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Abstract

The idea behind this research is to demonstrate how a fundamental characteristic of 

speech (zero-crossing information) may be exploited in the development o f a low cost, 

highly effective speech recognition system. The system is to be used to recognise a 

small vocabulary o f isolated speech. Although intended to be speaker dependent, the 

system is also tested for speaker independence.

A brief description of how speech is produced and recognised by a human subject is 

first presented. Following this, some features o f both voiced and unvoiced speech 

signals and their associated spectra are discussed in relation to zero-crossing 

information. Phonemes and their segmentation (using zero-crossing data or otherwise) 

are also examined. A brief discussion o f stationarity and its effects on zero-crossings is 

then given. The choice o f pre-processing filters is also mentioned.

Two methods o f speech recognition implementing zero-crossing information are then 

discussed.

The first technique studied analyses the ‘spacing’ between zero-crossings, producing a 

signal whose amplitude is proportional to the distance between successive crossings. 

The possibility o f this system, (termed Sinusoidal Instantaneous Frequency Extractor 

(SIFE) [14]), producing effective recognition parameters is examined.

A second analysis technique, called Higher Order Crossing Analysis (HOC) [25], is 

then introduced. This method extracts higher order zero-crossing information from the 

signal using various filtering techniques and uses this data to recognise the speech 

signal.

Modified versions o f both methods were developed, tested and found to be more 

effective and adaptable than their predecessors.

A new parameter (Columnised Higher Order Crossing (CHOC)) was developed and 

found to be more effective than HOC. Dynamic Time Warping was then implemented 

to pattern match CHOC templates with CHOC test signals, enabling a percentage 

success rate for the CHOC system to be achieved (-90% ).

Finally, a comparison o f the two systems is then made and a discussion about their 

effectiveness is given.
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Current research in the field of speech recognition is advancing at a great rate with 

new heights in improved success rates being reached as a result o f implementing the 

latest state o f the art technologies. A particular challenge to researchers is to 

maintain a balance in gaining an understanding o f and utilising mathematical 

processing techniques while moving in a direction which will positively contribute 

to the subject. It can often happen that more simplistic analysis techniques are in 

fact too useful to be discarded. Hence, this thesis was written to demonstrate how 

a fundamental characteristic o f speech signals (i.e. zero-crossing data) may be 

exploited to recognise speech patterns.

The fact that it is simple and inexpensive to implement zero-crossing analysis in 

both hardware and software makes this an attractive analysis technique. However, 

the success rates achieved from zero-crossing techniques throughout the years have 

not been as attractive and so research in this field has become sparse. Nevertheless, 

research performed by Licklider and Niedeijohn et al. [12] found high intelligibility 

(>90%) in the zero-crossing information of speech signals. For this reason, (as well 

as the cost and ease o f implementation), zero-crossing analysis cannot yet be 

discarded as a speech recognition technique.

This thesis shows how suitable zero-crossing information may be used in the 

recognition o f small vocabularies (less than 15 words) o f isolated speech (i.e. not 

continuous speech or phrases). In particular, two zero-crossing techniques are 

studied, (S/FE  and HOC), with the two resulting systems being tested and modified 

in an attempt to develop a reliable speech recognition system. A new system based 

on HOC theory (termed CHOC) is then developed and tested resulting in 

percentage success rate in the order o f 90%.

The CHOC system was tested for noise tolerance, resistance to non-linear phase 

changes and intonation changes. It was found to be tolerant to non-linear phase 

changes, although a threshold signal to noise ratio o f lOdB was established to 

ensure effective operation. The CHOC system was found to be relatively tolerant 

to intonation changes depending on the vocabulary size. The extension of this 

system to cater for continuous speech was examined and a comparison of CHOC 

data to that o f a spectrogram was made.

Introduction
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Chapter 1



1. Theory of Speech Signals.

This chapter begins by discussing the human brain as a speech recognition system 

and questions whether or not there will ever be an electronic equivalent developed. 

A background to zero-crossing analysis in speech and other fields is then presented. 

This is followed by a brief description o f how voiced and unvoiced speech is 

produced, how each affects the zero-crossing content o f the signal and the resulting 

differences in the corresponding spectra. Then follows an introduction to the 

concept o f phonemes, their characteristic properties and how a speech signal may 

be segmented into its individual phonemes. A section is presented describing the 

quasi-stationary nature o f speech signals and how this may affect zero-crossing 

analysis. Finally, the necessary pre-processing o f speech signals is mentioned.

1.1 The Human Brain - The Ultimate Speech Recognition System?

It would be quite an insult to the human species to discuss the field o f speech 

recognition without referring to the most powerful o f all recognition systems: the 

human brain. This marvellous ‘microprocessor’ can:

(i) Detect a wide range o f sounds via the ear and localise the position of 

the source [49];

(ii) Calculate basic acoustic parameters such as frequency, timbre and 

intensity [49];

(iii) Understand speech signals and carry out responses to them;

(iv) Decide which sounds to listen to and which to ignore (selection)

[72]

The brain performs all processing in real-time, allowing a constant up-date of 

information. It allows efficient transfer o f data to other parts o f the body and is 

totally compatible with all other systems in the body [26], The brain is also 

reasonably tolerant to a range o f environments.

Several theories have been proposed over the years as to how exactly the human 

brain, working in conjunction with the auditory system, recognises different sounds. 

Early physiology assumed the ear (both inner and outer) was solely responsible for 

sound perception and recognition. However, further studies in human anatomy 

discovered the vital role played by the brain. Research into how the ear actually

2
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produces the electrical signal and the structure o f this signal resulted in what are

widely known as the Classical Theories [71]: The Place Theory after Helmholtz, 

frequency theories, The Resonance Theory and The Volley Theory. Although some 

of this research dates from as far back as the 16th century, the theories are still 

respected today with auditory protagonists dividing into three classes [48]:

(i) Those who believe the Place Theory;

(ii) Those who believe Temporal Theory;

(iii) The eclectic group who believe both theories are significant.

The Place Theory suggests that shifts in the place o f maximum excitation in the 

cochlea* occur for different sounds. The Temporal Theory claims information is 

stored in the form o f time intervals between neural firings. Evidence o f the validity 

o f both theories is described by Pickles [48] who concludes that to favour one over 

the other would be unjustified. His research tends to suggest that the Temporal 

Theory holds for speech signals. However, Pickles also claims that favouring the 

eclectic view may be a function o f the quality o f evidence available rather than of 

the actual operation o f the auditory system.

Figure 1.1: Functional areas of the brain.

Recent research [43] has proven that the ear, (up to now understood as being 

purely a receiver), also transmits a distinct audio signal for each detected sound.

AUDiTORY
ASSOCIATION

AREA

PniMAIW
AUDITORY

A REA

+ The section of the inner ear containing nerve fibres which vibrate transmitting signals to the 
brain via the auditory nerve.
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Other pre-processing also occurs due to the outer ear and body and head resonance 

[49]. Perhaps this pre-processing should be considered when developing a speech 

recognition system as powerful as the human brain.

A detailed description o f the areas in the human brain responsible for sound analysis 

is shown in Figure 1.1 [67], The Primary Auditory Area (areas 41 and 42) is 

responsible for interpreting the fundamental characteristics o f sound - pitch, rhythm, 

timbre, etc. and is located in the temporal lobe. Area 22 (the Auditory Association 

Area) is also located in the temporal lobe and determines if  the sound detected is 

music, speech or noise, etc. Also known as Wernicke’s Area, it is responsible for 

interpreting the meaning of speech by translating words and phr ases into thoughts. 

These areas were discovered (as were many other areas) through accidental damage 

to the brain. Damage to the left side o f the brain tended to result in a loss of 

comprehension o f speech, but this rarely happened when the injury was inflicted to 

the right hand side. Pickles showed how humans have a greater chance of 

recognising speech when received through the right ear instead o f the left (thus 

verifying the fact that the left half o f the body is mapped to the right side of the 

brain and vice-versa). Taniguchi et al [62] and Price et al [50] describe the methods 

used to map the different parts o f the brain resulting in a contour map similar to the 

one shown in Figure 1.2 [48] clearly showing the relationship between blood-flow 

in certain areas and hearing spoken words.

Figure 1.2: M apping o f the brain demonstrating the increase in blood flow while passively 
listening to speech [48], Note: W =W ernicke’s Area, B=Broca’s Area and F=Frontal Eye Fields.

Petsche et al [47] show how EEG signals differs for when hearing speech and music 

and carrying out mental arithmetic. The EEG signals resulting from listening to
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music and solving simple mathematical problems proved to be significantly different 

to those resulting from interpreting speech. This strengthens the idea o f a separate 

‘mode’ for dealing with speech signals.

Much research into the speech recognition function o f the brain has yet to be 

carried out and as Pickles concludes, our understanding o f how the brain actually 

processes speech is still in its infancy. However, it seems to make sense that in 

order to develop a speech recognition system as ‘intelligent’ as the brain, we must 

first understand how the most powerful system operates.

1.2 Background to Speech Recognition and Zero-Crossing Information.

Prior to the 1960’s, most speech recognition systems consisted of an acoustic 

analyser, (producing some form of spectrum), followed by a pattern classifier [2], 

These procedures proved uneconomic and generally resulted in low success rates. 

This may have contributed to the changes in approach during the 1960’s. One 

particular technique which was studied in detail by many researchers is zero- 

crossing analysis, (probably due to its ease o f implementation in hardware).

Over the past thirty years zero-crossing information has been used as a signal 

analysis technique for a broad range o f applications. Gluskin (1991) [20] showed 

how zero-crossing data may be used to obtain a mathematical description o f a 

system. Friedman (1994) [18] found it useful to estimate the frequency o f a single 

sinusoid in white noise. Other implementations o f zero-crossing data includes bar­

code recognition [24], the recovery o f missing speech packets [16], and signal 

reconstruction o f unknown signals [68], Meanwhile, the study into the use o f zero- 

crossing data as a means o f recognising speech signals has proven popular for 

research purposes [1,3,14,73],

The most basic method of achieving a zero-crossing rate (ZCR) plot is to slide a 

non-overlapping running rectangular window along the speech signal and to 

calculate the zero-crossing rate within that time frame. A plot o f ZCR against time 

results. Various adaptive versions of this technique have been developed, one of 

which uses an overlapping window incorporating weighting factors, giving more 

weight to the most current data [25],
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However, not all researchers have an optimistic view o f zero-crossing techniques. 

Weng claims ‘richer’ information may be extracted from the signal using the 

Windowed Fourier Phase (WFP) information instead o f zero-crossing data [70], 

Meanwhile, Tong et al have shown how a ‘filter bank approach’ results in greater 

signal information than a zero-crossing approach [66],

Nevertheless, as Basztura et al [7] showed a zero-crossing method to be most 

suited to small vocabulary systems (owing to its low cost and easy implementation) 

and as this is the main specification o f the proposed system the pessimistic attitudes 

should be temporarily dismissed.

1.3 Speech Production.

When generating a speech sound, the lungs act as an air reservoir and bellows, 

forcing ah between the vocal cords and causing them to vibrate, much like the 

double reed of an oboe (refer to Figure 1.3). The resulting sound is amplified as it 

resonates in the cavities o f the chest, neck and head, and it is articulated, (shaping 

vowels and consonants), by the speaker's lips, teeth, tongue, and palate.

1.3.1 Voiced and Unvoiced Speech.

Voiced speech is produced by forcing air through the glottis while vibrating the 

vocal cords (refer to Figure 1.3). It is usually a quasi-periodic signal in the time 

domain and results in a spectrum of a clearly defined fundamental and harmonics at
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multiples o f this frequency also known as the pitch frequency. Voiced speech tends 

to carry greater signal energy than unvoiced speech. For an adult male subject the 

pitch frequency may range from 50Hz to about 250Hz; for an adult female it may be 

as high as 500Hz.

If  the log o f the Discrete Fourier Transform (DFT) o f a windowed section of voiced 

speech is calculated, a ‘log-magnitude spectrum’ results, in which a ‘slowly varying 

component’ (due to vocal tract transmission) and a ‘rapidly varying periodic 

component’ (due to pitch) are very apparent (refer to Figure 1.4). For the average 

vocal tract there are three to five formants* below 5kHz, the first three being the 

most important for speech synthesis and recognition and usually lying below 3kHz 

[46],

Figure 1.4: Section of voiced speech with its corresponding Log-Magnitude Spectrum showing a 

slowly varying component due to the pharynx and vocal tract and a  rapidly changing component

due to the pitch.

Unvoiced speech is produced when no vibrations take place in the vocal cords. 

Some constriction may be present at different stages o f the airway (e.g. Teeth, Ups, 

tongue etc.), which gives each sound its characteristic spectral shape. The resulting 

speech signal is non-periodic and random-like in the time domain and consists o f a 

broad band spectrum (refer to Figure 1.5).

t Formants are resonance frequencies present in the vocal tract and are dependent on the tract 
length.
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1.3.2 Zero-Crossing Content of Voiced and Unvoiced Speech.

It has been proven that most o f the energy in speech signals lies below ~ 4.5kHz 

[37], The energy in voiced speech is mainly below ~  3kHz and that o f unvoiced 

speech is located at higher frequencies. High frequencies result in a high zero- 

crossing rate (ZCR) and low frequencies in a low zero-crossing rate. This would 

suggest that the assumption o f classifying speech as voiced if  a low ZCR is detected 

and as unvoiced if a high ZCR is present is valid.

Figure 1.6: Distribution of zero-crossings for voiced and unvoiced speech (after Rabiner and

Schafer).

Rabiner & Schafer demonstrated how the distributions o f the ZCR for voiced and 

unvoiced speech are fitted quite well by a Gaussian curve (see Figure 1.6) [5 1] with 

mean short-time average ZCRs as follows*:

+ These values are based on 10msec intervals.
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Unvoiced 4900 Crossings per second.

Voiced 1400 Crossings per second.

As can be seen in Figure 1.6, an overlap exists between the curves which would 

suggest a simple voiced-unvoiced decision (V U D ) on this parameter alone may  

prove insufficient.

It should be noted that the first formant, (being the most prominent spectral 

component), has the strongest influence on the ZCR in the case o f voiced speech.

1.3.3 An Interpretation of the Spectra of Speech Signals.

The Fast Fourier Transform (FFT) has proven to be very useful in signal processing 

over the years. However, due to its computational expense, it is not always a 

preferred tool in speech recognition. Nevertheless, the FFT is still very helpful in 

acquiring a greater understanding o f how speech signals are structured and what 

phenomena may influence these structures.

Figure 1.7 [60] shows 32msec o f the phoneme /i/ as in ibee\ (sampled at 16kHz), 

uttered by male and female subjects. Below each plot is the corresponding 

amplitude spectrum. The more powerful lower frequency components yield a 

clearly defined envelope in the time domain signal, while the weaker higher 

frequency components result in finer signal detail. Hence, it is clear that the male 

utterance, whose energy is concentrated in the lower frequencies, has a slowly 

varying envelope with little fine detail. However, the female utterance, consisting 

o f weaker low frequency components and more significant higher frequencies, 

contains a less smooth, faster changing envelope. Understanding this can help in 

the analysis o f the zero-crossing content o f a signal.

To study the spectrum of a complete utterance would be o f httle use because nearly 

all frequencies would be present. As Lovel [33] claims: “Simple Fourier analysis of 

modulated signals (e.g. speech) gives no indication o f changes in signal character
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Figure 1.7: Speech signals of the phoneme l i l  as in ‘S ee’ as uttered by male (fi) and female (f2)

subjects and their corresponding spectra.

within the observation window.” To overcome this problem various windowed 

versions o f the FFT have been developed. An example o f these is the Short-Time 

Fourier Transform (STFT) or spectrogram [19] as described in [30], which 

describes how the frequency changes in time (refer to Figure 1.8). Such a plot is 

referred to as a Time-Frequency Representation (TFR).

Other TFRs have been developed to reduce the problems of time and frequency 

resolution trade-offs [30] - Wavelet Transform, Wigner Distribution and Smoothed 

Wigner Distribution. Lawlor et al [30] found that in voiced speech the formant 

frequency values change slowly and so the spectrogram proves sufficient to describe 

the signal. However, fricative and plosive speech was found to change more rapidly 

and so a higher time-frequency resolution was necessary to track these changes. A
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Gaussian Kernel Smoothed Wigner Distribution Function is suggested, owing to the 

suitability o f a Gaussian kernel to the formant structure o f unvoiced speech. This 

idea is reiterated by Lovel who claims that the Fourier Transform is only o f use 

when the instantaneous frequency of the signal changes slowly with respect to the 

carrier signal [33],

1.4 Phonemes.

Definition: A phoneme is the basic sound unit in speech.

The English language comprises approximately forty phonemes - all words may be 

constructed from these alone. Although helpful in describing how a word is 

pronounced, phonemes are not perfect. Each phoneme may not always sound the 

same depending on the preceding and succeeding phoneme uttered. Allophones are 

different versions o f the same phoneme. Dialect and the length of the vocal tract 

may result in the same phonemes being uttered differently.

The table in Figure 1.9 describes the set o f phonemes implemented by the 

International Phonetic Alphabet (IPA). This table also gives examples o f where the 

phonemes are used and the different categories into which they may be classified. 

Each sound may be produced by shaping the vocal tract, changing the articulatory 

gesture (the position o f the tongue, teeth, lips, etc.) or a combination o f both. 

Vowels may be classed as purely voiced speech and are produced by vibrating the 

vocal cords and constricting the vocal tract with the tongue at the front, middle or 

back. Consonants may be classed as purely unvoiced (///,/s/,etc.), partially voiced 

(/v/,/z/,etc.) or plosive (/p/,/b/,/t/,etc.).

1.4.1 Characteristic Properties of Phonemes |46].

•  Vowels may be identified by the first three formant frequencies (usually low) 

extracted from the centre o f the time domain signal and generally comprise a 

low ZCR.

•  Diphthongs may be characterised by the formant frequencies o f the initial and 

final vowel targets as well as the rate o f change o f formant trajectories* and 

contain a slightly greater amount of finer signal detail.

f That is, how the formant frequencies are changing with time.
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Figure 1.9: The phonemes of European English
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•  Nasals and glides are always detected adjacent to vowels and may be identified 

by the formant transitions into and out o f the sound (e.g. the word ‘low’ sounds 

like “e l^ ^  ow”).

•  Fricatives may be identified by the presence or absence o f turbulent noise and 

often consists o f a broad band spectrum with a very high ZCR.

•  Plosives may be detected by a characteristic period of silence followed by an 

abrupt increase in signal level at the point o f release which in turn is followed by

fricative noise (e.g. /t/ in ‘stop’ sounds like s X'XC\ £2 op”) and the ZCR

depends 011 each plosive.

1.4.2 Phonetic Segmentation of Speech Signals.

The segmentation o f speech signals into their individual phonemes has always 

proven to be a problem - one which if solved would allow an easier and more 

efficient analysis o f speech signals. Transition from one phoneme to the next during 

analysis would no longer prove a problem yielding more regular results, 

hi 1967 Reddy [52] demonstrated how zero-crossing information may be used to 

segment a speech signal into portions, (i.e. approximate phoneme units) and then 

performed Fourier analysis on each segment.

Basztura [7] showed how the signal may be segmented by detecting the phonetic 

boundaries using zero-crossing information, spectral data and linear predictive 

coding. No significant advantages of one method over another were found. 

However, research by Lovel [33] discovered that the Appel & Brandt* algorithm 

proved to be the most effective means o f detecting a phonetic boundary.

1.5 Stationarity of Speech Signals.

Definition: A signal or process is said to be stationary if  its statistical properties do 

not vary after a shift in time [34],

A more simplistic definition o f stationarity is that the frequency content does not 

change in time [30],

f Appel & Brandt is a distance measure between sample values and is sensitive to both spectral 
shape and signal energy.

13



Speech signals may therefore be classified as ipiecewise quasi-stationary'' signals. 

This is so, as each section o f the signal (e.g. a particular vowel) remains locally 

‘almost’ stationary, but a global view o f the signal shows it to be non-stationary. 

This may be explained by the speech signals in Figure 1.10.

The larynx (voice box) may therefore be described as a quasi-stationary source. A 

repeated vowel sound results in almost the same signal, as shown in Figure 1.10. It 

should be noted that this slow variation o f frequency content will affect the zero- 

crossing rate o f the signal. Hence, when working with signals that are not quite 

stationary, it may simplify matters if  the signal is stationarised first. Kedem [25] 

explains some simple procedures to stationarise a signal.

1.6 Pre-processing of Speech Signals.

Before applying any analysis routines to a speech signal, it is important to ensure 

that the signal being received is a true representation o f the speech sound. A 

number o f pre-processing steps are necessary to achieve this, some o f which are 

explained in this section.

1.6.1 Pre-emphasis of Speech Data [37].

It has been found that for voiced speech there is an overall trend o f approximately 

-6dB/Octave as frequency increases [46], This is composed of the excitation source 

(-12dB/Octave) and radiation from the mouth (+6dB/Octave). In order to remove 

these effects from the final speech signal a pre-emphasis filter is used. A general 

first order pre-emphasis o f speech data may be achieved using the filter:

P (z )= l-^z ',

as shown in Figure 1.11.
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A fir s t order filter was found to be the most suitable so as not to introduce ill- 

conditioning* into the signal [37], In order to  maximise spectral flatness at the 

output, an optimum value of fj,=r(l)/r(0) is chosen, where r(n) is the nth correlation 

coefficient.

For most voiced sounds jj, lies near one, owing to the fact that the sample 

amplitudes are highly correlated. This results in an approximate differencer (HPF) 

removing the spectral trend described above and reducing the effects o f  background 

low frequency noise.

* Ill-conditioning is the introduction o f error into the signal data during mathematical 
computation.
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For most unvoiced sounds (i is relatively small, due to the fast changing nature of 

the signal and so, the pre-emphasis filter has little effect. This is desirable as 

unvoiced speech does not exhibit any spectral trends.

A frequency response o f a typical pre-emphasis filter with |j.=0.9 and T=100|j,s is 

shown in Figure 1.12.

The pre-emphasis filter coefficient can be severely quantised since any value o f n 

between 0 and 2*( r(l)/r(0) ) will enhance spectral flatness.

1.6.2 Pre-filtering before Sampling [37],

An analogue speech signal, like any other signal, must be filtered before sampling to 

ensure against aliasing.

An analogue filter o f cut-off frequency < < /s /2 is chosen in many signal processing 

applications. However, if  this is applied in the case o f a speech signal, it will 

increase the spectral dynamic range, decrease spectral flatness and increase ill- 

conditioning.

It was found instead that a cut-off frequency o f / s/2 or ‘slightly below’ resulted in a 

clearer signal description [37], Care should be taken to ensure as little ripple as 

possible in the passband to avoid any distortion o f the frequency components in the 

signal.
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Chapter 2



2. Front Line Processing Technique I : Sinusoidal Instantaneous 
Frequency Extractor (SIFE).

This section introduces the first zero-crossing technique (SIFE) to be examined as a 

possible means o f recognising speech. The SIFE system utilises information about 

the spacing between successive zero-crossings to generate a signal. This parameter 

is examined to establish if it contains enough signal information about the utterance 

to distinguish it from other utterances. This chapter shows how the SIFE can 

extract such signal information both through hardware and software. The quality of 

the SIFE signal is discussed and certain techniques are described in an attempt to 

improve this quality. The system’s ability to distinguish different signals and 

reproduce consistent SIFE signals for utterances o f the same word is also discussed. 

Finally, the various recognition and decision techniques are examined to reveal the 

most suitable one for the system and the SIFE’s future as a speech recognition 

system is discussed.

2.1 Background to SIFE.

The SIFE system was first developed by de Paor [14] as a means o f achieving a 

visual representation o f a speech signal in order to retrain vocally impaired patients 

(through head injuries or strokes) to speak. The SIFE representation o f the 

patient’s speech signal would be displayed on a split monitor underneath a template 

SIFE achieved from an uninjured subject. The patient would then be assisted by a 

speech therapist as to where they require improvement. The system proved very 

successful as a speech signal visual representation. Later work by Coyle [12] 

attempted to implement the SIFE system as a means o f speech recognition. The 

system was constructed in hardware and a C-program was used to calculate two 

parameters (mean square energy and absolute mean)* which were used to recognise 

the utterance. The system was tested using the vocabulary as mentioned in the Gr I 

set and although only basic recognition procedures were implemented, Coyle 

achieved quite reasonable success rates (between 70-90%). However, the system in

[12] was never tested to its limits Hence, this zero-crossing analyser will be the 

first to be studied in this thesis.

t Mean Square Energy =  S(e2/N), Absolute Mean =  £(|e|/N).



2.2 How the SIFE System Operates.

The idea is to derive a signal whose amplitude is proportional to either the interval 

between consecutive zero-crossings or the instantaneous frequency present. A 

SIFE signal may be extracted from a speech signal as shown in Figure 2.1. The 

speech signal is first clipped by applying a comparator (in the form of a Schmitt 

trigger) resulting in what is termed '’Infinitely Clipped Speech’. Hence, all 

amplitude information is discarded from the signal (refer to Figure 2.2). This signal 

is then differentiated yielding a series of positive and negative going impulses 

representing the presence o f a zero-crossing. This pulse train is then rectified in 

such a manner as to yield the only positive or negative pulses*. These pulses are 

now used to reset an integrator that ramps up to each impulse and whose value is 

sampled and held at the instant before reset. The resulting signal (S1FE’=1/SIFE) is 

then inverted to yield the SIFE signal. SIFE’ gives instantaneous period  

information (i.e. timing information between zero-crossings) while the SIFE gives 

instantaneous frequency  information.

Figure 2.1: The production of a SIFE signal.

Four important points to  be noted about the resulting SIFE signal may be described 

as follows:

• The amplitude at time t„ is proportional to the distance between ZC„ and ZCn-i.

• A flat response implies a constant period is present (i.e. the speech signal is 

crossing the zero-axis at a constant rate) and a rapidly changing SIFE signal 

implies the presence of constantly changing periods.

• Full-wave rectification will result in too much signal information.
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• A cyclic SIFE signal implies the presence o f cyclic periods (i.e. recurring 

periods).

• SIFE’ and SIFE contain practically the same information (except quantisation 

effects).

2.3 Difficulties with SIFE Hardware.

The SIFE system used by Coyle in [12] derives a SIFE signal as described in 

Appendix B l. As this appendix explains, it was necessary to write a number of 

statistical algorithms in order to improve Coyle’s system.

After testing this system, it was discovered that it was extremely sensitive to 

background noise and so very irregular results were achieved. The software was 

also problematic with the PC crashing on numerous occasions. Hence, it was 

decided that it was necessary to (i) record the speech signals in a quieter 

environment (overcoming the need for an expensive microphone) and (ii) rewrite 

the software so that a more user-friendly and rehable package was available for 

testing*.

* Refer to C-code in Appendix E.
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2.3.1 Initial Results from SIFE Hardware and C-Program.

This newly updated software was then tested but problems still arose. The software 

itself proved to be very effective yet the resulting SIFE signal appeared to be very 

distorted. The following statistics were calculated for each SIFE signal in an 

attempt to characterised each utterance: mean square energy, absolute mean, 

variance, coefficient o f  variation, area wider SIFE signal and fir s t delay value to 

give zero in autocorrelation function. The results are shown in Table 2.1 and it is 

clear that these values are o f little help in recognising the utterances. There exists 

much overlap in the values for different words and very little consistency and 

between like words.

After much investigation, it appeared that this distortion was due to the hardware’s 

sensitivity to ambient noise and a problem with a straying offset in its output signal. 

Henceforth, it was decided, after some consideration, to design a software 

simulation o f the system instead of consuming a large amount o f time designing 

noise reduction and offset control circuitry.

2.4 The SIFE Simulator: SIFES1M.

The development o f a software simulation of the SIFE system seemed to be the 

only logical means to establish whether or not the SIFE parameter may be used in 

speech recognition.

SIFESIM, described in Figure 2.3, was designed in Simulink. When examining the 

SIFE parameter’s capacity to recognise speech, this system has three main 

advantages over its hardware predecessor:

• All the sounds are pre-recorded and virtually noise-free.

• The absence o f hardware means no interference o f circuitry can arise.

• No timing or synchronisation problems are associated with the integrator as 

encountered in [12],
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U tterance M SE Abs V ar Cv A rea Cross
G o 5.16 1.98 1.24 63 1.46 46

7.14 2.23 1.48 96 3.72 37
4.3 1.68 2.77 88 2.82 35
2.5 1.36 0.66 49 3.3 42

3.31 1.6 0.74 46 3.8 39

2.91 1.5 0.64 43 12.2 124

3.04 1.51 0.78 52 4.73 43
2.79 1.45 0.68 47 5.3 48
5.25 1.91 1.59 83 8.04 52
3.53 1.61 0.94 58 6.09 44

S t o p 20.56 4.43 0.86 20 12.2 61
20.46 4.45 0.67 15 13.3 62
22.61 4.72 0.33 7 14.2 59
22.91 4.71 0.66 14 1.18 63
21.72 4.6 0.65 14 2.57 70
16.8 3.7 5.13 139 1.01 99

20.69 4.42 1.12 25 2.11 68

20.56 4.33 2.5 58 4.99 98
17.6 3.89 268 69 1.64 106

17.1 3.98 1.27 32 8.83 60

R e v e r s e 8.98 2.46 3.76 153 19.74 96
13.08 3.24 2.63 81 20.13 67
9.28 2.56 2.56 97 37.58 151

14.99 3.56 2.29 64 26.01 73
9.07 2.48 3.72 150 0.83 90
16.38 3.76 2.22 59 1.98 66
14.46 3.45 2.56 74 2.42 78
15.11 3.56 2.33 65 3 68 86
15.57 3.75 1.49 40 4.46 70
17.35 3.91 2.2 56 6.21 76

L e f t 13.61 3.41 2.03 60 1.2 70
8.96 2.52 2.63 104 0.32 18
14.31 3.58 1.43 40 0.24 17
18.83 4.2 1.12 27 0.14 5
7.58 2.29 2.31 101 0.52 19

7.11 2.31 1.78 77 0 81 22

10.98 2.85 2.84 99 1.68 31

8.96 2.27 3.79 167 1.53 28

15.1 3.52 2.68 76 0.36 26

8.6 2.46 2.52 102 0.45 26

R i g h t 2.78 1.25 1.22 98 1.53 30
11.21 2.98 2.35 79 4.02 30

9.82 2.86 1.74 61 7.36 54

10 23 2.94 1.51 51 8.55 58

13.42 3.55 0.78 22 11.73 60

6.42 1.97 2.52 128 3.14 27

18.33 4.11 1.38 34 6.23 24

15.78 3.63 2 62 72 8.02 33

7.98 2.38 2.3 97 4.79 28

6.97 2.17 2.32 107 5.17 32

NO TE:

M SE = £ ( x j2 
N

Abs =  X|xnl 
N

V ar = Z ( x n-X )2 

N

Cv = VVar 
x

A rea = a rea  under the 
SIFE calculated using the 
trapezoidal approxim ation.

Cross =  the tim e (sample) 
w here the autocorrelation 
function firs t crosses the 
abscissa.

T able 2.1: Statistics for various SIFE signals using the hardware and C-program in Appendix E.
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2.4.1 Description of SIFESIM  Simulink Model.

SIFESIM operates in a very similar manner to its hardware counterpart. The model 

may be divided into three stages:

• The Zero-Crossing Impulse Stage;

• The Reset Integrator Stage;

• The Sample & Hold Stage.

An in-depth explanation o f this stages and the necessary modifications is given in 

Appendix B2.

Figure 2.3: Simulink block diagram for SIFESIM. 

2.4.2 Recording and  Form atting of Matf.m.

Five utterances o f  each word in vocabulary set Gr I were recorded as described in 

Appendix A4 resulting in .wav files of speech data. These had to be converted into 

the appropriate Matlab format, (as described in Appendix B3), before they could be 

used on the model.
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2.4.3 Results from SIFESIM .

Ouce again, the results from the statistical analysis proved unsuccessful. However, 

owing to the fact that the system was in the form o f a software model, any aspect of 

the process could be examined and altered if  necessary. It is clear, simply by 

examining the plots in Figures 2.4-2.8, that the SIFE signals for the utterances 

iS top \ ‘Left’ and 1 Right' are not very different. As may be observed from Figure 

2.9, the SIFE parameter is not reliably repeatable either. These (distinguishability 

and repeatability), being two o f the most important factors in a speech recognition 

system, had to be improved upon before SIFESIM could be seriously considered as 

a speech recognition system.
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2.4.4 Alterations to SIFESIM.

The following test was executed on SIFESIM to explain the problematic aspects 

associated with the generation o f a SIFE signal and to determine the necessary 

modifications to improve the quality o f the signal.

stationary vowel section.

F igure 2.11: The SIFE signal for the l e i  section of the signal in Figure 2.10 clearly, demonstrating

the effect of the slight non-stationarity.

A 40ms section o f sound was created as a test signal (Figure 2.10), by artificially 

connecting sections o f the sounds /s/ and /e/ recorded at 11kHz (16 bit). A 

‘zoomed-in’ view o f the /e/ section of the corresponding SIFE signal is shown in 

Figure 2.11. The high frequency glitch at point X clearly causes difficulty in the 

interpretation o f the SIFE signal as this section o f the signal, being a vowel sound,
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should really result in a fairly constant high SIFE’ value (low SIFE value). This 

glitch is in fact due to the slight yet significant crossover at point Y in Figure 2.10 

which highlights the quasi-stationary nature o f speech signals. In the next 

subsections a number o f possible alterations are discussed to overcome this 

problem.

2.4.4.1 Low Pass Filter Approach.

Rather than attempting to station arise* the speech signal, (which can prove to be a 

slow process), a simple low pass filter  in the form o f a summation filter was applied 

to the signal before SIFE analysis. However, due to the large number o f samples (a 

result o f  a high sampling rate) in each ‘blip’ (such as X in Figure 2.11) an extremely 

high order filter was required and so this approach was discarded.

2.4.4.2 Deadband Approach.

The next approach to be considered was to insert a deadband into the Schmitt 

trigger in the SIFE SIM model. With a deadband the output o f the relay may only 

turn on when the input reaches +11™, (instead o f the rising edge zero as before), and 

may only turn o ff  when the input reaches -UTh, (instead o f the falling edge zero as 

before). Figure 2.12 clearly explains the operation of the deadband. It was found 

that a |UTii| value o f ~2%  o f the maximum amplitude was necessary to eliminate the 

effect o f the ‘blip’.

* The process of stationarising a signal is briefly discussed in Section 1.5
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It was initially feared that a deadband would affect the low energy content o f the /s/, 

however on testing no problems arose. Yet on testing this system on a ‘real’ 

utterance, the results were unsatisfactory: the high frequencies were affected by the 

deadband; the presence o f some were not even acknowledged by the system. For 

example, the deadband proved successful for the utterance ‘Go’ (Figure 2.13), but 

the utterance ‘Stop’ required a |UTh| value o f 12% of the maximum amplitude to 

remove the unwanted crossovers which actually removed the /s/, /t/ and /p/ sections 

o f the signal (refer to Figure 2.14). Hence, this approach also proved 

unsatisfactory.

deadband.
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F igure 2.14: SIFE signal for the utterance ‘S t o p ’ (a) before and (b) after the inclusion of a
deadband

2.4.4.3 Sm oothing Filter A pproach.

Another approach considered was to apply post processing to the SIFE signal itself. 

It was clear that some sort o f smoothing filter was required to dampen the 

erratically fluctuating nature o f  the SIFE signal. The simplest technique to remove 

these spurious signal changes would be to apply a linear low pass filter  to the SIFE 

signal. However, this would have the disadvantage o f smoothing out any rapid 

signal changes resulting from a transition from say a voiced to an unvoiced speech 

section. A clean and sharp transition would be desirable. Also, a linear filter would 

give equal weighting to all samples in the signal, thus ‘blending in’ any error 

samples instead o f removing them.

Instead, a median filter  was chosen because it preserves sharp signal transitions 

while eliminating any fine irregularities and outliers. The median filter chooses a
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single value as its output sample rather than a combined number o f samples as in the 

case o f a linear filter. An example o f how a median filter operates is described in 

Figure 2.15 [45],

On applying the median filter to the SIFE signals, its effect became clearly evident 

as may be seen in Figure 2.16. The signal has now been ‘cleaned up’ dramatically, 

however, a median filter o f the order -100 was necessary to achieve this standard 

due to the large number o f samples present in these glitches. This proved to be 

extremely slow and so was not a very advisable approach.

2.4.4.4 Decreased Sampling Rate Approach.

The final method studied to improve the quality o f the SIFE signal was to decrease 

the sampling rate o f  SIFESIM. The sampling rate o f 11 kHz was lowered to 8kHz 

(in the low pass filter block) and the resulting output signals were o f similar quality 

to those o f the median filter. An advantage with this technique is that it increases 

the overall speed o f the process. The main disadvantage is that a certain degree of 

signal information is lost in the case o f high frequency sounds such as /s/, /f7 and /!/. 

Nevertheless, this being the only reasonable approach to  improve signal quality, the 

reduction in high frequency information is a factor that may have to be accepted in 

order to allow the SIFE signal to be considered as a speech recognition parameter.
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a M e d i a n  F i l t e r

2.5 SIFE Recognition Stage.

It is clear from the results in the previous section that a SIFE signal is not a very 

reliable parameter on which to base a word recognition system. The exists very 

poor repeatability in the system for the same words and weak discriminatory powers 

for different words. Hence, the only possible recognition stage that may be 

implemented would be a Voiced-Unvoiced Decision:1'.

Although such a recognition routine is easy to implement, it is quite obvious that it 

would prove an unsuccessful means o f speech recognition with the SIFE system for 

the following reasons:

t One such recognition routine is described in Appendix B4
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There exists poor repeatability in the SIFE signal.

The discriminatory powers o f the SIFE signal have not proven to be 

satisfactory.

As described in Section 1.3.2, there is a considerable amount o f overlap 

between voiced and unvoiced zero-crossing data. I lence, the probability o f a 

successful recognition being made using a voiced-unvoiced decision on a poor 

quality signal is slim.

The SIFE signal tends to display certain sounds misleadingly. For example, the 

/v/ in the utterance ‘Reverse’ as in Figure 2.6 is portrayed as a purely voiced 

sound and the high frequency content (the unvoiced component) is neglected (a 

problem with most zero-crossing analysers).
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3. Front Line Processing Technique II - Higher Order Crossing

Analysis.

This section o f the thesis introduces the second zero-crossing method to be 

investigated as a possible speech recognition technique. The background o f the 

signal analysis technique known as Higher Order Crossing (HOC) analysis is first 

described, indicating the reasons why it was considered as a speech recognition 

technique. The theory behind HOC analysis is then described in detail. As the m ain 

reference in this section of the thesis is [25], a synopsis o f Kedem’s findings is also 

given, since a knowledge o f his research is important in understanding further work 

into HOC analysis. In this synopsis such factors as the effects o f dominant 

frequencies in a signal, the convergence to the highest present frequency, the 

detection and estimation of discrete frequencies and the effects o f linear filtering are 

examined. A section discussing the choice o f filters to be used in HOC analysis and 

how they affect the signal then follows.

3.1 Background to HOC Analysis.

HOC analysis was originally developed for the detection o f signals in noisy 

environments [25]. An example o f this is demonstrated in Figure 3.1 which shows a 

typical log spectrogram of the vocal sound o f a whale and what is termed a ‘HOC- 

gram ’ o f the same signal. In this case the noisy environment is the ocean. It can be 

seen that a clearly defined pattern is present in the HOC-gram, yet no such signal is 

detected by the log spectral-gram. Much research into a variety o f uses o f HOCs 

has been carried out based on this power o f signal detection.

In [25] Kedem suggests that conducting HOC analysis on speech signals may assist 

speech recognition. However, he does not investigate in any great detail the 

possibility o f this application. Henceforth, this section investigates this phenomenon 

as a rival to the SIFE as a ZC technique.
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Figure 3.1: Log Spectral-gram and HOCgram o f whale vocal sound.

3.2 Theory of HOC.

Definition: A Higher Order Crossing is present when a zero-crossing occurs in a 

filtered1̂ version o f the original signal. HOC information may be obtained from a 

signal using the system described in Figure 3.2. Simply by passing the signal 

through a series o f N linear filters, N filtered (and so ‘higher order’) signals result.

Signal to be 
analysed 

fn0

fni fn2 fn3

Higher Order Functions

fnN

Figure 3.2: A simplified description o f HOC analysis.

The application o f a linear filter to any signal alters the oscillations and hence the 

zero-crossing data. It is this alteration o f zero-crossings that will be studied and 

implemented as a means o f speech recognition.

+ The particular filter types are discussed in Section 3.3.
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3.2.1 Dominant Frequency Principle [25].

If a series o f linear filters is applied to a signal, the number o f zero-crossings after 

normalisation^ tends to approach the dominant frequency in the signal [25], To 

explain the phenomenon known as the Dominant Frequency Principle consider a 

signal comprising two sinusoids. This signal as shown in Figure 3.3 [25] may be 

described by:

xt = 3.8621 lSin(0.5t) + 1.11689Sin(2t) t = 1,2,3,...,1050.

Counting the number o f zero-crossings (Do)1 in the section t=51...1050, a value of

159 is obtained and if  this is then normalised the following results:

0 3 a ’ =  T t P n = 71(159) -  .500013
N -l 999

It is clear that coa’ is an estimate o f the frequency coA=0.5 which is dominant as its 

amplitude is significantly greater than that o f coB=2.

However, after applying a second order differencing filter to xt, a new signal is 

obtained as shown in Figure 3.4 and may be described by: 

yt = xt” = xt - 2xt-i + Xt-2 

Counting the number o f zero-crossings in the same time frame as before, a value of 

636 results for D2.

After normalising, an estimate o f cob is acquired:

cob’ = 7i D? = 7i(636) = 2.00005
N -l 999

(Note: Di gives an average value between the two frequencies present).

t Normalisation: (7 1  x No. of ZCs)/(No. of Samples - 1).
* Dj is the number of ZCs after j filtering stages (i.e. j"' order HOC data)
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Figure 3.4: Twice differenced signal yt =  x ”

However, if  the amplitudes o f the two sinusoids are such that neither frequency is 

dominant (e.g. Aa=Ab= 1) the normalised zero-crossing count tends to land in 

between the two frequencies:

Xt = Sin(0.5t) + Sin(2t)

Do = 448

© ’  =  T t P o  =  7 C ( 4 4 8 )  =  1 . 4 0 8 8 4
N -l 999

Nevertheless, it cannot be denied that (D0,D2) contains very useful spectral 

information about the signal.

3.2.2 Convergence Rule [25].

The Dominant Frequency Principle shows how filtering (differencing in this case) a 

signal may yield a normalised zero-crossing count which approaches the dominant 

frequency, but if  the signal was continually filtered what ultimate effect would this 

have on the zero-crossings?

As was observed in the example in Section 3.2.1, the normalised zero-crossing 

count approached ®=2 after two filtering stages. I f  this signal is repeatedly 

differenced, the normalised zero-crossing count tends to converge to and remain at 

ro=2 (as shown in Figure 3.5) as no higher frequency is present. This Convergence 

Rule holds true for all signals.
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3.2.3 Detection of Discrete Frequencies using HOCs.

The example in Section 3.2.1 not only describes the Dominant Frequency Principle 

but also how discrete frequencies may be detected. The appropriate choice of 

filters and the number o f  filter stages can result in a full description o f any discrete 

frequencies present in a signal.

3.2.4 Autocorrelation.

It has been shown in [25] that there exists a direct relationship between the number

o f zero-crossings and the first order autocorrelation o f a signal. For a stationary

Gaussian process o f zero-mean:

Pi = Cos ( 7 t E [ D n Q  where pi = First Order Autocorrelation
N -l E[D0] = Expected no. o f ZCs.

This is perfectly reasonable as when there is high correlation between consecutive 

samples (i.e. p i—>+1) a low zero-crossing count results. Conversely, if  there is poor 

correlation between consecutive samples, a high zero-crossing count results. 

However, as Kedem states in [25] there are certain advantages o f each parameter 

over the other.

3.3 Linear Filters.

A time invariant filter applied to a discrete signal may be mathematically described 

by convolution:
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<ü(x,) = ShjX,.j where hj is the impulse response o f  the filter.

(i.e. The coefficients o f  the filter).

The following rules hold for all linear filters;

• (alr£, + a2i 2)(xt) = ai il(Xt) + a2<£2(xt)

• , U ( x t) = ¿ 2(i,(xt))

The latter rule is important and in the next chapter it is demonstrated how this may 

be exploited to reduce computational expense when applying HOC analysis to a 

signal.

3.3.1 Backward Shift Operator.

This is a simple term used to describe the action o f a filter and is synonymous with 

the z-operator in the Z-transform. It will be used in this thesis in the description of 

any filter. It may be defined as:

PXt =  X t-i

with Grain = X,

and <f) = e'1“ where co is Frequency.

Hence,

P _1Xt =  Xt+i

And the filter family may be described by,

PJxt = Xt.j where j is the filter order.

3.3.2 Differencing Operator.

Also referred to as a differencing filter or delta operator, it is defined as:

Vxt = (l-P)xt = xrXt-i 

The frequency response of this filter may be described as:

|H(g>)|2 = 2j(l-Cosio)’ where j is the filter order,

and has a filter family described by:

v Jxi = (l-pyxt
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The differencing filter acts as a high pass filter and a plot o f the squared gain for a 

first order filter may be seen in Figure 3.6.

Figure 3.6: Square gain plots of d i f f e r e n c i n g  and s u m m a t io n  filters.

3.3.3 Summation Operator.

The summation operator acts as a low pass filter and may be defined as:

Sxt = (1+P)xt = Xt+Xn 

The frequency response o f this filter may be described as:

|H(©)|2 = 2j(l+Cosco)1 where j is the filter order.

Its family o f filters may be described as:

sjxt = (i+py*
A plot o f  the squared gain o f the first order summation filter is also shown in Figure

3.3.4 Slutsky Filter.

This is a combination o f a differencing and summation filter resulting in a band pass 

filter. It may be defined as:

oL,n(xt) = ( l - p r 'a + p y - 1 

Note that j has now become a vector j=(m,n)

3.3.5 Alternative Filters Suitable in HOC Analysis.

• Complex Filter:

l ( p )  = (l+ e iGp)n where 0e[O,7t]

n is a positive integer.
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The frequency response o f this filter may be described as:

|H(co)|2 = 4nCos2n([0-co]/2)

Note: when n becomes very large, a band pass filter centred at 0 results.

• Recursive Filter:

yt = -aiyt-i - - amyt-m + b0xt + b ix^ + ... +b„xt.„

where yL is present output 

Xt is present input.

• AR(1) or a-Filter:

yt = ayn+xt

Or, yt = S a Jxt.j |a |< l

H(co) = ( l - a e '1“) '1 

Note: I f  a<0, a high pass filter results and if  a>0, a low pass filter results.

3.4 Effects of Linear Filters on Signals.

So, how does the application o f a linear filter affect a signal? Firstly, one may say 

that the filter (whether low, high or band pass) attenuates certain frequency 

components in the signal. This results in a new signal (perhaps containing a higher 

or lower dominant frequency) with different zero-crossing information. Further 

filtering results in further changes to the zero-crossing information. This thesis 

proposes that with the correct choice o f  filter, this alteration in zero-crossing 

information may be used in some manner in order to distinguish between different 

speech signals.

3.4.1 Effects of the Differencing Filter on Zero-Crossing Information.

As previously mentioned, the differencing filter acts as a high pass filter; the greater 

the order the more pronounced the filter. Hence, if  a signal is repeatedly 

differenced, a lower band of frequencies is attenuated each time; it is therefore 

reasonable to suggest that the number o f zero-crossings increases after each filter 

stage. 71iis assumption proves true for any signal and a plot o f the number of zero- 

crossings against the filter order (termed a HOC Plot) such as that in Figure 3.7 

results. Adhering to Kedem’s convention in [25], from this point on in the thesis,
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the number o f zero-crossings obtained from differencing is referred to as D, and 

from summation as ¡D.

It can be observed from Figure 3.8 that rapidly changing signals (i.e. those o f little 

inter-sample correlation) display significantly different HOC plots to those of 

smoother signals from a similar process, but as j—>00, Dj converges to the same 

value for each signal.

The differencing filter HOC plot for any signal is always a monotonic increasing 

function and converges to the highest frequency present in the signal (Convergence 

Rule).

3.4.2 Effects of the Summation Filter on Zero-Crossing Information.

The operation o f the summation filter is opposite to that o f the differencing filter, in 

that it acts as a low pass filter attenuating higher bands o f frequencies, thus 

lowering the number o f  zero-crossings. The corresponding HOC plot (as seen in 

Figure 3.9) shows a monotonic decreasing function, converging to the lowest 

frequency present.
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3.4.3 Effects of the Slutsky Filter on Zero-Crossing Inform ation.

The two dimensional band pass filter nature o f the Slutsky Filter yields a more 

complex three dimensional HOC plot whose exact shape is dependent on the signal. 

An example is shown in Figure 3.10.
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4. Implementation of Higher Order Crossing Analysis.

This chapter explains how HOC analysis was implemented using Matlab and what 

modifications were made to the original analysis technique described by Kedem [25] 

in order to improve on performance. The newly designed system based on HOC 

analysis (termed CHOC) is then introduced with an explanation o f how it is better 

than its predecessor. The results from various tests on the CHOC system are then 

presented and discussed. Among these are a repeatability test, discrimination 

powers for whole utterances, vowels and consonants and the systems ability to 

perform phonemic segmentation.

4.1 Investigation into Suitability of Filters.

Before developing a speech recognition system based on HOC analysis, it is 

important to find the family o f filters most suited to speech signals. It was 

necessary to simulate each filter, apply them to appropriate signals and evaluate 

their suitability to speech analysis.

4.1.1 Implementation of Filters.

Initially, the differencing and summation filters were implemented in Matlab using 

the m-files Diffil.m  and Sumfil.m, respectively, as described by their flowcharts in 

Figures 4.1 and 4.2. For a more in-depth description o f these and their associated 

m-files refer to Appendix C l.

The delay operator was achieved using Roll.m  (described in Figure 4.3), which 

simply rotates the data sequence n positions to the left or right depending on 

whether a (3 " or (3n is required. This significance o f this m-file is explained in detail 

in Section 4.2.1.

On testing these m-files it was found that they ran at a totally impractical speed 

(~50min/word). A re-examination of them discovered that it was not necessary to 

calculate the filter coefficients each time and that the zero-crossing counter could be 

incorporated into the filtering m-files. The filter rule mentioned in Section 3.3,

allowed the HOC system to be designed as in Figure 4.5(b).
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Figure 4.1: Flowchart describing howDiffil.m  filters a speech signal.
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START

Get speech signal x and 
maximum filter order N

Calculate Pascal Matrix of order N + l and extract 
right-left diagonal to be used as filter coefficients [Cj]

Point to first coefficient: 
i=0

Multiply signal samples by:
Cl

Add present result to previous result:
yi = yi + yi-i

Y

Display filtered signal y(

’

END

Increment i

Figure 4.2: Flowchart describing the filtering achieved by Sumfil.m.
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F igure 4.3: Flowchart expaining how Roll.m creates a delayed

( S T A R T

Create Infinitely Clipped Speech (ICS) Signal:
lfxi>0, yj = 1 

else yi =  -1

Increment zero-cross 
counter

Increment i

’
Y
Ì

Output zero-cross count value

1T

END

Figure 4.4: Flowchart showing howZcount.m counts the number of zero-crossings in a speech signal
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(b) Hocdifm /H ocsum .m

Hence, Hocdif.m  and Hocsum.m were developed and executed much faster than 

their predecessors (~5minAvord). These functions are described by the block 

diagrams in Figure 4.5 and the flowcharts in Figures 4.6 and 4.7.

Also developed was an m-file to simulate a Slutsky filter called Hocssky.m. For the 

purposes o f the work described in this thesis, it was sufficient to let m=n at all 

times, thus avoiding problems presented by two-dimensional arrays.

4.1.2 Testing the Filters.

4.1.2.1 Initial Tests.

An initial test was performed on each filtering technique using the data sequence 

below (first used by Kedem [25]) to ensure that the m-files were executing 

correctly.

x = [-3.4, 1.6, -3.4, 2.6, 3.6, 4.6, -2.4, -1.4, -4.4, 2.6]

The following results were obtained from Hocdif.m'.

x = [-3.4, 1.6, -3.4, 2.6, 3.6, 4.6, -2.4, -1.4, -4.4, 2.6]

Vx = [-6, 5 ,-5 , 6, 1, 1,-7, 1,-3, 7]

V2x = [-13, 11, -10, 11, -5, 0, -8, 8, -4, 10]

Yielding: D0 = 5, D] = 7, D2 = 7 => Monotonic Increasing and Converging!

(Note: These results do not exactly agree with those obtained in [25] as a different 

technique was employed to deal with end effects - Refer to Section 4.2.1).
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re 4.6: Flowchart describing the more efficient method of differencing a speech signal: Hocdif.m



(  START )

Y

r

Output HOC Data

END

Figure 4.7: Flowchart showing the more efficient summation filtering technique: Hocsum.m,
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The following results were obtained from Hocsum.m :

x = [-3.4, 1.6, -3.4, 2.6, 3.6, 4.6, -2.4, -1.4, -4.4, 2.6]

Sx = [-.8 ,-1 .8 ,-1 .8 ,-.8 , 6.2, 8.2, 2 .2 ,-3 .8 ,-5 .8 ,-1 .8 ]

S2x = [-2.6, -2.6, -3.6, -2.6, 5.4, 14.4, 10.4, -1.6, -9.6, -7.6]

Yielding: 0D = 5, iD = 2, 2D = 2 => Monotonic Decreasing and Converging!

The above results proved that the m-files were operating as desired and were ready 

for testing on real signals.

4.1.2.2 Tests on Real Signals.

The differencing, summation and Slutsky filters were executed up to the 10th order 

on five utterances o f each word in the Gr I vocabulary set (as described in Appendix 

A4). The HOC sequences in Tables 4.1 to 4.3 were obtained, yielding the HOC 

plots in Figures 4.8 to 4.10.

The HOC plots in Figure 4.8, corresponding to the differencing filter, display 

reasonable signal discrimination between the different words, with only a slight 

overlap between Right3 & Rev4 and Right5 & Left5. These clearly defined areas 

on the HOC plane for each word are a direct result of the different correlation 

functions and different degrees o f higher frequency content. Hence, Go (consisting 

mainly lower frequencies and closely correlated samples) assumes a position in a 

lower portion o f the HOC plane.

A set o f  HOC ranges, as in Table 4.4, may now be established for use as a template 

system for comparison to the HOC data o f an unknown test signal. That is, if all 

the test signal’s Dj values fall into a particular range, the signal may be recognised 

as that word.

The HOC data in Table 4.2 was obtained from Hocsum m  and yielded the series of 

HOC plots in Figure 4.9. This filtering technique is therefore unsuitable due to the 

unacceptable amount o f  overlap.

The Slutsky filter was then tested, with n=m to avoid the complications of three 

dimensional arrays o f  data. The resulting HOC data in Table 4.3 and HOC plots in 

Figure 4.10 suggest that this filter is slightly better than the differencing filter at 

discriminating between signals.
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W ord/
Fil.Ord

Go Go 
1 2

Go Go 
3 4

Go
5

Stop
1

Stop
2

Stop
3

Stop
4

Stop
5

310 217 203 258 293

951 1158 1043 1136 1212

1782 1936 1723 1844 1954

2322 2406 2181 2194 2434

2628 2713 2487 2415 2717

2786 2909 2653 2583 2847

2915 3046 2755 2715 2917

2973 3136 2805 2783 2975

3031 3184 2848 2819 3017

3059 3237 2886 2852 3063

3081 3265 2928 2890 3083

Rev Rev Rev Rev Rev 
1 2 3 4 5

Left
1

Left Left 
2 3

Left Left 
4 5

Right
1

Right
2

Right Right Right 
3 4 5

317 304 264 310 380

1804 1686 1592 1768 1952

2810 2844 2510 2838 3240

3336 3298 2902 3276 3629

3576 3566 3092 3508 3828

3697 3678 3214 3622 3977

3784 3772 3296 3708 4083

3858 3846 3362 3778 4163

3901 3910 3408 3822 4215

3953 3952 3474 3882 4273

3993 3989 3522 3920 4293

0

1

2

3

4

5

6

7

8
9

10

231 254 

607 622 

1086 1219 

1492 1827 

1973 2273 

2267 2433 

2399 2495 

2515 2557 

2587 2618 

2629 2660 

2665 2699

218 219 

607 586 

1171 944 

1643 1357 

1985 1735 

2203 1919 

2323 2053 

2389 2135 

2437 2211 

2475 2262 

2505 2292

212

642

1077

1519

1915

2067

2157

2213

2261

2293

2335

343 269 

1210 1157 

2100 1993 

2507 2405 

2747 2641 

2889 2811 

3045 2945 

3179 3077 

3343 3161 

3407 3245 

3451 3267

288 316 

1180 1280 

1996 2179 

2362 2604 

2596 2882 

2783 3067 

2983 3231 

3111 3355 

3207 3449 

3247 3547 

3284 3596

276

1362

2275

2644

2836

3028

3170

3266

3362

3406

3474

414

2050

3328

3901

4195

4403

4531

4621

4689

4731

4773

356 411 

1820 2003 

3318 3215 

3806 3691 

4042 3949 

4148 4093 

4248 4207 

4333 4261 

4383 4313 

4425 4368 

4469 4398

353 299 

1996 1745 

3368 3129 

3820 3609 

4042 3857 

4187 4007 

4275 4101 

4337 4153 

4393 4209 

4459 4255 

4493 4293

Table 4.1: Results after HOC analysis o f Gr I vocabulary set using a differencing filter.
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Right
5

380

312

280

262

258

256

244

234

234

230

230

Go
2

Go
3

Go
4

Go
5

Stop
1

Stop
2

Stop
3

Stop
4

Stop
5

Rev
1

Rev
2

Rev
3

Rev
4

Rev
5

Left
1

Left
2

Left
3

Left
4

Left
5

Right
1

254 218 219 212 310 217 203 258 293 343 269 288 288 254 414 356 411 353 299 317

242 200 218 198 282 198 178 222 258 302 231 260 264 232 344 310 360 298 261 267

234 192 214 194 258 184 172 208 246 286 219 252 246 208 308 294 334 270 253 254

226 188 210 192 248 182 158 196 230 260 215 242 244 204 302 284 318 262 251 248

224 182 208 182 238 178 148 184 220 254 209 236 238 198 284 276 298 250 247 240

222 180 204 178 234 176 142 180 212 252 205 230 230 194 272 269 286 246 241 232

222 174 202 176 230 174 138 178 204 244 203 222 228 186 262 267 276 242 237 230

222 172 202 174 227 174 138 172 200 244 199 218 226 184 256 260 264 240 235 224

222 172 200 174 221 172 136 172 198 240 197 212 226 176 248 256 260 238 233 222

218 170 197 172 216 170 134 166 196 238 197 210 224 176 246 256 256 236 231 220

216 168 193 170 212 168 134 164 192 232 193 206 220 176 238 250 250 230 229 220

Table 4.2: Results after HOC analysis of Gr I vocabulary set using a summation filter.
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W ord/
F il.O rd

Go
1

Go
2

Go
3

Go
4

Go
5

Stop
1

Stop
2

Stop
3

Stop
4

Stop
5

Rev
1

Rev
2

Rev
3

Rev
4

Rev
5

Left
1

Left
2

Left
3

Left
4

L eft
5

R ight R ight R ight R ight R ight 
1 2 3 4 5

0 231 254 218 219 212 310 217 203 258 293 343 269 288 316 276 414 356 411 353 299 317 304 264 310 380

1 531 520 494 518 530 751 864 776 832 908 968 889 865 986 1046 1478 1322 1382 1368 1263 1295 1212 1120 1196 1316

2 865 842 802 748 779 1180 1298 1117 1172 1345 1568 1395 1390 1574 1588 2206 2042 2058 2141 1951 1897 1898 1688 1904 2161

3 996 1001 954 848 889 1408 1514 1339 1392 1519 1796 1651 1655 1797 1850 2507 2358 2378 2483 2289 2081 2150 1906 2116 2403

4 1066 1115 1066 924 964 1534 1644 1471 1514 1609 1906 1777 1714 1869 1908 2635 2508 2462 2571 2427 2166 2274 1994 2220 2497

5 1124 1207 1146 990 1086 1599 1706 1541 1540 1691 1958 1833 1766 1945 1956 2707 2556 2516 2630 2491 2250 2334 2032 2255 2539

6 1220 1335 1224 1118 1143 1709 1754 1565 1594 1735 2023 1853 1830 1991 1976 2751 2598 2542 2646 2525 2302 2363 2082 2307 2569

7 1318 1453 1320 1216 1223 1752 1790 1611 1614 1790 2033 1890 1859 2021 2002 2773 2623 2580 2672 2547 2342 2397 2094 2339 2599

8 1391 1591 1372 1317 1299 1793 1808 1627 1642 1810 2058 1900 1869 2051 2046 2805 2637 2586 2673 2561 2394 2403 2138 2359 2621

9 1491 1683 1454 1401 1383 1823 1820 1663 1649 1828 2088 1909 1893 2062 2054 2831 2651 2623 2677 2584 2415 2421 2142 2389 2639

10 1565 1745 1507 1447 1443 1853 1854 1689 1693 1860 2090 1923 1901 2088 2074 2859 2657 2617 2691 2592 2441 2417 2160 2395 2651

Table 4.3: Results after HOC analysis of Gr I vocabulary set using a Slutsky filter with m = n.
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Figure 4.10: HOC plots for Gr I vocabulary set using a Slutsty filter



G o

Filter O rd e r 0 1 2 3 4 5 6 7 8 9 10
ZCm in
ZCm ax

200
275

565
660

925
1240

1335
1845

1715
2295

1910
2455

2035
2515

2115
2575

2190
2640

2240
2680

2270
2720

S t o p  

F ilte r O rd e r 0 1 2 3 4 5 6 7 8 9 10
ZCm in
ZC m ax

185
330

930
1180

1700
1975

2160
2455

2395
2735

2565
2930

2695
3065

2765
3155

2800
3205

2830
3260

2870
3285

R e v e r s e  

F ilter O rd e r 0 1 2 3 4 5 6 7 8 9 10
ZCm in
ZCm ax

250
365

1135
1380

1970
2295

2340
2665

2575
2900

2765
3090

2925
3250

3060
3375

3140
3470

3225
3570

3245
3615

L e f t  

F ilte r O rd e r 0 1 2 3 4 5 6 7 8 9 10
ZCm in
ZCm ax

280
430

1725
2070

3110
3390

3590 3835 
3920 4215

3990
4420

4080
4550

4135
4640

4190
4710

4235
4710

4275
4795

R i g h t  

F ilte r O rd e r 0 1 2 3 4 5 6 7 8 9 10
ZCm in
ZCm ax

245
340

1570
1825

2490
2865

2880
3355

3070
3595

3095
3715

3275
3805

3340
3880

3390
3930

3455
3975

3500
4010

T ab le  4.4: HOC Ranges for differen cin g  filter.

The data in Table 4.3 was normalised to 100ms in an attempt to improve 

discrimination. This resulted in improved grouping between identical words, but 

deteriorated separation between different words.

Owing to the extra computational expense associated with the Slutsky filter, it was 

decided that the differencing filter was the most efficient.

However, as one can imagine, as the size of vocabulary increases the amount of 

HOC plane occupied will also increase, resulting in a larger number o f overlapping 

words. Thus, the limited nature o f this technique would prove problematic and so, 

an alternative system was necessary.

4.2 Solving the Problems of Limited HOC plane.

It was decided that the problems associated with limited HOC plane and 

overlapping was a result o f the poor approach taken in [25] to extracting HOC data 

from a signal. It is o f coursc unreasonable to simply take a whole utterance and 

determine one set o f HOC data corresponding to this signal. To do this results in a
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total loss o f vital timing information: HOC information is constantly changing 

throughout the course of each utterance. To ignore the changing nature of this 

parameter and ‘level out’ or ‘average’ the HOC data to one sequence, would only 

mean discarding valuable signal information which would most certainly help in 

signal discrimination.

Hence, a new approach had to be taken to ensure as much timing information as 

possible is retrieved form the signal. The algorithm (described by Figures 4.11 and 

4.12) called Hocalg.m  was developed to solve this problem.

Speech
VP

H O C
Data

Figure 4.11: Block diagram of H o c a lg .m .

Figure 4.12: Flowchart describing the operation of Hocalg.m
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4.2.1 Loss of Data due to Treatment of End Effects.

End effects introduce problems when differencing as the t - 1 term does not exist in a 

causal finite data series*. Hence, xt-xt-i @ t=0 (i.e. x_i) is indeterminable. For each 

k* order o f differencing k data values are unknown (i.e. x_i to x_k). In [25], Kedem 

implements a shifted index1 technique to overcome the problem of indeterminable 

data values, fhis method, however, results in a loss of data because for a kth order 

filter only the data x̂ +i to xN are considered; the data xo to xk are totally ignored. 

These samples may, however, be vital to the signals description, especially in the 

case o f a speech signal (e.g. a plosive o f short duration such as /t/). Hence, a 

different technique had to be implemented in controlling end effects. Roll.m 

incorporates a circular buffering procedure to reduce end effects. Now,

X -l =  Xn , X-2 =  X n -1, ... X_k =  XN-k+1

i.e. xo

This allows the data to be processed without the loss o f samples.

4.2.2 Necessity of Hanning Window.

The use o f a circular buffer to avoid loss of data is not without problems. There is 

no guarantee that the samples xN and xo are equal or even remotely similar (refer to 

Figure 4.13).

t Usually these ‘lost’ samples are let equal zero (i.e. the signal is zero-padded).
* The k"' sample is let equal the first valid sample (where k is the number of samples delayed).
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Therefore, if  a rectangular window is used to extract the data for the circular buffer, 

a ‘click’ may be generated in traversing from xN to xo. This click results from the 

discontinuity in the signal and consists a broad band o f frequencies as shown in 

Figure 4.14. This click affects the spectrum of the signal by introducing numerous 

sidelobes as can be observed in Figure 4.15.

Usually an integral number o f cycles is selected for analysis to eliminate this 

problem Unfortunately, it is extremely difficult to extract an integral number of 

cycles from a voiced speech signal without knowing its fundamental frequency; it is 

virtually impossible to do so for unvoiced speech as it is generally not cyclic.

Hence, a Hanning window is incorporated to smooth out any differences between 

xN and xo, thus dampening the effects o f the click and attenuating the spectral 

sidelobes. However, it must be noted that windowing, although reducing spectral 

leakage, also introduces an amount o f smearing (i.e. the amplitudes o f the signal 

section are slightly distorted). To overcome this problem a window as described in 

Figure 4.16 may be implemented.
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However, after comparing the spectrum o f the multi-formant signal I cel to that of a 

Hanning windowed version, it was observed that all the frequency components 

remained present and only the overall signal energy was affected (as can be seen in 

Figure 4.17). As HOC analysis is based on frequency detection it would, therefore, 

be virtually unaffected by windowing.

4.2.3 Necessity to Pad Windowed Section.

As mentioned before, the speech signal is to be analysed section by section with a 

50% overlapping window. It would, therefore, simplify matters if  an integral 

number o f window frames were present in the speech signal (i.e. the signal can be 

divided evenly by half the window length). This may be achieved by appending an 

appropriate number o f samples to the end o f the signal. The number o f appended 

samples (SA) may be calculated as follows:

Sa = (W/2) - R where W is the Window Length
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and R is the Remainder Factor.

And, R = Rem [N / (W/2)] where N is the Total Number of

Samples in the Signal.

Initially, zeros were considered for the appended samples however, it seemed more 

practical to append samples that were in some way related to the signal itself. 

Hence, it was decided to append the last SA samples o f the signal onto itself (i.e. 

xn_sa to xN). However, rather than attaching this set o f samples directly to the end 

o f the signal, a mirrored image of the samples was appended. This ensured that xN 

and Xn+i were exactly the same, thus removing the possibility o f discontinuity 

between the original signal and the appended samples and so safeguarding against 

the introduction o f a click signal.

Figure 4.18: Appending mirrored samples to end of signal to allow integral number of windowed

sections.

4.3 Testing the New H O C Algorithm.

The new HOC algorithm was tested on a variety o f phonemes and the resulting 

HOC plots (Figure 4.19) were examined. At first sight, these plot seem conflicting 

with HOC theory. The convergence o f the /8/ sound (as in rod) to the same highest 

frequency as that o f the /s/ sound does not seem to make sense. A low frequency 

signal should assume a position in the lower HOC plane and one o f higher 

frequency in the upper HOC plane. Should they not converge to the maximum 

frequency present? Yes. So, why do they all seem to approach the same 

frequency? Well, this theory operates without problems for signals containing 

discrete frequencies. However, if  the spectrum o f a signal is examined (say for the 

h a /  sound, as in low), it may be seen that although the frequency components above

1.1 kHz are o f so little energy that they would normally be rendered negligible, yet
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they are still present, in a real continuous frequency signal the highest frequency 

present is always n, no matter how weak this component. As explained in [25], the 

HOC system tends to land on and detect discrete frequencies, but this system fails in 

the case o f a  continuous frequency signal. Why? Well, when the real signals (i.e. the 

sounds) were recorded there was always going to be white noise present in the 

recording environment. The best a low pass noise filter or the anti-aliasing filter 

could do was to limit this noise to pink (or band limited white noise). The highest 

frequency in this noise signal is the cut-off frequency o f  the anti-aliasing filter - i.e. n. 

Hence, a s j —><», D^—>71. However, it can be seen that the peak amplitudes o f each 

phoneme after each differencing stage are very different suggesting the different 

concentrations o f  energy at different frequencies (refer to Table 4.5). Kedem in [25] 

developed a  new algorithm (the HK Algorithm) to overcome this problem. This 

algorithm would prove to be unsuitable for a speech signal owing to its extreme 

slowness and extraction o f  the same information o f that from a FFT. Hence, it was 

decided that, rather than determine the highest frequency, remove it and so on, as is 

done in the HK algorithm, it would simplify matters greatly if  it was possible to 

employ only the lower few orders o f HOC data as speech recognition parameters.

Figure 4.19: HOC plots for various phonemes converging to  the same highest frequency. The signals
have been normalised to  100msec.
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Table 4.5: The concentration of energy in different frequencies for different phonemes.

4.4 CH OC Plots.

Carrying out a windowed HOC analysis on a signal o f considerable duration 

(~500ms) with a window length of 30ms and an overlap o f 50% tends to yield a 

very large number o f HOC data sets. The corresponding HOC plots prove to be of 

little or no use due to the high concentration o f graph in the same HOC plane as 

shown in Figure 4.20. Hence, a new means o f describing the HOC data had to be 

developed. A HOC plot by definition [25] is a plot o f higher order zero-crossing 

counts against the corresponding filter order. The new representation, termed 

CHOC Plot, describes the number o f higher order zero-crossings versus the 

corresponding window frame for each filter order. The ‘C’ in CHOC stands for 

‘columnised’ referring to the ‘column’ data being plotted rather than the row data 

as in the case o f  a HOC plot. The resulting CHOC plots present the HOC data in a 

manner much easier to  interpret. The CHOC plot may be compared to a TFR 

(Time-Frequency Representation) of the signal and this aspect will be discussed in 

detail in a later section. The curves in the CHOC plot are now termed iIsofils'> as 

they connect HOC data points corresponding to the same filter order.

It should be noted here that as the filter order increases the isofils tend to level out 

and so do not contain as much useful information as isofils o f lower orders. It may 

be seen from Figure 4.21 that as j —>oo, Dj—>330, which normalises to n - the 

maximum number o f  zero-crossings possible in a 30ms window, hence the 

maximum frequency present. Therefore, the greater the value o f j, the less useful 

the information as a speech recognition parameter. After much examination o f the 

CHOC plots, it was decide that only up to the second order o f HOC data was of
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Figure 4.21: CHOC plot for the same fully windowed speech signal as in Figure 4 20. N ote the clear

phonemic structure o f the signal.

considerable benefit. Above this proved too computationally expensive yielding 

information whose benefit was not proportional to the time taken to achieve it. 

Hence, D0, Di and D2 were assumed sufficient to allow adequate discrimination 

between signals.
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4.5 Significance of HOC Values D0, Di, D2.

In general, the sequence o f values Dj produced during HOC analysis may be viewed 

as another type o f spectrum, with D0/2(N-1) (the normalised identity HOC) 

corresponding to the fundamental frequency o f the signal. However, these Dj 

values actually describe the signal in a simpler manner, owing to the synonymous 

nature o f differencing and differentiation. Consider D0 to D2f:

• D0 is simply the number o f zero-crossings in the signal.

• Di is the number of peaks and troughs in the signal.

• D2 is the number o f points o f  inflection in the signal.

This suggests that only D0 to perhaps D? are necessary to discriminate between 

signals. For example, the tuning fork note and the violin note in Figure 4.22 may be 

easily distinguished by considering the number o f peaks and troughs present in the 

violin signal (i.e. although D0 is the same, Di is extremely different).

F igure 4.22: Acoustic signals for a tuning fork and violin [42] demonstrating similar zero- 

crossing information but different higher order crossing information.

4.6 Observations made on CHOC Plots.

4.6.1 Signal Repetition and Discrimination.

The CHOC plots in Figure 4.23 of each of the words lfom the Gr I vocabulary set 

demonstrate very well the power of signal discrimination contained within HOC 

analysis. As few as three parameters (D0-D2) appear to provide enough signal 

information to distinguish one utterance from another.

T A full explanation of how this is so is given in Appendix C2.
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Figure 4.23: CHOC plots o f Gr I vocabulary set with approximate phonemic boundaries: (a)Go,
(b)Stqp, (c)Reverse. OVER
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(d)Ltf t, (eJRight.

However, a fundamental property required by a reliable feature extractor is 

repeatability: can the same set of parameters be obtained each time for different 

utterances o f the same word? The CHOC plots given in Figure 4.24 are of three 

different utterances o f the word ‘Reverse’ and demonstrate quite clearly that the 

system’s repeatability is o f high quality. The fact that HOC data is accurately 

repeatable adds to its viability in speech recognition.
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300 CHOC Plot for First Utterance of 'Reverse '

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
Time Frames

H H O r  P lo t fo r  Second  U tte ra n c e  n f 'R everse '

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45
Time Frames

Figure 4.24: CHOC plots corresponding to  three utterances o f the w ord R everse’ clearly 
demonstrating the repeatability o f  HOC analysis.
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4.6.2 Phonetic/Phonemic Detection and Discrimination.

The HOC technique has an advantage over other zero-crossing techniques in its 

power to detect the presence o f phonemes that would have otherwise gone 

unnoticed. CHOC plots tend to complement voiced fricatives such as Ivl in the 

word ‘Reverse\  D0 (the parameter used by most zero-crossing techniques) does 

not distinguish this phoneme from its surrounding vowels; however after just one 

differencing stage, the Ivl is highlighted. This is due to the removal o f the voiced 

component leaving only the unvoiced sound, thus increasing the dominant 

frequency). The same can be observed in the case o f  the phoneme Ipl in the 

utterance iS top \ The isofil D0 shows little difference between this phoneme and 181 

(the ‘o ’ sound); however, Di and D2 amplify the unvoiced components o f Ipl thus 

distinguishing it from the vowel 181.

4.6.3 Phonetic/Phonemic Segmentation.

The CHOC plots prove to be a powerful tool in phonemic segmentation. Clearly 

defined phonemes are visible in these plots with higher frequency signals such as Is/ 

yielding upper plane isofils and lower frequency signals such as lul yielding lower 

plane isofils. Mixed voiced-unvoiced signals such as Ivl are portrayed with low D0 

values and higher (even spiked) Di and D2 values. This clear phonemic definition 

suggests the HOC method to be a suitable means to separate utterances into their 

phonemic segments.

4.6.4 Preservation of Time Domain Characteristics.

The CHOC plots tend to preserve certain characteristics present in the time domain 

signal. For example, in the phonetic structure o f the word iS top \ there is a distinct 

period o f silence before the burst o f energy from the plosive Itl. This may be 

attributed to the shifting o f the tongue into position from the Isl sound to the top- 

front o f the palette and the intensifying of air pressure behind it before the sudden 

release o f  such energy. The silent period is clearly present in the CHOC plot o f the 

utterance ‘S t o p It is portrayed as a channel between the Isl and Itl at time frames 

9-12. D0 is very low and vowel-like, Di is too high for a vowel and D2 almost 

suggests the signal to be o f high frequency. This would imply that this part o f the
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signal consists mainly o f the broad band frequency nature o f background noise, 

which in this case is assumed to be a silent period. The same phenomenon may be 

observed between the Ifl and Itl o f the utterance ‘L e f f .

4.7 Perform ance of HO C Analysis.

To investigate how powerful the HOC technique may be at discriminating sounds a 

series o f tests were performed on the system first using the vowel sounds in the Or 

HI vocabulary set and then the consonants in the Gr IV set. These tests would 

determine whether the system was capable o f distinguishing between closely 

sounding syllables.

4.7.1 H O C Analysis of Vowels.

The Gr III vocabulary set, as described in Appendix A4, was subjected to HOC 

analysis up to D3, using Hocalg2.m  and the resulting CHOC plots were constructed 

as shown in Figure 4.25. It should be noted that each vowel was prefixed with the 

phoneme Ikl to allow similar entry into the vowel sounds. It was observed that in 

all the cases the vowel section o f the syllable accommodated considerably longer 

duration than the preceding Ikl as expected and consisted of moderately flat isofils 

due to the quasi-stationarity o f the sound.

Table 4.6 describes the average isofil levels for each vowel sound and the following 

conclusions may be drawn from this:

• D0 proves o f little use in differentiating one vowel sound to the next.

• D3 is o f little help, as the D3 values for each vowel sound are quite similar. This 

was expected for consonants but not vowels.

• It may be observed that at the end o f each CHOC plot the isofils tend to rise 

dramatically. This is merely due to the mouth closing, the sound becoming 

more whisper-like and thus an increase in the presence o f higher frequencies. 

This phenomenon would not occur if  the vowel was enclosed in a full word.

• Frame 22 onwards o f I si I tends towards the isofil structure o f the lil sound as 

the sound passes from the back of the mouth to the front. Again, this would not 

be very apparent in a whole utterance, but would prove to be an extra 

discrimination factor (e.g. an /ai/ in the utterance Right).
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(i)
300

No. 250
of 200

ZCs 150

(Dj) 100
50
0

(g)

300
No. 250
of 200

ZCs 150
(Dj) 100

50
0

Figure 4.25: CHOC plots for Gr HI vocabulary set ie. Vowel sounds (a)Kah, (b)Kaw, (c)Kay, (d)Ke,
(e)K<y, (f)Ko, (g)Koo.

74



• D2 would prove sufficient to distinguish between too! and lul even though D0 

and Di values are quite similar.

• The similarity between the CHOC plots o f lei and I cel would suggest that words 

such as Pen and Pan may be confused by the system.

• The amount o f ripple in the isofils (as will be shown in a later section) will be 

taken into consideration by the Dynamic Time Warping stage and should prove 

to be an extra recognition factor.

Phoneme D oAv ® IA v D 2AV m
78/ (kaw) 20 6 0 1 5 0 200
/oof (ko) 20 3 0 8 5 18 0

fuf (koo) 15 3 0 140 200
/e/ (ke) 20 9 0 1 5 0 1 8 0

/*£/ (kah) 20 9 0 14 5 1 9 0

ic'd (kay) 3 0 /1 5 1 0 5 /1 2 5 1 5 5 /1 7 5 1 7 0 /2 1 0

/i/(kcy) 15 9 0 175 200

T able 4.6: Average D0-D3 Values of Gr III Vocabulary Set after Hocalg2.m.

4.7.2 H O C Analysis of Consonants.

The words in vocabulary set Gr IV were then subjected to HOC analysis in order to 

test the technique’s capability in distinguishing different consonants. The 

corresponding CHOC plots up to D3 are shown in Figure 4.26 and Table 4.7 

describes the average isofil level for each consonant. It should be noted that all the 

consonants were suffixed with the phoneme I cel to allow a similar exit from each 

sound. The following points were noted:

• D0 is very low for Ibl, Idl and frames 3-6 of Igl illustrating the existence of a 

voiced component.

• The Igl is broken into two sections, the first being a strong unvoiced almost Ikl 

sound and the second being voiced. This double section will help in the sound’s 

recognition.

• The phonemes Ibl and Idl may easily be distinguished by their Di and D2 values.
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OVER-*
Figure 4.26: CHOC plots of Gr IV vocabulary set: (a)/b/, (b)/d/, (c)/g/.
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Figure 4.26 (Contd.): CHOC plots of Gr IV vocabulary set: (d)/k/, (e)/t/, (f)fpl.
OVER*



Figure 4.26 (Contd.): CHOC plots o f  Gr IV vocabulary set: (gJFin, (h)Thin, (iJNo.
OVER-»
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Figure 4.26 (Contd.): CHOC plots o f Gr IV  vocabulary set: (j^Mow, (k)So, 0)Show.

79



• The similarity between the D values o f Itl and Ikl does not cause a problem as 

there is a distinct peaking in the isofils o f Itl, whereas the isofils o f Ikl are 

relatively flat.

• Fin Vs. Thin: HOC analysis established very few differences between these 

utterances. The difference in the duration o f the fricative parts is the only 

distinctively contrasting feature and, (as will be shown in a later section), this 

would be compensated against by the Dynamic Time Warping stage, thus 

causing confusion between these utterances. Sampling at a higher frequency 

may help but would result in slower analysis.

• No  Vs. Mow. Both nasals are o f similar duration with virtually the same D0

values. Both Di and D2 for the two utterances are o f the same level but differ

slightly in the amount o f ripple. This would suggest that confusion may occur 

between these words.

• Show Vs. So: The l\l sound exhibits much lower D values than Is/, with D3 of ///

being -190  and D0 o f /si being -200. Also, the isofils o f /{/ are more distributed

over the CHOC plane than those of /i/which are closely packed. The broader 

band frequency content o f /¡I and liigher frequency content o f Is/ would explain 

this phenomenon. This would suggest a high possibility o f distinguishing these 

phonemes.

Phoneme 1̂(1 Av PlAv D2AV I>3Av
m 110 170 200 210
fk i no :: 165 190 205

m . 70 155 185 195
!%t 60/30 145/115 170/155 180/165
m 25 110 ï 170 180
lb/ 15 ■ 60 : 200 235

T a b le  4.7: Average D0-D3 Values of Gr IV Vocabulary Set after Hocalg2.m.
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Chapter 5



In this chapter various recognition and decision stages are studied and the most 

suitable one is chosen. A number o f tests are performed on the system including 

success rate tests, the system’s sensitivity to noise, non-linear phase changes and 

intonation changes. A comparison of the CHOC system to the Spectrogram is also 

given.

In the last chapter it was shown how suitable a speech analyser the HOC technique 

was. The next step is to embed this analyser into a recognition system, calculate its 

percentage success rates and test it in different scenarios. Three recognition 

techniques were considered:

• Simple Voiced-Unvoiced Decision.

• Phonetic Categorisation.

• Cluster Analysis/Pattern Matching.

The first technique may have been quite easily implemented. However, since HOC 

analysis yielded considerably high quality information from the speech signal, it was 

felt that to make a simple voiced-unvoiced decision would be a great waste of 

valuable information. Also, low signal discrimination and low success rates would 

result unnecessarily from a voiced-unvoiced decision, spoiling the purpose o f the 

HOC technique. Henceforth, this method was abandoned.

The second method was considered to retain more o f the important signal

information extracted by HOC analysis than a voiced-unvoiced decision and so was

further investigated. A group o f ten phonetic categories was established as follows:

C atl : Voiced Stops (/b/,/d/,/g/) Cató : Nasal (JnJJvaf)
Cat2 : Voiced Fricatives (M,/zJ,/^/JQ/) Cat7 : Unvoiced Stops (/p/,/t/,/k/)
Cat3 : Vowel-like (/1/,/r/) Cat8 : Unvoiced Fricatives-Strong

(/s/,/i/)
Cat4 : Vowel-Front (/i/,/I/,/æ/,/s/) Cat9 : Unvoiced Fricatives-Weak

(/e/,///,/h/)
Cat5 : Vowel-Back (/u/,/a/,/u/) CatlO : Transition Period.

Each word in the stored vocabulary was then roughly categorised using this set 

(e.g. Reverse : 34238). Then, each set o f CHOC data corresponding to each word 

was studied to establish a direct association between D0-D2 and each category (e.g.

5. Recognition Stage for CHOC.
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If (a<D0<b) & (c<Di<d) & (e<D2<f)T , then this time frame may be categorised as 

CatX).

: W ord Phoneme . Du D,
Go 1

" " .. 

30-70 1 10-180 180-240

......
/3V/ 8-45 22-95 b: 70- iso

Stop .... _ /s/ 120-210 220-260 ... ....240.260
/t/ 70-110 160-200 200-235
/8/ 14-38 40-78 80-155

is  ■ | /p/ 20-90 60-180 110-220.
--

Right M
/ai/

5-20
20-50

50-100
40-70

150-200
70-110

10-30 50-90
.......... , W : m

'
: : . . . .  :: y : :j: r:;:; :f:

/t/ . 180*200' Jg |s 210-220 ■ 21542$ —

Left N 10-30 20-106 120-200
Id 15-50 ; 50-100 100-160
/& 30-110 :. 110-215 190-240 ::

..... M 135-220
-----, .v .  ..... i f * ........................................

210-245
............................. ............* ...........................

x  ’v.vvx.-..-

• •• \  .•

Reverse / r e / 20-100 100-180
l \ l T  5-35 70-175 170-225

/£ 3 / 15-35 30-85 90-160

"

Is/ " ......... ‘ .............«»0-255'............- 200-270 210-275

T able 5.1: CHOC Ranges for GrI Vocabulary.

The category ranges in Table 5.1 were established after studying the CHOC data for 

GrI vocabulary frame by frame. Now, after HOC analysis the unknown utterance 

may be categorised frame by frame to give a long string o f category characters (e.g. 

11111334446444777). All that is required from this string are the unlikc-terms; 

hence, the like-terms may be removed, (using Rlktrms.m), leaving 134647 in this 

case. This character string may then be compared to the stored strings in the 

vocabulary. If a match is found, then the word is recognised. However, it must be 

noted that by removing time information in this way, outlier categories (such as 6 in 

this case) gain equal representation in the category string.

f a,b,c,d,e,f represent maximum and minimum Dj values for each phoneme category
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Upon testing, this method did not prove to be as successful as first hoped. The need 

to categorise the vocabulary proved difficult at times. The main problem arose 

when the CHOC data was in transition from one phoneme to the next*: sloping 

isofils within such a period resulted in the detection o f many categories that were 

not even present. To overcome this, it was necessary to reduce the number of 

categories to three or four. This coarsening o f categories, (as in the case o f the 

voiced-unvoiced decision), tended to neglect valuable signal information within the 

CHOC data. Hence, this technique was also rejected and so the third option (which 

is studied in detail in the following section) was examined and eventually selected as 

the most suitable.

5.1 Cluster Analysis and Pattern Matching.

The third recognition technique considered is pattern matching. This involves the 

comparison o f test patterns with reference patterns to find a best f i t  utterance and 

may be described in three stages:

• Clustering/Training.

• Dynamic Time Warping/Pattem Matching.

• Decision Rule.

These stages are described in Sections 5.3-5.5, but since Dynamic Time Warping is 

applied to both the training and pattern matching stages, it is important first to 

understand what exactly is happening when process is conducted.

5.2 Theory behind Dynamic Time Warping (DTW) [45].

As shown in Figure 5.1, after front-line processing it is necessary to have some type 

o f pattern matching process present in order to recognise the signal. In the case of 

CHOC data, the simplest way would be to compare frame by frame the test data to 

a stored template o f data.

* The sliding window is covering a section of two different phonemes, hence the number of zero- 
crossings is averaged o u t .
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F igure 5.1: A Typical Speech Recognition System.

However, in general words are spoken at different rates even when the same 

speaker repeats the same word. Hence, globally the test and reference signals 

would be o f different duration. A process called Linear Time Warping (LTW) 

employs frame duration normalisation to force each template to consist of an equal 

number o f  frames. However, as demonstrated in Figure 5.2(a) local variation in 

duration also occurs causing LTW to yield a mismatch in the internal frames o f the 

word.

This local variation is due to the fact that vowels and stressed syllables tend to 

expand and contract more than consonants and unstressed syllables. Hence, words 

spoken with differently stressed vowels (intentional or not) may not be recognised 

as the same word.

DTW.
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The method known as Dynamic Time Warping (DTW) [54] was developed to 

overcome the problems o f variable phonemic duration, by imposing a non-linear 

time alignment on the test and reference signals as shown in Figure 5.2(b).

DTW operates using a mathematical concept known as Dynamic Programming. 

Simplified, it may be described as follows:

• At each time interval the ‘best fit’ frame is decided under certain 

constraints.

• This is repeated until all the time frames have been compared resulting in a 

non-linear time alignment or Minimum Path which best maps the test signal onto 

the reference template.

The process is best described by example 5.1 given in Appendix D l.

5.3 Clustering and Training of System.

A cluster is simply a group o f reference templates associated with the same 

utterance. Instead o f only one template per word, clusters o f L templates for each 

word are created and stored to allow comparison with an unknown test signal. In 

the case o f  this thesis, ten tagged^ CHOC templates were first created for each 

word using Hocalg5.m  (described in Figure 5.3). A training process was then 

executed (in the form o f Trainer.m and Train.c - described by Figures 5.4 and 5.6) 

to find the five most similar templates from the group o f ten. These five data sets 

are stored giving a cluster o f five reference templates. In total there exists Nx5 

reference templates, where N  is the number o f words in the vocabulary set. 

Clustering allows a greater robustness as there now exists clusters o f  five similar 

templates, thus increasing the possibility o f a match. Cluster analysis is especially 

effective when the test signal is not as close to the reference signal as expected (e.g. 

an accented or stressed utterance). A reduction o f confusion between two similar 

sounding words is also apparent. The only disadvantage is that the recognition 

system may now run slower as there are more reference templates to be compared 

with the test signal (Nx5).

1 The issue of tagging CHOC data is discussed in Section 5.3.2,
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Figure 5.3: Flowchart explaining the action o f Hocalg5.m.
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Figure 5.4: Flowchart explaining the formating of data by Trainer in before training of the system

Figure 5.5: Flowchart describing how a vocabulary set may be trained using Trainall.m



START

Figure 5.6: Flowchart showing how Train.c determines the best five templates for each word.



5.3.1 Trainer.m, Train.c and Trainall.m.

The system was trained as described in Section 5.3, by selecting the five closest 

matching utterances from a group o f ten and storing these in memory as reference 

templates. The C-program Train, c (a slightly modified version o f that described in 

[44]) was written to achieve this. However, as described in greater detail in 

Appendix D2, the m-file Trainer.m had to be written to overcome data type 

incompatibility. Trainall.m simply executes Trainer.m for every word in the chosen 

vocabulary set.

5.3.2 Process of Tagging CHOC Data.

It is important to note that the data obtained through HOC analysis is in the form of 

a Wx3 matrix, where W is the number o f time frames in the data set. Each row in 

the matrix describes the D0, Di and D2 zero-crossing content o f a particular time 

frame. Rather than having three separate patterns to examine and match for each 

utterance, it would simplify matters, (by avoiding multi-dimensional DTW), if there 

was only one pattern per utterance. Hence, each Dj data string was tagged onto its 

predecessor as described in Appendix D3.

5.4 Pattern Matching Stage.

Once the system is trained to recognise a particular set o f vocabulary, the next stage 

is to develop the system to recognise unknown utterances (presented in the form of 

CHOC data). Dtwclus6.c (a slightly modified version o f Dtwclus5.c as described in 

[44]) was chosen to conduct this task. As before, there were data compatibility 

problems and, as described in Appendix D4, Wordrec.m was written to overcome 

such difficulties.

Using DTW, the minimum paths are calculated and displayed and the decision rule 

(which is described in the next section) is applied. If  the chosen utterance has a 

m inim um  path value o f greater than 4000, the system informs the user that an 

appropriate match has not been made. Otherwise, the recognised word is displayed. 

(Note: flowcharts summarising the calculation o f the LDM and ADM in both the 

training and matching stages are shown in Figures 5.9 and 5.10).
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Y

F igure 5.7: Flowchart explaining how Wordrec m formats the CHOC data before recognition.
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Figure 5.9: Flowchart describing the calculation of the Local Distance Matrix (LDM)
in DTW.
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Point to First Frame 
in Test Template: n=0

Point to First Frame in 
Reference Template: m=0

M in AD =  0

M i n A D  =  ADM (m -l)(n)

M i n A D  =  ADM (m )(n-l)

Min AD = M in[ADM (m )(n-l), M in[ADM (m -l)(n), A D M (m -l)(n-l)]]

Increm ent

Figure 5.10: Flowchart describing the calculation of the Accumulated Distance Matrix (ADM) in DTW



5.5 Decision Rule.

After the test template has been compared to all the reference templates using 

DTW, the next step is to decide which reference template best fits the test signal. 

The reference template having the smallest minimum path is the one with the 

highest probability o f matching the test signal. The Nearest Neighbour (NN) Rule is 

based on this idea, where V mmj  (the minimum paths associated with the comparison 

of the ith reference template) are calculated. From these, the template with the 

smallest V mm value is chosen as the best fit to the unknown word.

A more robust decision is the K-Nearest Neighbour (KNN) Rule. In this case, the K 

minimum V mm values are extracted from each cluster o f words and averaged to give 

a set o f L Dmin values, where L is the vocabulary size. The reference template with 

the smallest Dmin value is then chosen to be the closest match to the unknown 

utterance. This technique was chosen for the system due to its ability to reduce the 

chances o f selecting an outlier. In this case, K was given a value o f 3 (i.e. The 3NN 

rule was implemented); 3 was deemed the most suitable K-value for a cluster size of 

5. This decision rule is explained by the flowchart in Figure 5.11.

5.6 Success Rates Resulting from HOC Analysis of Gr I Vocabulary Set.

Initially, the system was trained for a vocabulary size o f 5, using the Gr I set, to 

ensure the recognition software was functioning correctly. As can be obseived in 

Table 5.2 extremely high recognition success rates were achieved from the system. 

These results, however, may only be used to suggest the potential o f the HOC 

technique as a speech recognition system. They cannot be considered as valid 

success rates, as the size o f the vocabulary set was too small, unless o f course, the 

system is only required to recognise five words. However, most very small 

vocabulary speech recognition systems require the recognition o f —15 words. Of 

course, as the vocabulary size increases, the % success rates for this system will 

decrease.
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Figure 5.11: Flowchart describing the operation of the K-Nearest Neighbour Rule as a decision rule.
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W ord %  Success R ate
Go 100

Stop 100
Left 91

Right 100
Reverse 100

T able 5.2: The % success rates for the Gr I vocabulary set.

5.7 Success Rates Resulting from HOC Analysis of Gr H Vocabulary Set.

In order to achieve valid % success rates, the vocabulary size was increased to 14 

words in the form o f the Gr II vocabulary set. Keeping to the theme o f a control 

vocabulary, some similarly sounding words were deliberately selected to increase 

the difficulty o f recognition (e.g. No  vs. Go, Start vs. Stop). Typical CHOC plots 

for these words are shown in Figure 5.12.

The system was retrained for a vocabulary size o f 14 with these words and using 

Wordrec.m and Dtwclus6.c a new set o f % success rates was achieved. These 

success rates (shown in Table 5.3) were not as attractive as those for the Gr I set, 

yet were still extremely satisfactory.

A ‘Confusion M atrix’ was established to explain between which words the system 

found difficult to distinguish. This matrix is shown in Table 5.4 and consists the 

fractional confusion between the different utterances.

W ord %  Success R ate
Go 100

Stop 55
Left 91

Right 100
Reverse 91
Cancel 100

On 100
Off 100
Yes 91
No 100

Fast 100
Slow 100
Start 100
End 100

T able 5.3: The % success rates for the Gr II vocabulary set.
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Figure 5.12 (Contd.): CHOC plots for Gr n  vocabulary set with approximate phoneme segments:

(d)N o, (e) On, (f) Cff.

O v e r*
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Figure S. 12 (Contd.): CHOC plots for Gr II vocabulary set with approximate phoneme segments:

(g) Start, (h)End, (i) Cancel.
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Confusion between the utterances o f Stop and Start is very apparent with Stop 

being recognised as Start 45% of the time. This is the only significant mis- 

recognition present in this vocabulary set and is probably due to the identical 

beginning and similar middle and ending phonemes in each word. Reference to the 

corresponding CHOC plots will clarify this similarity.

Go Stop Left Right Reverse Cancel On Off Yes No Fast Slow Start End
Go 1 0 0 0 0 0 0 0 0 0 0 0 0 0
Stop 0 0.55 0 0 0 0 0 0 0 0 0 0 0.45 0
Left 0 0 0.91 0.09 0 0 0 0 0 0 0 0 0 0
Right 0 0 0 1 0 0 0 0 0 0 0 0 0 0
Reverse 0 0 0 0.09 0.91 0 0 0 0 0 0 0 0 0
Cancel 0 0 0 0 0 1 0 0 0 0 0 0 0 0
On 0 0 0 0 0 0 1 0 0 0 0 0 0 0
Off 0 0 0 0 0 0 0 1 0 0 0 0 0 0
Yes 0 0 0 0 0 0 0 0 0.91 0 0 0 0.09 0
No 0 0 0 0 0 0 0 0 0 1 0 0 0 0
Fast 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Slow 0 0 0 0 0 0 0 0 0 0 0 1 0 0
Start 0 0 0 0 0 0 0 0 0 0 0 0 1 0
End 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Table 5.4: The Confusion Matrix for the Gr II vocabulary set. This may be interpreted as the i'h

row was recognised as the /  column n number of times.

Henceforth, HOC analysis has now shown to be successful in recognising and 

distinguishing words in a small vocabulary set with very attractive success rates.

5.8 Testing the System’s Vulnerability to Intonation Changes.

At this stage the system has proven to operate successfully with the user speaking in 

a clear and orderly toned voice. However, how would the system cope if the 

speaker was to utter the command word in a totally different tone o f voice? This 

phenomenon was studied in relation to the HOC technique using the Gr V 

vocabulary set. A recording o f the word Stop was made in an orderly mood and 

then in an insistently cranky mood (this consisted o f a dramatic change in 

intonation). HOC analysis was performed on both words resulting in the CHOC 

plots shown in Figure 5.13. The similarity between the two plots is still reasonably 

satisfactory with the main differences occurring in the vowel section and the overall 

increase in duration. The Is/ and Itl were unaffected as expected since the
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Figure 5.13: Comparison o f  CHOC plots o f utterances with different intonation (a) ‘Step -Orderfy ’
and (b) ‘Step -Cranky ’.
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intonation change took place towards the end of the utterance. The lol breaks into 

two parts: the initial low frequency and the final rise in pitch. Much ripple is now 

also present in the lol section where the D2 level has also changed significantly. The 

Ipl has become more pronounced: this showing even in the D0 isofil. However, this 

word was recognised as Start, although the D m j n  values for both Stop and Start were 

extremely close (a difference o f -100). Hence, so long as the user maintains the 

tone o f their voice relatively similar to that which the system was trained, no serious 

intonation problems should arise.

5.9 Testing the System’s Vulnerability to White Noise.

It is in the nature o f the differencing filter to amplify higher frequencies, after all it is 

a high pass filter. Therefore, it was very important to test how vulnerable the 

system was to noise - the fear being that the HOC technique may amplify any high 

frequency noise present and so, drown the signal information and affect recognition. 

Initially, tests were performed on a pseudo-speech signal and the ‘clean" HOC data 

was compared to the ‘dirty’ HOC data. A 90ms pseudo-speech signal was 

synthesised in Matlab by summing three sine waves, the frequencies and amplitudes 

o f which were obtained from a set o f formant frequencies and relative amplitudes 

after Ainsworth (1974) [46], The signal data chosen was that for the phoneme lul\

fl = 250Hz A! = 51dB

f2 = 880Hz a 2 = 38dB

f3 = 2080Hz a 3 = 17dB

amplitudes.
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An m-file (Sndsynt. m - App. G) was written to synthesise any sound given the first 

three formant frequencies, their relative amplitudes and the sampling frequency 

(usually 11kHz). This synthesised sound may be played back using the Matlab 

command i so u n d . Using Hocalg.m the pure lul signal (shown in Figure 5.14) was 

analysed up to the third filter order resulting in the following HOC data:

Tim e Fram e\Filter O rder 0 1 2 3

1 14 31 52 98

2 16 31 56 93

3 16 32 60 102

4 16 32 56 101

5 16 31 54 96

Table 5.5: HOC data for 90ms of ‘clean’ synthesised lul. The figures indicate the number of zero- 

crossings in  each time frame corresponding to each filter order.

Next, a white noise signal was generated using the irand‘ function in Matlab, which 

was then added to the synthesised sound. The m-file Addnoise.m  (App. G) was 

written to generate and add this noise signal.

HOC analysis was now performed on the ‘dirty’ signal with S/N ratios o f 40dB, 

30dB, 20dB and lOdB. An error matrix was established for each set of data to 

describe the severity o f the noise (described in Table 5.6).

These results suggest that the system is quite immune to white noise levels with a 

S/N ratio as low as 20dB only if the maximum filter order is less than three.

5.10 Testing the System ’s Vulnerability to Pink Noise.

If  this system were to be implemented in hardware/|.iprocessor an anti-aliasing filter 

would be present for the usual reasons. This filter would have a cut-off frequency 

o f some value around half the sampling frequency (5.5kHz in this case). Thus, it 

makes sense to test the system against ‘Bandlimited White Noise’ or ‘Pink Noise’ 

rather than white noise, as any ambient noise would be filtered to some extent by 

the anti-aliasing filter.

An m-file (Addpkns.m - App. G) was written to achieve the addition o f bandlimited 

white noise and the results in Table 5.7 were obtained as before.
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S/N HOC Data Error Matrix

40 14 31 52 98 0 0 0 0

16 31 56 93 0 0 0 0

16 32 58 106 0 0 -2 4

16 32 56 101 0 0 0 0

16 31 54 96 0 0 0 0

30 14 31 52 96 0 0 0 -2

16 31 58 95 0 0 2 2

16 32 56 106 0 0 4 4

16 32 58 103 0 0 2 2

16 31 54 100 0 0 0 4

20 14 33 66 136 0 2 14 38

16 31 70 127 0 0 14 34

16 34 74 132 0 2 14 30

16 32 70 135 0 0 14 34

16 33 60 120 0 2 16 24

10 14 65 190 253 0 34 138 155

16 57 192 238 0 26 136 145

18 70 194 246 2 38 134 144

18 74 196 259 2 42 140 158

16 77 198 248 0 46 144 152

T able 5.6: HOC data and  error matrices for different levels o f w h i t e  n o i s e  superimposed on a

synthesised /u / sound.
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S/N HOC Data Error Matrix

40 14 31 52 98 0 0 0 0

16 31 56 93 0 0 0 0

16 32 60 102 0 0 0 0

16 32 56 101 0 0 0 0

16 31 54 96 0 0 0 0

30 14 31 52 98 0 0 0 0

16 31 56 97 0 0 0 4

16 32 60 104 0 0 0 2

16 32 56 101 0 0 0 0

16 31 54 96 0 0 0 0

20 14 33 52 98 0 2 0 0

16 33 58 99 0 2 2 6

16 34 62 94 0 2 2 -8

16 30 58 95 0 -2 -2 -6

16 33 54 98 0 2 0 2

10 14 33 72 124 0 2 20 26

16 37 82 119 0 6 26 26

16 38 86 128 0 6 26 26

16 36 84 131 0 4 28 30

16 39 70 118 0 7 16 22

T able  5.7: HOC data and error matrices for different levels o f b a n d l i m i t e d  w h i t e  n o i s e  

superimposed on a  synthesised /u/ sound.

These results demonstrate how the simple addition o f a low pass filter can improve 

the robustness o f the system by increasing its tolerance to noise. A S/N ratio as low 

as lOdB still yields HOC data with a such a low distortion factor that the probability 

o f a mis-recognition would be minimal.
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This low pass filter may either be in the form o f an anti-aliasing filter or a filter at a 

later stage in the system (yet before the differencing stage).

5.11 Noise - Not just a Matter of Filtering.

The direct effects o f  noise on the system (i.e. the differencing filter amplifying high 

frequency noise and so dramatically altering the zero-crossing information) is not 

the only problem when the system is used in a noisy environment. Research carried 

out by Lombard [76] in 1911 discovered indirect effects on a speech signal due to 

noise.

Lombard noted that a speaker’s voice systematically changes when the speaker is 

subjected to a noisy environment. This dynamic relationship between speech and 

hearing is known as the Lombard Effect. The indirect effects o f noise on a a speech 

signal are described in Appendix D5.

As this appendix explains, these effects should be taken into consideration when 

training the system and teaching the user how to use it (hence the need to test the 

system’s vulnerability to intonation changes - Section 5.8).

5.12 The System’s Handling of Real Noise.

To examine how well the system can manage with actual ambient noise, (without 

the Lombard Effect), two utterances were analysed as described by the Gr VI 

vocabulary set. The first was a ‘clean’ utterance o f the word ‘Stop’ whose 

corresponding CHOC plot is shown in Figure 5.15(a). To create a ‘dirty’ 

counterpart, a section o f loud music1 was superimposed on the ‘clean’ utterance to 

allow a S/N ratio o f 5dB. Its corresponding CHOC plot is shown in Figure 5 .15(b). 

In the Is/ segment, only the D0 isofil was affected by the noise. The Itl remained 

unaffected. A dramatic increase o f levels in the isofils for the lol section (frames 

16-32) is apparent, while Di-D3 remain unaffected. However, a large ripple 

component

1 A section of ‘We’re So Pretty’ by the Sex Pistols was used. The short duration (~700ms), 
however, would have captured a certain band of frequencies depending on the music at that 
instant, thus enhancing certain parts of the utterance more than others.
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noise component with S/N ratio o f 5dB.
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present in the entire D0 isofil appears to be the result o f a presence o f low frequency 

background noise. This utterance was actually recognise as ‘L e ff  due to the overall 

signal distortion.

5.13 Effects of Non-Linear Phase Shift on the System.

Phase shift occurs in a signal when the components are shifted in time nT  seconds 

(equivalent to multiplying by e nTs in the frequency domain or by z n in the z- 

domain). Ideally, all phase shift should be linear (i.e. all the signal components are 

shifted equally) as this is easy to correct. However, in reality the phase nature of 

certain processes* gives rise to different components being shifted to a different 

degree. This phenomenon is known as Non-Linear Phase Shift and is illustrated in 

Figure 5.16. The signal in Figure 5 .16(a) comprises the sum o f two sinusoids. It is 

clear that by applying a phase change to the higher frequency only, the resultant 

waveform becomes distorted (Figure 5.16(b)).

This phenomenon often proves to be a problem in certain signal analysis techniques 

where analysis o f one signal yields very different results to that o f  a similar signal 

due to subjection to different processes prior to analysis. For example, if  the speech 

recognition system was trained in a controlled environment or with a specific pre­

filtering module and it was required to be used over a telephone line or where the 

exact pre-filtering block was not available, there would be no guarantee that these 

added processes would affect the phase in the same manner as the original system. 

Hence, the phase would be affected non-linearly and this may upset the results from 

the system. The need for designing phase compensators, for within each 

environment the recognition system is to operate, would be eliminated if  the system 

could be proven to be relatively insensitive to such phase changes.

Hence, it was necessary to test how non-linear phase changes would affect the HOC 

data produced during HOC analysis.

* Non-linear phases are often present in analogue transmission lines, telephone networks, etc
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Figure 5.16: The effect of non-linear phase change on a signal comprising a high and low

frequency component.

The m-file Sndsynps.m  (Appendix G) was written to synthesise a sound from its 

first three formants allowing a phase shift to be added to any o f these frequencies. 

The lul sound was synthesised again, initially with no phase changes and HOC 

analysis was performed on the signal yielding the data in Table 5.5*. Next each 

formant was shifted in turn by 90° applying HOC analysis each time. Table 5.8 

shows the resulting HOC data and error matrices after the non-linear phase 

changes. As expected, no difference was detected by the human ear in the sound 

after the phase change was applied.

From these results, it can be seen that non-linear phase changes will affect HOC 

data but only very slightly. Such satisfactory results would suggest that the HOC 

system is relatively insensitive to non-linear phase changes and would create no 

serious problems in signal recognition.

t  Refer to Section 5.9
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Frequency out 

of phase by 90°

H O C  Data E rro r M atrix

fi 16 32 58 103 2 1 6 5

14 31 58 102 -2 0 2 9

16 31 56 97 0 -1 -4 -5

16 34 50 98 0 2 -6 -3

16 28 54 95 0 -3 0 -1

f2 14 31 52 112 0 0 0 4

16 35 54 110 0 4 -2 7

16 32 50 106 0 0 -10 4

16 32 54 105 0 0 -2 4

16 31 54 107 0 0 0 11

h 14 29 52 105 0 -2 0 7

16 31 54 101 0 0 -2 8

16 30 54 102 0 -2 -6 0

16 32 54 109 0 0 -2 8

16 33 54 110 0 2 0 14

T ab le  5.8: HOC data and error matrices corresponding to different non-linear phase changes

applied to a  synthesised /«/ sound.

5.14 The Effects of N on-Linear Phase Change on Real Speech D ata.

To test how the HOC analysis routine was affected by a non-linear phase change to 

a real signal, the syllable Ikal from the utterance 'Can' (obtained from the Sheffield 

Signals [17]) was analysed by Hocalg.m  yielding the HOC data in Table 5.9. The 

phase response o f this syllable is shown in Figure 5.17(a).
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Tim e\O rder 0 1 2 3
1 10 120 156 201
2 20 57 134 179
3 16 57 134 183
4 6 87 144 196
5 6 71 116 179
6 14 57 84 157
7 18 43 98 153
8 10 23 90 153
9 8 24 82 148
10 8 28 70 138
11 12 30 46 133

T able 5.9: HOC data for the I k a l  syllable from the utterance ‘C a n ’

The m-file Chgphs.m was written to impose a non-linear phase change on the 

speech signal. A delay term o f Cos(10t/l)+Sin(2t/l)f  was used to achieve the 

extreme non-linear phase response shown in Figure 5.17(b). The magnitude 

remained at a constant value o f 1 to ensure all effects were merely from the phase 

change.

HOC Data E rro r M atrix

16 130 178 203 6 10 22 2
14 46 128 166 -6 -9 -6 -13
10 57 110 166 -6 0 -24 -17
10 73 126 166 4 -14 -18 -30
6 67 106 153 0 -4 -10 -26
12 57 82 139 -2 0 -2 -18
16 43 78 133 -2 0 -20 -20
8 24 72 134 2 1 -18 -19
10 20 74 124 -2 4 -8 -24
12 28 64 101 4 0 -6 -37
10 27 48 106 -2 -3 2 -27

T able 5.10: HOC data and error matrix for the syllable I k a l  after the application of the non-linear

phase change: C o s (1 0 t / I ) + S in ( 2 t /1 ) .

t  T hat is, a non-linear phase of eCo!i(10*/|)+sl,,(2</|) was applied to the speech signal in the form of a 
unity gain filter.
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(a)

Figure 5.17: Phase plots of (a) I k a l  before any non-linear phase change, (b) an extremely non­

linear phase (C o s ( 1 0 t / l ) + S i n ( 2 t / l ) \  (c) I k a l  after this non-linear phase change.

The phase response o f the Ikal sound altered to that in Figure 5 .17(c) as a result of 

the phase change. This new sound, although sounding the same to the ear, was
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again analysed by Hocalg2.m. The resulting HOC data and error matrix may be 

seen in Table 5.10. It is clear that although this non-linear phase change did affect 

the HOC data, it did not distort the data to such an extent that the word would not 

be recognised (even with such an extreme phase change). Hence, it may be 

concluded that the CHOC recognition system is practically insensitive to non-linear 

phase changes.

5.15 Comparison to Spectrogram - Formant Tracking Nature of CHOC Plots.

A spectrogram o f the speech signals ‘Reverse’ and ‘Stop’ were obtained in order to 

demonstrate any comparisons between this TFR and CHOC plots. The 

spectrograms are shown in Figure 5.18 with the corresponding CHOC plots 

superimposed on top. It is clear that the isofils in the CHOC plots display similar 

time-frequency information as the spectrograms. Where the spectrograms show 

high frequency content (e.g. the /s/ in Reverse), the isofils tend to follow. In the 

higher frequencies, the more powerful the component (i.e. the darker spots in the 

spectrogram) the closer the isofils. In the lower frequencies (the vowels) the isofil 

tend to fall near and sometimes on the more powerful components, thus 

demonstrating a form ant tracking nature. This is not merely a coincidence; the 

Dominant Frequency Principle, as discussed in Section 3.2.1, states clearly that 

HOC analysis results in normalised zero-crossing counts that tend to fall on or near 

the most dominant frequency present (in this case the formants). As previously 

stated, when isofils are evenly spread throughout the CHOC plane the nature o f the 

signal is noisy and broadband; this is demonstrated in the Ipl o f Stop. The voiced 

and unvoiced nature o f the phoneme Ivl may be seen in the utterance Reverse. The 

isofil D0 tracks the lower frequency in the spectrogram, while Di jumps up to the 

higher frequency components (not detecting any intermediate frequencies) as does 

the spectrogram. There is a slight timing difference between the two techniques in 

the case o f Itl in Stop ; however, this may only be a consequence of different 

Hamming window durations (30ms for CHOC and 9ms for the Spectrogram).



(a)

Figure 5.18: Comparison of CHOC plots and spectrogram for the utterances of (a) R e v e r s e  and (b)
S to p .
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6. Concluding Remarks and Way Forward.

The suitability (or insuitability) o f both HOC analysis and the SIFE system in the 

development o f a low cost, high quality speech recognition system has now been 

illustrated.

The SIFE system, although initially appearing to possess considerable potential 

[12], was shown to be o f little use as a speech recognition system. The output 

waveforms proved to be too inconsistent, with the system producing unreliably 

repeatable SIFE signals displaying weak signal discriminatory powers. While very 

successful in its original implementation, (a voice training instrument [14]) the SIFE 

technique proved unsuitable in the development o f  a speech recognition system.

The HOC system, on the other hand, proved to be a very suitable signal analysis 

technique. Its output signals (in the form o f CHOC plots) were remarkably 

repeatable and displayed an extremely significant capacity in discriminating signals. 

When tested, this system produced very satisfactory % success rates (in the order of 

90%) even with a larger vocabulary size. The only problematic aspects were speed 

(the HOC analysis routine ran in -2 .5  minutes on a 486 (33MHz))r and the system’s 

tolerance to high frequency noise due to the differencing filter stages. Nevertheless, 

this system possesses great potential at being further developed as a speech 

recognition system.

6.1 HOC Versus SIFE.

As have been noted in previous sections in this thesis, there exist certain advantages 

o f the HOC system over (among other zero-crossing techniques) the SIFE. The 

following is a description o f some o f those advantages:

•  The HOC technique tends to enhance voiced fricatives such as Ivl in ‘Reverse’, 

whereas most zero-crossing analysis systems show little differences between 

these and vowels.

•  The same may be said about Ipl in ‘Stop’, which demonstrates a very similar 

zero-crossing rate to  that o f  the preceding vowel; however, even after only one 

filtering stage the Ipl becomes more pronounced.

* This was reduced to ~1 sec/word using the TMS320C26, which suggests that the possibility of 
real-time implementation is promising.
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•  Periods o f silence before plosives (which are characteristic o f this category of 

speech) are clearly defined by the HOC method allowing an extra parameter of 

recognition*.

•  The SIFE also demonstrates this but to a lesser degree; however many zero- 

crossing systems do not persevere this characteristic during analysis.

•  The fine quality o f output data from the HOC technique allows the use o f a 

number o f decision/recognition techniques:

♦ Dynamic Time Warping with Nearest Neighbour Rule.

♦ Phonetic Categorisation.

♦ Voiced-Unvoiced Decision.

•  This high quality signal output has allowed % success rates to be determined, 

which in turn have proven to be very satisfactory (91-100% with the exception 

o f the utterance 'Stop' - 55%).

•  The poorer quality o f  output data from the SIFE technique suggests the Voiced- 

Unvoiced Decision would be the only suitable recognition technique.

•  The HOC technique requires no post-filtering (unlike the SIFE), and produces a

more reliable and repeatable output, therefore suggesting to be a more attractive

system.

•  The HOC technique tends to take ‘non-zero-crossing signal variation’ into

consideration unlike the SIFE which can only detect a zero-crossing. For

example, consider the signals shown in Figures 6.1 and 6.2. A SIFE analysis of 

the waveform in Figure 6.1 would result in the detection o f the lower frequency 

(1/T2) only, whereas the waveform actually consists o f the summation o f two 

frequencies (1/Ti and 1/T2). However, by repeated filtering, the HOC method 

will eventually detect frequency l/Tj. A SIFE analysis o f the waveform in 

Figure 6.2 would result in the recognition o f a sinusoidal signal o f frequency 

/= 1 /T p, but would totally ignore the fact that the waveform also consists o f a 

ripple signal (pi-ps and ti-ts). However, after HOC analysis, up to only D2, all 

o f the peaks and troughs (pi-p5,ti-ts) and all points o f inflection present are

* Silence on a CHOC plot is portrayed as isofils evenly distributed in the CHOC plane due to the 
broadband nature of background noise.



considered in the recognition o f the signal. Hence, it can be seen that the HOC 

method extracts higher quality information from the speech signal than the SIFE 

method.

6.2 Hardware Implementation.

The HOC system may be implemented in hardware in either o f two ways:

1. Appropriate zero-crossing detector circuitry and switched capacitor filters to 

operate as differencing filters.

2. Application o f software routine on a microprocessor/DSP chip such as the 

TMS320C26 [65] (a software routine, called Hocana.asm , has been written to 

apply HOC analysis to any signal using this DSP chip.

Although slightly more expensive, the latter may be faster, less complicated and 

more reliable due to the low number o f  components (only the DSP board and the 

software routine). The only significant problem with this machine code program is 

that no appropriate triggering routine has been written for the system. Presently, 

the analysis routine may be activated by any sound; it has no distinction between 

background sounds and actual speech signals as the DSP chip is constantly polling 

for a signal. The designing o f such a triggering routine and further development of 

the system could prove to be suitable work for a short-term project in the future.

6.3 Noise Tolerance.

As previously stated, the high pass filtering nature o f the differencing stages in HOC 

analysis has a tendency to amplify high frequency noise. Initially, this proved to be

U \J  U
F igure 6.1: Summation of two 

sinusoids. Figure 6.2: A pseudo-speech signal
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a worrying aspect, but as the noise tests in Sections 5.9-5.12 suggest, the system 

operates reasonably well so long as the maximum filter order remains below three. 

However, there is no guarantee that ambient noise levels will remain below that 

threshold value so as to allow a maximum filter order o f two. Henceforth, it would 

be recommended to develop some type o f filtering circuitry to reduce the effect of 

ambient high frequency noise without affecting the high frequency content of 

unvoiced speech signals. Once again, this could prove to be useful research work in 

the future.

6.4 Tolerance to Non-linear Phase Changes.

It has been shown how although the HOC system is affected by non-linear phase 

changes, the consequences are so insignificant to render the system practically 

insensitive to such signal variations. This is important as it removes any trepidation 

about the phase nature o f any equipment (such as analogue transmission lines, 

recording equipment, amplifiers, telephone systems, etc.) to be used before the 

HOC analysis stage. Hence, the use of the system in any phase environment is 

permitted without the need to retrain the system.

6.5 Speed Considerations.

At present, the HOC analysis program (Hocalg5.m) executes at an average speed of

2.5 minutes per word on Matlab, using a 486 @ 33MHz. Running on Matlab (a 

Windows [41] driven package), the program is expected to be slow. However, the 

training and recognition stages (Train.c and Dtwclus6.c) are faster (30 seconds - 1 

minute) running on MS-DOS [41], yet still require greater speed before being 

implemented in a practical application. An assembly program has been written to 

implement the analysis stage of the HOC system on a TMS320C26 and executes 

dramatically faster than the Matlab version (~1 sec/word). Hence, it would be a 

good idea to implement the whole recognition system on a chip such as the 

TMS320C26 to improve processing time.

Another method to increase speed would be to reduce the number of stored 

reference templates o f  each word (presently five) which would in turn reduce the 

number o f pattern comparisons to be made for each test signal.
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6.6 Limitations on Vocabulary Size.

It has been shown how the HOC system worked almost perfectly as a speech 

recognition system for a vocabulary size o f five. This however could not really 

validate the system, unless the application only required the recognition o f five 

words. The vocabulary was then extended to fourteen words and the results were 

extremely satisfactory. The only word that caused trouble was 'Stop' which seemed 

to be confused with ‘Start' 45% o f the time due to their similarity in phonetic 

structure. The converse confusion however did not result.

Such high success rates o f recognition would suggest that the system could be 

retrained for anything up to 30 words and still function satisfactorily. Care should 

be taken, however, in choosing the vocabulary, avoiding words that sound too 

similar, to reduce the possibility o f a mis-recognition.

6.7 Implementation for Continuous Speech.

The success o f the HOC technique as an isolated word speech recognition system 

would suggest that an investigation into its ability to recognise continuous or 

connected speech or phrases would be recommended. The fact that HOC data (in 

the form o f CHOC plots) contains such powerful signal distinguishing capabilities 

suggests that there would be no problems in using the system in the recognition of 

phrases (as long as it has been trained with the appropriate phrases). The only 

problem is that the size o f  the stored templates would be significantly larger and so, 

both HOC analysis and pattern matching would be slower, most probably resulting 

in the need for a more powerful DSP chip.

However, the system could not be expected to operate satisfactorily on connected 

speech when only trained for each isolated word in the sentence (due to the 

changing nature of each word when uttered successively). As with other connected 

speech recognisers, it would be necessary to develop an appropriate connected 

speech training routine if  the system was to be used in the recognition of 

continuous speech.
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6.8 Possibility of Speaker Independence.

The intention o f this project was to design a speaker dependent speech recognition 

system (one requiring training for each individual user). The system developed is 

speaker dependent although it may be extended to be more independent. Training 

the system with utterances of each word made by a number o f speakers (preferably 

with similar accents and pitch) will improve its ability to recognise a greater number 

o f speakers*. The clustering technique implemented in the training o f this system is 

particularly suited for this purpose.

6.9 Implementation as Formant Tracking System.

It has been shown how the isofxls o f a CHOC plot almost track the formants o f a 

speech signal and display similar frequency information to that o f a spectrogram. 

The appropriate study into the nature o f the different filters that may be used in 

HOC analysis (e.g. the use o f a more precise HPF instead o f a differencing filter or 

the use of both HPFs and LPFs) may result in the development o f a simple yet very 

effective TFR system or formant tracking system.

6.10 Practical Applications.

The developed HOC system could prove useful in a number of practical 

applications. The low cost nature and simple mathematical theory behind the 

system make it desirable product to be implement practically. Among the possible 

applications is the motion control fo r  a wheelchair as described in [12], This would 

be o f  great benefit to quadriplegics, (and other users for whom joystick control is 

not suitable), allowing full control of their wheelchairs and perhaps reducing the 

cost o f the wheelchair.

The system may also be implemented (with the appropriate interfacing), to allow 

cursor/menu control in a software application such as Windows. This would serve 

both as a convenience to a user as well as a useful package for a paraplegic 

computer operator.

t As the number of users the system is trained for increases, the more users it will recognise but 
lower percentage success rates for each individual user will result.
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A paraplegic may also benefit from the system being implemented as a telephone 

dialling instrument, where the user would merely be required to activate the system 

and dictate the phone number. O f course, the receiver would not be in the usual 

mobile form; instead a fixed receiver would be present with a high quality speaker 

and microphone. This could be used in all telephone systems to reduce the number 

o f moving parts (i.e. the dial/keypad).

Staying with the telephone theme, the system may also be used as a voice activated 

telephone information service (e.g. train timetables).

Finally, the HOC system may be used as a voice operated remote control system for 

household appliances such as televisions, hi-fis, lights, curtains, etc.

Each o f these applications would be very suited to the HOC system as they only 

require small vocabularies o f  words to be recognised.

6.11 Continuing Liaisons with the Project Sponsor.

The initial sponsorship by Ogden Atlantic (formerly Logitech Ireland) made 

towards the Advanced Research Programme (ARP) application (Forbairt) was 

further increased near the end o f the project which was extremely appreciated. 

These funds helped in expenses, etc. and the extra sponsorship allowed the final 

work necessary to develop the system to the stage it is at now.

Links with Mr. Willie Brien (Engineering Manager, Ogden Atlantic (Ireland)) have 

been kept throughout the duration o f the project with regular meetings to assess 

progress, etc. taking place. Mr. Brien and his company are very interested in the 

system’s development and are very satisfied with the progress made to date. 

(Logitech were hoping to release a speech recognition system onto the market).

The hope is to maintain a liaison with Ogden Atlantic in order to further develop the 

system in the near future.
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A l. Materials.

The following section describes the recording procedures, the equipment used in 

signal recording and analysis and the various speech signals used in the testing of 

the speech recognition techniques. A brief description of any processing required 

by the recorded speech signals before analysis could begin is also presented.

A2. Recording Details.

• All the speech signals mentioned in this thesis were recorded using a Sound 

Vision 16 Gold sound card [36] hi a 486 DX2 66MHz PC, (with the exception of 

the Sheffield Signals [17]).

• Voices were sampled at 11025Hz (16 bit data).

• Sounds were recorded in a ‘quiet’ (only the sound o f the PC was present) 

environment.

• A standard unidirectional microphone, positioned approximately 15cm from 

the source, was used.

• All recorded subjects were adult males except where specified.

A3. Signal Analysis Materials.

• All software simulations o f hardware systems were implemented in Simuhnk 

Ver. 2.1 [40],

• Any other analysis o f signals took place in Matlab Ver. 4.0 [40] with the 

appropriate m-files being written in Notepad [41],

• Conversion o f data from .wav format to .mat format was achieved using 

either Goldwave [13] or Notomat [9],
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A4. Speech Databases.

The following sets o f speech data were used to test the performance of the speech 

analysis/recognition system described in this thesis:

• Gr I [Basic Control Vocabulary]: Stop, Go, Left, Right, Reverse.

• Gr II [Advanced Control Vocabulary]: Stop, Go, Left, Right, Reverse,

Fast, Slow, On, Off, Yes, No, 

Start, End, Cancel.

• Gr III [Vowel Comparison Set]: /as/, Is/, /° v / , Id/, l\l, /si/, /u/.

(All prefixed with Dd).

(Refer to Figure 1.9 for pronunciation).

• Gr IV [Consonant Comparison Set]: /b/, /d/, Igl, /p/, /t/, Ikl, Fin,

Thin, Mow, No, So, Show.

• Gr V [Intonation Set]: Stop (orderly), Stop (cranky).

• Gr VI[Noisy Set]: Stop (clean), Stop (dirty).

A5. Necessary Processing of Recorded Data before Analysis.

• As soon as the speech signals were recorded, they were normalised using 

the ‘normalise’ function in the sound card software. This amplifies the sound to its 

maximum possible volume without distortion. It improves the definition/resolution 

o f the signal especially in sections o f the sound containing low energy (eg. Is/, Iff).

• After converting .wav files to .mat files using Goldwave [13], the resulting 

.mat files must be transposed and saved once again in Matlab to convert each data 

matrix into the standard Matlab .mat format.
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B l. Difficulties with SIFE Hardware.

The SIFE system described in [12] yields a SIFE signal from an utterance received 

in real-time at a microphone connected to the hardware. This signal is then 

downloaded to a PC via an Intel 8255 Programmable Peripheral Interface [15| 

where the two parameters (mean square energy and absolute mean) are calculated 

using a C-program.

In order to improve distinction between different SIFE signals, a number of 

statistical algorithms were written in C-code. Among these new parameters were 

mean, variance, probability density function, area under the SIFE signal.

After testing the system in [12], it was discovered that it was extremely sensitive to 

background noise and so very irregular results were achieved. The software was 

also problematic with the PC crashing on numerous occasions. Hence, it was 

decided that it was necessary to (i) record the speech signals in a quieter 

environment (overcoming the need for an expensive microphone) and (ii) rewrite 

the software so that a more user-friendly and reliable package was available for 

testing.

B2. Description of SI M SI¡VI Simulink Model.

The three section o f the SIFESEM model may be described as follows:

• The Zero-Crossing Impulse Stage: The original speech signal is stored in the 

Matlab file named imatf.m ,\  A Relay block mimics the operation of the 

Schmitt trigger. The Derivative block simply differentiates the ICS signal and 

the combination o f the Absolute and Sum blocks extract only the positive-going 

zero-crossing impulses. This pulse train may be observed in the appropriate 

scope.

• The Reset Integrator Stage: A ramp generator (consisting o f a Reset Integrator, 

Step Function, Reset Value and Reset Trigger) produces the timing ramps 

displayed in the corresponding scope. The step function is continually 

integrated until a zero-crossing (reset trigger) is detected when the output is

1 Refer to Appendix B3 for signal format.



reset to the reset value. This value had to be set to 0.001 to compensate for the 

slow resetting o f the ramp.

The Sample & Hold Stage: Initially, a ‘Zero-Order H old1 block was 

implemented in conjunction with the switch block to achieve the sample and 

hold operation, but it was later observed that these blocks had the same effect 

on a signal. The switch block was easier controlled and so chosen over the 

ZOH. The sampling rate was too high to allow accurate resetting o f the 

integrator with this block removed and so, an All Pass Filter block with an 

appropriate sampling frequency (11kHz) was inserted at the initial stage of the 

system. This allowed the integrator to reset correctly. An Invertor block is 

necessary to cope with the negative triggering o f the switch block. The output 

data is then amplified and stored in a file called ‘Sifesig.m af for analysis by the 

C-program.

Rectifier

Figure B l: Simulink block diagram for SIFESIM.



B3. Recording and Formatting of Matf.m.

Five utterances o f  each word in vocabulary set Gr I were recorded as described in 

Appendix A4 resulting in .wav files o f speech data. These were saved in .raw 

format and then converted to .mat format using Notomat.c [9] to allow Matlab 

compatibility.

In order to implement the ‘‘From File’ block in Simulink, this .mat format (which is

in a single column o f data) had to be further converted into a matrix of one time row

and one data row. The following Matlab code was implemented to achieve this:

t = [0 : l/fs : N /fJ; % fs= Sampling Frequency, N=No. o f Samples,
load word; % word is the utterance to be converted.
wordf=  [ t ; W0ttf(l:N )’]; % w ordf is the converted utterance.
Save w ordf w ord f % Save variable to file.

The output data is saved in ASCII format to allow compatibility with the C-

program using the command:

save sifesigc. txt sifesig - ascii;

B4. Possible Recognition Routine using SIFE Data.

A simple routine may be:

1. Examine each sample o f the SIFE signal and categorise into:

Voiced (V) if Sample > XTi,

Unvoiced (U) if  Sample < X-n,.

This results in a string o f Voiced-Unvoiced sections coded into V and U characters 

(or 0 ’s and l ’s).

2. Remove all consecutive like-terms using Rlktrms.m  leaving a small string 

o f V ’s and U ’s describing the voiced-unvoiced nature o f  the utterance.

3. After each V and U character (or 0 and 1) append the number of times 

this character was detected. This retains important timing information which may 

prove necessary in the recognition o f the utterance.

3. Compare this string to the template strings (corresponding to the chosen 

vocabulary) stored in memory. Select the closest match as the recognised word.
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Although this recognition routine is easy to implement, it is quite obvious that it 

would prove an unsuccessful means o f speech recognition with the SIFE system for 

the following reasons:

• There exists poor repeatability in the SIFE signal.

• The discriminatory powers o f the SIFE signal have not proven to be 

satisfactory.

• As described in Section 1.3.2, there is a considerable amount o f  overlap 

between voiced and unvoiced zero-crossing data. Hence, the probability o f a 

successful recognition being made using a voiced-unvoiced decision on a poor 

quality signal is slim.

• The SIFE signal tends to display certain sounds misleadingly. For example, the 

fv/ in the utterance ‘Reverse’ as in Figure 2.6 is portrayed as a purely voiced 

sound and the high frequency content (the unvoiced component) is neglected (a 

problem with most zero-crossing analysers).
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C l. Description of Diffil.m and Sumfil.m.

The Pascal function in Matlab was used to determine the coefficients o f each filter 

stage: the diagonal o f  the (n+ l)th order Pascal matrix yields the coefficients o f the 

nth order summation filter and (-1)" gives the appropriate signs for the differencing 

filter coefficients.

eg. 3rd Order Filter => Pascal(4)

1 1 1 1
1 2  3 4
1 3 6 10
1 4 10 20

The delay operator was achieved using Roll.m, which simply rotates the data 

sequence n positions to the left or right depending on whether a p'n or (3n is 

required. This significance o f this m-file is explained in detail in Section 4.2.1. 

Zcount.m  was employed to count the number o f zero-crossings after each filter 

stage and Hocplot.m  plots a HOC plot corresponding to the signal.

C2. Explanation of the Significance of D0, Dls D2.

• D0 is simply the number o f zero-crossings in the signal.

• D! is the number o f peaks and troughs in the signal.

• D2 is the number o f points o f inflection in the signal.

How is this possible? Well, differencing a signal xt once yields a new signal 

yt=dxt/dt which is in fact a description o f the slope in the original signal. Knowing 

that the slope at a maximum or minimum is always zero, then a zero-crossing in yt 

corresponds to a maximum or minimum Xt. The same holds true when a second

difference is applied (ie. if  d2Xt/dt2 is zero a point o f inflection is present). D3 and

higher orders are a little more difficult to understand.
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D l. Example 5.1 - Demonstrating How Dynamic Time Warping Operates.

The test signal T={3, 5, 9, 2, 1} is to be mapped onto the reference template R={2, 

4, 5, 8, 3, 1} for comparison.

The first step is to create what is called a Local Distance Matrix (LDM) which 

describes the local distances between each sample. This local distance may be 

calculated as: d(Ti,R,) = | T; - Rj | and is termed the absolute city block distance. 

The following LDM results:

R f

2 4 8 1 0

' 3 0 2 6 1 2

8 5 3 1 6 7

5 2 0 2 3 4

4 1 1 3 2 3

2 1 3 7 0 1

3 5 9 2 1

-------------------- ►

T
Next an Accumulated Distance Matrix (ADM) is established using the equation: 

Z>A(Ti,Rj) = d(Ti,Rj) + Min[Z?A(Ti,Rj.1),Z?A(Ti.1,Rj.i),^A(Ti.1,Rj) ]

This yields an ADM as follows:

R f

1 1 1 1 1 5 5
y/

' 3 9 7 9 V
8 9 5 y ' 9

K
5 4

r '
4 7 u\

4 2

s
5 7 1 0

2 ys
4 1 1 1 1 1 2

3 5 9 2 1

— ►

T
The minimum path is then found under certain constraints. Such constraints may 

include that the path may not be horizontal for more than one time interval 

(preventing excessive expansion or compression o f the time axis) or that the path 

my be bounded by a parallelogram with sides o f slopes 2 and Vi (Itakura constraint). 

It is important to ensure the path does not have a negative slope at any time (ie.



Time order must be preserved) and so, the mapping function co(i) is always 

monotonicaUy increasing. co(i) is shown in the ADM above and now maps the test 

and reference templates in the following manner:

i j = «(•)

1 1
2 2,3

3 4

4 5

5 6

This may be described by the mapping in Figure D l.

D2. Necessary Formatting in the Training Stage.

The program used to train the system was Train, c - a slightly modified version of 

that described in [44], However, this program was not sufficient in itself due to 

problems o f data type incompatibility and different data string structures. 

Trainer.m was written to overcome these problems by converting the data into the



correct type (ie. ASCII to binary) and arranging the data strings into the proper 

format (ie. Appending the name of the word to the beginning o f the file); this newly 

formatted data is stored in the file called Train.dat. Trainer.m also runs the 

executable file o f Train, c eliminating the need to leave the Matlab environment and 

enter the Turbo C compiler. Trainall.m simply executes Trainer.m for every word 

in the chosen vocabulary set.

Train.c operates as described by the flowchart in Figure 5.6. The data to be trained 

(ie. the CHOC data in Train, dat) is entered into a structure o f the form: 

[Word_Name].[Word_Length]. [CHOC Data]. DTW is performed on each o f the 

ten utterances for a particular word resulting in 10x10 minimum paths. The matrix 

displaying these paths is symmetrical about a diagonal o f zero values - a resultant of 

comparing like utterances. The columns o f this matrix are added to give a string of 

values that describe the similarity between each utterance. The utterances with the 

five minimum values are chosen as the most similar and stored in memory as 

reference templates under the filename Ref.dat.

D3. Tagging of CHOC Data.

For simplicity the CHOC data was tagged to form a single data string avoiding the 

need to use multi-dimensional DTW. To achieve this the CHOC data matrix H  was 

first transposed in Hocalg5.m  resulting in the matrix Htrarn as shown in Figure 

D2(b)).

(a) H =

Do D, d 2
Do D, d 2 Do Do Do ... Do
D„ D, d 2 (b) H tran s  = D, Dj Dj ... D,
: ; ; d 2 d 2 d 2 ... d 2

D(, D, d 2 - -

(c) H tag  — [ Dq Dq Do ... Do Di Di Di ... Di D2 D2 D2 ... D2 ]

F igure D2: The three stages taken by H o c a l g S .m  to tag CHOC data.

Finally, each row was tagged onto the end o f its preceding row to give the data 

string shown in Figure D2(c). Now, there exist only one pattern, in the form of a 

tagged CHOC data set, to be matched. These tagged data sets were saved in files
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of the form: t_name.dat. A typical plot o f a tagged CHOC data set is shown in 

Figure D3.

D4. Necessary Formatting in the Recognition Stage.

As in the training stage, Dtwclus6.c was not compatible with the data produced by 

HocalgS.m  and so, Wordrec.m (Figure 5.7) was written to overcome these 

difficulties. This m-file converts the data from ASCII to binary and places it in a file 

called Test.dat. It also runs Dtwclus6.exe to avoid the need o f leaving the Matlab 

environment.

Dtwclus6.c functions as described by the flowchart in Figure 5.8. The CHOC data 

o f the unknown test signal (Test.dat) is read into the structure: 

[Length]. [CHOC Data] and compared to each stored reference template in 

Train.dat (acquired from Train.c) using DTW. The minimum paths are then 

displayed and the decision rule (which is described in the next section) is applied. If 

the chosen utterance has a minimum path value o f greater than 4000, the system 

informs the user that an appropriate match has not been made. Otherwise, the 

recognised word is displayed. (Note: flowcharts summarising the calculation of the 

LDM and ADM in both the training and matching stages are shown in Figures 5.9 

and 5.10).
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D5. Discussion on the Significance of the Lombard Effect.

The following indirect effects appear to occur when the speaker is subjected to

noise:

1. Volume increase.

2. Vocal effort increase.

3. Change in pitch (generally an increase).

4. Narrower range in pitch variation.

5. Falling intonation.

6. Length and quality o f vowels change.

7. Sounds tend to become nasalised.

8. Duration o f  segments change: -vowels lengthen;

-consonants shorten;

-overall duration increases.

Hence, even if the noise component could be removed by filtering, the 

characteristics o f the speech signal would still be different. Young explains in [76] 

that a similar effect may be observed if  an echo is detected by the speaker resulting 

in a decreasing o f rate and lengthening o f vowel duration.

These phenomena prove problematic when the speech recognition system is located 

in a noisy environment, such as a fighter plane cockpit, or an echoed environment, 

such as a long-distance telephone information service.

These effects should be taken into consideration when training the system and 

teaching the user how to use it (hence the need to test the system’s vulnerability to 

intonation changes - Section 5.8).
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/* Macros */
#define CONTROL 0x303 
#define PORTA 0x300
#define PORTB 0x301
#define PORTC 0x302
#define CONTROL2 0x323 
#define PORTA2 0x320 
#define PORTB2 0x321 
#define PORTC2 0x322 
#define ERROR 0x00

#define GO 0x01
#define LEFT 0x02
#define RIGHT 0x03
#define STOP 0x04
#define REV 0x05
#definepi 3.14159

#define MAX_NUM SAMPLES 500 
#define TRIG LEV 3000 
#define TRUE 1 
#define FALSE 0

/* Functions */
void init(void);
void titlepage(void);
void waitdis(void);
void getdat(void);
void datfin(void);
void portset(void);
float digitise(void);
int valsig(int,float *);
void pltdis(int,float *);
void mtrsig(int);
void prnt(void);
in t msqren(int,float *,float);
int mnab(int,float *,float);
int mean(int,float *,float);
int varc(int,float,float *,float);
int coefvar(int,float *,float,float,float);
/*void samper(int);*/ 
int area(float,int,float *); 
int probden(int,float *); 
in t gauspro(int,int,float *); 
int acor(int,float *); 
int autocross(int,float *); 
int m inpath(int,float *); 
int hmsqr(int,float *); 
int habs(int,float *,int); 
int hprob(int,float *); 
int freqcnt(int,float *); 
int ngeomean(int,float *); 
int tgeomean(int,float *); 
int ngm(int,float *); 
int lgm(int,float *);

/************************************** s i f e  H *********************************/
/* This is the header file to be included in all the modules */
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/*********************************** SIFEMAIN C *******************************/
/* The main c-program to obtain a SIFE signal from recorded speech utterances */

#include <time.h>
#include <stdio.h>
#include <dos.h>
#include "c:\tc\keith\sife.h"

main()
(
float data[MAX_NUM_SAMPLES+2],waitdata; 
int input[2*(M AX_NUM _SAM PLES+l)]; 
float T=0, Tdum=0.0; 
int t,i,value,valid,command,finish;

time t  start, end;

FILE *ptr; 

clrscr();
init(); /* initialisation of graphics */
titlepageQ; /* displays titlepage */

for(t=0;t<=MAX_NUM_SAMPLES;t++) /* initialisation of array */ 
{ /* containing samples of */
data[t]=0; /* input signal *1

}

portset(); /* initialises ports */

/* Get data from A/D using function digitise */

finish =  FALSE; 
while(! finish)

{
waitdis(); /* allows user know when system */

/* is ready for speech signal */

while(digitise() < TRIG LEV); /* waiting for a valid signal */
/* ie. sample with amplitude */
/* greater than about 3/4 of */
/* the maximum amplitude which*/
/* is 4096 (ie. 12 bits) */

getdat(); /* displays screen while getting data */

for(t=l ;t<=MAX_NUM_SAMPLES;t++)
{ start =  time('\0');
input[t] =  digitise(); /* fills array with 1000 samples */ 
end =  time('\0');
T  dum+=(end-start);

}
T=Tdum/M AX NUM SAMPLES; /* calculates sample interval */



for(t= 1 ;t<=MAX_NUM_S AMPLES ;t++)
{ /* converts time interval information */
input[t] =  l/input[t]; /* into frequency information */
}

datfinO; /* allows user to know when all data has been entered */ 

printf("\n Sam pling Interval : % f seconds",T);

for(t=l ;t<=MAX_NUM_S AMPLES;t++) /* centres samples around zero */ 
{
data[t]= (((float)input[t] * 10)/4096.0)-5;
}

valid =  9999; /* sets valid to an 'errored' value */
/* before calculation of real value of valid */

valid=valsig(valid,data); /* selects valid portion of signal */

if((valid < 0) || (valid > M AX NUM SAMPLES)) /* if valid remains */
{ /* at 9999 then */
printf("Error has occured\nvalid =  %d",valid); /*error has occured*/
exit(0);
}

if(v a lid = 0 )
{
printf("\n\n\n\n\n\n\n SORRY,");
printf("\n\n\n NO SPEECH SIGNAL HAS BEEN RECEIVED...");
printf("\n\n\n TRY AGAIN!! !\n\n\n\n\n\n\n");
}

else
{
msqren(valid,data,T);/*calculates mean square energy of samples*/
}

/* ptr=fopen("a:\\data.dat","w"); /* writes array of data */
/* for(i=0;i<valid;i++) /* to file in 'a-drive' */
/* fprintf(ptr," % f \n",data[i]); /* to allow examination */
/* fclose(ptr); /* of samples */

printf("\n ENTER 'C' TO CONTINUE OR ANYTHING ELSE TO END..."); 
if  (tolower(getch()) =  'c')

{ finish =  FALSE; 
clrscr(); 
cleardevice();

}
else finish = TRUE;

cleardevice();
}
closegraph();

} /* END OF MAIN */
/*****************************************************************************/
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/*********************************** GRAFUNC C ******************************/ 
/* Any graphic functions necessary for the SIFE program are included in this module */ 

#include <graphics.h>

/* ***FUNCTION TO INITIALISE GRAPHICS*** */ 
void init(void)
{
int g d r iv e r , g m o d , errorcode;

setcbrk(l);
g driver =  DETECT;

initgraph(&g driver, & g mod, "c:\\tc"); 
if((errorcode=graphresult()) != grOk)

{
printf("BGI flie not in c:\\tc or \n");
printf("graphics error : %s\n", grapherrormsg(errorcode));
ex it(l);
}

cleardevice();
settextstyle(TRIPLEX_FONT,0,3);

} /* End o f init */

/* ***FUNCTION TO DISPLAY TITLEPAGE*** */ 
void titlepage(void)
{
int cm,xm,yin;

cm=getmaxcolor();
xm=getmaxx();
ym=getmaxy();

cleardevice();
setbkcolor(RED);
setfillstyle(SOLID FILL,GREEN); /* creates border */
bar(xm/40,ym/40,(int)((long)(xm*39)/40),(int)((long)(ym*39)/40)); 
setfillstyle(SOLID FILL,BLUE); /* creates background */
bar(xm*3/40,ym*3/40,(int)((long)(xm*37)/40),(int)((long)(ym*37)/40)); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR,3);
setcolor(YELLOW); /* sets */
outtextxy(xm/4,ym/4-50,"SPEECH RECOGNITION SYSTEM"); /* */
settextstyle(TRIPLEX_FONT,HORIZ_DIR,2); /* */
outtextxy(xm/4+15,ym/3-50,"FOR AN ELECTRIC WHEELCHAIR "); /* textstyle */
settextstyle(TRIPLEX_FONT,HORIZ DIR, 1); /* */
setcolor( WHITE) ; /* and */
outtextxy(xm/3+60,ym/3+50,"DCU/DIT"); /* */
outtextxy(xm/4+40,ym/2,"Master's Degree Project"); /* colour */
settex t style( S ANS SERIF FONT,HORIZ_D IR, 1 ) ; /* */
setcolor(CYAN); /* */
outtextxy(xm*4.5/12+10,ym*5/8,"K. NEWSOME"); /* and */
setcolor(LIGHTRED); /* */
outtextxy(xm*7/24,ym*7/9,"Supervisors: Dr. R. Scaife"); /* */
outtextxy(xm/4+139,ym*7.35/9,"Dr. E. Coyle"); /* prints */
setcolor(WHITE); /* */
settextstyle(SMALL_FONT,HORIZ_DIR,5); /* */
outtextxy(xm*2/3,ym*39/40,"Hit a key..."); /* il II */
getch();

} /* End of titlepage */



/* ***FUNCTION TO DISPLAY 'WAITING' SCREEN*** */ 
void waitdis(void)
{
int cm,xm,ym;

cm=getmaxcolor();
xm=getmaxx();
ym=getmaxy();

cleardevice();
setbkcolor(BLUE);
setfillstyle(SOLID_FILL,CYAN);
bar(xm/4,ym/4,(int)((long)(xm*30)/40),(int)((long)(ym*30)/40)); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR, 1); 
setcolor(YELLOW);
outtextxy(xm/50+160,ym/5(H-120,"Waiting for Voice Trigger...");

} /* End o f waitdis */

/* ***FUNCTION TO DISPLAY 'GETTING DATA' SCREEN*** */ 
void getdat(void)
{
int cm,xm,ym;

cm=getmaxcolor();
xm=getmaxx();
ym=getmaxy();

cleardevice();
setbkcolor(BLUE); /* sets */
setfillstyle(SOLID_FILL,CYAN); /* colour, */
bar(xm/4,ym/4,(int)((long)(xm*30)/40),(int)((long)(ym*30)/40)); /* border */
settextstyle(TRIPLEX_FONT,HORIZ_DIR, 1); /* and */
setcolor(YELLOW); /* textstyle */
outtextxy(xm/50+160,ym/5(H-120,"GETTING DATA..."); /* and */
outtextxy(xm/50+330,ym/50+320,"PLEASE W AIT..."); /* prints */
} /* End of getdat */ /* "..." */

/* ***FUNCTION TO DISPLAY 'FINISHED' SCREEN*** */ 
void datfin(void)
{
int cm,xm,ym;

cm=getmaxcolor();
xm=getmaxx();
ym=getmaxy();

*/
*/
*/
*/

cleardevice(); 
setbkcolor(BLUE); 
setfillstyle(SOLIDFILL,CYAN);
bar(xm/4,ym/4,(int)((long)(xm*30)/40),(int)((long)(ym*30)/40)); 
settextstyle(TRIPLEX_FONT,HORIZ_DIR, 1); 
setcolor(LI GHT GREEN);
outtextxy(xm/5 0+160,ym /50+120,"FINISHED..."); 
outtextxy(xm/50+330,ym/50+320,"HIT ANY KEY..."); 
getch(); 
cleardevice();
} /* End o f datfin */

sets 
colour, 
border 

and 
/* textstyle */ 
/* and */ 
/* prints */ 
/* " » */
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/********************************** SIGANA.C ’i'**'!'*****************#****-***'!1**'!'/ 
/* This module deals with the signal analysis necessary to obtain the SIFE signal */
/* and output the recognised command */

^include <graphics.li>
^include <stdio.li>
^include "c:\tc\keith\sife.h"

int command=0,offset=0;

/* ***FUNCTION TO INITIALISE PORTS*** */ 
void portset(void)
{
/* Setup first D IO  card (address 300hex) to expect A/D data IN at PORTA */
/* and PORTC (LOWER) and data OUT on PORTB and PORTC (UPPER) i.e. 91HEX */ 

outportb(CONTROL,Ox91);

/* Setup second DIO card (address 320hex) to expect data OUT at PORTA * /

/* and  PORTC (UPPER) the control registers o f the D/A’s i.e. 80HEX */ 
outportb(CONTROL2,0x80); 
outportb(PORTC2,OxFF);

/* Setup MUX we want channel 1 therefore */
/* w rite out 001 binary to MUX on PORTB */ 

outportb(PORTB,0x01);
} /* E nd of portset */

/* ***FUNCTION TO  READ-IN SAMPLES*** */ 
float digitisefvoid)
{
int i,test=0;
int aadat, ccdat, ddata;

/ *  Sam pling Frequency set by the delay loop */
/* and the constant ie. MAX NUM SAMPLES */ 

outportb( PORTC, OxFF);
i=0;
while (i<500)
{

tesl=tes£*2;
i++;
}

outportb{ PORTC, 0x00);
i=0;
while (i<500)
{

test=test*2;
i++;
}

outportb(PORTC,OxFF);
i=0;
while (i<500)
{
test=test*2;
i++;
}

v i i



aadat=inportb(PORTA); 
ccdat inportb(PORTC);

ddata =  ((ccdat & 0x000F)*256) + aadat; /* adding PORTA to the 4 */

return(ddata);

} /* End of digitise */

/* ***FUNCTION TO  VALIDATE SIGNAL*** */ 
int valsig(int valid,float data[])
{
int i, t, ab, tem pi, offset;

for (i=2;i<MAX_NUM_SAMPLES;i++) /* finds beginning of signal */

if(( (data[i]) - (data[i+ l]) )!=0) 
break;
}

offset=i;

for(i=MAX_NUM_SAMPLES;i>0;i—) /* finds end of signal */
{
ab =  data[i] - data[i-l];
if((ab>.5)||(ab<-.5)) break;
}

/* LSB o f PORTC shifted */ 
/* 8 bits to the left to */
/* form a  12 bit */ 
/* representation of the */ 
/* sample */

tem pl=i;

valid=templ-offset; 
if(valid<0) valid=0;

/* calculates no. o f valid samples */

t=0;

do
{ data[t] =  data[t+offset]; /* removes invalid samples */ 

/* at beginning o f signal */ 
/* from  data array */

t++;
} while(t<valid);

return(valid); 
} /* End o f valsig */



/♦sic********************************** ALGRTMS G ******************************/ 

/* This module contains all the statistical algoritms required in the */
/* recognition o f the SIFE signal * !

#include <graphics.h>
#include <m ath.h>
#include "c:\tc\keith\sife.h"

float T;

I*  ***MEAN SQUARE ENERGY FUNCTION*** */ 
int m sqren(int valid,float data[],float T)
{
in t t=0;
float dummy=0,dataaveF=0;

for(t= l ;t<=valid;t++) /* calculates mean */
{ /* square value */
dum m y+ =  ((data[t])*(data[t])); /* o f  samples */
}

dataave =  dummy/valid;
printf("\n M ean square energy for speech : % f', dataave); 
mnab(valid,data,T);

} /* E nd o f m sqren */

I*  ***MEAN ABSOLUTE FUNCTION*** */ 
in t m nab(int valid,float dataf], float T)
{
int t =  0;
float dumm=0.0,dataav=0.0;

for (t =  l;t<=valid;t++) /* calculates average o f */
{ /* absolute values */
d u m m + =  fabs(data[t]); /* of samples */
}
dataav =  dumm/valid;
printfl^"\n Abs v a lu e : % f ' dataav);
mean(valid,data,T);

} /* E nd of mnabs */

/* ***MEAN FUNCTION*** */ 
int m ean(int valid,float dataG,float T)
{
int t=0;
float meanval=0,dummy=0;

for (t= l ;t<=valid;t++) /* calculates average */
{
dummy +=  (data[t]); /* of samples */
}

meanval=dummy/valid;
printf("\n M ean V a lu e : % f',m eanval);
varc(valid,meanval,data,T);

}
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/* ***VARIANCE FUNCTION*** */
in t varc(int valid,float meanval,float data[],float T)
{
in tt= 0 ;
float varval=0,dummy=0;

for (t=l;t<=valid;t++)
{
dummy +=  ((data[t]-meanval)*(data[t]-meanval));
}

varval=dummy/valid; /* calculates variance of samples */ 
printf("\n Variance : % f',varval); 
coefvar(valid,data,T,varval,meanval);

} /* E nd  o f varc */

/* * * * COEFFICIENT OF VARIATION FUNCTION*** */ 
int coefvar(int valid,float data[],float T,float varval,float meanval)
{
float cv=0;

cv=(varval/meanval)* 100;
printf("\n Coefficient O f Variation : % f',cv);

area(T,valid,data);
}

/* * * *FUNCTXON TO FIND SAMPLING INTERVAL*** */
/*float samperQ 
{
time t start,end; 
intj;
float Tdum=0,T=0;

while(j<1000)
{ start=time('\0'); 
digitise(); 
end=time('\0');
Tdum=^Tdum+(end-start);
j++;

}
T=Tdum/1000;
printf("\n Sam pling Interval T :% f seconds",T); 
return(T);

} */

/* ***AREA FUNCTION*** */ 
int area(float T ,in t valid,float dataG)
{
in t t=0;
float curarea,dummy=0;

for (t= l;t<=valid;t++) /* calculates area between signal and x-axis */ 
{dummy +=  (data[t]); /* using rectangular approximation (ie. sum */ 
} /* o f sample amplitude by sample interval */

curarea=dum m y*T;
printf("\n Area Under Curve : % f',curarea); 
probden(valid,data);

} /* End o f area */
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/* ***p r o b ABILITY DENSITY FUNCTION*** */ 
/* ***FROM FIRST PRINCIPLES*** */
/* */
/* ie. P(y) =  No. o f samples in range */
/* Total no. o f samples */
/* */
int probden(int valid,float data[])
{
int t=0;
float pdf,num=0; 
float AR1=3.0,AR2=2.0;

for (t=l;t<=valid;t++)
{if ((data[t] <= AR1) && (data[t] >= AR2)) 
num++;
} /* calculates probability that a sample will fall */

pdf=num/valid; /* within the range AR1 to AR2 */

printf("\n Probability Density Function From First Principles For The"); 
printf("\n Range O f Amplitudes % f To % f : % f’,ARl,AR2,pdf);

gauspro(num ,valid,data);
} /* E nd of probden */

I*  ***PROBAMLITY DENSITY FUNCTION*** */
/* ***FROM GAUSSIAN FORMULA*** */
/* */
/* 1 explY-y-y)2! */
/* ie. P(y) =  cW27t [ 2ct2 ] */
/* */

int gauspro(int num ,int valid,float data[])
{
int t=0;
float gpdf=0,dum 1 =0,dum2=0,dumean=0,duvar=0,dugpdf=0; 
float AR1=3.0,AR2=2.0;

if(num!=0)
{
for (t=l;t<=valid;t++)

{if ((dataft] <= AR1) && (data[t] >= AR2)) 
dum l +=  (data[t]);
}

dumean=dum 1/num; 
for (t=l;t<=valid;t++)

{if ((data[t] <= AR1) && (data[t] >= AR2)) 
dum2 +=  ((data[t]-dumean)*(data[t]-dumean));
}

duvar=dum2/num; 
for (t= l;t<=valid;t++)

{if ((data[t] <= AR1) && (data[t] >= AR2))
dugpdf=(l/(sqrt(duvar*2*pi)))*exp((-((data[t]-dumean)*(data[t]-dumean))/(2*duvar)));
}

/* finds Gaussian probability sample */ 
gpdf +=  dugpdf; /* will fall within range AR1 to AR2 */
}

else gpdf=0;
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printf("\n Probability Density Function From Gaussian Form ula For The"); 
printf("\n Range O f Amplitudes % f To % f : % f',A Rl,A R2,gpdf);

acor(valid,data);
} /* End of gauspro */

/* ***FUNCTION FOR MEAN AUTOCORRELATION COEFFICIENTS*** */ 
int acor(int valid,float data[])
{
intj=0,n=0;
float duml=0,dum 2=0,prod=0,acorm =0;

for(j=01j< =(valid -l)j++ ) /* finds average of */
{ for(n=l;n<=(valid-j);n++) /* autocorrelation */ 

{prod=(data[n])*(data[n+j]); /* coefficients */ 
dum l +=  prod;

}
dum2 +=  dum l;

}
acorm=dum2/valid;
printf("\n Correlation Coefficients M ean : % f',acorm ); 
autocross(valid,data) ;

} /* End of acor */

/* ***FUNCTrON TO FIND FIRST CROSSING OF X-AXIS*** */
/* ***!N AUTOCORRELATION FUNCTION*** */
int autocross(int valid,float data[])
{

int j=0,n=0,cross=0; 
float dum l=0,prod=0;

for(j=O J<=(valid-l)j++) /* determines where the plot of */
{ for(n=l;n<=(valid-j);n++) /* autocorrelation function */

{ prod=(data[n])*(data[n+j]); /* first crosses the x-axis */ 
dum l+=prod;

}
if(dum l<=0.0) break;

}
cross=j;
printf("\n First Non-positive Autocorrelation Coefficient : %d",cross); 
m inpath(valid,data);

} /* End of autocross */

/* ***MINIMUM PATH FUNCTION*** */ 
int m inpath(int valid,float data[])
{
int t=2;
float sum=0,dum=0,lastpt=0;

sum =data[l];
while(t<valid)

{ if(data[t]<=data[t+l])
{ sum += (data[t]);

t++;
}

else
{ sum += (data[t+ l]);
t += 2;



}
}

if(data[valid] <=data[ 1 ])
{ sum += (data[valid]); 
t=i;

}
else

{sum +=  (data[l]); 
t=2;
}

w hile(t<(valid-1))
{ if(data[t]<=data[t+l])

{dum =data[l];
t++;
}

else
{dum =data[t+l];

t+ =  2;
}

sum +=  dum;
}

lastpt=dum;
if(lastp t=data[valid-2])

{sum +=  (data[valid-l]);
}

printf("\n M inim um  Path Value : % f'.sum ); 
hmsqr(valid,data);

} /* End of minpath */

/* ***HALF-MEAN-SQUARE FUNCTION*** */ 
int hm sqr(int valid,float data[])
{
int hv^0 ,t= 0 ;
float dum l=0,dum 2=0,havsqr l=0,havsqr2=0;

if((valid% 2)= 0) hw=valid/2; /* finds halfway m ark of signal */ 
else hw=(valid-l)/2;

for(1r=l;t<=hw,t++) /* calculates m ean square energy */
{ /* of first half of signal */
dum l +=  data[t]*data[t];
}

havsqr 1 =dum  1/hw;

for(t=hw +l;t<=valid;t++) /* calculates mean square energy */
{ /* of second half of signal */
dum2 +=  data[t]*data[t];
}

havsqr2=dum2/hw;

printf("\n Mean square energy of first half of s ig n a l: % f',havsqrl); 
printf("\n Mean square energy of second half of s ig n a l: % f',havsqr2);

habs(valid,data,hw);
}/* End of hmsqr */

/* ***HALF-ABSOLUTE-VALUE FUNCTION*** */
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int habs(int valid,float data[],int hw)
{
int t=0;
float dum l=0,dum 2=0,hav l=0,hav2=0;

for(t=l;t<=hw ;t++) /* calculates mean square energy */
{ /* of first half of signal */
dum l += fabs(data[t]);
}

hav1=dum l/hw ;

for(t=hw H ;t<=valid;t++) /* calculates mean square energy */
{ /* of second half of signal */
dum2 +=  fabs(data[t]);
}

hav2=dum2/hw;

printf("\n Abs. value of first half of s ig n a l: % f',hav l); 
printf("\n Abs. value of second half of signal : % f',hav2);

hprob(valid,data);
}/* End o f habs */
/* ***HALF-PROB ABILITY FUNCTION*** */ 
int hprob(int valid,float data[])
{
int t=0,hw=0;
float pdfl=0,pdf2=0,num l=0,num 2=0; 
float AR1=3.0,AR2=2.0;

if((valid% 2)= 0) hw=valid/2; /* finds halfway mark of signal */ 
else hw=(valid-l)/2;

for (t=l;t<=hw ,t++)
{if ((data[t] <= AR1) && (data[t] >= AR2)) 
num l +=  data[t];
} /* calculates probability that a sample will fall */

pdfl= num l/hw , /* within the range AR1 to AR2 in 1st half of signal */

for (t=hw +l;t<=valid;t++)
{if ((data[t] <= AR1) && (data[t] >= AR2)) 
num2 + =  data[t];
} /* calculates probability that a sample will fall */

pdf2=num2/hw, /* within the range AR1 to AR2 in 2nd half of signal */

printf("\n PDF In 1st H alf O f Signal From First Principles For The"); 
printf("\n Range O f Amplitudes % f To % f : % f',A R l,A R 2,pdfl);

printf("\n PDF In 2nd H alf O f Signal From First Principles For The"); 
printf("\n Range O f Amplitudes % f To % f : % f',A Rl,A R2,pdf2); 
freqcnt(valid,data);

}/* End o f hprob */

/* ***FUNCTION TO ESTABLISH FREQUENCY OF OCCURANCE OF SAMPLES*** */ 
int freqcnt(int valid,float data[])
{
int i=0,n=0,freq=0; 
float freqav[6];

xiv



printf("\n LoglO Geometric Mean : % f',lave); 
ngm(valid,data);

}

in t ngm (int valid,float data[|)
{
in t i=0;
float ldat=0,lave=0;

for(i=0;i<=valid;i++)
{
ldat +=  exp(data[i]); I *  calculates ln{SUM(exp(data[i]))/valid} */
}

lave=log(ldat/valid);

printf("\n ngm  : % f',lave); 
lgm(valid,data);

}

in t lgm (int valid,float data[])
{
in t i=0;
float ldat=0,lave=0;

for(i=0;i<=valid;i++)
{
ldat +=  powlO(data[i]); /* calculates log{SUM(10'Xdata[i]))/valid} * /  

}
lave=logl 0(ldat/valid); 

printf("\n lgm : % f',lave);

sf; s)c)(: sf: sf: +  s|e s|cjfc if: jfi ifc dfc sfc sfc if; if: dfc ifc if: sje +  SlFIl PRJ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * /

/* This is the project file necessary to run all the modules together */ 
c:\specon\sifemain.c 
c:\specon\grafunc.c 
c:\specon\sigana.c 
c:\specon\algrthm.c

x v i



%********************************* m e d f i l t  m  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

% This function removes unwanted spurious fluctuations from a SIFE signal using a  median filter. 
% The resulting signal is loacally smoothed, but retains the important sudden signal changes due 
% to a  transition to a  new phoneme and does not combine error samples into the signal as in a 
% linear or averaging filter.
%
% Usage: medfilt(x,n) ,where x is the SIFE signal and n is the filter order.
% Note: n must be ODD !
%***************************************************************************** 

fiinction filsig=medfilt(x,n)

k=0; flag= l; tmp=0;

% the number of frames in the signal
sifelen=length(x); 
k-sifelen/n; 
f=x; 
frstr— 1; 
frend=n; 
for i= l :k,

flag= l;
while f l a g = l ,  

flag^O;
for j= frstr:frend-l,

i f  f(j)>f(j+l),
tmp=f(j+ l);
f ( i+ iH ( j) ;
f(j)=tmp;
flag= l;

end;
end;

end;
m eé=(frend-((n-1 )/2));

% bubblesort o f data

% median value

if  frend<=sifelen,
for i=frstr:frend,

filsig(i)=f(med);
end;

frstr=frstr+n; 
frend=frend+n; 
end; 
end;
0/  ^  j|» ^  jj< j||>. ^  ^  jJ- j|ç ^ ^  ^  j|» ^  ^  ̂  ¡J* jJj ^  ^  j|f  j|j j |j  j|ç j|(  j|ç  ¡Jj j j j  j|( ¡ |j ¡J{ ¡ |j

% signal consisting of median values 

% slide window

x v i i
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0 ^ if : i f :3 f < :f :it :! f « if :if ;if i if :* :f :if :j t :if :if ::f : :f :if :  :f« if: if: *  :f< *  if: if: if: if< if: *  if: if: if: if: *  £ ) J p p J J _ ,  f y j  *  if: +  if: =fe *  *  *  ^  *  =+: ^  *  *  #  *  *  ^  #  if: *  #  if: *  if: *  *  *  *  *  *

% Operates a  difference filter: (l-B )An on a signal x.
% ie. Y(t) =  {(l-B )An}X(t) =  c(l)X (t) - c(2)BX(t) +...+ c(n+ l)B AnX(t)
% Usage : diffil(x,n) ,where x is signal, n is filter order.
0̂  if; »f: )f: if:  ̂ jf: sf:  ̂9f;  ̂if: if: ;f; )f: afc >|( if: ̂  :f: *  ̂ * * ̂  * * * * * * * * * * * * »H ̂ *
function [fd]=diffil(x,n) % x is signal, n is order of filter.

l=length(x);
a=[]; b=[]; c=[];
q=[]; r=[]; s=zeros(l,l);

a=pascal(n+l);
b=fliplr(a);
c=diag(b);

% pascal matrix of order n+1 
% flip matrix to remove right-left diagonal 
%  returns coefficients of polynomial (l+ B )An.

for m =  l:(n + l) , 
q =  roll(x,(m -l)); 
r =  ( ( - l)A(m -l))*c(m) * q; 
s =  s + r; 
fd =  s; 

end;
%fd
0 ^ * + + * * *  if: >fi *  if< ifî if: *  if! * * * * * * *  i|< ^  ^  +  i|« +  +  5t:if: *  *  ^  ^  if: *  if: *  if: *  if: * * * * + *  ifs ♦ * * *  Ÿ  * * * * * * * * * * * * * *  ^  * * *  ^

% repeats for each polynomial coefficient. 
% delay operator.
% mults. coeff. by delayed sig. elements. 
% incs. sum by new sig. elements.

0̂ ** 5f;̂ :if:*if:5f:*̂:̂ «if:*3f:5f:***il«**!f:if:*ifc*ifj>fĉcifcif;5|iif: SUfyJpJL M * * ** * * * * * * *** * * * * * ** *** * ** ** * * * * * *
% Operates a summation filter: (l+ B )An on a signal x.
% ie. Y(t) =  {(l+B )An}X(t) =  c(l)X (t) + c(2)BX(t) +...+  c(n+ l)B AnX(t)
%  Usage : sum fil(x ,n),where x is signal, n is filter order.
0 ^  *  *  :f: :f: if: *  if: if« sfc sfe if: if« sf: if: if: if: if: % if: if: ^  if: if: if: if: if: if: if: *  if: *  *  *  if: if: *  if: *  *  *  if: *  *  *  *  *  *  if« *  *  *  *  *  *  *  *  if: *  *  *  *  *  *  >f: ̂  *  *  *  *  *  *

function [fs]=sumfil(x,n) % x is signal, n is order of filter.

l=length(x);
a=[]; b=[]; c=[];
q=[]; !=[]; s=zeros(l,l);

a=pascal(n+l);
b=fliplr(a);
c=diag(b);

% pascal matrix of order n + 1 
% flip matrix to remove right-left diagonal 
% returns coefficients o f polynomial (l+ B )An,

for m =  l:(n + l) , 
q =  roll(x,(m -l)); 
r =  c(m) * q; 
s =  s + r; 
fs =  s; 

end; 
fs

ifc ijc sf: if: *  if< 3f£ if: if: sf: if: if: if: i*c *  if: ifc if: if: if: *  *  if: if: if: *  *  *  if; if: if« if: ifc *  *  if: *  *  *  *  *  if: *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

% repeats for each polynomial coefficient.
% delay operator.
% multiplies coefficient by delayed signal elements. 
% increments sum by new signal elements.

li



ô»jc 4=*** **************** ************** ROLL Ni ********************************** 
% This algorithm rolls signal x by k  samples.
%  For example, if  x =  [1 2 3 4] and k  =  2 then,
% roll(x,k) =  [ 3 4 1 2 ]
% Usage: roll(x,k) ,where x is a vector and k  is a  scalar

function y =  roll(x,k)

I =  length(x); 
a  =  D ;b  =  [];

if  k < 0, % For a  negative value of k
k =  1 + k; 

end;
if  k > I, %  For a  positive value o f k

k =  k-l; 
end;

for i =  1:(1 - k),
a(i) =  x(i);

end;
for i = (1 - k + 1):1,

b(i - (I - k)) =  x(i);
end;

y  =  [b a]; % Places samples in matrix y

% Shifts first section o f samples 

% Shifts final section of samples

ŝjcjfc**'***************’*************
% Counts the no. of zero-crossings in  a  signal.
% Usage : zcount(x) .where x is signal.

^  jjg ^  ] |j j|g gjf j|g jJ; jJ; j| j  jjr ^  ^  jjj ^  j|(  j|* j|* jj j  jjg p|̂  j | j  ^  jjg jjg *|* ^  j|* ^  p|* jjj *|g ^

function f=zcount(x)

y=G;za=G; 
z= zeros(l,l); 
l=length(x); 
for m = l:l,

if x(m)>=0 % creates ICS from  speech signal
y(m )=l; 

else y(m )=-1; 
end; 

end;
%subplot(211),plot(x),subplot(212),pIot(y) 

for m=2:l,
if  y(m )~=y(m -1); % if  successive samples in  the ICS are not equal

za(m -1)=1; %  a  zero-crossing has occurred
else za(m -l)=0; 

end; 
end;
for m = l:(l-l) , % add up the total number o f  zero-crossings encountered

z=z+za(m);
f=z;

end;



O i ^ *  *  *  sfc *  s|c S t ; * * * * : * * *  * * * *  * * * * *  * * *  * * * * * * *  p f O C P L O T  I V l  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

%  This m-file calculates HOC sequences and displays HOC plots for (summation, difference etc.) 
%  filters o f order n.
% Usage : hocplot(x,n) ,where x is signal, n is order, 

function f=hocplot(x,n)

a=[];b=[];
z l= [];z2 = [];
domfreqs=[J; domfreqd=[]; 

d g ;
l=length(x);

No.'), ylabel('Amplitude'), pause

% applies summation filter to signal.
%  counts no. of zero-crossings in  filtered signal. 
% estimates dom inant frequency.
% applies difference filter to signal.
% counts no. o f zero-crossings in  filtered signal. 
% estimates dom inant frequency.

plot(x), title('Input Signal'), xlabel('Sample 

clg;
for m=0:n,

a=sumfil(x,m);
Z1 (m+ l)=zcount(a); 
domfreqs(m+ l)=(pi*z l(m+1))/(1-1); 
B=difftl(x,m); 
z2(m+ l)=zcount(b); 
dom freqd(m +l)=(pi*z2(m +l))/(l-l);

domfreqs
domfreqd

subplot(211), p lo t(zl), titleCHOC Plot for Summation Filters'), xlabel('Filter Order + 1 (n+1)'), 
ylabel('No. of Crossings');

subplot(212), plot(z2), title('HOC Plot for Difference Filters'), xlabel('Filter Order + 1 (n+1)'), 
ylabel('No. of Crossings');
O^*****************************************************************************

i v



<^********************************* HOCDIF M  ********************************** 

% M odified version o f diffil.tn fo r speed and efficiency, using a  dif. fil.
% Usage : hocdif(x,n) ,where x=speech signal, n=order o f HOC seq.

function f=hocdif(x,n)

hocdat=[]; y=[];
yy=D; z c = 0 ;1=0;

I=length(x);
y=x;

for s=0:n,
zc=0;

for m = l:l,
if  y(m) > : 0

yy(m )=l; 
else yy(m)=^l; 
end;

end;

for m=2:l,
ify y (m )~ = y y (m -I) 

zc=zc+ l;
end;

end,

hocdat(s+1 )=zc; 
z=(roll(y,l))'; 
y=(y-z)/2;

%save new y; 
end;

f=hocdat;
0 /  ^ 4* 4a 4* 4* 4* 4* 4* 4* %!« sL 4* ^ ^ >L ^ *1? •1' 4f 4* 4r4'̂ 4f4,i^44‘ 41 4* 4  ̂  ^  4r 4r 4f 4  4” 4* 4< ̂  ^ ̂  4  ̂  ^  ̂  Jf “V 4* 4* 4* 4*V T T T T T T T T T T T T T T T T “ T * T ^ T T T T ^ T T T T T T T ,v T T T T T T T T ' v T ^ T * t ' T T * P T * T T T T ^ T T  «T* ^ T ^ T f l v ' P T w' r T T T * r T T

% for each filter order 0-n

% create ICS signal

% if  ICS sample(m) does not equal 
% sam ple(m -l) sign change took place 
% ie. zero-crossing

% matrix o f hoc data 
% } [Y(z+l)-Y(z)]/2 
% } divide by 2 to ensure stability

v



%******************************** HOCSUM M  ********************************** 
% M odified version of hocroc.m for speed and efficiency, using a  summation filter.
% Usage : hocsum(x,n) ,where x=speech signal, n=order o f  HOC sequence.

function f=hocsum(x,n)

hocsum=[]; y=[];
yy=tl; zc=0; 1=0;
l=length(x);
y=x;

for s=0:n. %  for each filter order 0-n
zc=0;

for m = l:l, % create ICS signal
if  y(m) >=  0

yy(«i)=i; 
else yy(m )=-l; 
end;

end;

for m=2:l,
ify y (m )~ ^ y y (m -l)  

zc=zc+1 ;
end;

% if  ICS sample(m) does not equal 
% sam ple(m -l) sign change took place 
% ie. zero-crossing

end;

hocsum(s+l)=zc;
z=(roll(y,l))';
y=yfz;

% matrix of hoc data 
% } [Y(z+1)+Y(z)] 
%}

end;

hocsum



******************* HOCSSKY Ivl ********************************* 
% Modified version of hocroc.m for speed and efficiency, using a  Slutsky filter 
% Usage : hocssky(x,n) , where x=speech signal, n=order o f HOC seq.
% Slutsky filter : L[m,n] =  [(l-B )A(m -1)] * [(l+B )A(n -1)]

function f=hocssky(x,n)

hocssky=[]; y=Q; 
yy=Q; zc=0; 1=0;

l=length(x);
y=x;
for s=0:n,

ze=0; 
for m = l:l,

if  y(m) >= 0
yy(m )=l; 

else yy(m )=-1; 
end;

end;
for m=2:l,

if  yy(m) ~= yy(m-1) 
zc=zc+l;

end;
end;
hocssky(s+ l)=zc;
z=(roll(y,2))'; % (1-B)*(1+B)=(1-BA2)
r^y-z;

end;
hocssky

* * * * * * * * * * * * * * * * * * * * * * *  ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * *



o^********************************* h o c a l g  m  *********************************

% This algorithm is used to:
% (i)Pad the signal to allow an integral number of window sections;
% (ii)W indow the signal, (using a 30 msec hanning window, 1/2 overlap);
% (iii)Carry out HOC analysis on each windowed section using a differencing filter;
% (iv)Place HOC data into an n x m matrix called H, where n is the number of window
% frames in signal and m is the filter order.

% Usage : hocalg(x,n) ,where x=speech signal, n=order of HOC seq.
0,^***************************************** ************************************
function f=hocalg(x,n)

hocalg=[]; y=[]; winsig=[]; % initialisation of matrices & variables
H=[]; Ht=[]; zc=0; 1=0; numsmp=0;

winlen=330;
n l= l ;
n2=winlen;

% length of window 
% starting point of window 
% ending point o f window

ovrlap=winlen/2; 
l=length(x);
y=x;

% length of overlap 
% length of speech signal

a=rem(l,165);
numsmp=165-a;

padl=l+numsmp;

cti=0;
for i=(l+l):padl,

y(i)=y(l-ctr);
ctr=ctr+ l;

end;

% } calculation of no. of m irrored samples to be 
% } appended to the signal to ensure 
% } divisibility by overlap 
% length of padded signal =  original signal length 
% plus number of samples to be added

% appending zeros to matrix

i= l;
while(n2<padl)

w insig=y(nl:n2).*hanning(330);
H(r,: )=hocdif(winsig,n); 
r= r+ l;
n l= n l+ovrlap ; 
n2=n2+ovrlap;

end;
f=H;
0^*****************************************************************************

% } apply HOC analysis until 
% }complete signal has been 
% } considered and place HOC 
% }data into matrix H 
% sliding window
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o ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  r l k t r m s  m  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
% This function removes like-terms (ie. samples of the same amplitude) from a SIFE signal 
% resulting in  a  sequence o f data representing the spacing between each ZC present in the original 
% speech signal.
% Usage: rlk trm s(x),where x is the SIFE signal.
%* **** **** ****** ** **** *** ***** * * * ***** afe % afesfe *************** ********** ***********

function sifevals=rlktrms(x)

sifelen=length(x);
k=0;

for i= l:(sife len-l), % if  successive samples are equal only include once
if x(i)^=x(i+ l), 

kr=k+l;
sifevals(k)=x(i);

end;
end;
if  x(sifelen- l)~=x(sifelen), % deals with second last and last samples

sifevals(k+1 )=x(sifelen);
end;
0^*****************************************************************************



o^********************************* HOCALG5 M  ******************************** 

% This algorithm is used to:
% (i)Pad the signal to allow an integral number of window sections;
% (ii)W indow the signal,(using a 30 msec hanning window, 1/2 overlap);
% (iii)Cariy out HOC analysis on each windowed section using a differencing filter;
% (iv)Place HOC data into an n x m matrix called H, where n is the number of window
% frames in signal and m is the filter order.
% (v)Tag the D0,D1,D2 data strings end-to-end for compatiblity with DTW  algorithm;
%
% U sag e : hocalg5(x,n,'dstfname')
% , where x=speech signal,
% n=order of HOC sequence,
% dstfname=name of file to contain HOC data.
O^*****************************************************************************

function f=hocalg5(x,n,dstfname)

hocalg=[]; y=Q; winsig=[]; % initialisation of matrices & variables
H=[]; htrans=[]; htag=[];
zc=0; 1=0; numsmp=0;

winlen=330; % length of window
n l= l ; % starting point o f window
n2=winlen; % ending point of window

ovrlap=winlen/2; % length of overlap
l=length(x); % length of speech signal
y=x;

a=rem(l,165); % ’/calculation of no. of mirrored samples to be
numsmp=165-a; % } appended to the signal to ensure

% } divisibility by overlap
padl=l+numsmp; % length of padded signal =  original signal length

% plus number of samples to be added
ctr=0;
for i=(l+ l):padl, % appending samples to matrix

y(i)=y(l-ctr);
ctr=ctr+ l;

end;

r= i;
while(n2<padl) % } apply HOC analysis until

w insig=y(nl:n2).*hanning(330); % } complete signal has been
H(r,:)=hocdif(winsig,n); % }considered and place HOC
r= r+ l; % }data into matrix H
n l= n l+ ovrlap ; % sliding window
n2=n2+ovrlap;

end;
htrans=H'; % transpose the H matrix
htag=[htrans( 1,: ),htrans(2,: ),htrans(3,:)] % tags rows of data

hdr=length(htag); % file header is length of string htag
htag hdr=[hdr,htag]; % append header to string

datoint(htag_hdr,dstfname); % converts data to integer format and stores
% data in file specified by dstfname

0^*****************************************************************************

in



ô **t******************************* DATOINT ivl ******************************** 
% This function converts an ascii file o f 8 digits per data value saved in 
% matlab to a  file o f integers.
% Usage: datoint(source_varname,destination fname)
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function f=datoint(var,fname)

l=length(var);

fid =  fopenifiiame^w1);

for n = l:l,
y =  var(n); 
fprintf(fid,'%4d',y);

end;

fclose(fid);
(^*****************************************************************************

ôq* ******************************** TRAIN ALL M  ******************************* 
% This m-file trains the system with the full vocabulary 
% Usage: trainall
0^*****************************************************************-************
trainer('tgo');
trainer('tstop');
trainerCtrev1);
trainer('tleft');
trainer('tright');
0 ^ * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *



o^******************************** TRAINER M ************************** St:*#** *** 

% This m-file is used to train the speech recognition system for a certain vocabulary.
% U sag e : trainer(word)
0^***************** Hi***********************************************************
function trainer(word) 

pathout='f:\dtwY; % sets output path

FIDout=fopen([pathout 'train.dat'],'wb'); % opens file to store training data
fprintf(FlDout,'%-8.8s',word); % places name o f word as header to file

for k=0:9,

% read data files to be trained

pat hin— f: \dtw\hdrY; % } defines input path
e x tin - .d a l’; % }and file extension

datak =  [word int2str(k)]; % }finds file with filename
filename =  [pathin word int2str(k) extin]; % }of form "name_number.dat1
if  ~exist(filename), break, end % } (eg. stop4.dat) and
ev a l(flo ad ' f ilenam e ' -ascii']); % } extracts data from it for
data =  eval(datak); % }  processing

% create training files for TRAIN.EXE

len=length(data); 
fwrite(FIDout,(len- l),'uchar'); 
fwrite(FIDout,data(2: len),'uchar');

end
fclose(FrDout);

% } length of data string is already 
% }present in  da tafile  
% }=>len-l =  length of data so write 
%  }length and data to training file

¡f:\dtw\train.exe % runs train.exe



#include <math.h>
#include <stdio.h>
#include <io.h>
#include <stdlib.h>
#include <conio.h>
#include <values.h>
#include <string.h>

#define T E S T M A X  150 /* max size of test pattern */
#define WORDS MAX 15 /* max no. o f classes that can can be recognised */

void disp_cmatrix(unsigned char **, char ,char); 
void disp_imatrix(unsigned int **, char ,char);

if: TRAIN C **********************************/

void main (void)
{
/* Declare and initialise variables and data structures */
unsigned char m, n; /* row and column index */
unsigned char i, j, c, k; /* for loop counters */
unsigned char N, M; /* lengths of current test and ref patterns */
unsigned char match[5], index;
unsigned int minAD=0;
unsigned int total, minPD;
unsigned avgPD [10];
FILE *ftrain, *fref; /* file pointers for data files*/

struct training 
{
unsigned char name[8];
unsigned char length[10];
unsigned char data[10][TEST_MAX];
} *train;

/* Allocate memory required for data structures */ 
unsigned char(*LDM)[150]=calloc(150* 150,1); 
unsigned int(*ADM )[ 150]=calloc(150* 150,2); 
unsigned int(*PDM) [ 10]=calloc( 10*10,2);

/* Check for existance of data files */ 
if((ftrain=fopen("f: WdtwWtrain. dat"," rb " ) )= 0 )

{
printf("Error opening test.dat\n"); 
exit(l);
}

/* Get training patterns */
{
train=<struct training *)malloc(sizeof(struct training)); 
fread(&(train->name),sizeof(unsigned char),8,ftrain); 
for(j=0; j<  10; j++)

{
fread(&(train->length[j]),sizeof(unsigned char), 1 ,ftrain); 
fread(&(train->data[j][0]),sizeof(unsigned char),train->length[j],fitrain);
}

VI



}
fc)ose(ftrain);

clrscr();
go toxy(l,l);
prinlf("T raining the word V%.8s\'\n",train->name); 
for(i=0; i< 10; i++)

{
N =train-> length[i]; 
fo r (p 0 ; j<  10; j+ + )

{
gotoxy( 1,2); 
printf("%u -> %u",i j) ;  
M=train->length[j];

/* Calculate local distance matrix (LDM) */ 
for (n=0; n<N; n++)

for (m=0: m<M; m++)
LDM[m][n]=abs(train->data[i][n]-train->data[j][m]);

/* Calculate accumulated distance matrix (ADM) */ 
for (n=0; n<N; n++)

{
for (m=0; m<M; m++)

{
if  ((m -l)<0  && (n-l)<0) 

minAD=0; 
else if  ((n-l)<0  )

minAD=ADM [m-1] [n]; 
else if  ((m -l)<0)

minAD=ADM[m] [n-1 ];
else

minAD=min(ADM [m] [n-l],m in(A D M [m -l] [n],ADM [m-1] [n-1]));

ADM[m] [n]=(int)(LDM[m] [n])+minAD;
}

}
PDM [i][j]=A D M [M -l][N -l];
}

>

/ *  Display results */ 
clrscr();
printf("%. 8s\n\n\t\t\tTESTED AGAINST\n\tH,train->name); 
for(i=0; i<10; i++)

printf("U%u ",i);

/* Display PDM matrix */ 
for(i=0; i<10; i++)

{
printf("\nU%u ”,i); 
fo r(j=0;j< 10;j++ )

printf("%6u",PDM [i] [j]);
}



/* Find utterances to store as templates * /  

for (i=0; i<10; i++)
{
total=0;
for(k=0; k<5; k++)

{
minPD=MAXINT;
fo r(j= 0 ;j< 1 0 ;j+ + )

if  (min(PDM[i] [j],m inPD )=PD M [i] [j])
{
minPD=PDM[i] [j];
index=j;
}

total+=minPD;
PDM[i] [index]=MAXINT;
}

avgPD[i]=total;
}

/*  Find Minimum Totals */ 
printf("\n\nTOT ALS\n\t"); 
for(i=0; i<10; i++)

pri ntf(" %6u" .avgPD [i ]);

printf("'in\nSTORED :\t''); 
for(c=0, c<5; c++)

{
minPD=MAXINT; 
for(i=0; i< 10; i++)

if (m in(avgPD [i],m inPD )=avgPD [iJ)
{
inatch[c]=i;
ininPD=avgPD[i];
}

avgPD[match[c]]=M AXINT; 
pri nt f( "U%u ", match [c]);
}

/* Store patterns as templates */ 
fref=fopen("f:\\dtw\Vref.dat", "ab"); 
fpnntf(fref,"% -.8s",train->name); 
for(j=0; j<5; j++)

{
fwrite(&(t rain->length [match [j ] ] ),sizeof(unsigned char), 1 ,fref)'. 
fwrite(&(train->data[match[j]][0]),sizeof(unsigned char),train->length[match[j]],fref); 
}

fclose(fref);

/* Exit routine */
free(train);
free(LDM);
free(ADM);
free(PDM);
}/******************************************************************************/

v i i i



%******************************** m a k e i n i  m  *********************************

% This informs the system o f the vocabulary size
O^*****************************************************************************
function makeini(x); 
fid=fopen('f: \dtw\ini. dat',' w1); 
fwrite(fid,x,'uchar'); 
fclose(fid);
0^*****************************************************************************

o^** * * **************************** WORDREC M  ******************************** 
% This m-file is used to execute cluster analysis and recognise an unknown test word.
% Usage : wordrec('word')
O^*********************************** ************** ****************************
function wordrec(word)

pathout^’f:\dtw\'; %  sets output path 

FIDout=fopen([pathout 'test, dat'] ,'wb'); % opens file to store test data

p a th in - f:\dtw\hdrY; 
ex t in - ,  dat';

% } defines input path 
% } and file extension

datak =  [word];
filename =  [pathin word extin]; 
if  ~exist(filename), break, end 
eval(['load ' filename ' -ascii']); 
data =  eval(datak);

% }finds file with filename 
% } of form "name.dat"
% } (eg. stop, dat) and 
% } extracts data from it for 
% }  processing

% create test file for DTW CLUS5.EXE

len=length(data); 
fwrite(FIDout,(len- l),'uchar'); 
fwrite(FIDout,data(2: len),'uchar');

end
fclose(FlDout),

% } length of data string is already 
% }present in data file 
% }=>len-l =  length o f data so write 
% } length and data to train ing file

%!f:\dtw\dtwclus6.exe % runs dtwclus6.exe
O^*****************************************************************************

IX



#include <math.h>
#include <stdio.li>
//include <io.h>
#include <stdlib.h>
#include <conio.h>
#include <values.h>

/*********************************** DTWCLUS6 C ****************************/
/* DYNAMIC TIME WARPING PATTERN RECOGNITION PROGRAM Ver 6 */

#defme CLUSTER SIZE 5 
#define REF MAX 180 
#define TEST MAX 180 
#define WORDS_MAX 15 
#define KNN 3

/* number of trained reference templates per word */ 
/* max size of reference pattern */
/* max size of test pattern */
/* max size of vocabulary */
/* K nearest neighbour */

void main (int argc, char *argv[])
{
/* Déclaré and initialise variables and data structures */
unsigned char m, n; 
unsigned char i, j, k; 
unsigned char N, M; 
unsigned char nwords, match; 
unsigned int minAD=0; 
unsigned long tmpmin, tmptot; 
float tmpatot,curatot; 
unsigned char index;

/* row and column index */
/* for loop counters */
/* lengths of current test and ref patterns */

FILE *fref, *ftest, *fmi; 
char *testfile;

/* file pointers for data files*/

struct reference 
{
unsigned char name[8];
unsigned char length [CLUSTER SIZE];
unsigned char data[CLUSTER_SIZE][REF_MAX];

} *R[WORDS M AX|;

struct test
{
unsigned char length; 
unsigned char data[TEST MAX],
} *T;

/* Allocate memory required for data structures */
unsigned char(*LDM )[180]=calloc(180*180,l);
unsigned int(*ADM)[ 180]=ealloc( 180* 180,2);
unsigned int(*PDM)[CLUSTER_SIZE]=calloc(WORDS_MAX*5,2);

/* Check for command line argument */ 
if  (argc>=l)

testfile=argv[l];
else

testfile="f:\\dtw\\test.dat";

/* Check for existance of data files */ 
if((ftest=fopen(testfi 1 e, " rb" ))==0)

x



{
printf("Error opening test.dat\n"); 
exit(l);
}

if((fref=fopen("ref.dat","rb"))=0)
{
printf("Error opening refdat"); 
exit(l);
}

if((fini=fopen("ini.dat","rb")>=0)
{
printf("Error opening ini.dat"); 
ex it(l);
}

/* Get number o f words trained to recognise */ 
fread(&nwords,sizeof(unsigned char), 1 ,fini); 
fclose(fini);

/* Get test pattern */
T=(struct test *)malloc(sizeof(struct test)); 
fread(&(T->length),sizeof(unsigned char), latest); 
fread(&(T->data[0]),sizeof(unsigned char),T->length,ftest); 
fcIose(ftest);

/* Get reference patterns * /  

for(i=0; i<nwords; i++)
{
R[i]=(struct reference *)malloc(sizeof(struct reference)); 
fread(&(R[i]->name),sizeof(unsigned char),8,fref); 
for(j=0; j<CLUSTER_SIZE; j++)

{
fread(& (R[i]->length[j]),sizeof(unsignedchar),l,fref); 
fread(&(R[i]->data[j][0]),sizeof(unsigned char),R[i]->length[j],fref); 
}

}
fclose(fref);

N=T->lengtlr,

clrscr();
for(i=0; i<nwords; i++)

{
for(j=0; j<CLUSTER_SIZE; j++)

{
gotoxy(I,l);
printf("% d -> %d\n",i j ) ;
M =R[i]->length|j];

/* Calculate local distance matrix (LDM) * /  

for (n=0; n<N; n++)
for (m=0; m<M; m++)

LDM[m][n]=abs((T->data[n])-(R[i]->data[j][m]));

/* Calculate accumulated distance matrix (ADM) */ 
for (n=0; n<N; n++)



{

{
if  ((m-1 )<0 && (n-1 )<0) 

minAD=0; 
else if ( (n - l)< 0 )

ininAD=ADM [m-l][n]; 
else if ((m -l)<0)

in i n A D =A D M  [m ] [n-1 ];
else

niinAD=min(ADM [ni][n-l],inin(ADM fm-

f o r  ( m = 0 ;  m < M ;  m + + )

ADM[m] [n]=LDM[m][n]+minAD; 
}

}
PDM [i][j]=ADM [M -l][N-l];

/* Display results */ 
clrscr();
printf("% s\n",lestfileX
printft" WORD M O M !  \t 2 \t 3 \t 4 \t\n");
printf(" \t \t \t \t \t \(\n");
for(i=0; i<nwords; i++)

{
printf("%.8s",R[i]->nanie); 
for<j=0; j<CLUSTER_SIZE; j++) 

printf(" \t% 6u”, PDM [ i ] [j ]); 
printf("\n");
}

/* Decision algorithm */ 
curatot=MAXLONG; 
for(i=0; i<nwords; i+H-)

{
tmptot=0L;
for (k=0; k<KNN; k++)

{
tmpmin=MAXLONG;
for (j=0; j<CLUSTER_SIZE; j++)

i f  (m in (P D M [i][j] ,tin p in in )= P D M [i] |j])

{
tmpmin=PDM[i][j];
index=j;
i

t mptot+=tmpmiiu 
PDM[i][index]=M AXINT;
}

tm patot= tm ptot/K N N ;

if (n iin (cu ra to l,tm p a to t)= tm p a to t)
<
curatat= tm pato t,
match=i;
>

xit



}

{
priiitf("\nWORD NOT RECOGNISED!");
}

else
{
printf("\nPATTERN MATCH IS THE WORD %.8s\n",R |match]->name);
}

/* Exit routine */ 
for(i=0; i<nwords; i++)

{
free(R[i]);
}

free(T);
free(LDM);
free(ADM);
free(PDM);
}/*****************************************************************************/

if(curatot>4000)



c^********************************** SNDSYNT M ******************************* 
% Function to synthesise any speech sound using only information from the first three formants.
%
%Usage : sndsynt(fl,al,f2,a2,f3,a3,fs) ,where f(n) and a(n) are the frequency and amplitude
% (in dBs) of the nth formant,
% fs is the sampling frequency.
0/0 ******* **** ***** ****** H«*** ***** ****** ******* ****** **************** ********** *
function f=sndsynt(f 1 ,a l ,f2,a2,f3,a3,fs)

t=0:fs;
A l= l;
A2=10/\(a2 -a l)/2 0 ); % conversion from dBs to decimal
A3=10/X(a3-al)/20);
x=Al*sin(2*pi*fl*t/fs)+A2*sin(2*pi*f2*t/fs)+A3*sin(2*pi*f3*t/fs); % the synthesised signal
y=25000*x(l:990); % amplification in order to hear
plot(y);
%pause;
%sound(x,fs);
%pause;
sound(y,fs);
f^y1;
0 ^  >|c * *  * * * * * * * * * * * * * * * * *  if; * * * * * * *  *  * * * * * * * * * * * *  *  *  * * * * * * * *  * * * * * * *  *  * * * * * * * * * * * * * * * * *  *

*%* * ****************************** a d d n o i s e  M  ********************************
% This function allows the user to add normalised white noise to a signal.
% Usage : addnoise(sig,vol), where sig is the speech signal 
% and vol is the scaling factor of white noise.
O ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function nsig=addnoise(sig,vol)

noise=vol*randn(size(sig));
nsig=sig+noise;

subplot(31 l),plot(sig),subplot(312),plot(noise),subplot(313),plot(nsig);
sound(sig, 11025),sound(nsig, 11025),sound(noise, 11025);
0^*****************************************************************************

o^******************************** adpnoise  m  ********************************
% This function allows the user to add normalised pink (bandlimited white) noise to a signal.
% Usage : addnoise(sig,vol), where sig is the speech signal
% and vol is the scaling factor of pink noise.
0^ * * *  * *  *  * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function pnsig=adpnoise(sig,vol)

noise=vol*randn(size(sig));
a=[l];
b= [l 4 6  4 1];
pnoise=. 125*filter(b,a,noise); %white noise LPF'ed using a 5th order summation filter
pnsig=sig+pnoise;

subplot(31 l),plot(sig),subplot(312),plot(pnoise),subplot(313),plot(pnsig); 
sound(sig,l 1025),sound(pnsig,l 1025),sound(pnoise,l 1025);
Ô ** * * *************************************************************************

X I V



%********************************** s n d s y n p s  m  ******************************
% Function to synthesise any speech sound using only information from the first three formants 
% and cotaining non-linear phsae shifts
% Usage : sndsynps(fl,al,f2,a2,f3,a3,fs) ,where f(n) and a(n) are the frequency and amplitude
% (in dBs) of the nth formant,
% fs is the sampling frequency.
% The phase shifts are generated by substituting a Sin with a  Cos 
0^*****************************************************************************
function f=sndsynt(f 1 ,a 1 ,f2,a2,f3 ,a3 ,fs)

t=0:fs;
A l= l;
A2=10/X(a2-al)/20); % conversion from dBs to decimal
A3=10A((a3-al)/20);
x=Al*sin(2*pi*fl*t/fs)+A2*sin(2*pi*f2*t/fs)+A3*sin(2*pi*f3*t/fs); % synthesised sound x 
xp=Al*cos(2*pi*fl*t/fs)+A2*sin(2*pi*f2*(t)/fs)+A3*sin(2*pi*f3*(t)/fs); % x with a non-

%linear phase change
y=x( 1:990); 
yp=xp(l:990);
subplot(21 l),plot(y(l:300)),subplot(212),plot(yp(l :300));
%pause;
%sound(x,fs);
%pause;
sound(y,fs);
sound(yp,fs);
£=yp';

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

0/̂** ******************************* chgphs m  *********************************
% Function used to insert a  non-linear phase delay into a  speech signal.
% Usage : f=chgphs(signal)
0^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

function f=chgphs(sig)

l=length(sig);
w =l:l;
e=exp(l);
phs=(cos(10*w/l)+sin(2*w/l)); % severe non-linear function
h=fft(sig); % change to frequency domain
pc=e./'(j*phs); % non-linear phase change
hnew=h.*pc'; % apply to signal
plot(angle(pc),'r'),hold on,plot(abs(pc),'b'),pause,hold off; 
plot(angle(h)),pause 
plot(angle(hnew))
hrec=ifft(hnew); % back to time domain
f=hrec;
sound(sig, 18000); 
sound(hrec, 18000);
O/^* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

X V
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