.662 20.664 1021.090 1021.100 1021.190 37.450 37.420 37.390
4885. -123.0 20.664 20.668 20.672 1021.200 1021.210 1021.210 37.390 37.360 37.310
5461. -122.0 20.671 20.676 20.680 1021.300 1021.380 1021.400 37.310 37.300 37.270
6037. -122.0 20.679 20.681 20.683 1021.400 1021.400 1021.350 37.270 37.240 37.190
6613. -122.0 20.683 20.685 20.688 1021.400 1021.410 1021.450 37.210 37.160 37.100
7188. -122.0 20.689 20.693 20.697 1021.530 1021.540 1021.580 37.110 37.080 37.060
7764. -121.0 20.697 20.698 20.698 1021.580 1021.570 1021.620 37.050 37.020 37.000
8340. -120.0 20.697 20.699 20.701 1021.660 1021.660 1021.680 37.000 36.960 36.940
8916. -121.0 20.701 20.705 20.707 1021.660 1021.660 1021.810 36.930 36.900 36.880
9492. -120.0 20.707 20.708 20.707 1021.880 1021.890 1021.930 36.870 36.870 36.860

Fig. 11.2: Example data File from the data acquisition program

Vol. Diff. of Standards

Fig. 11.3: Diagram of the Data Processing Procedure Used
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Fig. (11 .2 ) ab ove illustrated the data available from  Stage I o f  the process. F igs.

(11.4) to (11 .7 ) b e lo w  sh ow  sam ple p lots o f  the data available after stage n .  U su ally  

the m easurem ent system  w as operated for a m inim um  o f  12 hours, and often  longer. 

W hile this amount o f  data is  not in principle needed  to establish  a m ean and variance 

for later work, it has been  found that the m easurem ent system  needs to be operated for 

sufficiently lon g  to a llow  various in itial system atic effects to be m in im ised , and also  

to confirm  that it has properly stabilised. There is scop e for autom ating this process, 

via  som e form  o f  S tatistical Process Control to ensure that valid  data is obtained. Fig.

(11.8) show s the corresponding air density graph, calculated from  the data in  F igs

(11.5) to (11 .7 ) by stage HI; w h ile  F ig  (11 .9 ) is the true m ass d ifference evaluated  by 

stage IV.

Time ( h r s )

Fig. 11.4: Typical Example of Weight-in-Air Data from Mass Comparator
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Fig. 11.7: Corresponding Rel. Humidity Graph for Fig. 11.4
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Fig. 11.9: Calculated True Mass Difference from Figs 11.4 & 11.8 [AV = -0.158cm3]

A n analysis o f  these graphs a llow s accurate inform ation to b e extracted about 

the com parison process and valid  data to be available for the parameter estim ation  

m ethods d iscussed  earlier in this work. For exam ple, in the graphs sh ow n  it is 

apparent that the system  has settled  after the first 10 hours and from  that point on  

accuracy is lim ited  by the resolution  o f  the instrument. Indeed F igs (1 1 .4 ) &  (11 .9) 

show  clearly w hy w e  are ju stified  in includ ing a U niform  distribution in the 

uncertainty analysis o f  width equal to the d isp lay resolution o f  the instrum ent. N ote  

also that there is a d istinctive period o f  instability in the data during the first 4  to 5 

hours w hich  is not accounted for by the system atic buoyancy correction, s ince it is still 

there in Fig. (1 1 .9 ) after the correction has been applied. That it is a system atic error is 

w ell know n sin ce it alw ays appears on all data sets. It is quite likely  to b e related to a 

temperature e ffec t since, from  Fig. (11 .5 ), w e  can see a temperature rise on ce the 

m easurem ent process has begun. T his is a system atic temperature rise alw ays noted  

once the com parator com m en ces operation and m ay be due to the m otors u sed  in the 

load alternator for exam ple. Fig. (1 1 .1 0 ) is a graph show ing the temperature p rofile in 

the com parator cham ber before, during and after a com parison experim ent: the rise in 

temperature during the experim ent and the subsequent fa ll-o ff afterwards is  quite 

evident. The type o f  behaviour show n in Fig. (11 .9 ) leads to the w ell-k n o w n  idea o f  

“exercising” the balance prior to obtaining data in order to ensure a steady state 

situation is reached. There is sign ificant current research effort on -g o in g  to better 

understand the behaviour o f  flexure strips and torsion strips sim ilar to those used  in
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mass comparators (e .g . Quinn et al. (1997a), (1997b ), K uroda (1 9 9 5 ) to m ention  a 

few ) and it is p o ssib le  that there m ay be additional system atic e ffec ts  concern ing the 

balance m echanism s, such as anelasticity for exam ple, w h ich  m ay also  have a bearing  

on the comparator characteristics w e observe. In any event w e  can con clu de that there 

is a "stabilisation time" required once the com parator has been  started before it is 

possib le to arrive at the desired measurand. O f course i f  th is prelim inary e ffec t could  

be adequately m odelled , an appropriate additional correction cou ld  be applied  and a 

corresponding standard uncertainty term included, but at the m om ent, s in ce  it is a 

transient effect the approach o f  a llow ing it to d im inish  is adequate for our purposes.

Time ( h r s )

Fig. 11.10: Temperature plot for before, during and after a typical comparison experiment.

This type o f  analysis illustrates the im portance o f  fu lly  understanding the 

m easurem ent process in order to correctly realise the desired  measurand. For exam ple, 

a practice o f  sim ply  operating the com parator for 6, 8, or 10 cyc les and taking mean  

values and standard deviations w ould  be very inadequate here and w ou ld  lead to 

system atic errors in the later analysis— w h ich  m ight w ell be evident if  the M A P  

estim ator w ere used, but their cause w ou ld  not be identified  w ithout the type o f  

practical analysis illustrated here. The practice in this w ork has been  to extract 6 

repeat m easurem ents from  an ob viou sly  stable region o f  the graph and obtain mean  

and variance inform ation w ith these. N o w  this process is adm ittedly open to the 

criticism  o f  being 'subjective' and such questions as 'when is the process ob viou sly  

stable?' etc. In the present case w e can counter w ith the criterion that when the
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corrected m easurem ent results are clearly on ly  lim ited  by the accuracy/resolution  o f  

the instrument, there are no further corrections needed, and the data can then be 

subjected to the desired statistical tools. H ow ever, as m entioned earlier, this is  a p lace  

where Statistical P rocess Control m ethods cou ld  be im plem ented w ith  profit: a 

criterion could  be set for w hen the corrected results are deem ed acceptable and the 

process repeated until it converges to this point. It w ould  be important that only  

corrected results are u sed  in such an analysis, s ince system atic errors lik e  the 

buoyancy correction w ou ld  introduce obvious drift. T his w ould  form alise the d ecision  

m aking process in a manner com patib le w ith the general goal o f  perform ing
t

measurem ents and uncertainty analysis in a uniform , coherent and w ell-d efin ed

manner.

S om e system atic errors can be quite subtle and difficu lt to pin dow n. For 

exam ple, in the course o f  som e o f  this work, a problem  o f  lack o f  reproducibility  

betw een experim ents appeared. T w o standards w ere com pared over a period o f  a few  

w eeks and con flictin g  results em erged. F igs. (11 .1 1 ) to (11 .18 ) sh ow  the data for 4 

com parisons on  the sam e pair o f  1kg standards. In each case the w eight-in-air  

difference, physical m ass d ifference, and clim atc data is reproduced. It can be seen  

that in m ost cases the buoyancy correction rem oves the drift w h ich  is ob viou s on the 

w eight-in-air p lots, although in the case o f  com parison 2 (Fig. (1 1 .1 3 )) a significant 

drift-in  the op posite  d irection -still rem ains afterwards. Fig. (1 1 .1 9 ) sh ow s the true 

mass values for all 4  com parisons on one p lot and they are clearly not in agreem ent. 

This was troublesom e and suggested  som e system atic effect was causing a problem . It 

was difficu lt to establish  ju st what this was since the buoyancy correction for each  

individual com parison seem ed  satisfactory, but w hen several w ere com pared together  

the inconsistencies surfaced. T his w ould  have caused problem s in statistical fitting o f  

the parameters and poor results w ould  fo llow .
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Fig. 11.11: Weight in Air & Physical Mass Differences for Comparison 1
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Fig. 11.12: Temp., Pressure, Rel. Hum. & Air Den. for Comp. 1
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Fig. 11.13: Weight in Air & Physical Mass Difference for Comparison 2

Fig. 11.14: Temp., Pressure, Rel. Hum. & Air Den. for Comp. 2
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Fig. 11.15: Weight in Air & Physical Mass Difference for Comparison 3
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Fig. 11.16: Temp., Pressure, Rel. Hum. & Air Den. for Comp. 3
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Fig. 11.17: Weight in Air & Physical Mass Difference for Comparison 4
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Fig. 11.18: Temp., Pressure, Rel. Hum. & Air Den. for Comp. 4
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Fig. 11.19: Physical mass Difference plots from Comps 1-4 showing the inconsistencies referred to in 
the text.

H ow ever, w hen  the true m ass values are plotted  as a function  o f  h u m id ity -see  

Fig. (11 .20) b e lo w -a  large non-linear effect im m ediately  appears, b eing  greatest for 

low er values o f  relative hum idity. Thus there is a 'hidden' system atic effect, nam ely  

the comparators are b ein g  influenced by am bient hum idity. T his is m ost lik e ly  due to 

an electrostatic e ffec t on  the instruments. N o w  i f  this cou ld  be m od elled  properly a 

suitable correction cou ld  be applied to the data w hich  w ou ld  bring the d ivergent 

results back in lin e  w ith one another and o f  course the functional relationship for the 

true m ass d ifference w ou ld  then be adjusted accordingly. In Fig. (1 1 .2 0 ) a second  

degree polynom ial is fitted  through the data, but this is really for illustrative purposes 

to show  the dependency and should not be taken as the correct fit to the data. It 

appears from  the data that the effect d im inishes at higher leve ls  o f  hum idity. T his data 

was obtained during the startup phase o f  a new  laboratory facility  and on ce the 

hum idity leve ls  w ere stabilised  at m ore suitable lev e ls  (-5 0 % ) the problem  is not 

manifest.
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%ReL Humidity

Fig. 11.20: Physical Mass Difference for Comps. 1-4 plotted as a function of % Rel. Humidity

N ote as an aside that in F igs. (1 1 .1 2 ), (11 .14 ), (11 .1 6 ) &  (1 1 .1 8 ), the 

temperature p lots show  the characteristic rise o f  ~ 0 .2  K  at the start o f  each  

experim ent w hich  has been m entioned before. Other exam ples o f  system atic effects  

due to con vection  and thermal gradients have been d iscussed  by G laeser (1990), 

G laeser & D o  (1 9 9 3 ) and M acurdy (1964).

To conclude, w e have show n in this section  how  the data used in the parameter 

estim ation techniques w as obtained and h igh lighted  the principal procedures involved . 

It is very im portant that the experim ental system  is properly m od elled  and that steps 

are taken to elim in ate or correct for any k now  system atic errors affecting the process. 

Computer control is usefu l here as large am ounts o f  data can then easily  be gathered  

from w hich  trends in the data can be deduced. It is important that the functional 

relationship u sed  to generate the m easurand is supported by the observations from  the 

data. Finally it is to this area one m ust return i f  the parameter estim ation  technique  

suggests d isagreem ents/inconsistencies in the experim ental inform ation. It is alw ays 

possib le that an e ffec t has been  overlooked , or a p ossib le physical correlation w hich  

should have been  built into the covariance m atrices w as not.
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12. Conclusion

A  central them e o f  the w ork reported in this thesis is the estab lishm ent o f  a 

coherent m eth odology for analysing experim ental data. T his applies both  to direct 

analysis o f  m easurem ents in the area o f  uncertainty propagation and a lso  to any 

subsequent p rocessing  or parameter estim ation  for w hich  these in itial m easurem ents 

w ill form  a basis! W e have show n h ow  so m e basic rules o f  con sisten t reasoning, 

underlying c lassica l probability theory, can b e applied to all aspects o f  the work, 

leading to im proved results and a better understanding o f  the nature o f  the quantities 

under investigation.

A  critical p o in t relates to the understanding o f  probability theory in a broader 

sense than ju st an exam ination o f  relative frequencies in experim ental trials and 

involves realising that probability m easures g iv e  us a degree o f  p lausib ility  or b e lie f  

w hich w e can assign  to any estim ate or m easurem ent. T his should  b e based  on a 

com plete analysis o f  all available inform ation including any background, or prior 

information. W e have pointed out that all probabilities are subjective inasm uch as 

they are based on  the currently know n inform ation but that nevertheless it is p ossib le  

to ensure that they are unbiased by adhering to  the rules o f  con sisten cy  throughout the 

analysis.

T he core o f  the uncertainty propagation m ethod develop ed  is the general law  o f  

error propagation as presented in the ISO  G uide. The theory underlying this has been  

considered and sh ow n  to be in agreem ent w ith  the U n ified  Approach d evelop ed  in  this 

thesis. W e have h ighlighted  h ow  it leads to a coherent m eans o f  expressing  

m easurement uncertainties in a w ay that can easily  be incorporated into other w ork as 

required. M uch effort has been expended  in develop ing  a m easurem ent philosophy  

based on the v iew  o f  probability theory outlined  in the preceed ing paragraph, in order 

to show  the usefu lness and accuracy o f  the ISO  approach as a m eans to describe  

experim ental m easurem ents.

A  useful and indeed necessary exten sion  to the ISO  procedure has been the 

consideration o f  the M axim um  Entropy form alism  w hich  greatly aids in the 

im plem entation o f  an unbiased analysis. O nce again the log ica l con sisten cy  

considerations o f  probability theory are central requirem ents to this developm ent.

This fram ew ork o f  the ISO uncertainty propagation, supported by considerations 

o f logical con sisten cy  and m axim um  entropy, is then applied to m ass determ ination, 

looking initially at the m odel param eterisation o f  the experim ental procedure. The 

various influence quantities are considered in develop ing  the W eigh in g  Equation and
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its uncertainty propagation, in particular including the com ponents o f  uncertainty due 

to the system atic buoyancy correction. In this analysis the principles o f  consistent 

reasoning w ere applied  throughout, in order to ensure that all the inform ation w as 

included in an appropriate manner. T he m ultivariate form  o f  the W eig h in g  Equation  

was presented and its corresponding covariance m atrix developed , care b ein g  taken to 

point out the nature o f  the variances and covariances as statem ents about our degree o f  

b elie f in the m easurand estim ates. T he system  so  described provides a  very con cise  

and easily  m anipulated description o f  the relevant inform ation.

The second  m ajor section  o f  the theoretical developm ent o f  the th esis  has been  

concerned w ith  parameter estim ation  techniques and it is  here that w e  h ave seen  the 

full im plications o f  the U n ified  Approach, the groundw ork for w hich  has b een  laid in 

the early chapters. T he requirem ent has been that the sam e criteria and philosophy  

which guided m od el param eterisation and uncertainty analysis should a lso  b e  present 

in  this section  and this unification  o f  ideas led  to the rejection o f  con ven tion ally  used  

Restrained L east Squares, both because o f  its internal inconsistencies and a lso  because  

o f its failure to analyse the data in a m anner com patib le w ith  the b asic  criteria being  

im plem ented. T he sign ificance o f  this failure has been brought to light by  exam ples  

show ing the rigid ity o f  the technique: the constraints restrict the range o f  p ossib le  

values that can b e se lected  and in the case  o f  incorrect prior inform ation being  

provided, the estim ator is  not able to either overcom e the problem s or even  adequately  

highlight them .

In dealing w ith  this situation, it w as essen tia l to em ploy  a m ethod w h ich  w ould  

take full account o f  all know n data about the problem  in the correct manner. The 

A ugm ented D esig n  approach fu lfilled  these requirem ents w h ile  g iv in g  extra benefits 

in the form  o f  easier calculations and, esp ecia lly , sm aller posterior variance / 

covariances than the alternative R estrained L east Squares technique. T his w as seen to 

be a particularly p leasing  im provem ent, easily  understood in the light o f  the stochastic  

nature o f  all the available inform ation.

The ex p lic itly  B ayesian  approach o f  M axim um  a Posteriori estim ation  was 

presented in order to m ake a clearer illustration o f  the nature o f  the problem . W e  

pointed out the im portance o f  realising that prior inform ation is sim p ly  that w hich  is 

log ica lly  d istinct from  the current experim ent and show ed  h ow  all probabilities are in 

som e way conditional on  som e background or prior inform ation. T he application o f  

the basic criteria o f  probability theory led  directly to B a y es’ theorem  and a pow erful 

estim ation technique w hich  takes fu ll advantage o f  all that is know n about the 

problem. T he crucial requirem ent is the consideration o f  the necessary constraint
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inform ation as prior data having its ow n  dispersion  characteristics and covariance  

matrix.

A n interlude in  this developm ent d iscussed  a generalised  estim ation  technique, 

G eneralised G auss-M arkov estim ation, w here w e  saw  h ow  the essentia l d ifferences  

betw een the B ayesian  and L east Squares m ethods lie  in  the d ifference o f  interpretation  

o f  the constraint inform ation. G G M  can thus handle either situation w ithout prejudice  

to the other. Prior data having a null covariance matrix w ou ld  be treated ju st like  

constraints in the L east Squares approach, but no d ecision  has been taken in so  doing  

that prevents other data w ith  a non-zero covariance matrix from  being analysed in full.

In considering the B ayesian  estim ator w e  found an important role for the 

degrees o f  b e lie f  assigned  to  the various parameters and the relative accuracies 

betw een data sets (prior & current) in  obtaining the estim ated parameter values. W e  

saw how  this is particularly important in  dealing w ith incorrect data, this h aving  

greater or lesser in flu en ce depending upon the D egree o f  B e lie f  assigned  to it. W e also  

looked at the ranges o f  p ossib le  values and variances that cou ld  be assigned  to the 

parameters and found w orst case scenarios o f  the prior inform ation rem aining  

unchanged as w e ll as low er lim its to the im provem ents in accuracy that cou ld  be  

achieved in sequential estim ation.

In d iscussin g  errors on  the prior inform ation, w e raised the particularly  

important issue o f  drift on m ass standards w hich  cou ld  render the prior inform ation  

invalid or irrelevant. S in ce  the prior inform ation can exert a significant in flu en ce in 

the B ayesian analysis this is an important issue. W e pointed out how  it is crucial in 

mass calibration to h ave som e standards in vo lved  w hich  are recently calibrated to  the 

necessary accuracy and that a “w ithin-group” calibration o f  a g iven  set o f  standards, 

although p ossib le  w ith  the M A P  estim ator, should  not be co n secu tive ly  repeated  

without including other external standards. Provid ing this is done, then im plem enting  

a regim e o f  C onsisten t A n alysis and including all available inform ation should  ea sily  

allow  drift to be uncovered. W e pointed  out that the primary w ay to do this w as by  

adjusting the prior variances o f  som e o f  the prior inform ation. Then i f  the ev id en ce  

demanded it, the updated posterior values w ou ld  be adjusted as required. W e pointed  

out that suspected  drift cou ld  b e included  prior to applying the estim ator to the data 

but that doing this w as less  important than adjusting the prior degree o f  belief. 

H ow ever there can b e a fundam ental problem  here since in m ass determ ination there 

is no absolute independent external inform ation currently available so  the analyst m ust 

take care to supply p h ysica lly  relevant data and be aware o f  the lim itations o f  the 

mathematical m ethods.
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W e conclude that the U n ified  Approach, incorporating a C onsistent A n alysis, 

and careful attention to the physical nature o f  the problem  under consideration, 

applied throughout the data analysis in m ass determ ination leads to m uch im proved  

estim ates as a result o f  im plem enting a better understanding o f  the true nature o f  the 

information being processed . Further, the inclusion  o f  all available inform ation at the 

tim e o f  analysis is crucial in ensuring the success o f  the endeavour.

W hat has been produced is a unique package for data analysis w hereby a sm all 

set o f  matrix equations can com pletely  m odel all the available data and provide  

im proved estim ates o f  the parameters. T he technique is remarkable for its sim plicity  

and reliability, the capability to h igh light inconsistencies and errors in data being  

particularly attractive. S in ce the data is processed  in a un ified  m anner it can easily  be  

incorporated into other analyses.

O ne important point that w e  have highlighted  concerns the sign ificance o f  the 

buoyancy variance-covariance inform ation. It usually  happens that the uncertainty 

contribution from  this source is by far the largest elem ent o f  the experim ental 

covariance matrix. Thus it is very important not to neglect this inform ation, and also  

m otivation to look  for h igher accuracy w ays to determ ine the vo lum es o f  the standards 

since as w e  have show n in our case studies, these are a large contribution to the 

covariance matrix.

In d iscussin g  how  the B ayesian  Estim ator cop es w ith the problem  o f  drift 

affecting the prior inform ation, w e pointed out the ultim ate need  for truly independent 

inform ation to introduce into the calibration hierarchy. There are currently various 

endeavours in progress that w e  have cited previously  w hich  have this goal in m ind. 

U ltim ately this data on a non-artefact kilogram  realisation should  be o f  higher 

accuracy than ex istin g  standards and the B ayesian  Estim ator w ill then easily  a llow  it 

to exert a correspondingly greater influence on subsequent parameter estim ations. 

Thus the B ayesian  estim ation  technique prom ises to be a usefu l analytical tool in this 

work.

W e have already considered , in the final chapter, the u se o f  com puterised data 

acquisition system s. T h ese  w ill grow in im portance as autom ated and electronic  

comparators continue to grow  in sophistication  and becom e ever m ore w idely  used  

(see G laeser et al (1 9 9 2 ), H elm s (1997), K ajastie et al (1997) for exam ple.) W e have  

pointed out how  m any system atic effects in  the m easurem ent process can be 

pinpointed by analysis o f  large quantities o f  data w ith  the aid o f  com puter power. T he  

softw are used for data acquisition  w as sp ecia lly  produced as part o f  this research and 

therefore has been  tailored to the exact needs o f  the laboratory. (A  m odified  version  o f
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the softw are is currently u sed  by the N ational M etrology Laboratory, D ublin , and is 

discussed  in one o f  the publications reproduced in A ppendix  5). T his is the ideal 

approach since the softw are is then perfectly traceable and accessib le, a necessary  

feature to ensure h igh  standards in calibration (For other exam ples o f  com puterised  

calibration analysis system s see  for exam ple Kruh et al (1994) or D ikken  (1 9 9 7 ) ) .

It is clear that the co n c ise  package o f  experim ental m od elling  and parameter 

estim ation cou ld  easily  be built into a softw are package w hich  should  b e able to  

interface w ith  the data acquisition  software. In this w ay all the experim ental data can 

be loaded into an analysis program  w hich  can then construct the necessary vectors and 

m atrices and so lv e  the parameter estim ation equations.

Thus an apparently mature fie ld  like the calibration o f  m ass standards sh ow s  

m uch prom ise for interesting contributions to the fie ld  o f  uncertainty analysis in the 

future!

*1* «1« *1« *1« kt« *£* At* *1^r j ,  ry* f p  f j i  r j»  rf»  rf«  r j»  f j ,  f p
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Appendix 1: The Partial Derivatives of the Air Density
Equation

If w e  look  at the functional form  o f  the air density equation as g iven  in  Chapter

3 w e see:

PM,.
pu =  -

ZRT

f
f 1 M v 1

\

\ - x v 1 -------V

\ /
= f{P,Ma,Mv,Z,R,T,xv) (A . 1.1)

H ow ever, from  the equations in (3 .1 .1 8 ) & (3 .1 .1 9 ) w e can se e  that in fact Z  & xv are

both functions o f  T, P & h. S o  in fact:
pa =f(T,P,h,R,Ma,M‘) (A . 1.2)

To evaluate the partial derivatives, a Mathematica program w as used  in w hich  

the functional form s o f  all the equations needed  for Eq. (A . 1.1) w ere entered so  that 

an exp licit form  o f  the function  in terms o f  the six  parameters in Eq. (A . 1.2) w as 

produced. Mathematica cou ld  then easily  evaluate all the partial derivatives, 

them selves also functions o f  the six  influence quantities. Thus i f  the know n values o f  

R, Mv & Ma w ere supplied  a long w ith m easured values o f  T, P &  h it w ou ld  be easy  to 

find the particular values o f  the partial derivatives at that point. Program listing  A . 1.1 

at the end o f  this appendix show s a portion o f  the program used, including the 

function to calcu late the partial derivative w ith respect to temperature. T he com p lex  

expression show n is  the result o f  the Mathematica evaluation, expressed  in a form  

suitable for a C program. T he various constants used  are all defined  in the header file  

and are obtained from  the published inform ation on  the 'BIPM Air D ensity  Formula', 

G iacom o (1981), D avis (1992a).

The data show n in T able A .I .I  below  w as obtained u sing  this program w ith the 

values for t, P &  h show n in the first colum n. For each set o f  three, the six  partial 

derivatives are show n. T he ranges o f  the parameters t, P & h taken are o f  typical order 

o f m agnitude for a Standards Laboratory and indeed cover m ost o f  the p ossib le  ranges 

that w ould  lik e ly  be encountered. From the T able it can be seen  that the data quoted in 

Eq. (3 .2 .3) is indeed  representative o f  the likely  values o f  the partial derivatives that 

w ould  occur w ith standard laboratory data.
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Table A. 1.1 : Partial derivatives o f the Air Density Equation for various values o f  t. P & h

t(°C)
P (Pa) 
h (%RH)

apa P̂« 5pa 3pfl dP* dp a
d t

kg m~3K~l

dP
kg m~* Pa

dh
kg m~3

dR
kg m~3 J~' mol t

dMv

mol m~*

dMa

mol m *

20
101325
50

-4.4 X10’3 1.189X10'5 -10.5x10-3 -0.144
j

0.4819 41.05

20
101325
30

-4.3X10-3 1.189X10'5 -10.5x10-3 -0.144 0.289 41.297

20
101325
60

-4.5 XlO'3 1.189x 10"5 -10.5x10-3 -0.144 0.578 41.0

20
98000
50

-4.3 X 10'3 1.189X10'5 -10.5x10-3 -0.139 0.4819 39.7

20
103000
50

-4.5X10'3 1.189X10'5 -10.5x10-3 -0.147 0.482 41.79

19
101325
50

-4.4x10-3 1.193 X10'5 -9.9x10-3 -0.145 0.454 41.275

21
101325
50

-4.4x10-3 1.185X10"5 -11.0X10-3 -0.144 0.511 40.93
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<HEADER FILE AIR DEN.H>

Listing A. 1.1

¿ifndef AIRDENH_
¿define AIRDENH_
¿define A 1.2378847e-5 
#define B -1.9121316e-2 
¿define C 33.93711047 
¿define D -6.3431645e+3 
ë define alpha 1.00062 
¿define beta 3.14e-8
#define gamma 5.6e-7 j
#define aO 1.58123e-6
¿define -2.9331e-8
fide fine  a2 1.1043e-10
¿define bO 5.707e-6
¿define bl -2.051e-8
#define cO 1.9898e-4
¿define cl -2.376e-6
#,defined  1.83e-ll
#define e -0.765e-8
¿define R 8.31451
¿define Ma 28.9635
¿define Mv 18.015
¿define tAbs 273.15

extern double enhance_fact(double, double);
extern double vapour_press(double);
extern double compress_fact(double,double,double);

extern double air_den(double,double,double,double td = 0,double co2 = 0.0004); 
¿endif

cHEADER FILE MDEF.H>

¿define E 2.718281828

extern double Power(double x, double y);

<PROGRAM MFUNC.CPP>

¿include <math.h>
¿include "header\mdef.h"

extern double Power(double x, double y)
{
return pow(x,y);
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**********************************************************************************

<PROGRAM DERIV.CPP>

/* Takes 3 arguments : Temp.(°C), Pressure (Pa) & Humidity (%) and evaluates the partial derivatives 
w.r.t the six parameters discussed in Chapter 3 & Appendix I 
Only one of the functions (to calculate dp/dt) is reproduced here*/

Mnclude <stdio.h>
#include <conio.h>
Mnclude <stdlib.h>
Mnclude <air den.h>— »
Mnclude <mdef.h>

double dpdt(double, double ,double); 
double dpdP(double, double ,double); 
double dpdh(double, double .double); 
double dpdR(double, double .double); 
double dpdMa(double, double, double); 
double dpdM v(double,double,double);

void main(int argc , char *argv[])

{
double P,t,h; 
char *end;

t= strtod(argv[l], &end);
P = strtod(argv[2], &end); 
h = strtod(argv[3], &end); 
h/= 100.0;

/3/'m(/("\n\nPartial Derivatives of the Air-Density Equation :>");
printf(''\n=============—==========================—==============");

/?nni/(''\n\n%s%.81f',"Density wrt Temp. (dpdT) = :> ",dpdt(t,P,h));
prjnif("\n\n%s%.81f',"Density wrt Pressure (dp/dP) = :> ",dpdP(t,P,h));
prmff("\n\n%s%.81f,"Density wrt Humidity (dp/dh) = :> ",dpdh(t,P,h));
printf["\n\n%s%. 81f, "Density wrt Gas Const. (dp/dR) = :> ",dpdR(t,P,h));
pnni/("\n\n%s%.81f',"Density wrt Dry molar Mass (dp/dMa) = :> ",dpdMa(t,P,h)); 
/?nni/("\n\n%s%.81f'/'Density wrt Moist Molar Mass(dp/dMv) = :> ",dpdMv(t,P,h)); 
getche();

}
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I

double dpdt(double t, double P, double h)
{

double deriv, ma, mv, TO, a, b, g;

ma = Ma *le-3;'
mv = Mv *le-3;
TO = tAbs; a = alpha; b = beta; g = gamma;

deriv = -(ma*P*(l - Power(E,C + D/(t + TO) + B*(t + TO) + A*Power(t + T0,2))*h*
(1 - mv/ma)*(a + b*P + g*Power(t,2))/P)/(R*Power(t + T0,2)*(l + Power(P,2)*
(d + e*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)* 
Power(a + b*P + g*Power(t,2),2)/Power(P,2))/Power(t + T0,2)- 
P*(a0 + al*t + a2*Power(t,2) +(b0 + bl)*Power(E,C + D/(t + TO) + B*(t + TO) + A 
*Power(t + T0,2))*h*(a + b*P + g*Power(t,2))/P +(c0 + cl)*
Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) + 2*A*Power(t + TO,2))*
Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/(t + TO)))) + 
ma*P*(-2*Power(E,C + D/(t + TO) + B*(t + TO) + A*Power(t + T0,2))*g*h*
(1 - mv/ma)*t/P - Power(E,C + D/(t + TO) + B*(t + TO) + A*Power(t + T0,2))*h*
(1 - mv/ma)*(a + b*P + g*Power(t,2))*(B - D/Power(t + TO,2) + 2*A*(t + T0))/P)/
(R*(t + T0)*(1 + Power(P,2)*(d + e*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) + 
2*A*Power(t + T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/
Power(t + T0,2)-P*(a0 + al*t + a2*Power(t,2) +(b0 + bl)*Power(E,C + D/(t + TO) + B*
(t + TO) +A*Power(t + T0,2))*h*(a + b*P + g*Power(l,2))/P +(cO + cl)*
Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*
Power(a + b*P + g*Power(t,2),2)/Power(P,2))/(t + TO))) -ma*P*(l - Power(E,C + D/(t + TO) 
+ B*(t + TO) + A*Power(t + T0,2))*h* (1 - mv/ma)*(a + b*P + g*Power(t,2))/P)* 
(-2*Power(P,2)*(d + e*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) + 2*A*
Power(t + T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/
Power(t + TO,3) + P*(aO + al*t + a2*Power(t,2) +(b0 + bl)*Power(E,C + D/(t + TO) + B*
(t + TO) +A*Power(t + T0,2))*h*(a + b*P + g*Power(t,2))/P +(c0 + cl)*
Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*
Power(a + b*P + g*Power(t,2),2)/Power(P,2))/Power(t + TO,2) -P*(al + 2*a2*t + 2*
(bO + bl)*Power(E,C + D/(t + TO) + B*(t + TO) + A*Power(t + T0,2))*g*h*t/P+ 4*
(cO + cl)*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) + 2*A*Power(t + T0,2))*g* 
Power(h,2)*t*(a + b*P + g*Power(t,2))/Power(P,2) +(bO + bl)*Power(E,C + D/(t + TO) + 
B*(t + TO) +A*Power(t + T0,2))*h*(a + b*P + g*Power(t,2))*(B - D/Power(t + TO,2) + 
2*A*(t + TO))/P +(cO + cl)*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + 
T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)*(2*B - 2*D/Power(t + TO,2) + 4*A*
(t + T0))/Power(P,2))/(t + TO)+ Power(P,2)*(4*e*Power(E,2*C + 2*D/(t + TO) + 2*B*
(t + TO) + 2*A*Power(t + T0,2))*g*Power(h,2)*t*(a + b*P + g*Power(t,2))/Power(P,2) + 
e*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)* 
Power(a + b*P + g*Power(t,2),2)*(2*B - 2*D/Power(t + TO,2) + 4*A*(t + TO))/ 
Power(P,2))/Power(t + T0,2))/(R*(t + TO)*Power(l + Power(P,2)*(d + e*Power(E,2*C + 
2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*Power(a + b'̂ P + 
g*Power(t,2),2)/Power(P,2))/Power(t + TO,2) -P*(aO + al*t + a2*Power(t,2) +(bO + 
bl)*Power(E,C + D/(t + TO) + B*(t + TO) +A*Power(t + T0,2))*h*(a + b*P + 
g*Power(t,2))/P +(cO + cl)*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*
Power(t + T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/(t + TO),2));

return deriv;
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Appendix 2. Data Processing Software

Here w e  illustrate the softw are used to perform  the data analysis described in
t . •

Chapter 11. F ig. (1 1 .3 ), reproduced below  as Fig. (A .2 .1 ) described the m ain steps 

involved in the process. T he data acquisition  softw are o f  stage I has already been  

described in Chapter 11. H ere w e concentrate on the other stages.

Vol. Diff. of Standards 

Fig. A.2.1: Data Processing Procedure implemented in the research.

Stage II: T he data files  produced by stage I, as show n in Fig. (11 .2 ) m ust be 

processed before further analysis is p ossib le. The 'raw data' files  contain  w eight-in-air  

data, temperature, pressure and hum idity data and a tim e sequence in second s to allow  

graphing. Program Explode show n in L isting (A .2 .1 ) takes such a data file  and 

produces four output files: each contain ing the tim e data and one o f  the four influence  

quantities, temperature, pressure, hum idity and w eight-in-air data. From  these the data 

can be plotted, F igs. (11 .4 ) to (11 .7) being typical exam ples o f  the graphs produced.

Stage HE: It is then necessary to evaluate the air density, w h ich  is the input 

quantity required by the W eigh ing  Equation (see  Eq. (2 .2 .14 ) or the data-processing  

diagram, Fig. (3 .0 .1 )). Program density show n in L isting (A .2 .2) reads the data from  

three environm ental data files  produced in stage IE above and writes out a data file  o f

A.6



air density values, calculated  by im plem enting the "BIPM Equation" for air density. 

This too can be plotted, F ig  (11 .8 ) being an exam ple.

Stage IV: F inally  the desired m easurand, the true m ass d ifference for the 

com parison, can be com puted. T his is perform ed by the program buoyancy (L isting  

(A .2 .3)) w hich  reads the data from  the corresponding w eight-in-air and air density  

files and queries the user for the vo lum e difference o f  the standards. T hen a data file  

o f true m ass values is written out by applying the w eigh ing equation to the data. Fig.

(11.9) is an exam ple graph produced by this m eans. From  an analysis o f  the true m ass 

graphs it is p o ssib le  to see at what point the m easurem ent process has stabilised  and 

the data is then valid  to u se in the parameter estim ation analysis. Program buoyancy 
can then b e also  run by specify ing  a se lected  num ber o f  data points from  the graph to  

process, g iv in g  the m ean values o f  w eight-in-air, true m ass and air density, as w ell as 

com puting the variance o f  the w eight-in-air data. This latter m ode o f  operation is used  

to extract data to build  up the various vectors and m atrices for the analysis described  

in the main b ody o f  this work.
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#include <stdio.h>
#include <string.h>

void mam(void)
{
char fname[100] = wname[100] = tname[100] = pname[100] = hname[100] = 

//fo r  i/p filename and 4 o/ps : weight, temp, pressure, humidity 

FILE *fptr, *wptr, *tptr,*pptr,*hptr;
double time,weight,tmpl,tmp2,tmp3, pressI,press2,press3, huml,hum2,hum3; 

do{
p wi//('' \n\nFi 1 cNarne :> "); 
gets(fname);
}while(((fptr = fopen(fname,"r")) == NULL) && printf{"\n\nBad Filename !!"));
prtni/("\n\nOutput Filename for Mass data :> ");
gets(wname);
wptr = fopen(wname,"w");
printf{"\n\nO/p Filename for Temperature Data :> "); 
gets(tname);
tptr = fopen(tname,"w");
printf{"\n\nOfP name for Pressure Data :> ");
gets(pname);
pptr = fopen(pname,"w");
printf[''\n\nOfP filename for Humidity Data :> ");
gets(hname);
hptr = fopen(hname,"w");

while(fica»/(fptr," %lf%lf%lf%lf%lf%lf%lf%lf%lf%lf%lf1,
&time,&weight,&tmpl,&tmp2,&tmp3,&pressl, 
&press2,<&press3,&huml,&hum2,&hum3) != EOF)

{
fprintf(wplr,"%U %lf\n",(time/3600.0),weight); 
fprintf(tptr,"%lf %lf\n",(time/3600.0),(tmpl+tmp2+tmp3)/3.0); 
fprintf(pplr,"%\f %lf\n",(time/3600.0),(pressl+press2+press3)/3.0); 
fprintf{hptr,"%lf %lf\n",(time/3600.0),(huml+hum2+hum3)/3.0);

}
fcloseallO;
/)n'«f/“("\n\nFile Conversion Successful!");

}

Listing A.2.1 - Program EXPLODE.CPP
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L isting  A .2 .2  - A ir D en sity  C alculation  C ode  
H eader F ile  A IR _D E N .H  used  by program  A IR _D E N .C P P

¿ifndef AIRDENH_
¿define AIRDENH_
#,define A 1.2378847e-5 
¿define B -1.9121316e-2 
¿define C 33.93711047 
¿define D -6.3431645e+3 
¿define alpha 1.00062 
¿define beta. 3.14e-8 
¿define gamma 5.6e-7 
¿define aO 1.58123e-6 
¿define al -2.933 le-8 
¿define a2 1.1043e-10 
¿define bO 5.707e-6 
¿define bl -2.051e-8 
¿define cO 1.9898e-4 
¿define cl -2.376e-6 
¿defined 1.83e-ll 
¿define e -0.765e-8 
¿define R 8.31451 
¿define Ma 28.9635 
¿define Mv 18.015 
¿define tAbs 273.15

extern double cnhanee_fact(double, double);
extern double vapour_press(double);
extern double com press_fact(double,double,double);

extern double air_den(double,double,double,double td = 0,double co2 = 0.0004); 
¿endif
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#,include <stdio.h>
#.include <conio.h>
# include <string.h>
#,include <air_den.h>

void main(int argc, char *argv[])
{
char pname[100] = hname[100] = tname[100] = dname[100] = 
FILE *pptr, *hptr, *tptr, *dptr;

double density, temp,press,hum,Ume,sto; 
strcpy(tnamc,argv[ 1 ]);
strcpy(pname,argv[2]); ,
sticpy(hname,argv[3] ) ;
/;n>!i/i"\n\n\nDcnsity Calculating Program : Enter o/p FileName :> "); 
gets(dname);

tptr = fopen(tname,"r"); 
pptr= fopen(pname,"r"); 
hpir = fopcn(hnamc,"r"); 
dplr = fopcn(dname,"w");

while(/jca«/(pptr,"%lf %lf\n",&time,&press) != EOF)
{
fscanfitptr,"%lf %ll\n",&sto,&temp);
/jcfl«y(hptr,"%lf %lf\n",&sto,&hum);
density = a 11_ d e n ( te m p, ( press * 100), (hum / 100));
fprintf{<ipu\"%\{ %ll\n",time,density);

}
fcloseall();
/jn>!itf"\n\nVnDONE! !!!!");

}

Program DENSITY.CPP
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#include <stdio.h>
#include <math.h>
#include "header\air_den.h"

extern double air_den(doubIe t, double p, double h, double td, double co2) 
{

double f, psv, xv, density, z, T = t+tAbs; 
double fd, psvd;
double M = ( Ma- + 12.011 * ( co2 - 0.0004 )) * le-3;

f = enhance_fact(p,t); 
psv = vapour_press(t); 
i f  (td == 0) 

xv = (h * f * psv) / p; 
else{

fd = enhance_fact(p,td); 
psvd = vapour_press(td); 
xv = (fd*psvd)/p;

}
z = compress_fact(p,t,xv);
density = p/ ( z * T ) * ( l - (  0.378 * xv)) * ( M / R); 
return density;

Program AIR DEN.CPP

^/* * * ********** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * ************* * * * * * * * * * * * * *  * ** * *

extern double enhancc_fact(double p, double t)
{
double f;

f = alpha + ( beta * p ) + ( gamma * t * t ); 
return f;

}

extern double vapour_press(double t)
{
double arg, vp, T = t+tAbs;

arg = (A*T*T)+(B*T)+C+(D/T); 
vp = exp(arg); 
return vp;

}

extern double compress_fact(double p, double t, double xv)
{
double argl, arg2, z, T = t+tAbs;

argl = a0+(al*t)+(a2*t*t)+((b0+bl*t)*xv)+((c0+cl*t)*xv*xv); 
arg2 = (p*p*(d+e*xv*xv))/(T*T); 
z = 1 - ((p/T)*argl) + arg2; 
return z;

}
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#include <stdio.h>
#,include <stdlib.h>
#include ”header\air_den.h"
#include <math.hi>
#include <string.h>
#include <conio.h>

double round(double);
void d a ta l(F IL E  *, F IL E  *,double);
void data2(int, int, double, FILE *, FILE *);

void m ain (int argc, char *argv[])

{
char mode; 
int start, finish; 
double dvol;
char mname[100] =  "", dnam e[100] =
F IL E  *mptr, *dptr;

if(argc < 3 ){
printf["\n\n U sage :> buoyancy file l file2 "); ex it( l);

}
strcpy(m nam e,argv[l]); strcpy(dnam e,argv[2]); 
mptr = fopen(m nam e,"r"); dptr =  fopen(dnam e,"r"); 
pnn(/("\n\nB uoyancy Correction Program  : Enter Vol. D iff (cm A3) :> "); 
scanfC' % lf',& dvol);
pnni/("\n \nG raph M ode (1) or D ata M ode (2) ?? :> "); 
m ode = getche(); 
if(m ode - '2')

{
/;W«(/("\nYnEntcr start data point :> "); 
scanfC  %d" ,&start);
/?n>ji!/("\n\nEnter finish data point :> "); 
scanf(" %d" ,& finish); 
data2(start,finish,dvol,m ptr,dptr);

}
else

data l (m ptr,dptr,dvol); 
fcloseall();
prin tf(" \n\n\nDONE !!");

}

void datal (FILE *mptr, FIL E  *dptr, double dvol)
{

double time, m ass, sto, m eanDiff, density;
F IL E  *opptr; 
char opnam e[100] =

/;rini/("\n\nEnter o/p file nam e :> ");
gets(opname);
gets(opname);
opptr = fopen(opnam e,"w ");
while(/ycan/(mptr,"% 1 f % lf\n",&tim e, & m eanDiff) != EOF)

{
fscan f(dptr,"% lf % li\n '',& sto,& density); 
mass = m eanD iff + (density * dvol * 1000);

Listing A.2.3 - Program BUOYANCY.CPP
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mass =  round(mass);
prmi/("\n%s%lf%s%lf%s%lf',"Density :> ".density," W eight :> ".meanDiff," Mass :>",mass); 
fprintfiopptr,"%lf %lf\n",time,mass);

}

void data2(int start, in t finish, double dvol, FILE *mptr, FILE *dptr)

{
int pos, i;
double meanDiff, density, mass, time; 
double Sx_w, Sxx_w, xbar_w, var_w; 
double Sx_d, Sx_m, xbar_d, xbar_m;

pos = 1; i =  0;
Sx_w = Sxx_w = xbar_w  -  var_w = Sx_d - Sx_m = xbar_m  =  xbar_d =  0; 
printf("\nWt-m-air A ir-D en M ass");
p r i n f / i [ " \ n = = = ~ = ~ ~ ~ = === = = = = = = = = ~ ~ = = ");
while(/ican/im ptr,"% 1 f  %lf\n",&time, &meanDiff) ! -  EOF)

{
fscanf(dptr,"% lf % lf\n",& tim e,& density); 
if(pos < start ) { ++pos; continue; } 
else{

mass = m eanD iff + (density * dvol * 1000);

}
++posi ++ij
Sx_w += m eanD iff; Sx_d +— density; Sx_m += mass;
Sxx_w += pow (m eanDiff,2);
xbar_w = Sx_w/i; xbar_d =  Sx_d/i; xbar_m  =  Sx_m/i;
if(i > 1)

var_w =  fabs(Sxx_w  - (i * pow (xbar_w ,2)))/(i-l); 
printf("\n% \f % lf % lf",m eanDiff,density,m ass); 
if(pos > finish) break;

}
pn 'n//C '\n\n% s% lf',"M can, wt.in air :> ",xbar_w); 
p r in t f( " \n% s% lf',"V ariance, W t. in Air :> ",var_w); 
p r in t fÇ '\n % s % \r ,"M ean, A ir Den. :> ",xbar_d); 
pri'ni/("\n% s% If',"M ean, T rue M ass :> ",xbar_m); 
prini/("\n% s% d","N um ber D ata Points :> ",i);

}

/ /  This function rounds a number to the nearest integer

double round(double value)
{

double result, m antissa; 
int decimal;

decimal =  int( value);
mantissa =  value - decim al;
if(m antissa > 0.5) resu lt =  (double)decimal + 1.0;
else if  (m antissa <  -0.5 ) result = (double) decimal - 1.0;
else result =  (double)decim al;
return result;

}
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Appendix 3: Glossary of Selected Terms

Apparent Mass: The result o f an ‘in-air’ mass determination— by any measurement 

means— but prior to applying any corrections for buoyant forces, centre-of-gravity 

differences, etc.

Augmented Design: An estimation technique, based on the Least Squares criterion, 

or on the Gauss-Markov theorem in which both prior and current inform ation1 is 

treated as data having corresponding covariance m atrices. These two sets o f data are 

augmented into one extended set which can then be adjusted by either o f  the two 

criteria mentioned.

Bayesian Estimation: A  probabilistic estimation technique using B ayes’ Theorem—

i.e. incorporating conditional probabilities  and p r io r  information  with new current 

data  in order to obtain updated posterior estimates.

BIPM  Formula: An equation for the determination o f  the density o f air, 

recommended by the Com ité International des Poids et M esures in 1981 and updated 

in 1991, used by the Bureau International des Poids et Mesures and m ost national 

laboratories.

BLUE: Best Linear Unbiased Estimator: An estimator which com bines the

characteristics o f m inimum variance, is unbiased, and a linear combination o f  the 

observations.

Buoyancy Correction: An apparent m ass difference between two standards resulting 

from the different densities o f their constituent materials and hence the standards 

experiencing different buoyant forces.

Combined D ifference Standard Deviation: This is the root-sum-square o f the 

respective standard deviations o f the terms involved in calculating a difference  or 

residual vector.

Combined Standard Uncertainty: A root-sum-square o f uncertainty contributions 

due to the various influence quantities  featuring in a functional relationship.

Comparison Calibrations: A  calibration method in which residual differences 

between nominally equal quantities (mass, length etc.) are measured with resulting 

greater accuracy than could be achieved by measuring absolute values.

1 Terms in italics are defined elsew here in this Glossary.
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Conditional Probability Distribution: A  distribution describing a parameter or set 

of parameters that are subject to the existence o f som e other parameter, set o f  

parameters, or hypothesis. The dependency represents logical rather than causal

connections.

Constraint: P rior information  which is treated as a deterministic quantity. A  solution 

to a set o f consistent equations for som e parameter values to be found by either 

algebraic manipulation or statistical adjustment must be subject to the condition that 

the prior information remains unchanged.

>
Constraint Contribution: The true contribution to the covariance m atrix o f  a 

parameter estimation due to the constraints that were applied to the estimation 

process. This information is however excluded from the estimation analysis in any 

technique that uses constraints (e.g. RLS) and must be added afterwards.

Conventional Mass: A  term not widely used in the thesis but in com m on currency in 

mass metrology as a convenient approximation. The conventional mass o f a standard 

is defined as being the mass o f another standard which would exactly counter-balance 
it in air o f density 1.2 k g / m . This other standard must further have a density of 

8000 kg / rn .

Corrected Realised Quantity: Value generated by the functional relationsh ip : this is

the m easurand  estimate.

Covariance Matrix: An important quantity in multivariate statistical analysis. It is a 

matrix in which diagonal terms give the variances o f the elem ents o f a corresponding 

data vector and the off-diagonal terms give the covariance between pairs o f data 

elements.

Criteria of Consistency: Important tenets o f Classical Probability Theory which 

indicate that all solutions to a problem should lead to the same result, that, all available 

evidence relevant to a problem should be brought to bear on establishing its solution  

and that equivalent states o f knowledge should be represented by equivalent 

probabilities /  plausibilities. These criteria underlie much of the Unified Approach to 

data analysis.

Current Inform ation /  Data: N ew  data obtained by the comparison experiment, to 

be used along with the p rio r  information  in obtaining parameter estimates.
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Degrees o f Belief: A  statistical /  probabilistic statement about the accuracy o f a 

parameter estimate which has been constructed based on all known and available 

information.

Design Matrix: An n x p  matrix indicating the form of the n comparisons to be 

carried out among the p  parameters. The elem ents o f this matrix are either 1, 0  or -1 

depending upon the role o f each parameter in the particular comparison.

Deterministic Parameter: A parameter ‘estim ate’ considered to be a constant and

thus to have a zero variance and no covariance with any other parameters.»

Difference Vector: The difference between the prior and posterior parameter 

estimates.

Dispersion Characteristic: A  model for the uncertainty estimate o f  a parameter, 

incorporating a probability distribution function and a variance estimate.

Experimental Errors: Unknown contingencies /  influences outside the scope o f  the 

model parameterisation but nevertheless effecting the observed outcom e o f  an 

experiment (in an unknown way). In the Unified A pproach  these unknowns cannot be 

modelled but instead probability distributions are assigned to the m easurand  estimates 

to parameterise the resulting plausibility o f the determined value.

Extended Model: A  system  model used with G G M , like that used in the Augm ented  

Design, in which p r io r  information  is included in the analysis. The prior information 

takes the form o f  restraints which can be either stochastic  or determ inistic. The GGM 

method can deal with either situation.

Expectation Value: A  "mean value", or value o f highest probability in a distributed 

set of data, described by som e probability density function.

Functional Relationship: The mathematical model for realising an estimate o f the 

measurand  from the known influence quantities  and direct measurement data.

GGM: Generalised Gauss-M arkov M ethod: A  parameter estimation technique

based on finding a minimum variance estimate without any restrictions on the 

quantities involved. It implements the method o f  generalised inverses and allows the 

use o f an extended m odel in describing the data.

GM Theorem: Gauss-M arkov Theorem: Proves a BLUE  estimator exists. It is more 

general then Least Squares, among its features being that it does not require all data to 

be o f equal variance as does Least Squares.
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Gaussian Procedure: Usually based on a Taylor series expansion o f the functional 

relationship. From this the contribution o f the variances/covariances o f the influence 

quantities to the final m easurand  estimate can be calculated.

General Law o f Error Propagation: The term usually used in the ISO Guide to 

describe the procedure for evaluating uncertainties in a unified and coherent manner. 

Synonymous with the Gaussian Procedure  above.

Gravitational Correction: An apparent m ass difference resulting from a difference

in heights o f the centres o f mass o f two standards. It is one o f the corrections to the
*

weight-in-air difference that must be applied, via the weighing equation, to obtain the 

mass difference.

Inductive Logic: The process o f inferring among several possible causes the m ost 

likely for a given set o f  observed effects.

Influence Quantities: Secondary or 'systematic' parameters w hose influence must be 

included in the parameterisation needed to obtain the m easurand  estimate.

Jacobian: M athematically, the Jacobian is the determinant o f a matrix o f partial 

derivatives, formed from a set o f functions f j , . . . , f n, each o f  which contains influence 

quantities Uj , . . . . ,  um. It is fully called the "Jacobian o f w i t h  respect to Uj , . . . . ,  um.

Likelihood Function: A  conditional distribution describing the function which would  

generate the parameters needed to give an already observed distribution o f data.

Linear Unbiased Estimator: An estimator which is a linear combination o f  the 

corrected observations and is an unbiased estimate o f the unknown 'true' values o f the 

parameters.

MAP: M aximum  a Posteriori Estimation: This estimator com bines the MLE  

criterion with Bayes's theorem to produce a po sterio r  estim ate  from a set o f current 

data  and any available p r io r  data. It allows the possibility o f  recursive and sequential 

estimation  o f  parameters.

M ass Difference: The corrected result o f a com parison calibration  between a pair, or 

ensemble, o f mass standards.

Mass Value (Physical Mass): The absolute value o f a mass standard, in high 

accuracy work to be determined by statistical adjustment o f a set o f mass differences 

by some parameter estimation technique.
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Maximum Entropy: (MaxEnt): The Entropy o f a Probability Distribution is a 

numerical measure o f the ‘Uncertainty’ it represents with respect to a parameter 

estimate. The M axim um  Entropy approach involves m axim ising this uncertainty 

subject to the constraints o f  definitely known information. Such a technique ensures a 

‘maximally unbiased’ estimate from a given set o f subjective  information.

Measurand: The specific physical quantity subject to measurement.

M inimum Variance Estimate: A  parameter estimate, obtained from the 

measurement data and uncertainties, which has the low est uncertainty among all 

possible estimates that could be produced by mathematical means.

MLE: M aximum  Likelihood Estimation: An estimation method based on an 

analysis o f probability distribution functions which seeks to m axim ise the likelihood  

function  for the parameters, given the observation data which was obtained. Thus it is 

a technique which deals only with the observed data.

Over-Determined System: A  design for a calibration experiment in which more 

comparisons are carried out than are needed to find a solution. The extra redundant 

information provides degrees o f freedom for a statistical adjustment o f the parameters.

Posterior Inform ation: An estimate (with corresponding covariance m atrix  or 

probability distribution) formed by com bining p rio r  information  with new  

experimental data on a parameter or set o f parameters. The ‘com bining’ takes the 

form of a BLUE  adjustment.

Prior Information: Data about the parameters involved in the estimation which is 

available before the experiment is carried out. In the case o f  mass determination such 

information is necessary to obtain a particular solution.

Probability Density Function: A distribution function describing the range o f likely 

values which would occur in attempting to estimate som e parameter. In principle 

every measurement or data value (which is an estimate subject to unknown errors) can 

be described by som e such distribution.

Realised Quantity: That which is directly obtained from the measurement and 

generally is not the measurand desired.

Relative Accuracy: In comparing two sets o f information, or individual members o f a 

set, the relative accuracy, or relative magnitude o f their respective variances /  

covariances is important in predicting their influence in any parameter estimation.
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Residual Vector: The difference between the experimental data vector and the 

estimated experimental data based on the posterior param eter estim ates.

RLS: Restrained Least Squares: The standard LS criterion (possibly m odified by 

WLS) but subject to a set o f  constraints, linearly independent o f the observational 

equations. The method o f Lagrange Multipliers is used to solve the LS criterion

subject to these constraints.

Robustness: Applied to a description of any estimator in this thesis; a robust

estimator is one whose po sterio r  (or output) estim ate  is stable in the event o f
;

perturbations or inaccuracies in som e o f the p r io r  information or constraints.

Sensitivity Coefficient: The partial derivative o f a m easurand  estimate with respect 

to one o f the influence quantities, at specified values o f other influence quantities, if 

relevant.

Sequential Estimation: An extension o f the M AP  Estimator in which the posterior  

estim ates form the p r io r  data  for a subsequent estimation with new (chronologically  

later) experimental data.

Standard Uncertainty: The positive square root o f a variance. This quantity is to be 

used as a fundamental measure o f the uncertainty associated with a parameter 

estimate.

Statistical Estim ation Techniques: M ethods for processing data from an over

determined measurement system  in order to carry out an adjustment to get the 'best' 

(or minimum variance) estimate o f the parameters.

Stochastic Parameter: A  parameter estimate with an assigned D egree o f  Belief, i.e. 

given variance and covariance terms.

Subjective Estimate: Any estimate is subjective in the sense that the knowledge 

available at the time is finite. Later work may present new information, forcing an 

update to the current estimate. In other words, analogous to Conditional Probabilities, 

any parameter estimate is conditional on the background knowledge available at the 

time.

System  M odel: The relationship between the corrected observation data and the 

parameters to be determined, usually dictated by the design matrix.
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Unbiased Estimate: The result o f  an analysis (an estimate) is unbiased if all the 

known information relevant to the problem has been utilised in a manner consistent 

with the basic criteria o f the Unified Approach.

Uncertainty Contribution: The influence o f the variance o f  an individual influence 

quantity on the final variance estimate o f a m easurand. This is dictated by its role in 

the functional relationship  and is defined as a product o f its sensitivity  coefficient and 

standard uncertainty.

Unified Approach: A com plete formalism for data analysis in which all quantities are 

treated equally, all available information is used and unavailable data is not 

considered or assumed. This approach is m odelled on the essential criteria o f  

probability theory and adherence to these C riteria o f  Consistency  is considered a basic 

test for any analytical method in the Unified Approach.

Variance: A characteristic quantity o f  a probability distribution, used in describing its 

"width" or "spread". Hence it is an integral part o f  quantifying the uncertainty o f  an 

estimate.

WLS: W eighted Least Squares: A  method for avoiding the problem o f non-equal 

variances which prevents Least Squares from producing a minimum variance 

estimator. This method produces the same estimate as does the G M  Theorem.

Weight-in-Air: The uncorrected result o f a com parison calibration  carried out in air, 

without corrections for buoyancy, centre o f mass differences, volum e expansion  

coefficients etc., having been applied.

W eighing Equation: The functional relationship  among the com plete set o f  influence 

quantities needed to generate the corrected mass difference o f a pair o f standards. It 

can be expressed in scalar or multivariate notation.

W ithin-Group Comparisons: The determination o f the m ass values  o f a set o f

standards by intercomparison among them selves, usually in an over-determ ined  

manner; the value o f at least one o f  them being known from previous calibration.
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Abstract
The application o f B ayesian-based statistics to the solution o f  a set o f  over- 

determ ined equations resulting from  com parison calibrations is considered. Follow ing 

the recom m endations o f  the ISO G uide on M easurem ent U ncertainty, a m odel 

param eterisation is developed which facilitates the inclusion o f all known experim ental 

inform ation, and indeed prior inform ation from  previous calibrations, should this be

available. A  critical com parison, betw een this recursive approach and the classical

solutions based on Lagrange M ultipliers or the Gauss-M arkov theorem , is made.

Som e non-trivial differences betw een this approach and the conventionally used

approaches in mass calibration have been found. An exam ple from  relevant

experim ental data, treated by both estim ation m ethods, is included.

1. Introduction
The problem at hand is the data reduction of a set o f n over-determined equations, to 

estimate p  parameter values. This requires an adequate description o f  the experimental 
m odel and also a suitable Parameter Estimation method. The application o f such a 
process to high accuracy mass determination is considered here. An implementation 
of the ISO G uide1 for parameterising the experimental situation has been proposed 2 

recently. This m odel is developed for a specific system  and an exam ple is given of its 
implementation. The feature o f particular importance is the inclusion o f uncertainty 
terms due to the systematic buoyancy correction in the overall m odel, allow ing their 
inclusion in the estimation process.

With respect to the estimation process, two main approaches are highlighted: one 
based on the w ell known Least Squares (LS) method; and a Bayesian approach based 
on M aximum Likelihood Estimation (MLE). The former has been conventionally used 
in mass metrology ( e.g. 3 ) while the latter has been proposed 5 as a means to 
circumvent som e difficulties with the former. These arise as a result o f the need to 
incorporate restraints in the estimation process in order to get a particular solution,
since the calibration designs involve only differences between parameters which
prevent a unique solution being obtained. The MLE approach is implemented here and 
its behaviour studied by looking at its performance in a specific exam ple. It is shown
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to be much more flexible than the LS approach and its treatment o f  the necessary 
constraints is highlighted as being preferable.

2. Model Param eterisation
At the outset o f  any experiment it is necessary to clearly describe the relationship 

between the parameters to be estimated and the data to be obtained for this purpose. 
The system o f  equations so generated may be referred to as a System  M odel, such as :

Y  =  f ( P )  (1) 

In the case o f mass comparisons, the data can be described by

Y  = AW n x i + pn x n .Xn x p M p x i (2)

while f(P ) = X .p . Here, AW  is the vector o f observed "weight-in-air" differences; p is 
a diagonal matrix w hose elements are the relevant air densities for each comparison,V  
is a vector o f  volum es o f the p  parameters and X  is a design schem e for the
comparison experiment. Automated com m ercially available comparators are used to
obtain AW. Sensitivity weights are not em ployed and other corrections such as those 
for center o f gravity differences or volum e expansion coefficients are not considered.

It is also necessary to establish a covariance matrix for Y. This is done using the 
error propagation analysis o f  1 with the matrix implementation described in 2. If Y  = 
f(U), where U  is the vector o f  influence quantities involved in generating Y, the 
covariance matrix o f Y  can be calculated from:

¥ y = J u- V u-J uT (3)

JU = V U. Y T (4)

where \j/u is the variance /  covariance matrix of 
U. It is assumed that there are no covariances
among the influence quantities as each results
from separate measurements using separate 
instrumentation. Thus with U and \|/u as 

opposite and using Eq.(2), Eq.(3) can be evaluated to give:

V y =  ¥aw  + d ia g {x .\) .  \ |/p. d ia g {x .\}  +  p. x. \|/v . x T. p (5)

is diagonal as each comparison is a separate measurement. \|/AW = s2.I is not 
assumed since this is very rarely, if ever, true in practice. The second term is the 
contribution to \j/y due to the air density term in Eq.(2). This is diagonal since p = 
d iag{pi,P2J---Pn} and not p.I. Thus each pj is an independent measurement. The third 
term gives the contribution due to the volum e term in Eq.(2). W hile \\fy is diagonal,the 
third term as a whole, is non-diagonal as a result o f the form o f X; and introduces 
covariances into V|/y . Eqs.(2) & (5) provide all the necessary tools to give a full 
parameterisation o f the calibration experiment.

and

AW
V a w

0 0

u  = P , and \|/u = 0 0

V 0 0 Vv

3 Selecting an Estim ation M ethod
The most com m only used estimator which can be derived from either a W eighted  

Least Squares ( W LS ) approach, or more generally via the Gauss-Markov theorem ( 
GM ), gives solutions o f  the form

P g m = ( X t . v | / y '
.X )- i .X t .i1/ y- | .Y (6)
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( see for exam ple 6 , 7 , 8 )
However, ( X T.X  ) is singular which is an inevitable consequence o f  a calibration 
design involving only differences in parameters so Eqs.(6) & (7) cannot be used 
directly. The conventional solution to the problem is to im pose constraints on the 
Normal Equations; the constraint usually being the value o f a selected parameter 
involved in the comparison. In general the constraint can be expressed as a linear 
combination o f  the parameters so that:

AT.p = C (8)

where C is the constraint vector. The implementation o f this method has been outlined 
in 4 and results in estimators whose form can be suminarised as:

PLM = L .Y  + M .C  (9)

\|/p = L.\|/y.LT + M .\|/cM t  (10)

where L and M  are linear, non-random matrices.The problems with this estimator 
have been well documented 9, ch ief among them  being its inadequate treatment o f the 
constraint information which is considered deterministically to get a solution and then 
stochastically to obtain the proper covariance matrix 

It is better if  all information necessary to obtain a complete solution can be included 
in the estimation process from the beginning. In this respect M axim um  a Posteriori 
estimation, based on Bayesian statistics is superior. Here the constraints are view ed as 
prior information which is to be updated by the current information obtained in the 
experiment. The estimators in this case are:

P m . p  =  Po+(xt .m',-'x+¥|>o-,)-'.xt .¥ ,-, (y - x-|3o) ( 1 1 )

v V u, =  ( X T. v , - , ' X + ' i v - , >-1 (12)

(See for exam ple 6 and also 10> 11 for som e general comments on Bayesian Estimation 
and the treatment o f measurement uncertainties)

With this estimator, there is no problem with ( X T.X ) being singular since the only 
condition is the existence o f Eq.(12).

4. Exam ple
4.1 Input D ata

The comparison experiment involves three 50g standards, labeled b 1,b2,b3. The
design matrix is given in F ig .l. Table I gives the relevant experimental data while
Table II gives the prior information. The P0 data is given as deviations in (j,g from a
nominal 50g.W ith the aid o f Eq.(5) \j/y is calculated (see Fig. 3) The three constituent
parts are shown, illustrating that the volum e term gives rise to the largest
variance/covariance contribution.

i i r ^ i X ^ V Y - '- X ) - 1 (7)
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1 -1 0

1 0 -1

0 1 - 1

-1 1 0

-1 0 1

0 -1 1

Fig. 1 D esign M atrix and 

Param eter V ector

4.2 Bayesian Estim ation  
b{ The estimators in Eqs. (11) & (12) are used,

X -  \ & j3 = giving the estimated values and covariance
b3 matrix as illustrated in Fig. 2. It is

immediately obvious from a comparison with 
Table II that a reduction in the estimated 
variances o f the parameters has been 
effected. This is a consequence o f freeing the 

parameters from a deterministic situation and then applying a m inimum variance 
estimator. It is clear from Fig 2 that a com plete solution has been established and no 
further calculation is necessary.

Table I - Experim ental Inform ation

Data
Point

AW

(Wï)
diag (YAw) 

(t-ig)2
diag(p)
( m g.cm '3)

x.v
( cm 3 )

Y
(U fi)

yi 66.0 0.107 1.199 -0.1419 -104.1

Y2 -109.0 0.227 1.202 -0.1266 -261.2

Y3 -173.0 0.190 1.202 0.0153 -154.6

Y4 - 65.6 0.190 1.200 0.1419 104.7

Y5 109.5 0 .11 2 1.191 0.1266 260.3

V6 172.4 0.140 1.207 -0.0153 153.9

Table II - P rior Inform ation

Parameter ßo ( M-g) d iag (¥ Po) (Hg)2 V ( c m ) 3 diag(\j/y ) 1/2 (cm3)

b, - 63.0 25.0 6.2202 0.0011

b 2 34.0 225.0 6.3621 0.0009
186.0 225.0 6.3468 0.0009

0.107 0 0 0 0 0
0.227 0 0 0 0

0.190 0 0 0
symm 0.190 0 0

0.112 0
0.140

(a)
2.9 1.74 -1.16 -2.9 -1.72 1.17

2.9 1.17 -1.17 -2.89 -1.17
2.34 1.17 -1.16 -2.35

symm 2.90 1.73 -1.17
2.86 1.16

3.02

2.36

0
2.40

symm

3 . 01 1.74
3.15

symm

0 0 0 0
0 0 0 0

0.035 0 0 0 *103.02 0 0
2.40 0

0.035

( b )
-1.67 -2.90 -1.72 1.17
1.17 -1.74 -2.89 1.17
2.53 1.16 -1.15 -2.35

3.10 1.72 1.17
2.98 1.16

2.50
( C ) ( d )

Fig 3. The com ponents o f vyy : ( a ) \j/AW term  ; ( b ) term  due to air density variance ; (c ) term  due to

volum e variance ; & ( d ) the com plete \|/
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- 6 4 .7  

P =  4 0 .0  ( p g )  ;

195.1

4.2.1 Analysis

Fig. 2 Estim ated Param eter V alues and 

Covariance M atrix  U sing Eqs. (11) & (12 )

20 .53  20.11 20.11

\|/p = 20.11 2 2 .6 0  21 .40  (jxg )2

20.11 21 .40  22 .59

Table m  gives the estimated 
parameter values and variances for 
several cases o f  prior information, 
ranging from the m inimum necessary, 
to full prior information about all 
parameters. W hen just one parameter 
is included in the prior information, 
only one solution is possible in each 
case 'and so no reduction in variances 
can be effected. This is illustrated in

Cases B,C & D  in Table m , which show that under these conditions it is preferable to 
use the parameter which has low est variance to get the best solution. It is also clear 
that the parameter o f low est variance exerts the greatest influence on the result. For 
example, in Case G, the variance o f b2 and b3 is reduced to 113 (_ig2. However, in 
Cases E & F ,as w ell as A  & B, where the much lower variance o f  bj is included in 
the prior information, the estimated variance for b 2 and b3 is now  much reduced.

The relative accuracy o f the prior information influences the estimated values as well 
as the estimated variances. W hen b̂  is not included in the prior information (i.e. it is 
given infinite prior variance and arbitrary value) it is adjusted much more 
significantly. In the lim it o f zero variance, on the other hand, the parameter would not 
be adjusted in any way. This is a useful feature for dealing with suspect prior 
information which may not be accurate. In Table IV parameter b3 is given an in-error 
prior value which should adversely effect the estimated values. In the first column 
(case (i)) the estimated values can be seen to be quite different to the data in Table HI; 
while in the second column, where s2( b3) = 900 pg2, the in-error prior value is 
adjusted significantly while the other two are adjusted much less. In this respect, the 
relative accuracy o f the prior information and the experimental information is 
important: prior information which disagrees with the experimental evidence will 
result in large residuals (where residuals here are the differences between observation 
data and estimated observation data, i.e. (Y - X.fi). However, if  the experimental 
information is significantly more accurate than the prior information, the influence o f  
the latter w ill be reduced. To simulate this, the prior information was given a variance 
o f 4  (ig2 ,which is similar in magnitude to that o f the experimental information as 
given in Fig. 3. This is shown in Table IV, case (iii). Table V  gives the residuals for 
the various cases o f  Table IV : the difference in residuals between cases (i) & (ii) is 
minimal, w hile the difference between cases (iii) & (iv) is significant.
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Table III Estimated Values and Variances for Various Prior Information

Estimated Parameter Values ( |ig )

Prior Data. Case A Case B Case C Case D Case E Case F Case G

b, : -63 * -64.7 * -63.0 -71.5 -74.3 * -63.8 * -64.1 -72.9

b, : 34 * 40.6 42.5 * 34.0 31.1 * 41.5 41.3 * 32.6

b, : 186 * 195.4 197.4 188.8 * 186.0 196.5 * 196.1 * 187.4

Estimated Parameter Variance ( |.lg ) 2

Prior
Variance

Case A Case B Case C Case D Case E Case F Case G

,s2(bi): 25 * 20.53 * 25.0 227.99 227.99 * 22.53 * 22.53 114.8

S2(bo) : 225 * 22.63 27.99 * 225.0 227.42 * 24.89 25.16 * 113.1
S2(bO : 225 * 22 .60 26.76 227.42 * 225.0 25.12 * 24.86 * 113.1

Note " * " = >  corresponding prior information used in the estimation process

Table IV  - Sim ulating an E rror on one Param eter ( using all prior inform ation )

Variances (|lg  ) 2 case ( i ) case ( ii ) case ( iii ) case ( iv )

s2(b,) 25 25 4 4

s2(bo) 25 25 4 4
s2(b.) 25 900 4 900

Prior Values ( |ig  ) Estimated Values

b, -63.0 -77.4 -67.4 -74.0 -66.1

b9 34.0 27.4 37.6 28.4 37.0
b? 160.0 180.9 192.5 176.6 192.7

T able V Com parison o f  Residuals ( Y  - X .p  ) for Table IV data

Table IV - case ( i ) 
residuals ( (ig )

Table IV
case ( ii )

Table IV
case ( iii )

Table IV
case ( iv )

0.82 1.02 -1.61 -0.81
-2.84 -1.18 -10.61 -2.27
-1.16 0.29 -6.50 1.04
-0 .12 -0.32 2.31 1.51
1.94 0.28 9.71 1.37
0.36 -1.09 5.70 -1.84

4.2.2 Principle Conclusions 
Complete evaluation o f \|/p with reduced error covariance matrix for all parameters is 

possible. Degrees o f belief associated with the prior information plays an important 
role: i f  som e information is considered more accurate than others, the estimates w ill  

be constrained more in that direction.
The estimator can be very robust in dealing with errors in either the prior or current 

information, but this depends on the relative accuracies o f  the data. If a higher degree

A .38



of belief is attached to som e information which is in error, it does not seem  possib le to 
counteract this, and the estimator is then less robust. The problem w ill be highlighted 
however, in either large residuals or estimated values which are significantly different 
from their prior values, indicating that at least one set o f information is in error.

4.3 R estrained L east Squares Estim ation
The conventional least squares solution is applied to the case o f  just one constraint. 

This gives the same result as the Bayesian estimator with one piece o f  prior 
information, as there is only one solution in this situation and all estimators will 
generate it. The solution is shown in Fig. 4. The incomplete covariance matrix is 
shown along with the "constraint contribution", \|/c , which must be added to give a 
complete solution. This estimator performs very badly if  there are two constraints in 
this case, since all the adjustment must be carried but on only one parameter. This 
results in very poor agreement with the experimental data, large residuals and an 
unsatisfactory fit. As there is no facility with this method to enter any information 
about the relative accuracy o f the prior information, the inherent variability o f the 
constraints cannot be used to advantage in the estimation process.

-6 3 0 0 0 25 25 25

42.5 ( H g ) V'p = 0 2.99 1.76 ( M-g )2; Vc = 25 25 25

197.4 0 1.76 2 .95 25 25 25

Fig 4 - Estim ated param eter values and covariance m atrix using Restrianed L east Squares Solution

6 Conclusion
The requirements for establishing a com plete parameter estimation method for 

dealing with over-determined, singular design comparison calibrations have been 
outlined. This includes the necessity to fully parameterise all variance/covariance 
components associated with the input data. Off-diagonal terms in the covariance 
matrix of the input data should always be included as there are cases where their 
inclusion does effect the result. It is also necessary to find a method for suitably 
incorporating any constraints required to obtain a solution. It has been shown that 
Bayesian estimators are best for this as they take a more appropriate view  o f the prior 
information than does the traditionally used estimator. A lso, som e of the 
characteristics o f  the Bayesian Estimator have been examined, noting how it performs 
with various combinations and accuracies o f prior/current data. It has been shown to 
be very robust under m ost conditions and to clearly highlight problems even where it 
cannot circumvent them. In contrast, the conventionally used solution is much more 
rigid and cannot react to varying information about the prior data. The overall 
approach described allows a uniform treatment o f the data which is in line with 
current guidelines on uncertainty estimation.
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1

EXTENDED ABSTRACT
Data analysis models should be both mathematically sound and physically relevant. Consistency and 

homogeneity should also be characteristics o f the analysis. The treatment o f measurement uncertainties is 

critical to the accuracy of the method developed. The logic of Classical Probability theory provides the most 

appropriate approach to dealing with data of a non-deterministic nature as it is a method of reasoning in the 

absence of certainty1,2. A Bayesian view of probability is adopted, based on desiderata of consistency—  

namely that the same conclusion should be reached, irrespective of the intermediate routes o f evaluation, 

that all known and available information must be incorporated into the analysis and that equivalent states of 

knowledge must be described by equivalent mathematical statements I ’3. From this foundation a complete 

probability analysis can be constructed.

A thorough practical basis for implementing a measurement analysis strategy has been presented in the 

ISO Guide4 , now widely accepted. One of its key aspects is a uniform and consistent treatment of all 

influence quantities. Establishing variance measures for all elements is achieved by assigning Degrees of 

Belief which reflect the extent of available knowledge about each parameter. This will include all relevant 

information, but only that information which is available about the parameter1

The Principle o f Maximum Entropy (MaxEnt) ensures that Degrees of Belief can be assigned in a 

consistent manner, free from possible bias. The entropy of a probability distribution gives a measure of the 

amount of "uncertainty" it represents. Maximising this subject to the constraints o f whatever is known about 

the parameter generates the most honest probability assignment since it assumes the least knowledge about 

the parameter while reproducing any known features. For example, maximising the entropy tells us, as we 

would expect, that a uniform distribution is the best assignment when nothing is known except the range of 

values the parameter could adopt. Also when an estimated mean and variance are known, MaxEnt indicates 

a Gaussian Distribution to be the least subjective.

The analysis o f mass calibration data involves the parameterising of an experimental situation and 

subsequent data reduction of a set of over-determined comparisons to evaluate the mass values of a set of 

standards*^. a  Unified Approach is desired to all aspects of this work, which will ensure optimal 

estimation and full use of all available information in a non-biased manner^. This is done using the 

principles of consistent reasoning of the ISO Guide, MaxEnt and Bayesian Parameter Estimation.

Statistical Adjustment by the Bayesian M e th o d ^ ,8 ensures the process o f consistent reasoning is 

maintained. It utilises all the available information while not assuming unknown data. It results in parameter 

estimates of improved accuracy, often providing error-detection and even error-correction, should there be 

inconsistencies or systematic errors in the data.
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ABSTRACT

Computer-controlled data acquisition and processing system s are becom ing more 
widespread in the mass calibration laboratory in recent years. Comparator 
manufacturers often provide software accompanying their instruments, especially in 
respect o f the automated comparators now  widely used in high accuracy work.
This paper presents the motivation for a laboratory to develop its own software rather 
than relying on externally produced packages. The scope o f software applications is 
considered in the light o f metrological requirements. Problems resulting from the use 
of different software packages with different instruments are discussed in terms of  
data storage and presentation formats.
Access to source code is considered essential for the traceability and accuracy that is 
required in a metrological context. It must be possible to verify the algorithms used, 
particularly in relation to uncertainty calculation. The need for a coherent, unified  
approach in this regard is presented.
The advantages o f in-house software development are highlighted by reference to 
software developed recently at the National M etrology Laboratory, Dublin. This 
software is able to access a range o f different mass comparators and is also able to 
interface with additional instruments for measuring temperature, pressure and 
humidity within the laboratory. Som e modifications to the software to deal with 
special requirements are also discussed.
Experimental data obtained and analysed with this software is presented showing  
systematic influences on the automated mass comparators which would not have been 
so easily highlighted without the use o f this data acquisition software.

1. INTRODUCTION

The instrumentation em ployed in the mass calibration laboratory is becom ing more 

and more sophisticated in recent years. This concerns both technical properties o f the 

measurement instruments and also, o f  particular interest in this paper, software 

capabilities. Often, many functions are provided on software EPROM ’s in the 

instrument, allow ing various menus to be accessed from the front panel controls and 

nearly always an interface port is provided, allowing these functions to be controlled 

remotely via a computer.
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This situation opens up a w hole range o f opportunities for automating the 

measurement and analysis process, in particular if  the measurement instruments are 

able to perform automated comparison calibrations. Manufacturers, having designed  

their instruments with these facilities have naturally utilised the possibility o f  

computer control by providing software applications for data acquisition, 

manipulation and storage. These labour-saving devices are o f  great interest but must 

also be the subject, o f  great scrutiny owing to the particular requirements o f  a 

calibration laboratory with respect to accuracy, traceability and documentation.

This paper considers som e software applications in the m ass laboratory, primarily 

concerned with data acquisition and processing for use in routine calibration work. 

Software developed at the National M etrology Laboratory in Dublin w ill be used as an 

example and som e experimental observations on automated mass comparators 

obtained with the aid o f this software w ill be discussed.

2. SOFTW ARE APPLICATIONS A N D  LABORATORY REQUIREM ENTS

The typical commercial calibration laboratory is involved in the calibration o f  

standards from the lower OIML ‘M ’ classes up to ‘F I ’ and perhaps even som e ‘E 2’ 

standards. In this context usually a large number o f calibrations are carried out, 

covering the spectrum from mg weights through to 20kg  and perhaps up to 50kg.

Thus there w ill certainly be a range o f mass comparators in the laboratory and it is 

more than likely that they will not all be from the same manufacturer. The instruments 

in use may include conventional manually-operated comparators and also perhaps 

some of the more sophisticated automated instruments equipped with weight 

exchange mechanisms. To focus on our specific interest in this paper, m ost modern 

instruments are equipped with serial interface ports as standard, and w ill have a 

proprietary set o f commands allowing bi-directional communication with a peripheral 

device such as a computer. Comparators produced by a given manufacturer will 

probably have a similar instruction set which may be hierarchical— more sophisticated 

machines w ill utilize all o f  the commands o f  their simpler relatives' along with 

additional controls.

However, it is very unlikely that instruments from different manufacturers will 

incorporate similar instruction sets. And it is here that the problems begin to appear as 

each comparator may have its own supplied software package, resulting in the 

laboratory having possibly several different pieces o f software, each performing 

essentially the same task. Apart from the additional workload for the operator in 

becoming familiar with several different packages, there are more fundamental 

problems: the data storage formats may be different, for exam ple som e may write data 

in plain ASCII text w hile others may use binary formats, only readable with the
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proprietary software, leading to difficulties if the user w ishes to further analyze the 

data, perhaps with other software. The data analysis may differ between packages for 

example, some may provide a Reference weight database, allow ing the final value o f  

the test weight to be determined and displayed, while others may just provide 

summary information about the comparison such as the mean value and standard 

deviation. N ot all packages attempt to perform an uncertainty analysis and if such an 

analysis is implemented, there may be further problems in regard to traceability and 

documentation. The presentation and display o f the data w ill be different for different 

packages, again leading to unhelpful differences within the laboratory.
I

For higher accuracy work, to ‘E 2’ & ‘E l ’ level for exam ple, it is m ost likely that 

buoyancy corrections to the comparison data would be needed. This means that more 

instrumentation must be incorporated with the software. Typically a laboratory will 

have several different types o f instrument for measuring air temperature, barometric 

pressure, relative humidity or dew point temperature and perhaps carbon dioxide 

content as well. Som e mass calibration software provides the facility for the user to 

manually enter data from these instruments during the comparison, which is not an 

ideal solution since operator transcription errors are not im possible and in any event it 

defeats the purpose o f automated data acquisition software, especially if  automated 

comparators are in use. A  particularly useful feature o f these instruments is that they 

can be operated when the laboratory is empty and optimum conditions are realizable. 

Som e manufacturers have produced climate-monitoring system s which can be 

connected to the PC along with the comparator. However, the specifications o f these 

instruments are not always adequate for high accuracy requirements. The best 

approach is for the laboratory to provide itself with the necessary equipment first and 

then to consider a software implementation afterwards which will meet its own 

requirements.

3 GENERAL REQUIREM ENTS FOR TRACEABILITY

So far the scope o f software applications in mass metrology has been, considered. 

Apart from matters o f utility and convenience, there are also important issues 

concerning traceability and documentation o f software and these provide the strongest 

motivation for a laboratory to take a keen interest in the software it uses, [1], Modern 

metrology and calibration is founded upon a carefully controlled system  of 

documentation and traceability so that every measurement is connected to an approved 

and agreed-upon standard. In the case o f  mass metrology there is a hierarchical chain 

of standards back to the International Prototype Kilogram held at BIPM  and ancillary 

measurements needed in calibration, such as temperature data for exam ple, are also 

traceable via national and international standards. However, if w e insert a software
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processing unit at som e point in these proceedings, there is a great danger o f it 

becoming a “black box” w hose form and functions are unknown. Fig. 1 highlights the 

important position o f the software in this respect. Much has been said and written 

about software testing and verification techniques which do help to deal with this 

difficulty, but our primary interest here is in knowing exactly what the software is 

doing with our data, rather than sim ply verifying it with standard test data for 

example, [2 ],

Fig. 1: The Position o f Laboratory D ata A cquisition & A nalysis Software in the C alibration Hierarchy. 
Unless the software is well understood it can be an unknown quantity within the T raceability Chain.

The difficulty is that m ost software documentation provides information on how to 

use the software and what type o f inputs are required, but does not often expound on 

what the software does and how it does it. This type o f  information is crucial for a 

metrologist. In order to have com plete confidence in output data from a processing  

routine, how it is treating the data must be made clear. Perhaps a flow  chart should be 

provided indicating the chain o f events, the equations used should be specified along 

with the algorithms which implement them. There are o f course difficulties here since  

manufacturers o f  software are not too likely to release source code which is ultimately 

what we require for verification purposes. Therefore, this aspect o f software provides 

a strong motivation for in-house development which allows com plete control over all 

aspects.
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It is also important to be able to access the data in a useful form. Verifying that the 

data displayed by the instrument is that which is received by the computer program is 

relatively easy, and the instrument itself can be verified by calibration with high- 

accuracy known standards. H owever, it should be possible to access the stored data 

independently o f  the software for verification and perhaps further processing. It may 

be necessary to graph the data using som e other software in order to compare 

comparator variations with temperature variations, for example. To do this the format 

of the data must be known so that it can be extracted and parsed as required. W e may 

also want to independently check the data to ensure that we agree with the results o f  

the processing software. W e need to know with w h it precision the data is printed to 

the file so that w e can be aware o f  any rounding /  truncating which may occur.

For a calibration laboratory with a large volum e o f  work, there is certainly scope for 

software applications to enhance efficiency. However, as we have attempted to point 

out in the preceding paragraphs, there is a great deal o f information about the software 

which is vital in order to have com plete confidence in it. A  “discontinuity” between  

software developm ent and metrological requirements can lead to as many difficulties 

as are solved by using software. This, coupled with the need to design software 

specifically for a laboratory’s needs provides a strong motivation for in-house 

development.

4. A N  EXAM PLE

At the National M etrology Laboratory in Dublin a range o f equipment is used in the 

mass calibration laboratory, facilitating calibration over a wide spectrum of mass 

values and to a wide range o f accuracies. Various software packages had been tried 

and while each did have individual advantages, no single application met all 

requirements, which was the primary motivation for developing som ething more 

suitable. The practical design constraints needed were to ensure that

1. Data acquisition from all existing mass comparators should be possible, as w ell as 

from the ancillary equipment for measuring temperature, pressure arid humidity. 

Additionally, there should be a modular approach that would allow  further 

instruments to be supported in the future without significant alteration.

2. W e needed a program that would run on a ‘sim ple’ computer running the DOS  

operating system  rather than a W indows-based application. This was to facilitate 

the use of older office PC ’s which were being replaced. They are nevertheless quite 

adequate for the slow  rate o f data acquisition and simple mathematical analysis 

needed in calibration experiments.
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The approach implemented was to abstract the data analysis and presentation sections 

from the data acquisition parts o f the program. In this way it is possible to use the 

same user interface for all the comparators. The operator must provide information for 

each comparison, including calculating information such as reference weight value 

and density (selectable from a database) and test weight density; as well as archiving 

information such as data file names and names/serial numbers for the test weights.

Since this type o f information is needed for all comparisons, irrespective o f  which 

comparator is used, there is no need to have different programs to process it. By 

developing our own software w e were able to produce a total software solution, useful 

in all parts o f the mass laboratory. There are o f course some comparator-specific 

options that the user must set, perhaps relating to configuring the instrument for 

example. These are presented as required, depending on which comparator is selected  

from the supported list. Our software allows automated clim ate data acquisition so an 

additional option is provided, allowing the user to enable this feature if  a buoyancy 

correction is needed.

4.1 Data Presentation

The data is presented in a standard format, irrespective o f  which comparator is used to 

obtain it. The m ost useful form for regular work where a small number of 

measurements are made is a tabular form where individual comparator readings along 

with the result o f each double or single substitution cycle are given. The overall mean 

value and standard deviation are also presented, as shown in the screen-shot in Fig. 2.

On completion it is possible to view  the final values for the calibration where the 

essential summary information is presented. This includes the mean “weight-in-air” 

value and the final value o f the test weight, expressed as both physical and 

conventional mass. The screen-shot in Fig. 3 illustrates a typical data set. If a 

buoyancy correction is not required only conventional mass for the test is given. This 

information is printed to a data file in plain text format. This avoids any complications 

for printing and also ensures the data is easily and independently accessible.

A  crucial feature o f any mass calibration is the accuracy to which it is performed. The 

standard deviation o f the measurement is the best indicator o f this and can be 

compared with accepted values for the comparator at the given range. In our case, the 

laboratory’s quality control measures have stipulated the maximum uncertainty 

allowed for each denomination, depending on its OIML class. W ith known accuracies 

for the buoyancy correction (if applied) and the reference weights, it is then easy to 

state the m aximum allow ed standard deviations for the comparator. These are stored 

in a file which the program consults on com pletion o f the measurement and analysis.
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Standard Name :> 200g° Test Name :> 200g-nml-12Nominal Ualue <g>:> 200.000 No. Measurements :> 6Meas. Protocol :> A-B-B-A Comparator :> Mettler AT201

Ref <g> +200.002710 +200.002720
Test <g> +200.003220 +200.003210

IstDiff. <g> +0.000510 +0.000490
2ndDiff. <g> 
+0.000500

Cyc le 
1

+200.002740+200.002780 +200.003230+200.003280 +0.000490+0.000500 +0.000495 2
+200.002760+200.002760 +200.003300+200.003350 +0.000540+0.000590 +0.000565 3

Mean 2nd Diff. (nig) :> 0.5200 Std. Deu. (ng) :> 0.0391Mean Air Density <ng/cmA3> :> 1.195590

Taking Reading Please Wait

0 +208.003390 +0.000610
0 +200.003380 +0.000630
tì +200.003350 +0.000630
0 +200.003290 +0.0005900 +200.003270 +0.000540

Mean of 2nd Differences 
Standard Deviation <mg> s> 0.560833 

<mg> :> 0.055265
Final Ualue of Test <Conuentional> <g> :> 200.002829 Final Ualue of Test <Physical> <g> :> 200.002841
Average Air Density Tmax, Tnin Pnax, Pnin 
Hnax, Hnin

<ng/cnA3> :> 1.1947
<°C) :> 20.30, 19.80 

<nBar> :> 1011.20, 1010.17 
< x R . H . >  : >  54.47, 52.60

— END OF RECORD===
f i  f tp j ’ ow K e y s  P iJ -U p /P g .D o w n  t o  Move 

P*»e«s É8C t o  E x i t

Fig. 3: Screen-Shot show ing portion o f  the data file, where the essential summary inform ation is 
presented.

A m essage is printed to the screen and to the data file either validating the result or 

warning that the standard deviation is too large. This is a convenient way for the 

operator to assess the acceptability o f the data.

However, long term use o f the automated comparators has shown that there can be 

drifts in the measurements over a period o f several hours. Som e exam ples o f this
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behaviour are shown in the follow ing section. The standard deviation o f just 6 or 10 

measurements would not highlight this drift at all. Because o f  suspected systematic 

errors which arose in som e high accuracy work, the program was m odified, allow ing  

the comparators to be operated for much longer periods and also allow ing start and 

stop times to be specified. In this way it was possible to operate the instruments 

overnight when the laboratory would be empty and more stable. To deal with the 

larger amounts o f  data generated, the output sections were adjusted to give a graphical 

display. This was highly convenient as the user could glance at the output screen and 

immediately assess the stability and reproducibility o f the comparator data. An 

example screen-shot from the program operating in this m ode is shown in Fig. 4.

Data File a:\xp-l.dat

Calibration Date :> Thu Nou 09 13:30:01 19950 
Standard Name :> lkg^ElS Test Narie :> l k 0 9 n H

-520.20 'f
:-521 .80 W

526.60 
528.20 
529.80 
531.40 
533.00

—2-------: — y----------
: \  : q \\ q j
: o o : : q : oo \

. ¿..A./. -Q..Ì...X... il.......X.. i
1 * j \/  b ;’j £i ; o : q : :

...........*........... ................... ...............L.Ü........
; © ; \  ■ /  »

% ---,* —* ,*..............., ........: *. : 1 q j  \ oo o o  ; ï :

so  : ô
•.****.»■,--- .........»?.........; •
0 6 ! i; : ij : it

\  n: o c :ô s7 &
.........  ; ........ ;..............•*.

I l l « Î tH?
i 1 i 1 v • ;

« « : ! ! : ^---------
1.6 3.3 4.9

T ine (hrs)
Cycle 60 of 60

Current Ouerall Mean Diff :> 
Current Ouerall Std. Dev. :>

-523 .966667 
3 .718787

fleasurenent Conplete ; Press any Key to C o n t i n u e :>

Fig. 4 Alternative data presentation in graphical format

The emphasis has been on developing a convenient, coherent code for the calibration 

laboratory which fulfilled specific requirements, while the facility to alter and adjust 

the program provides great flexibility for any special analysis that might be needed.

5 . E X P E R IM E N T A L  A N A L Y S IS

In the course o f research work undertaken by the author it was necessary to perform  

“within-group” comparisons on a set o f standards. In this method more comparisons
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are performed than there are weights in the group, leading to an over-determined 

problem and the possibility o f applying som e suitable parameter estimation technique 

to obtain “best-fit” values for the standards in the light o f the information obtained in 

the comparison experiment, [3]. [4]. In performing these calibrations, the automated 

mass comparators in the National M etrology Laboratory were used with the software 

described in the preceding section. Since the software allowed automated collection o f  

temperature, pressure and humidity data, as w ell as the mass comparison data, it was 

possible to obtain large amounts o f  data with little effort. The computer could  

calculate air density from the resulting data, apply a buoyancy correction and hence 

produce a data file o f true mass differences for the weights used in the comparison. It 

was usual to operate the comparators overnight when conditions w ould be more stable 

and as a result typically 8— 12 hours o f data would be available for each comparison.

Fig. 5 graphically presents the information available from a typical comparison. The 

‘weight-in-air’ and buoyancy-corrected true mass differences are shown along with 

temperature, pressure, humidity and calculated air density data. The great advantage o f  

the software used was that it was easy to access the raw data in order to process it or 

present it in any desired format. The graphical format makes it easy to analyse the data 

and investigate the behaviour and stability o f the mass comparator.

Fig. 5: Shown here is the relevant data for a typical com parison experiment, (a) shows the uncorrected 
“weight-in-air” difference from  the com parison, (b) gives the buoyancy-corrected true m ass difference 
between the standards, (c) is the tem perature during the course o f  the com parisons, obtained with a 
probe within the w eighing enclosure, (d) gives the corresponding barom etric pressure while (e) gives 
the relative hum idity, also w ithin the weighing enclosure. The calculated air density is shown at (f). 
This com parison involved a 1kg standard o f  density 8050.3 kg/m 3 & two 500g stackable weights o f 
density 8048.3 kg/m 3. A ll standards are o f E l classification.
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A striking feature o f the two mass-comparison graphs at the top o f  Fig. 5 is the drift 

during the first two hours o f measurement (graphs (a) & (b)). The fact that this is not 

corrected in the true-mass difference graph (graph (b)) suggests that it is not 

buoyancy-related. It appears that the comparator needs to operate for about 13 double

substitution cycles in order to reach stability. After this time its stability is only limited  

by the resolution o f  the instrument (2 fig  in this case). The temperature probe was 

within the weighing enclosure o f the comparator during the measurements, and from  

the temperature graph o f Fig. 5 (graph (c)) we can see a characteristic rise o f ~ 0.2K. 

W e can correlate this with the mass comparison graphs and conclude that there is a
3

systematic drift in the comparator before it reaches equilibrium. This phenomenon 

appears in spite o f taking appropriate precautions such as ensuring the weights 

reached thermal equilibrium within the weighing enclosure before beginning 

comparisons. The source o f the problem may perhaps be temperature gradients within 

the weighing enclosure due to the load alternator motors. For exam ple, Fig. 6 shows 

the temperature within the weighing enclosure before, during and after a measurement 

period. The temperature rise during the comparison is clear from this. The practice 

adopted as a result o f this behaviour was to take 6 or 10 measurements from a stable 

portion of the graph and to use these to obtain a mean mass difference and standard 

uncertainty for the comparison.

During the analysis o f one group comparison exercise significant systematic errors 

among the input data for the parameter estimation method were noted. This was in 

spite o f care having been taken to perform measurements for sufficient time to 

stabilise the systematic drift mentioned above. Therefore som e of the measurements 

were performed again and surprisingly did not agree at all with the previous data, all 

corrections having been applied. Indeed several comparisons for a pair o f  1kg weights 

produced different results as shown in Fig. 7. An obvious reason for this did not 

appear, but graphing the physical mass difference as a function of relative humidity 

revealed a clear correlation. This is illustrated in Fig. 8 where the root o f the problem  

is shown to be that the humidity levels in the laboratory were too low  at the time of  

the measurements, and the performance o f  the comparator was suffering as a result. A  

systematic error, possibly due to an electrostatic effect, was being introduced, and 

because not suspected or quantified, could not be corrected in the subsequent analysis.

For the purposes o f  this paper, the important conclusion we wish to draw is the great 

benefit o f convenient software for data acquisition and analysis. M uch of the 

information presented in this section would have been difficult or im possible to obtain 

without the help o f computer power, properly harnessed for the particular 

experimental requirements. Som e o f the effects noticed would introduce significant 

systematic errors in the calibration results if  corrective action were not taken.
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Time ( hrs)

Fig. 7: T rue m ass difference for four com parisons o f the same pair o f  1kg standards. In spite o f 
applying buoyancy corrections to the data (which was all obtained at different tim es), significant 
inconsistencies rem ain unaccounted for.
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Fig. 8: Plotting the T rue M ass difference as a function o f o f  % Rel. H um idity for each com parison 
highlights a clear correlation. This shows that the com parators are effected by the am bient hum idity and 
that values o f  relative hum idity m uch below  40%  lead to problem s w ith the data

6 . CONCLUSION

In this paper w e have briefly discussed som e o f  the software requirements for the 

mass calibration laboratory. Because o f the variety o f equipment in use it is difficult to 

obtain a total software solution from an external source. W e have shown by example 

how the internal developm ent o f a software package gives great flexibility in 

designing an application which w ill meet individual laboratory requirements. The 

added benefit o f access to source code helps to ensure the transparency necessary for 

traceability within the metrological system. W e have also highlighted som e insights 

into the operation of the automated mass comparators in our own laboratory in which 

the use o f suitable data acquisition software was instrumental.
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