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Abstract

Computational modelling techniques have been applied 1n physics, biology and other
fields for decades to investigate the scale-mnvariant properties in non-equilibrrum
complex (many-cell) systems Specific examples have been considered to underpin
the simulation of cellular systems, 1e sandpiles as simple models of transport
phenomena, and soap froths as models of many-cell cellular networks A number of
characteristic properties have been nvestigated to explore common features of
complex systems Particularly interesting for the simple sandpile automaton 1s the
achievement of the critical state through the phenomenon known as self-organised
criticality (SOC)

Various simulation algorithms e g cellular automata, direct sfmulatlon and Monte
Carlo have been used to model the sandpile and froth systems respectively The
studies of a drected and dissipative CML sandpile model provide evidence for the
occurrence of SOC, with the system characterised by simple power-law distributions
For the soap froth model, the effect on the evolution of the presence of defects 1s
mvestigated, together with the impressions of varying the amount of disorder Scaling
properties obtamned, for various mtial conditions, are given m detail The
mmprovements on methods of computational modelling, and the lmitations of

software and hardware implementation are also briefly discussed
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Chapter 1 Introduction to the Nature of Complex Systems

1.1 Brief Review of "Cellular” Systems

Traditional mathematics offers few methods for buillding a comprehensive theory of
complex dynamucal systems A broad research program to study such systems
grows naturally out of studies on complex (many-cell) systems The prototypical
examples are cellular automata and random cellular networks, that appear to be
analytically less tractable Studies of these systems lead naturally to consideration
of the geometry of the systems’ parameter space and the effects of parameter
changes on system behaviour

Cellular Automata were mvented by John Von Neumann (1966), who was
mterested 1n connections between biology and the new science of computational
devices, 1€ automata theory This was pursued by the mathematician Stamslaw
Ulam, who suggested using cellular automata as a framework to solve self-
reproduction problems, (Burks (1966)) The Game of Life was created by John
Horton Conway to demonstrate universal computation i cellular automata,
(Berlekamp et al (1982)) Attention has been attracted to the Game of Life and 1ts
relation to some scientific problems, Poundstone (1985), and n this context
Wolfram (1984) (1986) proposed a classification of cellular automata A
characteristic feature of these cellular automata systems 1s that they consist of large
numbers of sumple 1dentical "umits" with local mnteraction For a review, see
Gutowitz (1990), Mitchell (1996)

Materials consisting of cellular network structures such as metal gramns and
biological tissues are common in nature, where the surface energy of the
boundaries makes the pattern unstable, causing certamn grans to shrink and
eventually to disappear, Weawre and Rivier (1984) In cellular network systems,
individual interaction has a strong influence not only on 1ts near-neighbours and
next-neighbours, but extending to all the individuals within.the system For a

review, see Glazier and Wearre (1992), Stavans (1993)



1.2 Type of Systems and Applications

The study of cellular systems in nature has been a major subject in physical,
chemical, biological and related sciences over decades Its applications cover a

wide range of phenomena and may broadly include, but are not hrmted to

e Sumple cellular systems eg model of transport phenemena, earthquake
occurrences, traffic jam, forest fire, spin glasses, turbulence, Biological
evolution and ecological balance, simple epidemuc models, mmmunological
reactions models and financial market fluctuations

e Cellular networks e g structure and evolution of froths and foams, modelling
of polycrystalline alloys, ceramics structures and lipid monolayers, gramn

growth problems and physics of garnet films

In most cases, the simple cellular system 1s defined as a lattice 1n position space
Sites may represent points 1n a crystal lattice, with values given by some quantified
observable or corresponding to types of units The sandpile moc{el, the dynamucal
Ising model and other lattice spin systems are simple types of such single cellular
automata system models Many share the characteristic behaviour of Self-
orgamised Criticality (SOC), a concept mtroduced to describe the process of
achieving a critical state through dynamic adjustments intrnsic to the system as
opposed to governed by an external parameter, Bak (1996)

We concentrate predominantly on simulations of physical and related systems,
where a satisfactory "run” requires the computation of bilbons of events to
describe formation, growth or evolution While both experimental and theoretical
methods offer basic approaches to understanding complex phenomena, some
systems are difficult to characterise precisely because they are of large size and
mvolve complex mnteractions Experimental work 1s typically difficult to perform,
due to the many parameters mvolved and theoretical solutions are simlarly not
usually feasible or are limited to extreme or equilibrum behaviour for simphfied or
approximated systems The rapid growth m power and availability of modern

computers means that, in a simulation, the size of the system may be varied and
"



complex mteractions controlled with relative ease This not only serves to
stimulate experimental work and develop new insights to the theoretical system,

but also provides a means of filing the gap between them, Heermann (1990)

1.3 Computational Modelling Techniques

The mterdisciphnary area of computational science has grown from the recogmtion
that physics, chemustry, biology and related fields have a common need for efficient
algorithms, together with sophisticated hardware and software to address complex
problems, Wilson (1987) Simulation techmiques form one of the most important
tools in computational modelling and can be used to study'a diverse range of
phenomena

Computational modelling can be used i a variety of different ways The
traditional methods of direct simulation solve equations numerically mn a
straightforward way, providing a direct computer analogue of the physical system
under study Examples are discussed e g by Koomn and Meredith (1990), and by
Gould and Tobochnik (1996) More recently, simplified computational models and
indirect simulations have been used more extensively, where those mnclude
enhancements of early Monte Carlo methods, (based on hypothetical statistical
populations), direct modelhing of discrete system elements (using e g cellular
automata), modelling of system nteractions through molecular dynamics
simulations, neural network, and other augmented technmiques such as genetic
algorithms and so on Recent references include Wolfram (}1983) (1986), Jamn
(1992), Gaylord and Wellin (1995), Frankel and Smut (1996), éranda]l (1996) and
Giordanc (1997)

The choice of methods 1s clearly wide and simulations have been applied in many
research fields The choice of a particular method depends both on the details of
the system and the mnformation sought, but also on practical limitations, since the
more detail retaned on the system, the more all the demands made of the
simulation Physicists may wish to provide analogies to the behaviour of non-
linear dynarmical systems and to explan the complex natural phenomena,
computer engmeers may desire to improve the power of a given device; biologists

may wish to model the spread of an epidemic or assess macroscopic behaviour



[
T

from studies of molecular dynamics and so on, nevertheless thé"prmmples of such
simulations remain the same

Specific examples focussed on 1 this thesis, to underpin the simulation of cellular
systems, are the sandpile automaton and the 2D soap froth, which provide simple
models of complexity with different interaction features and system constraimnts
These also provide ideahsed models for a number of more sophisticated
applications and as such, merit attention both n their own right and for the msight
they afford Furthermore scale-invariance in non-equilibrium complex systems 1s
common and the sandpile automaton as a paradigm for SOC provides a means of
investigating this property through numerical simulations Implementation details
of the different simulation approaches are discussed in the context of these real

problems

[

1.4 Scope of Thesis

The arrangement of the material in this thesis 1s as follows

Chapter 2 defines what 1s meant by a simulation and why we need to use computer
simulation to deal with complex systems The various categories of simulation
methods are described and distinguished, € g cellular automata, Monte Carlo and

Molecular Dynamics

Chapter 3 reviews the cellular automata method applied to scientific systems
Sandpile models and the phenomenon of self-orgamnsed criticality, (SOC), are
discussed mn this context Numerical simulations of a directed sandpile model and
dissipative sandpile models are analysed and reported with .§1mulat10n statistics

used to provide evidence of the occurrence of SOC g

Chapter 4 focuses on a model for 2D froth, exploring via direct simulation, the
effect on froth evolution of the presence of defects, large amounts of disorder and

so on The strengths of the direct method are discussed i some detail, together



with practical considerations for extending the size of the systems investigated

where a large amount of information on the system structure must be retained

Chapter 5 discusses further the increase n complexity involved in simulating a real
network and considers alternative modelling techmque Hardware and software
limitations are considered briefly, together with the improvements which mght

reasonably be expected through upgrading

Chapter 6, m the final chapter, we comment on some of the mmplications for
simulating complex physical systems A synopsis of system type, methodology and
performance 1s given and recommendations for further methodological studies and
mprovement are made, together with suggestions for extending work on the

problems considered at relatively low computational expense

References and appendices are given at the end of the thesis, where the latter
mnclude copies of published papers, algorithm details, detailed figures and a table of
example statistics of froth evolution and a diskette contaimng full details of the

programmes used



Chapter 2 Computational Science (Scientific Computing)
and Simulation Techniques

Scientific problems nowadays are not solved solely by the means of conventional
experiments and theoretical considerations A major new mngredient 1s the use of
computers to ald‘ research It 1s well-known that physics, chemistry, medicine,
astronomy and other sciences share a common need for efficient algorithms, system
software, and computer architecture to address large computational problems A
new interdisciplinary science, computational science (or scientific computing),
which 1s focused on using computers to analyse scientific problems has been
devised to meet the need and has attracted much attention, Wilson (1986) and
references theremn Simulation techmques have played and continue to play an
mportant role m computational science studies

Simulation 1s a process which allows us to understand the behaviour of an existing
or potential system by observing the behaviour of a model representing the system
With the advance of simulation approaches in recent years, 1t provides increased
efficiency 1n implementation of a complex system without actually constructing or
physically dealing with the system itself All the old investigation problems and
some completely new concepts, such as the fractal behaviour of nature are now
studied through computer simulation techmques The applications mclude a diverse
array of phenomena, i fields ranging from physics and other natural sciences, from
meteorology to social, arts, political and economuc processes ‘

In this chapter, we first mtroduce the notion of computational science and its
components model, system, and simulation Then, we categorise the simulation
classification and discuss simulation as a methodology for focusing predomnantly
on the apphcation to complex physical and related systems We present the
architecture needed and distinctive features of the software and describe various
types of simulation techmques and thewr applicability A discussion of the
underlying theoretical basis for the different techriques 1s also given in general
terms Specific details are developed for the problems of interest m subsequent

chapters.



2.1 Introduction p
2.1.1 Computational Science / Scientific Computing

Computational science relates to the knowledge and techrniques requmed to
perform computer simulations and other computationally intensive problems
through model analysis i the respective disciplines, Wilson (1986) Its
charactenstics include

¢ having a precise mathematical statement,

¢ being intractable by traditional methods,

¢ having a significant scope,

e requuring an m-depth knowledge of science, engineering (or the arts)

Thus, computational science, mnvolving mixed areas of an apphed discipline, seeks
to obtain an improved understanding of some complex phenomena through the
mmplementation of the problem by a suitable computer architecture and algorithms
In short, 1t means to mvestigate a complcated system by an appropriate
computational model usually via computer simulation Various research fields, e g
biology, physics, economics, have established branches of scientific computing
endeavour and have emerged as recogmsed topics i computational science
Unfortunately, the computer science community has been slow to meet this
development, so that redundancy of effort has ensued

The use of simulation mn research and development 1s now established as a third
basic methodology, complementing traditional theory and experimentation, Decker
and Johnson (1993) The importance of simulation 1s illustrated by results achieved
for fundamental problems 1n science and engmneering that could be advanced only
by applying computational techmques Some examples include global climate
modellng, turbulence, and biomolecular modelling, Wilson ﬁ(\1987) A detailled

description follows of what 1s mvolved n simulation of a system

2.1.2 Model, System, and Simulation

The applcation of modelling techmiques for analysis of system dynamics 1s a

popular methodological approach i various areas For the solution and flexible



applbcation of such models, simulation 1s of increasmng mmportance. It has been
defined by Naylor et al (1986)

“Stmulation 1s a techmque for conducting experiments on a digital computer, this
technique mvolves certain types of mathematical and logical models that describe
the behaviour of busmess, economic, physical or chemical systems or some
component thereof over periods of time ”

In general terms, sumulation 1s a form of experimentation that mvolves asking
decisions 1 a simulated environment - a laboratory setting that replaces real world
conditions In scientific terms, simulation refers to the process of designing a
model of a real system and conducting experiments with the model for a better
understanding of the behaviour of the system, or evaluating various patterns for the
operation of the system, Bratley et al (1983), Fishwick (1995)

Here, a system can be defined as the understanding of the relationship between
things which interact For example, a pie of sand 1s a system, m which gramns
mteract based upon how they are piled If the pile 1s unbalanced, the interaction
results in movement of the grams until they find a new condition under which they
are 1 balance, (erther dynamuc or static) Isolated groups of sands which do not
touch one another are not a system, because there 1s no interaction

A system can be modelled, 1e one can create another system that supposedly
replicates the behaviour of the original system. Theoretically, e g 1t 1s assumed that
if conditions for a second group of sand grans rephcate the first set, then, we can
predict that they will achieve a new configuration that 1s the same as the first one

Alternatively, we can use the mathematical representation of sand grams by
appropriate laws, to predict how future piles of the same or different types of sand
will interact Mathematical modelling 1s thus fundamental to the description of
system behaviour

A model 1s therefore, a sumphfied representation or description of the real system
intended to be understood As some complex systems may be beyond our mntuitive
knowledge, we seek to study and analyse the real thing by constructing models In
most areas of science and engineering, physical laws aree:apphed to obtamn
mathematical models for analysing systems Model building 1s relatively easy if the

physical laws are known and the system 1s compact and well-behaved However,
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the modelling of complex, large-scale systems 1s difficult smnce many procedural
elements can not be described dwectly Simulation approaches are used to
overcome these difficulties

Generally speaking, simulation modelling assumes that a system 1s computable
Here a system 1s characterised by a number of variables, where each variable value
represents a unique state of the system The dynamic behav1our of the system 1s
observed under different states Thus, the outstanding advantage of simulation 1s
not only to fully obtain the system’s variability and sensitivity with changing
conditions, but also to increase 1ts safety and productivity Furthermore, whenever
results obtaned by simulation modelling are different from those obtamed by other
methods, 1t 1s the only approach that allows a re-test of system behaviour
Therefore, 1t 1s capable of providing nsight nto aspects of transient misbehaviour,
such as temporary mfluences by external constraints, which 1s not available for any

other techmiques

2.1.3 Computational Model

A computational model of some process 1s, essentially, no more than a computer
program. It 15 a program for which claims are made, DeVries (1994) The
structure of the program reflects that of the mechanisms assugled by theory for
the process under study A computational model may be a mechanistic model, or
an mput/output functional model, or both Observation of a particular model’s
behaviour can provide precise mnformation on the long-term effects of the system
Thus, computational models can be a source of significant msights for other
smilar systems as a new methodology to deal with complex systems

A computational model can also be very effective at driving theory development
Usually, 1t 15 not the case that a written program for a model 1s based on a well-
understood or completely perfect theory However, by exploring computational
variants, the theoretical details can be developed to a deep level, which otherwise
1s unattamable For example, Partidge et al (1984) used a computational model to
refute a widely-held theoretical belief, and hence presented a revision of the

acceptance of a class of theories of habitation behaviour.



2.1.4 Complex (Many-body) Systems

Complex systems span physical science, mathematics, computation and biology In
general terms, a complex system 1s defined as a network of mteracting objects,
agents, elements or processes that exhibit a dynamic, aggregate behaviour,
Bonabeau and Theraulaz (1994) The action of an object possibly affects
subsequent acttons of other objects in the network, so that the action of the whole
1s more than simple sum of the actions of 1ts parts In other words, a system 1s
complex 1if 1t 1s not reducible to a few degrees of freedom by statistical description,
1¢ forms a so-called many-body system
For mstance, a sandpile can be built in the process of adding gramns of sand nto a
pile With the sand shdes become bigger, the pile becomes steeper, and eventually,
some of grains topple till they fall out of the boundary At this i)omt, the system 1s
far away from equilibrtum, and its behaviour and properties can no longer be
understood 1n terms of those of the individual grams The sandpile generates a
new dynamic, which can be mvestigated through the whole pile rather than every
single grain Therefore, the sandpie 1s a complex system
In general, we are nterested mn predicting, both quahtatively and quantitatively,
the behaviour of a complex system by means of a few relevant physical elements
It 15 assumed that a large number of independent agents are interacting with each
other 1n many different ways Accordingly, system function may reflect various
relationships between them, e g the billions of interconnected neurones make up a
bram Waldrop (1992) has pomted to four aspects of systems which characterise
complexity
1 Systemic mnteractions can lead the system to spontaneous self-orgamisation
2 Complex systems do not just respond to events For example, recent research
has found that species n biology evolve for better survival in a changing
environment
3 Distinction between complicated and unpredictable Complexity has its
dynamic aspect Every complex, self-orgamsing, adaptive system possess a
kind of dynamusm that makes 1t qualtatively different from static objects, e g

snowflakes, which are merely complicated

10



4 Complex systems are more spontaneous, disorderly and alive However, therr
unusual dynamism may also be far from the unpredictable circuit known as
chaos

It was difficult to study complex system in detail unti recent decades because of

the high computational power required For complex systems m any specified

area, the whole system may demonstrate a global dynamic which 1s not easily
predicted from those of the individual components, thus, much research tends
towards using discrete rather than continuous modelling and corresponding
simulation approaches It 1s also possible to analyse the behaviour of individuals
based on a large scale network Most investigations are concentrated on

considering the behaviour and properties of interconnected groups

ot
H
)

2.1.5 Why do we Need Computer Simulation?
Computer simulation provides a powerful way of solving problems For some
exactly soluble problems, € g n physics, a complete specification of a system’s
microscopic properties leads directly and easily to an explanation of macroscopic
properties One example 1s that of 1dealised models like the perfect gas or crystal,
where the Hamiltonian directly gives the state equation, Baxter (1982) In studies
of more complex systems, however, there are no exact solutions available, and n
reality 1t 1s too costly to examine every possibility and too difficult to analyse their
behaviour based on a straightforward approximation scheme Computers typically
are used for incidental calculation 1n this type of work

For scientific problems, the computational aspect becomes more important because
computer simulation has the flavours of both theoretical and experimental features
A good theoretical background 1s the premuse to studying a si;bject by simulation
methods On the other hand, analytical results do not provide solutions to diverse
problems Pure theoretical approaches tend to be applicable only to very simplified
models Simulations are a useful learning tool for a system under many and varied
conditions, Wagner (1975) e g describes setting up a simulation of a loading dock
with ships moving 1n and out at specified tides more cheaply and easily than having

the ships physically moving mn and out. A forest fire simulation 1S more easily and

11



less dangerously observed than firing the nearest forest, Ball and Guertin (1992),
Duarte et al (1994) ;

The results of computer simulations may also be compared with those of theory
and real experiments They provide a test of the underlying model used and,
eventually, if the model 1s a good one, the simulator hopes to offer insights mnto the
hmitations of theory and experiment to assist the interpretation of new results This
dual role of simulation serves as a bridge between models and theoretical
calculations, and between models and experimental results When dealing with
non-linear phenomena, computer simulation of an idealised model of interest
enables sensitivity analysis via a specified algorithm, Binder (1986) Given this
connecting role, and the way mn which simulations are analysed, those techniques
are often called computer experiments as well, Allen and Tildesley (1990)
Furthermore, an mmportant fraction of the human knowledge about critical
phenomena and phase transitions is due to computer snnulat}ons performed on
statistical models, Stanley and Ostrowsky (1986) The study of«some new research
field, ike aggregation phenomena, 1s wholly based on computer simulation and
experimental data without theoretical understanding to date More details on
computing environments, simulation techniques and applications are discussed 1n

the next Section

2.2 Computing Environment
2.2.1 Hardware Capability
2 2.1.1 Overview on Architecture Principles

In the hardware processing for large scale simulations, 1t 1s important to tune the
machne to the needs of the problem being mvestigated. We consider the structure
of the hardware with respect to storage orgamsation, processor orgamsation,
connectivity etc

Vector computers have been used for scientific computing since ther development
in the 1970s The first supercomputer architectures included one or a few fastest
available processors to imcrease the packing density, mmumse switching time,

pipeline the system, and apply vector-processing techniques The main task 1s to

12



repeatedly use a small set of program instructions repeated for multiple data
elements, Hwang (1993) Vector processing has proven to be highly effective for
numerically mtensive applications, but not for more commercial uses, such as

online transaction processing or databases

2.2.1.2 Storage and Parallelism

In order to obtamn as much memory as possible, 1t 15 desirable to introduce a
parallelism concept and construct a parallel approach In general, approaches to
parallelism are classified mto the following categories event, geometric, and
algorithmic parallehsm, where event parallelism 1s the most straightforward and
easily applicable

Parallelism has played an important role in computer development n recent years
It 1s a popular approach for the designers of current supercomputers This
provision m a computer system allows us to utihse the maximum amount of
concurrency and treat the problem with the minimum programming Apart from the
computational power and acceleration of algorithms, parallehism brings with 1t a
new view on scientific and other processes Generally, - various levels of

parallelization can be identified These are respectively

(1) Instruction level parallehsm which 1s the heart of all "multispin” coding
algorithms This can turn a normal scalar computer nto a mini-parallel computer,
and also provides the basic programming tool for SIMD (Smngle Instruction
Multiple Data) machines

() The chaming level of parallelsm, which 1s closely associated with vector
computers and which typically, can execute a multiplication mstruction and an
addition nstruction simultaneously More sophisticated machmes such as the
CRAY YMP can execute logical and shift operations simultaneously
(m)Parallehsm can also be mtroduced at a higher level in the form of multiple
vector processors which can execute different parts of a loop simultaneously and
spread loops automatically Such systems clearly represent the emerging trend n

supercomputing architecture e.g. CRAY XMY.

13



The parallehsm approach is considered an appealing one because 1t can accelerate
the execution of a single program and increase throughput and rehability The
existence of an mdependent control unit makes possible to execute parallel loops
with branching, subroutine calls and random memory activity as compared to single
processor vector machines which have msufficient computational resources to

handle the complexity of the problems and achieve the accuracy required

2 2.1.3 Parallel Architectures

In the 1980s, the first massively parallel processors began to appear with the single
goal of achieving far greater computational power than vector #computers by using
low cost standard processors Theoretical models of parallel computing illustrate a
number of possible parallel computer architectures, but not all of these have
physical realisations The limutation includes the number of processors, therr mode
of operation, the memory orgamssation and the connectivity between the
processors The number of possible combinations 1s quite large

There are two main categories of structures on most existing parallel machines On
the one hand, there are machines with a small number of very powerful processors,
similar to the CRAY and Alhant which have only two, four or eight processors On
the other hand, there are machines with a very large number of processors, each of
which 1s much less powerful and mdeed some of which have only bit-level
capabilities Examples include the Connection Machine, Heermann (1991)

A further classification on the various types of machines mcludtj, Single Instruction
Multiple Data (SIMD) and Multiple Instructions Multiple Data (MIMD) The
mstruction of SIMD 1s broadcasted by an external controller and executed by the
processors This type of architecture 1s most effective when 1t can exploit
parallelism at the level of the data on which 1t operates, this means that the problem
can be solved by simultaneous operation on all of the data elements mvolved The
Connection Machine 1s an example of SIMD type One of these, the CM-2, 1s
considered, for example, to be a very good tool for cellular automata simulation
and m addition, provides a useful means of exploiting the natural parallelism of the
spatial grid as well as its capacity to perform efficient communications with

neighbouring data pomnts In terms of the cellular automata example, one of the
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main virtues of the CM-2 1s that 1t has a Boolean hypercube Eonﬁguratlon which
means that 1t allows using a code indexing scheme to embed multi-dimenstonal
grids nto the hypercube so that nearest neighbours are naturally preserved

Machines such as the CRAY (mentioned previously) have the feature that each of
the powerful processors can operate more or less as a conventional computer

mdependent of the other processors and these thus belong to the MIMD class

2.2.1.4 Dedicated Machines

For some problems, such as many which arise in statistical physics, the computer
time required for the solution 1s promubitively large for a conventional computer
This 1s an obvious and mmportant reason why we do not use a general purpose
computer but endeavour rather to create special purpose machines 1s 1n order to
make best use of the time and substantial computing power which 1s available As
an example, again taken from physical applications, the mvestigation of the spin
glass problem on a special purpose computer used the equivalent of one year of
CRAY time!

A dedicated machine which can match either the problem itself or the particular
algorithm can be used to solve the problem mn a relatively short time Moreover,
the price of a dedicated machine may be cheaper than a conventional one because
although 1t needs more silicon chips these are inexpensive and readily available
There are several specific machmne types that have been tried on cellular automata
since these were first introduced by von Neumann (1951) The first CA machine
was created by Toffoli et al (1981) Designated CAM-6, 1t provided an array of
256 by 256 locally connected cells, each one with four bits of state The state of
every cell 1s updated 60 times per second Although 1t 1s a sequential machine, 1ts
execution 1s very fast with a performance comparable to a silpercomputer The
cellular computer 18 used for 1ts computational capacity because 1t 1s comparable to
the case for a general-purpose computer In particular 1ts capacity means that it can
be used as an expermmental environment for modelling abstract or real physical and

related phenomena
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The maimn drawback of this kind of architecture 1s the increasing, size of the look-up
table For instance, if we have three planes with 9 bits per plar;;, the look-up table
should store 22743 buts, 1€ = 50 Mbyte of information

Another dedicated machine 1s the Reseau d’Automate Programmables 1 (R A P 1),
which 1s used for modelling fluid dynamuc behaviour and cellular networks,
Manneville (1989) Such machmes can be considered as simplified versions of the
Connection Machine The disadvantage of a special purpose machine lies n 1ts
inflexibility It 1s difficult to use 1t dwrectly for a new system mvolving new

techmques and modified algorithms

2.2.2 Machine Performance--an Ilustration

Considerations of applications of large-scale simulations on general purpose
machimnes can be 1illustrated by a review of the results of implementations of
selected programs on two scalar mainframe machines, a vector, computer, and on a
SIMD and MIMD computer by Kohring (1991) The speeds achieved are
described mn terms of the MUPS (mullions of sites updated per second) This 1s a
convenient measure of performance, given that such programs typically consist
almost entrrely of integer and logical structions and not of floating pont
operations, Kohring gives an example of cellular automata On the scalar
computer, SUN Spar-1 and IBM-3090, the MUPS speed was 16 and 27
alternatively On the CRAY XMP where the mdividual processor 1s a high-
performance vector machine, the speed was 233 For the Connection Machine,
CM-2 16(384-processors, SIMD computer), the speed was 270, compared to 1690
on the MIMD computer CRAY YMP/332 8-processors This last 1s clearly faster
than all others to date and has considerable imphcations for researchers hoping to
achieve comparable performances on less-sophisticated systems for similar classes

of problems .
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2.2.3 Current Software Techniques for Handling Updating

2.2.3.1 Algorithm Requirements

-

In large scale simulations of representations of real systems, 1t 1S obvious that the
development of the basic hardware has been nsufficient, in part because problems
which are challenging mn therr own right must be solved m order to construct the
machines as well as achieving more computational power Rather than relying on
new hardware developments, therefore, we need to mmprove the software
techniques so that the hardware can run the simulations with maximum efficiency
given the current provision Furthermore, 1t 1s also necessary to develop algorithms
which can be efficiently implemented on a variety of machines with only minor
programmung changes We next discuss some algorithms and how these handle the

updating of results in fixed provision hardware

2.2.3.2 Updating Algorithms: Sequential Updating

Many problems that are of nterest n numerical investigations, for example the
solution of systems 1n statistical physics, require the simulation of a large number
of simple variables, each of which 1s represented by a small number of bits or single
bits General-purpose computers usually provide complicated operations on long
data words The sequential updating procedure consists of updating the variables,
one by one, m either a random or a prescribed periodic order The simple
mplementation of this process can be carried out on any computer with, for
example, a FORTRAN 77, or FORTRAN 90 compiler since all the sites have to be
updated at the same time

It 1s clear that sequential updating of the code is extremely efficient The ideal
rule we take should be inherently parallel and simultaneously applied to all the sites
for a complete realisation of the system The obvious failing, therefore, 1s that this
mmplementation wastes enormous amounts of memory In this case, it mvolves a
large number of useless computations since the CPU operatés on overall words
rather than those bits which contamn the relevant information The states of the
system are typically bmary O or 1, thus 1t 1s sufficient to use one word for several

bit variables
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2.2.3.3 Sunultaneous (Parallel) Updating

Parallel dynamics consist in updating all the variables synchronously, where this 1s
known as the multi-spin or multi-bit coding method It makes an efficient use of
the computer memory and gives some degree of parallelsm to the scalar
processor Multi-spin coding 1s an effective approach to implementing large size
simulations of real systems

Many buts are stored m a single computer word so that if € g the word length 1s 32
bits, we can clearly save 32 one bit variables n one word We can then use a
logical method of counting the neighbouring bits and updating the sites, € g the
logical bitwise EOR and bitwise AND to sum over neighbourning sites It 1s thus
possible on serial machines to treat several vanables at the same time and achieve
partial parallehsm Oliverra (1990) has discussed the application of computing
Boolean (only two states) statistical models by Boolean operations AND, OR and
XOR

On vector machmes, we can exploit, 1n part, the mherent parallelism by considering
the data structure The processing of the code requires that we only need to change
the names of the bitwise mtrmsic SHIFT and the defimitions of left, right and
circular shift functions which may vary on different machines, Stauffer (1991)

However, we can use the bit-by-bit handling functions, where IOR can produce
logical OR operations 1 parallel The first bit of IOR (N1, N2) 1s the logical OR of
the first bit of N1 and the first bit of N2, the second bit applies similarly to the
second bits of N1 and N2 and so on

On MIMD machines, the hardware architecture 1s different, but can similarly be
used to handle many bits simultaneously and multi-bit coding 1s apphcable For this
reason, the speed of MIMD machines 1s faster than any others

The advantage of multi-spin or multi-bit coding 1s clearly that 1t saves on the
memory and increases the speed by exploiting parallelism and updating each bit on
the whole word For most usual general-purpose machines, best performances are
obtained with vector computers For example, on the CRAY computer, one bit 1s

used for one spm and 64 bits 1n a word are updated simultaneously with a speed of
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340 spin updates per mucrosecond for the YMP/832 processor for the
hydrodynamic example of Kohring (1991)

2 2.3.4 Language Compilation

Both machine architecture and computer language have considerable influence on
the way 1n which the user perceives a particular problem and formulates algorithms
to solve it numerically The hardware and the software having been discussed mn
general terms, and we now consider the relation between them, 1e explore the
potential of the mherent parallehsm of the machme together with the encoded
language

Traditionally, large amounts of code for scientific and engme;rlng computations
have been written n FORTRAN Unfortunately, 1t 1s necessary to adjust the
programs to the compiler one 1s using due to the fact that different FORTRAN
compilers treat the functions differently and have different orgamisation of the
memory For example, ISHFT 1s not yet a standardised FORTRAN function, but 1s
mmplemented 1n some form on most machines ISHFT(N1, N2) shifts the bits of
word N1 by N2 positions to the left or N2 positions to the right when N2 1s
negative The rightmost N2 bit positions of N1 should then be filled with zeros or
the leftmost N2 bits when N2 1s negative The circular shifts are not available, and
the bit-by-bit functions vary and have different definitions

New FORTRAN versions constantly attempt improvement on this, but the
standardisation of regular functions typically needs a long time to be accepted by
all users This 1s particularly the case where large elaborate ﬁ;ograms have been
constructed and are 1n use for complex problems, using a given set of functions
However, programs written 1n other languages such as C and PASCAL, are more
standardised on bit operation and are gradually becoming more widely used m
scientific apphications One such 1s C, which has the advantage that FORTRAN and
C mterface very readily and efficiently, so that a FORTRAN program can use C

routines, and vice versa, with little programming effort
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2.3 Simulations for Complex Systems
2.3.1 Simulation Classifications

When we attempt simulation of a system, sumilar considerations arise, wrrespective
of the nature of the application In what follows, we concentrate on some well-
established simulation approaches and some application areas, n particular of
physical and related many-body complex systems We classify the simulation by the
types of computational models, system characteristics and simulation methods, as

ndicated in Section2 1 2

2.3 11 Discrete and Continuous Models

Models can be broadly divided into two categories based on the types of system
variables, namely continmuous and discrete When the predommant activities of the
system cause smooth changes in the attributes of its CntlithS, the system 18
represented by a continuous model If the system changes occur discontinuously, 1t
1s described as a discrete one, Kaplan and Glass (1995)

Both ordmary and partial differential equations formalism are used to define
simulation models of continuous systems Difference equations, cellular automata,
and Markov chain models are used to specify discrete-time systems, (where tume 1s
represented by integer numbers)

Continuous simulations were traditionally carried out through the medwmm of
analogue computation, Bennett (1976) With the appearance of the digital
computer 1n the early sixties, the digital processor was seen to be a superior
simulation tool Further the mathematical modelling of complex systems has in the
past been implemented by various standard programs to solve those ordmary and
partial differential equations The programs are usually written m FORTRAN,
PASCAL and C. Consequently, a researcher with modest modéllmg needs has had
little option but to produce his own program. This has effectively prevented the
development of mathematical models 1n many areas of scientific research Recently,
several software products have been developed which strip away the veils of

mathematical complexity and provide the modeller with tools, Stauffer et al

(1988)
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In discrete models, the interactions can in general be viewed as discrete events
undergoing local state changes to neighbours in some space, e.g. calculable by
means of discrete event, object-oriented simulation of collections of subsystems.

The concept of an event driven simulation contains the most general updating
scheme for a simulation, since an event can be either externally or internally
generated. In a special case, an event can be a time step, so a time stepped

simulation is named a discrete event simulation, Vesely(1994).

2.3.1.2 Stochastic and Deterministic System Problems

A (eterministic system is referred to as based on a Newtonian vision of cause-
effect as found mostly in physics. Change in the state of a system can occur
continuously over time or at discrete instants in time. The discrete instants can be
established deterministically or stochastically depending on the nature of model
inputs. Systems exhibiting deterministic characteristics are predictable, linear, and
controllable. Therefore, small stimuli cause small outcomes, and large stimuli will
have large outcomes. All the events are ahistoric which means experiences do not
change the result.

The simulation problem is defined to be either probabilistic or deterministic
depending on whether or not they are directly concerned with the behaviour and
outcome of random processes. A stochastic model or probabilistic model has at
least one random variable and therefore, at a given instant in time the next state of
the model is not uniquely determined. Deterministic models (also called state-
determined models) are those where the current state and current input, if any,
uniquely determine the next values of state variables, e.g. molecular dynamics,
Heermann (1990).

Although the procedure for describing the dynamic behaviour of discrete and
continuous model changed differ, the basic concept of simulating a system by
portraying the changes in the state of the system over time remains the same.

In a simulation, we usually try to ignore the uncertainties of model in order to treat
the models as deterministic ones if the uncertainties are of little importance

compared with the general behaviour of the model. However, d large class of
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problems are stochastic in nature Topics such as percolation and Monte Carlo

methods of modelling systems are of this type, Janke (1995)

2.3.1.3 Equilibrium and Dissipative Systems

v
AN

A system 1n equilibrium 1s stable 1n the sense that while petturbations can move
the system away from stability, at least temporarily, coping mechanmisms exist to
restore stability after such a shock In addition, in an equilibrum system, primary
emphasis 1s placed on the relations among separate components of the systems
under analysis

Dissipative systems abound i complexity theory and mnvolve comphlicated yet
deterministic interaction between agents These systems are open to environmental
mfluences and undergo real change and restructuring based on mherent stability
Unlike an equilibrium system, a dissipative system when perturbed will undergo
changes which create a new equilibrium, different from previous points in time
Equilibrium systems, by contrast, show only momentary fluctuations before
settling back mnto the previous state ‘

Toffler (1984) has discussed how a dissipative system on the edge of chaos
undergoes change He suggested that all systems contan subsystems which are
continually fluctuating At times, a single fluctuation or a combmation of those
fluctuations may become so powerful, as a result of positive feedback, that 1t
shatters the existing orgamsation However, at this revolutionary moment, which 1s
designated the singular moment or a bifurcation pownt by the author, 1t 1s
mmpossible to determine 1n advance which drection change will take, 1e whether
the system will dissipate into chaos or leap to a new, more differentiated, higher
level of order or orgamisation, called a dissipative structure This phenomenon
contains a very attractive and important question, 1€ whether disorder arises out
of order or order out of disorder Simulation of a complex system may also

provide some nsight to this question for specified systems (see Ch 4)

2.3.2 Direct and Indirect Simulation Methods

Direct simulation methods refer to the simulation of numerical equations m a

straightforward manner to obtamn the solution Use of numerical simulation
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methods include solving lLinear equations, eigenvalue problems, differential
equations and partial differential equations, and others In the traditional study of
physical and related systems, most applications of computer simulation concentrate
on these methods which describe the underlying system models directly and
provide solutions to the equations that govern the physical processes

A mathematical model 1s mtroduced to describe, as for as possible, the physical
system for which a set of assumptions apply which make the solution of the
problem somewhat more tractable The model 1s essentially an 1dealised version of
the system and the aim 1s to obtamn parameters of the model which relate directly to
properties of the system that we wish to measure Hence, the simulation
corresponds to reproducing computationally as many of the actual system features
as possible, then recording the effects of change or inducing changes to occur,
where these closely mumuc real changes 1n the system This approach defines so-
called direct simulation

However, the mvestigation of non-equilibrium, complex \(many-body) systems,
which cannot be described by a set of hnear differential equations 1s subject to
himutations when using the conventional direct simulation approaches No general
solution 1s known when the number of interacting bodies 1s greater than two
Useful results are sometimes obtamned by making some simplifying approximations,
(e g the simplest one consists of neglecting interactions altogether), or by reducing
the problem to an effective one-body problem. Nevertheless, all known
approxmmate schemes are of himmited applicability Direct simulation meets with
difficulties since equations used to describe the system model are difficult to solve
without further simplifying assumptions or possibly more advanced computing
techmques if avalable The alternative general approach to handling problems
mvolving complex many-body dynamics 1s typically based on discretization of the
system processes, so that these can be broken down nto a series of small steps
This principle underhes tndirect simulation 1 that a shightly different problem to
the actual one of mterest 1s actually modelled Such methods rely on reproducing
system properties through either aggregate or ensemble behaviour, rather than
mplementing them straightforwardly, Jam (1992), Thompson (1992) Monte Carlo

methods, cellular automata models, molecular dynamics, neural networks and
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related techmques have become more widely used as indirect smmulation
approaches to formal mathematical models, in order to mvestigate the evolutionary
properties of these complex systems

Indirect methods tend to deal with simpler aspects of a system, and are thus
particularly suitable for problems requiring computation of millions or even billions
of sumlar types of events, such as e g growth or division of cells in molecular
biology, re-orientation of spmn n the Ising model of a ferromagnet, and others,
since the difficulty hies m achieving simulated behaviour which in the hmt
approaches that of the real systems Thus a satisfactory run will require the
computation of bilhons of events to describe formation, growth or evolution Some

dlustrations are given subsequently

2.3.3 Cellular Automata, Monte Carlo and Molecular Dynamics

Cellular automata, Monte Carlo Methods and molecula: dynamics are three
mportant indirect simulation techniques which are currently enjoying considerable
popularity 1 the modelling of physical and related complex systems Typically, MC
1s unsurprisingly used as a stochastic method, MD as a relatively deterministic one,
whereas CA 15 used in both ways To distinguish more clearly between the
methods, we have

Cellular automata (CA) form a class of mathematical systems characterised by
discrete local interaction and an nherently parallel form of evolution CA provide
prototypical models for complex processes consisting of a large number of simple
locally connected components Examples of phenomena that have been modelled
using CA 1nclude turbulent flow caused by the collisions of fluid molecules, growth

of crystals and patterns of electrical activity in simple neural networks, Wolfram

1

(1984) (1986) -

Monte Carlo (MC) 1s a numerical analysis techmique that uses random sampling of
distributions to estimate the solution of physical and mathematical problems, 1e 1t
1s roughly one of the statistical simulation methods, Landau (1994)

Molecular Dynamics (MD) provides the methodology for detailed microscopic
modelling on the molecular scale The system can consist of few or many-bodies,

with the motion of each individual atom or molecule described according to e g a
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Hamuiltonian, (usually describe aggregate energy of a system) MD usually involves
calculations on a number of particles, from a few tens to a few thousands, or even
several milhions Macroscopic quantities are extracted from the MICTOSCOPIC
trajectories of particles It 1s a tool which we can use to understand macroscopic
physics from an atomic pomnt of view The applications of MD include the
thermodynamic properties of gas, liquid, and sohd, plasma and electrons, transport

phenomena etc, Haile (1992)

2.4 Simulation Techniques: Cellular Automata

Cellular Automata (CA) 1s an important area m the field of complexity which 1s
hinking different domains of traditional sciences One main achievement 1s that CA
focuses on system global phenomena through local simple individual mteraction
Such phenomena occur in many fields and at many levels of description, € g ants
mnteract to form a colony, or water molecules mnteract to make a fluid, or sandpiles
mnteract to create avalanches As we discussed n the last section, it 1s necessary to
choose a simulation model which accurately reflects these asf3ects of a complex
system that we wish to study Many such systems share the common features
above and CA models, because of therr simplicity, have performed well in terms of
representing these Not all systems are best represented by the same type of CA

and there are numerous variants

2.4.1 Cellular Automata: Description of Mechanism

A cellular automaton (CA) 1s a discrete dynamucal system Space, time and the
states of the system are discrete Each point 1 a regular spatial lattice, called a cell,
can have any one of a fimite number of states The states of the cells in the lattice
are updated according to a local rule That 1s, the state of a cell at a given time
depends only on 1ts own state at one previous time step, and the states of its nearby
neighbours at the previous time step All cells on the lattice are updated
synchronously Thus, the state of the entire lattice advances 1n discrete time steps
(Gutowttz (1996))

In mathematical terms, a cellular automata 1s described as a lattice of fimite state

automata with N states, and K neighbours for each cell The state S of each cell 1s
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updated 1, discrete tume steps as a function of state transitions defined for the
alphabet NK the combination of states for each cell and 1ts neighbours

S(NK)—>S() 231)
one-dimensional CA 1s an elementary cellular automata with N:ﬁ, K=2

S@-1), SQ), S@+1) — S@) (232)
Shown n Fig 2 3 1, the neighbourhood of each cell consists of itself and its two
nearest neighbours with periodic boundary conditions The CA rule 1s often
displayed as a lookup table, or rule table, which lists each possible neighbourhood

together with 1ts output but, (the update value for the state of the central cell in the

neighbourhood)

Rule table:

nerghbourhood 000 001 010011 100 101 110 111
output bit 01 1 1 01 10
Lattice

t=0 10100110010
t=1 11101110111
Fig 231 one-dimensional, bmnary-state CA with periodic boundary conditions shown

iterating for time step

The behaviour of a CA 1s often illustrated using space-time diagrams m which the
configuration of states in the d-dimensional lattice 1s plotted as a function of time
Fig 2 3 2 shows the behaviour of a CA with N=200, iterated over 200 time steps
Thus 1s a basic CA architecture and 1t can be modify in many ways, such as for
hugher dmmensions, different boundary conditions, stochastic rather than

determunistic CA rule and so on
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0 site . 199

Fig 2 3 2 a space-time diagram, showing the typical behaviour of CA Cells 1n state 1 are
displayed as black, and cells in state O as white, Mitchell et al (1996)

2.4.2 Background

CA were first described by Von Neumann and Ulam, who studied the behaviour of
models of coupled masses and springs, resulting in the first computational evidence
of chaotic behaviour m dynamucal systems, Von Neumann (1966) Conway
developed the Game of Life system, which 1s a simple 2-D analogue of basic
processes 1n living systems, which 1s the most widely known example of a CA The
game consists 1n tracing changes through time in the pattern?sf;; formed by sets of
"hiving" cells arranged mn a 2D grid The rules governing these changes are
designed to mumic population change Wolfram (1984) (1986) was the first to
pomt out the potential for extensive use of CA models 1n statistical physics and
later a number of authors, e g Stauffer (1990), developed the links between
physical systems and CA like structures in nature so that numerous biological
examples are now to be found i the physical literature These include e g
mmmunological and ecological studies For a further review, see Manneville et al

(1989)
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The essential feature of a cellular automaton les mn the fact that its state variable
takes a different separate value for each cell The state can be either a number or a
property Its neighbourhood 1s the set of cells that 1t interacts with So, a CA model
usually 1s used to describe the system m terms of relations between cells Some
complex systems fit easily and perfectly mnto the framework of cellular automata,
for others these simphifying assumption are too restrictive for real modelling CA
are used not only as models 1n natural sciences, but are also appropriate models of
parallel computation features due to ther complete space-time and state

discreteness

2.4.3 Classification

Several researchers have been interested in the relationships between the generic

dynamical behaviour of CA and ther computational abilittes Despite the

computational simplicity of CA, they are capable of a variety of behaviour An

mmportant property 1s that they tend to be self-orgamising™ 1e starting from

complex, random cell configurations, the rules governing the system cause patterns

to occur from mitial chaos Wolfram (1984) suggested that CA rules can be

classified nto four qualitative classes, based on the space-time pattern

demonstrated by CA at long tiumes

1 Spatio-temporally uniform state The automata reaches a homogeneous state
regardless of mitial conditions

2 Separated simple or periodic structures The automata reach a state after some
relatively small transient period consisting of space time separated
configurations The configurations vary m detall depending on the mtial
configuration, but may have overall behaviour which 1s independent of the initial
State

3 Chaotic space-tume patterns The automata reach a chaotic evolution pattern
starting from random 1itial conditions :

4 Complex localised structure Properties vary with mtial conditions

The disadvantage of Wolframs classification 1s that class membership 1s

undecidable, Culik and Yu (1988). After Wolfram’s work, several researchers

have queried the relation of static properties of CA rules to ther dynamucal
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behaviour Langton (1990) studied the relationship between the average dynamuical
behaviour of cellular automata and a particular statistic (A) of a CA rule table
Langton selected a number of two-dimensional CA samples Starting with A=0 and
gradually increasing to A=1-1/k, he found that the average behaviour of a CA
undergoes a phase transition from ordered behaviour, which héi; a fixed or limiting

cycle after a short transient period, to chaotic behaviour As A reaches a critical

value A, those rules tend to have longer transient phases Moreover, Langton
indicated that CA close to A tend to exhibit long-hved, complex pattern, 1e non-
periodic, but non-random, where the A stage roughly corresponds to Wolfram’s

fourth class of CA For a review of the relationships between A and dynarucal and

computational properties of CA, see Mitchell et al (1994)

2.4.4 Applications

The nature of CA 1s to provide a convement abstraction of continuous phenomena
Models of this type are thus useful for studying problems of energy transfer and
biological growth pattern, fluid flow, and earthquake evolution, Gutowitz (1990)
The properties bemng observed normally correspond to patterfls that are coherent
over a large array of cells, although the cells are not co-ordmnated with a specific
set of cells In simulations, the elemental level of CA allows us to get more
information for the processes occurring within the system. This breakdown of the
statistics nto detailed structured information 1s one of the addtional objectives of
the thesis In the most direct cases, the cellular automata lattice 18 1 position space
This sites may represent pomts n a crystal lattice, with values given by some
quantified observable or corresponding to the types of umits The sandpile model,
dynamical Ising model and other lattice spin systems are simple types of CA
models

Furthermore, CA provides a computational and analytical development for general-
purpose 1deas on the studies of complex systems, e g Forrest (1990) has used CA
as abstract models to study emergent behaviour These sys(t?‘ems are nherently

difficult to analyse due to their complexity. The discreteness of CA 15 expected to
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make the analysis simpler The ideas can used i generalising more continuous
systems, such as Coupled Map Lattices, which are discrete in time and space, but
have a continuous state variable

Cellular automata can be considered as parallel processing computers The
computational capabilities of CA have been used extensively, Toffii (1987), and 1t
has been shown that some CA could be used as general purpose computers, and
may therefore, be considered as general paradigms for parallel computation, (as
Turing machmes provide a paradigm for serial computatlén) The local and
uniform nature of the laws governing cellular automata means that a hierarchy of
structures and phenomena may be represented, including operation at molecular

level

2.5 Simulation Techniques: Monte Carlo
2.5.1 Introduction

The name Monte Carlo was applied to a class of mathematical statistical simulation
methods first used by scientists working on the development of nuclear weapons n
Los Alamos 1n the 1940s The principle of this method 1s the mvention of games of
chance whose behaviour and outcome can be viewed as relating to competition and
evolutionary behaviour mn real world systems The effectiveness of numerical or
simulated gambling as a research effort was developed by dlg%tal computer, (e g

Kalos and Whatlock (1986) for commentary), where, m partlcuiar, these simulation
deal with a large number of chances or events The treatment of the probability of
event occurrence, the aggregation of results and their statistical analysis together
with methods of dealing with bias and errors are all core features of the MC
approach

Statistical methods are then used to obtain microscopic properties from averages of
mechanical variables of molecules The Monte Carlo (MC) method 1s defined by
representing the solution of a problem as a parameter of a hypothetical population,
and using a random sequence of numbers to construct a sample of the population,

from which statistical estimates of the parameter can be obtamned, Binder (1986)
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MC methods are thus stochastic rather than deterministic procedures, where atoms
are moved more or less randomly during the course of the simulation In MC, a
number of molecules (or 10ons) are confined within a region, then at each step, a
randomly chosen molecule 1s moved to a new randomly determined location The
computer then determines whether to accept or reject this movement depending on
whether the energy change of the resulting system state 1s acceptable according to
some predetermined criterton Thus process 1s repeated many times until there 1s no
further change in the energy and other captured properties of the system, at which
point the system 1s deemed to have a reached thermodynamic equilibrium Usually,
a large number of molecular states are generated and the corresponding physical
properties of these states are averaged to obtain MACTOSCOPIC properties of the

system, such as energy and entropy, Binder (1992)

2.5.2 General Principles of the MC Methods

The random nature 6f a Monte Carlo simulation means that, in the long run, the
simulation will approach equilibrium values, while an individual move has a
realistic chance of taking the simulation away from equiibrium. As MC typically
uses pseudo random number generators to generate the element of chance, its
apphcations are enormous and provide insight m many fields Many problems,
which at first glance do not seem to fit the MC criteria, can have behaviour which
1s related to some stochastic element of the system to which a solution 1s sought

MC can be considered 1n either direct or indirect terms The direct apphcation, 18
less commonly used but as would be expected, concentrates on a straightforward
simulation of the original problem It rehes on the numerical solution of equations
defining the system, which can be used to predict the model properties at different
stages Indirect methods solve a related problem which uses random numbers to
generate different states of the related system. It 1s obvious that the level of
sophistication varies according to the type of problem considered Indirect methods

only will concern us n the examples used for illustration 1n later Chapters
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2.5.3 Metropolis Method

The MC techmique 1s now used 1n many disciplines, with different vanants and
spectfic algorithms, depending on the nature of the problem addressed An
extremely important Monte Carlo algorithm for molecular systems was developed
by Metropolis et al (1952), which 1s commonly used in large scale statistical
physics simulations This has been applied to lots of problems where molecular just
mplies small umt rather than a biological molecule It specifies conditions under
which a system 1s allowed to move to a new configuration, and because of 1its
mmportance, we reproduce the steps here in brief
Specify an mitial configuration

Generate a new configuration

Calculate a new configuration and energy change AE
For AE< 0 accept the new configuration Return to 2
calculate exp(-AE/KT)

Generate a random number R €[0,1]

For R< exp(-AE/kgT), accepted the new configuration and return to 2

o N o0 A W N —

Otherwise, retain the old configuration as the new one Return to 2

Where E 1s the system energy, kg 1s Boltzmann constant and T 1s temperature

Clearly, certain assumptions are required to model a given system even 1f 1t 1s quite
easy to mclude a Boltzman distribution of energies A system described by a
Boltzmann distribution € g a gas, will have elements which are not n a minmmum
energy state due to the thermal change of the system The Metropolhs algorithm
steps above ensure that the system will evolve mto one which mncludes excited

elements, which may lead to expansion or other macroscopic properties

i

3
¢

2.5.4 Applications

Apphcations of MC smmulation nclude calculations in statistical mechanics,
radiation transport, elementary particle nteractions, computer operating systems,
biological evolution and so on Popular apphcation to surface behaviour includes

the Ising model, percolation model, spin glasses, and random walks Of nterest
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typically are msights on critical phenomena, 1€ establishment of scaling laws and
universality of behaviour of complex systems both i equiibrrum and mn non-

equilibrium, Gould and Tobochmk (1989), Binder and Heerman (1992)

2.6 Other Simulation Techniques: e.g. Molecular Dynamics
2.6.1 Introduction

The essence of MD 1s to numerically solve the N-body problem of classical
mechanics The N-body problem attempts to relate collective dynamics to single-
particle dynamics and the puzzling behaviour of large collective particles by
examing the motions of individual particles

Molecular-scale computer simulation involves a three-step procedure,

1 model individual particles,

2 simulate the movements of a large number of the model par'glcles,

3 analyse the simulation data for the required collective phenomenon

MD smmulations are used to compute the motions of individual molecules i models
of solds, hquids and gases, Miller (1976) The key word 1s motion, which describe
how positions, velocities and orientation change with time The behaviour of a
system can be computed 1if for the system’s elements, a set of initial conditions and
forces of mteraction are defined, Bekey (1985), Hoover (1991) Tremendous
improvements m computer power and computational methodology have
accelerated the development towards simulation of larger and larger systems, so
that today MD smmulations of a mullion particles is possible Such advances have
also enabled researchers to obtain much information and accurate calculation of
physical properties and longer-lived dynamucal processes

The simplest calculation in molecular mechanics 1s a calculation of the potential
energy of the system, which 1s performed by summing the nunierous energy terms
for the given conformation of the system using the given set of potential energy
functions and parameters Optimusing the structure of system structure can be done
by energy mimmusation which improves the conformation by reducing the energy
of the system. More mformation about a system can be obtamned from molecular

dynamics simulations In these calculations, the motions of the particles are
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followed by calculating the forces produced by applied field and, from this, the
accelerations and velocities Careful control of the energy and temperature of the
system ensures that the conformations, which are produced form a statistical
ensemble, from which thermodynamic and other properties can be calculated, Hu

et al (1984)

2.6.2 Applications

MD has some computational advantages because of the deternpmstlc way 1n which
1t generates trajectories The presence of an explicit time var1a£1e can be used to
estimate the time needed for a run, with the duration time several multiples of the
relaxation time for the slowest phenomenon being studied This convenient feature
1s not available for estimating the time required for other methods

In addition to equilibrium molecular dynamics, nonequiibrium methods have been
developed, Hoover (1986), Evan and Morriss (1990) These methods appeared as
alternatives to equibbrrum simulations for computing transport coefficients In
these methods, an external force 1s applied to the system to establish the
nonequilibrium situation of nterest, and the system’s response to the force 1s then
determmed from the simulation Nonequilibrium MD has been used to obtain
quantities such as the shear viscosity, bulk viscosity and diffusion coefficients,
Hoover (1983) (1991) .

However, MD simulations are limited, largely by the speed an"d storage constraint
of available computers They are usually performed on systems contaming 110 -
1000 particles, although calculations mvolving as many as 10° particles have been
performed presumably when systems were slightly simpler to specify Due to the
size Iimitation, simulations are confined to system of particles that mteract with
relatively short-range forces, (1€ mtermolecular forces should be small when
molecules are separated by a distance equal to half of the smallest overall
dimension of the system) Due to the speed himitation, simulations are confined to
studies of relatively short-lived phenomena, (roughly those occurring n less than
1100-1000 psec) The characteristic relaxation time for the phenomenon under
mnvestigation must be small enough so that one simulation generates several

relaxation times, Ciccott1 and Hoover (1986)

1
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2.6.3 Monte Carlo and Molecular Dynamics

Monte Carlo (MC) and molecular dynamics (MD) represent very different types of
simulation Being a determumistic method, MD simulations have been apphed to
vestigate the physical properties of a system dwectly, e g co-ordmnates,
mteratomic forces etc and to determune 1ts time evolution On the other hand, MC
simulations are stochastic and use random numbers to generate a sample
population of the system from which properties can be determmned Meanwhile,
MC simulations are by no means hmited to molecular systems, e g 1n studies of
gases and fluids, where the random nature of the techmique 1s applied, but are used
n diverse areas

MC 1s usually easter than MD to code in a high-level language such as Fortran and
C MC s also easter to implement for systems i which 1t 1s difficult to extract the
mtermolecular force law from the potential function Systems having this difficulty
include those composed of molecules that mnteract through discontinuous forces,
Haile (1995)

For determination of simple equilibrium properties such as the pressure in atomic
fluids, MC and MD are equally effective, both require about the same amount of
computer tume to attain a similar level of statistical precision However, from the
simulation examples, Binder (1986) has found that MD more efficiently evaluates
some system mterfacial properties than MC Besides the configurational properties,
the MD method also provides access to dynamic quantities, such as transport
coefficients and time correlation functions Such dynamics quantities cannot
generally be obtained by MC, although certain kinds of dynamics behaviour may be
deduced from MC

The random nature of Monte Carlo simulations makes them lliseful for samphng
space Although MC are generally not as efficient as MD simulations, MC
simulations can mcorporate large structure changes which cannot be sumulated by
MD For mstance, some variant MC methods can implement some functions
without considering the factor of an energy barrier, which mught prevent the same

role n MD In general, MC simulations are useful for coarse-gramed complex
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systems while MD are good at performing the complementary role of local

optimisation

2.7 Applications of Simulation Methods- Specific Cases

Over the past decade, much progress has been made in the understanding of
complex systems, particularly in areas relating to thewr dynamucal features,
computational properties, structure of their rule space, relationship between single
cellular system and cellular networks, and so on Computational advances, such as
more powerful processors, have led to increased ability to handle these problems
In particular, 1t 1s clear that simulation methods provide valuable mnsight nto the
analysis of disordered dynamucal systems, with the poter;tlal for answering
fundamental questions, such as the way in which a process evolves and in what
way 1ts behaviour depends on system features

In this thesis, we discuss applications of simulation techmques to physical and
related complex systems Two typical examples of cellular systems, namely a
sandpile automaton model, and a cellular network model for soap froth, are used as
dlustrations of systems under different levels of constraint and are analysed using
various computer simulation methods A brief mtroduction to these problems

follows

2.7.1 CA Models and the Phenomenon of SOC: Building Piles of Sand

Bak and co-workers (1987) (1988) mvestigated a sandpile CA as a model for
transport phenomena 1n order to gan msight mto spatio temporal complexity In
this context, they introduced the concept of self-orgamsed criticality (SOC), where
this phenomenon 1s defined for a class of dynamical systems obeying simple rules
which naturally lead to a state presenting unique scale-invariant correlations This
15 1n contrast with the criticality conventionally defined for physical systems, where
achievement of a critical state 1s controlled by an external parameter

In a simple sandpile, random movement of grams of sand m the pile represents the
mteractions between different sites The addition of grams of sand transforms the
system from a state m which the mdividual grans follow thewr own local dynamucs

to a critical state where the emergent dynamucs are global Relaxation of the system
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creates spatial and temporal self-simularities, which give rise to fractal patterns or
1/f noise The character of SOC 1s lack of any characteristic scale In other words,
it means that in a comphcated dynamucal system in which many elements influence
each other with short-range nteraction, the system will naturally evolve to a
critical state where small perturbations could lead to either mumor or catastrophic
events

Several sandpile cellular automata models exhibiting SOC have been studied In the
origmal model of Bak et al (1987), the system 1s perturbed externally by random
addition of sand grains Different dynamical rules have been mvestigated leading to
several universality classes Some variants include directed flows, Kadanoff et al
(1989), and induction of "turbulence”, Ruskin (1993), piles with threshold
conditions imposed on the height, on the local gradient or even on the Laplacian,
Manna (1991), whilst others have also looked at general slope gradient e g Dhar
(1989), Mehta (1990) Continuous variables with a full transfer of energy of the
sand from a cell mstead of a fixed discrete amount have also been studied e g.
Zhang (1989), Pietronero et al (1991), Fodor and Janos1 (1991) and Diaz-Guilera
(1992) Other authors have considered determumistic perturbations 1 a
nonconservative system Christensen et al (1992), Olamu and Christensen (1992)
(in a earthquake modelling) and so on Further details on this and some results for

a specific class of dissipative systems are given m Chapter 3

2.7.2 Cellular Networks; Froth Evolutionary Behaviour

Cellular patterns are common mn nature, e g, magnetic domams In magnetic
systems, crystalline domams in ceramucs and alloys, cells in biological tissues or
bubbles in a soap froth Ther statistical behaviour can be mvestigated by
monitoring the network evolution through time The two-dimensional soap froth,
as an 1dealised cellular structure, has recently attracted much attention following
the work of Weawre and Kermode (1983)(1984), Weawre and 1£1v1er (1984), Rivier
(1985) A froth has all boundaries equivalent and surface-energy-driven diffusion
leads to the motion of bubble boundaries The basic mechamsm of froth evolution
1s the gas diffusion across 1ts membranes, due to the different pressures between

neighbouring cells Early work on 2-D froths found dynamic scaling properties to
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be unmiversal n the sense that they are independent of the system and specific 1nitial
conditions, Stavans and Glazier (1987)

Various computational techmques have been applied to problems of froth
behaviour Those include direct simulation of the system equations, Weare and
Kermode (1983) (1984), indrect simulation (Monte Carlo and variants such as the
Potts model), Wejchert et al (1986), Glazier et al (1990), and the vertex model of
Kawasaki et al (1989)(1990) Further details of the algorithms are reviewed in
Chapter 4 and 5

2.8 Summary

It 15 evident that computer simulations provide a valuable complement to
expermmental and theoretical work m the modelling of complex systems The speed,
reliability and convenience of modern computers have ensured considerable
success for these methods 1n recent years, and conversely, the need to produce and
handle large numbers and millions of events have impacted on the developments in
computing techmques In the next three chapters, we give details of simulations,

(the algorithms and the analysis), applied to systems of particular interest

¥
n
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Chapter 3 Simple Dynamical Cellular System Models

As described in Chapter 2, cellular automata provide an important tool in large-
scale simulation, and constitute a bridge between physical and computational
realisations Physical and related complex systems, contammg many discrete
elements with local interactions, are thus often conveniently modelled as simple
cellular automata A wide variety of examples may be considered, with several
CA representing different competing umts Use of "simple" here usually means a
single type of basic element or unit and we use the terminology interchangeably
mn what follows

In this chapter, we concentrate on llustrations of one type of two-dimensional
cellular structure the sandpile models of a single cellular system We tially
review the literature on the theoretical and experimental bgékground to these
systems by computer simulation Sandpile models have been studied as a
paradigm of self-organised criticality (SOC), defined 1n the previous chapter, and
have been used to describe characteristic spatio-temporal behaviour in many
fields In particular, we look at sandpile models of dissipative systems These
mclude both discrete CA systems and counterparts which depend (in part) on

continuous state functions, the so-called Couple Map Lattices

3.1 Simple Cellular Automata System and SOC
3.1.1 Simple Cellular System

While physical laws such as Newton’s, explain many simple phenomena, more
complicated systems must usually be studied by treating them as a collection of
simple systems, 1e so-called reductionism, Bak and Chen[sx(199()) However,
many phenomena 1n nature are so complicated that even reductionism can not
help and the macroscopic behaviour can not be predicted in terms of the
microscopic changes
There are many such examples of systems with complex behaviour Much effort
has been spent on understanding the underlying mechanisms of this behaviour,
; but 1t 18 difficult to form general rules for spatio-temporal complexity, Anderson

(1991) The analysis of the time evolution of an isolated simple dynamical
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cellular system 1s a first step to explaining its complex behaviour However,
cellular systems consist of a very large number of individual units, where each
unit 15 a dynamical system 1itself The interaction between junits can be very
difficult to determune, even 1if all the units are identical Under various situations,
such as varying imnteraction, different boundary conditions, and the existence or
absence of noise, the system completely changes its dynamic behaviour, Feder
(1988)

Complex behaviour can be observed when ntrinsic dynamics govern the temporal
behavior of a system, or the interactions follow complicated rules However,
complexity may also arise as a result of continued local simple interactions
between all individuals m an extended system Some extended systems with
complex local features may nevertheless lead to simple collective behavior This
1s found 1n some biological systems, where after a transient period, a regime

characterized by punctuated equilibria 1s achieved, Bak and Sneppen (1993)

3.1.2 Models and Applications

Cellular automata models apply iterative rules to build aggregates of a system,
(Section 2 5 1, Wolfram (1986), Toffoli and Margolus (1987)) Such systems are
typically placed on a 2D or 3D lattice Using the defined rules, sites are
populated, depopulated and the results are evaluated at various time steps The
final state provides interesting mnsights as to how similar systems i nature might
perform The sandpile model 1s a simple example of a cellular automata system,
where each site or cell contains a column of grams, which topple according to
prescribed rules applied at discrete time steps At each step, the new value for a
cell depends only on the current state of the cell itself and on neighbouring states
or states of immediate neighbours These systems are interesting m that simple
rules can lead to extremely complex behaviour Moreover, slight changes n the
rules can change the behaviour radically so that even though the formulation of a
cellular automaton may seem almost trivial, the large numbc;,r of possible rules
supports considerable sophistication 1n the systems that are modelled More than
one CA may be used for more complex systems, € g in competition studies

Apart from ther simplicity, sandpile automata have been studied as typical CA

models for other important characteristics For example, sandpiles are disordered
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mn therr geometry, and this, together with ther packing, has important
consequences for granular static and dynamic properties These systems also
show complexity, in the occurrence and relative stability of a large number of
metastable configurational states Analogies between sandpiles and other
complex systems, such as spin glasses, flux creep 1n superconductors and charge-
density waves have been made for example de Gennes‘§1966) has drawn
analogies between vortex motion 1n super-conductors and avalZinches m sandpiles
A number of different dynamics for sandpile evolution have been considered,
which depend on height, slope and other CA features Following the introduction
of the simple height model, Bak et al (1987) (1988) discussed some important

features of the dynamucs of sandpiles These are considered 1n brief below

3.1.3 Scale-Invariance and Self-Organised Criticality (SOC)

A common feature of complex systems 1s that they are driven slowly by small
changes 1n energy, which 1s then dissipated rapidly 1n an avalanche process This
occurs because complex systems exist 1n metastable states and small imncrements
of energy can trigger an arbitrarily sized avalanche, which may take the system
far from an equilibrium state

Equilibrium systems commonly show scale-invariant critical behaviour, with
fluctuations in the order parameter of various sizes and dl}ratlons at a phase
transition A critical point at which a phase transition occurs 1s normally reached
mn thermodynamuc, critical processes by fine-tuming of a relevant physical control
parameter, such as the temperature or the pressure

As nature 1s neither ordered nor predictable, there are many scale wvariant
phenomena, e g fractals, earthquakes, 1/f noise, fluctuation of the stock market
indices Since nature cannot provide any fue-tuning of control parameters by
itself, 1t 1s unlikely that the wide occurrence of scale-invariance 1s due solely to
critical processes 1n equilibrium systems Over the last decade, new concepts have
been proposed to explore the complexity and dynamics of large nonequilibrrum
systems Chaos has been used to predict wregular and unexpected behaviour,
Gleick (1988), Eubank and Farmer (1993) Some apparently random behaviour
indeed can be explamned by determunistic nonlinear equationt and provides one

explanation for apparent chaos The characteristics are described by strange
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attractors and sensitivity depends on mmtial conditions Conversely, self-organised
criticality (SOC) 1s a paradigm used to explamn scale-invariance m complex
systems, which reach a critical state via therr intrinsic dynamics In other words,
unlike conventional critical phenomena, this critical state 1s umque and
mdependent of the mnitial conditions and does not require sensitive adjustment of a
system control parameter It 1s "self-organising” SOC was first referred to by
Mandelbrot (1969) 1n relation to analysis of stock-market share prices, where
"knock-on" effects are ruled by very complex connections between companies of
either a financial or technical nature and vary considerably térms of duration
Bak, Tang, and Wiesenfeld (BTW) proposed SOC as an explanation of this
spatio-temporal complexity illustrating the phenomenon through sandpile
dynamics A sandpile 1s built by random addition of grains, so that 1t "relaxes” to
a stable (or matastable) state, from which the addition of a further gram causes
further relaxation 1n the shape of toppling of grains to a lower level The addition
of a single grain causes a local disturbance but the size of the domamn affected by
the disturbance distributes over a wide range There 1s no global communication
within the pile at the early stage of building

As the slope increases, a single gramn 1s more likely to cause other gramns to
topple Eventually the slope reaches a certamn value and cannot increase any
further, because the amount of sand added 1s balanced on average by the sand
falling out of the pile This 1s then a stationary state, since the: Xaverage amount of
sand and the average slope are a constant i time It 1s clear that further addition
create some communication throughout the whole system linking behaviour of
individual gramns through avalanches that may occasionally span the entire
sandpile Eventually, the system regains equilibrium and this 1s the self-organised
critical state

The sandpile 1s an open dynamucal system, since sand 1s added from outside It
has many degrees of freedom, (or grains of sand) A gran of sand landing on the
pile represents potential energy When the gran topples, this energy 1s
transformed nto kinetic energy, and when the topplhing 1s ended, the kinetic
energy 1s dissipated, and transformed nto heat n the pile, 1e energy flows

through the system. The critical state can be maimntained only because of energy n
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the form of new sand being supplied from the outside Fluctuations are observed
over a range of time as well as length scales, indicating considerable spatio-
temporal complexity

With respect to spatial aspects, Mandelbrot (1982) has used the word fractal for
geometrical structures which span all length scales Fractal structures appear 1n a
variety of physical systems in nature, from the pattern in snowflakes to the
distribution of galaxies, Feder (1988) It has been demonstrated that fractals can
be explaned by SOC, where size distributions have a power-law or multifractal
form Examples of phys;cal phenomena displaying fractality nclude turbulence
Here the energy 1s clearly not dissipated uniformly in space but intermuttently
through cascades at all length scales, Family and Vicsek (1991)

Another example of a system demonstrating SOC 1s that of the energy-frequency
relation of earthquake occurrence, which 1s related to the Gutenberg-Richter
(power) law, Gutenberg and Richter (1944) An mteresting aspect of earthquakes
1s therr self- sumularity It has been found that a power-law distribution of size
exists not only for mndividual earthquake events within a system over time but also
for each earthquake event itself Both short-range and long-range temporal
correlation of fractal behaviour 1s, therefore, observed In particular, the
occurrence of large earthquakes tends to occur m temporal clusters, Kagan and
Jackson (1991), where the seismographic analysis of the event shows the energy
distribution at the stationary critical state, to be simular to that for SOC, Creutz
(1994) ‘

3.2 Sandpile Automata and SOC
3.2.1 Basic Sandpile Driven Model
3.2.1.1 Discrete Driven Models

The omginal one-dimensional sandpile model mtroduced by Bak et al
(1987)(1988), has subsequently given rise to many variants The simple model 1s
a cellular automaton with each site 1 on a line of sites characterised by an integer

variable h; giving the height of the pile The local slope of a site 1s given as

z,=hy - hyyq (321)

43



A sand grain added on a randomly chosen site 1results in dropping movement

3

z,—>z;+1 (322
z,>z1-1 (323)

Gramns topple when neighbouring sites have a local slope or gradient difference

larger than some critical value, z., (z. =2 m 1D models) Excess grains are then

transferred to 1its nearest neighbouring sites according to

Z]i'l—)zli1+1 (325)

The neighbours affected by the topphing can topple again, thus resulting 1n a chain
reaction, or so-called avalanche During the avalanche, no more grains are added
Separate time scales are mvolved in the dynamic evolution of the pile, one mn
terms of the addition of gramns and the other 1s in terms of relaxation of gramns n

the pile The avalanche ends when the system reaches a stable state with z; < z

(for all 1), and another gramn 1s added according to Equns 322 and 32 3 until a
new avalanche 1s started After a transient period, with duration dependent on the

wnitial conditions, the system reaches a critical state, where for all 1, z; = z. This

state 1s a fixed pomnt since the system returns to this stable state after any
perturbation Further additions of a grain results in gramns falling down the slope
and finally off the pile This state 1s critical 1n the sense that the avalanches have
no characterstic size The fixed powmt 1s an attractor for the dynamucs, no matter
which way the sandpile 1s built up However, this state has no spatial structure,

and correlation functions are trivial The 1D sandpile 1s shownin Fig2 1 1

(]
W

height height
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X

Fig 211 BTW 1-D sandpile model with closed and open boundary
for the left and right boundaries
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The situation 1s different for the two-dimensional model where parallel rules are
apphied The 2D sandpile model 1s typically considered for a square lattice, with

each lattice site (1,]) characterised by an integer Z(,) (where 1, = 1,2, L) The

Integer z, ;) can be taken to represent a dynamucal variable such as height, slope
:

etc for a site (1,]) m a spatially extended system Sand 1s added one grain at a time

to a randomly chosen site, thus increasing the dynamcal variable by one unit, z )
=z + 1 Whenever the dynamical variable exceeds a threshold value z, ;) > z,

at a given site, then the whole column of sand 1s redistributed among the
neighbours, leading to a series of topples which may give rise to an avalanche and
which subside after a finite period of time The simple dynamical rules satisfy

local conservation through
Z(p) = (1) -4 (326)
Z(a1 g41) ~ Zatl i) +1 327
The pile eventually achieves a statistically steady state and any additional sand
grain will fall off the open boundary This 1s a dissipative relaxation mechanism
since 1t 18 accompanied by loss of energy through the boundary
Here we show a sequence of toppling events 1n a very small syétem for dlustration,
(Fig 2 12) The number 1n the squares represents the heights If a gran of sand 1s
added to a site with height 3, 1t causes that site to topple Eventually, as toppling
diminishes, the system comes to rest There are nine sites toppling mn the example
shown, so the avalanche has size s=9 for this particular perturbation The total

duration time, the number of update steps, t=7 of the avalanche
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Fig 212 Ilustration of topping avalanche 1n a small sandpile in a BTW 2-D model
Within the avalanche of size 9, one site has toppled twice The black squares
indicate the eight sites that toppled

For the 2D sandpile, the critical state for which all sites have exactly the critical
slope 18 not stable any more due to small perturbations An avalanche would
spread nto two directions on the lattice with more than one gramn falling off the
pile, and 1t 15 not a fixed pomt as in 1D However, after a transient period, the
system through a self-organizing process reaches a stable critical state where, on
average, the rate of flow nto the system equals the rate of flow out of the system
across the boundary The stationary state then responds to the addition of a sand
gram with an avalanche This 18 of unpredictable size, (numbér of toppled sites),
and duration, (number of iterations needed to reach the stable state), so that size
and lifetime distributions vary over large scales Statistically, the probability
distributions of the size s and Lfetime t averaged over a large number of

perturbations have been observed to follow power-laws
P(s) ~s1-T (328)
P@t)~tb (329

where T and b’ are defined to be the size and lifetime exponents respectively, with

46



i
no characteristic time and length scales If we define P(s, L) is the distribution

function of avalanches s for a system of size L, then we have

P(s,L) = LBR(s/LY) (3210)
where [ 1s a decay exponent, = y(t-1) (T defined by Equn(3 2 §)) 7y 1s a critical
index which represents how the cutoff scales with system size and F 1s a scaling

function When L—>eo, the avalanche size distribution becomes ‘independent of the
system size L, and when s/LY—0, F approaches a power law and decays very

quickly for s>> LY, Tang (1988)

3.2.1.2 Catalogue of Sandpile Models

Many sandpile automata models have been studied to date In the critical height
model, the integer variable z represents the height of the sand column at the site
(1)), 1e 1s dependent on zero dertvatives of the local sand height function being
equal to zero The critical slope model 1s defined to depend on the first derivatives
of the local sand height function, 1e strictly 1s a local gradient rather than overall
slope and the critical Laplacian Model 1s dependent on the second derivatives of
the local sand height function, Manna (1991) Of the various sandpile models the
height version 1 particular has been mtensively studied becépse of its intuitive
form and the simplicity of its mathematical structure, Lubeck a;nd Usadel (1996)
However, the critical slope model even the local gradient version behaves in a
way which 1s much closer to a real sandpile Formulation of the model 1s simular
to Equn (3 2 6) but differs in that 1f the local slope 1n any direction exceeds the
critical slope, then the sandpile topples Early studies, e g Manna (1990), Ruskin
and McCarren (1994) failed to find evidence for simple power-law behaviour, so
that scaling in the avalanche cluster and duration distribution function does not
appear to be satisfied Here "scaling" means that distribution and correlation
functions for all dimensionless quantities are constant in time For additional work
on the slope model see, e g Puhl (1992), Frette (1993) and references within

For the critical Laplacian model, studies by Kadanoff et al (1991) have shown,
through a scaling analysis, that the exponents are different from the critical height
model, and the model thus belongs to a different "umversalil,ty“ class The key

equation 18
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L =40 - e - Bag+D) ha-1y) By1) (321D
where L, ;) 18 the local Laplacian

Zhang (1989) proposed a different stochastically driven continuous energy model

He considered a real number E(I,J) represented at each site (1,]) on a square lattice

The system 1s perturbed randomly by adding an amount to a randomly chose site,

re Eq ) —Eq)) +0E If the value at any site exceeds the threshold value Eqp>
E, the system relaxes according to
E(t1, k1) 2E@x1,521) +€E(y,)) (3212
E(l,]) -0 (3213)
€ 1s an exponent for energy dissipation Simular to the 2D BTW model, when
€=0 25, the system 1s conservative and dissipation occurs only at the boundary,

where the number of nearest neighbours 1s less than 4 Zhang has studied systems

with E. =1 and OE chosen uniformly mn the mnterval [0,0 5], and found that the

same universality class as that for the BTW model apples, (1e values of critical
exponents are in agreement with those obtained for the 2D BTW model)

Another continuously driven dynamical system was introduced by Olami et
al (1992) (OFC) n terms of earthquake modelling Though the dynamics of
earthquakes are very complex, the event 1s driven by slow relative motion of
tectonic plates, and the occurrence of abrupt shocks 1s intermuttent There are two
time scales involved 1n the process, one 1s related to the stress accumulation,

while the other 1s associated with the duration of the abrupt releases of stress

3.2.2 Current Studies on Sandpile and SOC

3.2.2.1 Theoretical Results

Sandpiles with SOC have also been studied by several thec;;etlcal approaches
Mean-field theory has been used to neglect the effects of the fluctuations so that
local variables are replaced by statistically averaged values, Tang and Bak (1988),
Christensen et al (1993) One fundamental question of the mean-field approach 1s
that of the upper critical dimension, 1€ the spatial dimension above which mean-
field results are valid In most SOC models, this dimension seems to be 4,
Obukhov (1988), Diaz-Guilera (1994)
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Theoretical work by Ding et al (1992) on alternative models with stochastic shde,
however, has led to the conclusion that small and large sandpiles belong to
different universality classes This also provides some explanation for the
apparent discrepancy observed with former experimental work, Held et al (1990)
Another approach has been to mvestigate sandpile models where the rules are
more suitable for obtaining analytic results, € g Abelian sandpile model, Dhar
(1989), Creutz (1994) The renormalization group method 1s widely used 1n
critical phenomena where the lack of characteristic scales 1s demonstrated
frequently, Pietronero et al (1994)

There has been a lot of interest in constructing differential equations to describe
the scale invariance of cellular automata models For example, anomalous
diffusion equations with singularities have been considered for studying the
determunistic dynamics of the avalanches reached n the crltlégl state, Carlson et
al (1990), Chau and Cheng (1994), Kadanoff et al (1992) Additionally, nonlinear
stochastic differential equations have been used by the dynamic renormalization
group to analyse the earthquake models, Hwa and Kardar (1989), Grmstem et al
(1990), Diaz-Guilera (1993)

3.2.2.2 Experimental Results

Real sandpiles of course present very complex behaviour so that they are difficult
to explain fully 1 terms of simple interaction rules For example 1t has been found
that the existence of SOC 1n real sandpiles depends on how the pile 1s built Two
distinct types of experiments have been performed

Jaeger et al (1989) used the method of rotating a semi-cylindrical drum partially
filled with sand'at a low constant velocity In this experiment, the drop number
(defined to be no of gramns tumbling at one time stepf"if:i was found to be
approximately periodic 1in time Held et al (1990) considered the case of critical-
mass fluctuations 1n an evolving sandpile, through an experimental study where
the sandpile was built up to a steady state and then subsequently perturbed by the
addition of a single gran at a time After each grain was added, the size of the
resulting avalanche was recorded Repeated perturbations showed that avalanches
were not predictable i terms either of therr individual size (weight) or of their

duration
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Held and his co-authors discovered that sufficiently small sandpiles showed broad
scale-invariant distributions for avalanche sizes For larger sandpiles, the
avalanche distributions become sharply peaked, and the scalg’-mvarlance breaks
down demonstrating fite-size scaling and the existence of SOC Experiment
shows that a single gramn of sand can cause avalanches ranging from the
extremely small to the system’s finite Limmt

However, the observed behaviour indicates that mnertial effects play an important
role, Dhar (1992), Prado and Olamu (1992) Inertial effects lead to a nonlocal
process, whereas 1n the numerical models, only the local geometry determines the
dynamics The relationship between the drop number of sand grains measured 1n
experiments and the avalanche size measured in numerical models 1s unclear
Moreover, the work of Rosendahl et al (1993) deals with gran-by-grain
quiescent perturbation of real sandpiles of various sizes for which 1t appears that
power law behaviour 1s vahd for all system sizes Mehta and Barker (1994) have
recently reviewed theoretical and experimental dynamics of granular material,
which deals with some of these questions 15
An experiment to investigate the relaxation dynamics of a sand;)lle was performed
by Jaegeret et al (1989) In ther work, sandpiles initially at a given angle of
repose were vibrated with varymg degrees of intensity, and the relaxation of the
average slope of the pile was monitored It was found that for large intensities of
vibration, the slope of the pile decayed to zero such that its relaxation was
proportional to the logarithm of the time, whereas for smaller intensities, the slope
of the pile stayed finite and the relaxation appeared slower than logarithmic

In a more recent expermment, Frette et al (1996) have observed the internal
dissipated energy m a slowly driven one-dimensional 1D rice pile It was shown
that the occurrence of SOC depends on details in the gramn-level dissipation
mechanism. With spherical grams, a stretched-exponential distribution was
observed, implying a characteristic scale, and 1s mconsistent with SOC However,
with more elongated gramns, the dynamics were domunated:«by shiding grams
These induced higher friction, and a power-law distribution Pof avalanche sizes
was found This provides the first experimental results of SOC behaviour in

slowly driven granular systems Theoretical models of rice piles are related to a
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variety of different physical systems which share the same universality class,
Paczuski and Boettcher (1996)

3.2.2.3 Computer Sunulation Results

The study of sandpiles and related systems exhibiting SOC has to a great extent
been based on simulations that use cellular automata modejs Several factors
which affect the behaviour exhibited by sandpile models have already been
discussed Unsurprisingly, these factors together with the sample size (no of
events or trials in the simulation) under various dynamucs all have a drect bearing
on the nature and precision of the results obtained, Manna (1990) (1991), Ruskin
(1993)

As a final pont, 1t 1s worth noting that both theoretical and simulation studies to
date confine themselves to gramns of a uniform size, whereas in a real pile the
grain size 1s uregular leading to a virtually continuous avalanche of the finest
grains when the sandpile approaches the critical pomnt

We now consider some specific examples of sandpile automata that we have
implemented under various conditions and automata rules These illustrate
behaviour corresponding to a variety of applications Systems sizes range from L=

256, where L 1s the hnear dimension of pile, to L=1024 ¢

1

3.3 Studies of Sandpile Models
3.3.1 Simple Sandpile Height Models and SOC

We have looked in what follows at two versions of sandpiles namely (1) the
simple height model with topphng rules as described in Section 32 1, (u) the
direct random model, where directed refers to ther fact that topping 1s 1 a
preferred direction and sharing 1s random (as m (1)) This also use the height

dynamics
For the direct sandpile height model, we have used the square lattice with steady

height values of a site equal to 0, 1, 2, 3 and critical height h, =4 (Here we use
height variable h mstead of z) Thus for h 24 the site topples Simple feature s of

simulation have been varied namely lattice size = L2 and No ‘of trials (samples)
M’;l

The range of L was 32 to 1024 at which size storage was alréady a problem for
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the larger number of trials, which range from 10000, to 50000 and 100000 These
examples were implemented on both VAX and UNIX systems available in DCU
The dynamics of the directed model (111) may be described simularly to those of

the simple undirected model, Equns (3 27-32 8) with an nteger variables h,
associated with each site Again these are discrete and diffusive but are now
supplemented by the preferred direction condition so that if any site h, , 2 he, 1t
will topple only 1f the direction of topphing 1s allowed The 10091 height h ; 1s then
decreased We have agan built the sandpile on a square lattice where hc(u) =2, S0

that the two neighbouring forward sites j+ =j+[1+(-1)!]/2 are increased by 1

hay = hay) - heqy) (331
h(1+1,]i) = hgey,p) +1 (332)
1e when1=odd,
ha+1,7) = by +1 (3 3 2a)
het, 1) = B +1 (33 2b)
when 1= even,
hie, 1) = Naatgen) +1 (33 20c)
A1, 5) = Raerty) +1 (33 2d)

Starting with random 1nitial conditions, a particle 1s added at one randomly chosen
site at a given row of the lattice If at that site the condition 18 satisfied, then two
particles shide to the two nearest neighbours at the next row,l;ivhere the toppling
condition may be fulfilled agam, leading to more topples and so on We follow an
avalanche until the system regains 1ts stability, and then the next particle 1s added
at the randomly chosen site Sand grams are allowed to leave the system when the

avalanche reaches the boundary

3.3.2 Results and Conclusions

The form of the size and time distributions of avalanches 1s shown mn Figs 3 3 1-
3 3 2 for modest system size L=512, as an example Simular results are obtamned
for d1’£”ferent systems we discussed above These show clearly that a scaling region
exists, corresponding to the linear part of distribution of avalanche size, 1e log

D(s) vs log s We observe that as the lattice size increases, the linear part 1s
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smoother and increases 1n length for larger No of trials, permitting more precise
estimation of the exponent, Equns (3 2 8-3 2 9), before degenerating into chaotic
or noisy behaviour for very large avalanche sizes The largest avalanches
observable are directly related to the number of particles in the sandpile so that a
small sized sandpile necessarily limits the observation of large avalanches
Averaging over a large No of trials or samples 1s clearly desirable in order to
improve the statistics and we note that both No of trials and lattice dimension L
are modest 1 this work The behaviour of the lifetime distribution vs log t 1s
stmular to that shown for size ‘

We 1llustrate for L=512 and 10000 trials in Figs 33 1-2 Our estimates of the
exponents T and b” are given to be t=1 81, b’=0 45 Comparing these with those
quoted by Bak et al (1989), 1=2 0, b’=0 43, Manna (1990), 1=8/7, the simple
decay exponent b’=19/15, Ruskin (1993) 1= 1016 to 1 093, b’=0 423 to 0457,
and b’= 1012 to 1 119 for a perturbation of size 1 for L variable, (perturbation
also variable, Ruskin (1993)), it seems clear that we have good agreement with
previous results with respect to the lifetime exponent However, our value for T 1s
rather high, compared to more recent results, but agrees reasonably well with the
mitial theoretical sandpile models, Bak et al (1987), Dhar et al (1989) which made
rather simplistic assumptions on the finite-size effect This discrepancy may be
due therefore to the size of the system which we have studied, compared to
previously e

More recently, Lubeck and Usadel (1997) have considered the directed BTW 2D
sandpile model 1n a large scale, up to system size of L=4096 They also introduce
a new method for statistically analysing the data to reduce the finite-size effects
and obtain results, T=2 293 and b=1 48, which are in agreement with the results

obtained by renormahization group approach, Pietronero et al (1990)
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3.3.3 The Directed Sandpile Model with Holes: Introduction for a Preliminary
Note

We have also studied for a small system, the directed critical height model on a

2D square lattice 1n which a fraction of sites p are considered as holes Thus the
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system 1s additionally dissipative The sand grains may also leave the system
through these holes during the dynamic evolution The distribution of defect sites
or holes 1s random and can be considered as either annealed (increasing the
system temperature, for example to reach an energetically more stable
configuration in which the free energy 1s mumimized) or quenched, (quickly
reducing the temperature of a system, for example to trap a sééte favourable only
at high temperatures) For the sandpile system, annealed defects arise when the
probability p that a defect may occur at each lattice site 1s fixed only for a single
event The distribution of defects 1s generated randomly for each event, and 1s not
memorised for the next event Quenched defects arise when a distribution of
defect sites 1s generated for each concentration p and held fixed during all events
For the directed height model with holes, Figs 3 3 3-4 illustrate size and duration
distributions for a typical No of trials=10000, where the first 10 % of trials are
left for the system to reach the steady state It has been shown, Dhar et al (1989),
Tadic et al (1992) that the existence of a preferred direction should lead to a new
universality class, compared to the undirected model previously discussed It 1s
evident that our results differ from those obtained in the first model, (Section
3 32) No clear linear region 1s obtaned, particularly in the s1ze distribution and
this supports the view that directed and undirected models d@“ not follow similar
scaling laws In fact, the evidence for scaling 1s weak from our effort in the
directed case, but this work considered small-sized simulations only (even
compared to the undirected case) and consequently, the statistics are poor

Tadic et al (1992) noted that power-law behaviour for size and time with
exponents T=0 43 and b=0 30 It 1s less clear, however, how hole concentration
affects this behaviour Our very small systems constder =128, with concentration
of defects (holes) given by p=0 and p=0 05 and p=02 Results obtamed for the
low concentration are smmlar to these for p=0 (no holes), but the systematic
deviations 1n the numeric values compared to the hmiting law of form
(Equns(3 3 4-5)) are due to the finite duration of the simulation imposed by the
holes, 1e distributions are truncated Tadic et al (1992) argued that the self-
orgamsed critical state 1s lost in the presence of defects if the modified dynamic

rules violate locally the height conservation %
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As a preliminary look at dissipative systems, we considered the Tadic et al Model
of mtroducing holes into the board It 1s unlikely that small sandpiles under such
restrictions can show the same wide range of fluctuations, since as noted for
simple piles, (Section 3 2 2 2), large and small pile can behave very differently
Our limited study thus mdllcates that a crossover from SOC to non-SOC for a
defective system 1s reached rapidly for small system size, but provides little
qualification of this or comment on Equn (32 10) An extended investigation,
however, should mclude a wider range of p values

For more complex defect cases, Tadic and Ramaswamy (19?6) have studied 1n
detal three models of driven sandpile type automata n the prgsence of quenched
random defects These models are termed the random site, random bond and
random slope

models and when the dynamics are conservative, the concentration-dependent
exponents are nonuniversal In the case of nonconservative defects, the asymptotic

state 1s subcritical

Ln D(s) -3

0 05 1 15 2 25 3 35

Lns

Fig 3 3 3 Distnibution of avalanches size s for directed sandpile model with L=128, and
No of trials=10000
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Fig3 3 4 Distribution of avalanches lifetime t for the directed sandpile model with
L=128, No of trials=10000

3.4 Dissipative Sandpile Models
3.4.1 Nonconservative Sandpile Model

The original sandpile CA models are noise driven models in that the sand grains
are added to randomly chosen sites 1 a pile, and etther the local dynamics are
conserved (1€ no energy loss during the toppling) or the local dynamical law 1s
conserved The BTW relaxation rules conserve the dynamical variable z except at
the boundary Earlier studies have shown that conservative mteraction rules are
essential for obtaming SOC 1n the sandpile models, Manna et al (1990), and are
also obeyed e g 1n the earthquake model, Hwa and Kardar (1989) Further
mvestigation has shown that only those nonequilbrium systems with either a
conservation law or a special continuous symmetry, demonstrate scale-invariance
Grinstein et al (1990) However, more work on deterministic models, e g of
earthquakes, demonstrates the existence of SOC without a conserved quantity and
1S intrigumg as 1t suggests a different mechanism for overall scale-invariant
structures, Christensen and Olam (1993), Olamu et al (1992), Janost and Kertesz
(1993) The nonconservative model also demonstrates SOC, 1n the sense that the
probability for energy release during an earthquake 1s a power law However, the

model 1s found to be nonuniversal in the sense that exponents change continuously
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as a function of the parameters of the models Interest has also been directed to
systems with uniform driving of the dynamics, Grassberger (1994) The evidence
supports the view that scale-invariance holds for determumistic models of
earthquakes, forest fires, and sandpiles, Middleton and Tao (1995), but not for
others, e g a stochastic height sandpile model on the Bethe Lattice, Markosava
(1995) It seems clear that the mtrinsic features of dissipative systems and the real
origin of SOC merits further exploration n view of these findings

We have, therefore, considered some further examples of dissipative systems n
more detaills The dissipative sandpile models in what follows, exhibit no local
conservation of energy with fixed perturbation Sand 1s still randomly added to a
site, generally resulting n avalanches i which the redstribution of sand grains 1s
accompanied by energy loss according to local dynamical ruf‘;és Grams reaching

topphing conditions at the boundary will ultimately fall out of the system

3.4.2 Various Dissipative Models
3.4.2 1 BTW and Zhang Dissipative Models

Two simple types of dissipative models were mitially proposed, one driven by
random discrete BTW model and the other the continnous-energy Zhang model
under local nonconservative conditions
Of interest 1s whether the BTW model retains critical behaviour when introducing
nonconservative dynamics in the mterior of the system. The simple way to
consider this 15 to change rule Equn (3 2 6), for example, to

Z(1,))72(1,)) -5 341
with Equn (3 2 7) remaining unchanged, This means one graip of sand 1s lost or

dissipated for every topple In the stationary state, the average rate of dissipation

equals the average rate of flow into the system. Thus, <s> = 1/P; where Py 1s the
probability of adding a gram to a site with z. units, causing an avalanche This

probability approaches a constant value when L—oo, which means <s> will

achieve a finite value It 1s obvious that such a system cannot display SOC The
avalanche size distribution decays exponentially with a characteristic avalanche

size, regardless of the system size, and avalanches seem to be localized
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With €<0 25 1s chosen in Equns(3 2 11-3 2 12), the dynamucs of the Zhang model
are nonconservative When JE 1s chosen 1n the range [0 1,1], the nonconservative
relaxation rule again produces a characteristic avalanche size This model 1s also

noncritical 1n the presence of nonconservation, Diaz-Guilera (1994), Vespignam
et al (1995)

3.4.2.2 CA and CML Dissipative Models

In a two-dimensional conservative sandpile CA model, all the space, tume and
state variables are integer (Equns (322-323)) However, for the dissipative
height sandpile model, this may not be the case since the local dynamcs lead to
changed values of local energy Using both CA and coupled map lattice (CML)
models, (Kaneko (1989)), for a nonconservation system with both discrete and
continuous fixed dynamics respectively, a parameter o 1s mtroduced for the
former which gives local energy loss during the toppling events, 0 <o <1, with
0=0 equvalent to no loss Therefore, n a two-dimensional r%iodel, Equn (325)
will be modified to be

N1 1) =hgy ) +(1-0) (342)
We choose the same value for o for all the neighbouring sites of (1,J), and allow
the neighbouring sites to topple simultaneously This fixed discrete amount of
energy loss accompanymg grain toppling, results i avalanches which occur
slowly compared to those for the nondissipative model, 1e the hifetimes are
longer The higher the value of o, the more energy 1s lost during the evolution
For the continuously driven dissipative model, 1 ¢ the so-called CML model, we
choose continuous state variables F,,(1) i the lattice which evolve under a non-
linear function map f(x) to describe deterministically the loss of the local energy
during a topple In contrast to the dissipative CA model, the corresponding
topphing rule mn a two-dimensional CML model may be given b}r

Rt 1) = by iy tFngat ) (343)

where we define Fy ;()=f(F,(1), (Fy()=1) Since the local energy loss must be

less than or equal to the whole local energy available, the corresponding values

Fp(1) must satisfy 0 <F}, (1) < 1, and correspondingly 0 < f(x) <1
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We have chosen to use two different function maps f(x) representing different
dissipation patterns which are either parabolic (non-periodic) or periodic
respectively, 1€
f(x)=1-ax2 (344)
f(x)=1-asin(x) X (345)
here a 1s a constant, 0< a <1 and when a=0, f(x)=1, and F,(1)=1, local conservation

holds The toppling and avalanche procedures in the CML models are simular to
those of CA models, but the subsequent topplhing energy distribution 1s influenced
by the current toppling energy loss The dynamics of this CML model resemble in
some sense the continuous stick-shp earthquake model which has been discussed
m Christensen et al (1992)

It 15 obvious that the dissipative pattern observed depends on the choice of
function f(x) Our choice reflects, to some extent, extreme conditions satisfying
sand transport, (Fig 3 4 1) Clearly, functions which correspond to more complex
local dynamics can also be chosen In what follows, we investigate whether local
conservation is either a necessary and/or sufficient condition for a dissipative
system to exhibit SOC 1 both CA and CML dissipative models for various values

of a and different choices of f(x) respectively 4

3.4.3 Results for CA and CML models

Boundary conditions are taken to be open only here, consistent with those n the
non-dissipative models Periodic boundary conditions are considered mn detail
elsewhere, Middleton and Tao (1995) The main influence of the open boundary 1s

to lead to continuous loss of the sand to 1ts neighbouring sites

3.4.3.1 Dissipative sandpile, CA model

We have implemented the discretely driven dissipative CA model, Equns (3 4 2),

with values of = 003, 03, 05, 08 respectively Dastributions of size, s, and

Iifetime, t, are shown mn Figs 342-343 We observe that distributions are

qualitatively similar for the different values of o The increasing dissipation 1n the

CA model causes a decrease mn the quantity of avalanches® Multiple toppling

events do not occur any more due to the introduction of dissipation, and the
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distribution displays no fixed power-law dependence It seems clear that the
dissipative CA model does not exhubit SOC unlhike the nondissipative model, This
agrees with results on the fundamental importance of the conservation law in

demonstrating SOC, Manna et al (1990)

3.4.3.2 Dissipative sandpile; CML models

Simulation results for the dissipative CML models, with different choice of f(x),
(Equns (344) and (345)), are shown wn Figs 34 4-34 7 respectively Several
different values of a have been chosen to examine the mﬂueﬁce of f(x) 1 these
models

Choosing a=003, 03, 05, 08, for the CML model with f(x) given by
Equn(3 4 4), we obtain very simular distribution results to those obtaned
previously, (Figs 3 4 6-3 47) above, where dissipation leads to rapid truncation
with respect to both s and t Avalanches take a long time to occur because
mdividual toppling events happen slowly, and this 1s more obvious for a large
dissipation Again, there are no long-range correlations to indicate scale-
mvariance of the avalanches, 1€ no evidence to support the existence of SOC for
any value of a chosen

For very small energy dissipation, 1e 0O<a<0 1 with f(x) as above, we chose
a=00003, 0003, 003, 005 and O 1 to examine the sensitivity of the threshold
However, size and time distributions are effectively the same so that even small
interior energy loss in the CML model appears to cause the whole system to lose
1ts original properties of SOC

However, for the dissipative CML model with f(x) of periodic form, Equn(3 4 5),
we have observed some surprising and interesting simulation results, (Figs 3 4 4-
345 for the size and time distributions respectively) It 1s clear that these
quantities follow the power-law distributions which are characteristic of SOC
Exponents obtained are roughly, T =2 25 and b’= 1 25 We dlustrate for a=0 1, but
sumular behaviour has been observed for a chosen to be any value in the range
O<a<l The evidence supports the view that that SOC does exist where the
dissipative pattern of energy loss 1s represented by periodic and continuous local

dynamics However, the exponents are qualitatively different for the cases of local
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nonconservation and conservation models

Recently, several authors have attempted explanations on the nature of SOC 1n
these dissipative systems, Strocka et al (1995), Al (1995) From our numerical
simulation results, 1t appears that, for a dissipative model, SOC depends, at least

1n part, on the nature of the local dynamics rather than the conservation law

12
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Fig 3 4 1 The continuous varnables F(x) of site x for two types of function f(x)
(non-penodic and periodic respectively) representing local energy dissipation

Both chaotic (non-periodic) and periodic behaviour are often seen n many
physical systems

Log D(s)

Logs

Fig 3 4 2 Distribution of avalanches with size s for the dissipative CA model

62
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Fig 3 4 3 Distribution of avalanche lifetimes t for the dissipative CA model
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Fig 3 4 4 Distribution of avalanches size s for the dissipative CML model, with
dissipation dynamic given by contimuous function f(x)=1-asin(x)

Log D(%)

Logt

Fig 3 4 5 Distribution of avalanche Iifetime t for the dissipative CML model with
dissipation dynamic given by contmuous function f(x)=1-asin(x)
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Log D(s)
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Fig 3 4 6 Distribution of avalanche size s for the dissipative CML model with
dissipation dynamic given by continuous function f(x)=1-ax2

Log D(t)

Logt

Fig 3 4 7 Distribution of avalanche lifetime t for the dissipative CML model with
dissipation dynamic given by continuous function f(x)=1-ax2

3.4.3.3 Conclusion

We have studied both discretely and continuously driven dissipative sandpile

models, (CA and CML type respectively), under the height dynamic From the
. simulation results obtamned, we find no evidence for the existence of SOC when
dissipation 1s mntroduced mnto the BTW, Zhang, and CA model Thus, a necessary
and sufficient condition for SOC appears to be that the conservation law should
hold, n agreement with findings of former authors However, SOC 1s apparently
exhbited by some dissipative CML models, with results; .from our hLmited

mvestigation supportmg the view that local dynamics rather than local



conservation determune whether the phenomenon 1s observed This conclusion 1s
i agreement with that for a deterministic dissipative model, Middleton and Tao
(1995), but not with findings for a stochastically driven dissipative model on the
Bethe lattice, Markosava (1995) Exponents for the avalanche distributions for s
and t are quantitatively different for the local conservation and nonconsrevation

models

3.5 SOC and Complex Systems

Most models for which we have discussed SOC are discrete in both space and
time, they are cellular automata or some variants of CA More realistic models
mught mvolve infinities of coupled differential equations, but for very many
elements, 1t 1s unlikely that the discretization affects the asymptotic behaviour,
wrt time and space 1n which we are mterested Moreover, cellular automata
seem particularly suited to systems with many metastable states, as in many of the
complex systems that we considered

Sandpile models clearly provide considerable and often contradictory insight into
the phenomena of SOC Bak and Chen (1991) have concluded that the theory of
SOC can be described 1n terms of many composite systems naturally evolving to a
critical state, 1n which a minor event starts a chain reaction that can affect any
number of elements mn the system Although composite systems produce more
minor events than catastrophes, chain reactions of all sizes are an ntegral part of
the dynamics According to this theory, the mechanism that leads to munor events
1s the same one that leads to major events Furthermore, composite systems never
reach equilibrium but instead evolve from one metastable state to the next This
theory clearly has attractions in terms of describing natural events, such as
earthquakes The simplicity of the models suggest that the phenomenon of SOC
could be umversal Certainly possibilities have been scrutinised by many
researchers in various fields so far, e g statistical mechanics, condensed matter
physics, geophysics, biology, and economy An interesting aspect is that the
dynamics of SOC systems are intermuttent, with avalanches of activity separating
periods of relative quiescence

Another important pont 1s that avalanches are predictably displayed n long-term

patterns, although 1t 1s impossible to predetermine when a system will reach

65



ok

mstability and how much adjustment 1s required to regain stability except on a
short-term basis, Kagan and Knopoff (1987) Overall avalancl;:s observed display
a log-linear relationship for a real system, m agreement with that observed m
earthquakes by Gutenberg and Richter (1956) These authors found a straight line
with a slope (critical exponent) between -1 25 and -1 50 from earthquake model,
depending on the fault under study

The presence of defects 1n 2D directed sandpile automata leads to some interesting
effects For the case of random defects, some concentration-dependent scaling
exponents have been obtained, It appears that varying the concentration of defects
1s a mechanism for contmuously tuning the local rules of relaxation, which may
finally lead to a phase transition between metastable states with different
properties

In a slowly driven or evolving system, the physical time betwé@n lattice updates 18
very short when avalanches are propagating and very long when the system 1s
being perturbed In the Zhang model, the transfer of energy depends on the energy
of the lattice, whereas 1t 1s a fixed quantity for the BTW models When
mtroducing nonconservative relaxation rules mnto the stochastically driven BTW
and Zhang models, the distribution of avalanche sizes decays exponentially with a
characteristic avalanche size The systems are subcritical However, the
occurrence of criticality 1n some nonconservative models, e g continuous
deterministically driven OFC model and CML models, 1s very ntriguing since 1t
suggests a different mechanism for the generation of the scale invariance (OFC
model 1s an earthquake model, see Olamu et al (1992)) Since moreover, the
majority of natural phenomena are nonconservative, the SOC behavior of
nonconservative systems 1s probably more important to understand than the

corresponding behavior of conservative systems -

3.6 In Summary

In this chapter, we consider the problems involved 1n simulation methods apphed
to physical and related systems with few constraints Examples of cellular
automata modelled "sandpiles" and their applicability to real world systems have

been described and the phenomenon of SOC discussed. Recent theoretical
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developments are presented and assessed mn terms of findings from experimental
mvestigations Results of our implementations of those models for both

conservative and nonconservative systems are also given

-
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Chapter 4 Cellular Network Models

Our second computer simulation apphication deals with a class of non-equilibrrum
systems with underlymng disordered patterns known as cellular networks
Materials with cellular structure appear in nature in a disparately wide range of
fields, such as engineering, physics, geology, metallurgy, biology, ecology and so
on, and therr statistical behaviour can be investigated by monitoring the network
evolution through time

In what follows, we mvestigate the evolutionary behaviour and the statistical
properties of a typical cellular network model, the 2D soap froth model, which
provides valuable imsight mto the behaviour of complex disordered cellular
systems The computer methods of constructing 2D froth models have been
mtroduced We concentrate n particular here on detaus of the direct simulation
method for various different system sizes with both ordered and disordered 1nitial
conditions The different stages related to the concentration of defects or amount
of disorder during froth evolution have also been analysed and results are
discussed

The original form of the programme for direct simulations, which we have used,
18 due to Wearre and Kermode (1983b) (1984), Kermode and Weawre (1990)
Various adaptations and modifications which we have made are detailed briefly in
this chapter and the full code 1s given 1n Appendix E (diskette) together with
supplementary programmes for ilustrations of the froth evolution etc Further
general pomnts on comparative simulation techniques for this type of problem are

discussed m Chapter 5. B

4.1 Background and Introduction
4.1.1 Cellular Structures
41 1.1 Introduction

Many materials occurring 1n nature possess a cellular network, which means they
have structures composed of either two or three-dimensional polygonal compact
domains separated by well-defined sharp boundaries For example, consider the

pattern formed by a soap froth confined between two transparent plates The
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geometric structure of this system consists of a tiling of the plane by domains or
cells of nearly polygonal shape In the three-dimensional Ecase, the domains
assume polyhedral-like shapes which are almost homogeneous and are separated
by thin boundaries One of the oldest such patterns can be found m the Giant’s
Causeway 1n North Ireland, Bulkley (1693) Samuel Foley (1694) first calculated
the distribution function for a two dimensional network of grains A particular
class of cellular structures, (which evolve either in time or as some external
parameter 15 changed and for which an energy 1s associated with the boundaries),
has become a subject of much interest over recent decades Models of such
patterns can be found 1n a wide range of fields, e g soap froths, foams, magnetic
bubbles 1n garnets, polycrystalline metals, alloys, and branches of physics such as
hydrodynamics, Glazier and Weaire (1992)

The applications of cellular network models have covered a wide range of areas
For instance, foams are beautiful examples of heterogeneous materials, with
properties closely related to thewr structural characteristics "The structures of
foams are varied hquid foams, such as those made of the soap bubbles famuliar to
all, solid foams such as 1n cellular materials and so on The use of foams ranges
from transport of granular media 1n pipes to fire suppression and explosion
attenuation Thus the geometry of soap bubble arrangements in confined
environments 1S an emerging research subject, where several intriguing phase
transitions have been recently observed, such as those with bamboo-like or spiral
structures The problem of foam stability 1s more specific to hquid foams,
however, and 1s connected with the important issue of emulsion stability,
Exerowa et al (1992), Aveyard (1995) We concentrate here on the studies of dry
froth 1n which the hquid fraction 1s 1gnored, (1€ no Plateau borders), in order to
demonstrate a dwrect approach to computer simulation of such systems
Computational implications for extending these simulations to wet froths are
briefly noted 1n final chapter

Wearre and Ravier (1984) first mtroduced the type of cellular network problem
described above, and this has motivated further developments on many aspects of
cellular systems A more recent review, Stavans (1993), has put emphasis on the
scaling exponents characterising the time dependence of the average scale of
cellular structures mn evolution Some specialised reviews also deal with important

aspects of particular systems, e g the geometric properties of biological tissues,
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Dormer (1988), and the chemical application of sohid foams and hquid foams,
Goldfarb et al (1988)

In contrast to the cellular system models, discussed imn last chapter, any small
perturbation 1 cellular network models will have an mnfluence on all network
elements, 1e local adjustment will be related not only to nearest-neighbours, but

also to second nearest-neighbours

4.1.1.2 History

The soap froth as an ideal model of a cellular network has attracted considerable
attention 1n that 1t provides valuable msight into the behaviour of several complex
disordered systems Many efforts have been made to connect the soap froth model
to other models 1n biology, metallurgy, ecology and so on As long ago as (1925)
(1928) (1931), Lewis studied froth and living cells 1n an experument on cucumber
He recorded ordered and disordered patterns and gave an empirical relation
between the number of sides of a cell and its area Some years later, Thompson
(1942) noted the analogy between froth bubbles and cells of biological organisms
In particular, he quoted the similarity between gramn growth in molluscan shells
and a model of a crystal growing in alburin Bragg and Nye (1947) first proposed
that froth could be used to model grain growth in metals, but had not deduced that
the individual bubbles may be considered sumilar to atoms 1n whole crystal grains
Later, Smith (1952) (1954) discovered that the soap froth represented the closest
appfoach mn an experimental system to ideal grain growth m a metal From this
observation, his analysis shown that each separately oriented grain was analogous
to one bubble 1 the froth and that grain boundaries n a metal corresponded to
soap films Population biologists have further considered the influence of cellular
patterns during evolution For example, ecologists deal not only with behaviour
within a single habitat but also with the interaction between an ensemble of them,
as for mnstance 1n the territorial competition n fish and other species, Hasegawa

and Tanemura (1976)
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4.1.2 Applications: Soap Froth Model

4.1 2.1 Basic Geometrical Relations and Topological Process

The dynamics 1n a cellular structure are driven by surface] tension or surface
energy forces The structure consists of a network of bOllIlelI’lCS on a surface,
which has the property that three boundaries meet at every intersection or vertex
for the two-dimensional case A two-dimensional cellular structure embedded on
the Euchdean plane consists of a tiling of non-intersecting polygonal cells or
faces, whose boundaries are formed by curved edges impinging on vertex points
According to Euler’s theorem, mn general form, the relationship between the
number of faces F, edges E and vertices V of a polygonal domamn can be
expressed as

F-E+V=1y 411
where % 1s the Euler characteristic Then i =0 for a network on the surface of a
torus (or for a planar network subject to periodic boundary conditions) and x=2
for a network on the surface of sphere in which case the network 1s topologically
equivalent to a convex polyhedron, (the original application of the result) Then
x=1 corresponds to a finite network on the infinite plane The “ifundamental nature
of Euler’s theorem for topology comes about because the invariant it represents
specifies the topological type of the surface on which the network 1s drawn The
network 1s built of polygonal domams whose boundaries join at vertices with co-
ordmation number equal to three in cellular structures Applying this theorem to
large networks, we have that the average number of sides per polygonal domaimn is
equal to six
Durmg the evolution of a cellular structure, there are changes in the local
connectivity of the edge network These changes can be broken down imto
elementary processes or transformations, which obey the topological constraints
There are two basic types of topological rearrangements which have been
observed 1 soap froths, foams and metallurgical gramn aggregates, namely, T1
and T2 processes, which preserve topological properties by effecting changes n
the number of sides of the cells involved 1n the transformau{(lj“n The T1 and T2
processes are shown m Figure 4 1 1 (a), (b) and (c), where for the T1 case two
cells lose one side each and two others gam one For the T2 process, a cell with

more than three sides can vanish through a series of T1 processes, to make 1t
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three-sided, for example, in (b), the three-sided cell disappears with each
neighbour losing a side, 1n (c), the four-sided cell disappears with the number of
sides of two neighbours remaining constant while that of the other two decreases
by one Simularly, for the five-sided cell, the number of sides of two neighbours 1s
left constant, two other neighbours lose one side each and the fifth neighbour

gamns a sidde And so on for six, seven and higher order cells

(®)

©

Figure 4 1 1 Elementary Topological Processes ;f
(a) Side Swapping or T1 process

(b) Disappearance of a three-sided bubble or T2(3) process
(c) Disappearance of a four-sided bubble or T2(4) process

It 1s noted that four-sided cells have two possible decay configurations in contrast
to three -sided cells whose decay state 1s unique Since the classic work of Smith
(1952) on soap froth, 1t has been conventional wisdom to think that T2 processes
of four-cells do not occur According to Smuth, the vamshing of four sided
bubbles 1s mediated by T1 processes in which bubbles become three sided first
and then decay directly by shrinkmg This claim has not been vindicated,
however, by experiments on froth or in other cellular structures, where direct
vamshing of four- and five-sided cells 1s observed, Glazier et al (1987)
Theoretical support for the experimental results has been provided by Fradkov et

v
3
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al (1993) The authors pointed out that the decay configuration which a fourfold
or fivefold vertex will adopt, from all those possible 1 a particular situation, 18
determined by system-dependent characteristics such as the physical size of the
boundaries with respect to the system thickness They argue that this may endow

the evolution with a stochastic character

4.1.2 2 Von Neumann’s Law and Scaling State

In cellular network systems, a balance of forces imposes restrictions on the angles
between boundaries at each vertex Generally speaking, 1n a real case, 1t proves
1mpossible to satisfy these restrictions unless boundaries are curved Evolution 1s
driven by mechanisms that relax this curvature and thus minimise boundary
length The simple and elegant theoretical basic to descnbé:' the dynamics of
curvature-driven cellular network structure 1s due to Von Neumann (1952) and
was supported by the original soap froth experiments of Smmth (1952)
Von Neumann showed that the rate of change of area with time of an individual
cell and 1ts number of sides n are related by the expression
dA/dt = k(n-6) 412)

Here A 1s the area of an n-sided cell and k a constant which depends both on the
solubility of the gas which diffuses through the soap film and the thickness of the
latter However, a posstble variant of Von Neumann’s law was recently proposed
by de Icaza-Herrera and Castano (1995), which took into account the effect of
cell's area as well, given as

dA/dt = kA(n-6) (413)
We compare these equations of froth coarsening frorp different 1mitial

configurations 1n due course ‘
Clearly, Equn (4 1 2) means that only a cell with less than six sides shrinks, while
that with more than six sides grows A cell with six sides neither grows nor
shrinks, although 1t may change 1its shape, as diffusion proceeds, until such time as
1t 1s mnvolved m a topological change, when 1t no longer has six sides This 1s
shown in Fig 4 1 2 and 1s particularly important in relation to transient behaviour
since we can regard diffusion as occurring during the topological transformation

processes according to equation (4 1 2)
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(a) (b) (c)

Fig 4 12 Typical shapes of cells as function of their number of sides nin an
equilibrated system (a) cell with n<6 have boundaries bulging outwards

(b) cell with n=6 have straight boundaries

(c) cell with n>6 have boundaries bulging inwards

The only pattern that 1s stable under Von Neumann’s law 1s the perfect hexagonal
network Even the existence of only a single defect pair will result 1n the collapse
and eventual disappearance of all the cells in the network As the average length
scale grows continuously with time, we are nterested m the dynamic properties of

the system, measured by statistics such as the distribution of the number of the

cell sides, f(n), and the second moment of f(n), WL, which would be expected to be

constant, if the froth attains dynamic equilibrrum, 1 e reaches a scaling state

4.1.2 3 Lewis and Aboav-Weaire Laws

The correlation functions of interest are those between area, (or diameter), and
number of sides, usually known as Lewis Law, and correlations between the
number of sides of neighbouring bubbles, (the Aboav-Weaire law)

Lewis (1928) observed the following linear relationship between the average area
of an n-sided bubble <A,> and n

<Ap >=k (n-o) (414)
where k and o are constants dependent, respectively, on the average area of all

bubbles and on the bubble pattern This relation 1s valid for a large class of
cellular structures provided n 1s large enough

Aboav (1974) found that the topological correlation effect among different cells 1s
then described by

m(n) =(6-a) + (6a+lp)/n (415)
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where ¢ 15 a constant (a=1 2), and m(n) 1s the average number of sides of the
neighbours of an n-sided bubble This 1s known as Aboav’s Law and for the

special case of a=1, 1s usually called the Aboav-Wearre law

4.1.2.4 Simple Soap Froth Model

The soap froth 1s the simplest and most fammhiar structure which has the
characteristic of surface-energy-minimisation, 1€ each cell 15 of some constant
predetermined area (1n two-dimensions) and the system 1s m equilibrium when the
total length of all cell edges 1s a mumimum with respect to any small distortion It
represents the closest analogy to an experimental system with ideal growth A
soap froth has all boundaries equivalent, with 1ts evolution driven by a transfer of
gas between neighbouring bubbles and governed by Von Neumann’s law This
constraint can be satisfied only 1if the boundaries are curved We focus on an 1deal
dry froth, where the balance of forces gives all internal anéles of the network
equal to 120° and the mean number of sides <n> =6 Evolu;mn 1s through T1
processes (neighbour switching) and T2 processes (cell vanishing), (Fig 4 1 1)

From Equn (4 1 2), we obtain the average area of a bubble <A> to be proportional

to the time, t, 1€ asymptotic linear scaling of the froth, <A> ~t & Also, 1t can be

predicted that in a scaling state, the average length scale, <d>, has the form <d> ~

tB, where B 1s the growth exponent The pattern of the froth 1s also characterised
by a single length scale, the mean cell radus <r>, (<d>= 2<r>) The average size
of the cell 1s a function of time, 1n the sense that it gets smaller or larger as time
goes on

Further a random structure can be characterised in terms of the distribution
functions of 1ts properties, namely the probability that a given bubble has a given
area relative to the mean area, <A>, of the pattern and the topological distribution
function f(n), the probability that a bubble in the pattern ’l%l‘as n sides Thus,

moments are given by
K=Y (n=6)f(n) (416)

By definition from equation (4 1 6), 1, =0, i, =0 The dispersion and skewness of
the distribution 1s measured as usual by the second and third moments In the

evolution of a froth, the value of the second moment L, 1s a fundamental quantity
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4.2 Current Studies of Froths
4.2.1 Experimental Studies and Results

The first experiments on coarsening of soap froth were ca}jrled out by Smith
(1952), based on some photographs taken during the evoluton of a froth, mitially
non-uniform which was observed to evolve from a few thousand tiny bubbles to a
few hundreds While Smuth found that soap froth mimics grain growth in metals,
the former does not include the complexities of grain boundaries with orientation-
dependent energies Smuths analysis suggested that long-term asymptotic
behaviour was just a change of scale, with no change of the side distribution He
also found that dynamuc scaling properties can be characterised after imitial

transience by system statistics such as the second moment, 1, =15 and the

average area of a bubble <A> dependent on an exponent, as indicated previously,
with o= 1 There was a tendency towards a fixed, time-independent distribution
of number of sides and relative sides He concluded that only three-sided bubbles
could disappear drrectly, however, as noted earher, whereas four-and five-sided
bubbles could not, but evolve through T1 processes to become three-sided first,
then vanish directly via a T2 process :

Smuth’s conclusions were challenged by an analysis published by Aboav (1980),
based on a different set of photographs of Smuth, using an alternative
experimental method, where the iitial bubbles were formed with roughly
uniform size Evolution was again followed from thousands of cells to hundreds

of cells From the statistical data, Aboav found that no stable limiting distribution
of sizes existed and the second moment B, ~ <d>, (roughly from 0 64-2 86),
increased with average linear intercept <d>, where <d> ~ <A>1/2 1e a=2

Much later, Glazier et al (1987) carried out a set of experiments and found that T2
processes could iclude direct disappearance of four- and five-sided bubbles
without any prior side-shedding Several types of mnitial condition both ordered
and disorder were considered In the ordered case, large ordered domams of six-
sided bubbles are separated by dislocations formed by pairs :pf five- and seven-
sided bubbles As t increases, five-sided bubbles shrink while seven-sided ones
grow As the five-sided bubbles disappear, they affect the number of sides of the

neighbouring hexagonal bubble and the spatial extent of the ordered regions
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steadily decrease Once all the ordered domains disappear, evolution proceeds
with disordered configurations A relaxation region 1s thus found followed by

power-law behaviour Glazier et al (1987) found that, nrespective of the nature of

the mitial conditions, froth evolution behaved asymptotically as <A>~t% with
0=0 5910 11 The difference with the expected value ot=1 was traced later, to the
fact that the experiments were performed with a fixed amount of fluid

Stavans and Glazier (1989) studied the long-term scaling regime mn terms of the
distribution f(n) and 1its dispersion i both ordered and dlsord;éred froths Within
experimental error, f(n) remains unchanged during the evolution after transient
states have died out A more precise measurements of f(n) 1s also given,
comparing results from a number of systems, they observed that f(5) 1s higher
than f(6) They also provided evidence for the validity of the Aboav-Weaire law,

with the second moment p, =14, and obtamned excellent agreement with the

measured dependence of m(n) on n.

4.2.2 Theoretical Results

Several theoretical analytical methods have been used to describe the evolution of
cellular networks from various aspects

(I) Mean-Field Theory

Flyvbjerg and Jeppesen (1991) derived a tlme-mdependerftf equation for the
normahsed distribution by introducing a generating funétlon and solving
analytically the partial differential equation obtammed Furthermore, Flyvbjerg
(1992) has obtained a master equation, which 1s very similar to that of Fradkov et
al (1988), but without assuming a maximum entropy distribution of the area A
numerical solution was obtained for the distribution of the number of sides
without any free parameters

Stavans et al (1991) pursued from the onset a two-track approach separating the
calculation of areas from that of purely topological properties They wrote
dynamucal equations for the variables without mcluding T1 processes as a first
step The form of the equations neglected the appearance of two-sided cells They
found a Line of fixed points instead of a unique fixed pont as one would naively
expect Results here support the asymptotic time-independent behaviour of froth

Recently Segel et al (1993) extended the approach of Stavans et al to the

]
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calculation of area-related properties Thewr results are n agreement with
experiment for all values of n and Lewis’s law 1s valid for large values of n

(IT) Maximum Entropy Method

Eeenakker (1986) used a hybrid approach to describe the evolution of a froth He
derived a dynamic equation for the area distribution function He argued that
scaling behaviour 1s not exhibited in the solution Instead, some cyclic behaviour
1s obtamned, whereas disordered configurations collapse mto ordered ones,
consisting mostly of six-sided cells Then evolve to disordered again No such
behaviour has been seen m any experiment so far

De Almeida and Iglesias (1988) have studied maximum entropy to calculate the
topological functions Thewr predictions for side distribution f(r}) 1S 1n agreement
with those obtained from froth experiments, corresponding to tile second moment,

K, =15 However, the area distributions do not match experimental data for any

value considered

(IIT) Topological Model

Levitan (1994) first proposed a topological model to implement the rearrangement
of the froth by random T2 processes He considered the froth in terms of the areas
of the bubbles and constructed an approximate topological realisation of the froth
structure by labelling sites of the bubble lattice to create an adjacency matrix of
nearest-neighbour connectivity His model was used to solve von Neumann’s
equations on a geometrically realistic network of bubbles up to the point when the
first bubble disappears Since a T2 process 1s selected randomly, the neighbouring
bubbles change therr topological classes corresponding to the adjacency matrix
changes This model has also been unsuccessfully applied to the analysis of a
single defect in a hexagonal network, Section 432 Recently, Levitan and
Domany (1995) (1996) have proposed subsequent, revised versions of this
topological model to correct the former results Some extra assumptions have
been taken to apply to the original model One such, takes into account the effects
of the areas of the topological classes of the neighbouring bubbles on the results
of a T2 process Lengths of the sides of 4-sided and 5-sided bubbles are calculated
to obtain specified rectangles and pentagons of bubbles The obvious advantage of
these topological models 1s that they can deal with the macroscopic evolution of a

froth with a very large system size They have also been used to observe the
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behaviour of the remaining bubbles, (so-called survivors) in some detail, Levitan
and Domany (1997) A system size of over 40,000 bubbles f?as been studied so
far However, results and conclusions obtamed by those topological models seem
m poor agreement with those by experiment and simulation methods Some
details are given 1n the following section

(IV) Logistic Map Theory

Rivier (1985) first suggested describing the froth network using a logistic map,
which means a space-filing pattern consisting of a central cell surrounded by
concentric layers of cells For detailed definitions and proofs, see Rivier and Aste
(1996), Aste et al (1996) Applying this dynamic map to the froth structures, Aste
and Rivier (1997) studied the topological properties of physical froths, which are
cellular networks with homogeneous shape and sizes They have found that in 2D,
the logistic map has one parameter, given as a function of the average topological
properties of the cells i the layers The curvature of the space tiled by the froth
can also be obtamed from their calculations "ﬂ

From this shell structure map, a clear ilustration 1s also provided of diversity
between cellular networks and simple cellular systems While both consist of
simple cells, the difference mn the evolution laws 1s mtrinsic Connectivity
relations between cells 1n the network are widespread and pervasive as opposed to
local Any cell can be influenced by the disturbance in the network even 1t 1s far
away from the central cell and the network adjustment take place instantly
Whereas only the nearest neighbour sites of the cell can be affected in a simple
cellular system 1n the first step, 1e the connectivity 1s local However, cellular
automata rules govern transitions between these simple elements As we
described earlier 1n Section 2 4 the local adjustment occurs simultaneously, while
the whole system 1s adjusted 1n subsequent time steps

4.2.3 Computer Simulation Algorithms and Early Results 5:‘

1

Investigating a 2-D froth gives us the opportunity to observe the details of the
structure since 1t 18 easier to visualise and model than a 3-D one Generally
speaking, four methods to date have been used to simulate froths These are (1)

direct simulation (1) the Monte Carlo method (i) the vertex model (1v) the Potts
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model (variant of MC) We discuss these alternative approaches briefly in what

follows, concentrating on (1) for specific studies described later in the Chapter
4.2.3.1 Diwrect Sumulation ¥
Wearre and Kermode (1983b) (1984), Kermode and Weawe(1990) proposed a
2D-FROTH program to investigate the equilibrium properties This program
creates a fimte sample of the froth network model with periodic boundary
conditions and equilibrates 1t by an iterative procedure The pattern reaches
equilibrium by a repeated cycle of local adjustments The soap froth 1s a strictly
chaotic system, so the detailed evolution of the pattern may depend on the
sequence 1 which adjustments are made The program distinguishes between
topological and diffusive adjustments
Most studies so far assume that the cellular network 1s incompressible, and n the
case of a froth, attempts to compress 1t simply minimise the surface energy of the
soap film at all times The radius of curvature of each side 1s

r=c(P, - P,)! N (421)

where P, and P, are the pressures in the two adjacent cells and ¢ 1s a constant

related to the surface tension T by

c=2T 422)
These conditions are satisfied for each cell area
Assuming that the rate of diffusion R of gas across each side 1s proportional to the
length [ of that side and to the pressure difference across it

R=kl(P, -P,) (423)
where k 15 a constant According to Equn (4 1 2), only the cells whose number of
sides n#6 contribute to froth evolution The cells with fewer than six sides will
shrink and those with more than six sides will grow
The local variables chosen to relax at each step, are the position of a vertex and
the pressures of the three surrounding cells Although two arcs with the same
curvature can be drawn to connect two vertices, 1t 1s assumed that 1t 18 always the
smaller arc that occurs i the network, (also supported by the experimental
evidence)
Equations expressing the dependence of the vertex angles and ther neighbouring

cells areas are given by
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"
where pl, p2, p3 are pressures and X,y are vertex co-ordmnates

Al

:
so Equns (4 2 4) as a function of the five variables are approximated by a linear
form, and numerical differentiation 1s used to determune the coefficients The
angles and areas change as the froth equilibrates (1e angles optimum at 120°),
and area adjustments involve vertices of other cells also

Since the topological changes (T1 and T2) are the essential mechanism of froth
evolution, dmrect simulation implements these topological rearrangements m a
drect way This means that after each local relaxation of a vertex, the first step 1s
to test the possibility of a T1 process then specify the adjustment by solving the

equations If the proposed displacement is D, and R, are vectors linking the vertex
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n equation to #ts nearest-neighbours, then a T1 process takes place if the following
18 satisfied

DeR >R R ’ (425)
The T2 process only occurs mn two cases Firstly, and most frequently, 1s 1n the
diffusion procedure where changes of area are calculated A T2 process will take
place if the target area 1s zero or negative Secondly, wherever 1t 1s convenient for
a cell to disappear, then the target area 1s designed to have a small positive value
The existence of very small cells can cause some problems in the program, so any
cell with area less than 0 1% of unit area, 1s forced to disappear (convergence)
As noted above, the diffusion process mnvolves a transfer gas across boundary The
net rate of diffusion for a cell 1s given by Equn (4 1 2) and governs the cell area

The total area remains the same and the average number of cell sides 1s six, see

Section (412 1)

The 2D FROTH program structure 1s as follows
PROGRAM FROTH

CALL SETUP // Create Voronoili network
CALL INPUT // Input parameters
CALL STAT //Initialise

//Start evolution loop //
DO 10 I=1,IJSTEP // Increment step number
ISTEP=ISTEP+1

CALL DIFFUS //Diffuse network
CALL EQUIL //Equilibrates the network
CALL STAT //Performs statistical calculationsg

10 CONTINUE
CALL OUTPUT
CALL STAT
CALL EXITFR //ExX1t the program
END

Early results showed that for small system size equal to 100 cells, the simulated

froth did not reach a scaling state, and |, increased (roughly) in a linear fashion

with time For several samples of 500 cells, with differing initial structures, Weaire

and Le1 (1990) obtamed the asymptotic value of p, =1424005 Simulations
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starting from ordered configurations showed an early mcrease of ., followed by a

decrease and eventual achievement of a steady state value Initial configurations
characterised by different degrees of disorder were allowed to evolve and mn all
cases scaling was achieved Herdtle and Aref (1991) using a similar method to

Wearre and Kermode, however, obtamned 1, =12 for a system of size 1024 cells

The difference hes mainly 1n the way the structure 1s relaxed towards equlibrium,
which Kermode and Weaire (1990) specified as a sequence of local adjustments of
pressures and vertices, whereas Aref and Herdtle considered all these variables to

be adjusted simultaneously 1n each iteration

4.2.3.2 Monte Carlo Method

The Monte Carlo method depends on representing the solution of a problem as a
parameter of a hypothetical population, and using a random sequence of numbers
to construct a sample of the population, from which statistical estimates of the
parameter can be obtamned Wejchert et al (1986) discussed the Monte Carlo
simulation of the evolution of a two-dimensional soap froth, based on
discretization of the problem These authors used a triangular lattice which has six
nearest neighbours n two-dimensional space (1e has a hexagonal dual) Two
neighbouring lattice points with different assigned integers are automatically
separated by a cell boundary A clustered group of lattice points labelled with an
mteger k, represents a particular bubble k

This method incorporates explicitly the rapid equilibration of boundaries present in
soap froths All cells mnvolved are of umform same size and shape This
equilibration was also performed under the constramt of constant bubble area,

which was built into the interaction Hamiltonian

H=1/2N X X 3,00 - 1 + MN Z (ag - a)? (426)
1, neighbours 1 cell k
where k indexes the bubbles and each bubble present in the network at any time

has a different integer label, & 1s determined target area for the kth bubble

according to Von Neumann’s law, andA 1s a constant This Harmltonian relaxes to

the surface energy case, (which refers to the creation of pressure differences that

result n gas diffusion), with the constramnt that each bubble has a fixed target area

b
u“
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dr The target areas were updated according to von Neumann’s law, equn(4 1 2),

reproduced here for convenience

dag/dt = k(ny - 6) 427
Starting from a disordered Vorono distribution of cells, the results of Wejchert et
al are in agreement with the computational results by direct simulation and are
compatible with experimental values of Smuth (1952) An asymptotic regime was
found for which the grain growth exponent in the soap froth simulation 1s

B=049+0 03 After an mtial transition period, the second moment reached an
average steady state value of 1, =1 6 01 This kind of disparity between the 1,

values appears to reflect dependence on 1nitial structure, system size etc

4.2.3.3 Topological Analysis (Vertex Model)

Kawasaki et al (1989)(1990) constructed vertex models in which the topological
properties of the boundary of a froth are retamned In this case, when bubbles meet,
the vertices are treated as pseudo-particles, and are subjected to forces determined
by the positions of the neighbouring vertices The connections between the vertices
are assumed to be straight and deviations from 120° angles are used to determine
an effective curvature The vertices move to minimise bond length according to
equations of motion of the form
LD, (v, +/2)=-0X @ 1)/ |1, 1, (428)

where 1, 15 the position of the ith vertex, v, 1s 1ts velocity, 6 >0 1s a surface tension,

and D, a tensorial friction coefficient associated with boundary motion The sum 1s

over all vertices j linked to vertex 1 by a bond The enormous rgductlon 1 variables
makes this method computationally very efficient so that very large systems can be
simulated However, the morphology of the configurations so generated 1s
somewhat different from that of many real systems due to the very nature of the
model The extreme simplicity of the model 1s difficult to relate to the real physics
of a froth structure Kawasaki (1990) and co-workers found that scaling behaviour

was obtamned after short transient period with B = 05, but did not obey von

Neumann’s law, and therr scaling state distributions generally differ remarkably
from experimental results This may be due to the assumption that all boundaries

are straight lines regardless of the effect of interfacial curvature
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4 2.3.4 The Potts model :

The Potts model 1s a generalisation of the Ising model in which spins on a lattice
have q possible equivalent states The simulation of the Potts model takes a quasi-
miucroscopic view of froth evolution The surface energy of the Potts model on a
lattice 1s proportional to the total length of grain boundary in the system. The
Hamultonian describes the energy that results from various nteractions Each
grain 1s defined as the region of a lattice in which vertices have a given value of
spin (1,3) and the Hamultonian 1s simply the surface energy due to spins that do not

mteract

H=-2 X 6 quo ey -1 (429
1) neighbors v’ ,f
In a zero temperature simulation, a site 15 selected at random and assigned a new

spin if the change reduces the energy This may be extended to a standard finite
temperature Monte Carlo simulation (see € g Binder (1986)) The lattice has a
surface energy that depends on boundary orientation We characterise the
anisotropy of the lattice by the ratio of the highest to the lowest surface energy per
unit length

There are two basic differences between the Potts model and the real experimental
soap froth The diffusion time of gas across a soap film 1s much slower than the
equilibration tume of the film along its length, while m the Potts model and most
metals the two times are the same Thus, soap froths are closer in shape to true
equilibrrum surfaces than are grain boundaries in the Potts model and metals
Furthermore, the Potts model has lattice anisotropy while the soap froth 1s entirely
1S0tropic

Glazier (1990) has presented a comparison between a next-nearest-neighbour g=eo
Potts model on a square lattice and the experimental evolution of a two-
dimensional soap froth Starting from identical initial conditions and comparing
the pattern evolution, dynamics, distribution functions and correlations of the two,
the basic agreement between them 1s excellent The Potts model 1s able to

reproduce reasonable distribution functions, reach a scaling state with § =0 5 and
K, =15 +0 3 and achieves nearly perfect agreement on the correlation functions

for the Aboav-Weaire law There are, however a few systematic deviations which

may be due to the influence of subtle anisotropy and equilibration effects In the
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Potts model, highly anisotropic lattices, (where e g the relative distances to
neighbours are 1n the ratio 1 24 1), produce frozen patterns and the scaling states
of moderately anmisotropic lattices (e g with ratio 1151) have distribution

functions which are flatter and broader than those of the soap froth,e g u, =24

rather than the 1 5 Also, the disordering process takes more time than in the soap
froth and the grain boundaries do not have uniform curvature

Glazier et al (1989) with a Potts model simulation have observed that the area for
cells with few sides 1s larger than that predicted by Lew1s’s hypothesis Many-sided
cells are smaller than predicted as well, and the distributions of normalised area are
constant The correlation seems to be independent of the degree of equilibration of the
froth and would appear to depend on local rather than long range equilibration For
example, a very large number of cells with few sides can rapidly change sides by T1

' processes without having to wait for cells to disappear

4.3 2D Froth Models- Implementations via Direct Simulation
Methods

4.3.1 2D Froth with Voronoi Network
4 3.1.1 Voronor Network

Vorono1 construction has been used to form the mmtial condition of a disordered
network, Boots (1982) The Vorono1 network 1s that network formed by convex cells
whose boundaries are determuned by all the perpendicular bisectors of all the lines
joming a set of n-tuples, Grunham and Shephard (1987) Since 1t automatically
creates a controlled amount of disorder, the Voronoi network was used for most
mitial configurations 1n the early investigation of froth evolution, Weare and
Kermode, (1983)(1984), Weawre and Le1 (1990) In order to compute the network, we
can use 1ts dual, the Delauney tessellation Thus 1s the division of space nto a set of
triangles whose apices belong to the set of imtial points, where, for each triangle, no
other pomnt exists inside the crrcumscribed cicle of that triangle The Delauney
tessellation 1s shown m Fig 43 1

A Vorono: network can be constructed by random generatlor’f of a set of mitial
pomts, 1¢ the sumplest case 15 where the bubbles form a tihing of the plane

produced from a number of seed pomnts scattered over the domain These bubbles
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arise by associating with each seed the set of ponts 1n the plane that are closer to
1t than to any other seed Each vertex in such a tiling 1s trivalent except for
degeneracies due to symmetry The angles in the Vorono1 pattern are not in
general 120°, but these angles can be obtamed by allowing the Voronos tiling to
relax elastically If we impose constraints on the distribution of nitial seeds, then
we obtain special patterns, for example, two seeds subject to the condition that
these are a certain munimum distance apart leads to the so—ecalled hard-disk or
hard-core Voronoir setup, Wearre and Rivier (1984) It ha$ been noted that
Vorono1 patterns with a hard core tend to have lower values of the second
moment than those with no constraint, Herdtle and Aref (1992) The hard-core
one can be used to set up a more regular network but still with some random

structure

\ ¥
‘/ \ e

Fig 4 3 1 a section of Dual of the Voronor network

4.3.1.2 Voronoi Froth Models- Large Scale Systems

We have constructed Vorono1r networks for froth systems with several hundred
bubbles by direct simulation methods, and have also extended the simulations to
larger systems which would be more realistic for the nvestigation of true
randomused froth structures System sizes range up to several thousands of
bubbles In particular, we report on the scaling properties for a hard-disk Voronoi

network for a system of 3000 cells, (Fig 4 3 2)
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Fig 4 3 2 2D froth with a hard-disk Voronor Network

4.3.2 Defective 2D Froth Models: The Simple Case
4.3.2 1 Ordered and Disordered Froth o

Some difficulties exist in the literature as to what 1s meant by ordered 1nitial
conditions Different underlying structures (monodisperse and polydisperse) have
been specified, which correspond apparently to the same 1nitial value of p; Since
this comes from a summation over the non-hexagonal side distribution, Equn
(4 15), there are several possible configurations for a froth with the same [z, 1€
for the same distribution f(n) This 15 wrrespective of whether the area distribution
1s uniform or non-uniform, or whether the defects are randomly distributed or
clustered Equally, 1, may be the same despite different f(n) reflecting very
different froth structure It seems clear that p; alone 1s insufficient to quantify the
degree of disorder and that more specific details of the muitial structure are
required This 1s hardly surprising, given the elusive nature of the concept, and
has been implicitly recognised by a number of authors i

The simplest local topological dislocation 1s defined as a pentagon-heptagon
construction 1n an otherwise hexagonal structure, Weare and Rivier (1984),
where this construct satisfies Euler’s law, (Equn (411) and Fig 433)
Alternatively, the dislocation may be formed by forcing a T1 or T2 process,

leading to a pared pentagonal-heptagonal dislocation, (Fig 4 3.4 (a) and (b)).
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Fig 4 3 3 A topological dislocation with a pentagonal-heptagonal cell pair

Defining an ordered initial froth to be a uniform hexagonal, (monodisperse),
network, then a hughly ordered froth consists of such a network with one or a few
“seeded” defects present in what 1s essentially stil a regular structure A
disordered froth 1s non-ordered and 1s taken to be a non-uniform (polydisperse)
network with random localised topological dislocations A highly disordered froth
1s thus clearly non-uniform hexagonal 1n structure and can have a large number of
these dislocations Voronoi networks are mn some ways typical of disordered
structure

Froth reversibility was discussed by Weaire and Le1 (1990), and Herdtle and Aref
(1992) In mathematical terms reversing froth evolution involves writing -k
mstead of £ 1n Von Neumann’s law Equn (4 1 2) Distinction between so-called
ordered and disordered froths can be made on the basis of this property In an
ordered froth, the dislocation can be made to disappear through a series of T1
processes, resulting m a final structure which 1s uniform hexagonal
(monodisperse, W, =0) In a disordered froth, however, some topological
dislocations always exist although their location will change after one or more T1
processes The froth thus remains a polydisperse network with a minimum value
of Wy (U2>0) The ureversibility of a polydisperse froth 1s implicitly considered m
previous work of Weaire and Le1 (1990), and Herdtle and Aref (1992))

i

P
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(b)

Fig 4 34 (a) (b) A topological dislocation in
(a) with pentagonal-heptagonal cell pairs formed by a T1 process,
(b) with a pentagonal-octagonal cell formed by a T2 process

From these definitions of order and disorder, it seems clear that Smith (1952)
described a highly disordered system whereas Aboav (1980) investigated one
which was highly ordered 1n that its underpinning was the hexagonal form. Both
ordered and disordered initial conditions were considered m Glazier et al (1990)
whereas Weaire and Le1 (1990) discussed disordered systems only Investigations
of froth behaviour when a single defect 1s present 1n a highly ordered system are
due to Levitan (1994), Ruskin and Feng (1995) We consider details of froth

evolution for a range of different 1nitial conditions in what follows

4.3.2.2 Single Defect 2D Froth Model

The question of mitial conditions was raised in earlier worlé cited above It 1s
known that a system with only hexagonal patterns 1s mn full equilibrum with
regard to diffusion, 1e a perfect ordered froth However, 1t 1s of interest to
examine quantitatively the introduction of disorder mto such a system. We

consider mmtially the single defect case
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The nttially transient behaviour of a relatively ordered froth has been mnterpreted
mn terms of the growth of individual topological defects The study of this growth
was first taken up by Levitan (1994), who considered the mnsertion of a single
such defect into a froth of hexagonal cells He used an approximation which 1s
attractive 1n that 1t offers the potential to simulate larger, closer-to-asymptotic
systems, but results obtamned were in disagreement with previous tentative
conclusions, (Wearre m Blackman and Taguena (1989)) We have re-examined
this problem by direct stmulations which are more extensive th%én those previously
undertaken

Levitan’s method first forces a T1 topological process, to take place 1n a group of
cells and follows this with a T2 process, for which the probabilities of a triangle,
square and pentagon being formed are the same In fact, the first T1 process gives
rise to two five-sided cells and two seven-sided cells in the network, (Fig
43 4(a)) Levitan used a mean field theory to show that the topological
distribution associated with a single defect approaches a fixed asymptotic form,
with a high peak f(6) = 06 This implies that i, attans a different and stable
value 1n conflict with previous predictions

We have implemented a 2D dry froth with a single topological defect, based on a
perfect hexagonal network to ensure correspondence with Levitan’s origmal
construction The defect 1s based on a symmetrical arrangement of two pairs of
pentagonal and heptagonal cells with mimnor discrepancies In the areas of the
component cells and with all hexagonal cells surrounding the defect having the
same area, (Fig 4 3 4(a)) Additionally, we consider another type of topological
defect, where the distortion 1s achieved by suppressing an edge in the original
network giving an eight-sided cell with two symmetrical five-sided cells amongst
its nearest neighbours (Fig 43 4(b)) We have also used another ordered
construction to create a third kind of defect, in which the areas of the defect and
its neighbouring cells have been adjusted, (detailled Figs are shown m Appendix
C) Pernodic boundary conditions are used but, for convenience, the defective cell
1s centrally placed mn the network, since the system 1s size limited, so that we can
momnitor the evolution for as long as possible Calculations are not pursued beyond

the stage where the defect impacts on the boundary

sy
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4.3.3 Multiple Defects in an Ordered / Disordered Froth

A froth with multiple defects 1s an extension of the single defect example where now
increased amounts of disorder are considered to be introduced nto the imtial
hexagonal network We also consider mitial structures for the froth network which
are both ordered and disordered (p89) before nsertion of the defects

Direct simulation 1s agamn used to investigate froth evolution for different system
sizes and 1nitial set-ups in order to obtan information dwrectly on each time step
during the whole evolution Defects which are sparse in the froth as a whole
evolve naturally before impacting on each other after a long period of time We
consider systems of size up to 1600 cells and mmtial structures which range from

highly ordered to highly disordered -

i
4 3.3.1 Multiple Defects in an Ordered Froth

From our definition, an ordered froth 1s based on the hexagonal network, where
for any value of n, all cells have roughly the same wnitial area For a highly
ordered hexagonal network, we have introduced a number of defects, d, as a parr
of pentagon-heptagon dislocations,

() d=4 m a system of size 400 cells (1,=0 05),

(1) d=7 1 a system of size 900 cells, (1, =0 03),

For a hexagonal network with low order, we have introduced,

(1) d=30 1n a system of 400 cells, (L, =0 3),

(1v) d=60 1n a system of 900 cells (U, =0 27)

4 3 3.2 Multiple Defects in a Disordered Froth

In a disordered froth normally obtamned from the Vorono1 net\:vork, the area of an

n-sided cell may vary considerably and [, provides an mdicator of the degree and

nature of disorder arising from increased dispersion in f(n) For a highly

disordered froth, we have considered the evolution of

(v) a system of 900 cells with imtial p; =1 2,

(v) a system of 1600 cells with witial p, =16, (f(4)=0 12, (5)=0 25, £(6)=0 28,
£(7)=0 09, £(9)=0 02, f(10)=0 01)
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For a froth with less disorder, formed by reverse diffusion, corresponding to low L,

in a polydisperse network, we have considered

(vi) a system of 900 cells with mitial p =0 22 (minimum),
(vin) a system of 1600 cells with mitial py =0.28, (f(5)=0 13, f(6)=0 74, {(7)=0 12,
f(8)=0 01)

SUBROUTINE SETUP
//This subroutine sets up a 2D hexagonal lattice with a number
of defects The dimensions are given by NX*NY, the number of

vertices 1n the x and y directions respectively. ‘

DO 20 I=1,NX

IT=MOD(I,2)

DO 10 J=1,NY

N=I+(J-1)*NX

NT=MOD (I+J,2)

X (N)=FLOAT(I-1)*RT32+RT34
IF(NT.EQ 0)THEN
Y (N)=FLOAT(J-1)*1 5+1 0
NN (N, 1) =I+MOD (J,NY) *NX

N,

(
NN (N, 2)=MOD(I-2+NX,NX)+1+ (J-1)*NX
NN (N, 3)=MOD(I,NX)+1+(J-1)*NX
NC(N,1)=(MOD(I-2+NX,NX)+2-IT+MOD (J-2+NY,NY) *NX) /2
NC(N, 2)=(N+IT)/2
NC(N,3)=(MOD(I-3+NX,NX)+1+IT+(J-1)*NX) /2
ELSE

Y (N) =FLOAT (J-1)*1 540 5
NN(N,1}=MOD(I-2+NX,NX)+1+(J-1)*NX
NN (N, 2)=I+MOD(J-2+NY,NY) *NX

NN (N MOD(I,NX)+1+ (J-1)*NX

C(N (T+IT+MOD(J-2+NY,NY) *NX) /2
NC(N 2)=(MOD (I-2+NX,NX)+2-IT+(J-1) *NX) /2
NC (N, 3) = (MOD (I-3+NX, NX) +1+IT+MOD (J-2+NY,NY) *NX) /2
ENDIF K
10  CONTINUE
20  CONTINUE

NTOT=NX*NY

NT2=NTOT/2

DO 50 K=1,NTOT-I1

3)
1)
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DO 51 J=1,3
IF (NN (K,J).GE.N1.AND.NN(K,J) .LE N2)THEN
NN (K, J) =NN(K,J) -1
ELSEIF (NN (K,J) GT N2)THEN
NN (K, J) =NN (K, J) -2
ELSEIF (NN (K,J) .EQ.N2.AND.K.LT (N2-1))THEN
NN(K,J)=NN (K, J) -1
ELSEIF(NN(K,J) EQ N2 AND K GE. (N2-1))THEN
NN (K, J)=NN(K, J) -2
ENDIF
IF (NC(X,J).GE.N3)THEN
NC (K,J)=NC(K,J)-1
ENDIF
51  CONTINUE .
50  CONTINUE
NTV=NTOT-I1
I2=I1/2
NTC=NT2-I2
DO 30 K=1,NTOT
IVLIST(K) =K
30 CONTINUE
RT32=RT32*3.0
DO 40 K=1,NT2
ICLIST(K) =K

NCELL (K) =6
VOL (K) =RT32
P(K)=0 O

40  CONTINUE
NCELL (435)=7
NCELL (466) =7
NCELL (436)
NCELL (465)
RS1=(SQRT(10.0)-2 ) /2.
VOL (435) =RT32+RT34
VOL (436)=5*RT34
VOL (465) =RT32-RT34
VOL (466) =RT32+RT34
X(931)=X(931)+0.5*RT34

5
=5

Y(931)=Y(931)+5./8.
X(932)=X(932)-0 5*RT34
Y(932)=Y(932)-5./8.
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ENDIF
RETURN
END

T
We give detailed results for some of these models in the next Section as examples An

example 1s also shown on the diskette in Appendix E

4.4 Results and Discussion
4.4.1 Voronoi Disordered Froth
4.4.1.1 Additional Notes on Direct Stmulation Implementation- Performance

For direct simulation, 1t 1s possible to specify the precise geometrical description
of the structure and 1ts evolution We note that Kermode and Weaire (1990) used
the routines FO4ARF and FO4ATF in the NAG library to solve the matrix
equation, but these are not available in the NAG library version available on the
VAX cluster in DCU We have, therefore, modified the programme by using
mstead the Gauss method The external library CALCOM 1s dlso unavailable, so
that for the current prelminary studies we have omitted the 2D-Froth graph
plotting routine and substituted our own, written in C A copy of this program 1s
given on diskette together with 2D-Froth program in Appendix E

For the largest system considered size 3000 cells with 1nitial disordered Voronoi
network set-up, the volume of information to be stored 1s considerable and run
times are of the order of several hours for each stage of the simulation due to the
large number of complicated network checks and continuously iterated
calculations A 3000-cell system appears to be the practical limit for the
computing power of the hardware configuration that we have used for this
sequential approach For 1000 and 3000 cell systems, the first runs required more
than 5 and 12 hours respectively, and succeeding runs about 2 and 7 hours on the
VAX cluster available in DCU We concentrate on specific distributions of
mterest in what follows

The time steps are small in our simulation so that 1t 1s easy to observe detailed
topological distributions and related behaviour exactly for each step Here the

number of time steps relates to the number of diffusion and equilibration
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processes which have taken place, with the evolution time, T, measured 1n units of

<A,>/k, where < A,> 1s the mitial average area over all cells, and k 1s the constant

m Von Neumann’s Law, and may be arbitrarily chosen, (Kermode and Weaire
(1990))

4.4.1.2 Results of Froth Simulation

We examine the distributions of number of sides and area, and the respective
correlations For the systems of 1000 and 3000 cells, we obtain the values of the

second moment, [, =1 5 and W, =1 63 respectively, where the later one 1s lgh

compared to values quoted by previous authors with the exception of Wejchert et
al (1986) This in part may be ascribed to the much larger network, so that more
cells are involved 1n a knock-on effect from a given topological change and partly
to a choice of different scale factors and hence the handling of small cells as noted
earlier, (Section 4 2 3 2) Nevertheless, clear equilibrium behaviour 1s established

In Fig 4 4 1-2, the distribution functions f(n) and the second moment, W,, for a

system of 3000 cell are shown Equn (4 12) suggests that the rate of area change
1s the same for all n-sided cells, wrrespective of the nature of neighbourmg cells In
a real system, the large cells are more likely to touch the boundary of a finite area
than the small cells, so that we have a systematic bias against the mclusion of very
large cells 1n our distribution function Also, we know that rate of growth of a cell
1s dependent on 1its shape, 1€ 1s only affected by the number of sides of the
original cell configuration Therefore, it 1s unnecessary to calculate all the side
lengths and sum the diffusion across each side 1 order to determine the rate of
growth for a cell

We have also looked at the correlations between area or diameter, <Ap>, (or d),

and number of sides, n, (Lewis’s Law), and correlations between n and m(n), the
number of sides of neighbouring bubbles, (Aboav-Weaure law) Results are shown
in Figs 4 4 3-4 For the former, we expect a linear relation between the cell area

and the number of sides, where <Ap> and n are recorded at various stages during

I

the evolution of the soap froth Agreement 1s obtamed with Lewis Law, also with

the Aboav-Weaire Law, but a 1s not normally quoted values of 1 or 12, (@ = 0 7)
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Also deviations from Lewis Law appear to be more marked for the smaller

system, 1€ system size of 1000, although departure from linearity 1s small

04

Fig 4 4 1 side distribution f(n) vs side No nn a system of size 3000
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nm(n)

Fig 4 4 4 Aboav-Weaire Law for a system of size 3000

Precise geometrical description of the structure and evolution of the froth are
presented 1 an example given i Appendix D for a system of size 900 We have
extended such calculations to hundreds or even thousands of cells, and obtained
results from the simulations which show that scaling laws during the evolution of
a froth are mn reasonable agreement with experiment, and previous simulation

studies

4.4.2 Froth with a Single Defect :

We have implemented the froth with a single defect, (Fig 4 3 E3 and Appendix C),
for systems of size 100, 400 and 900 cells respectively We give details of the
results for a system of si1ze 400 cells as an example Simular results are found for
all system sizes used

If we define an approximately circular “front” of disturbance surrounding the
large defective cell and including cells which have undergone a single topological
change, the circular “front” will include these (plus other cells which impinge on
the circle in part, but which have not yet undergone change) Levitan (1994)
simularly defines a “cluster”, which refers to the “front” used in our simulations
plus a boundary of hexagonal cells The slight modification we have used does

not affect the behaviour of L, or the side distribution but enables us to consider

separately [, in the front

Figs 4 4.5 show the evolution within the front at specific time, steps for different

mital defect types, corresponding to Fig 4 3 4(a) We can see that the number of
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area of the disturbance For the defect formed by edge suppression, starting from
the ordered non-Voronoi network set-up (see Fig 4 3 4(b)) and ordered Voronol
network (see Appendix C), we have observed very similar behaviour 1n the froth
evolution We give detailed results for the initial structure shown in Figs 4 3 3 (a)
and (b) as follows }

(a)

(b)



©

Fig 4 45 (a) (b) (c) Evolution of a froth with a single defect in a
hexagonal network with time steps of 0, 40 and 100 respectively

The topological distribution f(n) inside the front, 1s shown in Figs 44 6 (a) and
(b), at specific tume steps for the different defect topologies (Figs 4 3 3 (a) and (b)
respectively) We find that there tends to be a peak at n=5 1n the front as evolution
time 1ncreases, as opposed to the overall network of a normal froth which has a
peak with n=5 and n=6, Herdtle and Aref (1992) However, the distribution f(n) 1s
now, of course markedly right-skewed These features are not extraordmnary as
movement of the front results in continual incrementation of the number of sides
of the large defective cell

From our results, the second moment, |, continues to change with time without
reaching a fixed imit Figs 4 4 7(a) and (b) show how the second moment, H,, I

the overall network changes vs time, T The range of T includes about 200
diffusion and equilibration processes n our stmulation Topological and diffusive
adjustments are made sequentially within each time step and considerable details

of the evolution may be observed
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Fig 4 4 6(a) (b) Topological distribution f(n) 1n the front with time step
of 60(A), 120(0), and 160(0) Initial set-up Fig 4 3 3 (a) (b) respectively

Fluctuations 1n the value of W, around the underlying trend can be explaned
dwrectly 1n terms of the T1 and T2 processes, with a high i, corresponding to the
defect surrounded by a number of three- or four-sided cells, and a sudden
decrease 1n |, associated with the disappearance of one of these cells During
growth 1 area of the defect, |1, keeps a relatively stable value until the next T1
occurs Clearly, as more cells are mvolved 1n the evolution and the number of
sides of the defect increases, the value of |, overall changes more rapidly and 1s
dominated by the contribution of the defective cell Over the whole range of T, L,
~ TP appears to describe the observed behaviour, with § >1 However, few
changes take place mnitially, relative to the evolution as a whole, and for the upper

range of T, 2 vs T 1s roughly hinear, although 1t 1s not clear that a true asymptote

1§ attamed
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Fig 44 7(a) (b) 2 1n the overall network vs time T for a froth of
400 cells Imitial set-up Fig 4 3 3 (a) (b) respectively

For a simple theoretical model of a large defect with N sides surrounded by N
small cells, newly converted side lengths of the small cells will be characteristic
of the whole network, 16 N ~ A(d)° 3 with A(d) the area of the defect Then, 1in
the asymptotic limit, Von Neumann’s law becomes dA(d)/dt = kA(d)° S1e A(d)
~T* Similarly, in the front, the topological distribution will be dominated by the
defect, so that 1, (d) ~ N* withN~T,1e p, (d) ~ T*

Furthermore, the defect gradually involves more and more cells in the overall
network, so that asymptotically the exponents for the front and the overall
network should be the same From our sunulations, we find for the defect that
A(d) increases with T at the expense of other cells distorted by topological
changes If we define the increased area AA(d) = A(d) - A(d)o, where A(d)o 1s the
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onginal area of the defect, for the defect formed by edge suppression, e g Figs
4 3 3(b), we obtain roughly AA(d) ~ T after the nitial period of evolution, with
the radws of the rough perturbation circle, r ~ T approximately, Figs 4 4 8 (a) and
(b) ilustrate for the set-up of Fig 433 (b) Furthermore, we find that L, (d)
changes roughly linearly with the average ntercept, <d>, where <d> equals the

square root of the average cell area i the front, Fig 44 9
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Figs 4 4 8 (a) (b) Increase in defective area AA(d) vs time, T, for a
froth of 400 cells Imtial structure Fig 4 3 3 (a) and (b) respectively
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It seems clear that the behaviour of a froth with a single defect in a uniform
hexagonal network does not lead to a normal scaling state as found for the non-
defective froth by numerical stmulation and as predicted by theory We find that
f(n) 1n the front tends to develop a long tail extending to large values of n and
with a peak at n=5 This 1s 1n agreement with Aboav (1980), who also quotes o
=2 for the area growth exponent However, the suggestion that |, overall varies
linearly with time (comment by Weaire and Kermode (1983a) on Aboav’s work),
18 not wholly supported by our findings and 1s 1n conflict with the predictions of
the simple model It 1s only with hindsight that 1t has been suspected that Aboav
was dealing with a transient system with defects, characterised by different values
of the growth exponents Our own results are probably not in the asymptotic
region since the maximum number of sides achieved by any defect 1s N=44 at the
late stage. Nevertheless, they are supported by recent work of Jiang et al (1995)

In summary, we find that there 1s some similarity between the behaviour of our
system and that of Levitan (1994), but we do not agree with a fixed form for f(n)
as obtamned by Levitan The value of py, whether for the front or for the overall
network, does not reach a steady-state after initial fluctuations at this system size,

unlike normal froth evolution

4.4.3 Monodisperse and Polydisperse
4.4.3.1 Results and Discussion

Sumilar behaviour 1s observed for mtial conditions noted mn section 42 3, for
example (1) and (n), and also for example (u1) and (1v), results are thus discussed 1n
detad for (u) and (1v) only

For the ordered froth, (defined p89), the side distribution, f(n), 1s 1llustrated 1n
Figs 4410 (a) and (b) for specific time steps Since a single time step consists of
the number of diffusion and equilibrium processes which have occurred, the

evolution time, t, 1s measured 1n units of <A,>/k, as previously with k a constant
defined 1n Equn (4 12) The second moment, |, vs time and the average area,

<A> vs time are shown mn Figs 44 11-12 Agreement with the Aboav-Wearre

law 15 shown 1n Fig 4 4 13, where a 1s approximately constant (a =1 05)
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Figs 44 11 p, vs tume 1n an ordered froth with mitial set-ups

(@) (w), (b) (1v) respectively
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Figs 4 4 12 The average area of all cells, <A> vs time
with mnitial set-ups (a) (1), (b) (1v) respectively
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Fig 4 4 13 Aboav-Weaire Law 1 a low ( 4 ) and lghly (0) ordered froth
If considering the alternative illustration, 1 e nm(n) vs n (as shown
mFig 44 4), the line corresponds to constant a =1 05

For a highly ordered froth, we observe that the side distribution f(n) 1s markedly
right-skewed with the long tail reflecting the presence of many-sided cells, (Fig
4 4 10(a)) The second moment grows indefinitely with time, [y ~t, as a result,
(Fig 44 11(a)) Therefore, 1f the system size 1s large enough, we expect that [,
will continue to increase as larger many-sided cells are formed Our findings for {1,
vs t and also for the average area of all cells <A> ~t %, o =2 are 1n agreement with
those of a single defect as discussed in Section 4 4 2

The scaling state 1s reached when both f(n) and 1, attain time-mvariant values and
obviously does not apply for a ughly ordered froth, where neither f(n) nor [, tend
to a fixed form However, if we truncate f(n) at n = n * (n* < 12), we find that the
side distribution f(n*) 1s effectively fixed after the initial period of evolution, (see
e g Fig 44 10(a), f(4)=0 08, £(5)=0 37, £(6)=0 35, f(7)=0 09) Such a froth may be
said to be 1 a quasi-scaling state, although clearly Y, for all n continues to
increase This suggests, additionally, that a more appropriate measure of the froth
structure mught well be the third or fourth moment of the distribution, f(n)

The emergence of a quasi-scaling state in the highly ordered froth, however, does
not tend to wholly support the view that Aboav’s results describe a transient stage,
but requires focus on the later time-evolution, which 1s not provided. In fact, ten
percent of the imtial 5000 cells remained for the value of p, given in this work,
Aboav (1980) An alternative explanation, that the 10ng:term evolutionary

behaviour of a highly ordered froth reaches partial equlhbnﬁm at best, obtamns
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some support from the results presented here and 1s examined further in the next
Section

In contrast, for the low ordered froth, (1mitial conditions as 1 (1v), Section 43 3 1,
1e seeding the hexagonal structure with defects), (Fig 44 10(b)), the side
distribution f(n) does tend to a fixed form, e g f(5)=0 31, {(6)=0 30, f(7)=0 26, and
the second moment |, vs t exhibits one notable peak before finally reaching a

stable value of [ =1 5 after initial fluctuations (Fig 4 4 11(b)) The average area

of the cells now behaves as <A>~ t%, where 1< o <2 These scaling properties are
consistent with those obtamned by experiment (Stavans and Glazier (1989)) We
also find that there may be two peaks before i, reaches a stable value e g 1n (v)
with clustered defects Furthermore, the Aboav/Aboav—Wealr% law 1s obeyed mn a
hmigh/low ordered froth respectively in Fig 4 4 13, witha = 1 05

It appears, then, that normal as opposed to quasi-scaling i an ordered froth
depends on the mmtial side distribution f(n), 1e the number of defects, d, or
concentration dy, (=d/N,, Ny=the mmtial system size), with a corresponding
threshold or critical value p2(d’) partially determining the degree of disorder
Froths with mitial defects of various types (see Section 4 3 for example), either
randomly seeded or clustered, may correspond to the same Ly, but exhibit different
evolutionary behaviour before a final state For example, one or more peaks may
be observed for [z vs t1n the low ordered froth depending respectively on whether
defects are seeded randomly or clustered Nevertheless, if the system size 1s large,
the ordered froth will tend to eirther a quasi-scaling or scaling state, regardless of
the mitial conditions Otherwise, transient behaviour only may be observed (see
next Section) Moreover, our results suggest that while uz(d')iiis low, (e g around
0 2 for a system up to a thousand cells), this value increases for large system size

indicating that the proportion or density of defects in the overall froth determne
the threshold value

For the disordered froth (starting from the non-hexagonal structure as defined p89)
with mitial conditions of (v) to (vit), we give detailed results for examples (v1) and
(vm), since behaviour 1s apparently similar under simular initial conditions

Figs 4 4.14(a) (b) 1illustrate the topological distribution, f(n), at time steps of 0,

120, 260, corresponding to the mmitial, muddle and final evolution stage for the
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disordered Voronot structure Figs 4 4 15-16 show how the second moment 1, and

i

average area <A> change with time for examples (vi) and (viu) respectively For
the correlation laws, e g the Aboav (Aboav-Weaire) law, we found that the
constant a does not have the value of 1 or 12 as for the normal case, but has a

different value of a = 0 6~0 7 roughly, shown in Fig 4 4 17

1

f(n)
o
i

®

Figs 4 4 14 The side distribution, f(n) at tume steps of 0, 120, 260 for
(v1) a ugh disordered and (vin) a less disordered froth,
the heavier dark line represents f(n) in the scaling state
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Figs 44 15 1, vs time n a high and low disordered froth with
mitial set-ups (a) (v1), (b) (viir) respectively
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Figs 4 4 16 The average area of all cells, <A> vs tume, with
mitial set-ups (a) (vr), (b) (vir) respectively
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Fig 4 4 17 Aboav-Weaire law 1n a hugh ( 4 )and low (0) disordered froth
If considering the alternative 1llustration, 1 e nm(n) vs n(as shown
m Fig 4 4 4), the hne corresponds to constant a =0 6~0 7

For high or low disordered froths, (Figs 4 4 18-20), the side distribution f(n)
always tends to a fixed form, (e g (5)=0 32, f(6) =0 35, f(7)=0 18), with a stable

value of [, =1 4 Thus the disordered froth in the scaling state relates the average

area of all cells with t through <A>~t% with a=1 Neither the Aboav or Aboav-
Wearre law has constant a as previously (p 73) according to our simulation results
and 1n agreement with previous work for disordered froth evolution, € g Smuth
(1952), Wearre and Le1 (1990), Herdtle and Aref (1992) However, “ordered”
mnitial condition (U2 <0 4) obtained by reverse diffusion in the previous work of

Wearre and Let (1990), Herdtle and Aref (1992), in fact, 1s a less disordered
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structure by our definitton The semantic distinction here, can be confusing, but
relates to whether the original structure can be defined as ordered (in the sense of
p 89) or disordered A good definition remains elusive!

Consequently, our results support the existence of a universal scaling state,
urespective of system size, for a disordered froth, bas;:d on a Voronot
construction We find that |1, vs t has either a Jower peak value, (Uz <2 0), than
that observed for an ordered froth (Fig 4 4 15(b)) or increases monotonically (Fig
4 4 19(b)) While there appears to be agreement as to the location of the p; peak
during ordered and disordered froth evolution, 1t seems likely that 1t 15 merely a
comcident surface phenomena since the peak values are different (For example,
we obtain a high peak, (such as p; >3 0) for the ordered froth, (under condition
(1v)), whereas for the disordered froth we observe either a small peak (1, <2 0) or
none) This agrees with former work, Stavans and Glazier (1989), and Wearre and
Le1 (1990), where U, was found to rise rapidly to a maximum (U, =2 65 and W,
=1 9 respectively), then dropped to the constant value |1, =1 4 Furthermore, the
phenomenon of more than one peak for p; vs time (see Glazier et al (1990)),
appears to be a peculiarity of the ordered froth and we find no evidence for

multiple peaks for any disordered system we have simulated

4.4.3.2 Conclusions on Single/Multiple Defect(s)

For a froth with a single defect, our results for the behaviour of the front are in
agreement with the original experimental work of Aboav (1980), and indicate that
a different scaling relation applies 1n an ordered froth, (1€ a quasi-scaling state at
best) Regardless of the defect type and imtial configuration, for a single defect,
d=1, there are some grounds for supporting the suggested system behaviour put
forward by Levitan (1994), but the overall results are m confhict with his
predictions for the quantities characterising the long-term evolution For a froth
with multiple defects, d>1, we have reconciled apparent discrepancies in the
scaling properties describing the froth evolution In particular, our findings support
the view that agamn a quast-scaling state at best 1s achueved in a fughly ordered
froth, where the side distribution, f(n*) (n*<12) tends to have a fixed form whereas

f(n) for all n has long tail corresponding to the unhimited growth of p,. These
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remarks must be qualified of course by noting that only finite systems to moderate
size can be simulated directly A universal scaling state 1s, however, attained for
both the disordered and low ordered froth, where f(n) has a fixed form
corresponding to a system-invariant asymptotic value of [ =1 4 Additionally, we
offer an alternative explanation on the early result of Aboav(1980) indicating that
the ordered froth may progress beyond transience or, alternatively, exhibits a
prolonged transient region Thus 1s further discussed in what follows We also find
that the Aboav (or Aboav-Weaire) law has different values of constant a in the

ordered and disordered froth

4.4.4 A Note on Stages of Evolution in a 2-D Froth

From the above, 1t appears that the evolutionary process of 2D froth consists of
two regions involving several distinct stages, which are characterised by the froth
structure In particular, fransient behaviour which reflects mitial levels of froth
disorder can be varied both in 1its nature and duration The final stage of froth
evolution 1s associated with a few remaining bubbles, which change relatively
slowly, unlike the many, frequent changes originally associated with transience
Thus, late configurations do not affect achievement of scaling, but influence the
rate at which 1t 1s attained

The studies of ordered 2-D froths with single/multiple defects provide some
examples for length of transition period, which appearsi to be related to
concentration of defects, and highly ordered systems with few defects exhibit an
anomalous approach to the scaling state The question of the way in which these
factors nfluence the length of the transient and other stages 1s discussed here

In many areas of statistical physics, the evolutionary time T— oo as N— oo, but
scales are not interchangeable, since two distinct regions are mvolved, (a) 1<< T
<< T(N), and (b) T >> T(N), where for some T > T(N), finite size-effects operate
Thus 1s demonstrated also n zero-temperature simulations of Potts models, Derrida
et al (1996), which may be relevant to recent bubble growth experiments, Tam et
al (1997) Consequently, any discussion of froth evolution must include behaviour

m both regions (a) and (b)

,~
7
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The key factor 1n transience, as originally described, appeared to be that the early
evolution 1n region (a) mvolved a large number of bubbles 1n topological changes,

producing considerable variation 1n the form of f(n) and value of |, Actual time

taken 1s thus dependent on system and simulation characteristics are difficult to
quantify precisely Clearly, as the number of bubbles decreases, the sizes of the
remaimnder tend to 1increase so that the number of bubbles remaining, (or
"survivors" - expressed as a percentage of the mitial number), 1s then crucial as an
indicator of the potential for further change and 1n the determination of T(N) For a
large system where scaling 1s achievable, transient effects would normally be
expected to occur for a relatively large number of survivors, 1e T << T(N)
However, defects are known to affect the nature of trans1ent4behav1our It seems
clear, therefore, that duration of any stage mn the froth evolution depends on the
concentration of defects and ther distribution, (whether clustered or random)
Some 1llustrative evidence can be provided 1n support of this view as follows

For a random Vorono1 structure used as a sample of disordered froth, early
numerical studies for very small system size (N=100) recorded initially rapidly
changing behaviour, even though scaling could not be observed, Weawre and
Kermode (1983b) This 1s due to the fact that the transient effects are rapidly
overtaken by the finite size of the system In subsequent studies on larger systems
of several hundreds of bubbles, the nature of the early evolution was variable but a
unique final state was achieved with a fixed form side distribution, corresponding

to a stable value of |,, urespective of the amount of disorder in the initial froth

structure, Wearre and Le1 (1990), 1e the scaling state was observed, (region (a) as
usual) However, this result does not hold for special cases \oﬂf disorder, e g the
occurrence of a single defect in an otherwise ordered froth, where the scaling state
18 not observed at all for moderate system size (See section 4 4 2 earlier)

In an ordered froth, the behaviour varies considerably with the number of defects
introduced The anomalous case for a single mitial topological dislocation reduces
evolution of the froth to that of a single large bubble or single compound bubble

cluster, which proceeds to grow until the froth 1s consumed Thus W, for the whole

system grows imndefinitely with time, (region (b)) The nature of the mitial

topological dislocation 1s reflected in the configuration achieved by the froth in the
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final stages of evolution, (examples are given i Ruskin and Feng (1995))
However, the side distributions f(n) are sumilar except for the presence of several
large bubbles, (forming a compound cluster in the dislocation caused by a T1
process), which have the effect of reducing the extreme skew 1n f(n) Furthermore,
for few defects, an intermediate stage in region (a) 1s observed, which neither
reflects the many, rapid changes associated with transience nor the final fixed
value of scaling This "quasi-scaling" or slow approach to true scaling, has been
noted for moderate system size, (N=400), and 1s characterised by a relatively stable

"local pattern”, with fixed side distribution f(n*) and W, (n*) for n*<12, see

Section 4 3 3, Fig 4 4 18 shows L,(n*) vs survivor percentage for one defect

1
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the local second moment

0 f + + +
100% 80% 60% 40% 20%

survivor percentage

Fig 4 4 18 The local second moment, W,(n*) vs survivor percentage for one defect

For increased disorder, the number of defects (d = 2), or concentration of defects,
dy, (=d/N,, Ny=the mitial system size), determine transient characteristics, (region

i
(a)) For a large, mtially ordered, system with d or dy small, (and defects

clustered), the situation 1s essentially simular to that of the one defect case,
although more large bubbles 1 the compound cluster imply further limitation on

the skew i f(n) For randomly seeded defects, the growth of p, continues

unchecked until such time as the growth of one defect impinges on another, when

it slows down An intermediate stage 15 again observed with stable p,(n*), (=0 76,
e g for Ny =900 with d=4), attamned early m the evolution, despite [, mcreasing

For a system which 1s sufficiently large, the evolution will still achieve

equilibrium, (region (a)) for dy small Thus W, would be expected to reach its peak
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value and start to decrease at a rate which depends on the system characteristics
To some extent, this argument 1s supported by results obtamed for a system of
N,=40,000 bubbles with d=500 defects (dy =0 0125), Levitan and Domany (1996)
A protracted mtermediate period again appears to be a feature of the low
concentration of defects since the authors found that, from 40,000 to 1000 bubbles,

(0 025N,), the second moment, H,, contnued to grow, whereas from around 600
bubbles to 200 bubbles remaining, (0 015N, to 0 005N,), |, decreased and a stable

value was obtained Here, all the evolutionary period, prior to obtaining a fixed
value for |, 1s described as transient, even though 1t 1s clear that the percentage of
bubbles remaining to take part in topological changes, 1s very small, so that finite
size effects mught be expected to operate here, (T — T(N)) It seems likely that the

increase in overall |, therefore predominantly reflects a large number of changes

for relatively few large bubbles It 1s arguable whether the transient period should

thus be defined as time taken to reach the poimnt at which ﬁz shows no further
mncrease, (apart from local fluctuations) or, strictly, as the time taken for p, to

reach a fixed final value Either definition allows for early stage anomalies such as
those found for the final case considered below, but fails to provide much
mformation on changes 1 the internal froth structure

For the case of the ordered froth with a high density of defects, the transience 1s
clearly confined to the early stages of the evolution, (1n region (a)), and 1s much
more variable m form than found for low dy, with behaviour dependent on
different 1mitial conditions For example, |1, vs time may have one, two or more
peaks While rate of approach to scaling 1s affected, therefore, achievement of the
scaling state 1s not Examples of the effect of varying amounts of disorder on
behaviour and length of transience have been crudely quantified, but |, alone 1s
not a particularly satisfactory criterion here A more reasonablé quantity 1s clearly
the concentration of defects, dy The evidence suggests that the critical
concentration of randomly seeded defects, below which scaling 1s not observed for
finite froth systems, is around 1% of the imtial number of bubbles, (based on a
survey of current results) In this sense, T(N) can be roughly defined as that time 1t

takes the froth to evolve to the pomnt where only 0 01N, bubbles remain For very
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few survivors and an effectively infinitely large system, the evolution of the froth
becomes that of the large bubbles, ((region (b) and no scaling)

Fig 4 4 19 illustrates changes n the second moment [, vs time, t for different
defect concentrations, dyy =005, 02 and 0 4 m a system size of 2500 (This 1s

modest compared to Levitan and Domany (1996) 40,000 bubbles) For dy <0 05, 1t
1s clear that the speed of W, increase will be more slower, 1€ 1t takes even longer

to observe the scaling stage In contrast, for dy >0 4, the transient period 18 much

g

shorter A similar effect to that shown in Fig 4 4 19 1s also observed for nucleation
when raindrops form out of supersaturated vapour and different laws apply
depending on whether a number of drops grow sumultaneously or one drop

consumes all the vapour, McGraw and Laaksonen (1996)

the second moment
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Fig 4 4 19 the second moment, |l;, of the whole system vs time, ;t, for defect
concentrations dy = 0 05, 0 2 (mud-dark line) and 0 4 (dark-line) respectively

For dy <0 05, , tends to have a short right-skew, e g a long transient period,
for dy >0 4, u, has a long right-skew

In summary, for a disordered 2D froth, transient and scaling stages in the evolution

are easily identifiable, with p, rapidly achieving stability For an ordered froth,

stages 1 the evolution are less clear and are highly dependent on the defect

concentration, dy For dy large, early evolutionary behaviour 1s variable, but the
situation 1s essentially as for the disordered froth For very small dy, the period to
scaling 1s protracted and, based on W, alone, appears to correspond to long

transience However, this quantity 1s less informative about topological changes
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taking place 1n the system than [,(n*) Thus suggests that the period of many, rapid
changes 1s relatively short and that the majority of the system stabilises fairly

rapidly The final constant value of 1, will be obtamed only 1f the 1mtial system 1s

very large This suggests a critical concentration of defects for finite systems,
below which scaling 1s not observed The concentration of defects also appears to

't
i

determune the length of the transient period
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Chapter 5 MC Simulations and other Considerations
5.1 System Simulation with MC: Introduction

There are clearly practical limitations 1n extending simulations on cellular networks
such as 2D froths by direct methods given the sequential nature of many of the
origmal algorithms and limited hardware The available options thus include
parallelizatton or vectorization of the algorithms and alternative simulation
methods, which deal with system statistics as aggregates rather than as detailed
topological alternatives One other option would be changes of hardware but this
of course calls for massive mvestment The performance of distributed systems
may offer alternatives to super computers

With respect to the development of parallel algorithms, this would seem to offer a
better option, although for some of these complex systems, notably the froth
networks, such development offers a whole new project 1n itself, Heermann and
Burkitt (1991) Neither is parallehzation always appropriate for systems of
complex type and also of course generates its own problem, for example load
balancing algorithms, Hegarty et al (1996) Nevertheless, in subsequent section of
this chapter we discuss some of the mmplications for a parallel approach The third
options of simulations which deal with the statistics of a hypothetical population
which 1n some sense murrors the real one, 1s considered first in what follows

In particular, if we continue with the example of 2D froth, we note that direct
simulation of the evolution of several thousand cells on the system used on VAX 1n
DCU takes of the order of two days (system size = 3000 cells) It appears,
therefore, that this approach 1s lumited for systems consisting of large numbers of
cells It 1s also not clear that the direct method will be sufficiently flexible to
modify easily for other related cellular systems, e g grain growth, in particular
where an 1increase 1n scale influences both the effects observed and the time taken
for them to stabihise In what follows, we therefore consider alternative simulations

of Monte Carlo type for these systems
i
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5.1.1 Simple Systems

The Monte Carlo (MC) approach (introduced Section 2 5) has been used
successfully on a number of problems on surface behaviour for simple cellular
systems, e g cellular automata (CA) models, spin systems, and percolation models,
Hammersley and Handscomb (1964), Binder (1986), Stauffer (1991), (and also
Jain (1992)) Long-term large-scale effects for those systems can be mvestigated in
terms of a large number of discrete rather than continuous samples The generation
of random numbers 1s used to determune whether or not an eJent relating to, for
example, an atom or energy change takes place The system 1s then allowed under

certain criteria to move to a new conﬁguratlon

5.1.2 MUC for Froths; General Points

Wejchert et al (1986) provided an alternative simulation method for studies of
froth evolution Based on discretization of the froth, each bubble 1s assumed to
consist of a cluster of hexagonal cells, (samples), of the same size and shape Early
MC studies were used to nvestigate the effect of the area constrant, A, on time
taken to achieve froth equilibrium

Given that froth coarsemng mvolves the loss by a T2 process of n-sided bubbles
with n less than six, then disappearance imtially mnvolves gradual bubble area
shrinkage The mechanism of this MC simulation 1s thus to model basic hexagonal
cells fipping 1 bubbles which have no of sides n less than six i every MC trial,
where each bubble consists of an aggregation of these basic cells As a cell flip 1s
"allowed”, so the bubble’s area shrinks til it eventually disappears The MC
approach can thus also be used to mvestigate the influence on froth evolution of
bubble area, area difference, neighbouring cells and so on

The total energy of a 2D froth 1s given by E= 20 dX. /;, where o 1s surface tension,

(or surface energy), which creates pressure differences These result in gas

diffusion and the summation 1s over all bubble walls, of length, [}, 1€ the boundary

lengths of all bubbles To muinimuse the surface energy of the cells m the network,

the total energy Equn (4 2 6) reproduced here for convemence, 1s given by
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H=(1/2N)ZZ3 0, ;0 ;-1 + WN)Z (A, - A,)? 51D

() () bubble k
where cell (',)') 1s the nearest neighbour of cell (1), so 86, )0y y) 1s the length of
bubble side, (1€ length, /;), where 6, ;O yy 18 surface tension between cell (1))
and (1',f) So, 80 ;)0(,yy =0 if cell (1)) and 1ts neighbour cell (1',)') belong to the
same bubble, but otherwise =1 The total No of bubbles = N, A, and A, are
actual area and target area of bubble k, with A, determined by Equn (4 1 2), and

A, a constant that specifies the strength of the area constraint

5.1.3 Implementation for 2D Froth

¥
7

Conventional MC simulation using the Metropolis method mvo’lé\"/es steps which for
a soap froth, may be represented for one MC trial by

(1) Start with a Vorono1 network of bubbles consisting of hexagons from which a
cell 1s randomly chosen

(1) Randomly select a new cell from one of 1ts six nearest-neighbours

(m)Calculate change n surface energy AE, Equn(5 1 1)

(wv)For AE<0, accept new configuration (Typically AE depends on control

parameters, 80, )0y 1))

(v) For AE>0, retain the old configuration

We 1llustrate cell flipping for one MC trial m Fig 51 1, where the following
sequence apphes If a randomly chosen cell (3, j) of a bubble k1 1s 1n the boundary
of an nl-sided bubble k1 and an n2-sided bubble k2, then ranc?orrﬂy select one of
six nearest neighbours of cell (1)) If the new cell, either cell (1+1,)) or (1,+1),
shownm Fig 51 1, satisfies the condition of AE<0, (step(1v)), the cell (1,7) will flip
from bubble k1 to 1ts neighbour k2, nrespective of whether bubble side No , nl 18
less than, equal to, or greater than n2 Then the area difference between bubble k1

and k2, AA, will update due to the actual area, A, of bubble k1 and k2 having

changed, while the target area, A, of bubble k1 and k2 will stay the same
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Fig 511 An example of Cell fipping in MC simulation

A more complex example 1s to consider a cell at the boundaries of three bubbles,
or more, see Fig 512 and 513 If cell (11,J)1) occurs at the boundaries of three
bubbles k1, k2 and k3, (with notation smmilar to the two bube:e case), then, if any
one of the nearest-neighbour cells (11+1,j1), (11,j1+1), or (11-1,j1+1)) satisfies the
cell fhipping condition, AE<0, then cell (11,j1) 1n bubble k1 may flip to either bubble
k2 or k3 across the boundary The choice of nearest-neighbour again 1s random
Area difference, AA will update to give, AA =AAL+], and AA=AA; -1 (k=
either k2 or k3), and agamn, the target area of bubbles, k1, k2, and k3, (A, (k1,

k2, k3)) remamn the same

Fig 512 Cell fhpping between three bubbles
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3-sided
bubble k1
with k2,k3
and kd

bubble k1
with k2, k3,
4 and k5

Fig 513 Cell fipping between four or five bubbles

For a T2 process, sumulated by MC, energy changes, AE, (cell by cell reduction or
flipping), will be negative for small bubble cells However, AE depends on the
nearest-neighbour of a given cell chosen, the parameter A and so on We also need
to know the characteristics of recipient bubble, n, <A>, AA The evolution time 18

measured by Monte Carlo Step (MCS), which refers to the repetition of one MC
trial until all cells have been considered
5 In mtial simulations, we choose the area difference, due to bubble diffusion

between actual and target area, AA, to be 5% of the average area of a 5-sided or
7-sided bubble, 16 AA=-(n-6)*5%*<A,>, where AA=A,-A,r, <Ay> 1s the 1mtial
average area of bubble 1n the system Thus, AA=0 for a six-sided bubble, AA>( for
a n-sided (less than six) bubble, and AA<OQ for a n-sided (greater than six) bubble

Froth equiibrium 1s achieved for the total average area difference less than the

given maximmum difference
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5.1.4 Froth Coarsening
5.1.4.1 Notes by MC

As a further series of points on the MC simulation, we note the following

(1) CPU time 1s affected by A, but also by value of control parameter,
(temperature equivalent, T=0 always for step (1) to (v) i a single trial)
Also affected most importantly by AA,

(1) No of sides, n, of a nearest-neighbour bubble will change with a bubble

disappearance (Euler’s law) Thus, Ay, AA for nearest-neighbours of a

disappearing bubble must be updated nstantaneously before next MC trial

In what follows, we consider the importance of the choices of A, AA, <A> for an
efficient and reahistic MC simulation following Wejchert et al (1996)

From the procedure described 1t seems clear that achievement of a “scaling-state”
should depend on the environment of a disappearing bubble, (1e large or small

neighbour), and therefore on percentage reduction mn target area, Ay, AA as

mught be expected, (e g 2% average area will cause less cell fipping in one MCS,
whereas large neighbours make cell flipping more likely, since energy difference,
AE, condition more likely to be satisfied) and so on

However, the final disappearance of a "bubble” may be slow since the last cell can
take a long time to flip When a cell 1s the only cell in a 3-s1ded%bubble, 1t must fhip
to nearest-neighbours, possibly taking many MC trals because 1t 1s a stochastic
procession) Ths final disappearance also implies a reduction i the No of sides n

of bubbles k2, k3, and k4 Both A, and A, for k2, k3 and k4 will update
instantaneously, and hence area difference, AA will change to AA’, where AA'= -
(n-6)*5%*<A1>, given our choice of area difference above This apples equally
for a 4-sided or a S-sided bubble So, for any n-sided (n<6) bubble, when the last
cell 1n the bubble flips to one of its nearest-neighbours, bubble disappearance will

occur accompamed by the reduction of the number of sides in nearest-neighbour

124



bubbles This leads to the typical fluctuations mn L, n froth coarsening, which we

have noted earlier, Section 4 2

The mamn structure by MC method 1s given as follows, (for further details see

Appendix E)

// Froth Program by MC Method//

10

i
CALL 1input // input data

CALL setup // Initial Configuration (Voronoi network)
CALL Eguil // Equilaibrium

do 10 1=1,n

CALL Diffus // diffusion

CALL Equil // Equilibraium implemented by MC trials
1=1+1

CALL OUTPUT

continue

CALL OUTPUT

END
SUBROUTINE Cflap //MC trial

Itime= Itime +1 //time step

Ocell=ga(1,7) // a cell (1,3)

1el=1el+l // calculate the first term of

initial energy of a cefi
Newk=1nt (ran(1l)*6)+1 //random choose one of the six
neighbours of cell(1,7)
1e2=lambda{dvl*2+dv2*2)//calculate the second term
of 1inaitial energy
fel=fel+l // supposed a cell 1s flaipped,
calculate 1ts first term of energy
fe2=lambda (dv3*2+dv4*2) //calculate 1ts second term
of energy
oldenergy=i1el+ie2 //the sum of energy before flipping
newenergy=fel+fe2 //the sum of energy after flipping

1f (newenergy.le. oldenergy)then

//energy difference greater than 0,)
make= true. // accept the new configuration
else // Continue MC trial i1f temperature>0

Sy
s
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1if (temp.gt.0)then
1f {exp (- (newenergy-oldenergy) /temp) gt ran(l))then
make= true
endif
endaif
endif
END

5.1.4.2 Performance under Different Choices for <A> and A

From the mechamism described in the last Section, 1t seems that whether a cell (1,3)
flips or not may be dependent on the imtial environment We have implemented
froth evolution with two different Voronoi networks for a 2D froth of size 1600
bubbles with 400* 400 cells Here we measure the evolution time n terms of a
Monte Carlo Step (MCS), which 1s defined as previously, (Section 51 3), 1€ the
repetition of the sequence for one MC trial until all cells i the system have been
considered

InFig 51 4-5, we show variation of CPU time on MCS with the effect of refining
A and choice of area difference, AA In Fig 5 1 4, we show the effect of varying

the choice of area difference AA (2% and 5% respectively) on the second moment,

Wy vs time (measured in MCSs) In Fig 515, the effect on CPU time (agan in

MCS%) vs A 1s shown where the nterest 1s in refimng A to produce greater
response for reasonable time taken For any value of A much beyond 0 4, however,

CPU time escalates rapidly, in agreement with the similar result obtamned by
Wejchert et al (1986) The CPU tume 1s clearly longer due to slow energy change

for large values of parameter A, Equn (5 1 1), Fixing the area difference as 2% of
mean area <A> (Section 4 1 3) leads to a smooth evolution of [l vs time Thus 1s
not surprismg smce [, 1s sensitive to bubble disappearance at the lower

percentage, thus 1t 1s less difficult to get fhpping, and changes are less drastic
Results for quantities of nterest are i good agreement with those obtamed by

previous simulation methods [
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5 1.4.3 Performance of Bubble Area

The mitial bubble area A also appears to influence bubble disappearance Consider,
e g athree-sided bubble with different n-sided nearest- neighbours, (n=4, 5, 6, 7)
For a small value of A, 1t 1s clear that the energy difference for all n-sided bubbles
satisfies the condition AE <0, while for large A, AE will vary with different no
bubble sides, e g for n=6,7, AE<0O, for n<6, AE >0 The actual value of E
depends, of course, on the Equn (51 1)

In particular, we are interested here in the influence of bubble area on bubble

disappearance We consider the influence of mitial area distribution for two types

of Vorono network, (1) no hard disk version, where the 1mitial area distribution 1s

non-uniform, or polydisperse, with W, = 1 87 (u) hard-disk modification, where
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the 1nitial area distribution 1s not the same as (1), but still polydisperse, with y, =

109, () hard-disk, where the initial area distribution 1s different, roughly
1
uniform, or monodisperse, with [, =0 97, closer to (11)

I

For different Voronoi setups considered, the evolutionary behaviour for both
polydisperse froths, mitial conditions (1) and (un), 1s simlar, and indicates a rapid
decrease m the No of bubbles with tume, which 1s more marked for the froth with
higher mitial disorder or less uniformity of bubble area However, for roughly
uniform area, mitial condition (i), the decrease mn the No of bubbles with time 1s
much slower, although long-term behaviour 1s agamn simular to the previous cases
((1) and (n)) We show the change in the No of bubbles disappearing with time mn
Fig516
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Fig 516 No of bubbles vs time
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In previous experimental work, Glazer et al (1987) also note that the apparent
rate of shrinkage of bubbles with few sides 1s smaller than that predicted by a pure
linear fit If Von Neumann’s law holds in unmodified form, the evolutionary
behaviour of froth with imtial conditions, as for (1) and (), 1€ roughly the same
side distribution, but totally different area distributions, should be the same
However, we find that there are differences at the early transient stage, implying
that mitial bubble areas influence the rate or nature of froth evolution This mught
be taken to suggest that a modified form of Von Neumann’s law by Icaza-Herrera
and Castano (1995), which accounts for area distribution, should apply to the early

evolution. A possible form has been conjectured to be:
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dA/dt= kA%(n-6) (512)
where k and o (0< o< 1)are constants, =0 when Von Neumann’s law holds in
unmodified form, and o=1 for a normal froth, Icaza-Herrera and Castano (1995)
From Equn (4 4 1), for the umform area case, dA/dt ~ (n-6) apphes A modified
law for different area distributions also gamns some support, however, from e g
Herdtle and Aref (1992), who demonstrated some anomalous evolution resuits for
bubble disappearance Such anomahes appear, however, to relate to the early stage
of evolution and Von Neumann's law 1s appropriate for the evolution as a whole
In contrast to direct simulation, the MC method 1s able to model large system size
for less CPU time, (even though here only give an example of system size of 1600
bubbles) Moreover, the direct simulation program 1s much more complex and less
flexible than MC methods MC has been used to study other network pattern
problem, e g grain growth, Anderson et al (1989) However, the disadvantage by
MC 1s also obvious, e g the detailed information of evolution procedure obtamned
by the direct method 1s not available to anything like the same extent although MC

results are fully acceptable on an average basis

5.1.4.4 Summary

In summary, considerable effect on the froth evolution 1s obta{hed by varying the
control parameters of a MC simulation of 2D froth In particular, the construction
appears to emphasise the importance of the environment on the flipping of a
component cell of an n-sided bubble (n<6) and hence on that bubbles
disappearance In particular, we consider the important of the environment on the

fhipping of a component cell for a bubble with n<6 and hence on that bubble’s

eventual disappearance It 1S obvious that a large target area, A, and area

difference, AA, m this context imples that the scaling state 1s achieved more
rapidly during froth coarsening Additionally, A modified Von Neumann’s law best

appears to after an alternative explanation of the influence on early transient effect

of area
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5.1.5 Technical Implications of Froth

5.1.5.1 Theoretical Implication

A reabstic froth must include 3D and a few attempts to address the 3D case have
been made so far Clearly, such a cellular network 1s both more challenging and
complicated and thus, 1s very difficult to describe using a direct model as in 2D Of
the approaches tried for a froth to date, Frost et al (1988) used a discrete
description of the structural elements themselves, while Nagai et al (1990),
considered only vertex ponts joined by straight hnes as in the topological model,
(Section 423 3) Other aspects of the problem have been considered, e g by
Weaire and Glazier (1993) who give a relation between volume and number of
faces 1n coarsening cellular patterns, and by Wearre and Phelan (1994) who have
obtained a more efficient space-filling structure of 3-D froth which challenges
Kelvin’s origmnal structure More recently a logistic map formulation has been
considered by Aste and Rivier (1996) For a recent review, see Weaire and Phelan
(1996)

It 1s mstructive to consider some of the reasons why a three-dumensional cellular
network 1s so much harder to simulate than its two-dimensional counterpart,
despite the fact that we can theoretically define very many dimensions m
computational terms The factor of computer time 1s crucial for simulation in 3D,
because although the fraction of the volume affected by edge effects 1s much larger
than n 2D, the time taken for equilibration to take place makes the simulation of
large systems prohibitive The memory storage and computation time required for
such simulations 1s huge, hmuting severely the size of system that can be simulated,
and therefore making 1t difficult to obtain reliable information about scaling states
which apply 1n the asymptotic it

In addition to these common technical difficulties the simulation of our specific
cellular network, namely the realistic 3D froth present some additional problems,
which are mtrinsic to the nature of the problem. These include the fact that
distribution functions which are fundamental to the statistics are more difficult to

obtam since not all the structural details can be accessed simultaneously and with

130



ease Furthermore, the theory of the 3D froth faces an even more serious obstacle
n that the basic equations for 2D froths, (€6 g Von Neumann’ law, Euler’s rule),
both fail in three dimensions Polygonal cells in 2D are separated by circular arcs
with constant mean curvature that meet at equal angles of 120° In contrast,
polyhedral cells in 3D are separated by mummal surfaces with uniform mean
curvature, three faces meet at equal dihedral angles along each cell edge, and four
edges meet at each cell vertex at equal tetrahedral angles of cos “1(-1/3) =109 47°

In fact, the average number of faces, <f> of bubbles 1n a three dimensional froth
can vary considerably, though most experiments yield a value near f=14 Instead

the relation given by Nagai et al (1990) 1s

<n>=6 - 12/<f> 513)

This implies that fwo parameters (1e n and f) are needed to characterise a cell in a
three dimensional cellular structure as opposed to one (=n) in 2D In the case of
n=5, f=12, corresponds to the pentagonal dodecahedron, which 1s an important
structure

The elementary topological transformations also occur in rather different ways
compared with 2D A TI1 process whereby the vertices common to an edge
coalesce creating a new side, and a T2 process by which cells disappear directly by
shrinking are shown in Fig 5 1 7(a) (b). It 1s still not known }}owever, how many
different types of T2 processes there are because the average surface curvature of
a bubble with tetrahedral angles 109 5° 1s not determined solely by its number of

sides

-
I
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(b)
Fig 5 17 Elementary topological transformations n 3D
(a) T1 process or switching, (b) T2 process

The muumum mformation needed to determme the growth rate 1s also not known
Rivier(1982) has suggested “patching up” with the relation

dAgildt =k (<f>-f) (514)
where f 1s the number of faces of the bubble or grain, Af 1ts volume, and <f> 1s the

mean for all grams This equation 1s remuniscent in form to Von Neumann’s law,
but there are subtle differences between them Equn(5 1 4) describes the evolution
of an ensemble of cells mnstead of that of an individual cell Furthermore 1t cannot

be integrated to obtain the dependence of Af on time The topological network

models 1n 3D, such as Equn(5 1 4), would appear to be no more difficult to handle
than those i 2D, but there are ten or more types of disappearing bubbles
Recently, Rivier(1985) derived a three-dimensional version of, the Aboav-Weaire

law

mf(n)=c+]/n [ f(5-c)+(c-11)] (515
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where mg(n) 1s the average number of sides of the neighbouring faces of an n-sided

face belonging to an f-faceted cell, and c 1s a constant Computational verification
of this result 1s still lacking

Durian et al (1990) performed a systematic expermmental study of coarsening mn
three-dimensional foams By monitoring the optical transmission of shaving cream

foam over time, they found that the average bubble size in the bulk increases as a

power law tB with B = 047+ 005 Observations of foam:surface by optical
microscopy showed that the dynamuc processes consist of structural
rearrangements of bubbles which differ from T1 processes in both nature and
timescale These rearrangement events are possibly due to the high hquid content
of the foams used in the experiment In fact, the exammation of the microscope
pictures shows nearly spherical bubbles The origin, scaling behaviour and effects
of these rearrangements upon the coarsening were not studied
Computationally the question of computing capability and power avaiable is
closely Iinked to these difficulties of pinning down the underlying mechanisms and
structures Some successes have been recorded For example, the Potts model can
be extended to three dimensions provided that sufficient computer time 1s
available Anderson et al (1989) have run simulations on a 100*100*100 lattice
For lattices with different amsotropy, these authors made a vanety of distribution
function measurements, obtamning <f> =129 The agreement with experimental
values for metal grams 15 good, with the residual discrepancy compatible with
anisotropy effects
Glazier (1993) indicated that the coarsening behaviour of the 3D Potts model
depends on grain topology, and concluded that a simular but weaker law holds for
ensembles of bubbles in 3D An expression corresponding to that found by Durian
et al (1990) for shaving foam (section 5 1 4), was given by Glazier to be

V-153 dV/dt = k(f-f,) (516)
where k 15 a diffusion constant, f 1s the number of faces of a gram, f; 1s a constant,

and V 18 the volume of a gramn having f faces Equn(5 1 6) shows that the average
canonical growth rate of a grain depends hinearly on 1ts number of faces and 1s

dependent on 1ts volume, which 1s analogous to the modified Von Neumann’s law

+
AR
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of Icaza-Herrera and Castano, which we have given m Equn(4 1 2) However,
those equations only hold, of course, on average The growth rate of any
individual grans need not depend on 1ts number of faces, for example, some 16-
faced gramns grow, while others shrink Sire (1993) has also addressed the reason
why only an average growth law holds m 3D Glazier has postulated a corrected

average value for <f> based on this work with f,=15 8, and subsequently found to
obey an expression

fo=<f> (1+l,/<f>2) 317
(Wearre and Glazier (1993)), with <f> the average no of faces Further Potts

model simulation results gave <f>=13 7 and f=15 8 10 4, mn agreement with the

result of Glazier (1993) The evidence then supports the view that the averaged
growth rate mn the Potts model 1s a linear function of the number of faces Equn
(5 17) will apply to any other coarsening system, which has similar connections
between growth rate v and f The accumulating evidence therefore continued to
favour the use of statistical of sinulation methods to further explore 3D froth

features

5.1.5.2 Technical Implications for Froth by MC Method

The optimal structure for a monodisperse foam has been a subject of interest for
centuries The question 15 what spacing filling arrangement of cells of equal volume
has mummum surface area Kelvin (1887) proposed a truncated octahedron as a
likely candidate for the optimal arrangement Weawre (1994) suggested two
cathedral structures as a natural choice for intermediate Valueg of hiquid content

These occur 1 the chemustry of tetrahedrally-bonded materials and there 1s a close
analogy between tetrahedral structures and the froth or foam problem. In a recent
breakthrough, Weawre and Phelan (1994) have given a counter-example to that of
Kelvin which has a significantly lower surface energy The method used the surface
Evolver software, (developed by Brakke (1992) (1995)), to mummuse surface area,
subject to the constrant of fixed cell volumes, for successively finer tessellations of
the onignal cell faces In this way, the curvature of the surface can be progressively

approximated with mcreasing accuracy It 1s found that the final Weaire-Phelan
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structure, consisting of six fourteen-sided polyhedra and two iregular pentagonal
dodecahedra, has surface energy which 1s approximately 0 3% less than that of
Kelvin’s solution
Wearre and Glazier (1994) also developed a simple construction based on the
Kelvin and the Wilhams partitions that generates periodic or quasipertodic 3D
partitions It has been used to distinguish the mummal-area structure under
conditions of equal volume and equal pressure
Given that the precise relationship between the topology and the rate of growth of
a bubble for the 3D froth 1s not well-understood, most algorithms developed so far
have concentrated on the whole structure level rather than the level of an
individual bubble However, MC simulation appeared to offer reasonable
possibilities of extension to the 3D case since dealing with an ensemble of cells 1s
an ntrmsic mechamsm of the approach L
Paralleling the 2D froth method, we considered the discretization of bubble volume
by a cluster of samples (umts) Given that the number of a given bubble’s faces and
that of 1ts neighbours are more complex than for 2D, we consider mitially a simple
basic structure 1e the cubic cell, so that aggregates of cubes would form the
network bubbles Implementation of cell flippmg mn cubic structure 1s a
generalisation of the 2D case, but allocation of a flipped cell to nearest-neighbour
bubbles 15 much more complicated Clearly, a bubbles disappearance agamn
depends on whether all constituent cells have flipped to one or more nearest-
neighbour bubbles
Since the energy of the 3D system 1s related to the bubble’s surface energy, 1€ the
length of boundaries or of all bubbles’ face, a cell-fipping will affect either one or
the other The energy would be expected to have an equation which crudely
parallels that for 2D, givene g by

H=(1/2N)2Z8 0, 1,0 sxy-1 + WN)Z (V,, - V. )? (518)

agk) 0y K) bubble k

Here, the analogy to the basic unit of the hexagonal cell in the 2D case 1s now a
cubic cell, (1,7,k") 1s one of the nearest-neighbours of cell (1,1,k) and summation 1s

over all faces The maximum no of choices for bubble assignment i cell-fupping 1s
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now 7, as opposed to 5 in 2D; clearly a single MCS will include more complex MC
trials.

For a 3D Voronoi network configuration, Equn (5.1.6) could be used as the
approximate equivalent of Von Neumann’s law in the 2D case. Assuming the
volume difference due to bubble diffusion between actual volume and target
volume, AV, to be 5% of the average volume of all bubbles, and the average No.
of faces, <f> equal to 14, we can implement a cell flipping by MC method on 3D
froth. Similar to 2-D froth, assumed for a 14-faced bubble, AV =0, for an n-faced

bubble, (n<14), AV >0, for n>14, AV <0. Choosing the same volume difference

for all the non-14-faced bubbles will obviously, however, introduce a bias in the
3D froth evolution.

5.2  Other Techniques

Both cellular automata and molecular dynamics techniques have also been used to
study some cellular network models, in particular, grain growth and solid foam.

52.1  CA for Grain Growth

Grain growth, as an example of a cellular structure, is of great interest since it is

one of the most important features in the control of microstructure. The energy of

grain boundaries at equilibrium and topological requirements are two important

factors in modelling grain growth, Atkinson (1988). Theoretical, experimental and

simulation models have all been used to investigate system properties and in

particular, the MC method has been successfully used to solve this problem Based

on the transition probability, MC methods have been applied to simulate processes

of recrystallization, normal grain growth and abnormal grain growth, (Srolovitz et

al. (1984), Anderson et al. (1989)). For a recent review, see Weaire and McMurry

(1996).

Similarly to the froth, grain growth is one of the natural structure-evolving
processes. Since the grain boundary network has similar patterns and characteristics
to those of biological cells and ecological territories, cellular automata (CA) would
seem to be applicable to their study. Hesselbarth and Gobel (1991) first applied a



CA model in primary recrystallization simulations and L et al (1996) further
developed a formal CA model with further assumptions for the gramn growth
problem.
Using Von Neumann’s defimition of neighbourhood for a CA model, Wolfram
(1984), L et al (1996) have given the transition process as 4

x(1,),t)= F[X(l,_],t),x(l,]+1,t),X(1+1,J,t),X(l-1,J,t),X(1,_]-1,t)]} 621
where x(1,),t) represents the states of (1,)) cell at time t The function F 1s the
transition rule, which can be defined n a various way The dynamics of CA are
governed by local rules, (as we have described in Section 2 3), so that the locality
of the dynamucal rules allows efficient and flexible treatment of complex
geometries Thus, whether the final state of the system after a given period of time
1s homogeneous, chaotic or complex, depends on the definition of the transition
rule The Game of Life 1s a well-known example exhibiting variety and complexity
mn the development of CA even for simple rules, Vichmac (1986), but much more
complexity 15 possible
L et al (1996), for example, have modified the transition rule Equn(5 2 1) to
mplement grain boundary mugration due to curvature effect A gramn boundary 1s
associated with a positive surface energy and mugrates mn s'qme way to lower
energy, € g two cells with different states are separated by a r;ummum unit length
of grain boundary The results of L et al (1996) on grain size distribution and
growth kinetics are n agreement with those obtamned from theory, experiment and
MC simulation
In general, the basic difference between the Monte Carlo (MC) method and CA
lays 1n the transition between states of a cell in the system In the MC method, the
state transition 1s realised by randomly taking a number 1n the state of N=1 to Q,
then putting 1t in the cell which 1s ready to change, calculating the energy

difference, AE, between the old and new configuration and giving the probability
of transition For AE<0, a new configuration 1s accepted, with the probability P=1,
for AE >0, with P = exp(-AE/kT) Usually, the probability, P, 1s different from cell

to cell n the MC simulation model In contrast, for a CA model, the new state of a

Y
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cell comes from 1ts neighbour cells, so for every cell, there 1s constant energy

barrier, which must be overcome 1n a state transition with the same probability

5.2.2 Molecular Dynamics on Wet Foam

Durian (1995) discussed wet foam by focusing on entwre bubbles rather than
vertices, and proposed a simulation model, which has been constructed for the
molecular dynamics approach (Section 2 5) In terms of structure and dynamics at
the bubble scale, the model has been shown to reproduce the hall mark behaviour
This approach also allows rehable study of formations and flows at length scales
greater than the average bubble size However, the weakness of this method 1s that
1t can only be used in wet foam, not dry foams since no degrees of freedom are
mtroduced for the bubbles shapes Gardmer et al (1997) also used molecular

~

dynamics to analyse the scaling behaviour of 3D solid foam.

5.3 Computer Simulation iImplementation
5.3.1 Simulation Approaches

Evolutionary dynamucal systems have attracted considerable attention mn recent
years Many efforts have been made to mvestigate therr properties Computational
modelling techmques have provided new and valuable msight nto the studies of
these complex systems, both mn terms of testing microscopic theories as well as
practical methods for modelling processes as a whole Although some current
programs are less sophisticated than those of commercial software, a wide variety
of techniques and computational environments have been used Our aim has been
to 1mvestigate several simulation approaches as a means of examumng the
dynamucal behaviour in complex systems

Traditional modelhng and simulation has tended to concentrate on mathematical
representations of complex physical and other systems with strong reliance on both
numerical modelling and discrete methods For more complex systems, there are
two strategies available One 1s to 1improve theory at higher levels which usually
means improving on an approxmate form and another 1s to simulate the behaviour

of mam elements Theory thus tries to resolve computational difficulty by reducing
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detailed information to a few degrees of freedom. For example, the objective of
statistical mechanics 1s to observe not only the underlying state 1tself, but also the
probability of the system being in any particular state

It appears that indirect simulations, e g MD, MC are less information rich than
direct simulation (e g froth example) It 1s obvious that direct simulation can
specifically provide us with more detailled information during the evolution on
hundreds or, better, thousands of cells However, 1t 1s far from ideal to try to
obtain a scaling mndex from simulations hrmited by time and scale, so that
mprovements in the algorithms and their efficiency are clearly needed for fixed
hardware provision In contrast, the MC approach appears to offer the better
general method for proceeding on a variety of associated questions e g gramn

growth and other sumilar networks

5.3.2 Languages Requirement i
’(

Currently, the most popular languages for computational scientists are Fortran 77,
(Fortran 90), C and C++ Fortran, through the most popular for many years,
however, does not allow the programmer to structure programs so that they reflect
the logical order of idea involved m addressing a problem, and it 1s often
complicated to delmneate new contributions and modifications to existing large
scientific Fortran codes Due to mflexibility, Fortran appears to be losing ground,
although Fortran 77 1s much easier to use than C and C++, which 1s growing n
popularity From a computer science pomnt of view, there 1s httle difference
between C and Fortran, except that C has margnally better facilities for structuring
programs than the original Fortran 77 Far more differences exist between the
various styles of parallel programmung, where these differences are already having
a big impact on software development for computational science and makes
increased famiharity inevitable #

Frequently, because of the longer development time of the language, Fortran
compulers are more robust and efficient for scientific apphications 1n particularly for
supercomputers, although special version of C may perform as well or better on

some massively parallel machines Graphics and visualization are almost entirely

done m C/C++ although FORTRAN mmplementations are possible It 1s also
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possible to use Fortran subprograms in C/C++ codes For scientific programmes,
we can take advantages of both languages, e g keeping the:\1 numerical Fortran
routines for difficult number crunching and designing the software package with an
object oriented language In recent years, some of the more popular commercial
numerical routine hibraries have also been released in C version

Computer languages keep evolving rapidly, and 1t 1s possible to discern a trend
toward formal languages A wide array of routines accomplishes a range of tasks
from elementary to very complicated For most users, programmng will be limited
to the connection of such routines by using graphical or verbal syntax More
recently, visualization packages n physical and other scientific applications have
enjoyed a tremendous surge of interest For instance, Surface Evolver has now
become the standard software for computing the geometry of foams, Kraymk and
Reunelt (1996)

5.3.3 Algorithms Limitation ;

It 1s known that the application of algorithms to the behaviour of very large
systems would not have been possible, without highly optumised programs that
reduce the memory requirements and the execution time Even with the current,
relatively advanced technology and sophisticated algorithms, most simulations are
limited to a relatively small range of scales They are prone to various types of
error, and require a long time to mmplement Choosing simplified mathematical
models 1s an accepted option to understand and solve the various computational
problems with a view to improving the system representation

Much work here has been concerned with two-dimensional simulations and
experiments as a simplification of naturally occurring systems Each approach
considered, however, has 1ts hnmitations For example, in the 3D froth model, the
main difficulties of the MC method hLe in the fact that the number of possible
configurations of each bubble becomes enormous with a large number of degrees
of freedom which must be simultaneously handled System size imitation could be
another problem for all simulation approaches Further developments for both
software and advanced hardware resources are required Coding methods such as

multi-spin coding can normally be extended to the three-dimension problems and
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also apply for the froth case. However, the large number of variables, and
operations might not provide easy implementation and the memory is another
factor.

5.3.4 Limitation of Simulation Methods

Simulations themselves are not necessarily reliable since they also generate
different errors intrinsic to the simulation method. For example, statistical errors
occur in drawing a finite number of partially correlated samples, numerical errors
occur in the algorithms, and round-off errors arise from finite-size effects. In spite
of this, the simulated behaviour of the model gives an approximate analogy of a
system’ actual behaviour. The real difficulty lies in determining the level of error,
aggregated from those various causes and the degree to which it affects the realism
and accuracy of the system representation. There is, of course, no single answer to
this question and for the majority of simulation work, there is a need to perform
may trials and repetitions of the same experiment to test the limits of the simulation
and observe carefully end effects. Also, of course, to test vs. known results as a
control on the simulation veracity.

Considerable effort has been spent in the development of computational problem-
solving environments for physical and related systems. Some attempts have been
made to integrate various software components into a unified system hiding the
underlying complexity from the user. This is an “idealised" improvement, with the
goal of solving all aspects of a problem including simulation, data analysis and
visulaization. Unfortunately, such systems tend to provide very poor performance
on large problems even if performance is reasonable for commercial applications.
Consequently, they are generally unsuitable for scientific computation.

However, the idea of providing integration of simulation and data analysis is an
interesting one. The approach must clearly emphasise transparency rather than
attempting to create a highly sophisticated package with over-elaborate
interfacing. In short, tools should be simple to use, offer high performance, be
maintainable across a wide variety of machines rather than get in the way of
research on a limited subject. In particular, the following features are needed to
measure the development of simulation software in scientific applications.
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e Performance and memory efficiency
e Extensibility

e Support of existing code

More advanced developments include controlling applications with scripting
language, rather than relying solely on compiled languages, sugh as C or Fortran
The use of mterpreted scripting lanéuage for dealing and mterééctmg with physics
application has been the subject of recent exploratory work by computational
science researchers The 1dea 1s quite simple, providing a high-level nterface, such
as Matlab Using this package, users can control physics and other applications
interactively by entering commands, writing receipts and adding additional function
lists in the interface language, without having to modify the underlying code The
software package, the Surface Evolver, 1s one such package which 1s applicable to
a variety of practical problems and has been mentioned earhier i relation to 3D

froth work

142



Chapter 6 Conclusions and Comments
6.1 Introduction

Nature provides many examples of systems which have an essentially single or
network cellular structure The statistical properties of ther long-term behaviour
can be mnvestigated by e g monitoring the occurrence of specific "events" or
network evolution through time Insight on changes ranging from the mmor to the
catastrophic can be gamned through computational models

The goal of scientific investigation 1s to understand how nature works Originally,
two options were available to do this, namely experiment and theory The
traditional approach consisted of modelling system equations dwectly and then
solving these equations, either manually or by computer routines Unfortunately,
this breaks down where analytical solutions are not available-or where technical
difficulties prohibit numerical solution or when the system bemg studied 1s not
theoretically well understood

Algorithms or computer programs, which directly model the phenomena under
mvestigation have increased in popularity This thesis presents a general overview
of simulation methods for studies of complex physical and related systems which
are of current mterest Most importantly, it provides a description and application
of some fast and efficient simulation modelling techniques and their potential for
further development, together with our implementation of and results on a

selection of these cellular system models

6.2 Techniques Implementation

We have implemented several different computer simulation techmiques i this
work, including direct methods, cellular automata, Monte: Carlo, and have
mtroduced others, such as molecular dynamics, which have not been exphcitly
used for the work presented here These provide an overview of current popular
methods used 1n investigating scientific computing problems Generally speaking, a
number of different techmques may be applhed to a given problem, but the choice

depends on the aspect of mterest In the direct modelling of the 2D froth m 4, for
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example, nterest focused on the detailed structural changes, as well as on the
long-term behaviour, particularly when following the mnfluence of defects Thus
direct simulation methods, for mtial studies anyway, provide an obvious choice
However specifying a certain system so precisely incurs penalties, n terms of
adaptability of the code, together with himitation on the size of the system which
can be simulated, when so much detail 1s being retamed Consequently, adaptation
to other complex systems which share common features, requires additional effort,
even though this may well be considered worthwhile A close analogy to the soap
froth, for example, 1s provided by the metallic grain growth problem, Weare and
McMurry (1996), yet there are distinct differences, notably in the shape of the
gramn boundaries, which can be far from the 1deal mummal surfaces found n the
soap froth, and also m the mherent lattice amisotropy This latter feature 1s of
particular imterest, since 1t influences the rate of transition between order and
disorder, which 1s much slower than for the corresponding froth, Holm et al
(1991) and refs therein

Far less rigidity of coding 1s evinced for apphcations whlchllcan be reduced to
mteractions between fundamental and sumilar elements, where ééch of these can be
mn one of a finite number of states For this type of system, the cellular automata
approach 1s a natural choice Its flexibility 1s reflected in the wide range of
problems which CA have been used to model Here we have considered a CA
approach to the modelling of dissipative systems, represented by loss of sand
gramns induced by perturbation of a quiescent sandpile The sandpile automaton
here serves as a model for transport phenomena mn general CA methods may be
used to directly model the behaviour of the elements or indirectly to approximate
them, e g as in mmunological CA, Stauffer and Pandey (1992)

Features of the CA coding include its simphcity and massive iteration The
dynamics of a model typically include very few relations, with traditional parallel
updating Additions and multiplication can be represented by arithmetic additions
and multiphcations with manipulation at bit level, allowing more efficient code to
be provided Examples are given m Appendix B of multi-bit (multi-spin) operation
and this has been implemented for the dissipative sandpiles discussed n Chapter 3

and program Appendix E This represents a "cheap" method of mcorporating
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parallehsm nto the implementation but 1s obviously madequate for very large and
very complex systems Practical limitations on the use of multi-spin coding do not
extend beyond 1ts use for flud hydrodynamics, although surprisingly good results
have been achieved for lattice gas simulation, e g Wolf-Gladrow and Vogeler
(1992) Unfortunately, massively parallel computers are not generally accessible, so
that most researchers have to make do with general purpose computers with only
one or at most a few processors It 1s worth noting that multi-spin  coding
(mstruction-level) 1s the lowest of four levels of parallelism, according to Kohring
(1991) Others include statement level or chaining, loop level (or strip mining) and
process level, where this last separates SIMD and MIMD machines and 1s a feature
of many molecular dynamics simulations Even at multi-spin level, choiwce of
language and availability of machines limits performance and we have briefly
discussed these factors in Chapter 3 Performance tests for lattice gas automata in
two or three-dimensions, coded m FORTRAN and C with reference to bt
operations and integer arithmetic are also reported upon by Wolf-Gladraw and
Vogeler (1992)

Clearly, sandpile models, such as those considered here, are of mnterest, not only n
therr own right, but i terms of understanding other complex systems with many
degrees of freedom. Sandpile automata have proved surpnsmgly successful 1n the
mvestigation of intrinsically puzzling phenomenon, such as SOC

MC methodology provides a level of further abstraction when compared to CA
modeling and 1s a stochastic method which relies on good statistical
measurements Thus, any problem related to the probability of an event occurring
can be mvestigated through MC m theory Unfortunately, the abstraction of the
fundamental problem 1s not always straightforward, since the more complex the
system, the more nformation 1s required for accurate statistics Thus, knowledge
of Hamiltomaan components 1s very important in terms of successful simulation,
since otherwise systematic errors rapidly become very large Ths 1s illustrated
the froth case, Chapter 5, where for 2D froth, simulations are farrly successful,
whereas for the 3D case, choice of parameter values and level of approximations
used, crucially affect simulation performance. One way to overcome these

difficulties 1s clearly to perform an extensive sensitivity analysi$ across a range of
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parameters and parameter values, with a view to estimating the amount of
variability and bias Some recent 3D froth work, Weaire and Phelan (1996),
provides guidelines on which such an analysis mught be based In general, the
algorithm which we have used involves a more complex Hamiltoman than that
used for example by Glazier et al (1990) for the Potts model variant Nevertheless,
Potts model simulations which correspond closely to the gram growth problem
(see previously this section), have proved successful and suggest that a sensitivity
analysis such as that proposed should provide further insight on the importance of
the volume component of the Hamitoman i Equn(5 1 8)

With the increasing availability of high speed general-purpose computers, many
formerly prohimitively complex problems have become tractable by simulation
techmques However, even fast programs running for many hours still do not yield
satisfactory results 1n all respects for problems in complex systems, due to practical
limitations of time and number of events to be simulated So simulation techmiques
are mevitably hmited at some stage by computer hardware and software The
choice of different language and compiler during simulation may be particularly

important

6.3 Cellular systems and Phenomena Exhibited

Lt

6.3.1 SOC and Simple Systems

It 18 known that laws goverming the evolution of "umverses" are often similar and
simple Nevertheless, behaviour observed can be hghly diverse and several new
concepts have been proposed to explain and explore these phenomena, such as
chaos, SOC and complexity

A SOC system 1s a class of nonequilibrrum system which seem to be capable of
generating complexity of its own accord Cellular automata as a computational
paradigm 1n computational sandpiles, (described in Chapter 3), have been used to
demonstrate self-organised criticality, (SOC) The nature of the constraints, either
global or local has been considered for various model dynamics Many natural
phenomena exhibit SOC, including earthquakes, fractals, extinction events in

biological evolution, landscape formation and so on The characterisation of spatio-
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temporal processes n general, has received considerable mmpetus from the
investigation of these simple cellular systems, first introduced by Bak et al (1987)
In particular, early mnterest focused on providing an explanation for 1/f noise,
through the establishment of scaling laws

Different dynamucal rules, reflecting determunistic or stochastic perturbation, on
both continuous and discrete systems, have been used to demonstrate the existence
of SOC in CA and CML models Several universality classes have been shown to
exist Models with different dynamucs have been found 1 our work to exhibit SOC
for both local and global conservation laws i continuous CM]_, models, whereas
SOC 15 not observed 1If the conservation law 15 violated locally m CA models
While nvestigations are hmited, they provide a basis for further work, both mn
stochastic systems and on determumstic systems where the nature of the dissipation
1s dependent on the local environment and/or choice of loss function While SOC 1s

widely prevalent, 1t may not provide a umversal picture

6.3.2 Cellular Networks

Cellular patterns, such as froth and foams, are simiar in many biological systems,
although the underlying dynamics of the pattern formation 1s completely different
Soap froths are of interest because they are considered to evolve by a similar
mechamsm to that which governs gramn growth in metals and other materials (see
previous section) It 1s reasonable to assume that the essential mechamsm of this
evolution, (intercellular diffusion resulting n a reduction of surface energy),
governs the behaviour of the soap froth without any 51gmﬁcan additional factors
It therefore offers us an ideal model system, the study of which provide
fundamental msight to the theory of network evolution A typical bubble growth
process begins with a nearly ordered configuration and gradually evolves mto a
completely disordered pattern with time-invariant topological distributions The
stuches of froth, i particular, provide an elegant dlustration of the evolutionary
behaviour of a cellular network Much of the work presented here has
concentrated on the problem of the 2D soap froth, where mnterest has focused in

particular on numerical studies of the froth structure and evolution under various

levels of order/disorder or defect concentration
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&
Drrect stmulation methods have proved particularly valuable i terms of obtaining

detailed information on changes in the network, although are nevitably himited as
to size of system studied Results on abstraction of the problem, or modelling it
indirectly via MC methods have been mixed In the 2D case, the network
mformation obtained has been useful although system sizes have not been sensibly
extended In 3D, results have been disappomnting In part, this 1s due to the level of
detail retamed and 1n part due to a weaker theoretical background for 3D networks
in general Nevertheless, a prototypical implementation has been achieved, (see
programmes, Appendix E), and provides some basis for extension to other
network systems, such as the metalic grain growth problem, e g Holm et al
(1991)

6.3.3 Common Features

We have discussed properties of two different types of cellular-structure models
From the analysis and detailed discussions, 1t 1s clear that these systems share some
common characteristics Both are e g non-equilibrium systems, which evolve
according to internal or external forces Nevertheless, distinctive differences exast,
not least in the level of mteraction considered, and consequently, give rise to
diverse behaviour Much of the work here has been concerned with dissipative
effects and therr mfluence on the evolution of these many-cell systems having
different spatial dependence It 1s conjectured that a dissipative system keeps its
structure at the expense of energy flowing, either from the local dynamics rule, or
from the open boundary, or both Further, the new structure can possess either
coherent or chaotic behaviour 1e 1 the long-term, distinctive asymptotic
behaviour must occur One obvious and immediate question arising from the work
so far 1s thus whether SOC can occur 1n cellular networks? nge early studies on
froth rheology have conjectured the existence of SOC on avalanching 1n froth under
stress, Hutzler et al (1995)

Other network models apart from soap froth, also appear to exhbit SOC For
example, considering domam wall motion 1n disordered ferromagnets driven by an

external field, Bak and Flyvbjerg (1991) have presented a random neighbour
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model, representing domains in a 2D film, where motion exhibits SOC. Tadic
(1996) has also discussed statistical and scaling properties in Barkhausen noise in
2D ferromagnets.

6.4 Suggestions for Future Work

For the sandpile automaton (discussed in Chapter 3), it is relatively easy to
incorporate additional features by extending the number of states or changing the
dynamics rules, but clearly to be useful these must relate to some class of physical
or other systems, i.e. have a real-world application or alternatively, seek to explore
the computational mechanics of the CA models and the efficiency of the algorithm
Our studies represent a modest step in exploring these, by incorporating
continuous variable selection corresponding to the CML models. These have
application to systems with continuous loss function and are further extendable in a
number of ways not least in the context of the immunological CA models
mentioned in the Section 6.2, where incubation period and progression of disease
may be more appropriately represented by sampling from known lifetime
distributions, such as the Weibull, Ruskin (1993).

Suggestions for further consideration on the studies of dissipative sandpile models,
therefore, include choice of alternative functions to represent the energy loss in
dissipative CA and CML models. In addition, different specifications of the board
should be consicered in order to simulate "sinks" in the environment, i.e.
dissipation holes or wells, (Section 3.3.3). These should be consicered at different
concentrations of holes p on the board and for random and clustered
concentrations, (reminiscent of the “seeded" defects for the froth case). This would
provide some insight on how global behaviour of the system is affected during
both in the short and long term,

Better understanding of SOC systems and their behaviour may help us to explore
general principles of complex system dynamics. The physical interaction processes
are varied, so that they cannot be ascribed to any single mechanism or force.
Instead, there seems to be some underlying “logical dynamics™ in charge of the
interrelationship of the degree of freedom of the system. Some effort has been
made here to examine scaling behaviour in hoth space and time in an extended
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system The simplest model systems which show power law behaviour can be
further elaborated to have more complex mternal states, mhomogeneous updated
rules, adaptive rules and unfixed spatial coordinated memory or non-local
mnteractions Many of these find parallels in real-world applications, such as
formation of landscapes, Bak (1996)

A clear understanding of the general connection between statlolianty and criticality
1n spatially extended dynamucal systems 1s still lacking, although SOC may provide
a partial explanation However, SOC, as an indicator of 1/f noise may be applicable
only to certamn system classes as noted in Chapter 3 Simlarly, network "noise" or
topological change provides an interesting basis for further study of complexity via
simulation tools The robustness or otherwise of such features and therr
accessibility to computer modelling opens up many challenging problems for the
future A current major area 1s the development of more efficient and sophisticated
software to model the structure of sohd foams and relate this to the physical
properties The Brakke software, discussed by Weawre and Phelan (1994) has
recently been used to look at the modelling of mmimal surfaces n this context
Further work can also be done m the 2D froth case, including € g an exammation
of the computational mplcations for extending the drect sun}}latlon of dry froth
to wet froth, mvestigating the influence of control parametefg during evolution,
e g temperature and stress following the early work of Tam and Szeto (1996)
Also, there are sound grounds for examining the mndirect approach via MC in more
detail, n particular by considering a sensitivity analysis i 2D and 3D of the
principal parameters, as indicated earher i this chapter Adaptation of the code for
analogous 2D problems should also be considered Of course, 3D froth 1s currently
a "hot topic" and some progress has been made on solid and wet foams, Duraimn
(1995) However, 1t 1s clear that the simulation challenge alone 1s a fascinating one,
even before further useful results can be obtamed on the statistical and physical
properties In the short term, specific programs developed to mvestigate froth by
MC methods, can hopefully be used to establish the wviability of alternative
simulation approaches in terms of obtaming reasonable parameter estimates for
real froth and analogous cellular networks Extended work on the 3D froth model

1s clearly indicated, using 2D as a blueprint to the stability of the approach Further
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comparisons with performance by direct modelling are also required together with

mmplications for parallelism and limutations of the statistics

N
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Lhe evolution of a two-dimensional soap froth with a single
defect

H ! Ruskin and Y Feng

Sthocl of Computer Applscitions: Dublin City University Dubhin 9 1rdland
Focenad 13 Sepremlor 1hos

Absteact Using the dircet emutanon method of Wenre ind Kermo ke we consider the problem
tinadb by Tesininof a 2 D hoth with a «ngle defuct We have found that for a single defect 1n
an ideal hoxagonal network the second moment 43 of the distnbution of the number of celt
stdes for the regron of the defect does not tend to a constant as clamed by Levitan Some reasons
I rabe varsng conddustons drywn by different authors about this problem are Ao discussed

The sorp froth as andeal moded of a cellular network has attrcted considerable attention
ind hos been studied theotenaally ind experimentally in recent years (see Weaite and Rivier
(981 Glasier £l (1987) Weane aind Ler (1990) Glazier and Weanre (1992) Herdtle ind
Ared (1902) crar Intarest hos primnly focused on soding properties obtuncd through the
evolution of the troth wuh time T ong term beh tvour v charctenzed by system statistics
such e the distiibution [ () ol the number of cell sides and the second moment of
this distabution s Y. Ur = 61 f(n)  Thure as considerable expenmental theoretical
wnd computitonil cvidence tht g tends to 1 himate innt Gipprocimates 1 5 which e
chracternsne of the wymptotie sethng <t e ot the froth

The mitndly tranaient bchaviour ot 4 reatively ordered froth hiie been nterpreted in
terms of the growth of individual topological defects The «tudy of the growth has been
tahen up ty Levitin (1994) who considered the insertion of 1 single local topological
defect mto 1 froth of hevagonal cells He used an approximation which s attractive i thit
it otlers the potentodl to simulste Trger closer W asymptotic systems but results obtained
were mn divagrecment with previous tent itive conclusions (Weaire in Blackman and Taguena
1991 We hnve therctore re exanuned this problem by direct simulitions which wre more
xtensive thn those previously undertaken

Levitm s method fust forces v TH topological process (neighbour switciing) to take
phcc iy group of cedls ind follows this with a 12 process (cell chimnation) for which the
probabiitics of virningle squne nd pentigon being formed are the cune o fact the first
T oprocess gives rise to two fnve sided cells md two seven sided cells in the network
(igure 1) Levitm used v men field theory to show that the topologicil distnbution
wsocited with 1 single defect approaches o hxed asymptotic torm with a high peak
fO) ~ 06 Hus amplies that go atars o diffe ontomd stable salue e conflict wath
previogs prodiciions

Usmg the ducct simubwion pproach of Wewre and Kenmode (1983b 0 1981) and
subscquent work s bne implomented 02D div froth wathe 1 angfe topatogiaad dedec
based on v pofect hovicoml netwotk 1o cncre correspondence with Lovitan s ongnad
canstruction The datect s bacd on v svmmatmaal urmgoment of two pars of ponticona!
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higure 1 The defecuve 7 D froth actwork corresponding to Levitin s method of nserting a
single defect by forang a TE process inanadal hexagonal froth

Fwgure 2 A defectne 2 D fioth aciwork The network keeps the hexagonal basss and ll the
pon defoctne celis e of tw cane shape ind seze

and heptagon il celts with minor discrep incies in the areas of the component cells and with
all hexagomii cells surounding the defect hwvang the same area (figure 1) Additionally we
consider another type of topological defect where the distortion 1s achieved by suppressing
an edge in the orynnal natwork giving an eight sided cell with two symmetrical five-sided
cells umongst 1ts nearest neighbours (hguie 2)  We have also used an ordered Voronot
construction to creite 1 third kind of detect (hgure 3) in which the areas of the defect and
1its neighbouning c¢clls hnve been djusted as shown  Penodic boundary conditions are used
but for convemience the detective cedl s centrally placed 1n the network Cailculations are
not pursued bovond the stige where the dedect unpacts on the boundary

We have implemented the froth with single defects as shown (figures | 2, and 3) for
systems of 100 300 1nd 900 cells tespectively We give details of the results for a system
of 400 cells v m oxample Suntlu results e found for all system sizes used

bigure 3 A difectsne 2 D froth nctwork swath an ordered Voronor st up  (Each venex of an
Gght aded ¢l and two e silod et raentre of 1 cncumsenbed andde that conrcsponds 1o

the Doyt st

It we detine i approxaimatey crcolu front of distwrbance surrounding the 1uge
dedectinve el md imcluding colbs which hase undergone v single topologicl chainge  the
arcular front will include these (plus other cedls which impinge on the circle in part but
which hive not yot undergene chainge) Tovitin (1994) simularly defines a cluster  which
refers to the front uscd m o our cimulions plus 1 bound iy of hexagonal cells The shght



Figure 4. The evolution of a froth with a single defect Figure 5. The evolution of a froth with a single defect
in a hexagonal network with numbers of time steps of in a hexagonal network with numbers of time steps of

(<j) 40 and (l[) 100 (Initial structure figute I.) (a) 40 and (/>) 100 (Initial structure figure 2 )

Figure 6. The evolution of a froth with a single defect in a
hexagonal network with numbers of lime steps of («) 40 and i)

100 respectively (Initial structure figure ')

modification we have used does not affect the behaviour of - <rihc side distribution, but
enables us to consider separately /.. *»/firfrone. Figures — Show the evolution within
the front at specific time steps for different initial defect types, corresponding to figures |
2.and 3 respectively. Here the number of time steps relates to the number of diffusion and
equilibration processes which_ have taken place, with the evolution time. 7\ measured in
units of </Ln)/AT. where Mo) is the initial average area over all cells, and « is the constant
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Figure 7. ii<) ami (/»I «how Ihc topological distribution f(n) in ihe front with numbers of lime

Mops o| (€ (,\I. 12(1 (C ). ami I(>( ( ) (Initial «el up figure« | and 2 respectively )

in Von Neumann's law. and may be arbitrarily chosen (Kennode and Weaire 1990). We
can see that the number of sides of the large”defective cell increases with time, as does
the perturbation front area of the disturbance For the defect formed by edge suppression,
starting from the ordered non-Voronoi network set-up (figure 2) and ordered Voronoi network
(figure 3). «e hale observed very similar behaviour in the froth evolution (figures 5 and 6)
We %IVE detailed results for the nitial structure shown in figures | and 2 as Tollows.
he topological distribution /(«) inside the front, is Shown in figures 7(a) and 7((1/1),
at specific numbeis_of lime steps for the different defect to qlogiles (figures | and 2
respectively). We find that there tends to be a peak at n = 5 in the front as evolution
time increases, as opﬁosed to the overall network of a normal froth which has a peak with
n = s and n = ft (Herdtle and Aref 1992). However, the distribution ¢y is now, of
course, markedly right-skewed. These features are not extraordinary as movement of the
front results in continual incrementation of the number of sides of the large defective cell.
From our results, the second moment, «ij. continues to change with time without
reaching a fixed limit. Figures 8(«) and 8(/)) show how the second moment, wi, in the
overall Network changes Versus time, (Itor initial set-ups in figures | and 2). The range of
T includes about 20)0 diffusion and equilibration processes in our simulation Topological
and diffusive adjustments arc made sequentially within each time step and considerable
details of the evolution may be observed Fluctuations in the value of n. around the
underlying trend can be explained directly in terms of the TI and T2 processes, with a high
ii» Cofresponding to the delect surrounded by a number of three- or four-sided cells, and
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Figure 8. (<i) and (/>) show? in (tic INMN] network versus time 7 for a froth of 400 cells
(Initial set up liyuies | and i

a sudden decrease in .. associated with the dlsapPearance of one of these cells During
rowth in the area of the defect, /i kee%sarelatl,vey stable value until the next T occurs.
Clearly, as more cells are involved in the evolution and the number of sides of the defect
increases, the value of /t2 overan changes more rapidly and is dominated by the contribution
of the defective cell. Over the whole range of 7, ~  appears to describe the observed
behaviour, with « > I. However, few changes take place ini |all;{, relative to the evolution
as a whole, and for the upper range of -, /i versus + isroughly linear, althoughit is not
clear that a true asymptote is attained. _ ,

For a simple theoretical model of a large defect wﬂ_h%mdes surrounded by n small
cells, newly converted side |eﬂﬂ£h5 of the ‘small cells will be characteristic of the whole
network, ie. N — /\(</)°\ with aida) the area of the defect Then, in the asymptotic
limit. Von Neumann's law becomes aa(dy/ivt = kaidyr, 18 aiay 72 Similarly, in
the ront, the topological distribution Wlﬁ be dominated by the defect, S0 112¢a) ~ n 2 With
N T.0€ n:ia) e 7\ Furthermoie. the defect graduall¥ involves more and more cells in
the overall nctwoik. sn asymptotically the exponents for the front and the overall network
should be the same. Irom our simulations, we find ror the defect that acay Increases
with 7 at the expense of other cells distorted by topological changes If we define the
increased area Aaid) = Aid) - Aid)o. Where aiayo IS the orlgm_al area of the defect, for
the defect formed by edge supp_ressmn (flgures 2and 3), we obtain roughly eaay ~ 72
after the initial period of evolution, with the radius of the rough perturbation urcﬁe, oo

espectivel>
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Figure 9. (<i) The increase in defective area AA(“) versus time. 7 (b) The radius I versus

lime. | . for a fioih of 400 cells (Initial structure figure 2 )
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Figure 10. /«:(</) in the front versus the average intercept. {</). (Initial structure figure 2 )

approximately; figures 9(<j) and o(ny illustrate tor the set-up of figure 2 Furthermore, we
find that niia) changes roughly rinearty With the average intercept, (a), where (o) equals
the square root of the average ccll area in the front (figure 1?. _ .

It seems clear that the behaviour of a froth with a single defect in a uniform hexagonal
network docs un lead to a normal scaling state as found for the non-defective froth by
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numernical simulation tand as predicied by theory)  We find that f () in the front tends
to develop a long 1l extending to large vilues of # and with a peak at n = 5 This s
in agreement with Aboav (1980) who also quoted @ = 2 for the 1rea growth exponent
However the suggestion that jis overall vanes hinearly with tune (see the comment by
Weure and Kermode (1983a) on Abow « work) 1s not wholly supported by our findings
and 15 1n conflict with the predictions of the simple model It1s only with hindsight that it has
been realized that Aboav was dealing with a transient system with defects characterized by
different values of the growth exponents  Our own results are prob ibly not in the asymptotic
region since the maximum number of sides achteved by any defect 1s N = 44 (for the set up
in figure 2) Nevertheless they are supported by recent work by Glazier (1995) We also
find that there 1s some simubinty between the behaviour of our system and that of Levitan
(1994) but we do not agree with 1 fived torm for f(n) as obtained by Levitan The value
of 112 (whether for the front or for the overall network) does not rech 1 steady state alter
imtal Auctuations at this system size unhke normal froth evolution

Our results for the behaviour of the front are in agreement with the oniginal experimental
work of Aboav (1980) and recent simulwtions of Glazier (1995) indicating that a different
scaling relation apphies therc  Regrdless of the defect type and wmtal configuration
there are some grounds tor support of the suggested system behaviour put forward by
I evitan (1994) but the overall results uc in conflict with his predictions for the quanuties
chiractenizing the long term evolution

We should hhke to think Protessor Donis Weure for severil interesting discussions and lor
mtroducing us to the froth problem
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Scaling properties for ordeired/disordered 2-D
dry froths

HJ Ruskin’, Y Feng

School of Computar Applcanons. Dublin Civ Uneeersiny Dibln Y breland

Recened 15 Februany 1996

Abstract

We mastigate the avolutionary behaviour of 1 2 D dry (roth with imual ordered disordored
condimons corresponding respectinedy  to monodisperse polvdisperse topological networks Using
the dircet simulation approach we discuss the scahing propertics of the cell side distribution
J(n) and s sccond moment ji; for vanous svstem sizes and il structures For the case of
2 highly ordered network the introduction of disorder miay be vicwed i turms of  seeding the
froth system with 1 miemhar of dufects o where dor 1 previous work has shown that stible
conditions 11e not achicved We hind that the Timmting behaviour here depends on the amount ot
diorder where this 1s quantificd by the proportion of non uniform it cddls and the pattern
ol secding Our hindings support the view that 1 quisi scahing state cxasts tor the highly ordered
Iroth m contrist to the uninversal scaling state of the disordured and fow ordered froth In the
hight of these results we bniefly reconsider the question ol transtence for the carly results of
Aboav (1980)

1 Introduction

Matcrnils with cdllulir structute appear m many guises 1 fiddds of geology met
allurgy  brology and so on The soap troth as an ideal inodcd ot 1 cellular network
has attracted considerible attention providimg v alushle msight imto the behviour of
hcse complex disordered systems Ongimal studics of 2 D froth structures are duc to
Smuth (1] and subsequently  Aboay [2] and have stimulted much theorctical expert
mental md computar simuliion work over recent vears cg |3 1] For roviews see
115 18]

Correspeonding with
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A soap froth has dl boundaries cquivalent with ats evolution ditven by 1 transfer
of g1 baween naghbomme bubbles md povaned by Von Neumnn « e

dLde KMn o 0) (h)

whare s the wicr of o sided b and A > 005 a constint W coneentrate on
woadaal cor divy noth wath Al mtceml angles ol the network cqual 1o 1200 and the
mem numbar ot sudes () 6 whae ovolution as through 11 processes (naghbour
swatchmg) aid 12 processes (elb vanshmg)  OF mtaest are the dvnimie scaling
propertics of the svstem measured by statistics such s the distnibution ot the number of
the collbsides i) mdats sceond moment g = 37 fn)nr 6) which is expected to
Htun 1 seale mvanant value Other propaties such s the correlated side distribution
(side distnbutton of clls st 1o sided cldls i the scthng soe) lso damonstrate
unnvasahity f13)

On the bases of photogiphs showmg manitod disorderad fioth which evolved trom
thous inds to hundicds of bubbles Snuth {1} suggested that long term asymptouc be-
hwvour was just 1 chinge of saile with no chinge of the side distribution He also
lound g = 15 alta ntnl trmsicnee md the weree ol arcr (D 10 be depen
dant on time s (1) 7 wath the growth exponent > 1 A diffaranr st of pho-
tostiphs basad on an adtemtine method waith sutal roughly tenform bubbles was
mibvsed by Abon (2] who {found no stible Timting distibution () bue g0~ (d)
whae ) ~ oD s the nange Imcu mtareept of b bubbles Sl oxperiments
hve also subsequenthy been performed for the wat froth [5 6f ind 1 scaling state
whicved g I4) mespectine of the amount ol ordamg described by the -
il condinons Spectheally those wthors hve supgested thae Abon s fmdmgs refer
to the troth cquiibnition paod 1o that the apid growth of g v v nisient ef-
fect of the culy stige ol avolution (see also [16 17]) Aboav also found that the
numbcr of sides ot e sidad el s rdied to the averige nombar of aides of ats

naghbowrs gy by mitn) (6 a) + (0a 4 0y whae ¢ s v constit (g =
12y This tchition as known s Abow s Tiw (2] o tan o 1 1he Aboay Weamre
I [ 15]

Computer simhitions of the 2D div foth hine bean patarmad by 1 nomber of
wathors but el structies d svstem sizes bve vained considanibly {7 14] Values
icportad tor the second moment ware T2 md 12 respeetinedy for imitally
disandered froth based on N ortonor structines of s1ize SO0 and 1024 ccdls [12 14] nd
while turther wark goncn s supponts those Gadmges [9 10 13] thag ate somc app uent
disacpmacs For exvaple oo v e mon aoxubit apok botone stbilisimg 1 lower
vilue i 2 1121 or oy approach the aissmptote smoothdy (4] Punthomare a
smgle dadect mom othawise unttorm hoth notwaork tads to an appaent foss of the
ol sabmg propanes 19 22] 1t has dso been obsarved that ndtiple ddects Jaad
to sustunad cronth me v untdonm natwork wath g0 aGchme oo e the il
stine of acvolution i VAS 4]

In this papar we considar o more detal the dicet of amital condittons on - the troth

aolunon for mmnad svsom size We distineoish cspaanldly batween svstems wath
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local 10pological distocations v otlierwise umborm nuiworks (monodisparse froths) nd
those wihiuch are mtrsac iy disorderad (polyhsperse troths)

2 Ordor and disorder m o froth

Somc contusion appes to st an the htanture s to what s momt by o ordered
mueil condition [2 6 12 4] Stractures may be spearhicd with simsba ade distiibution
00 wd second moment e but wath vay dilarent ey distuibuttons Fqually - hioths
with daftarent /() my have the sime g 1t seems deu that e alone 1< insuthaent
to quantly the degree of disordar md that more speahe dernls ot the il stiucture
e requited

The siumplest locl ropalogical dislocanion w dadmad w v pentigon heptigon con
stuction moan othawase hoxagond structe [1S] whoe tlis construct satishes
Fulce s T see Tig 1o Allanatineds the disfociion oy be formed by foramg
a T process Towding 1o v patad puntigonal heptzomil dislocation (Fig by Debin
me v erdorcd matnt hoth o be a untlorm hexagonal (or monodisperse ) network
and forcmg one o more T processes thus ssstematic Bl increises the imount. ot
scecded  disorder presant o what as cssentidly sl v acpubr stiucture A dnen
dared froth s tiken to be v non unitform (polvdisperse ) natwerh with rindom localised
topalogiaal disfocitions which may or may not be of fig L) tope but ue not of
o S 1042 T e in some wys tvp

Fig 1(h) tvpe Voronos naworks usad o
il of disorderad structures and can be constructad by nindom soncration of 1 sal
ol munil pomts subpeet to the condinon thit these we v cat i mmmmum distainee
iput

Froth vcrersbiding was discussad by [12 1] wd oo muhancd tams mvolves
woting A nstead of A i Von Neummn s s Eq (1) Istincion between the
so cilled mrdorad and disondercd hoths can be made on the basis of this property
In v mvdarcd toth the dislocibon ¢ be made o disippaar thwough 1 series ot 11

(a) {b)

Fooo by cpelosial e oo cvrwath o pont o hopre o I pae b abr sy pane aald

hopticonil ol por Camed o 1)
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processes resulting in g final structure which s umlorm heagonal (monodisperse gy =
O I v divordared hoth howevar some topological dislocations albway s cxast although
thar locmon will chinge o one or mote 1 processes The froth thus ramams
v polydisperse natwork with 1 nunimam value of e (e 0) The meversibiny
ol v opolvdisperse froth s mphiatly considaad mopravious work by 1 number ol
authors 112 14] Trom these defimtions of ordar wd disordar 0 seems cleu thit Snuth
[1] desanbed oy ighly  disorderad system wherews Abosy 2] mvestigated one which
was ighly ardared Both orderad and disordered mimal conditions ware considered 1n
[S 0 13 14] whare s disandared systems only ware discassed m 2] Investigations of
troth buhtvour when v single defear (or 1opological dislocation) 15 mmtroduedd into
n otherwase highly ordered natwork have reeently emphasised the importance of the
mitial structure m o achicving stable condimons |19 21 22}

I what follows we mveshigate froth cvolution for dilterent il sct-ups and system
stzes using direed simul tion methods (7 8] Information on the both structwie s thus
obtinad oxplictly at ¢ich time step duning the evolution Defucts which are sparsely
seeded mthe froth s g whole evolve naturally betore impacting on each other after a
long penod of e We consider systems of size up to 1600 cells and nnnd stactures
which ringe trom highly ordered 1o highly disordercd

1 Rosules

Lrom our dohimtion e erdered froth as based on the hexagonal network  where
for my vatue of o all cldls have roughly the same minal area Tor a mghh ordared
hexagonid noiwork we hive mtioducad v number of defects o o paie of pentagon
bheptigon dislocations (1) 4 1 system of size 400 cells (fi; - 005) and
(yd 7 moasystum of wize 900 cldls (po=003%) For 1 hexagonal natwork with
lows ordcr we have introduced (i) o = 30 10 a system of 400 cdls (p- = 03) and
(v d = 60 a systum ol 900 cllls (- = 027) Sinular behaviour 15 observed for
cvoumples (0 nd (ny md also for exumples (n) and () aesolts we thas discussed
m detul for (n) and () only

1 or the ordarcd troth (mitial condions (1) nd (iv) respectiney)  the side distr
bution £ (n) s tlustited i kigs 201) and (b) for specific time steps Here a single
tume step consists of the number of diflusion md cquihbriam processes which have
occurred  The evoluton tume ¢ 18 mewsured woumits of (13)7h with & constant and
dutmed m g (1) (s [T The second moment g ve tune and the average arca
C1oss ume e shown i bigs 3 and 4 Agrcamant with the Aboan Wone Law s
shown m big S whae o s approxmtcdy constt (a1 08)

o disordorcd feorh obtimed rom the Voronor nutwork the wer ol oo aided
by vy consider by md g provides i mdictor of the degree md nature of
disorder ansine from ncrcsed dispasion an () Tor a lughly dosordarcd tioth we
ve constderad the cvolution ol (v) a systum of 900 codls with el 0 > 12 and
(o systent of 1e0o cdlls wath mnl p Lo (/(4) 012 7(S) 025 f{06)
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1 K -

f(n)

{a) n

osg — - JE—

07
06
05
04

t(n)

02 »
01

(b} n

Bic 2 g by The ade distributien fin) st ime step of 0120 2000 tor (o1 highly ordered wd (v )
tlow cederad froth re peanedh the honaee duk Imc reprosants £ an e gussy saolimg vr seabing
Tate

028 /(7) 009 £(9) =002 £(10) =001 Tor a roth with Joss diserder (tormed
by revase diffusion corresponding to fow g tn 1 polvdisparse network) we have con-
stdored (v asystom of 900 cells sith il g0 = 022 (mumomum) and (vig) 1 svstem
of 1600 cAdls withommnt g <028 (f(S)=01Y f(6)=074 £(T7)=012 1(R) 001)
Apun we eive dotulad results for oxamples (v and Gono ondy sance bchvaour s
wpparently amd o under sthe o] conditions

Fres o(r and by dasu ue the topologral dismbution finy ar i steps ol
0 120 260 corresponding to the nutid mddle md fmad coolution stage ton the dis-
ordared Voronor stuctme Fres 7 and 80 ind (b show how the sccond moment
joomd avanige arar Y chmge wath e Tor oxamples (voomd (v respeatinddy
md bag 9 atlustates the poot aereemont with athar the Aboay or Aboin Wenre i

(v aor consbml)
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the second moment
(4]
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4 Discussion

ot v lnghty ondered hioth we obscve that the side distribution £ (n) s markedly
vght shewed with the fong tul rcllecung the presence of many sided eodls (hg 2(a))
Ihe sceond moment gross mdehmtely with time s ~ ¢ as 1 resatt (kg 3(a))
Therctore o the svstem size as buge cnough we cxpect that g will continue to
marcse s boea mony sided eeldls e tormed Owe fimdings lor 0 v 1 and also
Tor the neviee wer ol b oldis ! ’ 2w m owrcament with those ol
[2 14 2020

The sodme st s taoched whan botle feny nd po ttan tumc my wemt v daes and
obviously docs not apphs tor o fughly ordarcd Tioth whad nather 7o) nor s tend
W v hinad oo Howava 1l we tianede S at e o (0t 12 we hind thiat the
side distitbution: £ ) s dllcetinddy fined har the il ponod ol Goolution: (see o g
g 2000 1) 008 f(5) =037 f(6)= 038 £(T)=009) Such 1 hoth may be
sud to boowm oy graese seadig stare hough Jdouly g dor ol o contines o merease
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04 e — -

03

02

f(n)

() n

o8 — ==
07
06
05
04

Kn)

03
02
01

(h) n

Fie o b IThe mlchndon n ftar o nme teps of 0120 200 qor (v dnch b ondered troth ind

G et b b b el the honaa ek Tnc vopre cats £y the s thne st

The emareence of quast sohing state mo e ghby ordeed froth however does not
tend 1o sapport the view thiat Aboan < resulis desarbe v tnnsient stage {61617 204
In Lt only 10 of it SO00 cdis temuned for the vilue of e given i this work
[2] Anoalanane exphinitton tha the long tam cvolutiony behwiour ol a lughly
ordured froth rcschos patal Gaehbromm e hest obhtums somc sapport from the resulis
‘\I\_\Ll\h.d hae

For the fon ordorad froth Gantal condinons as e (v )y (big 2eby) the side dhis
mbution ) does tend o binad fomm o Sy O3 (0= 03 1{7) =020
wd the sccond moment j s 7 avdnbits one notible poih bodore fnldly rcchme
stible valne of g 1S dta mutnl fluctions (1 db)y The nvawe e of the
clls now behnes o 7 whare 10 5 2 Thase salimg propartics we consistant
with those obtnnad by oypamment [6] We o dind ihat thae mony be two poiks be
fore e rcchos ostible vilue togom v wath distorcd dadedds frieare not shown)
Furthcrmore  the Abow Ahon Wome Tiw s obavad o dugh Toc ondored hioth

respectiney o be
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in oo nme o cinch nd D w de slaedd ot walcnmted b Core o thre e s e tindh

It ippeus then tht nomal s opposed 1o quast scilme i m ordarad roth deponds
on the uutnl side distabution £ (rd e the numbar of delears o with b corresponding
thrcshold or conaal vidue g () puinlly dacrmmmg the degice ot disorder Tioths
with il dedeas of vinoos tvpes [21] ather rindomily seadad or cistered [14)
man carespond o the sue g bt cdubit dillaant violionan bhaviom bdore
Ul state or avample one or more peaks may be obsavad for ges s o the
fow ordared troth depending. tespactindy  on whather dedeats e seedad pindomhy or
clustared . Novarthedess o e svstem size s farge the orderad roth will wond o ather
a4 guist scthig of saaling stte segudloss of the miod condimons Othicnsase hinstant
behwiour will boe observad Morcovar ou resulis saveest that winle e (/7 ) s wound
02 Jor v ossstent up 1o thous ind el thus vidue marcses for e ssstam stz
wdtc g that the proportion o donsits of detedts e the ovontt oth datcomme thy
threshold e

In contrast der ugh o dow dinordarcd hoths (Lies 6 N e side distobation
flay dhwons tands oo Inad torm fog f1S) 0 032 sty 0S £(7) - 01R8)
with o stable vidue of g 14 Thos the disordered ot e ihe sodme staite 1
hites the warwe ucr of b cds swnhe ¢othioueh 1 1 with » 1 Natha the
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<A>

{h) t
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Abone ner the Abow Wone Baw applv hac weording o owe simahion resalis
wdd mowercemant with previous work tor dnsordared roth cvolunon [ 6 1012 11
Howavar the so Gilled ordacd ot condition (1 04) obtuncd by ravase
diftusion 12 14 m twt s vl doordarcd not cval adorad siacte b o
dehninon

Comcguaniiv om resalts suppoit the castance of conivasal soiling stite niespee
e ob ssstem size dor 1 dnordared troth bised on a2 Voronor construction W Tl
thit e v~ 7 has athar o pak vilue (e 200 thwm thn obsanvad for
ordorcd ot ¢he YY) o macses smonotonrclly (P 7Eby) Winde thare appe us
1o be acrcament s to the docition ol the g pak duning ordorcd md diserdor cd fioh
Gooluron woscams bhdds it s mccdhy 1 comadont st phionsmcnan s the
pod Viducs e ditlarent 123 2] (tor avumple we obtun o ich pok (such s g
34y b vhe ovdarcd hoth fumdar condition vy whcraas bt vhe disordorcd roih we
absave cabar s pak (e 200 on nond) This acrces wath formar work whoe
joowoas tound 1o rse ey o0 s meannem (e 2on and 19 gespectinedy)

then decppad 1o the constimt vilue P e 12] Funhamore the phonomcnon
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of more thm one potk tor 0 vs time appeus to be opecaliey of the ordored
froth ind we find no cvidence for inultiple poks for my disondared susrom we hne
sunnled

S Concltusion

By quithvime the mount o endor disvwdar mthe it 2D both stiuctie we
e rcconalad ippacnt disacpimcies m the saailing propertics desaribing the hoth
avolution Our dircet simualstion results tor v dnsondercd nghly ordarad hoth are an
agicamient with those ot ongimal cxpenments of Smirth [} nd Aboav [2] respectivedy
Our hndings support the view that v quast scabing stite oxsts o bughh ordarcd toth
whore the side distribution fn ) (o' <12y tends to Boave 1 inad tosm wheraas ()
for b noas night shewed  with correspondimg unlimntad erowth of g0 However
uninvarsal soalimg state s wiaevad tor both e desendored ind fow ordarad hoths
whare £0a) Tos o fnad Torm corresponding (o1 sustan v anmt isvmptotic vilue ol
oo 14 Addittomlly we sugeest n altanatne aaplimation Tor the culy aesalt ot
Abow [2] to the ofleet that e ordorcd tioth docs schicve 1 gquast saaling shite as
opposed o temsience We ko contim that the Abe s tor Aboww Wome) haws apph
onlv 1o the ordarad hioth
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Appendix B

Ca
13
£y

This mntroduces the CA approach to scientific computing problems through
a short 1llustration

Examples of Sequential and Muth-spin coding methods for cellular
automata methods are given as follows

Program Sequential uses sequential updating and the most recent value of
the neighbour spins and, as such, 1s not strictly CA methodology as 1t 1s
generally realised for very many similar elements, since 1t 1s nefficient,
More usually, cellular automata use simultaneous or parallel updating,
where each spin at time t+1 takes its neighbour values at time t

Program Multi2 uses mﬁlu—spm updating (details see Section 2 2 3 3) for
square lattice A second index J 1s mtroduced besides the index I Many
loops run over I and J A single logical function, OR 1s used here to
implement that a spin 1s up 1if at least one of its four neighbours 1s up, and
the OR rule 1s over all the four neighbours This achieved computing
speeds which are much improved compared to the sequential method

P

PROGRAM SEQUENTIAL
PARAMETER L=960,LP1=L+1)
INTEGER MAX, ISEED,IP,IBM,I,ITIME,MAG
LOGICAL N(0.LP1)
REAL*4 P
READ(*, *) P,MAX, ISEED
IP=(2.0*P-1 0)*2147483648.0
IBM=2*ISEED-1
DO 10 I=1,L
IBM=IBM*16807
N(I)=IBM.LT IP
10 CONTINUE
DO 100 ITIME=1,MAX
MAG=0
DO 20 I=1,L
IF(N(I)) MAG=MAG+1
20 CONTINUE
WRITE (*, *) ITIME, MAG
IF (MAG.EQ.L OR MAG EQ.0)STOP
N(0)=N(L)
N(LP1)=N(1)
DO 30 I=1,L
N(I)=N(I-1) OR N({(I+1)
30 CONTINUE
100 CONTINUE
STOP
END

B-1



PROGRAM MULTI2
INTEGER L,LW1,LW,NBIT,NB,MAX,ISEED,IP,IBM,TI,
J, ITIME, IDOWN, LTEMP1, LTEMP2

PARAMETER (LW=30, LWl=LW+1,NBIT=32,L=LW*NBIT, LP1=L+1)
INTEGER N{(0 LP1,0:LW1)
INTEGER M(L,LW)
REAL*4 P
ISHFTC(I,K)=IOR(ISHFT(I,K),ISHFT(I,K-NBIT))
READ(*,*)P,MAX, ISEED
IP=(2 0*P-1.0)*2147483648.0
IBM=2*ISEED-1
DO 20 I=1,LW
DO 10 J=1,L

N(J,I)=0
10 CONTINUE
20 CONTINUE

DO 50 NB=1,NBIT
DO 40 I=1,LW
DO 30 J=1,L
N(J,I)=ISHFT(N(J,I),1)
IBM=IBM*16807
IF(IBM.LT.IP)N(J,I)=IOR(N(J,I),1)

30 CONTINUE
40 CONTINUE
50 CONTINUE
DO 200 ITIME=1,MAX
IDOWN=0

DO 120 I=1,LW
DO 110 J=1,L
IF (NOT(N(J,I)) .NE.0) IDOWN=IDOWN+1
IF (IDOWN EQ 0)STOP
110 CONTINUE
120 CONTINUE
WRITE (9, *) ITIME, IDOWN
DO 130 I=1,LwW
N(0,I)=N(L,I)
N(LP1,I)=N(1,I)
130 CONTINUE
DO 140 J=1,L
N(J,0)=ISHFTC (N(J,LW) ,NBIT-1)
N (J,LW1)=ISHFTC (N(J,1),1)
140 CONTINUE
DO 160 I=1,LW
DO 150 J=1,L
LTEMP1=IOR(N(J,I-1),N(J,I+1))
LTEMP2=IOR (N(J-1,TI),N(J+1,TI))
M(J,I)=IOR(LTEMP]1, LTEMP2)

i

150 CONTINUE



160 CONTINUE
DO 180 I=1,1Lw
DO 170 J=1,L
N(J,I)=M(J,T)

170 CONTINUE
180 CONTINUE
200 CONTINUE

STOP

END

B-3



Appendix C

The various 1mtial conditions of 2D froth with a single defect
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Appendix D

Some detailed results obtained from direct simulation

We nclude here example outputs of a system of size 900 cells After creating a

Voronor network containing 900 cells, the final network 1s given with statistics

showing the distribution of the number of the cell sides with {l,=1 38 We only

give the database obtained during time steps of 80-160, the second moment, [, 18

thus approaching 1ts final stable value

The results we obtained compared well with the results of Kermode and Wearre
(1990) and overall agreement on the evolution was achieved with only minor
difference mn values quoted by those authors This was partly due to the fact that
the values of convergence CNVRMS and CNVRSD and scale factor SCALER
were not the same (SCALER 1s the function of the long diagonal used m the
hard-disk formulation 1n subroutine VSETUP, equivalent to the area perturbation

scale 1n the further subroutine SETUP, see programme disk Appendix E)

D-1 gives the results for vertices of each cell of the network, and the value of

pressure and area of each cell and the area change value during the evolution The

total area and pressure are also given g
Tables D-2, D-3 and D-4 show the distribution of the cells with n sides, and
calculate the second moment, and show the distributions of average area of n-
sided cells and average number of sides of neighbouring cells to n-sided cells

They are used to test correlation laws due to Lewis and Aboav (Aboav-Wearre)



NO NEAREST VERTICES NEAREST CELLS FL X-COORD

1 66
2 613
3 4
4 2359
5 59
12 5
13 15
14 16
15 13
16 19
18 24
19 18
22 28
23 18
26 24
27 23
28 29
29 30
30 29
31 27
32 44
34 32
35 124
36 39
39 36
40 41
41 44
42 46
44 48
46 42
47 48
48 53
50 51
51 50
52 51
53~ 748
55 623
56 60
57 59
58 53
243 242
244 1122
246 250
250 251
251 252
252 253
253 252
259 265

13
64
2
3
4
13
12
15
70
12
59
16
23
26
27
31
22
28
35
30
26
31
36
34
123
39
40
41
32
871
46
44
47
626
55
52
56
57
58
57

244
1129
261
246
259
268
243
260

3

3

1

5
12
16
1
77
14
14
19
23
722
58
32
26
96
113
31
34
34
36
30
35
40
724
42
854
41
47
50
47
630
52
53
58
52
55
56
24
253
243
241
242
250
251
1133
251

STEP 160
VERTEX

1 109 106
109 157 776
109 1 157
1 255 157

1 478 255
82 478 1
1 106 82
691 172 82
691 82 106
82 172 478
478 504 892
172 504 478
172 388 856
216 892 504
145 216 504
145 504 856
388 706 856
706 777 856
42 856 777
42 145 856
145 479 216
42 479 145
42 777 311
42 311 479
250 479 311
250 594 479
594 451 479
594 103 451
479 451 216
36 451 103
36 513 451
451 513 216
36 784 513
376 513 784
122 513 376
122 216 513
122 376 406
122 406 255
122 255 892
892 216 122
8 682 410

8 410 736
132 347 16
347 682 16
16 682 316
316 682 463
8 463 682
16 316 642

14 235785
14 862444
15 376797
16 640196
16 981863
16 425505
14 515132
14 423850
13 665382
16 496382
17 748842
16 993984
15 968502
18 795813
19 359312
18 987633
16 025360
17 015610
19 308083
19 514824
20 117775
19 742060
19 724100
19 933668
21 270674
22 413256
22 783489
23 807703
21 689426
23 862827
23 204538
21 989862
23 757202
22 658482
20 978910
20 612053
19 853817
19 539135
18.770424
19 226286

6 462644
6 317190
7 832298
7 415353
5 843425
4 948945
4 870450
5 781813

Y-COORD
23 911783
26 905449
25 224663
24 904900
23 000408
22 588690
23 157747
20 933317
22 005440
21 827108
22 132517
21 587917
18 505581
21 807293
19 411854
19 091444
16 943342
16 229120
17 233746
17 889366
18 950672
17 895344
16 968477
17 160540
16 331905
16 627193
18.754583
19 470989
19 547426
20 545918
21 295223
21 020212
22 795881
23 987236
23 569798
22 565615
24 900927
24 867834
23 041708
22 434191

36 639771
38 433025
34 237354
34 471523
33 604534
34 118961
35 635212
32 493832



ITERATION 6

NO NS PRESSURE
1 6 - 734571E-01

3 6 0 446828E-01
4 5 - 409704E-01
7 5 0 399777

8 7 - 140458
10 4 0 459759

11 6 - 251900E-01
12 6 - 780218E-01

14 6 - 900626E-01

16 6 - 986054E-01

22 9 - 226387

23 5 0 303571

24 6 - 109859

26 8 - 244135

27 5 0 481529E-01

28 5 0 239352

30 7 - 186504

32 7 - 172032
436 6 - 366451E-01

39 7 - 190857

42 5 0 328208

165 6 - 803328E-01
167 5 0 186709
170 7 - 192074

172 7 -~ 116524

D-1

CELL
AREA
4 92142
2 05785
4 24862
0 572335
9 17200

0 926247

4 85295
4 51595

4 48594

4 16690

11 3768

0 723332

2 28559

11 9532

2 10140

0 754791

10 2727

5 22058

3 38441

9 64751

0 428812

4 73208

1 59137

4 67609

7 39918

0

CHANGE
537463E-03

667421E-04

136337E-02

104756E-03

228360E-02

442702E-03

578980E-03
418444E-03

989777E-04

419421E-02

959548E-04

542479E-03

175298E-02

226221E-02

543950E-04

102105E-03

197343E-03

627232E-05

101583E-02

160671E-02

245296E-03

130497E-03

884209E-03

292118E-03

331481E-06



260
261
265
267
268
269

282
284
285
286
288
289
291
295
297

1707
1708
1710
1711
1712
1714
1716
1718
1719
1720

1762
1763
1764
1766
1767
1768
1769
1770
1771
1774
1775
1776
1778
1779
1780
1788
1789
1794
1797

276
321
259
274
267
1192

291
285
284
281
286
288
302
301
298

1708
1707
1706
1714
1346
1718
1703
1714
1722
1718

1768
1758
1763
1767
1768
1767
1349
1376
1767
1212
1774

982
1211
1776
1460
1771
1160
1797
1387

261
246
267
265
252
268

284
282
321
278
298
295
315
289
299

1660
1697
1703
1703
1347
1719
1719
1347
1716
1622

995
1764
1349
1356
1766

981
1760
1383
1383

976
1776
1779
1775
1788
1461
1391
1138
1380
1794

TOTAL AREA

259
260
271
268
269
1188

281
314
276
288
289
302
282
297
295

1706
1651
1697
1712
1711
1711
1694
1720
1714
1721

1763
1762
1363
1770
1771
1762
1337
1766
1788
1775
1778
1775
1468
1467
1210
1779
1146
1670
1674

2338 27

16
16
584
316
463
463

397
280
377
773
843
840
280
843
314

98
237
351
193
656
408
249
775
408
490

254
861
891
527
604
491
577
604
348
556
428
428
428
158
868
158

63
192
268

642
377
642
550
550
832

880
570
397
880
880
880
880
314
843

744
810
744
656
193
656
351
633
633
633

861
254
861
604
737
861
189
527
737
720
720
556
588
428
588
737
558
268
542

377
132
316
584
316
550

280
397
570
813
773
843
875
840
900

810
744
193
408
751
633
408
656
249
775

491
121
121
861
861
737
121
530
604
756
556
737
720
737
489
348
384
447
447

TOTAL PRESSURE

6 976846
7 471171

4 062208
3 571759

3 504604
2 251642

7 775933
8 392872
7 526342
5 229830
5 346999
6 237485
8 284877
6 149061
5 215492

38 056274
37 854076
38 452927
40 351822
41 716499
40 339657
39 618011
40 914494
39 928764
40 756325

48 062065
47 406715
45 128159
45 192154
46 400455
47 965164
46 919758
44 895882
46 123409
51 883045
51 064667
49 715027
51 083378
48 259884
51 105156
46 752892
51 742752
33 111568
39 239159

31 596193
31 741131
31 711395
32 010986
33 205044
33 828094

27 575993
28 740221
30 760241
27 182684
25 806343
25 371269
26 797705
24 400862
23 997952

12 301379
12 529135
13 089301
15 385736
14 992019
15.786548
15 544519
16 150940
15 931385
17 477066

10 641710
11 295651
11 401845
8 668905
8 252031
9 224290
14 168591
8 314537
6 909466
4 783600
4 449310
5 390654
3 990723
4 679558
0 674767
5 395498
39 322708
5 948791
5 429935

0 685453E-06

173

174

175

188

189

190

191

192

865

867

868

869

872

888

889

891

892

895

896

897

898

900



127881 6 13436

244289 0 578846

123797E-01 2 51060

172829E-01 3 86964

126857 5 68831
302527 0 389218
490216 0 638784
218788 13 1569
156587 1 16659

403695E-01 2 64290

157173 4 26378
247038 9 62451
143567 8 58892
133162 8 77753

390286E-02 3 99806

218235 0 989011
147794 1 26644
256342 9 02707
e
189778 11 6216

449861E-01 3 46774

789616E-01 2 36365

155483 11 6688

NUMBER CELLS REMAINING

378272E-02

283463E-04

337373E-03

264915E-02

479773E-04

457808E-04

767139E-04

713820E-03

155696E-04

940509E-03

387237E-04

886680E-03

347733E-02

214513E-02

122788E-02

964927E-06

913142E-04

614685E-03

708230BE-04

715620E-04

747760E-03

458885E-02

509



* %k * *x %

A k *x x %
INITIAL CONFIGURATION

CONVERGENCE (EQUIL)

900 CELLS

0 00O0OE+00
0,

NUMBER OF TOPOLOGICAL CHANGES ---->

.

-=--=-> 1800 VERTICES

30 SYSTEM

60 BY
- 0 5000E-02

TOLERENCE (DIFFUS)

o, o0, o0, 0, O, 6, 2, 0, 0, O,

0,

509
PERIODIC /INPUT - FOR 31 DAT /EQUIL CALLS -

.

o, o, o, o, o, o0, O

NUMBER STEPS PERFORMED - 160 FINAL CELL COUNT

————

OPTIONS

342 T2 -181

T1

84

DIFFUS CALLS -

80

PROGRAM ROUTE ----> SYSTEM

STATISTICS
Distribution of the number of cells with n sides over

80 points

160 steps showing

| MU2

No T1
e R ikt R e et it e itk R et D e D et

12 | TOTAL |

11

10

STEP

1 203

688
et e e e T e D L kA e L e

209 251 135 45 11

33

81

1 184

el e e D et St e et el P R

684

214 247 136 43 11

29

82

1l 165

680

214 247 135 43 10

27

83

1 213

it e e it At et R it Sl b b

14

602

190 202 130 39

29

119

1 192

i i et e e i et L i D e el Db bbbt

599

188 201 133 39

27

120

1 185

e it e ettt L LT L L e e e L

596

28 187 202 128 42

121

1 194

D e i e e et Tl e s e et T e e

593

188 200 130 39

24

122

1 151

591
Bt e s T N et R e T e aaiaittata e et

24 190 200 128 41

123

1 165

589
i e e i e e D ettt e et e e ety

192 197 127 42

22

124

1 128

587
el L e e e D L e ettt b e e e

21 192 200 125 42

125

1 149

B it S ettt e T ittt S e N  attalet ST LT

583

191 201 122 42

19

126

1 111

i S it S e e e et T e e L e L LD D e

576

193 199 llse 42

17

127

1 127

575

194 197 119 42

14

128

1 182

521
B bt T R e e e LT T L

160 180 109 37

26

154

-

B it B e e ke L LT

Sk v

1 212

520
i S e e e ittt e e e et T e et

25 160 180 107 38

155

1 261

i R T R e ittt T R e e et T e

16

517

158 183 98 39 10

25

156

1 200

e e e ettt e e e ettt e e

515

25 158 185 99 37

157

1 226

T T et et N e bl e Bt e S

514

157 187 96 38

24

158

1 207

b R e e St T D it T T et e e L L e e

512

22 159 185 98 36

159

1 155

R et St B R ettt e e et T R

509

161 185 98 34

20

160

D-3



STATISTICS - - - - - - - - - - - - TABLE B
Distribution of the average area of n-sided cells over 160 steps showing 80 points

STEP | 3 ] 4 | 5 | 6 I 7 | 8 | 9 | 10 1 11 | 12
——————— i Sttt e e T e e et L L L L
81 [0 OOO0OE+00 [0 4322 I 1 428 1 3 334 |1 5 306 | 7 366 | 8 573 | 10 84 | 14 09 0 OO0E+00
------- e ittt e e e L it L L L LTt P L L
82 |0 OOOOE+00 |0 4644 | 1 423 | 3 369 | 5 360 | 7 383 | 8 617 | 10 90 | 14 16 0 00E+00
——————— e et et R et et L e ettt
83 |0 OOOOE+00 [0 5677 I 1 419 | 3 395 | 5 373 | 7 464 | 8 724 | 10 94 | 14 20 0 00E+00
——————— el e e e e et Attt
84 |0 0000E+00 |0 5711 I 1 409 | 3 396 | 5 388 | 7 630 | 8 886 | 10 25 | 14 31 0 O0E+00
89 [0 O00OE+00 |0 6117 | 1 411 | 3 424 | 5 502 | 7 515 I 9 641 | 10 51 | 14 65 10 0000E+00 |
------- el et e e e e e T e
138 |0 OOOOE+00 |0 4498 I 1722 | 3 975 | 6 787 | 9 610 | 10 30 I 17 27 10 OO00OE+00 |
——————— el e Bt et e e T R LT S P e R
139 |0 00OOE+00 |0 3791 | 1 755 | 3 975 | 6 822 | 9 434 | 10 39 | 17 38 10 OOOOE+00 |
——————— pommmmm— e $ommme—m—mae e Hm—mmmm - Fmmmm e L T dmmmmmmm - R e T -
140 |0 2118E-01 |0 5210 | 1 817 | 4 014 | 6 771 | 8 951 | 11 53 | 16 43 10 0000E+00 |
m—————— Fm—mmmm drmmmmm——— R ettt Fommmmm e L ittt EEE LT tommmmemm - mmmmmmm e Fomm to—-
141 |0 8113E-01 |0 4027 | 1 800 | 4 040 | 6 772 | 9 860 | 11 46 | 16 70 10 O000E+00 |
—————— dommmmm - tmmmm e it rmmmmm—mmee fommmme oo T Fommmmmm e dmmmmm e dommm - e
142 |0 8291E-03 |0 5532 | 1 809 | 4 049 | 6 840 | 9 819 I 12 29 | 14 54 10 0000E+00 |
——————— R et e ettt e e e e e ittt
143 |0 00O0OE+00 |0 6037 | 1 807 | 4 065 | 6 888 | 9 981 | 12 06 | 16 87 10 0000E+00 |
——————— L e L D et T et e e e ettt T
144 10 1451E-01 |0 6992 | 1 819 | 4 028 I 6 930 I 10 06 | 11 63 | 16 90 |0 0000E+00 |
------- il e e R e it R e EE L L EE PP P e PRt
151 |0 OO0O0OE+00 |0 7349 | 1 869 | 4 072 | 7 139 { 10 27 1 12 86 I 17 44 |10 0000E+00 |
——————— B e e At R e e it
152 |0 OOOOE+00 10 7147 | 1 858 | 4 072 I 7 149 | 10 29 | 12 89 | 17 48 10 CO00E+00 |
——————— R e e e e e e R e e T E P P e e P PP
153 |0 O0O00OOE+00 |0 8297 | 1 900 | 4 060 1 7 127 | 10 34 | 12 51 I 17 51 10 GO00E+00 |
------- i e et e e L e e et T
154 |0 OOOOE+00 |0 8478 | 1 909 | 4 063 | 7 094 | 10 28 | 12 94 | 17 54 10 0000E+00 |
——————— it e R it e e i et e e T T
155 |0 2421E-01 |0 8503 | 1 888 | 4 096 | 7 106 | 10 28 | 13 23 | 15 71 10 0000E+00 |
——————— e el et e iaaet Tt e e e EE L LR P L P P e
156 |0 2289E-01 |0 7581 | 1 863 | 4 211 | 7 225 | 9 914 | 12 38 | 17 87 |0 O00OE+00 |
——————— Rt e b L R e e i ataiatt
157 10 0000E+00 |0 7327 | 1 850 | 4 221 | 7 233 I 10 26 | 12 81 | 17 93 |0 O000E+00 |
------- e R el et e et e e Sttt
158 |0 2109E-01 |0 7945 | 1 848 | 4 247 | 7 240 I 10 22 1 13 26 | 15 12 10 O000E+00 |
——————— R e e et s e i S et e
159 |0 3781E-01 |0 8238 | 1 858 | 4 245 | 7 301 | 10 32 | 12 84 | 16 48 |10 OO000E+00 |
——————— R e et e e e e S h Sttt
160 10 0000E+00 |0 8775 | 1 867 | 4 254 | 7 407 | 10 43 | 12 94 | 18 09 10 0000E+00 |
——————— et R R R L ettt T e L L P TP L PP P PP

D-4
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STATISTICS
Distribution of the average number of sides of cells meighbouring n-sided cells over
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Appendix E

Diskette A
Sandpile for --Sandpile Model program
Dissand for ---Dissipative Sandpile Model program

Zz for ----- Direct Stmulation program

R ogeden

Planc ------ Graphics program

Mc for ------ MC method program



