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Abstract

EBV is a prevalent human herpesvirus which is implicated in the aetiology of several 

human malignancies, including Burkitt’s Lymphoma and several other cancers of 

lymphoid/epithelial origin. Infection of primary B lymphocytes in vitro with EBV 

leads to expression of a restricted set of EBV latent genes and subsequent 

immortalisation of cells into continuously proliferating lymphoblastoid cell lines 

(LCLs). Eleven viral genes are expressed in latently-infected (immortalised) B cells, 

of which just six are critical for transformation. These include latent membrane 

protein 1 (LMP1) and five nuclear antigens (EBNA1, -2, -3A, -3C and -LP ).

The first part of this study was undertaken in order to investigate the mechanism of 

EBV-mediated deregulation of cell growth by examining its effects on the mRNA 

levels of a range of cell cycle inhibitor genes using ribonuclease protection assay 

(Chapter 3). Significantly elevated p21 mRNA levels was found to be a characteristic 

feature of the transition from EBV latency type I infection (expressing EBNA1 only) 

to type III infection (expressing all 11 latent EBV genes) of Burkitt Lymphoma (BL) 

cells, with elevated expression detected in EBV-immortalised lymphoblastoid cell 

lines, consistent with previous reports. Western blot analysis confirmed a similar 

degree of upregulation at the protein level. p21 (WAF1/CIP1) is an important nuclear 

protein with cyclin-dependent kinase (cdk) inhibitory activity, which can promote 

cytostasis by blocking cell cycle progression at the Gi and/or G2 phases of the cell 

cycle and by inhibiting PCNA-dependent DNA replication. As EBNA2 and LMP1 

are both central to the immortalisation process, the contributions of each of these 

proteins to the observed p21 upregulation was investigated using a tetracycline- 

regulatable gene expression system in an EBV-negative BL background. This 

revealed an important role for LMP1, but not for EBNA2 when expressed singly. 

LMP1 is defined as a classical oncogene and its profound effects on cell growth are 

well-documented. The observed LMP1-mediated upregulation of p21 was found to 

be a B cell-specific effect, and was not detected in a second BL-derived cell line 

which lacks the characteristic c-myc translocation. In addition, the effect is likely to 

be p53-independent. On further investigation into the mechanism of upregulation, no 

transactivation of the p21 promoter was detected while enhanced p21 mRNA
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stability was found to be important in the LMP1-mediated effect. Further studies will 

be required to characterise the molecular basis of this stabilisation.

The precise functions of the EBNA3 proteins are unclear, although persistent 

expression of these genes against negative selective pressure by cytotoxic T 

lymphocytes in vivo is consistent with important roles for all three members of this 

protein family. In attempting to identify potential protein binding partners for 

EBNA3B, the yeast two hybrid system (YTHS) was employed to screen two cDNA 

libraries. Both libraries yielded only false positives, including two EBNA3B-specific 

interactions. However, this type of result is well-documented as a recurring problem 

associated with use of YTH systems.
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CHAPTER 1

INTRODUCTION
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1 . 0  E p s t e i n - B a r r  V i r u s

1.1 Classification and Structure

Epstein-Barr virus is a ubiquitous member of the herpesvirus family. The herpesviruses 

are a family of almost 100 DNA viruses found commmonly in humans and animals. 

Classification of this family, established on the basis of similarity in biological 

properties, places EBV in the gammaherpesvirus subfamily, the other two main 

subfamilies being alpha- and betaherpesviruses. EBV is the most extensively studied and 

the only human herpesvirus in the gammaherpesvirus subfamily and is the prototype 

virus of the genera lymphocryptovirus. EBV was originally discovered in 1962 when it 

was suggested that EBV may be important in the aetiology of African Burkitt’s 

Lymphomas (Burkitt, 1962). Characteristic of gammaherpesviruses, EBV exhibits a 

tropism for lymphoid cells and a capacity to induce cell proliferation in vivo, resulting in 

transient or chronic lymphoproliferative disorders. In vitro, many gammaherpesviruses, 

like EBV, can immortalise the infected cell. The current classification of herpesviruses 

does not help in determining evolutionary relatedness based on genome organisation and 

structural similarities. The distinction between alpha, beta and gamma herpesviruses has 

been somewhat blurred by more detailed molecular studies and by the discovery of new 

viruses that co-express the structural features of one subfamily and at least some 

biological properties of another. Thus, taxonomists have renamed EBV human 

herpervirus 4 (HHV-4).

Like other herpesviruses, a mature EBV virion has a toroid-shaped protein core that is 

wrapped with double-stranded DNA this is surrounded by an icosahedral capsid with 

162 capsomers (Figure 1.1). The capsid is surrounded by an amorphous material, the 

tegument, composed of globular proteins. The envelopes of herpesviruses have 

numerous glycoprotein spikes, but EBV differs from most other herpesviruses in the 

predominance of a single glycoprotein in the outer envelope (Kieff, 1996).
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Fig. 1.1. Schematic representation of herpes virus structure.

1.2 EBV genome structure

The EBV genome is a linear, double stranded 172 Kb DNA with a guanine/cytosine 

content of 60% (Kieff, 1996). The genome encodes an estimated 100 genes, but like 

many viruses there is complicated differential splicing of RNA transcripts and the 

number of proteins produced may be greater (Kieff, 1996). The EBV genome was 

completely sequenced from the EBV strain B95-8, initially cloned as a BamHl fragment 

library. For this reason, nomenclature of open reading frames (ORFs), for transcription 

or RNA processing, is based on their location within specific BamHl fragments (Baer et 

al., 1984). For example, the BARF1 ORF is found in the BamHl A fragment (BA) and 

it is the first ORF (FI) extending in a rightward (R) direction. On the basis of the 

presence and location of repeated sequences greater than 100 base pairs, herpesviruses 

can be divided into 6 structurally distinct groups, identified as A -  F. As such, EBV is 

classed as a group C virus, where both terminal and internal repeat sequences are present 

throughout the viral genome, which sub-divide it into well-defined unique seqences. A 

simplified schematic representation of the EBV genome shown below (Figure 1.2) 

illustrates this feature.
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Figure 1.2. A schematic representation of the EBV genome (adapted from IARC Monographs, 1997). 

The genome is divided into repeat regions, 0.5 Kb terminal direct repeats (TR) and 3.0 Kb internal direct 

repeats (IR) that divide the genome into short and long largely unique sequence domains (US and UL). 

The BamH 1 fragments are represented by the letters below the red line. The BamHl fragment location of 

the EBV latent genes are indicated below the fragments. EBER: EBV-encoded RNA; EBNA: EBV 

nuclear antigen; LMP: latent membrane protein; LP: leader protein.

The major DNA repeat elements serve as landmarks on the EBV genome map, however, 

serial passage of virus infected cells frequently results in differences in the number of 

tandem repeat reiterations (Dambaugh et al., 1980; Heller et al., 1981; Brown et al., 

1986; Siaw et al., 1986). Some of these repeats encode proteins and this can explain 

differences in protein sizes observed on immunoblots and can also serve as an important 

marker in identifying virus strains, or virus infected cells (Kieff, 1996). It has been 

found that some EBV genes expressed during latent and lytic infection have no 

homology with other herpesvirus genes and may have arisen from cellular DNA. The 

EBV latent gene BCRF1 is the most striking example of an acquisition from the cell 

gene pool. BCRF1 is nearly identical to human interleukin 10 (IL-10) in primary amino 

acid sequence (Moore et al., 1993).

Two EBV types circulate in most human populations (Gerber et al., 1976; Young et al., 

1987; Rowe et al., 1989). These genomes formerly known as type A and type B are 

now referred to as type-1 and type-2. The genomes are almost identical except for the
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genes that encode some of the Epstein-Barr nuclear antigens (EBNAs) such as EBNA2, 

EBNA3A, 3B, 3C and EBNALP, in latently infected cells (Bornkamm et al., 1980). 

Apart from these genes, the genomes appear to have little differences beyond those 

which characterise individual EBV strains. The differences in type-1 and type-2 EBV 

genomes are reflected in type-specific and type-common epitopes for antibodies (Young 

et al., 1987) and T-cell recognition (Moss et al., 1988). As type-1 EBV is more 

common in developed societies, most EBV immune human sera from these countries 

react preferentially or exclusively with type-1 EBNA2, EBNA3A, 3B, 3C and EBNALP. 

African sera are almost evenly split in their serological reactivity, however, the recovery 

of type-2 virus from blood is unusual (Young et al., 1987; Rowe et al., 1989), perhaps 

because EBV type-2 infected lymphocytes grow less efficiently in vitro than their type-1 

infected counterparts (Rickinson et al., 1987). Different viral strains within types-1 and - 

2, based on significant DNA sequence heterogeneity have been found within the genome 

of EBV isolated in certain geographical areas or even from the same area. These 

polymorphisms may cause amino acid substitution in viral proteins and may even affect 

peptides that are important for the immune control of viral infection.

1.3 EBV strategy of infection

Under normal circumstances EBV infection is restricted to humans. Target cell tropism 

is usually limited to B cells and epithelial cells, although the expanding list of virus- 

associated tumours serves to illustrate that the target cell tropism of EBV in vivo is much 

broader than was originally anticipated. The conditions and mechanisms that allow EBV 

infection of these diverse cell types are, however, in most cases unknown. Nevertheless, 

EBV infection of primary B-lymphocytes in vitro involves binding of CD21 on the B- 

lymphocyte plasma membrane. CD21 (also known as CR2) is the receptor for the C3d 

component of complement. After binding, aggregation of CD21 in the plasma 

membrane, co-aggregation of surface immunoglobulins (slg) and internalization of EBV 

into cytoplasmic vesicles occurs (Nemerow and Cooper, 1984; Carel et al., 1990). The 

virus envelope then fuses with the vesicle membrane, releasing the nucleocapsid and 

tegument into the cytoplasm. Penetration is usually complete within 1-2 h.
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Superinfection of established BL cell lines is somewhat different in that EBV binding 

does not result in as significant a patching of CD21 and slg and the envelope fuses with 

the plasma membrane, releasing the nucleocapsid and tegument into the plasma 

membrane. The observed differences in mode of infection between primary B- 

lymphocytes and BL cells are likely to be due to the cytoskeletal abnormalities of the 

tumour cells (Kieff, 1996). The EBV outer envelope glycoprotein gp350 and gp220 

form the CD21 ligand. The interaction of CD21, gp350 and gp220 mediates EBV 

adsorption (Tanner et al., 1987; Nemerow et al., 1987; 1989). Another EBV 

glycoprotein gp85, has been implicated in the fusion of the EBV envelope with the 

vesicle membrane. Monoclonal antibodies to gp85 inhibit the fusion of the EBV 

envelope and the cell membrane (Miller and Fletcher, 1988). Little is known about EBV 

capsid dissolution, genome transport to the cell nucleus or DNA circularization. By 

comparing EBV to other DNA viruses that replicate in the nucleus it may be suggested 

that the cytoskeleton is likely to mediate EBV capsid transport to the nucleus (Dales and 

Chardonet, 1973).

Two forms of EBV-cellular infection are recognised, latent and replicative (or lytic). 

Cell transcription factors probably determine if latent or lytic infection ensues after the 

genome enters the nucleus and circularizes (Kieff, 1996). In vitro experiments show that 

most human peripheral blood B-lymphocytes are susceptible to EBV infection. The 

virus does not usually replicate in recently-infected B-lymphocytes, which instead 

become stably latently infected. In latent infection, virus penetrates the cell and remains 

present either as circular episomal DNA (formed through fusion of the terminal repeats) 

or, less frequently, as linear DNA integrated into the host genomic DNA. Episomes, 

present in low copy numbers in the host cell nucleus, are copied by host cell DNA 

replicating enzyme and pass to daughter cells in mitosis (Joske and Knecht, 1993). 

Episomal DNA is also likely to be necessary for lytic cycle EBV DNA replication.

A specific set of nuclear (EBNA) and membrane (LMP) protein and small RNA 

(EBERs) viral gene products maintain the latent infection and cause the previously 

resting B-lymphocytes to continuously proliferate (Mark and Sugden, 1982). The effect
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on cell growth is immediate and efficient, with most cells entering DNA synthesis 48-72 

hours after EBV infection. The EBV infected proliferating B-lymphocytes are similar to 

activated B-lymphocytes in their secretion of immunoglobulin and their adherence to 

each other (Klein, 1987; Zhang et al., 1991). Approximately 1 in every 105-106 of the B- 

lymphocytes purified from the peripheral blood of previously infected people are 

latently infected with EBV. These latently infected B-lymphocytes may be cultured and 

will proliferate into long-term lymphoblastoid cell lines (LCL) (Sixbey and Pagano, 

1985). LCL outgrowth is the simplest means for establishing immortal cell lines from 

individual humans for chemical, biological and genetic analysis. Although epithelial 

cells are fully permissive for lytic EBV infection in vivo, infection of epithelial cells in 

vitro has proved inefficient, and thus, most of our knowledge of latent or lytic EBV 

infection in vitro is based on infection of B lymphocytes.

1.4 EBV Latent Infection

Because EBV-infected lymphocytes are growth-transformed by the virus, they can be 

grown indefinitely in culture and are amenable to detailed biochemical analyses 

including investigation of the mechanism of latent genome persistence and of cell 

growth transformation. At least 11 EBV genes are expressed in latent infection. Two of 

these encode small, non-polyadenylated RNAs (EBER1 and EBER2), six encode 

nuclear proteins (EBNA1, 2, 3A, 3B, 3C and LP) and three encode integral membrane 

proteins (LMP1, 2A and 2B). Six of these genes are essential for the immortalization of 

primary B cells (EBNA1, 2, 3A, 3C, -LP and LMP1). Transcription of nuclear proteins 

is initiated at RNA polymerase II-dependent promoters in the BarnRl C (Cp) and 

BamHl W (Wp) regions of the viral genome (Rogers et al., 1992).

The EBV genome circularises in the infected cell nucleus within 12-16 hours of 

infection. At about the same time, the Wp promoter initiates rightward transcription. The 

first viral proteins to be expressed in B cells upon EBV infection, namely EBNA2 and 

EBNALP are believed to play critical roles in the early stages of the immortalization 

process (Alladay et al., 1989; Rooney et al., 1989; Alfieri, et al., 1991). EBNA2 and
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EBNALP are initially transcribed from the very strong promoter Wp, which is present in 

multiple copies in the major internal repeat and are detectable within 12-16 hours post­

infection. Once immortalization is established, Wp activity declines and transcription of 

the EBNA genes switches to using the Cp promoter (Woisetschlaeger et a l, 1990). All 

EBNA coding mRNAs are derived from the same transcriptional unit by alternative 

splicing and alternative polyadenylation (Figure 1.3.). The coding exons for most of the 

EBNAs are towards the 3' end of the mRNAs and are preceded by the highly spliced 

leader exons, which are encoded within the major internal repeat of the genome (Farrell,

1995). The infected B cells enter the first S phase approximately 40 h after the virus 

penetration (Sample and Kieff, 1990; Alfieri et al, 1991), at which stage all the EBNA 

and LMP proteins have reached detectable levels, with all 11 latent proteins being 

detectable by 72 h post-infection.

20 40 60 80 100 12 0 140 160 172Kb

£p/Wp ,0

/v w C
LMP2A, 2B EBNALP

EBNA2

M D
--

EBNA3A 

EBNA3B 

EBNA3C 

EBNA1

I
0

I

LMP1

Figure 1.3 A simplified outline of the splicing of the EBV nuclear antigen coding mRNAs. Transcription 

initiation is shown to arise from the Cp promoter. The EBNA gene mRNAs all derive from the same 

transcription unit by alternative splicing and alternative polyadenylation.

The usual outcome of B-lymphocyte infection with EBV is a persistent latent infection. 

Three forms of latent infection have been characterised in EBV-carrying B-cell lines and 

EBV-carrying tumour biopsy samples. Thus, latency types I, II and III may be 

distinguished on the basis of expression of EBV latent genes and promoter usage 

(Sample et a l, 1986; 1991; Rowe et al., 1986; 1987). Type-I latency is characterised by 

the expression of a single EBV protein, EBNA1 (Rowe et a l, 1987), together with high 

copy numbers of EBER1 and EBER2 (Rymo, 1979; Howe and Shue, 1989). The classic
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features of latency I are exhibited in endemic (BL) biopsies and in early passage cell 

lines derived from these tumours (Rowe et a l, 1987). Cells in latency II resemble 

latency I cells in that they express EBNA1 and the EBER RNAs, but also express 

LMP1, LMP2A and LMP2B. Nasopharyngeal carcinoma (NPC) and Hodgkin’s disease 

(HD) are two EBV-related clinical conditions which exhibit the latency 2 program. 

Explanted BL cells grow continuously in culture and on serial passage some retain the 

phenotype of the original biopsy (type-I). However, during prolonged culture in vitro 

many BL cell lines show a dramatic phenotypic drift, with increased expression of B- 

cell activation antigens and adhesion molecules and the appearance in the culture of 

clumps of more lymphoblastoid-like cells (type-III). As the group-III phenotype cells 

dominate the culture, they frequently lose expression of CD 10 and CD77 (which are BL- 

associated markers), while other LCL associated markers, such as CD40, intercellular 

adhesion molecules and Bcl-2 are up-regulated (Rooney et al., 1986; Rowe et a l, 1987; 

Henderson et a l, 1991). Type-III cells express the full set of EBV latent genes as well 

as cellular genes such as CD23 and a ligand for the EBV receptor CD21 (Wang et a l, 

1987). Two EBV-associated diseases best exemplify the latency III program, infectious 

mononucleosis (IM) and post-transplantation lymphoproliferative disorder (PTLD) 

which is a potentially fatal immunoblastic lymphoma in transplant patients. The pattern 

of EBV latent gene expression is illustrated in Table 1.1 below.



Type of 

latency

Gene Product Examples Reference

I EBERs, EBNA1 Burkitt’s lymphoma Rowe et al., (1987)

Gastric Carcinoma Imai et al., (1994)

II EBERs, EBNA1, Hodgkin’s disease Deacon et al., (1993)

LMP1, 2A, 2B, Nasopharyngeal carcinomi Hitt et al., (1989)

BARFO Brooks et a l, (1992)

III All EBV latent genes PTLD, IM Young et al., (1989)

Tierney et al., (1994)

Other EBERs, EBNA1, 2 Smooth muscle tumours Lee et al., (1995)

Table 1.1. Pattern of EBV latent gene expression, (adapted from the IARC monograph, 1997). PTLD, 
Post-transplant lymphoproliferative disorder, IM infectious mononucleosis.

1.5 EBV Latent Genes

1.5.1 EBNA1

EBV nuclear antigen 1 is required both for latent replication of the EBV genome and as 

a regulator of viral gene transcription (Speck and Strominger, 1987; Sugden, 1989) and 

is the only EBV latent gene which is detectable in all EBV infected cells. This 73 kDa 

protein consists of a short amino-terminal region a 20 kDa - 40 kDa, glycine alanine 

repetitive sequence flanked by arginine rich sequences and a highly charged acidic 

carboxy terminal sequence (Hennessy and Kieff, 1983). During latent infection of 

human host cells, EBV genomes are maintained as double-stranded DNA episomes that 

replicate once every cell cycle (Adams, 1987, Yates and Guan, 1991). The carboxy 

terminus of EBNA1 determines its nuclear localisation by interacting with a specific 

protein that is homogeneously distributed on chromosomes (Harris et al., 1985; Petti et 

al, 1990). This property is likely to be important for segregation of episomes into 

progeny nuclei during mitosis. Part of EBNA1 is also associated with the nuclear
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matrix. EBNA1 is the only EBNA that continues to be made during lytic infection 

(IARC Monograph, 1997).

Although most of the EBNAs bind to DNA cellulose, only EBNA1 has sequence- 

specific DNA binding properties. The specific EBNA1 cognate sequence is a partial 

palindrome: TGGAT AGC AT AT GCT ATCC A for which EBNA1 has a high affinity. 

EBNA1 binds as a dimer to two components of the latent cycle origin of replication, ori 

P and it is the only virus encoded trans-acting factor required for episomal maintenance 

of the EBV genome (Ring, 1994). The replication origin is composed of 20 tandem 

repeats of the EBNA1 binding site, spaced about 1 Kb away from the 20 repeats are a 

further 4 copies of the binding site, 2 in dyad symmetry and two in tandem. The dyad 

symmetry component is stringently required for episome replication. The interaction of 

EBNA1 with the tandem repeats and dyad symmetry sites is co-operative and results in 

high-order structures that lead to bending of the DNA, distortion of the duplex and 

looping out of the intervening sequences (Frappier and O’Donnell, 1991; Orlowski and 

Miller, 1991; Frappier and O’Donnell, 1992). Regions of the protein important for DNA 

binding and transactivation of ori P are located in the carboxy-terminal third of the 

protein (Ambinder et al., 1991) (see Figure 1.4). Furthermore, ori P acts as an EBNA1 

dependent enhancer and plays a crucial role in the regulation of viral transcription from 

both the C and the LMP1 promoter in growth-transformed cells (Sugden and Warren, 

1989; Gahn and Sugden 1995).

Gly-Ala

98 327 641

459 607

Dimerizalion

DNA binding
W ! fiTTT

Transcriptional 
4.*>U 041 activation

42 76
■ h  4— Nuclear localization

379 387

Figure 1.4 Functional domains of EBV nuclear antigen 1 (EBNA1). The Gly-Ala box is a repetitive 

region composed entirely of glycine and alanine, it varies in length between viral strains. Adapted from 

Farrell, 1995.
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The promoter from which the EBNA1 gene is transcribed differs between cell types. In 

EBV transformed LCLs all the EBNA genes are derived from a highly spliced transcript 

that is generated by transcription from the C or W promoters located on the BamHl C 

and W fragments respectively (Middelton et al., 1991). A recent study has indicated that 

RNA transcripts from latently infected early passage type-I BL cells, in the absence of a 

stimulus to induce virus replication, is initiated from a promoter distinct from Fp located 

in the adjacent Bam H I-Q fragment (Nonkwelo et al., 1995). This promoter is 

designated Qp. Qp does not contain a recognisable TATA box, which is consistent with 

multiple sites of transcription initiation from Qp (Nonkwelo et al., 1996). Additionally, 

EBNA1 can negatively autoregulate expression within receptor plasmids containing both 

Fp and Qp through two binding sites downstream of the 3'-most Qp start site (Sample et 

al., 1992; Snug et al., 1994). Following the switch from latent to lytic infection EBNA1 

transcription is controlled by the Fp upstream of Q (Lear et al., 1992).

EBNA1 can bind RNA in vitro through arginine/glycine motifs (Snudden et al., 1994). 

EBNA1 also activates expression of the lymphoid recombinase genes (RAGs) through 

an as yet unidentified mechanism (Srinivas and Sixbey, 1995). Activation of the RAGs 

could promote chromosomal rearrangements and translocations and possibly also 

facilitate viral integration. This may indicate that EBNA1 can activate expression of 

critical cellular genes and affect cellular growth control. Expression of EBNA1 in EBV 

negative cell lines has no obvious effect upon cellular growth characteristics. However, 

the expression of EBNA1 in the B cells of transgenic mice has been shown to be 

associated with the development of lymphocytic lymphoma and leukaemia suggesting 

that EBNA1 predisposes the mouse lymphocytes to oncogenic change (Wilson and 

Levine, 1992).
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1 . 5 . 2  E B N A 2

EBNA2 plays a central role in the immortalisation of primary B lymphocytes by EBV, 

and is one of the first genes to be expressed during this process. The EBNA2 gene 

encodes an 83 kD protein which localises in large nuclear granules and is associated 

with nucleoplasmic chromatin and nuclear matrix fractions (Petti et al, 1990). The 

EBNA2 protein is overall acidic, containing a polyproline region, a glycine-arginine 

repeat and a highly acidic carboxy terminus (Dambaugh et al., 1984). Like EBNA-LP 

and EBNA1, EBNA2 is phosphorylated on serine and threonine residues and must 

undergo significant post-translational modification in addition to phosphorlyation as the 

size of the nascent protein is smaller than that of the stable intranuclear EBNA2 (Kieff, 

1996). EBNA2 is a specific trans-activator of latent viral genes and certain cellular 

genes including the B cell activation marker, CD23 (Wang et al, 1987, 1990, 1991), the 

B lymphocyte differentiation marker, CD21 (Cordier et al, 1990) and the c-fgr oncogene 

(Knutson, 1990). Viral genes transactivated by EBNA2 include LMP1 (Abbot et al., 

1990; Ghosh and Kieff, 1990; Wang et al., 1990b; Tsang et al., 1991; Fahraeus et al,

1993), LMP2 (Tsang et al., 1991) and the cis-acting element upstream of the Cp 

promoter (Walls and Perricaudet, 1991; Sjoblom et al, 1995).

Three regions have been located which appear to be stringently required for 

transformation and the trans-activating activity of EBNA2, between amino acid residues 

95-110, 280-337 and 425-462 (see Figure 1.5). While the role of the 95-110 region is 

unclear, the 425-462 region is essential due to its acidic //-¿ms-activating characteristics. 

Detailed analysis of this region indicates that it is similar in many respects to the 

prototype VP 16 acidic domain (Cohen and Kieff, 1991, Cohen, 1992) The 425-462 

domain shares with VP 16 an affinity for the transcription factors TFIIB, TAF40, TFIIH 

and RPA70 suggesting a critical role for this region in recruiting these factors to 

EBNA2-responsive promoters. The main function of the 280-337 region is to mediate 

interactions with DNA sequence-specific binding proteins as EBNA2 is unable to 

interact directly with its responsive elements. Thus, targeting of EBNA2 to specific 

DNA sequences is achieved through the exploitation of a ubiquitously-expressed cellular
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DNA-binding protein, RBP-Jk (CBF1). Interaction of EBNA2 with RBP-Jk has been

demonstrated in vitro (Grossman et al, 1994; Henkel et al, 1994) and in vivo 

(Yalamanchilli et al, 1994).

Pro

1 59 100 483

 Transcriptional
426 462 activation

Regions not required fo r+  
immortalization 20

1 243

Region not 
379 462 required for

Binding of RBP-Jk

nuclear
localization

Figure 1.5 Functional domains of EBY nuclear antigen 2 (EBNA2). The pro box is a region 

composed entirely of proline, it varies in length between viral strains. Adapted from Farrell 1995.

EBNA2 activates gene expression through a common cis-regulatory element found in 

both viral and cellular promoters. EBNA2 response elements (E2RE) have been 

characterised upstream of the EBV LMP-1, LMP-2A and Cp promoters as well as the 

CD23 promoter. Each E2RE includes MNYYGTGGGAA, which includes the cognate 

sequence for RBP-Jk, CGTGGGAA. Additional protein binding sites are present in 

E2REs: for example, mutation of the Spi-1 (a member of the ets family of transcription 

factors, also known as PU.l) binding site has a profound effect on the responsiveness of 

the LMP1 promoter (Johannsen et al, 1995; Laux et al, 1994a). Spi-l/PU.l is also likely 

to be an important member for many of the cellular genes that are activated by EBNA2 , 

as it is frequently involved in B lymphocyte-specific gene transcription.

RBP-Jk is a highly-conserved repressor protein which is part of a signaling pathway 

initiated at the Notch receptor (Tun et al., 1994). Upon ligand binding, the cytoplasmic 

domain of Notch is assumed to be cleaved off the membrane and translocated to the 

nucleus where it activates target genes by converting the RBP-Jk repressor protein to an 

activator (Artavanis-Tsakonas et al., 1995). Notchl is a human Notch first identified at
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the breakpoint of a recurrent chromosomal translocation associated with a subset of 

human T-cell acute lymphoblastic leukaemia/lymphomas (T-ALL) (Aster et al., 1997). 

A truncated oncogenic form of Notch 1 has been identified in human T-ALLs and 

EBNA2 has been found to mimic this constitutively activated Notch in its mode of 

action through binding of RBP-Jk, thus linking EBNA2 to cell transformation. 

Mutational analysis of the EBNA2-responsive regions of the various promoters reveals a 

high similarity between EBNA2- and Notchl-transactivation regarding the crucial cis- 

elements. In a recent study, activated Notchl stably introduced into EBNA2-negative 

BL cell lines, in a regulatable fashion, modulated expression of most but not all EBNA2- 

regulated cellular genes (Strobl et al, 2000). In the same study, stable introduction of an 

activated Notchl expression construct into an LCL with an oestrogen-dependent 

EBNA2-oestrogen receptor fusion protein (EREB2-5 cells) revealed that after oestrogen 

withdrawal activated Notchl was not sufficient to maintain proliferation. From these 

data, it may be concluded that EBNA2 exerts additional functions apart from triggering 

the Notch pathway, in the process of B cell immortalisation.

A consistent feature of BL cells is the transcriptional activation of the proto-oncogene c- 

myc by chromosomal translocation (Bornkamm et al., 1988; Spencer and Groudine, 

1991). The most frequent translocation t(8;14) fuses the c-myc gene locus on 

chromosome 8 to the constant region of the Ig heavy chain gene locus on chromosome 

14. Since BL cells are thought to proliferate through activation of the c-myc gene the 

growth promoting function of EBNA2 may not be required in the setting of BL. A novel 

function of EBNA2 has been described using an oestrogen responsive system whereby 

the expression of EBNA2 is controlled by the presence or absence of oestrogen (Jochner 

et al., 1996). EBNA2 down-regulates surface IgM expression and transcription of the 

lg-|0. locus very efficiently. In BL cell lines with the t(8:14) translocation, down- 

regulation of Ig-p, is associated with concomitant transcriptional shut-off the c-myc gene, 

reflecting the fact that c-myc is under the control of Ig heavy chain locus in these cells. 

The function of EBNA2 as a negative regulator of Ig-|X provides an explanation for the 

growth inhibiting effect of EBNA2 in cells carrying a t(8; 14) translocation (Jochner et 

al., 1996). The down regulation of IgM expression by EBNA2 may also provide an
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explanation for the long standing observation that EBV negative BL cells in culture tend 

to have higher levels of Ig expression than their EBV positive counterparts (Benjamin et 

al, 1982; Cohen et a l, 1987; Magrath et a l, 1990). Ig-fi and c-myc are down-regulated 

by EBNA2 at the transcriptional level and the transcription of Ig-ji and c-myc are 

affected by EBNA2 simultaneously. This suggests that EBNA2 is mediating its effect 

on expression through a common target, presumably a transcription factor (Jochner et 

al, 1996).

EBNA2 not only plays a key role in the cascade of events leading to B cell 

transformation but is also essential for the maintenance of the transformed state. Using 

an LCL conditional for functional EBNA2 expression in the presence of oestrogen, it 

has been found that cells deprived of functional EBNA2 entered a quiescent non­

proliferative state reminiscent of normal resting B cells or die by apoptosis (Kempkes et 

al, 1995). Functional EBNA2 was shown to be required at both the Gi and G2 phases of 

the cell cycle, while a role in terminating S phase could not be excluded. It could be 

concluded from the findings of this study that EBNA2 induces B-cell activation and 

entry into the cell cycle by inducing and maintaining the expression of early Gi- 

regulating proteins.

A more recent study using an LCL conditional for functional EBNA2 expression (as 

described above) has found that the transcription of the proto-oncogene c-myc was 

activated by EBNA2, but the precise mechanism of this transcription activation remains 

to be elucidated (Kaiser et al., 1999). It was also concluded that in contrast to c-myc and 

LMP1, neither cyclin D2 nor cdk4 is a direct EBNA2 target. Cyclin D2 and cdk4 are 

both elements of the basic cell cycle machinery and drive cell cycle progression in early 

Gi. Since it has been shown that different B cell activation protocols can induce cyclin 

D2 and cdk4, it may be that the induction of proliferation by EBNA2 is a secondary 

event potentially driven by the primary viral and cellular EBNA2 targets (Kaiser et al., 

1999).
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1 . 5 . 3  E B N A - L P

The EBNA leader protein (also known as EBNA-5) is so named because it is encoded by 

the 5' leader sequence of bicistronic mRNAs specifying the other EBNAs. The 

translation initiation codon for EBNA-LP is created by a splicing event that occurs near 

the 5' end of the message (Sample et al., 1986; Speck et al., 1986; Rogers el al., 1990). 

The EBNA-LP protein is composed of amino-terminal repetitive segments followed by a 

unique carboxy-terminal sequence. Thus, EBNA-LP is frequently observed as a ladder 

of proteins in gel electrophoresis which differ in the number of amino-terminal repeats 

due to the fact that the repetitive part of the protein is derived from exons in the major 

internal repeat of the virus, which varies in copy number in any EBV population 

(Hammerschmidt and Sugden, 1989). The protein is strongly associated with the 

nuclear matrix, with an unusual distribution as illustrated by immunofluorescence 

microscopy - a proportion is diffusely spread through the nucleus while the rest is 

concentrated in a few granules frequently distributed in curved linear arrays (Petti et al, 

1990; Jiang et al., 1991).

Although EBNA-LP appears to be important at least for initiation of B cell 

transformation, it’s precise role has not been well characterised. Previous work has 

focused attention on cell cycle-related effects of EBNA-LP expression (Allan et al, 

1992; Inman and Farrell, 1995; Kitay and Rowe, 1996). A role in cell cycle regulation is 

suggested by the finding that, along with EBNA2, EBNA-LP is the first viral gene 

product detected upon primary infection of resting lymphoblasts Also, EBNA-LP mutant 

virus-immortalised cells show delayed transit through the Gi phase of the cell cycle. 

Association of EBNA-LP with pRb and p53 has been suggested based on in vitro 

biochemical interaction and colocalization of EBNA-LP with pRb as detected with one 

antibody and not another, however the in vivo relevance of this is unknown (Jiang et al., 

1991; Szekely et al., 1993). Transient transfection of EBNA-LP and EBNA2 into 

primary B-lymphocytes co-stimulated with gp350 indicated that the two proteins co­

operate in the induction of Go to Gi transition as marked by induction of cyclin D2, 

however, the mechanism of action remains unclear (Sinclair et al., 1994). Furthermore,
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EBNA-LP phosphorylation is dependent on the cell cycle stage (Kitay and Rowe, 1996). 

Recent studies suggest that this protein greatly enhances EBNA2-induced trans­

activation of LMP1 expression through interaction with the EBNA2 acidic trans­

activation domain (Harada and Kieff, 1997).

1.5.4 LMP1

Latent membrane protein 1 (LMP1) is one of six EBV proteins essential for 

immortalisation of normal resting B cells. LMP1 demonstrates the features of a classical 

oncogene, as defined by its ability to transform rodent fibroblast cell lines and render 

them tumorigenic. LMP1 is the only EBV gene that has transforming effects in non­

lymphoid cells. In both Rat-1 (Wang et al, 1985) and BALB/c 3T3 (Baichwal and 

Sugden, 1988) cells, LMP1 expression permits growth at lower serum concentrations, 

and promotes anchorage-independence and loss of contact inhibition. Furthermore, 

LMP1 has pleiotropic effects when expressed in cells that are natural targets for EBV 

infection, human lymphocytes and epithelial cells. There is also evidence of synergy of 

LMP1 with EBNA2 in upregulating certain cellular proteins (Rowe, 1995; Wang et al,

1990). In epithelial cells, LMP1 blocks normal differentiation, a property which, 

together with the upregulated levels of CD40 and the epidermal growth factor receptor 

(EGFR) (Fahraeus et al, 1988), may be important in the pathogenesis of undifferentiated 

carcinoma of the nasopharynx. In primary NPC biopsies, the expression of EBV latent 

genes is more restricted than in latently infected B lymphocytes. One study of rare 

preinvasive NPC lesions has demonstrated LMP1 expression in all cells in 100% of 

cases, suggesting an important role for this protein in the development of this 

malignancy (Rajadurai et al, 1995). LMP1 is toxic when expressed at high levels in both 

lymphoid and epithelial cell lines, a shared phenotype that indicates that one or more of 

it’s activities or its level of expression must be regulated to permit survival of the host 

cell (Farhaeus et al, 1988).
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LMP1 mRNA is the second most abundant viral transcript in latently infected cells 

(Fennewald et a l , 1984; Sample and Kieff, 1990). Expression of LMP1 in B lymphoma 

cell lines induces many of the phenotypic changes characteristic of EBV-mediated 

immortalisation of primary lymphocytes. LMP1 induces cell size increase, cell 

clumping, increased villous projections, increased vimentin expression and modulates 

expression of a range of cell surface receptors that are mediators of signaling events that 

affect cellular activation or proliferation. These include CD23 (low affinity IgE receptor) 

and CD21 (C3d/EBV receptor), CD39, CD40, CD44 and class II major 

histocompatibility complex (MHC II), adhesion molecules such as ICAM-1, LFA-1 and 

LFA-3 and the B cell promoting cytokine, 1L-10 (Wang et a l , 1988b; Birkenbach, 1989; 

Wang et a l , 1990a; Liebowitz e t a l , 1992; Peng and Lundgren 1992; Nakagomi et a l , 

1994; Zhang et a l , 1994a; Kieff, 1996). In contrast, expression of CD 10 is decreased by 

LMP1 (Wang et a l , 1990). Although LMP1 obviously plays an important role in EBV- 

mediated B cell immortalisation, the signal transduction pathways leading to modulation 

of cellular gene expression have not been fully elucidated.
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1 . 5 . 4 . 1  L M P 1  s t r u c t u r e

The LMP1 gene product, encoded by 3 exons, consists of a 20 amino acid hydrophilic 

amino-terminal cytoplasmic domain, 6 markedly hydrophobic transmembrane domains 

(alpha helicase transmembrane segments each 20 amino acids long) separated by short 

reverse turns (each 10 amino acids in length) and a 200 amino acid carboxy-terminal 

cytoplasmic terminus that is rich in acidic residues (Figure 1.6).

Cytoplasm

Plasma membrane

COOH

NH2 CTAR1 CTAR2

Figure 1.6 Schematic representation of LMP1 (adapted from Puls and others, 1999). LMP1 consists of 
an N terminal cytoplasmic domain, six hydrophobic transmembrane domains separated by reverse turns 
and a 200 amino acid C-terminal domain (CTD). Two signaling domains, CTAR1 and CTAR2 are located 
in the CTD and has been shown to interact with TNFR-associated factors TRAF1-3 and TRADD, 
respectively as indicated in the figure.
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LMP1 migrates on SDS-PAGE between 58 and 63 kDa depending on the EBV strain. 

The transmembrane domains enable LMP1 to posttranslationally insert into membranes 

and to accumulate in aggregates (Hennessy et a l , 1984; Liebowitz et a l , 1986). Live-cell 

protease cleavage experiments indicate a cytoplasmic orientation of the amino- and 

carboxy-terminal domains and an extrinsic plasma membrane orientation of the first 

outer reverse turn domain (Liebowitz et a l , 1986). Shortly after being synthesised, 

LMP1 is phosphorylated on serine and threonine residues in the carboxy-terminal 

domain and becomes tightly bound to the cell cytoskeleton (Liebowitz et a l , 1987). A 

substantial proportion of LMP1 (at least half) localises to a patch at the periphery, where 

it is closely associated with vimentin intermediate filaments (Liebowitz et a l , 1987). 

Unbound, nascent LMP1, as determined by detergent-solubility, has a half-life of less 

than 2 hours, while the insoluble, phosphorylated, cytoskeleton-associated form, has a 

half life of 3-15 hours (Moorthy and Thorley-Lawson, 1990, 1993a). LMP1 is 

transcribed during lytic infection and full size LMP1 is incorporated into virions, 

indicating that virion-associated products may affect the growth of newly-infected cells 

(Mann et a l , 1985).

1.5.4.2 Signal Transduction by LMP1

The structure of LMP1 as a membrane protein with cytoplasmic amino-terminal and 

carboxy-terminal domains as outlined above, is just one of several characteristics which 

are consistent with it stimulating existing cellular signal transducing pathways. L M P l’s 

oncogenic activity correlates with its ability to attach to the cytoskeleton, localise in 

patches in the plasma membrane and turn over rapidly (Liebowitz et a l , 1996; Mann and 

Thorley-Lawson, 1987). These are properties which are shared with activated growth 

factor receptors. As an integral membrane protein, LMP1 acts like a constitutively active 

receptor (Gires et a l , 1997) and shares certain characteristics with members of the TNFR 

family (reviewed by Kieff et a l , 1996). In a manner similar to other members such as 

CD30, CD40 and TNFR1, LMP1 binds specific TNFR associated factors (TRAFs) 

which have been found to associate directly with it’s carboxy-terminal region
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(Figure 1.6). Moreover, LMP1 activates the transcription factor NFkB and the c-Jun N- 

terminal kinase 1 (JNK1, also known as stress activated protein kinase) cascade by 

pathways which involve TRAF molecules. Since LMP1 acts in a ligand-independent 

manner, it replaces the T cell-derived activation signal necessary to sustain indefinite B 

cell proliferation.

Although LMP1 and CD40 share very little protein homology, their shared functions 

have led to suggestions that LMP1 may mimic B cell activation processes which are 

physiologically triggered by CD40-CD40 ligand signals. Recently, it was reported that 

LMP1 activates B cells to secrete Ig and IL-6 and rescues them from B cell receptor- 

mediated growth arrest analagous to CD40 signaling, and that LMP1 and CD40 

signaling pathways interact cooperatively in inducing B cell effector functions (Busch 

and Bishop, 1999). Also, in EBV-immortalised B cells lacking a functional EBNA2 

protein, CD40 activation and LMP1 expression result in the same phenotype of 

prolonged cell survival and DNA synthesis (Zimbler-Strobl et a l , 1996). These and other 

similarities, including the ability to upregulate genes such as CD54 (ICAM1) and to 

affect cell growth and apoptosis have led to the suggestion that LMP1 signaling is 

similar or even identical to CD40 signaling. However, in Jurkat T cells, while ligand- 

induced CD40 signaling was found to be impaired, LMP1 was demonstrated to be fully 

functional, therefore indicating that signaling by LMP1 and CD40 differ (Floettmann et 

a l , 1998). Two regions within the cytosolic domain of LMP1 have been found to effect 

cell signaling. One of these, the carboxy-terminal activation region-1 (CTAR1), binds 

members of the TRAF family of proteins and the other, CTAR2, binds the TNFR 

associated death domain protein (TRADD). Using mutated LMP1 genes in Jurkat cells, 

it has been shown that LMP1 loses it’s ability to upregulate the CD54 cell surface 

marker, when either the CTAR1 or CTAR2 domain is non-functional, thus behaving like 

CD40. However, the CTAR1 domain of LMP1, which shares a TRAF binding sequence 

motif with CD40, differs from CD40 in being unable to activate NFkB in Jurkat cells 

(Floettmann et a l , 1998).
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Activation of NFkB involves two independent domains in the cytoplasmic C-terminal 

tail; the TRAF-interacting site which associates with TRAFs 1,2,3 and 5 via a PXQXT/S 

core motif and a TRADD interacting site. Although NFkB appears to mediate the 

upregulation of many genes by LMP1 eg. A20 (Laherty et a l , 1992), it has become clear 

in recent years that NFkB has only a partial role to play in LMP1 induced B cell 

activation. For example, ICAM-1 and CD71 were shown to be upregulated in the 

presence of a dominant inhibitory IkB mutant. The characteristic LMP1-mediated cell 

size increase was similarly unaffected in the absence of NFkB activation (Liljeholm et 

a l , 1998). Also, induction of EGFR in epithelial cells by LMP1 or CD40 is mediated 

through a signaling pathway which is distinct from NFkB (Miller et a l , 1997).

LMP1 expression also results in activation of the c-Jun N-terminal kinase (JNK) cascade 

(Kieser e t a l , 1997; Epiopolos, 1998), an effect which is mediated exclusively through 

CTAR2 and can be dissociated from NFkB induction. A recent study identified the 

extreme 8aa of the CTAR2 region as important for JNK signaling via a mechanism 

involving TRAF2 and TRADD (Eliopoulos e t a l , 1999). Using a tetracycline-regulated 

LMP-1 allele, JNK was shown to be an effector of non-toxic LMP1 signaling in B cells. 

JNK was also shown to mediate activation of the AP-1 transcription factor, a dimer of 

Jun/Jun or Jun/Fos proteins (Kieser et a l , 1997) which is readily acitivated by growth 

factors and mitogens. The JNK cascade is complicated by having at least eleven known 

upstream MAP kinase kinase kinases (ASK1, Tpl-2, DLK, TAK1, MEKK1,2,3,4 and 

MLK1,2,3) that may regulate the pathway in different cell types and in response to 

different stimuli (Ip and Davis, 1998). In addition to activation of NFkB/JNKI, LMP1 

engages the p38 mitogen activated protein kinase cascade, leading to activation of the 

transcription factor, ATF2. While, like NFkB activation, p38 is induced via the CTAR1 

and CTAR2 regions, the 2 pathways are primarily independent, with evidence 

suggesting a divergence of signals downstream of TRAF2. Using a highly specific 

inhibitor of p38, SB203580, LMP1 -mediated IL-6 and IL-8 expression was found to 

utilise the p38 pathway (Eliopoulos et a l , 1999).
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As outlined above, LMP1 appears to mimick the molecular functions of TNFR1. 

However, TNFR1 regulates a wide range of cellular responses including apoptosis, 

whereas LMP1 constitutes a transforming protein. The molecular function of TRADD in 

LMP1 signaling has been found to differ from its role in TNFR1 signal transduction. 

JNK activation by TNFR1 involves Cdc42, whereas LMP1 signaling to INK is 

independent of p21 Rho-like GTPases (Cdc42 has been implicated in several STPs, 

including organisation of the actin cytoskeleton and activation of both JNK and NFkB). 

Thus, although both LMP1 and TNFR1 interact with both TRADD and TRAF2, the 

different topologies of the signaling complexes correlate with substantial differences 

between LMP1 and TNFR1 signal transduction to JNK (Kieser e t a l , 1999). In support 

of this, activation of JNK and NFkB by the TN Fa and IL-1 receptors and by LMP1 in 

fibroblasts was found to occur independently of Cdc42. Moreover, signaling to Cdc42 

and to JNK/NFkB occurred through distinct pathways and members of the TRAF and 

TRADD families were not required for Cdc42 activation (Puls et a l , 1999). Further 

studies are in progress in an effort to identify molecules capable of interacting with the 

transmembrane or loop regions of LMP1 as potential candidates for mediating Cdc42 

activation.

LMP1 expression in a continuous human B-lymphoblast cell line causes steady-state 

increases in intracellular free calcium and acid production (Wang e t a l , 1998). A 

transient increase in intracellular free calcium is a prominent immediate manifestation of 

B lymphocyte activation (reviewed by Cambier e t a l , 1987). As a plasma membrane 

protein with multiple membrane-spanning domains, LMP1 could be a channel protein or 

could interact with a channel protein. Thus, modification of an ion channel could 

directly or indirectly lead to the observed increase in intracellular free calcium. Since 

measurements of radioactive calcium uptake or efflux in LMP1 expressing versus 

nonexpressing cells do not reveal a difference, the mechanism is more likely to be 

indirect (Wang e t a l , 1998). Many of the effects of increased intracellular free calcium 

are transmitted by the calcium receptor calmodulin which, upon binding calcium, 

activates a diverse family of effector molecules. An important component of the calcium 

signaling cascade in mammalian cells is a family of serine-threonine-specific, calcium-
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calmodulin-dependent protein kinases, whose members have been implicated in a broad 

array of cellular processes including cell cycle progression and gene expression 

(reviewed by Hanson and Schulman, 1992). One member of this family of kinases, CaM 

kinase-Gr (a multifunctional calcium-calmodulin-dependent protein kinase type Gr) has 

been found to be upregulated by LMP1 in the EBV-negative cell line, BJAB. This 

kinase is absent from primary human B lymphocytes but is expressed in EBV- 

transformed B-lymphoblastoid cell lines (Mosialos et a l , 1994). CaM kinase Gr was 

reported to mediate cell cycle progression in Xenopus eggs (Lorca et a l , 1993) and may 

have a similar role in EBV-transformed B lymphocytes. The LM Pl-induced kinase is 

activated in B lymphocytes by increased intracellular free calcium in response to surface 

IgM crosslinking (Mosialos e t a l , 1994).

1.5.5 LMP2A and 2B

The LMP2 gene is transcribed as two alternatively-spliced mRNAs which encode 

LMP2A and -2B proteins, also known as terminal proteins -1 and -2  (Laux et a l . , 1988; 

Sample e t a l . , 1989). LMP2A and -2B  are found in latently-infected, growth 

transformed lymphocytes in vitro, in different human tumours and in latently infected B 

cells in vivo. LMP2A, but not LMP2B, is detectable in B lymphocytes isolated from 

peripheral blood of EBV sero-positives (Qu and Rowe, 1992) and LMP2 transcripts as 

well as antibodies against the proteins have been detected in patients with 

nasopharyngeal carcinoma (Brooks e t a l , 1993). The LMP2 mRNAs are formed by 

transcription and splicing across the joined termini of the circularised EBV genome as it 

is present in latently infected cells. (Laux et a l . , 1988; Sample e t a l ., 1989). The two 

messages consist of different 5' exons and eight common exons and are predicted to 

encode nearly identical proteins differing only in the length of their hydrophilic amino 

termini (Ring, 1994). Transcription of the LMP2A starts 3Kb downstream of the LMP1 

transcription start site (Laux e t a l . , 1988; Sample et a l ., 1989). The LMP2B and LMP1 

promoters form bi-directional transcription units containing a common EBNA2 

responsive element, while a separate EBNA2 response element regulates LMP2A 

transcription (Zimber-Strobl, e t a l . , 1993). LMP2A and 2B are 54 and 40 kDa in size 

respectively. Both proteins are predicted to encode twelve highly hydrophobic
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membrane-spanning domains and are localized to patches in the plasma membrane of 

infected cells, in close association with LMP1 (Longnecker and Kieff, 1990). LMP2A 

and 2B are not required for EBV mediated immortalization but they do improve 

efficiency of transformation (Longnecker e t a l . , 1992; Brielmeir et a l . , 1996). The 

LMP2 proteins are phosphorylated on serine, threonine and tyrosine residues 

(Longnecker et a l . , 1991) and have been shown to interact with src-family tyrosine 

kinases in EBV-infected B cells (Burkhardt e t a l . , 1992) They have also been associated 

with another stably phosphorylated tyrosine kinase s y k  ( M i l l e r  e t a l, 1 9 9 5 ) . These 

interactions suggest that the LMP2s play a role in transmembrane signal transduction 

(Kieff, 1996). LMP2A has been shown to inhibit anti-immunoglobulin-mediated Ca2+ 

mobilization, PKCy2 activation and anti-immunoglobulin-induced reactivation of the 

lytic cycle, which can be bypassed by TPA with Ca2+ ionophores (Miller et a l . , 1994b, 

1995a). These data are consistent with a model in which LMP2A sequesters the receptor 

associated tyrosine kinase, blocking its autophosphorylation and downstream signaling 

events (Miller e t a l . , 1995a).

1.5.6 EBV-encoded RNAs (EBERs)

EBER expression lags behind that of the other EBNA and LMP proteins and is delayed 

until after the initiation of DNA synthesis (Alfieri et a l , 1991). The two EBV-encoded, 

small nonpolyadenylated RNAs, EBER1 and EBER2, are by far the most abundant EBV 

RNAs in latently infected cells, with an estimated abundance of 107 copies per cell. 

They are usually transcribed by RNA polymerase III although polymerase II may also be 

involved. M ost EBERs are located in the nucleus and are associated at the 3' terminus 

with the cellular La antigen (Howe and Steiz, 1986; Howe and Shu; 1989). EBER 1 and 

2 have extensive sequence similarity to adenovirus VA1 and VA2 and cell U6 small 

RNAs, both of which form similar secondary structures and complex with La protein 

(Rosa e t a l . , 1981; Glickman e t a l . , 1988). The role of the EBERs is unclear but based 

on the functions of VA and U6 RNAs two alternative roles have been proposed for the 

EBERs. Firstly, the EBERS can partially complement VAI-mediated inhibition of 

activation of an interferon-induced protein kinase, which blocks transcription by
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phosphorylating the protein-synthesis initiator factor eIF-2a. Secondly a possible role of 

the EBERs is the splicing of the primary EBNA and LMP1 mRNA transcripts 

(suggested by the partial complementarity to RNA splice sites). Although the delayed 

expression of the EBERs appears to be incompatible with both of these proposed 

functions, nevertheless, the earlier events in primary B-cell infection are sensitive to 

interferon (IF) and EBERs may play a role in blocking eIF-2 kinase (Thorley-lawson, 

1980; 1981). EBV recombinants in which the EBERs have been deleted can initiate 

primary B cell infection and growth transformation in the same way as wild-type virus, 

and no differences have been observed in the growth of LCLs infected with EBER- 

deleted and control virus or in the permissiveness of these cells for lytic infection 

(Swaminthatan et a l , 1991).

1.5.7 EBNA-3A, -3B and -3C

Examination of the coding sequences of the EBNA-3A, EBNA-3B and EBNA-3C (also 

known as EBNA3, EBNA4 and EBNA6, respectively) genes reveals that each is 

composed of one short and one long exon (of similar sizes in all three genes). The genes 

are similar in structure and are tandemly located in the B a m K l  region of the EBV 

genome (Bodescot et a l , 1986; Joab e t a l , 1987; Peit et a l , 1988; Kerdiles et a l , 1990). 

These features have led to the proposal that the EBNA-3 genes may have arisen by gene 

duplication, although there is little overall homology between the protein sequences. The 

proteins are remarkably hydrophilic overall, contain unusual clusters of charged amino 

acids, and have similarly positioned clusters of negatively charged amino acids. The 

type 1 EBNA-3A, -3B and -3C genes encode proteins which migrate on SDS gels at 

145, 165 and 155 kDa, respectively. Comparison of the primary sequences of EBNA-3 

proteins reveals a similar organisation (Le Roux et a l , 1994) as follows (see Figure 1.6).
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1. a ca. 90 amino acid hydrophilic N-terminal end,

2. a region of 220 -230 residues that shows 23 - 28% amino acid identity,

3. a region of short sequences rich in negatively- and positively-charged amino 

acids,

4. a proline-rich C-terminal half containing repeated polypeptide domains.
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Figure 1.7 Structural and sequence similarités among the EBNA3 family of proteins. In the charged 

regions, sequences rich in basic amino acids are shown in white, sequences rich in acidic amino acids are 

shown in black, sequences rich in both types of charged residuesare checkered. Amino acid identity was 

scored between residues 90 and 320 of each EBNA3 protein using Kanehisa’s sequence comparison 

program (Fortini and Artavanis-Tsakonas, 1994).

The EBNA-3s encode more than half of the translated open reading frames in latently 

infected growth-transformed lymphoctes. However, their precise functions in vivo are as 

yet poorly understood. It is considered likely that the three proteins have unique 

functions since recombinant EBVs that carry null mutations in either EBNA-3A or 

EBNA-3C are nonimmortalising (Tomkinson and Kieff. 1992; Tomkinson et a l , 1993). 

This implies that EBNA-3A and -3C individually possess different functions that are 

essential for immortalisation and which cannot be complemented by other members of
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the EBNA-3 family. In constrast, in vitro experiments have shown that EBNA-3B is not 

critical for EBV latent infection, cell growth transformation or lytic virus replication 

in B lymphocytes (Tomkinson and Kieff, 1992). EBNA-3A, -3B and -3C each include 

epitopes that are frequently recognised by EBY-immune cytotoxic T lymphocytes 

(CTLs). Given the importance of EBNA-3A, -3B and -3C epitopes in CTL recognition 

of EBV-infected lymphocytes (Gavioli et a l . , 1992) strains with deletions of all or part 

of each of the EBNA-3 proteins would have been expected to have arisen and been 

identified if these proteins were not important for infection in vivo.

There is increasing evidence that EBNA3C, like EBNA2, functions as a trans-activator 

of both cellular and viral genes. Transfection of an EBNA3C expression construct into 

an EBV negative BL cell line has been shown to result in the upregulation of the EBV 

receptor CD21 (Wang et a l . , 1990). Furthermore, expression of EBNA3C in the Raji 

cell line (in which the EBV genome is deleted for most of the EBNA3C open reading 

frame) induces an up-regulation of LMP1 and the cellular proteins CD23 and vimentin 

(Allday e t a l . , 1993; Ring, 1994). EBNA-3C can co-operate with activated Ha-ras in the 

transformation of primary murine fibroblasts. EBNA-3C has a glutamine-proline-rich 

domain which can substitute for the acidic transactivation domain of EBNA2 and a 

similar glutamine-proline-rich domain has been found in EBNA-3B (Cohen and Kieff,

1991). A novel transcription activation function for EBNA-3A, perhaps analagous to 

that reported previously for EBNA-3C, was recently revealed although there is no 

substantial sequence homology between the two proteins in the parts involved in 

transcription activation (Marshall and Sample, 1995).

W hen stably expressed in group I DG75 BL cells, EBNA-3B, has been found to 

upregulate vimentin as well as surface expression of the activation antigen, CD40, while 

the Burkitt’s Lymphoma-associated antigen BLA/CD77 is down-regulated (Sillins and 

Sculley, 1994). Functional analogies have been drawn between EBNA-3B and the EBV 

latent membrane protein, LMP-1. It is thought that EBNA-3B and LMP-1 may co- 

ordinately regulate CD40 and vimentin levels, as LMP1 has also been found to 

upregulate both these proteins. In addition, a further study found that DG75 cells
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induced to undergo apoptosis in response to serum starvation were protected in the 

presence o f EBNA-3B (Sillins and Sculley, 1995), a feature also common to LMP1. Cell 

enlargement has been observed as a prominent feature of EBNA-3B-expressing BL 

clones (Wang et a l , 1988). Thus, EBNA-3B may have the potential to contribute in 

several different ways to the transformation process.

The most widely documented and common function of the EBNA3 proteins is their 

capacity to inhibit EBNA2-mediated activation of the TP1 and LMP1 promoters in 

transient expression assays (Le Roux et a l , 1994; Marshall and Sample, 1995; Robertson 

et a l , 1995). EBNA2 is a key transactivator of a wide spectrum of viral and cellular 

genes (see section 1.5.2) and interaction with the RBP-Jk transcription factor is critical 

for the specific targeting of EBNA2 to the responsive elements of many of these genes. 

By destabilizing RBP-Jk and EBNA2/RBP-JK complexes from binding to their cognate 

RBP-Jk binding sites (see Figure 1.8), EBNA3A, 3B and 3C proteins have been shown 

to inhibit the transcriptional activation of EBNA2 responsive promoters (Le Roux et a l . ,

1994). EBNA3 proteins are thus believed to counter balance and finely tune the action 

of EBNA2 (Waltzer e t a l . , 1996; Robertson et a l . , 1996; Zhao et a l ., 1996).
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F ig u re  1.8 A schem atic  m odel o f the m echanism  by  w hich EBNA3C coun terac ts  EBN A 2-m ediated 

transactivation . EBNA3C destabilises the interaction of RBP-Jk and RBP-Jk/EBNA2 complexes 

binding DNA (Adapted from Roberston el al., 1995).

As EBNA2 can also be recruited to promoters through interaction with other factors 

such as the proteins from the PU. 1 family, inhibition of EBNA2-mediated transcriptional 

activation by the EBNA3 proteins could be restricted to promoters activated through 

RBP-Jk binding sites. This could represent a way to differentially regulate certain viral 

or cellular genes (Waltzer et a l . , 1996). For example, by inhibiting transactivation of the 

Cp promoter, a feedback loop of inhibition by EBNA3 proteins of their own synthesis is 

created. Furthermore, it has been suggested that by inhibiting EBNA2-mediated 

transactivation, EBNA-3A, -3B and -3C could down-regulate the expression of EBV 

latent proteins that bear epitopes provoking the anti-EBV cytotoxic T cell response, thus 

allowing EBV to escape host immune surveillance. It could also be important to down- 

regulate LMP1 expression, as LMP1 has been shown to be toxic to the cells when 

overexpressed. However, all the data demonstrating the inhibitory effect of the EBNA-3
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proteins on EBNA-2 activation are based on over-expression assays and may not pertain 

specifically to effects at physiologic levels of protein.

RBP-Jk was originally identified and erroneously named as a potential recombinase that 

appeared to bind to the immunoglobulin kappa J region (Matsunami et a l , 1989). RBP- 

Jk is now known to be a ubiquitous sequence-specific DNA-binding repressor protein 

that is a key mediator of the transcriptional regulatory effects of certain proteins, 

including EBNA2 (Abbott e t a l . , 1990; Cohen and Kieff, 1991; Henkel et a l , 1994; Laux 

et a l , 1994; Ling et a l . , 1994; Zimbler-Strobl et a l , 1994) and is a key component of the 

Notch signaling pathway. By using RBP-Jk as a target for EBNA2 and the EBNA3s, 

EBV effectively subverts the ability of B cells to control the expression of particular 

genes. Moreover, EBNA2 mimics cellular Notch which normally binds RBP-Jk and 

activates B cell genes in response to stimuli. RBP-Jk is known to be a key mediator of 

signaling from activated notch receptors in neural and muscular development (Fortini 

and Artavanis-Tsakonas, 1994; Jarriault, 1995; Goodburn, 1995; Artavanis-Tsakonas,

1995). Since constitutive notch activation is an important aetiologic factor in human T 

cell leukaemia (Ellison et a l . , 1991), RBP-Jk is also implicated in leukaemogenesis. 

Thus the level of steady state association of EBNAs with RBP-Jk is likely to be 

important in EBV-driven B lymphocyte proliferation.

Since RBP-Jk is a critical component of EBNA-2 interaction with response elements, the 

binding of EBNA-3A, -3B and -3C to RBP-Jk likely indicates that RBP-Jk is also a 

critical mediator of EBNA-3 interactions with response elements (Le Roux e t a l , 1994; 

Allday and Farell, 1994; Robertson, 1995; Marshall and Sample, 1995; Robertson et a l ,

1996). In addition it has been suggested that the EBNA3 proteins could transactivate 

transcription by regulating the interaction of RBP-Jk with DNA. Thus, dissociation of 

the RBP-Jk repressor protein from DNA could activate promoters with RBP-Jk sites. A 

weakness in this model, however, is the lack of an apparent need for the size and 

complexity of the EBNA-3 gene family, since the N-terminal domain of one EBNA-3 

protein would suffice for this effect.
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All three EBNA3 family members have been shown to bind RBP-Jk domains 

(preferentially the smaller isoform) via their amino-terminal in B lymphoblasts 

(Robertsonet et a l . , 1996). In vitro-translated EBNA-3A binds about 30-fold less 

efficiently than EBNA-3B and about 4-fold less efficiently than EBNA-3C to GST- 

RBP-Jk, but in vivo-expressed EBNA-3A, -3B and -3C bind similarly to RBP-Jk. The 

lower efficiency of binding of full-length vitro-translated EBNA-3 A appears to be due to 

an inhibitory effect of the C-terminus when the protein is translated in vitro (Robertson 

et a l . , 1996). The yeast two hybrid system has been used to delineate the sequences of 

both EBNA-3C and RBP-Jk mediating the interaction between these two proteins. It was 

found that a Jk domain of 56 amino acids (aa 125-181) was sufficient to bind EBNA-3C, 

while a conserved 74 aa domain of EBNA-3C and -3B  (aa 181-257), was sufficient to 

interact with the Jk protein (Hsieh e t a l , 1996). Another report suggests that the EBNA3 

site lies between amino acids 90 and 138. It was found that, EBNA-3A amino acids:l- 

138, EBNA-3B amino acids:l-311 and EBNA-3C amino acids:l-183 were sufficient for 

RBP-Jk interaction, while EBNA3B amino acids: 1-109 showed less or no binding 

(Robertson e t a l . , 1996). These interacting domains overlap with the most highly 

conserved domain (aa 90-320) among the EBNA-3 proteins.

An alternative interpretation of the significance of the binding of EBNA3 proteins to 

RBP-Jk which may be equally relevant is the proposal that RBP-Jk acts to buffer the 

levels of active EBNA3 proteins, where RBP-Jk-EBNA3 complexes represent inactive 

forms of the EBNA3 proteins. There is considerable evidence that the levels of EBV 

transforming proteins have to be tightly regulated in LCLs and although the binding of 

EBNA3 proteins to RBP-Jk counterbalances the activation effects of EBNA2 on the Cp 

promoter (which dives transcription of the EBNA3 genes), Cp is in fact only partially 

dependent on EBNA2-RBP-Jk in LCLs (Evans et a l , 1996). This alternative model 

supposes that there are novel functions unrelated to RBP-Jk binding for EBNA-3A and 

EBNA-3C in EBV transformation and is supported by the limited sequence homology 

exhibited between the EBNA3 proteins. The relationship of the exon structures and 

protein sequences is only significant in the N-terminal parts of the proteins and although 

all three proteins have repetetive sequence elements in the C-terminal regions, these are
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unrelated at the sequence level. Also, it is unlikely that EBV would require four large 

viral proteins comprising 79% of the sequence complexity of the six viral proteins 

required for transformation to control signaling through RBP-Jk.

As outlined above, much evidence exists to indicate that the EBNA3 proteins should be 

regarded as transcriptional regulators (Bourillot e t a l , 1996; Cludts and Farrell, 1998). 

However, the effects of each of the EBNA3 proteins on cell promoters differ and are 

distinct from those of EBNA2 (Wang e t a l . , 1990; Sillins and Sculley, 1994). Also, the 

different effects of EBNA-3C, -3B and EBNA2 observed in non-EBV-infected BL cells 

likely indicate a role for other protein-protein interactions as determinants of 

transcriptional effects of the EBN A3 proteins on specific cell genes. Thus, like EBNA2, 

EBNA3 proteins may be dependent on interactions with factors other than RBP-Jk, and 

the role of the EBNA3 proteins can be expected to be more complex than a retro-control 

on RBP-Jk-EBNA2-activated genes. The identification and characterisation of other 

potential cellular partners for the EBNA3 proteins is required for a better understanding 

of their precise role in EBV immortalisation.

1.6 Genes of the Lytic Viral Cycle

In the study of viral replication, lytic infection is usually induced by chemicals (Luka et 

a l . , 1979; Saemundsen et a l . , 1980; Laux et a l ., 1988b) as only a small fraction of 

latently infected B-lymphocytes spontaneously enters the productive cycle. In these cells 

the viral DNA is amplified several hundred fold by a lytic origin of DNA replication, o r i 

L y t  (Hammerschmidt and Sugden, 1988). Phorbol esters are among the most 

reproducible and most broadly applicable inducers, their effect is probably mediated by 

protein kinase C activation of Jun-fos interactions with AP-1 upstream of the immediate 

early virus genes (Farell e t a l . , 1983; 1989; Farell 1992; Laux et a l ., 1988). Some LCL 

cell lines can be induced to permit viral replication in about 10% of cells. Alternatively, 

the Akata cell line which carries an LMP2A-deleted virus can be induced by cross- 

linking of surface immunoglobulins (slg) to the extent that more than 50% of the cells 

enter the lytic cycle (Takada, 1984; Takada and Ono, 1989). A second approach to
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investigating viral replication is to induce the lytic cycle by superinfection of Raji cells 

with defective EBV from the P3HR-1 cell line (Mueller-Lantzsch et a l . , 1980). Raji is 

an EBV-positive BL cell line with an unusually high EBV episome copy number, it is 

defective for DNA replication and late gene expression thus is tightly latent (Polack et 

a l ., 1984a). Defective virions from P3HR-1 contain rearranged DNA molecules in 

which the intermediate early tr a n s -activator of the lytic cycle are expressed after 

superinfection (Cho e t a l . , 1984; Miller e t a l . , 1984). After induction, cells that have 

become permissive to viral replication undergo cytopathic changes characteristic of 

herpesviruses, including migration of nuclear chromatin, synthesis of viral DNA, 

assembly of nucleocapsids, envelopment of the virus by budding through the inner 

nuclear membrane and inhibition of host macromolecular synthesis (IARC Monograph,

1997).

Studies with such cell lines has allowed the division of EBV replicative proteins into 

early antigens (EA), membrane antigens (MA) and virus capsid antigens (VCA). Early 

antigens are further subdivided into EA-D (diffuse) and EA-R (restricted) due to a 

different sensitivity to methanol fixation (Henle e t a l . , 1971a; 1971b) (see Figure 1.8). 

Virus gene expression follows a temporal and sequential order (Farrell, 1992; Takada 

and Ono, 1989). Some virus genes are expressed independently of new protein 

synthesis, early after induction and are classified as immediate early genes. Early lytic 

virus genes are expressed slightly later and their expression is not affected by inhibition 

of viral DNA synthesis (Kieff, 1996).
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V C A

EA ORF

EBV DNA polymerase BALF5
Thymidine Kinase BXLF1
Ribonucleotide reductase BORF2 & BARF1
Alkaline DNase BGLF5
DNA binding protein p i88 BALF2

MA ORF

gp350/220 BLLF1
gpl50 BDLF3
gpl lO BALF4
gp85 BXLF2
gp78 BILF2
gp42 BZLF2
gp25 BKRF2

Figure 1.9 A schematic representation of early and late EBV gene expression. The VCA the MA

and the EA are illustrated, their open reading frames are written in bold.

1.6.1 Immediate Early genes

After P3HR-1 superinfection of Raji or slg cross-linking of Akata cells in the presence 

of protein synthesis inhibitors, three leftward mRNAs are transcribed. The BZLF1, 

BRLF1 and BFLF4 encoded proteins are potent transactivators of early EBV lytic gene 

expression (Takada and Ono. 1989; Marschall etal., 1991; Kieff, 1996). The functional 

and physical interaction of BZLF1 with NFkB is an important mediator of LMP1 effects 

in EBV latent infection. BZLF1 can also downregulate the EBNA Cp promoter perhaps 

facilitating the transition from latent to lytic infection (Kenny el al., 1989; Sinclair et at,

1992). A recent study has found that BZLF1 inhibits both cellular diffentiation and cell
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cycle progression in epithelial cells. In HeLa and SCC12F (human keratinocyte) cells, 

BZLF1 induced a G2/M block, whereas in fibroblasts a G l/S  block was induced. The 

exact mechanism of this block is unknown, but activation of the cell cycle inhibitors p21 

and p27 was not observed (Mauser e t a l , 1998). In a different study, BRLF1 was shown 

to bind Rb in vivo shortly after induction of the viral lytic cycle in EBV-infected Akata 

cells. This interaction may initiate cell cycle progression and facilitate viral DNA 

synthesis during lytic replication (Zacny et a l , 1998).

1.6.2 Early genes

The early genes are expressed when the lytic cycle is induced in the presence of 

inhibitors of DNA synthesis. By this criterion at least 30 EBV mRNAs are early gene 

products (Hummel and Kieff, 1982a,b; Baer et a l . , 1984). Two very abundant early 

proteins have been mapped to specific DNA sequences. The BALF2 protein is 

homologous to the HSV DNA binding protein ICP8 and is important in DNA replication 

(Hummel and Kieff, 1982a; Kieff, 1996). The BHRF1 protein, which is expressed in 

moderate abundance, has extensive collinear homology with b c l-2  (Pearson et a l ., 

1983a; Austin et a l ., 1988). BHRF1 can protect EBV negative BL cells from apoptosis 

(Me Carthy e t a l ,  1996), however, EBV recombinants lacking the BHRF1 ORF are fully 

capable of initiating and maintaining cell growth transformation and they can also enter 

the lytic cycle and produce virus (Lee and Yates, 1992; Marchini e t a l ,  1991). Several 

of the early genes are linked to DNA replication, as indicated in Figure 1.9. Transfection 

experiments demonstrate that some of these genes are activated in the process of cell 

differentiation in the absence of other viral gene products, suggesting a possible role of 

cellular factors in regulating the productive cycle, at least in certain cell types (Marshall 

et a l , 1991).

1.6.3 Late genes

The late genes code for structural glycoproteins or proteins that modify the infected cells 

in order to permit viral envelopment or egress (IARC Monograph, 1997). Among the
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non-glycoproteins, the major nucleocapsid protein is encoded by BCLF1, BNRF1 

encodes the major external nonglycoprotein of the virion and BXRF1 is likely to encode 

a basic core protein. The BFRF3 ORF encodes the tegument protein, (see figure 1.1) 

and VCA p l8 , which is strongly immunogenic in humans (Kieff, 1996). The genes 

encoding the EBV glycoproteins are illustrated in bold in figure 1.8. The late BCRF1 

gene, which is located in the middle of the EBNA regulatory domain between o r i - P  and 

Cp, is a close homologue of the human IL-10 gene, with nearly 90% collinear identity in 

amino-acid sequence (Moore e t a l ,  1990; Vieira et a l ,  1991; Touitou et a l ,  1996). 

BCRF1 has most of the activity of human IL-10, including negative regulation of 

macrophages and NK cell functions and inhibition of IF y production. Thus, virally 

expressed IL-10 may have a local effect on these responses to reactivate infection (IARC 

Monograph, 1997).

1.7 EBV-associated non-malignant diseases

1.7.1 Infectious mononucleosis

Infectious mononucleosis (IM) is an acute disease associated with primary EBV 

infection, characterised by fever, pharyngitis and lymphadenopathy. The illness, 

commonly known as glandular fever, is the classical syndrome caused by EBV. Primary 

infection with EBV during early childhood is normally sub-clinical (Henle and Henle, 

1970), but the severity of disease increases with advancing age, and infection during or 

after adolescence can give rise to IM in up to half of the infected individuals (Henle and 

Henle, 1979). Clinically apparent IM tends to be a disease of the socio-economic 

advanced countries where a greater number of people escape infection in childhood, 

with a peak incidence occurring in people from 15-25 years of age (Strauss, 1988). 

Hormonal changes and maturation of the immune response are thought to be possible 

reasons for this maturation-related incidence of disease. After infection there is a 30-50 

day incubation period, followed by a 3-5 day period where mild symptoms are
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experienced, these include headache, malaise and fatigue. In more than 80% of cases a 

sore throat will occur during the first week. Fever with temperatures reaching 39.5°C or 

higher lasts for about 10 days and then falls gradually over an additional 7-10 days. 

Although the tetrad of fever, fatigue, pharyngitis and lymphadenopathy are typical, 

patients may have all or only some of these features. Splenomegaly is observed in about 

50% of IM cases, chemical hepatitis is present in most patients and a few develop frank 

jaundice (Merck Manual, 1992). The disease generally runs its course within a few 

weeks, but more protracted cases of greater than a few weeks occur occasionally. 

Prolonged symptoms of fatigue are also associated with chronic fatigue syndrome (CFS) 

and there has been some speculation that EBV plays a role in the pathogenesis of CFS, 

although little objective evidence supports this hypothesis. While IM is usually a benign, 

self-limiting disease, complications may ensue, including rupture of the spleen. 

Neurological complications, interstitial nephritis with renal failure and interstitial 

pneumonitis have also been reported (Imoto e t a l . , 1995; Mayer e t a l . , 1996; 

Morgenlander, 1996; Sriskandan e t a l . , 1996). Fatal mononucleosis usually occurs only 

in individuals showing severe immunodeficiency (Miller, 1990), for example, renal 

transplant recipients may develop fulminant mononucleosis or monoclonal B cell 

malignancy.

The acute phase of virus infection is characterised by a well-defined serological pattern, 

which includes the absence of antibodies to EBNA and the presence of IgM antibodies 

to structural components of the virion, anti-VCA (viral capsid antigen) and anti-MA 

(anti-membrane or envelope antigen). Antibodies to early components of the viral 

replication cycle called early antigens (EA) are also readily detected (Henle and Henle, 

1979). IgM antibodies to VCA evolve quickly with infection, persist for weeks to 

months and do not reappear. Thus their detection is presumptive evidence of recent 

primary infection. Antibodies to EA of the diffuse or restricted types develop in most 

primary infections and wane with time (Horwitz et a l . , 1985). The appearance of 

antibody to EBNAs usually occurs weeks to months after infection. EBNA is present in 

all cells containing the viral genome, whether latently or productively infected 

(Rickinson, 1986). Transcriptional analysis suggests that a type-III EBV latency prevails
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in infectious mononucleosis, with expression of the full set of EBV latent genes, 

including CpAVp-driven EBNA1 (Falk et a l . , 1990; Tierney et a l . , 1994). A more 

detailed analysis of EBV gene expression at the level of the single cell reveals, however, 

a more heterogeneous picture. Only a subset of cells coexpress EBNA2 and LMP1, 

characteristic type-III latency. Most cells appear to be EBER positive but negative for 

EBNA2 and LMP1, suggesting a type-I latency and some large immunoblasts are seen 

which appear to express LMP1 in the absence of EBNA2 - type-II latency. There are 

also many small lymphocytes that express EBNA2 but no detectable LMP1. It is 

uncertain if this represents a new type of latency or a transitory phenomenon 

(Niedobitek et a l . , 1997b).

1.7.2 X-linked Lymphoproliferative syndrome

Also known as Duncan’s syndrome, the X-linked Lymphoproliferative syndrome (XLP) 

is a hereditary immunodeficiency disorder characterised by a self-destructive immune 

response to primary EBV infection (Provisor et a l . , 1975; Purtilo, 1976). Patients are 

usually asymptomatic until they encounter EBV, but may present symptoms of 

immunodeficiency prior to EBV infection. After primary EBV infection, the majority of 

patients (approximately 63%) develop IM with a fatal outcome. Patients who survive 

the primary infection are at high risk of developing malignant lymphoma (24%), 

hypogammaglobulinaemia or aplastic anaemia (29%). The XLP gene has been localised 

to Xq25 and the region spanning the smallest deletion in patients has been cloned 

(Lamartine et a l , 1996; Lanyi et a l , 1995). Identification of the function of this gene is of 

prime importance for a better understanding of the complex interaction between EBV 

and its host (IARC Monograph, 1997). The only curative treatment for X-linked 

lymphoproliferative syndrome is allogenic bone-marrow transplantation (Williams e t a l . ,  

1993). In the future it should be possible to identify carriers of the genetic defect, 

provide appropriate genetic counselling, and diagnose the disease in u te ro .
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1 . 7 . 3  O r a l  h a i r y  l e u k o p l a k i a

Oral hairy leukoplakia is an epithelial lesion of the tongue which was originally 

described in HIV-infected individuals but was subsequently found in immunosuppressed 

transplant patients. Detection of this lesion is a significant indicator of HIV-induced 

immunosuppression and is highly predictive of the subsequent development of AIDS. 

Oral hairy leukoplakia manifests itself as a raised white lesion, typically located at the 

lateral border of the tongue, but which may extend to other parts of the oral mucosa 

(Merck Manual, 1992). Although the histopathologic features are characteristic of 

human papillomavirus, clear evidence for the presence of EBV has come from 

immunocytochemistry with monoclonal antibodies, from electron microscopic 

morphology, and from DNA studies with EBV probes. Southern blot hybridisation 

provided clear evidence for the presence of EBV in complete linear form and in very 

high copy number, localised to the superficial epithelial cells. The expression of viral 

lytic cycle antigens e.g. BZLF1 and VCA, have been shown, indicating that epithelial 

cells may support EBV replication (Greenspan et a h , 1985; Gilligan e t a h , 1990a; 

Young et a h , 1991). Expression of BZLF1 and VCA, are restricted to the more 

differentiated upper epithelial cell layer (Greenspan et a h , 1985; Young et a h , 1991). In 

contrast to the abundance of the virus in the upper epithelial cells, viral genomes and 

EBV gene products associated with latent infection are absent from the basal or 

parabasal epithelial cells of oral hairy leukoplakia (Thomas et a h , 1991). Together with 

the absence of a detectable episomal population of EBV genomes, this indicates that oral 

hairy leukoplakia is an isolated focus of lytic EBV infection, with no detectable latent 

phase (IARC Monograph, 1997). Regression of oral hairy leukoplakia can be induced 

by treatment with acyclovir, indicating that this lesion is indeed caused by EBV 

(Resnick et a h , 1988).
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1.8 E B V - a s s o c i a t e d  m a l i g n a n t  d i s e a s e s .

1.8.1 Burkitt’s Lymphoma

Although the incidence in Europe and the USA is low (2-3 cases per million children per 

year in the USA), Burkitt’s lymphoma (BL) is the most common childhood cancer in 

certain parts of equatorial Africa and Papua New Guinea, with an annual incidence of 

more than 50 cases per million children below the age of sixteen. In fact, Burkitt’s 

lymphoma now accounts for 30-70% of childhood cancers in equatorial Africa. The 

high incidence of BL in these locations is associated with geographic and climatic 

features, determined by altitude in East Africa and by rainfall in West Africa, coincident 

with holoendemic malaria (Haddow,1963; Burkitt, 1969, 1983; O’Connor, 1970). The 

fact that malaria infection might be a cofactor in the development of BL is supported by 

the observation that individuals with malaria have a reduced T-cell response to EBV- 

infected cells. This disease is more common in males than in females with an average 

age at onset of seven years. BL is a poorly differentiated malignant lymphoma in which 

the tumour cells show little variation in size or shape. The tumour cells are monoclonal 

B lymphocytes and they contain characteristic chromosomal translocations (Manolov 

and Manalova, 1972; Manalova et a l . , 1979; Rowe and Gregory, 1989). The jaw is the 

most frequently involved site for tumours and the commonest presenting feature in 

patients with BL in equatorial Africa (Burkitt, 1958; 1970a) and Papua-New Guinea 

(Burkitt, 1967). Jaw tumours seem to be age dependent, occurring most frequently in 

young children, very young children often have orbital or maxillary tumours (Olurin and 

Williams, 1972). Involvement of the CNS (about 33 % of cases), ovaries, kidneys, liver 

and mesentery are also prominent in BL.

Burkitt’s lymphoma is classified as a non-Hodgkin’s lymphoma, invariably of B-cell 

origin, with B-cell markers such as CD19, CD20, CD22 and CD79a and surface 

immunoglobulin always detectable. The surface immunoglobulins are usually IgM 

(IARC Monograph, 1997). Other surface markers that are expressed in most BLs 

include CD10 and CD77 but CD23 and CD5 are absent (Ham s et a l . , 1994). BL cells
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express low levels of HLA class I adhesion and activation molecules such as CD54, 

CD1 la/18 andCD 58 (Massucci et a l . , 1987; Billuad et a l . , 1989; Anderson et a l . , 1991).

In the areas of Africa where BL is endemic, about 95 % of the tumours contain EBY 

DNA and express EBNA1 (Geser et a l . , 1983). However, in parts of the world where 

BL is sporadic (Western Europe and the Americas), only about 15-20% of BL tumours 

contain EBV DNA, indicating that EBV is not essential for formation of the tumour. 

Therefore, EBV may not play a direct role in the pathogenesis of BL, but may simply 

increase the risk of development of BL by virtue of it’s ability to immortalize B cells 

(including the cell population that gives rise to Burkitt’s lymphoma) (Klein, 1979). This 

hypothesis is consistent with the lack of expression of EBV latent genes (e.g. EBNA2, 

EBNA3 and LMP) known to be necessary for the transformation of B cells (Alfeiri et 

a l . , 1991; Woisetschlaeger, e t a l . , 1991). The only latent gene invariably expressed in 

Burkitt’s lymphoma, EBNA1, has never been shown to have transforming functions 

(Rowe et a l . , 1988; Rowe et a l . , 1987; 1992; Sample et a l . , 1991; Magrath et a l . , 1993).

The discovery of non-random chromosomal translocations associated with Burkitt’s 

lymphoma (Bernheim et a l . , 1981) paved the way to an understanding of the genetic 

derangements that are a central component of its pathogenesis. It has been observed that 

the chromosomal breakpoint on chromosome 8, band q24 is common to all three of the 

observed translocations in BL and that the breakpoints are located on chromosome 14, 2 

and 22, at the heavy- and light-chain immunoglobulin loci (Croce et a l . , 1979; Lenoir et 

a l . , 1982; Me Bride e t a l . , 1982). The t(8; 14) is the most frequent location of a 

breakpoint in African BL occurring in 75% of tumours and in 50% of Brazilian tumours 

(Gutierrez e t a l . , 1992). The net consequence of translocation appears to be that c-myc 

is regulated as if it were an immunoglobulin gene, i.e. it is constitutively expressed in 

these immunoglobulin-synthesising tumour cells.
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1 . 8 . 2  N a s o p h a r y n g e a l  C a r c i n o m a

Nasopharyngeal carcinoma (NPC) is a rare malignant tumour in most populations, 

however, it is highly prevalent in Southern China where it represents the most common 

tumour in males. W ithin China itself, the rate of NPC decreases from south to north 

(Parkin e t a l . , 1997) with more moderate rates seen in the Inuit population and in other 

parts of Southeast Asia and North Africa. (Ho, 1978). NPC is a disease with a 

remarkable racial and geographical distribution. It constitutes 75-95% of all malignant 

tumours occurring in the nasopharynx in low risk populations and virtually all of those 

in high risk populations (Ho, 1971; Levine and Connelly, 1985). The rates of NPC are 

higher in men than in women in most populations studied and the number of cases 

increases steadily with age with a peak incidence at around 45-54 years of age in high- 

risk populations (Parkin et a l . , 1997), although in low-risk populations a peak incidence 

in young adults has been observed (Doll e t a l , 1970).

The high incidence of NPC among the Cantonese population of China was first 

described by Ho in 1971, who also observed that salted fish is the principal source of 

supplemented food in the diet of these people (which consists mainly of rice). Further 

studies revealed that salted fish consumption was significantly related to the risk for 

developing NPC tumours and increasing frequency of intake was consistently associated 

with increased risk. The association with salted fish was stronger when exposure 

occurred during childhood as compared with adulthood (Huang e t a l . , 1981). 

Carcinogenic volatile nitrosamines have been detected in Chinese salted fish, however, 

their precise role in NPC has yet to be determined (IARC Monograph, 1997).

NPC is derived from poorly differentiated epithelial cells and arises in the surface 

epithelium of the posterior pharynx (Parkin et a l . , 1986). In about half the cases of NPC 

the presenting sign is a cervical mass resulting from spread to regional lymph nodes. 

Other symptoms may include nasal obstruction, postnasal discharge, impairment of 

hearing, tinnitus or otitis media. NPC may metastasise to the skeleton, the spine, the 

liver, lung and skin as well as to the peripheral lymph nodes (Miller, 1990). A strong 

association between NPC and EBV is suggested by detectable DNA sequences in almost 

all cases of types-2 and -3  NPC as ascertained by DNA/DNA or cRNA/DNA
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hybridisation in biopsy samples (Pagano et a l , 1975). EBV infection is an essential step 

in the progression to malignancy. It has been shown that EBV DNA in NPC is clonal, 

arising from a single EBV infected cell (Raab-Traub and Flynn, 1986b). EBV has been 

detected in dysplastic lesions of the nasopharynx in individuals with high IgA titres the 

cell suggesting involvement of EBV prior to the carcinomatous state (Pathmanathan et 

a l , 1995). NPC is unlikely to be the result of primary EBV infection as it occurs 

primarily in adults in high-incidence areas where initial EBV infection occurs during 

childhood (Parkin e t a l , 1984). Studies have shown that NPC patients frequently possess 

elevated serum antibodies to two EBV lytic cycle antigens, viral capsid antigen (VCA) 

and early antigen (EA) (Henle and Henle, 1976; Ho et a l . , 1976). Serum detection of 

these antibodies is a routine diagnostic test for NPC in South-east Asia.

The detection of EBV DNA and EBERs has been useful in identifying carcinomas that 

have metastasised to lymph nodes when the primary tumour has not been identified 

(Ohshima et a l . , 1991; Chao et a l . , 1996). Transcriptional expression of EBV latent 

genes in NPC cells has been studied by northern blotting/hybridization (Raab-Traub et 

a l . , 1983; Gilligan et a l . , 1990; Karran e t a l . , 1992). BARFO, LMP2, EBER and 

EBNA1-coding transcripts are always expressed in NPC cells and LMP1 is detected in 

50% of tumours (Fahraeus e t a l . , 1988; Brook et a l . , 1992). Occasionally lytic cycle 

early genes are also detected in a few cells (Luka et a l . , 1988; Cochet et a l . , 1993).

1.8.3 H odgkin’s disease

Hodgkin’s disease is the commonest variant of the malignant lymphomas, accounting 

for about half of all cases. The disease is most common between the ages of 20 and 40 

but may occur at any age, usually presenting with lympadenopathy, but sometimes with 

fever, night sweats, weight loss and pruritis. Though the cell of origin of this tumour is 

still not known, histologically, HD is characterised by mononuclear Hodgkin cells (HC) 

and their multinucleated variants, the Reed-Sternberg cells (RS). The Rye classification 

distinguishes four major types of Hodgkin’s disease: nodular lymphocyte-predominant, 

nodular sclerosis, mixed cellularity and lymphocyte-depleted (Luka and Butler, 1966,
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Harris e t a l . , 1994). It is now accepted that lymphocyte-depleted HD represents a 

separate tumour entity and is considered separately from the other three classical forms 

of HD. Increasing evidence suggests that HD is not a single entity but rather a 

heterogeneous group of diseases (Harris et a l . , 1994). The clinical representation of HD 

varies with geographical location and in the western world HD usually arises as a 

unifocal lesion in cervical lymph nodes. Continuous spread of the tumour to adjacent 

lymph nodes gives rise to enlarged nodes. With spread of the tumour through lymphatic 

channels, other organs are involved, the preferential sites of involvement including the 

spleen and distant lymph nodes. Subsequently as the disease becomes more aggressive, 

other organs are involved, including the liver and the kidney. Bone-marrow involvement 

in HD is indicative of extensive tumour infiltration (Kaplan, 1980).

In most western populations, very few cases occur among children, a rapid increase in 

incidence among teenagers is seen followed by a peak at about age 25, the incidence 

then plateaus with a second peak with increased age. There is an excess in males which 

is more pronounced at older ages (Mac Mahon, 1957). In poorer populations there is an 

initial peak in childhood only among boys with a relatively low abundance among young 

adults followed by a late peak in those of advanced age (Correa and O ’Connor, 1971). 

There is evidence that the risk factor for HD in young adulthood through middle age is 

associated with higher education, higher social class, fewer siblings, less crowded 

housing and early birth rank. All of these factors lead to increased susceptibility to late 

infections with the common childhood infections, which tend to be more severe (IARC 

Monogragh, 1997).

Following a report by Weiss and colleagues of EBV DNA in 50% of Hodgkin’s disease 

(HD) tissues (Weiss et a l . , 1987), the role of EBV in HD has been subjected to intense 

scrutiny (Joske and Knecht, 1993). In situ hybridisation has disclosed the presence of 

the virus in virtually all tumour cells in EBV-positive cases, consistent with the 

detection of monoclonal EBV genomes in DNA extracted from most HD tissues. These 

findings indicate that EBV infection of Hodgkin-Reed-Sternberg cells takes place before 

clonal expansion. Pallesen e t a l . , (1991a) and Herbst et a l . , (1991) reported that the EBV
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in HD has a restricted latent phenotype of EBNA1 and usually LMP1, LMP2A and 

LMP2B without detectable EBNA2 expression, as in NPC. These finding have been 

widely replicated. In multiple specimens of HD from case studies, molecular evidence 

of clonal EBV genomes with specifically restricted expression of latent viral proteins in 

the RS cells was found in 30-50% of cases. EBV genome status appears to be uniform 

in involved nodes within patients and over time in those patients studied longitudinally 

(Delsol et a l . , 1992; Brousset e t a l . , 1994). The consistency of the finding of clonal 

EBV and the expression of LMP1 in about half of HD cases argues strongly against a 

passenger role for EBV in these cases. Seroepidemiology findings in multiple case 

studies show that patients with HD can be distinguished by an altered antibody profile to 

EBV. Thus, the available evidence stongly implicates EBV as a factor in the 

pathogenesis of EBV-positive HD.

The risk of HD after diagnosis of IM has been evaluated and this study revealed that 

overall there was a threefold increase in the risk of developing HD. Also, essentially all 

HIV-1 infected patients with HD have a higher rate of EBV positivity. Generally these 

patients present with advanced HD and show a relatively poor prognosis (Moran e t a l . ,  

1992; Tirelli et a l . , 1995).

1.8.4 Post-transplant lymphoproliferative disorders

Post-transplant lymphoproliferative disorders (PTLD) are a major complication in 

allograft recipients, occurring in 1-20% of patients. The incidence tends to be lowest for 

renal transplant patients and highest for lung transplant patients which may reflect the 

amount of immunosuppressive therapy associated with the latter (Nalesnik and Starzl, 

1994; Montone et a l . , 1996). In PTLD the tumours proliferate unchecked due to the 

absence of adequate T-cell tumour suppression. The tumours can be polyclonal or 

monoclonal as determined by analysis of EBV terminal repeats or cellular gene 

rearrangement status (Joske and Knecht, 1993). It is believed that the pathogenesis of 

the condition starts with EBV driven polyclonal B-cell proliferation, eventually leading
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to fully developed malignant lymphoma. Typically B-cells in these lymphoproliferations 

express a broad spectrum of virus-encoded latent proteins, including EBNA1, EBNA2 

and LMP1. This type-III form of latency is similar to that found in LCLs in vitro and 

accordingly these cells usually display an LCL pattern of cellular gene expression, 

including lymphocyte activation and adhesion molecules (Young e t a l . , 1989; Thomas el 

a l . , 1990). However, considerable variability has been found in EBV gene expression in 

and between lesions with type-I and type-II latency also observed (Delecluse et a l . ,

1995).

1.8.5 AIDS-related lymphomas

In the US lymphomas are 60 times more frequent in AIDS patients than in the general 

population (Beral e t a l . , 1991). Non-Hodgkin’s lymphomas are very common in HIV 

infected individuals, primarily at extranodal sites, particularly common are primary 

central nervous system lymphomas (Krogh-Jensen et a l . , 1994). Morphologically, 

AIDS-related non-Hodgkin’s lymphomas fall into two broad groups; diffuse large B-cell 

non-Hodgkin’s lymphomas, which often show a prominent immunoblastic component 

and Burkitt’s lymphoma and Burkitt’s-like lymphoma. Superficially the pathogenesis is 

the same as PTLD; EBV-immortalised B lymphocytes proliferate unchecked due to 

decimated T-cell numbers resulting in oligo- or monoclonal B-cell proliferations (Joske 

and Knecht, 1993). The two types of AIDS-related non-Hodgkin’s lymphomas show 

striking differences in their relationship to EBV, suggesting different pathogenic 

mechanisms. M ost diffuse large B-cell non-Hodgkin’s lymphomas and all AIDS-related 

central nervous system lymphomas are EBV-positive (MacMahon et a l . , 1991). Diffuse 

large B-cell lymphomas have been reported to occur relatively late in AIDS patients 

(Gaidano and Dalla-Favera, 1995) and more advanced depression of the immune system 

is a risk factor for their development (Pedersen et a l . , 1991). Most AIDS-related non- 

Hodgkin’s lymphomas appear to be monoclonal both with respect to their antigen 

receptor genes and to the EBV episomes, however, there may be rare polyclonal cases 

(Ballerini e t a l . , 1993; Delecluse et a l . , 1993).
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HIV appears to contribute to the pathogenesis of some EBV-associated AIDS-related 

non-Hodgkin’s lymphomas by inducing severe immunosuppression, leading to a loss of 

EBV-specific T-cell immunity (MacMahon e t a l . , 1991). As EBV-positive, AIDS- 

related B-cell lymphomas consistently lack the HIV genome, a direct contribution of 

HIV to tumorigenesis beyond suppression of the immune system is unlikely (Knowles,

1993). The relative risk for AIDS-related non-Hodgkin’s lymphomas increases with 

duration of HIV infection and to a certain extent with immune suppression (Munoz et 

a l . , 1993). BL is up to one thousand fold more frequent in HIV-positive individuals than 

in the general US population (Beral e t a l . , 1991) and the tumour is EBV-positive in 

about 20% of cases (Beral et a l . , 1991). AIDS related BL, both EBV-positive and EBV- 

negative, have been consistently shown to harbour the characteristic c-myc 

translocation. These translocations have been detected in a minority of diffuse large B- 

cell lymphomas and cases with morphological features between large B-cell lymphomas 

and BL (Ballerini el a l . , 1993; Delecuse et a l . , 1993; Bhatia e t a l . , 1994). Other genetic 

changes implicated in the pathogenesis of AIDS-related non-Hodgkin’s lymphoma 

whether EBV-associated or not, include p53, N-ras and K-ras point mutations and 

deletions in the long arm of chromosome 6 (Gaidano and Dalla-Favera, 1995). HIV- 

positive individuals who develop HD are more likely to have advanced extra-nodal 

disease, not to respond to therapy and to die of opportunistic infections than those with 

HD alone (Ames, et a l . , 1991).

The detection of EBV in T-cell lymphoma opposes the well established process of B-cell 

lymphotrophisim of the virus in vitro. The interpretation of the detection of EBV in T- 

cell non-Hodgkin’s lymphomas and an assessment of the role of the virus in the 

pathogenesis of T-cell lymphoma are complicated by two factors. Firstly, if EBV 

infection of certain T-cells in vitro leads to predominantly lytic infection, EBV infection 

of T-cells may be accidental rather than part of the viral strategy to establish persistent 

infection. Such infection of cells not adapted to latent infection may contribute to the 

development of EBV-associated T-cell lymphomas. Secondly, in many cases the virus 

is detected in only a small proportion of tumour cells (Anagnostopoulos et a l . , 1996). 

Although the virus may be present at the onset of the neoplastic process it may
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subsequently be lost from the tumour cell. While there is some evidence to suggest this 

may happen in vitro it has not yet been shown in vivo. The alternative scenario would 

be a secondary infection of established neoplastic T-cells with the virus, this would 

exclude the virus from an initial role in neoplasia but would be compatible with a role of 

the virus in contributing to the disease process. The frequent expression of LMP1 in T- 

cell lymphomas would seem to argue in favour of such a role (d’Amore et a l . , 1992). 

However, the role of EBV in T-cell related malignancies remains uncertain.

1.8.6 Other tumours

EBV has been detected in the vast majority of gastric lymphoepithelial carcinomas and 

in a high proportion of lymphoepithelial carcinomas of the lung and salivary gland. A 

smaller proportion of gastric adenocarcinomas is also EBV-associated. EBV DNA has 

been detected occasionally in epithelial tumours at a wide variety of other anatomical 

sites. An aetiological role for EBV in lymphoepithelial and adenocarcinomas has not 

been conclusively established. Smooth-muscle tumours in immunosuppressed 

individuals uniformly contain EBV, indicating a possible causal role for the virus in this 

setting (IARC Monographs, 1997).

1.9 Aims

The purpose of this study was to investigate the functions of two important EBV latent 

proteins. LMP1 is an integral membrane protein with an essential role in the 

immortalisation of primary B cells. It was proposed to explore the role of LMP1 in 

interfering with cell cycle control by studying its effects on the expression of a panel of 

cell cycle-related genes using ribonuclease protection assays. The effect of LMP1 

expression was also compared to that of EBNA2 (the other main effector of phenotypic 

change in EBV-immortalised B cells). EBNA3 comprises a family of three related latent 

nuclear proteins, EBNA3A, EBNA3B and EBNA3C. EBNA3B is the only member of 

the family which is not required for immortalisation and it was proposed to investigate 

its role by screening for interacting proteins using the yeast two hybrid system.
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CHAPTER 2 

MATERIALS AND METHODS
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2.1 BIOLOGICAL MATERIALS

2.1.1 Cell lines

Table 2.1. Cell lines used in this study

Cell Line EBV

Status

Cell

Classification

Description

DG75 EBV negative 

BL

Lymphoid B cell line derived from an Israeli Burkitt- 

like lymphoma case (Ben-Bassat et al., 1977).

DG75 tTA Stable

transfectant

EBV negative BL cell line stably transfected with the 

tetracycline-regulated transactivator only 

(Floettmann et al., 1996).

DG75tTA

EBNA2

Stable

transfectant

Tetracycline regulated system whereby the 

expression of EBNA2 can be induced by the removal 

of tetracycline from the growth media (Floettmann et 

al., 1996).

DG75tTA

LMP1

Stable

transfectant

Tetracycline regulated system whereby the 

expression of LMP1 can be induced by the removal 

of tetracycline from the growth media (Floettmann et 

al, 1996).

Mutu 1 + Type I Early passage BL cell line expressing EBNA1 as the 

only viral gene (Gregory et al., 1990).

Mutu 3 c95 + Type III Stable clone of the early passage BL cell line Mutu 1 

which has, upon serial passage in culture, “drifted” to 

express the full compliment of EBV latent genes 

(Gregory et al., 1990).

BL41, 

BL41-B958, 

IARC 171.

+

+

+

Type I 

Type III 

LCL

These cells are a matched set. BL41 is an early 

passage BL cell line expressing EBNA1 as the only 

viral protein, BL41 B958 is the cell line stably 

transformed with the EBV virus strain B958 

expressing all the EBV latent genes, (Calender et al., 

1987) IARC 171 is a spontaneously transformed 

Lymphoblastoid cell line derived from the same 

patient (Andersson et al., 1991).

BL72 III 

IARC 307

+

+

Type III 

LCL

These cells are a matched pair, BL72 is a group 3 BL 

cell line expressing all EBV latent genes. IARC 307 

is a spontaneously transformed LCL from the same 

patient (Rowe et al., 1990).
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BL74

IARC 290B

+

+

Type I 

LCL

These cells are a matched pair, BL74 is a group 1 BL 

cell line expressing only EBNA1. IARC 290B is a 

spontaneously transformed LCL from the same 

patient.

Ag876 + Type IH Type III BL cell line expressing all the EBV latent 

genes (Dambaugh etal., 1984).

X50-7 + LCL Spontaneously transformed LCL (Miller et al„ 

1984).

Jurkat T cell Acute T-lymphocytic leukemic cell line (Brattsand, 

etal., 1990).

C33A, - Epithelial cell

C33A Neo, * These are cervical epithelial cell lines. C33A is the

C33A LMP1. parental cell line, C33A Neo is stably transfected 

with an empty vector, C33A LMP1 is stably 

transfected with a vector constiutively expressing 

LMP1 (Miller et a l, 1995).

All BL cell lines and LCLs were obtained from Professor M artin Rowe, University 

of Cardiff, Wales. The epithelial cell lines C33A were a gift from Dr Nancy Rabb- 

Traub University of North Carolina, USA.

2.1.2 Antibodies

PE2, T2.78, E3C.A10.3 and CS1-4 (antibodies specific for EBNA2, EBNA-3A, 

EBNA-3C and LM P1, respectively) were gifts from  Professor M artin Rowe, 

University o f Cardiff, Wales. The antibodies were supplied as cell culture 

supernatants and stored at 4°C or -20°C prior to dilution.

Monoclonal Antibody

A nti-p21/W AFl 

Anti-p53 

Anti-Rb 

Anti-c-Myc 

Anti-HA 12 CA5

Anti-mouse-alkaline phosphatase (AP) conjugate 

Rabbit anti M ouse IgG 

Goat anti-rabbit HRP

Supplier

Santa Cruz, SC-6246

Santa Cruz, SC -126

Santa Cruz, SC -102

Calbiochem

Boehringer Mannheim

Promega

Dako

Dako
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2 . 1 . 3  B a c t e r i a l  s t r a i n s

E .c o l i  D H 5a, genotype: F-, e n d  A l, hsdR17 (i\-,m k=), s u p E 4 4 , th i -1,A,-, re c  A l, g y r  

A96, re l A1 ,<j) 80/ac Z5M15.

2.1.4 Y east s tra in s  (S a c c h a r o m y c e s  c e r e v is ia e )

Yeast strains w ere grown in YPD medium at 30°C, while selection for plasmids was 

carried out by growing yeast in Yeast Nitrogen Base (YNB) medium without amino 

acids (Difco) which was supplemented with appropriate combinations of the 

following amino acids where required: leucine (60 |ng/ml.), tryptophan (40 jig/ml.), 

histidine (20 jxg/ml.), uracil (20 jig/ml.) denoted +L+T+H+U respectively. YNB 

plates were supplemented with sugars as indicated: 2% (w/v) glucose or 2 %  (w/v) 

galactose + 1 %  (w/v) raffinose.

EGY48 ( U R A 3  T R P 1  H I S 3  6 L e x A  o p e r a t o r - L E U 2 )  The L e x A o p - L E U 2  gene is 

normally not transcribed and the yeast are auxotrophic for leucine.

Y187 (M A T a  g a l4  g a l8 0  h is 3  t r p l - 9 0 1  a d e 2 - 1 0 1  u a r 3 - 5 2  l e u 2 - 3 ,- 1 1 2  U R A 3  

G A L —> la c Z  m e t-) was made by crossing Y153 and GGY171 (Fields and Song, 

1989).

2.1.5 P lasm ids

pTAg Cloning vector from R&D Systems

2.1.5.1 Y TH S-A  plasm ids

All plasmids used in YTHS-A were gifts from Dept, of Biochemistry, TCD and are 

summarised in Table 1.

pEG202 A yeast - E. coli shuttle vector, pEG202 is a derivative of 202 that contains 

an expanded polylinker region. Bait proteins expressed from this plasmid contain aa
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1 to 202 of LexA, which include the DNA binding and dimérisation domains (see 

Chapter 4, Figure 4.4).

pNLEX A derivative of pEG202 in which an additional nuclear localisation signal 

has been inserted in to the unique EcoR l site. This destroys the EcoR l site at the N 

terminus but retains the site at the C terminus. Therefore the EcoR l site in pNLEX is 

also unique.

2.1.5.2 YTHS-B plasmids

pAS-1 CHX (pAS-2) bait plasmids (see chapter 4, Figure 4.10) cDNA library DNA 

and all control plasmids used in YTHS-B were gifts from Dr Stephen Elledge, Bayor 

College of M edicine, Texas. Plasmids used in verification of specificity experiments 

were gifts from D r Geraldine Butler, D epartm ent of Biochemistry, UCD.

2.1.6 Oligonucleotides

Genosys Biotechnologies Europe Ltd. 

EBNA-3A

Forward primer 

Reverse primer 

EBNA-3B 

Forward primer

5’ ATC GGG CCA TGA TCA A AC TGG ACA AGG A 3 ’ 

5' TGT TAT AAC GTG ATC AAA GGC CTG CCC C 3 ’

5' CG CGG ATC CTG AAG AAG CGT GGC TCA G 3’ 

Reverse prim er (1575 bp) 5' CG CGG ATC CAG TAG GGT TGC CAT AAC CC 3' 

Reverse prim er (837 bp) 5 ’ CG CGG ATC CGA ACT CGG TTT TTC GTG CC 3’ 

EBNA-3C

5 ’ CGC GGC TCC TGG AAT CAT TTG AAG GAC AGG 3’ 

CGC GGA TCC ATC GAC GAT GGA TCT TCG G 3 ’

5 ’ CCA GCC TCT TGC TGA GTG GAG ATG 3’

5 ’ GAC AAG CCG ACA ACC TTG ATT GGA G 3’

5’ TTC AGT ATC TAC GAT TC 3’

Forward primer 

Reverse primer 

BCOl 

BC02  

pTA g

2.1.7 Commmercial kits and restriction enzymes

All restriction enzymes were supplied by Boehringer Mannheim.
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Klenow enzyme (DNA Polmerase I large fragment) was supplied by Biolabs (#21 OS) 

Enhanced Chemiluminesence substrate (ECL)Amersham 

Riboquant mutiprobe RPA : Pharmingen

In Vitro Transcription kit (#45004K)

M ultiprobe Tem plate set HCC-2 (#5409IP)

RPA kit (#45014K)

Qiagen Tip -100 

RPA kit

Taq DNA polymerase 

The LigATor 

T7 Sequencing kit 

Capture-Tec pH ookl System 

Luciferase Assay System

2.2 C H E M IC A L  M A T E R IA L S

Protein prestained markers 

35S labeled dATP 

a 32P labeled UTP 

dNTPs 

RNase A 

M arvel 

Chloroform 

Isopropanol 

Dimethyl formamide

Sigma-Aldrick-Fluka Chemical Co.:

Urea, Dithiothreitol (DTT), Coomassie Blue R, BCIP/NBT, Tetracycline, Liquid 

Phenol, Nitocellulose, Ampicillin, Potassium acetate, Tween-20, Bovine serum 

albumin (BSA), Sodium azide, Sigmacote, Ammonium phosphate, M ineral oil, a - 

Thiol-glycerol (ATG), PMSF, MOPS, BCS, Formaldehyde, 

Diethylenepyrocarbonate (DEPC), Salmon Sperm DNA Type III sodium salt 

(D1626), Polyethylene Glycol (PEG), Cycloheximide, 3-AT, ß-mercaptoethanol, all

NEB

Amersham 

Amersham 

Pharmacia Biotech 

Pharmacia Biotech 

Premier Beverages 

ROM IL 

ROM IL 

Riedel-de-Haën

Qiagen

Pharmingen

Perkin Elmer and Boehr. Mannheim.

R&D Systems

Pharmacia

In vitro gen

Promega (#E1500)
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amino acid supplements (see Appendix), actinomycin D, M icophenolic acid, 

Xanthine, aqueous mountant.

Merck:

Boric acid, Ammonium persulphate, Sodium acetate, M agnesium chloride, Glucose, 

Sodium chloride, Potassium chloride, Sodium hydroxide, Sodium dodecylsulphate, 

Calcium chloride, Glycine, Methanol.

BDH:

TEMED, Bromophenol blue, Potassium dihydrogen phosphate, Potassium hydrogen 

phosphate, Sodium phosphate, Glycerol, Tris(hydroxymethyl)methylamine, EDTA, 

M agnesium sulphate, Ethidium bromide, Isoamyl alcohol, Hydrochloric acid, Acetic 

acid, Methanol, Isopropanol.

Boehringer Mannheim:

Agarose, Low melt agarose, IPTG, Hygromycin B, Geneticin (G418), Leupeptin. 

Oxoid:

Agar technical, Bacto-Tryptone, Yeast extract.

Difco:

YNB without amino acids 

KODAK:

X-ray film, X-ray film developer, X-ray film fixer.

National diagnostics:

Acrylagel, Bis-acrylagel.

Gibco-BRL:

RPMI 1640, Foetal calf serum, Pencillin, Streptomycin, L-Glutamine, Hepes, 

Sodium Pyruvate, 1Kb D NA ladder, (3-galactosidase (X-gal).
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Promega:

lOObp DNA ladder.

Calbiochem:

Staurosporine, SB203580 p38 inhibitor.

2.3 DNA MANIPULATION

Preparation o f all solutions used in chapter two are outlined in the Appendix .

2.3.1 Storage of DNA samples

DNA samples were stored in TE buffer pH 8.0 at 4°C. EDTA was used to chelate 

heavy metal ions that are needed for DNase activity while storage at pH 8.0 

minimises deamidation. DNA was also stored in sterile distilled H 2O (dH20 ).

2.3.2 Equilibration of phenol

As DNA partitions into the organic phase at <pH 7.8, phenol was prepared by 

equilibration to pH 8.0 with TrisCl pH 8.0 as follows: Solid phenol was melted at

68°C, hydroxy quinoline was added to a final concentration o f 0.1% (w/v) (acts as an 

antioxidant, a chelator of metal ions, and an RNase inhibitor). An equal volume of 

buffer (0.5 M TrisCl pH 8) was then added to the liquefied phenol and stirred for 15 

min. After allowing the two phases to equilibrate, as much as possible of the upper 

aqueous phase was removed. The extraction was repeated using equal volumes of 

0.1 M  TrisCl pH 8 until the pH o f the phenol was > 7.8. An equal volume of TrisCl 

pH 8 and 0.2% (w/v) (3-mercaptoethanol were then added to the phenol, which was

stored at 4°C  in the dark until required.

2.3.3 Phenol/chloroform extraction and ethanol precipitation

Phenol/chloroform extraction and ethanol precipitation was carried out to purify and 

concentrate nucleic acid samples as follows: An equal volume of

phenol/chloroform/isoamyl alcohol (25:24:1) was added to the DNA solution,
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vortexed to an emulsion and centrifuged for 10 min at 12,000 x g. The upper 

aqueous phase was removed, taking care not to take any material from the inteiphase, 

and this was placed into a fresh autoclaved eppendorf. An equal volume of 

chloroform/isoamyl alcohol (24:1) was added to the aqueous phase, vortexed as 

before and centrifuged for 5 min at 12,000 x g. Again the upper aqueous phase was 

removed to a fresh tube. One tenth volume of 3 M sodium acetate (pH 5.2) was 

added to the solution of DNA, mixed and then 2 and a half volumes of 100% (v/v) 

ethanol was added. This mixture was vortexed and incubated at room temperature 

for 5 min (when dealing with very small quantities of DNA, samples were 

precipitated in ethanol at -20°C  overnight). DNA samples were then centrifuged for 

30 min at 12,000 x g at 4°C, the supernatant was removed and pellets were washed 

with 1 ml 70% (v/v) ethanol to remove excess salts. The tube was centrifuged for 5 

min at 10,000 x g, the supernatant was removed and pellets were air dried for 10-15 

min. Pellets were resuspended in an appropriate volume of sterile Tris-EDTA (TE) 

(pH 8.0) or sterile dH20 .

2.3.4 Restriction digestion of DNA

Restriction enzymes bind specifically to and cleave double-stranded DNA at specific 

sites within or adjacent to a particular sequence known as the recognition site. The 

restriction enzymes used were supplied with incubation buffers at a concentration of 

10X (working concentration IX). DNA was digested with restriction endonucleases 

for identification purposes or to linearise or cut fragments from a plasmid. DNA 

digests were performed by adding the following, usually to a final volume of 20|U,1.

200 ng - 1 |LLg o f DNA (Final concentration of <300 ng/jo.1)

1 |il o f enzym e/|ig of DNA solution (-1 0  U).

10 X buffer to a final concentration of IX  

dH20  to the final volume required 

The reaction was gently mixed, centrifuged, then incubated for 2 h at the optimum 

enzyme temperature (between 25°C and 50°C, usually 37°C).
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2.3.5 Cohesive Ligation of DNA

Two fragments o f DNA may be ligated in one of 2 ways. The majority of restriction 

endonucleases digest DNA leaving either a 5' or a 3' overhang, in which two 

compatible cohesive ends may be ligated by cohesive ligation. Alternatively, blunt- 

ended ligation may be required. Cohesive-end ligations of equimolar amounts of

vector and insert DNA (<1 fig) were generally carried out overnight at 16°C in a 

commercial ligation buffer (5 mM  ATP) with 10 units of T4 ligase/ml. As small a 

volume as possible is recom meded for ligation reactions and usually the total volume

of reactions was 10 |il. After ligation, the samples were heated to 10 min at 70°C to 

inactivate the ligase (this appears to improve transformation efficiencies), and stored 

on ice until required.

2.3.6 Blunt-ended ligation of DNA

Blunt-ended ligations are usually less desirable than cohesive-end ligations due to 

their much lower efficiency. Nonetheless, blunt-ended ligations were required in 

cases where restriction enzymes generated blunt ended DNA molecules. Also, if two 

compatible cohesive DNA ends cannot be generated, it is sometimes necessary to fill 

in the unmatched bases of the 5 ’ or 3 ’ overhangs and carry out a blunt-ended ligation 

reaction. The large fragment of E .c o l i  DNA polymerase I (Klenow, Biolabs) was 

used for this purpose in the following reaction: DNA was resuspended at a

concentration of 50 |0.g/ml in IX  Eco Pol buffer (supplied with the Klenow), dNTPs 

were added to a final concentration of 33 |iM  each, 1 jil of Klenow was added and 

the reaction was placed at 25 °C for 15 min. The enzyme was inactivated by heating 

to 70°C for 10 min. This DNA was then purified by phenol/chloroform extraction 

and concentrated by ethanol precipitation (2.3.3). Ligation reactions were then 

performed as for cohesive-end reactions (2.3.5)

2.3.7 BamHl linkers

Synthetic linkers (8-12 bp) containing a restriction site for an enzyme which 

generates cohesive ends in DNA molecules may be ligated to the ends of DNA 

fragments in order to improve the efficiency of blunt-ended ligations. Thus, a high
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concentration of B am H l linker termini (4-20 p.m) was ligated to the relevant insert 

DNA at a 2-3 : 1 concentration ratio over target DNA. The resulting ligations were 

then digested with B am H l and purified by phenol/chloroform extraction and ethanol 

precipitation. Due to the very high concentration of excess linker molecules, DNA 

was further purified by extraction from  low melt agarose (2.3.7). Ligations were then 

carried out as for cohesive-end reactions (2.3.5).

2.3.8 Dephosphorylation of linearised plasmid DNA

During ligation, T4  DNA ligase will catalyse the formation of a phosphodiester bond 

between adjacent nucleotides only if  one contains a 5' phosphate group and the other 

contains a 3' hydroxyl group. Recircularisation of plasmid DNA can therefore be 

minimized by removing the 5' phosphate groups after treatment with calf intestinal 

alkaline phosphatase enzyme (CIP). Digested DNAs (<100 ng/jj,l) were 

dephosporlylated using CIP in a 100 |iil volume (CIP was added 1 unit/100 pmoles 

for cohesive termini and 1 unit/2 pmole for blunt termini). The solution was 

vortexed, centrifuged briefly and incubated for 30 min at 37°C. This was followed by 

an enzyme dénaturation step achieved by heating to 75°C for 10 min. DNA was then 

purified by phenol/chloroform extraction and ethanol precipitation (2.3.3).

2.3.9 Preparation of competent cells

The calcium chloride (CaCh) method was employed to prepare competent bacterial 

cells for transformation o f DNA. An E .c o l i  strain (D H 5a) was streaked from a 

frozen glycerol stock on to an LB agar plate and incubated at 37°C overnight. An 

isolated colony was then picked using a sterile inoculating loop and used to inoculate 

5 ml of SOB (appendix A) broth. This culture was incubated in a shaking incubator 

at 200 rpm  overnight at 37°C. An aliquot of this starter culture (2 ml) was then used 

to inoculate 100 ml of sterile SOB in a conical flask and incubated at 37°C with 

shaking to an O .D .640 nm of between 0.4 and 0.8 (approximately 2 h). The cells were 

then transferred to two sterile 50 ml falcon tubes and incubated on ice for 10 min 

followed by centrifugation at 4,000 x g for 10 min at 4°C. Cell pellets were gently 

resuspended in 25 ml of 100 mM  ice-cold CaCl2, and incubated on ice for a further
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20 min. Centrifugation was carried out as before (4,000 x g at 4°C for 10 min) 

followed by removal of the supernatant. Finally cells were resuspended in a 1% 

(w/v) volume of CaCl2. Competent cells were stored on ice and used within 24 hr.

2.3.10 Transformations

Two hundred microliters of competent cells were added to a pre-chilled 

microcentifuge tube containing 10 pil of DNA at a concentration of -100  ng/10 fil. 

The contents were mixed gently and incubated on ice for 30 min, during which time 

an aliquot o f SOC (appendix A) was pre-heated at 42°C. At the end of the incubation 

on ice, cells were heat-shocked at 42°C for 90 s followed by incubation on ice for a 

further 2 min. One mililiter of preheated SOC was then added to the cells which 

were incubated at 37°C in a shaking incubator for 1 h 10 min. The cells were 

concentrated by centrifugation after which -8 0 0  |al of supernatant was removed and 

discarded. The cells were resuspended in the remaining supernatant and plated out 

with the appropriate controls on LB plates containing ampicillin and incubated 

overnight at 37°C. Only bacteria which took up ampicillin-resistant plasmid DNA 

grew on LB Amp plates. Recombinant colonies were thus used to inoculate 5 ml 

aliquots of LB broth containing ampicillin which were then incubated overnight at 

37°C. DNA minipreparations were subsequently prepared using fresh cultures as 

described in section 2.3.10.

2.3.11 Small scale preparation of plasmid DNA (miniprep)

This method is a modification of a protocol from M aniatis et al, 1978. A single 

bacterial colony was used to inoculate 5 ml of LB medium (with appropriate 

antibiotic) and incubated overnight at 37°C. An aliquot (1.5 ml) of this culture was 

added to a sterile microfuge tube and centrifuged for 30 s at room temperature, the 

remainder was stored at 4°C. Supernatant medium was removed from  the tube, 

leaving the pellet as dry as possible. The pellet was then resuspended thoroughly in 

100 |il of ice-cold solution I by vigorous vortexing. To this, 200 jil of freshly 

prepared solution II was added and the tube contents were mixed by inverting the 

tube rapidly 5-6 times. Ice-cold solution III (150 (il) was added and the tubes were
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vortexed gently for 10 s. The lysate was centrifuged for 5 min at 12,000 x g and the 

supernatant was transferred to a fresh tube, taking care not to carry over any of the 

white precipitate. An equal volume o f phenol/chloroform/isoamyl alcohol (25:24:1) 

was added, mixed by vortexing and centrifuged for 5 min at 12,000 x g. The upper 

aqueous phase was removed to a fresh tube, to which 2 volumes of 100% (v/v) 

ethanol were added, the solution was vortexed and centrifuged for 5 min at 12,000 x 

g. After discarding the supernatant, the pellet was washed with 200 |a.l 70% (v/v) 

ethanol, centrifuged as before and the supernatant was removed. The pellet was air- 

dried for 10-15 min. A fter resuspending in  50 îl of TE (pH 8.0), 1 jLil of DNase-free 

RNase A (20 ug/ml) was added, tubes were vortexed, incubated at 37°C for 1 h, then 

stored at 4°C. Glycerol stocks of all bacterial cultures were prepared at this stage by 

the addition of 0.5 ml o f a 50% (v/v) glycerol solution to 0.5 ml of the overnight 

bacterial culture of interest and storing at -80°C.

2.3.12 Qiagen™ plasmid DNA purification protocol

Plasmid DNA was purified using the QIAGEN-tip 100 isolation system from 

Promega. All buffers used are described in appendix A. A glycerol stock of the 

bacteria of interest was streaked out on LB ampicillin agar and incubated overnight 

at 37°C. An isolated colony from this plate was used to inoculate a 5 ml LB 

ampicillin starter culture and incubated in a shaking incubator (-300  rpm) at 37°C for 

8 h. One millilitre o f the starter culture was used to inoculate 25 ml of LB ampicillin 

in a 250 ml sterile flask and incubated overnight in a shaking incubator at 37°C. The 

following day, cultures were harvested at an optimal O.D.6oonm of between 1 and 1.5. 

The following centrifugation steps were carried out using a JA-20 rotor in a 

Beckman centrifuge. The bacteria culture was transferred to a centrifuge tube and 

centrifuged by spinning at 6,000 x g for 15 min at 4°C. The supernatant was 

removed and the pellet was dried by inverting the tube on tissue paper and allowing 

the supernatent to drain off. The bacterial pellet was resuspended completely in 4 ml 

of cold Buffer P I containing RNase, 4 ml of freshly prepared Buffer P2 was added 

and tubes were incubated at room temperature for 5 min. Following incubation, 10 

ml o f prechilled Buffer P3 was added, immediately mixed by gentle inversion of the
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tube (5-6 times). Tubes were then incubated on ice for 20 min before centrifugation 

for 1 hr at 20,000 x g at 4°C.

The Qiagen-tip 100 was equilibrated by applying 4 ml of QBT buffer and allowing 

the column to empty by gravity. The column does not dry out at this stage as the 

flow of buffer will stop when the buffer reaches the upper filter. After the 

centifugation step the supernatant was removed immediately from the tube without 

disturbing the pelleted material and applied to the column by filtering through 1MM 

filter paper. The QIAGEN-tip was washed with 2 x 10 ml of Buffer QC. DNA was 

then eluted with 5 ml of Buffer QF. DNA was precipitated by adding 0.7 volumes of 

room-temperature isopropanol and centrifuging immediately at 15,000 x g for 30 min 

at 4°C. Supernatant was then carefully removed and the DNA pellet was washed with 

70% (v/v) ethanol, allowed to air dry for 5 min and re-dissolved in a suitable volume 

of TE or dE^O. DNA was then quantified by spectrophotometric analysis as 

described in section 2.3.15.

2.3.13 Agarose gel electrophoresis of DNA

Electrophoresis through agarose gels is the standard method used to separate, 

identify and purify DNA fragments. The technique is simple, rapid to perform and 

can be used for the isolation of DNA fragments.

An appropriate quantity o f agarose or low melt agarose was added to 100 ml IX  TBE 

/TAE buffer based on the percentage agarose gel required. Increasing the percentage 

agarose (1.8-2.0%) in the gel was generally used to improve resolution of smaller 

DNA fragments while separation of larger DNA molecules was observed more 

readily on low percentage gels (0.6-0.8%). The agarose was completely dissolved by 

boiling and after sufficient cooling (~60°C) the gel was cast into the Hybaid 

horizontal gel electrophoresis system and a comb was inserted for formation of 

sample wells. The gel was allowed to set before filling the chamber with IX 

TBE/TAE and removing the comb. Sample buffer containing bromophenol blue as a 

tracking marker was added to each sample before loading up to a maximum volume 

of 20 [il per well. DNA sample buffer was also added to 500 ng of a 1 Kb or 100 bp 

DNA ladder which was loaded as a size marker. The gel was run at constant voltage 

(5 V/cm), usually at -1 0 0  V, for 1-2 h. W hen complete, the gel was stained in
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ethidium bromide (0.5 mg/ml) for 30 min, placed in distilled water to destain for 15 

min and viewed under UV illumination.

2.3.14 Isolation of DNA from agarose gels

Low melting point agarose gels were prepared in IX  TAE buffer (gel isolation is not 

earned out in TBE buffer as borate ions are difficult to remove from the resultant 

DNA solution). Ethidium  bromide was added to the samples before electrophoresis 

so as to minimise manipulations with the fragile low melting point agarose gels. 

After electrophoresis, the gels were viewed under 70% UV illumination. The time of 

exposure to UV light was kept to a minimum, as overexposure to UV would cause 

damage to the DNA. The DNA band of interest was excised from the gel using a 

clean scalpel, excess agarose was cut away to minimise the size of the gel slice 

which was then placed in a sterile microfuge tube.

2.3.15 Purification of DNA by Gene Clean Method

This method was used to purify DNA from  low-melt agarose gels. Under UV 

illumination, the appropriate band was excised from the gel using a clean, sharp 

scalpel and placed in an eppendorf. After estimating the weight of the excised piece 

of gel, 2-3 volumes o f N al was added to the agarose. This was then incubated at 

55°C or until the agarose had dissolved. Approximately, 2 (il o f silica 325 mesh glass 

beads were then added and the tube contents were mixed by vortexing. The mixture 

was then left at room  temperature for 5 - 1 0  min, before spinning for 20 s at 12000 x 

g. The supernatant was removed and discarded. The pellet was resuspended in 200pl 

wash solution by vortexing and then pelleted at 12000 x g as before. This wash step 

was repeated twice to fully remove residual agarose and salt contaminants. The DNA 

pellet was resuspended in -1 0  |ul TE or sterile dH20  by vortexing. Finally, DNA was 

eluted from glass beads by incubation at 55°C for 10 min, glass beads were then 

pelleted by spinning at 12000 x g for 10 min. The supernatant was removed to a fresh 

tube and retained for further analysis. The purified DNA was stored at 4 °C..
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2 . 3 . 1 6  S p e c t r o p h o t o m e t r i c  a n a l y s i s  o f  n u c l e i c  a c i d s

DNA and RNA concentration was determined by measuring the absorbance at 260 

nm, which is the wavelength at which nucleic acids absorb maximally (Xmax). A 50 

Hg/ml preparation o f pure DNA has an absorbance of 1 unit at 260 nm while 40 

Hg/ml of pure RNA also has an absorbance reading o f 1 at this wavelength. The 

purity of an RNA or DNA preparation was determined by reading absorbance at 260 

nm, the A,max for nucleic acids and at 280 nm, the A.max for proteins and obtaining the 

ratio for these absorbances. Pure DNA and RNA have A260/A 280 ratios of 1.8 and 2.0 

respectively. Low er ratios indicate the presence of protein while higher ratios often 

indicate residues of organic reagents.

2.3.17 Polymerase Chain Reaction (PCR)

The polymerase chain reaction (PCR) involves the amplification of specific DNA 

sequences using DNA primers which anneal to the DNA of interest. The primers are 

designed so that one anneals to the forward DNA strand and the other anneals to the 

reverse strand thus allowing polymerisation of both strands by the enzyme Taq DNA 

polymerase. This results in exponential amplification of the sequence of interest. 

PCR protocols varied with respect to the DNA amplified.

P C R  r e a c t io n  m i x

*dNTPs: 10 mM dATP, dTTP, dCTP, dGTP. Final concentration, 0.2 rnM each. 

Reactions were overlaid with 100 )il mineral oil before placing in the minicycler 

(Hybid)

Volume Final Concentration
Template DNA (p7CMVE4)

10X buffer

*dNTPs

Forward prim er (0.1 (ig/pf) 

Reverse prim er (0.1 |ig/|0.1) 

dH20

Taq DNA Polymerase 

Final volume

1 (xl 200 ng or 10 ng

10 nl IX

2 |il 200 n,M

1 nl 100 ng

1 [xl 100 ng

84.5 Hi

0.5 ul 2.5 U

100 Hi

IX
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C y c l i n g  p a r a m e t e r s

1 cycle 

25 cycles 

1 cycle

Holding temperature : 4°C.

**This temperature was based on the Tm (melting temperature) of each primer. 

All PCR products where visualised on agarose gels as outlined in section 2.3.12

94°C 1 min

94°C 1 min

**57°C 1 min

72°C 1.30 min

72°C 5 min

2.3.18 Cloning of PCR products in pTAg

The reamplified PCR products were cloned in to the pTAg cloning vector using the 

LigATor rapid cloning system from R&D systems. In order to reduce the risk of 

removing the A overhang by nuclease contamination unpurified PCR products were 

used for cloning. The use of freshly amplified PCR fragments yielded best results as 

storage of PCR products can lead to loss of the A overhang preventing ligation to the 

pTAg vector. Prior to ligation residual DNA polym erase activity was removed to 

avoid false positives by the addition of an equal volume of chloroform:isoamyl 

alcohol (24:1) to the PCR reaction and vortexing for 1 min. The tube was then 

microcentrifuged for 1 min at room temperature at 12,000 x g. The upper aqueous 

phase was transferred to a fresh tube, 2  jllI  of this aqueous phase was used in the 

ligation reaction. The m aximum volume used was 2 ja.1 as the salts may inhibit the 

ligation reaction.
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2.3.18.1 p T A g  L i g a t i o n  r e a c t i o n

The following reagents were combined in a 1.5 ml microcentifuge tube: 

1 OX Ligase buffer 1 |il

lO O m M DTT 0.5 fil 

0.5 |al 

ljil

2  JLll 

4.5 |il

10 mM ATP

50 ng/|ul pTAg vector 

Amplified fragment 

Nuclease-free water

The tube was vortexed briefly to mix and then microcentrifuged to collect the 

contents. T4 DNA ligase (0.5 pi) was added using a fresh tip and mixed gently 

without vortexing. The ligation reaction was incubated over night at 16°C, then 

placed on ice until required.

Competent cells used for the transformation reaction were provided with the 

LigATor Kit. One 1.5 ml tube contained 40 |U,1 of cells which was sufficient for two 

transformation reactions. Cells were thawed on ice, 20 (0,1 of which were gently 

pipetted into a prechilled sterile 1.5 ml microcentifuge tube. One microlitre of the 

ligation reaction was added to the cells and tapped gently to mix. The cells were 

then incubated on ice for 30 min. SOC media was also provided in the LigATor kit 

and it was thawed at room temperature. After 30 min on ice the cells were heat 

shocked at 42°C for exactly 30 s without shaking or mixing. The transformation 

reactions were then incubated on ice for 2 min, 80 pi of SOC media was added to 

each tube which were placed in a shaking incubator at 37°C for 1 hr. Prepared LB 

agar plates containing IPTG/X-Gal (see appendix A) were placed at 37°C for 30 min 

to equilibrate. Spread plates were prepared using 50 ° f  the transformation 

reaction. The plates were left at room temperature to allow absorption of liquid and 

the incubated at 37°C overnight. pTAg contains a L a c Z a  peptide sequence which 

when functionally produced complements the N-terminal truncated L a c Z  peptide 

synthesised in the competent cells provided in the LigATor Kit. The resulting

2.3.18.2 Transformation reaction
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enzyme (3-galactosidase, cleaves X-gal to give blue colonies. IPTG depresses the 

expression of the L a c Z a  gene in cells containing pTAg. When an insert was cloned 

into the cut pTAg vector the L a c Z a  peptide sequence is interrupted. This interfered 

with the function of the peptide and white colonies were produced on the plates. 

This formed the basis for the selection of colonies containing inserts. Transformed 

(white) colonies were inoculated into 5 ml of LB amp broth and incubated in a 

shaking incubator overnight at 37°C. DNA minipreparations were prepared from the 

resulting cultures as described in section 2.3.10. The presence of inserts and their 

orientation was determined by restriction analysis (as described in section 2.3.4).

2.3.19 Sequencing reactions

A T7 Sequencing ™  Kit from Pharmacia Biotech was used, which is based on the 

dideoxy method of sequencing (Sanger e t a l ,  1977). The major steps involved in 

using T7 DNA polymerase to sequence DNA using a radioactive label were as 

follows; isolation of template DNA as described above, annealing of primer, 

labelling reaction, termination reaction, electrophoresis and autoradiography.

2.3.19.1 Annealing of primer to double stranded template

The concentration of DNA was adjusted to contain 1.5-2.0 |dg of DNA in 32 pi of 

water (32 jxl of miniprep DNA was used in each sequencing reaction). To denature 

the template DNA 8 (Ltl of NaOH was added, the tube was vortexed and centrifuged 

briefly to collect drops and incubated at room temperature for 10 min. To precipitate 

the DNA 7 |Lil of 3 M sodium acetate (pH 4.8), 4 |il of dl I20  and 120 |il of 100% 

(v/v) ethanol

were added to the denatured template, mixed gently and placed at -20 °C overnight. 

The precipitated DNA was collected by spinning at 13,000 x g for 15 min the 

resulting pellet was washed in 70% (v/v) ice cold ethanol the tube was then 

centrifuged for 10 min the supernatant was removed the pellet was air dried and 

resuspended in 10 p,l of dH20 . Two microlitres of undiluted universal primer and 2 

|il o f annealing buffer was added to the template DNA vortexed and centrifuged
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briefly followed by incubation at 65°C for 5 rain. The tube was then transferred to 

37°C for 10 min followed by room temperature for 5 min and then used directly for 

labelling reactions.

2.3.19.2 Labelling reaction

The following were added to the annealed template/primer mix,

Labelling mix (dATP) 3 pi

Labelled dATP (35S) 1 ¡i\

T7 DNA polymerase 2 |il

These were mixed gently by pipetting and incubated at room temperature for 5 min.

2.3.19.3 Termination reaction

Four tubes w ere labelled A,C,G,T for each DNA template, 2.5 pi of each of the “read 

short m ixes” were added to their corresponding tubes and incubated for 5 min at 

37°C. To each of the 4 pre-warmed sequencing mixes, 4.5 |il of the labelling reaction 

was added, mixed by gentle pipetting, and incubated at 37°C for 5 min. Five 

microlitres o f stop solution was added and mixed gently. Four microlitres of each 

reaction was added to a fresh tube, incubated at 75-80°C for 2 min and immediately 

loaded on the sequencing gel. The remainder of the unheated reactions was stored at 

-20°C. Electrophoresis and autoradiography was carried out as described in section 

2.7.4.

2.4 RNA ANALYSIS

2.4.1 RNase free environment

RNA is easily degraded by ubiquitous RNase enzymes and thus stringent measures 

were employed to avoid this potential hazard. All glassware and metal spatulas were 

baked prior to use at 180°C for 8 h in order to inactivate any RNase activity. Sterile 

disposable plasticware is generally considered Rnase-free and thus did not require 

treatment. RNases are resistant to autoclaving but they can be deactivated by the
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chemical diethylpyro-carbonate (DEPC) when it is added to solutions at a final 

concentration of 0.1% (v/v), incubated at room temperature for 18 h and autoclaved. 

Solutions which contain amines such as Tris cannot be DEPC-treated as the DEPC is 

inactivated by these chemicals. Solutions containing these chemicals were prepared 

using DEPC treated H 2O followed by autoclaving. Hands are a major source of 

RNase contamination thus gloves were used at all times and changed frequently.

2.4.2 RNA extraction from cultured cells

Prior to RNA isolation cells were examined by phase contrast microscopy to 

determine the condition of the cells. A viable cell count was performed as described 

in section 2.6.4. RNA was extracted from cultured cells using the commercial 

reagent RNA  ISOLATOR™ . Cells grown in suspension were pelleted and then 

lysed in RNA ISOLATOR™  by repetitive pipetting. One millilitre of RNA 

ISOLATOR™  was used per 1 x 107 cultured cells. The homogenised sample was 

incubated at room  temperature for 5 min to allow complete dissociation of nuclear 

protein complexes, (the procedure may be stopped at this point by storing samples at 

-70°C). Phase separation was achieved by adding 0.2 ml of chloroform per 1 ml of 

RNA ISOLATOR. The samples were covered and shaken gently but thoroughly for 

15 s or until completely emulsified. Samples were incubated at room  temperature for 

15 min. The resulting mixture was centrifuged at 12,000 x g for 15 min at 4°C. 

Following centrifugation the mixture separated into a lower red phenol-chloroform 

phase, an interphase and a colourless upper aqueous phase. The aqueous phase, 

which contains the RNA, was removed to a fresh tube and RNA was precipitated by 

adding 0.5 ml of isopropanol per ml o f RNA ISOLATOR used initially. The 

samples were stored for 10 min at room temperature, then centirfuged at 12,000 x g 

for 10 min at 4°C. The resulting RNA pellet was washed using 1 ml of 75% (v/v) 

ethanol by inverting the tube 5 times. The pellets were then recentrifuged at 10,000 

x g for 5 min at 4°C and the 75% (v/v) ethanol was removed. Pellets were air dried 

and dissolved in DEPC treated upH20 . The resulting RNA preparation was heated to 

60°C and mixed gently to ensure a homogeneous solution prior to aliquoting. An 

aliquot was removed for spectrophotometric and gel electrophoretic analysis.
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2 . 4 . 3  R N A  a n a l y s i s  b y  g e l  e l e c t r o p h o r e s i s

In order to check the integrity of RNA, isolated samples were run on 1.6% (w/v) 

agarose gels. These gels were prepared as outlined in section 2.3.12. The RNA 

samples (5 ¡il) were prepared for electrophoresis by adding 15 (0,1 of RNA sample 

buffer and 3 [xl of RNA loading buffer. The samples were heated to 65°C for 10 min 

prior to loading on the gel, which was run in IX  TAE as described in section 2.3.12. 

As ethidium  bromide is included in the RNA loading buffer the gels did not require 

further staining and could be visualised directly on a UV transilluminator. The 

presence of two strongly staining bands, representing the 28 S and the 18 S 

ribosomal RNAs, indicated intact RNA. Degradation is observed by a smear running 

down the length of the gel.

2.5 PREPARATION OF CELL PROTEIN

Prior to protein isolation cells were examined by phase contrast microscopy to 

determine the condition o f the cell cultures. Viable cell counts were then performed 

as described in section 2.6.3. All buffers required are outlined in Appendix.

2.5.1 Preparation of total cellular proteins

This method was employed to isolate total cellular protein including nuclear proteins 

from  cultured mammalian cells. Approximately 6 x 107 cells from  a cell line were 

used in each protein preparation. Cells were pelleted at 1000 x g for 5 min and 

washed with 10 ml of ice-cold PBS. The cells were then spun at 3,000 x g and all the 

supernatant was removed. The volume of the pellet was estimated and the cells were 

dispersed in five volumes of ice-cold suspension buffer containing freshly-added 

anti-proteolytic enzymes (see Appendix). This step was carried out rapidly to avoid 

proteolytic degradation. An equal volume of 2X SDS gel loading buffer was added, 

immediately after the suspension buffer, at which stage the sample becomes 

extremely viscous. Samples were then placed in a boiling water bath for 10 min. 

W hen required, the DNA in each sample was sheared by sonication for 1 min on full 

power. The resulting lysates were transferred to a microcentifuge tube and 

centrifuged at 10,000 x g for 10 min at room temperature. Supernatants were

71



aliquoted and stored at -20°C. Samples were analysed by SDS PAGE, loading 

approximately 6 x 105 cells per lane as described in section 2.6.5.

2.5.2 Protein electrophoresis, preparation of SDS-PAGE gels

A two phase SDS-PAGE system was used to analyse proteins with a 5% stacking gel 

and a 10% resolving gel as outlined below.

Resolving Gel (10 ml)

10 % resolving gel (ml) 15 % resolving gel (ml)

acrylagel 3.33 5.00

bis-acrylagel 1.35 2.03

1.5 M Tris (pH 8.8) 2.50 2.50

distilled water 2.62 0.265

10% (v/v) SDS 0.10 0.10

10% (v/v) APS 0.10 0.10

TEMED 0.01 0.01

Stacking gel (2.5 ml)

5% stacking gel(ml)

acrylamide 0.42

bis-acrylagel 0.168

1 M Tris (pH 6.8) 0.312

upH20 1.55

10% (v/v) SDS 0.025

10% (v/v) APS 0.025

TEMED 0.0025

2.5.3 Polyacrylamide gel electrophoresis (PAGE)

An ATTO protein gel electrophoresis system was used in this study. Glass plates 

were washed with detergent, rinsed first with tap water and then with dH20  and 

finally wiped in one direction with tissue soaked with 100% (v/v) ethanol. The 

gasket was placed about the ridged plate before assembling plates and securing with
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clamps. The resolving gel was then poured to within 2 cm of the top of the larger 

plate, overlaid with 100% (v/v) ethanol and allowed to polymerise for 45 min-1 hr. 

All traces of ethanol were removed by several washes with dH20  and the stacking 

gel was poured. A clean comb was inserted and the gel was again allowed to set. 

The electrophoresis tank was filled with IX  Tris glycine running buffer to the level 

of the horizontal rubber gasket. After polymerisation the gaskets clamp stands and 

comb were removed. Unpolymerised gel was removed by gently rinsing the wells 

with dH20 , the wells were then straightened using a loading tip. The prepoured gels 

were lowered into the buffer at an angle to exclude air bubbles from the gel buffer 

interface. The gel plates were fixed firmly in place with the notched plate innermost. 

The cham ber formed by the inner plates was filled with IX  running buffer, samples 

were loaded and the electrodes were attached. The gels were run at 30 mA for 

approximately 1 hr. W hen complete the plates were removed, separated and the gel 

was either placed in transfer buffer prior to W estern blotting or stained in Coomassie 

blue for 30 min, with agitation. The gel was then placed in several changes of destain 

(see appendix A) with constant agitation, until all background staining was removed.

2.5.4 Western blot analysis

An SDS-PAGE gel was run as described above with pre-stained markers (New 

England Biolabs). Two pieces of 3MM filter paper were cut to the size of the gel as 

was the nitrocellulose membrane. The sponges from  the transfer apparatus along 

with 2 pieces of 3 MM filter paper and the SDS gel were soaked in transfer buffer. 

One sponge was placed on each side of the transfer apparatus and 1 piece of filter 

paper in turn, on each of these. The gel was placed on one piece of filter paper and 

the nitrocellulose membrane which had been briefly soaked in transfer buffer was 

placed directly onto the gel, ensuring that no bubbles were trapped between any of 

the layers. The second piece of filter paper and sponge were then placed on top of 

the membrane, the transfer apparatus was assembled and placed in the blotting 

apparatus with the gel on the side of the negative (black) electrode and the 

nitocellulose on the positive (red) side. The voltage was set at 80 volts for 2 hr. 

After transfer, the apparatus was disassembled and the membrane was washed briefly 

in TBS to remove any traces o f gel, followed by blocking buffer for 1 hr. The 

membrane was then incubated with primary antibody at 4°C overnight. Sodium
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azide was added to each antibody solution to a final concentration of 0.02% (w/v) as 

a preservative thus permitting reuse of the antibody.

2.5.4.1 Alkaline phosphatase detection

This method of detection was used in all immunoblotting experiments, with the 

exception of detection of p21AVAFl expression, which was detected using ECL. 

EBNA-3A expression was detected using either method, but the ECL protocol was 

more optimal. A fter overnight incubation, the membrane was washed twice in TBST 

(0.1%(v/v) Tween-20) for 10 min and once in blocking buffer for 15 min. The filter 

was then incubated in the secondary antibody, a mouse anti-human alkaline 

phosphatase conjugated antibody (Promega) diluted 1/5000 in 5% blotto, for 1-2 h at 

room temperature, followed by washing three times with TBST for 10 min each. All 

the above incubations were carried out with agitation. Membranes were then placed 

in a clean container and covered with BCIP/NBT substrate. The container was 

placed in the dark at room temperature without agitation for 30 min or longer if 

required. The filter was then rinsed in distilled water to stop the reaction, 

photographed then wrapped in cling film to store.

2.5.4.2 ECL detection

This method was used in the detection of expression of p21/W A Fl. After overnight 

incubation, primary antibody was removed and saved for re-use (up to 3 times). The 

membrane was rinsed x 2, then washed for 3 x 10 min in TBST after which rabbit, 

anti-mouse IgG (DAKO, 1:2000) was added for 60 min. The membrane was washed 

as before and incubated in goat, anti-rabbit antibodies (DAKO, 1:2000) for 60 min. 

The final washing step was as follows: rinsed x 2, 1 x 1 0  min followed by 3 x 5 min 

in TBST, with a final 5 min wash in TBS to remove tween. Freshly-prepared 

detection reagent (Amersham) was added such that the entire surface of the 

membrane was covered and left for precisely 60 s. It was important to work quickly 

from this point. The membrane was then carefully lifted and as much as possible of 

the detection solution was allowed to drain from the membrane, which was then 

wrapped in cling-film and exposed to X-ray film in the dark. Initial exposures were 

for one minute, after which the exposure time was reduced or increased accordingly
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having visualised the result by developing the film. p21 was generally detectable 

within one minute of exposure, but exposure times may be extended if  required, as 

the reaction intensity continues to increase up to approximately 20 min.

2.6 CELL CULTURE METHODS

All cell culture techniques were performed in a sterile environment using a Holten 

laminar air flow cabinet. Cells were visualised with an Olympus CK2 inverted phase 

contrast microscope.

2.6.1 Culture of cells in suspension

All media compositions and media supplements are given in appendix A. The cell 

lines DG75, DG75 tTA, DG75 tTA EBNA 2, DG75 tTA LMP1, M utu 1, Mutu 3 

c95, X50-7, BL41, BL41.B958, IARC.171, IARC 307, IARC 290B, Ag876 III, 

BL72 III, and BL74 were maintained in supplemented RPM I 1640 (see Appendix). 

Additional supplements were added to some culture media see section 2.6.2. 

Cultures were seeded at a density of 2 xlO5 to 5 x 105 cells per ml in 25 cm2 flasks 

and expanded in 75 cm2 flasks. Cells were sub-cultured two or three times per week 

by harvesting into a sterile centrifuge tube and centrifuging at 1000 x g for 5 min at 

room  temperature. The cell pellet was resuspended gently in an appropriate volume 

of fresh media and replaced into the tissue culture flask. All cell lines were 

incubated in a humid 5% CO2 atmosphere at 37°C in a Heraesus cell culture 

incubator.

2.6.2 Media supplements

Supplements were added to the growth media of certain cell lines to (a) improve 

cellular proliferation or (b) to select cells containing transfected plasmids (all media 

supplements are outlined in appendix A). L-cysteine is required for the survival and 

proliferation of most group 1 BL cell lines. However L-cysteine is rapidly oxidated 

under normal culture conditions. To improve proliferation of the group 1 Burkitt 

lymphoma cell line M utu 1 a-thioglycerol was added to growth media as a stable 

substitute for L-cysteine. The a-thioglycerol was dissolved in bathocuproine
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disulfonic acid (BCS) which effectively prevents autoxidation of thiols in liquid 

solutions. Sodium pyruvate was also added to protect against H 2O2 which may be 

generated. HEPES was added to maintain an alkaline pH of 7.4.

The cell lines DG75tTA-EBNA2 and DG 75tTA -LM Pl are tetracycline responsive 

cell lines in which the gene of interest is cloned downstream of a promoter 

containing a binding site for a hybrid tetracycline regulated transactivator (tTA) 

which is constitutively expressed from a second co-transfected plasmid. Tetracycline 

binds to the tTA and prevents it binding to the promoter which remains silent, but 

upon removal of tetracycline from the growth medium the tTA binds the promoter 

sequence and activates transcription. These cell lines were maintained in 

supplemented RPM I containing 1 fig/ml of tetracycline. Every three weeks the 

transfected cells were reselected by the addition of 500 |ig/m l of hygromycin B to 

DG75 tTA, 500 (ig/ml of hygromycin B and 1,000 pg/ml of geneticin (G418) to 

DG75 tTA EBNA2 and 800 [xg/ml of hygromycin and 2,000 (ig/ml of geneticin 

(G418) to DG75 tTA LMP1. The stably transfected cell lines C33A Neo and C33A 

LMP1 were maintained in supplemented high-glucose DMEM  containing 600 (ig/ml 

of geneticin. The parental cell line C33A was maintained in supplemented high 

glucose DMEM.

2.6.3 Cell counts

Cell counts were performed using an improved Neubauer haemocytometer slide. 

Trypan blue exclusion dye was routinely used to determine cell viability. Ten 

microlitres of trypan blue was added to 90 |al of a cell suspension and mixed. A 

sample of this mixture was added to the counting chamber of the haemocytometer 

and cells were visualised by light microscopy. Viable cells excluded the dye and 

remained clear while dead cells stained blue. Cell numbers were ascertained by 

multiplying the average cell count based on 4 individual counts by the dilution factor 

(1.1) and by taking into account the volume of the haemocytometer chamber ( lx  10'4 

ml). Thus, counts were expressed as number o f cells per ml.

2.6.4 Cell storage and recovery
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Cell stocks were prepared for long term storage as follows: 1 x 107 cells in

exponential phase were pelleted and resuspended in 800 jlxI of supplemented RPM1 to 

which 100 |Lil of FCS was added, then placed on ice for 10 min. DMSO was added to 

a final concentration of 10% (v/v), mixed gently and transferred to a sterile cryotube. 

The cryotubes were slowly lowered into the gas phase of liquid nitrogen and 

immersed in liquid nitrogen in a cryofreezer (Cooper Cryoservices Ltd). Cells were 

recovered from liquid nitrogen by thawing rapidly at 37°C and transferring to a 

sterile centrifuge tube containing 5 ml of prewarmed supplemented media. The cells 

were centrifuged at 1000 x g for 5 min, the pellet was resuspended in 5-10 ml of 

fresh supplemented medium, transferred to a culture flask and incubated at 37°C in 

5 % C 0 2.

2.6.5 Induction of gene expression using the tetracycline-regulated system

After counting cells, an appropriate volume was pelleted at 1000 x g for 5 min and 

washed x 3 in sterile PBS. Cells were then incubated in supplemented RPM I for 1 h 

at 37°C. Cells were then washed again once in sterile PBS and seeded at 

approximately 2 x 105 cells per ml in the presence or absence of tetracycline. 

Uninduced cells (Tet+) were washed as per induced cells (Tet-) but were constantly 

maintained in the presence of tetracylcine.

2.6.6 Transient transfections

In all cases transiently transfected cells were incubated for 48 h at 37°C in a 5% C 02  

incubator, before harvesting. Total DNA for transfection was normally co­

precipitated in 100% ethanol the day before transfection, then washed in 70% ethanol 

and resuspendcd in a final volume of 30 |ul T.E pH 7.4 (this pH is very important), 

using the same total quantity of DNA per transfection.

2.6.6.1 Electroporation of B lymphocytes
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Cells were passaged 2 days before transfection. On the day of transfection, cells 

should be at about 5-7 x 105 /ml (definitely less than 106). For each transfection a 60 

m m  culture dish with 5 ml complete medium (RPMI 1640/glutamine/10 %FCS) was 

preincubated at 37°C. 107 cells per transfection were spun at 1000 x g for 5 min and 

washed in a small (one fifth) volume of cold complete RPMI. Meanwhile, DNA was 

added to labelled cuvettes (Biorad, 0.4 mm) and placed on ice. Cells were 

resuspended in cold com plete RPM I at 250 (il medium per 107 cells, and added to 

cuvettes. Each cell/DNA mix was pulsed at 270V/960pE (with capacitance 

extender), and time was recorded in millisecs, and returned to ice immediately. Cells 

must not stay longer than 10 min on ice before being transferred to media. Contents 

of cuvettes were transferred to culture dishes using using a micropipette and yellow 

tip, treating cells gently. Cuvettes were washed with media from the culture dish, and 

placed at 37°C in a 5% C 0 2 incubator for the required amount of time.

2.6.6.2 DEAE Dextran-mediated transfection (modified protocol)

Details of all solutions required for this protocol are given in the Appendix section. 

The day before transfection, cells were seeded at 5 x 105 cells/ml. After 24 h in 

culture, cells were counted again -  it was essential for cell numbers to have almost 

doubled before beginning the transfection, thus ensuring that cell growth is in 

logarithmic phase and that cells are at their optimum for the uptake of DNA during 

transfection. Thus, 5 x 105 cells per transfection were pelleted at 900 rpm  for 5 min. 

All traces of media were removed and cells were washed twice in TBS. All traces of 

TBS were carefully removed using a pipette tip. During the washing steps DNA for 

transfections was prepared in 20 ml sterilins. A total o f 5 (ig DNA per transfection 

was found to be optimal. The DNA for each transfection was made up to 50 jllI with 

TE. Cells for each transfection were resuspended in 250 |0,1 TBS and added to the 

DNA mix. Using gentle swirling, the DNA and cells were mixed. 300 p.1 of DEAE 

D extran (1 mg/ml) was then added to each sterilin, which was gently swirled again to 

mix. The transfection cocktails were incubated at room temperature for 30 min with 

gentle swirling every 5-10 min to allow homogenisation. TBS (10 ml) was added to 

each transfection. M ixes were then spun at 900 rpm for 5 min and supernatant was 

removed taking care not to dislodge any cells from the pellet. Each pellet was

78



resuspended in 1 ml fresh complete medium. A further 9 ml complete medium was 

added to each sterilin and transfected cells were then transferred to 25 cm2 cell 

culture flasks for incubation.

2.6.7 Stable transfections

2.6.7.1 Preparation of drug curve for G418

DG75 cells were grown in RPM I1640 with 10% FCS until just sub-confluent. Cells 

were then plated in 24-well or 96-well culture plates at a concentration of ~1 x 103 

cells/ml and grown overnight before addition of drugs. As cells can divide once or 

twice in selective media that can kill them, it was important to seed cells at low 

density to ensure that cells did not reach confluency before selection could take 

effect. After 24 h, G418 was added in various quantities of geneticin (G418) as 

follows: 0, 500, 1000, 1500, 2000, 2250, 2500, 3000 ¡J-g/ml and cells were grown for 

10-14 days. All cells were maintained in 500 |ig/m l hygromycin B to select for the 

tTA plasmid and 1 jig/ml tetracycline throughout. M edia was changed every 4 days 

during this time and cells were observed for decline of cell numbers under the 

inverted microscope after one week and every day thereafter. At the end of 10-14 

days incubation, trypan blue exclusion was used to evaluate cellular viability in wells 

which still contained cells. The concentration of G418 which just killed all the cells 

was deemed suitable for use in subsequent selection procedures.

2.6.7.2 Stable transfection and selection of pJef-3A

DG75tTA cells were passaged the day before transfection such that cells were at 

approximately 50% confluency at the time of transfection. Transfections were 

carried out in duplicate on each ocassion. Cells (1 x 107) were transfected with 5 (ig 

pJef-3A by electroporation as per section 2.6.5.1. and were allowed to recover for 24 

h in 9 ml media in the presence of tetracycline. The following day 10 ml of fresh 

media containing drugs was added to give a final concentration of hygromycin B at 

800 |Lig/ml, G418 at 2 mg/ml and tetracycline at 1 (ig/ml. Cells were then plated out
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in 96-well plates at 200 |il per well. Tetracycline is stable for 5 days, therefore media 

was changed every 4 days.

2.6.7.3 Immunocytochemistry (fixation and staining of tissue culture cells)

Expression of EBNA-3A in DG75tTA cells was monitored in clones using 

immunocytochemistry following stable transfection experiments. Prior to starting the 

procedure a bath of methanol and acetone were placed at -20°C for 2 h. A cell 

suspension was prepared o f 1 x 106 cells/ml in supplemented RPMI, 50 fri of this 

suspension was placed in a 1.5 ml microcentifuge tube which had a hole pierced in 

the bottom (20G needle). This tube was then centrifuged in a cytospin onto a clean 

microscope slide at 750 x g for 5 min. The slide was allowed to air dry for 5 min 

then placed in ice-cold methanol for 5 min. The slide was then air-dried briefly and 

placed into an ice-cold acetone bath for 1 min 45 s. This procedure served to fix and 

permeate the cells. Slides were left to air dry overnight. Primary antibody (T2.78 

anti-EBNA3A) was diluted 1/50 in PBS with 5% (v/v) FCS, 30 .̂1 of the dilution was 

placed on the cell smear for 30 min in a humid chamber at 4°C. The slide was 

washed ( 3 x 3  min) w ith PBS, taking care to ensure that the slide did not dry out. 

Secondary Ab (Anti-mouse AP, Promega) was again diluted 1/50 in PBS containing 

5% (v/v) FCS, 100p.l was placed on the smear and incubated for 30 min in a humid 

chamber at 4°C. PBS washing was repeated as before and the slide was allowed to 

air dry. Finally, 100 (0,1 o f substrate (BCIP NBT) was added to the smear and colour 

was allowed to develop for a minimum of 30 min. W hen colour was apparent the 

slide was washed with water and viewed under microscope. W hen mounting of slides 

was required, it was im portant not to let slides dry out. A small drop of aqueous 

mountant was added to the slide and a coverslip was placed over the slide without 

trapping air bubbles.

2.6.8 Luciferase assay

Cells for luciferase assay were normally harvested 48 h post-transient transfection. 

After counting cells, an appropriate volume of cells was pelleted at 1000 x g and 

washed twice in sterile PBS. Reporter lysis buffer (IX ; Luciferase Assay System,
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Promega) was added to cells at 20 pil per 106 cells. Lysates were then transferred to 

microcentrifuge tubes and placed on ice. Tubes were vortexed for 10-15 s, 

centrifuged at 12000x g for 2 min and each supernatant was transferred to a fresh 

tube. Samples were stored at -80°C  until required, when 20 |il was taken for assay. 

Samples are stable in lysis buffer over several freeze-thaw cycles. At the time of 

assay, it was im portant to allow sufficient time for detection reagent to come to room 

temperature. In order to obtain a background reading, luciferase activity was assayed 

in initially in the absence of detection reagent. Subsequently, 100 (xl detection 

reagent was added for assay. Luciferase activity levels were adjusted for transfection 

efficiencies, estimated using (3-galactosidase activités from  lacZ reporter construct 

which was co-transfected with all transfections (2.6.6).

2.6.9 P-galactosidase assay

Cells for assay were normally harvested 48 h post-transient transfection. After 

performing a cell count, an appropriate volume of cells was pelleted at 1000 x g and 

washed once in sterile PBS. Cells were resuspended in Reporter lysis buffer (IX ; 

Luciferase Assay System, Promega) at 200 |il per 106 cells and incubated at room 

temperature for 10-15 min. Cells were then centrifuged at 12000 x g for 10 min, each 

supernatant was transferred to a fresh tube and stored at -80°C  until required. Mock 

transfected cells were included as control. Cell extract (30 |il) was added to 3 |il 

100X Mg solution, 66 |ul ONPG and 201 |xl 0.1 M sodium phosphate (see Appendix 

A) and incubated at 37°C for 30 min or until a faint yellow colour had developed. A 

reaction tube was included in which ONPG substrate was omitted to be used to 

obtain a background reading. Reactions were inhibited, when required, by adding 

500 |il 1 M  N a2C0 3 . Optical densities were read at 420nm over a linear range of 0.2 

- 0.8.

2.7 RNASE PROTECTION ASSAY

The ribonuclease protection assay (RPA) is a highly sensitive and specific method 

for the detection and quantitation o f mRNA species. The RiboQuant® RNase
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protection assay system (PharM ingen) was employed during this study. The 

procedure is outlined below.

Day 1: Probe Synthesis

r
RNA preparation

7
Overnight Hybridization

Day 2 : RNase treatment and Purification 
of Protected Probes

Gel preparation

Electrophoresis on Denaturing 
Polvacrvlamide Gel

;
Autoradiography and /or Phosphorimaging

Figure 2.1 Overview of the ribonuclease protection assay protocol.

2.7.1 Probe Synthesis

The [a -32P]UTP, GACU nucleotide pool, DTT, 5X transcription buffer and the 

template DNA set was brought to room  temperature prior to setting up the reactions. 

The following were added to a 1.5 ml microcentifuge tube for each probe synthesis:

RNasin 1 Ml

GACU pool 1 Ml

DTT 2 Ml

5X transcription buffer 4 Ml

Template DNA (HCC-2) 1 Ml

[a -32P]UTP (10 |i.Ci/ |il) 5 Ml

T7 RNA polymerase 1 Ml

The contents of the tube were mixed by gentle pipetting and centrifuged briefly 

followed by incubation at 37°C for 1 hour. The reaction was terminated by adding 2
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|iil of RNase free DNase, mixing gently and incubating at 37°C for 30 min. The 

following reagents were then added to the reactions:

EDTA 20 mM 26 |xl

Tris-saturated phenol 26 |il

Chloroform:isoamyl alcohol (50:1) 25 ¡0.1

Yeast tRNA 2  [i\

The contents were vortexed to an emulsion and centrifuged for 5 min at room 

temperature. The upper aqueous phase was transferred to a fresh tube containing 50 

|il of chloroform:isoamyl alcohol (50:1), the tube was vortexed and microcentrifuged 

(top speed) for 2 min at room temperature. The upper aqueous phase was transferred 

to a sterile 1.5 ml tube to which 50 [il of 4M  ammonium acetate and 250 |il of ice 

cold 100% (v/v) ethanol was added. The tube was inverted to mix and incubated at - 

70°C for 30 min followed by centrifugation at 4°C for 15 min. The supernatant was 

removed and the pellet was washed with 100 of ice cold 90% (v/v) ethanol after 

which the supernatant was removed and the pellet was air-dried for 5-10 min. The 

pellet was solubilised by the addition of 50 jil of hybridization buffer and gentle 

vortexing and contents were collected by brief centrifugation. Duplicate 1 jllI 

samples o f the labelled probe were quantified in a scintillation counter. A maximum 

yield of ~3 x 106 Cherenkov counts/fxl with an acceptable lower lim it of ~3 x 105 

Cherenkov counts/pl was expected. The probe was diluted to approximately 3.9 x 

105 counts/^il, which is recommmended for this particular probe, and stored at -20°C 

until required. Generally probes can only be used for two successive overnight 

hybridizations when labeled with [a -32P]UTP.

2.7.2 RNA preparation and hybridization

RNA was prepared using the RNA isolation method outlined in section 2.4.2 and 20 

Mg o f total RNA was precipitated as follows for each probe hybridization. Each 

RNA sample was made up to 50 |il w ith DEPC-treated upH^O to which 50 |il of 4 M 

am monium acetate and 250 (il o f ice cold 100% (v/v) ethanol were added. The 

samples were mixed by inverting and stored at -70°C for 1 h or at -20°C overnight.
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The precipitated RNA was collected by centrifugation at 12,000 x g for 30 min at 

4°C and the pellet was washed with 90% (v/v) ice cold ethanol. After careful 

removal o f the supernatant and subsequent air-drying, the pellet was resuspended in 

8 |il o f hybridization buffer by gentle vortexing for 3-4 min followed by a brief 

centrifugation. Two microlitres of the probe was then added to each RNA sample 

and mixed by pipetting. A drop of m ineral oil was added to each sample and the 

tubes were centrifuged briefly in the microfuge. Samples were placed in a heating 

block preheated to 90°C, which was immediately turned down to 56°C, allowing the 

temperature to ramp down slowly, and incubated for 12-16 hr. The heating block 

was then turned down to 37°C prior to RNase treatment. Again the temperature was 

allowed to ramp down slowly and then was held at 37°C for 15 m in.

2.7.3 RNase treatments

An RNase reaction solution was prepared by adding 2.5 ml of RNase buffer to 6 |il 

of RNase A + T1 mix, per 20 RNA samples (RNase A 80 ng/|il; RNase T1 250 

U/(il). The RNA samples were removed from  the heating block and 100 jil of the 

RNase cocktail was added underneath the oil into the aqueous layer (bubble). The 

tubes were microcentrifuged for 10 s and incubated for 45 min at 30°C. Before the 

RNase treatment was completed a Proteinase K  mixture was prepared (per 20 

samples) as follows:

Proteinase K buffer (1 X) 390 (il

Proteinase K  (10 mg/ml) 30 jLtl

Y east tRNA (2 mg/ml) 30 (il

An aliquot of 18 (0,1 was added to a sterile 1.5 ml microcentifuge tube for each 

sample. The RNase digests were extracted from  underneath the oil and transferred to 

the tube containing the proteinase K mixture (avoiding transfer of oil). The 

RNase/Proteinase K mixture was vortexed briefly, microfuged quickly and incubated 

for 15 min at 37°C. Tris-saturated phenol (65 jil) and 65 fil of chloroform:isoamyl 

alcohol (50:1) were added to the samples, vortexed to an emulsion then centrifuged 

for 5 min at room temperature. The upper aqueous phase was extracted, avoiding the 

interphase, and transferred to a fresh tube to which 120 (il of 4M ammonium acetate
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and 650 (il of ice cold 100% (v/v) ethanol was added. The tubes were then mixed by 

inversion and were subsequently incubated at -70°C for 30 min. Samples were 

centrifuged for 5 min at 4°C, the pellet was then washed with ice cold 90% (v/v) 

ethanol, the supernatant was removed and the pellet was allowed to air-dry for 5-10 

min. Pellets were resuspended in 5 |ul o f IX  loading buffer (provided in kit). Prior 

to loading onto the gel the samples were heated to 90°C for 3 min and chilled 

immediately in an ice bath.

2.7.4 Electrophoresis

Five percent (w/v) gels were prepared according to the formula given in Appendix. 

The gel apparatus was assembled and gel was cast and generally allowed to set 

overnight (2 h is sufficient). The gel was pre-run for 45 min at 50W  in IX  TBE 

buffer (in upH^O), samples were loaded and electrophoresis was allowed to proceed 

for 2-2.5 h at 50W. After disassembling the apparatus, the gel was lifted from the 

glass plates using a 3MM sheet of W hatmann cut to size and covered with cling film. 

The gel was allowed to drv in the gel-drier for 2 h at 80°C, then was placed in a 

cassette which contained an intensifying screens on each side (optional). The gel was 

subsequently exposed to X-ray film  overnight at -70°C  (or longer if required) before 

developing.

2.8 YEAST TWO HYBRID METHODS

Methods used in YTH-B were similar to those described for YTH-A except where 

stated.

2.8.1 Yeast transformation protocol (modified from Gietz et al., 1992)

A single yeast colony was inoculated in 5 ml YPD broth and incubated at 30°C 

overnight with shaking. This starter culture was diluted in a final volume of 25 ml 

YPD to give an ODéoo of 0.2 (approximately a 1 in 10 dilution) and was then grown 

to an OD600 of betweeen 0.6 and 0.8. Cultures were spun at 3000 x g for 5 min and 

pellets were resuspended in 125 jlxI  0.1 M  lithium acetate. Equilibration was carried 

out in a 30°C waterbath for 15 min. Aliquots of cells (50 |ol) were dispensed into 1.5
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ml sterile eppendorf tubes and 2 |il (1 to 10 fig) DNA plus 5 (il (20 Mg) carrier DNA 

was added (total volume o f added DNA should be no more than 15 |il). The contents 

of each tube were mixed by gently pipetting up and down. The following were then 

added and the contents o f each tube was mixed by gently flicking the tubes: 240 |il 

50% PEG (filter sterilised), 30 (il 10X TE buffer, 30 jlxI 1M lithium acetate, 5 ¡il 

carrier DNA. Tubes were incubated in a 30°C waterbath for 30 min, followed by a 20 

min incubation at 42°C. Tubes were centrifuged at 3000 x g for 5 min, supernatant 

was removed and cells were resuspended in 100 pi sterile distilled water. Each 100 

p,l was spread onto a single YNB plate containing the appropriate concentrations of 

amino acids and incubated at 30°C usually for up to 4 days. (Colonies may take 2 to 

4 days to grow to a diameter of 1-2 mm.)

2.8.2 Transcription Activation Assays

2.8.2.1 X-gal filter lift assays

Five individual colonies from each plate were patched onto the appropriate nutrient 

media and incubated at 30°C for 4 days eg. in YTHS-A, Glu -U-H+T+L and G/R -U- 

H+T+L plates were used to confirm that baits did not transactivate the lacZ 

promoter. Colonies were lifted by overlaying patches on each plate with 

nitrocellulose filters and allowing them  to become wet through. Filters were 

subsequently removed, air-dried for 5 min, and then chilled, colony side up, at -70°C. 

W hatman 3MM filter paper was placed in petri-dishes each containing 3 ml IX  Z 

buffer with 1 mg/ml X-Gal, and allowed to soak through. Filters were then placed 

colony side up on the W hatman paper, incubated at 30°C and monitored for colour 

changes at 30 min, 60 min and overnight.

2.8.2.2 Transactivation of nutrient gene promoters

To test for ability to grow in the absence of a particular nutrient, 5 individual 

colonies from each plate (see transformations above) were patched onto plates 

lacking the appropriate nutrient and incubated at 30°C for 4 days. For example, to
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test for Leu-positive least (YTHS-A), colonies were patched onto Glu-U-H+T-L and 

G/R-U-H+T-L plates.

2.8.3 Repression assay

To ensure that baits entered the yeast nucleus and bind to LexA operators, using the 

Ura+ reporter plasmid, pJK lO l (see table 1). This plasmid expresses high levels of (3- 

galactosidase when gown on galactose-containing medium. pJKlOl also has LexA 

operators positioned between the TATA box and upstream activating site (UAS). 

Transcriptionally inert LexA fusions that bind to the operator in pJK lO l repress 

expression of (3-galactosidase from 2 to 20 fold in the presence of galactose. Plasmid 

pRFHM-1 was used as a positive control for nuclear localisation.

A  rapid, quantitative assay for B-galactosidase activity in liquid cultures was 

employed (adapted from Bartel e t a l , 1993), in which yeast cells are permeabilised 

and the chromatogenic substrate o-nitrophenyl-B-d-galactoside (ONPG) is added in 

excess. After incubation at 30°C, the reaction was stopped by raising the pH to 11, 

inactivating |3-galactosidase. Product formation was determined by 

spectrophotometry.

2.8.3.1 Preparation of cells for (3-galactosidase assay

Y east transformations were performed with the following plasmids using the 

protocol detailed in section 2.8.1.

pJK lO l (negative control) Glu -U+H+T+L

pJK lO l + pRFHM-1 (positive control) Glu -U-H+T+L

A 2 ml overnight culture of each transformation reaction was prepared by inoculating 

colonies in YNB liquid medium as follows and incubating at 30°C with shaking:

pJK lO l + pEG-3B-525 

pJK lO l + pEG-3B-311 

pJK lO l + pLex-3B-525 

pJK lO l + pLex-3B-311 Glu -U-H+T+L

Glu -U-H+T+L

Glu -U-H+T+L

Glu -U-H+T+L
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Pos control - G/R -U+H+T+L

All others - G/R -U-H+T+L

Overnight cultures were diluted by adding 2 mis of the above liquid media and 

grown for 2 to 3 h to an OD 600 of 0.5. Cells were centrifuged at 2500 x g in a tabletop 

centrifuge, resuspended in an equal volume of Z buffer and placed on ice. OD600 for 

each sample was determined (cells in mid-log phase required no dilution to obtain an 

accurate OD reading; however, readings > 0.7 are inaccurate). Two reactions for 

each sample were prepared as follows, with mixing:

a. 100 Ml cells + 900 \x\ Z buffer, b. 50 \il cells + 950 \l \ Z buffer.

One drop of 0.1% SDS and 2 drops chloroform were added to each tube using a 

Pasteur pipette to permeabilise the cells. Samples were then vortexed for 10 - 15 s 

and equilibrated for 15 min in a 30°C waterbath.

2.8.3.2 Assay for P-galactosidase activity

ONPG substrate (0.2 ml of a 4 mg/ml ONPG stock in 0.1 M KPO4, pH 7.0, filter 

sterilised and stored at -20°C) was added to each sample which was then vortexed 

for 5 s. Tubes were immediately placed in a 30°C waterbath and timing was begun. 

W hen a medium yellow colour had developed, the reaction was stopped by adding 

0.5 ml 1 M  Na2C0 3  and the time was noted. (For accuracy, the OD420 should be 0.3 

to 0.7) Cells were centrifuged for 5 mins. at 2500 rpm in a tabletop centrifuge. OD42o 

and OD550 of each supernatant were determined (if the cell-debris has been well 

pelleted, the OD550 - which measures light scattering by cell debris - is usually zero 

and therefore is not necessary to read). Units of activity were calculated using the 

following equation:

U = 1000 X  {OD49D (1.75 X ODssn)!

(t) X (v) X ( O D 6oo) 

where t = time of reaction (min)

v = volume of culture used in assay (ml)

O D 6oo = cell density at the start of the assay 

OD420 = combination of absorbance by o-nitrophenol 

and light scattering by cell debris.

O D 550 = light scattering by cell debris.
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2 . 8 . 4  T r a n s f o r m a t i o n  o f  l i b r a r y  f o r  i n t e r a c t o r  h u n t  ( Y T H S - B )

2.8.4.1 Library transformation (YTHS-B)

The eDNA library in pACT was transformed into yeast strain Y187 using a high 

efficiency protocol (modified from Gietz e t a l , 1992). Transformation was carried 

out by adapting the basic protocol according to section 2.8.1 to large-scale cultures. 

In the case of sequential transformation of bait and library DNA, the transformants 

can be grown in selective media or in YPD before the second transformation; the 

cells loose plasmids at a low rate such that selective pressure is not absolutely 

required at this step. M aintaining transformed cells in selective minimal media gave 

poor growth rate in bulk (400 ml) cultures. Use of YPD complete media speeds up 

growth, but resulted in loss o f bait plasmid unless cells were first maintained for a 

day or so in selective broth in a smaller culture (50 ml). Also high quality carrier 

DNA was found to be critical. Sheared salmon sperm DNA (sssDNA) was prepared 

using the optimised protocol below (Gietz e t a l , 1992) as good quality is especially 

important for transformation of library DNA. The sssDNA quality was assessed by 

agarose gel electrophoresis on a 0.6% gel, which should give a smear of DNA 

ranging 2-15 kb, with an average size of about 7 kb. Oversonication leading to an 

average size of about 2 kb will usually cause a reduction in transformation 

efficiency. In addition, 10% DMSO has been found to increase efficiencies by 3-5 

fold. It is important that LiAc and PEG solutions are freshly prepared. Also heat 

shock should be timed to precisely 15 min.

2.8.4.2 Preparation of carrier DNA

Salmon sperm DNA (Sigma grade III sodium salt) was dissolved in T.E buffer pH

7.5 at a concentration of 10 mg/ml by stirring at room temperature overnight. The 

DNA was sheared by sonicating at 75 % power for 2 x 30 s pulses and aliquoted into 

0.5 ml volumes in eppendorfs. Sheared salmon sperm DNA (sssDNA) was then 

extracted with an equal volum e of phenol followed by phenol/chloroform extraction 

and finally extracted with chloroform as described previously in DNA preparation 

methods. The DNA was then precipitated by adding one tenth volume 3 M sodium 

acetate and 2.5 volumes 100 % ethanol. Tubes were mixed by inversion and spun
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immediately at 12000 x g for 15 min. The DNA pellets were then washed in 70% 

ethanol, dried briefly at room temperature and resuspended in sterile T.E. pH 7.5 at 

5-10 mg/ml. SssDNA was denatured by boiling for 20 min and stored at -2 0  °C. 

D irectly before use sssDNA was reboiled for 5-10 min then chilled on ice.

2.8.5 Harvesting transformants

Plates were placed at 4°C for about 4 h  to harden the agar. Approximately 3 ml TE 

buffer (pH 8.0) was added to each plate and left for 1-2 min. Colonies were collected 

by careful scraping and gentle pipetting as it was important to avoid scraping any 

agar. Cells were washed twice with 3 volumes of TE buffer by pelleting each time at 

2000 x g for 5 min in 20 ml sterile universal containers. The pellet was resuspended 

in glycerol solution to give a final volume of 2 ml. Solutions were then mixed by 

vortexing at low speed and frozen at -80°C in 1 ml aliquots.

2.8.6 Determination of plating efficiency

An aliquot of library transformants was thawed and 100 |il was diluted to l ml in 

YNB G/R -U-H-T+L broth. Cells were then incubated at 30°C with shaking to 

induce the GAL1 promoter on the library. Normally, there is almost no increase in 

cell number during this time and any increase can be neglected when calculating the 

number o f CFUs or transformants to plate onto Leu- selection plates. Serial dilutions 

were then prepared using the same broth and 100 |xl o f each dilution was spread on 

YNB G/R -U-H-T+L plates and incubated for 4 days at 30°C. Colonies were counted 

and used to estimate plating efficiency in colony forming units (CFUs) per unit 

volume of frozen cells. This should be in the order of 108CFUs/100 jlxI.

2.8.7 Selection of interactors

Synthesis of activation-tagged cDNA-encoded proteins was induced by thawing an 

aliquot o f stored transformants and diluting 10-fold in YNB G/R-U-H-T+L broth. 

Cultures were incubated with shaking for 4 h to induce the GAL12 promoter. 

Cultures were incubated with shaking for 4 h to induce the GAL1 promoter. Cells
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were pelleted at 3000 x g for 4 min and resuspended in sterile distilled water. 

Cultures were plated onto YNB G/R -U-H-T-L using 106 CFUs (determined from 

plating efficiency) per 100 mm plate. Plates were incubated at 30°C for 2-5 days, as 

some putative interactors appear sooner than others.

2.8.8 DNA isolation for recovering plasmids from yeast cells

A 2 ml culture of yeast carrying the plasmid of interest was grown in selective 

medium (YNB-L) to stationary phase (about 3 days). A 1.5 ml aliquot of culture was 

transferred to an eppendorf and centrifuged for 30 s at 4000 x g, washed in 200 jj,1 

sterile distilled water at room  temperature and cells were again pelleted at 4000 x g. 

Supernatant was then aspirated off and cells were resuspended in 200 |il breaking 

buffer by pipetting up and down. A volume of acid-washed glass beads equivalent to 

about 200 fil was added, followed by 200 ul of phenol/chloroform/i soamylalcohol at 

a ratio of 25:24:1. Eppendorfs were vortexed at maximum for 2 min and then spun at 

10,000 x g for 5 min at room  temperature. Supernatant was removed and 2.5 volumes 

ethanol was added, mixed and incubated on ice for 10 min (or -20°C  for 1 h). 

Supernatant was again removed and the pellet was washed with 200 |Lil 70% ethanol. 

After air-drying for about 15 min at room temperature, the pellet was resuspended in 

5 fil sterile distilled water.

2.8.9 Preparation of yeast protein lysates for SDS-PAGE

Using colonies from the transactivation assay transformations, overnight cultures of 

the 4 baits were prepared by inoculating in 2 ml. YNB liquid medium containing Glu 

-U-H+T+L and incubating at 30°C with shaking. Controls were similarly prepared as 

follows: EGY48 in 2 mis. YPD (negative control)

pEG202 in 2 mis. YNB/Glu +U-H+T+L (positive control)

Cultures were diluted 1 in 2 by adding 2 ml. YPD and grown for 2 - 3 hours at 30°C 

with shaking to an OD 600 of approx. 0.5. One mililitre of each culture was 

centrifuged at 4000 x g for 15 min and each pellet was resuspended in 2X FSB and 

frozen at -70°C  for a minimum of 15 min. Just before loading, samples were boiled
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for 5 min, spun at 12000 x g for 30 s and 20 fxl of supernatant was used to load the

2.8.10 Western immunoblotting

SDS PAGE and immunoblotting was performed according to standard methods 

section 2.5.2-2.5.4 using 10% acrylamide minigels.

YTHS-A: Proteins were transferred to PVDF membranes by either semi-dry or wet- 

blot techniques. Proteins were transferred to PVDF membrabes (as recommended). 

LexA-EBNA-3B fusion proteins were detected by incubation with anti-LexA 

(1:1000) overnight at 4°C with secondary antibody, Protein A peroxidase (1:1000), 

incubation period of 1 h at room  temperature with shaking. Detection of proteins was 

performed using an ECL detection reagent (Amersham).

Y TH S-B: Nitrocellulose membranes were used in association with anti-HA primary 

antibody (BM). An anti-mouse alkaline phosphatase conjugate (Promega) was used 

as secondary antibody, thus expression was detected using BCIP/NBT substrate.

2.8.11 Dot blotting (YTHS-A)

A total of 5 (il o f each bait sample or control was gradually dotted using a capillary 

tube, onto PVDF membranes, allowing sample to dry between each 1 |il application. 

Detection was as per W estern immunoblot detection procedure using BM 

Chemiluminescence Blotting Substrate (POD). Yeast strain EGY48 was included as 

negative control while EGY48 containing pSH18-34/pSH17-4 served as a positive 

control expressing LexA.
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CHAPTER 3

REGULATION OF CELL CYCLE-ASSOCIATED 

GENES BY LMP1
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3.1 IN T R O D U C T IO N

This study set out to investigate aspects of cell cycle regulation mediated by EBV. To 

this end, the levels of mRNA of a range of cell cycle-related genes were examined by 

RPA in a selection of latency group I and group III cells as well as LCL cell lines. It is 

now generally accepted that the EBV latent gene products are responsible for the 

activation of the resting B cell and the induction of continuous proliferation. As LMP1 is 

a key effector of EBV-mediated transformation of B cells, the contribution of this 

oncoprotein to EBV-mediated deregulation of the cell cycle (in the absence of other 

latent viral proteins) was investigated, based on findings of the preliminary RPA 

experiments using a range of EBV-related cell lines.

3.1.1 T he  Cell Cycle

The cell cycle is a collection of highly ordered processes that result in the duplication of 

a cell. A critical feature of the cell cycle is that it precisely duplicates the cell, and this 

requires that cell cycle events be executed in proper sequence. Sophisticated cell control 

mechanisms must ensure that each round of DNA replication (S phase) is followed by 

cell division (mitosis/M phase) and that one phase should not follow until the other has 

been successfully completed. The cell cycle can conveniently be divided into four 

phases. Chromosome duplication occurs during S phase and chromosome segregation 

plus cytokinesis during M phase. A Gj phase intervenes between M and S, while a G2 

phase separates S from M (Figure 4.1). The pathways that render one cell cycle event 

dependent upon the completion of another are called checkpoints. Checkpoints can be 

thought of as the set of intracellular conditions that must be satisfied for cell cycle 

progression to continue, and thus maintain the order and timing of cell cycle events. 

Checkpoints also monitor the integrity of DNA and mediate cell cycle arrest and repair 

processes in response to DNA damage (reviewed by Elledge, 1996; Weinert and Lydall, 

1993; Murray and Hunt, 1993; Pines 1992; Coats and Roberts, 1996).

We now know that much of the regulation of the cell cycle in eukaryotes is conserved 

throughout evolution and in recent years a great deal of research interest has resulted in
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significant advances in our understanding of these very sensitive and sophisticated 

control mechanisms. In particular, research interests are aimed at understanding the 

breakdown of these controls, which can result in a variety of pathological consequences, 

including tumorigenesis. Oncogenic processes exert their greatest effect by targeting 

particular regulators of G t phase progression (reviewed by Harper and Elledge, 1992; 

Weinert and Lydall, 1993; Hunter and Pines, 1994). During the Gi phase, cells respond 

to extracellular signals by either advancing toward another cell division or withdrawing 

from the cycle into a resting state (Go). Thus, interference with control mechanisms at 

cell cycle checkpoints can lead to uncontrolled proliferation of cells.
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F ig u re  3.1 S ch em atic  re p re se n ta tio n  o f  th e  m a m m a lia n  cell cycle. Cyc, cyclin: CDK. c y c lin -  

dependent kinase. Adapted from Coats and Roberts, 1996.
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3.1.2 C yclin /cdk  com plexes

Central to cell cycle regulation are a set of serine/threonine protein kinases that are 

activated only when bound by a cyclin partner i.e. cyclin-dependent kinases (cdks / 

catalytic subunits) bind to cyclins (regulatory subunits) to form active cyclin-cdk 

complexes. Nine different cyclins have been identified to date and are designated A 

through I (For reviews, see Sherr, 1993; Pines, 1993). The asssociation of cdks 1 to 7 

with particular cyclins are precisely-timed events in the cell cycle. Cyclin-cdk 

complexes form holoenzymes that phosphorylate the Retinoblastoma-family proteins 

(pRb, p i07, pl30). Phosphorylation results in inactivation of Rb proteins which have a 

central role in negative regulation of the cell cycle. The transcription factors E2F (1-4) 

and DP 1 ( I and 2) which drive the DNA replication machinery are negatively regulated 

by direct interaction with pRb, p i07 and p i30. In this way, cdks drive cell cycle 

progression by removing the inhibitory effect of Rb proteins. The main cyclin/cdk 

complexes formed in vertebrate cells are cyclin D-cdk4 (Go/G|), cyclin E/cdk2 (G |/S), 

cyclin A7cdk2 (S) and cyclin Bl-cdkl (G 2/M ) (reviewed by Pines, 1994). Specific 

substrates for cyclin-cdk complexes include nuclear lamins, histones, oncogenes (e.g. c- 

abl and SV40 large T antigen), tumour suppressor genes (eg. retinoblastoma protein, 

Rb), nucleolin and others. The activated cdk can be inactivated through several 

pathways eg. levels of cyclins are regulated at the level of transcription as well as by 

targeted degradation via the ubiquitin pathway. Cdk activity is further regulated by 

activating or inhibiting phosphorylation, and by small proteins known as the cdk 

inhibitors or the CKIs (Xiong et al, 1993; Harper et al, 1993; El-Deiry, 1993).

3.1.3 C yclin -dependen t k inase  in h ib ito rs  (CK Is)

Recent evidence suggests that regulated inhibition of the cdks is central to cellular 

responses such as differentiation, senescence, DNA damage and perhaps even apoptosis 

(Elledge et al, 1996; Grana and Reddy, 1995; Sherr, 1996). A group of small proteins
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known as the cyclin-dependent kinase inhibitors (CKIs) are central to this regulation 

process. CKIs bind to cyclins, cdks or their complexes, thus inhibiting their activity at 

precisely-timed points in the cell cycle. When cells are exposed to external insults, such 

as DNA-damaging agents, negative regulation of the cell cycle occurs; CDK activities 

are inhibited by CKIs and the cell cycle is arrested in either G| or G2 phase, thus 

preventing cells from prematurely entering into the next stage of the cell cycle before 

their DNA is repaired.

Mammalian cells possess two classes of CKIs which differ in structure, mechanism of 

inhibition and specificity (reviewed in Harper and Elledge, 1996; Sherr and Roberts, 

1995; Xiong, 1996). The p21 or INK family of inhibitors consisting of p21 (CIP1, 

WAF1, SDI1, MDA-6, PIC1), p27 (KIP1) and p57 (KIP2) are general inhibitors of the 

G1S Cdks. Homology between family members is limited to a conserved amino- 

terminal 60 residue domain responsible for kinase binding and inhibition. p27 mediates 

growth arrest induced by transforming growth factor beta (TGF(3), contact inhibition or 

serum deprivation and is thought to play a critical role in negative regulation of cell 

division in vivo (Sherr, 1996). Recently, high level expression of p27 from adenovirus 

(Ad) vectors has been shown to induce apoptosis in tumour cell lines (Wang et al, 1997). 

The second class of CKIs, the INK4 (inhibitor of cdk4) family are specific inhibitors of 

cyclin Dl/cdk4 or cdk6 complexes. This family of ankyrin-repeat proteins includes pl6  

(INK4a), p i5 (INK4b), p i 8 (INK4c) and p i 9 (INK4d). CKIs vary in their ability to 

promote or protect against cell death i.e. while p i6, p i8 and p27 appear to be most 

effective at inducing cell death, p21 and p 19 promote cell suvival (Schreiber et al, 

1999).

It is not yet fully understood why there are so many CKIs and what specific roles the 

individual CKIs have in cell cycle regulation, differentiation and tumorigenicity but 

currently this is an area of active study. Mutations within the p 16 gene and loss of p i 6 

expression are frequent events observed in both tumour cell lines and in various 

carcinomas (Sherr, 1996). The p i 8 and p 19 CKIs have not, as yet, been as well 

characterised. Both are frequently expressed in cells of the myeloid lineage (Schwaller et
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al, 1997) and p i8 is thought to play a pivotal role in terminal differentiation of late- 

stage B cells to plasma cells (Morse et al, 1997).

3.1.4 p21 /W A F l cdk  inh ib ito r.

p21 was the first of the CKIs to be identified (Harper et al, 1993; Xiong, 1993: El-Deiry, 

1993) and has since been found to share homology with p27 and p57 which together 

form a family of universal inhibitors of the G[S cdks. p21 was originally documented as 

an inhibitor of cdk2, cdk4 and cdc2 (cdkl) kinase complexes (Gu et al, 1993; Harper et 

al, 1993; Xiong et al, 1993). More recently it was shown that p21 can also inhibit cdk3 

and cdk6 kinases and that p21 is most effective towards G| cyclins (Harper et al, 1995). 

Indeed when overexpressed in transiently transfected cells, p21 can cause cell cycle 

arrest in a variety of cell lines (Guan et al, 1994; Harper et al, 1995; Medema et al, 

1995), suggesting that it can interfere with cyclin-dependent activity in intact cells. p21 

has also been implicated as an effector of the TGF(3 growth inhibitory signalling 

pathway (Datto et al, 1995). This 21 kDa nuclear protein is a dual specificity inhibitor in 

that it not only binds to cdks but also associates with the DNA replication factor, PCNA 

via the former’s unique carboxy-terminal domain (Warbrick et al, 1995). PCNA 

functions in both DNA replication and repair as a subunit of DNA polymerase delta. 

p21 therefore can directly inhibit DNA replication in the absence of cyclin-cdk 

complexes (Waga et al, 1994) and overexpression of this interaction domain in 

mammalian cells has been reported to reduce the fraction of cells found in the S phase 

cells (Luo et al, 1995). Strikingly, whereas in normal cells most of the cdk-cyclin 

complexes are found associated with p21 (and PCNA), this association is absent in most 

transformed cells (Xiong et al, 1993). An unusual feature of p21 function is that multiple 

inhibitor molecules are required for cdk inhibition, such that complexes containing a 

single inhibitor molecule are catalytically active, whereas those containing multiple p21 

subunits are not. Changes in the stoichiometry of p21 appear to be sufficient to account 

for the conversion (Zhang et al, 1994).
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The p21 gene contains binding sites for the p53 tumour suppressor protein in its 

promoter and studies have shown that the transcription of p21 can be directly regulated 

by p53 (Lee et al, 1995; Haendler et al, 1987). p53-mediated growth arrest as a result of 

genotoxic damage appears to be mediated at least in part by induction of p21 (El-Deiry 

et al, 1993; Dulic et al, 1994). Indeed. p21 has been defined as a cardinal mediator of 

p53-induced G| checkpoint control. Other reports have shown that p21 can be induced 

by p53-independent mechanisms (Michieli et al, 1994; Sheikh et al, 1994). For example, 

in cellular differentiation, p53-independent induction of p21 has been observed as an 

immediate early response to a variety of physiological and chemical stimuli. Various 

researchers have reported that p21 expression has a protective effect against apoptosis 

induced by p53 as well as other agents (Gorospe et al, 1997; Lu et a l, 1998). However, 

despite extensive searches, very few tumours have been shown to have mutations in 

their p21 genes (Harper and Elledge, 1996) and p21-null mice appear to develop 

normally and show no increased incidence of neoplasia (Deng et al, 1995).

3.1.5 p53 and  p R b  tu m o u r sup resso r genes

The fundamental importance of p53 as a tumour suppressor is underscored by the 

statistic that at least one in six of the population will develop cancer due to defective p53 

function. p53 is a 53 kD nuclear multifunctional phosphoprotein which guards the 

stability of the genome by inhibiting cell proliferation when DNA damage occurs 

(Canman and Kastan, 1995). One way the p53 protein acts is by behaving as a 

transcription factor to upregulate specific target genes, which ultimately results in either 

cell growth arrest or apoptosis. These genes include mdm2 (which negatively controls 

p53 expression), GADD45 (involved in DNA replication), the pro-apoptotic bax gene 

and p21 which inhibits kinases responsible for G r S transition, thus arresting the cell 

cycle at the G| phase (reviewed by Milner. 1996). Wild type p53 protein has a very short 

half life and is usually not detectable with monoclonal antibodies in normal tissues. 

Mutant p53 proteins typically have an increased half-life, accumulate to high levels, and 

are detectable with mAbs. Mutations in the p53 gene have been detected in a wide 

variety of cancers (Levine et al, 1993), the majority of which inactivate the tumour
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suppressing function of the protein (loss of function mutants), while others confer 

transforming activity (oncogenic mutants) (Dittmer et al, 1993). Elevated expression of 

p53 is a frequent finding in different tumour types (including Burkitt’s Lymphoma), 

indicating that at least in some tumours, in addition to mutation of the p53 gene, high 

levels of mutant protein are required for malignant transformation in vivo (Farrell et al,

1991).

Deregulation of pRb function(s) is a fundamental characteristic of tumorigenesis 

(reviewed by Mulligan and Jacks, 1998). The three known members of the Rb family of 

proteins, in their activated state, associate with and modulate the activity of several cell 

transcription factors, including the E2F and DP gene families. In this way, by inhibiting 

transcription of genes required for DNA replication, Rb proteins act to block Gl/S 

progression in normal cells. Thus, interference with this fundamental control mechanism 

can result in uncontrolled proliferation of cells. While pRb has a well-established role in 

tumour suppression (Rb-/- mouse embryos die within 1 3 —15 days of gestation), the 

activities of pl07 and pl30 in tumour suppression remain unclear. Interbreeding studies 

using mutant mouse strains have revealed significant functional overlap within the Rb 

gene family although distinct in vivo functions are also indicated, which are only 

recently beginning to emerge (reviewed by Mulligan and Jacks, 1998). In lymphocytes, 

p 107 fully compensates for p 130 deficiency, and the absence of both might lead to 

compensation by pRb and other as yet unidentified protein(s). Thus, despite their 

diversification and specialisation, currently available in vivo assays suggest that the pRb 

family of proteins act in a coordinated fashion to regulate at least some cellular functions 

(reviewed by Stiegler et al, 1998; Grana et al, 1998).

3.1.6 E p ste in -B arr v iru s , tum origenesis an d  the cell cycle

Increasing evidence suggests a critical role for mammalian cell cycle regulatory proteins 

in tumorigenesis. Progression through the mammalian cell cycle is controlled by the 

regulatory interplay between distinct positive and negative regulators (reviewed by 

Coats and Roberts, 1996, Murray and Hunt, 1993). This passage through the individual
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phases of the cell cycle is affected by viral oncoproteins which can provide their host 

cells with additional growth stimuli, thereby extending their proliferative capacity. 

Virally transformed cells fail to cease proliferation in response to many growth- 

suppressing signals, implying that major cell cycle controls are lost in such cells.

In recent years, striking parallels have emerged in the strategies used by small DNA 

tumour viruses to transform cells. Two cellular pathways are disrupted by oncoproteins 

of Adenovirus, SV40 and the oncogenic strains of the human papilloma virus (HPV), 

involving interference with the p53 and pRb pathways. The discovery that the p53 

dependent pathway is functional in EBV-immortalised cell lines (Allday et al, 1995) 

demonstrated that one ami of this common transformation strategy is not required by 

EBV to immortalise primary B lymphocytes, suggesting that EBV may differ 

significantly from the small DNA tumour viruses in this regard. Many aspects of EB V- 

mediated immortalisation resemble the normal programme of B lymphocyte activation, 

suggesting that EBV achieves the immortalisation of B lymphocytes by substituting for 

the stimuli these cells normally require for proliferation. EBV induces the same cell 

cycle regulating proteins as polyclonal stimuli in primary B cells, bypassing the 

requirement for antigen, T cells and growth factors (Kempkes et at, 1995). One model 

suggests that one component of EBV-dnven cell proliferation involves the modulation 

of the activity of pRb and p i07 (and potentially other substrates), following the 

activation of a normal cellular phosphorylation pathway. It is significant that pRb is not 

however functionally inactivated as a result of immortalisation by EBV as indicated by 

the absence of a rise in p i6 levels which is normally subject to negative regulation by 

pRb (Cannell et al, 1996). Thus, it appears that EBV is able to immortalise primary B 

lymphocytes without functionally inactivating either p53 or pRb.

Mutations and elevated expression of the p53 tumour suppressor gene are two of the 

factors that can play a role in malignant transformation or tumour cell growth of 

Burkitt’s Lymphoma. BL cells with p53 lesions have been shown to be relatively 

resistant to DNA-damaging drugs when compared to LCLs which induce 

transcriptionally active p53 as part of a pro-apoptotic response. Allday et al (1995)
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found that BL cells remain relatively viable when challenged with drugs such as 

cisplatin. Mutations in p53 have been found in approximately 33% of BL biopsies and in 

at least 63% of BL cells lines. In 65% of BL cell lines studied the wild type allele is lost 

and the cells express the mutant p53 allele at elevated levels. In general, single 

nucleotide substitutions which result in amino acid changes are found. In these studies, 

no EBV protein was found to be associated with p53 and no correlation has been found 

between EBV status and p53 mutation status in BLs. Various different mutants of p53 

have been observed to lose the suppressor function, to gain a dominant transforming 

activity or to be unaffected. In any case, in addition to mutation of p53, it appears that 

elevated levels of mutant p53 protein are required for transformation (Farrell et al, 1991; 

Balint and Reisman, 1996)

EBV efficiently converts resting human B cells into immortalised cell lines, referred to 

as lymphoblastoid cell lines (LCLs), in which the normal mechanisms that control cell 

cycle and apoptosis are permanently dysregulated. At least six viral genes are essential 

for growth transformation of resting B cells: the nuclear proteins EBNA-1, -2, -3 A, -3C 

and EBNA-LP and the latent membrane protein, LMP1 (reviewed by Farrell, 1995) 

suggesting that a complex series of events are needed to override normal growth 

controls. Upon infection of resting B cells with EBV, cells enter the cell cycle, with 

DNA synthesis beginning at approximately 48 hours, accompanied by increased 

expression of cyclin E and PCNA, two established markers of Gi/S progression. These 

events are preceeded, however, by the expression of cyclin D2, which to date is the 

earliest cellular gene known to be activated by EBV infection. Cyclin D2 is normally 

undetectable in primary B cells. Expression of EBNA2 and EBNA-LP has been shown 

to be sufficient to induce cyclin D2 expression, thus cooperating to cause Go to G| 

transition during B cell immortalisation (Sinclair et al, 1994; reviewed by Farrell, P. 

1995). Using quantitative RNAse protection assays, cyclin D2 mRNA was shown to be 

increased at least 100-fold as a result of infection of primary B cells with EBV. Similar 

fold increases were seen in cdkl, cyclin E and CD23 using RT-PCR, while B-myb and c- 

myc mRNA were upregulated by at least 10-fold in LCLs (Sinclair et al, 1994).
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One study found that pRb, p i30 and p i07 were readily detectable by Western blot 

analysis of total protein lysates isolated from quiescent primary B lymphocytes. 

Following EBV-mediated immortalisation of these cells, the relative level of p i30 

protein was found to decrease, while in contrast, levels of p i07 and pRb appeared to 

increase (Cannel et al, 1996). The apparent contradiction of an increase in negative 

regulators of the cell cycle may be explained by a decrease in the mobility of both pi 07 

and pRb, which is characteristic of their hyperphosphorylation and inactivation. The 

changed mobility of pRb is an early event during immortalisation and is readily 

detectable by 52 hours post-infection.

EBNA2, one of the first genes expressed after EBV infection of B cells (Allday et al, 

1989), is a transcriptional activator of viral and cellular genes and is central to the 

transformation potential of the virus. Using recombinant EBV in which the expression of 

functional EBNA2 is dependent upon the addition of oestrogen, it has been shown that 

EBNA2 does not perturb the physiological order of cell cycle progression but rather 

induces B cell activation and entry into the cell cycle by inducing and maintaining the 

expression of early Gi regulating proteins, such as cyclin D2, cyclin E and cdk4, while 

cdc2 (cdkl) and cdk2 are constitutively expressed (Kempkes et al, 1995). Shortly after 

upregulation of cyclin D2, there is a significant shift of Rb to the hyperphosphorylated 

state. E2F1, a transcriptional activator of genes involved in DNA synthesis (which is 

maintained inactive by binding to the hypophosphorylated form of Rb) becomes 

detectable concomitantly with the modification of Rb. Expression of LMP1 and c-Myc 

preceed accumulation of E2F-1, suggesting that E2F-1 is not involved in transcriptional 

activation of c-myc after reactivation of EBNA2, but other members of the E2F family 

may be involved as the c-myc gene contains an E2F site in front of it’s second promoter. 

In the absence of EBNA2 about half of the cells enter a quiescent, non-proliferative 

state whereas the others die by apoptosis, following transformation of primary B cells 

with this mutant virus. Growth arrest occurrs at G| and G? stages of the cell cycle and a 

role in terminating S phase can not be excluded, indicating that functional EBNA2 is 

required at different restriction points of the cell cycle. Since EBNA2 is a pleiotropic 

activator of the other EBNAs and the LMPs, many of the cellular events observed upon

103



EBNA2 activation here may be due to activation of viral genes downstream of EBNA2, 

in particular LMP1 which has the most profound effects on cell growth.

3.1.7 Effects of LMP1 on aspects of the cell cycle.

The EBV-encoded LMP1 protein plays an important role in the immortalisation of B 

cells infected with EBV. Expression of exogenous LMP1 in EBV-negative BL cells has 

been associated with an increased resistance to apoptosis induced by serum starvation 

(Henderson et a l , 1991), an effect which has been attributed to upregulation of the level 

of Bcl-2 protein. The oncogenic activity of Bcl-2 appears to result from its ability to 

promote cell survival rather than cell proliferation. Another protein which may play a 

role in the LM Pl-mediated pro-survival effect is A20, a zinc-finger protein that confers 

resistance to T N Fa cytotoxicity (Henderson et a l , 1991; Rowe e t a l , 1994; Laherty et a l ,

1992). It has been shown that LMP1 blocks WT p53-triggered apoptosis, but has no 

effect on G| cell cycle arrest induced by WT p53. p21 is probably an important 

downstream effector of p53-induced cell cycle arrest and/or apoptosis. Recent data 

clearly show that LMP1 does not interfere with p53-mediated induction of p21. WTp53 

also induces expression of the pro-apoptotic gene, b a x . As the ratio between bax and 

bcl-2 determines whether a cell will enter apoptosis or survive after receiving an 

apoptotic signal, it is thought that LMP1 may block p53-induced apoptosis by 

upregulating bcl-2 and thereby counteracting the apoptosis-promoting effect of bax 

(Okan et a l , 1995). Arvanitakis e t a l (1995) have shown that the presence of WT EBV or 

LMP1 results in the loss of TGF[3-mediated growth inhibition in human B cells. In their 

study, LMP1 induced the expression of cyclin D2 (normal B cells or EBV-negative BL 

cells do not express D-type cyclins), thus maintaining pRb in the hyperphosphorylated 

(non-functional) form and allowing the cell to proceed through the cell cycle regardless 

of the presence of TGFp. A study which employed tetracycline-regulated expression of 

LMP1 found that LMP1 had a cytostatic effect in the EBV-negative BL cell lines, DG75 

and BJAB and the EBV-positive Akata cell line (Floettmann e t a l , 1996). The cytostatic 

effect was shown to be due to an accumulation of cells at the G2/M phase of the cell 

cycle, suggesting a novel function for LMP1 in controlling the proliferation of EBV-
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infected cells by regulating progress through G2/M. These data did not necessarily 

contradict a previous report which found that LMP1 induces a Gi to S transition (Peng 

and Lundgren, 1992) as DNA synthesis (S phase) may continually be stimulated in 

cycling LMPl-positive cells (Wang et al, 1988).

3.1.8 Tetracycline-regulated gene expression

In order to study the effects of LMP1 expression, an established tetracycline-regulated 

inducible expression system was employed. For comparison, expression of EBNA2 (also 

a main effector of EBV-mediated phenotypic change) was induced in a similar manner 

and included in initial experiments. The tetracycline regulated system used by 

Floettmann et al., (1996) is based on that developed by Gossen and Bujard (1992), in 

which the gene of interest is cloned downstream of a promoter containing binding sites 

for the hybrid tetracycline-regulated transactivator (tTA). The plasmid tTA encodes a 

fusion protein of the sequence- specific DNA binding tetracycline repressor (TetR) and 

the C-terminal domain of the herpes simplex virus VP16 transactivator. A second 

plasmid contains the gene of interest cloned downstream of seven copies of the 

Escherichia coli TnlO tetracycline operator (tetO) contiguous with a CMV-IE minimal 

promoter. When tetracycline is present, it binds to the tTA preventing it binding to the 

promoter. Upon removal of tetracycline the hybrid TetR binds to the tetO site 

positioning the VP 16 domain so that it can transactivate the CMV-IE promoter (Gossen 

and Bujard, 1992).

Stable cell lines containing plasmids in which EBNA2 and LMP1 expression was 

regulated by tetracycline were generated by Floettmann et al., (1996) as follows: The 

tTA expressing plasmid pUHD15-l was modified by the addition of a hygromycin 

resistance gene under the control of an SV40 promoter creating the drug-selectable tTA- 

expressing vector pJEF-3. A neomycin resistance gene under the control of an SV40 

promoter was cloned upstream of the tTA responsive promoter of pUHD10-3 to create 

the responsive vector pJEF-4. The EBNA 2 coding with a 5’ rabbit /3-globin intron was
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cloned into pJEF-4 to produce pJEF-31 (Figure 3.1). The LMP1 cDNA was inserted 

into pJEF-4 to produce pJEF-6. pJEF-3 was then transfected into DG75 to give the 

stable cell line DG75 tTA, which was then transfected with pJEF-31 producing the cell 

line DG75 tTA EBNA2 or pJEF-6 giving the cell line DG75 tTA LMP1 (Floettmann et 

a l . , 1996). This system allowed examination of either EBNA 2 or LMP1 in the same 

cell background before and after induction of the EBV protein thus eliminating clonal 

variations which may occur between cell lines.
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T e t r a c y c l i n e  r e g u l a t e d  c e l l  l i n e s  DG75 tT A  EBNA2/DG75 tT A  LMP1

The host cell line DG75 is stably transfected with two plasmids pJEF-3 and pJEF-31 or pJEF-6 which are 

selected during cell culture using the drugs Hygromycin and G418 respectively.

A tetracycline regulated 

transactivator (tTA) 

constitutively expressec 

n.TRF3

Tel
□

tTA tTA+Tet=Inactive

1  Removal of Tet=active tTA

Active tTA binds to a 5' regulatory region conatining a minimal 

promoter resulting in expression of EBNA2 or LMP1

O R

LiMPl
EBNA2

Figure 3.2 A schematic representation of the tetracycline-regulated gene expression system. The

example given shows regulation of expression of LMP1 and EBNA2 in DG75tTA-EBNA2 and 

DG75tTA-LMPl cells, respectively.
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3 . 2  R E S U L T S

This study set out to investigate EBV-associated changes to the expression of a panel of 

cell cycle-related genes in BL cells. In a preliminary experiment using two established 

isogenic EBV-positive BL cell lines, group I MUTU-BL and group III MUTU-BL, 

mRNA levels transcribed from the R b , p l 3 0 , p l 0 7 ,  p 5 3 , p 5 7 , p 2 7 , p 2 1 ,  p l 9 ,  p l 8 ,  p l 6  

and p l 4 / p l 5  genes were compared using multiprobe ribonuclease protection assay 

(RPA; HCC-2 kit, Pharmingen). This approach permitted the simultaneous detection and 

quantitation of these mRNAs in a single sample and also enabled direct comparative 

analysis of RNA from these two cell lines by the inclusion of probes for transcripts from 

the two housekeeping genes G A P D H  and L 3 2  (Figure 3.3). Group I BL cells (type 1 

latency) express EBNA1 as sole viral protein; when serially passaged in vitro, they 

‘drift’ to express all the known latency-associated viral proteins (including LMP1), 

when they become known as group III BL cells (type III latency). Group III BL cells 

have acquired many of the phenotypic characteristics of an immortalised LCL (Gregory 

et a l , 1990). It can be seen from this experiment that significantly elevated steady state 

levels of p 2 1  mRNA were present in MUTU-III relative to MUTU-I cells. In each case 

p 2 1  bands were quantitated by densitometric scanning using two different exposure 

times. G A P D H  and L 3 2  mRNA levels were similarly assessed to allow for differences in 

the amounts of total RNA analysed. The results showed a > 10-fold higher level of p 2 1  

mRNA in MUTU-III versus MUTU-I. The exact level of upregulation was difficult to 

establish accurately due to the very low levels of p 2 1  mRNA transcript in MUTU-I cells. 

In order to investigate if upregulated p 2 1  expression was a general feature of EBV- 

infected cells, p 2 1  mRNA levels from the EBV-negative cell line, BL41, were compared 

to those in it’s EBV-superinfected derivative, BL41-B95-8, and to a spontaneous EBV- 

transformed normal LCL (IARC171), which is derived from the same patient as BL41. 

Barely detectable levels of p 2 1  mRNA were seen in BL41, which were significantly 

upregulated in BL41.B95.8 (Figure 3.3A). Although the level in BL41.B95.8 was 

significantly less than in MUTU-III, the fold upregulation was observed to be

3 . 2 . 1  m R N A  l e v e l s  o f  a  g r o u p  o f  c e l l - c y c l e  g e n e s  i n  v a r i o u s  E B V - r e l a t e d  c e l l  l i n e s .
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approximately similar in the transition from MUTU-I to MUTU-III as that from BL41 to 

BL41.B95.8.

U 1 2 3 4 5

pl30
Rb

pl07
p53

 GAPDH

U Unprotected probe 
Lane 1 MUTU-I 
Lane 2 MUTU-III 
Lane 3 BL41 
Lane 4 BL41.B95.8 
Lane 5 IARC 171

F ig u re  3.3 EB V -associated m odu la tion  of th e  steady  sta te  levels of m R NA s from  cell cycle-related 

genes. (A) The steady state level of p21 mRNA is elevated in EBV-infected LMPI-expressing B cells. 

Expression of the cell cycle-related genes pl30, pRb, pl07, p53, p57, p27, p21, p l9, p!8, p l6  and pl4/15  

in a range of EBV-related cell lines as detected by mutiprobe RPA. Unprotected riboprobes (lane U) are 

shown linked to their smaller RNAse-protected fragments which correspond to protected portions of 

mRNA in each sample. Details of cell lines in each lane are given next to each autoradiogram image.
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Furthermore, the transition from group IBL74 BL cells to its spontaneously transformed 

LCL, IARC290B (derived from the same patient), showed a significant upregulation in 

levels of p21 mRNA. High levels of p21 mRNA were also observed in another Group III 

BL cell line, Ag876-III (Figure 3.3B), and two other LCLs, X50-7 and OKU-LCL (not 

shown), while EBV-negative DG75 cells showed much lower levels of p21 mRNA 

(Figure 3.3B).

(B)

t
I

p l3 0
pRb

pl07

p53

Lane 1. DG75
Lane 2. BL74
Lane 3. IARC 290B
Lane 4. IARC 171
Lane 5. A g876III
Lane 6. Mutu-HI

  p27

  p l9

  p l8

  pL6

p21

p 14/15

GAPDH

L32

F igu re  3.3 (B) as p e r  (A) Levels of mRNA transcripts from the pl30, pRb, pl07, p53, p57, p27, p21, pl9, 

pl8 , p l6  and p!4 /p l5  genes were compared in a range of EBV-related cell lines using total RNA in 

multiprobe RPA assays.
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An interesting observation was also the decreased levels of p l9  mRNA in MUTU-III 

and BL41.B95.8 cells relative to their latency type I counterparts, while LCLs showed 

very low levels of p i 9 mRNA. Transcript from the gene encoding the p i8 protein is 

barely detectable in the three LCLs and is undetectable in Ag876 Group III cells, an 

interesting observation in that it is also down-regulated in MUTU-BL upon drift to the 

group-III phenotype (Figure 3.3A). This does not however appear to be a general feature 

of EBV-positive BL cells exhibiting a group-III phenotype in that the level of p i 8 

mRNA is relatively unchanged in BL41.B95.8 versus BL41 cells. Additionally, although 

elevated levels of Rb and p27 mRNA and down-regulated levels of p i  10 are seen in 

MUTU-III relative to MUTU-I, these effects are also inconsistent in that they are not 

observed in the BL41/BL41.B95.8 pair. mRNA from the cdk inhibitor, p57, was not 

detected in any of the cell lines analysed.

Protein lysates harvested from the same cells as those used for RPA analysis as well as a 

number of other B cell lines were examined for p21 levels by Western blot analysis 

using a mouse monoclonal anti-p21 antibody (Santa Cruz SC6246) (Figure 3.4). These 

results showed that, in general, higher levels of p21 protein were observed in LCLs and 

Group III BL cells relative to Group I BL cells, in agreement with RPA data. The 

corresponding levels of LMP1 protein are also shown (Figure 3.4A, lower panel) for 

comparison. Overall, these results demonstrate that stably elevated levels of p21 mRNA 

and protein are a feature of EBV-infected B cells exhibiting type III latency. Due to the 

barely detectable levels of p21 mRNA/protein in MUTU-I and BL41 cells it was 

difficult to compare the fold increase in mRNA versus protein.
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(A )  1 2 3 4  5 6 (B) 1

LMP1
A

Figure 3.4 Western blot analysis of a range of EBV-related cell lines for p21 protein expression. (A)

and (B) Protein extracts were prepared from the same cells as those in Figure 1 RPA assay and analysed 

along with some additional cell lines. For (A), upper panel and (B), proteins were separated on 15% SDS- 

PAGE gels and p21 detection was performed using an ECL detection protocol. For (A) lower panel, a 

10% gel was used and LMP1 expression was assessed using an alkaline phosphatase conjugate.

(A) Upper and lower panels (B)

Lane 1: BL72III Lane 1: I ARC 290B

Lane 2: IARC307 Lane 2: MUTU-I

Lane 3: X50-7 Lane 3: MUTU-III

Lane 4: Ag876 III Lane 4: BL41

Lane 5: BL41.B95.8 Lane 5: BL41.B95.8

Lane 6: BL41 Lane 6: Ag876 IH

3,2.2 Tetracycline-regulatable induction of LMP1/EBNA2 expression.

As both LMP1 and EBNA2 are known to be main effectors of phenotypic change in 

EBV-infected cells, it was therefore of interest to investigate if the expression of either 

of these viral proteins alone could contribute to an upregulation of p21 levels. To this 

end, an established tightly-regulatable expression system was employed to induce LMP1 

in the EBV-negative BL cell lines, DG75tTA-LMPl and BJABtTA-LMPl. EBNA2 

expression was similarly induced in DG75tTA-EBNA2 cells. Briefly, the inducible 

promoter driving LMP1/EBNA2 expression contains binding sites for a hybrid 

tetracycline-regulated transactivator (tTA) that is constitutively expressed in the parental 

clone DG75-tTA and BJAB-tTA. Removal of tetracycline from the growth medium 

leads to tTA binding to the promoter and the expression of LMP1/EBNA2. Levels of 

induced LMP1 were monitored by Western blot analysis using the anti-LMPl murine 

monoclonal antibody cocktail CS.1-4 (Rowe et al, 1992), while EBNA2 was detected
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using the murine monoclonal antibody PE2 (Rowe et a l , 1992). In these experiments 

LMP1 was normally detectable in induced DG75tTA-LMPl cells by 18-24 hours, and 

remained detectable for up to at least 96 hours (Figure 3.5A). At 48 hours the level of 

LMP1 was comparable to that seen in the reference LCL, X50-7 (not shown). Levels of 

LMP1 were significantly higher in induced BJABtTA-LMPl cells (Figure 3.5B) relative 

to DG75tTA-LM Pl cells, a finding which has been observed previously (Floettmann et 

a l , 1996). EBNA2 was detectable in DG75tTA-EBNA2 cells by 24 hours and remained 

detectable up to at least 96 hours (Figure 3.5C). Total RNA and protein lysates were 

prepared simultaneously from cells harvested at the indicated time points and used as 

before in multiprobe RPA and Western blot analysis. In this way, RPA analysis 

permitted an investigation of the effects of LM Pl and EBNA2, when each was 

expressed as sole EBY protein, on levels of mRNA transcribed from the same group of 

cell cycle-related genes as outlined above.

(A)

M 0 6 18 24 48 72 96

■ LM Pl

(B) 0 24 32 48 72 96 (C) M 0 6 12 24 48 72 96
EBNA2

LMPl
83kD----
62kD----
47kD___
32kD

F ig u re  3.5 T etracycline-regu la tab le  induction  o f LM P1/EBN A 2 expression. Cells were induced to 

independently express LM Pl or EBNA2 by reculturing cells in the absence of tetracycline. Cells were 

harvested and protein extracts were prepared for Western blot analysis at the indicated time points (hours) 

post-induction. In both cases detection was based on alkaline phosphatase enzyme activity. (A) Induction 

of LM Pl expression in DG75tTA-LMPl cells. (B) Induction of LM Pl expression in BJABtTA-LMPl 

cells. (C) Induction of EBNA2 expression in DG75tTA-EBNA2 cells. Lane M represents protein 

molecular weight markers. Predicted sizes of marker proteins are indicated on the left side of Figure (C).
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3 . 2 . 3  L M P 1  u p r e g u l a t e s  p 2 1  e x p r e s s i o n  i n  D G 7 5  B L  c e l l s .

Levels o f mRNA transcripts from cell cycle-related genes were compared over a 96- 

hour time course following induction of LMP1 expression in the EBV-negative BL cell 

line, DG75tTA-LM Pl. An approximately 5 fold upregulation of p21 mRNA was 

observed, with a more subtle increase (about 2 fold) in p l9  mRNA levels. In uninduced 

DG75 cells, the p21 mRNA levels were very low or undetectable, a finding which is 

consistent with p21 levels observed in other EBV-negative BL cell lines (Okan el a l , 

1995; Allday el a l , 1995). Based on several individual induction experiments it was 

found that the level o f p21 mRNA peaked at between 24 and 48 hours and remained 

high until at least 72 hours post induction (Figure 3.6A). The level of p21 mRNA was 

significantly higher in iMUTU-III relative to that detected in DG75tTA-LMPl cells 48 

hours post-induction of LMP1 expression, implying that other EBV latent proteins may 

serve to further enhance p21 expression in MUTU-III cells.
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Figure 3.6 Upregulation of p21 expression by LMP1. LMP1 expression was induced in DG75tTA- 

LMP1 cells and both total RNA and protein extracts were prepared at the indicated time points (hours) 

post-induction. (A) (i) and (ii) RPA analysis performed as per figure 1 show two individual induction 

experiments each of which illustrate a several fold increase in p21 mRNA levels by 24-48 hours post­

induction.
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F igure  3.6 U pregu la tion  of p21 expression by LM P1. LMP1 expression was induced in DG75tTA- 

LMP1 cells and both total RNA and protein extracts were prepared at the indicated time points (hours) 

post-induction. (A) (i) and (ii) RPA analysis performed as per figure 1 shows two individual induction 

experiments each of which illustrate a several fold increase in p21 mRNA levels by 24-48 hours post­

induction.

116



(B) D G 75tT A -L M Pl

0 18 24 48 72 96 X50-7

(C) (i) 24 h 48 h (ii) 48 h 72 h

Tet+ Tet- Tet+ Tet- Tet+ Tet- Tet+ Tet-

Figure 3.6 Upregulation of p21 expression by LMP1. LMP1 expression was induced in DG75tTA- 

LMP1 cells and both total RNA and protein extracts were prepared at the indicated time points (hours) 

post-induction. (B) Western blot analysis of p21 protein expression in response to induction of LMP1 

expression. Corresponding LMP1 protein levels for this induction are shown in figure 3A. (C) (i) and (ii) 

represent cells which were maintained in the presence (Tet+) or absence (Tet-) of tetracycline for the 

indicated periods following induction of LMP1 expression in DG75tTA-LMPl cells.

Detection of p21 protein expression by immunoblot revealed that LM Pl-mediated 

upregulation of p21 mRNA was correspondingly elevated at the protein level (Figure 

3.6B and C). By comparing levels of LMP1 protein and p21 protein in a range of LMP1- 

positive and -negative cell lines (illustrated in Figure 3.4A), it can be seen that, in 

general, high levels of p21 expression corresponded with expression of LMP1. Relative 

levels of p21 and LMP1 over 0 to 96 h post-induction are illustrated in Table 1. Viable 

cell counts demonstrate an LM Pl-induced cytostasis. Clumping of cells is due to 

induction of expression o f adhesion molecules by LMP1 (Wang et a l , 1988b; Peng and 

Lundgren, 1992).
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Time/h Clumping LMP1 p21 mRNA p21 protein Cell Counts 
x 106/ml

0 - - + + 0.40
18 + + + + 0.26
24 ++ + + + 0.31
48 +++ ++ ++ ++ 0.41
72 ++ +++ +++ ++ 0.80
96 ++ +++ + ++ 0.92

T ab le  3.1 S um m ary  of the effect o f L M P 1 on levels of p21 m R N A  an d  p ro te in  an d  on  cell 

p ro life ra tion . Time/h implies time elapsed post induction of LMP1 expression.

3.2.4 EBNA2 expression in DG75 cells has no effect on p21 mRNA levels but 

levels of pl9 mRNA are transiently upregulated.

In order to investigate whether EBNA2 may cooperate with LMP1 in the upregulation of 

p21 mRNA, EBNA2 expression was induced in a manner similar to that described above 

for LMP1 in the DG75tTA-EBNA2 cell line. Induction of EBNA2 expression was 

monitored by Western blot analysis of protein lysates prepared at the same time as RNA 

samples (see Figure 3.5C). Results of RPA analysis showed no change in the level of 

p21 mRNA as a result of EBNA2 expression. This result also served to rule out the 

possibility of an effect on p21 levels mediated by tetracycline withdrawal. The level of 

p l9  mRNA was observed to be transiently upregulated by EBNA2, with a slight 

increase in levels of p l8  mRNA. p l9  increased slightly at 24 hours post-induction with a 

peak 4-fold increase detectable at 48 hours after which time the levels decreased, 

although elevated levels of p l9  were still apparent at 96 hours (Figure 3.7). For 

comparison, low levels of p21 and p l9  in DG75 cells can be seen in lane 8, same figure. 

Upregulated p l9  mRNA levels were not observed to be a feature of EBV positive cells 

(see Figure 3.3). In fact, lower levels of p l9  were observed in MUTU-III relative to 

MUTU-I cells and in BL41.B95.8 relative to BL41 cells.
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F igu re  3.7 T ra n sie n t uprcgu la tion  of p l9  mRNA levels by EBNA2. DG75tTA-EBNA2 cells were 

induced to express EBNA2 in a manner similar to DG75tTA-LMPl cells. Total RNA samples were 

prepared at the indicated time points (hours) post-induction and analysed by multiprobe RPA as before. 

Lane 8 shows DG75 cells for comparison.

119



3 . 2 . 5  L M P 1  d o e s  n o t  u p r e g u l a t e  p 2 1  e x p r e s s i o n  i n  B J A B t T A - L M P l  c e l l s .

The effect of LMP1 expression was also examined in the EBV-negative BL cell line 

BJABtTA-LMPl in which expression of LMP1 is similarly repressed by the presence of 

tetracycline. RPA analysis showed that, when levels of GAPDH were taken into 

consideration, no increase in p21 mRNA was observed as a result of LMP1 expression, 

although BJABtTA-LMPl cells did seem to express higher constitutive levels of p21 

mRNA than DG75tTA-LMPl cells (Figure 3.8). The level of p53 mRNA was similarly 

unchanged in response to LMP1 expression in BJABtTA-LMPl cells. BJAB cells 

harbour a p53 mutation which is different to that found in DG75 cells (discussed later). 

Rb mRNA levels were observed to be markedly higher relative to other Rb family 

members (pl07 and p 130) in BJABTA-LMP1 cells than in the case of DG75tTA-LMPl 

cells.
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F igu re  3.8 LM P1 does no t u p regu la te  p21 m R NA  levels in  B JA B tT A -L M P l cells. BJABtTA-LMPl 

cells were induced to express LMP1 as for DG75tTA-LMPl cells and total RNA samples were harvested 

at the indicated time points (hours) post-induction for RPA analysis.
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3.2.6 LMP1 expression does not affect p53 levels in DG75tTA cells.

Changes in p21 expression are normally either p53-dependent or -independent. Most BL 

cell lines carry a mutant p 5 3  gene and several reports have shown that BL cells express 

many fold higher levels o f  p 5 3  mRNA and protein than LCLs (Finlay et a l , 1988; Balint 

and Reisman, 1996). RPA and Western blot data presented here support these 

observations (Figures 3.3 and 3.9, respectively). Levels of p 5 3  mRNA were assessed in 

RPA assays in association with p 2 1 , which allowed comparative analysis of the different 

mRNA species within samples. Also, Western blot analysis was performed on the same 

protein lysates as were used for p21 and other analyses. The 53 kD protein was detected 

using a monoclonal anti-p53 antibody (Santa Cruz, SC-126) in conjunction with alkaline 

phosphatase detection. p 5 3  mRNA and protein levels were unchanged in response to 

LMP1 expression.

D G 75tTA  B JA B tTA  

L C L  96 48 0 96 48 0 M

  83kD

p53  ^  —  62kD

  47kD

F ig u re  3.9 W este rn  b lo t analysis o f p53 expression. p53 protein levels were detected using the same 

extracts which were used for p21 protein detection, represented in Figure 3.4(B). Samples were separated 

on a 10% SDS-PAGE gel and probed with anti-p53 antibodies which were detected using an alkaline 

phosphatase method. LCL: IARC 290B; DG75tTA-LMPl and BJABtTA-LMPl cells were induced to 

express LMP1 for the indicated time periods; M: Molecular weight markers.

3.2.7 C-Myc protein levels in LMP1-positive and -negative BL cells.

It has recently been found that c-Myc can repress transcription from the p21 promoter 

(El-Deiry e t a l , 1999), levels of c-Myc protein were examined by Western blot analysis 

in both BJABtTA-LM Pl and DG75tTA-LM Pl cells following induction of LMP1 

expression. C-Myc protein exists in two forms; the cytoplasmic form migrates as a band
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of 48-50 kD on SDS-PAGE gels, while the 62-66 kD form is exclusively nuclear- 

associated. In these experiments, mainly nuclear protein was detected using a murine 

monoclonal IgGi antibody (Calbiochem). In these cell lines, the level of c-Myc protein 

has previously been shown to be decreased by approximately 50% as a result of LMP1 

expression (Floettmann et a l , 1996). Using the same protein lysates which were analysed 

for p21 levels, in both BJAB and DG75 cells, c-Myc protein levels show an 

approximately 2-fold decrease in c-Myc protein by 24 hours and begin to increase again 

soon afterwards returning to pre-induction levels by 96 hours (Figure 3.10A and B). 

MUTU-I cells showed a similar decrease in c-Myc protein levels relative to MUTU-III, 

as did BL41 versus BL41.B95.8 cells (Figure 3 .10C)., while the LCL, IARC290B 

showed the lowest levels (not shown). BJAB cells differ from DG75 cells in that they 

lack the c-myc chromosomal translocation that is a marker for BL. This is interesting as 

it implies that LMP1-associated down-regulation of c-Myc levels occurs independently 

of the translocation.

(A) . D G 75tT A -L M P l (B) B JA B tT A -L M P l

0 18 24 48 72 96 0 18 24 48 72 96 DG75

(C)

F igu re  3.10 W este rn  b lo t analysis o f c-M yc p ro te in  expression. Levels of c-Myc protein in 

DG75tTA-LMPl and BJABtTA-LMPl BL cells induced to express LMP1 are illustrated in (A) and (B) 

respectively. Time in hours post-induction of LMP1 expression is given above each lane. (C) represents 

levels of c-Myc protein in LMPl-negative (BL41and MUTU-I) and LMPl-positive (BL41.B95.8 and 

MUTU-III) cells. Lane 1, MUTU-III; Lane 2, MUTU-I;

Lane 3, BL41.B95.8; Lane4,BL41.
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3 . 2 . 8  C e l l  t y p e - s p e c i f i c  e f f e c t  o f  L M P 1  o n  p 2 1  e x p r e s s i o n .

LMP1 exhibits cell type-specific differences with regard to its effects on gene 

transcription. For this reason, it was of interest to determine whether or not p21 could be 

upregulated by LMP1 in two other cell types which are relevant to EBV, namely T 

lymphocytes and epithelial cells. To this end, p21 mRNA and protein levels were 

investigated using a tetracycline-regulated LMP1 expressing clone derived from the 

Jurkat T cell line and a stably transfected LMP1-expressing clone of the epithelial cell 

line C33A. The results showed that LMP1 did not exhibit any effect on p21 mRNA 

levels in either cell context (Figure 3.11), indicating that p21 upregulation by LMP1 may 

be a B cell-specific effect. p21 was barely detectable in Jurkat T cells and not detectable 

at all in C33A epithelial cells, regardless of LMP1 status. It is known, however, that 

many cell cycle regulators are expressed in distinct cell type-specific patterns. It is also 

interesting to note that one effect of LMP1 which is specific to epithelial cells is 

upregulation of the EGF receptor (Miller e t a l , 1995) and EGF-mediated growth 

suppression has been demonstrated to correlate with increased expression of p21 

(Johannessen, 1999).
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F ig u re  3.11 LM P1 does no t u p reg u la te  p21 m R N A  in  e ith er a T  cell o r a n  epithelial cell context.

(A) Jurkat-tTa-LMPl T cells were induced to express LMP1 in a manner similar to DG75tTA-LMPl 

cells. Group III Ag876 BL B cells and C33A-LMP1 epithelial cells are included for comparison.
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Figure 3.11 LM P1 does not upregulate p21 mRNA in either a T cell or an epithelial cell context. (B)

C33A-Neo and C33A-LMP1 are stably transfected control and LMPl-expressing derivatives of the C33A 

parent line, respectively. Total RNA was harvested from each cell line or at the indicated times (hours) 

post-induction and analysed by multiprobe RPA as before.
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3 . 2 . 9  E f f e c t  o f  L M P 1  o n  p 2 1  p r o m o t e r  a c t i v i t y .

The increase of steady state p 2 1  mRNA levels could be due either to an enhanced rate of 

transcription or stabilisation of previously transcribed p 2 1  mRNA or to a combination of 

both mechanisms. In order to investigate if increased p21 promoter activity was 

involved, a p 2 1  promoter-luciferase reporter construct, WWP-LUC (a gift from Dr. Bert 

Vogelstein; El-Deiry et a l , 1993) was transiently co-transfected with a construct which 

constitutively expressed LMP1, under the control of the SV40 promoter. WWP-LUC 

comprises a 2.4 kb DNA sequence from the 5' regulatory region of the p 2 1  gene 

subcloned into pGL2-basic (Promega). The co-transfection experiments were carried out 

in DG75 cells, with the bfl-1 promoter used as a positive control for LM Pl-mediated 

transactivation. No transactivation of the p 2 I  promoter was observed despite also using 

an alternative LMP-1 expression vector (pEF-LMP-1). The b f l- 1  promoter was 

transactivated 5-fold by LMP1 in these experiments (Figure 3.12). High levels of p21 

promoter basal activity were observed in each experiment, which were several fold 

higher than the b f l - 1  control promoter, and comparable to or higher than luciferase 

activity from the SV40 promoter in the pGL-2 control promoter. Using the WWP-luc 

construct, others have reported a high basal level of promoter activity in different cell 

lines (Datto et a l , 1995; Billon et a l , 1999). A pair of p 2 1  promoter constructs, 0-luc 

(full-length 2.4 kb p 2 1  promoter) and 6-luc, which is identical to 0-luc except for 10 

consecutive mutated bases (-43/-34) located near the TATA box. (Datto et a l , 1995), 

were also employed in similar experiments. Alternative experiments involved 

transfection of p21 promoter constructs into uninduced or LMP1-induced DG75-tTA 

cells, where again no significant increase in luciferase activity was detected as a result of 

LMP1 induction. In one such experiment, using the WWP-LUC promoter construct, a

1.2 fold increase in promoter activity was detected, while a similar experiment using the 

0-luc promoter construct produced a 1.5 fold increase in promoter activity (not shown). 

It was concluded that no significant transactivation of the p21 promoter was detectable 

in the context of DG75 cells under the conditions described above. Thus, if LMP1 

affects the level of the p21 promoter activity, then the DNA sequence elements that may 

mediate this effect are most likely located elsewhere.
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Figure 3.12 Effect of LMP1 expression on p21 promoter activity. DG75 cells were co-transfected 

with WWP-LUC (p21 promoter luciferase construct) plus pEF (LMP1-) or pEF-LMPl (LMP1+). As 

positive control, cells were similarly co-transfected with the pGL2-bfl-l promoter construct with pEF or 

pEF-LMPl, as before. After 48 hours, cells were harvested and used in luciferase assays..

3.2.10 Effect of LMP1 on stability oip21  mRNA.

To determine whether the stability of p21 transcripts might be enhanced as a result of 

LMP1 expression, half-life (Ti/2) studies of p21 mRNA were performed by blocking 

overall transcription with an inhibitor of RNA polymerase II, actinomycin D (5 (Xg/mD 

in uninduced and LMPl-induced DG75-tTA cells. Total RNA was extracted at each 

time point over a period of 20 hours as indicated in Figure 12A, and the decay of p21 

mRNA was followed by RPA analysis. The relative half-lives were calculated by 

plotting the best-fit semi-logarithmic lines generated from the relative amounts of p21 

mRNA as determined by RPA assay (Figure 3.13A). Initially, actinomycin D was added 

24 hours after induction of LMP1, as at this stage the p21 level is still increasing so the 

stabilisation effect may be easier to detect. Although the upregulation of p21 mRNA had 

not yet peaked by this stage, an almost 2-fold stabilising effect was apparent in LMPl- 

induced cells over uninduced cells (Figure 3.13B). At 48 hours, the level of p21 

transcript was seen to have accumulated presumably as a result of increased stability, but
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the difference in stability is now less apparent and at this stage p2J levels soon begin to 

decrease again. The sudden drop in p2I mRNA level immediately after inhibition of 

RNA synthesis in both induced and uninduced cells may be due to the very short half- 

life of p2I, such that transcripts need some time to accumulate. Similar mRNA stability 

experiments were carried out in LCL X50-7 cells (Figure 3.12A), as well as in MUTU-I 

(not shown) and MUTU-II1 cells (Figure 3.12C). p2l mRNA showed prolonged stability 

in X50-7 cells and in MUTU-11I cells. U wasn’t possible estimate the stability of p2l 

mRNA in MUTU-I relative to MUTU-III cells due to the very low levels observed. This 

was despite extended exposure times of up to one week. In all cases, p21 mRNA levels 

at each time point were quantitated by densitometric scanning. GAPDH bands were 

similarly assessed and used as a control for loading. Consistent with previous reports 

(Balint and Reisman, 1995), levels of p53 mRNA was observed to be unchanged up to at 

least 10 hours in the presence of 5 fig/ml actinomycin D.
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Figure 3.13 LMP1 expression in DG75tTA-LMPl cells increases the stability of p21 mRNA. (A)

DG75tTA-LMPl cells were grown in the presence (LMP1-) or absence (LMP1+) of tetracycline for 24 

hours before addition of 5 ng/ml actinomycin D. The cells were then further incubated for the times 

indicated before total cellular RNA was purified and assayed by RPA as before (lanes 1-10). For 

comparison, the higher stability of p21 mRNA in LCL X50-7 cells can be seen in lanes 11-13.
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Figure 3.13 LMP1 expression in DG75tTA-LMPI cells increases the stability of p2l mRNA. (B) In

DG75iTA-LMPl cells shown in (A), the intensity of each p21 band was normalised to ihe intensity of its 

corresponding GAPDH band in order to correct for loading. Values were then plotted as a percentage of 

Lhe control (time 0 hours) and used to calculate half-lives.
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Figure 3.13 LMP1 expression in DG75tTA-LMPl cells increases the stability of p21 mRNA.

(C) Stability of p21 mRNA in MUTU-III cells. MUTU-III cells were passaged in fresh media 24 hours 

before addition of 5 |ig/ml aclinomycin D. Cells were then harvested at the indicated time points as before 

and analysed by RPA.

132



As an independent measure of mRNA stability, the level of p21 mRNA was monitored 

in the absence of any new protein synthesis. Addition of the protein synthesis inhibitor, 

cycloheximide (CHX) is sometimes used to determine whether low levels of mRNA 

transcripts are due to regulation of mRNA stability by a labile protein. At 48 hours post- 

LMP1 induction, 10 (ig/ml CHX was added to or omitted from DG75tTA-LMPl cells, 

which were then incubated for a further 30 hours with RNA samples taken at the 

indicated time points. Immunoblotting was used to confirm that LMP1 levels of 

expression were unaffected for at least 30 hours after CHX treatment (Figure 3.13A). It 

can be seen that p21 mRNA levels accumulated a further >2 fold in cells treated with 

CHX versus untreated cells (Figure 3.13B). Historically, inhibition of protein synthesis 

using cycloheximide has been shown to cause stabilisation and accumulation of several 

messenger RNAs. Various interpretations are possible for this phenomenon: presumably 

a labile protein is involved in the degradation of these mRNAs, or the mRNA-degrading 

machinery is tightly associated with the ribosome. One possible conclusion from this 

particular experiment is that p21 mRNA is normally degraded by a labile factor in DG75 

cells, and that LMP1 may stabilise p21 mRNA through interference with such a negative 

factor or group of factors.

Figure 3.13 Effect of inhibition of new protein synthesis. (A) Expression of LMP1 is unaffected in the 

presence of 10 |ig/ml cycloheximide (CHX) for up to at least 30 hours. DG75tTA-LMPl cells were grown 

in the presence (LMP1-) or absence (LMP1+) of tetracycline for 48 hours before addition of 

cycloheximide. Protein extracts were then prepared at the indicated time points and analysed for LMP1 

protein expression as described previously.

(A) Tet+ Tet-

0 9 30 0 9 30

LMPl
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Figure 3.13 Effect of inhibition of new protein synthesis. (B) LMPl-induced p21 mRNA transcripts 

accumulate in the presence of cycloheximide, DG75tTA-LMPl cells induced to express LMP1 for 48 

hours were incubated in the presence, B(i) or absence, B(ii) of 10 ug/ml cycloheximide. Total cellular 

RNA was harvested at the indicated times post-treatment and analysed by multiprobe RPA.
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Figure 3.13 Effect of inhibition of new protein synthesis. (B) LMPl-induced p21 mRNA transcripts 

accumulate in the presence of cycloheximide. DG75tTA-LMPl cells induced to express LMP1 for 48 

hours were incubated in the presence, B(i) or absence, B(ii) of 10 [xg/ml cycloheximide. Total cellular 

RNA was harvested at the indicated times post-treatment and analysed by multiprobe RPA.
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3 . 2 . 1 1  E f f e c t  o f  L M P 1  e x p r e s s i o n  o n  p 2 1  p r o t e i n  s t a b i l i t y

As mentioned above, Western blot analysis confirmed an upregulation of p21 protein by 

LMP1 in DG75-tTA cells, where levels were seen to peak at about 48 hours and remain 

elevated until at least 72 hours post-induction of LMP1 (Figure 3.5B). The stability of 

the p21 protein was examined in uninduced versus LMPl-induced cells at various times 

after the addition of cycloheximide (10 M-g/ml) to inhibit de novo protein synthesis. 

Protein lysates were prepared at the times indicated in Figure 3.14 over 0-30 hours. No 

difference in p21 protein stability was observed in the presence of LMP1.

30

Tet+ p21

Figure 3.14 Stability of p21 protein is unaffected by LM P1 expression. Protein extracts were 

prepared at the same time as RNA samples used in RPA analysis in figure 12. Proteins were then 

fractionated on 15% SDS-PAGE gels and immunoblotted for p21 expression as described before. Bands 

were visualised by ECL and their relative intensities were quantitated by densitometric scanning. Times 

(hours) post addition of 10 Hg/ml cycloheximide are given above each lane. Time 0 represents 48 hours 

post-induction of LMP1 expression.
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3.2.12 Effect of PM A and staurosporine on p21 expression in LMPl-induced and 
uninduced cells.

A number of studies have linked regulation of p21 expression to the PKC pathway 

(Akashi et al, 1999; Zeng and El-Deiry, 1996; Lin et al, 1996). To explore the potential 

role of the protein kinase C (PKC) pathway in the observed increase in p21 levels 

mediated by LMP1, PMA and staurosporine were employed to stimulate and inhibit the 

PKC pathway, respectively. Firstly, in order to investigate the functional integrity of a 

PKC-mediated induction of p21 expression in the context of DG75 cells, cells were 

treated with 10 ng/ml PMA and protein lysates were prepared at 0, 1, 2, 3, 6 and 24 

hours in the presence and absence of PMA. p21 protein levels were seen to elevate by 2 

hours, continue to increase up to at least 6 hours and remain elevated up to 24 hours but 

perhaps longer as a result of stimulation by PMA (Figure 3.15A and B). Very high levels 

of p21 protein were observed in response to PMA treatment: levels exceeded those of 

the group III Ag876 cells by 6 hours post-addition of PMA. Somewhat similar patterns 

of rapid induction have been reported in other cell lines eg. in HL60 cells p21 was 

detectable by 3 hours, peaked at 24 hours and remained elevated for 72 hours when 

exposed to 60 ng/ml PMA (Schwaller et al, 1995). It was also confirmed that the 

induction process (which involves extensive washing of cells in PBS) had no effect on 

the ability of PMA to activate the PKC pathway in DG75 cells i.e. cells which were 

washed and cultured in the presence or absence of tetracycline were stimulated with 

PMA in a manner similar to unwashed DG75tTA-LMPl cells (Figure 3.15B). In 

addition, the results suggest the absence of any cooperative effect of PMA and LMP1, as 

no difference was detected between levels of p21 protein in PMA-treatcd LMP1-positive 

cells and PMA-treated LMPl-negative cells. This may indicate that PMA and LMP1 are 

using the same signal transduction pathway which has become saturated as a result of 

PMA treatment.
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( A ) +PMA no PMA ( B )  +PMA_________  no PMA

Ag876 0 1 2 3 6 1 6 Tet+ Tet- 24 24

Figure 3.15 PMA treatment of DG75 cells stimulates p21 protein expression. (A) DG75 cells were 

incubated in the presence of 10 ng/ml PMA and protein extracts were subsequently prepared at the 

indicated times post-treatment. For comparison, group III Ag876 cells are loaded in lane 1. (B) Lanes 1 

and 2 represent DG75tTA-LMPl cells incubated in the presence (LMP1-) or absence (LMP1+) of 

tetracycline, where 10 ng/ml PMA was added at the point of induction. Lanes 3 and 4 correspond to the 

PMA+ and PMA- DG75 cells respectively at 24 hours as for (A).

Staurosporine (ST) is a potent, cell-permeable broad spectrum inhibitor of protein 

kinases and was used at a concentration of O.lnM to inhibit the PKC pathway in 

uninduced and LMPl-induced cells. Treatment of LMP1-induced DG75tTA-LMPl cells 

with ST was observed to inhibit the upregulation of p21 expression (Figure 3.16A). 

However, when protein lysates were analysed for expression levels of LMP1, it was 

found that LMP1 expression was similarly inhibited in the presence of ST (Figure 

3.16B). The results using this inhibitor are, therefore, inconclusive with regard to the 

role of the PKC pathway in LMPl-mediated p21 induction. Nonetheless, the experiment 

did show that inhibition of LMP1 expression correlated with inhibition of p21 

expression. In Figures 3.16A and B, it can be seen that relative levels of p21 protein 

correspond approximately to those of LMP1 for each particular cell sample. In the 

example shown, where LMP1 expression was not totally inhibited by ST after 24 h, the 

level of p21 is slightly higher in LMPl-induced cells than in uninduced cells.
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(A) Tet- Tet- ST Tet+ Tet+ ST

(B) ST ST ST ST

T- T- T- T- T+ T- T- T+ T- T- T+

  175kD

  62kD

1 2  3 4 5 6  7 8  9 10 11 M

Figure 3.16 Staurosporine inhibits both p21 and LMP1 expression in DG75tTA-LMPl cells.

(A) DG75tTA-LMPl cells were incubated in the presence (LMP1-) or absence (LMP1+) of tetracycline 

for 24, 48 or 72 h, where 0.1 nM staurosporine (ST) was added to or omitted from cells at the point of 

induction. Lanes 1-4 represent protein extracts harvested at 24 h, separated on a 15 % SDS-PAGE gel, and 

immunoblotted for p21 protein expression as before. (B) Protein extracts prepared as for (A) but analysed 

for expression of LMP1 using a 10 % SDS-PAGE gel. Lanes 1 and 2: 72 h; lanes 3-5: 48 h; lanes 6-8: 

24 h. Lanes 1-8 are from the same induction experiment. Lanes 6-8 correspond to extracts used in (A). 

Lanes 9-11 represent a different induction experiment at 24 h. Lane M: protein molecular weight markers.
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3 . 2 . 1 3  I n v e s t i g a t i o n  o f  t h e  r o l e  o f  t h e  p 3 8  M A P K  p a t h w a y .

It was recently shown that activation of the p38 MAPK pathway was important in the 

coregulation of IL-6 and IL-8 production by LMP1 in HEK 293 cells (Eliopoulos et al, 

1999). Activation of the MAPK pathway has also been linked with the regulation of p21 

expression (Lin et al, 1996; Akashi et al, 1996). Therefore, experiments were carried out 

in order to investigate whether this pathway may be important in the LMP1-mediated 

upregulation of p21 expression. To this end, induced and uninduced DG75tTA-LMPl 

cells were incubated in the presence of the specific p38 inhibitor, SB203580 

(Calbiochem), at a concentration of lOuM or 20uM. SB203580 is a pyridinyl imidazole 

compound that has been shown previously to specifically inhibit p38 activity in response 

to a range of stimuli (Craxton et al, 1998; Hsu et al, 1999, Eliopoulos et al, 1999). As 

SB203580 was dissolved in DMSO, induced and uninduced cells were incubated with a 

corresponding volume of DMSO as negative control. In a similar manner to that 

observed with ST, 20 jiM SB203580 inhibited the upregulation of p21 protein but also 

inhibited LMP1 protein production in this system (Figures 3.17A and B, respectively). 

In the presence of 10 |xM SB203580, the level of LMP1 protein was unaffected and 

upregulated p21 protein was still detectable in these cells. However, it will be necessary 

to establish inhibition of the p38 MAPK pathway at this concentration of inhibitor using 

eg. ELISA assays for IL-6 or IL-8. Alternatively, p38 MAPK has also been reported to 

be required for CD40-induced gene expression in B lymphocytes. These results would 

suggest that the MAPK pathway is not important for LMP-1 mediated upregulation of 

p21 expression in DG75tTA-LMPl cells, subject to confirmation of inhibition of the 

pathway under these conditions.
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(A) 10 uM SB DMSO

Tet+ Tet- Tet+ Tct-

20 uM SB 

Tet+ Tet-

p 2 1

(B) DMSO 20 uM SB 10 uM SB 

Tet+ Tet- Tet+ Tet- Tet+ Tet- M

LMP1

Figure 3.17 A p38 MAl’K inhibitor inhibits both p21 and LMP1 expression in DG75tTA-LMPl 

cells, (A) Cells were incubated in the presence (LMP1-) or absence (LMP1+) of tetracycline, protein 

extracts were prepared at 48 hours post-induction and immunoblotted for p21 expression. 10 nM, 20 nM 

SB203580 (specific p38 MAPK inhibitor) or 2.5 |nl DMSO was added at the point of induction. Lanes 1 

and 2: 10 (.tM SB203580; lanes 3 and 4: DMSO: lanes 5 and 6: 20 (.tM SB203580. (B) Protein extracts as 

for (A) were immunoblolted for LMP1 expression as described previously. Lanes 1 and 2: DMSO; lanes 3 

and 4: 20 ¡.tM SB203580; lanes 5 and 6: 10 jiM SB203580.

3.2.14 Rb levels and phosphorylation status in LMPl-positive and -negative BL 

cells.

pRb is regulated in part by inactivating phosphorylation events, which reverse it’s 

growth suppressive effects. A decrease in the mobility of the HOkD pRb protein on 

SDS-PAGE gels has been documented as being characteristic of its 

hyperphosphorylation and inactivation. Increased levels of pRb protein with a shift to 

the phosphorylated form has been described as an early event in EBV-mediated
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immortalisation of primary B cells (Cannell et al, 1996). Also, LMP1 has been shown to 

induce pRb hyperphosphorylation in EBV-positive cells (Arvanitakis et al, 1995). Using 

a mouse monoclonal anti-Rb antibody (Santa Cruz, SC-102) to detect pRb protein, the 

relative levels and phosphorylation status of pRb were compared in the EBV-negative 

BL DG75, group-ill Ag876 and LCL IARC-290B (Figure 3.18A). As expected, Rb 

protein in Ag876-III and IARC-290B cells was mainly hyperphosphorylated, while 

DG75 pRb protein was mainly hypophosphorylated. The effect of LMP1 expression in 

DG75tTA-LMPl cells on pRb was then investigated in the same protein lysates used for 

p21 and c-Myc analysis (Figure 3.18B). At 24 and 48 hours, when LMP1 levels were 

seen to peak, pRb was present mainly in the hyperphosphorylated form. At 72 hours, 

when the level of LMP1 protein has begun to decrease, a shift towards the 

hypophosphorylated form was observed, although most pRb was still 

hyperphosphorylated. Thus, in support of previous studies, the data indicate that LMP1 

expression maintains Rb in the hyperphosphorylated state, and that a predominance of 

hyperphosphorylated Rb is a feature of group III BL and LCL cells.

(A) 1 2 (B) 0 18 24 48 72

H r
Rb-P-P-P
Rb

  Rb-P-P-P
  Rb

Figure 3.18 Western blot analysis of pRb. (A) Levels and phosphorylation status of pRb protein 

expressed by LMPl-positive (Ag876-IU and IARC 290B) and -negative (DG75) cell lines are compared. 

Proteins were fractionated on 10% SDS-PAGE gels, immunoblotted using specific anti-pRb antibodies 

and bands were visualised by ECL. Hyperphosphorylated pRb, which migrates more slowly than 

hypophosphorylated pRb is indicated as pRb-P-P-P. Lane 1: DG75; Lane 2: Ag876-III; Lane 3: 

IARC290B. (B) pRb was investigated in a similar manner in DG75tTA-LMPl cells induced to express 

LMP1. The times at which cells were harvested are indicated in hours post-induction.
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3 . 3  D I S C U S S I O N

In the absence of antigen-mediated mitogenic signaling, B lymphocytes in the peripheral 

circulation exist in a quiescent state. Infection with EBV drives quiescent B cells into a 

continuous state of proliferation by exploiting the normal cell pathway of activation 

(Cannell et al, 1996). The EBV LMP1 oncogene has a major role to play in this 

activation process. In mammalian cells, transit through the cell cycle is thought to be 

regulated by the action of specific protein kinase complexes, each comprising a cyclin 

and its associated cyclin-dependent kinase (cdk) subunit, which regulate the 

phosphorylation status of the retinoblastoma protein (pRb) (Sherr, 1993). Previous 

studies have indicated that EBV-mediated immortalisation drives the 

hyperphosphorylation of pRb, which involves the upregulation of a number of cyclins 

and cdks and the down-regulation of a subset of cdk inhibitors (cdkls) (Cannell et al, 

1996).

The purpose of this study was to examine the effect of expression of EBV latent proteins 

on aspects of the cell cycle. Initial experiments involved investigation of EBV- 

associated effects on a panel of negative regulators of the cell cycle, including two major 

tumour suppressor genes, p53 and pRb, the less well-characterised pRb family members, 

p l3 0  and p l0 7  as well as members of both the CIP [p21, p27  and p57) and INK (pl5, 

pl6 , p l8  and p l9 )  families of cdkls. LMP1 and EBNA2 are two latent EBV proteins 

which are each critical to the transformation process. Thus, observations which were 

made in a range of latency group I and group III cells as well as several EBV- 

immortalised LCLs were further explored by independently inducing the expression of 

LMP1 and EBNA2 in the absence of expression of any other EBV proteins.

3.3.1 EBV-associated upregulation of p21 expression

Initial experiments using a range of EBV-related cell lines found that elevated p21 

mRNA and protein was a feature of both BL and LCL cell lines expressing the full 

spectrum of EBV latent genes. In support of this, a previous report has described the
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absence of p21 in primary B lymphocytes, which became detectable in LCLs following 

EBV infection and immortalisation (Cannell et al, 1996). However, the precise role of 

an EBV-mediated upregulation of p21 expression as part of the transformation process is 

not completely understood. On further investigation, it was found here that when 

expressed singly in an EBV-negative background, LMP1, but not EBNA2, had an 

important role to play in the upregulation of p21 expression observed in latency group 

III and LCL cells (see Figures 4 and 5). The molecular basis of this effect was therefore 

further investigated.

Although EBNA2 did not contribute to elevated levels of p21 , it was found that p l9  

mRNA was transiently upregulated, with a slight increase in the level of p i8 mRNA. 

Both pl8 and pl9 mRNA/protein levels have been found to oscillate during the cell 

cycle, accumulating during S phase and remaining high throughout G2/M (Hirai et al,

1995), suggesting that these proteins may play a role during later stages of the cell cycle. 

EBNA2 is known to be required at both the Gi and G2 stages of the cell cycle and 

EBNA2-deprived cells arrest at both Gi and G2 (Kempkes et al, 1995). EBNA2 has been 

found to induce B cell activation and entry into the cell cycle by inducing and 

maintaining expression of early Gi-regulating proteins, including cyclins D2, E and A, 

cdk4, the E2F-1 transcription factor as' well as c-Myc. Overexpression of E2F-1 

activates pl9 synthesis in mouse embryonic fibroblasts, as does overexpression of c- 

myc. The mouse p i9 promoter contains at least 2 potential E2F-1 binding sites, whereas 

c-Myc has not been demonstrated to bind the pl9 promoter and its effects on pl9 protein 

synthesis may well be indirect (reviewed by Inoue et al, 1999). The effect of EBNA2 

expression on c-myc levels was not investigated in the results presented here.

3.3.2 Upregulation of p21 expression by LMP1.

The profound effect of LMP1 on cell growth and proliferation is well documented 

(Baichwal and Sugden, 1988; Henderson et al, 1991; Miller et al, 1995; Rowe et al,

1995). LMPl-mediated upregulation of p21 expression is consistent with evidence from 

previously documented reports. For example, LMP1 is known to have a protective effect
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against apoptosis induced by serum starvation (Henderson et al, 1991). The range of 

apoptotic stimuli to which a cell may be subjected means that frequently, the levels of 

several anti-apoptotic proteins must be modulated to provide sufficient protection to the 

cell. The prosurvival effect of LMP1 expression on cells appears to exploit a number of 

different proteins which combine in a precisely-timed manner to provide protection. For 

example, LMPl-mediated Bcl-2 induction is a delayed response (2-3 days) (Henderson 

et al, 1991), while A20 appears to be an immediate and direct effect of LMP1 expression 

(Laherty et al, 1992), similar to that of Bfl-1 (B. d’Souza and D. Walls, submitted). p21 

expression has been shown to have a protective effect against apoptosis induced by p53 

as well as other agents (Gorospe et al, 1997; Lu et al, 1998). In a recent study which 

used adenovirus vectors overexpressing individual cdkls in a range of cell lines, greatest 

cell death was found to occur as a result of p 16, p i8 and p27 overexpression, while pl9 

and p21 had a more cytostatic effect on cell proliferation (Schreiber et al, 1999). Thus, it 

may not be entirely surprising that p l9  mRNA is also slightly upregulated by LMP1 

expression, while no change is seen in p i 6, p i 8 and p27 mRNAs (Figure 4A).

A previous study has found that LMP1 (but not EBNA2) had a cytostatic effect on B 

cells due to an accumulation of cells at the G2/M phase of the cell cycle (Floettmann et 

al, 1996). This report was based on tetracycline-regulated expression of LMP1/EBNA2 

in -DG75tTA cells, where cytostasis was observed as a transient effect, lasting about 4 

days. Using the same DG75tTA-LMPl cell line to induce LMP1 expression in the study 

presented here, viability counts were carried out at each time point and showed a similar 

transient cytostatic effect which corresponded approximately with p21 upregulation (see 

Table 1). It has been proposed that the functions of p21 (and p27) are limited to cell 

cycle control at the Gi/S phase transition and in the maintenance of cellular quiescence. 

However, several studies have begun to emerge which support a role for p21 at the G2/M 

checkpoint also. For instance, p21 was found to transiently accumulate in the nucleus 

near the G2/M boundary (pre-mitosis) while primary embryonic fibroblasts derived from 

p21-/- mice had significantly reduced numbers of pre-mitotic cells (Dulic et al, 1998). 

This data suggested that p21 promotes a transient pause in late G2 that may contribute to 

the late cell cycle checkpoint controls. A further study indicated that both p53 and p21
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were essential for maintaining the G2 checkpoint in human cells (Bunz et al, 1998). Cells 

transfected with adenovirus vectors overexpressing pl8, pl9, and to a lesser extent p21, 

have been shown to accumulate in G2/M. In contrast, cells overexpressing pl6 and p27 

induced an enrichment of cells in G0/G1 compared to mock and control cells (Schreiber 

et al, 1999).

3.3.3 p53-dependent and -independent regulation of p21 expression

p53 sites are known to exist in the p21 promoter and p21 is a major target of the p53 

protein. Generally, p21 upregulation occurs by one of two distinct mechanisms: one 

pathway is p53-dependent and activated by DNA damage, while the other is p53- 

independent and can be activated by mitogens and cytokines (Michieli et al, 1994; 

Shiohara et al, 1996). EBV does not block the p53-dependent activation pathway 

initiated by DNA damage. Furthermore, during infection, viral gene transcription 

activates transcription of the p53 gene and therefore primes, but does not trigger, the 

p53-dependent route to cell death. Indeed, LMP1 and EBNA2 have been shown to 

independently transactivate p53 gene expression, through induction of NFkB activity in 

resting B cells (Chen and Cooper, 1996). In their study, an SG5-LMP1 expression vector 

produced a 5-fold increase while EBNA2 gave rise to a 2-fold increase in p53 mRNA 

levels as assessed by RT-PCR. The failure of EBV-mediated upregulation of p53 to 

block cell division and/or to induce apoptosis was proposed to be due to EBV-induced 

increases in c-Myc or in other cell-cycle regulating proteins such as cyclin D2, cdc2 

(cdkl) or cyclin E. In contrast, no change in p53 levels was detected as a result of 

induction of EBNA2 expression in oestrogen-dependent LCLs expressing a conditional 

EBNA2 fusion protein (Kempkes et al, 1995).

When BL41 cells, which carry a mutant p53 gene, were transfected with a temperature- 

sensitive wild type p53 gene, LMP1 was shown to protect from p53-mediated apoptosis 

without interfering with induction of p21 (Okan et al, 1995). Indeed it is known that 

none of the EBV genes expressed in type III latency possess the ability to block p53- 

induced p21 expression and cell cycle arrest at the Gl/S boundary (Chen and Cooper,
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1996). Based on this evidence, it still remains possible that LMP1 acts via p53 in 

upregulating p21 during primary B cell infection. The studies described above did not 

investigate the effect of LMP1 expression on levels of p21 in the absence of functional 

p53.

Previous studies have shown that among BL cell lines, some of the highest levels of p53 

mRNA and protein are found in DG75 cells. Consistent with these reports, in this study 

DG75 cells revealed high levels of p53 mRNA and protein relative to other cell lines 

tested and in general BL cells showed higher levels than LCLs (Figures 1 and 7). Also, 

p53 was highly stable in response to actinomycin D treatment (Figure 11). Elevated 

levels of p53 mRNA are due to both an increased transcription rate (contributed to by a 

deregulated c-myc gene) as well as increased mRNA stability (Balint and Reisman,

1996). Normal p53 protein is usually difficult to detect due to its high rate of turnover. 

The high p53 protein levels observed in these cells are due to the stabilising effect of 

mutations. It is known that most BL cell lines carry a mutant p53 gene and functional 

analysis of mutant p53 alleles have been carried out in a range of BL cell lines (Farrell et 

al, 1991). In one study (which included BL41 and BJAB) it was found that none of the 

mutant p53 genes tested gained a dominant transforming activity. Most cell lines lost the 

ability to suppress transformation except for the Ramos and BL37 mutants, while the 

p53 of Louckes and BL41 had reduced suppressor activity. The Ramos and BL37 

mutations are located within the conserved box 4 region, which makes it likely that they 

are also significant. p53 protein was undetectable in Akata cells probably due to a very 

unstable truncated mutant protein. It was concluded from this data that at least most of 

the mutations studied were significant mutations of the p53 gene that contributed to the 

growth of the BL cell lines. The p53 gene in DG75 cells bears a 283 His-Arg mutation 

which is located in the sequence-specific DNA binding domain of the protein. 

Functional p53 has been shown to be necessary in mouse thymocytes for apoptosis 

induced by DNA damage. In this regard, a range of BL cell lines (including DG75) have 

been found to be relatively resistant to DNA damage when compared with LCLs, 

suggesting loss of function of the p53 gene. Furthermore, El-Deiry et al (1993) have 

illustrated p21 transcription activation by wild-type but not mutant p53. In the data
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presented here, expression of LMP1 in DG75 cells was found to have no significant 

effect on p53 mRNA or protein levels and the increase in p21 mRNA was not associated 

with any detectable promoter transactivation. In addition, a relatively moderate level of 

p21 upregulation was observed here: reports show that the levels of p53-independent 

p21 expression are much lower relative to p53-dependent expression (Zhang et al, 

1994). For these reasons, data indicate that the observed LMPl-mediated upregulation 

of p21 is likely to be a p53-independent effect in BL cells, although this does not 

exclude a role for p53 during primary B cell immortalisation.

3.3.4 p21 expression is not upregulated in BJAB cells which lack the c-myc 

transclocation

Overexpression of c-myc has been found to repress the p21 promoter (Mitchell and El- 

Deiry, 1999), and since LMP1 is known to have a negative effect on c-Myc levels, then 

LMP1 could potentially use this route to effectively derepress the p21 promoter. 

Upregulation of p21 expression mediated by LMP1 was observed in DG75tTA-LMPl 

but not in BJABtTA-LMPl cells. BJAB differs from DG75 and most other BL cell lines 

in that it lacks the c-myc chromosomal translocation, which in general characterises both 

endemic and sporadic types of BLs. The (t8:14) or less frequently (t8:2) or (t8:22) 

translocations juxtapose the c-myc oncogene to Ig regulatory elements, resulting in 

constitutive expression of c-myc. Consistent with the findings of Floettmann et al 

(1996), an approximately 50% decrease in the level of c-Myc protein was found to be 

induced by LMP1 expression in both DG75 and BJAB cells. Thus, down-regulation of 

c-Myc by LMP1 appears to occur independently of the translocated state of the c-myc 

gene. Since no upregulation in p21 expression was detected in BJAB cells induced to 

express LMP1, this implies that c-Myc is probably not involved in p21 upregulation, 

although the possibility cannot be ruled out.

The translocated c-myc allele frequently (65%) carries mutations. The mutations occur 

in the N-terminal transactivational region of the protein which may alter the gene 

regulatory activities of the c-Myc protein. One of the potential regulatory targets of c-

148



Myc is the p53 gene, which is also expressed at high levels in BLs. Studies in DG75 

cells, indicate that c-Myc can transactivate the p53 gene, which is reflected in the 

observed high levels of c-Myc protein and p53 gene transcription rate in these cells, 

indicating that the transactivation activity of c-Myc, in this case, is unaffected. In 

contrast, in Ramos BL cells, the transcription rate of the p53 gene has been found to be 

very low despite very elevated levels of c-Myc protein (Balint and Reisman, 1996). This 

is possibly due to a mutation in the transactivation domain of the c-Myc protein in 

Ramos cells. Comparably high levels of c-Myc protein and p53 mRNA were observed in 

BJAB and in DG75 cells. However, it remains to be seen whether or not the 

transcription rate of the p53 gene is also high in these cells.

Western blot analysis revealed reduced c-Myc protein levels in BL41.B95.8 cells 

relative to BL41 cells and in MUTU-III relative to MUTU-I cells (Figure 8C). Thus, in 

both cases, levels of c-Myc protein were reduced in the LMPl-positive cells. Moreover, 

very low levels of c-Myc protein were seen in LCL IARC-290B cells. As mentioned 

above, BL cells typically display very high levels of c-Myc protein. This is due to 

deregulated expression of the c-myc protooncogene which is believed to be the dominant 

factor responsible for maintainence of tumorigenicity in BL. In contrast, levels are 

usually relatively lower in latency group III and LCL cells (Balint and Reisman, 1996). 

In conclusion, these results support a negative effect of LMP1 expression on c-Myc 

protein levels. As a result of this effect, cells may become less dependent on aberrant c- 

myc expression and more responsive to autocrine proliferation signals. Thus, the 

transient cytostatic effect of LMP1 expression, reflected by a partial block in G2/M, may 

function in controlling the rate of proliferation of cells and may include a role for p21.

3.3.5 LMP1 maintains pRb in the hyperphosphorylated state.

It has been reported that EBY drives phosphorylation of Rb (Cannell et al, 1995), and 

that EBV is able to prevent TGF[3-mediated down-regulation of pRb in a BL cell line 

(Arvanitakis et al, 1995). Furthermore, it was shown that LMP1 has an important role to 

play in maintaining Rb in the hyperphosphorylated state. Phosphorylation of Rb has the
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effect of inactivating this critical negative regulator of the cell cycle. The data presented 

here describe findings consistent with previous studies, in that DG75tTA-LMPl cells 

induced to express LMP1 produced mainly hyperphosphorylated Rb protein. In addition, 

mainly hyperphosphorylated pRb in group III and LCL cells contrasted with mainly 

hypophosphorylated pRb in EBV-negative DG75 BL cells. It is interesting to note here 

that p i8, pl9 and p21 vectors were shown to be relatively less effective at inhibiting 

pRb phosphorylation than their p27 and pl6 counterparts (Schreiber et al, 1999). Thus, 

increased p21 and pl9 expression may be consistent with maintaining Rb 

phosphorylation.

In summary therefore, in view of the known oncogenic properties of LMP1, an 

upregulation of a cell cycle inhibitor by LMP1 may initially appear to be a surprising 

finding. On closer examination, however, it seems that an increase in p21 levels may 

have a role to play in some of the previously observed effects of LMP1: for example, 

protection from apoptosis, transient cytostasis associated with an accumulation of cells 

in G2/M and promotion of an inactive hyperphosphorylated Rb.

3.3.6 p21 promoter studies.

As detailed in the results section, no significant transactivation of the p21 promoter was 

detected as a result of LMP1 expression in DG75tTA-LMPl cells. However, based on 

these experiments, it remains possible that LMP1 affects promoter activity through 

sequence elements which are located elsewhere.

3.3.6.1 p21 promoter

Known positive regulators of the p21 promoter include the SP transcription factors 1-6, 

AP2, E2F, Stat 1 and 3, interferon regulatory factors (IRF) 1 and 2, C/EBP alpha, while 

the GTPase RhoA has been found to repress the p21 promoter. Andrei et al (1998) have 

found that E2F1 and E2F3, transcription factors that activate genes required for cell 

cycle progression, are strong activators of the p21 promoter. In contrast, HBP1 (HMG-
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box protein-1) a novel Rb-binding protein, can repress the p21 promoter and inhibit 

induction of p21 expression by E2F (Gartel et al, 1998). Both E2Fs and HBP1 regulate 

p21 through cis-acting elements located between nucleotides -119 to +16 of the p21 

promoter, which also contains four Spl binding sites important for E2F activation. This 

suggests that the interplay between these positive and negative regulators may determine 

the level of p21 transcription in vivo.

Several Sp-1 sites as well as an Sp-3 site have been mapped to specific sequences within 

the p21 promoter. While Spl and Sp4 have been described as activators of transcription, 

the role of Sp3 in the stimulation or repression of transcription is not clear eg. Sp3 has 

been reported to repress Spl-mediated transcriptional activation (Hagen et al, 1995). A 

detailed functional analysis of the p21 promoter defined a 10 base pair sequence which 

is sufficient to drive TGF-beta-mediated transactivation. This TGF-beta responsive 

element (RE) was found to bind specifically to several proteins in vitro, including Spl 

and Sp3 (Datto et al, 1995). Spl binding sites have been described in many promoters 

and consequently Spl has become known as a house-keeping transcription factor whose 

activity is necessary solely for the basal transcription of many genes. However, several 

Sp-1-like proteins have since been identified, all of which are capable of interacting with 

an Sp-1 consensus site. Thus, such consensus sequences may serve as sites for the 

interplay of several differentially expressed transcription factors. Sp-1 is also a critical 

factor in regulating transcription mediated by Rb, found for example in the Rb control 

elements (RCE) of the c-Fos and TGF-betal promoters. It has therefore been suggested 

that the TGFbetaRE may represent an RCE and that by maintaining Rb in a 

hypophosphorylated state, TGF-beta may be exerting its effects on the p21 promoter 

through Rb. Induction of p21 would in turn lead to a further increase in the 

hypophosphorylated form of Rb, thus establishing a positive feedback loop between p21 

and Rb, ensuring an effective Gi cell cycle arrest.
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3 . 3 . 6 . 2  E f f e c t  o f  L M P 1  e x p r e s s i o n  o n  p 2 1  p r o m o t e r  a c t i v i t y  l e v e l s .

No significant transactivation of the p21 promoter used in this study was detected in the 

presence of LMP1. An observation which was made, nonetheless, was a high basal p21 

promoter activity, comparable to that of SV40 enhancer promoter sequence, which was 

observed using 3 alternative p21 promoter luciferase reporter constructs. These levels 

were several fold higher than levels of activity of the bfl-1 promoter (see Figure 3.11). 

The half-life of p21 mRNA in untreated human cells is short (normally <1 hour). 

Nevertheless, while the basal level of p21 mRNA is low, promoter activity is usually 

quite high, (reflecting the high rate of decay) (Schwaller et al, 1995; Esposito et al,

1997). This allows even a modest increase in stability to result in the rapid accumulation 

of p2J mRNA, a mechanism which is clearly suited to high turnover molecules such as

p21.

Using a common stimulator, previous findings have varied using the 2.4 kb p21 

promoter constructs depending on the cell line under study. For example, p21 promoter 

luciferase reporter activity was induced in K562 cells treated with TPA (Zheng et al,

1996). Also, TPA induction of p21 mRNA in ML1 cells signaled new p21 RNA 

synthesis. In contrast, similar experiments conducted in the promyelocytic HL60 cell 

line, concluded that TPA regulation of p21 expression was mainly post-transcriptional 

(Schwaller et al, 1995). In addition, the period of incubation of cells can be important 

with regard to detection of changes in promoter activity. One study, for example, found 

no significant induction of transcription activity after 2 hours in the presence of TPA 

even though p21 mRNA and protein levels had begun to accumulate by this stage, and 

that no increase in the rate of transcription was observed until 12 hours (Esposito et al,

1997). A different study reported that TPA activated promoter activity after 24 hours 

treatment of cells (Biggs et al, 1996). Specific sites within the p21 promoter have been 

localised as targets of certain activators of the PKC pathway. Phorbol esters and okadeic 

acid have been shown to activate the p21 promoter through Spl sites (Biggs et al, 1996). 

Similarly, other reports have identified binding sites within the p21 promoter which are 

targeted via p53-independent signal transduction pathways. For example it has been 

shown that either IFN-gamma or EGF induces p21 transcription through signal
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transducers and activators of transcription (STAT) proteins; this activation was blocked 

by inhibitors of PKC (Karras et al, 1997; Suzuki et al, 1997). Thus, it appears that at 

least in some instances activation of the PKC pathway triggers an increased transcription 

rate of the p21 gene. In other instances, post-transcriptional mechanisms are important.

3.3.7 Mechanism of transcriptional regulation of p21 gene by LMP1

Investigations into the mechanism of upregulation of p21 expression by LMP1 revealed 

an important role for mRNA stabilisation. This conclusion was based on the following 

observations: p21 mRNA was shown to have a short half-life in unstimulated tumour 

cells in agreement with the findings of others (Schwaller et al, 1995; Esposito et al, 

1997; Akashi et al, 1999; Johannessen et al, 1999); the stability of 21 mRNA was 

enhanced in the presence of LMP1; no significant transcriptional activation of the p21 

promoter was observed in LMPl-induced cells, and finally p21 transcripts accumulated 

in the presence of cycloheximide. Also, since no accumulation of the p21 protein was 

seen as a result of inhibition of protein synthesis by cycloheximide, it appears likely that 

regulation at the post-translational level is not important.

The steady state level of mRNAs in the cell is dependent on both the rates of 

transcription and decay. Thus, a coordinated balance between transcriptional and post- 

transcriptional events is required. Metabolism of eukaryotic mRNA occurs in both the 

nucleus and cytoplasm of the cell. The importance of mRNA stability in the 

accumulation of mRNA transcripts has been highlighted, especially with regard to those 

with short half-lives (Ross, J. 1995). Changes in the stability of specific mRNA afford 

an extremely rapid mechanism to change the levels of their encoded proteins. Clearly, it 

is important that proteins involved in regulation of the cell cycle must be able to undergo 

rapid changes in response to various positive and negative stimuli of cell proliferation. 

Thus, it is not surprising that many cell cycle-related proteins demonstrate a significant 

role for mRNA stabilisation in their regulation. For example, topoisomerase II alpha and 

c-myc are regulated during cell cycle-related events at least in part by stabilisation of 

their mRNAs (Hanson et al, 1994; Goswami et al, 1996). Various extracellular stimuli
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such as protein synthesis inhibitors and stimulators of PKC are able to stabilise c-myc 

RNA (Dani et al, 1984).

Experiments described here revealed an almost 2-fold increase in the half-life of p21 

mRNA which was mediated by LMP1 in DG75tTA-LMPl cells. A high promoter 

activity in the case of p21 implies that small increases in stability become more 

significant, allowing a more rapid accumulation of mRNA transcripts. Thus, the rapid 

changes which are required in the case of many regulators of the cell cycle are possible.

Several examples of stabilisation of p21 mRNA have been documented, with regard to a 

range of stimulators of p21 expression. For instance, in the human ovarian cancer cell 

line, SKOV-3, PMA markedly stabilised p21 mRNA, increasing it’s Tm  from <1 hour to 

>4 hours, and this was found to be the most important mechanism of upregulation of p21 

in this cellular context (Akashi et al, 1999). A different study revealed a longer T\a of 

p21 mRNA (approx. 2\n hours in A431 cells) which was doubled to 5 hours in the 

presence of EGF (Johannessen et al, 1999). Upon longer exposure times in this study, 

the stability of the p21 protein was also increased by about 3 fold, while transcription 

rate was only slightly increased at 1.2 fold. These results reflect a p5 3-independent 

effect, as the p53 protein is non-functional in A431 cells due to a point mutation. In the 

same study, the findings in A431 cells were in contrast to MCF-7 cells with normal p53, 

in which the half-life of p21 mRNA was not increased upon addition of EGF. 

Furthermore, p21 was shown to be increased in a p53-independent manner by TNF 

alpha in the human myeloid leukaemic cell line, KG-1; this induction occurred in the 

absence of new protein synthesis, being due mainly to a 5-fold stabilisation of p21 

mRNA (Shiohara et al, 1996). In this case transcription rate was increased by a factor of 

1.4. In A431 cells, TNF alpha had no effect on the stability of p21 mRNA, unlike KG-1 

cells, but did increase protein stability on prolonged incubation. This probably explains a 

more rapid induction of p21 protein by EGF than by TNF alpha (Johannessen et al, 

1999). Similarly, RNA stability was highlighted in the enhancement of p21 expression 

in normal human fibroblasts (WI38) after exposure to IL-1 (Osawa et al, 1995).
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Esposito et al (1999) have recently confirmed that a p53-independent pathway for p21 

induction in response to oxidative stress exists. Moreover, they showed that TPA- 

induced and serum-induced increases of p21 mRNA expression are, at least in part, due 

to the activation of the same pathway, and involve changes in the intracellular oxidative 

environment. Stability of mRNA was enhanced 3-fold while no transactivation of the 

p21 promoter was detected following EtMal (dielthymaleate)-induced oxidative stress. 

Evidence suggests that many other p5 3-independent inducers of p21, such as PDGF, 

EGF, TNFalpha and gamma-rays may be modulated by the cells’s redox state. Thus 

mRNA stability would seem to be a very common mechanism of p53-independent 

upregulation of p21. p21 mRNA has also been shown to be stabilised in a p53- 

dependent manner: mRNA stabilisation was the main mechanism of upregulation in 

colorectal carcinoma cells exposed to UV light (Gorospe et al, 1998).

Regulation of mRNA stability is so far poorly understood. However, it is known that cis- 

acting elements within the mRNA molecule can be recognised by regulatory proteins, 

and czs-elements have been demonstrated to modulate mRNA stability both positively 

and negatively (reviewed by Ross, 1995; Beelman and Parker, 1995; Sachs, 1993). 

Numerous mechanisms exist to degrade mRNA effectively. For example, deadenylation 

triggers decapping, thus exposing the mRNA to 5’ to 3’ degradation. Alternatively, 

decay may be initiated independently of deadenylation by sequence-specific cleavage of 

the mRNA. The latter pathway is more likely to be relevant to p21 mRNA degradation. 

Many labile RNAs such as those for granulocyte/macrophage-colony-stimulating factor 

(GM-CSF), TNF alpha, IFN gamma, IL-2 and IL-3 usually contain an adenosine- or 

uridine-rich element, characterised by 3 or more copies of the pentanucleotide, AUUUA, 

in their 3’UTRs and the stability of these mRNA molecules have been shown to be 

regulated by external stimuli (Shaw and Kamen, 1986; Sachs, 1993; Akashi et al, 1994; 

Ross, 1995; Beelman and Parker, 1995; Chen and Shyu, 1995). It was recently shown 

that PMA could stabilise more effectively a reporter RNA containing 3 or more repeats 

of the AUUUA motif in the 3’UTR than those with 2 or less. The p21 mRNA has 3 

repeats of the AUUUA motif (El-Deiry et al, 1993), and it is likely that PMA may 

stabilise p21 mRNA through the AU-rich region in it’s 3’UTR (Akashi et al, 1999).
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Other labile mRNAs coding for oncogenes such as c-Myc and cytokines also have 

AUUUA repeats in their 3’UTR (Akashi et al, 1992; Shaw and Kamen, 1986). Indeed, 

there are several observations which suggest increased levels of AU-binding protein 

interacting with AU-rich elements in PMA-treated cells (Shaw and Kamen, 1886; 

Lindsten et al, 1989).

LMP1 is known to increase intracellular calcium levels and several studies suggest that 

the transient accumulation or redistribution of calcium may also be one of the 

mechanisms for the stabilisation of mRNAs by phorbol esters and PKC activation. A 

calcium ionophore, A23187, stabilised mRNAs coding for IL-3 and G/M-CSF through a 

pathway which requires AU-rich elements in the 3’UTR (Iwai et al, 1993). Redox is also 

known to modulate the stability of mRNAs coding for cytokines and oncogenes by the 

AU-binding protein (Miller et al, 1993) and treatment of cells with PMA causes 

oxidative stress (Esposito et al, 1997). Although it is likely that p21 is stabilised through 

the AU-rich region in the 3’UTR, at least via a PMA-induced pathway, further studies 

are required to determine the mechanism resulting in the stabilisation of this transcript.

No mammalian RNAse which might be programmed to degrade specific mRNAs has yet 

been identified. Thus, the molecular or enzymological mechanism underlying the 

stabilisation of p21 mRNA is not understood, although the degradation of mRNA 

appears to involve endoribonucleases. It is likely that a wide variety of endonucleases 

with different cleavage specificities exist, allowing specific enzymes to be limited to 

individual mRNAs or classes of mRNAs. In this way, their presence would allow for 

specific control of the decay rate of these transcripts. For example, endonucleolytic 

cleavages have been defined in vitro for the albumin mRNA (Dompenciel et al, 1995) 

and in the coding region of the c-myc mRNA (Bernstein et al, 1992). In some cases, the 

rate of endonucleolytic cleavage is modulated by the activity of protective factors that 

bind at or near the cleavage site and compete with the endonuclease. Therefore, in 

certain situations, it appears that the endonuclease is constitutively active and the 

accessibility of the cleavage site is regulated (Binder et al, 1994). Alternatively, 

examples have been documented where endonuclease activity appears to be directly
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regulated (Silverman, 1994), due to the enzyme normally existing in an inactive state. 

Since treatment of LMPl-induced cells with CHX to inhibit new protein synthesis 

resulted in an enhanced accumulation of p21 mRNA, which was absent from control 

cells with no CHX (Figure 12B), this may suggest regulation of mRNA stability by a 

labile protein. It is possible, therefore, that LMP1 may either enhance protective factors 

of cleavage sites or alternatively, induce a direct effect on mRNA degrading enzymes. 

Future studies on the pathway of p21 mRNA degradation, identification of the specific 

endoribonucleases involved and the effects of LMP1 on these activities will contribute 

to a greater understanding of the mechanism of stabilisation.

3.3.8 Signal Transduction Pathways

As mentioned previously, it is becoming increasingly evident in recent years that several 

p53-independent p21 activation routes exist. Some recent studies demonstrated that p21 

could be induced in cells lacking a functional p53 (Akashi et al, 1995; Shiohara, 1996). 

Some of these signals include serum stimulation, treatment with the growth factors 

PDGF, FGF, treatment with okadeic acid, butyric acid, retinoic acid, Vitamin D3, TPA, 

treatment with the cytokines G-CSF, IL-6, IFN-gamma, or treatment with transforming 

growth factor beta (Michieli et al, 1994, Steinman et al, 1994; Sheikh et al, 1994; Jiang 

et al, 1994; Elbendary et al, 1994; Datto et al, 1995; Zhang et al, 1995). Experiments 

have also provided evidence for p53-independent regulation of p21 in vivo, and have 

implicated a role for its expression in growth arrest associated with terminal 

differentiation (Halevy et al, 1995; Parker et al, 1995; El-Deiry et al, 1995; Macleod et 

al, 1995). However, despite the continuing emergence of data supporting significant 

roles for p5 3-independent routes, the molecular events and the signal transduction 

pathways involved in these instances of p21 induction remain unclear.

The LMP1 protein has many properties which are suited to signal transduction, as 

outlined in section 1.5.4. For example, activation of the NFkB transcription factor by 

LMP1 is important in several instances (eg. induction of A20). LMPl’s ability to induce 

NFkB, however, is not required for it’s oncogenicity (Mitchell and Sugden, 1995) and
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thus, NFkB is likely to mediate many but not all of the changes in gene expression that 

are affected by LMP1. LMP1 has been shown to induce expression of the EGF receptor 

and A20 molecule in epithelial cells (Miller et al, 1995). Upon stimulation with EGF, 

these cells demonstrate enhanced tyrosine phosphorylation of downstream targets of the 

EGFR and exhibit enhanced growth in serum-free media. LMP1 is also known to signal 

by its direct association with TNF receptor-associated factors (TRAFS), but these TRAF 

molecules do not mediate most of LM Pl’s induction of NFkB activity (Sandberg et al,

1997). CD40 is one of a range of cell surface activation antigens whose expression is 

upregulated by LMP1. CD40 also signals by binding TRAF molecules and indeed 

parallel roles have been suggested for the CD40 protein and LMP1 in signal transduction 

pathways. The expression of CD40 in carcinomas but not normal epithelial cells and 

also in EBV-infected NPC tissue suggests that signals from CD40 may be involved in 

progression to malignancy. A recent study of CD40-mediated signaling revealed that 

CD40-mediated signals induce resting B cells to accumulate p21, while cycling B cells 

required B cell receptor and CD40-mediated signals to maintain increased expression of 

p21 (Mullins et al, 1998).

LMP1 also activates the JNK pathway, and both NFkB and JNK signaling are, in some 

instances, downstream events of activation of the protein kinase C (PKC) pathway. PKC 

is a widespread family of kinases responsible for many diverse and critical cellular 

functions, including aspects of cellular growth and metabolism (reviewed in Wilkinson 

and Hallam, 1994). For example, PKC phosphorylates various transcription factors and, 

depending on the cell type, these induce or repress synthesis of certain mRNAs. The 

NFkB inhibitor protein IkB is also a substrate of PKC. Phosphorylation of IkB by PKC 

releases NFkB which can then migrate to the nucleus where it induces transcription of 

target genes. Many other examples exist which illustrate the fundamental role of PKC in 

controlling cell growth. PKC consists of a family of at least 10 isoenzymes which differ 

in their structure, co-factor requirement and substrate specificity. The conventional 

PKCs (cPKC), PKC a, Pi, Pn and y are activated by Ca2+, phospholipids and DAG or 

phorbol ester, and are thus Ca2+-dependent enzymes (Wilkinson and Hallam, 1994).
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LMP1 has been shown to induce increased intracellular calcium levels which may 

therefore link LMP1 to activation of PKC isoenzymes.

Several studies have linked the PKC pathway to regulation of p21 expression (Michieli 

et al, 1994; Akashi et al, 1995). For example, PMA induced a relatively low level of p21 

which delayed cell cycle progression but failed to induce cell cycle arrest in SKOV-3 

cells (Akashi et al, 1999). Thus the p53 independence of p21 expression by PKC may 

occur at subsaturating levels which may be unable to arrest the cell cycle. Similarly, the 

relatively moderate level of upregulation of p21 observed in DG75 cells as a result of 

LMP1 expression, was found to simultaneously induce a transient slowing of cell 

proliferation in the absence of any loss of viability. As mentioned previously, this 

cytostatic effect has been shown to correlate with a transient block in G2/M. 

Furthermore, the involvement of p21 in integrating the PKC signaling pathway to the 

cell cycle machinery at the G2/M checkpoint has recently been described by Akashi et 

al, 1999. Thus, a number of lines of evidence suggest a potential role for the PKC 

pathway in LM Pl’s observed effects on p21 levels.

LMP1 is known to activate the MAPK pathway. Moreover, Lin et al (1996) have shown 

that activation of MAP kinase (MAPK) can induce p21 expression. Activation of the 

MAPK signaling pathway via PKC is an important mechanism for several biological 

events, such as apoptosis and PKC regulates the MAPK pathway alone or with other 

mechanisms (Hall-Jackson et al, 1998). Activation of PKC leads to the accumulation of 

p21 transcripts through a p5 3-independent pathway and activation of the MAPK 

signaling cascade is required for the induction of p21 by PMA (an activator of PKC). 

Evidence presented in the same study suggested that the induction of p21 occurred 

mainly through stabilisation of p21 mRNA and protein i.e. at the post-transcriptional 

level. The physiological role of the MAPK-dependent, p53-independent pathway of p21 

mRNA induction is unknown. It is possible that it’s transient induction in response to 

mitogenic stimuli results in inhibition of cdks thereby providing a protective role against 

inappropriate and premature transition from Gi to S phase. Evidence strongly suggests
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that MAPK promotes cell survival upon oxidative stress, through the induction of p21

(Akashi et al, 1999).

In addition to the Ras/MAPK/ERK pathway, LMP1 was more recently demonstrated to 

also activate the p38 MAPK pathway to coregulate IL-6 and IL-8 production 

(Eliopoulos et al, 1999). p38 is a member of the MAPK superfamily activated by stress 

signals and implicated in cellular processes involving inflammation and apoptosis. 

LMP1-mediated p38 activation occurs through both CTAR1 and CTAR2 domains of the 

protein and appears to be mediated by the adaptor protein, TRAF2. p38 activation has 

been observed in response to a variety of stimuli and requires phosphorylation of a 

closely spaced tyrosine and threonine residue in the activation domain of the protein (for 

reviews, see Ip and Davis, 1998; Kyriakis and Avruch, 1996). Among the downstream 

targets of p38 are the heat shock protein 27 (hsp27) and the transcription factors ATF2, 

Elk-1, CHOP/GADD153 and Max.

Specific inhibitors were used to show that compounds that efficiently block LMP1- 

mediated NFkB activation in Rat-1 cells do not impair its ability to signal on the p38 

axis, and conversely, inhibition of inhibition of p38 activity (SB203580 inhibitor) does 

not influence NFkB binding, indicating divergence of signals (Eliopoulos, 1999). 

However, the possibility of LMP1 -mediated NFkB transactivation being a target for p38 

could not be excluded as preliminary data indicated that SB203580 induced a small 

inhibition in LMPl-mediated NFkB transcriptional activity. Transactivation of the IL-8 

promoter occurred as a result of LMPl-mediated p38 activation and binding of ATF2 (a 

downstream target of p38 activation) to the promoter was demonstrated, in association 

with c-Jun proteins. The ability of LMP1 to induce c-Jun phosphorylation through 

activation of INK suggests that this kinase pathway may also contribute to modulation 

of IL-8 expression. JNK, p38 and NFkB have been shown to be involved in a similar 

complex regulation of the E-selectin promoter. Thus, it is possible that activation of p38 

MAPK plays a significant cooperative role in regulating additional LMP1 activities. 

Recently, the p38 inhibitor SB20350 was used in B lymphocytes to demonstrate that the 

p38 MAPK pathway is required for CD40-induced proliferation. As LMP1 signaling
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closely resembles that of the CD40 TNFR, this observation lends further support to a 

role for p38 MAPK in LMP1-mediated gene regulation.

One study which examined a range of human tumour cell lines following treatment with 

serum, TPA or okadeic acid (OA) suggests the involvement of multiple signaling 

pathways in the regulation of p53-independent activation of p21. For example, cell type 

specific differences, variable patterns of p21 activation and different consequences with 

respect to cell cycle arrest were observed. Also, regulation was found to occur at both 

transcriptional and post-transcriptional levels depending on which form of stimulation 

was used. PKC was a requirement in the TPA- but not OA-mediated induction of p21. 

TPA is a known activator of the PKC pathway, but there are also examples of TPA 

induction of gene expression by a PKC-independent pathway. Zheng et al (1996) 

concluded a critical role for PKC function in TPA- (but not in OA-) induction of p21 

expression, by using staurosporine to specifically inhibit the PKC pathway.

Some preliminary experiments were carried out to investigate the role of the PKC 

pathway in LMPl-mediated upregulation of p21 expression. Treatment of cells with 

PM A confirmed the functional integrity of the PKC pathway in upregulation of p21 

protein in DG75 tTA cells. It was also shown that the upregulation of p21 was prevented 

using the PKC inhibitor, staurosporine. However, on further investigation, it was found 

that LMP1 expression was similarly inhibited by ST, such that no conclusions could be 

made regarding the potential role of the PKC pathway in this instance. Nonetheless, as 

can be seen from Western blot results in Figure 15, the experiment did confirm that 

inhibition of LMP1 expression in induced cells correlated with inhibition of p21 

expression. Although inhibition of a cellular response by ST and other general PKC 

inhibitors has frequently been cited as confirmation of a PKC-mediated event, the use of 

such inhibitors has been criticised in the past for their lack of selectivity (Wilkinson and 

Hallam, 1994). ST is a broad spectrum inhibitor of protein kinases, which has various 

effects depending on the concentration used (Tamaoki et al, 1986; Katira et al, 1993). 

ST has been reported to block the activity of both src-related and receptor tyrosine
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kinases, thus preventing any firm conclusion to be made as to the likely role of PKC. For 

this reason, alternative relevant inhibitors were explored.

Treatment of DG75tTA-LMPl cells with SB203580 to inhibit p38 MAPK activity 

produced a result similar to that obtained after staurosporine treatment i.e. it was found 

that both p21 and LMP1 expression were inhibited. Thus, as before, the results were 

inconclusive with regard to the role of the MAPK pathway in LMP1-mediated 

upregulation of p21 expression.

3.3.9 Future studies

The findings of the investigations detailed in this report suggest a number of potentially 

useful further experiments. Clearly, possibilities exist for a somewhat similar 

progression of experiments charcterising changes in levels of other cell cycle-related 

proteins observed in the original RPA data eg. the EBV latent nuclear antigen, EBNA2 

upregulated mRNA levels of the pl9 cdkl about 4 fold.

As already mentioned, it will be important to elucidate the mechanism of p21 mRNA 

stabilisation as effected by LMP1. It may also be interesting to determine whether or not 

LMP1-mediated upregulation of p21 expression requires new protein synthesis. 

Independence of intermediate protein synthesis is one characteristic feature of primary 

response genes, also known as immediate early genes (Herschmann, 1991). In phorbol 

ester-induced HL-60 cells, p21 induction was demonstrated to occur independently of 

intermediary protein synthesis (Schwaller et al, 1995). However, the p53-independent 

induction of p21 mRNA by Raf signalling in mouse fibroblasts was reported to depend 

on protein synthesis and therefore was not an immediate-early response (Sewing, 1997). 

In these experiments, cells were treated with external stimuli (such as PMA) and CHX 

was added to prevent de novo protein synthesis from the point of stimulation, after 

which mRNA accumulation was followed using Northern Blot or RPA analysis. The 

tetracycline-regulated expression system, however, is dependent on de novo LMP1 

protein synthesis and therefore is not suitable for such analyses. An alternative
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expression system, in the form of a stably-transfected LMP1 fusion protein, may be 

useful for control studies. In these cells, the cytoplasmic tail of the LMP1 protein is 

fused to the membrane domain of the NGF receptor, such that activation of LMP1 signal 

transduction can be achieved by addition of NGF to the growth media, without requiring 

de novo synthesis of LMP1 protein (Schwenger et al, 1998). Obviously, this system may 

also prove more suited to a range of other applications. Similarly, chimeric molecules in 

which the extracellular and transmembrane regions of CD2 and CD4 have been linked to 

the cytoplasmic tail of LMP1 have been used to investigate LMP1 signaling following 

antibody-induced aggregation of the chimera (Kyriakis et al, 1996, Eliopoulos et al, 

1999).

A number of alternative PKC inhibitors may be explored in order to confirm or exclude 

a potential role for PKC in this signal transduction pathway. For example, Calphostin C 

is a general PKC inhibitor, while more specific inhibitors such as Rottlerin, which 

specifically inhibits PKC-delta, may help to identify which PKC isoenzyme(s) are most 

important. It is thought that PKCS, may be the key isoenzyme in signaling to NFkB 

(Diaz-Meco et al, 1993). Also, a number of derivatives of PMA which are known to be 

poor stimulators of PKC (eg. 4-o-methyl-PMA, 4alpha-PDD) may be useful controls. 

Some researchers subject cells to prolonged exposure to PMA to reduce PKC activity, 

thus making them resistant to repeated exposure. In view of the fact that LMP1 protein 

expression was inhibited by both ST and SB203580, an alternative expression system 

may need to be employed to overcome this problem. For example, the stably-transfected 

NGF receptor-LMPl fusion referred to previously would not require new LMP1 protein 

synthesis.

RPA gives no indication as to the size or number of mRNA transcripts. For this reason, 

Northern blots provide useful additional information. Preliminary Northern blotting 

experiments have detected an RNA band which is upregulated in MUTU-III cells 

relative to MUTU-I cells and in LMP1 induced cells relative to uninduced cells (results 

not shown).
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The level of upregulation of p21 expression may be critical to its observed effect. Cdk- 

cyclin complexes require the presence of a single bound p21 molecule for kinase 

activity, while several bound p21 molecules exert an inhibitory effect. This may imply 

that subtle changes in p21 levels can have significantly different effects on cell cycle 

progression. It can be important therefore to determine if an observed increase in the 

protein expression level exceeds the threshold required to inhibit cdk activity. For 

example, as a result of exposure of EBV-immortalised LCLs to gamma irradation, p21 

protein levels are increased by a relatively moderate amount. Without any change in 

cdk2 levels, the amount of p21 associated with cdk2 is dramatically increased, such that 

a significant reduction in cdk2 associated kinase activity is observed (Cannel et al,

1998). It has been shown that in EBV-infected cells, small increases in p53 and p21 led 

to cell cycle arrest at the G2/M boundary, but not to apoptosis; moderate increases 

resulted in growth arrest at the Gi/S boundary, also without apoptosis; and large 

increases also induced apoptosis (Chen and Cooper, 1998). These results revealed 

further unanticipated complexities in cell cycle regulation, and show that critical levels 

of these proteins exist which determine cell fate.

Immunoprécipitation experiments may be performed in the future in an attempt to detect 

functional p21 protein in the context of its binding to other cell cycle proteins. p21 is a 

universal inhibitor which preferentially associates with cyclin-cdk complexes as opposed 

to cdks in the unbound state, eg. cyclin-D-cdk2/cdk4 and cyclinE-cdk2 (important 

during G1 phase); cyclinA-cdk2 (required for ongoing DNA replication) (reviewed by 

Sherr, 1994; Hunter and Pines, 1994). cdk2 and cdk4 monoclonal antibodies (a gift 

from Bioresearch Ireland) have already been tested to determine detectable levels in the 

relevant cell lines (not shown). It would be possible to isolate complexes containing p21 

and cdk2 or cdk4 from the relevant protein lysates by immunoprecipitating with the 

relevent cdk antibody and subsequently immunoblotting with anti-p21 antibody. The 

immunoprecipitated complexes could then be assayed for kinase activity, using eg. 

Histone HI and GST-Rb substrates. This would help to ascertain whether p21 levels had 

exceeded the threshold required to inhibit kinase activity. It may be interesting to note if 

any differences are observed in the type of complexes with which p21 is preferentially
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associated and in their relative kinase activités in the different cell lysates under study. 

For example, is the level of LMP1-mediated upregulation of p21 sufficient to inhibit 

cdk2-associated kinase activity? In EBV-immortalised LCLs, at the basal (EBV- 

induced) level of expression, p21 does not prevent the formation of active cdk2- 

containing kinase complexes, whereas, following activation of the p53 pathway 

following exposure to gamma irradiation, the induced p21 associates with cdk2 in an 

inhibitory manner (Cannell et al, 1998). It is important to recognise, however, that p21 is 

a dual inhibitor in that it has been demonstrated to inhibit DNA synthesis and cell cycle 

progression without interfering with the function of cdk/cyckin complexes (Waga et al,

1994) i.e. p21 also associates with the DNA replication factor, PCNA, in an inhibitory 

manner.

The observations made in these experiments occurred in the context of BL cells. As 

EBV infects primary B cells, it would be useful to transfect an LMP1 expression vector 

into primary B cells and to isolate RNA/protein for analysis as before. It would be 

possible to co-transfect LMP1 with a CD2/GFP marker gene into tonsillar B cells for 

immunomagnetic sorting after 24 hours. Under these conditions, assuming a transfection 

efficiency of 5%, the transfected cells can be sorted to 80% purity. This should be 

sufficient to detect the p21 upregulation. In addition, LMP1 mutants are available, 

which could be used in the same set of experiments to assess the functional domains of 

LMP1 involved in the upregulation.

3.3.10 In Summary

Taken together, the data presented here suggest that elevated levels of p21 mRNA and 

protein are a general feature of group III EBV-positive cells and that LMP1 has an 

important role to play in this effect. LMP1 was observed to upregulate the p21 gene in a 

B cell-specific manner. Stabilisation of mRNA was found to be important which 

permits rapid changes in levels of p21 mRNA/protein due to the high basal activity of 

the p21 promoter. Preliminary data suggest that LMP1 may upregulate other target genes 

by stabilisation of their mRNAs (B. d’Souza and D. Walls, unpublished), so this may be
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a common pathway used by LMP1. Further studies will be required to elucidate the 

mechanism of mRNA stabilisation involved. Data presented here indicate that LMP1 

acts through a p53-independent pathway in upregulating p21 expression and that c-myc 

is probably not involved. Although activation of the PKC signal transduction pathway 

seems likely, the pathway, as yet, remains undetermined.

p21 is part of a complex network of regulatory signals in the highly sophisticated control 

of cell cycle progression. Originally described as a gene induced in response to p53 and 

upon cell senescence, p21 has subsequently been shown to be subject to modulation by a 

variety of effectors involving different mechanisms of regulation. Novel experimental 

data have been presented here which reflect recent surprising findings that several 

proteins that are considered to negatively regulate cell cycle progression (p21, p53, pRb, 

p i07) are up-regulated during EBV-mediated B cell activation (Cannell et a l, 1996; 

Allday et al., 1995; Szekely et a l, 1995). As yet, the contributions of each to 

interruption of normal cell cycle events in EBV-infected B cells or their mechanisms of 

upregulation are poorly understood. It is clear that further studies are required both to 

characterise the observations described in this study and to determine their role in the 

EBV strategy of deregulation of cell cycle events. EBNA2 was not found to be involved 

in the upregulation of p21 levels, but perhaps other EBV latent genes have a role to play. 

Elevated levels of p21 may contribute to cell survival and the control of cell 

proliferation rate, which appear to be important functions of the LMP1 protein.
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CHAPTER 4

A STUDY OF THE FUNCTIONS OF 

THE EBNA3 PROTEINS
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4 . 1  I N T R O D U C T I O N

This chapter describes two alternative approaches taken in the study of the functions of 

the EBNA3 proteins (see section 1.5.6). Firstly, the yeast two hybrid system was 

employed to screen for cellular proteins which potentially interact with EBNA3B. In the 

second approach, it was proposed to generate a stable cell line which could be induced 

to express EBNA3A in response to tetracycline withdrawal using DG75tTA cells (see 

section 3.1 for an outline of the principal of this system).

4.2 THE YEAST TW O HYBRID SYSTEM.

4.2.1 History and Principle

Specific interactions between proteins form the basis of many essential biological 

processes. Additionally, transforming proteins of tumour viruses in many cases exert 

their effect through their interactions with cellular proteins; for example, the SV40 large 

large tumour (T) antigen binds to the cellular proteins p53 and pRb (DcCaprio et al, 

1988). Consequently considerable effort has been devoted to the development of 

methods for the assay of such interactions. Typically, many of these interactions have 

been detected by using co-immunoprecipitation experiments in which antibody to a 

known protein is used to simultaneously precipitate target as well as associated proteins. 

Such biochemical methods however result only in the identification of the apparent 

molecular mass of the associated proteins and obtaining cloned genes for these proteins 

is often a difficult process. One approach which has circumvented this problem is the 

use of purified labelled proteins as probes against bacterial expression libraries where a 

positive signal for an interacting protein is accompanied by the availability of the 

corresponding gene. An alternative approach which has grown in popularity over the 

past decade is use of the yeast two hybrid system, a simple and sensitive means to 

identify proteins that bind to a protein of interest or to delineate domains or residues 

critical for an interaction.
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The concept of a novel yeast-based two hybrid genetic assay for detecting protein- 

protein interactions was first introduced by Fields and Song in 1989, and was derived 

from three experimental observations. Firstly, Brent and Ptashne (1985) demonstrated 

that the activation domain of Gal4 (a yeast transcription factor) can be fused to the DNA 

binding domain (DBD) of E. coli Lex A to create a functional transcription activator in 

yeast. Second, Ma and Ptashne (1987) built on this work to show that the DBD does not 

have to be physically on the same polypeptide as the activation domain i.e. the activation 

domain could be brought to DNA by interaction with a DBD. Fields and Song (1989), 

working independently of Ma and Ptashne, made the seminal suggestion that protein 

interactions could be detected if two potentially interacting proteins were expressed as 

chimeras. Two yeast proteins, SNF1 and SNF4, were used to make a SNF1 fusion to the 

DBD of Gal4 and a SNF4 fusion to the Gal4 activation domain. They demonstrated that 

the strength of the SNF1-SNF4 interaction was sufficient to allow activation through a 

Gal4 DBD. From this, they suggested the feasibility of selecting interacting proteins by 

performing screens of cDNA libraries made so that library-encoded proteins carried 

activating domains (Fields and Song, 1989).

Based on these findings, the yeast two hybrid system (YTHS) exploits the finding that 

most eukaryotic transcription activators are modular. Thus, the ability of a pair of 

interacting proteins to bring a transcription activation domain into close proximity with a 

DNA binding domain (DBD) that regulates the expression of an adjacent reporter gene 

is used to indicate an interaction (Fields and Song, 1989; Chien et al, 1991). The 

principle of the system is summarised in Figure 4.1. Briefly, the DNA binding domain 

targets the hybrid protein to its binding site, where noncovalent interaction with another 

protein tethers the activation domain to the upstream activation sequences (UAS), 

activating transcription of a specific reporter gene. The latter protein is normally 

encoded by a pool of plasmids in which total cDNA or genomic DNA is ligated to the 

activation domain.
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A B C

Figure 4.1 The interaction trap. (A) An EGY48 yeast cell containing two lexA operator-responsive 

promoters, one a chromosomally-integrated copy of the LEU2 gene (required for growth on -Leu media), 

the second a plasmid bearing a GAL1 promoter lacZ fusion gene (causing yeast to turn blue on media 

containing X-gal). The cell also contains a constitutively expressed chimeric protein, consisting of the 

DNA-binding domain of LexA fused to the probe or “bait” protein, shown as being unable to acivate 

either of the two reporters. (B) and (C), EGY48/pbait-containing yeast have been additionally 

transformed with an activation domain (ACT)-fused cDNA library in pJG4-5, and the library has been 

induced. In (B) the encoded protein does not interact specifically with the bait protein and the two 

reporters are not activated. In (C), a positive interaction is shown in which the library-encoded protein 

interacts with bait protein, resulting in activation of the two reporters (arrow), thus causing growth on 

media lacking leucine, and blue colour on media containing X-gal. Symbols: black rectangle, lexA 

operator sequence; open circle, LexA protein; open pentagon, bait protein; open rectangle, library protein; 

shaded box, activator protein. Adapted from Gyuris et al, 1993).

In most cases, the well-characterised yeast transcription factor Gal4 and the DBD of E. 

coli LexA are used in constructing the fusions, and the E. coli lacZ gene is often used as 

the reporter (Chien et al, 1991; Durfee et al, 1993 and Gyuris et al, 1993). Both Gal4 

and LexA bind as dimers and the reporter genes contain several copies of the binding 

site. These DNA binding and activation domains (AD) can function at either end, but for 

ease of cloning are usually placed at the amino end. If they lack an endogenous nuclear 

localisation sequence, vectors usually include a heterologous signal sequence (for a 

review of the two hybrid system, see Fields and Sternglanz, 1994). A flow chart for 

performing an interaction trap is represented in Figure 4.2.
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Figure 4.2. Flow chart for performing an interaction trap



Thus, though systems differ in their specifics, all have three basic components:

- yeast vectors for expression of a known protein fused to a DBD,

- yeast vectors that direct expression of cDNA-encoded proteins fused

to a transcription AD,

- yeast reporter genes that contain binding sites for the DBD.

Different systems use different reporter genes, but usually two alternative genes are 

utilised to help reduce false positives. As mentioned above, one commonly-used reporter 

gene is E. coli lacZ which produces blue colonies on plates or filters containing X-Gal. 

A second reporter gene which encodes an enzyme required for the biosynthesis of an 

amino acid may also be used. For example, use of LEU2 or HIS3 allow for selection of 

cells that grow on media lacking the relevant amino acid and are particularly helpful 

when screening libraries. The activation-tagged cDNA-encoded proteins are expressed 

either from a constitutive promoter or from a conditional promoter such as that of the 

GAL1 gene. Use of a conditional promoter makes it possible to quickly demonstrate that 

activation of the reporter gene is dependent on expression of the activation-tagged 

cDNA proteins.

While the two hybrid system is most often used in yeast, it should work in any eukaryote 

and has been used in mammalian hosts (Vasavada et al, 1991; Fearon et al, 1992). 

However, the yeast-based system has numerous advantages, including the ease of 

transformation, the convenience of retrieving plasmids, and the availability of nutritional 

markers and well-characterised reporter genes for direct selection. Finally, endogenous 

yeast proteins are less likely to bind a mammalian target protein to prevent its interaction 

with a protein encoded by a library. No endogenous yeast proteins bind to the LexA 

operators.
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4 . 2 . 2  A p p l i c a t i o n s

The YTHS has three major applications. The system has been widely used to test known 

proteins for interaction and also to define domains or amino acids critical for an 

interaction. Finally, perhaps the most powerful current application involves the 

screening of libraries for proteins that bind a protein of interest. Typically, libraries are 

constructed in which total cDNA derived from an organism or tissue is fused to a 

sequence encoding a TA domain. These libraries generally contain >106 inserts, 

although only one sixth of these are likely to be in the correct orientation and reading 

frame. For example, the p21/CIPl cyclin-dependent kinase (cdk) inhibitor was identified 

by screening a library with cdk2 (Harper et al, 1993). Similarily, screening with cdk4 

detected the pl6  cdk inhibitor (Serrano et al, 1993). The sensitivity of the method has 

been illustrated by the detection of certain enzyme-substrate interactions which had not 

been detected using alternative methods, eg. binding of Ras with the protein kinase Raf 

was detected using the yeast two hybrid system (Votjek et al, 1993) but had not been 

observed by co-iminunoprecipitation. Also Raf binding of the Ikb protein which can be 

phosphorylated by Raf yields a signal in this system (Aelst et al, 1993). It seems likely 

that transient interactions can trigger transcription to produce a stable mRNA that can be 

repeatedly translated to yield a reporter protein. This type of amplification leads to a 

detectable signal even when the initiating interaction cannot be observed in vitro. Other 

interactions with the basal transcription machinery may help stabilise a weak protein- 

protein interaction.

Several industrially significant uses of YTHSs have emerged. Firstly, some important 

targets for pharmaceutical intervention have been identified using these techniques and it 

is thought that their extension in the future will allow the development of new drugs. For 

example, new nuclear hormone receptors were identified by Seol et al (1994). Ligands 

for these receptors are likely to be biologically active and may well have pharmaceutical 

significance. Another industrial application involves searching for compounds that 

modulate protein interactions. This is based on the premise that compounds that weaken 

a given interaction would diminish expression of reporters. Furthermore, in two hybrid 

systems, the strength of activation generally correlates with the strength of interaction.
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Mutations in either interacting protein that diminish binding, and thus reporter activity, 

can indicate residues in protein-protein contact. This permits the determination of 

specific residues involved in a given protein-protein interaction.

4.2.3 Disadvantages and Limitations.

While a wide range of protein-protein interactions may be detected using the YTHS, 

some limitations exist. Despite the inclusion of a nuclear localisation signal in the bait 

plasmid, some proteins cannot be imported into the nucleus and thus are clearly not 

suitable. Also, improper folding of bait proteins in the yeast cell precludes their use in 

this assay. Interactions which are mediated by post-translational modifications may not 

be detected; for example, certain phosphorylation reactions may not occur in yeast. 

Similarly, proteins which are glycosylated and/or contain disulphide bonds are generally 

not compatible with a nuclear-based system. For this reason, it may not be possible to 

reproduce interactions involving extracellular proteins, thus, the assay may be of limited 

use in analysing receptor-ligand interactions which usually occur outside the cell. 

Nonetheless, the intracellular domains of membrane receptors will probably function in 

the YTHS. Despite these limitations, proteins are more likely to be in their native state in 

a yeast-based system than those produced in bacterial systems.

The broad applicability of the YTHS partially depends on the fact that most proteins do 

not contain activation domains. Nevertheless, in some cases a bait induces 

transactivation due to the presence of true ADs while in many cases random domains 

can cause activation. In these cases, a truncated form of the protein may be used or the 

residues responsible for transactivation may be deleted. However, it is often impossible 

to tell what effect this might have on it’s ability to bind other proteins. Problems have 

also been encountered where the transcription factor domain blocks accessibility of 

either interacting protein. In these cases, the orientation of the hybrid can usually be 

reversed.

Despite the extensive control measures in place, false positives remain a significant 

problem associated with use of the YTHS. Having passed a dual selection screening 

process, certain library plasmids activate reporter gene expression, independent of

174



interaction with the bait protein. In many cases, this is caused by a library plasmid 

encoding a protein involved in transcription, but in other cases the explanation remains 

unclear. Such positives can usually be eliminated by assaying the positive library 

plasmids against hybrids of the DBD fused to other unrelated bait proteins. In this case, 

the more non-specific fusion proteins which are used the better. In view of these 

problems, careful design of bait, proper use of controls and confirmation of results with 

an independent method are essential for the successful use of the YTHS.

4.2.4 In Conclusion

In spite of the problems and pitfalls which have become more evident in recent years, 

the YTHS has nonetheless provided a useful tool over the past decade both in the study 

of interactions between known proteins and in the identification of new proteins which 

interact with known target proteins. The yeast two hybrid system has been particularly 

useful for studying proteins that control the cell cycle, that regulate transcription and 

function in oncogenesis and tumour suppression. It seems likely that, given its high 

sensitivity and broad applicability, this system and other hybrid protein systems will find 

application in many areas of research. Interaction technology may be of utility for 

assigning function in genome applications; eg. to assign function to unknown proteins, 

to assign proteins to ordered genetic pathways and even to find genes altered in disease 

states (see Mendelsohn and Brent, 1994 for applications to biotechnology research.). 

Thus, it seems likely that interaction technology will continue to have a large impact on 

many areas of basic and applied biological research.

4.2.5 Aims

The aim of this work was to screen relevant cDNA libraries for protein-protein 

interactions involving the EBNA-3 family of proteins, in particular, EBNA-3B. It was
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proposed to prepare constructs which would allow screening for interactions involving 

EBNA-3A, EBNA-3B or EBNA-3C, but to conduct initial screening using the EBNA- 

3B construct. In the event of detection of any positive interactions, EBNA-3A and -3C 

could then be screened for specific association with the isolated interactor. Although 

members of the same family, amino acid homology is limited and so interactions 

specific to each family member as well as common interactions are quite likely. 

Furthermore, the YTHS could subsequently be used to more precisely delineate 

domains/amino acids critical for binding. In each case, amino-terminal fragments of 

EBNA-3 were chosen to use as bait in the screening assay due to the existence of 

transcription regulatory domains in the carboxy-terminal end (see Figure 4.3). In 

addition, previously identified protein-protein associations involving the EBNA-3 family 

have been largely confined to the amino-terminal end.

For the purpose of these experiments, the YTHS was employed to screen two alternative 

cDNA libraries. This necessitated the use of two systems which differ quite significantly 

in methodology. For convenience, they will be referred to as YTHS-A (developed by 

Golemis et al, 1993) and YTHS-B (developed by Harper et al, 1993). In each case, the 

relevant library was screened with an amino-terminal fragment of the EBNA-3B gene, in 

an attempt to identify proteins with which the latter interacts. Materials and methods 

used in the YTHS are described in sections 2.1 and 2.8, respectively. Solutions are 

detailed in Appendix.

4.3 YTHS-A

4.3.1 Strategy

The first yeast two hybrid system (YTHS-A) employed was based on a system which 

owes it’s development to work primarily by Jeno Gyuris and Erica Golemis (Golemis et 

al, 1993). This system was employed to screen a library prepared from the cDNA of a 

human foetal lung fibroblastic cell line, WI-38, for potential interactors with a 1575bp 

amino terminal fragment of EBNA-3B. The YTHS-A method consisted of three critical
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components (reviewed by Mendelsohn and Brent, 1994). First, a vector (pEG202, Figure

4.4) for expression of the protein of interest, EBNA-3B, fused to the LexA DBD, 

referred to as the bait plasmid, or pBait. Second, the yeast strain EGY48, which has two 

LexA-responsive reporter genes. A yeast Leu2 derivative that has its upstream 

regulatory sequences replaced with LexA operators allowed transcription of the Leu 

gene to be measured by the ability of the strain to grow in the absence of leucine. The 

other reporter gene, lacZ, provided a secondary assay of activation, as well as some 

quantitative information about the interaction. Third, a library plasmid (pJG4-5, Figure

4.5) directs the conditional expression of cDNA proteins fused at their amino-termini to 

a moiety containing three domains: a nuclear localisation signal, a transcription 

activation domain and a HA epitope tag. The cDNA-encoded protein is expressed from 

the yeast GAL1 promoter, which is induced by galactose and repressed by glucose. The 

use of a galactose-inducible promoter makes it possible to determine that the leucine 

prototrophy is dependent upon cDNA expression. Thus, an advantage of this particular 

system is that cells containing true interactors will grow on media lacking leucine only if 

it contains galactose but not when it contains glucose.

4.3.2 Preparation of bait fusion construct, pAS-3B-525.

A cloning strategy was designed to construct a LexA-EBNA-3B fusion which would 

express an amino-terminal portion of EBNA-3B fused to the C-terminus of LexA. This 

involved insertion of the appropriate EBNA-3B coding region (Figure 4.3) into the 

pEG202 plasmid (see Figure 4.2 and section 2.1 for plasmid description) which 

constitutively expressed EBNA-3B fused to amino acids 1 to 202 of LexA (includes the 

DNA binding and dimérisation domains). Although it does not contain a yeast nuclear 

localisation sequence, LexA and most LexA fusions will enter the nucleus. Nevertheless, 

a derivative of pEG202 which contains an additional NLS (pNLEX) was included in 

similar cloning experiments.

One important requirement of the YTHS is that the bait should be transcriptionally inert. 

Therefore, selection of a portion of EBNA-3B for use as bait in the interactor hunt was
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based on minimising the likelihood of inappropriate transcriptional activation, while 

retaining the domains most likely to be involved in protein-protein interactions. To this 

end, a 1575 bp amino terminal fragment of EBNA-3B was subcloned into pEG202 and 

pNLEX downstream of the LexA DNA binding domain. This region of EBNA-3B 

excludes a C-terminal proline-glutamine-rich domain (see Figure 4.3) which has been 

shown in EBNA-3C to contain a transactivation domain (aa 724-826) similar to the 

transactivation domain in the mammalian transcription factor, Sp-1 (Marshall et al,

1995). Other transcriptional regulatory domains have been delineated in the C-terminal 

portion of the EBNA-3 proteins, including a strong repressor domain identified in 

EBNA-3C (aa280-525). Furthermore, this bait construct retained the putative RBP-Jk 

binding site which lies between aal81-257 (Robertson el al, 1996).

TBP binding 
(aa 1-350)

RBP-Jk binding 
(aa 181-257)

StrongR.D.
(aa280-525)

N
«4—

90 325 440

EBNA-3B525 -------

EBNA3B-279

T.A.D
(aa724-826)

c

Weak T.A.D. (aa580-992, EBNA-3C)

Figure 4.3 Functional domains of the EBNA-3B Protein. Approximate location of RBP-Jk binding 

domain and putative transcription regulatory domains of the 933aa EBNA-3B protein are shown (see also 

figure 1.7). TBP : TATA-binding component of TFIID; R.D : Repressor domain; T.A.D : 

Transactivation domain. (Cohen and Kieff, 1991; Le Roux et al., 1994; Marshall and Sample, 1995). 

Arrows indicate regions of EBNA-3B included in bait protein. Dashes indicate known functional EBNA3 

domains. Line sizes are approximate to domain sizes.
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Psfl 0.00/9.60

Figure 4.4 pEG202 expression vector, pEG202 uses the strong constitutive alcohol dehydrogenase 

promoter (ADH)!ro) to express bait proteins as fusions to the DNA binding protein LexA. Restriction sites 

available For insertion of coding sequences are shown immediately upstream of the AHD,„. This plasmid 

contains the HIS3 selectable marker and 2 pm origin of replication to allow propagation in yeast, and the 

ampicillin resistance gene (ampT) and the pBR origin (ori) or replication to allow propagation in E.coli. 

Numbers indicate relative map positions.
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Figure 4.5 pJG4-5 library plasmid. pJG4-5 (Gyuris et al., 1993) expresses cDNAs or other coding 

sequences inserted into the unique EcoRl and Xhol sites as translational fusions to a casette consisting of 

the SV40 nuclear localisation sequence (nuc. loc.), the acid blob B42 and the haemagglutinin (HA) 

epitope tag. Expression of sequences is under the control of the GAL1 inducible promoter. Numbers 

indicate relative map postitions.

The 1575 bp N-terminal fragment of EBNA-3B was amplified by PCR from p7CMVE4 

using the primers and protocol detailed in sections 2.1 and 2.3 (see Figure 4.6). In order 

to allow insertion of EBNA-3B into the BamHl site of vectors, PCR primers were 

designed to incorporate a BamHl restriction site at each end of the PCR product.



M 1 2 3 4 M

EBNA3B
(1575bp)

pAS-1
(8.5kb)

3.0 kb
2.0 kb 
1.6 kb

Figure 4.6 Electrophoresis of EBNA-3B PCR products (0.8% agarose gel).

Lane M: 1 kb markers; Lanes 1 and 2: EBNA-3B 1575 bp PCR product; Lanes 3 and 4: BamHi- 

linearised pAS-1 (8.5kb). Arrows indicate DNA used in cloning experiments; dashes indicate DNA size 

markers.

EBNA-3B PCR product was cut with BamHl enzyme to give sticky ends which were 

then ligated with the BamHl -linearised vectors. Following transformation of E.coli, 

recombinant clones were characterised by BamHl restriction analysis (Figure 4.7).

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 M

12 kb

3 kb 
2 kb 

1.6 kb

. -  - \ 
w* •«* M m

I
8.5 kb 
vector

1.6kb
insert

Figure 4.7 Identification of constructs containing EBNA-3B insert. DH5a E.coli were transformed 

with ligations of EBNA-3B and pEG202/pNLEX. Recombinant colonies were assessed by BamH 1 

digestion of DNA minipreps, which were then electrophoresed on a 0.6% agarose gel. Plasmids which 

contain a 1.6 kb insert can be seen in lanes 6, 10 and 12. Arrows indicate digested DNA; dashes indicate 

DNA size markers.
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To determine which recombinants contained EBNA-3B inserted in the correct 

orientation, two independent restriction analyses were performed (as for all subcloning 

experiments). For example, with reference to Figure 4.8 below a single Nco 1 site is 

present in the multiple cloning site of pEG202/pNLEX, located downstream of the C- 

terminal end of the EBNA-3B insert, while EBNA-3B525 contains 2 Nco 1 sites., 

incorrect orientation of insert gives a band of -950 bps which is absent in correctly 

orientated inserts .

------------------------------------- EBNA-3B_______________

(311aa) (525 aa)

Nco 1 Ncol Nco I

(933bp) (1431bp)

Figure 4.8 Schematic representation of Ncol sites in EBNA-3B inserted into 

vector. Blue lines represent EBNA-3B sequences, while black lines represent pEG202 

vector sequences.

4.3.2 Truncation of EBNA-3B525 bait construct to give EBNA-3B311 bait in 

pEG202/pNLEX.

Shorter LexA fusion proteins were derived from pEG-3B-525 and pLEX-3B-525 

constructs by Ncol restriction. Referring to Figure 4.8(A) again, it can be seen that this 

produces a 933 bp N-terminal EBNA-3B fragment inserted at the BamU 1 site of 

pEG202/pNLEX to give pEG-3B-311 or pLEX-3B-311. Each encodes the first 311 

amino acids of the EBNA-3B gene product. The result of this manipulation is illustrated 

in figure 4.9(A) by BamU] excision of inserts, and confirmed in an independent 

restriction using Pstl in Figure 4.9(B). Digestion with Pstl gives a 5.35 kb band in
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pEG202/pLEX-3B-525 which is reduced to a 4.75kb band as a result of loss of 

approximately 600 bp in pEG202/pLEX-3B-311.

Figure 4.9 Truncation of pEG-3B525 bait construct to give pEG-3B311.

(A): BamHl restriction of pEG-3B525 / pEG-3B311 (1.8% agarose gel).

Lane 1 : pEG-3B525 (1575 bp); Lane 2 : pEG-3B311 (933 bp); L aneM : lOObp Markers

(B): Pstl restriction of pEG-3B525 / pEG-3B311 (0.6% agarose gel).

Lane M; 1 kb Markers; Lane 2: pEG-3B525, Pstl digest; Lanes 3 and 4: pEG-3B311, Pstl digest 

Arrows indicate digested recombinant DNA fragments; dashes indicate DNA size markers.

In conclusion, 4 individual EBNA-3B baits were constructed as follows: 

pEG-3B-525 : 1575 bp insert (encoding 525aa) in pEG202. 

pEG-3B-311 : 933 bp insert (encoding 311aa) in pEG202. 

pLEX-3B-525 : 1575 bp insert (encoding 525aa) in pNLEX. 

pLEX-3B-311 : 933 bp insert (encoding 31 laa) in pNLEX.

1 2 3 4 M M 1 2 3 M

1575bp
933bp
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4 . 3 . 4  C h a r a c t e r i s a t i o n  o f  B a i t s .

4.3.4.1 Transcription activation assay

This assay was used to verify that baits did not activate transcription of the reporter 

genes. Using X-gal filter lift assays for activation of the lacZ reporter gene, positive 

controls were observed to be blue within an hour, while negative control and all baits 

tested showed no colour change after overnight incubation at 30°C. Transformant strains 

containing baits were also tested for their ability to grow in the absence of Leu.

EGY48 Carbon source Growth on Leu- LacZ

pSH18-34/pSH17-4 Glucose - -

pSH18-34/pSH17-4 Galactose ++ ++

pSH18-34/pRFHM-l Glucose - -

pSH18-34/pRFHM-l Galactose - -

pSH18-34/pBait* Glucose - -

pSH18-34/pBait* Galactose - -

Table 4.1 Transcription activation assay. *pBait denotes that each of the following baits were tested: 

pEG-3B-525; pLEX-3B-525; pEG-3B-311; pLEX-3B-311.

The data in Table 4.1 confirm that none of the bait plasmids express a fusion protein that 

is transcriptionally active. As both reporter genes are controlled by gal-dependent 

promoters, therefore any transactivation should be apparent only when galactose is 

provided as the carbon source (see positive control). For this reason, glucose plates were 

included in the experiment as negative controls.

4.3.4.2 Repression assay (Nuclear localisation assay).

The repression assay was used to confirm that bait fusion proteins are capable of 

entering the nucleus and binding LexA sequences. This assay is based on the 

observation that LexA and and non-activating LexA fusions can repress transcription of
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a reporter gene which has two lexA operators positioned between the TATA box and 

upstream activating sequence in pJKlOl. Thus, repression of P-galactosidase activity is 

used as an indication of nuclear localisation and interaction with LexA operators (Brent 

et al, 1994)). A quantitative P-galactosidase liquid assay was used to determine levels of 

activity.

S. cerevisiae EGY48 P-gal activity*

PJKlOl 730 U

pJK101/pRFHM-l 377 U

JK101/pLEX-3B-311 229 U

Table 4.2 Repression Assay (Nuclear Localisation Assay). *Units of activity are based on a duplicate 

average for each transformant.

The results indicated that the pLEX-3B-311 bait expressed a protein that is localised to 

the nucleus and binds LexA operators, as suggested by the 3.1-fold decrease in P- 

galactosidase activity (Table 4.2). This level of repression was greater than that 

produced by the control construct. It has been reported that 2-fold repression indicates 

>50% operator occupancy by the bait. Other baits tested gave no detectable activity but 

extension of incubation times in P-gal assays may have allowed detection of lower levels 

of activity.

4.3.4.3 Western immunoblotting.

It is generally recommended to assay for the production of full-length LexA fusions as 

occasionally some fusion proteins will be proteolytically cleaved by endogenous yeast 

proteases. Extracts from yeast cells harbouring the bait plasmid are usually 

immunoblotted with either an antibody to LexA or one specific to the protein fused to 

LexA to detect a protein of the expected molecular weight (Golemis et al, 1994). As no 

anti-EBNA3B antisera were available, a rabbit polyclonal anti-LexA antiserum (a gift 

from Dr. Luke O’Neill, University of Dublin) was used. Full-length LexA-525 and
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LexA-311 baits were expected to appear as 57 and 81 kd proteins respectively. Although 

the correct size proteins could not be confirmed by Western blot, dot blot analysis was 

used to detect the expression of LexA protein in each bait (not shown). EGY48 

containing pSH18-34/pSH17-4 was included as positive control, for expression of LexA 

protein while empty EGY48 was used as negative control. These results did not confirm 

that full-length fusion proteins were being expressed but did provide evidence of the 

expression of LexA proteins in the sample preparations, and confirmed the capacity of 

the detection system to detect LexA.

4.3.5 Interactor hunt

As baits were deemed likely to be suitable for use in a library screen, an interactor hunt 

was initiated using the pLEX-3B525 construct as bait. Selection of positive interactors 

using this system was based on detection of clones which exhibited galactose-dependent 

growth on medium lacking leucine, and galactose-dependent (3-galactosidase activity. To 

this end, a two-step approach for selection was employed whereby library transformants 

were first harvested and frozen, before plating for selection of interactors. Thus, the first 

step involved introducing the library (Trp+) into the EGY48 selection strain which 

contained the reporter plasmid, pSH18-34 (Ura+) and the bait plasmid, pLEX-3B-525 

(His+). As a much higher transformation efficiency was required here than for the 

transactivation and repression assays, an alternative high efficiency protocol was used. 

Library transformants were then selected on plates containing Leu+ medium with 

glucose as the carbon source (YNB/Glu-U-H-T+L) (Step 1). After 4 days growth at 

30°C, transformants were then harvested, washed, and stored as glycerol stocks at -80°C 

in a total of 2 ml media.

Plating efficiency was determined in order to estimate an appropriate amount of stock to 

plate when screening for positive interactors. Using the two-step approach, plating 

efficiency was determined after the first plating by preparing a series of dilutions of 

transformants in galactose-containing Leu+ medium. In this way, plating efficiency was 

estimated to be in the region of 5 x 106 CFUs/100 (0,1 frozen cells. Transformation
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efficiency was calculated to be approximately 2.5 x 106 CFUs/|ig DNA. Having 

determined plating efficiency, transformants could then be plated, as required, on media 

lacking leucine (YNB/gal-U-H-T-L) (Step 2). Growth in galactose-containing medium 

was carried out to induce expression of the cDNA-encoded proteins. Thus, primary 

isolation of putative interactors was based on detection of any interactions which 

transactivated the leu reporter gene. A small-scale plating allowed a rough estimation of 

the total number of putative interactors i.e. -4% of stock gave a total of 51 colonies on 

Leu- plates containing galactose as carbon source. This result corresponds to a figure in 

the region of 1200 putative interactors in the total stock of library transformants.

In the two-step method, transformants isolated on Leu- medium in the initial plating 

must be screened for false positives by examining the Leu2 and lacZ phenotypes of the 

interactors. Growth on media lacking leucine must be shown to be galactose-dependent 

and the transformants must also exhibit galactose-dependent (3-galactosidase activity. 

Firstly, the Leu-i- yeast were streaked for single colonies to isolate them from 

contaminating Leu- yeast that were present when the Leu+ colony was forming. These 

were then patched onto a glucose master plate, from which four new replica plates were 

made in order to test for lacZ expression and galactose dependence. This phenotyping 

required two leu- plates and two X-gal plates; one Leu plate and one X-gal plate contain 

galactose to induce cDNA expression (plus raffinose to enhance growth), while the other 

leu- plate and X-gal plate contained glucose to repress cDNA expression. It was 

necessary to grow the yeast on glucose master plates to shut off cDNA expression before 

replica plating because galactose-dependence of Leu+ and lacZ+ phenotypes may 

sometimes be masked if there is sufficient message and protein product from the 

activation tagged cDNA protein to allow the yeast to grow on leu- glucose for several 

generations and turn blue on glucose X-gal without further cDNA expression. Despite 

this step, however, when Leu positive clones in this study were isolated and tested for 

galactose dependence, no clones appeared to exhibit galactose-dependence, that is, all 

clones grew on in the presence of either glucose or galactose. Thus, a summary of the 

interactor hunt results is represented in Table 4.3 below.
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Transformants Leu + Gal-dependent Leu+

No. of cDNA 

library clones

1 x 10s 1200

Table 4.3 Summary of YTHS-A interactor hunt results.

Normally, yeast that grow on Leu-/galactose but not on Leu-/glucose medium, and that 

turn blue on galactose X-gal plates but remain white on glucose X-gal plates (i.e. those 

that are galactose-dependent Leu+ and lacZ+) are picked for further characterisation.

This type of false positive result has been previously documented and appears to occur 

with certain baits for reasons that aren’t completely understood (Brent, 1994). One 

possible explanation is the presence of a Leu+ contaminant, but this is probably unlikely 

to account for all of the false positives. A number of investigations into this result were 

subsequently carried out. Yeast miniprep DNA was used in PCR reactions to amplify 

cDNAs from a random sample of 10 clones using primers complementary to the regions 

flanking the site of insertion of cDNAs (BCOl and BC02, see section 2.1). No PCR 

product was observed on agarose gel electrophoresis which indicates either a technical 

problem with the PCR reaction (a positive control for these primers was not available) or 

perhaps a leu-positive contaminant. Library DNA was investigated in two ways. Firstly, 

a sample of library DNA was used in PCR reactions as above. Secondly, library DNA 

was digested with Xhol/EcoRl in order to excise the cDNA inserts. Unexpectedly, 

results of these analyses failed to show an intact library of the anticipated complexity. 

This implied that reduced quality of library DNA may have contributed to the observed 

results.
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4.4.1 YTHS-B

4.4.1 Strategy

An alternative version o f  the YTHS w as also em ployed in an attempt to identify proteins 

which interact with E B N A -3B . A s human B lym phocytes are a main cellular target o f  

EBV infection, a cD N A  library prepared from the m RNA o f EBV-transformed human B 

lym phoctes (Durfee et a l , 1993) provided an ideal pool o f  potential interactors with 

which to screen E B N A 3B . The system  presented here represents a modification o f a 

system  (Durfee et al, 1993) originally developed by Harper et a l (1993) and differs in a 

number o f  ways from Y TH S-A  outlined in section 4.3. For exam ple, the D N A  binding 

and activation domains are both derived from the yeast Gal4 transcription factor, in pAS 

(Figure 4 .10) and pACT (Figure 4 .11 ), respectively. The various transcription factors 

used in the different versions o f  the YTHS have been found to work comparably (Fields 

and Sternglanz, 1994) and the sensitivity o f  a particular assay seem s to depend mostly 

on the nature o f  the D N A  binding sites present in the reporter gene and the level o f  

production o f the hybrid protein.
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XbaJ(lOOC)

Xbal{1900)

E coRV(2I00)

Nael(2900)

Sacl(3200) 

EcoRV(MW) 
EcoMß720)
■Bgl 11(3740)

* Denotes Dam Methylatlon 
Blocks Cutting

S f l l
CAT AfTG G CC AT.G GAG GCC COG GBS ATCjCI 

' B äiriH lNder Ncol S m a l
CGT CGA C  

Sail

F ig u re  4.10 pAS-1 expression vector. pAS-1 is shown, containing TRP1, 2 jim origin, and the ADC1 

promoter driving expression of the Gal4 DBD (aal-147, Keegan at al, 1986) fused to a polylinker. The 

Gal4 derivative is tagged with the HA epitope and the polylinker contains several useful cloning sites for 

insertion of coding sequences.
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P vliI(8126) Xbal(600)

micron
Hpal(1575)

pACT2
8.55 kb

A D H  P rom oter

Activation
D om ain

L E U 2
T e rm in a to r

E coRV(3200)

Sfi I_____________
C A T  A TG  G CC A T G GAG G C C CCp  G GG A TC  C G A  A TT  C GA  G C T CGA G AG A TC  T  

Nciel Ncol Smal BamHI EcoRI Xhol Bglll

Figure 4.11 pACT library plasmid. pACT contains the ColE l origin of replication 

and b la  gene for replication and selection in E .c o l i , and L E U 2 ,  2  |im  origin, and the 

ADC1 (A dhl) promoter sequences for selection, replication and expression in yeast. The 

ADC promoter drives expression of a hybrid protein consisting of the SV40 large T 

antigen nuclear localisation signal and sequences encoding the AD II of Gal4.

The yeast strain utilised, Y187, carries two chromosomally located reporter genes whose 

expression is regulated by Gal4. Firstly, the E .c o l i  l a c Z  gene under the control of the 

GAL1 promoter (Fields and Song, 1989) and secondly, the selectable H I S 3  gene, where 

the H I S 3  regulatory sequences have been replaced by the GAL1 UASg, to allow Gal4 

control. Together, the two reporter genes provide a highly sensitive dual selection 

system. Because Y 187 is deleted for g a l4  (and its negative regulator g a l8 0 ), expression 

of both reporters should be off in the absence of exogenous Gal4. However, the G A L 1 -  

H I S 3  fusion allows production of a low constitutive level of H I S 3  sufficient to allow
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growth without exogenous histidine, even in the absence of Gal4. This can be overcome 

by growing cells in the presence of 3-aminotriazole (3-AT), a chemical inhibitor of IGP 

dehydratase, which restores histidine auxotrophy (Kishore and Shah, 1988). Thus, 

incorporation of 25-50 mM 3-AT into the growth media can be used to inhibit the basal 

level of H I S 3 , preventing growth unless G A L 1 - H I S 3  expression is activated. The low 

requirement for His3 protein makes this selection very sensitive such that proteins that 

only weakly interact can be selected. In order to test the efficacy of the His selection 

system, SNF1 and SNF4, two proteins known to physically interact in vivo, and whose 

interaction had previously been detected using the YTH system, were employed (Fields 

and Song, 1989). Surprisingly, the H I S 3  transcription produced by the S N F 1 - S N F 4  

interaction provided more resistance to 3-AT than the wild-type H I S 3  gene itself. This 

indicated the potential for interacting hybrids to increase His3 expression above wild 

type levels, and thus provides a more sensitive selection. Finally, expression of the 

library cDNA is under the control of the constitutive ADH promoter, in contrast to the 

conditional galactose-dependent promoter used in YTHS-A.

4.4.2 Preparation of bait constructs

The EBNA3B N-terminal fragment (1575 bp) which was amplified by PCR as per 

YTHS-A was subcloned into the 8.5 kb pAS-1 bait plasmid at the B a m U l  site according 

to DNA methods described in section 2.3. Due to the presence of an N c o l  site in the 

pACT MCS, a shorter EBNA-3B fragment which lacks the repressor domain could not 

be derived by enzyme restriction as for YTHS-A. Thus, an 837 bp fragment was 

amplified by PCR (Figure 4.12). PCR reaction conditions and primer sequences are 

given in sections 2.1 and 2.3.
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M 1 2 M

EBNA3B 
PCR product 
(837 bp)

1500 bp 
1000 bp 
900 bp

F ig u re  4.12 EBNA-3B279 P C R  p ro d u c t (1.5 % agarose gel).. Lane M: 100 bp DNA markers; lanes 1 

and 2: EBNA-3B279 PCR product (837 bp). Arrow indicates PCR product, dashes indicate DNA size 

markers.

Figures 4.13 and 4.14 show an example of pAS-l/EBNA-3B279 and pAS-l/EBNA- 

3B525 recombinants, respectively, with inserts in the correct and incorrect orientations.

1 2 3 4 5 6 M

F ig u re  4.13 pAS-3B-279 o rien ta tio n  in  pAS. Digestion of recombinant colonies with B stE W Sall give

correctly orientated EBNA-3B in lanes 1 and 4 (i.e. 350 bp fragment). Lanes 2, 3, 5 and 6 contain insert 

but in the wrong orientatinon (i.e. 550 bp fragment). Arrows indicate DNA digest products; dashes 

indicate D NA size markers.
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M 1 2

3 kb 
2 kb 
1.6kb 
lkb

F igu re  4.14 pAS-3B-525 o rien ta tio n  in  pAS. Digestion of 2 recombinant colonies with Nco 1 Results 

show correctly orientated EBNA-3B in lane 2, while clone 1 is incorrectly oriented (see N col sites, Figure 

4.8A). Arrows indicate DNA digest products; dashes indicate DNA size markers.

4.4.3 Characterisation of baits

The pAS-l/EBNA-3B525 (pAS-3B-525) construct was tested to ensure its suitability as 

bait in this YTH system. Firstly, it was important to show that baits did not transactivate 

either of the reporter genes in the absence of library DNA and secondly, the ability to 

express full-length fusion protein in yeast strain Y187 was confirmed.

4.4.3.1 Transcription activation assay

Constructs which activate transcription in the absence of other constructs cannot be used 

in the yeast two hybrid assay. For this reason, Y187 strains containing EBNA-3B bait 

were checked for their growth properties on His- plates containing 3-AT (3- 

aminotriazole, Sigma, A8056) and for their ability to activate the l a c Z  reporter. These 

tests were carried out relative to strains carrying pSE1112 (S N F 1  fused to the DNA- 

binding domain of Gal4 in pAS-1) alone, a bait which is known not to transactivate 

alone and thus served as negative control. pAS-1 alone is not a good negative control as 

it can activate l a c Z  weakly. This appears to be lost when genes are cloned into it. It is 

not understood why pAS-1 is weakly activating alone, but it is likely that it is due to
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sequences beyond the polylinker and which are of no consequence once cDNAs are 

cloned into it. pSE1112 is a better negative control. pSE lll/pS E 1112  was used as 

positive control, where p S E l l l  is the pACT plasmid containing a fusion between S N F 4  

and the G a l 4  activation domain. S N F 1  and S N F 4  are known to interact in this yeast 

strain, thus causing transactivation of both H I S 3  and l a c Z  genes.

Usually 3-AT concentrations of 25 mM to 50 mM are sufficient to select against pAS-1 

subclones that fail to activate transcription of the H I S 3  gene on their own. The positive 

control was observed to give stronger growth at 25 mM 3-AT than on plates containing 

50 mM 3-AT. The pAS-3B525 construct failed to grow in the presence of either 50mM 

or the more transactivation-sensitive 25 mM 3-AT (Table 4.4). X-gal filter lift assays 

were used to assess transactivation of the l a c Z  gene. Positive control clones produced a 

positive blue colour within 30 mins, while clones expressing bait protein were found to 

be negative even after overnight incubation.

(A) HIS Transactivation (B) LacZ Transactivation

pBait 25mM 3-AT 50mM 3-AT 30 mins 60 mins Overnight

pSE l 111/ 

pSE1112

+++ ++ + ++ +++

pSE1112 - - +/- + +

pAS-3B - - - - -

T able 4.4 T ran sac tiv a tio n  assay -  YTHS-B.

Plasmids used to transform Y187 (given in left-most column) were initially selected on YNB/Glu-T+L+H 

media. (A) Colonies were then firstly streaked onto the indicated media lacking histidine (His) and 

containing either 25mM or 50 mM 3-aminotriazole (3-AT) (-): no growth; (+): moderate growth; (++): 

good growth; (+++): very good growth. (B) Secondly, colonies from the original plate were patched onto 

similar YNB/Glu-T+L+H plates and used in X-gal filter lift assays which were left at room temperature 

for the indicated periods of time. (-): white yeast patches; (+/-): very pale blue colour; (+): pale blue; 

(++): blue; (+++): intense blue staining. Growth in each case was for 3 days at 30°C.
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4.4.3.2 Western immunoblotting

Western immunoblotting was performed in order to detect expression of full-length bait 

fusion protein. Each bait was transformed into yeast strain Y187 and selected on 

YNB/Glu-T+L+H plates. The pAS-1 plasmid contains a haemagglutinin (HA) epitope 

upstream of the multiple cloning site, which is useful for verifying expression of the 

fusion protein. As specific antisera to EBNA3B were not available, expression of the 

EBNA3B fusion proteins in pAS-1 were verified by Western blot analysis of yeast 

protein lysates using anti-HA antibodies (Boehringer Mannheim). Expression of an 

approximately 60 kD protein was detected, which corresponded to the predicted 

molecular weight of the Gal4DBD-EBNA3B-525 fusion protein (Figure 4.15). Some 

smaller bands were also detected of approximately 40 kD and 28 kD, which may 

represent degradatory products or some incompletely synthesised proteins. Also a band 

of approximately 120 kD may represent fusion-protein dimers as EBNA3B is known to 

self-associate. However, it is unlikely that the association is SDS-resistant. Y187 yeast 

cells containing no foreign DNA were also assayed using HA-antisera in order to rule 

out non-specific staining due to endogenous yeast proteins. No bands were detected 

using these cells. M 1 2 3 4
l75kD  .—

83kD -----

66kD -----

47 kD -----

32kD ___

25kD

F igu re  4.15 W estern  b lo t analysis o f expression o f EBNA-3B fusion protein .

Y187 cells were induced to take up pAS-3B525 using a lithium acetate transformation protocol. The 

presence of pA Sl-3B 525 was confirmed by selection on media lacking tryptophan for 3 days at 30°C. 

Protein extracts were then prepared from yeast colonies (lanes 1-3), fractionated on 10% SDS-PAGE gels, 

transferred to nitrocellulose and probed with anti-HA antibodies. Mock transformed Y187 cells are shown 

in lane 4 as negative control.
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4.4.4 Detection of interaction of EBNA3B/EBNA2 with RBP-Jk using YTHS-B.

An interaction assay was performed which indicated that the EBNA-3B protein 

expressed from pAS-3B-525 was functionally intact. YTHS-B was used to investigate 

the interaction between EBNA-3B and RBP-Jk, using both pAS-3B-525 and pAS-3B- 

279. The interaction between EBNA2 and RBP-Jk previously detected using this system 

was included as positive control in these assays. pGBT9-EBNA2 is a yeast expression 

vector for a fusion protein between EBNA2 (deleted for AD aa 437-472) and Gal4 DBD, 

while pGAD-RBP expresses a fusion protein between the Gal4 AD and RBP-Jk (aa- 

487) (both gifts from Evelyn Manet, Ecole Normale Superieure de Lyon). Using 25 mM 

3-AT, as before, transformation of pAS-3B-525 and pGAD-RBP in Y187 was found to 

weakly transactivate the His reporter, while no significant transactivation of His was 

observed using pAS-3B-279. X-gal filter lift assays were also performed to investigate 

transactivation of the (3-galactosidase reporter, and were consistent with the screen for 

His transactivation. pAS-3B-525 was found to induce l a c Z  transactivation as efficiently 

the EBNA2 control. All assays were carried out in duplicate. Results are summarised in 

Table 4.5 below. These results also suggested that the EBNA3 repressor domain (aa 

280-525) included in this bait construct did not prevent transactivation of the reporter 

genes.
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His + LacZ+

EBNA-2 / RBP-Jk ++ ++

EBN A -3B525/RBP-Jk + ++

EBNA-3B279 / RBP-Jk - -

Table 4.5 EBNA3B interactions with RBP-Jk. Y187 yeast cells transformed with the indicated 

plasmids were initially selected on YNB/Glu-T+L+H media. Colonies were then firstly streaked onto the 

indicated media lacking histidine (His) and containing 25mM 3-AT. (-): no growth; (+): moderate 

growth; (++): good growth. Secondly, colonies from the original plate were patched onto similar 

YNB/Glu-T+L+H plates and used in X-gal filter lift assays which were incubated at room temperature.

(-): white; (++): blue.

4.4.5 Interactor hunt

The bait and library plasmids can be introduced into yeast either simultaneously or 

sequentially. Simultaneous transformation has the disadvantage of a lower efficiency of 

plasmid uptake. Thus, sequential transformation was employed as there was no 

selective advantage to cells expressing the bait hybrid protein. Y187 clones containing 

bait plasmid pAS-3B525 were transformed with 40ug EBV-transformed B lymphocyte 

cDNA library in pACT (Durfee et a l , 1993) and selected on YNB/Glu-T-L+H plates. 

The library contains 1.1 x 108 total recombinants with >95% inserts. A very high 

transformation efficiency was required at this stage, so it was important to use an 

optimised library transformation protocol (modified from Gietz et a l , 1992) in order to 

obtain a sufficiently high number of transformants to screen.

D e t e r m in a t io n  o f  th e  t o t a l  n u m b e r  o f  t r a n s fo r m a n t s  : Transformed cells sampled just 

after the heat shock step were plated at a range of dilutions (10_1, 10"2, 10’3) on 

YNB/Glu-T-L+H and incubated at 30°C for 3 days. These results indicated that a total of 

approximately 100,000 transformants were placed under selection.

R e c o v e r y  :  cells were pooled and added to 100 mis YNB/Glu-T-L-H liquid media and 

incubated with shaking at 30°C for 1-3 hours. This allowed the transformants to be
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established and H I S 3  transcription to be activated. Also, cells in PEG are more fragile 

and often die when pelleted so the recovery step was useful.

H a r v e s t i n g  o f  c e lls : cells were spun at 3000 rpm for 4 min and resuspended in 6mls 

YNB/Glu-T-L-H liquid media. 300 jal cells were spread on YNB/Glu-T-L-H + 25 mM 

3-AT media per 150 mm plate.

S to r a g e  o f  t r a n s f o r m e d  ce lls :  cells not plated were aliquoted inlo 1ml aliquots, spun at 

3000 rpm for 4 min, resuspended in 10% DMSO and frozen at -80°C. Cells can be 

stored frozen indefinitely, and screened as required, once plating efficiency has been 

estimated.

D e t e r m in a t io n  o f  p l a t i n g  e ffic ie n c y  :  The purpose of this step is to determine the 

optimal density at which recovered yeast can be plated for screening/selection after 

thawing from DMSO stocks. Cells can lose some degree of viability when stored at -  

80°C. To this end, 5 îl neat cells plus dilutions (1 0 1, 10"2, 10'3) were plated before and 

after recovery on YNB/Glu-T-L+H plates.

4.4.6 Selection of Interactors

Library-transformed yeast was selected for His+ transformants by plating on YNB/Glu- 

T-L-H +25mM 3-AT media. As bait plasmid had not activated transcription in the 

presence of 25 mM 3-AT, the same concentration of 3-AT was used in the selection of 

His+ clones to increase sensitivity. Selection in the presence of 25 mM 3-AT sometimes 

behaves like a 100-fold enrichment (Durfee et a l , 1993; Harper et a l , 1993) of the total 

L+T+ colonies. Approximately 1% of transformants grew under these conditions within 

3-5 days. However, some of these were microcolonies which failed to grow when 

streaked on L-T- plates, and thus were ignored. Other reports have indicated that in most 

cases true positives continue to grow into large colonies while the micro-colonies seem 

to stop growing. It has been found that the secondary screen for lacZ positive clones 

usually eliminates these microcolonies. It is likely that the use of higher 3-AT levels 

would have reduced much of this background; however a lower level of 3-AT was 

chosen so that weaker interactions would also be detected.
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In all, 869 selected colonies were tested for (3-galactosidase activity using the X-gal 

filter lift assay. Of these, four clones were found to be both His+ and lacZ +, and each 

clone was noted to have given quite large colonies on the original His selection plates. 

pSE1112 was co-transected with p S E l l l l  as a positive control for X-gal staining and 

for 3-AT resistance. pSE l 112 was transformed alone as a negative control. Thus, His+, 

blue colonies were considered positives in the initial screen and were used for additional 

studies.

4.4.7 Elimination of bait plasmid

For the purpose of verifying the specificity of interactions, it was necessary to eliminate 

pBait from the positive yeast isolates. As this step generated a strain that contains only 

the library plasmid, it facilitated plasmid recovery into bacteria which was necessary for 

more detailed analysis of clones. This step can typically present problems and 

sometimes different approaches need to be taken. In this case, 3 alternative methods 

were used before the bait plasmid was finally lost from positive clones.

M e t h o d  1 Cycloheximide selection.

Yeast strain Y187 is a derivative of Y153 which is resistant to cycloheximide (2.5 

M-g/ml) due to a mutation in the C Y H 2  gene. This is a recessive drug resistance. The 

pAS-1 bait plasmid carries the wild type C Y H 2  gene which renders cells sensitive to 

cycloheximide. Thus, loss of the pA S-l-CFH  plasmid can be achieved by streaking on 

Leu- media containing 2.5 |Ug/ml cycloheximide. This may be done directly but it is 

useful to streak the colonies out on Leu- media before streaking on cycloheximide media 

to allow plasmid loss and dilution of the C Y H 2  gene product. The colonies that grow 

should be Trp- but to be safe and avoid C Y H 2  gene conversion events, it is 

recommended that loss of the Trp marker is confirmed. However, when this approach 

was attempted, clones failed to grow in the presence of 2.5 pg/ml CYH. It is possible 

that perhaps cells needed to be grown for longer on Leu -  media in order to dilute the 

C Y H 2  gene product.
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M e t h o d  2  Plasmid loss on Leu- plates.

Cells were grown overnight in YPD complete liquid media, then grown on Leu- plates, 

which were then replica plated onto Trp- media to look for loss of the pAS-1 bait 

plasmid. All clones grew on media lacking Trp, indicating that bait plasmid had been 

retained.

M e t h o d  3 Plasmid loss in Leu- media.

Cells were used to inoculate 5 ml Leu- liquid media and were grown at 30°C for 3 days. 

DNA was then prepared using a rapid DNA isolation method (described in section 2.8) 

and used to transform E .c o l i  D H 5 a  from which plasmid DNA was prepared by 

miniprep. Restriction enzyme analysis was then used to check for loss of pBait. Each 

clone preparation was restricted with B a m H  1, which should excise a 1.6 kb EBNA- 

3B525 insert from pAS-1, if pBait was present. An empty pAS vector was included in 

the digests to control for restriction conditions. As can be seen from figure 4.16, a single 

band of approximately 8-9 kb was detected in all clones tested. This band probably 

represents linearised pACT (8.55 kb) which also contains a single B a m H l  site. Thus, all 

clones have apparently lost pBait.

M  1 2 3 4 5

4  8.5kb 
pAS-1

Figure 4.16 Enzyme restriction analysis to detect loss of pBait from positive interactor clones.

BamH  1 restriction of clones following loss o f pAS-3B525 bait plasmid, using methods described above 

(section 4.4.7). Lane 1: 1 kb DNA size markers; lanes 1-5, Bam H l-restricted clones.
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4.4.8 Verification of specificity

It was important to verify that any interactions which were detected were dependent on 

activation of reporter genes by the protein of interest and could not be substituted for by 

alternative unrelated baits. In this way, specificity of interactions could be confirmed 

and many false positives could be eliminated. Several individual unrelated pre­

characterised fusions in pA Sl, i.e. p A S l- S N F 1  (pSE1112), pA S l- C D K 2  and pA Sl- 

la m in  (a gift from Geraldine Butler, UCD), were each co-transformed with each of the 

library plasmids isolated from positive clones in method 3 above. The resulting 

transformants were selected on Trp-Leu- plates and tested for (3-galactosidase activity. 

As a positive control, Y187 containing bait plasmid, pAS-3B525, was also transformed 

with each of the positive library plasmids isolated. Any clones which were found to 

transactivate lacZ significantly above background levels in the presence of non-related 

pASl fusions were disregarded (Table 4.6A). These experiments indicated that 2 of the 

original 4 His+ lacZ+ clones (77, 78) involved specific interactions between the bait 

protein and a library protein. The other two clones represented false positives which 

were dependent on the presence of both plasmids but which were not activating 

transcription as a result of an interaction with the cDNA insert in the bait plasmid. 

Unfortunately such false positives are a reoccurring problem of the two hybrid system. 

As can be seen from Table 4.6A, clone 125 transactivated l a c Z  in the presence of just 

one of the three alternative baits. For this reason, it is important to test against several 

different unrelated bait proteins in ruling out non-specific interactions. A summary of 

results of the completed screen illustrates that of 100,000 library transformants which 

were screened, just two cDNAs were found to specifically interact with EBNA-3B525 in 

Y187 yeast cells (Table 4.6B).
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pBait Clone 9 Clone 77 Clone 78 Clone 125

PAS1-3B525 + + + +

PAS 1 -Lamin + - - -

PASI-SNF1 + - - +

PAS1-CDK2 + - - -

Table 4.6 (A) Verification of specificity of interactors. Transactivation of the lacZ  reporter gene was

detected using X-gal filter lift assays as described in section 2.8 (-): white; (+): blue.

Transformants His + His+, lacZ+ 3B-dependent

No. ofcDNA  

library clones

100,000 869 4 2

Table 4.6 (B) Summary of screening results using YTHS-B

4.4.9 Restriction analysis of plasmids containing positive cDNA interactors.

Restriction enzyme analysis was used to determine the approximate sizes of the putative 

positive interacting cDNAs. Figure 4.17(A) shows that there is less than a lkb  difference 

between linearised pACT and linearised pACT containing a positive interactor cDNA 

(clone 77). In the construction of the library, cDNAs were cloned into a unique X hol 

site (Durfee et a l , 1993). Therefore, in order to determine the size of inserts, they were 

excised with X hol enzyme. Figure 4.17(B) shows that clone 77 contains a cDNA insert 

of approximately 800 bp, the 200 bp cDNA in clone 78 was not visible on this gel, while 

digestion of the non-specific clone 125 showed an insert of approximately 550 bp. The 

other non-specific clone contained a cDNA of approx. 700 bp (not shown).
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Figure 4.17 Restriction analysis of positive interactors. (A) Lane 1: lkb  DNA size markers; lane 2: 

pACT; lane 3: Bam W l-digested pACT (8.55kb); lane 4: clone 77 (; lane 5: Bam Hl-digested clone 77. 

(B) Lane 1: X h o l-digested clone 77 (-800  bp); lane 2: A7«y1 -digested clone 78; lane 3: X h o l-digested 

clone 125 (-55  bp); lane 4: lOObp DNA size markers.

4.4.10 Sequencing strategy

In order to identify the proteins encoded by the interacting cDNAs, the sequence of each 

cDNA was determined. To this end, a primer was designed to sequence the cDNA from 

the activation domain of the pACT plasmid. Use of a T7 sequencing™ kit from 

Pharmacia as described in section 2.3. failed to produce any sequence from pACT. 

Therefore, as an alternative approach, cDNA library inserts were subcloned into the 

X hol site of the pTag vector (LigATor MBK-004-40, R&D systems, UK). Insertion of 

DNA fragments into the MCS of this vector interrupts the lacZ gene which allows the 

presence of insert to be determined based on white versus blue colonies on media 

containing X-gal. Use of pTAg permits sequencing using the M13 universal primer. 

Presence of inserts in white colonies were assessed by restriction analysis i.e. 

identification of pTAg vectors containing insert was based on loss of the pTAg X hol 

site when Xhol-restricted insert was ligated to the compatible Sail site in the pTAg 

vector. A cDNA which was previously sequenced from pTAg was included as positive 

control in subsequent sequencing reactions. Despite obtaining a complete sequence from 

the positive plasmid control, only approx. 40 bases of sequence could be determined 

from each pTAg plasmid containing library cDNAs. After this short sequence which
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corresponded to a portion of the pACT AD, compression (bands in all 4 lanes) was 

consistently observed, despite variations in protocol (see Table 4.7). Problems with 

compression can frequently be resolved using adjustments such as these. However, GC- 

rich regions often corresponding to certain restriction enzymes can also be responsible 

for poor results. Sometimes S fil or Sm al sites in the MCS of a plasmid can lead to 

compression, the only solution for which is to sequence using automated methods. 

Investigation into the cloning strategy used in the construction of the library revealed an 

Sfil (GGCCTTCG TGGCC) site at the point of compression in the pACT plasmid.

Template Treatment Temperature Enzyme Result

32 [i\ LiCl 37°C T7 NR

32 Ml LiCl 42°C T7 NR

64 Ml - 42°C Taq NR

32 Ml - 42°C T7 Compression

32 Ml 65°C 42°C T7 NR

32 Ml DMSO 55°C T7 Compression

32 Ml DMSO 55°C T7 NR

T able  4.7 Sequencing of positive in te ra c to r  cDNAs. A number of variations in the protocol described 

in section 2.3 were introduced in an attempt to produce sequence data. W ith higher temperatures increased 

amounts o f T7 enzyme were used.

Sequencing data was generated using commmercially-available automated methods 

(Oswel Research products, University of Southhampton). Sequences were then analysed 

using a blast search against DNA databases.

C lo n e  7 8  (200 bp cDNA). Database analysis revealed that this clone probably contained 

“junk” DNA, as it showed closest homology with an E.coli sequence.
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C lo n e  77 represented a fusion of two cDNAs of 200 bp and 600 bp in opposite 

orientations. In order to obtain sufficient information, this clone was sequenced from 

both ends of the pACT MCS. Database analysis showed closest homologies as follows: 

200 bp cDNA : Human mRNA for proteosome subunit HsN3 (complete length 925) 

600 bp cDNA : Human mRNA for Cyrochrome Oxidase.

On further investigation of pACT sequences, it was found that the correct orientation 

cDNA was cytochrome oxidase (C.O.). C.O. is a ubiquitous mitochondrial enzyme 

which has previously been identified as a false positive interactor. Thus, unfortunately, 

the interaction was meaningless and adds to a growing list of false positive results from 

the YTHS.

4.5 DISCUSSION

Little is known concerning the functions of the EBNA-3 family of proteins, although the 

nuclear localisation and predicted structural homologies suggest that they are 

functionally related (Kerdiles et a l , 1990.). While a role in the modulation of expression 

of EBNA2-responsive genes seems likely, much experimental data indicates that other, 

as yet unidentified, functions exist which probably include activités unique to each 

member of the EBNA-3 family. To understand the function of a particular protein it is 

often useful to identify other proteins with which it associates. Using the yeast two 

hybrid system, this study proposed to investigate protein-protein interactions involving 

EBNA-3B.

The yeast two hybrid system provides a highly sensitive means to detect an interaction 

between two proteins in living cells (see section 4.1). In the data presented here, two 

alternative systems were employed to screen two different cDNA libraries for proteins 

which may interact with EBNA-3B. To this end, an N-terminal portion of EBNA-3B 

was expressed as a fusion protein with the relevant DNA binding domain in each case,
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and baits were subsequently confirmed as suitable for use in each system. Since the most 

important consideration was that transcription of reporter genes was not appreciably 

transactivated by the bait protein, an acidic region of EBNA-3B (including a domain 

which has been demonstrated in EBNA-3C to behave as an activation domain) was not 

included in the fragment to be used as bait.

4.5.1 YTHS-A

In the first system described, YTHS-A, the L E U 2  reporter gene in EGY48 is highly 

sensitive and is activated by even weak transcription activators fused to LexA (or by 

activation-tagged proteins that interact weakly with LexA fusions.) The high sensitivity 

is due to 3 high affinity LexA operators from the bacterial c o l E l  gene, each of which 

can potentially bind 2 LexA dimers (Brent e t a l , 1994). If a bait is observed to 

marginally activate transcription, yeast strains are available which contain fewer 

operators upstream of L E U 2 .  Proteins that are moderate to strong activators will need to 

be truncated to remove activation domains before they can be used in an interactor hunt 

(Brent and Ptashne, 1994). If possible, a good way to start is to construct derivatives that 

lack highly acidic regions which are often responsible for transcription activation in 

yeast (the obvious disadvantage of this approach is that regions important for interaction 

with other proteins may be removed).

Despite careful design and testing of bait, only false positive clones were isolated in this 

study, using YTHS-A. Although significant numbers of Leu+ colonies were observed, 

none were found to be dependent on galactose. This result implied that activation of 

L e u 2  expression was not dependent on the expression of library cDNAs, i.e. while bait 

proteins are constitutively expressed, proteins encoded by library cDNAs are expressed 

from the yeast conditional G A L 1  promoter. Since the G A L 1  promoter is repressed by 

glucose, those colonies which grew in glucose medium were classed as false positives, 

and thus were not further characterised.
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In demonstrating galactose-dependence of transactivation of reporter genes, it was 

necessary to grow the yeast on glucose master plates to shut off cDNA expression before 

replica plating. Galactose-dependence of Leu-i- and lacZ+ phenotypes may sometimes be 

masked if there is sufficient message and protein product from the activation tagged 

cDNA protein to allow the yeast to grow on Leu- glucose for several generations and 

turn blue on glucose X-gal media without further cDNA expression. With regard to 

selecting colonies for master plate production, generally there will be more galactose- 

dependent Leu+ and lacZ+ yeast among the colonies that appear sooner and fewer 

among those that appear later. For stronger interactors, colonies have grown up in two 

days and are more likely to be interactors that are biologically relevant to the bait 

protein. Those that appear later may or may not be relevant. However, many parameters 

can delay the time of colony formation of cells that contain valid interactors, including 

the strength of the interaction and the level of expression of the library-encoded protein. 

In the data presented here, Leu-positive colonies were found to appear in 2-4 days 

incubation. Even those which grew after 2 days were found to be galactose-independent. 

The reason for these findings is not understood. However, similar results have been 

documented in other studies and observations such as these appear to be a phenomenon 

associated with certain baits (Wiley, 1994).

Had galactose-dependent Leu+ clones been isolated, the next step would be to assay for 

galactose-dependent l a c Z  transactivation. Reporter genes differ in the number and 

affinity of upstream binding sites (eg. lexA operators) for the bait and in the position of 

these sites relative to the transcription slartpoint (Gyuris et a l , 1993). They also differ in 

the number of molecules of the reporter gene product necessary to score the phenotype. 

These differences affect the strength of the protein interactions the reporters can detect. 

The second reporter gene used in this version of the method, l a c Z , is not as sensitive as 

the L E U 2  reporter in EGY48 (Chien e t a l , 1991; Durfee e t a l , 1993; Gyuris et a l , 1993; 

Vojtek et a l , 1993), so it is possible for a weak interactor not to result in blue colonies on 

X-gal plates in the l a c Z  transactivation assay. The experiments presented here employed 

the most sensitive l a c Z  reporter available, pSH18-34 (West e t a l , 1994) (see Table 1 ). 

Use of the second reporter gene would normally allow the identification of any false
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positives which may have arisen due to a yeast mutation or to binding of the activation- 

tagged cDNA protein to the L E U 2  promoter (Brent e t a l , 1994).

False positives could also have been due to non-specific interaction with LexA, with the 

promoters or with some part of the transcription machinery. In practise, the majority of 

proteins isolated by interaction with a LexA fusion are found to be specific for the fusion 

domain; very few proteins are isolated that are specific for LexA or that are non- 

specifically sticky. However, it is generally informative to retest positive clones on more 

than one LexA bait protein; ideally library-derived clones should be tested against the 

LexA fusion used for their isolation, several LexA fusions to proteins that are clearly 

unrelated to the original fusion and, if  possible, several LexA fusions that there is reason 

to believe are related to the initial protein. A rapid genetic test for this has been 

described (Harper et a l , 1993). Using this system, library plasmids are rescued from 

yeast by performing a yeast plasmid miniprep to transform E .  c o li (most yeast miniprep 

protocols do not provide sufficient clean plasmid DNA for restriction analysis). Thus, if 

large numbers of positive clones are obtained, it is useful to reduce the number of clones 

to be rescued by determining which ones contain identical cDNAs. For this purpose, 

PCR amplification of inserts followed by digested with H a e III and A l u l  (frequent cutter 

enzymes) may be used to allow comparison of the banding patterns produced on agarose 

gel electrophoresis.

As part of an investigation into the 100% rate of false positives obtained in this study, a 

random sample of positive clones were assayed for presence of cDNA insert using PCR 

amplification. The absence of product indicated that perhaps a Leu-positive contaminant 

may have contributed to the high numbers of false positives. The cDNA library itself 

was also used as template in a similar PCR reaction, but again results were negative. A 

possible PCR technical problem could not be ruled out as no positive control for these 

primers was available. During construction of the library, cDNA inserts were size 

selected to give an average insert size of approximately 1400 bp (Brent, 1994). Thus, 

restriction analysis of the library designed to excise inserts from their vectors should 

produce a smear of bands around this region, on gel electrophoresis. However, digestion

209



of library DNA used here, showed no significant banding in this region. It is possible, 

therefore, that the sub-optimal quality of library DNA may have contributed to the 

observed results.

4.5.2 YTHS-B

YTHS-B has some disadvantages associated with its use when compared with YTHS-A. 

For example, because Gal4 is an important yeast transcriptional activator, experiments 

must be performed in Gal4-negative yeast strains to avoid background from endogenous 

Gal4 activating the reporter system (Golemis e t a l , 1994). Unfortunately, these strains 

are frequently less healthy and more difficult to transform than wild-type strains, and 

either libraries must be constitutively expressed or an alternate inducible system must be 

used. The library used in this study was expressed from a constitutive ADH promoter. 

Despite these relatively minor disadvantages, the YTHS-B provided the opportunity to 

screen a cDNA library which was ideally suited to these investigations i.e. a cDNA 

library generated from EBV-transformed human B lymphocytes (Durfee et a l , 1993). As 

the cDNA library to be used was fused to a Gal4 activation domain (aa768-781, Ma and 

Ptashne, 1987) in pACT II it was necessary to prepare a bait construct which fused 

EBNA-3B to a compatible Gal4 DNA binding domain (DBD). To this end, a hybrid was 

generated between sequences encoding the DBD of the yeast transcription factor Gal4 

(aal-147, Keegan et a l , 1986) and two amino-terminal portions of EBNA-3B in the 

pA Sl expression vector (section 4.4.2).

To screen for proteins which interact with EBNA-3B, transformants were subjected to 

the screening procedure outlined in section 4.4.5. Interacting hybrids were isolated by 

selecting for growth in the absence of histidine (in media containing 25 mM 3-AT) and 

subsequently screening for P-galactosidase activity. A relatively low concentration of 3- 

AT was used to improve sensitivity, although this does produce a greater number of 

false positives which need to be eliminated by the l a c Z  screen. This secondary screen 

eliminates His+ revertants and plasmids bearing the I I ¡S 3  gene of the organism from 

which the library is derived. Thus, using this form of selection, colonies which were
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both His+ and blue were considered positives and were isolated for further analysis. An 

important advantage of the H I S 3  selection/lacZ screen is a large reduction of false 

positives, i.e from an estimated 100,000 transformants, 869 His+ clones were tested for 

P galactosidase activity, of which only four were positive. The cDNA library used in this 

screen was constructed to contain 1.1 x 108 total recombinants. Therefore, multiple 

screens would obviously be required to properly screen the library.

A class of false positives can occur in library screens which seem to depend on the 

presence of both hybrids, but in the absence of bait plasmid will activate other non­

specific fusions bound to a DNA-binding domain. Frequently, these false positives have 

been identified as transcription factors that are thought to access the promoter DNA 

adjacent to the target protein when overproduced. For example, in the case of YTHS-B, 

the H I S 3  and GAL1 promoters share only a small region of DNA sequences in common 

(150bp) which should mostly be protected by the binding of target fusion proteins. 

Because of this, use of both screens in the selection process largely eliminated this class 

of positives. Nonetheless, although the dual His+ selection / p galactosidase screen 

eliminates many false positives, a low percentage survive the selection at a rate that 

varies with the target protein (Durfee e t a l , 1993). To help rule out remaining false 

positives, library plasmids were isolated, by selecting for loss of bait plasmid in the four 

positive interactor clones and tested against unrelated baits fused to the DBD in pAS-1. 

Three unrelated baits were employed as the more baits which are used the better the 

chances of picking up false positives. Of the four His+, Pgal+ clones, two of these were 

found to be specific for interaction with EBNA-3B, that is, l a c Z  was transactivated in 

the presence of G al4(l-147) fusions with EBNA-3B but not in the presence of G al4(l- 

147) fusions with other non-specific bait proteins.

Unfortunately, however, when the observed interacting library cDNAs were finally 

isolated and sequenced, neither was found to be biologically relevant. Based on 

sequence analysis, one cDNA represented E .  c o li DNA, which is most likely to have 

been incorporated during the preparation of the cDNA library. The other clone contained 

two cDNAs in opposite orientations, of which the correctly-oriented cDNA encoded the
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mitochondrial enzyme, cytochrome oxidase (C.O.) C.O. has been documented as a 

relatively common false positive of the YTHS. For example, in one survey C.O. was 

responsible for 5 out of 73 false positive interactions observed (Hengen, 1997).

4.5.3 True and False positives

It has become increasingly evident that the problem of false positives among YTH users 

is widespread. A recent review revealed that in addition to C.O., the other most common 

false positives included other mitochondrial proteins, heat shock proteins, ribosomal 

proteins, proteasome subunits, ferritin, transfer-RNA synthase, collagen-related proteins, 

zinc finger-containing proteins, vimentin, inorganic pyrophosphatase and proliferating 

cell nuclear antigen (PCNA) (Hengen, 1997). These findings indicate that many of these 

false positive interactions involve proteins which are ubiquitous in the life of the cell. 

Thus, it may also be interesting to sequence the two non-specific interactors which had 

transactivated both reporter genes (clones 9 and 125). In any given interactor hunt, baits 

which binds to one or a small subset of related proteins have been found to be more 

likely to be biologically relevant than baits which interact with many unrelated proteins.

It is important to note that interaction of the target and library-encoded proteins in the 

YTHS does not necessarily indicate that they normally interact in vivo. While two 

interacting proteins may produce a signal, they may never normally be present in the 

same cell type, or cellular compartment or present during the same stage of the cell 

cycle. Similarly, the YTHS may assay an interaction between domains that are not 

accessible in the native protein, particularly when an interaction is mediated via a short 

sequence. To rule out such potentially misleading results, it is essential that any positive 

signals from this and other interaction assays are confirmed by independent biological or 

biochemical experiments. This doctrine is supported by a survey of 223 investigators 

conducted by Ilya Serebriiskii (ilya @ scfuzzv .rm.fcc.edu) between October 1994 and 

January 1996 which revealed that of 100 library searches only 54 revealed biologically 

relevant interactors, with only 4 reporting that no false positives were found and 13 

reporting that no preys worthy of further of investigation were found. It is apparent that
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many artifacts exist, thus common practise prescribes that a proposed interaction should 

be observed by a different technique, such as co-immunoprecipitation of the putative 

interactors from the appropriate cell or tissue type, which at least may be subject to 

different artifacts. It is possible to waste a considerable amount of time characterising a 

cloned gene before realising that the “positive interactor” is a false lead. For this reason, 

YTH users are recommended to choose the bait very carefully and where possible to use 

two different baits. Also multiple baiting attempts are recommended with plentiful use 

of controls.

Once the appropriate measures have been taken to eliminate false positives, the 

interaction may then be further characterised. The domains/amino acids critical for the 

interaction can be delineated using the YTHS by carrying out deletion mutations. 

Further studies are required to determine biological significance and biophysical 

characteristics of any positive reactions. No YTH technique allows precise quantitation, 

however some quantitative information does inhere in the data. For example, an idea of 

the strength of interaction of two proteins may be derived from measuring (3- 

galactosidase activity. This is because the amount of (3-gal activity in the cell is 

proportional to the level of l a c Z  transcription.

4.5.4 True and False negatives

A further problem of the YTHS which is usually given less consideration than the 

problem of false positives is that of interactions which are not detected. The YTHS is 

highly sensitive such that even very weak associations should be detected (i.e. any 

affinity tighter than 10~6). Nonetheless, not all known interactions will be detected by the 

YTHS. Despite deliberately retaining the RBP-Jk -binding domain in the design of the 

EBNA-3B bait, this interaction was not detected in library screens. However, the 

specific interaction of these two proteins was demonstrated using a fusion between a 

portion of the RBP-Jk gene and the Gal4 A.D in subsequent experiments (see section 

4.4.4). In addition, EBNA-3B/EBNA-3B dimerisation may potentially have been 

detected. On some occasions, the expected interacting protein may simply be absent
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from the library used. Using the WI-38 library, it was less likely that relevant specific 

interactors would be detected than using the library prepared from EBV-transformed B 

lymphocytes. A number of cases have been documented in which known interactions are 

either not observed, or are subject to directionality, being observed only when one of the 

two proteins is a bait and the other a prey (see for example, Estojak e t a l , 1995). The 

current doctrine for determining that individual interactions do not occur is that full 

length and truncated putative partners must be tested in all combinations of baits and 

preys, with the most sensitive reporters, before the investigator can tentatively conclude 

that the two proteins do not touch. Thus, under the conditions employed in these 

analyses, it is impossible to rule out false negatives.

4.5.5 The Future of YTH technology

As systems improve, it is likely that many of the false positives highlighted above will 

be preventable. For example, the potential exists for development of systems in which 

transcription depends upon protein interactions which occur only at specific phases of 

the cell cycle, or times during development, or in particular subcellular compartments, or 

that persist for a restricted length of time, or that depend on particular protein 

modifications (Brent et a l . , 1994). In any case, despite it’s problems and pitfalls, the 

YTHS can be a valuable tool in the detection and characterisation of protein-protein 

interactions.

In recent years, the potential uses for YTH technology have grown with various 

modifications implying broader applications. For example, the reverse two hybrid 

system is a modification which enables genetic selection against specific protein/protein 

interactions (Leanna and Hannink, 1996). This system fulfills a role which is deficient in 

standard YTH systems in that it can be used to identify mutant proteins that have lost the 

ability to associate with their partner protein. Furthermore, such a selection scheme 

might facilitate the identification of genes which encode proteins that interfere with a 

particular protein/protein complex, for instance, regulators of protein/protein
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interactions. Finally, the reverse two hybrid system could be used to screen for drugs 

that abolish a specific protein/protein interaction.

It has been proposed to apply YTH technology to generate a human protein linkage map 

(Hua et a l . , 1998). With a homologous recombination-mediated approach, a modular 

human expression sequence tag (EST)-derived YTH library in the pACT2 vector has 

been constructed. This technology provides the extraordinary potential for identification 

of all human protein-protein interactions, leading to a global human protein linkage map 

that hopefully will provide important information for functional genomic studies.

The few years since the advent of two-hybrid systems has proven their utility in the 

study of defined protein interactions, in identification of new interacting proteins, and in 

the charting of genetic networks of proteins involved in processes from signal 

transduction to transcription regulation. These tremendous successes suggest that two- 

hybrid approaches may eventually be used to identify all of the protein-protein contacts 

made in a cell or an organism.
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4.6 GENERATION OF A STABLE CELL LINE IN DG75tTA CELLS

4.6.1 Introduction

In order to study the function of a particular gene, it is often useful to work with a 

homogeneous population of cells in which expression of the protein of interest is under 

the control of a regulatable promoter. The aim of this work was to generate a stable 

derivative of the DG75-tTA cell line in which EBNA-3A expression (as sole EBV 

protein) would be inducible in a tetracycline-regulated manner. The principal of this 

gene expression system has been described in section 3.1.8. This approach to the study 

of gene expression presented several important advantages over relevant alternative 

methods. For example, the tetracycline (tet)-inducible system guarantees expression of 

EBNA-3A in every cell, allowing the study of effects on the cell population as a whole. 

In contrast, transient transfections of B lymphocytes rarely produce efficiencies greater 

than a few percent, which makes it difficult to look for changes in endogenous cellular 

gene expression due to expression of a transfected gene. Use of this system eliminates 

selection for unrepresentative clones which have a growth or survival advantage. This 

might be particularly relevant in the case of genes associated with the cell cycle or 

resistance to apoptosis eg. previously published data has been informally criticised on 

these grounds, with regard to upregulation of Bcl-2 expression by EBNA-3B. Tet- 

inducible cell lines would permit careful analyses to be carried out in the 

presence/absence of EBNA-3A in an isogenic background. This approach also makes it 

possible to study the effects of gene expression over a longer time period than with a 

transient transfection system. Unlike alternative inducible expression systems, 

transcription of the heterologous gene is tightly repressed by low, non-toxic 

concentrations of tetracycline and substantially induced upon removal of drug. This has 

the advantage of minimal, non-specific pleiotrophic effects on the host cell (reviewed by 

Schockett and Scatz, 1996).
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4.6.2 RESULTS

Constructs were prepared for all three EBNA-3 genes in pJef4, which contains the tTA- 

responsive element (see section 3.1.8, Figure 3.2 for principal). Thus, pJef-3A, pJef-3B 

and pJef-3C were prepared as follows: the full-length EBNA-3A (3025 bp), EBNA-3B 

(3106 bp) and EBNA-3C (3391 bp) genes were excised from pCMV7-EBNA3, 

pCMV7-EBNA4 and pCMV7-EBNA6 respectively and inserted into the B a m H l  site of 

pJef4, by ligation of B a m H l  linkers to each of the EBNA3 genes. This placed 

expression of each EBNA-3 gene under the control of the tTA-responsive promoter. 

Each construct was subsequently assessed by restriction enzyme analysis of DNA 

(Figure 4.18A), and by W estern blot analysis for expression of the protein of expected 

molecular weight (Figure 4.18B). Specific anti-EBNA3A antibodies (supernatant of 

T2.78 hybridoma cells) and anti-EBNA3C antibodies (E3C.A10.3) (both gifts from 

Martin Rowe, University of Cardiff) were used to detect protein expression from pJef- 

3A and pJef-3C, respectively. As no specific antisera was available for EBNA-3B, a 

panel of 30 high-titre anti-EBNA human sera (a gift from Carol Mongan, UCD) were 

screened for high-titre anti-EBNA-3B antibodies. B95.8 cell lysates were included as 

positive control as these cells reliably express high levels of EBNA-3B. However, no 

antisera were found which showed high reactivity in the absence of background 

reactivity in the EBNA-3B region. EBNA-3A, -3B and -3C  migrate as proteins of 

molecular weights between 145 and 155kD on SDS-PAGE electrophoresis.

4.6.2.1 Preparation of pJef-EBNA3 expression constructs.

216



(A) pJef-EBNA3 plasmids
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3A (i) and pJef-3C (ii). Each construct was transiently transfected and  grown in tetracycline-free medium 

for 48 h before harvesting of cells for preparation o f protein lysates. Expression of EBNA-3A was 

detected by ECL, while EBNA-3C expression was detected using an alkaline phosphase conjugate.

Finally, constructs were assessed for functional integrity o f  the EBNA-3 proteins, based 

on EBNA3-dependent down-regulation of EBNA2-mediated transactivation (see section

1.5.6). To this end, the LLO-luc construct (a gift from  Gerhard Laux, Institut fur
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Klinische Molekularbiologie und Tumorgenetik, München) was employed: this plasmid 

harbours the LMP1 upstream region (+40 to -327) which is inducible by EBNA2. 

Luciferase assay results, shown in Figure 4.19 below, illustrate an almost 3-fold up- 

regulation of promoter activity by EBNA-2, which was significantly decreased on 

addition of pJef-3A or pJef-3B. A relatively low level of transactivation of the LLO 

plasmid by EBNA2 in DG75 cells is consistent with previous reports (Gerhard Laux, as 

above, personal communication).

  «r  , i  "

p J e O A  p Je f-3 B

F ig u re  4.19 R epression  of E B N A 2-m ediated  tran sac tiv a tio n  of the  L M P1 p ro m o te r by  pJef-3A  and  

pJef-3B . DG75 cells were transiently transfected with the indicated plasmids (see section 2.6.6 for 

methods) to give a total of 30 ug transfected DNA. Cells were harvested after 48 h and used in luciferase 

assays to determine activity levels from  the LLO-luciferase promoter construct. P-galactosidase assays 

were used to normalise for transfection efficiencies.

4.6.2.1 Stable transfections

pJef-3A was transfected into DG75-tTA cells by electroporation using an optimised 

protocol for this cell line (Floettmann e t a l , 1996, see section 2.6.6.1). In order to 

determine the correct concentration of drugs to be used in selection of stably transfected 

cells, a drug curve was prepared (section 2.6.7.1). A G418 concentration of 2 mg/ml was 

established for selection of pJef-3A, which was derived from the findings of several 

independent drug curves. Cells were also maintained in the presence of 500 Mg/ml
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hygromycin B for selection of the tTA plasmid and 1 Mg/ml tetracycline for suppression 

of the expression of EBNA-3A. A flow chart outlining the main steps used in the 

generation of the DG75tTA-EBNA3A inducible cell line is given below (Figure 4.20). 

Clones were assessed for expression of EBNA-3A at 1 week intervals, by withdrawal of 

tetracycline (as described in section 2.6.5) from a sample of cells. Immunocytochemistry 

(section 2.6.7.3) was used for this purpose as it was more convenient than Western 

blotting for screening small numbers o f cells from large numbers of clones (results not 

shown). Clones which were observed to have lost pJef-3A were disgarded, although 

expression of EBNA-3A protein was found to be detectable up to several weeks post­

transfection before being subsequently lost.

Magnetic bead selection (Capture Tec, Invitrogen) was employed as an alternative 

strategy for selection of cells stably expressing pJef-3A. Using this method according to 

manufacturers’ instructions, DG75-tTA cells were co-transfected with the pHook-1 

plasmid, (which expresses a membrane-anchored selection tag, sFv) and pJef-3A. To 

isolate a homogenous pool of transfected cells, the total cell population was harvested 

and incubated with magnetic beads that bind to the selection tag displayed on the 

transfected cells. After exposure to a magnet, bead-bound transfected cells were 

centrifuged down into a pellet while unbound cells remained in the supernatant and were 

discarded. Since the pHook-1 sFv tag is expressed from the strong CMV promoter, it 

offers a very high efficiency selection of pHook-1 vector. Co-transfection of pHook-1 

and a vector of interest has previously been found to result in expression of the protein 

of interest in 95% of selected cells (Chestnut et a l , 1996). Under microscopic 

examination, most of the selected cell population were observed to have magnetic beads 

bound, although it wasn’t possible to estimate the fraction of selected cells expressing 

sFv due to the 2-dimensional viewing of cells by light microscopy. The number of cells 

that are selected in a particular experiment varies with the transfection efficiency and the 

ability of the cells to secrete and display the sFv membrane tag, but in general selection 

efficiencies vary from 2% to 25% in most adherent human cell lines (Mortenson et a l , 

1997). This, however, is greatly dependent on the cell line used. Selection efficiencies 

were relatively low at 2 to 4% of total cells. As before, clones containing pJef-3A were
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slow to expand and plasmid loss was observed again despite maintenance of drug 

selection in some groups o f clones, while drugs were omitted in other cells to encourage 

expansion of cell numbers.

Subclone EBNA3 gene into pJef4

i
Stable transfection into DG75-tTa cells 

1
Plate cells into 96-well plates using concentrations established 

in drug curve (+Tet, +Hygro B, +G418)

i
Establish single clones and bulk out.

(Detection of EBNA-3 expression by immunocytochemistry.)

1
Subclone if necessary to get a good on/off switch.

Figure 4.20 Flow chart for generation of tetracycline-inducible cell lines.

4.6.3 Discussion

Generation of stable cell lines for expression studies using inducible promoters have, in 

the past, met with varied success depending on the cell type and origin of the promoter 

utilised, so as a result are not always optimal or applicable. Using the approaches
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outlined above, expression of EBNA-3A was retained for only a few weeks. The reason 

for this is not understood, but a number of factors may have had a role to play.

Expansion of cell numbers was found to be difficult in this study. Feeder layers were not 

used here but are frequently used to aid the growth and expansion of clones from very 

low cell densities. Feeder layers are not essential and, indeed, can be problematic, but 

may have improved the growth rate of cells. Expansion should occur from a single cell 

in the generation of a clone. When this does not occur, mixed populations of cells can be 

less stable, and cells expressing high levels of the protein of interest may be overgrown 

by cells expressing lower levels of protein. In order to aid expansion of cells and also to 

save on expensive drugs, the concentration of selective drugs is frequently reduced 

during expansion of clones. Application of this approach may have aided outgrowth of 

non-expressing clones. In addition, spontaneous mutations can sometimes occur, 

conferring G418 resistance to non-expressing cells, therefore it was important to 

examine cells for expression of EBNA-3A at intervals during expansion of clones. This 

was also important to ensure retention of the pJef-3A expression plasmid. Thus, there 

are several reasons for potential loss of expression in many clones. However, in general, 

it is usually possible to expand a small number of clones which stably express the 

plasmid under selection. A low level of leakage is known to be associated with use of 

the tetracycline-inducible system. Thus, a cumulative toxic effect over several weeks is 

possible, although unlikely, as no significant cytotoxicity has been associated with this 

protein. A masking effect of the EBNA-3A protein is also possible. A truncated form of 

EBNA-3A in pJef may not have the same effects. However, this would be less ideal in 

that it would only permit the study of effects of expression of part of the EBNA-3A 

protein.
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A P P E N D I X



SOLUTIONS FOR DNA MANIPULATION 

TE buffer

10 mM Tris-Cl

1 mM  EDTA pH  8.0

Solutions for mini-preparation of plasmid DNA 

Solution I

50 mM Glucose

25 mM Tris.Cl (pH 8.0)

10 mM EDTA (pH 8.0)

Solution II (Prepared fresh)

0.2 N  NaOH

1 % (w/v) SDS

Solution III

60 ml 5 M potassium acetate

11.5 ml Glacial acetic acid

28.5 ml Distilled water

The resulting solution is 3 M with respect to potassium and 5 M with respect to 

acetate.

DNAse-free RNAse

RNAse A  (1 mg/ml) in sterile water.

H eat to 100°C for 30 min. Cool slowly and store -20°C 

Solutions for Maxipreparations of DNA - Qiagen Buffers

Buffer PI (Resuspension buffer)

50 m M  Tris-Cl, pH  8.0

10 mM  EDTA

100 |ig  RNase A

Store at 4°C after the addition o f RNase A.
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Buffer P2 (Lysis buffer)

200 m M  Sodium Hydroxide

1% (w/v) SDS

Prepared fresh and stored at room temperature.

Buffer P3 (Neutralization buffer)

3.0 M  Potassium  acetate pH 5.5 

Stored at4°C .

Buffer QBT (Equilibriation buffer)

750 m M  NaCl 

50 mM  M OPS pH  7.0 

15% (v/v) Isopropanol 

0.15% (v/v) Triton X ® -100 

Stored at room  temperature.

Buffer Q C (Wash buffer)

1.0 M  NaCl

50 mM  MOPS pH  7.0 

15% (v/v) Isopropanol 

Stored at room  temperature.

Buffer QF (Elution buffer)

1.25 M  NaCl 

50 mM Tris-Cl, pH  8.5 

15% (v/v) Isopropanol 

Stored at room temperature.

50% (v/v) Glycerol

25 ml D istilled H2O

25 ml Glycerol

Autoclaved and stored at room  temperature.



0.5 M EDTA

186.1 g EDTA

800 ml Distilled water

6 g NaOH pellets

pH to 8.0 with 5 M NaOH. Volume was adjusted to 1 L with water

SOX TAE

242 g Tris

57.1 ml A cetic acid.

100 ml 0.5 M  EDTA pH 8.0

Adjusted to 1L w ith water

5X TBE

54 g Tris

27.5 g Boric acid

20 ml 0.5 M EDTA pH 8.0

Adjusted to 1L with water.

Ethidium bromide

0.1 g / 10 ml water (10 mg/ml)

Stored in dark at room  temperature.

Agarose gel loading dye

40% (w/v) sucrose

0.25% (w/v) brom ophenol blue

BACTERIAL GROWTH MEDIA 

LB agar

10 g Tryptone

5 g  Yeast extract

5 g NaCl

15 g Agar technical

Autoclaved and plates stored at 4°C.
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LB agar plus ampicillin

Ampicillin was added to a final concentration of 100 |ig/ml to LB agar (50 °C).

Plates were stored at 4 °C.

LB broth (per L)

10 g Bacto-tryptone

5 g Y east extract

5 g NaCl

Autoclaved and stored at 4  °C.

LB Ampicillin broth

Am picillin was added to LB broth to a final concentration of 100 Mg/ml from stock 

solutions (100 mg/ml in  dPLO, stored at -20°C). Stored at 4°C.

SOB medium (per L)

20 g Tryptone

5 g Yeast extract

0.5 g NaCl

10 ml KC1 (250 mM)

Adjusted pH to 7.0 with 5 M NaOH 

Autoclaved, cooled to ~5°C and added :

10 ml 1 M M gCl2 

Stored at 4 °C.

SOC medium (per L)

1 L SOB

7.5 ml 50% glucose (filter sterilised)

Stored at 4°C.

IPTG stock solution (100 mM)

24 mg IPTG per m l o f sterile H 2O

Filter sterilised and kept on ice until ready to use.



X-Gal stock solution (5%(w/v))

This solution was prepared fresh for each use

50 mg of X-Gal per ml of N ,N’ dimethyl-formamide in a sterile tube.

Protected from light and stored on ice until ready to use.

Ampicillin stock solution (50 mg/ml)

50 mg of ampicillin per ml of sterile H2O 

Filter sterilised and stored at -20°C.

LB plates with antibiotics and IPTG/X-Gal.

To 1L of autoclaved LB agar (cooled to 50°C) the following were added 

0.5 jiM IPTG (5ml IPTG lOOmM stock solution)

80 (ig/ml X-Gal (1.6 ml 5% (w/v) X-Gal stock solution)

50 (ig/inl Ampicillin (1 ml o f 50 mg/ml solution)

Plates were stored at 4°C protected from light.

CELL CULTURE MEDIA/SOLUTIONS 

Supplemented RPMI (200 ml)

176 ml RPM I 1640

20 ml Foetal calf Serum (Decomplemented - 50°C for 30 min)

2 ml 200 mM  L-glutamine

2 ml Penicillin/Streptomycin (1000 U/ml-1000 Mg/ml)

Supplemented McCOY’S 5A (200 ml)

178 ml M ACOY ’S 5A with L-glutamine

20 ml Foetal calf Serum (Decomplemented; 50°C for 30 min)

2 ml Penicillin/Streptomycin (1000 U/ml-1000 |J.g/ml)
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Supplemented DMEM High Glucose

178 ml DM EM  high glucose with L-glutamine

20 ml Foetal calf Sérum (Decomplemented; 50°C for 30 min)

2 ml Penicillin/Streptomycin (1000 U/ml-1000 |ig/ml)

10X Phosphate Buffered Saline (PBS)

14.24 g Na2H P 0 4.2H20  (8 mM)

2.04 g KH2P 0 4 (1.5 mM)

80.0 g NaCl (137 mM)

2.0 g KC1 (2.7 mM)

pH 7.5 and make up to 1 litre.

Diluted 1 in 10 in sterile distilled w ater and used at a IX  working concentration. 

Thiol supplements.

The following were added to 200 ml of supplemented media:

200 a-Thiolglycerol

2 ml Sodium pyruvate

2 ml HEPES

Bathocuproine disulfonic acid (BCS -10  mM stock solution)

36.4 mg BCS

10 ml IX  PBS

Dissolved by vortexing, filter sterilised using a 0.2 micron filter.

Aliquoted and stored at -20°C.

a-Thiolglycerol

A stock solution of 50 mM  in PBS containing 20 (iM BCS was prepared.

20 Ml 10 mM BCS

10 ml IX  PBS

43.3 Ml 100% a-thiolglycerol

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20°C.



Sodium pyruvate

100 mM  stock solution in IX  PBS (Gibco BRL). Stored at 4°C.

HEPES

1 M stock solution pH 7.5 (Gibco BRL). Stored at room temperature.

Microphenolic acid/Xanthine supplements

200 ml Supplemented RPM1

0.5 Mg/ml M icrophenolic acid

50 |u,g/ml Xanthine

Microphenolic acid stock solution 2.5 mg/mL

2.5 mg M icrophenolic acid

1 ml Sterile dHaO

Two micro litres per ml of media was added giving a final concentration of 0.5 

Mg/ml.

Xanthine stock solution of 25 mg/mL

25 mg Xanthine

1 ml Sterile d.HiO

Twenty micro litres per ml o f media was added to give a final concentration of 50 

M-g/ml.

Geneticin G418 (stock solution 50 mg/ml) for tetracycline inducible cell lines

0.1 g Geneticin

2 ml RPMI 1640

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20°C. 20 pi of the

stock solution was added per ml of media to give a final concentration of 1 mg/ml.

Hygromycin B (stock solution 50 mg/ml supplied)

Ten micro litres of the stock solution was added per ml of media to give a final 

concentration of 500 |ig  per ml. Stored at 4°C.
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Tetracycline (stock solution 5 mg/ml)

5 mg Tetracycline

1 ml 100% Ethanol

Stored at -20°C, 1 ^1 o f tetracycline was added to 5 ml of media to give a final 

concentration of 1 jxg per ml.

Geneticin G418 (stock solution 600 mg/ml) For transfected epithelial cell lines 

C33A Neo and LMP1

0.6 g Geneticin

1 ml 1 M Hepes pH 7.5

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20°C. One |il of the 

stock solution was added per ml of media to give a final concentration of 600 |ig per 

ml.

Solutions for modified DEAE-Dextran Transfection Protocol 

T.E.

10 mM  Tris (pH 7.8)

1 mM  EDTA

Prepared fresh on the day of use using autoclaved stocks of Tris and EDTA. It is 

important to ensure that the pH of the Tris is at 7.8 at room temperature prior to use.

TBS

25 mM  Tris (pH 7.4)

137 mM NaCl

5 mM  KC1

0.7 mM CaCl2

0.5 mM M gCl2

0.6 mM Na2HP0 4

Prepared from autoclaved stocks, aliquoted and filtered before use. Again the pH of 

the Tris is critical.

DEAE Dextran



1 mg/ml in TBS, prepared fresh and filter sterilised.

SOLUTIONS FOR PROTEIN ISOLATION 

Suspension buffer

0.1 M  NaCL

0.01 M  Tris-Cl (pH 7.6)

0.001 M  EDTA (pH 8.0)

lUg/ml Apoprotinin

100|!g/ml PM SF

Stored at 4°C.

2X SDS gel loading buffer

100 mM Tris-Cl

200 mM DTT

4% (w/v) SDS

0.2% (w/v) Bromophenol blue

20% (v/v) Glycerol

Two times loading buffer was prepared without DTT and stored at room 

temperature. DTT was added just prior to use from a 1 M stock

Protease Inhibitors

2 mg/ml Leupeptin

0.1 mM  PM SF (phenylmethylsulfonyl flouride)

SOLUTIONS FOR SDS PAGE/WESTERN BLOTTING

1 M Tris-Cl pH  6.8

1.5 M  Tris-Cl pH 8.8

10% (w/v) SDS

10% (w/v) Ammonium persulphate (APS)

Acrylagel

Bis-acrylagel

TEMED

1 M  Dithiothreitol
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10X Tris glycine running buffer (500 ml)

15.138 g Tris

71.125 g Glycine

5.0 g SDS

Made up to 500 ml with distilled water.

Destain

100 ml Acetic acid

400 ml Methanol

500 ml Distilled water

Coomassie blue stain

1 g Coomassie blue R

200 ml DeStain

Transfer Buffer (10X stock solution)

30.3g Tris

144.2g Glycine

Adjusted to pH 8.3, made up to 1 L  with distilled water, stored at room temperature.

Transfer Buffer (IX working Solution)

100 m l 1ÖX Stock solution

200 ml M ethanol

700 ml Distilled H 20

Stored at 4°C. M ethanol was omitted in  transfer of proteins of >120 Kd.

TBS (IX)

6.1 g Tris

8.8 g NaCl

M ade up to 1 L with distilled w ater and adjusted to pH  7.5 with HC1.

Autoclaved and stored at room  temperature.



TEST (0.1%, v/v)

1 L  TBS (as above)

1 ml Tween 20

Blotto

50 ml 

25 Ml

2 g

0.5g

IX TBS (as above)

0.05% (v/v) Tween 20 (0.5 ml/L)

5% (w/v) non-fat dry milk 50 g/L (Marvel) 

NaN3

Sodium azide (5%) (w/v)

50 mg NaN 3

950 jul D istilled w ater

REAGENTS FOR SEQUENCING

Six percent denaturing polyacrylamide gel

Six percent denaturing polyacrylamide gel was prepared for sequence analysis. The

following formula was employed to determine the am ount of acrylamide and bis-

acrylamide required:

Va = volume o f acrylamide 

Vb = volume o f bis-acrylamide 

Vt = total volume of gel mix 150 ml 

C = % crosslinking 5.2 %

A = % gel 6/8 %

Va = Avt Vb = ACVt

30 200

Va = 6*150/30 = 3 0  ml Vb = 6*5.2*150/=  24 ml

6 % Denaturing PAG
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63 g Urea

30 ml Acrylamide

24 ml Bisacrylamide

15 ml 1 OX TBE

Made up to 150 ml with UP H20

Six hundred and fifty micro litres o f 10% (w/v) APS and 150 |il TEMED were 

added, and mixed briefly, directly before pouring.

10X T B E  (per 500 ml)

54 g Tris base

27.5 g Boric acid

20 ml 0.5 M EDTA (pH 8.0)

One times concentration was used for polyacrylamide gel preparation.

10%  (w /v)A m m onium  p ersu lp h a te

0.1 g APS/ml ultra pure H 20

D eveloper (5 L)

1.50 L  H20

1.25 L  Developer

2.25 L  H20  

Stirred for 2 min

F ixer (5.125 L)

3.625 L H20

1.250 L A fixer

0.250 L B fixer

Stirred for 2 min

R EA G E N T S F O R  R N A  ANALYSIS
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RNA sample buffer

50 % (v/v) Deionized formamide

8.3 % (v/v) Formaldehyde

0.027 M  M OPS pH  7.0

6.7 mM  Sodium  acetate

RNA loading buffer

50%(v/v) High grade glycerol

1 mM EDTA (pH 8.0)

0.25% (w/v) Bromophenol blue 

0.25% (w/v) X ylene cyanol FF

DEPC treated (lm l/L  DEPC) overnight, autoclaved and stored at room temperature.

RNA loading bu ffer (contain ing ethidium )

50% (v/v) High grade glycerol

1 mM EDTA (pH 8.0)

0.4% (w/v) Bromophenol blue

0.1 Mg/ml Ethidium  bromide

Aliquoted and stored at -20°C.

YEAST TWO HYBRID SYSTEM : MEDIA AND REAGENTS 

YPD

lOg Yeast extract 

20g Peptone 

20g D-glucose

M ade up to 1L with dH20 and autoclaved.

Supplemented YNB

6.7g YNB media, without amino acids (Difco)

2 g Dropout powder (lacking appropriate amino acids)

Made up to 800 ml with dH 20 and autoclaved.

100 ml Carbon source (20% stock solutions, filter sterilised)*



Amino acids added as required from  stock solutions.

M ade up to 1 L with sterile dH^O.

* YNB/Glu media : Glucose added to a final concentration o f 2% (w/v). 

YNB/Gal media : Galactose/Raffmose at 2% (w/v) and 1% (w/v) respectively.

Dropout Powder

Nutrient Quantity (g) Final

Adenine 2.5 40

L-arginine (HC1) 1.2 20

L-aspartic acid 6.0 100

L-glutamic acid 6.0 100

L-isoleucine 1.8 30

L-lysine 1.8 30

L-methionine 1.2 20

L-phenylalanine 3.0 50

L-serine 22.5 375

L-threonine 12.0 200

L-tyrosine 1.8 30

L-valine 9.0 150

All ingredients were combined and ground in a clean dry m ortar and pestle until 

homogeneous. Stored at room  temperature.

Amino Acid Supplements (Stock Solutions)

1 g /100 ml Tryptophan (500X)

1.5 g/100 ml Leucine (500X)

1 g/100 ml Histidine (500X)

200 mg/100 ml Uracil ( 100X)

YPD/supplemented YNB agar plates

20 g agar plus 1 pellet NaOH (0.1 g) was added per 1L YPD/supplemented YNB 

medium.

Z buffer (IX)
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16.1 g Na2H P 04. 7H20  (60 mM final)

5.5 g NaH2P 04 . H20  (40 mM final)

0.75 g KC1 (10 mM final)

0.246 g M gS04.7H20  (1 mM final)

Adjusted to pH 7.0 and brought to 1 liter with dH20 . Do not autoclave.

2 X F S B

2 ml Glycerol

4 m l 10% SDS

2.5 m l Buffer (0.5 M  Tris pH  6.8, 0.4% SDS)

M ade up to 10 ml with dHaO. (3-mercaptoethanol (1 ¡0,1/20 |jl) added just before use. 

PE G  solution

40% (w/v) Polyethyleneglycol (PEG) 3350*

0.1 M Lithium acetate

10 mM Tris-Cl, pH 8.0

1 mM EDTA

*PEG was fully dissolved in dH20  by mixing on a magnetic stirrer. The remaining 

constituents were added, volume was adjusted and the solution was filter sterilised.

G lycerol solution

65 % (v/v) Glycerol (sterile)

0.1 M M gS04

25 mM Tris-Cl, pH 8.0

Stable for at least 1 year when stored at room temperature.
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SUMMARY

This thesis consists of two main parts, the results of which are detailed and discussed in 

chapters 3 and 4. In conclusion overall, the most important findings of the work 

presented here are described in chapter 3, which outlines investigations into EBV- 

associated deregulation of cell cycle progression. Using a multi-template probe specific 

for a subset of genes associated with cell cycle control in RPA assays, the level of 

mRNA transcripts of each of these genes was assessed in the context of a range of EBV- 

related cell lines. Of the genes under study, which included p l 3 0 , p R b , p ! 0 7 ,  p 5 3 , p 5 7 , 

p 2 1 ,  p l 9 ,  p l 8 ,  p l 6  and p l 4 / p l 5 , the most significant change was seen in the level of p 2 1  

mRNA which was markedly upregulated on transition from EBV latency type I to type 

III BL cells. Elevated levels were also observed in EBV-immortalised LCL cell lines 

and a similar pattern of p21 expression was found at the protein level. Consistent with 

this data, previous reports have described a rise in p21 protein levels as a result of EBV 

infection of B lymphocytes (Chen and Cooper, 1996; Cannell et a l 1996), while another 

report described high levels of p21 in a number of LCLs (Pokrovskaja et a l , 1999).

A tetracycline-regulated gene expression system in DG75tTA-LM Pl and DG75tTA- 

EBNA2 cells was used to express either LMP1 or EBNA2 as sole EBV protein. In this 

context, LMP1 was found to contribute to upregulation of p 2 1  mRNA whereas EBNA2 

had no effect on p 2 1  mRNA levels. Levels of p21 mRNA were barely detectable or 

undetectable in a T cell line (Jurkat-tTA-LM Pl) and in epithelial cells (C33A) and 

expression of LMP1 in either cell context had no effect on p 2 1  mRNA levels. Based on 

these observations, LM Pl-mediated p 2 1  upregulation would seem to be a B cell-specific 

effect. Moreover, no increase in p 2 1  mRNA was detected in BJABtTA-LMPl cells, 

which lack the characteristic BL c -m y c  translocation. The increase in p 2 1  levels is likely 

to be a p5 3-independent effect, as DG75 cells harbour a mutant p 5 3  gene and p 5 3  

mRNA and protein levels did not significantly change as a result of LMP1 expression.

Further investigations into the mechanism of upregulation revealed that stabilisation of 

p 2 1  mRNA was important in the observed LM Pl-mediated effect. No transactivation of
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the p21 promoter was detected as a result of LMP1 expression, but a high basal activity 

was detected, which is characteristic of this promoter. These results suggested that the 

LM Pl-mediated increase in p 2 1  mRNA is controlled through a post-transcriptional 

mechanism that probably results from an increase in p21 mRNA stability. Thus, even a 

modest enhancement of mRNA stability (2-fold) in the presence of a high p21 promoter 

activity would result in the rapid accumulation of p 2 1  mRNA. A similar scenario of low 

basal cellular levels, high promoter activity in the absence of transactivation of the 

promoter, coupled with a 3-fold increase in p 2 1  mRNA stability has been shown 

elsewhere in response to Et2Mal-induced oxidative stress in HeLa cells (Esposito e t a l . ,  

1997). Also, an almost 2-fold increase in p 2 1  mRNA stability was observed in response 

to PMA stimulation in SKOV-3 human ovarian carcinoma cells (Akashi et a l . , 1999). 

Preliminary investigations into the role of the PKC and/or MAPK pathway in LM Pl- 

mediated p21 upregulation were inconclusive, but it will be important in future studies 

to elucidate the signal transduction pathway involved. The level to which p21 protein is 

induced can be critical in the determination of cell fate (Chen et a l . , 1998). Thus, it may 

also be interesting in future studies to assess the effect on cdk-associated kinases in 

LMP1-expressing cells in order to determine whether or not the level of induced p21 

protein is sufficient to inhibit kinase activity. It is unlikely that the modest increase 

observed here would reach the levels required to induce growth arrest. In a previous 

study where elevated p21 protein expression was observed following outgrowth of EBV- 

infected cells into LCLs, the level detected was below the threshold required to prevent 

kinase activity and to cause growth arrest. LM Pl-mediated upregulation of p21 

expression is more likely to be linked to the previously documented cytostatic effect of 

LMP1 (Floettmann et a l , 1996).

The second part of this dissertation describes two different approaches taken in the study 

of the function of the EBNA3 proteins. Firstly, the yeast two hybrid system was 

employed to detect potential binding partners for EBNA3B. This system is a widely- 

used, highly sensitive method which depends on the reconstitution of transactivation 

activity of a transcription factor by the interaction of two proteins, which are each fused 

to either a transactivation domain or a DNA binding domain (DBD). To this end, two

224



independent systems were used, based on the LexA DBD (referred lo as YTHS-A) or the 

Gal4 DBD (YTHS-B) to screen two different cDNA libraries. False positives remain a 

significant problem with respect to use of these systems and in the data presented here 

no true positives were detected using either system, despite confirmation of two 

EBNA3B-specific interactions. However, it is generally recommended that any given 

library should be screened several times using two alternative bait constructs before 

safely ruling out the possibility of true interactors being encoded by the cDNA library.

As an alternative approach to the study of EBNA3 protein function, a tetracycline- 

regulatable gene expression system was used in an attempt to generate a stable cell line 

harbouring an inducible EBNA3A gene. For reasons that are not clear, clones were 

observed to express inducible EBNA3A protein for several weeks, but not thereafter.
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SOLUTIONS FOR DNA M ANIPULATION  

TE buffer

10 mM Tris-Cl

1 mM EDTA pH 8.0

Solutions for mini-preparation of plasmid DNA 

Solution I

50 mM Glucose

25 mM Tris.Cl (pH 8.0)

10 mM EDTA (pH 8.0)

Solution I I  (Prepared fresh)

0.2 N NaOH

1 % (w/v) SDS

Solution I I I

60 ml 5 M potassium acetate

11.5 ml Glacial acetic acid

28.5 ml Distilled water

The resulting solution is 3 M with respect to potassium and 5 M with respect to 

acetate.

DNAse-free RNAse

RNAse A (1 mg/ml) in sterile water.

Heat to 100°C for 30 min. Cool slowly and store -20°C 

Solutions for Maxipreparations of DNA - Qiagen Buffers

Buffer P I (Resuspension buffer)

50 mM Tris-Cl, pH 8.0

10 mM EDTA

100 Mg RNase A

Store at 4°C after the addition of RNase A.

b



Buffer P2 (Lysis buffer)

200 mM Sodium Hydroxide

1% (w/v) SDS

Prepared fresh and stored at room temperature.

Buffer P3 (Neutralization buffer)

3.0 M Potassium acetate pH 5.5 

Stored at 4°C.

Buffer QBT (Equilibriation buffer)

750 mM NaCl 

50 mM MOPS pH 7.0 

15% (v/v) Isopropanol 

0.15% (v/v) Triton X®-100 

Stored at room temperature.

Buffer QC (Wash buffer)

1.0 M NaCl

50 mM MOPS pH 7.0 

15% (v/v) Isopropanol 

Stored at room temperature.

Buffer QF (Elution buffer)

1.25 M NaCl 

50 mM Tris-Cl, pH 8.5 

15% (v/v) Isopropanol 

Stored al room temperature.

50% (v/v) Glycerol

25 ml Distilled H2 O

25 ml Glycerol

Autoclaved and stored at room temperature.



0.5 M EDTA

186.1 g EDTA

800 ml Distilled water

6 g NaOH pellets

pH to 8.0 with 5 M NaOH. Volume was adjusted to 1 L with water

50X TAE

242 g Tris

57.1ml Acetic acid.

100 ml 0.5 M EDTA pH 8.0

Adjusted to 1L with water

5X TBE

54 g Tris

27.5 g Boric acid

20 ml 0.5 M EDTA pH 8.0

Adjusted to 1L with water.

Ethidium bromide

0 . 1  g/ 1 0  ml water ( 1 0  mg/ml)

Stored in dark at room temperature.

Agarose gel loading dye

40% (w/v) sucrose

0.25% (w/v) bromophenol blue

BACTERIAL GROW TH M EDIA  

LB agar

10 g Tryptone

5 g Yeast extract

5 g NaCl

15 g Agar technical

Autoclaved and plates stored at 4°C.
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LB agar plus ampicillin

Ampicillin was added to a final concentration of 100 [ig/nü to LB agar (50 °C).

Plates were stored at 4 °C.

LB broth (per L)

10 g Bacto-tryptone

5 g Yeast extract

5 g NaCl

Autoclaved and stored at 4°C.

LB Ampicillin broth

Ampicillin was added to LB broth to a final concentration of 100 (Xg/ml from stock 

solutions (100 mg/ml in dH^O, stored at -20°C). Stored at 4°C.

SOB medium (per L)

20 g Tryptone

5 g Yeast extract

0.5 g NaCl

10 ml KC1 (250 mM)

Adjusted pH to 7.0 with 5 M NaOH 

Autoclaved, cooled to ~5°C and added :

10 ml 1 M MgCl2 

Stored at 4 °C.

SOC medium (per L)

1 L SOB

7.5 ml 50% glucose (filter sterilised)

Stored at 4°C.

IPTG stock solution (100 mM)

24 mg IPTG per ml of sterile H2 O

Filter sterilised and kept on ice until ready to use.



X-Gal stock solution (5%(w/v))

This solution was prepared fresh for each use

50 mg of X-Gal per ml of N,N’ dimethyl-formamide in a sterile tube.

Protected from light and stored on ice until ready to use.

Ampicillin stock solution (50 mg/ml)

50 mg of ampicillin per ml of sterile H2 O 

Filter sterilised and stored at -20°C.

LB plates with antibiotics and IPTG/X-Gal.

To 1L of autoclaved LB agar (cooled to 50°C) the following were added 

0.5 |iM IPTG (5ml IPTG lOOmM stock solution)

80 Mg/ml X-Gal (1.6 ml 5%  (w/v) X-Gal stock solution)

50 jag/ml Ampicillin (1 ml of 50 mg/ml solution)

Plates were stored at 4°C protected from light.

CELL CULTURE MEDIA/SOLUTIONS 

Supplemented RPMI (200 ml)

176 ml RPMI 1640

20 ml Foetal calf Serum (Decomplemented - 50°C for 30 min)

2 ml 200 mM L-glutamine

2 ml Penicillin/Streptomycin (1000 U/ml-1000 Mg/ml)

Supplemented McCOY’S 5A (200 ml)

178 ml MACOY’S 5A with L-glutamine

20 ml Foetal calf Serum (Decomplemented; 50°C for 30 min)

2 ml Penicillin/Streptomycin (1000 U/ml-1000 [ig/ml)

f



Supplemented DMEM High Glucose

178 ml DMEM high glucose with L-glutamine

20 ml Foetal calf Serum (Decomplemented; 50°C for 30 min)

2 ml Penicillin/Streptomycin (1000 U/ml-1000 fig/ml)

10X Phosphate Buffered Saline (PBS)

14.24 g Na2HP04 .2H20  ( 8  mM)

2.04 g KH2P 0 4  (1.5 mM)

80.0 g NaCl (137 mM)

2.0 g KC1 (2.7 mM)

pH 7.5 and make up to 1 litre.

Diluted 1 in 10 in sterile distilled water and used at a IX working concentration. 

Thiol supplements.

The following were added to 200 ml of supplemented media:

200 |il a-Thiolglycerol

2 ml Sodium pyruvate

2 ml HEPES

Bathocuproine disulfonic acid (BCS -10  mM stock solution)

36.4 mg BCS

10 ml IX PBS

Dissolved by vortexing, filter sterilised using a 0.2 micron filter.

Aliquoted and stored at -20°C.

a-Thiolglycerol

A stock solution of 50 mM in PBS containing 20 |U,M BCS was prepared.

20 \i\ 10 mM BCS

10 ml IX PBS

43.3 jllI 100% a-thiolglycerol

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20°C.
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Sodium pyruvate

100 mM stock solution in IX PBS (Gibco BRL). Stored at 4°C.

HEPES

1 M stock solution pH 7.5 (Gibco BRL). Stored at room temperature.

Microphenolic acid/Xanthine supplements

200 ml Supplemented RPMI

0.5 |Hg/ml Microphenolic acid

50 |ig/ml Xanthine

Microphenolic acid stock solution 2.5 mg/mL

2.5 mg Microphenolic acid

1 ml Sterile dH20

Two micro litres per ml of media was added giving a final concentration of 0.5 

Mg/ml.

Xanthine stock solution of 25 mg/mL

25 mg Xanthine

1 ml Sterile d.H20

Twenty micro litres per ml of media was added to give a final concentration of 50 

|xg/ml.

Geneticin G418 (stock solution 50 mg/ml) for tetracycline inducible cell lines

0.1 g Geneticin

2 ml RPMI 1640

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20°C. 20 |il of the 

stock solution was added per ml of media to give a final concentration of 1 mg/ml.

Hygromycin B (stock solution 50 mg/ml supplied)

Ten micro litres of the stock solution was added per ml of media to give a final 

concentration of 500 [Xg per ml. Stored at 4°C.
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Tetracycline (stock solution 5 mg/ml)

5 mg Tetracycline

1 ml 100% Ethanol

Stored at -20°C, 1 (al of tetracycline was added to 5 ml of media to give a final 

concentration of 1 jag per ml.

Geneticin G418 (stock solution 600 mg/ml) For transfected epithelial cell lines 

C33A Neo and LMP1

0.6 g Geneticin

lm l 1 M Hepes pH 7.5

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20°C. One fil of the 

stock solution was added per ml of media to give a final concentration of 600 [ig per 

ml.

Solutions for modified DEAE-Dextran Transfection Protocol 

T.E.

10 mM Tris (pH 7.8)

1 mM EDTA

Prepared fresh on the day of use using autoclaved stocks of Tris and EDTA. It is 

important to ensure that the pH of the Tris is at 7.8 at room temperature prior to use.

TBS

25 mM Tris (pH 7.4)

137 mM NaCl

5 mM KC1

0.7 mM CaCl2

0.5 mM MgCl2

0.6 mM Na2HP04

Prepared from autoclaved stocks, aliquoted and filtered before use. Again the pH of 

the Tris is critical.

DEAE Dextran



1 mg/ml in TBS, prepared fresh and filter sterilised.

SOLUTIONS FOR PROTEIN ISOLATION 

Suspension buffer

0.1 M NaCL

0.01 M Tris-Cl (pH 7.6)

0.001 M EDTA (pH 8.0)

1 Mg/ml Apoprotinin

100|a,g/ml PMSF

Stored at 4°C.

2X SDS gel loading buffer

100 mM Tris-Cl

200 mM DTT

4%  (w/v) SDS

0.2% (w/v) Bromophenol blue

20% (v/v) Glycerol

Two times loading buffer was prepared without DTT and stored at room 

temperature. DTT was added just prior to use from a 1 M stock

Protease Inhibitors

2 mg/ml Leupeptin

0.1 mM PMSF (phenylmethylsulfonyl flouride)

SOLUTIONS FOR SDS PAGE/WESTERN BLOTTING

1 M Tris-Cl pH 6 . 8

1.5 M Tris-Cl pH 8 . 8

10% (w/v) SDS

10% (w/v) Ammonium persulphate (APS)

Acrylagel

Bis-acrylagel

TEMED

1 M Dithiothreitol
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10X Tris glycine running buffer (500 ml)

15.138 g Tris

71.125 g Glycine

5.0 g SDS

Made up to 500 ml with distilled water.

Destain

100 ml Acetic acid

400 ml Methanol

500 ml Distilled water

Coomassie blue stain

1 g Coomassie blue R

200 ml Destain

Transfer Buffer (10X stock solution)

30.3g Tris

144.2g Glycine

Adjusted to pH 8.3, made up to 1 L with distilled water, stored at room temperature.

Transfer Buffer (IX working Solution)

100 ml 10X Slock solution

200 ml Methanol

700 ml Distilled H?0

Stored at 4°C. Methanol was omitted in transfer of proteins of >120 Kd.

TBS (IX)

6.1 g Tris

8 . 8  g NaCl

Made up to 1 L with distilled water and adjusted to pH 7.5 with HC1.

Autoclaved and stored at room temperature.
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TBST (0.1%, v/v)

1 L TBS (as above)

1 ml Tween 2 0

Blotto

50 ml

25 Ml

2 g

0.5g

IX TBS (as above)

0.05% (v/v) Tween 20 (0.5 ml/L)

5% (w/v) non-fat dry milk 50 g/L (Marvel) 

NaN3

Sodium azide (5%) (w/v)

50 mg NaN3

950 Ml Distilled water

REAGENTS FOR SEQUENCING 

Six percent denaturing polyacrylamide gel

Six percent denaturing polyacrylamide gel was prepared for sequence analysis. The 

following formula was employed to determine the amount of acrylamide and bis- 

acrylamide required:

Va = volume of acrylamide 

Vb = volume of bis-acrylamide 

Vt = total volume of gel mix 150 ml 

C = % crosslinking 5.2 %

A = % gel 6/8 %

Va = Avt Vb = ACVt

30 200

Va = 6*150/30 =30 ml Vb = 6*5.2*150/ = 24 ml

6 % Denaturing PAG



63 g Urea

30 ml Acrylamide

24 ml Bisacrylamide

15 ml 1 OX TBE

Made up to 150 ml with UP H20

Six hundred and fifty micro litres of 10% (w/v) APS and 150 ¡ul TEMED were 

added, and mixed briefly, directly before pouring.

10X TBE (per 500 ml)

54 g Tris base

27.5 g Boric acid

20 ml 0.5 M EDTA (pH 8.0)

One times concentration was used for polyacrylamide gel preparation.

10% (w/v)Ammonium persulphate

0.1 g APS/ml ultra pure H20

Developer (5 L)

1.50 L H20

1.25 L Developer

2.25 L H20  

Stirred for 2 min

Fixer (5.125 L)

3.625 L H20

1.250 L A fixer

0.250 L B fixer

Stirred for 2 min

REAGENTS FOR RNA ANALYSIS
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RNA sample buffer

50 % (v/v) Deionized formamide

8.3 % (v/v) Formaldehyde

0.027 M MOPS pH 7.0

6.7 mM Sodium acetate

RNA loading buffer

50%(v/v) High grade glycerol

1 mM EDTA (pH 8.0)

0.25% (w/v) Bromophenol blue 

0.25% (w/v) Xylene cyanol FF

DEPC treated (lml/L DEPC) overnight, autoclaved and stored at room temperature.

RNA loading buffer (containing ethidium)

50% (v/v) High grade glycerol

1 mM EDTA (pH 8.0)

0.4% (w/v) Bromophenol blue

0.1 (ig/ml Ethidium bromide

Aliquoted and stored at -20°C.

YEAST TWO HYBRID SYSTEM : MEDIA AND REAGENTS 

YPD

lOg Yeast extract 

20g Peptone 

20g D-glucose

Made up to 1L with dHjO and autoclaved.

Supplemented YNB

6.7g YNB media, without amino acids (Difco)

2 g Dropout powder (lacking appropriate amino acids)

Made up to 800 ml with dH2 0  and autoclaved.

100 ml Carbon source (20% stock solutions, filter sterilised)*
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Amino acids added as required from stock solutions.

Made up to 1 L with sterile dH2 0 .

* YNB/Glu media : Glucose added to a final concentration of 2% (w/v).

YNB/Gal media : Galactose/Raffinose at 2% (w/v) and 1% (w/v) respectively.

Dropout Powder

Nutrient Quantity (g) Final Cone. (u.g/ml )

Adenine 2.5 40

L-arginine (HC1) 1 . 2 2 0

L-aspartie acid 6 . 0 1 0 0

L-glutamic acid 6 . 0 1 0 0

L-isoleucine 1 . 8 30

L-lysine 1 . 8 30

L-methionine 1 . 2 2 0

L-phenylalanine 3.0 50

L-serine 22.5 375

L-threonine 1 2 . 0 2 0 0

L-tyrosine 1 . 8 30

L-valine 9.0 150

All ingredients were combined and ground in a clean dry mortar and pestle until 

homogeneous. Stored at room temperature.

Amino Acid Supplements (Stock Solutions)

1 g/100 ml Tryptophan (500X)

1.5 g/100 ml Leucine (500X)

1 g/100 ml Histidine (500X)

200 mg/100 ml Uracil (100X)

YPD/supplemented YNB agar plates

20 g agar plus 1 pellet NaOH (0.1 g) was added per 1L YPD/supplemented YNB 

medium.

Z buffer (IX)



16.1 g Na2 HP04. 7H20  (60 inM final)

5.5 g NaH2P 0 4 . H20  (40 inM final)

0.75 g KC1 (10 mM final)

0.246 g MgS04 .7H20  (1 mM final)

Adjusted to pH 7.0 and brought to 1 liter with dH2 0 . Do not autoclave.

2X FSB

2 ml Glycerol

4 ml 10% SDS

2.5 ml Buffer (0.5 M Tris pH 6 .8 , 0.4% SDS)

Made up to 10 ml with dH2 0 . P-mercaptoethanol (1 |ul/20 jal) added just before use. 

PEG solution

40% (w/v) Polyethyleneglycol (PEG) 3350*

0.1 M Lithium acetate

10 mM Tris-Cl, pH 8.0

1 mM EDTA

*PEG was fully dissolved in dH20  by mixing on a magnetic stirrer. The remaining 

constituents were added, volume was adjusted and the solution was filter sterilised.

Glycerol solution

65 % (v/v) Glycerol (sterile)

0.1 M MgS04

25 mM Tris-Cl, pH 8.0

Stable for at least 1 year when stored at room temperature.
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