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A Comprehensive Study o f Robot Control Algorithms

ABSTRACT

The PUMA 560 Industrial Manipulator is presently controlled using a PID control 

strategy Robot manipulators are highly coupled, nonlinear mechanical systems designed 

to perform specific tasks It is the function of any control algorithm to compute the 

input voltages or torques needed to follow a desired trajectory The PID controller is 

detuned, so as to cater for variations in system behaviour Thus, the performance of 

such a control algorithm is poor over the entire operating range of the robot and the 

need for more complex control strategies is clear

The research presented m this thesis derives a third order comprehensive dynamic 

model for the three primary robot joints, using the Euler-Lagrange formulation for the 

equations of motion A simulation package is designed to model this dynamic system 

Next, a wide range of different techniques are investigated in a simulation 

environment, to observe their performance on the computer model These control 

algorithms range from Fixed Parameter techniques to Adaptive strategies and 

Feedforward routines A set of performance criteria can be used to evaluate these 

techniques, and the best algonthm from each section is chosen Using the results of an 

identification performed on the robot, each of these control methods is applied to the 

resulting tune varying model The results here are used to determine the optimal 
control strategy for manipulator use

Also in this thesis, a new hardware structure is designed and implemented This 

structure is capable of implementing complex control routines with adequately low 

sample periods The design uses advanced digital signal processors, which can perform 

arithmetic operations quickly
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Introduction

CHAPTER 1

INTRODUCTION

/

Many people are fascinated by the operation o f mechanical devices, particularly 

those which mimic human behaviour This fascination seems to have been prevalent 

throughout the ages Robots have the same fascination, but the control needed for 

robots is far more extensive than that needed for simple sequencing machines o f  old 

Not only will a certain sequence have to be earned out, but its operation must be 

insensitive to characteristics o f the mechanisms In this way the task can be repeatedly 

performed with the same precision The framework for achieving this aim is provided 

by the study o f automatic control It is the need to reliably and cheaply perform a 

wide variety o f tasks that underlies the use o f robots The term robotic control is used 

to cover not only the control o f the mechanisms o f  the robot, but also the associated 

sensory systems and other mechanisms needed to cany out these tasks

To define the term robot, the utilitarian definition given by the Robot Institute of 

America is used "A robot is a reprogrammable, multifunctional manipulator, designed 

to move materials, parts, tools or specialized devices through variable programmed 

motions fo r  the performance o f a variety o f tasks " In order to perform any useful 

tasks, the robot must interface with its environment, which may comprise o f other 

robots, feeding devices, and most importantly, people Robotics is the study o f  not 

only the robot itself, but also the interfaces between it and its surroundings

The past twenty years has seen an increase in the importance o f the robot 

manipulator This increase, for the most part, is due to the pressing need for increased 

productivity and quality end products. Most manufacturing tasks are performed by 

special purpose machines designed to perform predetermined functions The inflexibility 

o f such machines has made the computer-controlled manipulator a more attractive and 

cost effective alternative
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Introduction

Most commercially available industrial robots are widely used in manufacturing 

and assembly tasks such as simple material handling, spot/arc welding, part assembly,

spray painting, loading and unloading numerically based machines, m space and

undersea exploration, m prosthetic arm research, and in the handling o f dangerous

materials such as nuclear or chemical waste

1.1 Robot Control Architectures

Robot control systems, like other large-scale systems, are hierarchial in structure 

They consist o f different levels which perform different tasks The control hierarchy is 

most often vertical with each upper control level dealing with wider aspects o f the 

overall system behaviour than the lower levels The higher levels m the hierarchy 

communicate with their next lowest level to transfer any information this levels needs 

for decision making The most common o f these hierarchial structures is a four level 

one [1], shown in Fig 1 1

Level 1

Level 2

Level 3

Level 4

Fig. 1.1 The Control Hierarchy Structure !
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A ll robots have the two lowest levels, but the upper two levels are specific to 

second and third generation robots [1] These robots are capable o f sensing their work 

environment and use artificial intelligence means to perform their tasks correctly The 

two lower levels may be realized in various modes, and it is the size o f their 

capabilities which determine the capabilities of the robot system as a whole

The Ummation control system is an example o f a hierarchial control system The 

upper level consists o f the L S I-11/02 microcomputer which serves as a supervisory 

computer, and the lower level consists of six 6503 Rockwell fiPs and the other 

remaining hardware such as power amplifiers, joint position feedback sensors and a 

digital-to-analog converter [2] The control algorithm is situated in the lower level The 

setpoints are downloaded from the upper level Obviously, the performance o f the 

control routine effects the performance o f the overall robot system

Introduction

1.2 The Dynamic Control Problem

In designing a controller for a specific process a model of that process is 

required The design technique uses this model with design specifications to derive a 

control equation The mam problem in robot control is the complexity of the robot 

model Robot manipulators belong to a class o f large-scale systems which are nonlinear 

m nature Robots have a large number of special features which makes the control 

problem difficult

Approximate models are usually used to design the simplest possible control 

algorithms A  linearised system model is frequendy used m conjunction with linear 

control theory to develop linear controllers In general, these approaches assume 

simplified models to be sufficiently accurate approximations of the actual robot 

However, this is not always the case, since oversimplification of the model may have 

occurred Control routines such as Optimal and PID control, for example, are based on 

the linear, decoupled single-input single-output (SISO) models for each of the three 

primary joints However, other techniques, such as Computed Torque, which is a 

multivariable routine, take into account the robot nonlineanties

To achieve robot control at a reasonable price, most robot manufacturers feel it is 

convenient to apply decentralized control This type o f control treats the robot as a set 

o f decoupled subsystems and applies a local controller to each o f these subsystems 

Such a scheme neglects the effects of dynamic coupling among the different degrees 

o f freedom o f the manipulator In some cases, the coupling o f joints is quite large

3



Introduction

and the synthesized controller performance may prove unsatisfactory Various methods 

[3], over the years, have been used to overcome the coupling effects These methods 

include linear and nonlinear self-tuning or adaptive strategies These controllers hope to 

overcome the coupling problem by tracking the system nonlineanties and by 

compensating for their presence m the control design

To implement such strategies, powerful hardware is required Unfortunately robot 

manufacturers are reluctant to replace existing controller hardware with a faster, more 

expensive alternative Recent developments, however m V LSI technology provide cost 

effective solutions to the implementation of such algorithms

1.3 Motivation for Research

*

This research was undertaken at the Control Technology Research Unit ( C T R U )  

at Dublin City University ( D C U )  This unit at D C U  has m recent years become 

interested m the area o f robotics, and in particular the area of robot control For this 

reason the C T R U  initiated this project, the aims of which were as follows

1 To develop a new controller hardware structure,

2 To develop and simulate suitable robot control routines and

3 To implement these control techniques using the hardware developed in 1 ,  to

control an industrial robot

The C T R U  at Dublin City University has a P U M A  560 robot arm It consists 

o f six revolute joints Three relatively large links, which have a likeness to a human 

torso, upper arm and forearm, determine the end effector position The positions of 

these three links are changed using revolute joints which are often referred to as the 

Waist, Shoulder and Elbow joints The three secondary joints are concerned only with 

the position and orientation of the tool which is attached to the robot

From a control point o f view, the most significant problem lies in the positioning 

o f the tool, l e  the control of the three primary joints Problems arise from the effects

caused by relatively large sizes and masses o f these three joints These effects take

the form o f inertial, centripetal, conolis and gravitational coupling, and are responsible, 

m the mam part, for the nonlinear nature o f the control problem The need for an

accurate dynamic model is twofold

4
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1 It provides insight into the control problem and

2 It enables the designer to fully test controllers in simulation before the

implementation layer

This thesis develops a fully tested robot simulator package, which models the actual

robot dynamics This model was developed in conjunction with Jones [7] The design

and simulation o f the package is outlined in Chapter 2 Later chapters use this facility,

as a control design tool, to simulate the response o f various control techniques

1.4 Thesis Contributions

The development o f the robot simulator is not a mam topic of this thesis 

However, it was necessary to develop a robot simulation package to investigate the 

performance o f control routines There are two major sections m this thesis

1 The Control Simulation Section and

2 The Hardware Design and Implementation Section

In the control simulation section, a senes of control algorithms is developed and 

tested using the simulation facility These algorithms can be divided into three sections

1 Fixed Gam Algorithms

2 Adaptive Control Techniques and

3 Feedforward Strategies

In Chapter 7, the simulation section is evaluated under a series o f performance criteria

The hardware design section is also a major contribution of this thesis The upper 

and lower levels o f the existing Ummation control hardware are replaced with faster 

options This new design allows for a more flexible environment, where control 

routines can be easily implemented on the robot The design is user friendly because a 

personal computer becomes the upper level o f the robot structure

5
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The research in this thesis is organized as follows

Chapter 2 outlines the modelling procedure used to correctly represent the P U M A  560 

It then details the computer simulation o f this model, and gives a series of open-loop 

tests which are performed on the model

Chapter 3 deals with two topics, Kinematics and Path Planning The geometric solution 

to the Forward and Inverse Kinematics problem is outlined Several methods o f Path 

Planning are discussed, m particular the 4-3-4 and the Cubic Spline approaches

Chapter 4 is concerned with the topic of Fixed Parameter Control Algorithms 

Classical techniques such as PID, Lead-Lag and Optimal Control are investigated here, 

and their suitability for manipulator control is assessed The newer control method of 

Predictive Control is also used here, and two versions are tested on the simulator

Chapter 5 deals with Adaptive Control Firstly it details the parameter estimation 

technique o f Recursive Least Squares Adaptive control techniques are designed and 

implemented These routines range from PID, to M R A C , to Predictive Control and 

finally to the design o f a Self-Tuning Regulator These adaptive strategies should 

perform better than their fixed parameter versions

Chapter 6 outlines the technique of Feedforward Control, with special reference to 

Computed Torque Also, the incorporation o f feedforward and feedback control is 

discussed

Chapter 7  evaluates the control routines developed in Chapters 4, 5 and 6 Using a 

set o f performance criteria, these algorithms can be graded and a table o f ment 

formed

Chapter 8 is concerned with the development o f a new controller hardware structure It 

details the shortcomings o f the existing controller and deals with the new hardware 

design necessary for a more flexible environment To determine which control 

technique is best suited for manipulator use, the results of an identification performed 

on the P U M A  are used to further evaluate PID, STR  and Computed Torque

Chapter 9 summarizes what was achieved m the research It contains the achievements 

and shortcomings o f the project

1.5 Preview of Thesis

6



The PUMA 560 Dynamic Model and Computer Simulator

CHAPTER 2

THE PUMA 560 DYNAMIC MODEL AND COMPUTER SIMULATOR

This chapter is concerned with the development and computer simulation o f a 

dynamic model for the three primary joints o f a P U M A  560 industrial robot Firstly 

the Euler-Lagrangian formulation of the P U M A  560 equations o f motion, is outlined 

The motor dynamics for the first three links, are incorporated into the manipulator 

system equations usmg knowledge of the geanng ratios at each joint and the 

equivalent circuit model o f the motors Modelling the motors as first order systems 

results in a third order set of differential equations describing the complete P U M A  560 

dynamics

The final model has voltage rather than torque as inputs Although this is a 

comprehensive model for the P U M A  560 robot, no set o f equations can ever specify 

the dynamics o f a plant exactly

In order to facilitate computer simulation of the manipulator model, the set of  

third order differential equations are transformed to matnx form, and a state-space 

model results This allows for ease and clarity of simulation

Once the model simulator has been developed, several open-loop tests can be 

performed These simple tests are a quick method to validate the mam manipulator 

dynamics

7



The PUMA 560 Dynamic Model and Computer Simulator

2.1 Developing a Comprehensive Model for the P U M A  560 Robot

For senally connected open-loop kinematic chains [9], the problem of generating a 

comprehensive dynamic model remains a challenging one Numerous approaches have 

been applied to the modelling of robotic manipulators The most commonly used of 

these is the Euler-Langrangian (E-L) method

The Euler-Lagrangian formulation of the second order differential equations of 

motion for a manipulator with n degrees o f freedom can be written m the following 

format [4]

where,

^  = position o f joint l,

F j = torque acting on jomt i, 

la! = actuator inertia o f joint i,

D u = effective coupling o f jomt i,

D y = coupling inertia on i jomt due to joint j,

C jjj = centnpetal force on i due to joint j,

C y k  = coHohs force on joint i due to joints j  and k,

Gj = gravity loading o f jomt l,

Hj = coefficient o f friction for jomt i

The inertia, centnpetal, conolis and gravity terms have been identified by Bejczy 

[5] and are defined as follows

n n n

Fi = I D i j q i  + I a i qj  + 1 1  C l j k q j q k + Gx }+ Hj q,  

J=1 J=1 k=l

(2 1)

(2 2)

D, 2 = m2a2z 2S2 +
m3 [ (d 3X3 + a 3y 3 + a 3d3)S 23 +

( a 2y 3 ' ^3^3^ 23] (2 3)

D 13 m3 [ x 3d 3 + a 3y 3 + a 3d 3) S 23 - z 3d 3C 23] ( 2 . 4 )

8
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22 M k22zz + a22 + 2 a 2x 2) + 

m , [ ( 2 a 2a 3 + 2 a , x 3 ) C 3 + 2 a 2z 2S ,  +

k 2 3yy + a 22 + a 33 + 2 a 3x 3] (2 5)

D 23  — in3 [ ( a 2x 3 + a 2a 3 ) C 3 + a 2z 3S 3 +

2 a 3x 3 + a 2 3 + k 23 y y ] ( 2  6 )

D 33  = m3( k 2 3y y  + * 2 3 + 2 a 3x 3) (2 7 )

C- 112  = m2 22xx '  ^ 22yy '  a 2 2 '  2 a 2x 2) C 2S 2 +

1̂ 3 [k 2 3Xx(̂ " 2̂  2 + ^3^3 ‘ 2S2S3S23) + 
k 2 3 Z z ( 2 S 2S 3S 23  - C 2S 2 - C 3S 3) + 

x 3 ( - 2 a 2C 2S 23  + 4 a 3S 2S 3S 23  + 

a 2S 3 - 2 a 3C 2S 2 - 2 a 3C 3S 3) + 

z 3 ( a 2C 2C 23  - a 2S 2S 23  + 2 a 3C 2 23  - a 3) + 

a 2a 3S 3 ■ 2 a 2a 3C 2S 23  - a 2 2C 2S 2 +

2 a 2 3S 2S 3S 23  - a 2 3 ( C 2S 2 + C 3S 3)]  (2 8 )

31"- 3XX(^2^2 + ^3^3 ' 2S 2S 3S 2 3 ) +
k 2 3 Z z (2 S 2 S 3 S 2 3  - C 2 S 2  - S 3 C3) +

x 3 ( 4 a 3 S 2 S 3 S 2 3  ’ 2 a 3 C 2 S 3  - 2 a 3 C 3 S 3  -

a 2 C 2 S 2 3 ) + z 3 ( 2 a 3 C 2 2 3  + a 2 C 2 C 2 3  - a 3) +

2 a 2 3 S 2 S 3 S 2 3  - a 2 a 3 C 2 S 2 3  - a 2 3 C 2 S 2  - a 2 3 C 3 S 3] (2 9)

C 1 2 2 — m2 a 2z 2C 2 +

^ 3 3^ 3S 2 3 (^3X 3 a 3y 3 + a 3d 3) C 23] (2 10)

^ 1 2 3  — ^ 3 I ^ 3 Z 3 ^ 2 3  ( ^ 3 X 3 ^ 3 5 ^ 3  a 3 d 3 ) C 2 3 ] ( 2  1 1 )

^ 1 3 3  — *I*3 [ ^ 3Z 3^ 2 3  ( ^ 3X3 a 3y 3 + a 3d 3) C 23] (2 12)

C 2i 3 = 0 ( b e c a u s e  o f  g e n e r a l  PUMA g e o me t r y )  (2 13)

^ 2 2 3  — i M ( - a 2x 3 - a 2a 3) S 3 + a 2z 3C 3] (2 14)

^ 2 3 3  — m3 [ C - a 2X3 - a 2a 3) S 3 + a 2z 3C 3] (2 1 5)

G,  = 0 ( b e c a u s e  o f  g e n e r a l  PUMA 560 g e o me t r y )  (2 16)

9



G2 = m2g( x 2 + a 2)C2 -

^ 3 S ( X 3 ^ 2 3  Z 3 ^ 2 3  ® 3 ^  2 3 ^  2 ^  2 )

G3 — -m3g ( x 3C23 + z 3S 2  2 a 3C 23) (2 18)

The following shorthand notation is used above

S, = Sin(q,)
Cj = Cos(q,)
Sy = Sin(q! + qj)
Cy = Cos(qj + qj)

Using Newton’s second law of physics, the following rules apply

D i J  =  DJ 1

Cijk = Cikj
^ljk = 'Qcj 1 f ° r 1 >k Ĵ
Cjj j = 0  for 1 ĵ (2 19)

Consequently this gives the following relationships

^21 = ®12’ ^13 = ®31> ^32 = ^23’
^111 = -̂2 2 2 = ^333 = 0, C , 21 = C 112,

c =c c =c c = c13 1 113’ 132 221 212*
c =c c = c c = c2 3 1 '“ 2 1 3 ’  2 3 2 2 2 3 ’  ^ 3 2 1  ' “ 3 1 2 ’

C = C  C = C C = -C3 3 1 3 1 3 ’ 3 3 2 ' “ 3 2 3 ’ ^  2 1 1 ^ 1 1 2 ’

C = -C C = -C C = -C3 11 1 1 3 ’ 3 1 2  2 1 3 ’  3 2 2  ' “ 2 2 3  ’

C313 = C323 = C212 = 0  ( 2  2 0 )

The PUMA 560 Dynamic Model and Computer Simulator

The quantmes xlt y, and Zj are the Carthesian coordinates of the centre of mass 
of joint 1 referenced to the base of the robot. The quantity irij is the mass of joint 1 

and k2lxx, k^yy and k2lzz are the radii of gyration for jomt 1 The quantities d, 
and a, are the link twists and the link lengths The values of these geometric and
inertial parameters which relate to the three primary joints of the PUMA 560 are

listed in Table (2 1) and Table (2 2) These are the estimates obtained by Bejczy [5]
He arrived at these values by first taking detailed measurements of all link internal

components, then calculating their individual moments of inertia, and later getting the 
cumulative effect using the Parallel Axis Theorem, Goldstein [6]

10
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Table 2.1 PUMA 560 Inert ia l  Parameters

Link Centre of  Mass Mass Radius of  Gyration

1 x i yi si g s52/cm k21 XX k 2iyy k 21 Z Z

1 0 30 88 3 89 13 21 1816 3 151 93 1811 1

2 -32 89 0 20 38 22 8 595 7 1355 6 1513 6
3 -2 04 - 1 37 0 3 5 11 151 48 155 23 20 7

Table 2 .2  PUMA 560 Geometric Parameters
a 2(cm) a 3(cm) d 2(cm) d 3(cm)

43 18 1 91 15 05 43 31

From an examination of equation (2 1) one can see that the inputs to this model 
are joint torques, while the outputs are jomt positions, velocities and accelerations The 

inputs to the PUMA 560 are the actuator inputs needed to dnve its DC motors It is 
therefore necessary to incorporate the actuator dynamics into the overall equations of 

motion of the robot The denvation of the manipulator model m this fashion was 
performed in conjunction with Jones [7] The dc motors used to dnve the first three 

joints of the PUMA 560 are lOOWatt permanent magnet direct current servomotors 
Figure 21 shows a simple equivalent circuit model for the permanent magnet dc 

motor and lists the associated model parameters The model equanon can be denved 

using Kirchoffs voltage law as follows

Vj = Rj i j + Lj d i j + kj d(0| (2 21)
dt dt

The torque produced by a dc motor is proportional to the armature current of the dc 
motor

Fj = kj ( 2  2 2 )

where Ft is the torque expenenced at joint i

The joint position be can related to the motor position by the following equation

o>i = N! q! .(2  23)

where Nt is the geanng ratio of joint 1

11
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Substituting equations (2 22), (2 23) into equation (2 21) gives the following equation 

for joint voltage

t

The PUMA 560 Dynamic Model and Computer Simulator

t3 3 3
+ I  Dl j q i  + I a i qi  + 1 1  Cl j k qj qk }  kj  

j = l  j = l  k=l

(2 24)
V! = k^ N, d£i, + C Kl Fl + L,  d£, 3 / k ,

The quantity Ft is the derivative of the jomt torque and is 
given by

3
Fj = I  ( Djjqj + D^qj ) + Iaiqt

J=1

3 3
+ I  I  (CijkQj Qk + Cjjkqj qk + Ctj kqj qk) 

j = l  k=l

+ Gj + H1q1 (2 25)

The total model can then be wntten as

v i = ki N! qx + R! [ + Gj

3
+ Lj [ Gx + X (Djjqj + Dtjqj) + IaiQi 

J=1

3 3 t
+ I  I(Cljkqj qk + Cljkqjqk + Cljkqjqk) + y k,

j=lk=l

(2 26)

This is the third order model equation for each primary jomt of the PUMA 560

12
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2.2 Computer Simulation o f  the PUM A 560 Robot

The design and computer implementation o f the above manipulator model are 

discussed m this section The model is transformed into a state-space representation, 

with the highest order terms occumng first The lower order terms are calculated using 

the Runge-Kutta numerical integration technique

The simulator has three inputs (actuator voltage) and its outputs are jomt 

accelerations, velocities and positions The simulator is designed to aid in the

evaluation o f possible control algonthms and to decide their suitability for manipulator

control

To derive the state-space model, it is necessary to rewrite the fundamental 

manipulator model equation (2 26) in matrix form The following matrix and vector 

notation is used in this section, Anderson [8]

LMAT = D i a g o n a l ( L , / k t ,  L 2/ k t ,  L 3/ k *  )

RMAT = D i a g o n a l (  R ^ k } ,  R 2/ k * ,  R 3/ k |  )

HMAT = D i a g o n a l ( H , , H2 , H3 )

IMAT = D i a g o n a l ( I a i , I a 2 , I a3 )

KMAT = Di ag on a l  ( N, k ®, N 2k<$, N 3ke )

G = G r a v i t y  V e c t o r (  G , ,  G 2 , G 3 )

D  = matrix which contains all the effective and couplmg inertial terms,

D 1 = matrix which contains the centripetal and conolis forces experienced by joint 1,

D 2 = matrix which contains the centripetal and conolis forces experienced by joint 2,

D 3 = matrix which contains the centripetal and conolis forces experienced by joint 3

Hence equation (2 26) can be rewritten as

1I

"  <b '

V 2 = LMAT [ D + IMAT ] q 8

1--
--

-
< CO 1 .  .

( LMAT D + RMAT { D + IMAT } + HMAT +

13
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( q 4 .  q 5 * q 6 )  D 1
■s

q 7

LMAT
( q 4 > q 5 * q 6 )  D 2 q 8

( q 4 .  q s » q 6 )  D 3
-

.  q 9 .

( LMAT

+ LMAT

( q ? ,  qa,  q 9) D1 ( q4,  q s ,  q s )  D 1
( q ? ,  qa ,  q 9) D 2 + RMAT ( q 4 , q 5 , q e )  D 2
( q ? ,  q a ,  q s )  D 3 ( q 4 , q s ,  q e )  D 3

"  ( q 4 > q 5 * q 6 )  D 1 r q 41
( q 4 > q s * q 6 )  D 2

+ RMAT HMAT + KMATJ
q 5

( q 4 > qs > q 6 )  ^ 3 .  q  6 .

+ LMAT G + RMAT G (2 27)

The following quantities are defined to simplify the model equation

1 .  D = LMAT [ D + IMAT ]

2. E(q) =

LMAT

D + RMAT { D + IMAT } + HMAT +

( q 4 > qs > q 8 )
D 1

’  q 7  '

( q 4 .  q 5 » q 6 )
D2

q 8
+

( q 4 > q s . q 8 )
D 3

.  q 9 .

( LMAT

+ LMAT

( q 7 , q s ,  q 9) D 1 ( q 4 , q s ,  q s )  D 1
( q 7 ,  q 8 , q 9) D2 + RMAT ( q 4 , q s ,  qe)  D 2
( q 7 ,  qa ,  q 9) D 3 d ( q 4 , q s ,  q e )  D 3

’  ( q 4 .  q 5 > q 6 )  D 1  ’ r q 41
( q 4 ’  q s ’  q 8 )  ^ 2 + RMAT HMAT + KMATl

q 5

.  ( q 4 .  q 5 .  q 6 )  1 ) 3 . .  q 6 .

+ LMAT G + RMAT G

Hence the model equation can be written as

'  v, ■ "  q7 ‘

v2 = D q8
.  V3 . .  q9 .

+  E ( q )

..(2.28)

14
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Rearranging one gets

' q 7 '
=> qB = - D‘ 1 E(q) + D- 1 v 2

. q9 . . V3 . (2 29)

The following relationships apply from the basic laws of physics

q, = q* 
q 2 = q5 

q3 = q6

q4 = q 7 
q5 = q8 

q6 = q9

Hence the full ninth order comprehensive model for the first three joints of the 
PUMA 560 can be written as

‘  q i  ' q 4
'  0 0 0  '

q 2 q 5
0 0 0

q 3 q 6
0 0 0

q 4 q 7
0 0 0

X» cn =
q 8

+ 0 0 0

q G q 9
0 0 0

q 7

00cr -D* 1 P(q) D' 1

.  q 9 .

(2.30)
The state vector for the model is q e R9

q = [ qi q 2 q3 q4 qs qs q 7 qs q9 ]T

Note E(q) is a vector whose elements are dependent on the vector q and the 
manipulator parameters,

P(q) e R3.

15
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This vector is complex and requires considerable processor time to compute at each 
interval It is very nonlinear, and the sine and cosine functions are required to 

calculate the elements of the inertial, centripetal and conolis matrices Gravity terms 
are also a nonlinear element

D is a matrix whose elements are dependent upon the vector q and the 

manipulator parameters,

D e  R3X3
This matrix is derived from two static matrices and D, the inertial matrix which is 

dependent on the state vector ‘

To obtain the joint positions, velocities and accelerations it is necessary to apply 

some form of numerical integration technique to solve these differential equations 

From the point of accuracy, rather than speed of simulation, it was decided to use a 
classical fourth-order Runge-Kutta algorithm to integrate the states in the manipulator 

model equation An integration interval of 5msecs was chosen and gave sufficient 

accuracy The next section descnbes in detail the Runge-Kutta algorithm

The above state-space description of the PUMA 560 robot has actuator voltage as 

inputs and jomt acceleration, velocity and position as states/outputs From the model 
description one can see that this model is very nonlinear and highly coupled Later 

chapters in this thesis investigate a wide range of control techniques and evaluate their 

performance on the manipulator model to assess which are suitable for implementation 

on an actual robot

2.3 Implementation o f  4 ^  Order Runge-Kutta Integration Technique

Numerical integration techniques involve predicting the system states at time k, 
given the states at time k-1 and the present inputs to the system This section 

discusses the Runge-Kutta integration technique and why it was chosen in preference 
to other methods

The simplest numerical integration technique is the Euler Method The Euler 

Method approximates the curve x = f(t) by a polygon whose slope, at each time tj- is 

given by the tangent to the curve x = f(t) at It is a first order method with a 
truncation error per step of order h2 Errors occur because the slope of f(t) changes 
over the interval h A better approximation of the slope, over the interval, will result 
in a closer estimate of the function.

16
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The fourth order Runge-Kutta method provides a closer approximation of the 

functions’ slope over each interval by taking a weighted sum of the slopes about each 

point t Truncation errors in Runge-Kutta numerical methods are of the order of hn+1 
Runge-Kutta algorithms have the following desirable properties

1 the integration is self starting,

2 the step size can easily be changed between iterations,

3 no derivative evaluation is required,
4 algorithms have good stability characteristics,
5 technique can be applied to nonlinear systems

For the nth order equation written as 

x = f(x,t)

Xj = fj(x 1, x 2, xn, t) l<i<n,

the formula for advancing the solution one step is

xi,r+ 1 = xi,r + (*i, + 2(kl2 + kl3) + kl4)/6 

where,

xi,r+1 = xi(tr+i) = xi0o + (r+l)h)

kn = hf](x i ,r> x 2,r* xn,r> V)
kl2 = hfj(x1)r + 0 5k,, ,  xn)r + 0 51^,, t,.+ 0 5)

ki3 = hfi(x i,r + 05k, 2, Xĵ r + 05kn2, v+o 5)
ku  = hfi(x !,r + 0 5 k , 3, *iifr + 0 5kn3, tj.+ ,)

For the nth order system with an external input 

x = f(x,u,t)

x, = fj(x,, x 2, xn, u,, t) l<i<n,

the Runge-Kutta algorithm must be altered

17



If the system has an external input then the function must also be differentiated 

with respect to the input When the input is held constant over the interval then the 

partial derivatives with respect to the input will be zero giving no cause for adapting 

the standard formula Thus the input will be treated like a system state and the 

following solution applies

Xj = fj(x,, x 2, xn, Up t) l<i<n,

the formula for advancing the soluoon one step is 

xi,r+ 1 = xi,r + 0^i + 2(kl2 + kl3) + kl4)/6 

where,

The PUMA 560 Dynamic Model and Computer Simulator

xi,r+ 1 n

f

ii X

1
* + (r+l)h)

kn = hfi(x i,r, x 2,r> xn,r> ui,r> lr)

nCN hfiOCi.r + 0 5 k , ,, *n,r + 0 51^,, ih.j.+ o 5, tf+Q 5)

CO

II hfi(x i,r + 0 5k, 2, %,r + 0 5kfj2, Ui>r+0 5, 1f+"o 5)

II¿T hfi(x 1)r + 05k, 3, %,r + 05kn3, UijPf1> V+i)

When simulating the PUMA 560 model on a PC, a integration interval of 5msecs 

was chosen This step size gives sufficient accuracy and also does not over-burden the 

processor Larger values of step size are not suitable for simulation purposes because 

of a considerable reduction in accuracy of the system output at high velocity Also m 

a simulation environment model accuracy, rather than simulation speed is the priority

2.4 The Simplified Linear Decoupled Joint Models

To design simple linear controllers for the robot, it is usually necessary to have 

an approximate linear model of the system available, to base the design upon

Taking the torque equation (2 1),

n n n
Fj = X ^i j^i + 1 a i^i +  ̂ E Cijk^j^k + Gj + Hjqj

j = l  j = l  k= l

18
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if  the coupling and gravity terms are ignored then

F i  = I a i Q i  + Hl Ql  (2 3 1 )

F i = l a i Q i  + Ht q ! (2 32)

Substituting equations (2 31) and (2 32) into equation (224) gives

= L j l g j q j / k j  + [  R ^ a i  + L j Hj )  q i / k i

+ C k ? Nx k j  + R,Hj ] q,  , k \  (2 33)

This is a linear model for each o f three primary joints of the P U M A  560 robot. It 

ignores the nonlinear terms which are present m the comprehensive model, so there is 

no coupling or gravity terms present It can also be represented by the following 

transfer function

OOi  = ________h________
V ( s )  s 3 + a,  s 2 + a 2 s

where,

q = joint position, 

v = armature voltage,

b = k l / ( L t I a i )

ai = (Lj Hj + Rj Iai)/(Lj Iai ) 

a 2 = (R,  + k*  N, k i ) / ( L j  I a i )

Computing the coefficients o f the transfer function results in the following three 

models,

Linear model for Joint 1

S M  = ________6 8 7 . 1 0 5 8__________
V ( s )  s 3 + 333 4 6 s 2 + 1 1 2 1 9  45s
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Linear model for Joint 2

QLsI = ______ 225,9552________
V ( s )  s 3 + 333 4 7 s 2 + 6380 87s

Linear model for Joint 3

QÙÙ. = _________ 9 1 5 . 7 5 5 2 __________
V ( s )  s 3 + 333 5 8 s 2 + 12853 34s

These model are used extensively m the later control based chapters, when several 

different control techniques are investigated on the comprehensive model

2.5 Open-Loop Model Performance

The open-loop tests consist of supplying the dynamic model with different sets of 

constant input voltages to drive the joints These tests show the dominant dynamics of 

the model and also indicate the level of coupling that exists between joints The 

effects o f gravity can be seen when zero volts is applied to each o f the joint motors

Test la  Apply 10, 0 and 0 volts to joints 1, 2 and 3 respectively (see Fig 2 2a and 

Fig 2 2b)

112 Apply 0, 10 and 0 volts to joints 1, 2 and 3 respectively (see Fig 2 3a and 

Fig 2 3b)

lc  Apply 0, 0 and 10 volts to joints 1, 2 and 3 respectively (see Fig 2 4a and 

Fig 2 4b)

This senes of tests show the dominant dynamics and coupling between joints

Test 2a Apply 0, 0 and 0 volts to joints 1, 2 and 3 respectively (see Fig 2 5a and 

Fig 2 5b)

2h Apply V l h, V j h  and V 3h volts to joints 1, 2 and 3 respectively (see 

Fig 2 6a and Fig 2 6b)

Test 2a. shows the effect o f gravity on each joint and test 2b applies the correct 

voltage to hold the joints m the zero position These voltages were calculated from 

the manipulator model, given the robot parameters and the initial states
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2.6 Summary

This chapter is concerned with the development and computer simulation of a
dynamic model for the three primary joints of a PUMA 560 industrial robot The 

model combines a second order Euler-Lagrangian formulation of the PUMA 560 

equations of motion with the actuator dynamics In the case of the PUMA 560, a first 

order approximation of the permanent magnet DC motor drive dynamics was chosen, 
resulting m a set of third order differential equations for the manipulator

The simulation of the robot model is a mam topic of this chapter also A
description of how to simulate the PUMA 560 m state space format is given 

Different facilities exist within the simulator package which attempt to make the model 

a more realistic mirror of the physical system To denve the system state values, an 

integration technique is required A fourth order Runge-Kutta numerical integration
method was selected for the following reasons

1 small truncation error (of the order of h5),
2 ease of implementation on a digital computer,

3 suitability for systems with piecewise constant input.

Open-loop tests were performed on the robot model These tests consisted of
applying constants voltages to the three main joints to observe the coupling and the
mam dynamics of each joint, ìe  integrative actioa Also the effect of gravity is
shown
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Index to Graphs

□ Fig 2 2a Plot of Joint Positions versus Time with 10, 0 & 0 volt inputs to the

respective joints

□ Fig 2 2b Plot of Joint Velocities versus Time for the above test

□ Fig 2 3a Plot of Joint Positions versus Time with 0, 10 & 0 volt inputs to the

respective joints

□ Fig 2 3b Plot of Joint Velocities versus Time for the above test

□ Fig 2 4a Plot of Joint Positions versus Time with 0, 0 & 10 volt inputs to the

respective joints

□ Fig 2 4b Plot of Joint Velocities versus Time for the above test

□ Fig 2 5a Plot of Joint Positions versus Time with 0, 0 & 0 volt inputs to the

respective joints

□ Fig 2 5b Plot of Joint Velocities versus Time for the above test

□ Fig 2 6a Plot of Joint Positions versus Tune with V ^ j^ , V ^id  & V^hold vô

inputs to the respective joints

□ Fig 2 6b Plot of Joint Velocities versus Time for the above test
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- 3  V V A nrrrrrrm-

dfih
dt ò

iOj = motor p o s i t i o n  

R, = armature  

r e s i s t a n c e  

Lj = armature  

i n d u c t a n c e  

z j = armature cu r r e n t

k [  = v o l t a g e  c o n s t a n t  

kj  = to r qu e  c o n s t a n t  

V, = armature v o l t a g e

F i g .  2 . 1  The E q u iv a le n t  C i r c u i t  Uodel f o r  a Permanent DC 

Motor

Fig 2 2b
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C H A PT E R  3

ROBOT ARM KINEMATICS AND MANIPULATOR TRAJECTORY GENERATION

This chapter is concerned with the topics of robot kinematics and the generation 
of efficient manipulator trajectories These two topics are upper level tasks which are 
crucial for implementing real-time control Kinematics is concerned with transforming 

joint angles to determine the end-effector position, and also the inverse transform from 

hand position to joint angles Path planning is a mathematical technique, which joins 
the endpoints of a trajectory using polynomial functions of time to interpolate the 

desired path Several techniques exist for path planning, but only a discussion of the 

joint-interpolated trajectory method is given

3.1 Kinematics

Robot arm kinematics deals with the analysis of the geometry of motion of a 
robot arm with respect to a fixed reference coordinate system as a function of time 

without regard for the forces/moments that cause the motion [10] Thus, it deals with 

the analytic description of the spatial displacement of the robot as a function of tune, 
in particular the relations between the joint-variable space and the position and 

orientation of the end-effector of a robot arm This section addresses two fundamental 
questions of interest in robot kinematics [10]

1 For a given manipulator, given the joint angle vector q(t) = (q,(t), q2(t), qn(t))T 

and the geometric link parameters, where n is the number of degrees of freedom, what 

is the position and orientation of the end-effector of the manipulator with respect to a 
reference coordinate system?
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2 Given a desired position and orientation of the end-effector of the manipulator and 

the geometric link parameters with respect to a reference coordinate system, can the 
manipulator reach the desired prescribed manipulator hand position and orientation7 
And if it can, how many different manipulator configurations will satisfy the same

condition?

The first question is usually referred to as the direct kinematics (or forward) problem, 

while the second question is the inverse kinematics (or arm solution) problem Since 

the independent variables in a robot arm are the joint variable and a task is usually

stated in terms of the reference coordinate frame, the inverse kinematics problem is

used more frequently

31.1 The Direct Kinematics Problem

The direct kinematics problem can be reduced to finding a transformation matrix 

that relates the body-attached coordinate frame to a reference coordinate frame 

Denavit-Hartenberg [11] representation results in a 4x4 homogeneous transformation 

matrix representing each link’s coordinate system at the joint with respect to the 

previous link’s coordinate system Thus, through sequential transformations, the
end-effector expressed m the hand coordinates can be transformed and expressed in the 

base coordinates which make up the inertial frame of this dynamic system [12]

An orthonormal cartesian coordinate system (Xj, yj, Zj) can be established for 

each link at its jomt axis, where i = 1,2, n (where n = number of degrees of 
freedom) plus the base coordinate frame For a six-axis PUMA-like robot arm, seven 

coordmate frames exist, (x0,y0,z0), (x^y^z,), (x6,y6,z6)

Every coordinate frame is determined and established on the basis of three rules
[10]

1 The Zj., axis lies along the axis of motion of the i1*1 joint
2 The x, axis is normal to the Zj., axis, and pointing away from it

3 The yx axis completes the nght-handed coordinate system

The Denavit-Hartenberg [11] representation of a ngid link depends on four 

geometric parameters associated with each link. These four parameters completely 

describe any revolute or pnsmatic joint. These four parameters are defined as follows 
(see Fig 3 1) :
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is the joint angle from the Xj_, axis to the Xj axis about the z,., axis

d! is the distance from the ongrn of the (l-l) 1̂ coordmate frame to the intersection of 
the Zj., axis with the xx axis along the zj., axis

ax is the offset distance from the intersection of the z,., axis with the Xj axis to the 
ongin of the î 1 frame along the x, axis

Oi is the offset angle from the axis to the \  axis about the Xj axis

Once the coordinate system has been established for each link, a homogeneous
transformation matnx can easily be developed relating the î 1 coordinate frame to the 
(i-I)^1 coordinate frame The homogeneous matnx °Tj which specifies the location of 
the i^1 coordmate frame with respect to the base coordinate system is the chain
product of successive coordmate transformation matrices of 1' 1 Aj, and is expressed as

1
“Tj = n J ~1A| for i = 1 ,2 , n 

]=1

where

yi

0

Pi

1
( 3  1 )

[ xp y  ̂ Zj ] = orientation matnx of the 1th coordmate system established at link i 
with respect to the base coordinate system It is the upper left 3x3 partitioned matnx
of °Tl

pt = position vector which points from the ongm of the base coordinate system to the 
ongin of the i^ coordinate system It is the upper 3x1 partitioned matnx of ^  The 
general coordinate transformation matnx 1_ 1 A, can be wntten as

COS0 

sin 0 

0 

0

l

l

-cosctj s in0 j 

COSCCjCOS©! 

sinccj 

0

sinctj s in0 j 

■sinajcos©! 

cosaj 

0

ajcos©! 

a , s i n 0 , 

di 

1

(3 2)
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Specifically, for 1 = 6, the T matrix, T = °A6, specifies the position and onentation 

of the endpoint of the manipulator with respect to the base coordinate system This T 

matnx is often referred to as the Arm Matnx T can be wntten in the form

T =
y 6

o

Pe

1

n

0 0

a

0

P

1

(3 3)
where
n = normal vector of the hand 

s = sliding vector of the hand 

a = approach vector of the hand

p = position vector of the hand It points from the ongrn of the base coordinate 

system to the ongrn of the hand coordinate system, which is usually located at the 

centre point of the fully closed fingers

The direct kinematics solution of a six-link manipulator is, therefore, simply a 
matter of calculating T = °Ae by chain multiplying the six 1_1 Aj matrices and 

evaluating each element in the T matnx [10] The direct kinematics solution yields a 
unique T matnx for a given q = (q,, q2, q6)T and a given set of coordinate 

systems, where qj = 0j for a rotary joint and qj = dj for a pnsmatic joint

Having obtained all the coordinate transform matnces 1-1 Aj for a robot aim, the 

next task is to compute T efficiently Let T = T, T2 where T, = °A, 1A2 2A3 and
T 2 =  3A 4 <a 5 s A 6

For a PUMA 560 senes robot, T, is found to be

-S,

T, =

-̂1 2̂3

^1^23

-S 2 3

0

C,

0

0

^1^23

s , s 2 3

'2 3

a 2C,C2 + 3 3 0 , 0 2 3

- d 2S,

a 2S ,C 2 + a 3S ,C j 3 
+ d 2C,

_a2^2'a 3^23

(3 4)
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and the T2 matrix is found to be
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c 4C 5C g
- s4s 6

-C4CsS6
- s4ce

c4s5 d 6 -̂ 4 ^  5

S 4 ^  5 ^  6

+ C4S6
-S4C5S 6 
+ C4Cg

s4s 5 d 6^  4 ^  s

■SsC6 S 5S 6 C5

0 0 0

where Cy = cos(0!+0j) and Sy = sm(01+0j)

The arm matnx T for the PUMA robot arm is found to be

T = T, T2

nx sx ax Px

ny sy ay Py

nz sz az Pz

0 0 0 1

(3 6 )
where

nx = CJC^CC^Cg - S4S6) - S23S 5C6] - S , ( S 4C5CB + C4S6) 
ny = S,[C23(C4C5Ce - S4Se) - S23S5C6] + C1 (S4C5Ce + C4S6) 
nz = *^23(^CgC6 - S4S6) - C23SsC6

(3 7)

t_C23(C4C5Sg + S4Cg) + S23SsS6] - S,(-S4CsSe + C4Cg) 
S1[-C23(C4C5Sg + S4C6) + S23S5Sg] + C -̂S^gSg + C4C8)
^S^^CgSg + S4Cg) + ^23^5^6

(3 8 )

a X =  ^-1 ( ^ 2  3^  4 ^ 5  +  ^ 23^ 5) " ^ 1 ^ 4 ^ 5

ay = S^C^C^Sg + S23C5) + C ^ S g

aZ = "^23^4^5 ^23^5 (3 9)

d 6C 5+d4 

1

(3 5)
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P x  =  ^ 1 1 ^ 6 ( ^ 2 3 ^ 4 ^ 5  +  ^ 2 3 ^ s )  +  ^ 2 3 ^ 4  +  3 3 ^ 2 3  +  3  2 ^  2 1

S 1 (dBS4Ss + d2)
Py = S , [ d 6(C23C4S5 + S 23C5) + S 23d4 + a 3C23 + a 2C2] +

C, (d8S4S 5+ d 2)
Pz = ds (C23C5 - S23C4S5) + C23d4 - a 3S 23 - a 2S2

(3 10)

This is the solution to the direct kinematics problem [10]

3 1 2  The Inverse Kinematics Solution

This section represents a geometric approach to solving the inverse kinematics 

problem of six-link manipulators with rotary joints [10] An algebraic solution exists 

for the inverse solution also, [4], [5] and [13], but ambiguity exists m the solution. 
Based on the link coordinate systems and human arm geometry, various arm 

configurations of a PUMA-like robot can be identified with the assistance of three 

configuration indicators (ARM, ELBOW, and WRIST) - two associated with the 

solution of the first three joints and the other with the last three joints For a six-axis 

PUMA robot, there are four possible solutions to the first three joints and for each of 
these four solutions there are two possible solutions to the last three joints These 

configuration indicators allow one to determine one solution from the eight possible 

solutions These arm configuration indicators are prespecified by a user for finding the 

inverse solution

The solution is calculated in two stages First, a position vector pointing from the 

shoulder to the wrist is derived This is used to derive the solution of each of the 

first three joints by looking at the projection of the position vector onto the x}_, y[_, 
plane The last three joints are solved using the calculated joint solution from the first 
three joints, the orientation submatnces of °Tj and 1-1 A! (1 = 4,5,6), and the 
projection of the link coordinate frames onto the xl. 1yj.1 plane [10] From the 
geometry, one can easily find the aim solution consistently

Aim solution for the first three joints From the kinematics diagram of the PUMA 

robot arm in Fig 3 1, a position vector p is defined which points from the ongm of 
the shoulder coordinate system (x0,y0,z0) to the point where the last three joint axes 
intersect as

P = P6 - dea = (Px. Py. Pz)T (3 11)
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which corresponds to the position vector of °T4

'  Px ‘ ^ l ( a 2̂ 2 + 3 3 2̂ 3  ̂ d4^2s) d 2S, -

Py = S , ( a 2C2 + a 3 -̂23 ^4^23) d 2c,

.  Pz . d4^23 ' a 3^23 ‘ a2 2̂
(3 12)

Joint 1 solution If the position vector p is projected onto the x 0y 0 plane, the 

following equations are obtained for solving 0,

r = ( P x 2 + P y 2 - d 2 2 ) *

R = ( P x 2 + P y 2 ) *  

sin<D = py/R 
cosí» = px/R 

s in0 i = s in ( 0  - a)
cos0i = cos(<D - a) (3 13)

Therefore

0, = t a n ' 1

= t a n ' 1

sin©, -Jt < 0, <71
C O S 0 ,

-ARM Py( pX2 + py2 d 2 2 - pxd .

-ARM px ( px 2 + py * d 2 2  ) *  +  p y d  2  a

( 3  1 4 )

Joint 2 solution The position vector p is projected onto the x,y,  plane. Four 
different arm configurations exist From table (31), 02 can be expressed m one 
equation for different arm and elbow configurations using the ARM and FT ROW 
indicators as

0 2 = a + (ARM ELBOW) |5 (3 15)
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Table 3.1 Arm Configurations for lo in t  2___________________

Arm Configurations e 2 ARM ELBOW ARM.EU

Left and Above Arm a-p - 1 +1 - 1

Left and Below Arm a+p - 1 - 1 +1

Right and Above Arm a+p +1 +1 +1

Right and Below Arm a-p +1 - 1 - 1

From the arm geometry, one obtains

R = ( Px2 + Py2 + Pz2 - d2 2 ) i  
r = ( Px2 + Py2 - <V )*

sina = -pz /R
cosa = -ARM r/R
cosP = a 2 2 + R2 - (d4 2 + a32)

2 a 2R

sinp = ( 1 - cos2p (3 16)

Getting the sine and cosine functions of 02 

s in0 2 = sin(a + ARM ELBOW P)
cos02 = cos(a + ARM ELBOW P) (3 17)

Thus, the solution for 0, is

0 2 = t an ' 1f s in0 .
cos0

-71 < 0 2 < K

(3 18)

Joint 3 solution For joint 3, the position vector p is projected onto the x2y 
From the arm geometiy, the following equations are obtained for 0 3

R = ( Px2 + Py2 + Pz2 ' d2 2 )*

cos$ = a 2 2 + (d4 2 + a 32) - R2 

2 a2 (d4 2 + a32) i

2 plane

sinO = ARM ELBOW (1 - co s20)*
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sinji =

(d42 + a 32)*

cosP = I a3 1
(d4 2 + a , 2) i (3 19)

From table (3 2), 0 3 can be expressed in one equation for different arm configurations

0 3 = 0 - P (3 20)

Arm Configurations 03 ARM ELBOW ARM.ELBOW

Left and Above Arm <D-P -1 +1 -1

Left and Below Arm <D-P -1 -1 +1
Right and Above Arm <D-p +1 +1 +1
Right and Below Arm <D-p +1 -1 -1

Again, obtaining the sine and cosine functions of 0 3 gives

sin0^ = sin(<I> - P) 

c o s0 3 = cos(i> - p) (3 21)

Thus, the solution for 0 , is

0 3 = tan-1 s in 0 ;

COS0.

-71 < 0 3 < 71

(3 22)

Arm solution for the last three joints Knowing the first three joint angles, °T3 
which is used extensively m the solution of the last three joints, can be evaluated 

The solution to the last three joints of a PUMA robot arm can be found by setting 
these joints to meet the following cntena

1 Set joint 4 such that a rotation about joint 5 will align the axis of motion of jomt
6 with the given approach vector

2 Set joint 5 to align the axis of motion of joint 6 with the approach vector

3 Set joint 6 to align the given onentation vector (or sliding vector or y6) and 

normal vector
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Joint 4 solution Starting with the assumption that the vector cross product (z x a) 
has a positive sign, define an orientation indicator Q as

0 the degenerate case 1 e z 3 is paral lel  to a
a = s y 5 i f  s y 5 * 0

n y 5 i f  s y 5 = 0 (3 23)

The degenerate case happens when the axes of rotation for joints 4 and 6 are parallel 
Looking at the projection of the coordinate frame (x4,y4,z4) on the x3y3 plane the 
following results

s in04 = -M ( z 4 x 3)
cos04 = M ( z 4 y 3) (3 24)

where x 3 and y3 are the x and y column vectors of °T3, respectively, M = 
WRIST sign(fl)

Thus the solution for 04 with the orientation and WRIST indicators is

Robot Arm Kinematics and Manipulator Trajectory Generation

= tan'1 sin04 -7C < 04 < 7C
cos04

= tan"1 M (C,ay - S,ax)
M (C1C23ax + S,C23ay - S23az )

(3 25)

If the degenerate case occurs, any convement value may be chosen for 04 as long as 
the orientation of the wrist is satisfied

Joint 5 solution To find 05, the criterion that aligns the axis of rotation of joint 6 
with the approach vector (or a = z5) is used Looking at the projection of the 
coordmate frame (x5,y5,z5) on the x4y4 plane, it can be shown that the following are 
true

s in05 = a x 4

cos05 = -(a y4) (3 26)

where x4 and y4 are the x and y column vectors of °T4, respectively, and a is the 
approach vector Thus the solution for 05 is
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0 C = tan' sin0,

COS0

-  tan"1 (C1C23C4-S 1S4)ax + (S,C23C4+C,S4)ay -C4S 23az

CiS23ax + S 1S 23ay + C23az

(3 27)

If 0 s is approximately zero, then the degenerate case occurs

Joint 6 solution The orientation of the gnpper is aligned to ease picking up the 

object The criterion for domg this is to set s = y6 Looking at the projection of the 

hand coordinate frame (n,s,a) on the x5y5 plane, it can be shown that the following 

are true

s in 0 e = n y 5
c o s0 6 = s y 5 (3 28)

where y 5 is the column vector of °TS and n and s are the normal and sliding 

vectors of °T6, respectively Thus, the solution for 0 8 is

0.  = tan"1f s in 0 6

cos0e
= t a n ' 1 (-S,C4-C1C23S4)nx + (C1C4-S,C23S4)ny + S4S 23nz

^(-S1C4-C1C23S4) s x + (C,C4-S 1C23S4) s y + S4S 23sz
(3 29)

The above derivation of the inverse kinematics solution of a PUMA robot arm is 
based on the geometric interpretation of the position of the endpoint of link three and 
the hand (or tool) orientation requirement There is one pitfall m the above derivation 
for 0 4, 0 5 and 0e The criterion for setting the axis of motion of joint five equal to 
the cross product of z3 and a may not be valid when sm05 is approximately zero, 
which means 0 5 is approximately zero In this case, the manipulator becomes 
degenerate with both the axis of motion of joints four and six aligned In this state, 
only the sum of 04 and 06 is significant.

In summary, there are eight solutions to the inverse kinematics problem of a 

six-joint PUMA-like robot arm The first three-joints solution (0,, 0 2, 0 3) position 

the arm while the last three-joint solution (04, 05, 0 6), provides appropriate onentaüon 

for the hand There are four solutions for the first three-joint solutions - two for the 
nght shoulder arm configuration and two for the left shoulder arm configuration

35



Robot Arm Kinematics and Manipulator Trajectory Generation

32  Planning of Manipulator trajectories

Having already discussed the kinematics of a senal link manipulator, the 
generation of suitable trajectories is discussed here It is assumed that there are no 

obstacles in the path which must be traversed (no obstacle constraints) This section 

focuses attention on the various trajectory planning schemes for obstacle-free motion

Trajectory planning schemes generally interpolate or approximate the desired path 

by a class of polynomial functions and generate a sequence of time based control 
setpomts for the control of the manipulator from the initial location to its destinatioa 

Path endpoints can be specified either m jomt coordinates or in cartesian coordinates 

However, they are usually specified in cartesian coordinates because it is easier to 

visualize the correct end-effector configurations m cartesian coordinates than in joint 

coordmates

Quite frequently, there exists a number of possible trajectories between the two 
given endpoints For example, one may want to move the manipulator along a 

straight-line path that connects the endpoints (straight-line trajectory), or to move the 

manipulator along a smooth, polynomial trajectory that satisfies the position and 

orientation constraints at both endpoints (jourt'^terpolated trajectory) In this section 

only the latter is considered Simple trajectory planning that specifies path constraints 

is discussed

To servo a manipulator, it is required that its robot aim’s configuration at both 

the initial and final locations must be specified before the motion trajectory is planned 

In planning a joint-inteipolated motion trajectory for a robot arm, Paul [14] showed
that the following considerations are of interest

1 When picking up an object, the motion of the hand must be directed away from 
an object, otherwise the hand may crash into the supporting surface of the object

2 If the departure velocity (lift-off point) is specified along the normal vector to the 
surface out from the initial position, and if the hand is required to pass through this 
position, then an admissible departure motion is attained. If the time to reach this

position could be specified, then the speed at which the object is to be lifted can be
controlled

3 The same set of lift-off requirements for the arm motion is also true for the
set-down point of the final position motion so that the correct approach direction can
be obtained and controlled
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4 From the above, one can see that there are four positions for each arm motion 

initial, lift-off, set-down and final (see Fig 3 2)

5 Position Constraints
a Initial position velocity and acceleration are given (normally zero)
b Lift-off position contmuous motion for intermediate points
c Set-down position same as lift-off position
d Final position velocity and acceleration are given (normally zero)

6 In addition to these constraints, the extrema of all the jomt trajectories must be

within the physical and geometric limits

7 Time Considerations
a Initial and final trajectory segments time is based on the rate of approach of the 

hand to and from the surface and is some fixed constant based on the charactenstics 
of the jomt motors
b Intermediate points or midtrajectory segment time is based on the maximum

velocity and acceleration of the joints, and the maximum of these times is used (le 

the maximum time of the slowest jomt is used for normalization)

Based on these considerations, one is concerned with selecting a class of polynomial 
functions of degree n or less such that the required jomt position, velocity and 

acceleration at these knot points (initial, lift-off, set-down and final position) are

satisfied, and the joint position, velocity and acceleration are continuous on the entire 

trajectory time interval One approach is to specify a seventh-degree polynomial for 
each jomt i,

q i ( t )  = a 7t 7 + a 6t 6 + a st 5 + a4t 4 + a 3t 3 + a 2t 2 + a , t  + a 0
(3 30)

where the unknown coefficients aj can be determined from the known positions and 

continuity conditions However, the use of such a high-degree polynomial to 
interpolate the given knot points may not be satisfactory It is difficult to find its 

extrema and it tends to have extraneous motion [10] An alternative approach is to 

split the entire jomt trajectory into several trajectory segments so that the different 
interpolating polynomials of a lower degree can be used to interpolate in each 

trajectory segment There are different ways a joint trajectory can be split, and each 
method possesses different properties The most common methods are the following
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1. 4-3-4 Trajectory Each joint has the following three trajectory segments the first 

segment is a fourth-degree polynomial specifying the trajectory from the initial position 

to the lift-off position The second trajectory segment (or midtrajectory segment) is a 

third-degree polynomial specifying the trajectory from the lift-off to the set-down 

position The last trajectory segment is a fourth-degree polynomial specifying the 

trajectory from the set-down position to the final position

2. 3-5-3 Trajectory Same as the 4-3-4 trajectory, but this uses polynomials of 

different degrees for each segment a third-degree polynomial for the first segment, a 

fifth-degree polynomial for the second segment, and a third-degree polynomial for the 

last segment

3. 5-Cubic Trajectory Cubic spline functions of third-degree polynomials for five 

trajectory segments are used

In the next sections, a detailed derivation for generating 4-3-4 and Cubic Spline 

trajectories is given Note the calculation of a 3-5-3 trajectory is very similar to the 

4-3-4 method

32.1 Calculation o f a 4-3-4 Trajectory

Since N  jomt trajectories are to be determined in each trajectory segment it is

convenient to introduce a normalized tune variable, t e  [0,1], which allows one to

treat the equations o f each segment for each joint angle in the same way, with time 

varying from t = 0 (initial time for all trajectory segments) to t = 1 (final time for

all trajectory segments) Let us define the following variables

t normalized time variable, t e  [0,1] 

x real time m seconds

Tj real time at the end o f the i^1 trajectory segment 

ti = T j-tj., real tune to travel through the i^1 segment

t = t - T i . ,  , x e [T j _, , T j ]  , t 6 [ 0 , 1 ]

* i - * i - ,

The trajectory consists of the polynomial sequences, hj(t), which together form the 

trajectory for joint j The polynomial equations for each joint variable in each 

trajectory segment expressed in normalized time are .
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h ., ( t ) = a 14t 4 + a, 3t 3 + a, 2t 2 + a , , t + a 10 (1 st segment)
(3 31)

h 2( t )  = a23t 3 + a 22t 2 + a 21t + a 20 (2nd segment)
(3 32)

hn ( t )  = an4t 4 + an3t 3 + an2t 2 + an i t + ano ( la s t  segment)

(3 33)

The subscript of each polynomial equation indicates the segment number, and n 
indicates the last trajectory segment The unknown coefficient aj, indicates the î 1 
coefficient for the j trajectory segment of a joint segment The boundary conditions 
that this set of joint trajectory segment polynomials must satisfy are [10]

1 Initial position = 0O = 0(to)
2 Magnitude of initial velocity = v0 (normally zero)
3 Magnitude of initial acceleration = a0 (normally zero)
4 Lift-off = 0, = 9(t,)

5 Conünuity in posidon at t, [îe Git,") = 0(t,+)]

6 Continuity in velocity at t, [îe v(t,") = v(t,+)]
7 Continuity in acceleration at t, [îe a(t,') = a(t,+)]
8 Set-down position = 02 = 0(t2)

9 Continuity in position at t2 [îe 0(t2") = 0(t2+)]
10 Continuity m velocity at t2 [îe v(t2") = v(t2+)]

11 Continuity in acceleration at t2 [îe a(t2") = a(t2+)]
12 Final position = 0f = 0(tf)

13 Magnitude of final velocity = vf (normally zero)

14 Magnitude of final acceleration = af (normally zero)

The boundary conditions for the 4-3-4 joint trajectory are shown in Fig 3 3 The 
first and second derivatives of these polynomial equations with respect to real tune x 
can be written as

V j ( t )  = d h ^ t )  l = 1 ,2,n
dx

= I  d h , ( t )  = 1  h j ( t ) (3 34)
t ! dX t !

and

39



aj ( t )  = l i i M t )  1 = 1 ’2 >n
d t 2

= 1 dihïCt) = 1 h j ( t )  (3 35)
t j 2 dx2 t j 2

For the first trajectory segment, the governing polynomial equation is of fourth degree

h ^ t )  = a , 4t 4 + a13t 3 + a12t 2 + a , , t  + a , 0 (3 36)

From equations (3 36) and (3 37), its first two derivatives with respect to real time
are

v , ( t )  = 4 a , 4t 3 + 3a13t 2 + 2a12t + a , ,  (3 37)

and

a , ( t )  = 12a,4t 2 + 6a13t + 2 a , 2 (3 38)

~  ~ 2

1 For t = 0 (at the initial position of this trajectory segment) Satisfying the boundary 
conditions at this position leads to

a l o = 0 o (3 39)
v 0 = a , , / t , (3 40)

which gives

a , i  = V o t ,  (3 4 1 )

and

ao = 2 a , 2/ t , 2 (3 42)

which yields

a ,2 = *a0t , 2 (3 43)

With these unknowns determined, equation (3 36) can be rewritten as
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h,(t) = a , 4t4 + a13t3 + (¿aot, 2)t2 + (v0t,)t + 0 O
(3 44)

2 For t = 1 (at the final position of this trajectory segment) At this position, the 
requirements that the interpolating polynomial must pass through the position exactly is 
relaxed The only requirement here, is that the velocity and acceleration at this 
position have to be continuous with the velocity and acceleration, respectively, at the 
beginning of the next trajectory segment The velocity and acceleration at this position 
are

Vi (1) = 4a, 4 + 3a13 + a , 0t , 2 + v 0t,  (3 45)

t,

a , (1) = 12a,4 + 6 a , 3 + a01, 2 (3 46)

t ?

For the second trajectory segment, the governing polynomial equation is of the 
third degree

h2(t) -  a23t3 + a22t2 + a21t + a20
(3 47)

1 For t = 0 (at the lift-off position) Using equations (3 34) and (3 35), the velocity 
and acceleration at this point are, respectively,

a 2o = 0 2 (3 48)
v, = a2, / t 2 (3 49)

which gives,

a 2, = v , 12 (3 50)

and

a i = 2a22/ t 22 (3 51)

which yields
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a22 = ¿a,t22 (3 52)
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Since the velocity and acceleration at this position must be continuous with the 
velocity and acceleration at the end of the previous trajectory segment respectively, this 
gives

MO) = M l )  (3 53)
t ,

and

h2( 0 ) = h 1( l )  (3 54)

t 22 V

which, respectively leads to

■a2i + 4a 14 + 3a, 3 + a 0t . ,2 + v 0t ,  = 0  (3 55)
12 t , t , t , t ,

and

*2a22 + I2a14 + 6a13 + a 0t , 2 = 0 (3 56)
t 22 t , 2 t , 2 t , 2

2 For t = 1 (at the set-down position) Again the velocity and acceleration at this 
position must be continuous with the velocity and acceleration at the beginning of the 
next trajectory segment The velocity and acceleration at this position are obtained, 
respectively, as

h 2( l )  — a23 + a22 + a2i + a 2o (3 57)
v 2( l )  = 3a23 + 2a22 + a21 (3 58)

* 2

and

a2( l )  = 6a23 + 2a22 (3 59)

t ?

For the last trajectory segment, the governing polynomial equation is of fourth 
degree

hn( t )  = an4t 4 + an3t 3 + an2t 2 + an ,t  + ano (3 60)
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Substituting t = t-1 into t in the above equation, the normalized time t has been
shifted from t g  [0,1] to t  e  [-1,0] Then equation (3 60) becomes

hn(t) = an4-i-4 + an 3-t-3 + an 2-t-2 + ani-t- + ano (3 61)

Usmg equations (3 34) and (3 35), its first and second order derivatives with respect to
real time are
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Vn(l) — 4an4l 3 + 3anaX2 + 2an2i  + ani (3 62)

and
l n

an( l )  -  12an4l 2 + 63^3!. + 2an2 (3 63)

*n2

1 For I = 0 (at the final position of this position segment) Sansfymg the boundary 
conditions at this final position of the trajectory, one obtains

hn(0) = 8 f (3 64)

v f = am / t n  (3 65)

which gives

am = vftn (3 6 6 )

and

af = 2anz/ t n 2 (3 67)

which yields

an 2 = ¿af t n 2 (3 6 8 )

2 For t = -1 (at the starting position of this trajectory segment). Satisfying the 
boundary conditions at this position, one has, at the set-down position .

hn(- l )  = an4  - an3 + *af t n 2 - v f tn + 0f = 0 2(1) (3.69)

and
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h n ( - l )  ~ " 4 an4 + 3ans  - a f t n 2 + V f t n  (3 70)

*n

and

hn ( - l )  = 12an4 - 6an3 + a f t n 2 (3 7 1 )

t n 2 U ?

The velocity and acceleration condnuity conditions at this set-down point lead to the 

following equations

4 a n 4 - 3 a n3+ a f t n 2- V f t n + 3 a 23 + 2 a 22 + a 21 = q (3 7 2)

tn 12 ^ 2 ^ 2

and

- 1 2 a n4+6an 3 - a f t n 2 + 6 a 23 + 2 a 22 = q (3 7 3)

~ 2 ~ 2

The difference o f joint angles between successive trajectory segments can be found to 

be

8 , = 0, - 0 O = 11, ( 1 ) - h , (0 ) = a 14 + a ,  3 + ¿ a ^ , 2 + v 0t ,

(3 7 4)

8 2 = 0 2 - 0,  = h 2( l )  - h 2(0) = a 23 + a 22 + a 21 (3 7 5 )

-  ®f ■ 0 2 -  hn (0) - hn ( - l )  -  - a n4 + an3 - | a f t n 2 + v f t n

(3 7 6)

A ll the unknown coefficients o f the trajectory polynomial equations can be 

determined simultaneously solving equations (3 55), (3 56), (3 72), (3 73), (3 74), (3 75), 

and (3 76) Rewriting these equations in matnx vector notation, one obtains

where

y = Cx .(3  77)
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y = ( S i - ¿a0t , a- v0t , ,  -a0t , - v0, -a0, 5 2, -af tn+vf)
af . 5n+ |a f t n 2 -vf tn)T

(3 78)
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1 1 0 0 0 0 0

3 / t , 4 / t , - l / t 2 0 0 0 0

6 / V 1 2 / t , 2 0 -2 / t  22 0 0 0

0 0 1 1 1 0 0

0 0 l / t 2 2 / t  2 3/ t  2 - 3 / tn 4/t,

0 0 0 2 / 1 2 2 6 / t  2 2 6 / t n 2 - 1 2 / tn

0 0 0 0 0 1 -1

(3 79)

and

x = ( a 1 3 » a 14, a 21, a22, a 23, an3, ajj4)T 80)

Solution to the problem is given by

x = C-’y (3 81)

The structure of the matnx C makes it easy to compute the unknown coefficients 
and the inverse value of C always exists if the time intervals tj, i = 1 , 2, n are
positive values Solving equation (3 81), all the coefficients for the polynomial
equations for the joint trajectory segments for jomt j, are obtained

The calculation of a 3-5-3 trajectory is very similar to this solution, and it is
trivial to discuss it further

3 2 2  The Cubic Spline technique

The interpolation of a given function by a set of cubic polynomials, preserving
continuity in the first and second derivatives at the interpolation points is known as
cubic spline functions. The degree of approximation and smoothness that can be
achieved is relatively good In general, a spline curve is a polynomial of degree k
with continuity of derivative of order k-1, at the interpolation points Cubic splines 
offer several advantages First it is the lowest degree polynomial function that allows
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continuity in velocity and acceleration Secondly, low-degnee polynomials reduce the 

effort of computations and the possibility of numerical instabilities [10]

The general equation of five-cubic polynomials for each jomt trajectory segment

is

hj (t ) = aj 3 t 3 + aj 2 t 2 + a_j, t + a0 j = l , 2 , 3 , 4 , n
(3 82)

with Tj_, < t  < tj and t e  [0,1] The unknown coefficient indicates the î 1 

coefficient for joint j trajectory segment and n indicates the last trajectory segment

In using five-cubic polynomial interpolation, one needs to have five trajectory 

segments and six interpolation points However, from the previous discussion, only four 

positions for interpolation exist Thus, two extra interpolation points must be selected 

to provide enough boundary conditions for solving the unknown coefficients in the
polynomial sequences These two extra knot points are chosen between lift-off and
set-down positions It is not necessary to know these locations exactly The boundary 

conditions for a five-cubic joint trajectory are shown in Fig 3 4

The first and second derivatives of the polynomials with respect to real time
are given by

Vj ( t ) = hj ( t )  = 3aj 3 t 2 + 2aj 2 t + a ^  (3 83)

and

aj ( t )  = hj ( t )  = 6aj 3 t + 3aj 2 (3 84)

where tj is the real time required to travel through the j^1 trajectory segment Given 
the positions, velocities and accelerations at the initial and final positions, the 

polynomial equations for the initial and final trajectory segments [ h, (t) and 1^(0 ] 

are completely determined Once these polynomial equations are calculated, h2(t), h3(t) 

and h4(t) can be determined using the position constraints and continuity conditions

Because the denvation of the solution to the Cubic Spline trajectory is similar to 

the 4-3-4 technique, a detailed discussion of the denvation of this technique is not 
included, only the solution to the problem is given here. The coefficients for five 

polynomial segments are found using the boundary conditions, position constraints and 
continuity conditions
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For the first trajectory segment, the governing polynomial equation is

h ^ t )  = a 1 3 t 3  + a 1 2 t 2  + a „ t  + a 1 0  (3 85)

where

aio =
ai 1 = V 0 1
a i 2 = i ao^12
a i3  = 5 1 - V i  - i V i 2 and Sj = e ,  - 0 ! _ , (3  8 6 )

For the last trajectory segment, the solution for the unknown coefficients is

ano =
an i = 38n - 2 v f t n + | a f t n 2  

an 2  = -3 5 n + 3 v f t n - a f t n 2

an 3  = §n - v f*n  + i a f t n 2  whe r e  8 n = 8 f  - 0 4  (3  87)

Using the solution for the first and last trajectory segments, the solution to the

remaining three segments can be found

The solution to these segments is given by the following .

a 2 0  “ (3 8 8 a)

a 2 1  =  V , t 2 (3 8 8 b )

a 2 2  = i a i t  2 2 (3 8 8 c )

a 3 0 = (3 89a)

a 3 1 = V 2 t  3 (3 89b)

a 3 2 =  ¿ a 2 t 3 2 (3 8 9 c )

a 4 0 = ®3 (3 9 0 a )

a 4  1 — V 3  t 4 (3 90b)

a  4  2 — ^a 3 t  4  2 (3 9 0 c )

a1 3  coefficient is calculated as follows [ 1 0 ] :
i

a 2 3  = t 2 2 x , / D (3 91 a )

a 3 3 = t 3 2X 2/D (3 91b)

a  4  3  =  t 4 2 x 3 / D (3 9 1 c )
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with

x, = k , ( u - 1 2) + k 2( t 42-d) - k 3[ ( u - t 4)d + t 42( t 4- t 2)]
(3 92a)

x 2 = -k1(u+t3) + k2( c - t 42) + k 3[ ( u - t 4)c + t 42( u - t 2)]
(3 92b)

x 3 = k , ( u - t 4) + k2(d-c) + k3[ ( t 4- t 2)c - d ( u - t 2)]
(3 92c)

D = u ( u - t 2) ( u - t 4) (3 93)
u = t 2 + t 3 + t 4 (3 94)

k, = 04 - 0, - v ,u  - i a , u 2 (3 95a)

k 2 = v 4 - v i - a ,u - J(a4 - a , )u  (3 95b)
3

k 3 = a4 - a, (3 95c)

c = 3u2 - 3ut2 + t 22 (3 96)

d = 3 t 42 + 3 1314 + t 32 (3 97)

Five-cubic polynomial equations can be uniquely determined to satisfy all the
position constraints and continuity conditions given the initial, the lift-off, the set-down,
and the final positions, as well as the time to travel each trajectory tj

3.3 Summary

Both direct and indirect kinematics are discussed m this chapter The parameters 
of robot arm links and joints are defined and a 4x4 homogeneous transformation 
matnx is introduced to describe the location of a link with respect to a fixed 

coordinate frame The forward kinematic equations for a six-axis PUMA like robot are 
derived

The inverse kinematics problem is solved using a geometric approach, with the 

assistance of three arm configuration indicators (ARM, ELBOW and WRIST) The 

validity of the forward and inverse kinematics solution was verified by computer 
simulation The geometric approach, with appropriate modification and adjustment, can 

be generalized to other simple industrial robots with rotary joints.
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The generation of efficient trajectories for manipulator control is discussed in 
detail also Joint-interpolated trajectories are discussed with special emphasis on the 
4-3-4 and the Cubic Spline techniques Software programs were developed to 
implement the solution to these schemes, so that path generation could be achieved 
quickly and efficiently
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PUMA robot aim  link coordinate parameters

Joint i ». d , Joint range

1 90 - 9 0 0 0 -1 6 0  to +160

2 0 0 431 8 mm 149 09 mm -2 2 5  to 45

3 90 90 - 2 0  32 mm 0 - 4 5  to 225

4* 0 -9 0 0 433 t t l  mm -1 1 0  to 170

5 0 90 0 0 -1 0 0  to 100

6 0 0 o 56 25 mm -2 6 6  to 266

Fig. 3.1 Establishing link coordinate systems for a PUMA robot

Joint I

Fig. 3.2 Position conditions for a joint trajectory
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Fig. 3.3 Boundary conditions for a 4-3-4 joint trajectory

git)

Fig. 3.4 Boundary conditions for a 5-cubic joint trajectory
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Fixed Parameter Linear Control Techniques

C H A PT E R  4

FIXED PARAMETER LINEAR CONTROL TECHNIQUES

In this chapter several linear control techniques are investigated Each technique is 
applied to the nonlinear manipulator model developed m Chapter 2 and evaluated 

according to its performance m a simulation environment The techniques presented 

here were chosen as a suitable representation of the control methods available in this 

area Their suitability for manipulator control is determined here, and the most suitable 

routine is chosen from a set of performance criteria

The results here are also influential in later chapters The choice of adaptive 

control algorithms is determined partially by the performance of their fixed parameter 

versions This chapter also gives an insight into the difficulty of robot control due to 

the high degree of nonlineanty present in the system and shows why complex control 
algorithms are required for high precision accuracy in the control action

The existing Ummation system implements a PID control strategy The control 
gains are detuned to give a stable performance over the full operating range of the 
robot

4.1 Digital PID Control Techniques

For many control applications, it is sufficient to use a standard PID-controller In 

this section, different ways to implement digital PID-controllers are discussed, together 

with some operational aspects In the continuous time domain, the equation for a PID 
controller is [8]
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u ( t )  = Kg [ e ( t )  + 1 [e( t ) dt + ¿£.(t) ]
T , 0 dt (4 1)

where,
Kg = gain factor,

Tj = integral coefficient,

Td = differential coefficient

The above equation can be written m the complex frequency domain as

G(S) = Kg [ 1 + Td s + __L_ ]
T, s (4 2)

This type of PID-controller is called a positive form because the total output is 
calculated from the corresponding control equatioa If the change in the control signal, 
^u(k), is computed instead, then this type of controller is called a velocity, or 

incremental form One drawback of the incremental algorithm is that it cannot operate 

m P- or PD-mode [15]

There are many ways to change the structure of the textbook PID-controller 

Fig 4 1 shows the different PID-structures, which can be used in both continuous and

discrete time The structure in Fig 4 lb has the advantage that the controller does not
give a large control signal at step changes in the reference signal This is the

structure of the controller seen most often in the literature The ’set-pomt-on-I-only’ 
controller m Fig 4 lc, is less commonly seea The filter for the derivative part can be
used in different ways. It is also possible to filter all three parts of the controller or
only the proportional and the denvative parts The latter will attenuate high-frequency 
measurement noise [15]

The different structures in Fig 4 1 can be described using a common form as (see 
Fig 4 2)

where the interpretation of the polynomials T and S depends on the structure All 
three polynomials are of second order and

R(z)U(z) = T(z)Uc (z) - S(z)Y(z) (4 3)

R(z) = (z + 5 ) ( z  -1) (4 4)

in all cases From Fig 4 2, the closed-loop system is given by
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Y(z) = BT Uc(z) + AR W(z)
AR + BS AR + BS (4 5)

The closed-loop poles can be made the same for all structures This means that all 
four controllers can be tuned such that the closed-loop systems get exactly the same 

pulse-transfer operator from the process disturbance to the output However, the 

polynomial T will depend on the form of the controller, and T will introduce two

zeros in the pulse-transfer operator from Mq to y The values of the zeros will depend 

on the form of the controller and the polynomials R and S For the forms in Fig 4 la, 
Fig 4 lb and Fig 4 Id, T will have two nonzero zeros, while the form m Fig 4 1c

gives one zero at the origin and one that is nonzero It is also possible to get a

polynomial T with two zeros at the ongin This can be achieved using the structure
in Fig 4 lc This structure is advantageous if the method for tuning the parameters in 

the controller is based on pole placement [15]

Fixed Parameter Linear Control Techniques

Tuning Rules The discrete-time PID-controllers have the advantage that they look and 

behave as continuous PID-controllers when the sampling interval is short Thus there is 
no educational problem if a controller is redesigned into digital form, so the same 
heunstic rules for timing a PID-controller can be used Zeiger and Nicholas [61] gave 

two methods for tuning the transient response method and the ultimate-sensitivity 

method The transient response method uses the steepest slope, R, and the delay tune, 
L, from the umt-step response of the open-loop system The parameters are then 
obtained from table (4 1)

Ta M g  „4.1 Controller Parameters using the Transient Response Method

Tj T(j

P 1/RL
PI 0 9/RL 3L

PID 1 2/RL 2L \L

In the ultimate sensitivity method, a P-controller is used first to control the system 

The gain of the controller, Kjâ ,  and the penod time Tp, when the closed-loop 

system is on the stability boundary are measured The parameters of the controller are 
then obtained from table (4 2)



Table 4 .2  Controller Parameters using the u l t im ate - s e n s i t i v i t v  Method

Kd Td______________________________

i^max 
0 45Kmax T p / 1  2

 ̂ 6Kmax Tp/2 Tp/8

Fixed Parameter Linear Control Techniques

The tuning rules above should only be used as a first approximation The final 

tuning usually has to be done manually There are also several other methods for 

tuning digital PID-controllers Some involve a compensation for the length o f the 

sampling interval, others use a pole placement technique for determining the controller 

parameters [16]

P

PI

PID

4.1.1 A PD Control Algorithm

In this section, a Proportional and Differential Controller is discussed No 

integrator is present m the control action, but because an integrator is contained in the 

robot dynamics, PD-only may prove sufficient Although a full PID controller will 

improve the static accuracy but it can often make the overall closed-loop system less 

stable

The design here is not based on the Zeiger-Nicholas Method o f tuning, but on 

pole-placement and static accuracy requirements [16]

4.1.1.1 Controller Derivation

i

In the continuous time domain, the transfer function for a PD  controller is given

by

Gc ( s )  = Kp + s (4 6)

where,

Kp = proportional gam,

K^ = differential gam

Transforming directly to the discrete domain gives

G c ( z )  = Kp + Kd ( z - 1 )  (4 7 )
h z

where h is the sampling interval.
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Hence

=> U(z) = (Kp h + Kd)z - Kd (4  8)

Y(z) h z

Hence, the controller equation is given by

u(k) = (Kp h + Kd) e(k) - Kd e(k - l ) (4 9)
h h

Equation (4 9) expresses the present control input m terms of the present and past 
error signals Since the robot has integrative action, the control input decays to zero 
when the system output reaches its desired position The steady state error attains a 
low value to drive the system Hence PD control is only suitable for systems with an 
integrator in their dynamics, otherwise large steady state errors will result

41.12 Simulation Results

Recalling the simplified linear models for the primary joints from Chapter 2, pole 
placement design is based on these models Sampling these models using the Zero 
Order Hold Method [17] with a sampling interval of five milliseconds gives the 
following transfer functions •

G,(z) = 9 774x10’ 6( z 2 + 2 74394z + 0 4369 )
( z - 1 )( z - 0 2282 )( z - 0 827 )

G2(z) _ 3 231xl0‘ 6( z 2 + 2 7618z + 0 4376 )
( z - 1 )( z - 0 2089)( z - 0 90312 )

G3( z ) = 1 3x10'5( z 2 + 2 7376z + 0 4365 )
( z - 1 )( z - 0 2356 )( z - 0 8 )

The design is performed on joint 1 to demonstrate the technique The results of 
the design are shown for joints 2 and 3

The transfer function for a PD controller is given by

Gc (z) = ( Kp h + Kd )[ z - ^ /(Kp h + K̂ }) ] (4 1 0 )
h z
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Cancelling the pole at 0 827, gives 

Kd , / (  Kp , h + Kd , )  = 0 2282  

=> Kp i /Kd l = 4 1 8 4

To determine control gains, another design specification is required This part of the 

design is based on the static accuracy requirements The velocity error constant is 

defined as

Kv = 1  Lim ( z - l ) G 0 i ( z )  
h z->l

= 1 9 5 4 8 x 1 0 ' 3( z 2 + 2 74 394 z + 0 4369 ) (  Kp i h + Kd l )

z ( z - 0 2282 )

z = l

= 2 1 1 78 ( Kpi  h + Kd, )

B y  specifying a value for Kv , K p, and K d, can be calculated uniquely The ratio o f

K p , to K d , is specified by the open-loop pole, which is to be cancelled The exact 

values depend on the velocity error specification but trial and error is required to

attain the desired response

For joints 2 and 3 the following ratios for the gains are obtained

Kp2/ Kd 2 = 35 3 Kp3/ Kd 3 = 49 8

which cancel poles at 0 90312 and 0 8006 respectively Using the following set of  

gains

Kp , = 24 Kp z = 24 Kp 3 = 24

Kd, = 0 5 7  Kd2 = 0 679 Kd3 = 0 48

results in the control action seen in Fig 4 3a and Fig 4 3b These graphs show that the 

settling time is long Therefore the proportional gains can be increased further (le.

increase the velocity error constant)

Kp, = 48 K p2 = 60 K p3 = 48

Kd, = 1 14 Kd2 = 1 7 Kd3 = 0 96
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These gains give a fast, overdamped response, with a low static error (see Fig 4 4a 

and Fig 4 4b) When reference signal is a Cubic Spline Tracjectory the PD controller 

performs poorly This is due to the fact that for a type-1 system (one integrator in

the open-loop dynamics) the steady state approaches zero for a step input A  steady

state error exists when a type-1 system tries to track a higher order reference input. 

The gains are adjusted to the following values to reduce this steady state error

Kp, = 84 Kp2 = 84 Kp 3 = 84

Kd, = 1 995 Kd2 = 2 38 Kd 3  = 1 6 8

and a sufficient performance is attained (see Fig 4 5a, Fig 4 5b and Fig 4 5c) The peak 

error for each jomt is

epk, = 0 12 

®pk2 = 0 19 

epk 3 = 0  12

Next an integrator is added to the closed-loop system to see if the performance will 

improve further

4 1 2  A PID Control Algorithm

In this section, the performance o f a classical PID-control algorithm on the 

manipulator model is investigated Firstly the controller equation is derived The three 

gains are m the forward loop, as shown in Fig 4 la  These control gains are tuned 

firstly using the Zeiger Nicholas Ultimate Sensitivity Method, and later tuned manually

4.12.1 Controller Derivation

The digital form of equation (4 1) is

k - 1
u ( k )  = Kg [ e ( k )  + h I  e ( i - l )  + I d  { e ( k ) - e ( k - l ) }  ]

T,  i=0 h (4 1 1 )

where h is the sampling interval
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Transforming into a recursive equation, equation (4 11) becomes

u(k+l) = Kg e(k) + [ u(k) - Kg (l + Td) e(k) + Kg h e(k) +
h ~

+ Kg Td e(k - l )  ] - Kg Td e(k)

u(k) + Kg (1 + Td) e(k+l) + Kg (h - 2Td - 1 ) e(k) + 
h Tj ~h~

Kg Td e(k-l )

=> G(z) = U(z) = q0 + q ,z _1 + q 2z ' 2

(4 1 2 ) 

(4 13)
E(z) 1 - z ' 1

and u(k) = u(k-l)  + q 0e(k) + q ,e (k - l )  + q 2e(k-2) (4 14)

where

q0 = % [ i + id  ] 
h

q ,  =  %  [ h - 2!d  - 1 ]
T, h

q2 = Kg Id (4 15)
h

This is the relationship between the discrete and analog coefficients

4 1 2 2  Simulation Results

A proportional controller is placed on the robot model and Kmax (the value of 
proportional gam which causes the closed-loop system to oscillate) is found to have 
the following values for joints 1 , 2 and 3

Kmaxi = 2,000

Kmax2 = 2,500

Kmax3 = 2,000
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Tp (the penod of oscillation) is measured at the following values

TP’

oII 45

Tp2

oII 55

TP3

oII 3

These values of Tpi and Kĵ axj yield the following control parameter gains

Kgl = 1,200 Kg2 = 1,500 Kg3 = 1,200
Tj , = 0 225 Tj 2 = 0 275 Tt 3 = 0 15
Td, = 0 05625 Td2 = 0 06875 Td3 = 0 0375

The control which results usmg these gams is shown in Fig 4 6a and Fig 4 6b The 
results show the closed-loop response is fast and underdamped Also the control inputs 
are initially excessively large The closed-loop oscillation is undesirable so m fine 
tuning the algorithm, the proportional gains are decreased slightly The best gains were 
found to be

Kg1  = 800 Kg2 = 1,000 Kg3 = 800
Tj , = 0 225 Tj 2 = 0 275 ^  3 = 0 15
Td, = 0 05625 Td2 = 0 06875 Tda = 0 0375

The results using these control gams are shown m Fig 4 7a and Fig 4 7b The response 
is fast and overdamped Because of the I-part of the controller there is approximately 
zero steady state error

essi = 2 5x10"’ 4 
eSS2 = 1 05x10-’ 2 
eSS3 = 2 24x10-’ 3

Also when the reference signal is a Cubic-Spline trajectory, the algorithm can track 
this trajectory with a high degree of accuracy (see Fig 4 8a, Fig 4 8b and Fig 4 8c) 
The peak error is acceptably low for all the three joints

epjj, = 0 006

epk 2 = 0 011
epjf 3 = 0 008

The performance of PID greatly outmatches the PD version, mainly due to the 
integrator, which eliminates the steady state error
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4 1 3  Conclusion on PID-controllers

PID configurations are easy to implement. Depending on the configuration, two or 

three gains require tuning The control equation is a simple difference equation The
properties of PID control techniques can be summarized as follows

1 The design is relatively simple, and can be based on several methods of tuning
2 The control technique is easy to implement, it requires only the calculation of a

simple difference equation
3 The algorithm is suitable for use on manipulator-type robots and in fact, is
presently one of the most commonly used algorithms in industry

4 The full PID network greatly improves the static accuracy over the PD
configuration

The addition of an integrator into the closed-loop system can induce instability but it 
considerably improves the accuracy of tracking

4.2 Frequency Compensators

In this secuon the design of three types of compensator using frequency analysis 
methods, is discussed The three compensators are

1 Lead compensator
2 Lag compensator

3 Lag-Lead compensator

The design satisfies specifications such as phase margin, error constant and bandwidth 
requirements

In general, there are two situations in which compensation is required In the first 

case, the system is absolutely unstable and the compensation is required to stabilize it 
as well as to achieve a specified performance In the second case, the system is stable 

but the compensation is required to obtain the desired performance If the system is 

type-1 (one pole at zero) or type-0 (no poles at zero), stable operation is always 

possible if the gam is sufficiently reduced and any of the three compensators, lag, 

lead and lag-lead may be used to obtain the desired performance. For type-2 systems 
or higher, lead compensation is required because only the lead compensator increases 

the margin of stability [17] Lag compensation also increases the margin of stability
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but at the expense of bandwidth Some systems cannot be stabilised using lead but
most systems can be stabilised using lag

In the previous section the controller was designed based on the discrete model
for each joint However bode plot design using the pulse transfer function is
complicated In order to circumvent this difficulty and to use Bode design techniques, 
the following transformation is used [18]

0 = 2 (zz l )
T (z+1) (4 16)

Procedure
bi 1 inear

G(s) z o h -> G(z) -» transformation -» G(o)

For joint 1

G, (s) = 687 106
s 3 + 333 4685s2 + 11219 46s

G,(z) = 9 774x10'6( z 2 + 2 74394z + 0 4369 )
( z - 1 )(  z - 0 2282 )(  z - 0 827 )

G, (CD) _ 2 864x10- n  (D2 - 344 645© - 511810 7 )(ffl - 400 )
CD ( co + 251 356 )(  to + 37 854 )

Looking at the Bode plots of G(s) and G(co), one can see that these plots are
approximately the same Therefore using Bode design methods on G(cd), the different 
compensators can be designed

42.1 Lead Compensation

Phase Lead Compensation using Bode Plots proceeds by adjusting the system
error constant to the desired value The phase margin (PM) of the uncompensated
system is then checked If it is found unsatisfactory then the lead compensation
technique is applied to meet the specified PM

In lead compensation the following are the effects of introducing this
compensation technique
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1 the crossover frequency is increased
2 the high frequency end of the Log v Mag. plot is raised up by a db gain of 
20Logl 0(l/a)

The transfer function for a general phase lead network is given by

42.1.1 Phase Lead Design Procedure

The basic design procedure is as follows [17]

1 Determine the open-loop gam K to satisfy the specified error constant
2 Use this value of K, draw the bode plot of the uncompensated system and 
determine the phase margin of the uncompensated system
3 Determine the phase lead required using the relation

«L = 4>s - 0, + e (4 18)

where,
Os = specified phase margin

= phase margin of fixed part of the system 
g  = safety margin
4 Let 0>m = <&l

then

a = 1 + sin<I>m

If Om > 60°, then it is better to use two identical lead networks, each with 30° 
phase margin, to achieve the required specifications
5 Calculate the gam lOLog, 0a provided by the network at Next locate the 
frequency at which the uncompensated system has a gam of -lOLog, 0a This is the 
new crossover frequency
6 The upper comer frequency

^corner = 1  = — L_

Gc (s)  = 1 + ax.s a > 1 , x > 0 
1 + x s (4 17)

1 - sinOm (4 19)

x coc /a . . ( 4  20)
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The design is performed for joint 1 to demonstrate this technique The results of 

the design are given for joints 2 and 3 Two different sets of specifications are used, 

resulting in two sets of different controllers

Specifications :

Joint 1

a Kv = 50 , PM = 45° 

b Kv = 25 , PM = 60°

Joint 2

a Kv = 30 , PM  = 45°

b Kv = 15 , PM = 60°

Joint 3

a Kv = 60 , PM = 45°

b Kv = 20 , PM = 60°

42.12 Simulation Results

Design :

1 For a type-1 system, the steady state error for a unit ramp mput is

ess = 1/KV (4  21)

Also

ess = Lim s ______1______ 1

s-»o 1 + K G (s) s 2

= 16 32/K

=) K = 16 32KV ~ 800

2 Usmg this value of K, the bode plot is drawn (see Fig 4 9a). The PM is 35° and 

ooc (crossover frequency) = 35 3 rads/sec

3 3>l  = 45° - 35° + 5° = 15° where a 5° safety margin is included
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4 Let <E>m = Ol , then

a = 1 + sin<Pm = 1 698 

1 - sin$m

5 The gam at ©m = lOLog, 0a = 2 3db Thus the new crossover frequency g^, is 

the frequency where the gain is -2 3db From Fig 4 9a, (Hq = 42 62 rads/sec

6  x = ooc ya = 0  018

Thus the transfer function for the lead compensator is

K(ffl) = 800 1 + 0.0305(0
1 + 0 01 8cd

Looking at Fig 4 9b the PM - 4 5 °  for K  = 800 Thus the specifications have be 

met

To obtain the compensator pulse transfer function, substitute

(0 = 2 f z - n  

T ( z + 1 )

=» K (z ) = 1256 ( z  - 0.848^)
(z  - 0 762)

which yields the following controller difference equation for joint 1 using specification 

a

uc(k) = 1256 [ e(k) - 0 848e(k-l) ] + 0 762iic(k-l)

For joint 2

uc(k) = 1147 [ e(k) - 0 91e(k-l) ] + 0 87uc(k-l)

For jomt 3

uc(k) = 1085 27 [ e(k) - 0 94e(k-l) ] + 0 922ifc(k-l)

Fig 4 10a, Fig 4 10b and Fig 4 10c show the closed-loop response of the manipulator 

with the lead compensators above The response has good accuracy characteristics The 

steady state error for each joint is
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eSSl = 1 63x10"11 

eSS2 = 1 107xl0-3 

ess 3 = 4 8xl0-5

and the peak error is

epk t = 0 024 

epk 2 = 0 042 

epk 3 = 0 024

Repeating the design procedure using specification b , the controller difference 

equation for joint 1 is

uc(k) = 573 8  [ e(k) - 0 9e(k-l) ] + 0 8 6 uc(k-l)

For joint 2

uc(k) = 542 6  [ e(k) - 0 943e(k-l) ] + 0 922uc(k-l)

For joint 3

Uc(k) = 333 5 [ e(k) - 0 906e(k-l) ] + 0 822uc(k-l)

F ig 4 11a, F ig 4 lib  and F ig4 11c show the closed-loop response of the manipulator 

with the lead compensators above The response is not as good as before The steady 

state error is larger for each joint

eSSl = 2 393x10- 11  

eSS2  = 2  218x10-3 

ess3 = 5 01x10"5

and the peak error is also larger in magnitude 

epk, = 0  06

epk 2 = 0 1

epk3 = 0 03

The controllers designed with the b specifications have lower values for velocity error 

constant Kv, and therefore have larger errors in the velocity profiles
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A Phase-Lag network acts like a low-pass filter, attenuating high frequencies The 

phase lag normally occurs at the geometric mean of the comer frequencies It must be 

recognized that any phase-lag is undesirable at the crossover frequency of the 

compensated system Therefore, it is the attenuation characteristic of the networic which 

is exploited for compensation purposes [17]

The transfer function for a general phase lag networic is given by

Gc (s ) = 1 + a t.s  a < 1 , x > 0
1 + x s (4  22)

422 .1  Phase Lag Design Procedure

The basic design procedure is as follows [17]

1 Determine the open-loop gam necessary to satisfy the specified error constant

2 Find the frequency fflc2 at which the uncompensated system makes a phase margin 

contribution of

<i>2 = <DS + e .(4  23)

where 0 2 is measured above the -180° line Allow for e = 5 °  to 15° for phase lag 

contribution by the network at a^ 2

3 Measure the gam of the uncompensated system at Ofc2 and equate 20Log10a to 

-gam at coC2  Hence find a Now the magnitude at (0C2 = Odb

4 Place the upper comer frequency 1/ax one octave to one decade below oofc2,

i e <d2 = 1 = coC 2  o r ®C2

ax 2 10 (4  24)

5 Redraw the Bode Plot and check the specifications

4 2 2 2  Simulation Results

Again the design is performed for joint 1 to demonstrate this technique The 

results of the design are given for joints 2 and 3 Two different sets of specifications 

are used, resulting in two sets of different controllers

4 2 2  Lag Compensation
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Specifications :

Joint 1

a Kv = 50 , PM = 45°

b Kv = 25 , PM = 60°

Joint 2

a Kv = 30 , PM = 45°

b Kv = 15 , PM = 60°

Joint 3

a Kv = 60 , PM = 45°

b Kv = 20 , PM = 60°

Design : i

1 For the Kv value, K  = 800

2 Using this value of K, the bode plot is drawn (see Fig 4 9a) The PM is 45° and

G)c (crossover frequency) = 2747 rads/sec

3 Include a safety margin of 5°, therefore a PM = 50° is required The new

crossover frequency cl̂ 2 = 23 8  rads/sec At this frequency

the gam = 4 754db

=> 20Log10a = -4  754 and a = 0 5785

4 ax = ©c/10 and x = 0 726

Thus the transfer function for the lead compensator is

K(«n) = 800 1 + 0.42m
1 + 0 726®

Looking at Fig 4 12 the PM ~ 45° for K  = 800 Thus the specifications have be

met

To obtain the compensator pulse transfer function, substitute
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CO =  2 f z - n  
T (z+ 1 )

=> K(z) = 464 ( ?  - 0.98^)
(z  - 0 99)

which yields the following controller difference equation for joint 1 using specification 

a

Uc(k) = 464 [ e(k) - 098e(k-l) ] + 0 99uc(k-l)

For jornt 2

uc(k) = 620 5 [ e(k) - 0 991e(k-l) ] + 0 993uc(k-l)

For joint 3

Uc(k) = 394 [ e(k) - 0986e(k-l) ] + 0993uc(k-l)

Fig 4 13a, Fig 4 13b and Fig 4 13c show the closed-loop response of the manipulator 

with the lag compensators above The response is not as good as the lead controller 

designed with the same specifications The steady state error is

eSSi = 3  8 x 1 0 "7 

egS 2  = 1 08x10"3 

ess 3 = 5 3xl0-s

and the peak error is

epki = 0  03 

epk2 = 0  06 

epk 3 = 0 03

Repeating the design procedure usmg specification b , the controller difference 

equation for joint 1 is

uc(k) = 312 9 [ e(k) - 0 991e(k-l) ] + 0993uc(k-l)

For joint 2

uc(k) = 324 5 [ e(k) - 0 994e(k-l) ] + 0 995uc(k-l)
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For joint 3

Uc(k) = 208 [ e(k) - 0 992e(k-l) ] + 0993uc(k-l)

Fig 4 14a, Fig 4 14b and Fig 4 14c show the closed-loop response of the manipulator 

with the lag compensators above The response is not as good as the previous lag 

compensator The steady state error is larger for each joint

ess, = 2 33x10" 5 

ess2 = 2 04x10"3 

eSS3  = 2 334x10"4

and the peak error is also larger in magnitude

The controllers designed with the b specifications have lower values for velocity error 

constant Kv , and therefore have larger errors in the velocity profiles

4 2 3  The Lag-Lead Compensator

For large specified error constant and moderately large bandwidth, it may not be 

possible to meet the specifications through either lead or lag compensation In such 

situations lag-lead compensation is employed where the lag section supplies part of the 

phase margin specification and the lead section supplies the rest of the phase margin 

and the desired bandwidth [17]

The transfer function for a general phase lag network is given by

Gc (s )  = (1 + ax, s) ( l + b x 2 s) a > l  b < l

epk 1 = 0 06 
epkî = 0 12 
®pk3 = 0 12

(1 + T, s) ( 1  +  t 2 s )  

Lag

t ,  , x 2 > 0  

ab = 1Lead (4 25)
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423 .1  Phase Lag-Lead Design Procedure

The basic design procedure is as follows [17]

1 Check the phase margin and bandwidth of the uncompensated system with the

specifications I f  bw < specified value try lead compensation, but if  bw > specified 

value try lag compensation provided the uncompensated system is not absolutely

unstable

2 I f  lag compensator design results in too low a bandwidth, then a lag-lead network

is required m order to have a faster time response A lag-lead compensator is

essentially a band-pass filter

3 Design the lag section to provide some of the phase margin requirements in the

usual fashion

4 Once the lag compensator has been designed t 2 and b are assigned values

5 Because ab = 1, the value for a is already calculated Hence x, is the only

parameter to be chosen m the lead section design

4 2 3 2  Simulation Results

Again the design is performed for joint 1 to demonstrate this technique The

results of the design are given for joints 2  and 3

Specifications :

Joint 1

Kv = 50 , PM = 45°->60°

Joint 2

Kv = 30 , PM  = 45°->600 

Joint 3

Kv = 60 , PM = 45°

Design :

a. Lag

1. For the Kv value, K = 800

2 Using this value of K, the bode plot is drawn (see Fig 4 9a) The PM is 35° and 

thus 10°->250 additional phase required
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3 With the lag network, 10° phase (15° for safety) is attained This occurs at (n^ = 

23 56 rads/sec The gam at o^, = 4 9db Thus b = 0 568 and x 2 = 0 747 The 

transfer function for the lag section is

Fixed Parameter Linear Control Techniques

GiagCffl) = 1 + 0.424(0 
1 + 0 747(0

b. Lead
1 The value for a is fixed from the lag section and is given by a = 1/b = 1 76

2 The maximun lead provided by the lead section is

0 m = s in " 1 a - 1 

a + 1

= 16°

3 Gam of phase lead at (the eventual crossover frequency) = -lOLog, 0a = 

-2 455db

=> 0)c 2 = 29 3 rads/sec

and t ,  = toC2  /a  = 0 0257 The transfer function for the lead compensator is

Gle a d ( ffl) = 1 + 0.0452(0 
1 + 0 0257(0

and the total lag-lead controller is

Gla g - le a d (® )  = 8°0  (1 +.,0 ,424W) (1 + 0.0452to)
(1 + 0 747(0) (1 + 0 0257(0)

Fig 4 15 shows the bode plot of the compensated system The PM = 57° and ô . = 

28 9 rads/sec Therefore the specifications have been fulfilled

To obtain the compensator pulse transfer function, substitute

(0 = 2 f z - n  

T (z+1)

=» G l a g - le a d U )  = 770 (z - 0 .9 8 8 ) (z  - 0 .8 95 )
(z - 0 993) (z  - 0 822)
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This results in the following controller equations for joint 1
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uc (k )  = 770 [ e (k )  - 1 8 8 3 e ( k - l )  + 0 884e (k -2 )  ] + 

1 815uc ( k - 1) - 0 816uc (k -2 )

For Jouit 2

uc (k )  = 786 3 [ e (k )  - 1 9 9 2 e ( k - l )  + 0 9 22 e (k -2 )  ] + 

1 885uc ( k - l )  - 0 885uc (k - 2 )

For Joint 3

uc (k )  = 780 5 [ e (k )  - 1 8 1 6 e ( k - l )  + 0 82e (k -2 )  ] +

1 773uc ( k - l )  - 0 776uc( k - 2 )

Fig 4 16a, Fig 4 16b and Fig 4 16c show the manipulator model closed-loop response 

over a specified trajectory using the lag-lead compensator The result is encouraging 

The static accuracy is

eSSl = 1  164xl0-8 

ess 2  = 1 64x10"3 

eSS3  = 5 09x10"5

and the peak error

epk 1 = 0 035 

epk2 = 0 075 

®pk 3 = 0 03

The specification for joint 3 is different to joint 1 and joint 2 It was found that 

too much lag causes overshoot and oscillation in the response of joint 3

42.4 Conclusion on Lag-Lead Performance

Lead compensation results in an increased bandwidth and faster speed of response 

For high order systems and systems with large error constants, large leads are required 

for compensation, resulting in excessively large bandwidth, which is undesirable from a 

noise transmission point of view For such a system, lag compensation is preferred,
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provided the uncompensated system is not absolutely unstable

Lag compensation results m a reduction of the crossover frequency Thus the lag 

compensator reduces the system bandwidth (crossover being a rough measure of 

bandwidth) and the additional attenuation of high frequencies improves the s/n (signal 

to noise) ratio A drawback of reduced bandwidth is that the nse time ^  is increased, 

since tr °= 1/bw

To overcome the problems of Lead-only compensation and Lag-only compensation, 

Lag-Lead compensation is employed for high order systems and for systems with large 

error constants Since a full lag compensator w ill reduce the bandwidth excessively, the 

lag-section of the lag-lead compensator must be designed so as to provide partial 

compensation only There is only one variable parameter for the lead-section after the 

lag-section is designed

These frequency domain compensators are similar in form to PID  configurations 

PD control is similar to Lead compensation, PI control and Lag compensation are 

similar and finally, full PID control is similar to Lag-Lead compensation. Comparing 

the results of Lead, Lag and Lag-Lead, a Lead controller gives marginally the best 

response of the three Lag compensation is not desirable for manipulator use, because 

of the increased nse time effect

4.3 Optimal Control

Optimal Control is well suited to the tracking or regulator control problem, since 

optimal control can increase the speed of systems while also reducing oscillatory 

behaviour

c
To design an optimal controller for some process, a scalar valued cost function 

J(u,e,... ), that realistically quantifies all the process factors of importance, is formed 

Once one knows the required information about the plant, state equations or transfer 

function and the cost function J, it is the role of optimal control to determine a 

control sequence which w ill achieve the control objectives and simultaneously minimize 

the cost function [19]

Optimal performance is defined with respect to some specification. The quality or 

goodness of a system is represented by selectmg a suitable cost function An optimal 

controller is then obtained by minimizing the selected performance index The most
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frequently employed cost functions are based on error or functions of error, or control 

energy or functions of control energy

43.1 Properties of Optimal Control

1 The optimal control problem is solved for a particular plant, producing a dedicated 

controller

2 The solution to the optimal control problem is designed with respect to a specific 

input

3 It greatly improves the time response

4 Controllers are the same order as the plant

5 Stability is guaranteed

The design of optimal controller can be based on

1 Frequency domain analysis,

2  State Space (time domain) solution, or

3 The Transfer Function approach

When designing a controller certain specifications must be m et The quadratic cost 

function J is of the following form

where q and r are positive constants called weighting factors I f  q is large and r is 

small, more weight is imposed on the error, hence the controller is designed for the 

tracking problem If  however r is much larger than q, then the controller is designed 

for power conservation [19]

4 3 2  Application to Robotics

Little work has been done in the area of optimal controllers for robotic 

manipulators, due mainly to extremely heavy real-time computational load incurred 

when attempting to determine control parameters Also mechanical constraints place 

severe physical limitations on manipulator speed [2 0 ]

Some interest has centered on the time optimal control of certain robots that do 

not . need to perform coordinated motion In this instance the individual joints are

] d t (4 26)
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moved sequentially m time, and what is sought is the sequence of separate joint

motions so that the overall motion is minimized

As the computanonal power of robot controllers increases, optimal control will

become more feasible However it w ill also be necessary for novel mechanical

structures and materials to be developed that permit high-performance manipulators to 

withstand the extreme stress encountered while optimal control is being executed

4 3 3  Controller Derivation

The objective here is to derive an expression for a Z  domain optimal controller 

The design of digital time controllers is very similar to the continuous control design 

technique The design is initiated m the continuous domain and then transformed to 

the discrete domain The solution to optimal open loop control is found, and then the 

optimal output feedback solution is obtained [19]

The performance criterion to be minimized is defined as follows

Q is the error weighting matrix,

R is the control weighting matrix,

Output Y(s) = W (s)U(s),

Error E(s) = r(s) - Y(s),

Control input U(s) = C 0 (s)E(s),

Plant Transfer Function = W(s),

The gradient function is defined as

g  = i d l  (4  2 7 )

Replacing the error e, m the cost function by r - W U , where W(s) is the system 

transfer function This yields

and for optimality in the s domain, the transformed optimal gradient function g(s) is 

analytic in the closed left half plane, ie  g(t) = 0

0
] d t

g = { W * Q W  + R } U - W * Q r (4  28)
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The transformed gradient may be obtained as

g ( s )  = { WT ( - s )  Q W(-s)  + R > U(s)  - WT ( - s )  Q r ( s )

, (4  29)

To manipulate the frequency domain gradient optimality condition, the operator

decomposition known as spectral factorisation is required The matrix (W ^ (-s) Q W(s) 

+ R ) can be spectrally factored as

Yt (-s) Y(s) = WT ( - s )  Q W(s) + R (4 30)

and also,

Yt ( - s ) - ’ g ( s) + { Y T ( -s ) - 1 Wt ( - s )  Q r ( s )  } .

= Y (s )  u (s )  - {  Y T ( - s ) - ’ Wt (-s) Q r ( s )  } + (4 31)

where { } + imphes the enclosed function is analytic m the closed right half plane,

and { }_ imphes an analytic function in the left half plane

Transforming to the discrete domain equations (4 30) and (4 31) become 

respectively

U (z )  = Y - ’ ( z )  {  Y ^ U ' 1 ) ' 1 W ^ z ' 1) zk ° Q r ( z )  }  (4 32)

Y ^ (z ‘ 1) Y (z )  = Wt(z-M Q W(z) + R (4 33)

Define P(z), where

P(z) r(z) = { YT (z"1)"1 WT (z-’) ẑ o Q r(z) )+ (4 34)

P (z )  r ( z )  = Y (z )  U(z )  (4 35)

and Y " 1 (z).P(z) is the optimal open-loop controller matnx The optimal closed-loop

matnx is found to be

K (z )  = Y‘ 1 ( z )  P (z )  [ I - zko W(z) Y ' 1 ( z )  P (z )  ] ’ 1 (4 36)

Let the plant transfer function

W(z) = 5 ( z ) / a ( z ) ,  (4 . 3 7 )

Fixed Parameter Linear Control Techniques
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then,

Y(z-’)Y(z) = W T(z'1) Q W(z) + R

cf(z"1) a(z)

Optimisation is done with respect to a step input

=> r(z) = z 
z-1

Let F0(z) (the optimal open loop controller) be

F0(z) = Y-i(z) P(z)

this gives

F0(z) z = Y(z)'1 { a(z~1>.h ( z~1) zko Q z }+
z-1 d(z*’) ct(z'1) z -1

The only part which is analytic is the DC part (z=l)

F 0(z) = Y(z)*1 ¿Ill{zk°}+ Q
d(l)

The required closed-loop controller is given from (4 36) as 

K(z) = { F0(z)‘1 - z-ko w(z)>-’

K(z) = a(z) { dfzl.dm Q-1 - Z ‘ k °  5(z) }‘1
5 ( 1 )

For the scalar case

d(z'1) d(z) = 8( z ~ ' ) 8(z) q + o(z'1) c t ( z )  r 

d(l) = { 5(l)2.q + o(l)2 r } i

Fixed Parameter Linear Control Techniques
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The final controller equation is as follows

K(z) = ________ ofz'l.Sm.q_______
d(z) d(1) - z'ko 8(z) 8(1) q (4 46)

43.4 Simulation Results

Refer to Chapter 2 for the linear decoupled models for the three primary joints 
The following controllers are designed for joint 1 using the q and r values shown

1 q = 100 , r = 0 0001

K,,(z) = 445 86 z3 - 2.0552z2 + 1.2439z - 0.1887
z3 - 1 4589z2 + 0 5395z - 0 0702

2 q = 100 , r = 0 001

K 12(z) = 273 645 z3 - 2.0552z2 + 1.2439/. - 0.1887
z3 - 1 8073z2 + 0 9497z - 0 1385

3 q = 1000 , r = 0 001

K 13( z ) = 692 493 z3 - 2.0552z2 + 1.2439z - 0.1887
z3 - 1 5945z2 + 0 6964z - 0 0102

Tests are carried out on the robot simulator using these controllers to find which 
give the best results When the best controller is found, the same q and r values are 
used to design joint 2 and 3 controllers The value of r is chosen m  proportion to the 
sampling interval, otherwise the closed-loop pole polynomial is very similar to the 
open-loop equation

The velocities of joints 2 and 3 are set to sero to keep the joints locked at
position zero The controllers K, ,(z), K, 2(z) and K 13(z) are placed on the
manipulator model Supplying a constant setpoint to the control loop, the controllers 
are evaluated on their performance, using response time, overshoot and steady state 
error as performance criteria The control inputs are bounded between ±40 This 
restricts the q/r value.

Using K,, (z), (see Fig.4.17a and Fig 4 17b) the response is slow and a large
steady state error exists Using K, 2(z), (see Fig 4 18a and Fig 4 18b) the response has
improved only slightly from before However K 13(z) (q=1000, p=0001), (see Fig 4 19a

Fixed Parameter Unear Control Techniques
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and Fig 4 19b) gives the fastest response with the smallest steady state error Hence 
this controller is chosen to be the most suitable controller for joint 1, giving the best 
responses with allowable control inputs

Using these results, q = 1,000 and r = 0 001 are the chosen parameter values

K 21( z ) = 836 32 z3 - 2.1121Z2 + i.3QQz . p.1887
z3 - 1 8027z2 + 0 936z - 0 0702

K31(z) = 696 65 z3 - 2.0362z2 + 1.225z - 0.1886 
z3 - 1 5837z2 + 0 686z - 0 1022

However K 2, (z) does not give suitable results Its gain is reduced to 695 (the 
proportional gain used for the other joints) to prevent oscillatory behaviour

Now these best controllers are apphed to track an mput trajectory All three 
joints are moved through a considerable portion of their range Fig 4 20a, Fig 4 20b 
and Fig 4 20c show the control voltage inputs, joint positions and tracking emor 
respectively Investigation shows the peak error to be as follows

jomt 1 = 0 2  rads 
joint 2 = 0 12 rads 
joint 3 = 01 rads

Therefore one can conclude that optimum control does not perform as well as PID or
even PD control techniques

4 3 3  Conclusion oh Optimal Control

An optimal control system is a system whose design optimizes (minimizes or 
maximizes) the value of a function chosen as the performance index It differs from 
the ideal case m  that the former is the best attainable in the presence of physical
constraints whereas the latter may well be an unattainable goal It is desirable that the
criteria for optimal performance originate not from a mathematical but from an 
application point of view In general, however, the choice of a performance index 
involves a compromise between a meaningful evaluation of system performance and a 
tractable mathematical problem [21]
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The solution of an optimal control problem is to determine the optimal control 
sequence u(k) within the class of allowable control inputs This input u(k) depends on

1 Nature of the performance index,
2 Nature of the constraints,
3 Initial state or initial output,
4 Desired state or desired output

In the design method used here, the weighting function

is minimised The constants q and r are chosen depending on which type of control is 
required The resulting controller minimizes this function

The robot is a very complex model, highly coupled and nonlinear The optimal 
controllers designed above are based on three linear decoupled models for the three 
primary joints This means a substantial approximation is made before the optimal 
solution is applied, and this in fact defeats the point of finding the optimal solution

Comparing the optimal control approach to other control methods, its tracking 
performance is poor compared to PID control A more complicated approach is needed 
here, nonlinear optimal control is required which is more complex but should improve 
the closed-loop performance substantially to justify its use

4.4 Predictive Control Methods

The concept of predictive control was introduced by Richalet [23] in the late 
seventies Predictive controllers are based on a prediction of the future behaviour of 
the process to be controlled These predictions are based on a model of the process 
that is assumed to be available For this reason predictive controllers are sometimes 
denoted internal model controllers Not only simple processes (e g first or second 
order without time delay) but also difficult processes (eg processes with a long time 
delay, non-minimum phase and unstable processes) can be controlled by predictive 
controllers without the designer having to take much special precautions Moreover, m  
contrast with other control methods, predictive controllers have shown themselves to be 
remarkably robust with respect to model mismatch Further, it is claimed [23] that 
predictive controllers are easy to tune, even by people who are not control engineers
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The predictive control concept is not restricted to linear single-input, single-output 
(SISO) processes, but can also be applied to linear multi-input, multi-output (MIMO) 
processes and to nonlinear SISO processes

Various algorithms exist at the present moment but four basic principles are 
fundamental to the control concept in each

1 The Internal Model
2 The Reference Trajectory
3 Algorithmic Control
4 The Self Compensator

The reference trajectory is the method used to connect the actual process state to 
the desired dynamic setpoint A Reference Trajectory is initiated from the process 
output that will tend towards the setpoint Cj, according to a desired dynamic path, 
over a prediction horizon The nature of the reference trajectory is open, but usually 
chosen as

Sr(i) = a1 S0(k) + (1-a1) Cp i = 1,2, H
(4 47)

a first order curve with decaying error between itself and the set-point

Sr = reference trajectory output,
S0 = measured control variable,
5 = model output,
a and H are the tuning parameters (H is the prediction horizon)

The match between the Reference Trajectory and the predicted process output is to be 
looked for, mainly for controllability reasons, on a particular future horizon called the 
Coincidence Honzon

Any mismatch between plant and internal model will result in an error or offset 
from the setpoint A compensation technique compensates for mismatch and corrective 
action is taken Also a disturbance may be present at the output and the compensation 
technique allows the process output to return to the setpoint In any real life situation 
an exact model of a plant is not practical and there will always be some mismatch 
present The purpose of the control action is to keep the output at a set value, and so 
to nullify the effect of the mismatch or disturbance The speed of the error 
compensation depends on the tuning parameters [25].
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4 4.1 Full State Feedback (Adapted Monoreg Algorithm)

The Monoreg algorithm uses a convolution internal model but is adapted here to 
a State-Space representation. This algorithm is derived in the same fashion but with a
State-Space Model Certain assumptions are made dunng the derivation of this
algorithm which inhibit the performance slightly The results section determines the
suitability of this algorithm for manipulator control applications

4.4.1.1 Algorithmic Derivation

The Monoreg control algorithm [24] is obtained by expressing the coincidence, at 
the end of the prediction honzon, between the desired increment of the system output 
through the reference trajectory and that of the model output, le

where,
S0 = measured control variable,
Sr = reference trajectory output,
S = model output,
H = prediction honzon, 
k = present sampling instant

The general State-Space description of a system can be written as follows

Sr(H) - S0(k) = S(k+H) - S(k) ( 4  4 8 )

x(k+l) = A x(k) + B u(k) 
y(k) = C x(k) ( 4  4 9 )

The general solution is

y(k) = C [ Ak x(0) + I Ak'1+1 B u ( l ) ]
1=0

( 4  5 0 )
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Consider the following arbitrary state trajectory as k increases (see Fig 4 21)
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x

k'=0 k'=l k’=2 k’=3
k"=0 k"=l k"=2

Fig 421 An Arbitrary State Trajectory

Now

y(l) = C { A1 x(0) + AO B u(0)}
= C { A x(0) + B u(0)}

Defining a new initial condition

x ’ (0) = x(1) with k ’ = 0

k ’’1y(k) = C [ Ak x’(0) + I Ak’-i+i B u(l) 1
i= 0

y(2) = C { A x(1) + B u(l)} with k = 2, k ’ = 1
x’(0) = x(1)

(4 51)

(4 52)
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The general expression for y(k) with all the states being measurable is

y (k )  = C { A x ( k - l )  + B u ( k - l ) }  (4 53)

At time t+H (end of the prediction horizon)

Fixed. Parameter Linear Control Techniques

k+H-1
y(k+H) = C [ Ak+H x (0 )  + I  Ak + H - 1 + 1  B u ( i ) ] (4 54)

i=0

eg k=l

H+l-1
y (H + l )  = C [ Ah + 1  x(0) + I  Ah + ’ - 1 + 1  B u(i) ]

1=0 (4 55)

H-1
=> y(H+l) = C [ Ah x ( 1 ) + I  Ah ' 1 + 1 B u(i+1) ] (4 56)

i=0

H - 1
=> y(H+2) = C [ Ah x(2) + I  AH ‘ 1 + 1 B u(i+2) ] (4 57)

i=0

In general

H -l
y(H +k) = C [ Ah x (k )  + I  AH * 1 + 1  B u ( i + k )  ] (4 58)

i=0

Looking at the summation terms 

H -l
I  Ah - 1 + 1  B u ( l+k)  = AH ' 1 B u (k )  +  Ah ’ 2 B u ( k + l )

1 = 0  + + B u (k + H - l )

Our control strategy is to assume that the rav remains constant over the prediction 

horizon i e

u (k )  = u ( k + l )  = u(k+2) = = u (k + H - l )  (4 59)

This later leads to restrictions on the performance of the algorithm with respect to 

disturbances on the output
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I  Ah _ 1 + 1  B u ( i + k )  = { B + AB + + A h ' 1 B }  u (k )
i=0

Equation (4 48) can be written in state-space terminology 

S,<H) - S 0(k) = Y(k+H) - Y(k)

Sf(H) - S 0(k) = ( l-a H) { Cp - S 0 (k)>

y(k+H ) - y (k )  = C { AH x (k )  } + C  { B + A B +  +

A11' 1 B } u (k )  - C x (k )

(4 60)

Let P = C { B + A B + + AH- 1 B }

= sca lar  for  the SISO case (4 61)

*  ( 1 -aH) (Cp - S 0 ( k ) )  = C (Ah x ( k ) ) + P u (k )  - C x (k )

(4 62)

Thus the manipulated variable is calculated by

u (k )  = ( l - a H) (Cp - S 0 ( k ) )  - C ( a H - I )  x (k )

P (4 63)

Two tuning parameters must be chosen, a  and H  Tuning is done in the Time 

Domain.

a * = e x p ( -T /x )  0 < a <1

where x is the system time constant and T  is the sampling interval For a fast 

response with high initial control inputs use

a  < a *

But for a slow response with low initial control inputs choose 

a  > a *

The equation for u(k) is quite simple, since C(AH -I) and P are constants and can be 

evaluated off-line a pnon

Fixed Parameter Linear Control Techniques

H-1
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4 .412  Properties

1 The assumption that the setpoint is constant over the prediction honzon restricts its 

application to regulatory control

2 The robustness follows from trying to dnve the output to the setpoint at the end of 

the prediction honzon and not at the next sampling instant.

3 The Principal of Receding Honzon is used At the sampling instant k a reference 

trajectory is initialized from the process output to the setpoint at the end of the 

prediction honzon Using this reference trajectory the controller output is calculated 

But at the next sampling instant k+1 the whole procedure is repeated, with a new 

reference trajectory being initialized The prediction honzon is continually receding into 

the future [24]

4 .4 1 3  Simulation Results

To demonstrate the effect a  has on the closed-loop response, different values are 

used keeping H constant The test is done with constant setpoints With cq = 0 7 

convergence takes approximately 1 2 seconds (see Fig 4 22a and Fig 4 22b) but with q  

= 0 3  the response is faster and higher initial are applied to the process (see Fig4 23a 

and Fig 4 23b) The optimal tuning parameters are chosen from these tests to be q  

= 0 7  Ht = 10

Using these values for the tuning parameters, each of the pnmary joints is 

controlled over a specified trajectory (see Fig 4 24a, Fig 4 24b and Fig 4 24c). The 

controller performs with good accuracy, giving a peak error for each joint of

j i  = 0 03 rads 

j 2 = 0 03 rads 

j  3 = 0 05 rads

4.42 Output Feedback Control

This method incorporates predictive control and a mathematical technique called 

System Inversion The two methods are used together because it is possible to 

generate exact inverse models for nonlinear systems Hence the control of nonlinear 

systems is possible whenever the inverse model can be generated uniquely [22]. Using 

this control technique, no local or global lineansation transformation is necessary for 

nonlinear control The internal on-line model of the plant m this technique is an 

inverse model, generated quite easily from the approximate linear models for each of
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the robots primary joints

4.42.1 Algorithmic Derivation

The control equation is calculated for a general third order model Consider the

following transfer function [22]

G(z)  = a, z 2 + a 2 z + a 3

z 3 + b, z 2 + b 2 z + b 3

G(z)  = Y O l  
U(z )

Calculate the inverse model by cross multiplying and taking the inverse Z  transform, 

1 e converting the transfer function to a difference equatioa For the general case 

above

a , u(k+2) + a 2 u ( k + l )  + a 3 u (k )  = y (k+3)  + b,  y (k+2)

+ b 2 y ( k + l )  + b 3 y (k )

Isolate the u(k+2) term ^

=* u(k+2) = {  - a 2 u ( k + l )  - a 3 u (k )  + y(k+3)  + b,  y (k+2)

+ b 2 y ( k + l )  + b 3 y ( k ) } / a ,

(4  65)

I f  the following assiunption is made

u(k+2) = u ( k + l )  = u (k )  (4 66)

Then equation becomes

=> u (k )  = - { y (k+3) + b, y (k+2)  + b 2 y ( k + l )

+ b 3 y ( k ) } / ( a , + a 2+ a 3) (4 67)

I f  u (k -l) = u(k) then .

=> u (k )  = { y (k+4)  + b, y (k+3)  + b 2 y(k+2)

+ b 3 y ( k + l ) } / ( a , + a 2+ a 3) (4 68)
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so there is no dependence of u(k) on y(k), which means that the algorithm u(k) is 

derived only from points on the reference trajectory Also since four inputs (past and 

present) have been equated together then H = 4

The variable y(k) is the joint position at time k A reference trajectory based on 

this value of y(k) is initiated to generate the outputs necessary to calculate the control 

input The reference trajectory takes the form of a first order curve

y r ( k + i )  = a 1 y (k )  + ( 1 - a 1) Cp where Cp = setpoint

(4 69)

The control algorithm presented above is open-loop and no compensation takes place 

in the presence of model mismatch or a disturbance on the output Two types of 

compensation techniques are possible The first type assumes that the error over the 

prediction horizon is constant, and the other type tnes to fit a first order polynomial 

to the future error based on past measurements, using the method of Least Squares 

The predicted error is then added to each point on the reference trajectory which 

adjusts the control input to compensate for mismatch or disturbances It is better to 

use the second method of compensation because it can overcome severe mismatch, due 

to the structured form of the future error

4 .4 2 2  Properties

1 The assumption that the setpoint is constant over the prediction horizon restricts its 

application to regulatory control but the error compensation technique helps reduce the 

error when tracking varying setpoints

2 The robustness follows from trying to drive the output to the setpoint at the end of 

the prediction honzon and not at the next sampling instant

3 The Principal of Receding Honzon applies also

4 This algorithm is not computationally complex The internal model used is an 

inverse model, a simple linear equation The most computationally complex part of the 

algorithm is m computing the coefficients of the first order error polynomial

4 .4 2 3  Simulation Results

Based on the simplified model for the PUMA 560 the following inverse models 

result for joint one, two and three respectively

u 1 (k ) = 24471 69{  y , ( k + 4 )  - 2 0552y , (k+3 )  +

1 2439y, (k+2) - 0 1887y1( k + l )  }
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u 2(k )  = 73701 39{  y 2(k+4) - 2 1121ya(k+3) +

1 3003y2(k+2) - 0 1887y2( k + l )  }

u 3(k )  = 18428 47{  y 3(k+4) - 2 .0 3 5 2 y 3(k+3) +

1 2234y3(k+2) - 0 1884y3( k + l )  }

To find the optimal parameters, firstly multi-joint control with constant setpoints 

is tried For the models derived above the prediction horizon has a value of four This

can be extended if  one so desires The value of a  has to be chosen to provide a

sufficiently fast response without having too severe control inputs

With otj equal to 0 95, the response is fast, there is little overshoot and the static

error is low (see Fig 4 25a and Fig 4 25b) Reducing a, to 0 85, undesirable results are 

achieved, le  a large static error is present (see Fig 4 26a and Fig 4 26b) The value of 

a  should be close to unity since the sampling frequency is 200Hz. Trying to dnve the 

close-loop system too fast, results m unsatisfactory results since the inverse models are 

only linear approximations to the actual system. The best tuning parameters are chosen 

to be = 095 , H  = 4 Tracking a path using these parameters results in a large 

peak error (see Fig 4 27a, Fig 4 27b and Fig 4 27c)

j l  = 0 2  rads

j2 = 0 3  rads

j3 = 025 rads

4.43 Conclusion

The revised Monoreg Predictive Control Algorithm performs well in the simulation 

experiments Although, this algorithm is only for regulatory control and one of its 

assumptions that the control input remains constant over the prediction honzon, it still 

performs well when asked to track a specified path This is due to the fact that the 

trajectory is sampled at intervals of 5msecs, and in that time the setpoint does not 

change very much

This algorithm performs better than PD or Optimal Control Computationally it 

requires some off-line calculation before the algorithm is initiated The on-line 

computation is not very demanding on processor time, therefore this algorithm is 

suitable for manipulator control
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The second algorithm is not computationally complex and it is easy to denve the 

control law provided a model of the system exists However the performance of this 

algorithm on the PUMA 560 model is poor, with a large tracking error and poor 

static accuracy compared to the previous algorithms This algorithm is not suitable for 

high precision manipulator tasks

4.5 Summary

Several fixed parameter control algorithms are presented m this chapter These 

algorithms range from the classical controllers, like PID and Optimal Control, to the 

modem control technique of Predictive Control Frequency Domain Compensators are 

also discussed The performance of each of these algorithms is investigated on the 

robot simulator to determine the most suitable controller for manipulator-type robots

Several criteria are used to pick the best algorithm and this is discussed in a later

chapter

The tuning of such algonthms is as diverse as the algorithms themselves PID 

can be tuned using the Zeiger-Nicholas rules or using a Pole-Placement scheme

Lag-Lead configurations are tuned using the Bode design technique. Optimal Control 

optimizes (minimizes or maximizes) a cost function based on the system parameters 

for given values of q and r Finally, Predictive Control is tuned in the Tune Domain 

Two parameters determine the closed-loop response and a few simple rules are used to 

determine their values

From the results presented in this chapter, full PID  compensation performs better 

than the other techniques It has an extremely low static error due to the integrator m 

its action Also the peak error values recorded when tracking a specified trajectory are 

the lowest in magnitude of the controllers presented here The Adapted Monoreg

Algorithm is a close second place Its simplicity is its advantage Lead Compensation 

also performs well but the opnmal control technique does not seem suited for 

manipulator control The assumptions before solving for the optimal controller are the 

downfall of this method However variations of nonlinear optimal control are currently 

under investigation and the results could prove encouraging. The second Predictive 

Control method is not suitable for use in this area The linear models do not specify 

the joint dynamics sufficiently and the algorithm suffers from this inaccuracy
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Fixed parameter algorithms suffer from several disadvantages due to their lack of 

flexibility Adaptive controllers, which are discussed in Chapter 5, can overcome some 

of these problems by continually updating the control gams Using the results from an 

identification the controller parameters can be derived These gams are continuously 

adapted to cater for varying conditions Because the robot is highly nonlinear, its 

parameters varying widely over its operating range Thus it is better to varying the 

controller gams also Linear and nonlinear adaptive routines exist but only the linear 

techniques are investigated
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Index to Graphs

□ Fig 4 3a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig 4 3b Plot of Joint Positions versus Time for Constant Setpoint Demands

□ Fig 4 4a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig 4 4b Plot of Joint Positions verus Time for Constant Setpoint Demands

o  Fig 4 5a Plot of Control Inputs versus Time for Cubic Spline Tracjectory 
Demands

□  Fig 4 5b Plot of Joint Positions versus Time for Cubic Spline Trajectory Demands

□ Fig 4 5c Plot of Joint Positioned Errors versus Tune for Cubic Spline Tracjectory
Demands

PID Control Results

□ Fig 4 6 a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig 4 6 b Plot of Joint Positions versus Time for Constant Setpoint Demands

□ Fig 4 7a Plot of Control Inputs versus Time for Constant Setpoint Demands
v

□ Fig 4 7b Plot of Joint Positions verus Tune for Constant Setpoint Demands

□ Fig 4 8 a Plot of Control Inputs versus Time for Cubic Spline Tracjectory 
Demands

□ Fig 4 8 b Plot of Joint Positions versus Time for Cubic Spline Trajectory Demands

□ Fig 4 8 c Plot of Joint Positions verus Time for Cubic Spline Tracjectory Demands.

PD Control Results



□ Fig 4 9a Bode Plot of Gain K G(s)

□ Fig 4 9a Bode Plot of Phase K G(s)

□ Fig 4 9b Bode Plot of Gain K(s) G(s)

□ Fig 4 9b Bode Plot of Phase K(s)G(s)

□ Fig 4 10a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

□ Fig 4 10b Plot of Joint Positions versus Tune for Cubic Spline Tracjectory
Demands

O Fig 4 10c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

□ Fig 4 11a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

□ Fig4 lib  Plot of Joint Positions versus Time for Cubic Spline Tracjectory
Demands

□ Fig 4 11c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

Lag Control Results

□ Fig 4 12 Bode Plot of Gain K(s) G(s)

□ Fig 4 12 Bode Plot of Phase K(s)G(s)

□ Fig 4 13a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

□ Fig 4 13b Plot of Joint Positions versus Time for Cubic Spline Tracjectory
Demands
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Lead Control Results
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□  Fig 4 13c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

□  Fig 4 14a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

□  Fig 4 14b Plot of Joint Positions versus Time for Cubic Spline Tracjectory
Demands

□ Fig 4 14c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

Lag-Lead Control Results

□ Fig 4 15 Bode Plot of Gain K(s) G(s)

□ Fig 4 15 Bode Plot of Phase K(s) G(s)

□ Fig 4 16a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

o  Fig 4 16b Plot of Joint Positions versus Tune for Cubic Spline Tracjectory
Demands

□ Fig 4 16c Plot of Joint Positional Errors versus Tune for Cubic Spline Tracjectory 
Demands

Optimal Control Results

□ Fig 4 17a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig 4 17b Plot of Joint Positions versus Time for Constant Setpoint Demands

□ Fig 4 18a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig 4.18b Plot of Joint Positions versus Time for Constant Setpoint Demands.

□ Fig 4 19a Plot of Control Inputs versus Time for Constant Setpoint Demands
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□ Fig 4 19b Plot of Joint Positions versus Time for Constant Setpoint Demands

□ Fig 4 20a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

□  Fig 4 20b Plot of Joint Positions versus Time for Cubic Spline Trajectory
Demands

□  Fig 4 20c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory 

Demands

Predictive Control Results (Method 1)

□  Fig 4 22a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig 4 22b Plot of Joint Positions versus Time for Constant Setpoint Demands

□ Fig 4 23a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig 4 23b Plot of Joint Positions versus Tune for Constant Setpoint Demands

□ Fig 4 24a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

□ Fig 4 24b Plot of Joint Positions versus Tune for Cubic Spline Trajectory
Demands

□ Fig 4 24c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory 
Demands

Predictive Control Results (Method 2)

□ Fig 4 25a Plot of Control Inputs versus Time for Constant Setpoint Demands

□ Fig.4.25b Plot of Joint Positions versus Time for Constant Setpoint Demands

□ Fig 4 26a Plot of Control Inputs versus Time for Constant Setpoint Demands
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□ Fig 4 26b Plot of Joint Positions versus Time for Constant Setpoint Demands

□ Fig 4 27a Plot of Control Inputs versus Time for Cubic Spline Tracjectory 
Demands

□ Fig 4 27b Plot of Joint Positions versus Tune for Cubic Spline Trajectory 
Demands

□ Fig 4 27c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory 
Demands
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Fig.4 .la  Textbook Fig.4.1b Derivative of
Controller Output Controller

Fig.4.1c Set Point on I Fig.4.1d PI followed by
only controller Lead Network

Fig.4.2 A Common General Form for the PID controller 
based on Pole Placement design
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Fig 4 9a Bode Plot of K  G(s)
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Fig 4 9b Bode Plot of K(s) G(s)
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CHAPTER 5

ADAPTIVE CONTROL STRATEGIES

In the last chapter, it is assumed that all the robot joints could be represented by 

linear models that are fixed with time In fact, this is true for virtually every 

manipulator controller currently being manufactured A number of robot controllers do 

permit the user to specify the load before performing any move operations. Parameters 

that give the best (compromise) performance are then downloaded from a table located 

in memory This is a form of adaptive control, called Gam-Scheduling and has been 

used for years in the field of missile guidance [62]

To improve the performance of the robot, the area of adaptive control is 

investigated Dynamically compensating for inertial load vananon, by constantly 

adjusting servo parameters, results in unproved operation characteristics, but safeguards 

must be taken In this chapter, some of the fixed gam controllers- of Chapter 4 are 

transformed to adaptive routines to observe the improvements, i f  any Single-loop 

adaptive control schemes are examined here. This type of adaptive controller may also 

compensate (to some degree) for interaction between joints Before adaptive control is 

performed, a suitable parameter identification routine is required. Many routines are 

available, and these are discussed with reference to the robot Adaptive Control can be 

divided into two classifications Explicit control is where the plant parameters are 

calculated in the recursive identification, in contrast to the implicit type where the 

identification produces the controller gams Thus, the control design step has been 

avoided (see Fig 5 1)

Nonlinear control theory is a topic of continued investigation. It is by no means 

an area of general theories, and nonlinear control methods are very specific in their 

applications. Adaptive control can be used to control nonlinear processes and can be 

applied to a wide variety of applications.
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Hence, the area of adaptive control is concerned with the study and design of 

controllers and regulators that adjust to the varying properties of the controlled process 

AGC (automanc gain control) in radio, which adjusts the receiver gain so that its 

output level is relatively constant over a wide range of input signal amplitudes, is an 

example of such an adaptive system

5.1 Identification Techniques

The Method of Least Squares is the most commonly known identification 

algorithm Two different types of identification are possible

1 Off-line or Batch identification

2 On-line or Recursive ldennficatioa

There are two advantages of recursive identification over off-line identification One is 

that the decision of what model structure to use has to be made a prion, before 

starting the recursive identifcation procedure In the off-line situation different types of 

models can be tned out The second advantage is that, with few exceptions, recursive 

methods do not give as good an accuracy of the models as off-line methods 

However, dunng adaptive control, it is necessary to infer the model at the same time 

as the data is collected The model is then updated at each sample instant when some 

new data becomes available [26]

Least Squares is the method of identifcation used here. It is a flexible routine 

and it is easy to change the number of identified parameters A parameter vector 0 is 

estimated from the measurements of y(t) This estimate is chosen by m inim izing  what 

is left unexplained by the model, 1 e the equation error e(t) Minimization is done 

with respect to 0 Vananons on the basic Least Squares algonthm exist. A model is 

put on the error m Extended Recursive Least Squares. This helps to reduce any bias 

that may exist in the presence of non-white noise. These extensions are explained m 

the following sections.

5.1.1 Recursive Least Squares (RLS)

When optimal control theory has been applied to the construction of robot 

controllers, a common simplification of the above model is to assume that the 

coupling terms, due to the other joints, can be neglected [27] [28] By assuming this,
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and by assuming that the PUMA 560 system parameters are slowly tune-varying with 

negligible measurement noise, it is possible to apply the simplest form of RLS to the 

identification of this robot’s parameters This model can be wntten as

If  the parameter vector 0 and the regressor information vector O are defined as

The parameter estimation problem is to find the estimates of the unknown parameters 

which minimize the loss function

where ej(t) is the prediction error in the parameters of joint 1, and m is the number 

of parameters being estimated. The principle underlying Least Squares is that by 

minimizing the prediction error it is possible to minimize what is unexplained in the 

model The solution to the Least Squares problem is furnished by the following 

recursive equations [26]

where P is the covariance matrix (2nx2n) of the estimation errors and |i is what is 

known as the forgetting factor The P matrix is a posmve definite measure of the 

estimation error and its elements tend to decrease as time increases It is therefore 

necessary to initialize the elements of this matrix to some large value, to ensure that

y ( k )  = A(q " 1 ) y ( k - l )  + B ( q ^ ) u ( k - 1 )  + e (k ) (5 1)

0 T = ( a , , ’an>bi » >t>n) (5 2)

and

$T = [ y ( k - l ) , , y ( k - n ) , u ( k - l ) ,  , u ( k - n ) ] (5 3)

then the model can be wntten as

y (k )  = 0 T 0 ( k - l )  + e (k ) (5 4)

m
E(0!) = 1 1 ,  [ e ^ k ) ] 2 

m+ 1  i= l
(5 5)

0 i ( k )  = 0j ( k - 1) + P ( k ) 0 ( k - 1 )  [ y i (k )  - o T j i k - m C k - l ) ]

(5 6 )

(5 7)
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its elements do not tend to zero too rapidly If  this occurs equation (5 6 ) reduces to
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9 x 0 0  = 9 , ( k - l ) (5 8 )

and the estimated values become constant before they have converged to a value close 

to or equal to the true model parameters An initial value [29] of 1000 on the
r

diagonal elements of the P matnx should prevent this problem occurring Once the 

estimates have reached their true value, the P matnx elements tend to zero As a 

result, any parameter which dnfts with time in the system w ill only be tracked until 

the P elements become zero To overcome this, [29] suggests the use of a forgetting 

factor (|i) This factor can be used to account for an exponennal decay of past data 

in tracking a slow drift m the system parameters It works by dividing the elements 

of the P matnx by a value less than 1 This prevents the elements of P becoming 

zero The value of (i is generally in the region of 0 95 to 10 A value of |i equal to 

0 95 results in an estimation method which is capable o f tracking time vanance in the 

system parameters but which fails to converge totally to its true value. To obtain a 

tradeoff between good estimates and time vanance monitoring, [29] suggests the use of 

an exponennal forgetting factor which tends towards a value of 1 as tune tends to 

infinity The forgetting factor chosen for this application is given by

with |i(0 ) equal to zero

5 1 2  Modtfed Recursive Least Squares (MRLS)

This method is based on the least squares model just descnbed This more 

comprehensive autoregressive model can be wntten as

where h is a forcing term intended to include the nonlinear effects of torque-dependent 

terms. In this case, the parameter estimates and the regressors can be wntten in the 

following vector format

| i ( t )  = 0 95|x(t -1 )  + 0 95 (5 9)

y ( k )  = A(q " 1 ) y ( k - l )  + B C q - ^ u C k - l )  + h + e ( k ) (5 10)

0 T = ( a , , (5 11)

and,
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<Dt  = [ y ( k - l ) , , y ( k - n ) ,  u ( k - l ) ,  , u ( k - n ) , l ]

(5 12)

The autoregressive model can be written as

y (k )  = 0 T O ( k - l )  + e ( t ) (5 13)

This is the format required, and it is possible to apply the loss function of equation 

(5 5) for minimizing the prediction error This results in the parameters being identified 

by equations (5 6 ) and (5 7) To ensure that this estimation method has the same 

ability as the RLS algorithm to track time varying parameters the same forgetting 

factor scheme is used

5.13 Extended Least Squares

This method attempts to estimate a model for the noise present in any system, as 

well as the system model itself This model can be written in time senes form as 

follows

where C (q '1) is the polynomial containing the parameters of the noise model and d(k) 

is called the loaded disturbance variable In this case, the parameter estimates and the 

regressors can be written m the following vector format .

y (k )  = A ( q - 1 ) y ( k - l )  + B ( q - ’ ) u ( k - l )  + C ( q - 1 ) e ( k )  + d (k )

(5 14)

0 T = ( a , , i ’ ibn , ci, tCj|) (5 15)

and,

<DT = [ y ( k - l ) ,  , y ( k - n ) , u ( k - l ) ,  , u ( k - n ) , e ( k ) , , e ( k - n + l ) ]

(5 16)

The autoregressive model can be written as

y ( k )  = 0 T <D(k-l) + e ( t ) (5 17)
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This means that equations (5 6 ) and (5 7) can be used to update the parameter 

estimates of the model Once again the same variable forgetting factor is used to track 

parameter variations

5.14 Nonlinear Least Squares

This method attempts to esdmate a model for the residual as a combination of 

linear and nonlinear functions It does this by formulating the autoregressive model 

[30] as follows

y (k )  = A (q " 1 ) y ( k - 1) + B ( q - ’ ) u ( k - l )  + C ( q - ’ ) e ( k )  + N(k)

(5 18)

where C(q"1) is the polynomial containing the parameters of the noise model and N(k) 

is a nonlinear polynomial defined by

In this case, the parameter estimates and the regressors can be written m the following 

vector format

N(k)  = n , u 2 ( k - l )  + n 2u 3 ( k - l ) (5 19)

0 T = ( a , , (5.20)

and

= [ y ( k - l ) ,  , y ( k - n ) ,  u ( k - l ) ,  , u ( k - l ) , e ( k ) , , e ( k - n + l ) ,

U 2(k-l),U 3(k-l)]
(5 21)

The autoregressive model can again be wntten as

y (k )  = 0 T O ( k - l )  + e ( t ) .(5.22)

5 .1 5  Results

Using the basic RLS algonthm, the parameters of each of the joints can be 

identified A second order model is identified for each joint. The following results 

show the performance, which proves to be satisfactory m a control environment A
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pseudo-random binary sequence (prbs) is used as input to each of the joints to 

stimulate sufficientiy the dynamics of the model Fig 5 2a shows the numerator

parameters, while Fig 5 2b shows the denominator coefficients. These results are 

obtained with P 0 = 10,000 and |x = 0 9  The results shows that the identifier is in 

adaptive mode, le  the parameters converge to their values quickly but never actually

settle at a constant level In Fig 5 3a and Fig 5 3b, (a. = 0 95 and a slower response is

obtained, where there is less oscillation by the parameters about their true values.

The other identification techniques are not investigated in this project. Jones [7], 

was involved in the analysis of this area He concluded that the nonlinear

identification technique results in a loss function lower m magnitude to the other 

methods Hence, this method gives the best parameter estimates This is because the 

model identifies a linear and a nonlinear part Extended Least Squares also proves to 

be a good identification tool

5.1.6 Conclusion

Although Recursive Least Squares is the simplest of the algorithms, it is suitable 

for robotic applications Using input/ouput data, a second order model can be identified 

where four parameters are calculated These parameters are used to calculate the 

adaptive controller gains. The choices of forgetting factor and P 0 influence the 

identification performance The routine can be tuned for fast or slow parameter 

convergence, or can be tuned to deal with highly time varying parameters.

5 2  Adaptive PID Controllers

In an adaptive PID controller, the control parameters are obtained using an 

identifier and a control design technique The design technique is based on 

pole-placement in both algorithms presented here Full PID, as observed before, should 

perform better than just PD control

52.1 An Adaptive PD Control Algorithm

The algorithm presented here is derived from Chapter 4 Pole-Zero cancellation is 

employed [31] A second order model is identified for the input/output data. The 

identification results in four model parameter estimates. No additional prbs input is

117



required to ensure successful results

52.1.1 Controller Demotion

From Chapter 4, the transfer function for a PD controller is

K(z )  = (Kp h + Kd) [ z - Kd/ ( K p h + Kd) ] (5 23)

h z

The identified model is

Adaptive Control Strategies

Y(z )  = b ,z  + b 0 = b ,z + b 0

U (z )  z 2 + a ,z  + a 0 (z  - p , )  (z  - p 2)

where p, = 1 and

Pz = - a T + ( 3 1 2 - 4 a o ) i 
2

Cancelling p 2 gives 

Kd
Kp h +

and

Kd = P 2 h 

Kp 1 - p :

(5 24)

(5  25)

= P , (5  26)

(5  27)

An extra design requirement is needed to determine the control gams uniquely One 

can use either phase margin or an error specification as the extra design criterion. 

Proceeding as in Chapter 4, specify Kv to find Kp and Kd From the forward transfer 

function, Kv is found to be

Kv -  (b, + b 0) . (Kp.h + Kd) ^  2g)
h

and thus
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K(j - p 2 Kv h
b i + b 0

(5 29)

5 2 .1 2  Simulation Results

I f  Kv = 1/5, for constant setpoints, the response is shown in Fig 5 4 The 

response is good, and the static error is low,

essi ~ 0  

i e SS2  = 2  l x l f r 4

, « s s  3  =  2 x 1 0 - 5

This is a considerable improvement on the fixed gain PD controller Fig 5 5 shows the 

response to a variable reference input The peak error for each joint is

and again these figures are lower than in the fixed parameter case. Hence the adaptive 

algorithm is a more efficient control algorithm
IIi1I

5 2 2  Full Adaptive PID Control
i

I
The fixed parameter PID algorithm in Chapter 4 is tuned using the 

Zeiger-Nicholas Ultimate Sensitivity Method Here, a pole placement technique is used 

to compute the controller parameters [32] In this algorithm a training, or learning 

period, is used, m which the robot parameters are identified, so that good initial 

estimates are obtained when control commences 

[
522 .1  Controller Derivation

Consider a single mput single output, discrete, time invariant second order model 

for each robot jomt

epk i ~ 0  06
epk j = 0 06
epk 3 = 0 08

A(z'1)Y(z) = z" ’B(z*1)U(z) ( 5 .3 0 )
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where

A(z_1) = 1 + a ^ ' 1 + a2z" 2 and 

B(z‘ 1) = bjjZ"1 + b ^ - 2 b 0 i O

Consider the following PID structure, given in velocity form

S(z )  U (z )  = R(z)  E (z )  (5 31)

where

S = (1 - z * 1) (1 + s , z - 1) (5 32)

R = 1 + r 0 + r ^ " 1 + r 2z ‘ 2 (5 33)

The error e(k) is given by

e (k )  = um(k)  - y (k )  (5 34)

where um(k) is the setpoint sequence

Hence the closed-loop system is .

(AS + z ‘ 1BR) Y (z )  = z - ’BR Um( z )  (5 35)

The PID has four parameters, and it is possible to select these parameters to fix the 

closed loop poles To position the closed-loop poles, S and R must satisfy

AS + z - ’ BR = C (5 36)

where

C = 1 + c , z _1  + c 2z ‘ 2 + c 3 z " 3 + c 4 z - 4  (5 37)

C is the closed-loop pole polynomial chosen by the designer Four simultaneous

equations result, and solving these give r0, r ,, r2 and s.

The solution to the design problem is as follows

s, = num/den . (5 .3 8 )

num = ( C j - b , - a , + a 0) - ( c , + l - a 0 - b 0) b,  - b 0 ( a 1+ c 3 - b 0 c 4 / c 1)

b 0 b,
(5 39)
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den = -b,  - b 0 ( a , - a 0) - b 0 2 a, + ( a 0 - 1 )

^  Vb , 2 (5 40)

r o = ( c i + l )  '  ( a o+b 0+ s 1)

bo
(5 41)

r ,  = c 3 + a 1 - b 0 ( a 1 s 1+c 4 ) / b 1 + ( a 0 - a , )  s

b,
(5 42)

r 2 = c 4  + a, s, 

b,
(5 43)

5 2 2 2  Simulation Results

The forgetting factor (|i) for each joint is set to 0 995 and P 0 = 1,000 The 

identification is tuned so that large variations in the controller gains do not occur 

Large parameter variation causes problems when full P ID  control is used, due to the 

sensitivity of the closed-loop system Fig 5 6  shows the simulation results when the 

above identification tuning is used The C pole polynomial is chosen to have two 

stable poles Thus c3 and c4 are zero The results show that the adaptive algorithm 

does not perform as well as its fixed parameter counterpart, but this algorithm is still 

suitable for high precision manipulator tasks The peak error for each joint is

and the static error is very low for each jo int

Usmg only a self-tuning PID (i e the identification is turned off after the 

learning period) gives the results in Fig 5 7 The control here is similar to fixed gam 

PID control

5 2 3  Conclusion

The adaptive PD controller is a significant improvement on its fixed parameter 

counterpart The static and peak error values have lower magnitude, therefore 

justification for the extra algorithmic complexity exists. The control design section is 

the same for both algorithms.

epk, -  0  006 

epk 2 = 0  006 

epk3 = 0 02
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The adaptive PID performs well, but it is felt that there is no justification for an 

adaptive PID algonthm based on the results found here Maybe for widely varying 

loads and high speed movement along specified trajectones, the adaptive algonthm 

could be suitable, but for industrial use, the extra complexity is not justified 

Operation over a wide range of conditions (especially load vanations encountered in 

Pick and Place tasks) should show improved response

5.3 Model Reference Adaptive Control (MRAC)

The Model Reference Adaptive System (MRAS) is one of the mam approaches to 

adaptive control The desired performance is expressed in terms of a reference which 

gives the desired response to a command signal The system also has an ordinary 

feedback loop composed of the process and the regulator The error is the difference 

between the outputs of the system and reference model. The regulator has parameters 

that are changed based on the error There are thus two loops; an outer loop which 

adjusts the parameters in the inner loop, and an inner loop which provides the 

ordinary control feedback (see Fig 5 8 )

There are essentially three basic approaches to the analysis and design of a 

MRAS,

1 The Gradient Approach

2. Passivity Theory 

3 Lyapunov Functions.

The gradient method is used here It is important to note that the gradient approach 

w ill not always result in a stable closed-loop system, but the design is simpler than 

the other methods mentioned This observation inspired the application of stability 

theory Lyapunov’s stability theory and the Passivity theory have been used to modify 

the adaptation mechanism

5J.7 MRAC : The Concept

For a system with adjustable parameters, the model reference adaptive method 

gives a general approach for adjusting the parameters so that the closed-loop transfer 

function w ill be close to the prescnbed model. This is called the Model-Following 

problem. One important question is - how small the error can be made? This depends
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on the model, the system and the command signal I f  it is possible to make the error 

equal to zero for all command signals, then Perfect Model-Following is achieved 

Optimization methods are natural tools in MRAS design Perfect model-following can 

only achieved in idealised situations

5 3 2  Controller Derivation

This method is based on the Independent Joint Control Method of Sensitivity 

Analysis [33] (see Fig 5 9) The manipulator dynamic equation can be written as

where api and bp, are functions of changing coefficients with the operation 

environments of the system The reference model is given by

The sensitivity approach is based on adjusting the parameters apt and bp, in order to 

minimize a quadratic (or objective) function of the generalized output error,

where dj, 1 = 0,1,2 are the weighting factors Let the parameters ap, and bp, be 

adjusted in order to minimize this integral This is realized by making small variations 

in ap! and bp, such that

a P i q P i  +  b p i q p i  +  q P i  =  r i ( 0
(5 44)

amiqmi + bnnqmi + ‘îmi -  r i ( 0 (5  45)

e ( t )  = qra( t ) - qp ( t ) (5 46)

Consider the following error function

0 (5  47)

ap i ( e , t )  = -a,  à  [ 9 f ( e )  ] 
at 3api (5 48)

bp i ( e , t )  = -(3, à  [ af (e)  ] 
3t c)bpi ■(5 49)
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Substituting (5 47) into (5 48) and (5 49) using (5 46) gives
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api ( e , t )  = a! ( d 0ej + d ^  + d 2 e j )  [ d 0 9qp i + d , 9qpi + d 2 9qpi ]

3api  ^api  ^api

(5 50)

b p i ( e . t )  = p! ( d 0ej + d ,e ,  + d 2 e j )  [ d 0 3qpi + d, 9qp i + d 2 3qpi ]

3bp j 3bp j ^bpi

(5  51)

where

^Qpi and ^Qpi 

3api  ^bpi

are the sensitivity functions of the adjustable system with respect to ap, and bp, 

respectively, and otj and jJ, are positive constants known as the adaptation gams.

For slow adaptation (i e apt and bpj change with slow rate), the adaptation 

mechanisms reduce to

a p i ( e , t )  = otj ( d 0 e ! + d ^  + d ^ )  [ d 0 Uj + d , Uj + d 2 .Uj ]

( 5 .5 2 )

b p i ( e , t )  = p!  ( d 0e !  + + d 2e j )  [ d 0 w,  +  d l  w,  + d 2 w,  ]

(5 53)

where

ui = ^qpi an(j Wj = 5qpi 
dapj 3bpi

and the above assumption (slow adaptive rate) results in the following differential 

equations

ap i u i + bp i U! + Ul = -qpi ( 5 . 5 4 )
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apiwi + bpiwi + wi = -qpi (5 55)

The rates of adjustment of the control gains can be calculated from (5 56) and (5 57)

These equations, (5 56) and (5 57), cannot be solved for the sensitivity functions, uj 

and Wj because the coefficients ap^e.t) and bpj(e,t) are not available, since they are 

functions of the unknown coefficients of the controlled plant and the adjustable 

controller gams Two further assumptions are needed

1 The parametric distances (O^ = ami - aplt = b ^  - bpX) are very small, a ^  

= api(e>t)> bnjj = bpj(e,t)

2 The output generalized error (e = qm - qp) is small.

Introducing these two supplementary assumptions into equations (5 54) and (5 55) yields 

a set of differential equations of the form

amiu i + bjniUj + U! = -qm, (5 58)

Kpi(e,t) — -ap,(e,t) Kp,(e, t) (5 56)

api(e • o

Kdi ( e ,  t )  — b p i ( e , t )  Kp i ( e , t )  - a p j ( e , t )  ^( e , t )

ap i ( e , t ) (5 57)

ami wi + bmiWi + wi = -qmi (5 59)

and the rates of the adjustment of the control gams are

K p i ( e , t )  — - a p j ( e , t )  Kpt ( e , t ) (5 60)

ami

Kdi(e,t) = bpj(e,t).Kpj(e,t) - apj(e,t) Kdi(e,t)
arai (5 61)
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Hyperstability and Posiavity Concept : Popov’s hyperstability theory is used to 

determine the coefficients of the adaptation gain. To formulate the hyperstability 

problem the generalized error equation has to be derived Subtracting the manipulator 

dynamic equation (5 44) from the reference model (5 45) results in the generalized 

error equation given by

where p = d/dt

and Wj = (api - ami) qpi + (bpi - bmi) qpi 

A linear compensator is introduced to process the generalized state error 

v = D e where D = [ d0I + d,I ]

The adaptation algorithm can be written as .

ap i ( v , t )  = -aj v,  qpi (5 63)

( ami P2 + bmi p + 1) e,  = -wj (5 62)

b p i ( v , t )  = -p! v, qpi (5 64)

where GCj.Pj > 0

From the decoupled equations, the control equation is given by

ui ( t )  -  Kp i ( t )  [ rt - qpi ] - Kdj(t) qpi (5 65)

Hence the adaptation mechanism can be written as

ap i ( v , t )  = -a, v, u , ( t )  = -a, v, [ Kp i ( t )  ( r 1 - qpi )

* K^Ct) qpi ]

(5 66)

b p i ( v . t )  = -pi Vi qpi (5 67)
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The rates of adjustment of the control gains are given by equauons (5 60) and (5 61)

Adaptive Control Strategies

Kpi (e »t ) -  -ap!(e, t) Kpi(e,t)

ami

K ( j i ( e , t )  = b p j ( e , t )  K p ! ( e , t ) - ap l ( e , t )  Kd l ( e , t )

ami

5 3 3  Results

The optimal îmtial values of the controller gams are

Kpi = 500 Kp2 = 500 Kp3 = 600

Kd, = 30 Kd2 = 60 Kd3 = 10

The position reference model for each joint is

ÜJLL = 200
U(s) (s+10)(s+20)

and for velocity

m i  =  200s
U(s) (s+10)(s+20)

This model has unity dc gam and a fast response to command inputs.

Test 1 :

<Xj,pi = 1x10-5

d0 = 1
d, = 10 

d2 = 0

Fig.5.10 shows the results of this test The setpoints are constant The result is good 
with a small steady state error for each jomt .

essi = 0 

es s 2 = ^ 2x10"4

127



Adaptive Control Strategies

Using the same controller tuning, a variable trajectory is used as the reference 

input Fig 5 11 shows the response The peak error for each jomt is low

epk, = 0 1  

epk2 = 0 2  

epk 3 = 0 08

Test 3 :

Use cxi,Pi = 1x10*5 The reference models are changed to

I LSI = 600
U(s) (s+30)(s+20)

and

X ijL i = _  6&QS_
U(s) (s+30)(s+20)

Agam, a variable trajectory is used as the reference input. Fig.512 shows the 
response. The peak error for each jomt is low

epki = 0 1  

epk2 = 0 15 

epk 3 = 0  07

This is a good response, but not the best result achieved to date

53.4 Conclusion on MRAC

This version of MRAC is based on the MIT rule, known more specifically as 

MRAC - the Hyperstability Method. It is basically an adaptive PD controller with 

certain properties. More complicated versions are available which produce better results, 
i e. The Sensitivity Approach.

e g g  3  =  6 x l Q r S

Test 2 :
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One has to ask the question whether one can justify the extra computation 

required to update the controller gains The constants d0, d, and d2 are quoted from 

[33]

The control parameters change when the position is varying When the position 

reaches a constant value, the parameters stabilize Maximum parameter variations occur 

when the joint follows the specified path to a new setpoint Larger values of alpha 

and beta result in larger changes in the parameters

5 4 The Self-Tuning Regulator (STR)

Usmg pole placement an Adaptive Regulator can be designed The design tries to 

fit the closed-loop system to a specified reference system by correct choice of the 

controller parameters The process involves solving a Diophandne equation The order
of the controller parameters is also specified by design regulations [34]

Two different types of controller are possible, explicit and implicit types. The
results in the end of the chapter compare the performances of both types. The 
controller structure is very similar to a PID controller in the design stage (see
Fig 5 13)

5.4.1 The Explicit Method

Explicit adaptive control incorporates a design stage after the identification stage 

is complete. The identification produces estimates for the plant parameters, and the 
control design stage transforms these plant parameters usmg whatever design technique 
is chosen by the designer

5.4.1.1 Controller Derivation

From Fig 5 13 the control equation is given by

R(z)U(z) = T(z)Uc(z)- S(z)Y(z) (5.68)

and the closed loop system transfer function is
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% -  BT (5 69)
Am AR + BS

where Bm and Am are the specified closed-loop polynomials, determined by the
designer R(z) is assumed to be momc Equation (5 69) can be solved for the three
unknowns giving,

Bm = BT (5 70)
Am = AR + BS (5 71)

Equation (5 71) is a Diophantuie equation.

The polynomial B can be divided into two polynomials B' contains the unstable plant
zeros, and B+ contains the stable zeros

=> B = B' B+ (5 72)

Unstable zeros cannot be cancelled.

The solution to the design problem is given as follows

T = Bm* (5 73)

An, = AR* + B-S (5 74)

degS = degA - 1 (5 75)
degR = degAm - degA (5 76)
degAm - degBm > degA - degB (5 77)

The general procedure is as follows [34]

1 Select Am and Bm subject to equation (5 77)
2 B = B-B+ and Bm = B~Bm

3 Solve AR* + B'S = Am
4 Fmd R = B+R* and T = Bm*

5 The control law is derived as

RU = TUC - SY (5 78)
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Applying this solution to the robot, results in the following controller The robot is 

identified as a second order model
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Y(z) = K (z - b)
U(z) (z - c) (z - a)

Choosing the reference model H ^z) as 

Y(z) = z (1 + p, + p2)

Bm* = Bm = z (1 + p, + p 2) 
K K

Also,

degS = degA - 1  = 1

degR* = degAm - degA = 0

The Diophantme equation,

AR* + B 'S  = Ara

reduces to

(5 79)

(5 80)
Uc (z) z 2 + p1z + p 2 

gives umty dc gain

B = B+ B- = (z - b) K (5 81)

and

(5 82)

(z - c) (z - a) r 0 + K ( s 0 z + s , )  = z 2 + p ,z  + p 2

(5 83)

Comparing coefficients gives the control parameter solutions :

r 0 = 1 . s 0 = Pt + a + c
K

m



s 1 = p 2 - a c  , R = B + R* =  z - b

K

T = Bm* = z ( 1 + p, + p 2)
K

The controller difference equation is

u(k+l) = b u(k) + (1 + p, + p 2) uc (k+l) - s 0y(k+l) - s ,y (k)

(5 84)

The basic algonthmic procedure is as follows

1 Estimate K, a, b and c

The identification is configured as follows

[y(k+2) ] = [ -y(k+l) -y(k) u(k+l) u(k) ] 0?

where

0T = [ -(a+c) a c K - K b ]

2 Determine B+, B' and Bm*

3 Update R, S and T
4 Compute the present control input u(k+l)

5.4.12 Simulation Results

The reference model parameters are assigned the following values

P i  =  - 1 4  

p2 = 049

giving the following transfer function

Hrai(z) = z(0 09)

(z - 0 7 ) 2

Adaptive Control Strategies
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Fig 5 14 shows the response to a varying reference input. The peak error is low for 

each joint

epk1 = 0 027 
epk 2 = 0 027 

epk 3 = 0 043

If a faster reference model is used

Hra2(z)  = z(0 36)
(z - 0 4)2

the peak error for each jomt is reduced to

epk i = 0 006 
epk2 = 0 008

epk 3 = 0 012 

which is extremely low (see Fig 5 15 for this result)

5.42 An Implicit STR

The idea in this section is to rewrite the process model in such a way that the 

control design step is no longer needed, i e. the identification now estimates the 
controller parameters not the process parameters now By a proper choice of model 

structure, the regulator parameters are updated directly and the design calculations are 
thus eliminated. Implicit can also be called a direct method because the parameters of 
the regulator are updated directly

5.42.1 Controller Demotion

Recall equation (5 71), the Diophantme equation,

Am = AR + BS 

also T = Bm*

AR*Y + B-SY = AmY (5 85)
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BR*U + B'SY = AmY (5  86 )

Equation (5 86) can be used as an identification model if, and only if, B'=l If B'=l 
then BR* = R and

RU + SY = AmY (5  87)

Also T = Bm

Applymg this to the robot

R = r0z + r,

S = s 0 z + s,

Am  = z2 + Pi z + P2 
T = Bm  = z (l + Pi + P2) = zt0

From equation (5 87)
r0 u(k+l) + r, u(k) + s 0 y(k+l) + s, y(k) =

y(k+2) + p, y(k+l)  + p2 y(k)

(5 88)

Equation (5 88) can be used to identify the controller parameters 

y = <&0T

y = [ y(k+2) + p, y(k+l) + p2 y(k) ]

<5 = [y(k+l)  y(k) u(k+l) u(k) ]

and

0T = [ s 0 s, r0 r, ]
and

Adaptive Control Strategies

Since AY = BU, then

to = 1 + Pi + P 2
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u(k+l) = [ - r t u(k) + ( l + p ^ p j )  uc (k+l) - s 0 y(k+l) - s ,  y ( k ) ] / r 0

(5 89)

The implicit control algorithm is as follows

1 Update 0 (the controller parameters)
2 Update the control input u(k+l)

5 4 2 2  Simulation Results

Use Hm ,(z) as the reference model Fig 5 16 shows the results with a varying
reference input The peak error for each jomt is

epk , = 0 1  

®pk2 = 01 

epks = 0 013

If Hm2(z) is used, joint 2 does not follow the specified path. The results here are
good, but not as good as the explicit algorithm

5.43 Conclusion

From the results obtained, the explicit algorithm behaves m a more robust
fashion It can control the robot joints even when the reference model is made
extremely fast

The parameters identified m both cases are different The explicit algorithm
identifies the process model, but the implicit type identifies the controller parameters 
Hence implicit is simpler in nature

The reference model can be adjusted so as to reduce the tracking error One

model gave an error as low as the full PID controller Since this algorithm is adaptive 
one would expect better results m the case of varying payloads.

The control law is
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In Chapter 4, Predictive Control shows some encouraging results. It is hoped that 

by introducing an identification routine, thus implementing an adaptive algorithm, the 

performances of the two previous algorithms improve sufficiently to justify the use of 
adaptive strategies

Predictive Control can be implemented as a Gain-Scheduled Algorithm by varying 

the tuning parameters, and the gains, over a range of operating points Note that this 

type of adaptive algorithm contains no parameter estimation technique Also, to 

implement full adaptive control, the parameter estimates are entered in the existing 

control routine to determine the controller gams In these sections vanous adaptive 

forms are investigated, these routines are explicit adaptive control algonthms, le  a 
control design stage is not redundant

55.1 The Adaptive Monoreg Algorithm

Incorporating Recursive Least Squares into the Monoreg routine introduces 
adaptability into the function The internal model used is a state-space model m 

observable form In this way, the second order model has two states, one of which is 
joint position The identified model can be written m observable form simply by 

entering the correct term directly into the matrices.

55.1.1 Controller Demotion

The robot is identified as a second order model in transfer function form •

H, (z ) = b, z + b 0
z 2 + a, z + a 0

The internal model is

5.5 Adaptive Predictive Control

'  ‘ a i 1 ' '  b, '

A = B =
.  - a o 0

.  b o .

C  =  [  1  0  ]
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These model values are entered into the on-line internal model and the control 

equation from Chapter 4 is used, i e the manipulated variable is calculated by

u(k) = ( l - a H) (Cp-S 0(k)) - C (Ah-I)  x(k) (S Qm
P

The term (A^-I) is no longer computed off-line before the algorithm is initiated, but 

must be computed at each sample instant due to A changing This increases the 
computational burden

5 5 1 2  Simulation Results

Using Oj=0 85 and H1,H2=10 and H3 = 5, the response m Fig 5 17 is achieved 

The peak error for each jomt is low

epki = 0 016 
epk2 = 0 014
epk 3 = 0 022

and the algorithm performs well. However reducing a, to 0.1 gives a further 

improvement Fig 5 18 shows the response The peak error for each joint is reduced to

epk, = 0  01 

epk2 = 0  01 

^ka = 0 018

but some oscillation is present in the voltage signal, and may be undesirable 
depending on the application

5 5 2  A Gain-Scheduled Predictive Controller

The Monoreg Control Algorithm can be implemented as a Gain-Scheduled 

Algorithm The tuning parameters a  and H are varied over the operating range of the 

robot aims. Since the parameters of the robot vary widely as they transgress a 

specified trajectory, gain-scheduling is employed so as to retune the compensator to the 
varying parameters.

137



Adaptive Control Strategies

552.1 The Concept of Gam-Scheduling

For the robot to react to fast changes in the reference signal, it is proposed to 

choose alpha as a small value m its allowable range, and to have a short horizon 

value Then the teim (l-aH) makes a large contribution to the control action As the 

robot reaches the end of the specified trajectory, the tuning parameters are set for 

slow movement of the joints 1 e the setdown point has been reached

Table 5 1 shows the variation m the peak error of joint 1 when different tuning 

parameters are used

Table S .l  A Gain-Scheduled Test
a H Peak Error

0 9 3 0 052
0 9 20 0 08 Slowest
0 1 20 0 072
0 1 10 0 038
0 1 3 0 01 Fastest

The fastest parameters give the lowest error values, and the slowest parameters give 

the largest values m peak error Table 5 2 shows the gain-scheduled tuning parameters, 

and how they are vaned over the reference signal The fastest parameters are used m 

the beginning to ensure a low peak error for each joint, and these parameters are 
continually changed to slow the response as the desired position is reached, for low 
static error

Table 5 .2  The Tuning Parameter Variations
% Traiectorv Time a fl

Firs t  32% 0 1 3
Next 18% 0 25 5
Next 14% 0 4 7
Next 16% 0 6 10
Next 16% 0 75 15
Final 4% 0 9 20
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Using the parameter variation according to Table 5 2, the results are shown m 
Fig 5 19 The peak error for each joint is

epki = 0 01

epk2 = 0 01 

^ka = 0 0̂ 8

This is an improvement on the simple controller in Chapter 4

5 5 3  Adaptive Output Feedback Control

The second Predictive Control method can also be transformed into an adaptive 

routine The internal model is denved directly from a transfer function representation 

of the model The fixed parameter model did not prove suitable for manipulator use 

Investigation is now performed in this section to determine whether the adaptive 
version is suitable

553.1 Controller Derivation

The controller equation is as before

u(k) = { y(k+4) + b, y(k+3) + b 2 y(k+2)

+ b3 y ( k + l ) } / ( a 1+a2+a3) (5 91)

The parameters from the identification can be entered directly into this equation The 
algorithm is very simple, even though it is adaptive

5 5 3 2  Simulation Results

From Chapter 4, one found that a value for a,=0 97, or greater, is required, 

otherwise undesirable results are obtained Fig 5 20 shows the response The peak error 
for each joint is

^ k i = 0  51 

epk2 = 0.53 

®pk3 = 0  22

5 5 2 2  Simulation Results
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This is far from optimal performance If a, is reduced, a large static error results on 

joint 2

5.5 4 Conclusion

The adaptive Monoreg Algorithm is a more complex algorithm than its fixed 
parameter version m Chapter 4 The identification algorithm increases the complexity of 
the routine Also, the term (A^-I) must be computed at each sample interval because 
the A matnx is identified at each sample interval, and its value is constantly changing 
If a long horizon is used, the algorithm takes a considerable amount of processor time 
for the matnx manipulation The performance of this algorithm is better than the fixed
case The peak errors have been reduced from 0 3, 0 3 and 05 to 001, 0 01 and 0 08
for joints 1, 2 and 3 respectively This is indeed a significant reduction in error, thus 
justification exists for use of the more complicated algorithm

One reason for usmg a Gain-Scheduled controller is that sudden changes m
desired setpomt can be accommodated by a highly sensitive controller, which can take 
fast compensating action. When the controller returns the process output to the 
setpomt, low gains can be switched-in for safe operation

The adaptive output feedback controller does not exhibit the desired features of a 
high precision control algorithm Therefore, it is not very suitable for manipulator use.

Adaptive Control Strategies

5.6 Summary

This chapter investigates a wide range of adaptive control algorithms. The area of 
Adaptive Control is a huge area of research, so a literature survey was required to 
determine the areas of interest The algorithms chosen here deemed to be a fair 
representauon of the facilities in this area of control

Adaptive Digital Controllers are an obvious choice The performance of adaptive 
PD control is encouraging This routine outperforms its fixed parameter counterpart 
Full adaptive PID control does not justify its complexity, based on the results here 
Possibly, in a varying payload situation, the adaptive routine might excel.
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Model Reference Adaptive Control is another major section of adaptive control 
The method used here is based on the Hyperstability Approach where two feedback 
gains are updated using an adaptation mechanism derived from the error and its 
derivatives This type of MRAC does not use an identification algorithm The results 
here also prove good, even though the controller is basically a PD controller

A pole placement algorithm (STR) is also used here Two types of this algorithm 

are possible - Explicit and Implicit versions The algorithm performs better when used 

m Explicit fonn The design procedure requires the solution of a Diophantine Equation 

The algorithm has a feedback and a feedforward section.

Finally, Adaptive Predictive Control is employed A Gain-Scheduled routine is 

used to control the robot simulator It performs with a high degree of accuracy Two 

other methods are also used An Adaptive Monoreg Algorithm and an Adaptive Output 
Feedback Algonthm from Chapter 4 are investigated The latter is deemed not suitable 

for use here The Monoreg algonthm is suitable, and is one of the best algorithms to 

date, but the STR (explicit type) performs with the greatest degree of accuracy m all 
the tests, and is chosen as the number one adaptive algonthm.
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Index to Graphs

□ Fig 5 2a Plot of Identified Numerator Parameters versus Time

□ Fig 5 2b Plot of Identified Denominator Parameters versus Time

□ Fig 5 3a Plot of Identified Numerator Parameters versus Time

□ Fig 5 3b Plot of Identified Denominator Parameters versus Time

Adaptive PD Control Results

□ Fig 5 4a Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 4b Plot of Identified Numerator Parameters versus Time

□ Fig.5 4c Plot of Identified Denominator Parameters versus Time

□ Fig 5 4d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

□ Fig 5 5a Plot of Joint Positions versus Time for Cubic Splxne Tracjectory

□ Fig 5 5b Plot of Identified Numerator Parameters versus Time

□ Fig 5 5c Plot of Idennfied Denominator Parameters versus Time.

□ Fig 5 5d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

Adaptive PID Control Results

□ Fig 5 6a Plot of Joint Positions versus Time for Cubic Spline Tracjectory

Identification Results
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□ Fig 5 6b Plot of Identified Numerator Parameters versus Time

□ Fig 5 6c Plot of Idenafied Denominator Parameters versus Time

□ Fig 5 6d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory 
Demands

□ Fig 5 7a Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 7b Plot of Idenafied Numerator Parameters versus Time

□ Fig 5 7c Plot of Identified Denominator Parameters versus Time

□ Fig 5 7d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory 
Demands

Model Reference Control Results

□ Fig 5 10a Plot of Control Inputs versus Time for Cubic Spline Tracjectory

□ Fig 5 10b Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 10c Plot of Idenafied Propornonal Gains versus Time

□ Fig 5 lOd Plot of Idenafied Derivaave Gains versus Time

□ Fig 5 11a Plot of Control Inputs versus Time for Cubic Spline Tracjectory

□ Fig 5 11b Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 11c Plot of Idenafied Proporaonal Gains versus Time

□ Fig 5 1 Id Plot of Idenafied Derivaave Gains versus Time

□ Fig.5.12a Plot of Control Inputs versus Time for Cubic Spline Tracjectory

□ Fig 5.12b Plot of Joint Positions versus Tune for Cubic Spline Tracjectory

□ Fig 5 12c Plot of Idenafied Proporaonal Gains versus Time
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□ Fig 5 12d Plot of Identified Derivative Gains versus Time

Self Tuning Regulator (Explicit type)

□ Fig 5 14a Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 14b Plot of Identified Numerator Parameters versus Time

□ Fig 5 14c Plot of Identified Denominator Parameters versus Time

□ Fig 5 14d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

□ Fig 5 15a Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 15b Plot of Identified Numerator Parameters versus Time

□ Fig 5 15c Plot of Identified Denominator Parameters versus Time

□ Fig 5 15d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

Self Tuning Regulator (Implicit type)

□ Fig 5 16a Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 16b Plot of Idenafied Numerator Parameters versus Tune

□ Fig 5 16c Plot of Idenafied Denominator Parameters versus Time

□ Fig 5 16d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands
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Adaptive Predictive Control Results (Monoreg Algonthm)

□ Fig 5.17a Plot of Joint Positions versus Time for Cubic Spline Tracjectory



□ Fig 5 17b Plot of Identified Numerator Parameters versus Time

□ Fig 5 17c Plot of Identified Denominator Parameters versus Time

□ Fig 5 17d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory
Demands

□ Fig 5 18a Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 18b Plot of Identified Numerator Parameters versus Time

□ Fig 5 18c Plot of Identified Denominator Parameters versus Time

□ Fig 5 18d Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory 
Demands

□ Fig 5 18e Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

Adaptive Predictive Control Results (Gain-Scheduled Algonthm)

□ Fig 5 19a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands.

□ Fig 5 19b Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□  F i g  5  1 9 c  Plot o f Joint Positional Errors versus Time for Cubic Spline Tracjectory

Demands

Adaptive Predictive Control Results (Output-Feedback Algonthm)

□ Fig 5 20a Plot of Control Inputs versus Time for Cubic Spline Tracjectory
Demands

□ Fig 5 20b Plot of Joint Positions versus Time for Cubic Spline Tracjectory

□ Fig 5 20c Plot of Joint Positional Errors versus Tune for Cubic Spline Tracjectory 
Demands

Adaptive Control Strategies



Nu
m

er
at

or
 P

ar
am

et
er

s, 
Nu

m
er

at
or

 P
ar

am
et

er
s

Fig.5.1 The Strategy of Adaptive Control

Timet seconds)

i îmeiseconas)

u.

3

tj
3

2 4
Time(seconds)

146
Timetseconds)



Adaptive Control Strategies

Fis 5 4a

Jl

Time(seconds) 

Fis 5 4c

10

■->J
y:
V T

u- 1

3r* 0
Z

-1
(

1 5

1

-3 05
w
w 0
lU

-0 5

-1

x lO -4 Fis 5 4b

Tune(seconds) 

Fis 5 4d

Time(seconds) Time(seconds)

Fis 5 5a xlO'3

Time(seconds) 

Fis 5 5c

Fig 5 5b
û
asr-*c«u
CL
uo
-5Lm1)

Time(seconds)

Time< seconds) Time(seconds)

147



Tim
e(seconds) 

Tim
e(seconds)

148

Denominator Parameters

H
§‘
CP
C/3aoo3Q-
C/3

Position(rads) 

<b p
Ln O  C/i »■ U

Error(rads) Numerator Parameters

otSl
O
oU\

o
L A

Fig 
5 

7a 
 

o 
xlQ

-5 
Fig 

5.7b



Tim
e(seconds) 

Tim
e(seconds)

Denominator Parameters

to
K) VO 00

H
§*
anoDCL
C/5

Position(rads) 

<b o
U O u  H Ln

Error(rads) Numerator Parameters
6
o

o
o o

o
h-*

u> o U \ t—* Ui

1
1  ̂ o>

O J

/ CD

\ t o

c
H

I 1

raUl
ONQ-

ro OJ

Adaptive 
Control 

Strategies



Adaptive Control Strategies

Fig.5.8 The Model Reference Control Strategy
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Fig.5.9 MRAC -  The Hyperstability Approach
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CHAPTER 6

COMPUTED TORQUE AND FEEDFORWARD CONTROL ALGORITHMS

This chapter is concerned with the investigation of Feedforward Control 

Algorithms, and in particular Computed Torque This control technique uses an inverse 

model of the robot dynamics to compute the control inputs Feedforward Controllers 

have several disadvantages and to improve the performance of Computed Torque, an 

adaptive PD controller is added to the control loop to improve the static accuracy of 
the control action Before the control question is addressed, the topic of Feedforward 
Control is discussed Later m the chapter, the simulation results are presented for 

Computed Torque, with and without the feedback PD loop

6.1 Properties of Feedforward Controllers

Feedforward Control is also known as Model-Based Control Model-Based Control 
is a scheme in which a computer model of the controlled process is used to calculate 
control commands Model-Based schemes can be implemented on powerful digital 
computers, which are capable of implementing these schemes m real-time Many of 
feedforward control methods use Inverse Dynamics, eg  Computed Torque, Decoupling 

Torque and Resolved Acceleration Control Computed Torque was the first to be 
proposed and it was influential in other schemes [38]

Feedforward algorithms are very sensitive to unmodelled dynamics which may 

result from modelling inaccuracies or dynamic load variations This results in a static 

error in the output However feedforward control has the advantage of improved 

transient response over feedback control To achieve a fast transient response and low 
static error, feedback and feedforward controllers are often combined The control
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\

signal from each is added to obtain the total control input (see Fig 6 1) The feedback 

control command is ¿y, the extra control signal which is required to reduce the static 

error (if any)

62 The Computed Torque Method

The Computed Torque method is an alternative approach for manipulator control 
Its uses an inverse model of the system and dynamically evaluates the torque (or 

voltage) required by each servo to track a desired trajectory Computed Torque 

algorithms have the advantage of feedforward controllers, le  fast transient response

Computed Torque is a Multivariable Control Technique, not like any of the 

methods used to date No assumptions are required m the derivation of the control 
algorithm, unlike the linear control methods where the design is based on the 
simplified single-joint models Load variation can be accounted for, as long as the load 

variation is known The next section details the control equation, and it can be seen 

that there is a large computational burden imposed by this compensator

621  Controller Derivation

Recalling from Chapter 2, the comprehensive dynamic model of the PUMA 560
robot

" y  7 ' ' V, '

y 8 = -B'1 E(y) + D'1 V2

. y 9 . . V 3 .

where V i, V 2, V 3 are the voltage inputs and, 
y 7, y 8, y 9 are the joint accelerations

Rearranging, this gives
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This is the control equation The desired reference position is not an input to the 
control equation However, the desired rate of change of the joint accelerations,

* * * 
y 7  .  y 8  -  y 9

which are inputs to equation (6 2), are computed using the reference input as shown 
below

* * * 
y 4 = Yi(k+i) - yi(k)

h (6  3)

He *
y ? = y4 (k+o - y4 (k)

h ( 6  4)

* * * 
y 7 -  y?(k+i) ■ y?(k)

( 6  5)

Similarly for y 8 and y9 Having computed the desired rate of acceleration, the control 
equation can be computed

' V, '
r *

y 7

=> V2 = E(y*) + D' 1 CD
*

. V 3 .
*

. y 9 . (6 6 )

This control equation requires the computation of the robot’s inverse dynamics, which 
involves a considerable number of multiplications and additions [35] This is a 
computationally complex routine

So in summary, this scheme uses nonlinear feedback to decouple the manipulator 
The control torque (or voltage) is computed by the inverse dynamics from equation 
(6 6), usmg the commanded acceleration >5*, i=7,8,9, mstead of the measured 
acceleration yx, i=7,8,9, where * indicates the desired values of the associated variable 
[36]

622. Adding an Adaptive Feedback Layer

To improve the static accuracy of the feedforward controller, a PD controller is 
added in the feedback loop An adaptive algorithm is chosen due to its superior 
performance over its fixed gain counterpart Although the static accuracy of the
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feedforward controller is very good, in this simulation environment there are no

unmodelled dynamics to introduce error The error that is present is due to the
technique for estimating the rate of change of acceleration In practice the inverse
manipulator model used might not contain all the robot’s dynamic elements, and it is 
reasonable to assume it doesn’t, and therefore larger static errors will result Hence
feedback control must be employed [37]

Fig 6 1 shows the control loop used here [35] The feedforward section however, 

is not adaptive, only the feedback section The function of the feedback section is to

reduce the static error, the feedforward section will ensure a low peak error, due to
its fast transient response The outputs of the two controllers are added together to
form the control mput The identification uses this mput and the position outputs to
denve the plant estimates The Adaptive PD algonthm from Chapter 5 is used, where 

a pole-placement design method transforms, the plant estimates to controller gains The 

feedback control signal is derived from the present and past errors

6 2 3  Simulation Results

Using only a feedforward compensator results m the control action shown m 
Fig 6 2 The peak error for each joint is

epkl = 5 5x10-« 

e p k 2 =  l x l O " 3 

epk3 = 3x10t4

These are the lowest values achieved, thus the computational complexity is justified 

The static error is

egg, = 4 9xl(T5 
ess2 = 1 5xl0"4 

ess3 = 1 2x10-5

and these values are acceptable The feedforward algonthm thus demonstrates its 
superior transient response over the feedback schemes, exhibiting such a low tracking 
error

Adding an Adaptive PD controller to the control loop results in the control action 
shown in Fig 6 3 The static error for each joint is approximately zero, i e
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essi = 6x10"11 

ess2 = 5xl0-8 
e S S 3  = 1x10-

The forgetting factor (|i) is set to 099, and P0 is set at 1,000 The PD parameters 
are tuned to give a velocity error constant (Ky) of 04  Hence the identification is 
tuned to track slow variance in the manipulator parameters, so the estimated parameters 
do not vary as widely as in Chapter 5 The only job of the feedback compensator is 
to reduce the static error, it does not have to track the parameter variations exactly, 
the feedforward compensator has a comprehensive inverse model of the robot and is 
able to account for the variations in the manipulator dynamics If Kv is increased to 

0 6, this results m a slightly smaller peak error than before, but there is an increase 

m the static error increases (see Fig 6 4) .

eSSl = 3  2x10^ 

eSS2 = 2x10-5 

ess3 = 1 9xl0-5

The results in Fig 6 3 are the best obtained in this chapter

62.4 The Effect of Model Mismatch

Feedforward controllers are very sensitive to inaccuracies in the modelled 
dynamics Here the effect of model mismatch is investigated The contribution of 
gravity is reduced by a factor of two in the internal model This creates a sizeable 
mismatch between the control model and the process model

Fig 6 5 shows the result of this modelling inaccuracy when using the computed 
torque control technique A large static error of 0 1 lrads results on joint 2 This error 
is proportional to the degree of model mismatch However, when feedback is employed 
in conjunction with computed torque, the effect of this mismatch is negligible (see 
Fig 6 6) These results confirm that the most efficient and robust controller is the 
computed torque algorithm with a feedback loop

Computed Torque and Feedforward Control Algorithms
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6.3 Summary

This chapter is concerned with the topic of feedforward control and especially, 
Computed Torque Feedforward control has several advantages over Feedback systems 
The most important is the improved transient response effect This ments no

explanation when one considers the method of feedforward compensation, no error
/

measurement is required to calculate the control input However, there are also 

drawbacks when using feedforward compensation Feedback compensation is very 

sensitive to modelling inaccuracies, which result in static inaccuracies m the controlled 

variable

From the above discussion, it was decided to use both types of compensators, 

Feedforward and Feedback The feedforward section ensures a fast transient response, 

le  low peak error, and the feedback section reduces the static error The incorporation 

of the two techniques gives the best results achieved m this thesis Fig 6 1 shows a 

block diagram of the control loop Only the feedback section contains an adaptive 

layer, the feedforward controller is fixed For future improvements, a nonlinear adaptive 

identifier could be added to the loop, thus havmg an adaptive feedforward section also

In the results obtained here, no modelling inaccuracies are present An exact 
inverse model of the robot simulator dynamics is possible In practice, however the 

inverse model will not contain all the robot dynamics, and the control results will not 
be as good as the above simulation performance But despite this fact, this algorithm 

(with the adaptive PD section) is considerably better than any other algorithm used It 
outperforms all the algorithms m the areas of static accuracy and peak error This 
controller is more robust and can compensate for model mismatch Also it is the most 
complex of all, but the complexity is justified due to its superior performance State 
of the art processors are able to implement these control schemes with suitable sample 
periods
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Index to Graphs

Computed Torque Control Results (Version 1)

o Fig.6.2a Plot of Control Inputs versus Time for Cubic Spline Tracjectory

Demands.

o Fig.6.2b Plot of Joint Positions versus Time for Cubic Spline Trajectory Demands.

o Fig.6.2c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory

Demands.

Computed Torque Control Results (Version 2)

o Fig.6.3a Plot of Control Inputs versus Time for Cubic Spline Tracjectory

Demands.

o Fig.6.3b Plot of Joint Positions versus Time for Cubic Spline Trajectory Demands.

o Fig.6.3c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory

Demands.

o Fig.6.4a Plot of Control Inputs versus Time for Cubic Spline Tracjectory

Demands.

o Fig.6.4b Plot of Joint Positions versus Time for Cubic Spline Trajectory Demands.

o Fig.6.4c Plot of Joint Positional Errors versus Time for Cubic Spline Tracjectory

Demands.

Mismatch Results

o Fig.6.5a Plot of Joint Positions versus Time for Cubic Spline Trajectory Demands.

o Fig.6.5a Plot of Joint Positional Error versus Time for Cubic Spline Trajectory

Demands.
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o Fig 6 6a Plot o f Joint Positions versus Time for Cubic Spline Trajectory Demands

o Fig 6 6b Plot o f Joint Positional Error versus Tim e for Cubic Spline Trajectory 

Demands

Computed Torque and Feedforward Control Algorithms
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Critical Evaluation of the Simulation Results

C H A PT E R  7

CRITICAL EVALUATION OF THE SIMULATION RESULTS

In this chapter, the simulation results from Chapters 4, 5 and 6 are evaluated 
according to a set of performance catena The results of this evaluation are for later
investigation in Chapter 8 A wide range of digital control techniques is presented m
these earlier chapters, so the conclusions here incorporate the performance of most of 
the suitable control techniques available

The performance cntena are chosen with complete performance m mind, le  from 
the design stage to the implementation stage The control algonthms are assessed
thoroughly in this chapter, and an order of ment table is formed

Also included here are the results of each algonthm when a varying payload is 
introduced The graphs show the error after the payload is increased A peak error and 
a static error results, and the algonthms are rated according to how low these errors 
are in magnitude The total error introduced by varying the payload, is calculated by 
adding the error at each sampling interval and multiplying the answer by the product 
of the time interval and the sampling interval This gives a measure of the integral of 
the error curve and hence one can evaluate the performance from this information

7.1 The Performance Critena

To determine which control algorithms are the most suitable for manipulator 
control, a set of performance cntena is required. A points scheme is devised, where 
each algonthm receives a number according to its performance in each of the 
categones The algonthm with the total highest number of points is deemed to be the
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most suitable algorithm for robotic control, but the applications or tasks of the robot 

also influence the decision as to what algorithm to use The algorithms can then be 

listed m their order of ment. Some of the performance criteria are weighted, le  a 

good performance in one section is worth more points than the same performance in 

another section There are six specifications with which to judge the algorithms, and 

these are as follows

1 Design Complexity

2 Computational Complexity

3 Transient Response
4 Static Accuracy

5 Varying Payload Test

6 Robustness

Numbers 3, 4 and 5 are the important sections Design complexity is not really that 
important, from an academic point of view A very complex design procedure means 
more effort pnor to the implementation of the algorithm, and hence more work for the 

designer A complex design procedure is not really a downside to any algorithm The 

computational complexity can be ignored if sufficiently powerful hardware is available, 

so little weight is given to this sectioa The varying load test consists of adding an 

extra mass to joint 3 to simulate the result of picking up a load At t=3, the load-is 

added, and the cubic spline trajectory is continued, to observe the extra tracking error 

introduced by this test. The robustness of each routine is measured as the amount of 
variation that is permitted in the tuning parameters or control gains before the 

closed-loop system becomes unstable Each performance index has three grades 
associated with it These grades are listed below

Design Complexity
1 Very complex
2 Medium
3 R e la t ive ly  Simple

Computational Complexity
1 High
2 Medlum
3 Low

Transient Response S ta t ic  Accuracy
1 good - peak error < 10*2 1 good - error,  < 1 0 '9

2 o k - 10*2 < peak error < 10"1 error ,  ,< 1 0 '5

3 poor - peak error > 10*1 2 medium - 1 0 ' 9 < error,  < 1 0 '5

10*5 < error2j 3 < 10"3
3: poor - error,  > 10*5 

error2> 3 > 1 0 '3
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Varying Load Test Robustness
1 good - error < 0 35 1 very robust

2 o k  - 0 35 < error < 1 75 2 o k
3 poor - 1 75 < error < 3 5  3 poor
4 bad - error > 3 5

The static accuracy is divided into two specification sections, one for joint 1 and the 

other for joints 2 and 3 Since there is no gravity acting on joint 1, there is always 
lower static error than for any of the other joints

Table 7 1 is a points key to the Performance Table (see Table 7 2) It allocates a 

value for the performance of each algorithm under the grades 1-4,

Grade

Ind£2_________________ 1________ 2________ 2______ 1
Design Complexity 1 3 5

Computational Complexity 1 3 5

Transient Response 7 4 1 *

S t a t ic  Accuracy 7 4 1 *

Varying Payload Test 7 4 1 0 !

Robustness 5 3 1

Table 7 .1  Points Key

where * indicates a weighted index Using table 7 1, the next section proceeds to 

evaluate each control technique individually

12  Evaluation of the Control Algorithms

Starting with PID techniques, the fixed parameter and adaptive technique (both 
PD and PID) are relatively easily designed, only two or three gains to evaluate (all 
grade 3) The adaptive versions are more computationally complex than their fixed 

parameter versions (grade 3 for fixed parameter and grade 2 for the adaptive case) 

The peak error for a fixed PD algorithm fits into grade 3, but the adaptive algorithms 

and the fixed gain PID give a sufficiently low error to ment grade 2 However, for 

static accuracy, the fixed PD performs poorly, only grade 3 Its adaptive version is a 

grade 2 in this category, but full PID (fixed and adaptive) is the best m this respect 

(grade 1), the integrator greatly reduces the static error The total error introduced by 
varying the payload is as follows for the four routines
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Fixed

PD PID

e t o t a l 1 = 0 829 
e t o t a l 2 =  ̂ 7 

e tota la  = 0 721

^total i = 0 0^6 

e total 2 = 0 148 
e t o t a l 3 = 0 0434

(grade 4) (grade 1 )

Adaptive
PD PID

e t o t a l i  = 0 0868 

e t o t a l 2 = 0 735 

e t o t a l 3 = 0
(grade 2 )

e t o t a l 1 = 0 

e t o t a l 2 = 0 285 
e t o t a l 3 = 0 35 

(grade 1 )

The robustness of these PD and PID algorithms is grade 2 The controller gams can 

be changed without instability occurring immediately PID is slightly less robust than 

PD because of the integrator m the closed-loop The adaptive algorithms arc also 

grade 2, as long as constraints are placed on the parameter estimates

The frequency domain compensators are discussed as a single unit, except in the 

categories of transient response, static accuracy and the varying payload test These 

compensators have a fairly complex design procedure (grade 2) but the control 
equation is a simple difference equation, 1 e computational complexity is grade 3 All 

three give grade 2 and 3 in their transient response and static accuracy, respectively 

However, a lead compensator is preferred over the lag. Large lags increase the nse 
time The total error introduced by the varying load is .

These type of compensators are of medium robustness (grade 2), the specifications for 
the design have a wide allowable range

The optimal design procedure is complex (grade 1). It is difficult to calculate the 

controller transfer function by the minimization of a cost function. However, the 

control equation is only a difference equation, very simple to implement and the

LEAD

e t o t a l i  = 0 347 
e t o t a l 2 = 3 35 

e t o t a l 3 = 0 189 
(grade 3)

LAG

e to t a l i  = 0 287 
e t o t a l 2 = 1 77 

e t o t a l 3 = 0 273 
(grade 3)

LAG-LEAD

e t o t a l i  = 0 182 
e t o t a l 2 = 2 45 

e to ta l3  = 0 199 
(grade 3)
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computational complexity is grade 3 The performance is poor, grade 3 in each of the 

error sections The error introduced by the varying load is

OPTIMAL

e t o t a l ! = 0 84 

e t o t a l 2 = 7 36 

e t o t a l 3 = 1 149 
(grade 4)

The choice of the specification weights, r and q, is wide' Hence the algorithm is very 

robust (grade 1), but the performance is poor

The Monoreg Predictive Control Algorithm (predl in table 7 2) is of medium 

complexity in its design stage (grade 2), but the output feedback method (pred2) has a 

very simple design procedure (grade 3) The adaptive routines have the same design 

complexity as their fixed parameter counterparts In the Monoreg routine, matnx 

manipulation takes place In the fixed algorithm, A^ is calculated off-line once, prior 

to the control algorithm, hence grade 3 for the fixed Monoreg routine However, for 

the adaptive algorithms, adaptive Monoreg and the gam-scheduled routine, this constant 
must be evaluated at each sampling instant, as well as the parameter estimation taking 

place Hence, these algorithms are of medium complexity (grade 2) The other 

predictive controller (both fixed and adaptive) is very simple to implement, both are 
grade 3 This algorithm (both fixed and adaptive) performs poorly in the error sections 

- grade 3 in both transient response and static error performance The Monoreg routine 

(both fixed and adaptive) and the gam-scheduled routine perform as grade 2 m these 

sections The error introduced by the varying load is .

Fixed
PRED1 PRED2

e to t a l i  = 0 212 e to t a l i  = 1 582

e t o t a l 2 = 0 317 e t o t a l 2 = 7 36

e t o t a l 3 = 0  329 e tota l3  = 1 566
(grade 1) (grade 4)

Adaptive
PRED1 PRED2 PRED3

e t o t a l i  = 0 444 e t o t a l 1 = 0*125 e to t a l i  = 31 6

e t o t a l 2 = 0 8 1 e t o t a l 2 = 0 35 e t o t a l 2 = 11 3

e t o t a l 3 = 0 702 e t o t a l 3 = 0 103 e t o t a l 3 = 3 9
(grade 2) (grade 1) (grade 4)
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The output feedback routine (both fixed and adaptive) is not very robust (grade 3), the 

value of a  must remain above 097, or instability occurs The other routine is robust 

and almost all values of the tuning parameters give closed-loop stability

Model Reference Adaptive Control has a very complicated design procedure (grade 

1) and the control loop requires the solution of two differential equations Hence the 

computational complexity is grade 2 The peak error is comparatively large (grade 3), 

but the static accuracy is grade 2 The error introduced by the varying load is

MRAC

e total i = 0 653 

e t o t a l 2 = 1 771 
e t o t a l 3 = 0 43 

(grade 2 )

The adaptation constants can be widely vaned giving stable closed-loop results, hence 

this is a very robust algorithm

The Self Timing Regulator design requires the solution of a diophantine equation 

and the evaluation of five controller parameters This ments a grade 2 design 

complexity Also, the computational complexity is grade 2 The Explicit version 
(STR1) performs to grade 2 m both peak error and static error requirements The 

Implicit algorithm (STR2) also ments grade 2 for static accuracy, but only grade 3 for 

its transient response The error introduced by the varying load is

The implicit routine is not very flexible If a faster reference model is used, 
undesirable results are obtained The explicit version is fairly robust (grade 2), and 

faster reference models do not cause instability

Computed Torque is the only feedforward control technique investigated in this 

thesis Its design and computational complexity are grade 2 The performance of both 

algonthms is grade 1 in the transient response section The controller with adaptive 

feedback loop ments a grade 1 for static accuracy, but the other method ments only 
grade 2 The error introduced by the varying load is

STRI STR2

e to t a l i  = 0 287 

e t o t a l 2 = 2.86 

e t o t a l 3 = 0 441 
(grade 3)

e t o t a l 1 -  0 0576 
e t o t a l 2 = 0 209 
e t o t a l 3 = 0 1136

(grade 1 )
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e t o t a l i  = 0 0149 
e t o t a l 2 = 0 213 

e t o t a l 3 = 0 0189
(grade 1 )

COMI COM2 

e t o t a l i  = 0 0413 

e to tal 2 = 0 0497 

e t o t a l 3 = 0 0836 
(grade 1 )

Both are very robust algorithms (grade 1), the simple Euler approximations for the 

acceleration denvatives give very low peak error values

Table 7 2 shows the grade achieved by each algorithm in the vanous categones 

This number is transferred usmg table 7 1, to a performance number These are then 

added to evaluate the total performance of the algorithms Those on equal points are 

further graded by the use of an extra number m brackets beside the points awarded 

Computed Torque, from the evaluation process, is deemed to be the most suitable 

algorithm for manipulator use However, some simpler algorithms, such as the Self 
Tuning Regulator (Explicit version) and the fixed gain PID, are not far behind m their 

performance, and offer competitive alternatives Fixed gam PID is the most desirable 

routine m the first section of control routines, and the STR (Explicit version) is the 

most efficient in section 2

7.3 Choosing the Best Algorithm

Not all robot controllers are capable of implementing the Computed Torque 

control technique with adequate sampling periods due to limitations m the hardware 

being used The Ummation Control hardware, for example, employs six Rockwell 

microprocessors ((IPs) [39]. These (IPs are not sufficiently powerful to implement the 
more complex control routines with low sampling periods (5msecs) that are required 
when controlling industnal robots If the control hardware is powerful enough, the first 
choice of algorithm would be Computed Torque with an adaptive PD feedback layer 

Algorithms such as the Monoreg Predictive controller (both fixed parameter and 
adaptive versions) and the Self-Tuning Regulator offer competitive options The 

application, or daily tasks of the robot, is also a key factor when deciding which 

routine to use If only simple tasks, such as spray painting, are performed by the 

robot, then a simple PD or PID routine is sufficient On the other hand, if high 

accuracy is required when the robot is performing high speed PICK and PLACE 

operations, then a more complex algorithm is required. Some manufacturers do not 

agree with the use of complex schemes, saying the extra cost does not sufficiently 

improve the performance of the manipulator However, from the simulation results m
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this project, the extra processor burden dramatically improves the response speed, and 

the accuracy of the manipulator is also increased The static error in some routines 

can be made very low So, in choosing a suitable control routine, the available 
hardware, the tasks to be performed by the manipulator, and the performance 

specifications have to be considered

When implementing these controllers, a sampling period of l-*5msecs is required 

due to the complexity of the robot model Larger sampling periods introduce 

uncertainty and the controller performance is degraded

7.4 Summary

This chapter reviews and assesses the simulation results of Chapters 4, 5 and 6 

In these chapters three different types of control algorithms are investigated Using 
different performance indices, the algorithms are evaluated and compared Design, 
performance and implementation, are used to assess these algorithms

The results of this evaluation are shown in Table 7 2 The most effective routine
is the Computed Torque method with a PD feedback loop However, this is a very
complex routine and requires powerful hardware for its implementation Competitive 

options to this routine mclude Predictive Control and the Self Tuning Regulator
Simple fixed gam PID performs surprisingly well and proves to be a leadmg control

method One disappointing routine is the MRAC method. For the complexity involved, 

it does not justify the solution of controller differential equations from the performance 
achieved
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Index to Graphs

□ Fig 7 1 Plot of Joint Positional Error versus Time using a PD controller

□ Fig 7 2 Plot of Joint Positional Error versus Time using a PID controller

□ Fig 7 3 Plot of Joint Positional Error versus Time using a Lead controller
\

□ Fig 7 4 Plot of Joint Positional Error versus Time using a Lag controller

□ Fig 7 5 Plot of Joint Positional Error versus Time using a Lag-Lead controller

O Fig 7 6 Plot of Joint Positional Error versus Time using an Optimal controller

□ Fig 7 7 Plot of Joint Positional Error versus Time using the Monoreg Predicitives
controller

□ Fig 7 8 Plot of Joint Positional Error versus Time using an Output-Feedback
controller

□ Fig 7 9 Plot of Joint Positional Error versus Time using an Adaptive PD
controller

□ Fig 710 Plot of Joint Positional Error versus Time using an Adaptive PID
controller

□ Fig 7 11 Plot of Joint Positional Error versus Time using a MRAC controller

□ Fig 7 12 Plot of Joint Positional Error versus Time using an Explicit STR
controller

□ Fig 713 Plot of Joint Positional Error versus Time using an Implicit STR
controller

□ Fig 714 Plot of Joint Positional Error versus Time using a Gain-Scheduled
Predicitve controller

Results o f the Varying Load Test
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□ Fig 7 15 Plot of Joint Positional Error versus Time using the Adaptive Monoreg
controller

□ Fig 7 16 Plot of Joint Positional Error versus Time using the Adaptive
Output-Feedback controller

□ Fig 7 17 Plot of Joint Positional Error versus Time using the Computed Torque
controller

□ Fig 7 18 Plot of Joint Positional Error versus Time using the Computed Torque
controller with an Adaptive feedback PD-loop
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Performance Criteria
Varying Total

Design Computational Transient Static Payload Points for
Complexity Complexity Response Accuracy Results Robustness Performance

Section 1

PD 3 3 3 3 4 2 15

PID 3 3 2 1 1 2 31

Lead 2 3 2 3 3 2 17 (1)

c  ***
2 3 2 3 3 2 17 (3)

0  Lead
2 3 2 3 3 2 1? (2)

n
Optimal 1 3 3 3 4 1 13 (1)

r  Predi 2 3 2 2 1 1 28

0  Pred2

1

3 3 3 3 4 3 13 (3)

Section 2

PD 3 ) 2 2 2 2 2 23 (2)

A PID 
1

3 2 2 1 1 2 29 (2)

1
MRAC

&
1 2 3 2 2 1 18

0  STRI 2 2 2 2 1 2 24

T  STR2 2 2 3 2 3 3 13 (2)

î
 Predi 2 2 2 2 2 1 23 (1)

Pred2 2 2 2 2 1 1 26

m Pre13 3 3 3 3 4 3 13 (4)

s
Section 3

Com-Torl 2 2 1 2 1 1 29 (1)

Com—Tor2 2 2 1 1 1 1 32

>

Table 7.2 Performance Table
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Hardware System Design and Implementation

C H A PT E R  8

HARDWARE SYSTEM DESIGN AND IMPLEMENTATION

Commercial robot systems are generally restncted in terms of modifications to
hardware and software for real time control This may be acceptable in workspaces

where the repetition of a limited sequence of motions is all that is required In both 

flexible manufacturing and robotic research environments, however, the pnmary 

considerations are ease of modification, adaptability and programmability These three 

charactenstics are essential in order to manufacture a new product for the evaluation 
of a new sensor system or robot control algonthm [7]

Most commercial robots, like the PUMA 560, are sold with a dedicated 

programming language, which runs on a dedicated hardware configuratioa As a result, 
the charactenstics mentioned above are not present m the PUMA 560 This necessitates 

the design of a new, more flexible, controller for this robot Before designing a new 

controller, it is essential to point out the shortcomings m the existing controller to 

make sure these shortcomings do not reappear in the new controller

In the case of the PUMA 560 industrial robot, a limited form of task-space 
control is provided by VAL2 (Victor’s Assembly Language) [40] VAL combines the 

features of an operating system and a programming language with the aim of allowing 
the user to teach new paths and to control the robot in a vanety of tasks As an

operating system, VAL provides the necessary input/output to control the robot, retneve

data from the floppy disk and to interact with the user via the terminal or a teaching 

pendant Despite the relauve ease of use and its capabilities, the VAL-based system is 

senously lacking [11] m terms of flexibility and expandability, and is devoid of the 

ability to implementing powerful real-time task space control This can be contributed 

to the following reasons
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1 VAL was written specifically for a PUMA-type manipulator using only if-then 

commands, like those found in the BASIC language
2 The operating system has only an interpreter, and has no compder.
3 The VAL software is currendy stored in Eproms, which does not enable the user 

to examine and modify the software
4 Inverse kinematics and path planning software is not user accessible, hence new 

trajectories cannot be planned off-line

Several suggestions have been made to allow for large program creation, two 

possible alternatives are outlined in Ummation [41] However in order to gain more 

flexibility and the ability to program m a high level language, it is necessary to break 

away from VAL completely

The Ummation control hardware [39] consists of an LSI-11/02 and six Rockwell 

6503 microprocessors each with a digital-to-analog converter (DAC), a current amplifier 

and some joint position feedback sensors The hardware is hierarchically arranged The 

upper level of the system hierarchy consists of the LSI-11/02 microcomputer which 

serves as a supervisory computer, while the lower level of the hierarchy consists of 
the 6503 Rockwell |oPs and the remaining hardware just mentioned

The LSI-11/02, or upper level, performs two functions

1 On-line user interaction and subtask scheduling of the user’s VAL commands and

2 Subtask coordination of the six 6503 microprocessors to carry out the command 

On-line interaction with the user mcludes parsing, interpreting and decoding VAL 

commands, as well as monitoring possible error messages

The lower level of the hardware hierarchy consists of six digital servo boards, an 
analog servo board and six power amplifiers The six 6503 pPs, residing on the 
digital servo boards with their EPROM and digital-to-analog converter (DAC), are an 
integral part of the joint controller They communicate with the LSI-11/02 computer 
through a specially designed interface board that routes set-point information to each 
joint controller

This PUMA 560 hardware suffers from some limitations These have been 
described by Goldenberg [41]

1 Both levels of the controller hierarchy contain only fixed point processors

2 The existing memory in both levels is inadequate to support large programs.

3 The instruction speed of the Rockwell 6503 (iP and the LSI 11/02 are inadequate
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to implement computationally complex control algorithms, and finally,

4 It is impossible to add additional sensors to the robot, such as vision and tactile

sensors, without a complete redesign of the lower level

From this list of limitations it can be seen that if a more flexible hardware
control structure is required, capable of implementing complex real time control, then

the existing Ummation controller hardware must be replaced with a more flexible 

alternative

8.1 The New Control Hardware Structure

The PUMA 560, because of its two distinct hardware levels, oifers what is 

known as a decentralized control structure Such structures have been widely accepted
[42] by the robotics industry due to ease of implementation and tolerance of failure 

The mam advantage of such a structure is that it allows for easier implementation of
the control layers discussed in Chapter 1 For this reason, it was decided that the new
hardware structure should be mainly decentralized, with the possibility of implementing 

mutivanable control Together with this structure, the new control structure offers the 
following

1 Floating point processors to perform mathematical calculations with high precision 

and at high enough speed for real-time control

2 Interfacing hardware which is compatible with the existing Ummation hardware
3 Software that can be written m a single high-level language
4 A memory capacity suitable for large program storage
5 A n ability to implement multivariable control

6 The ability to provide real time path planning
7 The ability to connect sensory devices through serial, parallel or bus interfaces

Finally, on top of all these requirements, the new control structure is
economically viable, and therefore is a realistic alternative to the existing control 
structure as far as the robot manufacturer is concerned

Numerous implementations of the control structure’s upper level, including [43],

[44] and [45], have replaced the existing upper level computer with various other 

machines [46]. More recent implementations such as the TUNIS [44] and SIERA [45] 
have replaced the existing upper level with powerful personal computers (PCs) Both 

of these systems are capable of offering the capabilities just mentioned above but at a
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fraction of the cost For this reason it was decided to use a PC to implement the 

new upper level [46]

The personal computer chosen was an Intel-based 80386 PC [47] The features 

which governed the choice of this PC included the presence of

1 A 32-bit architecture (data and addressing)
2 A clock speed of 20MHz

3 The ability to add a floating-point coprocessor (80387)
4 1 megabyte of RAM

5 An 80 megabyte hard disk and

6 Seven parallel expansion slots

From this list of features, it can seen that the new upper level offers a

development and storage environment suitable for large program generatioa It also
offers a fast execution speed for such programs, even if they contain floating-point 

calculations The expansion slots offer the ability to add extra memory and the ability 

to interface with the new lower level

To replace the lower level of the controller architecture, it was again necessary to 

choose a processor with high speed floating-point capabilities A solution which has 
become more popular in recent years is to use advanced signal processors (ASPs) to
implement this level The reasons for their rise in popularity include the reduction in
operation and development time which they offer, and recent advances in VLSI 
technologies have meant cheaper ASP chips [48]

8.1.1 The ASP Card Features

It was decided to use an ASP configuration to implement the lower level of the 
controller because of the reasons above The ASP chosen for this level was the NEC 

}iPD77230 [49] The |aPD77230 can execute arithmetic operations with 32-bit, floating 
point data (8 bits for exponent and 24 bits for mantissa) or 24-bit, fixed-pomt data at 
150ns per instruction Its internal circuitry comprises a multiplier (32 x 32 bits), an 

ALU (55 bits), an instruction ROM (IK by 32 bits) and one pair of data RAM 

pointers (512 words by 32 bit each) The processor itself can be used in either of two 

modes’ master or slave For this application three PC compatible boards, operating in 

master mode, were purchased from LSI [50] By operating in master mode, the 

processor’s instruction area occupies 8K words by 32 bits of memory In addition, it 
allows for 3-stage pipelining and provides a dedicated data bus for internal RAM, a
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multiplier and an ALU Such an arrangement makes the processor suitable to process 
algorithms in which a few operations (such as addition of terms) occur repeatedly

[51] These are the type of operations that occur in the more complex control 
algorithms such as the computed torque method [52] In [52] it was found that a 

single |iPD77230 was capable of achieving throughput rates of 1,350 setpoints per 

second and by utilizing the pipelining nature fully it was found that this algorithm 

could achieve a throughput of 2,220 setpoints per second These figures produce 

controller sampling of 0 740ms and 0450ms respectively These sampling rates are 
much faster than the existing controller which implements a much simpler PD control 

algorithm These timing statistics mean that a |xPD77230-based lower level is well 

capable of implementing real-time control algorithms for robotic control

8.12 The Analog 110 Card

The analog boards used, supplied by LSI [55], each support 4 analog input 
channels, two analog output channels and a sample rate timer All of these channels 

have 12-bit resolution The four analog input channels have a fast conversion time of 

5|xs, while the two output DACs have a settling time of 3|is One of the input 

channels present is used for reading the feedback potentiometer, while one of the 

output channels is used to drive the motor amplifier The reason why there are more 

I/O channels than necessary is to make the controller more flexible - other sensors 

such as vision or tactile sensors can be attached to any joint at a later stage if 
required

The sample rate timer on this board consists of a 16-bit reloadable up-counter 
which is clocked by an 8MHz clock. This timer, upon completion of a sample penod, 

has the ability to interrupt both the upper and lower levels of the controller hardware 
In the case of the PUMA 560, it must be possible to generate these at intervals of 
between 125ns and 30ms These are well within the range of the sampling periods 
necessary for real-time control of the PUMA 560

8.13 Interfacing The New Control Hardware To The PUMA 560 Ummation System

The fiPD77230 processor board has a range of 14 input/output (I/O) parallel 
expansion ports Each of these ports uses 16 bit wide data. The mam interfacing 

problem was that the |iPD77230 board has to have access to both the encoder counter 

outputs and the analog board. Here the design here involved the use of 74623 [56] 
octal bus transceiver chips to allow bidirectional data transfer between the interface
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boards and the lower level of the control hardware The control lines for determining 

the data transfer direction over the new interface are denved by decoding the 14 I/O 

address lines as shown in Table 8 2

In addition to the I/O ports the |aPD77230 board has a number of digital I/O 

lines which are used to complete the interface These lines consist of two output lines 

and two input lines One of the output lines, FLAGOUT, is used to generate the 

BRAKE RELEASE ENABLE SIGNAL, while the other, BIT OUT, is used to generate 

the ARM RESET signal for the reset circuit The input line, BIT IN, is used to 

monitor the ARM STATUS line to see if an index has occurred

8.2 Design of the New Interface Card

This section details how the specifications described above are used in the design
of the new controller interface From the above specification, it can be seen that the

interface circuitry is a collection of the following subsystems

1 An encoder counter circuit

2 An encoder reset circuit

3 An analog input subsystem with a sample rate generator and
4 The interface with the new lower level hardware

The control hardware designed and implemented in this project (see Fig 81), 

consists of three basic elements - the host computer, the processor boards and some 
special purpose interface hardware The function of the digital computer is to

implement the upper levels of the control hierarchy presented m Chapter 1, while the 
processor boards present implement the lowest level of that hierarchy The function of 
the interface hardware is to provide a link between the digital hardware of the new 

controller and the analog inputs and outputs necessary to control the PUMA 560
industrial robot

The control of a PUMA 560 arm is achieved through the control of the joint
d c motors The inputs necessary to control the PUMA 560 [53] are the input
voltages used to drive the motors and the voltage signal necessary to apply motor 

brakes. The robot outputs necessary for control are the outputs of the potentiometer 

and incremental encoders, which are position feedback measurement devices
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The incremental encoders located m the joints of the PUMA 560 each produce 

three signals for measuring the joint position of the robot - an A channel, a B

channel and an Index channel The A and B channels, see Fig 8 2, each produce a
squarewave output, with one channel leading the other by 90° By counting the state

changes (0-»l or l-*0) of both channels, the magnitude of a jomt movement relative to 

some initial jomt position, can be determined It is also possible to know the direction 

of movement by observing which channel is leading and which is lagging

The Index channel, in conjunction with the position potentiometer, is used to find 

the initial position The mdex channel produces a pulse on every motor rotation An 

Index pulse is produced at regular intervals and each of the intervals is some multiple 

of the number of degrees in one motor revolutioa The potentiometer is used to

determine which multiple The position potentiometer used is coupled to the motor 

shaft, through a gear tram, so that the angle read by the position potentiometer 

corresponds directly to the joint angle The potentiometer is prone to inaccuracy, and 

this is why it cannot be used on its own to determine absolute position The 

inaccuracy, however, in the potentiometer reading is much less than ±1/2 of a motor 

revolution So if the potentiometer is read at an index pulse, the absolute position can 

be interpreted to be the nearest multiple of motor revolutions to the potentiometer 
value read

The initialization of the joint angle measurement for the PUMA 560 can,
therefore, be achieved by using the feedback sensors in the following manner

1 The jomt motor is rotated until an index is found
2 The motor is then halted.

3 The potentiometer voltage is read, converted to degrees and stored

4 The decoded relative positions of the A and B channels are set to zero

Any subsequent movement of the jomt will cause an increase or decrease in the
decoded values of the A and B channels. This decrease or increase, when converted to
degrees, can be added to the stored potentiometer value to produce an accurate jomt 
position

Having oudined the steps necessary to determine the jomt position, the next step 

is to describe m more detail the design which was required to implement these steps 
The required design comprises of four mam areas

1. Readmg the incremental encoders 
2 Readmg the potentiometers
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3 Driving the DC motors

4 Applying the motor brakes

These basic design requirements are discussed in the following subsections

82.1 The Incremental Encoder Counter System

The optical encoders are directly attached to the motor shaft, and, because of the 
gear coupling, they rotate several times when the joint is driven through its full 

motion This gives a precise measurement of relative motion [54] The A and B 

channels determine both the amount, and the direction, of the rotation in discrete steps 
The index channel produces a short pulse on each motor revolution (360°), which can 

be used by the system, in conjunction with the position potentiometer value, to 
determine absolute position

The A and B channels detect the relative motion of the joints The direction of 
rotation (clockwise or anti-clockwise) can be determined by observing the state

transitions on these two channels These transitions can be interpreted to perform three
operations

1 Increment joint position (A leads B)

2 Decrement joint position (B leads A), and

3 Remain at same position (no state changes)

Almost all the PUMA 560 joints [54], with the exception of jomt 2 which has 
800 state changes per revolution, produce 1000 state changes per motor revolution

Since the motor rotates between 40 and 60 times (again jomt dependent) dunng a full
joint rotation, 40,000 to 60,000 state transitions occur in that joint rotation Any
counter circuit used to keep track of these transitions should be able to hold the
maximum number of transitions that are likely to occur For this reason 16-bit
counters (maximum count 65526) are sufficient to keep track of the PUMA 560’s jomt 
movements

The PUMA 560 position potentiometers are incorporated mto the jomt motors and 

are connected between +5 volts and ground Rotating the potentiometer through 360° 

produces a proportional voltage output of between 0 and +5 volts The potentiometers 
themselves have been geared to rotate less than 360° dunng a complete jomt rotation 

In some cases the full movement of a jomt could be as little as 200° and, as a
result, the change in the potentiometer voltage would be about 2 78 volts. Since on
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average 60 index pulses are produced over the entire joint sweep, then the

potentiometer voltage must be measured to an absolute accuracy of l/60th of 2 78

volts (0046 volts) per motor revolution

A 16-bit up-down counter, consisting of four 4-bit cascaded counters, is used to 

count the number of encoder state changes The counters in question have four
controls - a count up/down, an enable input, a clock mput and a load input The truth
tables for these signals can be found m [56] This counter uses a 1MHz clock which 

is generated on the new interface card by a 1MHz crystal This value of clock 

frequency was chosen because it is much greater than the maximum frequency of the 

encoder state changes

The enable and up-down signals of the counter are derived from the A and B 

channel signals of the encoders The counter is incremented or decremented when the 

encoder goes through a state change These state changes are asynchronous and must 

be synchronized by the decoding logic The basic idea of the scheme is presented here 

and illustrated in Fig 8 3 From Fig 8 3 it can be seen that the encoder signals A and 

B are both fed through 2-stage shift registers clocked by the 1MHz clock The outputs 
of the first stage (A’, B’) are synchronized versions of the A and B inputs, since 

they are clocked by the 1MHz clock signal Similarly, the outputs of the second stage 

(A”, B”) are synchronized versions of A’ and B’ It is useful to think of the first 

stage outputs (A’, B’) as the present states and the outputs of the second stage (A”, 
B”) as the previous state Together the four states, A’, B’, A” and B”, make up 16 
(2 4) possible state combinations which can be decoded to determine which direction 

the count must go - up or down Table 8 1 shows all the possible combinations of 
these states and the decoded command signals for the counter. Rather than use logic 

gates to directly implement the decoder it was decided to use an EPROM. This 

EPROM has the A states and the B states, and the counter reset lme as its address 
inputs The outputs are the decoded command signals for the counters generated from 
Table 8 1.
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Table 8.1 Counter Control Commands___________
EPROM PROM 0/P (COUNTER I/PS) OPERATION

ADDRESS__________ ML___ M I__ LÛAD__________
0 1 1 1 NOP
1 0 1 1 DEC
2 0 0 1 INC
3 1 1 1 NOP.
4 0 0 1 INC
5 1 1 1 NOP
6 1 1 1 NOP
7 0 1 1 DEC
8 0 1 1 DEC
9 1 1 1 NOP
10 1 1 1 NOP
11 0 0 1 INC
12 1 1 1 NOP
13 0 0 1 INC
14 0 1 1 DEC.
15 1 1 1 NOP

16 31 0 0 0 CLEAR

8 2 2  The Control Output Signal

The drive current and voltage needed to drive a DC motor is entirely motor 

dependent It is therefore not necessary to design power amplifiers for the system, 
since satisfactory ones already exist Instead it was considered practical to use the 
existing ones and to concentrate on the hardware necessary to dnve the amplifiers In 
the case of the PUMA 560, the existing power amplifiers [2] can be conveniently 
used because they were designed explicitly with this robot m mmd Usmg these 
amplifiers simplifies the external connections to the arm’s jomt motors In addition, the 
Ummation power amplifier unit contains a Miscellaneous Functions Umt [2] (MFU), 
which provides useful safeguards that can be monitored to prevent damage to the arm 

These safeguards include the ability to monitor the amplifier’s input current and 

temperature to see if they are operating within the values specified for that amplifier 
manufacturer

The PUMA 560 power amplifiers are controlled by analog voltages These 

voltages can be generated by digital to analog converters (DACs) Two basic 

specifications must be considered in the choice of DAC - voltage swing and
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resolution The PUMA 560 power amplifiers require a voltage input swing of 10 volts

to -10 volts Selection of resolution is more difficult Typical digital servo systems use
8 or 10-bit DACs - the Ummation uses 10-bit It was decided to increase this to 
12-bit for this project This increase in the resolution means that the new drive signal 
is four times more accurate than the original one

8 2 3  The Data Direction Control System

To solve the communication in the lower level, four tnstate octal transceivers are 

employed The transceiver allows data to flow in both directions by correctly setting 

the two control mput lines (Gab and Gba) Enabling Gab (=1) and disabling Gba (=1 

active low) allows data to pass from A to B Setting both these values low, allows

data to pass from B to A The chip can also be set to a high impedance state, where
no link exists between A and B

To allow the digital signal processor to communicate between the new interface 

card and the 4 channel analog card, two sets of transceivers are placed on the counter 

outputs and on the 16bit bus from the analog card The outputs of both these sets of 
transceivers are connected together using pull-up resistors If a READ or WRITE is 
performed using one set, then the other set is set to high impedance. Table 8 2 shows 
the settings of the control signals required to perform the desired operations Fig 8 5 

shows a schematic diagram of the circuit used to achieve this data control

TABLE 3 .2  Data Direc tio n  Control___________________________

I/O PORT ADD. Transceiver Control S ignals  

Operation A3 A2 A, A0 Gab, ®ba, ®ab2 ®ba2

NOP 0 0 X X 0 1 1 1

READ COUNTERS 0 1 X X 1 1 0 1

READ ANALOG 1 0 X X 0 1 1 1

WRITE ANALOG 1 1 X X 0 1 0 0

where X don’t care

82.4 System Timing

The PUMA 560 brake is used to lock each joint m position when the motor 

power is turned off This prevents the joints from collapsing when no power is
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present to hold them in position It is impossible to individually apply or release the

brakes of the PUMA 560 This is due to the fact that the brakes of each joint motor
[2] are wired together The MFU mentioned above contains the circuitry needed to 
apply or release the brake This circuitry can be controlled by setting or resetting a 

digital input of the MFU known as BRAKE RELEASE ENABLE

The joint interface circuitry must not only accommodate the joint motor signals 
but it must also provide the upper and lower hardware levels of the new controller 

with additional functions to allow complete system integration. The single most 

important of these functions is system timing

Implementation of a digital controller requires some means of regulating a 

sampling interval A hardware timer is used to interrupt the CPU The hardware timer
can take the form of a programmable up-counter This counter should be free-running

from an NHz clock giving a clock period of 1/N seconds The sample penod can 

therefore be set in terms of an integral number of clock cycles, each clock cycle 

addmg 1/N seconds A program that requires this sampling interval can then be wntten 

as an interrupt service rounne Then, if a timer interrupt occurs, the CPU will be 
interrupted and the program can commence

The hardware scheme of Fig 8 4 is used to momtor the index pulse for 

lmdalization Each new counter reset circuit has two flipflops and a NAND gate The 

circuit is asynchronously armed or enabled via an ARM RESET signal Once armed, 
the next index pulse occurrence generates a single reset pulse, which is sent to the 

associated counter circuit When the reset pulse is issued, the circuit disarms itself so 
that further occurrences of the index pulse will not reset the counters The ARMED 
STATUS signal can be monitored by the system software to see if the index has 
occurred

8.3 Software Considerations for the New Control Structure

The purpose of this section is to provide an insight into the computational 
aspects of the new PUMA 560 control structure. The new hardware configuration is a 

hierarchical, multi-processor system, and as a result it requires a considerable amount 

of inter-processor communication to perform its robot control function. Fortunately, 

since the two levels m the new PUMA 560 controller are "off-the-shelf’ items, 
existing software tools can be used to achieve the designed inter-processor 
communication desired
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This type of robot control hardware, with a personal computer as the upper 

hardware level, allows for easier implementation m both industrial and educational
environments This is due to the general familiarity with the personal computer 
operating system and hardware By usmg a commercially available operating system 

with the robot control hardware, one can speed up the development process and the 

learning curve of potential users, since features such as file management, batch file 

generation and on-line debugging tools are available

The software tools used for the new controller consist of a Microsoft C language
compiler,and an NEC (J.PD77230 monitor [57] with linker, assembler and object
converter facilities The choice of this C compiler was dictated by the fact that the

HPD77230 processors can use a Microsoft C compatible compiler for program 

development The |iPD77230 C compiler is used to convert C language programs into 

(J.PD77230 assembly language programs This assembly language can then be converted 

to hexidecimal format using the object converter In this format, the programs can be 

downloaded into the |iPD77230 memory space and then executed The downloading 
and execution can be achieved by using either the monitor or C drivers specifically 

written for this purpose, or by usmg the monitor which comes with the board

The computational elements of the new control structure involve a wide range of 

applications, including the roles of the operating system and programming language just 

discussed In addition to these roles, the processors of the new system are used to 

drive the joint servos and to interface with external position sensors The following 

sections are concerned with the functionality of the computational elements of the new 

controller under the headings of interface, communication, and calculatioa

One role of the computational elements of the new control hardware is to provide 

communication, le  exchange of information between and among components In the 
case of the new control structure, these components are the upper and lower hardware 
levels This communication involves downloading position setpoints to the |xPD77230 
boards from the personal computer The |iPD77230 boards are mapped to the 
input/output addressing area of the personal computer The address map of each 

JJPD77230 board takes up 8 addresses in the personal computer input/output area The 

function of the control register is to enable or disable the processor and any interrupts 
to the personal computer, and the status register is used to monitor the operation of 
the |xPD77230

The calculation functionality of the new hardware can be defined in terms the 

speed at which the basic operations such as add, subtract, divide and multiply can be 

performed on fixed and floating point data For the personal computer the fixed-point
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operations were found to take 3 clock cycles to execute (le  150ns) Double precision 

floating point additions were found to take 10(is, and multiplications took 

approximately 32(is each

In the lower level, computational functionality involves the pPD77230 board’s 

ability to perform floating and fixed point addition, subtraction, division and

multiplication For fixed point data these calculations were found to take 1 instruction 

cycle or 150ns, [57] In the floating-point case, addition and subtraction each take 5 

instruction cycles, and multiplication takes 6 instruction cycles This means that the 

lower level is capable of performing thousands of additions and multiplications per 

millisecond The advantage can be seen more clearly if one examines " the algorithms 
developed in [58],[59] and [60] These algorithms are among some of the most

computationally complex available, yet preliminary calculations suggest that these 

algorithms can be implemented in real-time using the (XPD77230 boards In the case of
[58] and [59] these calculations show that both algorithms could, implemented m times

less than 0 5ms, while [60] could be implemented m a time less than 0 8ms The 

same algorithms, if implemented on the existing Rockwell 6503|iPs, would require that 

the sampling interval be increased by a factor of 10 Such high sampling intervals are 
unsuitable for real-time control

8.4 Identifying the Robot Parameters

The new hardware system is used to capture the control commands and jomt 
positions The control commands from the amplifier are read using the four channel 

analog card These commands are stored on the dsp card, in memory, but are later 

echoed back to a file on the pc The jomt positions are read using the new interface 
card The counter circuit determines the movement of the joints and sends this 

information to the digital signal processor The captured input/output data is shown in 
Fig 8 6 and Fig 8 7 respectively

8.41 Identification Results

Using the input/output data captured, it is possible to identify a model for this 

data using Recursive Least Squares A second order model is estimated, where four 
parameters are determined for each joint, l e the model takes the form
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Ge s (z)  = b, z  + b2

z 2 + a, z + a 2

A variable forgetting factor (p.) is used to allow for both fast initial convergence and 

small oscillation of the final parameters Initially, n is set at 0 8, and increases 

exponentially to 0 995 at the end of the test P0 is set at 1,000 The results of the

identification are shown in Fig 8 8 through to Fig 8 13 These results here can be used

to validate the simulation model developed in Chapter 2

Looking at Fig 8 8, a pole at 1 0 is found to exist, and the other pole is at 0 9
These findings are very similar to the results obtained from the simulation model,

where the model consists of an integrator and another pole close 09  The poles of the
system do not vary hugely with changes m jomt positions The zeros of the plant 

widely vary with changing position, so the results in Fig 8 9 can be compared with 

the results from before, when a different reference signal was used However, the
zeros from the simulation model and those from the actual robot are close in

magnitude Similarly, the other joints’ parameters are found to be close to the results 

in Chapter 5 Using these parameters, a tune varying second order model can be 

constructed to simulate the dynamics of the robot joints

8.5 Simulated Control of the Identified System

From the evaluation (in Chapter 7) of the simulation control section, one control 
routine is chosen as the best controller m each category It is the routine which 

outperforms the other algorithms The three algorithms chosen are PID, the Self-Tuning 

Regulator and Computed Torque (with an adaptive feedback layer) To investigate 
which of these algorithms is suitable for control of the actual robot, each of these 
three algorithms is used to control the tune varying, second order model, derived from 

the above secdoa These control results are a strong indication of the optimal 
manipulator control technique

85.1 Parameter Algorithm - PID Control

The PID controller does not perform very well in this test. The initial parameter 

estimates cause the controller to give an undesirable initial response (see Fig 814) 
When the joints track the specified path, there is a noticeable static error for joint 2
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8 5 2  Adaptive Control Algorithm - Self-Tuning Regulator

The STR performs very well - no undesired initial behaviour is experienced (see
Fig 8 15) The control parameters are derived from the parameter estimates There is a

little oscillation present, but the static error is very low

8 5 3  Feedforward Control Algorithm - Computed Torque -with Feedback

This algorithm does not perform to expectations The response is similar to the 

PID results (see Fig 8 16) However, the response of joint 2 is improved The initial 
variation m the joint angles is present

85.4 Conclusion

It is clear that the STR performs best in this test This routine takes the 

parameter estimates and transforms them to controller gains The PID is the least 

efficient here The Computed Torque method is second best to STR However, when 

Computed Torque is used m an actual implementation, the scenario is different The 

results from the identification test are not required, the algorithm requires no parameter 

estimates The identification results are only suitable for adaptive routine use in this 
scenario However, if the inverse dynamic model of the robot is not precise enough, 
then undesirable results may be obtained if Computed Torque is used. The STR is the 

most flexible, no internal model is used, and the tuning is easriy changed In 

conclusion, the STR method gives the most desirable results

8.6 Summary

This chapter shows how the new control hardware is designed and interfaced to 
the existing Ummation System The new interface is similar to the existing Ummation 

because it uses the Ummation power amplifiers and MFU It also adds a degree of 
flexibility to the new control hardware which is not found m the Ummation interface 

The flexibility it provides lies m the increased input/output capabilities and in the 

provided accuracy that it provides over the existing input channels It also provides a 

flexible sample rate timer which is capable of producing sample rates in a range 

suitable for real time control
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This chapter also investigates the identification of the robot parameters Using

data captured from the robot and the RLS identification technique, the robot parameters 

can be estimated These identification results are used to simulate the control of the
actual robot system Conclusions are made as to which algorithm is the most suited
for manipulator control, based on the results found in this chapter
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Index to Graphs

Input/Output Data

□ F ig 8 6 Plot of Robot Control Inputs, necessary to drive the Joints along the 
desired trajectories, versus Time

□ Fig 8 7 Plot of Desired Joint Position Trajectories versus Time 

Identification Results

□ F ig 8 8 Plot of Joint 1 Denominator Parameters versus Time

□ Fig 8 9 Plot of Joint 1 Numerator Parameters versus Time

□ Fig 8 10 Plot of Joint 2 Denominator Parameters versus Time

□  Fig 8 11 Plot of Joint 2 Numerator Parameters versus Time

□ Fig 8 12 Plot of Joint 3 Denominator Parameters versus Time

□ Fig 8 13 Plot of Joint 3 Numerator Parameters versus Time

Control Results

□ Fig 8 14a Plot of Joint Position Control, using Fixed Gain PID, versus Time

□ F ig 8 14b Plot of Joint Positional Error versus Time

□ Fig 8 15a Plot of Joint Position Control, using an Explicit STR controller, versus
Time

□ Fig 8 15b Plot of Joint Positional Error versus Time

□ Fig 8 16a Plot of Joint Position Control, using Computed Torque + PD Feedback
Control, versus Time

□ Fig 8 16b Plot of Joint Positional Error versus Time
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Fig.8.3 Counter Circuit for determining Joint Position

Fig.8.4 Reset Circuit
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CHAPTER 9

CONCLUSIONS

This thesis can be broken down into three subsections The first subsection is 

concerned with the topics in Chapters 2 and 3, where the dynamics for the three 

primary joints are explained and a simulation package is designed to implement these 

dynamic equations In Chapter 3, the forward and inverse solutions to the kinematics 
problem are detailed, along with several techniques for trajectory generation These two 

chapters serve as an introduction to the background work, which is used at a later 

stage in the thesis

The second section of this thesis is concerned with the area of robot control\ '
Three main types of control techniques are used The performance of these algorithms 
is simulated in a robot environment using the simulation package designed in Chapter
2 Evaluation of their performance is based on several performance criteria

The final section of the thesis details the hardware side of this project It also 
includes the results of an identification performed on a PUMA 560, using this
hardware system to capture the input/output data The design is aimed at producing a 
flexible working environment, where new control techniques can be readily investigated 
on the robot

9.1 What was achieved

The aim of this project was to perform an investigation of a wide range of 
control techniques, suitable for manipulator control, and to simulate their performance 

using the robot model From the simulation results, the best suited algorithms can be

205



Conclusions

chosen for real time implementation on the PUMA 560 robot The successes of this 

research are in the areas of robot modelling, hardware design and the analysis of an 

extensive range of control algorithms

A complete dynamic model has been developed for the three primary joints of 
the PUMA 560 industrial manipulator The Euler-Lagrange formulation models the 

manipulator as a set of second order differential equations Incorporating the actuator 

dynamics into these equations results m a third order model with voltage mputs and 

position, velocity and acceleration outputs Simulation is performed using the 

Runge-Kutta numerical integration technique to solve these differential equations

A wide range of control algorithms has been investigated, from the classical 

techniques of PID and Optimal Control to the newer methods of Predictive Control 
Adaptive and Feedforward strategies are also of interest An evaluation of these 

algorithms is performed to grade the algonthms according to their performance

The complete design and implementation of a hierarchial control structure, using 

special purpose processors for the control of the three primary joints of a PUMA 560 

has been presented m this thesis Using a personal computer as a host machine, with 

attached digital signal processor boards, the old hardware of the Ummation system can 

be replaced with this new arrangement The digital signal processors are very powerful 

and are capable of implementing complex control algonthms such as Computed Torque, 
for example These DSP boards form the new lower level of the controller’s hierarchy, 
of which the 80386-based personal computer forms the upper level

Also, the solution to the forward and inverse Kinematics problem is given, along 

with several techniques for Path Planning These serve as introductory matenal for the 
reader

9.2 What was not achieved

Real time control of the robot was not performed, only simulated control of the 

identified model was achieved However, this strongly indicates which of the control 

routines is most suitable for manipulator use Because real time control was not 
performed, small modifications may be necessary to the overall system
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This project achieved considerable ground in the area of robotic research Topics 
such as Robot Dynamics, Kinematics, Path Planning, Robot Control, Identification 

techniques, and Hardware Design for robot systems are discussed in this thesis A 

suitable selection of control algorithms exist, and the hardware system, which is 

capable of implementing these in real time, is now available at D C U  Engineering 

School This project has reached nearly all its goals The simulation side of the 

project is very comprehensive, spanning a wide range of control methods Future woik 
into robotics at this University should be aimed at the implementation of the 

techniques conceived in this research

9.3 Summary
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