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CHAPTER 1

Industrial Robots and Their Control

The word robot has it’s origins in the Czech word robota, which literally

means forced or slave labourer. Webster’s dictionary defines a robot as being "an 

automatic device that performs functions normally ascribed to human beings". By 

this definition even the humble washing machine is a robot. A more restricted 

description used by the Robot Institute of America describes a robot as being a 

"reprogrammable multi-functional manipulator designed to move material parts, tools 

and specialized devices, through variable programmed motions to perform a variety 

of tasks". From this definition it is apparent that a robot is a programmable 

general purpose manipulator with external sensors that can perform a variety of 

assembly tasks.

An industrial robot, like that in Figure 1.1, can be described as a general

purpose manipulator consisting of several rigid links connected by a series of

revolute or prismatic joints. One end of this chain is normally attached to a 

supporting base while the other is attached to to some tool which performs some 

predetermined task. Mechanically, an industrial robot is composed of an arm and a 

wrist subassembly which are designed to reach any work piece within its work

volume. It’s work volume being defined as the area where the robot’s arm can 

deliver the wrist subassembly.

The past 20 years has seen an increase in the importance of the robot 

manipulator. This increase, for the most part, is due to the pressing need for

increased productivity and quality end products. Most manufacturing tasks are 

performed by special purpose machines designed to perform predetermined functions. 

The inflexibility of such machines has made the computer-controlled manipulator a 

more attractive and cost effective alternative.
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Most commercially available industrial robots are widely used in manufacturing 

and assembly tasks, such as simple material handling, spot/arc welding, part 

assembly, spray painting, loading and unloading numerically controlled machines; in 

space and undersea exploration; in prosthetic arm research; and in the handling of 

dangerous materials such as nuclear or chemical waste.

The industrial robots used in these tasks are usually simple positioning 

machines controlled by mini/micro-computers. They execute a given task by playing 

back prerecorded or pre-programmed sequences of motions. In general, these robots 

are equipped with little or no sensors for obtaining the information vital to its 

working environment. Recent research has been directed towards improving the 

overall performance of the manipulator system. These improvements have largely 

centred on improving robot control.

1.1 Hie Robot Control Problem

All the above applications put demands on the design of the robot to be 

used. The most noticable of these constraints is that the robot must be capable of 

performing a given task accurately, in real time and at a reasonable operating cost. 

Since the mechanical design of the industrial robot has varied little in the past two 

decades, the problem of attaining increased performance is essentially a control 

engineering problem.

The principle underlying the control of robot systems, like other 

large-scale systems, is hierarchical in structure. The control hierarchy is most often 

vertical with each upper control level dealing with wider aspects of overall system 

behaviour than the lower levels. The higher levels in the hierarchy communicate 

with their next lowest level to pass along any information this level needs for 

decision making. The most common o f these hierarchical structures has four levels 

[1] as shown in Figure 1.2. It’s levels function as follows:

2



1) recognition of obstacles in the robot’s workspace and the conditions under 

which a task is to be performed and taking decisions on how the task 

imposed is to be accomplished.

2) dividing the imposed operation into elementary movements,

3) distributing the elementary movements to each degree of freedom of the 

robot

4) executing the required elementary movements of each degree of freedom.

All robots have the two lowest levels: a tactical level used to generate the 

trajectory for each joint and the fourth level that executes these trajectories using 

actuators incorporated in each degree of freedom. The two upper levels are specific 

to second and third [1] generation robots. These are robots that are capable of

sensing their work environment and use artificial intelligence methods to perform

their tasks correctly.

The two lower levels may be realized in various modes, and their ability to 

implement the motions prescribed by the upper levels determines the make up of 

the upper levels and the capabilities of the robot system as a whole. It is therefore 

important to optimize these levels before proceeding with implementing any other 

level.

Robot manipulators belong to a class of large-scale systems which are

nonlinear in nature. This results in their having a large number of special features

which makes the robot control problem a difficult one. These features [2] arise 

from mechano-structural and dynamic considerations. Another characteristic which 

makes the control problem unique is the robot’s variable structure: when a robot is 

in motion it becomes a closed kinematic chain. This means that the movement of
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any one joint will affect the movement of all the remaining joints. All these and 

other robot characteristics [3] require that the robot be considered as a serarate 

system class, and should have a controller that takes its unique dynamic 

characteristics into account.

1 2  The Dynamic Control Problem

The main problem arising in the control task mentioned is to what extent one 

should take into account the real robot dynamics in control synthesis. It is up to 

the lower level of the control hierarchy to guarantee the desired system stabiltiy by 

taking the robot dynamics into account To do this, it is nearly always necessary 

to form a dynamic model of the robot in question. Like most large-scale nonlinear 

systems, robots belong to that class of systems whose models may be set precisely 

enough [1], This preciseness allows for the model to be used extensively in control 

design.

Approximate models are usually used to design the simplist possible control 

algorithms. A linearized system model is frequently used in conjunction with linear 

systems theory to develop a linear controller. In general, these approaches assume 

simplified models which are assumed to be sufficiently accurate approximations of 

the actual robots. However, this is not always the case, since over simplification of 

the model may have occured. Obviously, the closer the model is to the actual 

system the more likely it is that the designed controller will satisfy the system.

To achieve robot control at a reasonable price, most robot manufacturers feel 

it is convenient to apply decentralized control. This type of control treats the robot 

as a set o f decoupled subsystems and applies a local controller to each of these 

subsystems. Such a system neglects the effects of dynamic coupling among the 

different degrees of freedom of the manipulator. In some cases, the coupling of 

joints is quite large and the sythesised controller performance may prove
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unsatisfactory. Various methods [4][5][6][7][8][9] have been used to overcome the 

coupling effects. These methods involve linear and nonlinear self tuning adaptive 

controllers. They try to overcome the coupling problem by their ability to 

accurately track the system nonlinearities and by compensating for their presence in 

the controller design.

Unfortunately, robot manufacturers are reluctant to implement such control 

algorithms. This reluctance comes from the fact that in most of the cases the

implementation of such control algorithms would require the replacement of the

existing controller hardware with a faster more expensive alternative. However, the 

recent developments in VLSI technologies provide cost effective solutions to the 

implementation of such algorithms.

1.4 Motivation for this Research

The Control Technology Research Unit (CTRU) at DCU has in recent years 

become interested in the area of robotics and in particular the area of robotic 

control. For this reason the CTRU initiated this project the main aims of which 

were as follows:

a) to develop a fully validated robot model,

b) to develop and implement a new hardware robot controller and,

c) to test this new robot controller.

The Control Techology Research Unit at Dublin City University has a PUMA 

560 robot arm which is representative of a large and popular class of industrial 

manipulator. It consists of six revolute joints, see Figure 1.1. The three primary 

joints being known as the waist, the shoulder and the elbow. This is because of 

the similarity of manipulator robot structures to the human arm. The three 

secondary joints, which make up the wrist subassembly, are concerned only with 

the position and orientation of the tool which is attached to the robot



From a control point of view, the most significent problem lies in the 

positioning of the tool, i.e., the control of the three primary joints. The problem 

arises from effects caused by the relatively large sizes and masses of these three 

joints. These effects take the form of inertial, centripetal, coriolis, and gravitational 

coupling, and are responsible, in the main part, for the nonlinear nature of the 

control problem.

Before any new control algorithm can be implemented it is necessary to test 

it as fully as possible. This means a robot model is required for testing in a 

simulation environment. The model must must reflect, as closely as possible, the 

true dynamics of the robot itself. This means that the model must be validated by 

comparing its performance to that of the actual robot. This comparison will allow 

the control engineer to tune the model so as to reduce any modelling error which 

may have occured. If an actual algorithm is not tested and tuned on a validated 

model, implementation could lead to the discovery of unmodelled force or 

inaccurate dynamic terms. These modelling errors could cause the control algorithm 

to become unstable and result in serious damage to the robot.

Once a new algorithm has been tuned and tested on the model, the algorithm 

must be implemented. To implement the algorithm it is necessary to choose a 

hardware and software configuration which is capable of implementing the desired 

control algorithm in real time and with a high degree of numerical precision.
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1.5 Thesis Contributions

This thesis developes a fully tested robot controller design suite which allows 

for the design, testing and implementation of robot control algorithms. The 

contributions of this thesis to the area of robot research are as follows:

a) The thesis developes a comprehensive model for the three primary joints of the 

PUMA 560 industrial robot based on the work of Anderson [14]. The model 

developed takes the form of a set of third order differential equations which 

describe the dynamic behavior of the robot. These equations are then used to 

simulate and test the validity the model developed.

b) A control hardware specification is developed for robotic manipulators. This 

specification is then implemented using a personal computer and three special 

purpose digital signal processor boards. An interface between the PUMA 560 and 

the new control hardware is designed and implemented which incorporates all the 

safety features of the existing interface. In addition to these features and a vast 

increase in computational performance, the new interface offers a greater degree of 

flexibliity due to the ability of adding extra sensors.

c) The thesis discusses the kinematic analysis of the three primary joints of the 

PUMA 560 robot with a view to path planning and setpoint generatioa It focuses 

on the the 4x4 homogeneouss transformation matrices between ajacent manipulator 

links, the kinematic equations and the inverse kinematic solution for the PUMA 

560 robot.

d) A general time series model is developed for the motion of the primary joints 

of the PUMA 560 for use in self-tuning/adaptive controllers. Various linear and 

nonlinear least squares-based identification techniques are implemented to determine
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the parameters of this model. The identified models are then compared to assess 

how accurately these model represent the dynamic characteristics of the robot.

1.6 Preview o f Thesis

The research in this thesis is organized as follows:

Chapter 2 outlines the modelling procedure used to model the PUMA 560. It then 

details the simulation of the new model and outlines how the model has been 

validated.

Chapter 3 is concerned with the development of a new controller hardware

structure. It details the shortcomings of the existing controller and draws up the 

ideal controller specification and details the hardware chosen to implement the 

specification.

Chapter 4 deals with the hardware design and implementation necessary to interface

the new controller hardware to the PUMA 560 robot

Chapter 5 examines the computational considerations for the robot control hardware,

Chapter 6 gives a solution to the inverse kinematic problem for the primary joints 

of the PUMA 560 robot.

Chapter 7 discusses the parameterization of the robot model using linear and

nonlinear parameter identification techniques.

Conclusions are given in Chapter 8.
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FIGURE 1.1
THE PUMA 560 INDUSTRIAL MANIPULATOR

HGURE 1.2 THE CONTROL HIERARCHY
FOR MANIPULATORS
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CHAPTER 2

Dynamic Modelling and Simulation of the PUMA 560

This chapter is concerned with the development and computer simulation of a 

dynamic model for the three primary joints of PUMA 560 industrial robot. The 

model outlined here is based on a second-order Euler-Lagrangian formulation of the 

PUMA 560 equations of motion [10]. This model is expanded to include the effect 

of the joint actuators, producing a third-order model for this particular robot.

In order to facilitate controller appraisal, the model is simulated on a digital 

computer. The simulation uses a classical 4th order Runge-Kutta technique to 

solve the third order differential equations present in the model. The simulator has, 

as it’s inputs, the motor voltages necessary to drive the primary robot joints. The 

outputs from the model are in the form of positions, velocities and accelerations of 

these joints.

The model simulator is then tuned and put through a number of time 

response tests. The aim of these tests is to see if the simulator exhibits dynamic

characteristics similar to those of the actual robot.

2.1 Dynamic Modelling of the PUMA 560

The first step in the design of a robot controller usually entails the dynamic

modelling of the physical system to be controlled. For serially connected open-loop

kinematic chains [10], like robots, the problem of generating a comprehensive 

dynamic model remains a challanging one. In the past 20 years, numerous 

approaches [11][12][13] for the modelling of kinematic chains have been applied to 

themodelling of robotic manipulators. The most commonly used of these 

approaches is the Euler-Lagrangian (E-L) method.
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The Euler-Lagrange method dates back to the mid-sixties [12] and has been 

applied to numerous robots, including the PUMA 560 [13] [14], The derivation of 

a dynamic model based on this method is simple to understand because it uses a 

systematic approach to derive the model equations. The resulting equations of 

motion, excluding the dynamics of the control device, gear friction, and backlash 

are a set of second order, coupled, nonlinear, differential equations. Each equation 

contains a number of torque terms classified into four groups: inertial torque due 

to the links, reaction torques generated by joint accelerations, velocity generated 

reaction torques and torques generated due to gravity effects. From a control 

point-of-view, it is desirable to obtain a model which is a set of closed-form 

differential equations. This allows all the reaction forces represented in the model 

to be monitored for the purpose of designing a controller. The Euler-Lagrange 

method is the most suitable method for this monitoring because of its systematic 

approach in deriving the torque equations. For this reason the Euler-Lagrange 

method was chosen.

The Euler-Lagrange equations of motion for the three primary joints of the 

PUMA 560 robot [13] can be written in the following format:

F j = t o r que  a c t i n g  on j o i n t  i ,

I a i = a c t u a t o r  i n e r t i a  o f  j o i n t  i ,

Dj j  = e f f e c t i v e  c oup l i ng  o f  j o i n t  i ,

Djj  = c o up l i n g  i n e r t i a  on i j o i n t  due to j o i n t  j ,

C j j j  = c e n t r i p e t a l  f o r ce  on i due t o  j o i n t  j ,

C i j k  = c o r i o l i s  f o r ce  on j o i n t  i due to j o i n t s  j and k,

Gj = g r a v i t y  load ing  o f  j o i n t ,

Nj  =  g e a r i n g  r a t i o  o f  j o i n t  i .

(2 . 1)
j = l

whe r e ,

j = l  k=l

Q i . Q i . q i  = p o s i t i o n . v e l o c i t y  and a c c e l e r a t i o n  o f  j o i n t  i
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The inertia, centripetal, coroilis and gravity terms have been identified by 

Bejczy [13] and are defined as follows:

D i1 -  m , k21yy ( 2 . 2 )

+ m2( k 22XXS 22 + k 22yyC22 + a 22C22 + 2 a 2x 2C 22)

+ m3 [ ( k 2 3 XXS 2 23 + k 2 3ZZC223 + d 2 3 +  a 2C2 2 + a 2 3C2 2 3)

+ 2 a 2a 3C2C23 + 2 x 3( a 2C2C23 + a 3C223)

+ 2y 3d 3 +2z 3 (a 3C2 3S 2 3 + a 2C 2S 23)]

D, 2 = m2a 2z 2S 2 +

m3[ ( d 2x 3 + a 3y 3 + a 2d 3) S 23 + 

( a 2y 3 + a 2d 3) S 2 - d 3z 3C23]

( 2 . 3 )

^ 1 3  ® 3 [ ( ^ 3 d 3  +  a  3y  3  ■*" ^ 3 ^ s ) ^ 2 3  ” ^ 3 ^ 3 ^ 2 3 ^ ( 2 . 4 )

D22 = m2( k 22ZZ + a 22 + 2 a 2z 2) +

m3[ ( 2 a 2a 3 + 2 a 2x 3)C3 + 2 a 2z 2S 3 + 

k 23yy + a 22 + a 33 + 2 a 3x 3]

( 2 . 5 )

2 a , x ,  + a 2q + k 23yy]

(2 . 6)

D 3 3 = m3(k 2 3yy + a 23 + a 3x 3) ( 2 . 7 )

' 1  1 2 m2 ( ^ 2 3 xx  ' ^ 2 2 yy  ' a 2 2 * 2 a 2x 2) C 2S 2 + 

ms [ ^ 2 3XX^2^2 + ^3^3 + 2 S 2S 3S 23) + 

^ 2 3 Z z ( 2 S 2S 3S 23 - C2S 2 - C 3S 3) + 

x 3( - 2 a 2S 2S 23 +  4 a 3S 2S 3S 23 + 

a 2S 3 - 2 a 3C 2S 2 - 2 a 3C3S3)  + 

z 3( a 2C2C 2 3 - a 2S 2S 23 + 2 a 3C2 2 3 - a 3) +

12

(2 . 8)



a 2a 3S 3 '  2 a 2a 3C2S 23 - a 2 2C2S 2 +

2 a % S 2S 3S 23 - a % ( C 2S 2 + C3S 3)]

C113 = m3[ k % xx(C2S 2 + C3S 3 - 2 S 2S 3S 23) + ( 2 . 10 )

k 23Zz(2S2S 3S 23 ■ ^ 2S 2 " ^ 3C3) + 

x s ( a 3S2S 3S 23 " ^ a 3C2S 3 - 2 a 3C3S 3 

a 2C2S 23) + z 3( 2 a 3C2 23 + a 2C2C23 - a 2) +

2 a 3 3S 2S 3S 2 3 - a 2a 3C2S 23 - a 23C2S 2 - a 2 3C3S 3]

C , 2 2 = m2a 2z 2C2 + ( 2 . 11 )

^ 31 d 3Z 3S 2 3 + ( d 3x 3 + a 3y 3 + a 3d 3) c 23]

C 123 = m3[ d 3z 3S 23 + ( d 3x 3 + a 3y 3 + a 3d 3)C23] ( 2 . 12 )

C 1 3 3  = m 3 t d 3 Z 3 S 2 3  +  ( d 3 X 3 +  ^ 3  +  a 3d 3 > C 2 3 ] (2 A 3 )

C213 = 0 (because  o f  PUMA geomet ry)  ( 2 . 14 )

^2 23 = II* 3 [ ( ' a 2X3 '  a 2X 3 ” a 2a 3 ^ 3  a 2X3^"3l (2-15)

^23 3 — ^ 31( ~ a 2X3 ■ a 2x 3 - a 2a 3) S 3 + a 2x 3C3) ( 2 . 16 )

G, = 0 (because  o f  th e  PUMA geomet ry)  ( 2 . 17 )

G2 = -m2g ( x 2 + a 2)C2 - ( 2 . 18 )

^  3 S  (  X 3 ^  2 3 +  ^  2 3 a  3 ^  2 3 a  2 ^  2 ^

G3 = -m2g ( x 3C23 + z 3S 23 + a 3C 23) ( 2 . 19 )
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where Sj = sin(0j), Sy = Sin(0j+0j), Cj = Cos(0j) and Cy = Cos(0j+0j). Using 

Newton’s second law of physics the following rules apply:

Dij = Dj j (2.20)

Di j k  = Dikj

Di jk = "®kj i f ° r i . k>j 

Dj j i = 0  for  i

Consequentially this gives the following relationships:

Da, = ^12’ ®13-^31’ ®3 2-^2 3’
C,,1 = r =c -2 2 2 3 3 3 0 , c121= Cl 1 2,
c =13 1 c c113’ 132 = ^123’ c = 2 2 1 c''2 12’
c = c . c = c c = c'■'231 2 13’ 232 2 2 3 ’ 3 2 1 3 12’
c =3 3 1 c c3 13’ 332 = c3 2 3 ’ c = 2 11 _c112’
c =3 11 -C c113’ '-'312 = -C 2 13’ c 3 2 2 -c'-'2 2 3 ’
c =3 13 c = c =3 13 2 12 0

The quantities xj, yj, zj are the Cartesian coordinates of the centre of mass of 

joint i referenced to the base of the robot. The quantity rq  is the the mass of 

joint i. The values of k 2jxx, k 2jyy and k 2̂  are the radii of gyration for joint i. 

The quantities dj and a, are the link twists and the link lengths of the primary 

joints, see Figure 7.1. These geometric and inertial parameters which relate to the 

three primary joints of the PUMA 560 are listed in Table 2.1 and Table 2.2.
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T a b l e  2 . 1  PUMA 560 I n e r t i a l  P a r a me t e r s

1 ink ceni re o f  mass mass r a d i u s  o f  e v r a t i o n  (cm-)

i Xj(cm) yi (cm) Zj(cm) g . s 2/cm k 2ixx k 2iyy lc 2 •K 1ZZ

1 0 30.88 3 . 89  13.21 1816.3 151.93 1811.13

2 -32.89 0 . 0 20. 38  22 . 8 595. 7  1355.64 1513.63

3 - 2 . 04 -1 .37 0 . 3  5 . 117 151.48 155.23 20.68

Table 2.2 PUMA 560 Geometric Parameters

a 2(cm) a 2(cm) d 2(cm) d 3(cm)

43. 18  1.91 15.05 43.31

This representation differs from the Euler-Lagrange representation given in [14], 

due to the multiplication of the actuator inertia terms by the gearing ratios of the 

joints. The justification for this inclusion lies in the fact that the motor inertia is 

reflected through the joint’s gear train. This causes the inertia at joint i to 

become Nj times greater.

If one examines the model in equation (2.1) it can be seen that the inputs 

to this model are the joint torques while the outputs are the positions, velocities 

and accelerations of joints. The inputs to the PUMA 560 are the actuator inputs 

needed to drive its DC motors. As a result, the model is not complete without the 

inclusion of the motor dynamics in the overall equations of motion of the robot. 

The dc motors used to drive the first three joints of the PUMA 560 are 100 Watt 

permanent magnet direct current servomotors. Figure 2.2 shows a simple equivelent 

circuit model for the permanent magnet dc motor and lists the associated model 

parameters.



The model equation can be derived using K irchoffs voltage law as follows

Vi = Ri i i + Ljdii + kjed£Qi (2.22)
d t d t

The torque produced by a dc motor is propotional to the armature current in 

Figure 6.2 for the dc motor as follows:

F i = k t j i j  ( 2 . 23 )

Rearranging this term gives an equation for the armature current as:

= h .  ( 2 . 24)
k t j

The joint position can related to the motor position by the following equation:

% = NiCOi (2.25)

Back substituting equations (2.24) and (2.25) into equation (2.2) gives the following 

equation for joint voltage:

Vi = h l l  + ] + k i N i d i i  ( 2 .26)
k j t  d t l  k j t  J dt

This is the new model equations for the PUMA 560. From this it can be seen 

that the new equation contains a term which is the derivative of the joint torque 

F. Since the torque term F in equation (2.1) is a second order equation (i.e. 

contains joint acceleration terms), by including the derivative of the joint torque the 

model becomes a third order model. The model can be rearranged as follows:

Vi = RiFj + L j p i + k i eNi (i i ( 2 .27)
k i t
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%
The quantity Fj is given by:

( 2 . 2 8 )

+ f  f  (^ijk^j^k + ^ijk^j^k + -̂ijk ĵ^k) + ®i 
j=lk=l

The full model can then be written by substituting equations (2.1) and (2.28) into 
equation (2.27). This substitution gives::

This is the third order model equation for joint i of the PUMA 560 robot

2.2 Computer Simulation o f the PUMA 560 Robot Arm

The design and computer implementation of the manipulator simulator are 

described in this section. The simulator is designed, from a control engineering 

point-of-view, to model the arm’s dynamics. The inputs to the simulator are the

joint constraints, the initial joint positions, velocities, accelerations and the voltages 

to drive the motors as a function of time. The outputs of the simulator are the

positions, velocities and accelerations of the joints as a function of time.

A state-space representation similar to those used in [13] and [14] was used 

to program the model. This meant that the model given in equation (2.29) had to 

be rearranged as to isolate the highest order teims (3rd order terms). To achieve

this isolation o f terms equation (2.27) the derivative o f the joint torque term in

(2 .2 9 )

3 • • * • 3 33
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this equation was rearranged as follows:

Fi = / i +  Aj (2 .30)

3 .....................
where,  Aj = I  Dj i <1 i + I a j ̂  j ( 2 .31)

j = l

and f[ contains the remaining terms of Fj in equation (2.27). Back substituting 

equation (2.30) into the model of equation (2.27) gives a model of die form:

Vj = Ri F i + U ( f i +  A n  + k ^ N j Q j  (2 .32)
k ■ tKi

Rearranging this equation to isolate the Aj term:

k i e r Vj - (RjFj  + L j / j )  . k j eN i q i 1 = Aj (2 .33)
Li I k t t j

So far the model that has been developed has been for one joint only. To

represent the three joints in the model it is convenient to use some form of vector

and matrix notation. By changing to vector and matix notations the model can be

written as:

L - ’KgtV - (Ke ) ' 1 (RF+ L . / )  - Kg,N.(1]= A (2 .34)

where the diagonal matrices appearing in equation (2.34) are as follows:

J o i n t  g e a r i n g  r a t i o  m a t r ix  N = D i a g o na l [ N , , N 2,N3] ,

Moter back emf m a t r ix  Ke= D i a g o n a l [ k , e , k 2e , k 3e ] ,

Torque c o n s t an t  ma t r i x  Kt = D i a g o n a l [ k , 1 , k 2t ,k g 1] ,

Armature r e s i s t a n c e  ma t r i x  R = D i a g o n a l [ R , , R 2,R3] ,

Armature i nduc tance  ma t r ix  L = Diagona l [ L ,  , L2, L3] ,

and the vectors appearing in equation (2.34) are as follows
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J o i n t  torque v e c t o r  F  = [ F ^ F j . F g ] ,

j o i n t  v e l o c i t y  v e c t o r  q = [Q, ,<i2 , 4 3] , .

The vector A can be rewritten as follows:

A = (D + NI )q‘ (2 .35)

where D is the matrix of self and coupling inertias of the robot joints (ie. element 

D[i,j] of the D matrix contains the inertial teim Dy in equation (2.1), and the 

matrix I is a diagonal matrix with the reflected rotor inertias of each joint making 

up its diagonal elements. The vector q contains the third derivatives of the joint 

position necessary for the state-space representation. By back substituting equation 

(2.35) into (2.33) and multiplying both sides of the new equation by the matrix 

inverse quantity (D + N I) '1, the third derivatives can be isolated.

The state-space model can then be written [13] using the notation:

Input v o l t a g e  v e c t o r  V = [ V , , V 2 , V3] ,

X, = q, x 2 = q, x s=q3 (2.36)

x„ = q,

x,  = q, x.  = ^ X 9=q3

to represent the model the positions, velocities and accelarations of all the joints.

These states can then be written in the format:

Xt = X a ( 2 .37)

X 2 = Xs

Xa = Xe

X 4 = X 7

Xs  = Xa

Xs  = X 9
and
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rx 7i
i i
IXsI = [ D + N I ] ' 1 .A 
I I 
1X 9 j

To obtain the joint positions, velocities and accelerations it was necessary to 

apply some from of numerical integration technique to solve these differential 

equations. Since simulator accuracy, rather than speed, was the goal it was decided 

to use a classical fourth-order Runge-Kutta algorithm to integrate the states in 

equation (2.37). Bejczy [13] points out that this method is probably the most 

widely used in engineering applications and lists the reasons for its popularity as 

follows:

1) it is self starting,

2) the integration step size can be changed easily, and

3) it displays good stability characteristics

For the state space description in equation (2.37) the Runge-Kutta integration 

across the k^1 interval of state Xj is defined as:

X i ( t k+1) = X i ( t k ) + [ K, i  + 2Kzi + 2Kzi + K4i ] ( 2 . 38 )

where hk is the integration interval for the kth sampled interval. The Runge-Kutta 

coefficients are defined as follows:

K ,j = hk/ ( X ( t k ) ( 2 . 39 )

K2i = hk/ ( X ( t k ) + K , j / 2 )

K3i = hk/ ( X ( t k ) + K2j / 2 )

K4i = hk/ ( X ( t k ) + K 3 j / 2 )
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where f{.) denotes the quantities on the right hand side of the state equations in 

equation (2.37).

The state space model of equation (2.38) was implemented using the 

Runge-Kutta algorithm just described to perform the numerical integtation. The flow 

chart in Figure 2.3 shows fee operating sequence of the simulator program used.

From this flow chart it can be seen that the simulator inputs are the joint

voltages, while the outputs are the joint positions velocities and accelerations. It

can also be seen that the joint positions, velocities and acceleration are checked at

every sampling interval to see if they are within the operating limits of the PUMA 

560 robot. In order to increase the speed of the simulator program the constant 

coefficients in the inertial, gravitational, centripetal and coriolis terms were 

calculated only once at the beginning of the simulation program.

To choose the integration interval for the Runge Kutta integration, the 

simulator was tested over a wide range of integration intervals. The tests involved 

calculating the voltage necessary for holding the joints of the model stationary. 

Ideally, when these voltages are applied to the simulator the joints would show no 

movement So, by measuring any movement which might occur in the simulator 

joints it is possible to get a measure of how accurate the robot simulator was at a 

particular value of integration interval. Integration intervals of 1 to 5 millisecond 

were found to produce joint position movements of approximately 10-12 radians 

after a period of 20 seconds. Integration intervals of 10 milliseconds and higher 

were found to produce position errors of approximately 10"3 for the same time 

period. Integration intervals less than 1 milliseconds showed no improvement 

simulator accuracy over those measured for the range 1 to 5 milliseconds. For 

these reasons an integration interval range of 1 to 5 millivolts was chosea
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2.3 Evaluation of the Model’s Performance

The model validation undertaken for the PUMA 560 model can be divided 

into two main parts:

1) tuning of the model terms, and

2) an evaluation of the tuned model’s dynamic performance.

The following sections detail these parts of the validation.

2.3.1 Tuning of the Robot Model

To validate any model it is necessay to validate the terms which make up the 

model equations. Unfortunately, it is not always possible to validate all terms in 

the model equations. This is due to the fact that to validate a model term it must 

be possible to isolate that term in both the robot model and in the physical system 

itself and compare the two terms. In the case of the PUMA 560 it is possible to 

isolate very few of the force terms which make up the robot’s dynamic equations. 

This is due to the complex nature of the dynamic and the absence of force

sensors on the PUMA 560. The best one can hope for is to be able to validate

the physically measurable terms of the model. The remaining model terms must 

then be tuned by using any relevant information about the robot’s geometric and 

inertial parameters which can be obtained by expermimental means. Anderson [14] 

outlines experimental procedues for evaluation of the PUMA 560’s masses, radii of 

gyration and reflecter motor inertia The results obtained by [14] are shown in 

Table 2.3. From these it can be seen that all the experimental parameters obtained

by Anderson take into account the presence of the robot’s hand by modelling it as

an extension of the third link. This is necessary if the model of the three primary 

joints is going to reflect the physical makeup of the robot. These parameters were 

used in the robot simulator instead of those identified by [13] in Table 2.1.



Table 2.3 Model Link Parameters

I ink mi(kg) k 2i x x ( m2) k 2i y y (m2) k 2izz(m2)

1 12.69 0.1802 0 . 1800 0.0141
2 22.37 0.0526 0.0691 0.0031
3 5.01 0.051 0.0691 0. 0150

In equation (2.29), gravity can be seen as one of the terms that effect the 

joint positions, velocities and accelerations. The tuning of the gravity forces present 

in the PUMA 560 can be achieved without the use of external sensors. From the 

the model equation (2.29), it can be seen that if the robot joints are all stationary 

the model for joint i reduces to:

This reduction in model terms is due to the fact that all the remaining model 

terms which are functions of velocity and acceleration are zero when the joints are 

stationary. This model can be reduced even further by removing the velocity and 

acceleration terms of of the joint torque term, Fj. The model in equation (2.40) 

then becomes:

where Gj is the gravity torque of joint i. This means that the the gravity effects 

on each joint can be calculated by reading the joint voltages at a stationary 

position. Gravity does not effect joint 1 of the PUMA 560 because its movement 

is an a horizonal plane. Therefore, to tune the gravity terms of the robot simulator, 

it was decided to record the input voltages of joint 2 and joint 3 of the PUMA 

560 with all the PUMA 560 joints stationary. These voltages were recorded at 5° 

(0.087 rad) intervals and compared at each interval to the values derived by using 

the model simulator. At each interval the gravity effect on the robot was obtained 

using equation (2.41) and the phase difference between the model gravity terms

v i=  R i F i / k t j ( 2 . 4 0 )

Vi= Rj Gj / k t  j ( 2 . 4 1 )
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and the robot’s gravity was recorded. The results seemed to show that the

amplitude of the robot’s gravity terms was on average about 15% lower than that

of the model for joints 2 and 3 and that there was an average phase difference of 

+/-5.5° in the case of joint 2 and +/-3.5° in joint 3. Because of the phase

difference variations, it was unfeasible to tune the phase difference. The amplitude

difference was tuned by subtracting an offset from the gravity equation used in the 

model. This offset was chosen to be 15% of the calculated gravity terms. Figure

2.4 and Figure 2.5 show an example of the model’s gravity parameters after

adjustment and the measured joint gravity terms for joint 2 and joint 3 obtained

from the robot From these it can be seen that the amplitude in both cases shows 

a small error while the phase difference seems to to vary with joint position

2.3.2 Evaluation of the Model’s Performance

To evaluate the performance the robot model it was decided to carry out a

number of model tests using the simulator. These tests were carefully chosen to

see if certain characteristics known to be present in the PUMA 560 actually

appeared in the simulated model. The following is a description of the

performance results.

Testl: this involved the examination of the effects of coupling on joint 2 and joint 

3 of the model simulator due to movement of joint 1. All three joint were given 

an initial position of 0 radians in their respective joint ranges. A step voltage of 

10 volts was then applied to the simulator input of joint 1, while joint 2 and 3 

were given the voltage inputs they required to stay at angles of 0 radians.

The position and velocity curves for this test are shown in Figure 2.6 and Figure 

2.7. From these it can be seen that the step response of joint 1 is characteristic of 

step response of a motor with a constant inertial load. This type of response is to 

be expected since with joint 2 and 3 stationary the inertial load on actual robot’s 

joint would remain constant The movement of joint 2 and 3 in this test was
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found to be of the order of magnitude of 0.05° proving that the model coupling 

effects on joint 2 and joint 3 due to the movement of joint 1 is quite small.

Test 2: the function of this test was to see if  the model reflects the coupling 

effect joint 2 has on joint 1 in the actual robot For this test, all the joints of the 

simulator were positioned at their 0 radian joint angles. The input voltage used to 

drive joint 1 was 10 volts, while joint 2 was given a step input of -5 volts and 

joint three was given a voltage to keep it stationary. The position and velocity 

results from this test, see Figures 2.8 and 2.9, seem to show the coupling effect of

joint 2 on joint 1 is larger than when joint 2 is not moving. This can be seen by

comparing the velocity profile obtained for joint 1 in this test with the velocity 

profile of joint 1 obtained when joint 2 was stationary, see Figure 2.7. This can

be explained in terms of the actual robot by considering the changes that occur in

the coupling centripetal and inertia torques of joint 1 due to changes in the 

velocity of joint 2.

Test 3: the purpose of this test is to examine the coupling effects between joint 1 

and joint 3 of the model simulator. For this test joint 1 and joint 3 were given 

inputs of 10 and 5 volts respectively while joint 2 was given a voltage to hold it 

in a constant position. The resultant positions and velocities of the three simulator 

joints are shown in Figures 2.10 and 2.11. The results show that joint 1 reached 

its joint limit first and its velocity was zeroed. This was followed by joint 3 

reaching its limit and the its velocity was reset. The effect of joint 3 suddenly 

stopping caused joint 2 to move to its negative position lim it This is consistent 

with the jarring o f joints which occurs in the actual robot when joint 2 reaches its 

limit stop at a high velocity. This seem to reflea the strong coupling between 

joints 3 and 2 which is present in the robot

25



Test 4: This test consists of moving all three joints of the simulator simultaneously 

to examine the coupling effects between all three joints. The input voltages for the 

joint 1, 2 and three were 10, -5 and 5 volts respectively. The simulator position 

and velocity results for this test are shown in Figure 2.12 and Figure 2.13. From 

these results it can be seen joint 1 reaches its positive position limit, followed by 

joint 3. Finally, joint 2 readies its position limit after approximately 13 seconds. It 

is interesting to note that in Test 2, when joint 3 was held stationary, joint 2 

reached its limit much faster. This decrease in joint speed is again consistent with 

the increased coupling effects that are present between joints 2 and 3 of the 

actual robot with both joints moving.

Test 5: the function of this test is to examine the model performance to see the

effects of coupling due to joint 2. For this test joints 1 and 2 of the simulator

was given an input voltage to hold them at a constant angle, while joint 2 was 

given a -5 volt input. The resultant simulator position and velocity curve for the 

three joints are shown in figure 2.14 and Figure 2.15 respectively. From these it 

can be seen that the coupling effect on joint 1 due to joint 2 ’s movement is 

smaller than the coupling effect on joint 3 due to joint 2. These result seem to 

reflect the coupling effects known to be present because of joint 2 ’s movement in 

the actual robot.

Test 6: the purpose of this test is to examine the coupling effects of joint 3 on 

joint 1 of the model simulator. For this test joints 2 and 3 are given voltage 

inputs of -5 volts and +5 volts respectively. The simulator position and velocity

results for this test are shown in Figure 2.16 and Figure 2.17. From these it can

be seen that when joints 2 and 3 are moving the effect on the position of joint 1 

is minimal. However, when both joints reach their position limits simultaneously, 

joint 1 can be seen to move from its stationary position. Such a small movement 

is consistent with a limit crash experienced for the actual robot with both joints 

reaching their limits instantaneously.
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Test 7: this purpose of this test is to examine the coupling effect joint 3 of the 

model has on the movement of joints 1 and 2. The simulator input voltage used 

for joint 3 was 5 volts, while the input to the other two joints was the voltage 

required to keep these joints stationary. The positions and velocities for these tests 

can be seen in Figures 2.18 and 2.19. From these it can be seen that when joint 

3 is driven to a limit stop, it has the effect of causing joint 2 to move off to its 

negative limit, while joint 1 moved to a position of constant displacement. This 

type of response when compared with the joint response of Test 2 can be seen to

show that the coupling effects of joint 3 on joint 2 are considerably less than the

the coupling effects of joint 2 on joint 3. This is consistent with the coupling

effects known to exist between joint 2 and joint 3 on the actual robot.

The results, overall, seemed to show that the movement and coupling 

exhibited by the model can be explained in terms of the actual robot The 

coupling experienced in the model was found to vary between the different joints. 

Joint 1 was found to have the smallest effects on the other 2 joints. This can be 

explained by the fact that joint 1 of the PUMA 560 moves in a horizontal plane 

while the other 2 joints movement is in a vertical plane. The strong coupling 

experienced by joint 2 due to joint 3 can be explained by the fact that in the 

actual robot the movement of joint 3 causes considerable increases in the inertial 

and gravitational effect changes in joint 2. The effect of joint 2 on joint 3

movement can be explained in tenns o f the real robot by the fact that the main 

coupling effect on joint 3 of the robot is the effect caused by the change in its 

gravity torque terms.

27



2.4 Summary

This chapter has been concerned with the development, simulation, tuning and 

performance evaluation of a robot model for the three primary joints of the PUMA 

560. The model developed was a third order one based on the second order

dynamic equations of motion for the PUMA 560. The chapter then detailed how

the model was simulated based on a state-space representatioa The simulation

itself involves the use of a Runge-Kutta integration method to solve the differential 

equations present Once the model was simulated, the model parameters were tuned 

to include the effect of the mass and inertia caused by the robot’s hand. Finally, 

the robot model was put through a number of tests to see if it reflected the 

coupling effects known to be present in the actual robot. In all the tests carried

out, the simulated model was found to exhibit performance characteristics which

could be explained in terms of the real robot’s performance.
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FIGURE 2.1 GEOMETRIC PARAMETERS OF THE PUMA 560 

FIGURE 2.2 A TYPICAL DC SERVO MOTOR

W| = motor position 

Rj = armature resistance 

Lj = armature inductance 

if = armature current 

lc? = voltage constant 

k* » torque constant 

Vj = armature voltage
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FIGURE 2.3 FLOW CHART OF THE ROBOT SIMULATOR
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FIGURE 2.4 GRAVITY TUNING FOR JOINT 2 (VOLTS) V ANGLE (RAD) 

FIGURE 2.5 GRAVITY TUNING FOR JOINT 3 (VOLTS) V ANGLE (RAD)
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FIGURE 2.6 TEST 1 JOINT VELOCITIES (RAD/SEC) v TIME (SEC)

FIGURE 2.7 TEST 1 JOINT POSITIONS (RAD) v TIME (SEC)



FIGURE 2.8 TEST 2 JOINT VELOCITIES (RAD/SEC) v TIME (SEC) 

FIGURE 2.9 TEST 2 JOINT POSITIONS (RAD) v TIME (SEC)
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FIGURE 2.10 TEST 3 JOINT VELOCITIES (RAD/SEC) v TIME (SEC) 

FIGURE 2.11 TEST 3 JOINT POSITIONS (RAD) v TIME (SEC)
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FIGURE 2.12 TEST 4 JOINT VELOCITIES (RAD/SEC) v TIME (SEC)

FIGURE 2.13 TEST 4 JOINT POSITIONS (RAD) v TIME (SEC)
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FIGURE 2.14 TEST 5 JOINT VELOCITIES (RAD/SEC) v TIME (SEC) 

FIGURE 2.15 TEST 5 JOINT POSITIONS (RAD) v TIME (SEC)
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FIGURE 2.16 TEST 6 JOINT VELOCITES (RAD/SEC) v TIME (SEC) 

FIGURE 2.17 TEST 6 JOINT POSITIONS (RAD) v TIME (SEC)
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FIGURE 2.18 TEST 7 JOINT VELOCITIES (RAD/SEC) v TIME (SEC) 

FIGURE 2.19 TEST 7 JOINT VELOCITIES (RAD) v TIME (SEC)



CHAPTER 3

The New Hardware Controller for the PUMA 560

Commercial robot systems are generally restricted in terms of modifications to 

hardware and software for real time control. This may be acceptable in workspaces 

where the repetition of a limited sequence of motions is all that is required. In 

both flexible manufacturing and in robotic research environments, however, the 

primary considerations are ease of modification, adaptability and programmability. 

These characteristics are essential to manufacture new products for the evaluation of 

a new sensor system or robot control algorithm design.

Most commercial robots, like the PUMA 560, are sold with a dedicated 

programming language which runs on a dedicated hardware configuration. As a 

result, the characteristics mentioned above are not present in the PUMA 560. This 

necessitates the design of a new and more flexible controller for this robot. 

Before designing a new controller, it is essential to point out the shortcomings in 

the existing controller, to ensure these shortcomings do not re-appear in the new 

controller. These shortcomings can occur in three main areas:- the controller 

software; the controller hardware and in the control algorithm used to control the 

robot. Once these deficiencies have been recognised it becomes possible to draw up 

an ideal hardware specification for the new controller and to look at the hardware 

and software options available to fulfil the ideal specificatioa

3.1 The Existing PUMA 560 Software

In the case of the PUMA 560 industrial robot, a limited form of task-space 

control is provided by VAL2 (Victor’s Assembly Language) [15]. VAL combines 

the features of an operating system and a programming language with the aim of 

allowing the user to teach the robot new paths and to control the robot in a
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variety of tasks. As an operating system, VAL provides the necessary input/output 

to control the robot, retrieve data from the floppy disk and to interact with the 

user via the terminal or a teaching pendant. Despite the relative ease of use and 

its capabilities, the VAL based system is seriously lacking [16] in terms of 

flexibility, expandability and is devoid of the ability to implement powerful 

real-time task space control. This can be contributed to the following reasons:

1) VAL was written specifically for a PUMA type manipulator using only if-then

commands like those found in the BASIC language.

2) The operating system has only an interpreter and has no compiler,

3) The VAL software is currently stored in EPROM, which does not enable the

user to examine and modify the software,

4) Inverse kinematics and path planning software is not user accessible, hence new

path planning strategies can not be planned off-line.

To allow for large program creation, Unimation [17] suggest two possible 

alternatives:

1) connect a computer to the terminal port to simulate entry by a human user

and

2) connect a computer to the disk port so that an existing program may be

downloaded.

The first solution may appear to be more convenient but it still retains the system 

deficiencies listed above and it is relatively slow due to programming overheads. In 

order to efficiently gain more controller flexibility and the ability to program in a 

high level language it is necessary to break away from VAL as an operating

system and as a means o f programming.
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3.2. Hie Existing Unimation PUMA S60 Control Hardware

The Unimation control hardware [18], see Figure 3.1, consists of an 

LSI-11/02, and six Rockwell 6503 microprocessors, each with a digital-to-analog 

converter (DAC), a current amplifier and some joint position feedback sensors. 

From Figure 3.1 it can be seen that the hardware is hierarchically arranged. The 

upper level of the system hierarchy consists of the LSI-11/02 microcomputer which 

serves as a supervisory computer, while the lower level of the hierarchy consists 

of the 6503 Rockwell pPs and the remaining hardware. The LSI-11/02, or upper 

level, performs two functions:

1) on-line user interaction and subtask scheduling of the user’s VAL commands,

2) subtask coordination of the six 6503 microprocessors in order to carry out the

command.

On-line interaction with the user includes parsing, interpreting and decoding VAL 

commands, as well as the monitoring of possible error messages. When a VAL 

command has been interpreted, various routines are called to perform scheduling 

and coordination functions such as :

1) inverse kinematic transforms,

2) joint-interpolated trajectory planning which involves sending new trajectory

set-points to the 6503 jjP s every 28 milliseconds,

3) acknowledging any messages from the 6503s ,and finally

4) providing lookahead instructions for performing continuous path interpolation if it

is required.
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At the lower level, the hardware hierarchy [18] consists of six digital servo 

boards, an analog servo board and six power amplifiers. The six 6503 |iPs, reside 

on the digital servo boards with their EPROM and digital-to-analog converters

(DACs). They communicate with the LSI-11/02 computer through a specially 

designed interface board that routes set-point information to each joint controller. 

The main functions of the 6503(iPs are as follows:

1) to receive and acknowledge set-points every 28ms and provide path interpolation

between the current joint and the desired value,

2) to read the encoder position every 28 ms.

3) to update the control error signal between the actual position and the desired

position, and,

4) to convert the error signal to an analog control signal necessary to drive the

joint motors.

This PUMA 560 hardware suffers from some quite severe limitations. These 

have been described by Goldenberg [17] :

1) both levels of the controller hierarchy contain only fixed point processors,

2) the existing memory in both hardware levels is inadequate to support large

programs,

3) the instruction speed of the Rockwell 6503 |iPs and the LSI 11/02 are

inadequate to to implement computationally complex control algorithms in 

real time, and finally,

4) it is impossible to add additional sensors to the robot, such as vision and

tactile sensors, without a complete redesign of the lower level hardware.

From these limitations, it can be seen that if a more flexible hardware control 

structure, capable of implementing complex real time control is required, then the 

existing Unimation controller hardware must be replaced with a more flexible alternative.
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3.3 The Existing PUMA 560 Control algorithm

The primary function of the Rockwell 6503 |JP is to implement the existing 

control algorithm. In doing this the processor computes the error signal between the 

actual position and the ideal position set-point supplied by the upper level. This 

error is then sent to the analog servo board which has a lead-lag compensator 

designed for each joint The feedback gain of the compensator is tuned to run at a 

"VAL speed" [17] of 100. There are two servo loops for the control of each 

joint : the outer loop provides position error information, see Figure 3.2, and is 

updated by the 6503 jxP every 1ms and the inner loop consists of analog devices 

and a compensator with derivative feedback to [Hit damping on the velocity 

variable. Both loop gains are constant and are tuned [17] for performance as a " 

critically damped joint system " at a normal VAL speed of 100 .

One of the main disadvantages of such a method is that the feedback gains 

are constant and prespecified. It does not have the capacity to update the feedback 

gains under varying payloads or operating conditions. An industrial robot such as 

the PUMA 560 is a highly non-linear system. By observing the model developed 

in Chapter 2, one can see that the these nonlinearities are due to inertial, gravity 

and other coupling effect. As a result the positions , velocities and accelerations 

of the PUMA’s joints are dependent on the magnitude and variations in these 

effects. This control algorithm, with its fixed feedback gains, fails to take these 

variations into account In fact, the PUMA moves with noticable vibrations at 

reduced speed [19] because of the controller gains being too high. This makes the 

robot suitable only for performing simple pick and place tasks that do not require 

a great deal of precision. To improve the performance of the robot it is, therefore, 

necessary to replace this control algorithm with one that is capable of tracking 

some or all of nonlinearities present.
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3.4 The New Control Structure Specification

The PUMA 560 controller, because of its two distinct hardware levels, offers 

what is known as decentralized control structure. Such structures have been widely 

accepted [20] by the robotics industry due to ease of implementation and tolerence 

of failure. The main advantage, however, of such a structure is that it allows for

the easier implementation of the the control layers discussed in Chapter 1. For

this reason, it was decided that the new hardware structure should be primarily a 

decentralized control structure with capabilities of expansion to include some 

degree of parallelism. The new control structure should also offer the following:

1) floating point processors to perform mathematical calculations with high 

precision and at an adequate speed for real-time control,

2) interfacing hardware which is compatable with the existing Unimation hardware,

3) software that can be written in a high-level language,

4) a memory capacity suitable for large program storage,

5) an ability to implement multivariable control,

6) the ability to provide real-time path planning, and

7) the ability to connect sensory devices through serial, parallel or bus interfaces.

Finally, on top of all these requirements the new control structure must be 

economically viable. Otherwise it is not a realistic alternative to the existing 

control structure as far as the robot manufacturer is concerned.

3.5 The New Control Hardware

Numerous implementations of the control structure’s upper level , including 

[21], [22] and [23], have replaced the existing upper level computer with a more 

powerful central computer. In the case of [21], the LSI-11/02 was replaced by the 

more powerful LSI-11/23 in conjunction with a Microvax. This combination



more powerful LSI-11/23 in conjunction with a Microvax. This combination 

provides the user with full floating-point capabilities, high-level language capabilities 

and an abundance of memory space. The implementation of such a system 

effectively doubles the cost of the original system [24], making it economically 

impractical. More recent implementation such as the TUNIS [22] and SEERA [23] 

have replaced the existing upper level with powerful personal computers (PCs). 

Both of these systems are capable of offering the capabilities just mentioned above 

but at a fraction of the cost. For this reason it was decided to use a PC to 

implement the new upper level.

The personal computer chosen was an Intel 80386-based IBM compatable PC 

[25]. The features which governed the choice of this PC included the presence

1) a 32-bit architecture (data and addressing),

2) a clock speed of 20 MHz,

3) the ability to add a floating-point coprocessor (80387),

5) 1 megabyte of RAM,

6) an 80 megabyte hard disk and

7) seven parallel expansion slots.

From this list of features it can seen that the new upper level offers a 

development and storage environment suitable for large program generation. It also 

offers a fast execution speed for such programs, even if they contain a significant 

amount of floating-point calculations. The expansion slots offer the ability to add 

extra memory and the ability to interface the new lower level.

To replace the lower level of the controller architecture it was necessary, 

again, to choose a processor with high speed floating-point capabilities. One option 

considered was the option chosen by Goldenberg [17]. This implementation uses a
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single PC to implement both hardware levels. This means that the tasks of the 

upper and lower levels have to be executed serially and not in parallel like the 

existing control hardware. Considering the high speed sampling required for robot 

control, this serial execution of tasks would limit the complexity of algorithms 

implemented on this system.

One solution which seems to be gaining in popularity in recent years is to 

use advanced signal processors (ASPs) to implement this level.. The reasons for 

thier increased popularity include [26] the reduction in operation and development

time which they offer. Also, recent advances in VLSI technologies have meant

cheaper ASP chips. For these reasons, it was decided to use an ASP configuration 

to implement the lower level of the controller. The ASP chosen for this level was 

the NEC HPD77230 [27]. The (JPD77230 is capable of processing digital signals 

at high speeds and a good degree of accuracy. It can execute arithmethic

operations with 32-bit, floating point data (8 bits for exponent and 24 bits of

mantissa) or 24-bit, fixed-point data at 150 nS/instruction - including multiplication 

Its internal circuitry[14], see Figure 3.3, consists of a multiplier (32 x 32 bits), an 

ALU (55 bits), an instruction ROM (IK  by 32 bits) and one pair of data RAM 

pointers (512 words by 32 bit each). The processor itself can be used in either of 

two modes: master or slave.

For this application three PC compatible boards, operating in master mode, 

were purchased from Loughboro Sound Images Ltd. (LSI) [29]. By operating in 

master mode the processor’s instruction area occupies 8K words by 32 bits of 

memory. In addition, it allows for 3 stage pipelining and provides a dedicated data 

bus for the internal RAM, the multiplier and the ALU. Such an arrangement 

makes the processor suitable [28] to process algorithms in which a few operations 

(such as addition of terms) occur repeatedly. These are the type of operations that 

occur in the more complex control algorithms such as the computed torque method 

[30]. In [28] it was found that a single (¿PD77230 was capable of achieving

46



throughput rates of 1,350 setpoints per second and by utilizing the pipelining nature 

fully it was found [28] that this algorithm could achieve a throughput of 2,220 

setpoints per second. These figures produce controller sampling rates of 0.740 mS 

and 0.450 mS respectively. These sampling rates are much faster than the existing 

contoller which implements a much simpler PD based control algorithm. These 

timing statistics, coupled with the fact that the computed torque method is one of 

the most computationally complex robot control algorithms means that a 

jiPD77230-based lower level is well capable of implementing control algorithms 

for in real time robotic control.

3.6 Summary

This chapter has demonstrated why and how the existing Unimation control 

hardware has been replaced with a new control structure. This demonstration took 

place in the following sequence:

1) the problems associated with the existing control structure were highlighted,

2) a design specification for a new control structure was discussed and finally,

3) the implementation and characteristics of the new control structure was

discussed

The new control structure for the PUMA 560 consists of an Intel 

80386-based host computer, three NEC |iPD77230 floating-point processor cards. 

The control structure, like that of the existing PUMA 560 hardware, will be 

arranged in a hierarchical manner. At the top of the system will be the 80386 

based computer which will serve as the supervisory computer and the lower level 

will consist of NEC (J.PD77230 processors.
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CHAPTER 4

Interfacing the New Control Hardware to the PUMA 560

The control hardware designed and implemented in this project, see Figure

4.1, consists of three basic elements: the personal computer, the processor boards 

and some special purpose interface hardware. The function of the personal computer 

is to implement the upper levels of the control hierarchy presented in Chapter 1, 

while the processor boards present implement the lowest level of that hierarchy. 

The function of the interface hardware is to provide a link between the digital 

hardware of the new controller and the analog inputs and outputs necessary to 

control the PUMA 560 industrial robot.

This chapter begins by outlining the various elements involved in DC servo 

motor control of the PUMA 560’s joints. From this outline, the design specification 

for a new interface between the new control hardware and PUMA 560 is drawn 

up. Finally, the hardware configuration used to implement the new interface 

specification is explained.

4.1 The D.C. Servo Motor Control for the PUMA 560

The control of a PUMA 560 arm is achieved through the control of the joint 

d.c. motors. The robot inputs necessary to control the PUMA 560 [31] are the 

input voltages used to drive the motors and the voltage signals necessary to apply 

motor brakes. The robot outputs necessary for control are the outputs of the 

potentiometric and incremental encoders which are position feedback measurement 

devices.
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The incremental encoders located in the joints o f the PUMA 560 each 

produce three signals for measuring the joint position of the robot: an A channel, 

a B channel and an Index channel. The A and B channels, see Figure 4.2, each 

produce a squarewave output, with one channel leading the other by 90°. By 

counting the state changes ( 0=>1 or 1=*0) of both channels, the magnitude of a 

joint movement relative to some initial joint position can be determined. It is also

possible to know the direction of movement by observing which channel is leading

and which is lagging. For example, if  channel A leads channel B, in Figure 4.2, 

then the A channel state sequence will take the format 11001100 and the B 

channel sequence will be 10011001.

The Index channel, in conjunction with the position potentiometer, is used to 

find the initial position. The index channel produces a pulse every motor rotation. 

In the example given in Figure 4.3, it can be seen that the Index pulse is 

produced at regular intervals and that each of the intervals is some multiple of the 

number of degrees in one motor revolution. The potentiometer is used to determine 

which multiple. The position potentiometer used is coupled to the motor shaft, 

through a gear train, so that the angle read by the position potentiometer 

corresponds directly to the absolute joint angle. The potentiometer itself is prone 

to inaccuracy and this is why it cannot be used on its own to determine absolute 

position. The inaccuracy, however in the potentiometer reading is much less than 

±1/2 of a motor revolution. So if the potentiometer is read at an index pulse, the 

absolute position can be interpreted as been the nearest multiple of motor 

revolutions to the potentiometer value read.

The initialization of the joint angle measurement for the PUMA 560 can, 

therefore, be achieved by using the feedback sensors in the following manner

1) the joint motor is rotated until an index is found,

2) the motor is then halted.
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3) the potentiometer voltage is read, converted to degrees and stored, and

4) the decoded relative positions of the A and B channels are set to zero.

Any subsequent movement of the joint will cause an increase or decrease in the

decoded value of the A and B channels. This decrease or increase, when converted 

to degrees, can be added to the stored potentiometer value to produce an accurate 

joint position.

4.2 Design Requirements For The New Interface

Having outlined the steps necessary to determine the joint position, the next 

step is to describe in more detail the design which was required to implement

these steps. The design required falls into four main areas:

1) reading the incremental encoders,

2) reading the potentiometers,

3) driving the DC motors, and

4) applying the motor brakes.

These basic design requirements are discussed in the following subsections.

4.2.1 Reading the Incremental Encoders

The optical encoders are directly attached to the motor shaft and, because of

the gear coupling, rotate several times when the joint is driven through its full

motion. This gives a precise measurement of relative motion [32]. The A and B 

channels determine both the amount and direction of the rotation in discrete steps. 

The index channel produces a short pulse each motor revolution ( 360-degrees)

which can be used by the system, in conjunction with the position potentoimeter

data, to determine absolute position
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The way in which the output of the A and B channels detect the relative

motion of the joint can be seen in Figure 4.2. The direction of rotation (clockwise 

or anti-clockwise) can be determined by observing the state transitions of these two 

channels. These transitions can be interpreted to perform three operations; i)

increment joint position (A leads B); ii) decrement joint position (B leads A); and

iii) remain at same position (no state change).

Almost all the PUMA 560 joints [32], with the exception of joint 2 which 

has 800 state changes per revolution, produce 1000 state changes per motor

revolution. Since the motor rotates between 40 and 60 times (again joint

dependent) during a full joint rotation, 40,000 to 60,000 state transitions occur in

that joint rotation. Any counter circuit used to keep track of these transitions

should be able to hold the maximimum amount of transitions that are lightly to 

occur. For this reason 16-bit counters (maximum count 65526 = 21 e) are sufficient 

to keep track of the PUMA 560’s joint movements.

4.2.2 Reading title Position Potentiometers

The PUMA 560 position potentiometers are incorporated into the joint motors 

and are connected between +5 volts and ground. Rotating the potentiometer through 

360° produces a proportional voltage output of between 0 and +5 volts. The

potentiometers themselves have been geared to rotate less than 360° for a complete 

joint rotation. In some cases the full movement of a joint could be as little as 

200° and, as a result, the change in die potentiometer voltage would be about 2.78 

volts. Since on average, 60 index pulses were produces over fee entire joint sweep 

then fee potentiometer voltage must be measured to an absolute accuracy of l/60fe 

of 2.78 volts ( 0.046 volts per motor revolution).
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An analog to digital converter (ADC) is used to measure the potentiometer 

voltage. This must have an input range of 0 to +5 volts and a resolution 0.046 

volts. This corresponds to an accuracy of 0.92% of full scale. Since, a 7-bit ADC 

has an accuracy of 0.78% over the full scale, an ADC with 7 or more bits of 

resolution is suitable for this application. Since the potentiometer is not actually 

part of the dynamic control system associated with the arm, there is no constraint 

on the conversion speed. However, to provide more accuracy at a little extra cost 

a 12-bit ADC was used for the potentiometer measurement.

4.2.3 Driving the Robot Motors

The drive current and voltage needed to drive a DC motor is entirely motor 

dependent. It was therefore not necessary to design power amplifiers for the system 

since satisfactory ones already exists. Instead it was considered practical to use the 

existing ones and to concentrate on the hardware necessary to drive the amplifiers. 

In the case of the PUMA 560, the existing power amplifiers [33] can be

conveniently used because they were designed explicitly with this robot in mind.

Using these amplifiers simplifies external connection to the arm’s joint motors. In 

addition, the Unimation power amplifier unit contains a Miscellaneous Functions 

Unit [33] (MFU) which provides useful safeguards which can be monitored to 

prevent the arm from being damaged. These safeguards include the ability to

monitor the amplifiers’ input current and temperature to see if they are operating 

within the values specified for the amplifier manufacturer.

The PUMA 560 power amplifiers are controlled by analog voltages. These

voltages can be generated by digital to analog converters (DACs). Two basic 

specifications must be considered in the choice of DAC: voltage swing and 

resolution. The PUMA 560 power amplifiers require a voltage input swing of 10 

volts to -10 volts. Selection of resolution is more difficult Typical digital servo 

systems use 8 or 10-bit DACs: the Unimation uses 10-bit. It was decided to
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increase this to 12-bit for this project. This increase in resolution means that the 

new drive signal is 4 times more accurate than the original one.

2.2.4 Releasing the Robot’s Brake

The PUMA 560 brake is used to lock each joint in position when the motor 

power is turned off. This prevents the joints from collapsing when no power is 

present to hold them in positioa The brake is similar to a DC relay: when current 

flows through its coil, the brake is released otherwise it remains applied. 

Furthermore, it is impossible to individually apply or release the brakes of the 

PUMA 560. This is due to the fact that the brakes of each joint motor [33] are 

wired together. The MFU mentioned above contains the circuitry needed to apply 

or release the brake. This circuitry can be contolled by setting or resetting a 

digital input to the MFU known as BRAKE RELEASE ENABLE [33].

4.2.5 System Timing

The joint interface circuitry must not only accommodate the joint motor 

signals but it must also provide the upper and lower hardware levels of the new 

controller with additional functions to allow complete system integration. The single 

most important of these functions is system timing. Implementation of a digital 

controller requires some means of regulating a sampling interval. One way to

control the sampling interval is to use only the control software and time delay 

loops as a time base. This, however, is not very acceptable for numerous reasons. 

Firstly, the delay loop must be altered every time the controller software is

adjusted. Also, control software often executes at speeds dependent on the sampled 

data itself, making constant sampling impossible. An altenative to this method is to

interupt the CPU using a hardware timer. The hardware timer can take the form

of a programable up-counter. This counter should be free running from an N Hz 

clock giving a clock period of 1/N sec. The sample period can therefore be set in
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terms of an integral number of clock cycles, each clock cycle adding 1/N secs. 

The program that requires this sampling interval can then be written as an interupt 

service routine. Then if a timer interrupt occurs the program can commence 

execution.

4.3 Hardware Design of the New Interface Board

This section details how the design requirements above are used in the 

design of the new controller interface. From the above requirements, it can be seen 

that the interface circuitry is a collection of the following subsystems:

1) an encoder counter circuit,

2) an encoder reset circuit,

3) an analog input subsystem,

4) a sample rate generator and

5) the interface with the new lower level hardware

The block diagram in Figure 4.4 shows the basic subsystems which are 

involved in the new interface. From this, it can be seen that the new system for 

each joint consists of two main components; an analog input/output board and the 

New Interface Board (NIB). The subsystems 1, 2 and 5 above are the basic 

components of the NIB while the subsystems numbered 3 and 4 are present on 

the analog board. The following is an individual description of the operation of 

these two boards.

4.3.1 The Analog VO Board

The analog boards used, supplied by LSI [34], each support 4 analog input 

channels, two analog output channels and a sample rate timer. All of these 

channels have 12-bit resolution. The four analog input channels have a fast
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conversion time of 5 (is, while the two DACs have a settling time of 3 (is. One 

of the input channels present was used for reading the feedback potentiometer, 

while one of the output channels was used to drive the motor amplifier. The 

reason why there are more VO channels than is necessary is to make the 

controlller more flexible: other sensors such as vision or tactile sensors can be 

attached to any joint at a later stage if required.

The sample rate timer on this board consists of a 16-bit reloadable up-counter 

which is clocked by an 8 Mhz clock. This timer, upon completion of a sample 

period, has the ability to interrupt both the upper and lower levels of the contoller 

hardware. In the case of the PUMA 560, it must be possible to generate these 

intervals of between 125 nS and 30 milliseconds. These are well within the 

range of the sampling periods necessary for real-time control of the PUMA 560.

4.3.2 The New Interface Board (NIB)

The NIB is a an interface card designed specifically for this project The 

function of this card is to interface the encoder counter subsystem, the PUMA 

analog signals and other control signals with the |iPD77230 board. The following 

sections describe the subsystems which make up this board:

1) the encoder counter subsystem,

2) the encoder reset subsystem and

3) the processor board interface.

These subsystems are discussed in the following sections.
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4.3.2.1 The Encoder Counter Subsystem

A 16-bit up-down counter, made up of four 4-bit cascaded counters, was used 

to count the number of encoder state changes. The counters in question have four 

controls: a count up/down; an enable input; a clock input and a load input. The 

truth tables for these signals can be found in [35]. This counter uses a 1 MHz 

clock which is generated on the NIB by a 1 MHz crystal. This value of clock 

frequency was chosen becuase it is much greater than the maximum frequency of 

the encoder state changes. So all state changes will be sampled.

The enable and the up-down signals of the counter are derived from the 

channel A and B signals of the encoders. The counter is incremented or 

decremented when the encoder goes through a state change. These state changes 

are asynchronous and must be synchronized by the decode logic. The basic idea of 

the scheme is presented here and illustrated in Figure 4.5. From Figure 4.5 it can 

be seen that the encoder signals A and B are both fed through 2-stage shift 

registers clocked by the 1 MHz clock. The output of the first stage ( A’, B’) are 

synchronized versions of the A and B inputs since thay are clocked by the 1MHz

clock signal. Similarly, the outputs of the second stage ( A ” , B ") are

synchronized versions of A’ and B \  It is useful to think of the first stage outputs

( A ’, B ’) as the ’present’ states and the outputs of the second stage ( A ” , B ” ) as

the ’previous’ state. Together the four states, A ’, B ’, A ” and B ” make up 16 

(24) possible state combinations which can be decoded to determenine which 

direction the count must go: up or down. Table 4.1 shows all the possible 

combinations of these states and the decoded command signals for the counter. An 

EPROM was used to decode the counter inputs. This EPROM has as its address 

inputs the A, the B states and the counter reset line. The outputs are the decoded 

command signals for the counters generated from Table 4.1.
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TABLE 4.1 Command Signal Generation for the Encoder Counters

EPROM ADDRESS EPROM 0/P (COUNTER I/PS') OPERATION

ENT D/U LOAD

0 1 1 1 NOP.

1 0 1 1 DEC.

2 0 0 1 INC.

3 1 1 1 NOP.

4 0 0 1 INC.

5 1 1 1 NOP.

6 1 1 1 NOP.

7 0 1 1 DEC.

8 0 1 1 DEC.

9 1 1 1 NOP.

10 1 1 1 NOP.

11 0 0 1 INC.

12 1 1 1 NOP.

15 0 0 1 INC.

14 0 1 1 DEC.

15 1 1 1 NOP.

16 0 0 0 CLEAR.

4.3.2.2. The Encoder Reset System

The basic scheme for the establishing the PUMA’s initial position is to rotate 

each motor until the index is found and define this position as position zero. This 

can be done using software to sample the index signal at fixed intervals. This 

method can however prove to be quite slow if the sampling rates are not very 

high. An example of this lack of speed would be a sampling rate of 100 Hz. This
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would mean that the motor would have to rotate at a speed of less than 100 

degrees per second. When gearing ratios are taken into account, this would mean 

a joint speed of two degrees per second.

A hardware scheme was used to overcome this limitation. The circuit used is 

illustrated in Figure 4.6. Each new counter reset circuit has two flipflops and a 

NAND gate associated with i t  The circuit is asynchronously ’armed’ or enabled 

via an ARM RESET signal. Once armed, the next occurance of an index pulse 

generates a single reset pulse sent to the associated counter circuit. When fee reset 

pulse is issued fee circuit disarms itself so feat further occurences of the index 

pulse will not reset fee counters. The ARMED STATUS signal can be monitored 

by the system software to see if fee index has occured.

4.3.2.3. The Processor Board Interface

The |iPD77230 processor board has a range of 14 input/output ( I/O ) parallel 

expansion ports. Each of these ports uses 16 bit wide data. The main interfacing 

problem was that fee |iPD77230 board has to have access to either the encoder 

counter outputs or fee analog board. The design here involved the use of 74623 

[35] octal bus tranceiver chips to allow bidirectional data transfer between fee

interface boards and fee lower level o f the control hardware. The control lines for

determining fee data transfer direction over the new interface were derived by

decoding fee 14 I/O addresses as shown in Table 4.2.
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TABLE 4 .2  Address Decodingl /O for the New Inter face

I/O  PORT ADD. TRANCEIVER CONTROL SIGNALS

OPERATION A3 A2 Al AO GAB1 GAB2 GAB2 GBA2

NO OPERATION 0 0 X X 0 1 1 1

READ COUNTERS 0 1 X X 1 1 0 1

READ ANALOG 1 0 X X 0 1 1 1

WRITE ANALOG 

X = don't care

1 1 

s ta te

X X 0 1 0 0

In addition to the I/O ports the (XPD77230 board has a number of digital I/O 

lines which were used to complete the interface. These lines consist of two output 

lines and two input lines. One of the output lines, FLAGOUT, is used to generate 

the BRAKE RELEASE ENABLE SIGNAL, while the other, BIT OUT, is used to 

generate the ARM RESET signal of the encoder reset circuit. The input line, BIT 

IN, is used to monitor the ARM STATUS line to see if an index has occured. 

Finally, the TRIGGER IN input is used to check if an over-current or 

over-temperature error condition [3] has been found by the MFU.
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4.4 Summary

This chapter has shown how the new control hardware of chapter 4 was 

interfaced to the PUMA 560 industrial robot. The interfacing procedure took the 

following steps:

1) a brief description of PUMA 560 sensors was given,

2) the design requirements for interfacing the new control hardware with the 

PUMA 560 were then presented,

3) finally, the hardware design used to implement the new interface is described.

The new interface is similar to the existing Unimation interface in that it uses 

the Unimation power amplifiers and MFU. It also adds a degree of flexiblity to 

the new control hardware not found in the Unimation interface. Its flexibility lies 

in the increased number of I/O channels it provides and the increased accuracy of 

these channels. It also provides a flexible sample rate timer which is capable of 

producing sample rate times in a range suitable for real time control.
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FIGURE A5 THE ENCODER COUNTER CIRCUITRY
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CHAPTER 5

Software Considerations for the New Control Structure

The purpose of this chapter is to provide an insight into the computational 

aspects of the new PUMA 560 control structure. The new hardware configuration 

is a hierarchical, multi-processor system, and as a result it requires a considerable 

amount of inter-processor communication to perform its robot control function. 

Fortunately, since the two levels in the new PUMA 560 controller are 

"off-the-shelf1 items, use can be made of existing software tools to achieve the 

inter-processor communication desired.

The chapter begins by discussing the architectural considerations involved in 

the new control structure. Included in this is the choice of operating system and 

the choice of high level programming language. The role of computational elements 

in the new controller is then described. This involves examining the new control 

structure's real-time functionality under the headings of inter-processor 

communication, calculation speed and task coordination.

5.1 Architectural Considerations

The benefits of flexible automation through robotics can be achieved by using 

standard programmable elements [36] and by reserving task-specific activities to 

those tasks that require them. In the case of the new controller system, the 

standard programmable elements are the 80386-based personal computer and the 

|iPD77230 boards - the interface hardware is task-specific ( i.e., built specificially 

for the PUMA 560). This type of robot control hardware, with a personal 

computer as the upper hardware level, allows for easier implementation in both 

industrial and educational environments. This is due to the general familarity with 

the personal computer operating system and hardware. By using a commercially
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available operating system with the robot control hardware, one can speed up the 

development process and the learning curve of potential users, since features such 

asfile management, batch file generation and on-line debugging tools are

available.

Several standard computer operating systems have been developed in recent

years. Two of the most commonly used of these are MSDOS and UNIX. Both 

these operating systems provide the support and availability of numerous languages, 

compilers and assemblers, as well as providing utilities for file manipulation,

directory manipulation and networking. The operating system chosen for this 

controller was the MSDOS system. This is because MSDOS was cheaper and was 

found to support all the software tools required for the developent o f the new 

controller software.

The software tools used for the the new controller consist of a Microsoft C 

language compiler, an NEC |iPD77230 monitor [37] with linker, assembler and 

object converter facilities. The choice o f this C compiler was dictated by the fact 

that the (JPD77230 processors can use a Micosoft C compatible compiler for 

program development. The |xPd77230 C compiler is used to convert C language

programs into jtPD77230 assembly language programs. This assembly language can 

then be converted to a hexidecimal format using the object converter. In this 

format, the programs can be downloaded into the |oPD77230 memory space and 

executed. The down loading and execution can be achieved by using either the LSI 

monitor or C drivers specificially written for this purpose that came with the 

boards. The LSI monitor has additional features which include editing and 

debugging facilities.
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5.2 The Computational Elements of the New Controller

The computational elements of the new control structure involve a wide range 

of applications, including the role of the operating system and programming 

language just discussed. In addition to these roles, die processors of the new 

system are used to drive the joint servos and interface with external position 

sensors. The following sections are concerned with the functionality of the 

computational elements of the new controller under the headings of interface, 

communication, and calculation functionality.

From an interface point-of-view, the functionality of the new controller can be 

described as the control structures ability to efficiently interpret information from 

the robot’s feedback sensors and with its ability to generate drive signals for the 

robot amplifiers. The performance o f these operations is dependent on the 

addressing system listed in Table 4.2. From this table it can be seen that by 

reading or writing to the 14 input/output addresses of the J1PD77230 board’s 

memory, one can interpret the sensor information or generate the drive signal for 

the motor amplifiers. These read and write operations can be performed efficiently 

by using assembly language modules stored in the processor’s internal ROM [37].

By using these modules, the processing time taken to write or read one word, to

or from the interface, amounts to 6 clock cycles or 750 nS. Since standard robot 

control sampling periods are in the range 0.5mS to 5 mS these operations take up 

less than 0.0015% of the time interval between samples.

Another role of the computational elements of the new control hardware is to

provide communication (i.e., exchange of information between and among 

components). In die case of the new control structure, these components are the 

upper and lower hardware levels and the inter |iPD77230 board data transfer rate. 

The upper to lower hardware communication involves the downloading of position 

setpoints to the (jlPD77230 boards from the personal computer. The (JPD77230
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boards are mapped into the input/output addressing area of the PC, see Figure

5.1. The address map of each HPD77230 board takes up 8 address in the PC’s 

input/output area. The function of the control register shown in Table 5.1 is to 

enable or disable the processor and any interrupts to the PC. The status register

shown in Table 5.1 is used to monitor the operation of the |iPD77230. The

downloading of the setpoints is achieved by the following sequence of events:

1) the memory address on the processor board where the setpoints is to be

written is selected by writing to the Base +6 and the Base +7 addresses of the

PC’s I/O area.

2) an interupt is sent to the HPD77230 on a PC write.

3) the set-point is then written to the pPD77230 board by writing to the PC’s VO 

addresses Base + 1 to Base + 4.

TABLE 5.1 Address map for 77230-PC Interface

f t  d d r  e s  s B e  a  A M x *  i  t e

B  a  s  e 0 S t a t u s  R e g i s t e r C o n t r o l  R e g i s t e r

B a s e ± L  S  B y t e L  S  B y t e

B a s e -§ ~ 2 H i d  B y t e H i d  B y t e

B a s e 3 H  S  B y t e M  S  B y t e

B a s  e 4 E x p o n e n t E x p o n e n t

B a s e 5 S t a t u s  R e g i s t e r C o n t r o l  R e g i s t e r

B a s e - 9 - 6 S t a t u s  R e g i s t e r A d d r e s s  L  S  B y t e

B a s e S t a t u s  R e g i s t e r A d d r e s s  H  S  B y t e

This write operation causes an NMI intempt to the JJPD77230 which is only 

cleared after the most significient byte of the setpoint has been transferred. Upon 

transferral o f this byte the interrupt is cleared and the |iPD77230 is free to access 

this new setpoint data. The entire write operation for one board consists of writing 

a single byte to each of the seven different PC I/O locations. A single write
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operation was found take approximately 1 |is using a Microsoft C output function 

to write to one of the I/O port addresses. This means that the entire transferral of 

the data takes about 8 us for the PC. Considering the fact that setpoints are 

usually downloaded at intervals of between 10 and 30 ms[36], this means that the 

downloading of the setpoints takes up a small percentage of the time needed for 

setpoint generation. The inter-|iPD77230 communications take place using high-speed 

serial links. It is possible to use program modules stored in the proesssor’s internal 

ROM to carry out the serial transfer of data words. These serial read and write 

operations take only 4 instruction cycles (500ns) to execute.

The calculation functionality of the new hardware can be defined in terms of

the speed at which the basic operations such as add, subtract, divide and multiply

can be performed on fixed and floating-point data. For the personal computer the 

fixed-point operations were found to take 3 clock cycles to execute (i.e., 150 ns). 

Double-precision floating-point additions were found to take lOps and 

multiplications approximately took 32 us each.

In the lower level computational functionality involves pPD77230 board’s

ability to perform floating and fixed-point addition, subtraction, division and 

multiplication. For fixed-point data, these calculations were found to take 1 

instruction cycle [37] or 150ns. In the floating-point case, addition and subtraction 

take 5 instruction cycles, with multiplication taking 6 instruction cycles. This means 

that the lower level is capable of performing thousands of additions and

multiplications in one millisecond. The advantage can be seen more clearly if one 

examines the algorithms developed in [38], [39] and [40]. These algorithms are 

among some of the most computationally complex available, yet preliminary 

calculation suggest that these algorithms can be implemented in real-time using the 

|iPD77230 boards. In the case of [38] and [39] these calculations show that both 

could implemented in times less than 0.5 ms, while [40] could be implemented in 

a time which is less than 0.8 ms. The same algorithms, if implemented on the
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existing Rockwell 6503 ^Ps would require that the sampling interval be increased 

by a factor of 10. Such long sampling intervals would be unsuitable for real-time 

control, considering the speed [36] at which manipulator dynamics change.

5.3 Summary

This chapter has provided an insight into the computational aspects of the 

new controller. Among these aspects was the choice of operating system and the 

choice of a high-level programming language for the new control structure. The 

chapter also explained the efficiency o f the new controller in performing the

following tasks:

1) communication between the various processors of the new controller,

2) the transferral of data across PUMA 560-|iPD77230 interface and finally,

3) the performance of floating point arithmethic.

The chapter has shown how the new hardware, in conjunction with the new 

software, is capable of performing all three of these tasks in real time and using a 

high level language.
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CHAPTER 6

The Inverse Kinematic Problem for The PUMA 560

One of the main requirements mentioned for the new controller system in 

Chapter 3 was that the new controller should have fee ability to implement 

real-time path planning. This chapter develops an inverse kinematic algorithm for 

use in such path planning applications.

Robot arm kinematics deals with fee analysis of the motion geometry of a 

robot arm without regard for the forces which cause the motion. In other words, it 

deals wife the analytical description o f the spatial displacement of fee robot as a 

function of time. This chapter explains how, given the joint angles of the 

PUMA 560 and the physical dimensions associated wife the PUMA 560, it is 

possible to express fee robot hand position and orientation wife respect to a 

reference Cartesian coordinate system. This is known as the forward kinematic 

problem. The equations developed from the forward kinematics algorithm are then 

used to derive a set of joint angles from known Cartesian position coordinates. 

This is called the inverse kinematic problem for the PUMA 560.

6.1 The Forward Kinematics o f the PUMA 560

To derive the forward kinematic equation for the PUMA 560 it is necessary 

to assign individual coordinate frames to each joint, as shown in Figure 6.1. By 

examining these coordinate frames it is possible to see that the movement of any 

joint i can be represented in terms o f the coordinates of joint i-1 by using a 

series of joint rotations and linear transformations. Devanit and Hartenberg [41] 

proposed a system by which these transformations could be represented as a 4x4 

transformation matrices. Each of these transformation has two frames associated 

with it: a reference frame and that o f the joint whose movement it is required to
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represent in the reference frame coordinates. For example describes the

transformation required to superimpose the coordinate frame of joint ’a’ on to the 

coordinate frame of joint ’b’. The general form of the Transformation matrices as 

described by Davanit and Hartenberg is as follows:

T " - 'n  - Cos6n
Sin0,
0
0

n
-SinSnCosdn
CosQnCosOn
SincXjj

0

S i n0nS i no^ 
-C os8nSinan  
Cosctn 

0

ancos9n
an s in6n

^n
1

( 6 . 1 )

where ©n = joint angle of joint n

dn = the distance between links n and n -1,

an = the link length,

(Xh = the link twist

These quantities in the transformation matrix can be seen for the various joints of 

the PUMA 560 in Figure 6.1. The fourth row of this matrix serves only to square 

the matrix for inversion purposes and contains no information about toe joint 

coordinate frames.

The position of any robot joint "n" can be expressed in terms of the coordinate 

frames of any joint "n-m" (m>l) by using these coordinate transformation. For 

example, if T 01 is the coordinate frame of joint 1 expresses in terms of robots 

base coordinates and T 1 2 is the coordinate frame of joint joint 2 expressed in 

terms of joint 1, then the product o f these two matrices allows the position of 

joint 2 to be expressed in the base coordinates of the robot It is common practice 

to choose the reference frame for all a robot’s joints to be the base coordinates 

of the robot The transformation matrix of joint 6 of the PUMA 560 robot can 

be expressed as the product of a number of individual joint transformation matrices 

as follows:

T°6 = T°1 . T12.T23 . T 34.T45.T56 (6 .2 )
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or

T°6 = ux °x a x Px
Uy Oy Ey Py

u z °z a z Pz
0 0 0 1

( 6 . 3 )

The quantities p*, py, Pz make up a position vector p which contains the 

position of the robot’s wrist with respect to the robots base coordinates. The 

quantities ax, ay and az make up a vector that describes the approach of the robot 

hand in terms of the base coordinates, while the quantities o*, Oy and Oj can be 

used to describe the orientation of the robot hand in the same coordinates. The 

quantities ux, uy and uz make up a third vector which is the cross product of the 

o and a vectors. The o, a and u vectors for the PUMA 560 hand can be seen in 

Figure 6.2.

The position of joint 3 in Cartesian base coordinates can be found by 

calculating the T 3o matrix as follows:

T ° 3  = T °i .T 12.T 2 : (6 .4 )

The T ° i ,  T 12 and T 23 for PUMA 560 can be derived by using the matrix 

in equation (6.1) and the link information for the PUMA 560 shown in Table 6.1. 

These matrices take the following forms:

T °, =

T 1 2 =

C, 0 - s , 0
S , 0 C, 0
0 -1 0 0
0 0 0 1

C2 -S 2 0 a ,C
S 2 0 a 2S
0 0 1 <*3
0 0 0 1

(6 .5 )

T 2 3 = C3 0 S 2 a 3C
S 3 0 -C 3 a 2S
0 1 0
0 0 0 0
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where Cj and Sj are the sine and cosine o f  joint angle i.

TABLE 6.1 Link Parameters for the PUMA 560

io in t a d 3
1 -90 0 0

2 0 0 as

3 90 ds as

4 -90 d4 0

5 90 0 0

6 0 0 0

a 2 = 17cm, a 3 = 0.75cm, d 3 = 4.937cm and d4 = 17.00cm

From the product of the three transformation matrices in equation (6.4) it is 

possible to obtain the position of the third joint This is achieved by examining 

the first three elements of the fourth column of the T° a matrix. The position of 

the third joint is therefore given by a position vector which has the form:

Px = C , . [  d 3S 23 + a 3C23 + a 2C2 ] - S , d 3 (6 .6 )

Py = S , . [  d 4S23 + a 3C23 + a 2C2 ] - C^d,  (6 .7 )

Pz = -[  d «C23 + a 3S 23 + a 2S 2 1 (6 -8)

where S 23 and C 23 are the sin(©2+ 0 3) and cos(02+ 0 3), respectively. The

quantities in equations (6.6), (6.7) and (6.8) are the solutions to the forward 

kinematic equations for the three primary joints of the PUMA 560.

6.2 The Inverse Kinematic Problem for the PUMA 560

The inverse kinematic problem for the three primary joints of PUMA 560 can 

be defined as the finding of the primary joint angles that will position the robot 

hand at a desired position in the robot’s workspace. The inverse kinematic solution

for a robot is used to generate the individual joint angles required to ensure that
\

the robot hand moves along a particular trajectory.
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Usually the inverse kinematic problem can be solved by using either an 

algebraic, iterative or geometric approach. Several investigations have tried to solve 

the problem for the PUMA 560 robot using an algebraic approach [42] [43] [44]. 

This approach suffers from the fact that the solution does not give a clear 

indication of how to select the correct solution from the several possible solutions 

for a particular arm configuration. The user must rely on intuition to select the

correct solution. The iterative solution of [41] requires more computations than the

algebraic approach and it does not guarantee convergence to the correct solutioa If 

the manipulator under consideration has all revolute joints and the geometry of the

first three joints and the last three joints meet at one point then a highly efficient

geometric approach can be applied to solve the inverse kinematic problem [45], 

Fortunately the PUMA 560 falls into this category of manipulator.

For the three primary joints PUMA 560 joints, there are 4 possible values of 

the first three joint angles that will give the same position vector for joint 3. The 

algorithm detailed in this section outlines how, wife the use of configuration 

variables, it is possible to obtain a unique solution for fee positioning of joint 3 

of fee robot

The joint angle of joint 1 is defined by rearranging fee terms in equation

(6.6) and as follows:

S, = ARM.Py (Px 2 + Py z - d 32) i  - Pyd 3

+ P y 2

Ct = ARM.PX(PX2 + Py 2 - d 32)* - Pyd 3

V  + p y 2

( 6 .9 )

( 6 . 10)

The configuration variable ARM can have two possible values: +1 or -1.

The reason for this is fee fact that a robot can have either a right or left arm.

The PUMA 560 used in this project is right armed. This means that the variable 

ARM is assigned a value of +1. In order to evaluate the angle 8 ,  an arctangent
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function , atan2(x/y) which returns tan '1 (x/y) adjusted to the proper quadrant can 

be used. It is defined as:

a tan2 (y /x )  = 0 < 0 < 90 fo r  +x and +y (6 .11 )

90 < 0 < 180 fo r  -x and +y

180 < 0 < -90 f o r  -x and -y

-90 < 0 < 0  f o r  +x and -y

This function allows the joint angle of joint 1 to be calculated as follows:

0 , = a t a n 2 ( S , /C , )  (6 .12)

The angle for joint 2 can be defined by rearranging die equations (6.7), (6.8) 

and (6.9) to give the folowing equations:

S 2 = Sa .Cp + (ARM. ELBOW). Ca .Sp (6 .13 )

C2 = ca .cp - (ARM.ELBOW).Sa .Sp (6.14)

Joint 2 of a right handed manipulator can be used to achieve the wrist 

positioning using two angle configurations. The ARM.ELBOW product in equations 

(6.13) and (6.14) can be used to define the two possibilities. The values which 

define these configurations are shown in Table 6.2. The RIGHT & ABOVE 

configuration in Table 6.2 refers to when the elbow of the RIGHT handed 

manipulator being positioned above the wrist.The RIGHT & BELOW configuration 

refers to when the manipulator wrist is positioned above its elbow. These 

configuration can be seen more clearly in Figure 6.3.

Table 6.2 Ann Configurutations for Joint 2 & 3 of the PUMA 560

Arm C onf igura t ion ARM ELBOW ARM.ELBOW
RIGHT & ABOVE +1 +1 +1
RIGHT & BELOW +1 -1 -1
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The terms Sa , Sp, Cp and Ca  in (6.13) and (6.14) are the Sines and Cosines of 

angles a  and p. These angles are defined as follows:

Sa = (6 .1 6 )
R

Ca = -ARM.r (6 .17 )
R

Cp = a 2* + R’ + (d„2 + a 3’ )
  (6 .18 )

2 . a 2R

Sp = (1 - Cp2) (6 .1 9 )

where the R is the distance from the origin of the robots base coordinates, to the 

robots wrist position defined by:

R = (Px 2 + Py 2 + Pz 2 - d 3* ) i  (6 .20 )

The quantity r is the perpendicular distance from the z axis of the base 

coordinates to the position of the robots wrist

r = (Px * + Py * - d 3* ) i  (6 .2 1 )

The joint angle of joint 2 can then be written as:

0 2 = atan2(S2/C2) (6 .2 2 )

The joint angle for joint 3 can be defined using the following equations: 

S 3 = SyCp - SpCy (6 .2 3 )

C3 = CyCp + S-ySp ( 6 . 24 )
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where the angles y and p are defined by the following equations:

Cy = a 22 + d 4 2 + a 32 - R 2
( 6 . 2 5 )

2 a ,  (d 42 + a 32)

SY = ARM.ELBOW.( 1-Cy2)* 

Cp = d 4/ r  

Cp = a 3/ r (6 .2 8 )

( 6 .2 6 )

( 6 .2 7 )

where R is defined as in equation (6.20) and the quantity r is defined by:

r = (d 42 + a 32)* ( 6 . 2 9 )

Using equations (6.24) through to (6.29), the solution of the angle of the third 

joint is obtained as follows:

This completes die derivation of die inverse kinematic joint angles for the three 

primary joints of the PUMA 560.

6.3 Simulation of die Inverse Kinematic Equations

To show the advantage of using the inverse kinematics algorithm described in 

section 6.2 it was decided to simulate a joint trajectory in Cartesian coordinates 

and apply the inverse kinematic algorithm to solving the joint angles for this 

trajectory. The trajectory chosen was a circular trajectory similar to those used in 

arc welding applications. This type of trajectory cannot be generated by the 

existing Unimation controller without the use of a teach pendant to record points 

on circumference of the circular trajectory. The use of such a pendant means that 

the contoller must store a large number of circumference points to achieve any 

degree of accuracy.

0 3 = a t a n 2 ( S 3/ C 3) ( 6 . 3 0 )
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The new control hardware offers an alternative to this by offering a means of 

generatng such trajectories on-line. The Carthesian circle chosen was defined by 

using the following polynomial equation to generate its circumference points:

X = 0 . 0 5 1 2 t 5 - 0 . 8 2 7 4 t 4 + 1 . 0 5 t 3 (6 .31 )

where t is time. The position, approach and orientation vectors for this trajectory

were defined as follows:

Px ( t )  = (35 + 25CX) / 4  (6 .3 2 )

Py ( t )  = (35 + 25Sx)/4

Pz ( t )  = 15/2

ax ( t )  = ay ( t )  = 0 (6 .33 )

az ( t )  = 1

ox ( t )  = Cx (6 .3 4 )

oy ( t )  = Sx 

oz ( t )  =1

This trajectory was simulated and the inverse kinematic algorithm above was 

used to identify the joint angles necessary to realize the trajectory. The joint angles 

obtained for the three primary joints are shown in Figure 6.4. The angles obtained 

for this trajectory were then transformed using the forward kinematic equations

(6.7), (6.8) and (6.9) to check the validity of the solutions. In all cases the

positions found using the forward transformations were found to match those used 

to define the Carthesian circle. This means that the inverse kinematic solutions 

obtained by this method were correct The advantage of implementing such a

circle using this method on the new controller can be seen by considering the

number of trajectory points that would be stored in the existing controller’s
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memory for use as control set points for the three joints. Since the time required 

to implement the circle was about 3s, see Figure 6.4, and the existing robot 

controller requires a joint angle setpoint approximately every 28 ms, this means 

that the existing robot controller would need over 300 memory locations to store 

setpoints for the joint angles necessary to achieve the same accuracy.

6.4 Summary

This chapter details the development of an algorithm for solving the inverse 

kinematics problem for the PUMA 560. The alogrithm was developed by first 

deriving the forward kinematic equations for the PUMA 560. These equations were 

then used to develop the inverse kinematic algorithm. The algorithm was then 

tested by simulation to show that it could produce the joint angles required for a 

real time path planning application which can not be implemented on the existing 

Unimation controller, without the use of a teach pendant

81



FIGURE 6.1 PUMA 560 LINK PARAMETERS 

FIGURE 6.2 PUMA 560 HAND POSITION VECTORS
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FIGURE 6.3 PUMA 560 RIGHT ARM CONFIGURATIONS. 

FIGURE 6.4 JOINT ANGLES FOR CARTHESIAN CIRCLE



CHAPTER 7

Parameterization of the PUMA 560 Robot Model

The dynamic control of an industrial manipulator involves the determination of 

the inputs (torques or voltages) for the actuators which operate at the joints so that 

a set of desired values for the positions and velocities for the manipulator are 

achieved. Virtually all forms of dynamic control involve the use of a system model 

for the design of control algorithms. In the case of adaptive/self-tuning control, the 

model used is a discretized one which takes the form of an autoregressive time 

series model.

In this chapter such a time series model for the motion of the joints of 

PUMA 560 is developed from the continuous time model developed in Chapter 2. 

Various least squares-based methods for determining the parameters that best fit this 

model are implemented. These methods are then tested using, input/output data 

obtained from the actual robot, to see how well they identify the dynamics of the 

PUMA 560.

7.1 A General Time Series Model of PUMA 560

The equations of motion for the manipulator may be developed by the direct 

application of the classical Euler-Lagrange method of dynamic modelling as 

demonstrated in Chapter 2. For the three primary joint of PUMA 560, the model 

can be written in the following way:

Vi = M i  + t i f i  + kjC N ^ i (7 .1 )
if. t if. ti *1

where the terms in this equation are the same as those described in Chapter 2.

This robot model can be discretized using a method such as Euler [8]. This

method discretizes the joint position, velocities and accelerations as follows:
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q j ( t )  = i i u a  - .q i ( t -h) ( 7 . 2 )
h

qj ( t)  = q jn }  - qjuLLd i (7.3)
h

g i m  = f r m  - q i f t - n  ( 7 . 4 )
h

where h is the discretization intervel. By backsubstituting equations (7.2), (7.3) and 

(7.4) into equation (7.1) it is possible to obtain a time series model for a robot 

withvoltage inputs and joint position outputs. The joint torques and their 

derivatives in equation (7.1) contain terms which are product and sums of all the 

joint position, velocities and accelerations. These terms can be represented as a 

nonlinear forcing term [47] in the time series model. The time series model of 

each joint has the form:

y(kT) = Ao + Ai y [ ( k - 1)T]

+ A2y [ ( k - 2 ) T ]  ............ + BlU[ ( k - l ) T ]

+ B2u [ ( k - 2 ) T ] ................... / [  k T ] + m ( k T ) .  ( 7 .5 )

where u(kT) is the model input, or joint voltage, and y(kT) is output or joint 

position at time kT. Aj and Bj are coefficients of the linear portion of the model, 

is the joint nonlinear forcing term containing joint nonlinearities due to joint 

coupling and m(.) represents modelling errors.

An auotregressive model [47] can then be assumed from the model in (7.5) 

for each joint. It takes the form of the following difference equatioa

y(k) = A(q"1)y (k )  + B ( q - ’ )u (k )  + h (k)  + e (k )  ( 7 .6 )

where k refers to the sampling interval and d is a positive integer specifing a 

positive time delay. The term h(k) represents a forcing teim intended to include
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nonlinear effects and the modelling errors of equation (7.5). The equation error e(k) 

represents a zero mean white noise. A (q'l) and BCq*1) are polynomials with q*1 

being the backward shift operator.

1 2  Parameterization o f the Autoregressive Model

To obtain comprehensive information about the parameters of the 

autoregressive model in equation (7.6) it was decided to use similar operational 

environments to those used in [46] and [47]. These test environments were used 

because according to [47] they provide the most insight into the dynamic 

characteristics of the PUMA 560 robot. The tests can be broken down into two 

blocks:

1) slow trajectory unloaded, and

2) fast trajectory unloadeed.

The fast trajectories were generated by driving die joints of the PUMA robot at 

their maximum VAL speed setting [48], while the slow trajectories were generated 

by driving the joints at 50% of maximum VAL speed. Numerous tests involving 

driving the three primary joints simultanously at the same speed from a rest 

position were performed. A selection of the robot trajectories, both slow and fast, 

used is shown in Figure 7.1 and 7.2. These trajectories were obtained by using die 

new control hardware to sample the position of the PUMA 560 joints. The new 

hardware was also used to sample the robot’s input voltages.

The parameters of the time series model were estimated from the 

input/output pairs using four different on-line estimation methods. The following 

sections describe these methods in detail and evaluate their performance in 

identifying the parameters of the autoregressive robot model.
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12.1  Method 1: Recursive Least Squares (RLS).

Whenoptimal control theory is applied to the development of robot 

controllers, a common simplification of the model in equation (7.6) is to assume 

that the coupling terms due to the other joints can be neglected [47][49][50][7]. By 

assuming this and that the PUMA 560s system parameters are slowly time-varying 

[47], it is possible to apply the simplest form of RLS to the identification of this 

robot’s parameters. The model identified by this algorithm takes the form of the 

block diagram in Figure 7.3. This model can be written as:

If the parameter vector 0  and the regressor information vector O are defined as

The parameter estimation problem is to find the estimates of the unknown 

parameters which minimize the cumulative loss function:

y(k)  = A(q*1) y ( k )  + B ( q - ’ )u (k )  + e(k) ( 7 .7 )

9^ — ( a 1, . . .  , a n , b ,  b[j) ( 7 .8 )

and

0 ( k - l ) T  = [y ( k - 1 )  y ( k - n - l )  ; u ( k - l ) ..........u ( k - n - l ) ]  ( 7 .9 )

the model can then be written as:

y (k )  = 0T .<I>(k-l) + e ( k ) . (7 .10 )

N
(7 .11)

where N represents the number of measurements taken and e(k) is the prediction 

error at time k.



The principle underlying least square is that by minimizing the prediction error it 

is possible to minimize what is unexplained in the model. The solution to the least

squares problem is furnished by the following recursive equations:

0(k)  = 8 ( k - l )  + P ( k ) f ( k - 1 )

. [  y (k )  - 0 T ( k - l ) * ( k - l ) ]  (7 .12 )

P(k) = _ J r  P ( k - l )  . P ( k - l W k - m T( k - n P ( k - n  l (7 .13 )
\i I n + i>T( k - l ) P ( k - l ) 0 ( k - l )  1

where P(.) is the covarience matrix of the estimation errors and where ji is what 

is known as the forgetting factor. The P matrix is an R 2nX2n matrix where 2n is 

the total number of parameters being estimated. This matrix is the positive definite 

measure of the estimation error and its elements tend to decrease as time increases. 

It is therefore necessary to initialize the elements of this matrix to some large

value if the initial estimates are poor to ensure that its elements do not tend to

zero too rapidly. If this occurs equation (7.12) reduces to

8 (k )  = 8 ( k - l )  (7 .14 )

and the estimated values become constant before they have converged to a value

close to or equal to the true model parameters. An initial value [51] of 1000 on

the diagonal elements of the P matrix should prevent this problem occuring. Once

the estimates have reached their true value, the P matrix elements tend to zero. As

a result, any parameter which drifts with time in the system will only be tracked

until the P elements become zero. To overcome this problem, [51] suggests the use

of a forgetting factor Qi). This factor can be used to implement an exponential

weighting of past data to allow tracking of slow drift which might occur in the

system parameters. It works by dividing the elements of the P matrix by a value

less than 1. This prevents the elements of P becoming zero. The value of |i is

generally in the region of 0.95 to 1.0. A value of |i. equal to 0.95 results in an
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estimation method which are capable of tracking time variance in the system 

parameters but which fails to converge totally to its true value. To obtain a

tradeoff between good estimates and time varience monitoring, [51] suggests the 

use of an exponential forgetting factor which tends towards a value of 1 as time 

tends to infinity. The forgetting factor chosen for this application is given by:

H(t) = 0 . 9 5 n ( t - l )  + 0 .05  (7 .1 5 )

wi th |x(0) = 0.95

To apply this method to the joints of the PUMA 560, a second order 

autoregressive model structure was used. This means the n value in equations (7.8) 

and (7.9) was given a value of 2. So the total number of parameters to be

identified was four. This structure was used because an autoregressive model of 

order 3 was found to produce parameters which were of the order of 10"2 smaller 

than any of those identified using the the second order model.

The trajectory tests described in section 12 were carried on the three primary 

joints of the robot using the RLS algorithm. An example of the parameters 

obtained is shown in Figures 7.4 and 7.5. From these it can be seen that the

parameters ai and a 2 converge rapidly to a constant value while the b i and b 2

parameters conveiged alter a period of about 1 second. By comparing Figures 7.6 

and 7.5 it can be seen that the parameters estimated varied in value and speed of 

convergence from one joint to the next Figure 7.6 also shows that that the 

convergence of the parameters also depended on the joint speed. In fact, joint 1 

was found to have the most rapid convergence at both speed values, while joint 3 

was found to have the slowest
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A measure of the accuracy with which the RLS had modelled the actual 

robot dynamics was obtained by examining the cumulative loss functions, see 

equation (7.11), of all three over the slow and fast trajectories. These loss

functions provide a good indicator of the model accuracy because they provide 

information about the estimation errors at every point on the joint trajectories. It 

can be seen from Figure 7.7 that the loss functions of each joint increases with 

joint speed. They can also be seen to increase from joint to joint with joint 1 

having the smallest loss function values while and joint 3 having the largest In all 

cases, this function seemed to increase rapidly with time. This indicates that the

model estimated was becoming a less accurate representation of the true system 

model as the joints moved along their trajectories. This decrease in accuracy was 

not, however, due to the estimation method falling asleep because the elements of 

the diagonal elements of covarience matrix were found to have a value greater 

than 1 throughout the estimation run. In an attempt to reduce the prediction error 

initial estimates were used. These estimates were chosen by examining the 

estimation errors at each sampling instant and choosing the initial estimates to be 

the estimates where the estimation error was a minimum for that trajectory. These 

initial estimates were found to reduce the cumulative Loss function by a factor of

approximately 3. This would seem to indicate that good initial estimates are

required to ensure a more rapid convergence for RLS.

The parameter inaccuracies can be explained in terms of model of equation 

(7.1). Any movement of the robot’s joints will involve changes in velocities and 

accelerations of these joints. These changes will cause the torque terms F and F 

of equation (7.1) to vary because of their dependence on velocities and 

accelerations. It is the inability of RLS to track these torque-dependent variations 

which appears to render RLS inadequate for the identification of the robot model 

parameters.
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122  Method 2: Modifed Recursive Least Squares (MRLS)

This method of MRLS is based on the least squares model described in 

section 7.2.1. It differs , however, in that it uses the model [10] shown in Figure

7.8. This more comprehensive autoregressive model can be written as:

y(k) = A(q- ’ )y(k)  + B ( q - i ) u ( k )  + h(k) + e ( k )  (7 .16)

where h(k) is a forcing term intended to include the nonlinear effects of 

torque-dependent terms in the robot model. In this case, the parameter estimates 

and the regressors can be written in the following vector format:

©T = ( a ,  an ; b   bn , h , )  ( 7 . 17 )

and,

^ k - l ) 1  = i y ( k ' D  y(k-n) ;  u(k)  , . . .  , u ( k - n + l ) ,1] ( 7 .18)

From this we can see that the autoregressive model of equation (7.16) can be 

again written as:

y(k)  = 8T. i>(k-l)  + e ( k ) . ( 7 .19)

This is the format required to apply the least squares estimation algorithm shown 

in section 7.2.1. This results in the parameters being identified by equations (7.12) 

and (7.13). To ensure that this estimation method had the same ability as the RLS 

algorithm to track time varying parameters the same forgetting factor was used.
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A second order model structure was used to apply this method to 

parameterization of the robot modeL This meant that there were five parameters 

to be identified instead of the four used in the RLS algorithm. As with the RLS 

method, an increase in the number of parameter estimates beyond this value had 

little or no effect on the minimization of the loss function in equation (7.11).

The algorithm for MRLS was tested using the same input/output data gathered 

from the PUMA 560 robot for the RLS method. The estimates for the a ,, a2, b,

and b 2 parameters were found to be the same, in all cases, as those obtained for

the RLS method. The hi parameter, for all the trajectories was found to take the 

form of a peak, see Figure 7.9 and 7.9. By comparing figures 7.1 and 7.9 it can 

be seen that these peaks reached their maximum amplitude when joint acceleration 

was a maximum. It can also be seen by comparing Figures 7.9, 7.10 and 7.11 

that the amplitude increases with joint speed and varies form joint to joint.

The accuracy of the MRLS model was examined by observing the cumulative 

loss function used in the RLS method. Figure 7.12 the loss functions obtained 

from the joints moving along the same test trajectories used for the RLS method. 

From this information, it can be seen that die loss function was found to be about 

3 times smaller than those measured over the same trajectories using RLS. The 

loss functions for all three joints tended to increase at a much slower rate than the 

loss functions in the RLS case, indicating that estimation error has reached a value 

very close to zero. Although the ^ and bj parameters were die same in both the

RLS and MRLS, an MRLS-based adaptive controller which incorporates the hj

parameter in the minimization its performance criterion should produce a more 

optimal controller.
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The reason for the improvement in the parameters was the ability of the 

forcing term hj to identify the residual due to the nonlinearities in the robot model 

which remained unidentified in the the RLS algorithm. In anattempt to reduce the 

effect of the initial, rather rapid, increase in the loss function, shown in Figure 

7.12 it was decided to use initial non-zero estimates. The estimates used for each 

joint were chosen at a point in the joints trajectory where the estimation error was 

approximately zero. This was to ensure the best possible initial estimates for the 

identification. The introduction of the initial estimates had the effect o f decreasing 

the initial rate of increase in the loss function and decreasing the convergence time 

of the parameters.

Although the MRLS model is a more accurate model of the robot than that 

produced by RLS, the estimates of MRLS fail to converge parameters to their 

correct value until the joints have stopped their initial acceleration and are moving 

at a constant velocity. It would appear from this that a more accurate model of 

the robot is required to increase the model parameter convergence.

7.2.3 Method 3: Extended Least Squares (ELS)

This method attempts to estimate a model for the noise present in any 

system, as well as the system model itself. It does this by formulating the 

autoregressive model [51] in the way shown in Figure 7.13. This model can be 

written time series form as follows:

y(k)  = A(q- ' )y (k)  + B ( q - ’ )u(k)  + C ( q - i ) e ( k )  ( 7 . 2 0 )

where C(q-1 )is the polynomial containing the parameters of the noise modeL
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= ( a , , . . .  ,an ; b , . . . .  , bn , c , , c n ) ( 7 . 2 1 )

and,

<&(k-l)T = [ y ( k - l )  y ( k - n ) ; u ( k )  u ( k - n ) ,

e ( k ) , . . . , e ( k - n ) ] ( 7 . 22 )

From this we can see that the autoregressive model can be written as:

y(k)  = eT .4>(k-l) + e ( k ) . ( 7 . 23 )

This means that the equations (7.12) and (7.13) can be used to update the

parameter estimates of the model. Once again the same variable forgetting factor

was used to track parameter variations due to time.

A second order model structure was used for both the noise and the system

model itself. This meant a total of six parameters had to be estimated. The PUMA

560 input/output data used was the same as that used for the RLS and MRLS

methods. Figures 7.14 and 7.15 show the parameters obtained from joint 2

traveling at a fast speed. From this we can see that all the model parameters were 

found to converge in less than 0.4 seconds of die joint starting to move. By

comparing the estimates obtained in Figures 7.15 and 7.16 it can be seen that the 

convergence time and the parameters varied somewhat from one joint to the next, 

with joint 3 being the worst The convergence rates for all three joinis was found 

to be much faster than the rates observed for die previous two methods.

In this case, the parameter estimates and the regressors can be written in the

following vector format:
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The accuracy of this model was again assessed by examining the loss 

functions. The loss functions for this method are shown in Figure 7.17. These were 

found to be as much as 3 times smaller than those found when the MRLS method 

was used. The loss functions of the three joints were found to increase at a much 

slower rate than those of the RLS or MRLS, indicating that the estimation error 

was decreasing more rapidly over the trajectories.

The improvement in parameter accuracy and convergence provided by the ELS 

method can be accredited to the way in which the algorithm models the residual. 

The convergence of the residual model seems to indicate that the non-linear torque 

terms can, in fact, be approximated quite accurately using a linear noise model. 

Because of the rapid convergence of the ELS parameters and the small estimation 

errors present, this method appears to provide good estimation errors even with no 

initial estimates provided. The provision of initial estimates was found to reduce 

the prediction errors for all the joints by a factor of about 20% in each case.

7.2.4 Method 4: Nonlinear Extended Least Squares (NELS)

This method attempts to estimate a model for the residual as a combination 

of linear and nonlinear functions. It does this by formulating the autoregressive 

Hammerstien nonlinear model [52] shown in Figure 7.18. This model can be 

written as follows:

y(k)  = A(q‘ 1)y(k)  + B ( q - i ) x ( k )  + C ( q - ’ ) e ( k )  ( 7 . 24 )

where C(q-’)is the polynomial containing the parameters of the noise model and 

is a nonlinear polynomial defined by:

x(k)  = n 01u(k)  + n 02u 2(k) + n 03u3(k)  ( 7 . 25 )

+ n „ u ( k )  + n,  2u 2(k) + n 13u3(k)
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In this case, the parameter estimates and the regressors can be written in the

following vector format:

b , , . . . ,  b jj , c , , . . ,  c ) (7 . 26 )

and,

<D(k- 1)T = [ u (k)  , u 2(k)  , u 3(k) , u ( k - l )  , u 2( k - l )  , u3( k - l ) ;  

y ( k - l ) , . . . , y ( k - n ) ; u ( k ) , . . . , u ( k - n ) ;

e ( k )  e ( k - n )  ] (7 . 27 )

From this we can see that the autoregressive model of can be again written as:

A second order model structure for the system model, the noise model and 

the nonlinearity. This meant a total o f 10 parameters had to be estimated. Tte 

robot input/output data used was the same as that used for testing ELS, MRLS 

and RLS methods. When the method was put through these test it was found that 

the parmeters n n  and n n  were found to be of an order approximately 10"6 

smaller than the next to smallest parameters estimated for each joint. For this 

reason it was decided not to estimate these terms.

Figures 7.19 and 7.20 show the parameters obtained from joint 2 traveling at 

the fast speed. From this we can see that all the estimated parameters were found 

to be similar in their convergence to the ELS method. In fact, this was found to 

be the case in all the tests that were undertaken using this method. It can be seen 

from the two nonlinear parameters n01 and n02, in Figure 7.21 that the robot

y(k)  = eT .<t(k-l) + e ( k ) . ( 7 . 28 )
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this dependency is much less for the cube of the robot input.

The accuracy of this model was again assessed by examining the loss

functions. The cumulative loss functions for this method are shown in Figure 7.21.

The loss function of the three joints were found to increase at a slower rate, over

the entire trajectories, than those of the ELS method. This indicates that the

estimation error was decreasing more rapidly over the trajectories.

The improvement in parameter accuracy and convergence provided by the

NELS method is due to the modeling of the input product terms in the system. 

The convergence of NELS model seems to indicate that that the nonlinear 

torque-dependent terms can, in fact, be modelled more accurately by including

nonlinear functions of the robot inputs in the identification model. The provision of 

initial estimates was found to reduce the prediction errors for all the joints.

model have some considerable dependency on the square o f the input voltage and
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7.3 Summary

This chapter has been concerned with the parameterization of the PUMA 560 

robot model developed in Chapter 2. It presents a time series model for the robot 

and shows how this time series model can be written in an autoregressive model. 

Various least squares methods were then applied to input/output data obtained from 

the PUMA 560 robot to identify the parameters of this autoregressive model. These 

methods included:

1) Recursive least squares,

2) Modified Recursive least squares,

3) Extemed Least Squares and,

4) Nonlinear extended least squares.

The models identified by these methods were examined to test their accuracy 

and convergence. From these examinations various insights into the suitability of 

these methods for robot control were gained. It was seen that the RLS method 

was found to be unsuitable for identification of the model parameters of the robot. 

The method of MRLS was found to model the robot more accurately but it failed 

to show any substantial improvement in convergence time without good initial 

estimates. The ELS method was found to model the robot more accurately than 

then previous methods and showed rapid convergence even without good initial 

estimates. The method of NELS was found model the robot more accurately than 

the three other methods while showing similar convergence to the the ELS method. 

This would seem to indicate the suitability of using a nonlinear identification 

method for the development of adaptive controllers for robotic systems.
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FIGURE 7.1 JOINT TRAJECTORIES SLOW V TIME (SECS)

FIGURE 12 JOINT TRAJECTORIES FAST V TIME (SECS)

99



•  <Jc>
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FIGURE 7.7 RLS LOSS FUNCTIONS SLOW AND FAST 

FIGURE 7.8 MRLS BLOCK DIAGRAM
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FIGURE 1 9  MRLS J2 FAST hi PARAMETER

FIGURE 7.10 MRLS J2 FAST hi PARAMETER



FIGURE 7.11 MRLS J3 FAST h i PARAMETER

FIGURE 7.12 MRLS LOSS FUNCTIONS SLOW AND FAST
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FIGURE 7.15 ELS J2 FAST b i ,b 2 & cj PARAMETERS

FIGURE 7.16 ELS J3 FAST AND SLOW ai a> & Ci PARAMETERS
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FIGURE 7.19 NELS J2 FAST & Ci PARAMETERS

FIGURE 7.20 NELS J2 FAST bi,b2,Ci,ni & na PARAMETERS
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CHAPTER 8
Conclusions

A complete dynamic model has been developed for the three primary joints of 

the PUMA 560 industrial manipulator. The modelling exercise involved the 

development of a third order model based on the Euler-Lagrange equations of 

motion for the PUMA 560. The Euler-Lagrange method models the manipulator as

a set of second-order differential equations. The inputs to these equations are the

joint torques while the equation outputs are the positions, velocities and

accelerations of the robot joints. Since the only inputs to the PUMA 560 are the 

joint voltages and currents necessary to drive the joint DC motors, it was decided 

to include the dynamics of these motors to gain a more complete robot model. 

The inclusion of the actuator dynamics led to a third order model with voltage 

inputs and position, velocity and acceleration outputs.

Thismodel was simulated on a digital computer using a ninth-order

state-space representation. The model was then validated by comparing its operation 

with that of the actual robot in a number of carefully chosen test conditions.

The complete design and implementation of a hierarchical control structure, 

using special purpose processors for the control of the three primary joints of the 

PUMA 560, has been presented in this thesis. The system involved consists of a 

general purpose personal computer operating as a supervisory or host machine with 

attached digital signal processor (DSP) boards capable of performing the 

numerically complex calculations involved in some real-time robot path planning 

and control algorithms.
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The supervisory computer used in the new controller is 80386-based PC with 

a large memory capacity and an extremely fast clock speed (50r|s). This computer 

can be used to perform trajectory planning, coordinate transformations and task

coordination between the personal computer and the DSP procesors used. The lower

level of the new controller’s hierachy consists of three NEC (XPD77230 boards 

each with a large on-board memory. These boards are capable of implementing 

numerially complex joint control algorithm in real time. The advantages of this 

new system over the existing Unimation PUMA 560 include:

1) faster operation speeds at both levels,

2) a considerably larger memory capacity in both levels,

3) the ability to program in a high-level language,

4) full floating-point capabilites in both levels

In addition to these advantages, the new contol system provides a flexible 

interface to the PUMA 560. This flexiblity of this interface allows for the

addition of vision and tactile sensors, if required, at some later research stage.

The thesis develops an inverse kinematic algorithm for the three primary joints 

of the PUMA 560 robot. The algorithm uses a geometric approach to provide a 

unique solution to the inverse kinematic problem. The algorithm developed is 

capable of realising complex robot paths which up to now were only realizable 

using the PUMA 560’s teach pendant.

Finally, the thesis presents a time series model for the PUMA 560. A number 

of linear and nonlinear least squares identification methods were used to 

parameterize this model. The methods were implemented using the new hardware 

structure and tested under the headings of parameter convergence and identified 

model accuracy. Conclusions on the results obtained can be made as follows:

111



1) the method of RLS was found to be inaccurate for identifmg the robot model,

2) the method of MRLS was found to produce more accurate model robot model 

than RLS but it was found to have an poor parameter convergence rates in the 

absense of a good initial estimated,

3) the method of ELS was found produce a more accurate model of the robot 

than the MRLS and RLS methods and showed rapid convergence of parameters 

even in the absene of good initial estimates,

4) the method of NELS was found to produce the most accurate model of the 

robot and showed covergence rates similate to those found using the ELS method.

This project has been successful in that it has managed to develop a 

comprehensive robot model for the PUMA 560 and also in the development of a 

new, more flexible, robot control hardware system to serve as an implementation 

tool for the future development of more computationally complex robot control 

algorithms. The results obtained from the parameterization of the robot model 

indicate that future development of adaptive controllers for robotic systems, based 

on nonlinear identification techniques, could lead to more accurate controllers.

112



REFERENCES

[1] Vukobratovic M. & Stokic D., "Control of Robotic Manipulation Robots Theory and 

Application", Springer-Verlag Berlin, 1982.

[2] Luh J.Y.S, "Conventional Controller Design for Industrial Robots - a Tutorial", IEEE 

Trans, on Systems, Man, and Cybernetics, Volume SMC-13, No. 3, May/June 1983.

[3] Hsia T.S., "Adaptive Control of Manipulators - A Review", IEEE Trans, on Robotics 

and Automation, June 1986.

[4] Koivo A.J, "Adaptive Linear Controller for Robotic Manipulators", IEEE Trans, on 

Automatic Control", Volume AC-28, No. 2, Feb. 1983.

[5] Craig J.J, "Adaptive Control of Mechanical Manipulators", The International Journal of 

Robot Research, Volume 6, No. 2, Summer 1987.

[6] Lieninger G.G, "Self-Tuning Adaptive Control of Manipulators", Advanced Software in 

Robotics, Elsevier Science Publishers b.v. (North-Holland), 1984.

[7] Dubowsky S. et al, "Application of Model Reference Adaptive Control to Robotic 

Manipulators", Journal of Dynamic Systems Measurement and Control, Volume 101, 1979.

[8] Lee C.S.G & Chung M., "An Adaptive Control Strategy for Mcchanical Manipulators", 

IEEE Computer Science Press, Silver Spring, MD. 20910, USA.

[9] Bejczy A.K., "Robot Arm Dynamics and Their Control", Techical Memo 33-669, Jet 

propulsion Laboratory, Feb. 1984.



[10] Lee C.S.G & Lee B.H, "An Efficient Formulation of Robot Arm Dynamics for Control 

Analysis and Manipulator Design", Tech. Report TSD-TR8-82, Center for Robotics and 

Integrated Muanufacturing, University of Michigan.

[11] Hollerbach J.M., "A Recursive Langrian Formulation for a Comparitive Study of 

Dynamic Formulation Complexity", IEEE Trans, on Systems, Man. and Cybernetics, Vol 

SMC-10, No. 11, 1980.

[12] Armstrong W.M., "Recursive Solutions to the Equations of Motion of an H-Link 

Manipulator", Procs. of the Fifth world Congress, Theory of Machines, Mechanisms, Vol.2, 

July 1979.

[13]BejczyA.K, "Nonlinear Feedback Control of the PUMA 560 Robot Arm by 

Computer", Procs. of the 24th Conference on Decision and Control, Ft. Lauderdale, FI., 

Dec. 1985.

[14] Anderson G.P. "Modelling and Simulation of a PUMA 560 robot for Control System 

Appraisal", N.I.H.E. Dublin, M.Eng. Thesis 1988.

[15] Unimation Inc.,"Programming Manual User’s Guide to VAL11 398T1", Version 1.1, 

August 1987.

[16] Fu K.S. et al, "Robotics Control, Sensing, Vision and Intelligence", McGraw-Hill, 1987.

[17] Melidy A. & Goldenberg A.A., "Operation of the PUMA 560 Without VAL", Robotics 

Proc. Robots 9, 1985

[18] Unimation (Europe) Ltd., "PUMA 560 Mk2 Robot System Technical Manual", Sept. 

1985.



[19] Lee C.S.G et al, "Hierarchical Control Structure Using Special Purpose Processors for 

the Control of Robot Arms", Proc. of the IEEE Pattern Récognition and Image Processing 

Conference, pp 634-640, 1982.

[20] Paul R., "Robot Manipulators", MIT Press,1981.

[21] Unimation Inc., "Breaking away from VAL", Danbury Connecticut, 1982.

[22] Kananzides P., Wasti H and Wolovich W.A., "A Multiprocessor System for Real Time 

Robot Control: Design and Application", Proc. IEEE Int. Conf. Robotics and Automation,

1987.

[23] Penny D., "Control of the PUMA Robot Without VAL", Univ Toronto, RAL Tech. 

Rep., April 1985.

[24] Ringwood J.V., "Control Strategies for Robotic Manipulators", Proc. IMC-6 Conference 

on Advanced Manufacturing Technology, Dublin City University, Sept 1989

[25] Olivetti, "M380 Users Guide", 1989.

[26] Guruasavaraj K.H., "Implementation of a Self-Tuning Controller Using Digital Signal 

Processing Chips", IEEE Control Systems Magazine, June 1989.

[27] NEC, "Digital Signal Processors - Product Description", 1989.

[28] Kabuka M. & Escoto R., "Robot Arm Controller", IEEE Micro, Feb 1989.

[29] Loughborough Sound Images Ltd., "LSI 77230 PC Processor Board Hardware Manual", 

Version 2, Sept 1988.



[30] Khosla P.K. & Kanada T., "Experimental Evaluation of Feedforward Compensation and 

Computed-Torque Control Schemes", Proc. of the American Control Conf., Seatle, WA., 

June 1987.

[31] Bihn D.G. & Steve Hsia T.C., "Universal Six Joint Robot Controller", IEEE Control 

Systems Magazine, February 1988.

[32] Bihn D.G., "A Universal Six Joint Robot Controller", M.S. Thesis, Department of 

Electrical And Computer Engineering, University of California, Davis, California, 1986.

[33] Unimation, "Puma 500 Mk 2 Electrical and Mechanical Drawings", July 1985.

[34] LSI Ltd, "4 Channel Analog Interface Card Users Manual", Version 2.1, November

1988.

[35] Texas Instruments, "The TTL Data Book for Design Engineers", Volume 1988.

[36] Taylor P.M., "Robotic Control",Macmillan New Electronics Series, 1990.

[37] NEC, "Digital Signal Processor Development Tools", 1989.

[38] Astrom S.J., "LQG Self-Tuners", IFAC Adaptive Systems, San Francisco, 1983.

[39] Grimble M., "Implicit and Explicit LQG Self Tuning Controllers", Automatica, Vol 20, 

No. 5, 1984.

[40] Lelic M.A & Wellstand, "A generalized Pole Placement Self-Tuning Controller - An 

Application to Manipulator Control", Control Systems Centre Report No. 658, UMIST, 

Manchester, August 1986.



[41] Elgazzer E., "Efficient Kinematic Transforms for the PUMA 560 robot", IEEE Journal 

of Robotics and Automation, Vol RAI-1, No.3, Sept. 1985.

[42] Bazerghi A. & Goldenberg A.A., "An Exact Kinematic Model of the PUMA 600 

Manipulator", IEEE Trans, on Systems Man, and Cybernetics, Vol SMC-14, May/June 

1984.

[43] Crochetiere W.J., "Locating the Wrist of an Elbow-Type Manipulator", IEEE Trans, on 

Systems Man, and Cybernetics, Vol SMC-14, No.3, May/June 1984.

[44] Ersu E., "A Numerical Solution of the General Kinematic Problem", Institute of 

Control Engineering, Univ. of Darmstadt, FGR, 1984.

[45] Lee C.S.G. & Ziegler, "Geometric Approah in Solving Inverse Kinematics for the 

PUMA Robot", IEEE trans. on Aerospace and Electronic Systems, Volume AES-20, No. 6, 

Nov. 1984.

[46] Leahy M.B. & Saridis G.N, "Compensation of Unmodeled PUMA Manipulator 

Dynamics", Proc. Intl. Conf. on Robotics and Automation, Mar. 1987.

[47] Leahy M.B Jnr, "Performance Characterization of a PUMA 600 Robot", RAL Technical 

Report, No.56, RPI, Sept. 1985.

[48] Unimation, "User’s Guide to VAL2", Version 1.1 August 1984.

[49] Young K.K.D., "Controller Design for a Manipulator Using Theory of Variable 

Structure Systems", IEEE Trans, Syst, Man. and Cybernetics, Vol. SMC-8, Feb. 1987.

[50] Book W.J. et al, "Feedback Control of a Two Beam, Two Joint System with 

Distributed Flexibility", Journal of Dynamic System Measurement and Control, Dec. 1975.



[51] Ljung L., & Söderström T., "Theory and Practice of Recursive Identification", MIT 

Press, 1984.

[52] Anbumani K. & Sarnia I.G., "Self-Tuning Control of Nonlinear Systems Characterized 

by Hammerstein Models", IFAC Control Science and Technology (8th Triennial World 

Conference), Kyoto, Japan, 1981.


