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Abstract

This thesis presents a unified and homogenous system of data analysis and
parameter estimation. The process is applied to mass determination but the underlying
principles are general and the philosophy applies to any data reduction process.

Two main areas are covered: uncertainty analysis via the recommendations of
the ISO Guide and secondly parameter estimation of over-determined measurement
systems. Application to mass determination of the ISO-recommended procedures and
also parameter estimation in mass calibration have'been treated previously. What is
done here is an innovative attempt to link these two areas together by focusing on the
measurement philosophy underlying each and producing a Unified Approach to
parameter estimation in mass determination. A unique feature is the application of the
ideas of classical probability theory to uncertainty analysis and mass metrology,
particular emphasis being placed on employing a consistent and logically coherent
analysis. Criteria of consistency from classical probability theory are used as a basis
for much of the work, and some useful definitions with respect to subjective
information and unbiased analysis are presented which form a useful contribution to
the metrology of uncertainty theory.

With respect to parameter estimation techniques novel methods recently
proposed in the literature are investigated on a mathematical level and it is shown that
the minimum variance estimator used is in fact an application of Bayesian techniques
to parameter estimation. This provides a useful link to the ISO Guide on uncertainty
analysis, which is mathematically based on a Bayesian view of probability.

The traditional least squares method of parameter estimation which has been
previously shown to be internally inconsistent in its view of the reference information,
is shown in this work to be incompatible with the ISO Guidelines and the consistency
criteria mentioned above. The benefits of applying the Unified Approach are amply
seen in the improved estimates and lower covariances achievable with the Bayesian
estimators.

The capabilities of Bayesian estimators are explored in some detail with
experimental data. This provides some new insight into the estimation technique and
discusses how robustly it can deal with inaccurate data and also attempts to quantify
the maximum improvement in uncertainty that is achievable through recalibration and
sequential estimation with this method.

The conclusion reached is that a Bayesian view of probability, without the
restriction of maintaining a separation between random and systematic uncertainties
leads to a much improved system of data analysis.



Introduction

To ensure the accurate transmission of measurement information arising from
both the calibration of standards and dissemination of units, and also from
experimental research, it is of great importance that there should be an accepted
method for describing data and measurement uncertainties. Such agreement is critical
among Primary Standards Laboratories which play a pivotal role in establishing

measurement links between communities.

However, it is not just sufficient that all involved in the dissemination of
measurement data use a common approach. It is equally vital that the method used has
a sound mathematical basis which is as objective as possible and which is an accurate

description of the physical reality being modelled.

In the past there have been many and various data analysis models in use (Dieck
(1997) list a few for example). Currently a consensus has formed in the metrology
communities around the International Standards Organisation's Guide to the
Expression of Uncertainty in Measurement (ISO, 1993) which lays down extensive
guidelines for modelling data and calculating uncertainties.(Arri (1996), Bich (1996),
(1997), EAL (1997), Fritz (1995), Orford (1996)). This approach requires an accurate
parameterisation of the measurement process in a way which includes all input values
needed to obtain the desired quantity. The existence of such a mathematical
relationship then allows an uncertainty evaluation to proceed in a uniform manner.

The essential feature of this uncertainty analysis lies in treating all uncertainty
components equally, the functional relationship allows the evaluation of sensitivity
coefficients which dictate the contribution each individual term makes to the overall
combined uncertainty. For each individual influence quantity, variance and covariance
information is needed which requires distributional information on all the terms.
Herein has been much controversy since it has been traditionally felt that
distributional information can best be obtained via repeated measurements and an
examination of relative frequencies. These lead to random uncertainties in the
conventional approach. Such uncertainties can be arbitrarily reduced by taking an ever
larger sample of measurements from which to estimate the so-called "true value". A
systematic uncertainty cannot be analysed in this way in the conventional approach
and must be treated as fixed, since it usually arises in data which cannot be subjected
to repeated measurements. It is in the combination of these two that many past
difficulties have arisen and it is to overcome this problem that the idea of treating all

components equally has been proposed.



In this method, Degrees of Belief about a parameter are more important than
information based on an examination of Relative Frequencies, the latter being simply
a means of contributing information to the former. Hence, based on whatever is
known about a parameter, some probability distribution can be assigned to it and

variance information obtained.

In the implementation of any experiment, there are three principal aspects: that
of designing the experiment and the necessary equipment, performing the experiment
and then finally data reduction to extract the required information. In this thesis, our
primary interest lies in the last of these areas. To that end, the concepts outlined in the
preceding paragraphs are implemented in the specific example of Mass Determination
at the level of the Primary Standards Laboratory. We introduce the idea of a u‘ﬁ&l
Ammto data analysis. By 'Unified' is meant a methodology which is internally
consistent and follows a given philosophy at all times. The philosophy is based on a

Bayesian view of probability and the ISO recommendations.

In mass determination, there are two principal areas: firstly model
parameterisation and uncertainty analysis to correctly describe the experimental
information (i.e. mass differences resulting from comparison experiments); and
secondly parameter estimation to determine optimum values for the parameters (mass
values of the standards) based on the information presented by the set of
intercomparisons among the standards. The comparisons are usually carried out in an
over-determined design scheme so that there is extra information present among the

parameters allowing statistical adjustmentto be implemented.

It is the goal of the research presented here to unify both of these aspects of the
process, so that an overall package is presented having a common philosophy and an
internally consistent methodology. O f course it is also desired that the process should
be physically justifiable and a valid representation of all the available information.

I
The first four chapters deal with uncertainty analysis. The theory of the ISO

Guide is presented in Chapter 1, introducing the main mathematical and statistical
terms needed, and focusing on the implementation of the Guide's uncertainty analysis.
A unique feature of this thesis is the explicit application of probability theory as
extended logic (Jaynes 1983, 1996) to uncertainty analysis in general and mass
calibration in particular. It is in this context that the assumptions and philosophies of
the ISO method are discussed and justified, various objections also being considered.
A particularly helpful contribution in this area concerns the themes of U‘bm

alnHSversus wmm In this regard, the basic Criteria and Logic of

Classical Probability Theory are outlined and shown to be suitable desiderata for any



data analysis system. An unbiased analysis is defined as one where the demands of
consistent reasoning of probability theory are implemented while the use of subjective
information is, simply a realistic reflection of the finite knowledge available in any
experimental situation. The ISO approach is shown to meet these essential criteria and
the Maximum Entropy theory is explored as a robust and useful extension to the
Guide. The Criteria of Consistency highlighted here will be continually mentioned

throughout the remainder ofthe work.

Chapters 2 & 3 should be considered together and present the application of the
Unified Approach to the model parameterisation ®of mass comparison data. The
general model of Chapter 1 is made specific here as the experimental system and
necessary systematic corrections are described. It should be noted that the equations
presented here reflect the system in use in the laboratory where the experimental work
was carried out and is thus specific to that situation. In another laboratory, with other
instrumentation, the model would perhaps be different, but the method can be adapted
to deal with any physical situation by appropriate inclusion of all known influence
quantities. Chapter 2 deals with the mass comparison process and develops a scalar
version of the Weighing Equation— the fundamental relationship for determining the
mass difference terms. Chapter 3 deals with the evaluation of air density. The
evaluation of the well-accepted approximate relation for air density in a Standards
Laboratory is presented and the general error propagation theory of the ISO Guide is

applied to evaluate its standard uncertainty.

This is an example of the consistent approach to data analysis being emphasised
in this thesis: the air density equation has of course been tackled many times before,
but in the majority of cases the uncertainty analysis is presented with random and
systematic components treated differently. Here, however, we maintain a simpler
uniform approach and show the power of the general error propagation theory (often
called the Gaussian Procedure) in presenting data in a coherent manner. This allows
us to combine all the influence quantities into a single relation to produce the overall

combined standard uncertainty of the mass difference term.

Chapter 4 tackles the model parameterisation from a multivariate position. This
lays the foundation for the parameter estimation techniques discussed in Chapters 5 to
8. We show how the Weighing Equation is developed in matrix notation and how the
uncertainty analysis of the Gaussian Procedure is developed in this multidimensional
case. We are careful to point out here how the variances and standard uncertainties are
assigned to the measurand estimates and not to the unknown errors or contingencies

affecting the experiment. The equations presented here provide another vindication of



the Unified Approach owing to their simplicity and conciseness while nevertheless

providing acomplete treatment of all the relevant data.

One aspect of particular interest is the inclusion of the uncertainty due to the
systematic buoyancy correction in the analysis. In many treatments this uncertainty
term is either neglected or included after the parameter estimation has been carried
out. In the approach presented here this need no longer happen since it is very simple
to include all uncertainty information in the analysis. The result is an observation
vector and covariance matrix which completely describes all the available information

from the comparison experiment. !

Chapters 5 to 8 tackle the second major aspect of data analysis in mass
determination, that of parameter estimation by statistical adjustment. The Unified
Approach developed in the first four chapters is continued. There are two sets of
information to be combined: the experimental information determined in the
comparison exercise and any previously known parameter values from other
calibrations of the standards. We find that the conventionally applied approach is
inconsistent in its use of this prior information while the Unified Approach allows

extra benefits not otherwise possible.

Chapter 5 considers the Least Squares estimation method, subject to constraints
needed to obtain a particular solution (Restrained Least Squares). The inadequacies of
the method are highlighted in its use of the constraint information: the previously
determined estimates of the constraints are considered as deterministic constants to
obtain a solution, while being treated as stochastic quantities to obtain the proper
covariance matrix of the parameter estimates. This approach can perhaps be justified
in terms of the conventional method of separating random and systematic
uncertainties butis not acceptable in aUnified Approach to data analysis. The critique
of Restrained Least Squares in this chapter provides acrucial link with earlier chapters

where the criteria of consistent analysis are discussed.

We then note the fundamental distinction that is made by simply treating the
constraint information as prior data having its own covariance matrix. This can be
augmented with the current information to produce a data set which can be easily
estimated using the Least Squares Criterion, or the Gauss-Markov Theorem. Very
interesting results are produced by this estimator, wherein a smaller uncertainty is
assigned to the prior information and its values are adjusted too. This, while counter-
intuitive to the concept of a fixed standard, is entirely justified if the standard value is

considered as an estimate with given degrees of belief attached. The comparison



exercise supplies extra information and the minimum variance characteristics of the

estimator result in a smaller covariance matrix for the parameter estimates.

Chapters 6 & 7 implement a generalised parameter estimation technique to
explore the relationship between deterministic and stochastic constraint inform ation. It
is shown how a deterministic view of the constraints leads to the same results as does
Least Squares with restraints while a stochastic view leads to an identical solution as
the augmented design of Chapter 5. This developmentis important as it shows from a
theoretical basis why the two methods give different results and underlines the
importance of properly understanding the nature of all the information used in the data
analysis process. The Unified Approach requires all data to be treated equally and we
show how advantageous this is in parameter estimation since better estimates can be
obtained for the parameters. Of course the approach remains valid if some of the
information is deterministic since then it has a null covariance matrix and the
generalised estimation technique discussed in these two chapters will deal adequately
with it, although adjusted parameter values and smaller variances and covariances for

the deterministic information will not be possible in such cases.

Chapter 8 introduces a new perspective by implementing a Maximum a
Posteriori estimator which uses the Maximum Likelihood criterion along with Bayes'
theorem. This method is ideally suited to parameter estimation in mass calibration
since it views the measurements as simply updating the prior knowledge on the
parameters. Hence all information is stochastic and once again the posterior estimates
show smaller variances and updated parameter values. The technique is very flexible
and can easily deal with any situation. For example, new standards with no previous
calibration history can be assigned very large or infinite variance in the prior
information and the estimation method will then update this information based upon
whatever is learned from the comparison experiment. We show how in most cases this
estimator will produce the same parameter values as does the augmented design or the
generalised estimator. This chapter once again returns to a consideration of the nature
of probability as discussed in Chapter 1. We point out that all probabilities are in
some way dependent on background information and that realising this permits a more
logical analysis of the data. The Bayesian technique is therefore the preferable
approach to use in order to illustrate the Unified Approach and so concludes our

investigation of parameter estimation techniques.

In Chapters 9 and 10 we present experimental case studies to illustrate the
Unified Approach. Three main examples are given and analysis is carried out by both

the Classical and Bayesian Unified Approach. W hile such comparative examples have



been published in the literature before, what is significant here is the detailed

examination ofthe performance ofthe estimators, in particular the Bayesian one.

We illustrate thé inadequacies of the Classical Estimators in dealing with
"suspect" or incorrect data and explore in detail how the Bayesian Estimator performs
much better under such circumstances. The dependency on the relative accuracy of the
prior and current information are among the features highlighted. We find that the
estimator behaves as we would expect with more accurate information exerting a
greater influence on the result. Thus if incorrect inform ation is assigned a high degree
of belief, it will adversely influence the results; however, we find that poor agreement
with either prior or current information will highlight the existence of a problem. On
the other hand we show how the Bayesian estimator can easily adjust incorrect
information if it is assigned a low degree of belief. The robustness of the estimator is
thus highlighted in terms of the stability of the output in the face of perturbations in

the prior information, or initial conditions.

Having noted the adjustments to the prior data in the posterior estimates,
consideration is given to the range of adjustment— in particular to the variances— that
is possible for the given prior information (initial conditions). We show that there are
theoretical limits, both upper and lower, and that specifically with regard to the lower
limit, anumerical technique is required to approach it. Such atechnique is adopted by
means of scaling the accuracy of the current information over a wide range, and

graphically presenting the results for the parameters of interest.

This shows how a lower lim it iS approached for the posterior variances, the
ultimate improvement corresponding to the current information having zero
uncertainty in a single trial. This of course does not occur in practice but gives us an
estimate of what will be the best improvement possible and we can compare any given
improvement in accuracy with this benchmark. In sequential estimation, the posterior
estimate forms the new prior data for another calibration, later in time. We point out
how, with the same design scheme and standards, the subsequent posterior variance
estimates will tend to converge to alower limit, below which no further improvement

in accuracy would be possible without introducing additional external information.

We also find that the upper lim it or ‘worst case’ corresponds to no change to the
prior covariance matrix and would occur in the limit of ‘infinitely Ir‘aIlj‘ate’ current
information. Thus we see that the estimator has the capability to add new stochastic
information, learned in the comparison exercise, without adding “noise” or

uncertainty to the final outcome,



A lot of effort is expended in these two chapters discussing the influence of the
prior information. This is quite in order since in the Unified Approach the prior
information plays an important role, moreso than in the Least Squares methods. We
consider the problem of drift on mass standards in Chapter 10, which would have a
significant effect upon the prior information, showing how the estimator can deal with
this providing there is some accurate information present in the experiment. In other
words, if all of the standards have been subject to drift it is not possible to rescue the
situation. In this way we are being physically realistic about the capabilities and
limitations of the Bayesian estimator, reminding us that any mathematical method is
always limited by the information supplied by the analyst. A solution may be

mathematically possible but may not be physically meaningful.

In this regard we once again invoke the criteria of consistency in analysis,
pointing out that all the relevant information with respect to the standards involved in
a comparison exercise must be considered in order to accurately model any potential
drift. In this was we provide a useful link with the starting position of Chapter 1. We
also emphasise the importance of relative accuracy among the various sets of
information: ‘suspect’ prior information can be assigned a low degree of belief and
then in the posterior estimate its variance will be greatly reduced, while its assigned

value will only be adjusted if the available evidence demands it.

Thus a useful quantity of new information about the performance of the
Bayesian estimator is presented in these two chapters, helping to confirm that it is
indeed arobust and reliable means oftreating over-determined calibration problems of
this nature. The philosophy ofincluding all known information in the analysis, and not
just some of it, is vindicated, in agreement with what we would expect on the basis
that better conclusions and decisions can be made with full information rather than

partial information.

Chapter 11 is the final chapter and gives a short description of the experimental
system used to obtain the data discussed in Chapters 9 & 10. A computerised
measurement system was implemented to gather data from the automated mass
comparators. The procedure used is described and some of the software is discussed.
The model parameterisation of Chapters 2 & 3 was developed for the system
described here. Some example data graphs are included to illustrate the kind of

analysis that was carried out.
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1. Modeling & Parameterising Experimental Data
1.0 Summary

This opening chapter develops amethodology for analysing experimental data in
order to present results and uncertainties in a coherent manner. The philosophy of the
International Standards Organisation's "Guide to the Expression of Uncertainty in
Measurement" (ISO, 1993) is followed, taking an essentially Bayesian view of
probability and implementing the General Law of Error Propagation, often called the

'Gaussian Procedure'. 1

One of the key points that will be noticed is the uniform manner in which all
influence quantities Eire processed: there is no mathematical distinction allowed
between "random" and "systematic" uncertainties. The justification for doing this is
presented, by showing how we seek to implement the criteria of consistency
underlying classical probability theory and pointing out the importance of viewing
probability in terms of Degrees of Belief about an event, or parameter, rather than
basing it on Relative Frequencies observed in some experiment or trial. However,
such experimental information is nevertheless often an important means of gaining
additional knowledge about the parameters. As aresult of this, it is necessary, in this
method, to establish a distribution function for each influence quantity based on
whatever information is available at the time. The Principle of Maximum Entropy is
discussed in this context, showing how it allows an unbiased estimate to be obtained
from subjective information. By this we mean simply using all the given information,
without assuming anything else, in a consistent and logical manner. We point out how
the Maximum Entropy theory predicts the two most commonly used distributions in

uncertainty analysis : the Uniform and Normal Distributions.

W ith this it is possible to obtain the variance/covariance information about the
influence quantities needed for uncertainty analysis. It will be noted that the
distribution information is considered in relation to the parameters themselves and not
the unknown random errors responsible for creating the distribution of values
observed. From the mathematical functional relationship among the input quantities
which generates the parameter of ultimate interest, it is then possible to establish the
contribution of each term to the overall uncertainty of the final parameter value. Fig.
(1.0.1) overleaf gives a ‘flow-diagram’ for the analysis process that is used. The

various terms are explained in detail within the chapter.



1.1 Introduction

When we wish to investigate a physical process/phenomenon by experimental
means it is essential to adequately describe the situation under investigation. In other
words, a mathematical model is needed which includes a" influence quantities
affecting the output or result. This should comprise both directly measured quantities,
indirect quantities such as data from tables/published information etc. and also any
systematic effects which must be included. To take a simple example, the measured
length of an object at temperature tis related to a standard length at temperature w
and the thermal expansion coefficient aby:

Lress=Ldch +(@f—idd)
or, for example, R:fm+dt' 0))for the power dissipated at temperature tby a

current I flowing in aresistor whose resistance is known to be R)at temperature tOIn
essence, what is required is a Fl.rmdd %a]dmpamong the influence quantities,

which generates the required output quantity. That is

y = f{xxx2, ,Xn)

10



1.2 Terminology

At this point we should pause to consider what we really mean by "quantities",
"values", "measurements" etc., since if we do not define our terms properly it will be
difficult to proceed.(See Mari (1996)) Following the spirit of the ISO Guide (ISO,
1993), we interpret the rmIadto be a "specific quantity subject to measurement",
or, about which quantitative information is required. A mmon the other
hand is a logical procedure, having as its aim the determination of the measurand.
Irﬂm QHI]I]eS are those quantities, secondary to the measurement, but
nevertheless affecting its result, whose effects must be considered in order to properly
arrive at the measurand. Indeed, a full statement of the problem will indicate the
quantity to be obtained [the measurand] and under what conditions [e.g. temperature,
barometric pressure etc.] this is to be done. Note that there are many influence
quantities of a short term nature, of which the experimenter is not aware, which as a
result of 'lack of knowledge' are interpreted as "random" fluctuations. As a result, a
full statement completely describing the measurand is impossible without an infinite
amount of information; and hence, apart from intrinsic constants of nature, the
measurand remains potentially unknown and unknowable. This idea leads us naturally

to concepts of "uncertainty" and "accuracy".

To the extent that we cannot fully model all influence parameters effecting our
determination of the measurand, we must introduce a quantitative measure of the
resulting "uncertainty” in our effort. The measurand itself is deterministic but it is also
indeterminate— the distinction between these two being important. We mean by this
that the measurand has a real, definite, value at the instant of measurement, which can

never be determined with infinite accuracy.

In other words, because our model parameterisation is imperfect, we must refer
to the resulting 'corrected measured value' [which is our measurement subject to
whatever systematic corrections we know about] as an ESTIMATE, and as such, we
need to establish m Of %|d, or Plé‘USIhllty for it. We need DS[HS(]’]
G'Haie‘igjﬁfor the estimate, in order to give an indication of the range of values it
could reasonably adopt— any one of which, based on the information we have, could
be the measurand under scrutiny. We are interested, in this chapter, in seeing how we
can arrive at such a measure, basing our investigations on the totality of the
information available to us. We term the difference between such a value and the
measurand, as the ETON. Clearly the real value of this is also unknowable, as a result
ofthe measurand being indeterminate. It should be an aim of any experimentto ensure

this error is small. Just because the Dispersion measure is small, does not mean the



error is small— it simply means that the evidence from existing knowledge is accurate
to within tight boundaries while saying nothing about other possible [systematic]
information which may have been unrecognized. It may be possible to double-check

for this type of situation by performing another experiment based on different physical
principles and re-determining an estimate of the measurand. W@lﬂbhty is the

degree to which these two estimates are in agreement, good reproducibility suggesting
the errors are small. 'Good agreement' would be defined as agreement to within the

combined dispersion characteristics of the two estimates.

1.3 Basic Statistical Terms

We must now turn our attention to the identification and quantification of the
dispersion characteristics of our estimate of the measurand. As we would expect, these
w ill depend upon the dispersion characteristics of the various individual quantities
involved in generating the corrected realised quantity (our estimate). Following the

treatment of e.g. Beck & Arnold (1977), Eadie (1971) or Ross (1972), we use the

probability density function FZ(Z for a parameter Z (usually called a continuous

random variable in this context) to describe the range of possible values the parameter

could adopt. This function is normalized such that

(1.3.1)

The probability distribution function FZ(Z) gives the probability that the random

variable Z is less than some value B hus

(1.3.2)

where Pr(x) is the probability associated with the value X, expressed as a fraction or

percentage. There are some important ‘statistics’ associated with a probability

distribution which we can now define.

Expectation Value: For acontinuous random variable, Zwe have

(1.3.3)
Note that E[Z] is alinear operator, i.e.:

(1.3.4)
ii i=i

& Bax: bA- aBX+ber>1 (1.3.5)

The expectation value can usually be estimated by the arithmetic mean

(1.3.6)

That this is an unbiased estimator can be seen by considering that, if £[z,.]=/xz V |

holds, then:

12



Bpl-t-iU H ft (1-3-7)

1=1 0
That an estimator is unbiased is a particularly desirable feature and one to which we
will return many times in the future when looking at more complex parameter
estimation techniques. A biased estimator is really not an estimator of the desired
measurand at all.
Variance: This is the second principal term of interest. The variance of a random
variable is defined as :
V[z]F042)=h(z-42])2 (1-3-8)
:Ee-AOZ] )
=j(z-H2>PA2)ck (1.3.9)

This indicates that the Variance is the Expectation Value of the squared centered

random variable (z- /j,z).We must be aware that variance is raa linear operator! For

example, for a constant Awe find:
\:{aé\- Ha( £'[la;c]]2
= aZE[x- £[x]]2= a2\/{>€\

also, for constants a&. kwe find \/[a(+lﬂ 232\/[X]. For Z as defined in (1.3.6), we

have

V[z] = * !nM (1.3.10)

where V[z,]=cr2(z) V i'e(l n). A valid estimate of aZZ), obtained from I

observations of Zis:
i —f_ .- l. .ll
i2(z) { yile( zi-2)2 (1.3.11)

in which dZ), the positive square root of (1.3.11), is usually referred to as the 'standard
deviation' of the randomvariable Z This statistic is used to guote anuncertainty for an
estimate of le. Essentially, E[z] is a location parameter,givingtheposition of a
distribution of values while V[z] is a scale parameter for the dispersion characteristics
associated with the particular distribution. If jiZis known, rather than estimated by Z,

(1.3.11) becomes:

njis
We can see immediately how this kind of information should be very useful in
establishing accuracy criteria/uncertainty limits on an experimental measurement,
should we be able to compute it for a given experimental situation. When we can
carry out repeat measurements in circumstances where wuncorrectable random
fluctuation occurs, it is then possible to compute (1.3.6) & (1.3.11). (For another view

on uncertainty measures, see Allan, (1987)). In order to establish a probability
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distribution from this information in aconsistent manner, as advocated by the “unified
approach” of this thesis, we mustturn to the Maximum Entropy Principle as discussed

in Section 1.5.

Covariance: If there are two random variables defined on the same sample space, their

covariance is defined as:
@AWY, 4=c1y -nY)(z-fit)]=vy. 2 (1.3.13)

=J1(2- AoKzH A z)dydz (1.3.14)
where qy,Z) is the joint probability density function. The covariance can be estimated

from MNsimultaneous observations of Y& Zby: :

:{n_lrlyzi:io " ~y\21 -Z) (1.3.15)

) & Zbeing the respective arithmetic means.

Correlation: The correlation coefficient is defined as:

PM = V(y'z) (1.3.16)

Using estimates, (1.3.16) becomes:

y,2=rzy)=" - (1.3.17)

s(y)s(z)
Vy,Z as sample elements from the space of y Zvalues. Note that -1 < r&3< +1, as

the correlation coefficient is a pure number, indicative of the relative mutual
dependence of the two variables y& Z Thus it gives the estimated change in one

variable likely to result from a given change in the other. Also, with respect to

Max+ BA=a2v[x] + BAAN+220C0MA (1.3.18)

Egs. (1.3.6), (1.3.11), (1.3.15) & (1.3.17) allow the evaluation of the center and

covariance:

spread of a distribution which is thought to characterise the measurements made to
determine the parameter of interest, along with the interactions between any pair of
similar parameters. In many experimental cases the distribution so described may very
well be Normal, or Gaussian, but this should not apl‘iOI‘i be assumed. However,
depending upon our knowledge, it can be satisfactorily confirmed using the Maximum
Entropy Principle. In situations where repeated data is obtained with the measurement
instrumentation, an examination of relative frequencies in the results allows both
mean values and variances to be estimated and as we show in Sec. 1.5, maximum
entropy does predict a Gaussian distribution in these circumstances. There are, though,
many cases where such data is not available, and one must assign a distribution ﬁrstin
order to estimate a variance. However, before looking at these situations in more
detail, we must consider the propagation of measurement uncertainty via the

functional relationship for the measurand estimate. Since the desired parameter
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depends on several, if not many, input quantities, it is necessary to investigate how the
individual variances contribute to the final one. It will be in this context that we make
further remarks about the determination of variance and the assignment of confidence

intervals.

14 Uncertainty Propagation (Following the I1SO Guide's treatment (1ISO, 1993))

Assume that a parameter Zis determined from afunctional relationship given by:

Z:f(XlXZ...,XN i (1.4.1)

i.e. Zdepends upon Ninfluence quantities, each of which is either determined in the
current measurementprocedure, or is known initiallyfrom anothersource. We further
assume thatdispersion information is available on allthe Ninfluence quantities— we

will comment later on how this might be obtained.

A Taylor series expansion, to Order 1, 0f (1.4.1) will yield:

(z+&)=2z+7-7-& , (1-4.2)
i=]

for 9& 5( small deviations from Z& )d_respectively. So an evaluation of (1.4.2) wiill
give an estimate of the deviation of our estimate Z from the measurand value,
providing we know deviation estimates for the individual influence quantities. For
each influence quantity we can assign a probability distribution describing the range of
possible values it could adopt. Therefore, from Section 1.3, we will have an
expectation value and variance to describe the quantity.
Hence if we write
& = (*-£[*]) (I-4.3a)
& Sxj = (x, - E\xi]) (1.4.3b)

W e can then re-write Eq. (1.4.2) as:

= gy CED) (1-4-4)
Squaring both sides gives:
o Eldf= Te Bo
=
=S f -*F+21 72 f (1.4.5)
i= dx, y tt iidx, dxj

Now taking expectation values of (1.4.5):

N fgyyY . AMNdd

4 z-~112=1 f (1-4.6)
=1 vexid f=1 7=1+1 VXi VX]

But since from Eq. (1.3.8), E[Z' E[ZA' a], the variance of z, we can write (1.4.6) as:
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(1.4.7)

(1.4.7) can be..further expressed as:

being the correlation coefficient

In commenting on this development, we can point out that Eq. (1.4.8) is a
(In]jaedescription ofthe dispersion characteristics of Zas specified in (1.4.1); based
on a knowledge of the dispersion characteristics of the influence parameters and also
on their correlations, if any. The positive square root of (1.4.8) gives the Combined
Standard Uncertainty and this serves as an adequate measure of the uncertainty in the
measurement/analysis process—mj 0] ﬂ’E Qﬂaﬂy a/aldje krﬂm and is
accurate as an estimate of the possible variation between our knowledge and the value
of the measurand in question, assuming no known systematic effects have been
inadvertently omitted. Expectation values and Variances have been used in the
analysis and it is entirely general. Eq (1.4.8) is recognized as the Law of Propagation
of Uncertainty (ISO, 1993) otherwise known as the Gaussian Procedure for Error

Propagation (see Weise, 1985 & 1987). It is illustrated in Fig. (1.0.1), page 10.

One ofthe key aspects of this procedure is the uniform manner in which it treats
all variance components. Traditionally uncertainty components are divided among so-
called "random" and "systematic" components. The former are those which can be
estimated by examination of relative frequencies in a set of data, while the latter are of
a more constant nature— they do not decrease with increasing sample size for
example. However, that which is systematic in one experiment may very well be

random in another, so the distinction can be confusing.

In the language of the ISO Guide (ISO, 1993) the positive square root of a
variance component is referred to as a Sam'd U’IHTarly It is the basic building
block/component for error propagation theory and since it is a mathematical term

there is no need for further divisions into random/systematic sections.

In understanding the ISO Guide approach to uncertainty analysis it is helpful to
look at the basis of Classical Probability Theory, which is essentially Inductive
Logic— thatis, given effects, we want to decide among several possible causes what is
the most likely candidate to explain the observed phenomena.(see, e.g., Buck &

Macaulay, (1991) and Garett, Chapter 6 in |hd)
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This framework is ideal for analysing experimental data in which we have
effects (data or observations) for which we need to know causes (hypotheses, models,
parameter values, etc.). In stating that we desire to find “the most likely” cause, we are
immediately invoking the idea of ‘plausibility’ or ‘likelihood’ or ‘truth value’ or some
such term indicating the extent to which we believe a given hypothesis or proposition
is the best explanation of the observed effects. Thus we can say that the probability of
the proposition being true is the same as the Im%o'f %G.d %iefabout the
possibility of the proposition being true, and it is this interpretation of probability
which is crucial to a correct understanding of the treatment of uncertainty developed

in this thesis. (See, e.g., Jaynes, 1957, Jaynes, 1982, Cox, 1946)

Referring to a probability as a Degree of Belief reminds us that probabilities
should not be considered absolute! A degree of belief will always be tempered by the
totality of knowledge we have about a subject. Thus probabilities are always
conditional on other, background (prior) information. It is important to realise here
that conditional probabilities, which assume prior information, represent LCng
connections, rather than CHE ones. For example, if our available knowledge leads
us to be sure proposition A is true, then what does this logically imply for some other
proposition B? In this way probabilities represent epistemological knowledge rather
than ontological information. They describe what we know about the event or
proposition, based on the evidence at hand, and allow us aframework for reasoning in

the absence of certainty. ( See Jaynes, 1983, Levine & Tribius, 1979).

It is clear from the foregoing paragraphs that we have carefully avoided any
reference to the idea of Relative Frequencies in repeated trials of an experiment in
coming to our definitions of probability. It is precisely this which has led to the charge
of ‘subjectivism’ being leveled against this approach. It is thought that a list of relative
frequencies provide a definite measure of objective reality which can be completely
relied upon. However, this can be objected to on several grounds, not least of these
being the problems attached to ensuring repeated trials are indeed' reproducing
“random” errors. A more fundamental problem is to assume that this “randomness” is
a property of natural systems, existing in an ontological manner. The view of
probability being highlighted here has no such requirement. Rather, randomness
simply is an explanation of our lack of knowledge— we do not know all the forces and
influences affecting our system and therefore cannot predict with 100% certainty
exactly what will happen. Thus we say there are “random errors” affecting the system.
Other problems arise in the frequentist approach where we must imagine alarge setof
possible outcomes which wjdhave happened (but didn’t!) of which our small set of

observations is amember, (see, e.g. Jaynes, 1996)
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If this approach should seem excessively subjective and thus dependent upon the
individual’s analysis, it should be realised that Degrees of Belief are based on jth the
relevant information that is available. Thus two people presented with the same
information should assign the same probability; (Cox, 1946) another person with
different information or observational experience may well make a different
diagnosis— hence we see again that probabilities are d\/\ﬂ_)/Sconditional on the
available background information. Incidentally, we can further point out that we
always speak of assigning probabilities, not determining them. This is because
probability is a mathematical description of what we know about the system and not

some inherent property of the system.

In implementing aprobability analysis based on this philosophy there are several
Criteria we need to enumerate which will form the basis for ensuring that everything
we do maintains a coherent approach. Following Jaynes (1996), we can state these as

follows:

1). Degrees of Plausibility should be represented by real numbers. This we have
already hinted at by noting that probability theory simply gives a mathematical

statement of what we know.

2). Secondly there should be Qualitative Agreement with Common Sense, which we

would expect on the basis of Logical Reasoning.

Finally, and most importantly, we have several Desiderata, or Criteria of

Consistency. These are as follows:

3a). If a conclusion can be reached in more than one way, then every possible

avenue oflogic should lead to the same result.

3b). All available evidence relevant to a question must be considered. Portions

cannot be arbitrarily left out, conclusions being based only on what remains.

3c¢). Equivalent states of knowledge must be represented by equivalent
plausibilities. Hence in two problems, if the same state of knowledge exists, the same

plausibility must be assigned to each.

These criteria underpin the basic rules of probability theory, from which can be
established a consistent and logical data analysis. We will look at these rules in more
detail later when we consider Bayesian Parameter Estimation in Chapter 8. Here we
just want to point out the essential features of probability analysis and show that these

criteria exist as desirable goals to be aimed at in any analysis. With that in mind, we
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can consider again the uniform manner in which the Gaussian Error propagation
procedure deals with all the influence quantities in a functional relationship. This
Unified Approach certainly makes analysis easy, but we want to ensure that it is

justified in the light of the criteria of consistent reasoning underlying probability logic.

Initially we point out that it is widely accepted that some errors are random in
nature— that is they can be arbitrarily reduced in size by increasing the number of
samples taken— while others will remain constant and are not affected by repeated
measurements. (Bohm (1984) usefully defines errors as being ‘due to contingencies
outside the context of the experiment’).We reiterate that these "errors"-of whatever
nature-are deviations between the measurand and either the realised or corrected
realised quantity. As such, they are of course unknowable (otherwise we could correct
for them and they would no longer be errors) and that is why we represent the
measurand estimate by a probability distribution, which is a statement either
negatively of |aj(of knowledge, or positively, of the extent of our knowledge/our
degree of belief about the measurement just made (Boloni, 1997). Note that all of
these distributions are selected on the basis of available information— we cannot
postulate data that does not exist. Any new data can be compared with the previously
accepted distributional information and a posterior estimate constructed accordingly,

reflecting any changes the new information might imply.

So we can see that this uniform approach to probability assignment is a valid
and acceptable method, in view ofthe type of (incomplete) information available. The
fact that we assign distributional properties/dispersion characteristics to a constant
systematic error is simply a numerical description of what we know about the
systematic error and not an infallible statement about its true numerical value. Of
course, to the extent that a systematic error is known to exist, a correction should be
made for it on the basis of whatever information led to the conclusion that it existed
and could be quantified (See Weise & Woeger, 1992 and also 1994 for an application

of Bayesian uncertainty analysis).

It is important to realise in the Unified/Gaussian theory that we are not dealing
with distributions of errors, but with distributions attached to the parameter estimates.
This is because we know nothing about the errors so rather we consider the
distribution as a statement of our degrees of belief in our parameter estimate. This is
guite a different approach philosophically (which may well lead to the same numerical
results in many cases) which shows clearly why the random/systematic distinction is

redundant— we're dealing with parameters, not errors
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The Guide does, however, permit the classification of the methods of obtaining
standard uncertainties into Type A (those based on statistical methods— nearly always
involving dealing with repeated data/an examination of relative frequencies) and Type
B (those based on "other" methods— i.e. non-statistical methods). The need for Type
B methods arises as a result of the requirement to provide a Standard Uncertainty in
all cases: if an analysis of repeat measurements is not possible, a distribution must be
estimated in some way first and then a variance appropriate to this distribution can be
obtained. It may well be that little information is available about the dispersion of the
estimate, but remembering to interpret probability as Degrees of Belief, then whatever
distribution can be decided upon is simply areflection of what knowledge exists at the

time about the estimate, be that more or less {See Annex E in ISO, 1993}.

The overall goal of this Uncertainty Propagation Procedure is to generate a
simple Variance/Standard Uncertainty for the output quantity, which can then be
easily incorporated into other analyses, and is clearly understood. Many problems can
arise if an estimate is claimed to have an uncertainty of X with ay% confidence level.
Unless something is known about the distribution of X, it is impossible to properly

understand the quoted uncertainty. (See also Mueller, 1984).

However, if a Combined Standard Uncertainty is given (i.e. positive square root
of (1.4.8)), then a variance is immediately available for inclusion in subsequent work.
It is not necessary to give confidence levels for the result, but this is often considered
to be useful information. To do this though, requires knowledge about the shape and
type of the distribution of the estimate, and this will depend on aconvolution of all the
probability distributions of the influence quantities involved in generating the
estimate. This convolution can be difficult to evaluate if there are many different types
of distributions assigned to the various parameters. However, in many cases the output
distribution will be approximately Normal, even if the input distributions are not
exactly Normal. This is a consequence of the central Lim it Theorem (Beck & Arnold,
1977), (Eadie, 1971). If there is alarge non-Normal distribution element present in the
input, the conditions become less favorable to the Central Limit Theorem and its
validity cannot be guaranteed. However it is common practice to include a so-called
"coverage factor", usually of K= 2, to give an Expanded Uncertainty which often has a
confidence level of the order of 95% if the distribution is approximately Normal. The
use of higher coverage factors— e.g. K= 3 for -99% confidence is hard to justify since
this results in the widening of the uncertainty bracket to include possible values to

which avanishingly small probability of occurrence has already been assigned.

Aside (Correlation): We have seen in (1.4.8) how to evaluate cr2")

wherez, =f(xl,...xN) , i.e. Z}is a function of (some o f) the Nparameters Xj....XN. Now
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if we have another measurand estimated by z2=g(xv...xN), we can of course also

evaluate er2(z2). However, any terms common to both ﬂand Zwill result in the

possibility of a correlation between the two functions, which could be significant if
they were to be later combined in a third evaluation. In general, this covariance is

evaluated by:

i=l vXj a1 (1A9)
Thus for any )¢not common to both ﬁ.& 20ne or other of the partial derivatives wiill

be zero, and if no terms are common, there will be nJQ correlation.

To conclude this section we highlight the principal points of this Unified
Method of model parameterisation and uncertainty analysis. The measurand must be
clearly defined: the circumstances of measurement, physical conditions etc. must all
be stated. The functional form of the realised quantity from the experiment should be
set down and all known corrections for various systematic biases must be included to
obtain the corrected realised quantity— this is the estimate of the measurand desired.
Then an investigation of the dispersion characteristics of the various influence
guantities must be carried out in order to obtain the dispersion characteristics of the

output quantity.

The key to the approach is to establish a variance for all the parameters, the
positive square root of which is termed a Standard Uncertainty. The variances, and
any known covariances, are treated by the Gaussian Procedure to obtain the Combined
Standard Uncertainty of the estimate of the measurand. (See Arri, 1996 & Cox, 1996

for comments on measurement procedure and model parameterisation)

Coverage factors may be included at this stage, to give an quH‘CHZIU‘[Htarly

as it is termed in the ISO Guide, but care should be exercised in doing this and the
way in which it is done should be transparent to ensure that no ambiguity arises.
Coverage factors can tend to have a somewhat "sledgehammer" effect on the whole
process, which emphasizes r@ig@.Cestimation of uncertainties, rather than so-called
"safe" estimates. (Other thoughts on coverage factors are given in Godec (1997)). In
other words our uncertainty measures should only be based on the extent of our
available knowledge and not on "guesstimates" with no justification from the current
data. The reason for this can be further reinforced by considering that whatever
distribution the estimate takes, including a coverage factor implies pushing the
boundaries of possible values out into the tails of the distribution, which by their very

nature are considered highly improbable.
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In the Unified Approach it is permissible to point out that the combined standard
uncertainty contains components from various sources and to itemize these. Such
information could be useful to an end-user ofthe calibration information in comparing
the quoted uncertainty from two different establishments, as it is not always easy to
identify how the original calibrator arrived at the stated uncertainty. However, note
that the functional relationship will dictate the mty CIB‘ﬁGeITS (partial
derivatives of the functional form) and these multiplicative factors will affect the
overall contribution of each term to the final combined standard uncertainty. Perhaps a
good method would be to state the functional relationship and then to tabulate the
standard uncertainties of each component and their contribution to the overall result.

Such a suggestion is indeed but forward in EAL (1997).

1.5 Subjective Probabilities and Maximum Entropy

The Unified Approach to data analysis in mass metrology developed in this
thesis includes an approach to uncertainty analysis, aspects of which have been the
cause of much controversy in the metrological community. This in particular concerns
the manner in which it removes the distinctions between random and systematic
uncertainty components. We have shown above how the method is justified by a
correct understanding of probability theory and of the nature of the information
available to the analyser of experimental data. The points we have raised will be
relevant to the remainder of this thesis and we will see the emphasis on a Unified
Approach and a Consistent Analysis many times in the succeeding chapters,
particularly in discussions on Parameter Estimation methods and data analysis of mass
calibration experiments. (See Bretthorst (1989) for a helpful tutorial on applications of
Bayesian probability theory to parameter estimation. Frohner (1997) has further useful

information).

However, the above considerations of Probability Logic notwithstanding, the
major controversy has centered on the assignment of Probability Distributions to
experimental data, the classical analysts holding rigidly to a separation of systematic
and random variables, claiming that the unified approach is too subjective to be
realistic (e.g. Colclough, 1987). From our earlier comments of course, we can claim
that all probabilities are subjective, depending as they do on available information in
reaching a decision. It can indeed be argued that the traditional approach, too, must
use subjective assessments in establishing uncertainties for suspected systematic

errors, about which very little prior knowledge may be available.
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Hence out task now is to ensure that the probability assignments we do reach are
completely unbiased with respect to the available information. Being ‘unbiased’ is
guite different to making a ‘subjective’ assessment: the latter is simply a reflection of
our finite knowledge; while the former is an assurance that our demands of
consistency are met (Cox, 1946): all available knowledge is used, we do not arbitrarily
ignore some of it, and neither do we assume other information not warranted by the

given data and known history.

In many cases it is possible to establish a distribution, or at least a variance
estimate, empirically, by an examination of relative frequencies from repeated
experimental data. Where such information is available it is of course valid, but in
other cases an estimate of dispersion characteristics must be established by invoking
such criteria as “experience”, “available information” or some similar idea. So how
can we be sure that such an estimate is the best we can do? We need some procedure
which can guarantee we have done the best, most optimum, analysis with the supplied
information. Remember that we very much desire “optimal estimation” of
uncertainties— not a ‘sledgehammer’ approach of coarse limits which must contain

the measurand, and not either, excessively optimistic narrow lim its.

The easiest way to assign probabilities is by invoking the “Principle of
Indifference”: if it is possible to break the problem up into a set of mutually exclusive
and exhaustive possibilities, then there is essentially no reason to assign any one of
them a higher probability than any other and we arrive at a Uniform Distribution,
which is intuitively the simplest we can imagine. However, often we do have
information to suggest that some propositions (or data) A€ more likely than others.
What do we do then? How do we proceed in a manner which takes account of this
more specific information while at the same time remaining unbiased and not making

unwarranted assumptions about the otherunknown information? (see Jaynes, 1985)

We know the Uniform Distribution to be the most non-com mittal with regard to
all possibilities, while a perfectly sharp function (e.g. Delta Function) is absolutely
definite as to the parameter’s value. We need some method which can reproduce both
of these situations whilst also spanning the continuum between them in a manner
which is maximally unbiased. Again let us re-iterate what is meant by ‘unbiased’: we
mean adherence to the rules of consistency such that no attempt is made to assume
knowledge we do not have. Thus any distribution should be as vague as possible while

taking account of any known data (testable information).

Every probability assignment can be looked upon as expressing how much

uncertainty we have about the proposition, or parameter. This is not to be interpreted

23



negatively, but rather as a fair expression of the limitation in our knowledge. W hat we
need is a numerical measure of the “amount of uncertainty” represented by a
distribution which tells us how little we know. The most consistent probability
assignment w ill then be the one which maximises this, subject to the constraint of
whatever we Cbknow— i.,e. what testable information do we have? The uncertainty

contentis largestfor a Uniform measure and zero for a Delta function.

Such a measure does exist, and is termed the ENtropy of a probability
distribution. (See, e.g., Woeger, 1987, Sivia, 1996, Lieu, 1987). It is a measure of the
uncertainty or alternatively, the Information Contento f a distribution and can be given

by:

S=-Jp(;t)log~r~rk (1.5.1)

for F(X) the distribution in question and IT(X) a function representing particular prior
information available about the problem. Maximising Ssubject to the constraints of
any known testable information will yield the best probability assignment that can be
made. It tells us how much we don’t know about the parameter, or how Uniform is the
probability distribution. Note that it does not tell us which distribution is absolutely
right, but simply is a means of inductive reasoning in the absence of certainty which
tells us what conclusions are the most plausible in the context of the currently
available information. Some useful information with respect to the relationship
between thermodynamics and data analysis / information processing is found in

Trebbia (1996).

The general approach to evaluating 5 * is as follows: (Jaynes, 1996) we take a

discreet case where we have a set of possible values (X],X2 Xr) for a parameter X
and a corresponding probability distribution (p{,pz ....... p,,) There may be a set of [T]

functions of the data whose mean values we know. This is our testable information.
Thus we have a setof fk*) for 1< k<mand also

=E{fk(]="Pifk(4) (15.2)

So our constraints include, firstly normalisation ofthe distribution, p =| and also a

setof Fk given by Eq. (1.5.2). If we define

Q=S+X0(l- X Pi)+K (™Ni - X Pifi (Xi))+ oo - X Pifm(*«)) (1-5.3)
where Sis now given in the discreet case by S -Y p.log— , then in the Lagrange
Variational method we require — =0 in order to maximise Ssubject to the (ITH-\)

¢Pi

constraints. That is, we need:
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— VX _PiloS S+ X(1- X Pi+X X3 =X Pifj(*) =0 (1.5.4)

j=i \ 1=1

=X i-1-log-n-- - X xfj (xi)r=0 (1.5.5)

Hence for each pwe have:

foa\ /

m, m
exp -X0- "Z%jfj{xi) =e (1.5.6)
y=i
(1.5.7)
Or, in continuous form:
p{x) =m(x) C exp (1.5.8)
for C=e“(l+A0). Thus knowing the Lagrange parameters A, and A, Am allows the

probability distribution to be determined. This involves solving (m+l) simultaneous

equations which may require numerical methods.

The function “X) given by Eq. (1.5.8) generates the most consistent probability
assignment for the known information. It is ‘subjective’ to the extent that it is a
measure of our ‘uncertainty’ or lack of knowledge, butitis acompletely objective use

of the available data on the problem.

We will look now atjust two situations which we will find are sufficient for the
subsequent analysis in this thesis (Sivia, 1996). In the first case we consider, there are
no known constraints and rT(X) is a Uniform Measure— that is, we are completely

noncommittal about the possible parameter values, only knowing that

M

=1 => mi—/M by the Indifference Principle. Thus in Eq. (1.5.7), the second

1=1
exponential reduces to unity and we have:

H-m,.e"(1+Ao) (1.5.9)
n
We know that » p:=1 by normalisation so therefore we find:

lo(1_£ ~ ) =0

M
But given that =1 we find that A, =-1 for a non-trivial solution and thus from

H
Eq. (1.5.9), Ff:m or, in the continuous case, F()an(x This is of course intuitive

and tells us that, in the absence of any other information, except normalisation on KX)
and an uninformative prior rT( y, the best we can expect is just such a uniform

distribution for which :
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forxm@n
m(x) = (1.5.10a)
otherwise

with a variance of

gk): (*na<12*m'n) (1.5.10b)

Thus when we know nothing except the boundaries for x, maximising the
Entropy predicts a Uniform Distribution, which we would in any event expect, both
intuitively and by the Principle of Indifference.

i
A second common situation arises when we know a mean value E[x\=fi and a

variance of

A(x-la.)2= c2:A{X-\X)|.[.'{X)d( (1.5.11)

Once again we need not have any prior reason to select one dispersion characteristic
over another so we can have n‘(X) as auniform distribution. Thus Eq. (1.5.8) gives, for
the maximum entropy distribution

p(x) = m(x)e~{l+Xo)e~X{x" 2 (1.5.12)

since we have just one constraint ﬂ(X):(X'p)Z with expectation value

H:E[f(x)] =J/] (X)p{X)dXWe can write Eq. (1.5.12) as

p(x) —Ce~Xi{x~il)1 (1.5.13)
since m(x) is a constant(uniform) distribution. W ith this value for p(x) we can go back

to the constraint equation (1.5.11) to find:

a2= J(jc-|xfC€'A-AdX (1.5.14)

where the (-°0,°0)limits can be set unless we have further constraints to the contrary.

Evaluating this standard integral yields:

cVrc

while the normalisation constraint gives another standard integral:

1= 1W M~ )2dx (1.5.16)

Gdh

d.5.17)

Solving Egs. (1.5.15) & (1.5.17) as simultaneous equations yields values for A, & C:

(1.5.18a)
2(7
C—2= (1.5.18b)
cw 271

Thus we finally have for Eq. (1.5.13):
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a 5 -19)
which we can,recognise as a Gaussian Distribution. This shows us that the Gaussian

Distribution is the most honest description when we know nothing except a mean

value and a variance estimate.

This development is significant since we said earlier that even though a mean
value and variance estimate could be computed from an empirical examination of
relative frequencies, we could not automatically assume a Normal Distribution
applied. Further information would be needed we thought; however, here we see that
in fact a Normal Distribution is the best we can do when presented with such

information.

1.6 Conclusion

This concludes our study of the fundamentals of probability theory and its
application to uncertainty analysis. The concepts we have developed here are crucial
to whatfollows and we w ill see how the general philosophy of aunified approach and

a consistent analysis is applied to all subsequent calculations.

We have seen in this chapter how the Law of Error Propagation provides a
convenient and mathematically concise (as well as accurate!) representation of the
uncertainty influence of all involved parameters on the final outcome. Criteria of
Consistency underlying probability theory provide a firm justification for this
approach and show that a reliance on relative frequencies is unnecessary as these are

only a subset ofthe extantinformation on the subject.

A crucial point for the ISO procedure is the establishment of variance
components for all terms in the functional relationship. The Maximum Entropy
Formalism indicates a Uniform measure when only upper and lower limits for a
parameter are known, while a Gaussian Distribution best describes parameter
estimates for which means and variances are available. These two cases adequately
describe the information presented in succeeding chapters, and so we can proceed,

confident that the Unified Approach can be maintained.

27



2. Parameterising Mass Calibration Experiments
2.0 Summary

In this chapter and the next we apply the principles of consistent reasoning
developed in Chapter 1 to an analysis of the issues arising in mass calibration by
comparison experiments. The basic measurand to be determined is the mass dﬂ:am
of two standards or ensembles of standards. The data is obtained from '‘in-air'
comparisons with automated mass comparators, resulting in the need for various
corrections (influence quantities) to be incorporated in the overall functional
relationship. We illustrate the development of a scalar version of the Weighing
Equation’, the key functional relationship in mass metrology. Incorporated in this are
well-known corrections for buoyancy, center-of-gravity differences and volume

expansion coefficients.

We then illustrate how the uncertainty analysis is carried out according to the
principles of the ISO Guide. This is a new development where we adopt the unified
approach and do not separate the components into random and systematic terms as is
traditionally done. The expressions for the standard uncertainty thus developed can

then easily be incorporated into other work as required.
2.1 Introduction

We wish to apply the theory developed in Chapter 1 to the analysis of comparison
experiments in mass calibration. The experimental procedure is well known and will
not be touched on here, although some details are given in Chapter 11. For our
purposes now it will be sufficient to note that comparisons are carried out between
nominally equal mass standards, or ensembles of mass standards, the residual mass
difference between the pair being the measurand of interest. Data is obtained with
Electromagnetic Force Compensation comparators and various corrections may be
required to the resulting data. For example, operating in air implies a correction for
the difference in buoyant force, should the two standards have different densities.
There may also be corrections due to center of gravity differences and perhaps
different volume expansion coefficients. There can also be issues arising from
magnetic properties of standards (see, e.g., Davis, 1992b, 1993, 1995a, Myklebust,
1995, Ballantine, 1996).
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2.2 System Modeling—The "Weighing Equation’

When all necessary influence quantities have thus been identified, the functional
relationship can be established, allowing an estimate of the measurand and associated
standard uncertainty to be calculated from the appropriate experimental
measurements. For the case ofthe one-pan electronic comparator we can write

(M- RA§g-(Mx-parg=Fs (2.2.1)

where M sis the physical mass of the standard weight;

\Gs its volume;

Nk& \Kare the (unknown) mass and volume ofthe comparator’sinternal tare

weight (only residual differences in apparentlmass are measured.)

m.s the air density atthe time of measurement;

I'_Sis the electromagnetic restoring force exerted by the comparator to

compensate for the residual in-air mass difference (apparent mass difference)

between the internal tare weight and the externally applied weight.

(See Jaeger & Davis (1984) for example). If the comparator indication for this

measurement is Wi, it will be related to the force I'_Sby
\Veé=Ks (2.2.2)
where kis an instrument constant, fixed when the comparator is calibrated. We can
interpret \Mas the apparent mass difference (or “weight-in-air” difference) between
I\/Band IVkIn doing this we can neglect a small correction factor, depending on the air
density when the comparator was calibrated and also on the density of the calibration
weight used (Schwartz, 1995), particularly since \Mis a residual mass difference and
thus small. Any correction would then be less than the comparator's resolution.
Repeating the measurement process with atest weight we have
(M-pa\l’)g-{l\/bepak)gzﬁ (2.2.3)
(For simplicity we assume air density remains unchangedbetween these two
measurements). The comparator indication in this case would be Wlf we now

evaluate the difference between (2.2.1) & (2.2.3) we can eliminate the unknown tare

.. - pu\)g-(M,-pag=F-FI (2.2.4)

W=WSW, (2.2.5)

as the apparent mass difference between the standard and test weights. Usually this

weight term to obtain:

W e can define

term is evaluated by adouble-substitution comparison.

1Note: In this thesis, when we use the term ‘apparent mass’ we mean the resulting measured mass from
a measurement in air of a particular density, before any buoyancy corrections are made. We will
sometimes refer to ‘apparent mass difference’ as ‘Weight-in-Air’ difference.
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Now it may occur that the centers of gravity of the standard and test weights do not
coincide in which case we would have to write (2.2.4) as

(VE-pafs (M Mg =a Vg (2.2.6)
where we have considered AW as a mass (in effect of density 8000 kgTBsince
comparators are usually calibrated for mmad ness (OIML IR 33 & Schwartz
(1995)) which would ‘balance’ the force equation of Eq. (2.2.4). For convenience we
have considered its centre of gravity to coincide with that of the test weight. Now we
can note, following the treatment of gravitational effects in Aimer & Swift (1975),
that the gravitational force experienced by two masses, M & NQis:

= (227a)

R -M"N =vos (2.2.7b)
(re+d)

For WL [@he mass and radius of the earth and dthe distance:

(center of mass)! - (center of mass)2

Now if these forces are equal we find:

BF2="Ve=M+ 2d\l1 +Ci2\/l (2.2.8a)

re re

=> iL =i+ +7_ (2.2.9)
82 e e
but since d "‘Icrnusually and [€-6.4x106m, the thirdterm onthe rhsof (2.2.9) is

vanishingly smalland cansafely be ignored. Following(2.2.9), (2.2.6)can be re-
expressed as:
o o a9 M~RAD)=AWV (2.2.10)
v Si /

Substituting (2.2.9) into (2.2.10) and re-arranging gives:

MVs-M,)- |oa{V-V)+mM ams .,

(V- Mt)=AN-E\k \/t)_-_EEV'EdPV @20

r

The last term on the r.h.s. of (2.2.11) is some 4 to 6 orders of magnitude less than the
others and thus can be neglected so that the functional form for our influence

parameters can be expressed as:

AVIEAN AV 2tM (2.2.12)

where A\/Iis the physical mass difference of the standards.
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Equation (2.2.12) is the well-known, "weighing equation"”, although the extra

term 5 the correction due to different centers of gravity is not always included;

however it can amount to some 3 0X 4 fig which is easily measurable with modem
comparators and so does need to be included for the most accurate work. I\/BW ill be
taken as the nominal mass of the standards for this calculations. In most cases the
standards are either cylindrical, or very close to cylindrical so that d, the center of
gravity difference, will be half the difference in height of the two cylinders. However,
Davis (1995) has described a device allowing the centre of mass of a standard OIM L
mass (OIML, 1994) to be determined quite easily. Note that while it is notuncommon
to employ sensitivity weights in the experimental process (e.g. Davis, 1987) leading to
extra terms in Eq. (2.2.12), this has not been done here since they are not employed in

the experimental system used in this work, to be described later.

One further influence we can add to (2.2.12) is that due to the temperature
dependence of volumes of the standards (See Schwartz, 1991):

V(f)=V(20){l+a((f-20)} (2.2.13)

where at t also, but can be taken to be constant over the narrow range of

temperatures which will be encountered in the calibration laboratory. Also a, is

material dependent, but since we will only encounter stainless steel weights in this

work, we can use a fixed value of a, and write (2.2.12) as:
(2.2.14)

N\/Iis the measurand of final interest for our purposes. For basic calibration, this is

not strictly true since A\/I:M( M and mis the unknown to be estimated. In that
case, what is required is M= IVB'NVI. However, what we are interested in is just
Mdﬁmwhich will be used in the Estimation Procedures to be described
later, in order to estimate M\HLE

2.3 Uncertainty Propagation

The analysis of Section 2.2 has described one form of the well-established
Weighing Equation. Now we apply the unified approach to evaluating the standard
uncertainty of (2.2.14). Note in particular that we will not split the influence quantities
into those contributing randomly and systematically to the overall uncertainty. We

must evaluate Eq. (1.4.7), restated here for convenience as:

(2.3.1)
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where the symbols have their usual meanings and AM:f(XWXl\) From (2.2.14),

this can be written as A\/l:f(AVV,pa,\S\/,,t,d).We must write AVr= (yt-V () since

there will be a standard uncertainty associated with each volume but ANis just an
instrument indication. For IVBin Eq.(2.2.14) we can use the nominal value of the
standard since typical deviations of a few rTgfrom this nominal value will make
insignificant differences of the order of ~1 0 f|g to the Gravitational Correction.

Further, rethe earth radius can be treated as a constant here for similar reasons.

Before proceeding to the evaluation of (2.3:1), we need to consider covariance
elements which will result. On a mathematical level, the possible covariances which
can arise among the influence quantities in the functional form of Arnare:

caw,pe), SAMNNG | iaw vy, caw ), (AW o);

» ~NPa’~i) P 5(Pa’0 » J(Pa’n)>

s{Vs'M) , s(Vs,t) ,s(Vs,dJ,

s(Vt,t), s(V,.d);

s(t, d).
It is very important when considering correlations to consider whether or not they are
physically meaningful: it is always possible to mathematically evaluate a correlation
coefficient or covariance among sets of data, but one must always check whether such
arelationship can be physically justified. It is easy to make pronouncements, based on

such statistical analyses, which do not have any foundation in physical reality.

We can immediately say that all correlations involving the volumes are zero
since the volumes are determined independently by a hydrostatic weighing experiment
at another time and another place. (See, e.g., Bowman (1967), Spieweck & Bettin
(1992), Heierli (1997)) The possibility of correlations mthe two volumes may
be speculated, but as a rule, information about this is never available to the
experimenter doing mass calibrations and so cannot be included. Similarly, the
covariance W can be dismissed, as can S(ANCD and qt,CD Since pa /[-among
other variables-a covariance between these two does not arise, but rather, there is a
direct contribution to the combined variance of pa.from the variance of t, of which
more will be said in Chapter 3. Assuming steady state conditions during the
measurement period-which is reasonable in a high accuracy laboratory - there will be
no correlation between the weight difference, AN and t or Fﬂ. which are
measured/calculated by other instrumentation.

The important point of the foregoing considerations is that we have taken on
board all information thatis to hand about the experimental process. In the absence of
any information to the contrary we have no reason to assume that a covariance exists

between the volumes, for example. If, however, the volume calibration data indicated
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such a covariance, then it would of course have to be included. The same applies to
the other variables in Eq. (2.2.14). The result is that, having considered the physical
situation, in the absence of any information to the contrary, we can assign a zero value
to the covariances among the input parameters. Again this is an example of
implementing aphilosophy of consistent reasoning in the analysis. So now (2.3.1) can

be evaluated to give:

3/ ( Bf n2 f3L
"(AM) = i (AW) + (o i+
(ﬂ/\/ \ dp* ) (p] dv.
(2.3.2)
‘af 2 ra/Vv (V'
+ n o+ s\t) + s\d)
av, \V') )

and using (2.2.14) for the functional form ofNVlwe obtain the expression in (2.3.3).

s2(AM)=  s2(AW)

+AA\S5- V)&l +a (t-20)f

+ (s2(vs) + AM)p 21 + a (i-20))2 (2.3.3)
+*2«<p N .-v(V
I~ \2

The positive square rootof (2.3.3) is then the combined standard uncertainty of A'n In
practice, the last two terms, due to the systematic corrections, will evaluate to 5 or 6
orders of magnitude less than the others and thus contribute negligibly to the overall
uncertainty term. For example, in Davis (1995b), it is shown that the centre of mass
can be determined to perhaps 3 irriwhich would lead to an uncertainty contribution of

around 1x 1CT3jig for a 1 kg standard.

We now need to consider the possibility of correlations tﬂvm]two separate
evaluations NV‘ and A\/], which could arise as a result of common influence

guantities in each. Recall that the correlation can be evaluated from:

( \VV$ 2~
for y] :f(X|,....X|\) (2.3.4)

& yk=g(xi
where not all the influence quantities may necessarily occur in both/& (. Covariance
terms will arise only as a result of those terms which are common to both. In the

present case, from Eq. (2.2.14), we may have, for example:
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aAM:= aw, HpaM- \W\+a(ti-20))-""

_ _ / vil w 28A9M t2-3-5)
AMj = AWj + puj (v, - V,)(I+a(tj-20)) =L
n

Clearly, AN& AV\-!never both occur in the same function, the same applying to p, &
Fj and also tt& l] A is considered constant since its variability will have negligible
influence so it cannot contribute any covariance either. Thus the only possibility for
covariances between /N\/I & NV] arises as a result of weights being common to both
comparisons. Forexample, if AM;:MI'MZ& A\/]= M,- M3,we can see thatMlis
used in both comparisons and so\ﬂ.will appear inlboth equations in (2.3.5)above.

Thus we find thatthe covariance term can be expressed as:

e — +« — L\V) (2.3.6)

*=1V k A ° W
in (2.3.6) is the total number of weights used in the two comparisons and the
derivative product is only non-zero in cases where a weight is used in both

comparisons.

So, by applying the ISO Procedure to the Weighing Equation, we have been able
to generate two equations {(2.3.3) & (2.3.6)} which provide all the necessary
information to evaluate the various uncertainties resulting from the comparison
experiments. This has been done in a unified manner with respect to the treatment of
the various influence terms and we have sought to uphold demands on consistent
reasoning in the analysis. W ith the functional relationship established as shown in Eq.
(2.2.14), we only need to find variance components for each influence quantity in
order to complete the error propagation analysis. We have seen in Chapter 1 how
Maximum Entropy considerations allow this to be done in a “maximally unbiased”
manner. For example, quantities like AN which are estimated by repeated
measurements can be considered to have a Normal Distribution, since a mean value
and variance are available. Quantities from other calibrations (such as volume
determinations for example) should have been processed according to ISO principles,
in which case a standard uncertainty will be available which we can be confident in
inserting into subsequent calculations. However, if it is not clear how the quoted
uncertainty was determined, we must use Maximum Entropy considerations to assign
the least com mittal distribution that is compatible with the supplied data. Very often

this will simply be aUniform distribution.

Before proceeding to look at combinations of comparisons, as used in
disseminating the mass scale, we must first consider the uncertainty propagation

analysis for the air density, pa.
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3. The Evaluation of Air Density
3.0 Summary

Here the model parameterisation for mass calibration of Chapter 2 is continued.
The calculations relating to air density are included here and are kept separate from
the considerations of Chapter 2 for clarity. However, the two components form an
integrated process, as can be seen in Fig. (3.0.1) below which illustrates the method.
The development of the air density equation outlined in this chapter is the accepted
approximate relationship for use in a typical Standards Laboratory, sometimes referred
to as the 'BIPM Formula'. What has been done here however, is to ensure that it is
treated according to the Unified Approach to uncertainty analysis as outlined in
Chapter 1. The functional relationship given is for direct measurements of
temperature, barometric pressure, relative hum idity and possibly mZIeveI; as well as

imported values for the Gas Constant R and the molar masses of moist and dry air.

The Gaussian procedure is applied to this functional form in order to obtain the
standard uncertainty of the air density estimate. To evaluate the partial derivatives
(sensitivity coefficients) of the functional form is a little difficult since within it there
are several polynomial terms with implicit dependencies on the influence quantities
and thus the sensitivity coefficients are themselves functions of the influence
guantities to be measured. In Appendix 1 details are shown of computer simulations
by means of which the 'typical' values of the sensitivity coefficients used in this

chapter were evaluated.

In conclusion, a generalised expression for the variance of the air density
estimate is given from which the actual uncertainty can be evaluated if the details of
the equipment used are available. An example is given for the equipment used in the

experimental parts of this research.
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Fig. 3.0.1: Schematic of complete data processing for mass comparison calibrations

3.1 The Functional Relationship

The procedure forevaluatingair density has beendescribed in theliterature e.g.
Giacomo (1981),Davis (1992a), Jones (1978). Abriefsummary ofthe calculation
follows. Starting from the ideal gas law:

PV=rRTl (3.1.1)
for a gas of volume Vat pressure Pand thermodynamic temperature T, containing n
moles. Ris the molar gas constant. For areal gas one has:

PV=rnRI (3.1.2)

Z being the compressibility factor. Since the gas density is p:ﬂh/ if its mass is mwe

can say p = since M= M¥or Mthe molar mass. Then, from (3.1.2):

PM

3.1.3
R (3:1:3)

However, air is composed of both dry air and water vapour. If the mole fraction of

water vapour is XVand its molar mass is M/,while the molar mass of dry air is I\/Ia,

we have:

M=M 11-xJ 1 =(l-xv)Ma+xvMv (3.1.4)

M,

In this case the density can be expressed as:

(3.1.5)
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Eq. (3.1.5) is the essential equation for calculating the density of moist air from
measurements of P, Tand a knowledge of M{IVB.Z &X\l Nb.is obtained from a

knowledge ofthe constituents of dry air and their relative abundances:

N
Ma= (3.1.6)
2 jxi
where jc- is the mole fraction of the "hgas molecule having molar mass 'Tt.TabuIated

values {e.g. Davis (1992a), Jones (1978)} lead to (3.1.6) having the value
VB- 28.9635x 10-3 kg/mol. (3.1.7)
assuming, however, that the level of CI)Zis constant, and indeed that X@: 0.0004.

This of course may not be so, and X@m ight be measured in the lab, in which case it

is possible to provide an adjustment to I\/bto account for measured departures of X@

from the assumed reference level. This can be achieved using the working
approximation that the sum of 02and CI)Zin the air remains constant, (Giacomo
(1981), Jones (1978)) thatis more Q2im plies less 0 2 so that:

XC02 + X 02 =constant =0.20979 (3.1.8)

where known tabulated values for the abundance of each have been used. Then:

M@= MeBa?- 31.9988x@ + 44.0098.ea (3.1.9)

can be written, from (3.1.8), as:

MOXQ HMEXAD- 12.01 1x ae +6.7130 (3.1.10)

so:

S(Ma)=S[M0ix02 + M C02jcC0J = 12.0115(xC0J (3.1.11)
— i.e. assuming all the other constituents remain constant, or at least do not change by
anything otherthan infinitesimal amounts, then the variations in I\/b.will be due to
q)2variation,and thus will be given by 12.011 times the variation in COZbundance.

12.011 being, of course, the atomic weight of carbon. We can define

$(xc02) = (xco2-0.0004) (3.1.12)
where 0.0004 = XA , a reference C02Ievel, and X@is a measured C02Ievel. In that
case we have M' = + SI\/B) where Mf is the dry air molar mass for reference
mZIeveI. Thus:

M =28.9635x10 -3 kg/mol. +12.0114-0.0004)x10 '3 kg/mol. (3.1.13)

However, in our case, we will use (3.1.7) rather than (3.1.13) since facilities for
measuring a)z:ontent of the air are not available in the later experimental work.

M/is simply the mass of water vapour in the air, i.e.:

M, =2x Mh+ M, (3.1.14)

So, with (3.1.7) & (3.1.14), (3.1.5) becomes:
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p MENKEL-0318xy) (3.1.15)

The evaluation ofXV,the mole fraction of water vapour, proceeds from a measurement
of either relative humidity, or dew point temperature (Giacomo, (1981),Wexler &
Wildhack (1965)) In our case, the % Relative Humidity is measured, and we note

relative humidity is defined as the ratio:

h:>/§/C (3.1.16)

vV
where X¥is the mole fraction of water vapour in saturated moist air at the same

temperature and pressure. Now jcjv can be calculated from:

_ M FF))S(t) | @117y T

for FB(t) the saturation vapour pressure (Wexler, 1976) and f(p,t) a correction called

*rv

the 'enhancement factorl (Greenspan, 1976, Hyland, 1975) Thus XV= hXS/from

(3.1.16) and from (3.1.17):
hfP,,
P

where h is expressed as a fraction, rather than a percentage.

XvV= (3.1.18)

Finally, approximate polynomials have been developed (Giacomo(1981), Davis
(1992a)) for R{f and Z, which are valid over the narrow range of standard conditions
encountered in the calibration laboratory:

f =a+$P+yt2

Ry=Paxexp(AT2+BT+C+DIH) (3.1.19)

Z=1 O+alt+a2t2+ {b0+blt)xv +(CO+Cl)X’\j+i_—I_ (d + ex?j
v

7°
mas(3.l.19), (3.1.18) & (3.1.15) allow for an evaluation of air density. We use

T:(273.j5+ t) Kwhen tis measured in OC Eqg. (3.1.7) provides the value of Nb.and
Ris taken from Cohen & Taylor (1987) as R= 8314510J/|\/Uk

3.2 Uncertainty Propagation

We must now evaluate a Standard Uncertainty for mFrom an analysis of the
above expressions, it can be seen that:
pa:f{T’P,h,R,M/,Mi) (3.2.1)
We do not have any information to suggest possible covariances/correlations between
these influence quantities so we can neglect them in the analysis, in particular since
separate instrumentation is used to measure each of T, Pand h, and R M/and Nb.

come from entirely separate analyses. Thus we can say:

38



The partial derivatives can be evaluated if the various constants are inserted and
appropriate values of T, P& hchosen. W hile the partial derivatives are still functions
of T, Pand h it was found that for a wide range of values, covering the range of
interest which could possibly be encountered in the laboratory, constant values could
be taken (see Appendix 1). The values in (3.2.3a) below are adopted. S(I\/B/I\/B.is
given as comprising the terms 4 x10 -5 random & 3x 10~5 systematic; while QM)/M/
is declared to be systematic with value 5x10”~ (See Jones (1978) for details) In the
Unified Approach being developed in this thesis we do not need such distinctions, so
with no further information available and seeking to maintain a consistent analysis, we
can only consider the systematic components to represent limits of possible parameter
values which leads to a Uniform distribution from the Maximum Entropy

considerations of Chapter 1. Thus we obtain the figures quoted in (3.2.3b) below.

Ad:l =-4.4x103 K*'mg.cm®
'\d:): +11.2x10~6 Pa'Lmg.cm"3

’\Ch =-10.5xI(T3 mg.cm'3

(3.2.3a)
n =-0.144 J'imol.K.mg.cm'3
N _ " "
I 1 =+0.5 kg"lmol.mg.cm"3
kgVmol.mg.cm"3
fﬂ%:n 1(T5 J.KA.mol"1
Kkr1 )= 4.36xICT5
=> VB = 126x 106 kg.mol"1 (3.2.3Db)

M5 gyqn
\y =2-9x1

=>s(Mv)=5.22x 1(T6 kg.mol"1

W ith the data in (3.2.3), (3.2.2) becomes:



‘dp. "2 _ + 3pa , .
I(p > (0+i— ])QP) =5 (i) +2.76x1079[mg.cm'3]2 (3.2.4)
d, G h [me-emy
For the equipment used in this research, described in Chapter 11 the following data is

available from calibration certificates:
,(0=0.06 K

s(P)=15.0 Pa
s(h) = 2% = 0.02
Thus:
i2(pa)= (142*10-9+2.76x10_9)[mg.cm"3] (3.2.5a)
= 145x10"° [mg.cm'3]
or:
¢(pa)=3.8x10" mg.cm'3 (3.2.5b)
Eg. (3.2.5a) indicates that the components due to the measurements of T, P& hduring

the calibration experiment supply a much greater amount of the final standard

uncertainty than do those due to the imported data from other evaluations— i.e. R M/,

and IVB.

One final point we must check is the possibility of correlations kHV\H\ one
evaluation of air density and another, since the three terms R M/& Naare common
to each. Although we have earlier stated that such correlations do not exist (Sec. 2.3),
we wish here to verify that they are negligible. The covariances can be calculated
from:
Cbaz S\R)+ dPa, Cb dP, CbaZ \M

y(Pu, ’Pa2) R R [dM/ \M'V) + dl v a) (3.2.6)
by Eq. (2.3.4) earlier. But of course the expression for puis the same as that for pLZ

so in fact we have for the covariance:

3-2-7>
which from our data in (3.2.3) may be evaluated as =3x10 9[mg.cm'3]2. This term

will be very insignificant compared to the other correlations described in Eq. (2.3.6)

due to volume elements common to two mass comparisons.

An objection might be raised that the functional form of the "Weighing
Equation", (2.2.14), should be expanded to include the functional form of the air
density equation, (3.1.15). The complete uncertainty evaluation could then be
processed with the expanded equation. However, this will give the same results as the
present method which is to be preferred since the separation allows a clearer

discussion of the form of each equation, and also easier analysis of the various
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contributions to the standard uncertainty of each. This of course assumes that there are
no covariances between the influence quantities of Eq (2.2.14) and those of Eq.

(3.1.15). The possibility of such has been disposed of earlier.

Thus Eqgs (2.2.14) and (3.1.15) allow a complete evaluation of the measurand—
the mass difference of two or more standards, while eqgs. (2.3.3) & (3.2.5) allow an

evaluation of the standard uncertainty of this estimate.

We mustnow proceed to look atthe case of multiple combinations of such mass
differences, the evaluation of which is necessary to allow statistical parameter
estimation of the mass \dl,& [as opposed to dﬂ:m of the standards, which is
the final goal of our investigations. To establish the input information in such cases
we require less cumbersome tools than the ones so far developed, and we now proceed

to develop the Unified Model in amore elegantformalism using matrix algebra.

- " % *3% 1% \ .
UK gy g, 23 KD Y SLckD St 14 0% L kU Kt e
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4. Mass Dissemination / "Within -Group ComparisonsM
4.0 Summary

In this chapter we introduce the Group Comparison Calibrations used in mass
dissemination as well as other calibration exercises. These involve many comparisons
being carried out among a group of standards resulting in a set of weighing equations
each of which will yield a mass difference term. We introduce matrix algebra as a
convenient way to represent the data and also to evaluate the measurands and their

standard uncertainties. i

We first show how the situation can be expressed in matrix theory, and give the
Weighing Equation in this form. We then introduce the important statistical tools
needed in uncertainty analysis, in particular the mmmXWhich encapsulates
all the variance and covariance information about a corresponding vector of
parameters and also the Iﬂh?ﬂ which is a matrix of partial derivatives of a

functional relationship among a setofinfluence quantities.

Before developing the theory for the Weighing Equation, an example is given
using electrical measurements, taken from the ISO Guide (ISO, 1993) but re-worked

here in matrix notation.

The evaluation of the Covariance Matrix of the Weighing Equation is then
developed resulting in a single equation from which the complete covariance matrix
of the set of measurands (mass differences from the comparison calibrations) can be

easily evaluated.

The great advantage of the technique is that all the influence information is then
included in one measurand vector and one covariance matrix. We w ill see in Chapters
5to 8, where we deal with parameter estimation techniques, just how convenient this
is. Other approaches have more difficulty in including all available information, in
particular the secondary influence quantities such as those due to the buoyancy
correction, see for example Schwartz (1991). The present technigue has not been
widely used in mass calibration to date, but is to be highly recommended on account
of both its mathematical conciseness and indeed its unified approach to uncertainty

analysis.

Fig. (4.0.1) below is a schematic outline of the analysis process used. The

various terms are explained in detail in the body ofthe chapter.
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4.1 Introduction

One ofthe crucial features about comparison calibrations, from an experimental
point of view, is that the comparisons are carried out between nominally equal
standards. Thus only residual differences are measured with resulting greater
accuracy. In establishing a mass scale, we are starting from a prototype of nominal
value 1kg. Thus comparisons of multiples and sub-multiples of this unit require
combinations of standards to be built up in order to ensure comparisons among units
of nominally equal value. These are usually called "W ithin-Group" Calibrations, since
there is a group of unknowns, and usually only one known standard. At this point we
define our parameters to be the mass \dlBOf these various artifacts. Note carefully
that these parameters are to be distinguished from the measurands discussed
previously. As was stated then, the measurands are the mass dﬁWWhich are
determined from experiment. How the parameters are calculated from the corrected
experimental realizations of the measurands is the subject of later sections of this
work. At this stage we are just interested in evaluating the estimates of the
measurands and their standard uncertainties. (For further discussion of mass

dissemination see Kochsiek (1984), Davis (1985) and also Prowse (1982)).

4.2 MultiVariate Functional Relationship

Consider the following example of atypical setof comparisons:
Am, - ml-m 2 =

Am2=m1l - m3= (4.2.1)

Am3= nﬂ- m3=)8
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The above indicates the possible comparisons which could be carried out with three
mass standards of value my, m2 & rTBIf we introduce the weighing equation, (2.2.14),

we realise that (4.2.1) becomes:

3= Aw, + p, (v, - v2XI+ «(ij - 20))~ 2~ mL

A2 = Aw2+ p 2(v, - vaXl +a(t2- 20)) - L (4.2.2)

Aw3+ p3(v2- v3XI+ dtB 20))--— A -

In (4.2.2), m" is the tiA nominal mass in each case. Since deviations from nominal
value are always ofthe order of rTgor |ig, the difference to the gravitational correction
resulting from using nominal rather than actual mass value will be negligible. Without
the weighing equation, (4.2.1) can also be expressed in matrix terms as:

Y =xp (4.2.3)
For Y an NX 1vector of corrected realised data, pa pX lvector of parameters and X
an nXpdesign m atrix describing the form of the comparisons. Eq. (4.2.3) can be

referred to as the "system model" for the measurement process. In the example above,

we would have (where & :m):

1 -1 0’ bi
X= 1 0 -1 . p=pp & Y= y|
0o 1 -1 3

— yij.
Continuing, it will be noted that (4.2.2) can be expressed in matrix notation (Bich G:d

1993/94) as:

Y =Aw+ {(1- 20a)Iln+a T}pXV - DM. (4.2.4)

which is the matrix form ofthe weighing equation, where:
Y is an « x 1lvector of measurand estimates.
Aw is an Nx 1vector of experimentally realised ( i.e. uncorrected ) quantities,
p = diag{pa}is an Nx Nm atrix where pais an Nx 1vector of air densities.
X is an Nx p m atrix giving the design scheme for the comparisons.
V is an px 1lvectorofvolumes ofthe standards

In is an identity matrix of order n

T = diag{t} is an/ix n matrix where t is an Nx 1vector of air temperatures,
a is a scalar constant, the volume expansion coefficient of stainless steel.
D =diag{d} is an NXNm atrix where d is an Nx 1 vector of center of gravity

differences between the standard and test ensembles.
M n is an Nx 1 vector of nominal mass values for each of the ncomparisons

involved in the calibration exercise.
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Observe that, leaving aside the volume correction factor, the term XV generates
the required volume differences for each comparison. It is necessary to re-express FB.
as a diagonal matrix in order to facilitate the required matrix multiplication— the other
alternative would be to use the Hadamard matrix formalism, but we will retain the

conventional expressions for clarity and ease of understanding.

4.3 Important Statistical Terms in Matrix Form

We now wish to evaluate the variances and covariances of the data described by
(4.2.4). First we note that the scalar forms of expectation value and

variance/covariance must now be supplanted by their vector/matrix equivalents. (See

Allisy). For example, for acolumn vector AnXI,

‘e m
£(«,) a2
E[A] = L] for A = (4.3.1)

173

n.

Similarly to ¢2(y) = £[;y- E\y]]2, we can define the variance-covariance matrix by:

cov(A,xi)= £{(A - £[A])(A - E[A])T} (4.3.2)

the r'denoting matrix transposition. Then (4.3.2) can be expanded to give:

a2-E[a2\
cov(A):E \ax-E[ax] a2-E[a2] . . an-E[an]
an~Elan]_
{a, —Zsja, ]}2 -E[%]} o e
[a2- E[a2]H«i - E[ax]} [a2 - E[a2]f
=E
s2(ai) s(al,a2) . m s(auan)

s(a2,al) s2(a2)
(4.3.3)

_s(an>hi) 52(a,,)

Thus the covariance matrix of A, cov(A), consists of diagonal elements giving the

variance components of A, while the off-diagonal elements give the covariances

between the components, so that for example, if b=al+a2then
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ﬂb)zsz(a,)+ g32+ 2(j(a!,a3). The terms for this can then be easily extracted from

the matrix in (4.3.3). We will see in succeeding sections that this matrix plays a very

important role,in the Parameter Estimation Techniques we w ill investigate later.

One important property of the covariance matrix which we shall need is the
covariance oflinear combinations. Consider:

Z=XY (4.3.4)
where X is a constant matrix and Y is a vector of subjective information (i.e. finite, or
limited-accuracy information, hence needing degrees of belief or distributional
information assigned to each ofits components.) Wq wish to evaluate cov(Z):

cov(Z)=£[{Z - £[Z]}{Z - E[Z]}T]

EMXY - £[XY]{XY - £[XY}T]

EIX{Y -£[Y Y -£[Y]}TXT] (4.3.5)

where, for a matrix product AB, one has (AB)T = BTAT. Since X is a constant, Eq.

(4.3.5) can be further expressed as:
Xewy- ¢ my - E[\Maxt (4 3 6)
=X\|ly XT

where \|/Y = cov(Y) from (4.3.2) above. This important relation will appear frequently

in what follows.

In most statistical treatments, one considers the vector Y to contain additive,
zero-mean errors such that Y = r| + e where £[e] =o0; cov[r]]=0 & cov[e] =\|/.In other
words r| is the "true value" and e represents the random errors on the measurements.
In that case the distributions are attached to the errors rather than to the parameters.
However, as has been repeatedly pointed out in the unified approach, we do not know
r| and can never know it, so it is notreally meaningful to use it. Therefore we consider
Y to be a subjective estimate based on whatever information has been to hand and we
consider our distributional information to be based around our estimate, Y. Hence in
the following we do not emphasise the role of random errors and can leave the
analysis muchmoregeneral. (Refer again to Chapter 1 for further comments on the

meaning of subjective information in parameter estimation).

Let us now consider:
Z=/(U) (4.3.7)
where UT =[u, LQ .o U‘] are the Ninfluence guantities involved in the corrected
functional relationship. Recall that in the scalar case we started from a Taylor series

expansion to Order 1, i.e.:
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z,+& =2+ "M-Syj (4.3.8)
M J

This can be written as:

s(™-% ])SEE£-(m-4*“jD (4.3.9)
7=1lﬂj

In matrix notation we can write:

(Z-£[2]) = Ju(U-£[U]) (4.3.10)

Where the Jacobian Juis defined by the following MXN m atrix of partial derivatives:

3li
3 3[2 3UN
32 3a
JurvuuT= 3% V% (4.3.11)
d/m - dn
3M sln

2= T (vones- i)
z2 = ﬂ(l\/l];MZ’l'ﬂ)

where we have assumed that "is true. Of course it may well be

Z :ﬁnﬁ(L‘LNQ>-« N

that some, or all of the functions /7. ,.frnare identical

(4.3.10) and take expectations we find:
E[{Z- £[Z])(Z - E[Z]f]=E[3,(U- £[UD)(ju(U - Z?[U)T  (4.3.12)
From (4.3.2) & (4.3.6) we see that this is in fact the covariance matrix of Z:
cov(2) = J,,cov(U)In

which we can write as:

Yz =Ju¥udu | (4.3.13)

Equation (4.3.13) is the Gaussian Law of Error Propagation in its most general form
(compare with the scalar form in (1.4.8)). Its simplicity and clarity highlight the
superior convenience of the multivariate approach to the problem. \|[/u will list all the
variances and covariances of the influence quantities; Ju gives all the sensitivity
coefficients (partial derivatives) and then \]/z gives the complete variance/covariance

m atrix for the output quantities.
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4.4 An Example

Before proceeding with the application of (4.3.13) to the weighing equation-Eq.
(4.2.4)-we pause to quote a useful example, illustrating the method. This example is
taken from Annex H.2 of the Guide (ISO, 1993), however here we have changed it
slightly to present the information in matrix notation. (A similar example is given in
Weise (1985)). We reproduce this example here because of its excellent illumination

ofthe concepts of the preceding section.

Consider an experiment where measurements are made of voltage, \/,current I
and phase angle <in some circuit. Since ’'the measurements are made
contemporaneously on the one circuit, covariances and correlations can be expected

between these three input quantities. The measurands of interest are:

Resistance, R:lwp
V

Reactance, X =y sin? (4.4.1)

Impedance, |Z| = = (fl2+ X 212

Thus for Y = f(U) we have:

v=X; u=1| & 1= s2v.1.0) (4.4.2)
Z A /3(K/,0).
We wish to evaluate \|/'Y First we calculate:
(4.4.3)
ft ft "cos(p -Vcosij) .
dv  dldip | 2 'TS'H’
Ju dfi  dfi sin</> -V sirup ~, %
N cos
dv dl o dG) | 12 1
p s 1 -V
Vs gL 1 0
dv dl dp ! -

We now need to evaluate \|/u. To do this we realise that:

vivy SV i)

W s(L,Vv) L2 id<t>) (4.4.4)

s(<t>V) i(<t>))) y%l((t))
The components of this matrix are evaluated from the actual data obtained in the
experiment, using the expressions for variances and covariance given in Chapter 1

Eqg. (4.3.13) can then be evaluated to give:

2r) SRX SR
vy= SIXR AX) (X2 (4.4.5)
SZR 92X A2
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Each term of this matrix evaluates to give quite complex algebraic expressions, if

calculated theoretically. For example,

% 1 J u J Y 1 ! (4.4.6)

e J W it(viy 2 Vmrcep.o»s(y 1)+2 V2sinfcos»i(/.0)

is the complete expression for the variance of the estimate of R incorporating the

variance components due to VI, q)and their respective covariance terms.

4.5 Uncertainty Propagation in the Weighing Equation

At this point we wish to proceed and apply the Error Propagation Theory to Eq.
(4.2.4), the matrix form of the weighing equation.(Bich G.'al (1993/94)) From Egq.
(4.2.4) we can see that

Y =/(Aw,p,X,T,V,D,Mn,a) (4.5.1)
However, X, M n & A are constants and so contribute nothing to the covariance of Y
[of course a is notreally a constant but the influence ofits variance would be so small
that we can neglect it] Thus:

U=[Aw pa Y T D]t (4.5.2 a)

is the vector of influence quantities of interest and:
JJ [JaN Jt ;Jd] (4.5.2b)

is the matrix of sensitivity coefficients to be evaluated. With (4.2.4) we can now

establish the sub-matrices of (4.5.2):

dx
d dAWZ dAW,,

i N2 A2
AN

J Aw - Iu

(4.5.3)

»

Aw,,

Since == 1 when |'J and = 0 when |*J, there are thus no off-diagonal

dAW

terms in (4.5.3) and hence j Aw=1n.Similarly, for the nextterm in (4.5.2b) we get:
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fol

3P-

32 (4.5.4)

Jpa =

dyn

W hich can be evaluated in the light of (4.2.4), to yield:

Jpde{(l- 20a)ln+ aT}XV] (4.5.6)

The nextterm in (4.5.2b) is:

<b\
dvx dv2 dv,,

Jv « (4.5.7)
dyn

This term, unlike the preceding two, will not be diagonal: the exact form w ill depend
upon the standards used in each comparison, but we can expect that some off-diagonal
terms will exist on each row. W hich standards are used in each comparison depends

upon the form of X. So we would expect Jv X .Indeed, the general form of (4.5.7),

from (4.2.4) is:
Jv ={(1- 200c)In+ ocT}pX (4.5.8)
Since the temperature measurements are independent we can expect no correlation
between L& 1 so that:
dy\

ax
a2
d2

It — (4.5.9)

dyn

d

and from (4.2.4) we find the specific form ofJT to be:

JT=a dGQ{DXY} (4.5.10)

and similarly for JDwe simply have:
NN
Jd= diag{Mn] (4.5.11)
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Now we can expand (4.5.2b) to give:

r

Q- |p dia™{(1- 20a) 1, +aT}XV] {@- 20a)l, +aT}pX adiagjpXV} diag(Mn)

L i \ re

(4.5.12)
The dimensions of this augmented m atrix are (nx (4n+p))

Now from (4.5.2a) we can see thatcov(U) is:
\rv = diag{y Aw>Y P,Y V-Y t>Yd (4.5.13)

where, similarly to the univariate case, we have assumed there are no covariances
between the input influence quantities in U. We further assume that each of the sub-
matrices in (4.5.13) is itself diagonal, as each represents the covariance matrix of a
vector of independent quantities. Note: it may be recalled from Section 3.2 that we
stated that a covariance did exist between Fa & Fﬂ-.due to the common terms of R
the gas constant, M/the water vapour molar mass and Ivathe dry air molar mass,
which terms appear in the functional form of the air density equation (3.1.5). Thus \j/p
in (4.5.13) above should be completely non-diagonal; however, as was pointed out in
Eqg. (3.2.7), the contribution to \j/Y due to this covariance is so small compared to that
which arises from the volume terms in the weighing equation, that its neglect is

entirely justified. We now evaluate (4.3.13) with (4.5.12) & (4.5.13) as follows:

Yy =JuY uldu

2
diag{[(I-20a)l, +aT]XV} [(I-20a)In+aT]pX a.diag{pXV} ' diag{M"}

Y av diag{[{1- 20a)In+aT]XV}

YP XTpT[(I-20a)l, +aT]

4.5.14
Yv a diag{pXV} ( )

Y d —diag(Mn)

where we have noted that symmetric matrices remain unchanged on transposition.

Evaluating and sim plifying (4.5.14) yields:

Yy Y aw
+d@Q]XV} pdw\ XV}
+["IPxy vx tptl[.. (4.5.15)

. (a)zdag{pX\}\\erag[pX }

n2
+ diag{Ma}\][fDdiag{Mn}

where [...] represents [(1- 20a)Iln+ aT] which is a symmetric matrix.



Equation (4.5.15) gives the complete covariance matrix for Y in terms of the
covariance matrices of the influence quantities. W hile we have assumed all of the
latter (\|/p, \iV/Aw etc. ) to be diagonal, v|ly is nonetheless rUdiagonaI as a result of the

third term on the r.h.s. of (4.5.15). This is the term due to the volume influence.

We can simplify things quite a bit if we assume the two small systematic
corrections, due to volume expansion coefficients and center of gravity differences,

can be neglected. Then we would obtain, instead of (4.2.4) and (4.5.15):

Y = Aw + pXV~I (4.5.16)

¥y =Vaw+rqg{XV}|/prag{XV}+pXyvXTpT| (4.5.17)

So equations (4.2.4) & (4.5.15) or (4.5.16) & (4.5.17) provide complete analytical
tools for evaluating all the necessary information about our measurand estimates, the
Am;, or mass differences, for a set of comparisons among various combinations of
mass standards. Fig. (4.0.1) at the beginning of this chapter now provides us with a
useful conclusion: the three stages of the process are highlighted— i.e. first identifying
the input quantities and forming the weighing equation; secondly evaluating the
sensitivity coefficient matrices and the input covariance matrices; and finally

evaluating the contribution of each of these to the overall covariance matrix.

We must now proceed to the real task at hand, which is to use the information

presented by the methods described here to estimate the \HLS of the parameters
themselves, i.e. the rfl(in Am, = X my- X nk.

In order to do this we must now turn our attention to the study of Parameter

Estimation techniques.
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5. Parameter Estimation Techniques in Mass
Calibration

5.0 Summary

At this point we have established relationships for calculating the measurands
(mass differences) and their combined standard uncertainties both in univariate and
multivariate form. This has been done in a generalised and uniform manner, treating

all influence quantities equally and including all known information in the analysis.
|

Before proceeding we need to identify some terms: as shown in Fig. (5.0.1)
below, we have first the influence quantities leading to the measurand via the
functional relationship. In the case of mass calibration the measurands are mass
differences resulting from comparison calibrations. However, ultimately we require
mass values (the parameters) so further analysis is needed. The series of comparisons
carried out is described by a system model which relates the experimental measurands

to the parameters via a design m atrix.

W ith this much established, it is our purpose in the next four chapters to
investigate the Estimation Methods appropriate for determining the parameter vector
and its covariance matrix. Since the design matrix will be chosen so as to have an

over-determined system we can implement statistical estimation techniques.

We first investigate the Least Squares (LS) method and find it inappropriate
since the observation vector of measurands only contains differences among the
parameters and thus absolute values cannot be determined without some extra
information. This leads us to LS subject to constraints— Restrained Least Squares
(RLS), in which the constraints used are the previously determined values of one or
more of the standards involved in the calibration exercise. Fig. (5.0.2) below

illustrates the method.
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Fig. 5.0.2: The RLS method of Parameter Estimation in Mass Determination

An extended treatment is given of RLS since a discussion of constraints is
critical for Estimation Techniques in Mass Determination. It is shown how RLS treats
the constraints (prior information') deterministically leading to a solution vector with
an incomplete covariance matrix. A final solution is then found by combining the
correct contribution of the prior variance/covariance information as determined by the
estimation method. The method is discussed at some length, two significant flaws
being highlighted: Firstly the constraint information is treated inconsistently, being
viewed as fixed, or deterministic to obtain a parameter estimate, but then viewed
stochastically to get a complete covariance matrix. This is shown to be mathem atically
unsatisfactory. Secondly the approach is anything but uniform in its treatment of the
various data sets. Rather, it is shown to be in agreement with the policy of separating
random & systematic uncertainty components as in conventional analysis and indeed
can perhaps be justified in that light. However, the goal in this work is to produce a
unified analysis at all stages so it is not acceptable to treat the constraint information
in this manner. Compare Fig. (5.0.2) with Fig. (1.0.1) to see the underlying differences

between the approaches.

We then present an alternative method, the Augmented Design approach (AD),
Bich (1992), in which the fundamental difference is that the constraints are considered

as just extra data needed to get a solution. Thus its covariance information can be
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included in the estimation process, leading to complete solutions. Fig. (5.0.3)

illustrates the method, showing how the augmented data is produced.

The significant feature of this method is that it leads to a STHIG‘ covariance
matrix than does RLS, and indeed mme uncertainties of the Reference
Standards (the prior information). This seems surprising at first but can be interpreted
by remembering that the constraints are just being viewed as extra stochastic data.
Three examples are included in this chapter, treated by both RLS & AD to highlight

the attributes of each, and also their key differences.

5.1 Introduction

We have already established the form of the Functional Relationship used in
comparison calibrations involving mass standards and have calculated the
corresponding covariance matrix. We have noted that a final aim of the procedure is
the evaluation of r%\dlﬁ, while the experimental method allows us to establish
mdﬂ:a'm Some further data reduction is now needed. From Eq. (4.2.4) we
know that:

Y = /(AW ,V,p,T,D,Mn,X) (5.1.1)

which gives us the vector of mass differences:
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32 Am2
[Y]= -
yn Am,
W e also have:
Y =X.p (5.1.2)

as our system model describing the measurements. The nXp m atrix X is the design
m atrix, indicating the form of the comparisons, while 3 is a p x 1 vector of the
required parameters (i.e. the mass values of the standards). To estimate the
parameters, the minimum requirementis that X should contain at least pindependent
rows— indeed there can only be pindependent rows in a system with pparameters,

but there could be less, in which case the system would notbe solvable.

Because our observations, Y, are stochastic in nature, it is beneficial to maintain
the redundant information present in an over-determined design scheme where
linearly dependent rows are presentin X. This allows the extra, statistical, information
so presented to be used via some parameter estimation technique in order to establish
so-called "best fit" values for the parameters. Our purpose now is to examine several
such estimation techniques in order to find one which is most appropriate to the

situation at hand.
5.2 Least Squares Methods

Probably the most widely known and used procedure is the well-known

Ordinary Least Squares (OLS) Solution which involves a minimisation of the sum:

S,=(Y-XP)T(Y-XP) (5.2.1)

foramodel givenby (5.1.2). The estimator satisfying thiscriteria is the OLS estimator
(see for e.g. Beck& Arnold (1977), Eadie (1971), Luenberger (1968), Zelen(1962) &
Mandel (1964)):

pols=(XTX)_IXTY (5.2.2)

The only immediate requirement here is that n>p so that the product XTX is non-

singular. For the estimation to produce any information that could not be obtained by

simple algebra, we further need to have n>(p+1). If X & P are non-stochastic and the
dispersion characteristics of Y imply additive, zero-mean errors, it then follows that

4 M=p <5-2-3)
or, the Ordinary Least Squares Estimator is unbiased with respect to the parameters.
Noting that (5.2.2) can be expressed as:

Pds=A Y with A= (XTX)-1XT
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we have, from (Eq 4.3.6 ) that:
cov[pds =¥ -b=A¥ y At=(XTx) 'XTW x(xT) 1 (5.24)

in which XTX is a symmetric matrix. However, (5.2.4) will not be a minimum
variance estimator without the added restriction that

\j/’Y =02l (5.2.5)
resulting in

(5.2.6)

Thus providing (5.2.3) & (5.2.5) are satisfied, (5.2.2) & (5.2.6) give the Best Linear
Unbiased Estimator (BLUE !) for (5.1.2). ’

We need to check of course, that this is really valid before proceeding. It is most
unlikely that (5.2.5) will hold since the diagonal terms of \|/Y will not usually be
identical in practice, although they could be approximated as identical by choosing a
"worst case" largest variance, but this is not very satisfactory since we do place some
importance on achieving ql]rrd estimation which will be a realistic reflection of
what we have observed. In any event, this problem is eclipsed by the much greater
difficulty 0f\|foeing non-diagonal; as we noted in Sec. 4.5, the form of \|/Y is such

that there are usually significant off-diagonal terms present.

There are two methods of dealing with this problem: one is to invoke Weighted
Least Squares (WLS), and the other attacks the problem via the Gauss Markov
Theorem (see Luenberger (1968), Zelen (1962), Rao (1973)). In both cases it is
assumed that:

(5.2.7)

where the form of Q is known but a2 may not be. In other words, \|/Y is known to

within amultiplicative constant (a). In this case the estimators become:

(5.2.8)

(5.2.9)

However, while this method circumvents the problem with condition (5.2.5), and

allows BLUE's to be obtained, another obstacle appears in that |X-|3(|=0. This is

unavoidable when only differences in parameters are measured. The inevitable lack of
information resulting in such cases leads to the singularity in XTX above, and the

parameters being non-estimable— that is no unique solution to (5.2.8) can be found.

57



5.3 Restrained Least Squares

In order then to obtain a solution, it is necessary to include some external
information, (see Cameron ad, (1977) Bich (1992), Nielson (1997) and for another
approach Hughes & Musk, (1972)). That is, the estimators {3 should satisfy some set
oflinearly independent restraints such that:

ATP-R =0 (5.3.1)
where A is the "design matrix" of constraints and R is the vector of constraints. There
may be Msuch constraints such that R is of order Mx 1. Then for the pparameters

one would have:

allPl +al272+ +alpPp =r1\
(5.3.2)
amlPl + an?p 2+....... +ampPp~ W
so that we have:
all al2 . V B'l V
a2\ p2 d
(5.3.3)
aml ®mp A . _rm,

In our practical case this implies that there are some linear combinations of the p
parameters [mass standards] whose values are known apriori and are not linearly
related to the combinations represented by X.p. In practice, this prior knowledge
would often be the previously determined values of some or all of the parameters.

Then the elements of AT would be either 1 or 0.

It is now necessary to solve the minimisation of the sum given in (5.2.1) subject
to the constraintin (5.3.1). Note that because of (5.2.7), we write (5.2.1) now as:
5=/(P)=(Y-XP)1ln (Y -xp) (5.3.4)
and from (5.3.2) we have:
g(P)=ATp-R =0 (5.3.5)
In the Lagrange Undetermined Multipliers method, we have the following

simultaneous equations:

(5.3.6a)
*(M=o (5.3.6b)

where:
<>(p)=/(p)+2*tf(p) (5.3.6¢)
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A being a (px 1) vector of Lagrange multipliers. Then the solution will be found from:
\Voi(y - Xp)Tsri(y-xp)+2t(atp-r)} 3(3:0 (5.3.7)

W e first note some properties of Vpwhere p is apx 1 vector: If C is apx 1 vector

which is not afunction of p then:

VpCTp=C (5.3.8a)
Also, if B is apx m matrix which is not a function of P then:

Vp pTB =B (5.3.8b)
Furthermore, ifQ = ,TAO Awhere A is an Nx 1 vec%or and O is an Nx N symmetric
m atrix, then,if A is afunction of p and O is not, we have:

VpQ =2(VpAt)0 A

If A = XP for X an MNx pmatrix, as often occurs in linear estimation, the above
expression becomes:
VpQ=2(Vp PTXT)<DX p
=>Vp Q=2XTOXP (5.3.8¢c)
where (5.3.8b) has been used.
W ith these 3 equations, we can now evaluate (5.3.7):

Vp(y t£2.1Y - YTir ‘Xp - pTX Ti2"Y + pTXTir'x p + 2ATATp - 2Xtr )= 0

0- XTn ly - xTa-ly +2xTa -Ixp+2A - 0=0

or -2XTir 1Yy +2XTXP+2Ai=0 (5.3.9)

So we getthe two equations:
x Ta -1xp + AA, = x TE rlY (5.3.10a)
& ATp=R (5.3.10b)

This can also be expressed as:

" p
"xxi2-1x A P XTEry"
(5.3.11)
L N7 o A R
Thus if we define:
-i
Cj c2" x Ta Ix A
(5.3.12)
CI c3 at 0
we can then say:
c1 c2 XTi2-1Y
- T (5.3.13)

_c2 C3 R

(Aside: we will see this type of analysis again later when we examine pseudo-inverses
and Generalised Least Squares (see Chapter 6).)

Now if we pre-multiply the I.Lh.s. of (5.3.12) by the inverse its r.h.s. we get:
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XTR X a' I 0

=XTR IXcj+Ac2=1
XtQ~Xc2+Ac3=0
ATClI =0
Atc2=1

(5.3.144a)

(5.3.14b)

(5.3.14c)

(5.3.14d)

Now because (x Tfi 'x) is singular-the reason for this approach initially- mwe need to

make the following definition in order to proceed:

XTfi_1X = a, + DAAt

where a0 is anon-singular diagonal matrix. We can choose D = -| so that:

XTQ IX=an-AAT
Substituting this into (5.3.14a) and noting (5.3.14c) results in:

ci =aol(l- A-c2)

Similarly, substituting (5.3.16) into (5.3.14b) and noting (5.3.14d) yields:

c2=a0A(l—3)
Pre-multiplying (5.3.18) by A T gives:
ATc2=(ATa0lA)(1- c3)=1 by (5.3.14d)
c3=1-(aVv a)._l

We can now use Eqgs. (5.3.17) - (5.3.19) in (5.3.13) to obtain:

y ao~l-Acl) XTi2-1Y
a _(I-c3)TATa- R

Note that:

cl=a0l(l-A (A Ta0lA) ‘ATall

& c2 = aQIANATaQIA]

Evaluating (5.3.20) results in:

%= a0 XER2-Y +AATapA)“ {r - ATa0IXTfi-ly }

& "=R+(ATa"A) {ATa0IXTQ“1Y -R}

with the aid of (5.3.24), it is also possible to write (5.3.23) as:

R=apl XtELIY +a(r -1)
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(5.3.17)
(5.3.18)
(5.3.19)
(5.3.20)
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(5.3.22)
(5.3.23)
(5.3.24)
(5.3.25)



So Eqgs (5.3.16), (5.3.24) & (5.3.25) allow a Restrained Least Squares estimate of the
parameter vector P in Y = Xp, subject to the constraints in ATP = R. It will be noted

from (5.3.13) that, in fact, /3 takes the form:
P= CIXTE2 1Y + C2R (5.3.26)
This is significant, because, if compared with (5.2.8), where:
Pgm=Pwls= (x TQ -Xx ) _IXTEI-1Y
it can be seen that in (5.2.8), the parameter estimates are a linear combination of the
observations, i.e.:
P=LY j (5.3.27)

where L = (X-ﬁz_])(),jx TiT 1

Butin (5.3.26) we have:

P=MY +c2r (5.3.28)
with M = cxxtQ _1.
Comparing (5.3.27) & (5.3.28), the chief difference is that a linear combination of the
constraints is also added to the linear combination of the observations for purposes of
establishing the parameter estimates. Hence the constraints need to be chosen to be
something physically meaningful with respectto the parameters under scrutiny.
Now we need to look at the covariance matrix for Jas given by (5.3.26) or (5.3.28).
W e can say that:

covjpj=Yp = M\(rYM T (5.3.29)

since the constraints are considered to be deterministic, or constant; otherwise the
Lagrange method would not be appropriate. So from (5.3.26), (5.3.29) becomes:

y- -CjX ~V yr'X (5.3.30)
Note that \j/Y = C@ and that in many practical cases we canassume a2 = 1— i.e. that
£2 is fully known. In these circumstances we find:

\|/- =cIX rQ _1Xc?' (5.3.31)

Aside : We will see later that in fact Cj is a gimof X T£2-1X and so, since cxis a
symmetric matrix it follows that y/ = cx, but more on this later. (See Secs. 6.2 / 6.3)

5.4 Discussion (Refer again to Fig. 5.0.2)

We now analyse the RLS method in the light of the general criteria for the
unified approach that we wish to establish. By introducing the constraint we have

permitted a solution to be found and also a covariance matrix. That /3 is unbiased in
spite of the extra c2R term in (5.3.28) can be verified by considering (from Egq.
(5.3.25)):

£[p] = a“IX Ti2"1£[Y] + a*AE[R] - aJ AEp-] (5.4.1)
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Now, we know E£[Y]=xp from (5.1.2) and £[R]=ATp from (5.3.1). So (5.4.1)
becomes:
tf[|p]= a'IX TQ Ixp + aclAAtP- a“lA
=a"l(xTa _IX+AAT)p- a’lA (5.4.2)
From (5.3.16) we have a0= X T£2_1X + AATSo then:
AAP -afrA N (5-4.3)
Similarly, from (5.3.24),
eix1= Hri+ ataa  AT@IXTIM BHyi- (a'v a) " Hrj (5.4.4)
= [| (ATa*1A)*'j E[R]+ (A X 1A)"ATarIX TQ "1£[Y]

= (i - (ATa”A)-1"ATp + (ATaolA ) 1A TaolX TQ “IXP

["AT-(A TaolA)"IAT +(ATaolA)"1ATaolX Ta 'IX p (5.4.5)
but X TE2-1X = a0- AAt, so then:

E[i]:[at -(aVa)*At+(AV a)~"'ATafla0- (ATa"lA)"l(a"'aJa7]

=>£[~]=aT"“aT=0 (5.4.6)
So from (5.4.3), £|pj=p, since the second term is zero by (5.4.6) and we can

conclude that the estimator is unbiased. Application of Eq.(5.3.28) (see examples
below) shows that the constraint information remains unchanged by the estimation
process. Thus anything which was fixed before the experiment remains unchanged
afterwards in spite of whatever information might have surfaced to suggest otherwise;
and so it appears that we are not maximising the information potentially available
from the experiment. When considered this way, we can see aphilosophical weakness
with the estimator. However, it is certainly |rta'rd|y GIES.GT inasmuch as the
deterministically-viewed constraint information would not be expected to change in
the Lagrange Multipliers analysis. We would therefore not expect to learn anything
new about the constraints in the experiment. This is further emphasised in the
covariance matrix, where there is no term due to the R vector present [see (5.3.29) &
(5.3.31) forexample]. The result of this-see examples here and in Chapter 9—s that
\y' isincomplete: variance and covariance terms due to the elements of R are
missing. Some have proposed a design matrix X such that X T.X is orthogonal (see
Prowse & Anderson (1974), Grabe (1978), Zuker et al (1980) & Mihailov &
Romanowski (1990)), in which case would be expected to be diagonal, but in the
present case this is not so, and thus the covariance matrix is incomplete. Indeed

orthogonal systems may not always be a good idea. See for example. Morris (1992).
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Another aspect on Design Schemes to deal with physical problems in calibration such
as adsorption on metal surfaces is given in lkeda (1986a) & (1986b). The internal
consistency mentioned above is obtained with the price of aflawed and improper view
of the true situation, in which the standards are not deterministic, and thus violates
one of our key criteria of consistency by neglecting valid information. We will say

more about this shortly but now let us consider two examples.

Example |

As an example, consider this design for three parameters:

1 -1 o VAR

W\
x= 1 0 -1 D= P v= yi (5.4.7)
_0 141 A. _y3.

To keep things simple, we can let y/y:aZ.I. Now suppose the constraint is the

known value of one parameter, q, such that b}:m and then we have

|1||
A= & R =[m|]
Evaluating Eq. (5.3.23) now yields:
: m
b
' 2 1 1
P = ««.-3%. 3% 4 3* (5.4.8a)
1 2 1
0 0
*

while ila. =a2. 0 (5.4.8b)

o

In this case the estimated value of Iq remains unchanged from the constraint value

and, according to (5.4.8b), it has no variance or covariance terms.

Example Il
As asecond example, let the constraint information be:

q+h°FFTB (5.4.9)

This is somewhat unlikely in mass calibration, butis nonetheless valid as an example.
Y

A = & R =[mi3

We now obtain:
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b\
o= . < (5.4.10a)
by
Newi3 " (* +2yz +3'3)
" r
6
while'y -=0 . 0 i 0 (5.4.10b)
_ 0 !
6 6

From (5.4.10a) it is apparent that the sum bx+ b2-m 13 remains unchanged and the

combined variance of the sum is s2(b”™+ s2[b3%+ 2s\bl,b3} = i6+!5+2I-ES .a2=0;

again showing that the constraint information is unchanged.

Now there is a big problem here because it is well known that the constraint
information is really just the result of a previous calibration and is thus not a
deterministic quantity, but rather a stochastic one with a particular (previously
estimated) dispersion characteristic. This of course presents no problem to the
traditional view of uncertainties since the uncertainty of the constraints-usually called
“standards'-is treated as a systematic uncertainty and therefore considered as
something which cannot be altered by the experiment and so does not need to be
included in the analysis. It is simply added to the overall uncertainty figure at the end
as a "'systematic component. In the formalism presented above, that component can
be calculated from (5.3.28) where we have P=MY + c2R . We have already developed
the first component, so what is now needed is the complete uncertainty, including that

due to the constraint information:
¥s=M¥YyM +coyirc2 (5.4.11)

From (5.3.22) we know c2=a”A"A"a"A) Fig.(5.4.1) gives c2 for the two

examples and Fig. (5.4.2) gives the resulting "systematic™ uncertainty term. Note that
y/IR=a2in Eg. | while y/R=0, in Eg. Il since there is just one piece of constraint

information in each case.

11 1

I I f 4 4 4
i 1 1 1

I CZ -
ri3 4 4 4

[ 1 1 1
4 4 4

Eg. | Eg. Il

Fig. 5.4.2 - "Systematic Components"
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Combining (5.4.8b) & (5.4.10b) with their corresponding “systematic” terms from
Fig. (5.4.2), we find the respective complete covariance matrices can now be given as
in Fig. 5.4.3:

2 2 2 f—lo/\+‘:l"o»2 —la% “10r2_1a2
an Cr, 4 r3 6 4 r3 4 ¥ 6
2 22 2 2.2 2 12 1.2 1.2 12
—a +ar —ar +—a
r +o0" 3 4 4 B 2 4
N
Or2 —1a2+a? —2a2+'a|2f Laf _ 142 L2 Laf £Ag2
3 3 4 B 6 4 B 4 3 6
Eg. | « Eg. Il

Fig. 5.4.3 - Complete Covariance Matrices

However, this method is in serious disagreement with the Unified Approach to
Uncertainty Analysis which we have developed in Chapters 1 & 2 and indeed
contravenes the criteria of Consistent & Logical Reasoning which have been
established. What we see here is the constraint information being treated
deterministically in order to find a solution, and then being treated stochastically in
order to find the correct final covariance matrix as shown in Fig. (5.4.3). This is at
best an inconsistent approach and at worst a thoroughly inaccurate one! Since there
are dispersion characteristics associated with the constraint vector, surely this
information should be included in the estimation algorithm, as it may well influence
the results obtained? This is an example of neglecting valid information which a
priori is available, and thus contrary to the traditional view of being objective, would

rather seem to be distinctly biased.

We will see in succeeding chapters several other estimation techniques which
fully take account of all available information, including uncertainties/variances of the
constraints, which are just treated as prior information to be included. We should
observe that ‘prior’ in this context can be interpreted in a logical., rather than
chronological manner; although in practice with mass standards it is in fact both. The
results of doing this are a very distinct improvement over the Restrained Least
Squares method outlined so far. In fact it is possible to improve the uncertainty
estimate of the prior information through the new information obtained in the
experiment. Thus the rationale for treating the prior uncertainties as "systematic’ or

"fixed" is undermined.
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5.5 The Augmented Design Approach

The essential point about this new method (see Bich, (1990), Bich (1992) for
e.g.) is that the constraints-necessary to obtain a solution-are viewed simply as data,
for which expected values and variances are available. The fact that this data was not
obtained in the current experiment is no obstacle as it is logically prior information. In
the unified approach all information is a reflection of what we know about the
parameters under investigation: whether this is new information or previous
information is of no consequence. (Aside: there is plenty of evidence in mass
metrology that mass standards drift over time. This additional information will modify
our prior knowledge, sometimes significantly, and hence can affect the resulting
parameter estimates. We will look at this in more detail in Chapter 10, while here we

will develop the underlying theory.) The crucial point now is that while we still have

Y =xp with cov[Y]=\W (5.5.1)

we now have for our constraint, or prior, information:

R=ATp with cov[R]=\|/R (5.5.2)

We now augment both of these together to give:

Z=Wp (5.5.3)

Y X . Vv 0°
or R P while \|fz = o’ (5.5.4)
\%
> T_ qﬂ

We assume there are no correlations between the mass differences from the current
experiment and the mass values from the prior data and hence y/z above is diagonal.
Such correlations could be possible if the same instrumentation and reference
standards were in use in each case, but unless they are carefully estimated and shown
to be physically meaningful they should not be assumed, W'W is now no longer
singular so we can solve the Gauss-Markov Minimum Variance, or Weighted Least

Squares Estimator directly:

p=(wVw)"wVi (5.5.5)

& Vp=(wTvjzlw )"1 (5.5.6)

If we evaluate (5.5.5) we find, for W, \|/z & Z as given in (5.5.4), that:
p=[xtVyX)+A\/AAt]"lx \/y Y + A\[ir r] (5.5.7)

This illustrates how the prior information features prominently in the estimates
obtained via the augmented design— both R & \j/R are present. Thus we expect this to

be a complete solution giving adequate minimum variance estimators and,
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importantly, a complete covariance matrix for these estimators. Eq. (5.5.7) indicates
that the singularity of (xTy y’x) is no longer an issue, since the term to be inverted

requires only the non-singularity of [(x”y'xj+ Axj/j*A7J; and since the

constraint/prior information is still linearly independent of the observation data, this

condition will always be met.

This estimation method has some interesting properties. If we apply it to

Example I'in Sec 5.4 above, we will get the same estimates and a complete covariance
matrix. We have ysR=02 and

—
3 nl -1 of s 0 0 o
32 1 0 -1 0 a2 0 O
Z= W= ¥z = (5.5.8)
33 0o 1 -1 0 0 02 O
m, 1 0 0 0 0 0 .,
Resulting in: «
) mrl . ce G2
2.2
P = %>.3»- 3%+ 3% & wpz a2 302+c2 ovval (559)
1 2 1
«,-3»-3 * - N <'<|Z i8.2 ? £a+a7',

— obtained directly with Eqgs. (5.5.5) & (5.5.6), without the need for any further
processing. The prior information remains unchanged as it must since it is not
possible to determine any further information about just one constraint.

Likewise for Example Il of Sec. 5.4, Z and \j/z remain as given in (5.5.8) and

-1 0

0 -1
W =

1 -1

0 1

which is still just one piece of prior information. As before we obtain:

1 1/ V 1 2 1 2 1.2 1.2
-mr+>-(yl+2y2+y3 —a,  + -a, —"a
(yl+2y2+y3) el R
1 2 1 2, 1 2 1 2
= — “+ >0 5.5.10
P 4o 4 2 4 ( )
1 \ 1
~ R +ovi + 3 c2--c¢2 —cr2+ —a?2
Zmr O7U 2yi + 33) 4 5 40" 4 " 6

These results are indeed the same as those obtained with Restrained Least
Squares, but they have been obtained by a much more mathematically acceptable-not
to mention simpler-means. The inclusion of the prior information in the estimation
process, rather than just using it as a restraint on the estimation process is a much

more unified and consistent use of the known information.
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Now if we have more than one piece of independent prior information, the
power of this method becomes much more apparent, because it is now possible to
obtain extra knowledge on the prior information in the experiment, through extra
comparisons; the minimum variance characteristics of the estimator then causing a
new estimate of the prior information, of lower variance, to be obtained! This really
shows what happens when we build the variability of the prior information into the
model. If the constraints are not wholly deterministic why should we pretend they are?
The example below shows the benefits of treating the constraints stochastically. We

will first calculate the estimates by restrained least squares for comparison purposes.

Example I11: We have four parameters:

1 -1 0 o
A 1 0 -1 y2
1.0 0 -1 v
p = X= Y = (5.5.11)
0 1 -1 0 ya
0 0 1 -1 76

There are thus six observations on the four parameters. We take the covariance matrix
of the observations to be \l[rY= g2.16 for convenience. The constraint information

concerns the values of bj & b4. Thus we have:

1 01
0 0 m, \Y; o -
A= : R= . _ - (5.5.12)
0 0 qu‘,p’ _© o _
0 1

from which we can see that the two "reference'" standards are not correlated. The

restrained least squares solution now yields:
m.

- (4m, + 4m4- 3yt-2y2+ 2y4+ 3y5+Yy6)
@= © (5.5.13a)
_(4m, +4m4-y ,- 3y2- 2y4+y5+ 3y6)

mA

while for the covariance information we have:

'0 0 0 ) 170"

3 2 2 1 1

0 —G - 0 - =

. . 8 8 _ 2 2

—COX Yv XCj —G — & c2= 1 1 (5.5.13b)

0 -az2 V 0

8 8 2 2

0 0 0 0 0 1

and for the constraint information, the uncertainty contribution is:
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QY r2 — ‘ * ‘ > (5.5.13c¢)

Thus, as expected, the values of bl & b4 remain unchanged, as do their variances. The

much simpler calculation of the augmented design scheme uses the following inputs:

7T -1 0 oO* yi~
1 0 -1 O b
1 0 0 -1
0 1 1 0 >3 a2.l« 0
- >4
W = 0 1 0 1 V2= & Yz = < 0 (5514)
ys 0 al
0O 0 1 -1 y6
1 0 0 O ml
0 0 O m4_
to yield the (more complex!) results given below:
4(mdcr2 + )+2m,a2+g2(y, + y2+2y3+y5+y6)

22(7™ +2a\ +a2)
+m,a\)+4g2(mi+md)+492 (-yt+y3+yd+2y5+y6)+4a\(~2yt- y2- y3+yd+y5)+g2(~3>i ~y2+ 2yd+ 3y5+ 3M)

g2er™+2r™+CT2)
T ic(mdcr® +»)0-2) + dcr2(mt + m4) + 4a\ (~y2+y3- yA+y5+2y6)+ 4a\ (~yt- 2y2- y3- yA+y6)ma2(~yt- 3y2- 2y4+y5+ 3y6)
S(2<72 + 212 +<t2)
4(M4<2 + mt<I™ )m2matr2 +a\ (-y, - y2- 2y3- ys - y6)
2(2ff2 + 2ff2 +a2)
oM + ° 2 <(4<+a2) q2(4a2 +q3) 2 40}
20) +2a2+02 22a2+2a2+a2) 2(2a2+2al +a?2) 2aypt2gptal
802(2q;i +a2)+a2(802 +302) (4a2+a2fra2 +a2) 02(402+02)
8202+202+a) 8 202+2a2+02 22a2 +202 +02)
8a2(20™+02)+02(802 +3p2) a2(4a2+c2)
8202+ 2a2+02) 2202+ 202+a?2)
<(2r,+g92)
2Qa2+2a2+02j
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We can see from this that bl & b4 have been changed from their previous values.
This is merely reflecting their status as "observations™ with a mean and variance; so it
is not surprising that it is possible to change their values if new information comes to
light. What is particularly interesting is the covariance matrix, above, from which

we can see that:
ve(2a a2
a2(¢0= 0424 -<c2 (5.5.15)
Yt 2aq+2(jgra2
Since the denominator 2a2+2a”™ +a2 > (2c |+ 0 2) which appears in the

numerator. Thus the new estimated variance for h will be smaller than the variance
1 » S ——

for the original bv

So we can see that the Augmented Design approach, which is a more
appropriate way to view the problem considering the true, stochastic nature of all the
information available, is also a superior method inasmuch as it can effect a reduced
covariance matrix, which Restrained Least Squares cannot do. This is as a result of
making full use of all the available information. It is also, as we have already
remarked, a more agreeable method, in view of our Uniform Approach to Uncertainty
Analysis already used to calculate \j/Y, the covariance matrix of the input data. Further

numerical examples will be given in later sections to highlight these methods.

But now we proceed to look at a more generalised estimation technique, of
which the two methods outlined in this section are special cases. We will see the

significance of a proper view of the extra constraint information in what follows.
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6. A Generalised Estimation Method
6.0 Summary

A different, generalised estimation technique, with a different theoretical basis
to either of the two methods discussed in Chapter 5 is introduced in this chapter. The
method is developed by Rao (chapter 4 in Rao (1973)) and known as the Generalised
Gauss Markov method. We will see that this model is entirely general and does not
make any assumptions about the data, the input covariance matrix or the system
model. (In contrast to RLS which requires constraints, and AD which needs an
invertible covariance matrix). The GGM technique utilises the matrix theory of

generalised inverses (sometimes called pseudo-inverses, or s-inverses)

We show how the method is implemented by forming an augmented matrix, as
shown in Fig. (6.0.1) below. The details of the estimation technique are discussed
within the chapter, but the principal point to note here is the form of the solutions
obtained, illustrated in the figure below. Note that, in the presence of constraints, an
extended model can be written down in terms of Z, W & @ as in Fig. (5.0.3), rather
than Y, X & (3 as below. The GGM model can deal with either. The exact form of the
solutions will depend upon the details of the input data and we leave these specifics to
Chapter 7.
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6.1 Introduction

So far we have seen two principal parameter estimation techniques: RLS & the
AD method. In the former, the singularity in (x 'Vyx) dealt with by solving the
normal equations subject to a set of constraints which are linearly independent of the
observations. The constraints used in mass calibration are usually the previously
known values of [some of] the parameters. This allows a solution to be found, but we
pointed out that it is both inconsistent and inaccurate in its use of the constraint
information which is in fact not deterministic but has previously determined

dispersion characteristics. ,
1

We then saw how the AD method allows this additional knowledge to be
utilised in obtaining a full solution requiring no further post-estimation calculations

and indeed allowing the possibility of arriving at a smaller dispersion matrix for the

parameters than would otherwise be possible.

One would wonder if the AD method could be applied even if the constraints
are considered deterministic. Perhaps in this case an estimate could indeed be
obtained but no further information on the prior knowledge could be found since it is
considered fixed. This, unfortunately, is impossible since the solution

Pad = (x> yix)~IxV ;ly

determined to be the BLUE by the G-M theorem, cannot be so determined if i|/Y is
singular, as the G-M theorem does not hold under such conditions. For example, with

our model Y = X.f3, and prior information AT.p = R, we form the augmented design:

uX 1 Y >Y O )

yZ— - =
A R & ¥z o
e

But if R is deterministic then M/R= 0 and then we would have
>y 0]
M o 0.
which is clearly singular and we can proceed no further. So we need a General
Solution which can deal with the possibility of a singular covariance matrix, \)/Y, and it

is to the development of such a method that we now turn.
6.2 The Generalised Gauss-Markov Model (See Chapter 4 in Rao, 1973)

We consider the model Y = XP where Y is a vector of experimental

observations subject to a dispersion matrix \[rY = a2G. We wish to find the best-i.e.
Minimum Variance-linear unbiased estimator of (3. Let this estimator be p such that:
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4 ptpl=ptp (6-2-1)
for some suitable vector p. Note this is most general and in many cases we need not
be concerned about the form of p, but we leave it here for generality. Our observations
however, are the vector Y, so our parameter estimate must come from this source as
this is all the information on which we can make decisions (although we do not
exclude the possibility that there may be a constraint vector, R, needed as well.) Thus
we need an estimator L such that our estimator is a linear combination of our

observations:

E[LTY]=pTp (6.2.2)
i.e. Ltxp =pT3

or LTX =pT
=>XtL=p (6.2.3)

This means that p is a linear combination of XT, or that p lies in the vector space
spanned by the columns of XTX .

Now L in (6.2.2) has been chosen such that it is a linear unbiased estimator of pT(3,
but we want the minimum variance estimator out of the class of all possible unbiased

estimators. How do we find this? Observe that the variance of our estimator is:

var[LTY]=02LTGL (6.2.4)

since g2G = var[Y], Thus the best estimate for L is the one for which (6.2.4) is

minimal. Suppose this optimum choice is M, chosen such that:
XtL=XtM (6.2.5)

which of course follows from (6.2.3) since all the valid estimators are among the class

of linear unbiased ones and therefore satisfy (6.2.2) & (6.2.3). Then we can say:
LtGL=[(L-M )+ M]XG[(L- M)+ M] (6.2.6)
=(L- M)tG(L- M)+ (L- M)tGM +MtG(L- M)+ MtGM (6.2.7)

Note, asanaside, that given AB = C for A, B & Cappropriate matrices, that in
general (AB)T=BTAT= CT.Thusin (6.2.7) we have:

(L-M)tGM =[m tG(L-M)]" (6.2.8)
where G is symmetric. Now with the strict condition that:

iff MtG(L-M)=0 when XT(L-M)=0 (6.2.9)

— which latter we know is true from (6.2.5); then we can say that:

LtGL=(L-M)tG(L-M)+ MtGM (6.2.10)
since if (6.2.9) is true, both MTG(L-M) & (L-M)TGM are zero when M is such

that (6.2.5) is true. Therefore we can see that:
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11 >mtgm (6.2.11)
which means that the particular estimator M is always of lower covariance than any
estimator L; in other words it will generate the minimum variance estimate of pTp,
which is pTp . From (6.2.9), the condition for this to be true is that

MTG (L-M)=XT(L-M)=0 (6.2.12)
or that Mt .G is some linear combination of XT. We can then say:

Mt G =-k TXT

or GM =-Xk
for some appropriate matrix kK. From (6.2.5) & (6.2.3) we know that XTM =p, so we

(6.2.13)

can now write the two equations:

GM+Xk=0 (6.2.14a)

XTM =p (6.2.14b)
G X M 0

or (6.2.15)
xT 0 Kk P.

for M a BLUE of R in the model Y = XB with jfY = a2G. Note that we made no
assumptions so far about the form of G or indeed about the form of XTX as do both
AD & RLS. From (6.2.15) we can say:

M’ ‘cl e2tTO

(6.2.16)
k a3 A p.

g c2 G X!
where is the Generalised Inverse-or g-inverse-of . (See also
3 -C4. XT 0_
Goldman & Zelen (1964)) For any matrix A, its g-inverse is denoted A", and is
defined such that AA A = A. If A is of full rank then it is not singular, and A" is the
normal inverse. If A is not of full rank, or rectangular, then independent rows, H, can

be added to A so that:

Al
Aa= H
Then the inverse of the augmented matrix
A H
H* 0
exists and in fact
A HY g B
s
. © 0 _c2 A

In this case Cj is a g-inverse of A and ACjA = A. Note: this procedure is essentially
analogous to that employed in Restrained Least Squares where A =XTX and H is the

design matrix of the constraints in H(3 = R. (See Section 5.3).
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In this theory, however, a g-inverse is not unique. Any matrix H which allows
the inverse of the augmented matrix above to be computed will be sufficient to
evaluate Cj| however, in application, H would of course have to be chosen so as to be

physically meaningful since it directly influences the results obtained.

In the present problem, without going into the details of the evaluation of the g-
inverse, we can immediately say that (6.2.16) gives:

h: ;(f P_ or E”S_Eff; (6.2.17)
We will investigate the evaluation of c2 & c4 for 'specific examples in Chapter 7.
Recall from Eqg. (6.2.2) that we chose a linear unbiased estimator L such that:
LTXp =pTp
and we chose M as the best (i.e. minimum variance) linear unbiased estimator-that is,
the best form of L-which led to the conditions expressed in (6.2.9), (6.2.12) &
(6.2.13). Since this is the best estimator, we must be able to equate (6.2.2) & (6.2.1)
for M:
£E[ptP]=£[m ty]=ptP (6.2.18)
where p is the BLUE for p, i.e. pTp=MTY Thus from (6.2.17), we have:
P'h=p oY
P=c2w (6.2.19)

This is a generalised solution for the best parameter estimate for a Generalised
Gauss-Markov model; where we have Y = Xp and a covariance matrix \[/Y = 02G
whose form is as yet unspecified. We also need to get the covariance matrix of ft and
then look at the specific form of c2, c4 for our experimental problem; but before we do

this we need some results on the g-inverse in (6.2.16)
6.3 Results on the G-inverse

For some variables a & b, we may write:
Ga+Xb-0 (6.3.1a)

XTa = XTd (6.3.1b)
— analogous to Eqgs (6.2.14a) & (6.2.14b), for some appropriate d. In other words:

G X' a . 0"
XT 0 b XTd_
a c, c2' 0
— (6.3.2)
b G “C, Xrd

75



g @’ G X

where = is a g-inverse as before. Then we have from
a3 ~ca XT 0
(6.3.2):
a_ c2XTd * (6.3.3)
bj - 4XTd

(6.3.1a) & (6.3.1b) can be expressed as:

Ge2X d- Xc4X d=0
& XTc2XTd = XTd

= GecXt=Xc&Xt (6.3.4a) — Result (a)
XtcXt=Xt (6.3.4b) -> Result (b)
The latter of course implies that c2is a g-inverse of XT. Now noting that A.B.A = A

=» AtBtAt=At,we can write

G X1 . -3 G X1 G XT"
x o T T X o X 0
_ : _ _ _ i e
(in which G is of course symmetric) which means that is also a g-
:3 -C,
inverse and therefore:
T (6.3.5a)
T (6.3.5b)
Thus (6.3.4a) and (6.3.4b) now become:
Ge3XT=Xc4XT (6.3.6a) —> Result (c)
& XTe3XT=XT (6.3.6b) — Result (d)

If we multiply (6.3.6a) by X.c3we get:

Xc3G Xt = Xec3XecdX T
=Xc4X t by (6.3.6b)
But c4 = cj according to (6.3.5b) so (6.3.6b) now indicates that Xc4X T is symmetric,

Xcd4X T=XtcdXt
Thus we now have:

Xc2X =Xe3X = X Result |

— by means of (6.3.4a) & (6.3.4b); and also:

XcdXt=6Gc2Xt=G6Gc3Xt
=Xcd4X t

Result 11

Xc2G =Xc36

Of course we could also write (6.3.1a) & (6.3.1b) as:
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Ga+ Xb=Xd (6.3.7a)
& XTa=0 (6.3.7b)
Treating these similarly to (6.3.1a) & (6,3.1b) gives:

a CjXd"
b c3Xd

which gives for (6.3.7a) & (6.3.7b):
GcejXd + Xc3Xd = Xd

& XTCjXd=0
=> GcjX + XcjX~X

by Result I we have already established that X¢c3X = X

GCjX=X CjX=0 Result IE

that is, they are all null matrices.

6.4 Covariance in the GGM Model

In (6.2.18) we had £[pTpJ=£[MTY]=pTp to give the best estimator p via a

linear combination of Y. Further, analogous to (6.2.3) we have:
X M=p (6.4.1)
Now in (6.2.19) we had P=cjY ,
var|pTpj = var[pTC2Yj = var[MTXc2Y] by (6.4.1)
=a2MTXc2Gc2XTM asvar[Y] =a2G
=a2MT(XcjG)c2XT™M
= 02Mt(XcdXt)c2XtM by Result 11
=o2MtXcd(xtc2Xt)m
= g2MtXc4XtM by Result |

HrAl 2 T
[b p =c p cap

vargf = a4 (6.4.2)

So, in conclusion, in the General Gauss-Markov model-GG M -{Y ,X.p,a2G},
we look for a BLUE for p, given by pT.p . This is estimated by a linear combination
of the observations, MTY such that:

G X Mi rol

for a suitable K.
XT 0 k P
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Cj c2 G X'
Then for the g-inverse of ,onehas M=c2.p
C3 —ca_ XT 0

=MtY =pTCjY =pTp; giving us the best estimator P=c2Y . It's covariance is then
obtained from cov[j3j =0 2c4 since cov[pTp]=a2pTcdp Note that it is necessary for the
inverse of:

G X!

XT 0

to be calculable for this method to proceed—in other words, specifically with regard
to the mass comparison problem, the method outlined above cannot be simply used
with the design matrix X and data Y; since, as we know, this is insoluble by itself—
there is just not enough information present to permit a unique solution, irrespective
of what estimation method is used. Observe that the specific evaluation of @ & c4
depends upon the physical nature of the problem to be solved. In this chapter we have
not shown how to actually calculate c2 & c. So let us now proceed to investigate how

we can utilize this method in the mass calibration parameter estimation process.
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7. GGM Theory in the Mass Model
7.0 Summary

The GGM theory introduced in Chapter 6 is now applied to specific examples
with application to mass calibration. There are two cases to be considered, depending
upon whether or not the constraints are viewed stochastically. In both cases we use an
extended model—that is prior information must be included in the analysis in order to

obtain a solution.

»

After some mathematical manipulation, we highlight how GGM generates
solutions identical to RLS if the prior information is viewed as constant, while the
solution is the same as that due to AD if stochastic constraints are used (Bich, 1992).
This is a significant result and from it we can conclude that both RLS and AD are
special cases of a general theory, albeit GGM is derived from an entirely different
theoretical starting point. Thus RLS is appropriate to use in cases where constant
constraints apply, but this is not so in mass calibration and thus, contrary to common
practice in metrology, we conclude that the RLS method should not be used for
parameter estimation in mass determination. Fig. (7.0.1) below illustrates the

relationship between the models.
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7.1 Introduction

Having developed the GGM theory we now have two cases to consider, which
arise from our investigations in Chapter 5 with regard to mass calibration: either the
necessary prior information we must supply to obtain a solution is "uncertain®™ or it is

deterministic. In the first case we have:

X Y NV 0°
W= ;L= - & ¥7 = (7.1.1)

at R 0 W

and we can use the extended model of W, Z & \j/z in the GGM model. We will see
below that this requires Wz to be invertable—whichtit is. In this case GGM should be
the same as the AD solution, since consistency criteria dictate that different methods
of analysing the same problem should yield the same solution, which is shown in this

chapter to be the case for these two models.

On the other hand, if the constraints are considered deterministic, one now has
W & Z as above, but:

vz= "> ° (7.1.2)

which is of course singular; the GM theorem does not hold now so the AD method
cannot be implemented, but GGM is not incapacitated by this and we will show that it
generates a solution identical with RLS. This should not surprise us since it shows that
the two methods, AD & RLS are but particular cases of a general theory, depending
on how one views the constraints. We have pointed out earlier that the deterministic
constraint approach is inconsistent both with the known nature of this prior

information and also with our general philosophy of Uncertainty Analysis.

7.2 Deterministic Constraints

Let us first examine the GGM model with fixed, non-stochastic constraints,
where we have:
Y=XB & vY=G (7.2.1a)
{for convenience we assume a2=1!}. The restraints are:
R=ATp & \[iR=0 (7.2.1b)
Thus the modelweuse isthat given by (7.1.1) but with \|/z givenby (7.1.2).

According to the GGMtheory, what we need to do is evaluate the g-inverse:
> 7 w c2"

WT 0 G o
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then P=c2Z & \|/- =c4.In our case the augmented matrix H is given by:

Wy 0
0 0 at
X A 0

however, to obtain the inverse of H using the rule for inverting a partitioned matrix
(see, e.g. Beck & Arnold, 1977), we must re-partition it first so that we do not need to

invert any singular sub-matrices. Thus:

. 0 X 1 K
A B A_1+FE_IFt -FE 1
H= 0 0 At — — - - (7.2.3)

*l bt c -e Ift E-1
XT[A 0
where E=C-BTF & F=A-1B and A“1="'FJ1=G"1. Also:

0 Al
B=[0 X]; C= A o S F=¥ [0 X]=[o ¥yx]

E=C-BtA IB= (7.2.4)
A -XTG"IX

from the definitions of A,B & C. So we require E'1to evaluate (7.2.3). If we transform
E into D given by :

dJ-XT@ ™ Aj (7.2.5)
At 0

we can proceed in a similar manner to the development of the RLS or GGM theory.

The transformation can be effected by:

D |
D=U_1IEU where U= 0 (7.2.6)
We may now proceed with D as follows: Let:
N di d2
D so that DD 1=1 (7.2.7)
dj d3
ie. -XTG_IXdj + Ad2 =1 (7.2.8a)
-X TG IXd2+Ad3=0 (7.2.8b)
Ad, =0 (7.2.8¢c)
ATd2= 1 (7.2.8d)

Now because XTG_1IX is singular we will run into problems in evaluating dj from

(7.2.8a) & d2from (7.2.8b), So we define:
XtG-1X = a0+ DAAt (7.2.9)

for D a non-singular diagonal matrix. We can let D = -1, so that for (7.2.8a) we get:
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-(a0- AAt)dx=1- Ad2
*-a,,dj + AATdj =1- Ad2 ; butATd,=° by (7.2.8¢c)
~.drarAdI-1] (7.2.10a)
while for (7.2.8b):
-(a0-AAT).d2=-Ad3
=-a0d2+AATd2=-Ad3 ; butATd2=1 from (7.2.8d)

so al0d2=-Ad3- A
or d2=aQlA(d3+ 1) (7.2.10b)

Also, pre-multiplying (7.2.10b) by AT gives:
ATd2=ATa0lA(d3+1)=1 by (7.2.8d)
so d3=(ATaQla) -1 (7.2.10c¢)

Thus the components of D-1 are evaluated in terms of X, G'1 & A. We must now
transform back to get E-1by means of E-1 =UD_1U_1 where U is as given in (7.2.6).

Then E'1becomes:

E = (7.2.11)

with dj, d2 & d3 as given in (7.2.10a) to (7.2.10c). We can now evaluate the

components of the matrix on the r.h.s. of (7.2.3):

0
A“l+FE_ IFt=G"“1+[0 G_IX]
d2 d, XTG 1

=G“l+ G XdIXTG~1

= G~1(I + XdIX TG “1) (7.2.12a)
d3 &=
FE o -6 -1x] = [-G_IXd2 -G~XdJ, (7.2.12b)
d2 g4i;
B T -d 2XTG-1
-E _1Ft= (7.2.12c¢)
oS dj. Xtg-x -djXTG 1

(Note that di is in fact symmetric). Thus from (7.2.3), the inverse is as follows:

G-1+G -1XdIXTG-1 -G 1Xd2 -G 'Xd/
-d 2XTG 1 (7.2.13a)
-d IXTG 1 12 d,

Now, noting that we re-partitioned in Eq. (7.2.3), from Eq. (7.2.2), we can see that the

terms cl; ¢2, c3 & -c4will result from partitioning (7.2.13a) as follows:
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G 1+G“IXdIXTG“l1 -G _IXd2i-G _1Xd
H = -d 2XTG-1 d3 ! d? (7.2.13b)
-d IXTG-1 a2 j
We are interested, in the GGM theory in just c2 & -c4 so in fact we must now deal
with
-G Xdj

Our estimators are now:

3=c2Z=[-djXTG 1 dZj

P=-djX G Y+dxR (7.2.14)

Now with the aid of (7.2.10a) to (7.2.10c) we find (7.2.14) can be expressed as:

P=a~AXTG 1Y + A(ATallA) Lr - a’V x’G-ly}J (7.2.15)

—which is identical with Eq. (5.3.23) obtaining for the restrained least squares
analysis! This is a most interesting convergence since the two methods are based on
different principles and establishes for us that the GGM is a general theory which is

equivalent to RLS under the circumstances of a model Y = XP subject to deterministic
constraints ATp=R . Note that we have taken care that a0 = XTG_1X + AAT is defined

like this for both expressions so that we can directly compare them.

For the covariance matrix in the GGM model we have \j/- =-dj from (7.2.13b),

and with (7.2.10a) to (7.2.10c) this yields:
=a;1(I-A (AV A)“lATa-1} (7.2.16)

which is also identical with the RLS estimator of covariance.

Note: the reason for the somewhat protracted calculations above is so that (7.2.15) &
(7.2.16) are essentially expressed in terms of X, Y, R, A & G; all of which are known
at the start of the work. However, it is not computationally difficult to form the
augmented matrices required by GGM. So for the G-M model with restraints one

would require to find the g-inverse:

v, 0o1!X
Vz w '
= 0 O:at (7.2.17)
WT O %
XT A| O
Thus as usual v[izg +Wc2 =1

¥7C2+Wc3=0
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WTCj=0
Wtc2=1I
From these we get:
ca=ail(l-wW cJ) (7.2.18a)
c2=a”W (l-c3) (7.2.18b)
c3=1-(w Taolw)"1 (7.2.18c)
a0=xlz + WWT (7.2.18d)

In fact clis redundant since we require:
P=cjz
& ¥p =-c3

The augmented matrices \|/z & W can easily be formed and the estimators then found

without difficulty.

7.3 Stochastic Constraints:

On the other hand, if the constraints are not deterministic, we have ATp=R &
\|/R 0 and we can use the expanded model of (7.1.1) in the GGM analysis (i.e. W,
\|/z & Z). Therefore, by Result I from Sec. 6.3, XcJX =X, or in this case, Wc2W =W ,

since we are dealing with the augmented matrix. Now by Result m (Sec. 6.3):

VzciWw =0
2 \|[/zCjW + WcIW = W
or, \|/zCi +Wc2 =1 (7.3.1a)
W e also know from Result IE that WTCjW =0
Ntw'ecNO (7.3.1b)
for a non-trivial solution.
Result 11 tells us that WCcAW T=\|fzc2WT
=>\|/zc2- Wc4=0 (7.3.1c)
By Result | again, Wc2W = W
S>Wtc2We=WT
=>Wtc2 = (7.3.1d)
From (7.3.1a) we see that:
CAVAL-W c?) (7.3.2)

( Observation: Here wesee how we can operate when \|/zis non-singular. If we had
)R =0, we wouldhave [\j/z|=0 and (7.3.2) could not be obtained. Thus this

development is based on non-deterministic constraints. Note also that Eq. (7.3.2)

above and indeed (7.3.4) below can be derived by an identical analysis to that giving
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Eqs (7.2.17) - (7.2.18), except that ao would not be needed since \|/z is now directly

invertible.)

Continuing, from (7.3.2):
WTcl=W >z (I-W <£) (7.3.3)
but WTG =0 by (7.3.1b) so:
W T\(izl= WT\[/*W c2
or cl =(W T\)y/Z1W)-1WT\|/Zz (7.3.4)

But in the GGM method, p=c2Z so we can see that the estimator is:
P=(WTI/AW) IWT¥ ~Z (7.3.5)

—which is identical to the G-M based AD approach ! ( Eq. 5.5.5), where Z is the

augmented vector of input data, i.e.:

Z =

From Eq. (7.3.1c), \)/zc2=Wc4
=>c2\|/zWc4

C4=("Zwij ¢c2
which becomes, using (7.3.4):

cd=(¥zIlw)'L(vilw)(wxvzlw )"l

or, cd=(wV "w)-1 (7.3.6)

and since \|/. =c4, we now have a covariance estimator also identical with that

produced by the Augmented Design approach.

In conclusion, this is an important chapter as it ties together a lot of mathematical
development, starting with Chapter 5, and highlights the two primary approaches to
parameter estimation. We have seen that AD & RLS are both particular cases of a
generalised estimation technique operating on a linear model subject to restraints/prior
information. The different formalisms result from different interpretations of the
nature of this prior information. As we have pointed out several times before, our
criteria of logical consistency and a desire for a unified approach which takes adequate
account of everything we know about the problem lead us to consider the extended
model AD solution, or the extended GGM model with stochastic restraints, as a better
interpretation of the available information. Our next chapter is the final one on
estimation techniques, and introduces the logic of Bayesian Analysis as an even better

diagnostic tool for analysing group comparisons in mass calibrations.
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8. Maximum Likelihood Estimation
8.0 Summary

In this final chapter on parameter estimation methods we adopt the explicitly
Bayesian approach of Maximum Likelihood Estimation (MLE) & Maximum a
Posteriori estimation (MAP). This approach is analogous to that used in uncertainty
estimation as discussed in the first four chapters, insofar as one of the key features is
the selection of a distribution to describe the observations (the corrected experimental
data), and also the parameters, and in this respect is a convenient unification of the
preceeding analysis. The true conditional nature of probability is pointed out and the
basic rules of probability theory are used to generate Bayes's theorem. With the
Maximum Likelihood Criteria a posterior distribution for the parameters can be
established, given the particular observations that were obtained and the available
prior information. In this way the posterior distribution of parameters is the prior
distribution updated by the new current information obtained during the experiment.
Thus all known data is included in a unified manner, a desirable feature in mass
determination, since we have pointed out that the difference between data obtained in
a previous calibration and that obtained in the current one is primarily one of logical
relationships insofar as inference and estimation are concerned. We must ensure of
course that the full extent of prior knowledge is included which may mean considering
the effect of drift on the prior information. This will be explored in more detail in

Chapter 10.

It will be shown in this chapter that the MAP estimator generates the same
parameter estimate as does the AD method if a Normal Distribution can be used and
the prior information is just the known values of some or all of the standards.
However, if the prior information comprised a combination of two or more standards
(e.g. a sum or difference term) the AD method would provide an adequate estimate
while the MAP method would not be possible as the prior vectors / covariance

matrices could not be constructed.

The MAP estimator also generates a reduced covariance matrix and does not
depend for a solution on the form of the design matrix, as does the LS method. Note
in Fig. (8.0.1) below that the system model describing the relationship between
parameters and observations is not used in the estimation process, but rather, the
distribution function of the data and the prior information is used. Note also in Fig.
(8.0.2) that the process can be used in a sequential manner to continually update the

parameters as more information is obtained. This latter aspect leads us to expect that
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information on the evolution of the mass standards over time can be easily explored

with this analytical method.

Fig. (8.0.1): Essential Aspects of the Bayesian Estimation method.

8.1 Introduction

We have so far considered parameter estimation techniques based on Least
Squares, the Gauss-Markov theorem, and a generalised estimation technique not
relying on either of the first two methods but encompassing them both in its scope.
We have seen how these methods can give different results, the essential difference

being how they treat the prior information necessary to get a particular solution for the
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comparison calibration data. We now wish to look at one more method, based on the
completely different approach of Bayesian probability, which we will see, is a very
appropriate way of dealing with the information we have. First we must examine the

basis of the method.
8.2 Maximum Likelihood (See Beck & Arnold 1977)

The key point here is that, unlike Least Squares techniques which involve a

minimisation of the vector norm Y -Xp]||, or the GGM method which involves

finding a best estimator irrespective of any judgements about p, Y or \)/Y; the methods
now being presented are based upon an analysis of Distribution Functions. Thus,
information must be available on the type of distribution which best describes the
dispersion characteristics of the parameter under scrutiny. Essentially one requires,
that for a model

Y =/(P) (8.2.1)
one can choose from among the possible values for p, the set which maximises the
probability of obtaining the set of data, Y, which was in fact observed. Thus one is
concerned only with the data set Y which is known to exist, and not with the wider
population of Y values of which our vector might be a sample—i.e. the space of all
data sets which might have been observed, but in fact were not! This policy is in

accord with the Consistency Criteria of Chapterl.

To do this one requires the conditional distribution /(*|0) which is the joint

distribution function for the x values which could be observed for a particular 0
value, or a particular distribution of 8 values. It is important to realise that no
probabilities are absolute: there is always a conditional dependence on some existing
or background information. (See discussion in Chapter 1). If 3is given then /(Y |p) is
a sampling distribution which describes the dependence of Y on fixed p. But it can

also be considered for the case of afixed data set Y, in the light of possible values for
p. In this context, /(Y|p) is termed the Likelihood Function for p, denoted by L(p).

This likelihood function can be maximised to give the most plausible P values for the

Y data which was obtained.

Before implementing such a method it is necessary to define a suitable
distribution. In our case, the model for Y is just Y = Xp. Here X is a constant while a
probability distribution describes the dispersion characteristics of Y. Following the
considerations of Chapter 1 we can assume a Normal Distribution since we will have

a mean value and covariance matrix for Y. Thus:
cov[Y] = \|/y, which is fully known

&E[Y]=XP (8.2.2)



We require to find estimators p such that the Likelihood function is maximised. For a
variable x of mean value Ji and variance a 2, the Gaussian distribution may be written

as:

IW =-7 = «d “ i— 1\ (823>

If Y is an n x 1 vector, then the distribution function for Y, given by the conditions in
(8.2.2) will be:

I(VIP)-(2,)-"T7¢ed-(Y-XP>3T™ 1 - XP>l <8.2.4,
\% ;
Before the experiment is carried out, /(Y |P) associated a probability density with each

outcome Y, for a fixed parameter vector p. After the data is obtained we need to find

the particular 3 which would maximise the probability density function for the Y we
did get. Hence the Likelihood Function L(P|Y) is to be maximised. This will also

have the form of /(Y |p) as in (8.2.4) but now P is considered variable and Y is fixed.
Taking the log of (8.2.4) yields:

In{L(P|Y)} - -|[«In(2TC) + In|v|/Y] + SM] (8.2.5a)

where SML=(Y -Xp)TVy (Y-XP) (8.2.5b)

Maximising this Likelihood function can be achieved by minimising ML as given in
(8.2.5b), as this is the only term which has a p dependence. Hence we require:

Vp{y t\/ylY - Y €\[ly X P -P tXt\|/ylY + PTX tVly XP |p= =0 (8.2.6)

The value of P=p which satisfies (8.2.6) will be the Maximum Likelihood Estimator

we are seeking. Noting that:
Vp(AB) =Vp(A)B + Vp(BT)AT

& VprATIA = 22VpATH)A; while Vp(BT) =1

we can evaluate (8.2.6) to get:
2XtVy Y +2Xe\Wy XP =0 (8.2.7)

and thus  Pmil=(xtv ;x)'1x t¥ -1y (8.2.8)

Noting that £[Y] =XP we can see easily that £°PMJ =P and thus we have an

unbiased estimator.

From (8.2.8) Pmi1=L.Y with L = (xtYyX) 1Xt\J/y . Thus:

/- =L\llyLt

¥ o =¥ i)'l (8.2.9)
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So we can see that, providing the strict assumption holds that Y can be characterised
by a Normal Distribution, (and from Maximum Entropy considerations we can be
confident in this assumption with the information we have), the ML technique
generates an estimator the same as that given by WLS, or the AD method. Hence by

the GM theorem we can be assured that this is a minimum variance estimator.

However, while in this section we have pointed out the conditional nature of
probabilities, and used this information to construct a likelihood function in order to
establish a parameter estimate, we have not fully included all known information.
Leaving the development like this will not do as it violates our requirement for a

unified analysis and in any case would not be solvable since (xT\j/yIx) is singular in

mass calibration problems. We now need to carry the Likelihood technique further to
the case where we do know some prior information about the parameters p. We can

incorporate this information with the aid of Bayes' theorem......

8.3 Bayes' Theorem & Maximum a Posteriori Estimation

In this more complete analysis we want to explicitly identify any prior
information that exists, and show how our probability functions depend on it. Again
we highlight that there is no such thing as an absolute probability: all probabilities are
conditional on some background information. Analogous to human experience, we do
not discard all of yesterday’s information and deal only with the immediately
observable: rather we form a synthesis of the totality of our information. It is further
necessary to be aware that this ‘background’ or ‘prior’ data is to be interpreted
primarily as logically distinct from the current data. Chronological or causal
relationships are by no means implied or required by the theory, albeit such may well
exist in practice. “A-priori” probabilities, or data/information, are those which are
known or available independently of the current experiment. (Jaynes (1996), Sivia
(1996)).

In general terms, scientific inference involves the situation of a set of data, D, at
hand along with various other prior information, the requirement being to associate
probabilities with a set of hypotheses in the light of this information. The information
may be “subjective” in the sense discussed in Chapter 1, i.e. that it is all that is
available at the time but its dispersion characteristics will reflect the degrees of

belief/plausibility which can reasonably be attributed to this information.
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To proceed, we note the two fundamental rules of probability theory, (see, e.g.
Jaynes (1996), Fréhner (1997), Bretthorst (1989) or Cox (1946)) the Product & Sum
Rules: %

Product Rule :

p(AB\C)= p(A\C)p(B\AC)= p(B\C)p(A\BC) '8
which investigates the probability that two propositions A & B could both be true
given that background information C is true.

Sum Rule :

p(A + B\C) = p(A\C)+p(B\C)~ p(AB\C) (8°3'1b)
which considers the probability of either (A or B) Jbeing true given the background
information C. These two rules are derived as inescapable consequences of the basic
requirements that probability theory be consistent with the fundamental desiderata of

rational belief and Aristotelian Logic.

Let us now consider the situation where we have a vector |it of prior

information, a vector Y of current data, while our hypothesis takes the form of a
vector P of parameters we want to determine. So with the product rule of Eq. (8.3.1a)

we have:
>y PK) =p(yInp)p(p|YIXp) = p(plIXp)p(YIP|xp) (8.3.2)

which considers the probability that data vector Y and some parameter vector P are
both true given some prior information (@p. We can rewrite this as:

(8.3.3)

and in this formalism is commonly referred to as “Bayes’ Theorem”. The lLh.s is
called aposterior probability, meaning that it is logically later in the inference process
than the others. It gives us the probability that a particular p could occur given that

both Y and are known with some specified degree of belief. On the r.h.s /7(p|n.p)

depends only on the prior information |op and as such is termed a prior probability,

and deals with the possibility of P existing in the light of only the prior information.
The numerator in the final term on the r.h.s of Eq. (8.3.3) is called the Likelihood for
P, L((3), as in Section 8.2 above. This is not a probability but a term which when
multiplied by a normalisation constant and a prior probability would become a
probability term. The denominator in the r.h.s. term, being the distribution for Y and
independent of p provides this normalisation constant. So, we can say that the
posterior probability is proportional to the prior probability multiplied by the

likelihood function.
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We can now consider our model as follows:

Y = Xp (8.3.4a)
with p(Y|[xp)=>£TY]= Xp,var[Y]= vv (8.3.4b)
while p(p|np)=>£[p] = |Xp,var[p] = \|I/p (8.3.4c¢)

This is the crucial difference from preceeding chapters: the parameter vector p, is
considered to have a prior-known expectation value fip and a dispersion matrix \|/p.

We further expect cov(Y,p) = 0. We are thus deciding that /?(plfipj is a normal

distribution which we can write as

(p-Ap)tV (p-") (8.3.5)

where P is ap x 1vector of parameters. Our Likelihood function for p is:
L(P) = p(yP"p) (8.3.6)

since p(y|ipj is really a constant term describing the probability distribution of the

data. Thus we have:

Y-XP) Vy(Y-X
L(p) = (2k) exp ( )Vl P) (8.3.7)

which is the conditional probability distribution for the data, Y, from Eq. (8.3.4b). So

we can write Bayes’ Theorem as:
p(plY M-p)~ p(piM-p )N(P) (8.3.8)

We need to maximise the l.h.s. of Eq. (8.3.8) in order to find the parameter vector

which is the most plausible in the context of the current information Y and the prior
information p,p. To do this we must then maximise the product on the r.h.s of Eq.

(8.3.8), which from Eqgs. (8.3.5) & (8.3.7) is :
(Y- Xp)TVy (Y- Xp)+(P- pp)T  (P- Up)
(2%y[mpM\\W\FJ /2W 'y I Mexp

(8.3.9)
The problem is now reduced to finding the estimator {3 which satisfies this

maximisation. The maximum of the r.h.s. of (8.3.9) will occur at the same point as the

maximum of its natural log - i.e.:

- (n + /7)In27i + In|\[/p| + In\\|[/Y] + SA/Y) (8.3.10a)

where SMP= (Y -XP)V?2(Y-XP)+(p-"p)T¥p‘(p-pp) (8.3.10b)

92



We want to find an estimator (3 that maximises (8.3.10a); This can be done by

minimising (8.3.10b) with respect to (3 Thus we need:
VPI(YT-X T3 ¥y (Y -XP)+(pT-~ ) VpYP-M-p)]lp=p=0 (8.3.11)
which evaluates to:
2(-Xt\)ly Y+ Xt\]/ly XP+v”~p - YpVp)=0 (8.3.12)
on noting that Vp(AB) = Vp(A)B + Vp(bt)at &
Vp"AT()A) = 2AVpATYA;; while Vp(BT) = |
Thus (XVyX +Vpl)r = XTY/AY +\)/pVp (8.3.13)
AN (X Ay X +VpL) (X AV Y +\(ipVp) (8.3.14)

By adding and subtracting 2X+t\|/y X|xp to (8.3.12) we can get another expression for
P:
2(-XT¥;IY + XT¥ -xp +VP-VpVp + x W p-Hp)=20
=2(-X>; Y- XA+ (XTVYy X+VphP- (XVy X+0O ~p )=0

= (XTVVv X+VpLP = XTW (Y - Xnp) + (X TX|/jX + Vpl)|ip

Pmap ~ Mp+ & "Vy X+ Mpl) 1X >y (Y-X~"p)

This estimator has some interesting features: |ip was our prior estimate and it is
apparent that the posterior estimate is simply the prior estimate updated by a term

which depends upon the new current information. Also PMAP is a biased estimator

since £[p] = |lp and therefore a[PMap] - pml® other words the distribution of j}MAP is

centered on the prior information and not the new experimental information. However
this is not surprising, neither should it be considered a problem, since the process is
focused on the prior information anyway—the new knowledge is considered as

updating what is previously known.

Another significant feature is that the existence of PMA depends only on the
existence of (x~""X+Ypl 1 and it is thus no longer a requirement that

|x T\j/YIx| * 0. This is of particular significance in dealing with comparison calibration

experiments where XT.X will always be singular. Essentially this method is
performing a similar operation to the AD or RLS or GGM models insofar as it is
including extra information but the manner in which it does this illustrates clearly the
role of the prior information. We shall investigate shortly under what conditions this

estimator is identical to AD or MLE. However, we can note that if we have noprior
information, |ip is undefined and ~°° . Thus xi/jpl~0 and we get:
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Pmap=(x>yX) IXtW Y

which of course is simply the MLE or AD estimator. Under further, stricter
assumptions that \(/Y=<r2.1, we are reduced to Least Squares once more. So MAP is

the most general estimator of which all the others are but special cases.

In mass calibration, there may not be complete prior information available. In
such circumstances the unknown elements of |[p can be given arbitrarily assigned
values while their corresponding variances in \|/p are given infinite values. Thus if

there are no covariances at all in \j/p, its inverse is easily obtained by inverting its
diagonal terms, resulting in zeros for the unkndwn terms in \|/p'. If there are

covariances, matters are not so trivial, however by letting s2{bk) ~ 1010 or some similar

large number so that it will have negligible influence on the results. In Chapters 9 &
10 we will investigate the effect on the estimated parameter values of varying relative

accuracies between \|/p and \|/Y.

8.4 Covariance Matrix of the MAP Estimator

In order to obtain the covariance matrix of the MAP estimate, we will use the

equivalent form given in Eq. (8.3.14), restated here as:
P=PXt\)/yY + Pv)/pVp (8.4.1a)
where P=(xT\|ly X+7pl) 1 (8.4.1b)

Now from (8.3.4b) and (8.3.4c) we know that cov(Y) = \\fY & cov(flp) = \|/p. So from
(8.4.1a):

cov(p) - (PXT¥ yl)¥ v(PXT¥ -x)T+ (PVpL)Vp (Pvt/pl) T (8.4.2)
PXt\]ly XP + PVpl? (8.4.3)
Note that P is a symmetric matrix. (8.4.3) can be expressed as:

p(x t\[/lyXP + y~p)

= p{xTVyX + < } p) (8.4.4a)
But from (8.4.1a), this is just:
(8.4.4b)
P(P X)=P
so Vp={xTvyX + vpl}"l (8.4.5)

From this we see that \|/- is made up of components due to the prior information and

also components due to the new information obtained in the current experiment. The

new estimate will have a lower covariance than the prior one as a result of the
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minimum variance characteristics of the estimator. It is useful to note that this method
lends itself naturally to a sequential estimation technique: for example, we can re-
write (8.3.15) as:

BtHl =Rt +(x Ty ?2x +vr 1)~Ix Tv;1(Y -x B it)| (846)

and we would also have: Xrt+1={~J + XTw X } 1 (8.4.7)

so that the k,hestimate is updated to the ( k+1 )thestimate by means of the new data in
Y & \[fY.

This estimator, using either (8.3.15) & (8.4.5) or (8.4.6) & (8.4.7) will form the
basis of most of the later investigations in mass calibration reported elsewhere in this
work. We will look in particular at properties of the estimator and how it deals with
different types of prior/current information; and how it responds to varying relative

accuracies between the two.

8.5 Relationship with Other Models

In Section 8.3 we noted that MAP had some similarities with the other methods
we have discussed previously, in particular the AD method which also includes prior
information. We wish now to consider the circumstances under which both of these
methods would give the same solution, and indeed when they would differ. From Eq.

(5.5.7) we know that the AD solution can be expressed as:

PAD= (XT¥ MX +A¥ > t['(xt¥-1Y +AYrr) (8.5.1)

while the MAP solution can be given by Eq. (8.3.14) as:

Pmap = (x TXi/yX + VpL)“I(x TV Y + VpVp) (8-5.2)
where the various symbols have their usual meanings in this thesis. Considering the

form of the two equations, we can see that they would produce the same parameter

estimate if:

i =AVI’AT (8.5.3)
and\fp (Ip =A\|/r R

According to this A acts like a transformation matrix which transforms fg , the

inverse covariance matrix of constraints in AD, into the inverse prior covariance
matrix of MAP, v~ 1. The crucial point we must remember is that A contains physical

information about the actual prior information that is known, in the form of the m
constraints, where usually m< p if p is the number of parameters. So because of this,
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the “transformation” of (8.5.3) is increasing the dimensions of i|[/R (m x m) up to those

°f Vp (P x P)- However, this cannot be adding extra information as we do not know

anything else a-priori, so there will have to be extras rows / columns of zeros in \[/pX

as we have already suggested in Section 8.3. To do this, A must only have one non-
zero element on each row, and this element must be unity. In mathematics, such a
matrix is sometimes referred to as a Hermite Canonical matrix. If we have prior
information on anything from one up to all of the parameters, A will indeed satisfy
this requirement and we can expect both AD and MAP to produce the same results.
Indeed, if we do have complete prior information then A=1 and the conditions of
(8.5.3) are immediately satisfied. An example will help to develop the situation

further. Suppose we have four parameters such that

| -1 0 0 >’
2 I 0 -1 0
b2 Il 0 0 -1 .
X = & Y= /Y —s 16 (8.5.4)
o o I -1 0
o I 0 -1
K o 0 1 -1

The prior information comprises the values of bj & haonly, so for AD we will have:

AtP=R
T o o o h mx ) s2{m\) 0 (8.5.5)
= while \|[/R=
0 ° ° I p3 mé

where we have assumed no covariances in the prior information. If we were using
MAP we would consider the prior variances of b2 and bj to be infinite which means
we can assume any prior value for them (we can use zero for convenience) and then

we can write down the prior information as:

—
m. e'@ 0 0 0
0 0 0 0 0
Pp = 0 & Mp = 0 . 0 0 (8.5.6)
_mA 0 0 0 s 2(m4

Using (8.5.5) & (8.5.6) it is now easy to show that (8.5.3) is satisfied in this case and

thus MAP and AD will indeed produce the same estimates.

Now we will make the situation a little more complicated by supposing there is a

covariance, c, in the prior information such that for AD we would have:
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atp=r

\Y
© o S m, j2(m)) c (8.5.7)
— while \|[/R=
0 00 1 m m4 c s> 4)
A .

Along with (8.5.4) we can now easily obtain a solution by AD. However for MAP, we
cannot so easily write down \\rpl since the off-diagonal element means the inverse

matrix is no longer simply the inverse of the diagonal elements. What we can do is

assign a numerically large prior variance to parameters b2 and b3 such as below:

/(m ) 0 0 c
0 1010 0 0
Vp = (8.5.88.)
0 0 1010 0
c 0 0 s2(m4y
The inverse then evaluates to:
2/ \
—cC
0 0
s2(m,) j2(m4)-c 2 s2(m,) i2(m4)-c 2
0 10-10 0 0
V: o (8.5.8h)
0 o ¥ . 0
s2(mx)
0 o
s2(m{) j2(m4) - c2 s2(ml)i2(rad)-c 2

The central two terms will obviously be practically negligible and can be
approximated as zero. This does assume that we can choose a value (like 10X) which
is sufficiently large compared to the other information to be effectively infinite while

still being computationally possible. In dealing with such extreme values there could
be problems with numerical accuracy in results. Now evaluating \|/R from (8.5.7)

yields:
j2(md) -c
s2N sZ(rad) -c i2(m,) s2(m4) —c2
v o ) i(: ) (m,) s2(m4) —c (8.5.9)

“r2(m i)

s2(m,) s2(m4)- c2 s2(m,) s2(m4)- c2

With A given in (8.5.7) and approximating the two tiny terms in (8.5.8b) as zero, we
can once again verify that (8.5.3) is satisfied and so both methods will yield the same
results.

Finally let us suppose that the prior information available concerns the sum S,
and difference, D, of the two parameters b: Sc b4. In that case, the prior information

for AD will be as follows:
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atp=r

b\
10 0 1" pp 'S
= while \|/R=
10 0 -1 D .C r.

A.
where for generality we have assumed there is a covariance between the two pieces of
prior information. This information being independent from that represented by the
experimental data as in (8.5.4), we can easily proceed with the AD method and obtain
a solution. However, A as given in (8.5.10) above dloes not meet the requirements for
a Hermite Canonical matrix and so we cannot expect MAP and AD to give the same
results in this case. In fact, we cannot expect MAP to give a solution at all since we in
fact have no information to construct the prior vector (ip or covariance matrix Yp -
We could ‘invent’ the information with the aid of the AD constraint data and
equations (8.5.3), thus ensuring the two methods once again agreed, but the data we
would generate would not be physically meaningful in terms of the prior information

and so this would not be sensible.

In conclusion then, we have shown that both AD and MAP will give the same
solutions in cases where the prior information comprises the values of some or all of
the standards involved in the comparison exercise, and in such cases the MAP
estimator is probably preferable since its Bayesian basis makes clear the type of
analysis that is being carried out. However if we are not able to form a prior vector
with at least one known parameter value, or if we need to incorporate other types of
prior information, such as that expressed in (8.5.10) above— which does occur in
some comparison exercises, particularly those involving primary standards— we must
then use the AD approach to adequately incorporate the data. In what follows
(Chapters 9 & 10) we will use the MAP method mostly since the experimental case
studies we will report are suitable for this, and the separation of prior and current data

is more clearly highlighted than with the AD method.
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9. Parameter Estimation Techniques in Action

9.1 Introduction

This chapter introduces our first case study using actual experimental data and
shows an implementation of the Unified Approach to Parameter Estimation and
Uncertainty Analysis in mass calibration experiments. We show how the information

is presented and how the various vectors/matrices are constructed, in particular noting
the various contributions to \jry , the covariance matrix of the experimental data.

We consider the Restrained Least Squares solution and highlight its crucial short-
comings, before proceeding to an in-depth analysis' of the Bayesian Estimator. We
probe the role of the prior information and show that relative accuracy and Degrees of
Belief are important in establishing the posterior estimates; we see how the estimator
would cope in the event of inaccurate prior information being used, pointing out its

robustness and capabilities for correcting errors.

We also consider in some detail the role of the covariance matrix of the experimental
data, and, of particular interest, highlight a theoretical limit on the improvements in
accuracy that can be achieved with this estimator. We employ a novel graphical
technique to show the range of values and the upper and lower bounds on the posterior
parameter values and variances/covariances for a range of values of the experimental

covariance matrix.
9.2 Example |

Initially we look at a comparison experiment involving three standards of
nominal value 50g. The details of how the data is obtained and processed are
explained in Chapter 11. For our purposes here we need simply state the data that is

obtained and proceed to use it. Recall that the weighing equation is:
Y, eeAw,.+pa .Av; (9.2.1)

where we leave out the corrections for centre of gravity differences and volume
expansion coefficients in order to simplify things and also because their effects would
not be significant with 509 standards. Along with the Weighing Equation we also
have the System Model:

9-2-2)

7=1

for the ithcomparison. Since the x§ terms are either 1, 0 or -7, (9.2.2) indicates which
of the j parameters (bj) are involved in each comparison. In our case there are three

parameters and our parameter vector and design matrix are as follows:
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—i.e. all possible combinations are carried out, where half of them are simply
reversed repeats of the other half; the purpose of this is to provide enhanced over-
determinacy in order to get better information bn the statistical nature of the
experimental process. Table 9.2.1 gives the Prior Information which is available on
the three parameters—to be viewed either stochastically or deterministically according
to the chosen model. (Data from Calibration Certificates in PTB (1994), NPL (1990)
& South Yorks.(1995))

Table 9.2.1 - Prior Information

Parameter Value (ng) Std. Dev.(lo.g) Volume (cm3) Vol. Std. Dev./cm3 OIML Class

bi -63.0 5.0 6.2202 0.0011 Ei
b2 +34.0 15.0 6.3621 0.0009 0?2
b3 +186.0 15.0 6.3468 0.0009 e?2

By way of explanation, the "Value' quoted in Table 9.2.1 above for each parameter is a
deviation from nominal value, expressed as physical mass—in this case a deviation
from 50g. Because mass standards are classified according to their maximum
permissible error (OIML, 1994), it is conventional to tabulate them in terms of their
deviation, rather than absolute value. From the information in Table 9.2.1, we can

form the vectors and matrices in Fig. 9.2.2 below.

-63 25 0 0
MP= 34 b ¥ p= 0 225 0
186 0 0 225
‘6.2202° '1.21 0 0"
V = 6.3621 cm3; Yv= 0 0.81 0
6.3468 0 0 081

Fig. 9.2.2 : Prior Information

The variance of each piece of information has been taken as the square of its standard
deviation quoted in Table 9.2.1. In particular note for \j/p and W that we are assuming

no correlations exist between any of the volumes or between any of the prior values of
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the standards. \|/p in particular might not always be diagonal: should the previous
calibration have been a so-called "within-group™ calibration involving all three of the
present parameters, they would almost certainly have been correlated. However in the
present circumstances we can only conclude that there are no correlations, based on
the available information from calibration certificates. Here we are using the
reasoning of Chapter 1 inasmuch as we must only use the information supplied, not

basing decisions on hypothetical data.

The Experimental Information which is available is given in Table 9.2.2. Here
the data quoted for the 'Weight-in-Air' difference (AW) are mean values of six
experimental measurements in each case. From this the standard deviations of the data
are obtained which are taken as experimental measures of the dispersion

characteristics of the comparator used in the comparison.

However, because the standard deviations are smaller than the resolution of the

instrument [ljxg in this case], an extra dispersion term of +Q-Resolutionj , taken to be

uniformly distributed, must be included with the standard deviation quoted for AW.
(This type of reasoning is consistent with the conclusions of maximum entropy
analysis as discussed in Chapter 1. See also Lira & Woger (1997), Yoneda (1996) ).
The air density data given in each case is an average value for six measurements over
the period of interest for each comparison. [See Chapter 11 for details]. From Eg.

(3.2.5a) the variance of the air density is evaluated as 1-45x10_7[mg.cm_3j for the

instruments used in the experimental work. The volume difference is evaluated from

AV =XV, with X & V as given above. The Am term is calculated using Eq. (9.2.1).

Table 9.2.2- Experimental Information

AW (jig) Std. Dev (ug) p., (mg/cm3) AV (cm3) Am (|xg)
66.0 0.154 1.199856 -0.1419 -104.2
-109.0 0.379 1.202400 -0.1266 -261.2
-173.0 0.327 1.202216 0.0153 -154.6
-65.6 0.327 1.199876 0.1419 104.7
109.6 0.170 1.190610 0.1266 260.3
172.4 0.239 1.206947 -0.0153 153.9
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'-104.2" '0.107 0 0 0 0 0
-261.2 0227 0 0 0 0
-154.6 0.190 0 0 0

Y 1047 " Y aw = 0.190 0 0 P-g

260.3 symm 0112 0
153.9 0.140_

1.200

1.202

1.202 . .

Pa = 1.200 mg.cm3\ Y =i2(pjle
1.191
1.207

Fig. 9.2.3: Current (Experimental) Information.

Note that \|/ANVin Fig.(9.2.3) above is evaluated from the standard deviation data in
Table 9.2.2 and also the variance of a rectangular distribution of width £0-5|ig which

is the term due to rounding errors in the comparator display, as explained earlier.

We need to evaluate \\fY the covariance matrix of our input data for the

estimation techniques. To do this recall Eq. (4.5.17) from Chapter 4:

¥v = Vaw +diag{X\]y p~M{X V } + pX\[/vXTpT (9.2.3)

With the data in Figs.(9.2.1) to (9.2.3) we can now calculate Eq. (9.2.3) easily. We
need to be careful with units since those of the second and third terms on the r.h.s. of
Eqg. (9.2.3) will evaluate in units of mg2 since volumes are measured in cm3 and air
densities in mg.cm'3. As we are using /ig, and /ig2 as units in this analysis there must
be a multiplicative factor of 1mg2=1x106|ig2 applied to terms 2 and 3 on the r.h.s. of
Eq. (9.2.3). Fig. (9.2.4) below gives the evaluation of term 2 (t2) & term 3 (t3) of Eq.
(9.2.3) and also the complete \j/Y. Note how t3 is the one which introduces

covariances, and indeed also the largest variance components.

The great convenience of this unified approach is that Y & \)/Y are now a
complete description of the corrected experimental data: there are no further
calculations necessary at this level. The data can now be processed by an estimation
technique to give complete covariances, assuming the method chosen is able to do
this!
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0 0 0 0 0
2.4 0 0 0 0
. 0 -
ty_ 0.035 0 0 Xiu 3 2
3 0 0
symm 2.4 0
0.035
1.74 -1.17 -2.90 -1.73 1.17
2.92 1.17 -1.74 -2.89 -1.17
2.34 1.17 -1.16 -2.35
8= 2.91 1.73 -1.17
symm 2.86 1.16
7 2.36
1.74 -1.17 -2.90 -1.73 117
3.15 117 -1.74 -2.89 117
2.53 117 -1.16 2.35 .
Vi 3.10 173 117 Mg
symm 2.98 1.16
2.50
Fig.9.2.4: Last 2 terms of Eq. (9.2.3) & Complete Covariance Matrix
9.3 RLS

Initially we will see how Restrained Least Squares handles the data. Using bj as
the constraint, we have AT=[l 0 o] and then with Eqgs. (5.3.23) & (5.3.31) we get:

’-63.00 0o 0 0
4191 Rg: vpy= 0 295 175
196.98 0 175 294

Fig. 9.3.1: Estimated Parameter Vector & Covariance

Matrix using RLS & bj as constraint.

Two immediate observations from Fig.(9.3.1) are that (i) parameter b1 remains
unchanged by the estimation process and (ii) its variance/covariance terms are zero.
This is as expected since bl is treated by the RLS estimator as a deterministic
"constant. Of course we know that this is not really so, thus in this approach we treat
the variance terms of the constraint as *'systematic uncertainties, i.e. those which
cannot be affected by the experiment. From Section 5.4 we know that the "constraint

contribution™ to the overall covariance matrix is \j/,, =c2Vrc2 where \|[/R is the

=%

“systematic” covariance matrix of  the constraint information and

c2=allA(ATa0lA) '. Interestingly, this depends explicitly on the form of A & X—i.e.
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the form of the experimental and constraint design matrices. It is these that govern the
constraint contribution to y -. In this example R and \|/R are just scalars since the

constraint information is just one parameter. With a0 as given in Eqg. 5.3.16 we can
easily evaluate the components as follows:
T 1
c2= 1 ;& VpR= <
I

[ e
= = -k

1
1

Fig. 9.3.2a: "Constraint Contribution" to

Final Covariance Matrix

Noting from Table 9.2.1 that a B = 25]|lg2, we find, with Fig. (9.3.1), that the final

covariance matrix is:

25.0 250 25.0
25.0 27.95 26.75 fig"
25.0 26.75 27.94

Fig. 9.3.2b: Complete Covariance
Matrix with RLS Method

With the parameter estimates in Fig. (9.3.1), the estimated experimental observations

and residuals are evaluated as in Fig. (9.3.3).

-104.913 " 0.813185"
-259.986 -1.2143
-155.073 IO~ 0.472518
loa013 P9 & (Y-YJ=res= o 285
259.986 0.314297
155.073 -1.17252

Fig. 9.3.3: Estimated Observations & Residuals

The residuals provide a useful measure of the agreement between the estimated data
and the original data. In this case the agreement is acceptable since the residuals are
mostly of a similar order of magnitude to the standard deviations of the data in Table
9.2.2. If there were systematic errors in the data, such agreement would not be
observed.

Before making further comments we will indicate the solutions obtained if b2 or

b3 were used as constraints.
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-70.91" '2.95 0 1.2
34.00

189.07 1.2 0 2.39

Fig. 9.3.4a : RLS Solution using b2 as constraint

1 f ‘227.952 225.0 226.201"
1 1 1 1 & hence ¥p = 225.0 225.0 225.0

1 1 1 1 226.201 225.0 227.391_

Fig. 9.3.4b: Corresponding Constraint Contribution 8¢ Complete Covariance Matrix

- 73.9857" ‘2.94 1.19 0
30.9275 . 1.19 2.39 0

186.0 0 0 0

Fig. 9.3.5a: RLS Solution using b3 as constraint

1 1 1 1 227 .941 226 .19 225.0

1 1 1 1 & hence \i/ = 226.19 227.391 225.0
Y P
1 1 1 1 225.0 225.0 225.0

Fig. 9.3.5b: Corresponding Constraint Contribution & Complete Covariance Matrix

It can be quickly verified that Y & res are the same as that given in Fig. (9.3.3) for the
case where b1 is used as constraint. In other words, when just one constraint is used,
the same apparent agreement is reached with the data irrespective of the value [or
known accuracy] of that constraint! Indeed this highlights a serious flaw with RLS,
inasmuch as it cannot discriminate against bad constraint data. For example, if a value
of by=-200jig were used, which would be totally wrong of course, values of p
would be produced which would agree equally as well with the experimental data as
does the present prior information but which would be entirely wrong as absolute
values for the parameters. Now such an error would quickly become evident in other
comparison experiments with other standards, but the point remains that this

experiment with this fitting method will fail completely to find a problem.

We will see shortly how the other methods are much more robust in dealing with this
situation. Although it should be borne in mind that with only one piece of prior
information no estimation technique can totally compensate for errors in this single
prior value as there are not enough degrees of freedom to make adjustments. With that
in mind let us see what happens if we increase the prior information to two known

values. We will see that this is not helpful where RLS is concerned, with this example,
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since there are only three parameters in total. Let the prior information be the first two

parameters so that we have:

' o

rbyi  [-63.01 °* o
it . _ : _
340 119 then A= 0 1_ ; also WR 275
Lo oj

Fig. 9.3.6: Constraint Information for 2 parameters

Then we find:
-63.0 ’ 'o 0 O
340 T g =0 0 0
192.29 0 0 19

Fig. 9.3.7a: Estimated Parameter Vector &
Covariance Matrix Using 2 Constraints

Here the two constraint values remain unchanged and contribute no variance or
covariance terms to the resulting covariance matrix. We can complete the covariance

information by evaluating the constraint contribution as before:

"l 0 "25 0 10.17" "25 0 10.17"
c2= 0 1 & ¥ Ph- 0 225 1334 |lg2,so0o thatV- = 0 225 1334
0.4 0.6 © 1017 1334 833 10.17 1334 852

Fig. 9.3.7b: Constraint Contribution & Complete Covariance Matrix.

Again we can see that the prior information has remained unchanged in the process.
The following values obtain for Y & res:

©-97.0 7.1
-255.292 -5.9
-158.292 A 369
97.0 [ig & Y- Y=res= 27
255.292 5.0
158.292 -4.39

Fig. 9.3.8: Estimated Observations & Residuals

So we can see from the residual vector that we now have a worse fit with respect to
the original observations. Indeed, should one of the two fixed parameters be in fact in
error, the posterior estimates deteriorate further. Suppose we have b, = -63/J.g as
before but now b2 = 20/lIg rather than 34jig. This is an error, but we are assuming the
experimenter is not aware of it. We then obtain the same posterior covariance estimate
since we are not changing the prior information in that regard, but the fitted values and

residuals will be as in Fig. (9.3.9):
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' -83.0 -211

-246.991 -14.2

-63.0 -163.991 .. 9.39

o= 200 Mg y = 83.0 Jig & res - 217
183.991 246.991 13.3
163.991 -10.09

Fig. 9.3.9: Estimated Values, Observations & Residuals

We can see the residuals have deteriorated further. This is because, by restraining bl &
b2 to fixed priors, all the adjustment must now be done on b3, and any errors in the
constraint information will be reflected in a bad fit to the data. Without further work it
is not possible to know this since the experimenter may well conclude that the
problem lies with the experimental data and not with the prior information. So in
order to get good agreement with the experimental data it is best, with this estimation
technique, to fix as little as possible of the data. However, because it is not possible to
include variance/covariance information about this prior information, the technique is

always at a disadvantage.

9.4 Bayesian Estimation

Now let us consider the same set of data treated by either MAP or AD. Since
both will produce the same results for our present data as explained in Sec. 8.5, we
will focus on MAP since its form is a little easier to analyse. The distinguishing
feature of this method is that we can include all our known information about the
parameters in the estimation, as was explained in Chapter 8. This of course includes
variance/covariance information too. Using the values for ftp, vi/p, X, Y & \|/'Y as given
in Figs (9.2.1) to (9.2.4) above we can now evaluate the posterior estimates for the
parameters using Eqgs. (8.3.15) & (8.4.5):

"-64.69" "20.53 2011 20.11"
40.07 & Vg = 2011 22.60 21.40
195.13 e 2011 21.40 22.60

Fig. 9.4.1: Estimated Parameter Vector & Covariance Matrix using MAP

Where we can see that all three of the parameters have been updated, the covariance
matrix is complete, and it is smaller than any of the combined covariance matrices
achieved with the RLS estimators! (Compare Figs. (9.3.2b), (9.3.4b), (9.3.5b) for
example.) Table 9.4.1 below gives a comparison between prior and posterior values

for the parameters:



Table 9.4.1 - Prior / Posterior Values of the Parameters

Parameter Prior Value Prior Std. Dev. Posterior Value PosteriorStd Dev.
\ W
bl -63.0 5.0 -64.7 4.5
b2 +34.0 25.0 +40.0 4.75
b3 +186.0 25.0 +195.1 4.75

From this table, we can see that the standard deviations of b2 & b3 have been reduced
by the largest amount in the posterior estimates. Clearly the influence of bn having the

smallest standard deviation, is greatest. The fitted observations and residuals are:

-104.762' 0.662*
-259.819 -1.380
-155.057 fig & res= 0.456

104.762 -0.062
259.819 0.480
155.057 -1.156

Fig. 9.4.2 : Estimated Observations & Residuals using MAP

So the Residuals are still acceptably small and indeed comparable to those obtained by
RLS (See Fig.(9.3.3) above). But the smaller covariance matrix, and also the fact that

it is complete by one calculation, make this method more desirable.

Now if there is only one piece of prior information, there is only one possible
solution and all estimators will produce it. Thus if this information is in error, so also
will be the result, albeit a good fit with the experimental data may well be possible. If

we choose bj as the prior information, we then have:

X

.63.0" = © o
Mp: 0 Jlg & Vp =0 0 0 ng-
0 0 0 0

Fig. 9.4.3: Prior Information, using 1 parameter
According to this \|/p is not defined since vi/plis singular, but this is of no consequence

since we do not need it. This is simply how we deal with a lack of information on
parameters b2 & b3. The value of zero assigned to them in [ip is also entirely arbitrary,
since the de facto infinite variance assigned to them ensures that these arbitrary,
unknown prior values will have no influence on the result. We obtain the same

estimated values as does RLS, but with complete covariance matrix:
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. -63.00 25 25 25
P= 4191 fig; & \i.. = 25 2795 2675 MY’

P

196.98 25 26.75 27.94_

Fig. 9.4.4a: MAP Solution using one prior value (bt)

-70.91 227.95 225 226.20
P= 34.00 Mg & Va = 225 225 225 Ing2
189.07 226.20 225 227.39

Fig. 9.4.4b: MAP Solution using b2 as prior information

’-73.99' ’227.94 226.19 225°
= 3093 ag; v $= 226.19 227.39 225 g
186.00j 225 225 225

Fig. 9.4.4c: MAP Solution using b3 as prior information

Comments: It is clear that 'Degrees of Belief about the prior information play an
important part in establishing the estimates: prior information of lower accuracy is
adjusted much more than prior information of higher accuracy. Thus in Fig. (9.4.1) the
posterior variance of b2 & b3 is reduced from 22572— 23Jg2 and their values are
also adjusted more significantly than bl, whose variance too is not adjusted so much.
Fig. (9.4.4a) is an extreme case where there is no prior information on b2 & b3 and
thus they are assigned infinite variance. In this case b1 is not adjusted while b2 & b3
are adjusted even more than in Fig. (9.4.1) and their variance is reduced from
~ w fig2 28ixg2. In Figs. (9.4.4b) & (9.4.4c), b1 is treated as having infinite
variance and is thus adjusted much more than in Fig. (9.4.1). Note that the variance

cannot be reduced below that of the single piece of prior information.

It would appear from Table 9.4.1 that b3s prior value is the most in error, or in

need of updating, based on the current experimental information. If, for example, we
used ¢3 = 195flg as a single piece of prior information instead of 186(xg as in Fig.

(9.4.4c), we would find bl adjusted much less. In fact

-64.98
p= 3292 g
195.0

would result. But this can only be seen by comparison with Fig. (9.4.1) where all three

prior values were used. Consider the cases where only two prior values are used:
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-63.78' '22.59 22.24 22.35'
41.00 Mg & - 2223 2486 23.79

P

196.10 22.35 23.79 2511

Fig. 9.4.5a: MAP Result using bi & b2 as Prior data

-64.08" '22.53 2235 22.24
40.75 Mg & Vg = 2235 2512 23.79
195.77 22.24 23.79 24.85

Fig. 9.4.5b: MAP Result using bj & b3 as Prior data

"-72.45" ’114.85 11250 112.50°
3247 rg; & Vg = 112.50 11310 111.90
187.53 112,50 11190 113.10

Fig. 9.4.5¢c: MAP Result using b2 & b3 as Prior data

These results show that whenever b1 (prior variance 25fig2) is included in the prior
information (Figs 9.4.5a & b above), the posterior estimate for b, is only changed a
little while b2 & b 3 ( prior variance 225fig2) are adjusted more significantly. But when
b1is not included in the prior information, it is adjusted much more itself and b2 & b3
to a lesser extent.

This shows us the influence of prior information depends upon its relative
accuracy: more accurate information will constrain the corresponding posterior
estimate much more—indeed the case of a single piece of prior information is an
extreme example of this. This leads us to consider the case of incorrect prior
information— could this cause in-error posterior estimates to be produced, and if so,

would we have any indication that this has occurred?

1) Consider the case of an error on b3, such that:

-63.0 25 0 0
B= 30 (g & = 0 25 0
160.0j 0 0 25

Fig. 9.4.6: Prior Information with an error on b3

so that we are considering all the prior information to be of equal accuracy. Using the

same experimental information as before we now obtain these posterior estimates:

'-77.08" '931 7.84 7.84°
2716 Mg & Yp = 784 915 800
180.91 7.84 800 915

Fig. 9.4.7a: Resulting Estimated Values
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So b3 has been adjusted significantly but the other two have also been altered by a
relatively large amount compared with their prior standard deviations. We do have a
reduced covariance matrix, but can we know that the data is valid? The Difference

Vector (difference between Prior and Estimated Parameter values, - ) and

Residual vector are shown below:

" 0.155"
, -3.196
14.09 - _ .0.851
(”p'P): 6.83 jig; while res = 0445 "0
-20.92 : 2296
0.151

Fig. 9.4.7b: Difference Vector and Experimental Residuals

2) Now if we maintain the prior value of b3 (160/ig) but allow it a much larger prior

variance as shown below, we then find the results shown in Figs. (9.4.7¢) & (9.4.7d).

25 0 0

0 25 0 Mg

0 0 900
-67.18' ’13.03 1163 1217
3728 ng; & p= 11.63 13.02 12.43
192.47 12.17 1243 14.20

Fig. 9.4.7c: Alternative Estimate with larger b3 prior variance

0.363

} -1.55

\ 4.18 R 0587
K-p)/; -3.28 |lg; while res: 0.937
-32.47 0.650

-1.287

Fig. 9.4.7d: Difference Vector & Resulting Residuals

In this case b3 is adjusted much more and the other parameters much less— reflecting
the (incorrect) prior value of b3 being given a “smaller” degree of belief. This results
in slightly better residuals—i.e. estimated values which are in better agreement with

the experimental data. Compare the res vectors in Figs. (9.4.7b) & (9.4.7d).

However, it is still the case that the covariance matrix of the experimental
information is much smaller than the prior information—i.e. \|/Y « \j/p. (Compare \|/Y

in Fig. (9.2.4) with \[/[p in Fig. (9.4.6) ). Let us consider the case where both are of a



similar order of magnitude and we retain the “error” on the prior value of ¢». Fig

(9.4.8) gives the prior information while Figs. (9.4.9a) & (9.4.9b) give the resulting
estimated values.

-63.0 4 0 0
Mp= 340 Mg & Yp = 0 4 0
160.0 0 O

Fig. 9.4.8: Prior Information with smaller covariance (\/p ~ Y)

-73.78 2.08 0.96 0.96
P= 2821 Mg & ¥p = 096 198 1.06
176.58 096 106 198

Fig. 9.4.9a: Estimated Values & Covariance Matrix with incorrect prior b3 & \)/p~ \|/Y

-7.2

-38.2
10.79

- whil -28.6

U-P): 5.79 (Xg; whileres - ;7 Mg

-16.58

37.3

27.9

Fig. 9.4.9b: Difference & Residual vectors

Now the Difference Vector indicates less adjustment to the prior values while the
residuals are large implying very poor agreement with the experimental data. This

indicates that the incorrect value for b3 is now having a more significant effect upon
the result. However, if we let s2(b3) increase as shown below

4 0 0
Yp = 0 4 0 My
0 0 900

we get the data in Figs. (9.4.9¢) & (9.4.9d) which indicate a big adjustment for b3
while the others are adjusted much less Also the residuals are very much smaller

indicating that improved agreement with the experimental information now exists.

".65.959" r2.53 145 1.89"
36814 Mg & vg= 145 253 209
192.688 189 2.09 3.90

Fig. 9.4.9c: Estimation Data with s2{b3) large
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-1.327

-2.553

2.959 i . 1.274

(mp-p) -2.814 [ig; while res = 1907
~32.688 1.653

-1.974

Fig. 9.4.9d: Corresponding Difference & Residual Vectors

So we can conclude that the relative accuracy of the prior and current
information is important as well as the relativeJaccuracy among the respective
elements of the prior information. Incorrect prior information will have minimal
influence on the posterior estimates if all the prior information is of lower accuracy
than the current information. However, even then, it will exert some influence if it is
of equal or greater accuracy than the other elements of [ip. On the other hand, if the
prior information is of similar accuracy to the experimental information, any errors in
the prior information can have devastating effects on the posterior data. Of course all

the same remarks apply to the reciprocal situation of errors in the experimental data.

Thus the MAP Estimator is remarkably robust inasmuch as it can handle both
"good"™ (consistent) data and can deal very well with inconsistent data too. In cases
where it cannot correct for problems, it will nevertheless highlight them via
significantly adjusted posterior estimates or large experimental residuals. It may not
be possible, directly from such data, to decide whether prior or current data is at fault-
this may require supplementary investigations-but nevertheless the existence of a
problem will be clearly highlighted. It should be noted that none of this analysis is
possible with the rigid RLS method!
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9.5 Significance of the Covariance Matrix, \|/'Y

W e have seen that \j/Y contains two terms due to the buoyancy correction, pXV .

(See EqQ. (9.2.3) for example). Now it has been commonplace in mass calibration to
leave these covariance terms out of the estimation process and include them
afterwards via some other calculation (e.g. Schwartz, (1991)), or else to ignore them
altogether, (Bich, (1989a), (1989b), (1993a)), considering them to be of no
significance to the final uncertainty quoted. Indeed, \|/Y=a2.l is often used as a
result. Sometimes, uncertainties due to the volumes of the standards are ignored too
(e.g. Lewis et al (1990)). ,

However in our Unified Approach the dispersion characteristics of all influence
guantities must be included and since \|/Y appears in the estimation equation, this may

have some effect upon the results.

Let the dispersion matrix be given by \yY = vj/AW where y AW is as given in Fig.
(9.2.3), the two terms due to the buoyancy correction being ignored, (t2&t3in Fig.

(9.2.4)). Carrying out the Bayesian estimation now results in:

m-64.71" ‘20.46 20.45 20.45"
40.24 Mg & = 2045 20.49 20.46
195.18 i 20.45 20.46 20.49

Fig. 9.5.1: Estimated Values & Covariance Matrix when using \|/Y = \J/AW

These values are compared directly with Fig. (9.4.1) in Table 9.5.1 below where we
can see that the difference between the estimated values in each case is small while
there is some reduction in the variance and covariance terms. This is expected since
\rY is now much smaller. However because \|/p is so much bigger than \[fY, the effects
of adjusting \J/Y are not manifest very clearly. Later we will find that if \|/p and \|/'Y are
of acomparable order of magnitude a reduction in \|/Y has a more marked effect. What
we wish to do first is consider the range of variations in the posterior estimates that

are possible with the given initial conditions (i.e. prior information).
Table 9.5.1 - Comparison of Estimated Values & Variances fory YDiagonal / Non-Diagonal

Variances (Hg)2 Values (xg)

Parameter  Fig. (9.4.1) Fig. (9.5.1) % Difference  Fig. (9.4.1) Fig. (9.5.1) Difference

bi 20.53 20.46 -0.3% -64.69 -64.71 -0.02
b2 22.60 20.49 -9.3% 40.073 40.24 0.17
b. 22.60 20.49 -9.3% 195.13 195.18 0.05

Consider the case where we transform \|/Y according to \|/Y —»vVv.l where vis a

scalar multiplier. Using all the same data as before for \|/p and X we obtain for \j/-:
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25(450 + v) 11250 11250

550+ v 550+ v 550 + v
225(67500+ 1000v + v2) 101250(150 + v)
r
M (550 + v)(1350 +v) (550 + v) (1350 + v)

225(67500+I000v + v2)

(550 + v)(1350 + v)

Fig. 9.5.2a: Theoretical Form of \J/- for \yy = V.1
>

This is interesting as it shows that-for this particular \|/o data-the two limiting cases

are as given below in Figs (9.5.2b) & (9.5.2¢):

'20.45 20.45 20.45'
2045 20.45 2045 jy
20.45 20.45 20.45

Fig. 9.5.2b: ij/- for v —>0 (Current data infinitely accurate )

25 0 0
0 225 0 jv
0 0 225
Fig. 9.5.2c: for v —>00 (Current data absolutely useless and inaccurate, no information!)

The latter figure shows that we are left with just the prior information as before. This

is useful as it provides a benchmark with which to compare Figs. (9.5.1) & (9.4.1). In
fact we can see that \[i- in Fig. (9.5.1), obtained for \j/Y= /My, is very close to the

theoretical limit for improvements in accuracy obtainable by the estimation method.

Clearly when the variance/covariance information due to the buoyancy correction is
included, a larger \|[/Y results and so \j/- will always be bigger than Fig (9.5.2b)

In considering the theoretical basis for what we have just seen, we need to recall Eq.

(8.4.3) for the posterior covariance matrix:
¥p = (xtVyX +\1p1) *

From this we can see that the upper Ilimit for a very large WY occurs
when(x'xily Xj—0 and then the posterior covariance matrix \(/~ —\|/p as suggested

by Fig. (9.5.2c) above. The lower limit occurs for very accurate experimental
information where \\fY becomes very small, in which case (x T\|/yIx) -» « and we find
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that the posterior covariance matrix\|[/- —(xT\)/yX) 1. However, we cannot directly

compute this owing to the singularity in XTX , meaning that we must utilise some sort
of numerical method in order to approach this limit.This is what Fig. (9.5.2a)

represents and which will be developed further in the following pages

What we have just done clarifies some very important aspects of this Bayesian
estimation technique. We have pointed out that there is a lower limit on the posterior
variances for a given set of prior information (initial conditions); an issue to be
discussed further in what follows. We have additionally shown that the prior
information represents what we might call a “worst case” with regard to the posterior
covariance matrix. What this means is that we effectively have a system where we can
add new stochastic information (from the experiment) without adding noise or

‘uncertainty’; a point which again highlights the utility of this estimator.

Using the transformation \|[/'Y—v.l is of course a simplification, which makes

computation easier. However, this is not a critical over-simplification since we are
primarily interested in what happens at the limits of v—0 and v —» <> We could also
consider the transformation \j/Y —v.\jrYwhich would use the actual experimental
information. (The algebraic form for this is given in Fig. 9.5.3 below). If we were
interested in exploring the role of the buoyancy correction variance/covariance terms,

we could use \|/'Y \[/AN+v(t2+1t3) In Fig. (9.5.4) below, we have shown a simulation
of s2{bij for v in the range v=10"5 —» v = 1010—which for all practical purposes is
the range (0,°°). The graph shows the results using both vl and v\[/Y. The other

possibility we mentioned is in fact identical to the curve for \|/Y—v.\|/Y because
\|/AN is so much smaller than the terms due to the buoyancy correction.

25(47.9038+ V) 1192.04(189.07 + v) 1203.17(187.32 + V)
58.5488+ v (58.5488+ v)(188.195 + V) (58.5488 + v)(188.195 + v)
225(8.30508 + v)(120.612 + v) 15782.6(14.28 + V)
(58.5488 + v)(188.195 + V) (58.5488 + v)(188.195 + v)

225(8.33814 + v)(120.134 + v)

(58.5488+ v)(188.195 + v)
Fig. 9.5.3: Theoretical Form of \Ji- for \|/Y — V.\/Y

In Fig. (9.5.4) we can see that as v— °0 and the current data’s accuracy decreases, the
posterior variance reverts to that of the prior data, while as v—0 the current data

exerts an ever larger influence on the estimation process and we see a lower limit on
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the posterior variance for infinitely accurate experimental datal We also notice that
(as we would expect) the curve for \j/'Y —V\|fY is everywhere larger than the one for

\|ly —»vl except at the limits where they converge. Fig. (9.5.5) below illustrates the

same features for the posterior variances of parameters b2 and b3. We will only use the
transformation \WY —vl from this point, as it is primarily the limiting values we are

interested in.

log,,,v

Fig. 9.5.4: i 2[by) for \|/Y —vI & \|/Y —W)/Y for values of vin the range ~ (0, °°)

Fig. (9.5.6) shows a similar simulation for the posterior covariance between
parameters bj & b2and bj & b3. There is no covariance in the prior information and so
we see the graph approaches zero as v-—»°. On the other hand, as v—0 the
experimental information exerts a larger influence and the effect of the correlation

intrinsic to the mass comparison process becomes more pronounced in the posterior

estimate.

The distribution of covariance information is not always straight-forward as can be
seen in Fig. (9.5.7) where we show the simulation for the covariance of b2 & b3. We

need to recall that a covariance must always be considered in relation to two

1The curve we have shown is in fact a Sigmoidal-type function and can be easily modelled as a
A/\
Boltzmann equation of the form y = -—----- 3 1A2 where Ay &A2are the limits of the function.
| +ex X
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parameters and thus the total variance information2 will always reduce (with this
estimation technique) as the experiment becomes more accurate, albeit the correlation
between individual parameters may increase. Recall also that we did not design the

comparison matrix X specifically to minimise covariances in the posterior estimates.

10g,,Vv

Fig. 9.5.5: s2(b2\ & for \(/Y — v .1 for vin the range ~(0,00)

2For example, the total variance information for the sum of two parameters & b2 depends on both
variance and covariance according to var(éj +b2) = s'1{bx) + s2(b2) + s(bx b2)
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-6 -4 -2 (0] 2 4 6 8 10
IQgiov

Fig. 9.5.6: s(bl,b2"\&. sibj,b3) for \j/Y —»V. | with v in the range ~ (0,00)

IQg.uv

Fig. 9.5.7: s(b2,b3) for \j/Y — V.l with vin the range ~(0,00)
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While considering the estimator’s capabilities in regard to the covariance

matrix, it is also interesting to look at the possible range in estimated parameter values
which can occur when \j/v —v.l for v in the range (0,°°). When v-*0 and the

current data is exerting maximum influence, the largest adjustment to the prior values
takes place, based on the information obtained in the comparison experiment; while at
the other end of the scale asv-~« the posterior estimates are unchanged from the
prior information. Figs. (9.5.9) to (9.5.11) illustrate this information for parameters bt
to b3. As we have already discussed in Section 9.4, the adjustment that can be carried
out does depend significantly on the relative accuracy of the prior information. So

while Fig. (9.5.8) shows the general form of |3 for the given prior covariance matrix
\j/p, a different prior covariance matrix would result in different lower bounds on the

posterior estimates ( i.e. as v->0). The upper bound asv— would of course

remain unchanged as the prior information.

-63(565.158 + V)
(550+ v)
34(688.912 + v)(1277.93 + v)
(550 + v) (1350 + v)
186(572.786 + v)(1361.21 + V)

(550 + v) (1350 + v)

Fig. 9.5.8: General form of (J for the given data and \|/Y — V.|

>°gi,, V

Fig. 9.5.9: & values for v in the range (0, °°) when \]/Y ->v .1
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We might note, as shown earlier, (Eqs. 8.4.6 & 8.4.7), that the MAP estimator
can be written recursively, so that posterior estimates pt+tl & \|/PH are produced from

prior knowledge & \|/Pt and new current data Y & \|/Y. As we have seen,

theoretically and experimentally, the posterior estimates always have lower covariance
matrices than does the prior information. Since these posterior estimates will form the
new prior information for subsequent estimations, as shown in Fig. (8.0.2) for
example, we can expect the next posterior estimate to have still lower covariance. So,
specifically in mass calibration, does this mean that every time we re-calibrate our
standards we achieve lower covariance matrices each time? Of course we will not! It
is a fair assumption that \|/'y will not change all that rtiuch between one calibration and
the next since probably the same equipment will be used. In that case, the posterior
covariance matrix for successive calibrations will tend to converge to a lower limit
after which no further improvements will be possible. In fact this lower limit is none
other than the one shown in the variance / covariance plots of Figs (9.5.4), to (9.5.7),
for the transformation \|/Y—v.l when v—0. We can appreciate this by recalling
that v —0 corresponds to the experimental data being infinitely accurate. Now while
this is a highly idealised proposition, it nevertheless corresponds to a situation where
we could not learn anything new about the mass standards involved. Certainly in
subsequent calibrations, it is highly likely that the standards will have drifted
somewhat, an issue we address in more detail in the next chapter, and therefore there
will of course be new information to learn about the standards themselves, but we can
be sure that we will not evaluate any posterior estimates to higher accuracy than that
which occurs when v —0 in our simulation. We should remark however, that this
analysis would assume we use the same parameters in subsequent evaluations. Should
we introduce new parameters and change the design scheme the scope of the problem

is changed and new information of higher accuracy may well be obtainable.

So far we have shown, that for our example data, the difference in final
covariance matrix from leaving out the buoyancy correction variance/covariance terms
in the analysis (Fig. (9.5.1)), is not enormous. We then considered the possible
variation which could occur for all possible values of the input covariances and this
led us to establish upper and lower bounds for the achievable accuracy. However, it
will be recalled from Section 9.4, where we discussed the technique's robustness in
dealing with incorrect information, that the relative accuracy of the prior/current
information was significant in this regard. We now want to see what happens to our
covariance analysis when vjljp=\|/Y. To do this we will assume \|/p = diag[4,4,4] which

is of a similar order of magnitude to \|/y as given in Fig. (9.2.4) earlier. In this case,



using \|/'Y as given in Fig. (9.2.4) results in the estimated values of Fig. (9.5.12a), while
if we let \j/Y = \|/AW, which eliminates in particular all the off-diagonal terms, we find

the results given in Fig. (9.5.12b):

"-67.52" "2.084 0.957 0.959"
35.08 Ng & w, = 0.957 1.982 1.060
189.45 P 0.959 1.060 1.980
Fig. 9.5.12a: MAP results when =diag[4,4Al
"-69.25" r1.349 1326 1.325"
35.66 Hg & Va = 1326 1550 1.324
190.59 ) 1.325 1324 1.350

Fig. 9.5.12b: MAP results when Vjp = diag[4,4&\ &
Yy=Y aw

Table 9.5.2 - Comparison of Estimated Values & Variances for Vv Diagonal / Non-Diagonal - Now \iffl ~ iV

Variances (li.g)2 Values (]ig)

Parameter  Fig. (9.5.12b) Fig. (9.5.12a) % Difference Fig. (9.5.12b) Fig. (9.5.12a) Difference

b 1.349 2.084 -35% -69.25 -67.52 1.73
b2 1.350 1.982 -32% 35.66 35.08 -0.581
b3 1.350 1.980 -32% 190.59 189.45 -1.14

Comparing with Table 9.5.1, we can see that while there is not much difference in
either case between the two pairs of fitted values, there is now a big difference
between the variances in the latter case, with a large reduction occurring as a result of
ignoring the variance/covariance terms of the buoyancy correction, highlighting the
dangers of doing this in cases where the prior and current information are of similar
accuracies. Clearly it is good practice-not to mention required by the consistency
criteria outlined in this thesis-to always include the full extent of all available

information.

For completeness, let us now examine the situation for y Y—v.l when we scale
the multiplier v over a wide range of values from close to zero to very large. We again
obtain sigmoidal-type plots similar to those we have seen already but now of course
the lower and upper limits in each case are different. Figs. (9.5.13) to (9.5.17) shown

below illustrate the relevant data.
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108 10 Vv

Fig. 9.5.13:Estimated Posterior Variance for bp b2 b3when \|[/p= diag{4AA) and \JJY —v.i

10SOv

Fig. 9.5.14:Estimated Posterior Covariances for br b2 b3. when \|/p= diag{4AA} and Xjly- ~V.I
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Fig. 9.5.17:Posterior Estimate for b}, when\y(l=diag{4,4A] and\|//Y—V.I

It is interesting to look at the residuals in the case of this transformation
\|/'Y—v.1. We find large residuals when the current data is considered much less

accurate, i.e. asv — and P— In such a case we find' the residual vector of

Fig. (9.5.18).

'o-7.210"
-12.200
-2.599
-7.699
11.300
1.899

res =

Fig. 9.5.18: res for [l

which is large and implies poor experimental agreement— as we would expect since

the current data is having minimal influence now.
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-69.38
On the other hand, as v->0 and (G6— 3.72 [Hg we find the residual vector of
190.67

Fig. (9.5.19):

“ 0.999"
-1.150
0.349

-0.399 Mg
0.250
-1.050

res —

Fig. 9.5.19: resfor v—0

— i.e. the experimental information is now considered maximally accurate and hence
exerts greatest influence on the result, leading to good experimental agreement. These
latter residuals can probably be considered as a fairly intrinsic estimate of the internal
consistency of the data, or the extent of any systematic errors present, since there is

minimal influence on them from any other source.

B g N i
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10. Further Examples

Included in this chapter are two further case studies involving experimental
comparison data, treated by the MAP estimator, with further investigation of its
characteristics. In particular we give increased consideration to the idea of inaccurate
prior information and note how the estimator copes with this situation. We emphasise
once again the role of relative accuracies among the various sets of information and
show how the estimator can deal with inaccurate information if the accompanying
variance/covariance information permits this. We consider the robustness of the

estimator in terms of the gtability, of the solutions in the presence of variations in parts

of the initial conditions. One likely cause of inlcorrect prior information is the
phenomenon of drift and we investigate how our estimation techniques can respond to
this situation. We highlight a fundamental problem in current mass metrology where
independent information on drift may be hard to obtain. In this respect the estimator

must be treated realistically in the light of the available physical information.

10.1 Example Il

We now take a calibration example involving eight parameters and ten
observations. The available prior information on all the parameters is as given in
Table 10.1.1 below. The prior deviations-from-nominal, standard deviations and
volumes are taken directly from the available calibration certificates, while the

volume standard deviations are obtained from an assumed density uncertainty of
+2Kkg. m-3, taken to be uniformly distributed.

Table 10.1.1: Prior Information

Parareter Nominal Prior Value Std. Dev Volume Vol. Std. Dev
Value (g) (deviation) (mg) (mg) (cm3) (cm3)
d 1000.0 20 0.25 125.9763 0.0188
2 1000.0 0.9 0.75 119.0 0.01635
0% 500.0 -0.9 0.125 62.99 0.00916
b4 500.0 0.1 0.375 59.52 0.008179
b 200.0 0.45 0.05 25.20 0.0045
B 200.0 0.04 0.15 2381 0.003271
h 100.0 107 0.05 1274 0.00187
B 100.0 -0.49 0.075 11.90 0.0016
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The prior vectors and matrices, jip, \|/p, \j/v & V can easily be constructed from this
information. The supplied prior information does not include data on possible
covariances among the parameters so we must assume that fp is diagonal under these
circumstances. The Desigh Matrix X is given in Fig. (10.1.1) below. The experimental
data is given in Table (10.1.2), from which we can construct the observation vector Y

and also \|/AW and pa. In Table (10.1.2) the data AW and pa are mean values from 6

experimental measurements. The standard deviations in column 2 are thus those of

mean values of 6 measurements. This data is used directly to compute iy AV as shown

in Fig. (10.1.2). The calibration data for the environment monitoring instruments used

in this case leads to the following standard uncertainties:

jO=0-rc
s(P)=1Torr = 133.3 Pa
s(h) = 5%
Thus using Eq. (3.2.4) we evaluate the air density variance to be:

s2(pa) = 3 X10 6[mg.cm~3)

‘T"-1 0 0 O O 0O O
1 0-1 -1 0 0 0 O
o 1-1 -1 0 0 0 O
0o 0 1-1 0 O O O
o 0 10-1-1 -1 O
0 0 0 1-1 -1 0 -1
0o 0 0 0 1-1 0 O
0o 0 0o 0 1 0-1 -1
o 0 0 o 0 1-1 -1
0O 0 0 0 00 11
Fig. 10.1.1: Design Matrix

Once again we evaluate the components of i|/Y using Eq. (4.5.17):
Vy +diag{XV pdiag{XV}+ pX\rvXTpT

The first of these, \JJAW, we have already referred to, while the other two terms are

shown in Figs. (10.1.3) and (10.1.4).The term t2 is the variance/covariance
contribution due to \(/p, while t3is that due to \|/v. The total experimental covariance

matrix \|/Y is given in Fig. (10.1.5).
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Table 10.1.2 : Experimental Information

AW (mg) Std. Dev (mg) R, (Mg,cm’3) AV (cm3)
-7.18333 0.044096 1.1814 6.9763
-1.29647 0.031623 1.1818 34663

5.86162 0.030732 1.1809 -351
-5.27272 0.025 1.1809 347
-3.8867 0.058333 1.1896 124
1.84465 0.008333 1.1892 -1.39
-1.35358 0.021972 1.2244 "139
-0.851816 0.022161 1.2236 0.56
0.481667 0.020777 1.2249 -0.83
0.526504 0.008851 1.2244 0.84

19.444 0 0 0 0 0 0 0

100 0 0 0 0 0 0

9.444 0 0 0 0 0

6.25 0 0 0 0

34.027 0 0 0

0.694 0 0

4.827 0

symm 4911

Fig. 10.1.2: \[iAV X10"'4 mg2

0 0 0 0 0 0

0.360457 0 0 0 0 0

0.369603 0 0 0 0

0.361227 0 0 0

0.046128 0 0

0.057963 0

0.0579%63

symm

Fig. 10.1.3: t2 (=diag{X.V}\(/p .diag{X..\}) X104 mg2
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8.4189 468837 -3.73054 0 0 0 0 0 0 0
6.7961 2.10455 -0.23725 -1.17952 -0.94021 0 0 0 0
58319  -0.237069 -1.17863 -0.939494 0 0 0 0
210294 117863 -0.939494 0 0 0 0
. 157789 0.340936 -0.03933  -0.144104 -0.104914 -0.050979
3" 132369 -0.03931 -0.157151 -0.117989  0.037857
0361296  0.200756 -0.160475 0
synun 0291053 0.091426 -0.013484
0.252064 -0.013498
0.091448
Fig. 10.14: t3 (=p.X\J/v.XT.p) XIO"'4 mg2
'29.3123 468837 -3.73054 0 0 0 0 0 0 0
17.1566 210455 -0.23725 -1.17952 -0.94021 0 0 0 0
156348  -0.237069 -1.17863 -0.939494 0 0 0 0
871417 117863 -0.939494 0 0 0 0
35.6507 0.340936 -0.03933  -0.144104 -0.104914 -0.050979
Vy= 207498 -0.03931 -0.157151 -0.117989  0.037857
524503  0.200756 -0.160475 0
symra 521136  0.091426 -0.013484
45894  -0.013498
0.89595

Fig. 10.L5: \[/yX10’4 mg2

Using this data, we now apply the MAP Estimator of Eqgs. (8.3.15) & (8.4.5) to
find updated parameter estimates as given in Table 10.1.3 below. This table shows the
prior data, posterior estimated values, the Difference Vector between these two, the
prior and posterior standard deviations, and the combined standard deviation of the
(10.1.6) gives

experimental residuals are shown

Difference Vector. Fig. the estimated covariance matrix while
in Table 10.1.4. As can be seen, the posterior
estimates have lower standard deviations than the prior information. Of interest is the
combined standard deviation of the Difference Vector,

- pj (last column of

Table 10.1.3): this is at all points larger than the respective elements of the difference
vector (3rd column of Table 10.1.3). This is an important point, and one we would
expect: since each value is just an estimate based on whatever information is available
at the time, each should be subject to updating. However, since the standard deviation
is taken as a measure of the possible dispersion in the values, one would expect that
any updated value should lie within this bound. Note: this does assume, however, that
the measurand is in fact constant over time; in the case of mass standards, drift is
possible and indeed observed (see Girard, (1994) for example, also Sutton & Clarkson

(1993/94), while Davis (1990) provides a detailed discussion of the stability of
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Reference and Working Standards in one situation). Also, Bich (1992), (1993b) has

pointed out that this drift can be modelled via a Kalman Filter type approach, but that

is a different issue, and although it can easily be built into our model, for the present

we will make the assumption that the measurands/parameters are constant in time.

(For applications of the Kalman Filter and MLE to atomic clock parameterisation see

Tyron & Jones, (1983) & Jones & Tyron (1983) ). In the following section of this

chapter we will make further comment on drift and how we might deal with it.

The standards were not calibrated as a group before, indeed they are taken from

three different sets of quite different densities, and so the prior standard deviations of

nominally equally pairs (e.g. bl & b2or b3 & b4) are quite different. However, after the

analysis, the estimated standard deviations are much more uniform.

Table 10.13: Comparison of Prior. Posterior Data, after carrying out MAP Estimation ( data in me )

Up P

20 2.08008

0.9 1.00608
0.9 -0.934075

01 0.220219

0.45 0.429602

0.04 0.072579

107 1077
-0.49 -0.475644

'178.155 170.768
181.926

(nn_p)

-0.0800812
-0.10608
0.0340754
-0.120219
0.0203979
-0.032579
-0.0070027"
-0.0143557

843603  84.
855725  85.

diag[y”

0.133485

0.134876

0.0673833
0.0671767
0.0276786
0.0291039
0.0153515
0.0153016

2958 323125
507 32.7766

45389 414927 15.9388

45

symm

1132 16.8989
7.6588

Fig. 10.1.6: Estimated Covariance Matrix \|[f- (mg2X10
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diag(yp)12

0.25
0.75
0.125
0.375
0.05
0.15
0.05
0.075

34.3595
34.853
16.9485
17.9694
6.34044
8.46778

A P-P)

0.283405
0.762031
0.142005
0.380969
0.0571498
0.152797
0.0523036
0.076545

164158  16.8544 ~
166516  17.0965
812745 828316
855494  8.84545
322181  3.18763
346465 34287
236719 191358
2.32835



Table 10.1.4: Observations. Fitted Observations. Residuals and Measurement Std. Dev. (me )

Y Y (Y-Y) diag(\fY)y2
1.0666 1074 -0.00740112 0.05415
28 2.79394 0.00606211 0.04142
1.71666 1.71994 -0.00327677 0.03954

1175 -1.15429 -0.0207059 0.02952
-2.4166 251326 0.101659 0.05971
0.191666 0.193682 -0.00201586 0.01440
0.348333 0.357023 -0.00869009 0.02291
-0.1666 -0.171756 0.00515636 0.02283
0535 -0.528779 -0.00622055 0.02078
1585 155265 0.002353 0.08850

10.2 Analysis of the Estimator’s Capability
We now consider the effects of making the transformation \|/Y —v.\|/Y where v

is a scalar multiplier which we can vary in the range (0,°0). This is just a
computationally convenient means of varying the influence of the current data
between the two extremes of near-total and near-zero control over the posterior
estimates, as explained in the last chapter. Doing this allows us to see what type of
adjustment to the prior data is possible and to compare that with what has been
achieved with the given data. We will see how this can sometimes highlight problems
in the data that might not otherwise surface. The graphs shown below are of the same
general sigmoidal type as those obtained in the analysis of Chapter 9, ,as we might
expect, illustrating lower and upper bounds in each case. Figs. (10.2.1) & (10.2.2)
give the posterior variance estimate for just b} & b8 by way of example; while Figs

(10.2.3). & (10.2.4). give the posterior covariance matrix, y. for the two cases,

v—»0 & v —>00, respectively.

133



logiO v

v —"0 V oo

Fig. 10.2.1: Variation in Estimated Variance of bj for \|/Y — V.\|/Y

lg0v

V—>0 V>0

Fig. 10.2.2: Variation in Estimated Variance of b8 for \|/Y —v. \J/Y
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169.173 84.5865 84.5865 33.8346 33.8346 16.9173 16.9173

169.173 84.5865 84.5865 33.8346 33.8346 16.9173 16.9173
42.2932 42.2932 16.9173 16.9173 8.4856 8.4856

42.2932 16.9173 16.9173 8.4856 8.4856
6.76692 6.76692 3.38346 3.38346
symm 6.76692 3.38346 3.38346
1.69173 1.69173
1.69173

Fig. 10.2.3: Govariance Matrix, ,whenv —0 for the transformation \\fY —»v.vry
( mg2 X104 )

0 0 0 0 0 0 0
5625 0 0 0 0 0 0
156.25 0 0 0 0 0
1406.25 0 0 0 0
25 0 0 0
synitn 225 0 0
25 0
56.25

Fig. 10.2.4: Covariance Matrix, i|/-, when v—» (00 for the transformation
/Y ->v\[IY ( mg2x 107)

Fig. (10.2.3) is the lower limit and presents some interesting features: from it we

can quickly calculate that the following hold:

s2{bj) 3 mY /(fe,) _m.& s(bithj) = m}

si@ \n)" Sng) m  FK) nk

—where m],mnmk are the nominal mass values of the i"\j'h,k‘h parameters. Such

relationships often appear when doing a "simple™ fitting with just one piece of prior
information [or using RLS], when a fraction of the ‘reference’ uncertainty equal to the
ratio of nominal masses is always transmitted to the various standards. Using the
MAP estimator with full prior information, this does not automatically manifest itself
unless it was already the case in the initial conditions; although an examination of Fig.
(10.1.6) shows that the posterior covariance matrix for the ‘real' data of this
experiment does approximate these relationships. However, Fig. (10.2.3) shows that
in the limit, this estimator will converge to exactly this situation to which other
estimators are tied. In Fig. (10.2.4) we see how the prior variance/covariance
information remains unchanged when v — and the current information is

effectively removed.

Figs (10.2.5) & (10.2.6) below illustrate the range of possible values that can be

assumed by the parameters b1l & b8, under the same conditions as those discussed
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above (i.e. \|/'Y —=v.\|/Y with ve (0,00)). Fig. (10.2.7) shows the complete parameter

vector in the two limiting cases. From this information we can see the maximum

amount of adjustment to the parameters that is possible with the given initial

conditions.

loSio v

Fig. 10.2.5: Estimated Value for b, with v in range (0,°°)

logio v

Fig. 10.2.6: Estimated Value for bswith v in range (0, °°)
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Fig. 10.2.7: Estimated Pararmteri\/cctor, @

Next we consider the performance of the MAP estimator in the case of errors in
the parameters in order to examine its robustness. In Table 10.2.1 below we simulate
an error on the prior knowledge of blso that its value is 1.2mg rather than 2.0mg. We
can see that in the updated data, blis adjusted significantly more than the others, and
indeed more than its prior, posterior or combined difference standard deviation. This
of course suggests a systematic error and can easily be interpreted as such since none
of the other parameters are adjusted so much, suggesting that it is b1 (prior) which was
in error. Aside: Should this situation have occurred it may perhaps have been due to
drift, meaning that the prior value of 1.2mg is no longer a good representation of the

value of &. We will discuss this situation a little more in Section 10.3.

Table 10.2.1: Estimated Parameter Values (bj prior inerror ) ( datain me )

ﬁF\I) (mp-P) diag/\y 32 diag{y ) *(nP-p)

1.2 1.85201 -0.625006 0.133485 0.25 0.283405
0.9 0.787489 0.112511 0.134876 0.75 0.762031
0.9 -1.04206 0.142061 0.0673833 0.125 0.142005
0.1 0.112318 -0.0123183 0.0671767 0.375 0.380969
0.45 0.388251 0.0617486 0.0276786 0.05 0.0571498
0.04 0.0286084 0.0113916 0.0291039 0.15 0.152797
107 1.05598 0.0140163 0.0153515 0.05 0.0523036
-0.49 -0.497208 0.00720808 0.0153016 0.075 0.076545

Fig. (10.2.8) shows the range of values blcan be assigned should \|/Y —v.\yY
and v be scaled as before. From this we can see that the best adjustment that can be
made to b1 when v —0 and the current information is exerting maximum influence,
leads to an estimated value of 1.86568 Mg, quite close to the *correct™ prior value!

Thus our data in Table (10.2.1) is quite close to the theoretically best value.
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Fig. 1028: for bx=1.2mg & \|[/Y -> v.\|/Y

Table 10.2.2: Fitted Observations and residuals for Table 10.2.1 Parameter Values (data in ms)

% Y res s(Y) i(AW)
1.066 1.06452 0.00208232 0.054151 0.0440957
28 2.78175 0.0182513 0.041499 0.0316228
1.71666 171723 -0.000571033 0.0394783 0.0307316

-1.175 -1.15438 -0.020621 0.0296299 0.025
-2.4116 -2.5149 0.103304 0.0596984 0.0583333
0.191666 0.192667 -0.00100065 0.014548 0.00833267
0.348333 0.359643 -0.01131 0.0229062 0.021972
-0.1666 -0.170524 0.00392426 0.0228306 0.0221608
-0.535 -0.530167 -0.00483272 0.0214229 0.0207766
1.555 1.55319 0.00180818 0.00946546 0.00885061

In Table (10.2.2) above the posterior estimated observations and residuals are
presented, from which we can see that the agreement with the experimental data is

still very good. In understanding this, it is helpful to note that the standard deviations
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of the prior data are about an order of magnitude bigger than those of the experimental
information (compare column 5 of Table 10.2.1 with column 4 of Table 10.2.2). Thus
the experimental information is influencing the results more than the prior
information, leading to greater robustness in the face of possible errors in the prior

information.

So let us now reduce the prior standard deviations by a factor of 10—-i.e. reduce
the variances by a factor of 100. The new posterior results in Table 10.2.3 now
indicate that b, is adjusted much less but the difference between prior and posterior
values is now outside the combined standard deviations in all cases. Furthermore, in
Table 10.2.4 the corresponding residuals are some one to two orders of magnitude
larger than they were before—so in fact we do not have a good fit to the experimental

data.

Table 10.2.3: Estimated Parameter Values (bj prior in error and smaller prior Std. Devs ( data in ms )

“p P BH% diag(yp)/ g
1.2 1.4347 -0.234701 0.021379 0.025 0.0328947
09 0.756997 0.143003 0.0334731 0.075 0.0821307
-0.9 -0.962738 0.062738 0.0110564 0.0125 0.0166882
0.1 0.109827 -0.00982681 0.0154644 0.0375 0.0405635
0.45 0.437496 0.0125036 0.00467686 0.005 0.0068463
0.04 0.0131579 0.0268421 0.00975751 0.015 0.0178944
107 1.06641 0.00359329 0.00430808 0.005 0.0065999
-0.49 -0.498196 0.00819559 0.00542494 0.0075 0.0092563

Table 10.2.4: Fitted Observations and residuals for Table 10.2.3 Parameter Values (data in ms)

] Y res s(Y) s(AW)
1.066 0.677705 0.388895 0.054151 0.0440957
28 2.28761 0.512388 0.041499 0.0316228
1.71666 1.60991 0.106752 0.0394783 0.0307316
-1.175 -1.07256 -0.102435 0.0296299 0.025
-2.4116 -2.4798 0.068199 0.0596984 0.0583333
0.191666 0.157368 0.0342979 0.014548 0.00833267
0.348333 0.424339 -0.0760056 0.0229062 0.021972
-0.1666 -0.130715 -0.0358853 0.0228306 0.0221608
-0.535 -0.555053 0.0200533 0.0214229 0.0207766
1555 1.5646 -0.0096023 0.00946546 0.00885061
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This tells us that what we learned from the experiment disagrees with our prior
knowledge but we may not automatically know which is in error. Should the prior
knowledge have been subject to drift, this should have been accounted for in |ip & \j/p.
As mentioned before, good quantitative information on drift in mass standards is
difficult to acquire, but where information is available it should be taken into account.

(Aside: Again we refer to a further discussion of driftin Section 10.3.)

In fact, possibilities like drift would need a hard look should the example just
cited occur in real data: if the prior information is "definitely" reliable and the
experimental procedure well understood and invariably performs satisfactorily, the
possibility of physical change to the artefacts would need considering. This is not to
rule out the possibility of problems in either the measuring method or the prior
information not heretofore imagined! (For example drift during the measurement can
be a problem— See Sutton & Clarkson (1993/94). Surface contamination via
adsorption is relevant in the context of drift and has been discussed widely in the
literature, for example Cumpson & Seah (1994), (1994/95), Kochsiek (1982), Seah et
al (1994), Schwartz (1994a), (1994b), Schwartz & Glaeser (1994c). Effects due to
cleaning the standards to overcome this drift are discussed by Pinot (1994/95) and
Pinot (1997); cleaning of standards is also discussed by Girard (1990). In Cumpson &
Seah (1996) surface contamination and cleaning of platinum-iridium standards is

considered in detail.

On the other hand, let us now suppose that the prior value of b, is in fact a little
suspect. In that case we may have S(b}) = 0.5mg, the others remaining as originally
given. With this situation, Table 10.2.5 results where we can see bl adjusted by a large
amount, indeed it returns very close to the original estimate in Table 10.1.3, while in

Table 10.2.6 we see the new residuals are now much smaller again.

Table 10.2.5: Estimated Parameter Values (b, prior inerror but with largey Std. Dev.~) (datainme )

Mp P K-p) dtasyiry 2 diag{yp)s  ap-P)
12 2.02933 0.8293% 0.150847 05 0.522173
0.9 0.957444 -0.0674438 0.150476 0.7 0.764946
09  -0.98102 0.068102 0.0750124 0.125 0.14578
01 0.196211 -0.006211 0.0748154 0.3%5 0.38239
045  0.420402 0.0295984 0.0304204 0.5 0.0585269
0.04  0.062796  -0.0227%66 0.0820493 0.15 0.153386
107 10728 0.0022604  0.0166381 0.5 0.0526956
04  -0.480M2 0.00055782  0.0166571 0.07%5 0.0768275
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Table 10.2.6 : Fitted Observations and residuals for Table 10.2.5 Parameter Values (data in mg')

v v res s(Y) i(AW)
1.066 1.07189 ~0.00529107 0.064151 0.0440957
28 2.79123 0.00877418 0.041499 0.0316228
1.716% 1.7193 ~0.00267475 0.0394783 0.0307316

1175 -1.15431 -0.020687 0.0296299 0.025

-2.4116 -2.5133 0.102025 0.0596984 0.0533333
0.191666 0.193456 ~0.00178998 0.014548 0-00833267
0.348333 0.357606 -0.002738  * 0.0229062 0.021972

-0.1666 -0.171482 0.00488222 0.0228306 0.0221608

0.5% -0.529083 -0.00591176 0.0214229 0.0207766
1556 1.88277 0.00223178 0.00946546 0.00885061

So the robustness of MAP has once again been illustrated, although we have
seen that under some circumstances it can only point to problems/missing information
without removing the difficulty. RLS by contrast could not do any of this as it treats

the constraints as fixed and so can only adjust whatever is left.

10.3 More on the Influence of the Prior Information

In our discussions in this chapter we have several times mentioned the problem
of drift on mass standards. Essentially, we need to know if we are estimating a
dynamic quantity or a static one. We should note that this is a separate question to the
issue of whether our estimates are stochastic or deterministic, since we are now
thinking of the underlying measurand, rather than our estimate of it. If the Difference

Vector, “p-pj, is substantially larger than the combined standard deviation of the
difference, - pj, we are led to the conclusion that the prior information was in

poor agreement with the new experimental information. In the methods described in
this thesis, the prior information certainly plays an important role and can influence
the posterior estimates to varying degrees, depending on relative accuracies, as has
been explored in detail already. We have also considered possible errors in the prior
information in this context in order to probe their influence on the results, and we
have seen that in many cases the estimator is very robust. However, if the standards

have physically changed in the calibration interval, so that the prior values no longer
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properly describe the true situation, how can we be sure the posterior estimates will
not be detrimentally influenced by the prior information? It is this possibility we now

wish to investigate.

Drift on mass standards is generally a result of surface contamination and so
will be a function of surface area. It is easy to see that surface area, A is related to
mass m, by A«m 23 for a standard having cylindrical geometry. For example, for a
minimum surface area cylinder, for which height is equal to diameter, we find A

proportional to m and density p according to:
2

;- 'Am?

Wal 0J
while for standard OIM L-classified shapes (OIML 1994) ) which are geometrically
more complex, a quick calculation shows that approximately the same proportionality
with mass remains. Thus a 5009 standard will have 0.5~ the surface area of a 1000g
standard, and might be expected to suffer 0.5 of the contamination experienced by
the 1000g standard. In the previous section we considered an error of 0.8 mg on
parameter bi. In order to generate some synthetic data for analysis we will now
suppose this is due to drift—i.e. the prior value of 2.0mg is in fact updated to take
account of drift since the last calibration, while a value of 1.2mg would be used if no
drift error was suspected. Assuming the other standards to have been affected to the
same degree, will lead to the “drift error” of Table 10.3.1 below, where the

(mass ratio)% approximate proportionality mentioned above has been used.

Table 10.3.1: Sinulated DriftEor

Parameter DriftError
Nominal Value
1000g +0.8mg
300g +0.5mg
200g +0.27mg
100g +0.17mg

If we assume that the prior data of Table 10.1.1 is indeed correct at the time of
measurement, then to simulate an error due to mass-additive drift (typical for seldom-
used Reference standards. Frequently used Working Standards on the other hand
would probably drift downwards due to wear.), we need to subtract the drift error of
Table 10.3.1 above from the prior information, leading to the prior and estimated
values of Table 10.3.2 below, where \[fY and \jrp, have not been changed from the

original values. The estimated observations and residuals are shown in Table 10.3.3.
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Tabic 10.3.2: Comparison of Prior and Posterior Data, after carrying out MAP Estimation (data in me )

/ W2 _
P K-p) diag\y -J diag (\\r~f2 ~ P-P)

12 0.980735 0.219265 0.133485 0.25 0.283405
01 -0.0973078 0.197308 0.134876 0.75 0.762031
-14 -1.48421 -0.0842149 0.0673833 0.125 0.142005
0.3 -0.3344%4 0.0344%4 0.0671767 0.375 0.380969
0.18 0.206088 -0.0260877 0.0276786 0.06 0.0571498
0.3 -0.148253 -0.0817469 0.0291039 0.15 0.152797
0.9 0.964285 -0.0642848 0-0156:515 0.6 0.0523036
0.6 -0.587362 -0.0726381 0.0153016 0.0/5 0.076545

Tabic 10.3.3: Observations. Fitted Observations. Residuals and Measurement Sid. Dev. (me)

Y Y G-vy) diag(\\rY)y2
1.0656 1.078%4 -0.0120427 0.05415
28 2.79A 0000596272 0.04142
1.71666 1.721364 -0.00476107 0.0394
-1.15 -1.14976 -0.025239 0.02952
-2.4166 -2.50633 0.0%47344 0.05971
0-191666 0.195073 -0.00347339 0.01440
0348333 0.34341 -0.00604082 0.02291
-0.1666 -0.170835 0.00483518 0.02283
-0.5% -0.525176 -0.009824 0.02078
156 1.55165 0.00335322 0.08850

From these two tables we can see that we still have a good fit to the
experimental data and also a satisfactorily small Difference Vector when compared
with the standard deviation column in the right of Table 10.3.2 above. However, we
can also see that the estimated parameter values in the second column of Table 10.3.2
above are nothing like those we obtained earlier! So in spite of the fact that the
estimation technique has performed well with the information supplied, it has not
been able to uncover the drift error at all. This once again highlights a critical
weakness in calibration experiments which only supply difference information about
the parameters of interest and means that the external prior information must provide
absolute values for the parameters. If this prior data is absolutely wrong, we have a
fundamental problem which no estimator could hope to circumvent. Thus in any mass

calibration experiment, it is essential that at least some of the standards have been
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recently calibrated to satisfactorily high accuracy for the current requirements. This
may well seem a self-evident statement, but is worth emphasizing since the
capabilities of the M AP estimator are such that it would be possible to “calibrate” a
group of standards with respect to themselves only, once an initial calibration had
been performed with external standards. The very real possibility of drift in the

physical value of the standards renders this a dangerous idea indeed.

Therefore, let us amend the situation in our simulation by only letting some of
the standards be subject to drift. Looking at the prior information in Table 10.1.1
shows that standard bi has higher accuracy than b2, and similarly for the pairs b3 & b4,
b5 & b6, »7 & b8. So we will adopt the realistic situation that standards bi,b3,bs & &
are Reference Standards while the other four are Test Standards. In this case, we will
assume the same drift error applies to these latter four only as applied to all eight in
the first attempt above. The prior and posterior values are shown in Table 10.3.4

where the four “in-error” parameters have been highlighted.

Table 10.3.4: Comparison of Prior and Posterior Data, after carrying out MAP Estimation (data in m it)

Up P (m-P)  diagiyn 4*p-p)
20 1.93936 0.0606411 0.133485 0.25 0.283405
0.1 0.862356 -0.762356 0,134876 0.75 0.762031
09 -1.00357 0.103566 00673833  0.125 0.142005
-0.3 0.146919 -0.446919 0.0671767 0.375 0.380969
045 0.403082 0.0469178 00276786 005 0.0571498

-0.23 0.0420053 -0.272005 0.0291039 0.15 0.152797
107 1.06216 000783698 00153515 0.5 0.0523036
-0.66 -0.491863 -0.168137 0.0153016 0.075 0.076545

In this situation we see that the four parameters with an uncorrected simulated drift
have had their prior values nearly perfectly corrected by the estimation 'process, and
we are returned to posterior values very close to those obtained in the first estimation
with “correct” prior data. (Table 10.1.3). Satisfactory agreement with the experimental
data has also been obtained, as shown in Table 10.3.5 below. Of course we have seen
this situation already: what we have is one set of prior values (b2,b4,b6 & b8) having a
larger prior variance than the other four. Therefore, if they are in error, they will easily
be adjusted by the estimator, as we have seen in previous sections. If they have a
larger variance and are Not in error they will not be adjusted significantly but will

simply have their posterior variance reduced by the estimator.
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Table 10.3.5: Observations. Fitted Observations. Residuals and Measurement Std. Dev. (mg )

Y Y (v-v) diag{\[/Y)12
1.0666 1077 -0.011003 0.05415
2.8 2.79601 0.00399356 0.04142
1.71666 1719 -0.00240348 0.03954

-1.175 -1.15048 -0.0245151 0.02952
-2.4166 -2.51082 0.0992168 0.05971
0.191666 0.193694 -0.00209389 0.01440
0.348333 0.361077 -0.0127769 0.02291
-0.1666 -0.167218 0.00121801 0.02283
-0.535 -0.528295 -0.00670505 0.02078
1555 1.55403 0.000974214 0.08850

To illustrate the situation more clearly, let us set v{/jp as in Fig. (10.3.1) below
where we have attached a scaling parameter v to the prior variance of each of the

parameters (b2,b4,b6 & bg).

'0.0625 0 0 0 0 0 0 0
05625V 0 0 0 0 0 0
0.015625 0 0 0 0 0
(0.140625)v 0 0 0 0
Vp - 0.0025 0 0 0
symm (0.0225)v 0 0
0.0025 0
(0.005625)v

Fig. 10.3.1: Alternative Prior Covariance Matrix, \|/p

By scaling v over a wide range of values it is now possible to adjust the influence of

the four parameters in question. We do this for two cases: one in which the simulated
drift error is present on (ip, and one for which it is not—i.e. the correct prior data, as

in Table 10.1.1, is used— and we let v vary in the range ~(0,00)for the two cases. The

result, shown in Fig. (10.3.2), for just parameter b2, illustrates the situation very
clearly: prior data given a low degree of belief will be adjusted significantly by the
estimator, if the evidence demands it, and the posterior estimate will be assigned a
lower variance of course. If the prior information in question is in good agreement
with the rest of the evidence (other prior data and current data) little adjustment to its
value will result while the large prior variance will be reduced. If on the other hand, as
we have remarked several times before, the prior data in question is assigned a very
high degree of belief, little or no adjustment to its value will be possible, irrespective

of what might be required.
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Fig. 10.3.2: Posterior Estimate for b2using as given in Table (10.3.4). Two cases are given:

*“Using Incorrect Prior” refers to the simulated drift error on parameters (b2,b4,b6 & h8) as discussed in
the text; the other curve shows the situation using the normal prior data as given in Table 10.1.1.

Thus, providing some of our prior information is known to be accurate (which
will be reflected in its variance), inaccurate, or invalidated prior information can be
easily dealt with providing its variance is made sufficiently large to allow any
necessary adjustments. However, it must be pointed out that there is a fundamental
problem here: how do we decide which standards are the most accurate? Suppose that
all standards involved in a comparison have very similar prior variances. Then it may
be more difficult to decide to increase the prior variance of some, rather than others,
the difference between the various options possibly affecting the posterior estimates
significantly, if there were indeed errors in the prior information. (If there were no
errors, the difference would be minimal.) To answer this dilemma we must turn to our
criteria of logical reasoning: we must consider which is physically most likely to be
subject to error (drift), based on the treatment it has received since the last
calibration— and indeed, the time interval since the last calibration. We must also
consider any other calibrations any of the standards have been involved with, which
might increase (or decrease!) the justification for considering the prior information to
be still accurate. In mass metrology there is a natural hierarchy in reference standards
which is generally used to answer this question, but the point remains that there could
be potential difficulties when working at one level rather than between levels in the

calibration chain. This issue also has repercussions at the very top of the scale at the
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level of the international primary standards, and is fundamentally insoluble without
some external information— hence the research thrust towards the non-artifact
kilogram standard! See for example Becker et al, Bego (1995), Davis (1989), Frantzus
(1996), Olson (1991), Quinn (1991), Robinson & Kibble (1996), (1997), Steiner
(1996), Steiner etal (1997), Taylor (1991).

10.4 Example 111

In this final example the same 10 X 8 design scheme as used in the previous
example is employed (reproduced in Fig. (10.4.1) below). The same nominal values of
parameters—i.e. 1000g to I00g are used, the important difference here being that
prior information is only available for the first two standards (the 1000Og standards).
The remaining eight are new standards which have never been calibrated before. This
is reflected in the central two columns of Table 10.4.1— the prior data. This example
is also similar to Example | insofar as one of the standards (bj) has a much higher
prior degree of belief than the other. Parameter (2 had not previously been calibrated
for several years and we will utilise this situation to explore possibilities for correcting

drift on the prior information in the context of the M AP estimator.

1 -1 O 0 O O o o

1 0 -1 -1 O 0O O O

0 1 -1 -1 O 0O O O

0 O 1 -1 O 0O O O

0 0 1 0 -1 -1 -1 0

0O O O 1 -1 -1 0 -1

0 0O O O 1 -1 0 O

0O 0 0 O 1 0 -1 -1

0O 0 O O o 1 -1 -1

0O 0 o0 O 0O O 1 -1

Fig. 10.4.1: Design Matrix
Table 10.4.1: Prior Information
Paraneter Nominal Prior Value Std. Dev Volume Vol. Std. Dev
Value (g) (deviation) (Mo Mo (cm3) (cm3)

bl 1000.0 -960.0 75.0 124.219 0.01
b2 1000.0 +2723.0 250.0 126.936 0.02
b3 500.0 » 62.124 0.005
b4 500.0 — — 62.125 0.005
b5 200.0 24.849 0.003
b6 200.0 — — 24.849 0.003
by 100.0 - « 12.4261 0.0011
b 100.0 . . 12.4254 0.0011
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Fig. (10.4.2) below illustrates the relevant prior vectors and covariance matrices.
Observe that parameters b2 to b8 have prior values of O fig according to (ip in Fig.
(10.4.2), which might seem strange since according to Table 10.4.1 we are not
warranted in assigning any prior values to these parameters. However, note also that
we have not specified i|/p, but rather \|/p* in Fig. (10.4.2). From this we can see that
the prior variance of parameters ¢2 to b8 would be @ and hence we can assign any
prior value we like as it will have no effect upon the posterior estimate. (Of course we
can only easily do this because \]/p is diagonal: for example, if we had known
covariances between parameters bl & b2, things would not be computationally so easy

as we would be faced with the problem of sparse matrices to deal with.)

-960.0" 177.77
2723.0 16
0 0 0
0 0
Hp = 0 = o pg2x10-6
0 0 0
0 0
0 0
124.219*° "100
126.936 400 0
62.124 25
62.125 g 25
cm = (cm3)2x10™
24.849 9
24.849 0 9
12.426 1.21
12.425 1.21

The experimental information for the 10 comparisons carried out on the 8 parameters
is given in Table 10.4.2 below The diagonal elements of \|/AW (Fig. (10.4.3)) are

constructed from column 2 of Table 10.4.2 plus a {J/yig2 term arising from a
uniform distribution of =zI1|ig representing the comparator display uncertainty

(rounding/digitisation error).(See Lira & Woger (1997) ) An air density variance of
i2(pa)=1-5x10-7(mg.cm-3)2 is used, following the considerations leading to Egq.

(3.2.5a). Eq. (4.5.17) is used to construct \j/Y. Recall that air density matrix p in Eq.

(4.5.17) is formed with the 3rd column of Table 10.4.2 on its diagonal and that we
have\|/p=/(p a).11 in this case. With this information Fig. (10.4.4) gives the second

term on the r.h.s. of Eq. (4.5.17); this is the contribution to WY due to the air density
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term in the Weighing Equation. Fig. (10.4.5) gives the third term of Eq. (4.5.17)

which is the contribution due to the volume term in the Weighing Equation. Observe
that this latter term contributes by far the largest to the overall covariance matrix, \|rY,

which is shown in Fig. (10.4.6).

Table 10.4.2: Experimental Information

AW Gig) Variance. (]ig)2 pa(mg.cm'3) AV (cm3) Y =Am (ng)
-508.166 0.3611 1.197208 2717 -3760.98
-125.833 0.0944 1.194606 > -0.030 -161.67
392.833 0.2277 1.193389 2.687 3599.47
-325 0.18333 1.211381 -0.001 -337

62.166 0.16111 1.198981 -0.0001 62.0

86.66 0.2444 1.186522 0.0016 88.56

20.20 0.1777 1.211495 0 20.20

175 0.1166 1.209898 -0.0025 14.47

-1.0 0.1333 1.209051 -0.0025 -4.02

-6.166 0.4277 1.199339 0.0007 -5.32

0 0 0 0 0 0 0 0 0
0.4277 0 0 0 0 0 0 0 0
05611 0 0 0 0 0 0 0
0.5166 0 0 0 0 0 0
0.4944 0 0 0 0 0
05777 0 0 0 0
05111 0 0 0
symm 0.45 0 0
0.4666 0
0.7611

Fig. 10.4.3: Covariance matrix of the observations ( [>Xg)2

110731 0 0 0 0 o] 0 0 0
0.000135 O 0 0 o] 0 0 0
1082005 O 0 0 0 0 0
15107 0 0 0 0 0
15*10~ 0 0 0 0
12— 3.84*10 0 0 0
0 0 0
symm 9.375%10" 0 0
9.375*10~ O
7.35%10

Fig. 10.4.4: t2 (=diag(XV)ypdiag(XVv})(lg2
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' 716653  143.019  -571.493 0 0 0 0
214.062 71.281 0 35.808  -35.435 0
640.880 0 35771 -35.399 0
73.372 36311  -35.933 0
63.554 25.607 0
L= 62.240 0
26
symm
Fig. 1045 t3 (= pNAJAX T
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214.49 71.281 0 -35.808 -35.435 j o
642.523 0 -35.771 -35.399 0
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64.0488 25.607 0
62.8177 0
26.9293
symm

FHg. 10.4.6: Complete Covariance Matrix of the input data ( )ig )2
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Now, using this information we can evaluate the parameter estimates and their

respective covariances using Eqgs. (8.3.15) & (8.4.5). These are shown in Table 10.4.3

along with the relevant prior data, for comparison purposes; while Fig.(10.4.7) shows

the complete covariance matrix.

From Table 10.4.3 we can see that both prior

parameters bl & b2have been updated and assigned lower variances, in the case of b2

a significantly lower variance. This latter point illustrating that the most accurate prior

information exerts the greatest influence, a point that has been made several times

before. Note also that the adjustment in each case lies comfortably within the bounds

of the combined standard deviation of the difference. (Compare columns 3 & 6 in

Table 10.4.3). Table 10.4.4 illustrates the fitted observations and residuals.

Table 10.4.3: Comparison of Prior and Posterior Data, after carrying out MAP Estimation (data inus )

P

-930.0 -966.385

2723.0 2793.95
-418.804
-386.367

- -1990.719

-A.6731

K-p) $)
6.38515 71.8705
—70.9462 75.866
_ 36.8421
_ 36.8336
— 14.9852
14.9851
7.40093
7.40071
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7.0
250.0

-P)

103.88
261.26



[5156.37 5106.99 2576.83 2576.83 1030.73 1030.73 515.367 515.367
5755.65 2618.51 2618.51 1047.39 1047.39 523.695 523.695

1357.34 1320.84 528.423 528.423 264.332 264.122

1357.08 528.579 528.579 264.099 264.43

224,557 211.198 105.679 105.637

224553 105.68  105.638

54.7737 52.7796

54.7705_

Ag- 10.4.7- Complété Covariance Matrix of the Paraneter Estinétes (jJg2

Table 10.4.4: Observations, Fitted Observations, Residuals and Measurement Sid. Dev. ( us )

Y Y (Y -f) diag(\\rY)\2
-3760.98 -3760.33 -0.6486% 26.804
-161.67 -161.214 -0.455955 14.645
3599.47 3599.12 0.352741 25.348
-RB.7 -32.4374 -1.262640 8.5%6
62.0 61.6888 0.311221 8.008
83.5%6 88.2079 0.352122 7.926
2.2 19.5357 0.664279 5.189
14.47 15.0815 -0.611459 4.143
4.@ -4.45426 0.434262 4.142
5.2 -5.918%6 0.598264 2.089

10.5 Correcting the Prior Information

In Section 10.3, while discussing Example H, we noted how we could adjust the
plausibility of the prior information in order to take account of possible drift or other
errors. In this example, we see that parameter b2 has a much larger prior variance than
does bu and indeed it is adjusted by a comparatively larger amount. By increasing its
prior variance still further, we would approach the situation where this prior
information about b2exerts no influence on the posterior estimates and we could then
see the maximum adjustment possible. As we have remarked before, if there was no
disagreement between prior and current data, the adjustment would be minimal. To
the extent that we give b2 a finite prior variance, we are attaching value to this prior

information and allowing it to influence the posterior estimates
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However, if we know before carrying out the estimation that b2 has drifted,
should we update the prior value first? Or would this be pre-empting the estimator
which should be able to highlight the drift a posteriori? (Providing of course that
there is other, independent and indeed accurate prior information also !) We can
answer this question by yet again stating that any known information must be included
in the analysis. How much value we attach to it is decided by the variance we assign
it. Whether such information on drift obtains from a careful empirical analysis or the
studied opinion of the “Expert Observer” it still must have some validity. So the
natural question for us to ask concerns the possibility of such ‘prior adjustment’
vitiating the posterior estimate. In other words, accurate correction for drift should

actually help the estimator, but would over-enthusiastic correction hinder it?

To investigate, we shall replace $2(b2) in \|/p with vXs2(b2) where v is once

again a multiplicative scalar, and compare the posterior estimate for a range of v
values in situations of no drift correction, a moderate drift correction, and a much

larger drift correction. The situation is presented in Fig. (10.5.1) below.

1°910 (v)

Fig. 10.5,1: Posterior Estimates of b2 for 3 different ‘prior correction of drift’ situations. The x-axis
parameter v controls the prior variance of b2 as discussed in the text.

The conclusion we can draw from this information is that the most important
way to tackle the possibility of drift or other errors in parts of the prior information is
to ensure that its degree of belief is lower than that of the other prior information, as

we have remarked before. Then any other adjustments to include suspected drift
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cannot adversely affect the posterior estimates. We can see from Fig. (10.5.1) above
that a correction of +75fig results in very good agreement with the other information
since very little adjustment takes place irrespective of the prior variance. The other
two cases of no adjustment and what seems to be too much adjustment are largely
corrected by the estimator providing s2(b2)>s2(bl). This is quite intuitive as it simply
tells us that the more “accurate” information exerts a greater influence, but it is
important to draw attention to it, since it highlights the logical nature of this
estimation technique and shows how it does implement criteria of plausible reasoning
with whatever information is supplied. The imperative rests with the experimenter to
supply physically relevant data and to be aware of tﬁe limitations of the mathematical

tools which can only operate on the supplied information.
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IT. EXPERIMENTAI, SYSTEM

In this chapter we will consider the hardware and software used in the
experimental work which was carried out at the National Metrology Laboratory,
Forbairt, Dublin, and the data reduction carried out prior to the parameter estimation
process. We will highlight some interesting experimental results and point out the
effects of various systematic problems on the data which lead to inconsistencies
among group comparisons and later problems in the parameter estimations. Some

sample data is given to illustrate the methods used.

At the heart of the calibration system are the mass comparators used in the
comparison experiments. In this case, commercially available, automated instruments
based on the electromagnetic force compensation principle are used. These are
equipped with micro-positioning turntables for alternately placing each of the two
weights (or combinations of weights) involved in the comparison on the load pan. A
self-centring mechanism and a lever arrangement involving flexure strips (see, e.g.
Quinn et al (1986/87) ensures high reproducibility can be achieved. A standard RS232
serial interface is provided and a simple instruction set applies to all the instruments
allowing for easy computer control to be implemented. Table 11.1 below shows the

instruments used in this study along with their respective ranges and accuracies.

Table 11.1
Instrument Range Readability Rated Std. Dev.
Sartorius C50s 109 -~50¢0 1 MS 10g :4 fig
209 :5fig
509 :6 fig
Sartorius C 1000s 100 ¢ 1000 @ ‘MS 100g, 200g :2 fig
500g, 1000g :5 fig
Sartorius C10000s 2kg —10 kg 0.1 mg 0.1mg v
Sartorius C20000 10 kg — 20kg 1.0 mg 1.5 mg

Secondly, we need instrumentation to monitor air temperature, barometric
pressure and relative humidity in order to calculate air density and the systematic
buoyancy correction. Again the instruments used are equipped with serial interfaces
and can be interrogated by the controlling computer. Table 11.2 lists the equipment
used. The ‘'system accuracy' listed in Table 11.2 below is a standard uncertainty

obtained from instrument calibration certificates.
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Table 11.2
Instrument Range Resolution System
Accuracy

Hart Scientific Model 1502

Resistance Bridge with Model 1514 -100°C -4 +300°C 1 mK 60 mK
PRT Probe

Druck Model DPI 141 Resonant 800 —» llOOmBar 1Pa 15 Pa
Sensor Barometer (0.01 mBar)

Vaisala Model HMP 233 5% 95%, RH 0.1 % 2%

Capacitative Humidity Probe

Extensive software has been specially written as part of this research work to
allow these instruments to be controlled by a computer.1l Here its principal features
and mode of operation will be described. By means of an eight-port serial interface
card (Brain Boxes Lynx 8-Port RS232), it is possible for the computer to control
several instruments at once. So the comparator in use and the three environment-
monitoring instruments are all connected to the one computer, which is physically
located some distance from them in order to reduce unwanted interference and heat
generation. The software can then log the weight-in-air differences measured by the
comparator and the temperature, pressure and humidity at the time of measurement. It
is possible to select the start-time for an experiment and its duration in order to allow
experiments of arbitrary length to be carried out at arbitrary times. This is particularly
advantageous as it is then possible to commence a comparison experiment at times
when the laboratory is ‘'quiet’, e.g. night-time. The ‘length’, or duration, of a
comparison is not set by time, but by the number of repeat comparisons to be carried
out by the automated comparator. It is also possible to carry out several 'batches' of
comparisons with arbitrary intervals between each, without the need for an operator to
initiate each one. The software graphically displays the measurements in real-time so
that it is possible to see at a glance the current mean value and standard deviation, and
also the degree of stability or drift in the measurements. The availability of these
features has allowed many of the characteristics and dependencies of the measurement
process, described later, to be observed. Fig. (11.1) below illustrates schematically
how the various components interconnect. Note that temperature and humidity are
measured inside the enclosure of the comparator, and thus in the same micro-climate
as the standards themselves. Pressure is measured at approximately the same elevation

as the standards on an adjoining bench.

1Unpublished software documentation and source code describes the details of this. See also the
published work Software Applications in Mass Metrology reproduced in Appendix 5.
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PC

Fig. 11.1: Experimental System

We now wish to examine how this system deals with the data. Fig. (11.2) below
shows a typical "raw data" file. Currently, the software only displays the weight-in-air
values graphically, it does not split up the other components. In the file fragment in
Fig. (11.2) there are 11 columns: the first is the time in seconds from the start of the
experiment. This is needed for graphing the data. If there are several sets of
comparisons in the file, each separated by a time interval, this will also be reflected in
the time column, and thus the 'gaps' will appear in the graph. The second column
shows the Weight-in-Air difference (in jlLg) of the two standards or sets of standards,
as evaluated by the comparator. The remaining 9 columns give the climate data in
three sets of three—one set for each of temperature, pressure and humidity. The
reason for this is as follows: the comparator operates an A-B-B-A comparison
sequence and returns data to the PC in two sets: AL Bj & A2 B2 The PC queries the
climate-monitoring equipment before the start of the sequence, in the middle of the
sequence when the first pair of A, B readings are returned, and again at the end of the
sequence. Thus the third climate readings of set N and the first of set N+1 will be

nearly identical since they are only separated by milliseconds.

This information must now be processed in order to generate meaningful data
with which to estimate the parameters. This is done by means of a set of routines
which format the raw data into a set of files containing Weight in Air data,
temperature, pressure and humidity data. Each file so generated also contains the time
information, so that the data sets can be individually graphed. The temperature,
pressure and humidity files are obtained by taking means of the three values in the raw

data file— i.e. an average for each measurement cycle is used. A density calculation
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program forms an air density file from the temperature, pressure and humidity files, by
implementing the '81/91 Equation for Air Density (Davis (1992)). Finally a buoyancy
calculation program takes the Weight in Air file, the air density file, and the
appropriate volume difference for the comparison and evaluates the true mass
difference for the standards. Fig. (11.3) shows the format of this data processing

arrangement. The software routines are described in Appendix 2.

1433. -1180 20.624 20.624 20.631 1018.250 1020.450 1020.620  37.410 37.510 37.520
2009. -120.0 20.630 20.634 20.637  1020.680 1020.680 1020.760  37.520 37.540 37.540
2584. -122.0 20.637 20.639 20.644  1020.770 1020.770 1020.870  37.550 37.540 37.530
3160. -124.0 20.644 20.648 20.653  1020.930 1020.930 1020.920  37.520 37.490 37.480
3735, -121.0 20.653 20.656 20.660  1020.990 1020.990 1021.040  37.480 37.460 37.440
4310. -122.0 20.660 20.662 20.664  1021.090 1021.100 1021.190  37.450 37.420 37.390
4885. -123.0 20.664 20.668 20.672  1021.200 1021.210 1021.210  37.390 37.360 37.310
5461. -122.0 20.671 20.676 20.680  1021.300 1021.380 1021400  37.310 37.300 37.270
6037. -122.0 20.679 20.681 20.683  1021.400 1021.400 1021.350  37.270 37.240 37.190
6613. -122.0 20.683 20.685 20.688  1021.400 1021.410 1021.450  37.210 37.160 37.100
7188. -122.0 20.689 20.693 20.697  1021.530 1021.540 1021.580  37.110 37.080 37.060
7764. -121.0 20.697 20.698 20.698  1021.580 1021.570 1021.620  37.050 37.020 37.000
8340. -120.0 20.697 20.699 20.701 1021.660 1021.660 1021.680  37.000 36.960 36.940
8916. -121.0 20.701 20.705 20.707  1021.660 1021.660 1021.810  36.930 36.900 36.880
9492. -120.0 20.707 20.708 20.707  1021.880 1021.890 1021.930  36.870 36.870 36.860

Fig. 11.2: Example data File from the data acquisition program

Vol. Diff. of Standards

Fig. 11.3: Diagram of the Data Processing Procedure Used
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Fig. (11.2) above illustrated the data available from Stage | of the process. Figs.
(11.4) to (11.7) below show sample plots of the data available after stage n. Usually
the measurement system was operated for a minimum of 12 hours, and often longer.
W hile this amount of data is not in principle needed to establish a mean and variance
for later work, it has been found that the measurement system needs to be operated for
sufficiently long to allow various initial systematic effects to be minimised, and also
to confirm that it has properly stabilised. There is scope for automating this process,
via some form of Statistical Process Control to ensure that valid data is obtained. Fig.
(11.8) shows the corresponding air density graph, calculated from the data in Figs
(11.5) to (11.7) by stage HI; while Fig (11.9) is the true mass difference evaluated by
stage V.

Time (hrs)

Fig. 11.4: Typical Example of Weight-in-Air Data from Mass Cormparator
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Fig. 11.6: Corresponding Pressure Graph for Fig. 11.4
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Fig. 11.9: Calculated True Mass Difference fromFigs 11.4 & 11.8 [AV =-0.158cm3]

An analysis of these graphs allows accurate information to be extracted about
the comparison process and valid data to be available for the parameter estimation
methods discussed earlier in this work. For example, in the graphs shown it is
apparent that the system has settled after the first 10 hours and from that point on
accuracy is limited by the resolution of the instrument. Indeed Figs (11.4) & (11.9)
show clearly why we are justified in including a Uniform distribution in the
uncertainty analysis of width equal to the display resolution of the instrument. Note
also that there is a distinctive period of instability in the data during the first 4 to 5
hours which is not accounted for by the systematic buoyancy correction, since it is still
there in Fig. (11.9) after the correction has been applied. That it is a systematic error is
well known since it always appears on all data sets. It is quite likely to be related to a
temperature effect since, from Fig. (11.5), we can see a temperature rise once the
measurement process has begun. This is a systematic temperature rise always noted
once the comparator commences operation and may be due to the motors used in the
load alternator for example. Fig. (11.10) is a graph showing the temperature profile in
the comparator chamber before, during and after a comparison experiment: the rise in
temperature during the experiment and the subsequent fall-off afterwards is quite
evident. The type of behaviour shown in Fig. (11.9) leads to the well-known idea of
“exercising” the balance prior to obtaining data in order to ensure a steady state
situation is reached. There is significant current research effort on-going to better

understand the behaviour of flexure strips and torsion strips similar to those used in
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mass comparators (e.g. Quinn et al. (1997a), (1997b), Kuroda (1995) to mention a
few) and it is possible that there may be additional systematic effects concerning the
balance mechanisms, such as anelasticity for example, which may also have a bearing
on the comparator characteristics we observe. In any event we can conclude that there
is a 'stabilisation time" required once the comparator has been started before it is
possible to arrive at the desired measurand. Of course if this preliminary effect could
be adequately modelled, an appropriate additional correction could be applied and a
corresponding standard uncertainty term included, but at the moment, since it is a

transient effect the approach of allowing it to diminish is adequate for our purposes.

Time (hrs)

Fig. 11.10: Temperature plot for before, during and after a typical comparison experiment.

This type of analysis illustrates the importance of fully understanding the
measurement process in order to correctly realise the desired measurand. For example,
a practice of simply operating the comparator for 6, 8, or 10 cycles and taking mean
values and standard deviations would be very inadequate here and would lead to
systematic errors in the later analysis—which might well be evident if the MAP
estimator were used, but their cause would not be identified without the type of
practical analysis illustrated here. The practice in this work has been to extract 6
repeat measurements from an obviously stable region of the graph and obtain mean
and variance information with these. Now this process is admittedly open to the
criticism of being ‘'subjective’ and such questions as 'when is the process obviously

stable?’ etc. In the present case we can counter with the criterion that when the
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corrected measurement results are clearly only limited by the accuracy/resolution of
the instrument, there are no further corrections needed, and the data can then be
subjected to the desired statistical tools. However, as mentioned earlier, this is a place
where Statistical Process Control methods could be implemented with profit: a
criterion could be set for when the corrected results are deemed acceptable and the
process repeated until it converges to this point. It would be important that only
corrected results are used in such an analysis, since systematic errors like the
buoyancy correction would introduce obvious drift. This would formalise the decision
making process in a manner compatible with the general goal of performing
measurements and uncertainty analysis in a unif(t)rm, coherent and well-defined

manner.

Some systematic errors can be quite subtle and difficult to pin down. For
example, in the course of some of this work, a problem of lack of reproducibility
between experiments appeared. Two standards were compared over a period of a few
weeks and conflicting results emerged. Figs. (11.11) to (11.18) show the data for 4
comparisons on the same pair of 1kg standards. In each case the weight-in-air
difference, physical mass difference, and climatc data is reproduced. It can be seen
that in most cases the buoyancy correction removes the drift which is obvious on the
weight-in-air plots, although in the case of comparison 2 (Fig. (11.13)) a significant
drift-in the opposite direction-still remains afterwards. Fig. (11.19) shows the true
mass values for all 4 comparisons on one plot and they are clearly not in agreement.
This was troublesome and suggested some systematic effect was causing a problem. It
was difficult to establish just what this was since the buoyancy correction for each
individual comparison seemed satisfactory, but when several were compared together
the inconsistencies surfaced. This would have caused problems in statistical fitting of

the parameters and poor results would follow.
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Fig. 11.11: Weight in Air & Physical Mass Differences for Comparison 1
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Fig. 11.12: Temp., Pressure, Rel. Hum & Air Den. for Comp. 1
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Fig. 11.13: Weight in Air & Physical Mass Difference for Comparison 2

Fig. 11.14: Temp., Pressure, Rel. Hum & Air Den. for Comp. 2
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Fig. 11.15: Weight in Air & Physical Mass Difference for Comparison 3
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Fig. 11.16: Temp., Pressure, Rel. Hum & Air Den. for Comp. 3
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Fig. 11.17: Weight in Air & Physical Mass Difference for Comparison 4
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Fig. 11.18: Temp., Pressure, Rel. Hum & Air Den. for Comp. 4
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Time (hrs)

Fig. 11.19: Physical mass Difference plots from Comps 1-4 showing the inconsistencies referred to in
the text.

However, when the true mass values are plotted as a function of humidity-see
Fig. (11.20) below-a large non-linear effect immediately appears, being greatest for
lower values of relative humidity. Thus there is a "hidden' systematic effect, namely
the comparators are being influenced by ambient humidity. This is most likely due to
an electrostatic effect on the instruments. Now if this could be modelled properly a
suitable correction could be applied to the data which would bring the divergent
results back in line with one another and of course the functional relationship for the
true mass difference would then be adjusted accordingly. In Fig. (11.20) a second
degree polynomial is fitted through the data, but this is really for illustrative purposes
to show the dependency and should not be taken as the correct fit to the data. It
appears from the data that the effect diminishes at higher levels of humidity. This data
was obtained during the startup phase of a new laboratory facility and once the
humidity levels were stabilised at more suitable levels (-50%) the problem is not

manifest.
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%ReL. Humidity

Fig. 11.20: Physical Mass Difference for Comps. 1-4 plotted as a function of %6Rel. Humidity

Note as an aside that in Figs. (11.12), (11.14), (11.16) & (11.18), the
temperature plots show the characteristic rise of ~ 0.2 K at the start of each
experiment which has been mentioned before. Other examples of systematic effects
due to convection and thermal gradients have been discussed by Glaeser (1990),

Glaeser & Do (1993) and Macurdy (1964).

To conclude, we have shown in this section how the data used in the parameter
estimation techniques was obtained and highlighted the principal procedures involved.
It is very important that the experimental system is properly modelled and that steps
are taken to eliminate or correct for any know systematic errors affecting the process.
Computer control is useful here as large amounts of data can then easily be gathered
from which trends in the data can be deduced. It is important that the functional
relationship used to generate the measurand is supported by the observations from the
data. Finally it is to this area one must return if the parameter estimation technique
suggests disagreements/inconsistencies in the experimental information. It is always
possible that an effect has been overlooked, or a possible physical correlation which

should have been built into the covariance matrices was not.
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12. Conclusion

A central theme of the work reported in this thesis is the establishment of a
coherent methodology for analysing experimental data. This applies both to direct
analysis of measurements in the area of uncertainty propagation and also to any
subsequent processing or parameter estimation for which these initial measurements
will form a basis! We have shown how some basic rules of consistent reasoning,
underlying classical probability theory, can be applied to all aspects of the work,
leading to improved results and a better understanding of the nature of the quantities

under investigation.

A critical point relates to the understanding of probability theory in a broader
sense than just an examination of relative frequencies in experimental trials and
involves realising that probability measures give us a degree of plausibility or belief
which we can assign to any estimate or measurement. This should be based on a
complete analysis of all available information including any background, or prior
information. We have pointed out that all probabilities are subjective inasmuch as
they are based on the currently known information but that nevertheless it is possible
to ensure that they are unbiased by adhering to the rules of consistency throughout the

analysis.

The core of the uncertainty propagation method developed is the general law of
error propagation as presented in the 1SO Guide. The theory underlying this has been
considered and shown to be in agreement with the Unified Approach developed in this
thesis. We have highlighted how it leads to a coherent means of expressing
measurement uncertainties in a way that can easily be incorporated into other work as
required. Much effort has been expended in developing a measurement philosophy
based on the view of probability theory outlined in the preceeding paragraph, in order
to show the usefulness and accuracy of the 1SO approach as a means to describe

experimental measurements.

A useful and indeed necessary extension to the ISO procedure has been the
consideration of the Maximum Entropy formalism which greatly aids in the
implementation of an unbiased analysis. Once again the logical consistency

considerations of probability theory are central requirements to this development.

This framework of the ISO uncertainty propagation, supported by considerations
of logical consistency and maximum entropy, is then applied to mass determination,
looking initially at the model parameterisation of the experimental procedure. The

various influence quantities are considered in developing the Weighing Equation and
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its uncertainty propagation, in particular including the components of uncertainty due
to the systematic buoyancy correction. In this analysis the principles of consistent
reasoning were applied throughout, in order to ensure that all the information was
included in an appropriate manner. The multivariate form of the Weighing Equation
was presented and its corresponding covariance matrix developed, care being taken to
point out the nature of the variances and covariances as statements about our degree of
belief in the measurand estimates. The system so described provides a very concise

and easily manipulated description of the relevant information.

The second major section of the theoretical development of the thesis has been
concerned with parameter estimation techniques and it is here that we have seen the
full implications of the Unified Approach, the groundwork for which has been laid in
the early chapters. The requirement has been that the same criteria and philosophy
which guided model parameterisation and uncertainty analysis should also be present
in this section and this unification of ideas led to the rejection of conventionally used
Restrained Least Squares, both because of its internal inconsistencies and also because
of its failure to analyse the data in a manner compatible with the basic criteria being
implemented. The significance of this failure has been brought to light by examples
showing the rigidity of the technique: the constraints restrict the range of possible
values that can be selected and in the case of incorrect prior information being
provided, the estimator is not able to either overcome the problems or even adequately

highlight them.

In dealing with this situation, it was essential to employ a method which would
take full account of all known data about the problem in the correct manner. The
Augmented Design approach fulfilled these requirements while giving extra benefits
in the form of easier calculations and, especially, smaller posterior variance /
covariances than the alternative Restrained Least Squares technique. This was seen to
be a particularly pleasing improvement, easily understood in the light of the stochastic

nature of all the available information.

The explicitly Bayesian approach of Maximum a Posteriori estimation was
presented in order to make a clearer illustration of the nature of the problem. We
pointed out the importance of realising that prior information is simply that which is
logically distinct from the current experiment and showed how all probabilities are in
some way conditional on some background or prior information. The application of
the basic criteria of probability theory led directly to Bayes’ theorem and a powerful
estimation technique which takes full advantage of all that is known about the

problem. The crucial requirement is the consideration of the necessary constraint

171



information as prior data having its own dispersion characteristics and covariance

matrix.

An interlude in this development discussed a generalised estimation technique,
Generalised Gauss-Markov estimation, where we saw how the essential differences
between the Bayesian and Least Squares methods lie in the difference of interpretation
of the constraint information. GGM can thus handle either situation without prejudice
to the other. Prior data having a null covariance matrix would be treated just like
constraints in the Least Squares approach, but no decision has been taken in so doing

that prevents other data with a non-zero covariance matrix from being analysed in full.

In considering the Bayesian estimator we found an important role for the
degrees of belief assigned to the various parameters and the relative accuracies
between data sets (prior & current) in obtaining the estimated parameter values. We
saw how this is particularly important in dealing with incorrect data, this having
greater or lesser influence depending upon the Degree of Belief assigned to it. We also
looked at the ranges of possible values and variances that could be assigned to the
parameters and found worst case scenarios of the prior information remaining
unchanged as well as lower limits to the improvements in accuracy that could be

achieved in sequential estimation.

In discussing errors on the prior information, we raised the particularly
important issue of drift on mass standards which could render the prior information
invalid or irrelevant. Since the prior information can exert a significant influence in
the Bayesian analysis this is an important issue. We pointed out how it is crucial in
mass calibration to have some standards involved which are recently calibrated to the
necessary accuracy and that a “within-group” calibration of a given set of standards,
although possible with the MAP estimator, should not be consecutively repeated
without including other external standards. Providing this is done, then implementing
aregime of Consistent Analysis and including all available information should easily
allow drift to be uncovered. We pointed out that the primary way to do this was by
adjusting the prior variances of some of the prior information. Then if the evidence
demanded it, the updated posterior values would be adjusted as required. We pointed
out that suspected drift could be included prior to applying the estimator to the data
but that doing this was less important than adjusting the prior degree of belief.
However there can be a fundamental problem here since in mass determination there
is no absolute independent external information currently available so the analyst must
take care to supply physically relevant data and be aware of the limitations of the

mathematical methods.
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We conclude that the Unified Approach, incorporating a Consistent Analysis,
and careful attention to the physical nature of the problem under consideration,
applied throughout the data analysis in mass determination leads to much improved
estimates as a result of implementing a better understanding of the true nature of the
information being processed. Further, the inclusion of all available information at the

time of analysis is crucial in ensuring the success of the endeavour.

W hat has been produced is a unique package for data analysis whereby a small
set of matrix equations can completely model all the available data and provide
improved estimates of the parameters. The technique is remarkable for its simplicity
and reliability, the capability to highlight inconsistencies and errors in data being
particularly attractive. Since the data is processed in a unified manner it can easily be

incorporated into other analyses.

One important point that we have highlighted concerns the significance of the
buoyancy variance-covariance information. It usually happens that the uncertainty
contribution from this source is by far the largest element of the experimental
covariance matrix. Thus it is very important not to neglect this information, and also
motivation to look for higher accuracy ways to determine the volumes of the standards
since as we have shown in our case studies, these are a large contribution to the

covariance matrix.

In discussing how the Bayesian Estimator copes with the problem of drift
affecting the prior information, we pointed out the ultimate need for truly independent
information to introduce into the calibration hierarchy. There are currently various
endeavours in progress that we have cited previously which have this goal in mind.
Ultimately this data on a non-artefact kilogram realisation should be of higher
accuracy than existing standards and the Bayesian Estimator will then easily allow it
to exert a correspondingly greater influence on subsequent parameter estimations.
Thus the Bayesian estimation technique promises to be a useful analytical tool in this

work.

We have already considered, in the final chapter, the use of computerised data
acquisition systems. These will grow in importance as automated and electronic
comparators continue to grow in sophistication and become ever more widely used
(see Glaeser et al (1992), Helms (1997), Kajastie et al (1997) for example.) We have
pointed out how many systematic effects in the measurement process can be
pinpointed by analysis of large quantities of data with the aid of computer power. The
software used for data acquisition was specially produced as part of this research and

therefore has been tailored to the exact needs of the laboratory. (A modified version of
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the software is currently used by the National Metrology Laboratory, Dublin, and is
discussed in one of the publications reproduced in Appendix 5). This is the ideal
approach since the software is then perfectly traceable and accessible, a necessary
feature to ensure high standards in calibration (For other examples of computerised

calibration analysis systems see for example Kruh et al (1994) or Dikken (1997)).

It is clear that the concise package of experimental modelling and parameter
estimation could easily be built into a software package which should be able to
interface with the data acquisition software. In this way all the experimental data can
be loaded into an analysis program which can then construct the necessary vectors and

matrices and solve the parameter estimation equations.

Thus an apparently mature field like the calibration of mass standards shows
much promise for interesting contributions to the field of uncertainty analysis in the

future!
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Appendix 1: The Partial Derivatives of the Air Density
Equation

If we look at the functional form of the air density equation as given in Chapter

3 we see:
PM,. T

M7 ZRT

/
However, from the equations in (3.1.18) & (3.1.19) we can see that in fact Z & XV are
both functions of T, P & h. So in fact:
pa=f(T,P,h,R,Ma,M*) (A.1.2)
To evaluate the partial derivatives, a Mathematica program was used in which
the functional forms of all the equations needed for Eq. (A.1.1) were entered so that
an explicit form of the function in terms of the six parameters in Eq. (A.1.2) was
produced. Mathematica could then easily evaluate all the partial derivatives,
themselves also functions of the six influence quantities. Thus if the known values of
R, Mv& Mawere supplied along with measured values of T, P & h it would be easy to
find the particular values of the partial derivatives at that point. Program listing A. 1.1
at the end of this appendix shows a portion of the program used, including the
function to calculate the partial derivative with respect to temperature. The complex
expression shown is the result of the Mathematica evaluation, expressed in a form
suitable for a C program. The various constants used are all defined in the header file
and are obtained from the published information on the 'BIPM Air Density Formula',

Giacomo (1981), Davis (1992a).

The data shown in Table A.l1.1 below was obtained using this program with the
values for t, P & h shown in the first column. For each set of three, the six partial
derivatives are shown. The ranges of the parameters t, P & h taken are of typical order
of magnitude for a Standards Laboratory and indeed cover most of the possible ranges
that would likely be encountered. From the Table it can be seen that the data quoted in
Eq. (3.2.3) is indeed representative of the likely values of the partial derivatives that

would occur with standard laboratory data.
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Table A. 11 : Partial derivatives of the Air Density Equation for various values oft. P & h

1L§O)

PE)
h (%RH)

20
101325

101325

apa
dt
kg m-3-

4.4 X10°3

-4.3X10-3

-4.5X10"3

-4.3X 10"3

-4.5X10"3

—4.4x10-3

-4.4x10-3

NP«
dpP
kgm*Pa

1.189X10"5

1.189X10"5

1.18% 105

1.189X10"5

1.189X10"5

1.18X10"5

1.185X10'"5

5pa
dh
kgm-3

-10.5x10-3

-10.5x10-3

-10.5x10-3

-10.5x10-3

-10.5x10-3

-9.9x10-3

-11.0X10-3

A.2

3pt
dR
kgm3J~ molt

-0.144

-0.144

-0.144

-0.147

-0.145

-0.144

dP*
dMv

mol m>*

0.4819

0.289

0.578

0.4819

0.482

0.444

0.511

dpa
dMa

mol m *

41.06

41.297

41.0

41.79

41.275



Listing A. 1.1

<HEADER FILE AIR DEN.H>

¢ifndef AIRDENH
¢define AIRDENH
;define A 1.2378847e-5
#define B -1.9121316e-2
;define C  33.93711047
;define D -6.3431645e+3
édefine alpha  1.00062
;define beta  3.14e-8
#define gamma  5.6e-7 j
#define 80 1.58123e-6
cdefine -2.9331e-8
fidefine a2 1.1043e-10
;define bO 5.707e-6
;define bl -2.051e-8
#define 0O 1.9898e-4
;define cl -2.376e-6
#defined 1.83e-ll
#define e -0.765e-8
cdefine R 8.31451
¢define Ma  28.9635
¢define Mv  18.015
;define tAbs 273.15

extern double enhance_fact(double, double);
extern double vapour_press(double);
extern double compress_fact(double,double,double);

extern double air_den(double,double,double,double td = 0,double co2 = 0.0004);

¢cendif

cHEADER FILE MDEF.H>

;define E 2.718281828

extern double Power(double x, double y);
<PROGRAM MFUNC.CPP>

iinclude <math.h>

¢include "headen\moef.h'*

extern double Power(double x, double y)

{return pow(x,y);
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<PROGRAM DERIV.CPP>

[* Takes 3 arguments : Temp.(°C), Pressure (Pa) & Humidity (%) and evaluates the partial derivatives
w.r.t the six parameters discussed in Chapter 3 & Appendix |
Only one of thefunctions (to calculate dp/dt) is reproduced here*/

Mnclude <stdio.h>
#include <conio.h>
Mnclude <stdlib.h>
Mnclude <air_den.h>
Mnclude <mdef.h>

»

double dpdt(double, double ,double);

double dpdP(double, double ,double);
double dpdh(double, double .double);
double dpdR(double, double .double);
double dpdMa(double,double,double);
double dpdMv(double,double,double);

void main(int argc , char *argv[])

{
double Pth;
char *end;

t= strtod(argv(l], &end);
P = strtod(argv{2], &end);
h = strtod(argv[3], &nd);
h/= 100.0;

3'm(/(\n\nPartial Derivatives of the Air-Density Equation >");
printf(*'\n ™),

[2nni/("\n\in%e%6.81F,Density wrt Tenp. (dpdT) = > " dpdt(t,P,h));
prinif("\n\n%s%a81f", 'Density wrt Pressure  (dp/dP) = > "', dpdP(t,P,h));

prmff(* \Min%s%6.81f," ‘Density wrt Humidity ~ (dp/dh) = :> "dpdnh(t,P,h));
printf[""\n\n%s%. 81f, "'Density wrt Gas Const.  (dp/dR) = > "' dpdR(t,P,h));
pnni/(*\n\n%es%81f"," 'Density wrt Dry molar Mass (dp/dMa) = :> " dpdMa(t,P,h));
[20ni/("\nN\n%s%.81f'/' Density wrt Moist Molar Mass(dp/dMv) = > ', dpdM\(t,P,h));
getche();

}



double dpdt(double t, double P, double h)
{ :
double deriv, ma, nv, TQ a b, g;

ma= Ma *le-3;’
mv = Mv *le-3;
TO=1tAbs; a=alpha; b= beta; g = gantmg;

deriv = -(ma*P*(l - Power(E,C + D/(t + TO) + B*(t + TO + A*Power(t + T0,2))*h*
@ - mvima)*(a + b*P + g*Power(t,2))/P)/(R*Power(t + T0,2)*(I + Power(P,2)*
(d + e*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*
Power(a + b*P + g*Power(t,2),2)/Power(P,2))/Power(t + T0,2)-
P*(@0 + al*t + a2*Power(t,2) +(b0 + bl)*Power(E,C + D/(t + TO + B*(t+ TO + A
*Power(t + T0,2))*h*(a + b*P + g*Power(t,2))/P +(c0 + cl)*
Power(E,2*C + 2*DI(t + TO) + 2*B*(t + TO) + 2*A*Power(t + TO2))*
Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/(t + TO)))) +
ma*P*(-2*Power(E,C + D/(t + TO) + B*(t + TO) + A*Power(t + T0,2))*g*h*
(@ - mvima)*t/P - Power(E,C + DI(t + TO) + B*(t + TO) + A*Power(t + T0,2))*h*
@ - mvima)*(a + b*P + g*Power(t,2))*(B - D/Power(t + TO2) + 2*A*(t + T0))/P)/
(R*(t + TO)*(1 + Power(P,2)*(d + e*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO +
2*A*Power(t + T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/
Power(t + T0,2)-P*(a0 + al*t + a2*Power(t,2) +(b0 + bl)*Power(E,C + D/(t + TO) + B*
(t+ TO +A*Power(t + T0,2))*h*(a + b*P + g*Power(l,2))/P HcO + cl)*
Power(E,2*C + 2*DI(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*
Power(a + b*P + g*Power(t,2),2)/Power(P,2))/(t + TO))) -ma*P*(l - Power(E,C + D/(t + TO
+ B*(t + TO + A*Power(t + T0,2))*nh* (1 - mv/ima)*(a + b*P + g*Power(t,2))/P)*
(-2*Power(P,2)*(d + e*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) + 2*A*
Power(t + T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/
Power(t + TOJ) + PX@0 + al*t + a2*Power(t,2) +(b0 + bl)*Power(E,C + D/(t + TO) + B*
(t + TO +A*Power(t + T0,2))*h*(a + b*P + g*Power(t,2))/P +(cO + cl)*
Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*
Power(a + b*P + g*Power(t,2),2)/Power(P,2))/Power(t + TO2) -P*(al + 2*a2*t + 2*
(bO+ bl)*Power(E,C + D/(t + TO) + B*(t + TO) + A*Power(t + T0,2))*g*h*t/P+ 4*
€O+ cl)*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) + 2*A*Power(t + T0,2))*g*
Power(h,2)*t*(a + b*P + g*Power(t,2))/Power(P,2) HbO+ bl)*Power(E,C + D/(t + TO) +
B*(t + TO) +A*Power(t + T0,2))*h*(a + b*P + g*Power(t,2))*(B - D/Power(t + TO2) +
2*A*(t + TO))/P HcO + cl)*Power(E,2*C + 2*D/(t + TO) + 2*B*(t + TO) +2*A*Power(t +
T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)*(2*B - 2*D/IPower(t + TO2) + 4*A*
(t + TO))/Power(P,2))/(t + TO+ Power(P,2)*(4*e*Power(E,2*C + 2*DI(t + TO) + 2*B*
(t+TO + 2*A*Power(t + T0,2))*g*Power(h,2)*t*(a + b*P + g*Power(t,2))/Power(P,2) +
e*Power(E,2*C + 2*DI(t + TO) + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*
Power(a + b*P + g*Power(t,2),2)*(2*B - 2*D/Power(t + TO2) + 4*A*(t + TO))/
Power(P,2))/Power(t + T0,2))/(R*(t + TO)*Power(l + Power(P,2)*(d + e*Power(E,2*C +
2*DI(t + TO + 2*B*(t + TO) +2*A*Power(t + T0,2))*Power(h,2)*Power(a + b’P +
g*Power(t,2),2)/Power(P,2))/Power(t + TO2) -P*@0 + al*t + a2*Power(t,2) HbO +
bl)*Power(E,C + D/(t + TO + B*(t + TO) +A*Power(t + T0,2))*h*(a + b*P +
g*Power(t,2))/P HcO + cl)*Power(E,2*C + 2*DI(t + TO) + 2*B*(t + TO) +2*A*
Power(t + T0,2))*Power(h,2)*Power(a + b*P + g*Power(t,2),2)/Power(P,2))/(t + TO),2));
return deriv;



Appendix 2. Data Processing Software

Here we illustrate the software used to perform the data analysis described in

t )
Chapter 11. Fig. (11.3), reproduced below as Fig. (A.2.1) described the main steps
involved in the process. The data acquisition software of stage | has already been

described in Chapter 11. Here we concentrate on the other stages.

Vol. Diff. of Standards

Fig. A.2.1: Data Processing Procedure implemented in the research.

Stage Il: The data files produced by stage I, as shown in Fig. (11.2) must be
processed before further analysis is possible. The 'raw data' files contain weight-in-air
data, temperature, pressure and humidity data and a time sequence in seconds to allow
graphing. Program EXxplode shown in Listing (A.2.1) takes such a data file and
produces four output files: each containing the time data and one of the four influence
guantities, temperature, pressure, humidity and weight-in-air data. From these the data

can be plotted, Figs. (11.4) to (11.7) being typical examples of the graphs produced.

Stage HE: It is then necessary to evaluate the air density, which is the input
guantity required by the Weighing Equation (see Eq. (2.2.14) or the data-processing
diagram, Fig. (3.0.1)). Program density shown in Listing (A.2.2) reads the data from

three environmental data files produced in stage IEabove and writes out a data file of
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air density values, calculated by implementing the "BIPM Equation™ for air density.

This too can be plotted, Fig (11.8) being an example.

Stage IV: Finally the desired measurand, the true mass difference for the
comparison, can be computed. This is performed by the program buoyancy (Listing
(A.2.3)) which reads the data from the corresponding weight-in-air and air density
files and queries the user for the volume difference of the standards. Then a data file
of true mass values is written out by applying the weighing equation to the data. Fig.
(11.9) is an example graph produced by this means. From an analysis of the true mass
graphs it is possible to see at what point the measurement process has stabilised and
the data is then valid to use in the parameter estimation analysis. Program buoyancy
can then be also run by specifying a selected number of data points from the graph to
process, giving the mean values of weight-in-air, true mass and air density, as well as
computing the variance of the weight-in-air data. This latter mode of operation is used
to extract data to build up the various vectors and matrices for the analysis described

in the main body of this work.



Listing A.2.1 - Program EXPLODE.CPP

#include <stdio.h>
#include <string.h>

void mam (void)

{charfname[100] = wname[100] = tname[100] = pname[100] =  hname[100] =

/Ifor i/pfilename and 4 o/ps : weight, temp, pressure, humidity

FILE *ptr, *wptr, *tptr,*pptr,*hptr;
double timeweight,tmpl,tmp2,tmp3, pressl,press2,press3, huml,hum?2,hum3;

do{
pwi//("\n\nFH tNarme > "),
gets(fname); _
Jwhile(((fptr = fopen(fname,”r'’)) == NULL) && printf{*"\n\nBad Filename !1"Y);
prtni/(* \n\nOutput Filename for Mass data :> *);
gets(wnarme);
wptr = fopen(wname,"w');
printf{*"\M\nO/p Filename for Temperature Data > ;
gets(tname);
tptr = fopen(tname,”w');
printf{""\m\nOfP name for Pressure Data :> *%;
gets(pnare);
pptr = fopen(pname,"w'");
printf['"\n\nOfP filename for Humidity Data :> *%;
gets(hname);
hptr = fopen(hname,"wW'";

while(ficax/(fptr," vdfodfodfodfodfodfydfydfodfodfodf]
&time,&weight,&tmpl,&tmp2, &tmp3,&pressl,
&press2,<&press3,&huml,&hum2,&hum3) 1=EOF)

{fprintf(wplr,"%U 9df\n"",(time/3600.0),weight);

fprintf(tptr,"%df %olf\n",(time/3600.0),(tmpl+tmp2+tmp3)/3.0);
fprintf(pplr,%\f %lfAin"" (time/3600.0),(pressl+press2+press3)/3.0);
fprintf{hptr,"%df %lf\n"" (time/3600.0),(huml+hum2+hum3)/3.0);

}
fcloseallO;
NN« \n\inFile Conversion Successful!™);

}
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Listing A.2.2 - Air Density Calculation Code
Header File AIR_DEN.H used by program AIR_DEN.CPP

¢ifndef AIRDENH__
¢define AIRDENH_
#define A 1.2378847e-5
¢define B -1.9121316e-2
¢define C  33.93711047
¢define D -6.3431645e+3
¢define alpha  1.00062
¢define beta.  3.14e-8
¢define gamma  5.6e-7
¢define &0 1.58123e-6
¢define al 2.9331e-8
¢define a2 1.1043e-10
¢define bO 5.707e-6
¢define bl  2.061e-8
¢define A0 1.989%8e4
¢define cl -2.376e-6
cdefined  1.83-11
¢define e -0.765e-8
¢defineR 8.31451
¢define Ma 28.9635
¢define Mv  18.015
¢define tAs 273.15

extern double cnhanee_fact(double, double);
extern double vapour_press(double);

extern double compress_fact(double,double,double);

extern double air_den(double,double,double,double td= 0,double co2 = 0.0004);
¢cendif
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Program DENSITY.CPP
#include <stdio.h>
#include <conio.h>
#include <string.n>
#include <air_den.h>

void main(int argc, char *argv[])

{char pname[100] =  hname[100] = tname[100] = dname[100] =
FILE “pptr, *hptr, *tptr, *dotr;

double density, temp,press,hum,Ume,sto;

strepy(tnamc,argv] 1);

strepy(pnamme,argv[2]); ,
sticpy(hname,argv[3]);

[;n>Nifi\n\n\nDensity Calculating Program : Enter o/p FileName :>*%;
gets(dnae);

tptr = fopen(tname,"r");
pptr= fopen(pnare,”r");
hpir = fopen(hnanme,"'r');
dplr = fopcn(dname,"wW';

while(/jca«/(pptr,"'%lf %dfAn",&time,&press) = EOF)

{fscanfitptl’,"o/df %dI\n",&sto,&temp);
/jcflwy(hptr,""%df %dfn",&sto,&num);

density = all_den(temp,(press * 100), (hum/ 100));
fprintf{<ipu\"%\{ %dl\n""time,density);

}
fcloseall();
[jn>titf A\nVInDONE! 111');

}
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Program AIR DEN.CPP
#include <stdio.h>
#include <math.h>
#include "header\air_den.h

extern double air_den(double t, double p, double h, double td, double co2)
{

double f, psv, xv, density, z, T = tHAs;

double fd, psvd;

double M= ( M+ 12.011 *(co2 - 0.0004 )) * le-3;

f =enhance_fact(p,t);
psv = vapour_press(t);

if(td==0)
xv =(h*f*psv)/p;
elsef

fd =enhance fact(p,td);
psvd = vapour_press(td);
xv = (fd*psvd)/p;

% = compress_fact(p,t,xv);

density=p/ (z*T)*(l-( 0.378 *xv)) *(M/R);
return density;

Y R R R e e e

extern double enhancc_fact(double p, double t)
{double f;

f=alpha+ (beta*p) + (gamma *t* t);
returnf;

}

extern double vapour_press(double t)
{
double arg, vp, T = t+Abs;

ary = (A*T*T)+(B*T)+C+DI);
Vp = explarg);
return vp;

}

extern double compress_fact(double p, double t, double xv)
{
double argl, arg2, z, T = t+Abs;

argl = a0+(al*t)+@2*t*t)+((b0+bI*t) 5xv)+((CO+CI*) *xvxv);
arg2 = (p*p*(d+e*xvxv))/(T*T);
z=1-((p/T)*argl) +arg2;

return z;

}
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Listing A.2.3 - Program BUOYANCY.CPP
#include <stdio.h>
#include <stdlib.h>
#include "header\air_den.h"
#include <math.hi>
#include <string.h>
#include <conio.h>

double round(double);
void datal(FILE *, FILE *,double);
void data2(int, int, double, FILE *, FILE *);

void main(int argc, char *argv[])

char mode;

int start, finish;

double dvol;

char mname[100] = "", dname[100] =
FILE *mptr, *dptr;

if(argc < 3 ){

printf["\n\n Usage :> buoyancy filel file2 "); exit(l);
gtrcpy(mname,argv[l]); strcpy(dname,argv[2]);

mptr = fopen(mname,"r"); dptr = fopen(dname,"r");
pnn(/("\n\nBuoyancy Correction Program : Enter Vol. Diff (cmA3) :> ");
scanfC'% I, & dvol);
pnni/("\n\nGraph Mode (1) or Data Mode (2) ?? > ");

mode = getche();

if(mode - '29

L W«(/("\nYnEntcr start data point :> ");
scanfC %d" ,&start);

/2n>jit/("\n\nEnter finish data point :> ");
scanf("%d",& finish);
data2(start,finish,dvol,mptr,dptr);

}

else
datal (mptr,dptr,dvol);

fcloseall();

printf(""\n\n\nDONE !");

}

void datal (FILE *mptr, FILE *dptr, double dvol)
{

double time, mass, sto, meanDiff, density;

FILE *opptr,

char opname[100] =

[;rini/("\n\nEnter o/p file name :> ");

gets(opname);

gets(opname);

opptr = fopen(opname,"w");

while(/ycan/(mptr,"%1f %If\n",&time, &meanDiff) 1= EOF)

fscanf(dptr,"%If %]li\n",&sto,&density);
mass = meanDiff + (density * dvol * 1000);



mass = round(mass);
prmi/(""\n%s%1f%s%1f%s%If',"" Density :> *.density,” Weight :> ".meanDiff," Mass :>",mass);
fprintfiopptr,”%lIf 9%If\n"" time,mass);

}

void data2(int start, int finish, double dvol, FILE *mptr, FILE *dptr)
{ _

int pos, i;

double meanDiff, density, mass, time;

double Sx_w, Sxx_w, xbar_w, var_w;

double Sx_d, Sx_m, xbar_d, xbar_m;

pos=1;i=0;

SX_w = Sxx_w = xbar_w - var_w = Sx_d - Sx_m = xbar_m = xbar_d = 0;
printf("\nWt-m-air Air-Den Mass");
prinf/i["\n===~=~~~==== = = = = = = ==~~==");
while(/ican/imptr,"%If %If\n"",&time, &meanDiff) !- EOF)

fscanf(dptr,"%If %If\n",&time,&density);
if(pos < start) { ++pos; continue; }

else{

mass = meanDiff + (density * dvol * 1000);
}
++posi ++ij

Sx_w += meanDiff; Sx_d +—density; Sx_m += mass;
Sxx_w += pow(meanDiff,2);
xbar_w = Sx_w/i; xbar_d = Sx_d/i; xbar_m = Sx_mli;
if(i > 1)

var_w = fabs(Sxx_w - (i * pow(xbar_w,2)))/(i-1);
printf("\n%\f %If %If" ;meanDiff,density,mass);
if(pos > finish) break;

pn'n//IC'\n\n%s% If',"Mcan, wt.in air :> " xbar_w);
printf("\n%s% If',"Variance, Wt. in Air :> " ,var_w);
printfC'\n% s% \r,"Mean, Air Den. :> " xbar_d);
prini/("\n%s% If',"Mean, True Mass :> " ,xbar_m);
prini/("\n%s%d","Number Data Points :> ",i);

}

// Thisfunction rounds a number to the nearest integer
double round(double value)

double result, mantissa;
int decimal;

decimal = int(value);

mantissa = value - decimal;

if(mantissa > 0.5) result = (double)decimal + 1.0;

else if (mantissa < -0.5 ) result = (double) decimal - 1.0;
else result = (double)decimal;

return result;
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Appendix 3: Glossary of Selected Terms

Apparent Mass: The result of an ‘in-air’ mass determination— by any measurement
means— but prior to applying any corrections for buoyant forces, centre-of-gravity

differences, etc.

Augmented Design: An estimation technique, based on the Least Squares criterion,
or on the Gauss-Markov theorem in which both prior and current information1 is
treated as data having corresponding covariance matrices. These two sets of data are
augmented into one extended set which can then be adjusted by either of the two

criteria mentioned.

Bayesian Estimation: A probabilistic estimation technique using Bayes’ Theorem—
i.e. incorporating conditional probabilities and prior information with new current

data in order to obtain updated posterior estimates.

BIPM Formula: An equation for the determination of the density of air,
recommended by the Comité International des Poids et Mesures in 1981 and updated
in 1991, used by the Bureau International des Poids et Mesures and most national

laboratories.

BLUE: Best Linear Unbiased Estimator: An estimator which combines the
characteristics of minimum variance, is unbiased, and a linear combination of the

observations.

Buoyancy Correction: An apparent mass difference between two standards resulting
from the different densities of their constituent materials and hence the standards

experiencing different buoyant forces.

Combined Difference Standard Deviation: This is the root-sum-square of the
respective standard deviations of the terms involved in calculating a difference or

residual vector.

Combined Standard Uncertainty: A root-sum-square of uncertainty contributions

due to the various influence quantities featuring in afunctional relationship.

Comparison Calibrations: A calibration method in which residual differences
between nominally equal quantities (mass, length etc.) are measured with resulting

greater accuracy than could be achieved by measuring absolute values.

1Terms in italics are defined elsewhere in this Glossary.
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Conditional Probability Distribution: A distribution describing a parameter or set
of parameters that are subject to the existence of some other parameter, set of
parameters, or hypothesis. The dependency represents logical rather than causal

connections.

Constraint: Prior information which is treated as a deterministic quantity. A solution
to a set of consistent equations for some parameter values to be found by either
algebraic manipulation or statistical adjustment must be subject to the condition that
the prior information remains unchanged.

>
Constraint Contribution: The true contribution to the covariance matrix of a

parameter estimation due to the constraints that were applied to the estimation
process. This information is however excluded from the estimation analysis in any

technique that uses constraints (e.g. RLS) and must be added afterwards.

Conventional Mass: A term not widely used in the thesis but in common currency in
mass metrology as a convenient approximation. The conventional mass of a standard

is defined as being the mass of another standard which would exactly counter-balance
it in air of density 12 kg/ m . This other standard must further have a density of

8000 kg / m .

Corrected Realised Quantity: Value generated by thefunctional relationship: this is

the measurand estimate.

Covariance Matrix: An important quantity in multivariate statistical analysis. It is a
matrix in which diagonal terms give the variances of the elements of a corresponding
data vector and the off-diagonal terms give the covariance between pairs of data

elements.

Criteria of Consistency: Important tenets of Classical Probability Theory which
indicate that all solutions to a problem should lead to the same result, that, all available
evidence relevant to a problem should be brought to bear on establishing its solution
and that equivalent states of knowledge should be represented by equivalent
probabilities / plausibilities. These criteria underlie much of the Unified Approach to

data analysis.

Current Information / Data: New data obtained by the comparison experiment, to

be used along with the prior information in obtaining parameter estimates.
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Degrees of Belief: A statistical / probabilistic statement about the accuracy of a
parameter estimate which has been constructed based on all known and available

information.

Design Matrix: An n x p matrix indicating the form of the n comparisons to be
carried out among the p parameters. The elements of this matrix are either 1, 0 or -1

depending upon the role of each parameter in the particular comparison.

Deterministic Parameter: A parameter ‘estimate’ considered to be a constant and

thus to have a zero variance and no covariance with any other parameters.

Difference Vector: The difference between the prior and posterior parameter

estimates.

Dispersion Characteristic: A model for the uncertainty estimate of a parameter,

incorporating a probability distribution function and a variance estimate.

Experimental Errors: Unknown contingencies / influences outside the scope of the
model parameterisation but nevertheless effecting the observed outcome of an
experiment (in an unknown way). In the Unified Approach these unknowns cannot be
modelled but instead probability distributions are assigned to the measurand estimates

to parameterise the resulting plausibility of the determined value.

Extended Model: A system model used with GGM, like that used in the Augmented
Design, in which prior information is included in the analysis. The prior information
takes the form of restraints which can be either stochastic or deterministic. The GGM

method can deal with either situation.

Expectation Value: A "mean value", or value of highest probability in a distributed

set of data, described by some probability density function.

Functional Relationship: The mathematical model for realising an estimate of the

measurand from the known influence quantities and direct measurement data.

GGM: Generalised Gauss-Markov Method: A parameter estimation technique
based on finding a minimum variance estimate without any restrictions on the
guantities involved. It implements the method of generalised inverses and allows the

use of an extended model in describing the data.

GM Theorem: Gauss-Markov Theorem: Proves a BLUE estimator exists. It is more
general then Least Squares, among its features being that it does not require all data to

be of equal variance as does Least Squares.
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Gaussian Procedure: Usually based on a Taylor series expansion of the functional
relationship. From this the contribution of the variances/covariances of the influence

quantities to the final measurand estimate can be calculated.

General Law of Error Propagation: The term usually used in the 1SO Guide to
describe the procedure for evaluating uncertainties in a unified and coherent manner.

Synonymous with the Gaussian Procedure above.

Gravitational Correction: An apparent mass difference resulting from a difference
in heights of the centres of mass of two standards. |t is one of the corrections to the
weight-in-air difference that must be applied, via the weighing equation, to obtain the

mass difference.

Inductive Logic: The process of inferring among several possible causes the most

likely for a given set of observed effects.

Influence Quantities: Secondary or 'systematic’ parameters whose influence must be

included in the parameterisation needed to obtain the measurand estimate.

Jacobian: Mathematically, the Jacobian is the determinant of a matrix of partial
derivatives, formed from a set of functions fj,...,fn, each of which contains influence

quantities uj,...., um It is fully called the "Jacobian o f w i t h respectto uj,...., um

Likelihood Function: A conditional distribution describing the function which would

generate the parameters needed to give an already observed distribution of data.

Linear Unbiased Estimator: An estimator which is a linear combination of the
corrected observations and is an unbiased estimate of the unknown ‘true' values of the

parameters.

MAP: Maximum a Posteriori Estimation: This estimator combines the MLE
criterion with Bayes's theorem to produce a posterior estimate from a set of current
data and any available prior data. It allows the possibility of recursive and sequential

estimation of parameters.

Mass Difference: The corrected result of a comparison calibration between a pair, or

ensemble, of mass standards.

Mass Value (Physical Mass): The absolute value of a mass standard, in high
accuracy work to be determined by statistical adjustment of a set of mass differences

by some parameter estimation technique.
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Maximum Entropy: (MaxEnt): The Entropy of a Probability Distribution is a
numerical measure of the ‘Uncertainty’ it represents with respect to a parameter
estimate. The Maximum Entropy approach involves maximising this uncertainty
subject to the constraints of definitely known information. Such a technique ensures a

‘maximally unbiased’ estimate from a given set of subjective information.
Measurand: The specific physical quantity subject to measurement.

Minimum Variance Estimate: A parameter estimate, obtained from the
measurement data and uncertainties, which has the lowest uncertainty among all

possible estimates that could be produced by mathematical means.

MLE: Maximum Likelihood Estimation: An estimation method based on an
analysis of probability distribution functions which seeks to maximise the likelihood
function for the parameters, given the observation data which was obtained. Thus it is

atechnique which deals only with the observed data.

Over-Determined System: A design for a calibration experiment in which more
comparisons are carried out than are needed to find a solution. The extra redundant

information provides degrees of freedom for a statistical adjustment of the parameters.

Posterior Information: An estimate (with corresponding covariance matrix or
probability distribution) formed by combining prior information with new
experimental data on a parameter or set of parameters. The ‘combining’ takes the

form of aBLUE adjustment.

Prior Information: Data about the parameters involved in the estimation which is
available before the experiment is carried out. In the case of mass determination such

information is necessary to obtain a particular solution.

Probability Density Function: A distribution function describing the range of likely
values which would occur in attempting to estimate some parameter. In principle
every measurement or data value (which is an estimate subject to unknown errors) can

be described by some such distribution.

Realised Quantity: That which is directly obtained from the measurement and

generally is not the measurand desired.

Relative Accuracy: In comparing two sets of information, or individual members of a
set, the relative accuracy, or relative magnitude of their respective variances /

covariances is important in predicting their influence in any parameter estimation.
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Residual Vector: The difference between the experimental data vector and the

estimated experimental data based on the posterior parameter estimates.

RLS: Restrained Least Squares: The standard LS criterion (possibly modified by
WLS) but subject to a set of constraints, linearly independent of the observational
equations. The method of Lagrange Multipliers is used to solve the LS criterion

subject to these constraints.

Robustness: Applied to a description of any estimator in this thesis; a robust
estimator is one whose posterior (or output) estimate is stable in the event of

perturbations or inaccuracies in some of the prior information or constraints.

Sensitivity Coefficient: The partial derivative of a measurand estimate with respect
to one of the influence quantities, at specified values of other influence quantities, if

relevant.

Sequential Estimation: An extension of the MAP Estimator in which the posterior
estimates form the prior data for a subsequent estimation with new (chronologically

later) experimental data.

Standard Uncertainty: The positive square root of a variance. This quantity is to be
used as a fundamental measure of the uncertainty associated with a parameter

estimate.

Statistical Estimation Techniques: Methods for processing data from an over-
determined measurement system in order to carry out an adjustment to get the 'best’

(or minimum variance) estimate of the parameters.

Stochastic Parameter: A parameter estimate with an assigned Degree of Belief, i.e.

given variance and covariance terms.

Subjective Estimate: Any estimate is subjective in the sense that the knowledge
available at the time is finite. Later work may present new information, forcing an
update to the current estimate. In other words, analogous to Conditional Probabilities,
any parameter estimate is conditional on the background knowledge available at the

time.

System Model: The relationship between the corrected observation data and the

parameters to be determined, usually dictated by the design matrix.



Unbiased Estimate: The result of an analysis (an estimate) is unbiased if all the
known information relevant to the problem has been utilised in a manner consistent

with the basic criteria of the Unified Approach.

Uncertainty Contribution: The influence of the variance of an individual influence
guantity on the final variance estimate of a measurand. This is dictated by its role in
thefunctional relationship and is defined as a product of its sensitivity coefficient and

standard uncertainty.

Unified Approach: A complete formalism for data analysis in which all quantities are
treated equally, all available information is used and unavailable data is not
considered or assumed. This approach is modelled on the essential criteria of
probability theory and adherence to these Criteria of Consistency is considered a basic

test for any analytical method in the Unified Approach.

Variance: A characteristic quantity of a probability distribution, used in describing its
"width" or "spread"”. Hence it is an integral part of quantifying the uncertainty of an

estimate.

WLS: Weighted Least Squares: A method for avoiding the problem of non-equal
variances which prevents Least Squares from producing a minimum variance

estimator. This method produces the same estimate as does the GM Theorem.

Weight-in-Air: The uncorrected result of a comparison calibration carried out in air,
without corrections for buoyancy, centre of mass differences, volume expansion

coefficients etc., having been applied.

Weighing Equation: Thefunctional relationship among the complete set of influence
qguantities needed to generate the corrected mass difference of a pair of standards. It

can be expressed in scalar or multivariate notation.

Within-Group Comparisons: The determination of the mass values of a set of
standards by intercomparison among themselves, usually in an over-determined

manner; the value of at least one of them being known from previous calibration.
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Abstract

The application of Bayesian-based statistics to the solution of a set of over-
determined equations resulting from comparison calibrations is considered. Following
the recommendations of the ISO Guide on Measurement Uncertainty, a model
parameterisation is developed which facilitates the inclusion of all known experimental
information, and indeed prior information from previouscalibrations,should this be
available. A critical comparison, between this recursive approachand the classical
solutions based on Lagrange Multipliers or the Gauss-Markov theorem, is made.

Some non-trivial differences between this approach and the conventionally used
approaches in mass calibration have been found. An example from relevant

experimental data, treated by both estimation methods, is included.

1. Introduction

The problem at hand is the data reduction of a set of n over-determined equations, to
estimate p parameter values. This requires an adequate description of the experimental
model and also a suitable Parameter Estimation method. The application of such a
process to high accuracy mass determination is considered here. An implementation
of the ISO Guidel for parameterising the experimental situation has been proposed 2
recently. This model is developed for a specific system and an example is given of its
implementation. The feature of particular importance is the inclusion of uncertainty
terms due to the systematic buoyancy correction in the overall model, allowing their
inclusion in the estimation process.

With respect to the estimation process, two main approaches are highlighted: one
based on the well known Least Squares (LS) method; and a Bayesian approach based
on Maximum Likelihood Estimation (MLE). The former has been conventionally used
in mass metrology ( e.g. 3 ) while the latter has been proposed 5 as a means to
circumvent some difficulties with the former. These arise as a result of the need to
incorporate restraints in the estimation process in order to get a particular solution,
since the calibrationdesigns involve only differences between parameters which
prevent a unique solution being obtained. The MLE approach is implemented here and
its behaviour studied by looking at its performance in a specific example. It is shown
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to be much more flexible than the LS approach and its treatment of the necessary
constraints is highlighted as being preferable.

2. Model Parameterisation
At the outset of any experiment it is necessary to clearly describe the relationship
between the parameters to be estimated and the data to be obtained for this purpose.
The system of equations so generated may be referred to as a System Model, such as :
Y =f(P) (1)
In the case of mass comparisons, the data can be described by
Y = AWnxi + pnxn.Xnxp Mpxi 2
while f(P) = X.p. Here, AW is the vector of observed "weight-in-air" differences; p is
a diagonal matrix whose elements are the relevant air densities for each comparison,V
is a vector ofvolumes of the pparameters and X is a design scheme for the
comparison experiment. Automated commercially available comparators are used to
obtain AW. Sensitivity weights are not employed and other corrections such as those
for center of gravity differences or volume expansion coefficients are not considered.
It is also necessary to establish a covariance matrix for Y. This is done using the
error propagation analysis of 1 with the matrix implementation described in 2. If Y =
f(U), where U is the vector of influence quantities involved in generating Y, the
covariance matrix of Y can be calculated from:

¥y=Ju-Vu-Jul (3)
and JU=VUYT (4)
where \J/u is the variance / covariance matrix of

AW 0 0 . .
v aw U. It is assumed that there are no covariances
= p sandifu= 0 0 among the influence quantities as each results
\ 0 0 wv from separate measurements using separate

instrumentation. Thus with U and \[/lu as
opposite and using Eq.(2), Eq.(3) can be evaluated to give:

Vy = ¥aw + diag{x.\).\|/p.diag{x.\} + p.x.\|/v.xT.p (5)

is diagonal as each comparison is a separate measurement. \|/AW = s2.1 is not
assumed since this is very rarely, if ever, true in practice. The second term is the
contribution to \jly due to the air density term in Eq.(2). This is diagonal since p =
diag{pi,P2JF--Pn} and not p.l. Thus each pj is an independent measurement. The third
term gives the contribution due to the volume term in Eq.(2). While \\fy is diagonal,the
third term as a whole, is non-diagonal as a result of the form of X; and introduces
covariances into My. Eqgs.(2) & (5) provide all the necessary tools to give a full
parameterisation of the calibration experiment.

3 Selecting an Estimation Method

The most commonly used estimator which can be derived from either a Weighted
Least Squares ( WLS ) approach, or more generally via the Gauss-Markov theorem (
GM ), gives solutions of the form

X)-i. Xt.ily-].Y (6)

Pgm = (X t.vlly"
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(see for example 6,7,8)

However, ( XT.X ) is singular which is an inevitable consequence of a calibration
design involving only differences in parameters so Eqs.(6) & (7) cannot be used
directly. The conventional solution to the problem is to impose constraints on the
Normal Equations; the constraint usually being the value of a selected parameter
involved in the comparison. In general the constraint can be expressed as a linear
combination of the parameters so that:

ATp=_C (8)
where C is the constraint vector. The implementation of this method has been outlined
in 4 and results in estimators whose form can be suminarised as:

PLM=L.Y + M.C (9)

\lIp= L\/yLT+ M\/dMt (10)
where L and M are linear, non-random matrices.The problems with this estimator
have been well documented 9, chief among them being its inadequate treatment of the
constraint information which is considered deterministically to get a solution and then
stochastically to obtain the proper covariance matrix

It is better if all information necessary to obtain a complete solution can be included
in the estimation process from the beginning. In this respect Maximum a Posteriori
estimation, based on Bayesian statistics is superior. Here the constraints are viewed as
prior information which is to be updated by the current information obtained in the
experiment. The estimators in this case are:

en.o = POH(XE.M",-"XH>0-,)-" XL¥ -, (Y - XH0) (11)

vVu, = (XT.v,-,'X +"iv-,>1 (12)
(See for example 6 and also 10>11 for some general comments on Bayesian Estimation
and the treatment of measurement uncertainties)

With this estimator, there is no problem with ( XT.X ) being singular since the only
condition is the existence of Eq.(12).

4. Example

4.1 Input Data

The comparison experiment involves three 50g standards, labeled b1,b2,b3. The
design matrix is given in Fig.l. Table I gives the relevant experimental data while
Table Il gives the prior information. The PO data is given as deviations in (j,g from a
nominal 50g9.With the aid of Eq.(5) \jly is calculated (see Fig. 3) The three constituent
parts are shown, illustrating that the volume term gives rise to the largest
variance/covariance contribution.
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4.2 Bayesian Estimation

The estimators in Eqgs. (11) & (12) are used,
giving the estimated values and covariance
as illustrated in Fig. 2. It s
immediately obvious from a comparison with
Table Il that a reduction in the estimated

matrix

variances of the

parameters

has been

effected. This is a consequence of freeing the

parameters from a deterministic situation and then applying a minimum variance
estimator. It is clear from Fig 2 that a complete solution has been established and no
further calculation is necessary.

Table | - Experimental Information

Data AW diag (YAw) diag(p) X.V Y
Point (W) (t-ig)2 (mg.cm'3) (cm3) (U fi)
yi 66.0 0.107 1.199 -0.1419 -104.1
Y2 -109.0 0.227 1.202 -0.1266 -261.2
Y3 -173.0 0.190 1.202 0.0153 -154.6
Y4 - 65.6 0.190 1.200 0.1419 104.7
Y5 109.5 0.112 1.191 0.1266 260.3
6 172.4 0.140 1.207 -0.0153 153.9
Table Il - Prior Information
Parameter R0 ( Mg) diag(¥Po) (Hg)2 V (cm)3 diag(\j/y) 12 (cm3)
b, - 63.0 25.0 6.2202 0.0011
b2 34.0 225.0 6.3621 0.0009
186.0 225.0 6.3468 0.0009
0.107 0 0 0 0 0 3.02 0 0 0 0 0
0.227 0 0 0 0 2.40 0 0 0 0
0.190 0 0 0 0.035 0 0 0 10
symm 0.190 0 0 symm 3.02 0 0
0.112 0 .40 0
0.140 0.035
(a) (b)
29 1.74 -1.16 -2.9 -1.72 1.17 3.01 1.74 -1.67 -2.90 -1.72 1.17
2.9 117 -1.17 -2.89 -1.17 3.15 1.17 -1.74 -2.89 1.17
2.34 1.17 -1.16 -2.35 2.53 1.16 -1.15 -2.35
symm 2.90 1.73  -1.17 symm 3.10 1.72 1.17
2.86 1.16 2.98 1.16
2.36 2 .50
(c) (d)

Fig 3. The components of wy : (a ) \[/JAWterm ; ( b ) term due to air density variance ; (c ) term due to

volume variance ; & (d ) the complete \|/
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-64.7 4.2.1 Analysis

P= 40.0 (pg) : Table m gives the estimated

195.1 parameter values and variances for

' several cases of prior information,

20.53 20.11 20.11 ranging from the minimum necessary,

\/p= 20.11 22.60 21.40 (jxg)2 to full prior information about all

parameters. When just one parameter
is included in the prior information,
Fig. 2 Estimated Parameter Values and only one solution is possible in each
Covariance Matrix Using Eqgs. (11) & (12) case 'and so no reduction in variances

can be effected. This is illustrated in
Cases B,C & D in Table m, which show that under these conditions it is preferable to
use the parameter which has lowest variance to get the best solution. It is also clear
that the parameter of lowest variance exerts the greatest influence on the result. For
example, in Case G, the variance of b2 and b3 is reduced to 113 (lig2. However, in
Cases E & F ,as well as A & B, where the much lower variance of bj is included in
the prior information, the estimated variance for b2 and b3 is now much reduced.

The relative accuracy of the prior information influences the estimated values as well
as the estimated variances. When b™ is not included in the prior information (i.e. it is
given infinite prior variance and arbitrary value) it is adjusted much more
significantly. In the limit of zero variance, on the other hand, the parameter would not
be adjusted in any way. This is a useful feature for dealing with suspect prior
information which may not be accurate. In Table IV parameter b3 is given an in-error
prior value which should adversely effect the estimated values. In the first column
(case (i)) the estimated values can be seen to be quite different to the data in Table HI;
while in the second column, where s2( b3) = 900 pg2, the in-error prior value is
adjusted significantly while the other two are adjusted much less. In this respect, the
relative accuracy of the prior information and the experimental information is
important: prior information which disagrees with the experimental evidence will
result in large residuals (where residuals here are the differences between observation
data and estimated observation data, i.e. (Y - X.fi). However, if the experimental
information is significantly more accurate than the prior information, the influence of
the latter will be reduced. To simulate this, the prior information was given a variance
of 4 (ig2 ,which is similar in magnitude to that of the experimental information as
given in Fig. 3. This is shown in Table IV, case (iii). Table V gives the residuals for
the various cases of Table IV : the difference in residuals between cases (i) & (ii) is
minimal, while the difference between cases (iii) & (iv) is significant.

20.11 21.40 22.59
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Table Il Estimated Values and Variances for Various Prior Information
Estimated Parameter Values (lig)
Prior Data. Case A Case B Case C Case D Case E Case F Case G
b, : -63 * -64.7 *-63.0 -71.5 -74.3 *-63.8 *-64.1 -72.9
b, : 34 * 40.6 42.5 * 34.0 31.1 * 415 41.3 * 32.6
b, : 186 *195.4 197.4 188.8 * 186.0 196.5 * 196.1 * 187.4
Estimated Parameter Variance (|.lg)2
Prior Case A Case B Case C Case D Case E Case F Case G
Variance
s2(bi): 25 * 20.53 *25.0 227.99 227.99  *22.53 * 22.53 114.8
S2(bo) :225 * 22.63 27.99 *225.0 227.42  *24.89 25.16 * 113.1
S2(bO : 225 *22.60 26.76 227.42  *225.0 25.12 * 2486 * 113.1
Note "* " => corresponding prior information used in the estimation process
Table IV - Simulating an Error on one Parameter ( using all prior information )
Variances (|lg )2 case (1) case (i) case (iii) case (iv)
s2(b,) 25 25 4 4
s2(bo) 25 25 4 4
s2(b.) 25 900 4 900
Prior Values ( |ig ) Estimated Values
b, -63.0 -77.4 -67.4 -74.0 -66.1
b9 34.0 27.4 37.6 28.4 37.0
b?  160.0 180.9 192.5 176.6 192.7
Table V Comparison of Residuals (Y - X.p ) for Table IV data
Table IV - case (i) Table IV Table IV Table IV
residuals ( (ig) case (ii) case (iii) case (iv)
0.82 1.02 -1.61 -0.81
-2.84 -1.18 -10.61 -2.27
-1.16 0.29 -6.50 1.04
-0.12 -0.32 2.31 1.51
1.94 0.28 9.71 1.37
0.36 -1.09 5.70 -1.84

4.2.2 Principle Conclusions
Complete evaluation of \|[/p with reduced error covariance matrix for all parameters is
possible. Degrees of belief associated with the prior information plays an important
role: if some information is considered more accurate than others, the estimates will

be constrained more in that direction.
The estimator can be very robust in dealing with errors in either the prior or current
information, but this depends on the relative accuracies of the data. If a higher degree
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of belief is attached to some information which is in error, it does not seem possible to
counteract this, and the estimator is then less robust. The problem will be highlighted
however, in either large residuals or estimated values which are significantly different
from their prior values, indicating that at least one set of information is in error.

4.3 Restrained Least Squares Estimation

The conventional least squares solution is applied to the case of just one constraint.
This gives the same result as the Bayesian estimator with one piece of prior
information, as there is only one solution in this situation and all estimators will
generate it. The solution is shown in Fig. 4. The incomplete covariance matrix is
shown along with the *"constraint contribution™, \|/c, which must be added to give a
complete solution. This estimator performs very badly if there are two constraints in
this case, since all the adjustment must be carried but on only one parameter. This
results in very poor agreement with the experimental data, large residuals and an
unsatisfactory fit. As there is no facility with this method to enter any information
about the relative accuracy of the prior information, the inherent variability of the
constraints cannot be used to advantage in the estimation process.

-63 0o o0 0 25 25 25
425 (Hg) Wp= 0 299 176 (Mg \Ve= 25 25 25
197.4 0 1.76 2.95 25 25 25

Fig 4 - Estimated parameter values and covariance matrix using Restrianed Least Squares Solution

6 Conclusion

The requirements for establishing a complete parameter estimation method for
dealing with over-determined, singular design comparison calibrations have been
outlined. This includes the necessity to fully parameterise all variance/covariance
components associated with the input data. Off-diagonal terms in the covariance
matrix of the input data should always be included as there are cases where their
inclusion does effect the result. It is also necessary to find a method for suitably
incorporating any constraints required to obtain a solution. It has been shown that
Bayesian estimators are best for this as they take a more appropriate view of the prior
information than does the traditionally used estimator. Also, some of the
characteristics of the Bayesian Estimator have been examined, noting how it performs
with various combinations and accuracies of prior/current data. It has been shown to
be very robust under most conditions and to clearly highlight problems even where it
cannot circumvent them. In contrast, the conventionally used solution is much more
rigid and cannot react to varying information about the prior data. The overall
approach described allows a uniform treatment of the data which is in line with
current guidelines on uncertainty estimation.
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MAXITMUM ENTROPY & BAYESIAN APPROACHES TO PARAMETER ESTIMATION INMASS
METROLOGY
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EXTENDED ABSTRACT

Data analysis models should be both mathematically sound and physically relevant. Consistency and
homogeneity should also be characteristics of the analysis. The treatment of measurement uncertainties is
critical to the accuracy of the method developed. The logic of Classical Probability theory provides the most
appropriate approach to dealing with data of a non-deterministic nature as it is a method of reasoning in the
absence of certaintyl,2. A Bayesian view of probability is adopted, based on desiderata of consistency—
namely that the same conclusion should be reached, irrespective of the intermediate routes of evaluation,
that all known and available information must be incorporated into the analysis and that equivalent states of
knowledge must be described by equivalent mathematical statements|’3. From this foundation a complete
probability analysis can be constructed.

A thorough practical basis for implementing a measurement analysis strategy has been presented in the
ISO Guide4, now widely accepted. One of its key aspects is a uniform and consistent treatment of all
influence quantities. Establishing variance measures for all elements is achieved by assigning Degrees of
Belief which reflect the extent of available knowledge about each parameter. This will include all relevant
information, but only that information which is available about the parameterl

The Principle of Maximum Entropy (MaxEnt) ensures that Degrees of Belief can be assigned in a
consistent manner, free from possible bias. The entropy of a probability distribution gives a measure of the
amount of "uncertainty" it represents. Maximising this subject to the constraints of whatever is known about
the parameter generates the most honest probability assignment since it assumes the least knowledge about
the parameter while reproducing any known features. For example, maximising the entropy tells us, as we
would expect, that a uniform distribution is the best assignment when nothing is known except the range of
values the parameter could adopt. Also when an estimated mean and variance are known, MaxEnt indicates
a Gaussian Distribution to be the least subjective.

The analysis of mass calibration data involves the parameterising of an experimental situation and
subsequent data reduction of a set of over-determined comparisons to evaluate the mass values of a set of
standards**. a Unified Approach is desired to all aspects of this work, which will ensure optimal
estimation and full use of all available information in a non-biased manner®. This is done using the
principles of consistent reasoning of the ISO Guide, MaxEnt and Bayesian Parameter Estimation.

Statistical Adjustment by the Bayesian M ethod”,8 ensures the process of consistent reasoning is
maintained. It utilises all the available information while not assuming unknown data. It results in parameter
estimates of improved accuracy, often providing error-detection and even error-correction, should there be

inconsistencies or systematic errors in the data.
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ABSTRACT

Computer-controlled data acquisition and processing systems are becoming more
widespread in the mass calibration Ilaboratory in recent years. Comparator
manufacturers often provide software accompanying their instruments, especially in
respect of the automated comparators now widely used in high accuracy work.

This paper presents the motivation for a laboratory to develop its own software rather
than relying on externally produced packages. The scope of software applications is
considered in the light of metrological requirements. Problems resulting from the use
of different software packages with different instruments are discussed in terms of
data storage and presentation formats.

Access to source code is considered essential for the traceability and accuracy that is
required in a metrological context. It must be possible to verify the algorithms used,
particularly in relation to uncertainty calculation. The need for a coherent, unified
approach in this regard is presented.

The advantages of in-house software development are highlighted by reference to
software developed recently at the National Metrology Laboratory, Dublin. This
software is able to access a range of different mass comparators and is also able to
interface with additional instruments for measuring temperature, pressure and
humidity within the laboratory. Some modifications to the software to deal with
special requirements are also discussed.

Experimental data obtained and analysed with this software is presented showing
systematic influences on the automated mass comparators which would not have been
so easily highlighted without the use of this data acquisition software.

1. INTRODUCTION

The instrumentation employed in the mass calibration laboratory is becoming more
and more sophisticated in recent years. This concerns both technical properties of the
measurement instruments and also, of particular interest in this paper, software
capabilities. Often, many functions are provided on software EPROM’s in the
instrument, allowing various menus to be accessed from the front panel controls and
nearly always an interface port is provided, allowing these functions to be controlled

remotely via a computer.
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This situation opens up a whole range of opportunities for automating the
measurement and analysis process, in particular if the measurement instruments are
able to perform automated comparison calibrations. Manufacturers, having designed
their instruments with these facilities have naturally utilised the possibility of
computer control by providing software applications for data acquisition,
manipulation and storage. These labour-saving devices are of great interest but must
also be the subject, of great scrutiny owing to the particular requirements of a

calibration laboratory with respect to accuracy, traceability and documentation.

This paper considers some software applications in the mass laboratory, primarily
concerned with data acquisition and processing for use in routine calibration work.
Software developed at the National Metrology Laboratory in Dublin will be used as an
example and some experimental observations on automated mass comparators

obtained with the aid of this software will be discussed.
2. SOFTWARE APPLICATIONS AND LABORATORY REQUIREMENTS

The typical commercial calibration laboratory is involved in the calibration of
standards from the lower OIML ‘M’ classes up to ‘F1’ and perhaps even some ‘E2’
standards. In this context usually a large number of calibrations are carried out,

covering the spectrum from mg weights through to 20kg and perhaps up to 50kg.

Thus there will certainly be a range of mass comparators in the laboratory and it is
more than likely that they will not all be from the same manufacturer. The instruments
in use may include conventional manually-operated comparators and also perhaps
some of the more sophisticated automated instruments equipped with weight
exchange mechanisms. To focus on our specific interest in this paper, most modern
instruments are equipped with serial interface ports as standard, and will have a
proprietary set of commands allowing bi-directional communication with a peripheral
device such as a computer. Comparators produced by a given manufacturer will
probably have a similar instruction set which may be hierarchical— more sophisticated
machines will utilize all of the commands of their simpler relatives' along with

additional controls.

However, it is very unlikely that instruments from different manufacturers will
incorporate similar instruction sets. And it is here that the problems begin to appear as
each comparator may have its own supplied software package, resulting in the
laboratory having possibly several different pieces of software, each performing
essentially the same task. Apart from the additional workload for the operator in
becoming familiar with several different packages, there are more fundamental
problems: the data storage formats may be different, for example some may write data

in plain ASCII text while others may use binary formats, only readable with the

A.44



proprietary software, leading to difficulties if the user wishes to further analyze the
data, perhaps with other software. The data analysis may differ between packages for
example, some may provide a Reference weight database, allowing the final value of
the test weight to be determined and displayed, while others may just provide
summary information about the comparison such as the mean value and standard
deviation. Not all packages attempt to perform an uncertainty analysis and if such an
analysis is implemented, there may be further problems in regard to traceability and
documentation. The presentation and display of the data will be different for different

packages, again leading to unhelpful differences within the laboratory.
|
For higher accuracy work, to ‘E2’ & ‘E |’ level for example, it is most likely that

buoyancy corrections to the comparison data would be needed. This means that more
instrumentation must be incorporated with the software. Typically a laboratory will
have several different types of instrument for measuring air temperature, barometric
pressure, relative humidity or dew point temperature and perhaps carbon dioxide
content as well. Some mass calibration software provides the facility for the user to
manually enter data from these instruments during the comparison, which is not an
ideal solution since operator transcription errors are not impossible and in any event it
defeats the purpose of automated data acquisition software, especially if automated
comparators are in use. A particularly useful feature of these instruments is that they
can be operated when the laboratory is empty and optimum conditions are realizable.
Some manufacturers have produced climate-monitoring systems which can be
connected to the PC along with the comparator. However, the specifications of these
instruments are not always adequate for high accuracy requirements. The best
approach is for the laboratory to provide itself with the necessary equipment first and
then to consider a software implementation afterwards which will meet its own

requirements.
3 GENERAL REQUIREMENTS FOR TRACEABILITY

So far the scope of software applications in mass metrology has been, considered.
Apart from matters of utility and convenience, there are also important issues
concerning traceability and documentation of software and these provide the strongest
motivation for a laboratory to take a keen interest in the software it uses, [1], Modern
metrology and calibration is founded upon a carefully controlled system of
documentation and traceability so that every measurement is connected to an approved
and agreed-upon standard. In the case of mass metrology there is a hierarchical chain
of standards back to the International Prototype Kilogram held at BIPM and ancillary
measurements needed in calibration, such as temperature data for example, are also

traceable via national and international standards. However, if we insert a software
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processing unit at some point in these proceedings, there is a great danger of it
becoming a “black box” whose form and functions are unknown. Fig. 1 highlights the
important position of the software in this respect. Much has been said and written
about software testing and verification techniques which do help to deal with this
difficulty, but our primary interest here is in knowing exactly what the software is
doing with our data, rather than simply verifying it with standard test data for

example, [2],

Fig. 1. The Position of Laboratory Data Acquisition & Analysis Software in the Calibration Hierarchy.
Unless the software is well understood it can be an unknown quantity within the Traceability Chain.

The difficulty is that most software documentation provides information on how to
use the software and what type of inputs are required, but does not often expound on
what the software does and how it does it. This type of information is crucial for a
metrologist. In order to have complete confidence in output data from a processing
routine, how it is treating the data must be made clear. Perhaps a flow chart should be
provided indicating the chain of events, the equations used should be specified along
with the algorithms which implement them. There are of course difficulties here since
manufacturers of software are not too likely to release source code which is ultimately
what we require for verification purposes. Therefore, this aspect of software provides

a strong motivation for in-house development which allows complete control over all

aspects.
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It is also important to be able to access the data in a useful form. Verifying that the
data displayed by the instrument is that which is received by the computer program is
relatively easy, and the instrument itself can be verified by calibration with high-
accuracy known standards. However, it should be possible to access the stored data
independently of the software for verification and perhaps further processing. It may
be necessary to graph the data using some other software in order to compare
comparator variations with temperature variations, for example. To do this the format
of the data must be known so that it can be extracted and parsed as required. We may
also want to independently check the data to ensure that we agree with the results of
the processing software. We need to know with whit precision the data is printed to

the file so that we can be aware of any rounding / truncating which may occur.

For a calibration laboratory with a large volume of work, there is certainly scope for
software applications to enhance efficiency. However, as we have attempted to point
out in the preceding paragraphs, there is a great deal of information about the software
which is vital in order to have complete confidence in it. A “discontinuity” between
software development and metrological requirements can lead to as many difficulties
as are solved by using software. This, coupled with the need to design software
specifically for a laboratory’s needs provides a strong motivation for in-house

development.
4. AN EXAMPLE

At the National Metrology Laboratory in Dublin a range of equipment is used in the
mass calibration laboratory, facilitating calibration over a wide spectrum of mass
values and to a wide range of accuracies. Various software packages had been tried
and while each did have individual advantages, no single application met all
requirements, which was the primary motivation for developing something more

suitable. The practical design constraints needed were to ensure that

1. Data acquisition from all existing mass comparators should be possible, as well as
from the ancillary equipment for measuring temperature, pressure arid humidity.
Additionally, there should be a modular approach that would allow further

instruments to be supported in the future without significant alteration.

2. We needed a program that would run on a ‘simple’ computer running the DOS
operating system rather than a Windows-based application. This was to facilitate
the use of older office PC’s which were being replaced. They are nevertheless quite
adequate for the slow rate of data acquisition and simple mathematical analysis

needed in calibration experiments.
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The approach implemented was to abstract the data analysis and presentation sections
from the data acquisition parts of the program. In this way it is possible to use the
same user interface for all the comparators. The operator must provide information for
each comparison, including calculating information such as reference weight value
and density (selectable from a database) and test weight density; as well as archiving

information such as data file names and names/serial numbers for the test weights.

Since this type of information is needed for all comparisons, irrespective of which
comparator is used, there is no need to have different programs to process it. By
developing our own software we were able to produce a total software solution, useful
in all parts of the mass laboratory. There are of course some comparator-specific
options that the user must set, perhaps relating to configuring the instrument for
example. These are presented as required, depending on which comparator is selected
from the supported list. Our software allows automated climate data acquisition so an
additional option is provided, allowing the user to enable this feature if a buoyancy

correction is needed.
4.1 Data Presentation

The data is presented in a standard format, irrespective of which comparator is used to
obtain it. The most useful form for regular work where a small number of
measurements are made is a tabular form where individual comparator readings along
with the result of each double or single substitution cycle are given. The overall mean

value and standard deviation are also presented, as shown in the screen-shot in Fig. 2.

On completion it is possible to view the final values for the calibration where the
essential summary information is presented. This includes the mean “weight-in-air”
value and the final value of the test weight, expressed as both physical and
conventional mass. The screen-shot in Fig. 3 illustrates a typical data set. If a
buoyancy correction is not required only conventional mass for the test is given. This
information is printed to a data file in plain text format. This avoids any complications

for printing and also ensures the data is easily and independently accessible.

A crucial feature of any mass calibration is the accuracy to which it is performed. The
standard deviation of the measurement is the best indicator of this and can be
compared with accepted values for the comparator at the given range. In our case, the
laboratory’s quality control measures have stipulated the maximum uncertainty
allowed for each denomination, depending on its OIML class. With known accuracies
for the buoyancy correction (if applied) and the reference weights, it is then easy to
state the maximum allowed standard deviations for the comparator. These are stored

in a file which the program consults on completion of the measurement and analysis.
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Standard Name :> 200g° Test Name :> 200g-nml-12

Nominal Ualue <g>:> 200.000 No. Measurements :> 6

Meas. Protocol :> A-B-B-A Comparator :> Mettler AT201
Ref <g> Test <g> IstDiff. <g> 2ndDiff. <g> Cyc le

+200.002710 +200.003220 +0.000510

+200.002720 +200.003210 +0.000490 +0.000500 1

+200.002740 +200.003230 +0.000490

+200.002780 +200.003280 +0.000500 +0.000495 2

+200.002760 +200.003300 +0.000540

+200.002760 +200.003350 +0.000590 +0.000565 3

Mean 2nd Diff. (ig) :> 0.5200 Std. Deu. (ng) :> 0.0391

Mean Air Density <ng/cmA3> :> 1.195590

Taking Reading
Please Wait

0 +208.003390 +0.000610

Q +200.003380 +0.000630

t +200.003350 +0.000630

0 +200.003290 +0.000590

0 +200.003270 +0.000540
Mean of 2nd Differences <mg> s> 0.560833
Standard Deviation <mg> :> 0.055265
Final Ualue of Test <Conuentional> <g> :> 200.002829
Final Ualue of Test <Physical> <g> :> 200.002841
Average Air Density <ng/cnA3> :> 1.1947
Tmax, Tnin <°C) :> 20.30, 19.80
Pnax, Pnin <nBar> :> 1011.20, 1010.17
Hnax, Hnin <xR.H.> :> 54.47, 52.60

— END OF RECORD===
fi ftpjow Keys PiJ-Up/Pg.Down to Move
P*»e«s E8C to E xit

Fig. 3: Screen-Shot showing portion of the data file, where the essential summary information is
presented.

A message is printed to the screen and to the data file either validating the result or
warning that the standard deviation is too large. This is a convenient way for the
operator to assess the acceptability of the data.

However, long term use of the automated comparators has shown that there can be

drifts in the measurements over a period of several hours. Some examples of this
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behaviour are shown in the following section. The standard deviation of just 6 or 10
measurements would not highlight this drift at all. Because of suspected systematic
errors which arose in some high accuracy work, the program was modified, allowing
the comparators to be operated for much longer periods and also allowing start and
stop times to be specified. In this way it was possible to operate the instruments
overnight when the laboratory would be empty and more stable. To deal with the
larger amounts of data generated, the output sections were adjusted to give a graphical
display. This was highly convenient as the user could glance at the output screen and
immediately assess the stability and reproducibility of the comparator data. An

example screen-shot from the program operating in this mode is shown in Fig. 4.

Data File a:\xp-l.dat

Calibration Date :> Thu Nou 09 13:30:01 19950

Standard Name :> [I1kg”EIS Test Narie > 1 kO09nH
R : N N ——
R (R j
:o/o:;q :Ioo\ i
i ALL-QLLLX X..
-520.20 . "
'i_f * j\ b} fi : 0 a
-521 .80 W
*
, ............ @; ..............
526.60
528 20 D e e, . R
| | | « It
529.80 . . .
i 1 i 1 !
531.40
« « 1 1 N
533.00 T
1.6 3.3 4.9
Tine (hrs)
Cycle 60 of 60
Current Ouerall Mean Diff :=> -523 .966667

Current Ouerall Std. Dev. :> 3 .718787

fleasurenent Conplete ; Press any Key to Continue:>

Fig. 4 Alternative data presentation in graphical format

The emphasis has been on developing a convenient, coherent code for the calibration
laboratory which fulfilled specific requirements, while the facility to alter and adjust

the program provides great flexibility for any special analysis that might be needed.

5. EXPERIMENTAL ANALYSIS

In the course of research work undertaken by the author it was necessary to perform

“within-group” comparisons on a set of standards. In this method more comparisons
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are performed than there are weights in the group, leading to an over-determined
problem and the possibility of applying some suitable parameter estimation technique
to obtain “best-fit” values for the standards in the light of the information obtained in
the comparison experiment, [3]. [4]. In performing these calibrations, the automated
mass comparators in the National Metrology Laboratory were used with the software
described in the preceding section. Since the software allowed automated collection of
temperature, pressure and humidity data, as well as the mass comparison data, it was
possible to obtain large amounts of data with little effort. The computer could
calculate air density from the resulting data, apply a buoyancy correction and hence
produce a data file of true mass differences for the weights used in the comparison. It
was usual to operate the comparators overnight when conditions would be more stable

and as a result typically 8— 12 hours of data would be available for each comparison.

Fig. 5 graphically presents the information available from a typical comparison. The
‘weight-in-air’ and buoyancy-corrected true mass differences are shown along with
temperature, pressure, humidity and calculated air density data. The great advantage of
the software used was that it was easy to access the raw data in order to process it or
present it in any desired format. The graphical format makes it easy to analyse the data

and investigate the behaviour and stability of the mass comparator.

Fig. 5: Shown here is the relevant data for a typical comparison experiment, (a) shows the uncorrected
“weight-in-air” difference from the comparison, (b) gives the buoyancy-corrected true mass difference
between the standards, (c) is the temperature during the course of the comparisons, obtained with a
probe within the weighing enclosure, (d) gives the corresponding barometric pressure while (e) gives
the relative humidity, also within the weighing enclosure. The calculated air density is shown at (f).
This comparison involved a 1kg standard of density 8050.3 kg/m3 & two 500g stackable weights of
density 8048.3 kg/m3. All standards are of El classification.
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A striking feature of the two mass-comparison graphs at the top of Fig. 5 is the drift
during the first two hours of measurement (graphs (a) & (b)). The fact that this is not
corrected in the true-mass difference graph (graph (b)) suggests that it is not
buoyancy-related. It appears that the comparator needs to operate for about 13 double-
substitution cycles in order to reach stability. After this time its stability is only limited
by the resolution of the instrument (2 fig in this case). The temperature probe was
within the weighing enclosure of the comparator during the measurements, and from
the temperature graph of Fig. 5 (graph (c)) we can see a characteristic rise of ~ 0.2K.
We can correlate this with the mass comparison gr%phs and conclude that there is a
systematic drift in the comparator before it reaches equilibrium. This phenomenon
appears in spite of taking appropriate precautions such as ensuring the weights
reached thermal equilibrium within the weighing enclosure before beginning
comparisons. The source of the problem may perhaps be temperature gradients within
the weighing enclosure due to the load alternator motors. For example, Fig. 6 shows
the temperature within the weighing enclosure before, during and after a measurement
period. The temperature rise during the comparison is clear from this. The practice
adopted as a result of this behaviour was to take 6 or 10 measurements from a stable
portion of the graph and to use these to obtain a mean mass difference and standard

uncertainty for the comparison.

During the analysis of one group comparison exercise significant systematic errors
among the input data for the parameter estimation method were noted. This was in
spite of care having been taken to perform measurements for sufficient time to
stabilise the systematic drift mentioned above. Therefore some of the measurements
were performed again and surprisingly did not agree at all with the previous data, all
corrections having been applied. Indeed several comparisons for a pair of 1kg weights
produced different results as shown in Fig. 7. An obvious reason for this did not
appear, but graphing the physical mass difference as a function of relative humidity
revealed a clear correlation. This is illustrated in Fig. 8 where the root of the problem
is shown to be that the humidity levels in the laboratory were too low at the time of
the measurements, and the performance of the comparator was suffering as a result. A
systematic error, possibly due to an electrostatic effect, was being introduced, and

because not suspected or quantified, could not be corrected in the subsequent analysis.

For the purposes of this paper, the important conclusion we wish to draw is the great
benefit of convenient software for data acquisition and analysis. Much of the
information presented in this section would have been difficult or impossible to obtain
without the help of computer power, properly harnessed for the particular
experimental requirements. Some of the effects noticed would introduce significant

systematic errors in the calibration results if corrective action were not taken.
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Time (hrs)

Fig. 7: True mass difference for four comparisons of the same pair of 1kg standards. In spite of
applying buoyancy corrections to the data (which was all obtained at different times), significant
inconsistencies remain unaccounted for.
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Fig. 8: Plotting the True Mass difference as a function of of % Rel. Humidity for each comparison
highlights a clear correlation. This shows that the comparators are effected by the ambient humidity and
that values of relative humidity much below 40% lead to problems with the data

6. CONCLUSION

In this paper we have briefly discussed some of the software requirements for the
mass calibration laboratory. Because of the variety of equipment in use it is difficult to
obtain a total software solution from an external source. We have shown by example
how the internal development of a software package gives great flexibility in
designing an application which will meet individual laboratory requirements. The
added benefit of access to source code helps to ensure the transparency necessary for
traceability within the metrological system. We have also highlighted some insights
into the operation of the automated mass comparators in our own laboratory in which

the use of suitable data acquisition software was instrumental.
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