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Abstract

Computational modelling techniques have been applied in physics, biology and other 

fields for decades to investigate the scale-invariant properties in non-equilibrium 

complex (many-cell) systems Specific examples have been considered to underpin 

the simulation of cellular systems, le  sandpiles as simple models of transport 

phenomena, and soap froths as models of many-cell cellular networks A number of 

characteristic properties have been investigated to explore common features of 

complex systems Particularly interesting for the simple sandpile automaton is the 

achievement of the critical state through the phenomenon known as self-organised 

criticality (SOC)

Various simulation algorithms e g cellular automata, direct simulation and Monte 

Carlo have been used to model the sandpile and froth systems respectively The 

studies of a directed and dissipative C M L sandpile model provide evidence for the 

occurrence of SOC, with the system characterised by simple power-law distributions 

For the soap froth model, the effect on the evolution of the presence of defects is 

investigated, together with the impressions of varying the amount of disorder Scaling 

properties obtained, for various initial conditions, are given in detail The 

improvements on methods of computational modelling, and the limitations of 

software and hardware implementation are also briefly discussed
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Chapter 1 Introduction to the Nature of Complex Systems

1.1 Brief Review of "Cellular" Systems V

Traditional mathematics offers few methods for building a comprehensive theory of 

complex dynamical systems A broad research program to study such systems 

grows naturally out of studies on complex (many-cell) systems The prototypical 

examples are cellular automata and random cellular networks, that appear to be 

analytically less tractable Studies of these systems lead naturally to consideration 

of the geometry of the systems’ parameter space and the effects of parameter 

changes on system behaviour

Cellular Automata were invented by John Von Neumann (1966), who was 

interested in connections between biology and the new science of computational 

devices, 1 e automata theory This was pursued by the mathematician Stamslaw 

Ulam, who suggested using cellular automata as a framework to solve self­

reproduction problems, (Burks (1966)) The Game of Life \yas created by John 

Horton Conway to demonstrate universal computation in cellular automata, 

(Berlekamp et al (1982)) Attention has been attracted to the Game of Life and its 

relation to some scientific problems, Poundstone (1985), and in this context 

Wolfram (1984) (1986) proposed a classification of cellular automata A  

characteristic feature of these cellular automata systems is that they consist of large 

numbers of simple identical "units" with local interaction For a review, see 

Gutowitz (1990), Mitchell (1996)

Materials consisting of cellular network structures such as metal grains and 

biological tissues are common in nature, where the surface energy of the 

boundaries makes the pattern unstable, causing certain grains to shrink and 

eventually to disappear, Weaire and Rivier (1984) In cellular network systems, 

individual interaction has a strong influence not only on its near-neighbours and 

next-neighbours, but extending to all the individuals within,the system For a 

review, see Glazier and Weaire (1992), Stavans (1993)

1



The study of cellular systems in nature has been a major subject in physical, 

chemical, biological and related sciences over decades Its applications cover a 

wide range of phenomena and may broadly include, but are not limited to

• Simple cellular systems e g model of transport phenomena, earthquake 

occurrences, traffic jam, forest fire, spin glasses, turbulence, Biological 

evolution and ecological balance, simple epidemic models, immunological 

reactions models and financial market fluctuations

•  Cellular networks e g structure and evolution of froths and foams, modelling 

of polycrystalline alloys, ceramics structures and lipid monolayers, gram 

growth problems and physics of garnet films

In most cases, the simple cellular system is defined as a lattice in position space 

Sites may represent points in a crystal lattice, with values given by some quantified
i

observable or corresponding to types of units The sandpile model, the dynamical 

Ising model and other lattice spin systems are simple types of such single cellular 

automata system models Many share the characteristic behaviour of Self-
j

organised Cnticality (SOC), a concept introduced to describe the process of 

achieving a critical state through dynamic adjustments intrinsic to the system as 

opposed to governed by an external parameter, Bak (1996)

We concentrate predominantly on simulations of physical and related systems, 

where a satisfactory "run" requires the computation of billions of events to 

describe formation, growth or evolution While both experimental and theoretical 

methods offer basic approaches to understanding complex phenomena, some 

systems are difficult to characterise precisely because they are of large size and 

involve complex interactions Experimental work is typically difficult to perform, 

due to the many parameters involved and theoretical solutions are similarly not 

usually feasible or are limited to extreme or equilibrium behaviour for simplified or 

approximated systems The rapid growth in power and availability of modern 

computers means that, in a simulation, the size of the system may be varied and

1.2 Type of Systems and Applications
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complex interactions controlled with relative ease This not only serves to 

stimulate experimental work and develop new insights to the theoretical system, 

but also provides a means of filling the gap between them, Heermann (1990)

1.3 Computational Modelling Techniques

The interdisciplinary area of computational science has grown from the recognition 

that physics, chemistry, biology and related fields have a common need for efficient 

algorithms, together with sophisticated hardware and software to address complex 

problems, Wilson (1987) Simulation techniques form one of the most important 

tools in computational modelling and can be used to study i?a diverse range of 

phenomena

Computational modelling can be used in a variety of different ways The 

traditional methods of direct simulation solve equations numerically in a 

straightforward way, providing a direct computer analogue of the physical system 

under study Examples are discussed e g by Koonin and Meredith (1990), and by 

Gould and Tobochmk (1996) More recently, simplified computational models and 

indirect simulations have been used more extensively, where those include 

enhancements of early Monte Carlo methods, (based on hypothetical statistical 

populations), direct modelling of discrete system elements (using e g cellular 

automata), modelling of system interactions through molecular dynamics 

simulations, neural network, and other augmented techniques such as genetic 

algorithms and so on Recent references include Wolfram (1983) (1986), Jam
* f

(1992), Gaylord and Wellm (1995), Frankel and Smit (1996), Crandall (1996) and 

Giordanc (1997)

The choice of methods is clearly wide and simulations have been applied m many 

research fields The choice of a particular method depends both on the details of 

the system and the information sought, but also on practical limitations, smce the 

more detail retamed on the system, the more all the demands made of the 

simulation Physicists may wish to provide analogies to the behaviour of non­

linear dynamical systems and to explam the complex natural phenomena, 

computer engmeers may desire to improve the power of a given device; biologists 

may wish to model the spread of an epidemic or assess macroscopic behaviour
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from studies of molecular dynamics and so on, nevertheless the principles of such 

simulations remain the same

Specific examples focussed on in this thesis, to underpin the simulation of cellular 

systems, are the sandpile automaton and the 2D soap froth, which provide simple 

models of complexity with different interaction features and system constraints 

These also provide idealised models for a number of more sophisticated 

applications and as such, merit attention both in their own right and for the insight 

they afford Furthermore scale-invariance in non-equilibrium complex systems is 

common and the sandpile automaton as a paradigm for SOC provides a means of 

investigating this property through numerical simulations Implementation details 

of the different simulation approaches are discussed in the context of these real 

problems

1.4 Scope of Thesis :

The arrangement of the material in this thesis is as follows

Chapter 2 defines what is meant by a simulation and why we need to use computer 

simulation to deal with complex systems The various categories of simulation 

methods are described and distinguished, e g cellular automata, Monte Carlo and 

Molecular Dynamics

Chapter 3 reviews the cellular automata method applied to scientific systems 

Sandpile models and the phenomenon of self-orgainsed criticality, (SOC), are 

discussed in this context Numerical simulations of a directed sandpile model and 

dissipative sandpile models are analysed and reported with simulation statistics 

used to provide evidence of the occurrence of SOC

Chapter 4 focuses on a model for 2D froth, exploring via direct simulation, the

effect on froth evolution of the presence of defects, large amounts of disorder and

so on The strengths of the direct method are discussed in some detail, together
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with practical considerations for extending the size of the systems investigated 

where a large amount of information on the system structure must be retained

Chapter 5 discusses further the increase in complexity involved in simulating a real 

network and considers alternative modelling technique Hardware and software 

limitations are considered briefly, together with the improvements which might 

reasonably be expected through upgrading

Chapter 6, in the final chapter, we comment on some of the implications for 

simulating complex physical systems A synopsis of system type, methodology and 

performance is given and recommendations for further methodological studies and 

improvement are made, together with suggestions for extending work on the 

problems considered at relatively low computational expense

References and appendices are given at the end of the thesis, where the latter 

include copies of published papers, algorithm details, detailed figures and a table of 

example statistics of froth evolution and a diskette containing full details of the 

programmes used
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Chapter 2 Computational Science (Scientific Computing) 
and Simulation Techniques

Scientific problems nowadays are not solved solely by the means of conventional 

experiments and theoretical considerations A major new ingredient is the use of 

computers to aid research It is well-known that physics, chemistry, medicine, 

astronomy and other sciences share a common need for efficient algorithms, system 

software, and computer architecture to address large computational problems A 

new interdisciplinary science, computational science (or scientific computing), 
which is focused on using computers to analyse scientific problems has been 

devised to meet the need and has attracted much attention, Wilson (1986) and 

references therein Simulation techniques have played and continue to play an 

important role in computational science studies

Simulation is a process which allows us to understand the behaviour of an existing 

or potential system by observing the behaviour of a model representing the system 

With the advance of simulation approaches in recent years, it provides increased 

efficiency in implementation of a complex system without actually constructing or 

physically dealing with the system itself A ll the old investigation problems and 

some completely new concepts, such as the fractal behaviour of nature are now 

studied through computer simulation techniques The applications include a diverse 

array of phenomena, in fields ranging from physics and other natural sciences, from 

meteorology to social, arts, political and economic processes 

In this chapter, we first introduce the notion of computational science and its 

components model, system, and simulation Then, we categorise the simulation 

classification and discuss simulation as a methodology for focusing predominantly 

on the application to complex physical and related systems We present the 

architecture needed and distinctive features of the software and describe various 

types of simulation techniques and their applicability A discussion of the 

underlying theoretical basis for the different techniques is also given in general 

terms Specific details are developed for the problems of interest in subsequent 

chapters.
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2.1 Introduction

2.1.1 Computational Science / Scientific Computing
Computational science relates to the knowledge and techniques required to 

perform computer simulations and other computationally intensive problems 

through model analysis in the respective disciplines, Wilson (1986) Its 

characteristics include

• having a precise mathematical statement,

•  being intractable by traditional methods,

•  having a significant scope,

• requiring an in-depth knowledge of science, engineering (or the arts)

Thus, computational science, involving mixed areas of an applied discipline, seeks 

to obtain an improved understanding of some complex phenomena through the 

implementation of the problem by a suitable computer architecture and algorithms 

In short, it means to investigate a complicated system by an appropriate 

computational model usually via computer simulation Various research fields, e g 

biology, physics, economics, have established branches of scientific computing 

endeavour and have emerged as recognised topics in computational science 

Unfortunately, the computer science community has been slow to meet this 

development, so that redundancy of effort has ensued

The use of simulation in research and development is now established as a third 

basic methodology, complementing traditional theory and experimentation, Decker 

and Johnson (1993) The importance of simulation is illustrated by results achieved 

for fundamental problems in science and engineering that could be advanced only 

by applying computational techniques Some examples include global climate 

modelling, turbulence, and biomolecular modelling, Wilson (1987) A detailed 

description follows of what is involved in simulation of a system

2.1.2 Model, System, and Simulation
The application of modelling techniques for analysis of system dynamics is a 

popular methodological approach in various areas For the solution and flexible
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application of such models, simulation is of increasing importance. It  has been 

defined by Naylor et al (1986)

“Simulation is a technique for conducting experiments on a digital computer, this 

technique involves certain types of mathematical and logical models that describe 

the behaviour of business, economic, physical or chemical systems or some 

component thereof over periods of time ”

In general terms, simulation is a form of experimentation that involves asking 

decisions in a simulated environment - a laboratory setting that replaces real world 

conditions In scientific terms, simulation refers to the process of designing a 

model of a real system and conducting experiments with the model for a better 

understanding of the behaviour of the system, or evaluating various patterns for the 

operation of the system, Bratley et al (1983), Fishwick (1995)

Here, a system can be defined as the understanding of the relationship between 

things which interact For example, a pile of sand is a system, in which grains 

interact based upon how they are piled I f  the pile is unbalanced, the interaction 

results in movement of the grams until they find a new condition under which they 

are m balance, (either dynamic or static) Isolated groups of sands which do not 

touch one another are not a system, because there is no mteraction 

A system can be modelled, le  one can create another system that supposedly 

replicates the behaviour of the original system Theoretically, eg  it is assumed that 

if conditions for a second group of sand grams replicate the first set, then, we can 

predict that they will achieve a new configuration that is the same as the first one 

Alternatively, we can use the mathematical representation of sand grams by 

appropriate laws, to predict how future piles of the same or different types of sand 

will mteract Mathematical modelling is thus fundamental to the description of 

system behaviour

A model is therefore, a simplified representation or description of the real system 

mtended to be understood As some complex systems may be beyond our intuitive 

knowledge, we seek to study and analyse the real thing by constructmg models In  

most areas of science and engineering, physical laws are applied to obtam 

mathematical models for analysmg systems Model building is relatively easy if the 

physical laws are known and the system is compact and well-behaved However,



the modelling of complex, large-scale systems is difficult since many procedural 

elements can not be described directly Simulation approaches are used to 

overcome these difficulties

Generally speaking, simulation modelling assumes that a system is computable 

Here a system is characterised by a number of variables, where each variable value 

represents a unique state of the system The dynamic behaviour of the system is
i,

observed under different states Thus, the outstanding advantage of simulation is 

not only to fully obtain the system’s variability and sensitivity with changing 

conditions, but also to increase its safety and productivity Furthermore, whenever 

results obtained by simulation modelling are different from those obtained by other 

methods, it is the only approach that allows a re-test of system behaviour 

Therefore, it is capable of providing insight into aspects of transient misbehaviour, 

such as temporary influences by external constraints, which is not available for any 

other techniques

2.1.3 Computational Model
A computational model of some process is, essentially, no more than a computer 

program It is a program for which claims are made, DeVries (1994) The 

structure of the program reflects that of the mechanisms assumed by theory for 

the process under study A computational model may be a mechanistic model, or 

an input/output functional model, or both Observation of a particular model’s 

behaviour can provide precise information on the long-term effects of the system 

Thus, computational models can be a source of significant insights for other 

similar systems as a new methodology to deal with complex systems 

A computational model can also be very effective at driving theory development 

Usually, it is not the case that a written program for a model is based on a well- 

understood or completely perfect theory However, by exploring computational 

variants, the theoretical details can be developed to a deep level, which otherwise 

is unattainable For example, Partidge et al (1984) used a computational model to 

refute a widely-held theoretical belief, and hence presented a revision of the 

acceptance of a class of theories of habitation behaviour.
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Complex systems span physical science, mathematics, computation and biology In 

general terms, a complex system is defined as a network of interacting objects, 

agents, elements or processes that exhibit a dynamic, aggregate behaviour, 

Bonabeau and Theraulaz (1994) The action of an object possibly affects 

subsequent actions of other objects in the network, so that the action of the whole 

is more than simple sum of the actions of its parts In other words, a system is 

complex if it is not reducible to a few degrees of freedom by statistical description, 

1 e forms a so-called many-body system

For instance, a sandpile can be built in the process of adding grams of sand into a 

pile With the sand slides become bigger, the pile becomes steeper, and eventually, 

some of grams topple till they fall out of the boundary At this point, the system is 

far away from equilibrium, and its behaviour and properties can no longer be 

understood in terms of those of the individual grams The sandpile generates a 

new dynamic, which can be mvestigated through the whole pile rather than every 

smgle gram Therefore, the sandpile is a complex system

In general, we are mterested m predictmg, both qualitatively and quantitatively, 

the behaviour of a complex system by means of a few relevant physical elements 

It  is assumed that a large number of mdependent agents are mteractmg with each 

other in many different ways Accordingly, system function may reflect various 

relationships between them, e g the billions of interconnected neurones make up a 

bram Waldrop (1992) has pomted to four aspects of systems which characterise 

complexity

1 Systemic mteractions can lead the system to spontaneous self-organisation

2 Complex systems do not just respond to events For example, recent research 

has found that species m biology evolve for better survival m a changmg 

environment

3 Distinction between complicated and unpredictable Complexity has its 

dynamic aspect Every complex, self-organising, adaptive system possess a 

kind of dynamism that makes it qualitatively different from static objects, e g 

snowflakes, which are merely complicated

2.1.4 Complex (Many-body) Systems

10



4 Complex systems are more spontaneous, disorderly and alive However, their 

unusual dynamism may also be far from the unpredictable circuit known as 

chaos

It  was difficult to study complex system in detail until recent decades because of 

the high computational power required For complex systems in any specified 

area, the whole system may demonstrate a global dynamic which is not easily 

predicted from those of the individual components, thus, much research tends 

towards using discrete rather than continuous modelling and corresponding 

simulation approaches It is also possible to analyse the behaviour of individuals 

based on a large scale network Most investigations are concentrated on 

considering the behaviour and properties of interconnected groups

o'*?2.1.5 Why do we Need Computer Simulation?
Computer simulation provides a powerful way of solving problems For some 

exactly soluble problems, e g in physics, a complete specification of a system’s 

microscopic properties leads directly and easily to an explanation of macroscopic 

properties One example is that of idealised models like the perfect gas or crystal, 

where the Hamiltonian directly gives the state equation, Baxter (1982) In studies 

of more complex systems, however, there are no exact solutions available, and in 

reality it is too costly to examine every possibility and too difficult to analyse their 

behaviour based on a straightforward approximation scheme Computers typically 

are used for incidental calculation in this type of work

For scientific problems, the computational aspect becomes more important because 

computer simulation has the flavours of both theoretical and experimental features 

A good theoretical background is the premise to studying a subject by simulation 

methods On the other hand, analytical results do not provide solutions to diverse 

problems Pure theoretical approaches tend to be applicable only to very simplified 

models Simulations are a useful learning tool for a system under many and varied 

conditions, Wagner (1975) eg  describes setting up a simulation of a loading dock 

with ships moving in and out at specified tides more cheaply and easily than having 

the ships physically moving in and out. A forest fire simulation is more easily and
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less dangerously observed than firing the nearest forest, Ball and Guertm (1992),
i

Duarte e ta l (1994)

The results of computer simulations may also be compared with those of theory 

and real experiments They provide a test of the underlying model used and, 

eventually, if the model is a good one, the simulator hopes to offer insights into the 

limitations of theory and experiment to assist the interpretation of new results This 

dual role of simulation serves as a bridge between models and theoretical 

calculations, and between models and experimental results When dealing with 

non-linear phenomena, computer simulation of an idealised model of interest 

enables sensitivity analysis via a specified algorithm, Binder (1986) Given this 

connecting role, and the way in which simulations are analysed, those techniques 

are often called computer experiments as well, Allen and Tildesley (1990) 

Furthermore, an important fraction of the human knowledge about critical 

phenomena and phase transitions is due to computer simulations performed on 

statistical models, Stanley and Ostrowsky (1986) The study of some new research 

field, like aggregation phenomena, is wholly based on computer simulation and 

experimental data without theoretical understanding to date More details on 

computing environments, simulation techniques and applications are discussed in 

the next Section

2.2 Computing Environment

2.2.1 Hardware Capability
2 2.1.1 Overview on Architecture Principles
In the hardware processing for large scale simulations, it is important to tune the 

machine to the needs of the problem being investigated. We consider the structure 

of the hardware with respect to storage organisation, processor organisation, 

connectivity etc

Vector computers have been used for scientific computing since their development 

in the 1970s The first supercomputer architectures included one or a few fastest 

available processors to increase the packing density, minimise switching time, 

pipeline the system, and apply vector-processing techniques The main task is to

12



repeatedly use a small set of program instructions repeated for multiple data 

elements, Hwang (1993) Vector processing has proven to be highly effective for 

numerically intensive applications, but not for more commercial uses, such as 

online transaction processing or databases

2.2.1.2 Storage and Parallelism
In order to obtain as much memory as possible, it is desirable to introduce a 

parallelism concept and construct a parallel approach In general, approaches to 

parallelism are classified into the following categories event, geometric, and 

algorithmic parallelism, where event parallelism is the most straightforward and 

easily applicable

Parallelism has played an important role in computer development in recent years 

It is a popular approach for the designers of current supercomputers This 

provision in a computer system allows us to utilise the maximum amount of 

concurrency and treat the problem with the minimum programming Apart from the 

computational power and acceleration of algorithms, parallelism brings with it a 

new view on scientific and other processes Generally,^ various levels of 

parallelization can be identified These are respectively

(i) Instruction level parallelism which is the heart of all "multispin" coding 

algorithms This can turn a normal scalar computer into a mini-parallel computer, 

and also provides the basic programming tool for SIM D (Single Instruction 

Multiple Data) machines

(u) The chaining level of parallelism, which is closely associated with vector 

computers and which typically, can execute a multiplication instruction and an 

addition instruction simultaneously More sophisticated machines such as the 

CRAY YM P can execute logical and shift operations simultaneously 

(in)Parallelism can also be introduced at a higher level in the form of multiple 

vector processors which can execute different parts of a loop simultaneously and

spread loops automatically Such systems clearly represent thé emerging trend in
* \

supercomputing architecture e.g. CRAY X M Y .
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The paraUelism approach is considered an appealing one because it can accelerate 

the execution of a single program and increase throughput and reliability The 

existence of an independent control unit makes possible to execute parallel loops 

with branching, subroutine calls and random memory activity as compared to single 

processor vector machines which have insufficient computational resources to 

handle the complexity of the problems and achieve the accuracy required

2 2.1.3 Parallel Architectures
In the 1980s, the first massively parallel processors began to appear with the single 

goal of achieving far greater computational power than vector computers by using 

low cost standard processors Theoretical models of parallel computing illustrate a 

number of possible parallel computer architectures, but not all of these have 

physical realisations The limitation includes the number of processors, their mode 

of operation, the memory organisation and the connectivity between the 

processors The number of possible combinations is quite large 

There are two mam categories of structures on most existing parallel machines On 

the one hand, there are machines with a small number of very powerful processors, 

similar to the CRAY and Alliant which have only two, four or eight processors On 

the other hand, there are machines with a very large number of processors, each of 

which is much less powerful and mdeed some of which have only bit-level 

capabilities Examples mclude the Connection Machine, Heermann (1991)

A further classification on the various types of machines mclude Smgle Instruction 

Multiple Data (S IM D ) and Multiple Instructions Multiple Data (M IM D ) The 

instruction of SIM D is broadcasted by an external controller and executed by the 

processors This type of architecture is most effective when it can exploit 

parallelism at the level of the data on which it operates, this means that the problem 

can be solved by simultaneous operation on all of the data elements mvolved The 

Connection Machine is an example of SIM D type One of these, the CM -2, is 

considered, for example, to be a very good tool for cellular automata simulation 

and m addition, provides a useful means of exploiting the natural parallelism of the 

spatial grid as well as its capacity to perform efficient communications with 

neighbourmg data pomts In terms of the cellular automata example, one of the
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mam virtues of the CM -2 is that it has a Boolean hypercube configuration which 

means that it allows usmg a code indexing scheme to embed multi-dimensional 

grids into the hypercube so that nearest neighbours are naturally preserved 

Machines such as the CRAY (mentioned previously) have the feature that each of 

the powerful processors can operate more or less as a conventional computer 

mdependent of the other processors and these thus belong to the M IM D  class

2.2.1.4 Dedicated Machines
For some problems, such as many which arise m statistical physics, the computer 

time required for the solution is prohibitively large for a conventional computer 

This is an obvious and important reason why we do not use a general purpose 

computer but endeavour rather to create special purpose machines is m order to 

make best use of the time and substantial computmg power which is available As 

an example, agam taken from physical applications, the investigation of the spm 

glass problem on a special purpose computer used the equivalent of one year of 

CRAY time1

A dedicated machine which can match either the problem itself or the particular 

algorithm can be used to solve the problem m a relatively short time Moreover, 

the price of a dedicated machine may be cheaper than a conventional one because 

although it needs more silicon chips these are mexpensive and readily available 

There are several specific machine types that have been tried on cellular automata 

smce these were first mtroduced by von Neumann (1951) The first CA machine 

was created by Toffoli et al (1981) Designated CAM -6, it provided an array of 

256 by 256 locally connected cells, each one with four bits of state The state of 

every cell is updated 60 times per second Although it is a sequential machine, its 

execution is very fast with a performance comparable to a supercomputer The 

cellular computer is used for its computational capacity because it is comparable to 

the case for a general-purpose computer In particular its capacity means that it can 

be used as an experimental environment for modelling abstract or real physical and 

related phenomena
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The main drawback of this kind of architecture is the increasing, size of the look-up 

table For instance, if we have three planes with 9 bits per plane, the look-up table 

should store 227A3 bits, 1 e = 50 Mbyte of information

Another dedicated machine is the Reseau d’Automate Programmables 1 (R A P 1), 

which is used for modelling fluid dynamic behaviour and cellular networks, 

Manneville (1989) Such machines can be considered as simplified versions of the 

Connection Machine The disadvantage of a special purpose machine lies in its 

inflexibility It is difficult to use it directly for a new system involving new 

techniques and modified algorithms

2.2.2 Machine Performance-an Illustration
Considerations of applications of large-scale simulations on general purpose 

machines can be illustrated by a review of the results of implementations of 

selected programs on two scalar mainframe machines, a vector, computer, and on a 

SIM D and M IM D  computer by Kohrrng (1991) The speeds achieved are 

described in terms of the MUPS (millions of sites updated per second) This is a 

convenient measure of performance, given that such programs typically consist 

almost entirely of integer and logical instructions and not of floating point 

operations, Kohrrng gives an example of cellular automata On the scalar 

computer, SUN Spar-1 and IBM -3090, the MUPS speed was 1 6 and 2 7 

alternatively On the CRAY XM P where the individual processor is a high- 

performance vector machine, the speed was 233 For the Connection Machine, 

CM-2 16(384-processors, SIM D computer), the speed was 270, compared to 1690 

on the M IM D  computer CRAY YM P/832 8-processors This last is clearly faster 

than all others to date and has considerable implications for researchers hoping to 

achieve comparable performances on less-sophisticated systems for similar classes 

of problems
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2.2.3.1 Algorithm Requirements
In large scale simulations of representations of real systems, it is obvious that the 

development of the basic hardware has been insufficient, in part because problems 

which are challenging in their own right must be solved in order to construct the 

machines as well as achieving more computational power Rather than relying on 

new hardware developments, therefore, we need to improve the software 

techniques so that the hardware can run the simulations with maximum efficiency 

given the current provision Furthermore, it is also necessary to develop algorithms 

which can be efficiently implemented on a variety of machines with only minor 

programming changes We next discuss some algorithms and how these handle the 

updating of results in fixed provision hardware

2.2.3.2 Updating Algorithms: Sequential Updating
Many problems that are of interest in numerical investigations, for example the 

solution of systems in statistical physics, require the simulation of a large number 

of simple variables, each of which is represented by a small number of bits or single 

bits General-purpose computers usually provide complicated operations on long 

data words The sequential updating procedure consists of updating the variables, 

one by one, in either a random or a prescribed periodic order The simple 

implementation of this process can be carried out on any computer with, for 

example, a FORTRAN 77, or FORTRAN 90 compiler since all the sites have to be 

updated at the same time

It is clear that sequential updating of the code is extremely inefficient The ideal 

rule we take should be inherently parallel and simultaneously applied to all the sites 

for a complete realisation of the system The obvious failing, therefore, is that this 

implementation wastes enormous amounts of memory In this case, it involves a
r

large number of useless computations since the CPU operates on overall words 

rather than those bits which contain the relevant information The states of the 

system are typically binary 0 or 1, thus it is sufficient to use one word for several 

bit variables

2.2.3 Current Software Techniques for Handling Updating
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Parallel dynamics consist in updating all the variables synchronously, where this is 

known as the multi-spin or multi-bit coding method It makes an efficient use of 

the computer memory and gives some degree of parallelism to the scalar 
processor Multi-spin coding is an effective approach to implementing large size 

simulations of real systems

Many bits are stored in a single computer word so that if  e g the word length is 32 

bits, we can clearly save 32 one bit variables in one word We can then use a 

logical method of counting the neighbouring bits and updating the sites, e g the 

logical bitwise EOR and bitwise AND to sum over neighbouring sites It  is thus 

possible on serial machines to treat several variables at the same time and achieve 

partial parallelism Oliveira (1990) has discussed the application of computing 

Boolean (only two states) statistical models by Boolean operations AND, OR and 

XOR

On vector machines, we can exploit, in part, the inherent parallelism by considering 

the data structure The processing of the code requires that we only need to change 

the names of the bitwise intrinsic SHIFT and the definitions of left, right and 

circular shift functions which may vary on different machines, Stauffer (1991) 

However, we can use the bit-by-bit handling functions, where IO R  can produce 

logical OR operations in parallel The first bit of IO R  (N l, N2) is the logical OR of 

the first bit of N l and the first bit of N2, the second bit applies similarly to the 

second bits of N l and N2 and so on

On M IM D  machines, the hardware architecture is different, but can similarly be 

used to handle many bits simultaneously and multi-bit coding is applicable For this 

reason, the speed of M IM D  machines is faster than any others 

The advantage of multi-spin or multi-bit coding is clearly that it saves on the 

memory and increases the speed by exploiting parallelism and updating each bit on 

the whole word For most usual general-purpose machines, best performances are 

obtained with vector computers For example, on the CRAY computer, one bit is 

used for one spin and 64 bits in a word are updated simultaneously with a speed of

2.2.3.3 Simultaneous (Parallel) Updating
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340 spin updates per microsecond for the YM P/832 processor for the 

hydrodynamic example of Kohring (1991)

2 2.3.4 Language Compilation
Both machine architecture and computer language have considerable influence on 

the way in which the user perceives a particular problem and formulates algorithms 

to solve it numerically The hardware and the software having been discussed in 

general terms, and we now consider the relation between them, i  e explore the 

potential of the inherent parallelism of the machine together with the encoded 

language
■a

Traditionally, large amounts of code for scientific and engineering computations 

have been written in FORTRAN Unfortunately, it is necessary to adjust the 

programs to the compiler one is using due to the fact that different FORTRAN  

compilers treat the functions differently and have different organisation of the 

memory For example, ISHFT is not yet a standardised FORTRAN function, but is 

implemented in some form on most machines ISHFT(N1, N2) shifts the bits of 

word N1 by N2 positions to the left or N2 positions to the right when N2 is 

negative The rightmost N2 bit positions of N1 should then be filled with zeros or 

the leftmost N2 bits when N2 is negative The circular shifts are not available, and 

the bit-by-bit functions vary and have different definitions

New FORTRAN versions constantly attempt improvement on this, but the 

standardisation of regular functions typically needs a long time to be accepted by 

all users This is particularly the case where large elaborate programs have been 

constructed and are in use for complex problems, using a given set of functions 

However, programs written in other languages such as C and PASCAL, are more 

standardised on bit operation and are gradually becoming more widely used in 

scientific applications One such is C, which has the advantage that FORTRAN and 

C interface very readily and efficiently, so that a FORTRAN program can use C 

routines, and vice versa, with little programming effort
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2.3 Simulations for Complex Systems

2.3.1 Simulation Classifications
When we attempt simulation of a system, similar considerations arise, irrespective 

of the nature of the application In what follows, we concentrate on some well- 

established simulation approaches and some application areas, in particular of 

physical and related many-body complex systems We classify the simulation by the 

types of computational models, system characteristics and simulation methods, as 

indicated in Section 2 12

2.3 1 1  Discrete and Continuous Models
Models can be broadly divided into two categories based on the types of system 

variables, namely continuous and discrete When the predominant activities of the 

system cause smooth changes in the attributes of its entities, the system is 

represented by a continuous model I f  the system changes occur discontinuously, it 

is described as a discrete one, Kaplan and Glass (1995)

Both ordinary and partial differential equations formalism are used to define 

simulation models of continuous systems Difference equations, cellular automata, 

and Markov chain models are used to specify discrete-time systems, (where time is 

represented by integer numbers)

Continuous simulations were traditionally carried out through the medium of 

analogue computation, Bennett (1976) With the appearance of the digital 

computer in the early sixties, the digital processor was seen to be a superior 

simulation tool Further the mathematical modelling of complex systems has in the 

past been implemented by various standard programs to solve those ordinary and 

partial differential equations The programs are usually written in FORTRAN, 

PASCAL and C. Consequently, a researcher with modest modelling needs has had 

little option but to produce his own program This has effectively prevented the 

development of mathematical models in many areas of scientific research Recently, 

several software products have been developed which strip away the veils of 

mathematical complexity and provide the modeller with tools, Stauffer et al

(1988)
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In discrete models, the interactions can in general be viewed as discrete events 

undergoing local state changes to neighbours in some space, e.g. calculable by 

means of discrete event, object-oriented simulation of collections of subsystems. 

The concept of an event driven simulation contains the most general updating 

scheme for a simulation, since an event can be either externally or internally 

generated. In a special case, an event can be a time step, so a time stepped 

simulation is named a discrete event simulation, Vesely(1994).

2.3.1.2 Stochastic and Deterministic System Problems

A deterministic system is referred to as based on a Newtonian vision of cause- 

effect as found mostly in physics. Change in the state of a system can occur 

continuously over time or at discrete instants in time. The discrete instants can be 

established deterministically or stochastically depending on the nature of model 

inputs. Systems exhibiting deterministic characteristics are predictable, linear, and 

controllable. Therefore, small stimuli cause small outcomes, and large stimuli will 

have large outcomes. All the events are ahistoric which means experiences do not 

change the result.

The simulation problem is defined to be either probabilistic or deterministic 
depending on whether or not they are directly concerned with the behaviour and 

outcome of random processes. A stochastic model or probabilistic model has at 

least one random variable and therefore, at a given instant in time the next state of 

the model is not uniquely determined. Deterministic models (also called state- 

determined models) are those where the current state and current input, if any, 

uniquely determine the next values of state variables, e.g. molecular dynamics, 

Heermann (1990).

Although the procedure for describing the dynamic behaviour of discrete and 

continuous model changed differ, the basic concept of simulating a system by 

portraying the changes in the state of the system over time remains the same.

In a simulation, we usually try to ignore the uncertainties of model in order to treat 

the models as deterministic ones if the uncertainties are of little importance 

compared with the general behaviour of the model. However, a large class of
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problems are stochastic in nature Topics such as percolation and Monte Carlo 

methods of modelling systems are of this type, Janke (1995)

2.3.1.3 Equilibrium and Dissipative Systems
A system in equilibrium is stable in the sense that while perturbations can move 

the system away from stability, at least temporarily, coping mechanisms exist to 

restore stability after such a shock In addition, in an equilibrium system, primary 

emphasis is placed on the relations among separate components of the systems 

under analysis

Dissipative systems abound in complexity theory and involve complicated yet 

deterministic interaction between agents These systems are open to environmental 

influences and undergo real change and restructuring based on inherent stability 

Unlike an equilibrium system, a dissipative system when perturbed will undergo 

changes which create a new equilibrium, different from previous points in time 

Equilibrium systems, by contrast, show only momentary fluctuations before 

settling back into the previous state

Toffler (1984) has discussed how a dissipative system on the edge of chaos 

undergoes change He suggested that all systems contain subsystems which are 

continually fluctuating At times', a single fluctuation or a combination of those 

fluctuations may become so powerful, as a result of positive feedback, that it 

shatters the existing organisation However, at this revolutionary moment, which is 

designated the singular moment or a bifurcation point by the author, it is 

impossible to determine in advance which direction change will take, i e whether 

the system will dissipate into chaos or leap to a new, more differentiated, higher 

level of order or organisation, called a dissipative structure This phenomenon 

contains a very attractive and important question, l e whether disorder arises out 

of order or order out of disorder Simulation of a complex system may also 

provide some insight to this question for specified systems (see Ch 4)

2.3.2 Direct and Indirect Simulation Methods
Direct simulation methods refer to the simulation of numerical equations in a 

straightforward manner to obtain the solution Use of numerical simulation
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methods include solving linear equations, eigenvalue problems, differential 

equations and partial differential equations, and others In the traditional study of 

physical and related systems, most applications of computer simulation concentrate 

on these methods which describe the underlying system models directly and 

provide solutions to the equations that govern the physical processes 

A mathematical model is introduced to describe, as for as possible, the physical 

system for which a set of assumptions apply which make the solution of the 

problem somewhat more tractable The model is essentially an idealised version of 

the system and the aim is to obtain parameters of the model which relate directly to 

properties of the system that we wish to measure Hence, the simulation 

corresponds to reproducing computationally as many of the actual system features 

as possible, then recording the effects of change or inducing changes to occur, 

where these closely mimic real changes in the system This approach defines so- 

called direct simulation
However, the investigation of non-equilibrium, complex (many-body) systems, 

which cannot be described by a set of linear differential equations is subject to 

limitations when using the conventional direct simulation approaches No general 

solution is known when the number of interacting bodies is greater than two 

Useful results are sometimes obtained by making some simplifying approximations, 

(e g the simplest one consists of neglecting interactions altogether), or by reducing 

the problem to an effective one-body problem. Nevertheless, all known 

approximate schemes are of limited applicability Direct simulation meets with 

difficulties since equations used to describe the system model are difficult to solve 

without further simplifying assumptions or possibly more advanced computing 

techniques if available The alternative general approach to handling problems 

involving complex many-body dynamics is typically based on discretization of the 

system processes, so that these can be broken down into a series of small steps 

This principle underlies indirect simulation in that a slightly different problem to 

the actual one of interest is actually modelled Such methods rely on reproducing 

system properties through either aggregate or ensemble behaviour, rather than 

implementing them straightforwardly, Jain (1992), Thompson (1992) Monte Carlo 

methods, cellular automata models, molecular dynamics, neural networks and
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related techniques have become more widely used as indirect simulation 

approaches to formal mathematical models, in order to investigate the evolutionary 

properties of these complex systems

Indirect methods tend to deal with simpler aspects of a system, and are thus 

particularly suitable for problems requiring computation of millions or even billions 

of similar types of events, such as e g growth or division of cells in molecular 

biology, re-onentation of spin in the Ising model of a ferromagnet, and others, 

since the difficulty lies in achieving simulated behaviour which in the limit 

approaches that of the real systems Thus a satisfactory run will require the 

computation of billions of events to describe formation, growth or evolution Some 

illustrations are given subsequently

2.3.3 Cellular Automata, Monte Carlo and Molecular Dynamics
Cellular automata, Monte Carlo Methods and moleculai dynamics are three 

important indirect simulation techniques which are currently enjoying considerable 

popularity in the modelling of physical and related complex systems Typically, M C  

is unsurprisingly used as a stochastic method, M D  as a relatively deterministic one, 

whereas CA is used in both ways To distinguish more clearly between the 

methods, we have

Cellular automata (CA) form a class of mathematical systems characterised by 

discrete local interaction and an inherently parallel form of evolution CA provide 

prototypical models for complex processes consisting of a large number of simple 

locally connected components Examples of phenomena that have been modelled 

using CA include turbulent flow caused by the collisions of fluid molecules, growth 

of crystals and patterns of electrical activity in simple neural networks, Wolfram

(1984)(1986) ^

Monte Carlo (M C) is a numerical analysis technique that uses random sampling of 

distributions to estimate the solution of physical and mathematical problems, l e it 

is roughly one of the statistical simulation methods, Landau (1994)

Molecular Dynamics (M D ) provides the methodology for detailed microscopic 

modelling on the molecular scale The system can consist of few or many-bodies, 

with the motion of each individual atom or molecule described according to e g a
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Hamiltonian, (usually describe aggregate energy of a system) M D  usually involves 

calculations on a number of particles, from a few tens to a few thousands, or even 

several millions Macroscopic quantities are extracted from the microscopic 

trajectories of particles It  is a tool which we can use to understand macroscopic 

physics from an atomic point of view The applications of M D  include the 

thermodynamic properties of gas, liquid, and solid, plasma and electrons, transport 

phenomena etc, Haile (1992)

2.4 Simulation Techniques: Cellular Automata

Cellular Automata (CA) is an important area in the field of complexity which is 

linking different domains of traditional sciences One main achievement is that CA 

focuses on system global phenomena through local simple individual interaction 

Such phenomena occur in many fields and at many levels of description, e g ants 

interact to form a colony, or water molecules interact to make a fluid, or sandpiles 

interact to create avalanches As we discussed in the last section, it is necessary to 

choose a simulation model which accurately reflects these aspects of a complex 

system that we wish to study Many such systems share the common features 

above and CA models, because of their simplicity, have performed well in terms of 

representing these Not all systems are best represented by the same type of CA 

and there are numerous variants

2.4.1 Cellular Automata: Description of Mechanism
A cellular automaton (CA) is a discrete dynamical system Space, time and the 

states of the system are discrete Each point in a regular spatial lattice, called a cell, 

can have any one of a finite number of states The states of the cells in the lattice 

are updated according to a local rule That is, the state of a cell at a given time 

depends only on its own state at one previous time step, and the states of its nearby 

neighbours at the previous time step A ll cells on the lattice are updated 

synchronously Thus, the state of the entire lattice advances in discrete time steps 

(Gutowitz (1996))

In mathematical terms, a cellular automata is described as a lattice of finite state 

automata with N  states, and K  neighbours for each cell The state S of each cell is
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updated in discrete time steps as a function of state transitions defined for the

alphabet N K  the combination of states for each cell and its neighbours

S(NK)—>S(i) (2 3 1)

one-dimensional CA is an elementary cellular automata with N=2, K=2

S(i-1), S(1), S(1+1) ->  S(1) (2 3 2)

Shown in Fig 2 3 1, the neighbourhood of each cell consists of itself and its two 

nearest neighbours with periodic boundary conditions The CA rule is often 

displayed as a lookup table, or rule table, which lists each possible neighbourhood 

together with its output bit, (the update value for the state of the central cell in the 

neighbourhood)

Rule table:
neighbourhood 000 001 010 011 100 101 110 111 

output bit 0 1 1 1 0 1 1 0  

Lattice

t=0 10100110010 i
t= l 11101110111 *

Fig 2 3 1 one-dimensional, binary-state CA with periodic boundary conditions shown 

iterating for time step

The behaviour of a CA is often illustrated usmg space-time diagrams m which the 

configuration of states m the d-dimensional lattice is plotted as a function of time 

Fig 2 3 2 shows the behaviour of a CA with N=200, iterated over 200 time steps 

This is a basic CA architecture and it can be modify m many ways, such as for 

higher dimensions, different boundary conditions, stochastic rather than 

deterministic CA rule and so on
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time

199
0 site 199

Fig 2 3 2 a space-time diagram, showing the typical behaviour of CA Cells in state 1 are 

displayed as black, and cells in state 0 as white, Mitchell et al (1996)

2.4.2 Background
CA were first described by Von Neumann and Ulam, who studied the behaviour of 

models of coupled masses and springs, resulting in the first computational evidence 

of chaotic behaviour in dynamical systems, Von Neumann (1966) Conway 

developed the Game of Life system, which is a simple 2-D analogue of basic 

processes in living systems, which is the most widely known example of a CA The 

game consists in tracing changes through time in the patterns^ formed by sets of 

"living" cells arranged in a 2D grid The rules governing these changes are 

designed to mimic population change Wolfram (1984) (1986) was the first to 

point out the potential for extensive use of CA models in statistical physics and 

later a number of authors, e g Stauffer (1990), developed the links between 

physical systems and CA like structures in nature so that numerous biological 

examples are now to be found in the physical literature These include e g 

immunological and ecological studies For a further review, see Manneville et al 

(1989)
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The essential feature of a cellular automaton lies in the fact that its state variable 

takes a different separate value for each cell The state can be either a number or a 

property Its neighbourhood is the set of cells that it interacts with So, a CA model 

usually is used to describe the system in terms of relations between cells Some 

complex systems fit easily and perfectly into the framework of cellular automata, 

for others these simplifying assumption are too restrictive for real modelling CA  

are used not only as models in natural sciences, but are also appropriate models of 

parallel computation features due to their complete space-time and state 

discreteness

2.4.3 Classification
Several researchers have been interested in the relationships between the generic 

dynamical behaviour of CA and their computational abilities Despite the 

computational simplicity of CA, they are capable of a variety of behaviour An 

important property is that they tend to be self-organising \  1 e starting from 

complex, random cell configurations, the rules governing the system cause patterns 

to occur from initial chaos Wolfram (1984) suggested that CA rules can be 

classified into four qualitative classes, based on the space-time pattern 

demonstrated by CA at long times

1 Spatio-temporally uniform state The automata reaches a homogeneous state 

regardless of initial conditions

2 Separated simple or periodic structures The automata reach a state after some 

relatively small transient period consisting of space time separated 

configurations The configurations vary in detail depending on the initial 

configuration, but may have overall behaviour which is independent of the initial 

state

3 Chaotic space-time patterns The automata reach a chaotic evolution pattern 

starting from random initial conditions

4 Complex localised structure Properties vary with initial conditions

The disadvantage of Wolfram’s classification is that class membership is 

undecidable, Culik and Yu (1988). After Wolfram’s work, several researchers 

have queried the relation of static properties of CA rules to their dynamical
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behaviour Langton (1990) studied the relationship between the average dynamical 

behaviour of cellular automata and a particular statistic (A,) of a CA rule table 

Langton selected a number of two-dimensional CA samples Starting with A,=0 and

gradually increasing to X.=l- 1/k, he found that the average behaviour of a CA
‘ *

undergoes a phase transition from ordered behaviour, which has a fixed or limiting 

cycle after a short transient period, to chaotic behaviour As X reaches a critical 

value Xc, those rules tend to have longer transient phases Moreover, Langton 

indicated that CA close to X tend to exhibit long-kved, complex pattern, 1 e non­

periodic, but non-random, where the Xc stage roughly corresponds to Wolfram’s

fourth class of CA For a review of the relationships between X and dynamical and 

computational properties of CA, see Mitchell et al (1994)

2.4.4 Applications
The nature of CA is to provide a convenient abstraction of continuous phenomena 

Models of this type are thus useful for studying problems of energy transfer and 

biological growth pattern, fluid flow, and earthquake evolution, Gutowitz (1990) 

The properties being observed normally correspond to patterns that are coherent 

over a large array of cells, although the cells are not co-ordinated with a specific 

set of cells In simulations, the elemental level of CA allows us to get more 

information for the processes occurring within the system This breakdown of the 

statistics into detailed structured information is one of the addtional objectives of 

the thesis In the most direct cases, the cellular automata lattice is in position space 

This sites may represent points in a crystal lattice, with values given by some 

quantified observable or corresponding to the types of units The sandpile model, 

dynamical Ising model and other lattice spin systems are simple types of CA 

models

Furthermore, CA provides a computational and analytical development for general- 

purpose ideas on the studies of complex systems, e g Forrest (1990) has used CA 

as abstract models to study emergent behaviour These systems are inherently 

difficult to analyse due to their complexity. The discreteness of CA is expected to

\
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make the analysis simpler The ideas can used in generalising more continuous 

systems, such as Coupled Map Lattices, which are discrete in time and space, but 

have a continuous state variable

Cellular automata can be considered as parallel processing computers The 

computational capabilities of CA have been used extensively, Toffih (1987), and it 

has been shown that some CA could be used as general purpose computers, and 

may therefore, be considered as general paradigms for parallel computation, (as 

Turing machines provide a paradigm for serial computation) The local and 

uniform nature of the laws governing cellular automata means that a hierarchy of 

structures and phenomena may be represented, including operation at molecular 

level

2.5 Simulation Techniques: Monte Carlo

2.5.1 Introduction
The name Monte Carlo was applied to a class of mathematical statistical simulation 

methods first used by scientists working on the development of nuclear weapons in 

Los Alamos in the 1940s The principle of this method is the invention of games of 

chance whose behaviour and outcome can be viewed as relating to competition and 

evolutionary behaviour in real world systems The effectiveness of numerical or 

simulated gambling as a research effort was developed by digital computer, (e g 

Kalos and Whitlock (1986) for commentary), where, in particular, these simulation 

deal with a large number of chances or events The treatment of the probability of 

event occurrence, the aggregation of results and their statistical analysis together 

with methods of dealing with bias and errors are all core features of the M C  

approach

Statistical methods are then used to obtain microscopic properties from averages of 

mechanical variables of molecules The Monte Carlo (M C) method is defined by 

representing the solution of a problem as a parameter of a hypothetical population, 

and using a random sequence of numbers to construct a sample of the population, 

from which statistical estimates of the parameter can be obtained, Binder (1986)
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M C methods are thus stochastic rather than deterministic procedures, where atoms 

are moved more or less randomly during the course of the simulation In M C, a 

number of molecules (or ions) are confined within a region, then at each step, a 

randomly chosen molecule is moved to a new randomly determined location The 

computer then determines whether to accept or reject this movement depending on 

whether the energy change of the resulting system state is acceptable according to 

some predetermined criterion This process is repeated many times until there is no 

further change in the energy and other captured properties of the system, at which 

point the system is deemed to have a reached thermodynamic equilibrium Usually, 

a large number of molecular states are generated and the corresponding physical 

properties of these states are averaged to obtain macroscopic properties of the 

system, such as energy and entropy, Binder (1992)

2.5.2 General Principles of the MC Methods
The random nature of a Monte Carlo simulation means that, in the long run, the 

simulation will approach equilibrium values, while an individual move has a 

realistic chance of taking the simulation away from equilibrium As M C typically 

uses pseudo random number generators to generate the element of chance, its 

applications are enormous and provide insight in many fields Many problems, 

which at first glance do not seem to fit the M C criteria, can have behaviour which 

is related to some stochastic element of the system to which a solution is sought 

M C can be considered in either direct or indirect terms The direct application, is 

less commonly used but as would be expected, concentrates on a straightforward 

simulation of the original problem It relies on the numerical solution of equations 

defining the system, which can be used to predict the model properties at different 

stages Indirect methods solve a related problem which uses random numbers to 

generate different states of the related system It is obvious that the level of 

sophistication varies according to the type of problem considered Indirect methods 

only will concern us in the examples used for illustration in later Chapters
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2.5.3 Metropolis Method *'
The M C  technique is now used in many disciplines, with different variants and 

specific algorithms, depending on the nature of the problem addressed An 

extremely important Monte Carlo algorithm for molecular systems was developed 

by Metropolis et al (1952), which is commonly used in large scale statistical 

physics simulations This has been applied to lots of problems where molecular just 

implies small unit rather than a biological molecule It  specifies conditions under 

which a system is allowed to move to a new configuration, and because of its 

importance, we reproduce the steps here in brief

1 Specify an initial configuration

2 Generate a new configuration

3 Calculate a new configuration and energy change AE
t4 For AE< 0 accept the new configuration Return to 2

5 calculate exp(-AE/kT)

6 Generate a random number R e [0,1]

7 For R< exp(-AE/kBT), accepted the new configuration and return to 2

8 Otherwise, retain the old configuration as the new one Return to 2

Where E is the system energy, kB is Boltzmann constant and T  is temperature 

Clearly, certain assumptions are required to model a given system even if it is quite 

easy to include a Boltzman distribution of energies A system described by a 

Boltzmann distribution e g a gas, will have elements which are not in a minimum 

energy state due to the thermal change of the system The Metropolis algorithm 

steps above ensure that the system w ill evolve into one which includes excited

elements, which may lead to expansion or other macroscopic properties
{

2.5.4 Applications ?
Applications of M C simulation include calculations in statistical mechanics, 

radiation transport, elementary particle interactions, computer operating systems, 

biological evolution and so on Popular application to surface behaviour includes 

the Ising model, percolation model, spin glasses, and random walks O f interest
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typically are insights on critical phenomena, 1 e establishment of scaling laws and 

universality of behaviour of complex systems both in equilibrium and in non- 

equilibnum, Gould and Tobochmk (1989), Binder and Heerman (1992)

2.6 Other Simulation Techniques: e.g. Molecular Dynamics

2.6.1 Introduction
The essence of M D  is to numerically solve the N-body problem of classical 

mechanics The N-body problem attempts to relate collective dynamics to single- 

particle dynamics and the puzzling behaviour of large collective particles by 

examining the motions of individual particles 

Molecular-scale computer simulation involves a three-step procedure,

1 model individual particles,

2 simulate the movements of a large number of the model particles,

3 analyse the simulation data for the required collective phenomenon

M D  simulations are used to compute the motions of individual molecules in models 

of solids, liquids and gases, M iller (1976) The key word is motion, which describe 

how positions, velocities and orientation change with time The behaviour of a 

system can be computed if for the system’s elements, a set of initial conditions and 

forces of interaction are defined, Bekey (1985), Hoover (1991) Tremendous 

improvements in computer power and computational methodology have 

accelerated the development towards simulation of larger and larger systems, so 

that today M D  simulations of a million particles is possible Such advances have 

also enabled researchers to obtain much information and accurate calculation of 

physical properties and longer-lived dynamical processes

The simplest calculation in molecular mechanics is a calculation of the potential 

energy of the system, which is performed by summing the numerous energy terms 

for the given conformation of the system using the given set of potential energy 

functions and parameters Optimising the structure of system structure can be done 

by energy minimisation which improves the conformation by reducing the energy 

of the system More information about a system can be obtained from molecular 

dynamics simulations In these calculations, the motions of the particles are
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followed by calculating the forces produced by applied field and, from this, the 

accelerations and velocities Careful control of the energy and temperature of the 

system ensures that the conformations, which are produced form a statistical 

ensemble, from which thermodynamic and other properties can be calculated, Hu 

et al (1984)

2.6.2 Applications
M D  has some computational advantages because of the deterministic way in which 

it generates trajectories The presence of an explicit time variable can be used to 

estimate the time needed for a run, with the duration time several multiples of the 

relaxation time for the slowest phenomenon being studied This convenient feature 

is not available for estimating the time required for other methods 

In addition to equilibrium molecular dynamics, nonequilibnum methods have been 

developed, Hoover (1986), Evan and Momss (1990) These methods appeared as 

alternatives to equilibrium simulations for computing transport coefficients In 

these methods, an external force is applied to the system to establish the 

nonequilibnum situation of interest, and the system’s response to the force is then 

determined from the simulation Nonequilibnum M D  has been used to obtain 

quantities such as the shear viscosity, bulk viscosity and diffusion coefficients, 

Hoover (1983) (1991)

However, M D  simulations are limited, largely by the speed and storage constraint 

of available computers They are usually performed on systems containing 110 - 

1000 particles, although calculations involving as many as 106 particles have been 

performed presumably when systems were slightly simpler to specify Due to the 

size limitation, simulations are confined to system of particles that interact with 

relatively short-range forces, (le  mtermolecular forces should be small when 

molecules are separated by a distance equal to half of the smallest overall 

dimension of the system) Due to the speed limitation, simulations are confined to 

studies of relatively short-lived phenomena, (roughly those occurring in less than 

1100-1000 psec) The characteristic relaxation time for the phenomenon under 

investigation must be small enough so that one simulation generates several 

relaxation times, Ciccotti and Hoover (1986)

4*
w
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2.6.3 Monte Carlo and Molecular Dynamics
Monte Carlo (M C) and molecular dynamics (M D ) represent very different types of 

simulation Bemg a deterministic method, M D  simulations have been applied to 

investigate the physical properties of a system directly, e g co-ordinates, 

interatomic forces etc and to determine its time evolution On the other hand, M C  

simulations are stochastic and use random numbers to generate a sample 

population of the system from which properties can be determined Meanwhile, 

M C simulations are by no means limited to molecular systems, e g in studies of 

gases and fluids, where the random nature of the technique is applied, but are used 

in diverse areas

M C is usually easier than M D  to code in a high-level language such as Fortran and
i

C M C is also easier to implement for systems in which it is difficult to extract the 

intermolecular force law from the potential function Systems havmg this difficulty 

include those composed of molecules that interact through discontinuous forces, 

Haile (1995)

For determination of simple equilibrium properties such as the pressure in atomic 

fluids, M C and M D  are equally effective, both require about the same amount of 

computer time to attain a similar level of statistical precision However, from the 

simulation examples, Binder (1986) has found that M D  more efficiently evaluates 

some system mterfacial properties than M C Besides the configurational properties, 

the M D  method also provides access to dynamic quantities, such as transport 

coefficients and time correlation functions Such dynamics quantities cannot 

generally be obtained by M C, although certain kinds of dynamics behaviour may be 

deduced from M C

The random nature of Monte Carlo simulations makes them useful for sampling 

space Although M C are generally not as efficient as M D  simulations, M C  

simulations can incorporate large structure changes which cannot be simulated by 

M D  For instance, some variant M C  methods can implement some functions 

without considering the factor of an energy barrier, which might prevent the same 

role in M D In general, M C simulations are useful for coarse-grained complex
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systems while M D  are good at performing the complementary role of local 

optimisation

2.7 Applications of Simulation Methods- Specific Cases

Over the past decade, much progress has been made in the understanding of 

complex systems, particularly in areas relatmg to their dynamical features, 

computational properties, structure of their rule space, relationship between single 

cellular system and cellular networks, and so on Computational advances, such as 

more powerful processors, have led to increased ability to handle these problems 

In particular, it is clear that simulation methods provide valuable insight into the 

analysis of disordered dynamical systems, with the potential for answering 

fundamental questions, such as the way in which a process evolves and in what 

way its behaviour depends on system features

In this thesis, we discuss applications of simulation techniques to physical and 

related complex systems Two typical examples of cellular systems, namely a 

sandpile automaton model, and a cellular network model for soap froth, are used as 

illustrations of systems under different levels of constraint and are analysed using 

various computer simulation methods A brief introduction to these problems 

follows

2.7.1 CA Models and the Phenomenon of SOC: Building Piles of Sand
Bak and co-workers (1987) (1988) investigated a sandpile CA as a model for 

transport phenomena in order to gam msight mto spatio temporal complexity In  

this context, they introduced the concept of self-organised criticality (SOC), where 

this phenomenon is defined for a class of dynamical systems obeying simple rules 

which naturally lead to a state presenting unique scale-invariant correlations This 

is m contrast with the criticality conventionally defined for physical systems, where 

achievement of a critical state is controlled by an external parameter 

In a simple sandpile, random movement of grams of sand m the pile represents the 

mteractions between different sites The addition of grams of sand transforms the 

system from a state m which the individual grams follow their own local dynamics 

to a critical state where the emergent dynamics are global Relaxation of the system
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creates spatial and temporal self-similarities, which give rise to fractal patterns or 

1/f noise The character of SOC is lack of any characteristic scale In other words, 

it means that in a complicated dynamical system in which many elements influence 

each other with short-range interaction, the system will naturally evolve to a 

critical state where small perturbations could lead to either minor or catastrophic 

events

Several sandpile cellular automata models exhibiting SOC have been studied In the 

original model of Bak et al (1987), the system is perturbed externally by random 

addition of sand grains Different dynamical rules have been investigated leading to 

several universality classes Some variants include directed flows, Kadanoff et al 

(1989), and induction of "turbulence", Ruskrn (1993), piles with threshold 

conditions imposed on the height, on the local gradient or even on the Laplacian, 

Manna (1991), whilst others have also looked at general slope gradient e g Dhar

(1989), Mehta (1990) Continuous variables with a full transfer of energy of the 

sand from a cell instead of a fixed discrete amount have also been studied e g. 

Zhang (1989), Pietronero et al (1991), Fodor and Janosi (1991) and Diaz-Guilera 

(1992) Other authors have considered deterministic perturbations in a 

nonconservative system Christensen et al (1992), Olami and Christensen (1992) 

(in a earthquake modelling) and so on Further details on this and some results for 

a specific class of dissipative systems are given in Chapter 3

2.7.2 Cellular Networks; Froth Evolutionary Behaviour
Cellular patterns are common in nature, e g , magnetic domains in magnetic 

systems, crystalline domains in ceramics and alloys, cells in biological tissues or 

bubbles m a soap froth Their statistical behaviour can be investigated by 

monitoring the network evolution through time The two-dimensional soap froth, 

as an idealised cellular structure, has recently attracted much attention following 

the work of Weaire and Kermode (1983)(1984), Weaire and Rivier (1984), Rivier

(1985) A froth has all boundaries equivalent and surface-energy-driven diffusion 

leads to the motion of bubble boundaries The basic mechanism of froth evolution 

is the gas diffusion across its membranes, due to the different pressures between 

neighbouring cells Early work on 2-D froths found dynamic scaling properties to
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be universal in the sense that they are independent of the system and specific initial 

conditions, Stavans and Glazier (1987)

Various computational techniques have been applied to problems of froth 

behaviour Those include direct simulation of the system equations, Weaire and 

Kermode (1983) (1984), indirect simulation (Monte Carlo and-variants such as the 

Potts model), Wejchert et al (1986), Glazier et al (1990), and the vertex model of 

Kawasaki et al (1989)(1990) Further details of the algorithms are reviewed in 

Chapter 4 and 5

2.8 Summary

It is evident that computer simulations provide a valuable complement to 

experimental and theoretical work in the modelling of complex systems The speed, 

reliability and convenience of modern computers have ensured considerable 

success for these methods in recent years, and conversely, the need to produce and 

handle large numbers and millions of events have impacted on the developments in 

computing techniques In the next three chapters, we give details of simulations, 

(the algorithms and the analysis), applied to systems of particular interest
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Chapter 3 Simple Dynamical Cellular System Models

As described in Chapter 2, cellular automata provide an important tool in large- 

scale simulation, and constitute a bridge between physical and computational 

realisations Physical and related complex systems, containing many discrete 

elements with local interactions, are thus often conveniently modelled as simple 

cellular automata A wide variety of examples may be considered, with several 

CA representing different competing units Use of "simple" here usually means a 

single type of basic element or unit and we use the terminology interchangeably 

in what follows

In this chapter, we concentrate on illustrations of one type of two-dimensional 

cellular structure the sandpile models of a single cellular system We initially 

review the literature on the theoretical and experimental background to these 

systems by computer simulation Sandpile models have been studied as a 

paradigm of self-organised criticality (SOC), defined in the previous chapter, and 

have been used to describe characteristic spatio-temporal behaviour in many 

fields In particular, we look at sandpile models of dissipative systems These 

mclude both discrete CA systems and counterparts which depend (in part) on 

continuous state functions, the so-called Couple Map Lattices

3.1 Simple Cellular Automata System and SOC

3.1.1 Simple Cellular System
W hile physical laws such as Newton’s, explain many simple phenomena, more 

complicated systems must usually be studied by treating them as a collection of 

simple systems, le  so-called reductiomsm, Bak and Chen (1990) However, 

many phenomena in nature are so complicated that even reductiomsm can not 

help and the macroscopic behaviour can not be predicted in terms of the 

microscopic changes

There are many such examples of systems with complex behaviour Much effort 

has been spent on understanding the underlying mechanisms of this behaviour,

, but it is difficult to form general rules for spatio-temporal complexity, Anderson 

(1991) The analysis of the time evolution of an isolated simple dynamical

39



cellular system is a first step to explaining its complex behaviour However, 

cellular systems consist of a very large number of individual units, where each 

unit is a dynamical system itself The interaction between ¿units can be very 

difficult to determine, even if  all the units are identical Under various situations, 

such as varying interaction, different boundary conditions, and the existence or 

absence of noise, the system completely changes its dynamic behaviour, Feder

(1988)

Complex behaviour can be observed when intrinsic dynamics govern the temporal 

behavior of a system, or the interactions follow complicated rules However, 

complexity may also arise as a result of continued local simple interactions 

between all individuals in an extended system Some extended systems with 

complex local features may nevertheless lead to simple collective behavior This 

is found in some biological systems, where after a transient period, a regime 

characterized by punctuated equilibria is achieved, Bak and Sneppen (1993)

3.1.2 Models and Applications
Cellular automata models apply iterative rules to build aggregates of a system, 

(Section 2 5 1, Wolfram (1986), Toffoli and Margolus (1987)) Such systems are 

typically placed on a 2D or 3D lattice Using the defined rules, sites are 

populated, depopulated and the results are evaluated at various time steps The 

final state provides interesting insights as to how similar systems in nature might 

perform The sandpile model is a simple example of a cellular automata system, 

where each site or cell contains a column of grains, which topple according to 

prescribed rules applied at discrete time steps At each step, the new value for a 

cell depends only on the current state of the cell itself and on neighbouring states 

or states of immediate neighbours These systems are interesting in that simple 

rules can lead to extremely complex behaviour Moreover, slight changes in the 

rules can change the behaviour radically so that even though the formulation of a 

cellular automaton may seem almost trivial, the large number of possible rules 

supports considerable sophistication in the systems that are modelled More than 

one CA may be used for more complex systems, e g m competition studies 

Apart from their simplicity, sandpile automata have been studied as typical CA 

models for other important characteristics For example, sandpiles are disordered
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in their geometry, and this, together with their packing, has important 

consequences for granular static and dynamic properties These systems also 

show complexity, in the occurrence and relative stability of a large number of 

metastable configurational states Analogies between sandpiles and other 

complex systems, such as spin glasses, flux creep in superconductors and charge- 

density waves have been made for example de Gennes (1966) has drawn 

analogies between vortex motion in super-conductors and avalanches in sandpiles 

A number of different dynamics for sandpile evolution have been considered, 

which depend on height, slope and other CA features Following the introduction 

of the simple height model, Bak et al (1987) (1988) discussed some important 

features of the dynamics of sandpiles These are considered in brief below

3.1.3 Scale-Invariance and Self-Organised Cnticality (SOC)
A common feature of complex systems is that they are driven slowly by small 

changes in energy, which is then dissipated rapidly in an avalanche process This 

occurs because complex systems exist in metastable states and small increments 

of energy can trigger an arbitrarily sized avalanche, which may take the system 

far from an equilibrium state

Equilibrium systems commonly show scale-invariant critical behaviour, with 

fluctuations in the order parameter of various sizes and durations at a phase 

transition A critical point at which a phase transition occurs is normally reached 

in thermodynamic, critical processes by fine-tuning of a relevant physical control 

parameter, such as the temperature or the pressure

As nature is neither ordered nor predictable, there are many scale invariant 

phenomena, e g fractals, earthquakes, 1/f noise, fluctuation of the stock market 

indices Since nature cannot provide any fine-tuning of control parameters by 

itself, it is unlikely that the wide occurrence of scale-invariance is due solely to 

critical processes in equilibrium systems Over the last decade, new concepts have 

been proposed to explore the complexity and dynamics of large nonequilibrium 

systems Chaos has been used to predict irregular and unexpected behaviour, 

Gleick (1988), Eubank and Farmer (1993) Some apparently random behaviour 

indeed can be explained by deterministic nonlinear equation» and provides one
VK

explanation for apparent chaos The characteristics are described by strange
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attractors and sensitivity depends on initial conditions Conversely, self-organised 

criticality (SOC) is a paradigm used to explain scale-invariance in complex 

systems, which reach a critical state via their intrinsic dynamics In other words, 

unlike conventional critical phenomena, this critical state is unique and 

independent of the initial conditions and does not require sensitive adjustment of a 

system control parameter It is "self-organising" SOC was first referred to by 

Mandelbrot (1969) in relation to analysis of stock-market share prices, where 

"knock-on" effects are ruled by very complex connections between companies of 

either a financial or technical nature and vary considerably in terms of duration 

Bak, Tang, and Wiesenfeld (BTW ) proposed SOC as an explanation of this 

spatio-temporal complexity illustrating the phenomenon through sandpile 

dynamics A sandpile is built by random addition of grams, so that it "relaxes" to 

a stable (or matastable) state, from which the addition of a further gram causes 

further relaxation m the shape of toppling of grams to a lower level The addition 

of a smgle grain causes a local disturbance but the size of the domain affected by 

the disturbance distributes over a wide range There is no global communication 

withm the pile at the early stage of building

As the slope mcreases, a smgle gram is more likely to cause other grams to 

topple Eventually the slope reaches a certam value and cannot mcrease any 

further, because the amount of sand added is balanced on average by the sand 

falling out of the pile This is then a stationary state, smce the .average amount of 

sand and the average slope are a constant m time It is clear that further addition 

create some communication throughout the whole system linking behaviour of 

individual grams through avalanches that may occasionally span the entire 

sandpile Eventually, the system regains equilibrium and this is the self-organised 

critical state

The sandpile is an open dynamical system, smce sand is added from outside It 

has many degrees of freedom, (or grams of sand) A gram of sand landmg on the 

pile represents potential energy When the gram topples, this energy is 

transformed mto kinetic energy, and when the toppling is ended, the kmetic 

energy is dissipated, and transformed mto heat m the pile, le  energy flows 

through the system. The critical state can be maintained only because of energy m
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the form of new sand being supplied from the outside Fluctuations are observed 

over a range of time as well as length scales, indicating considerable spatio- 

temporal complexity

W ith respect to spatial aspects, Mandelbrot (1982) has used the word fractal for 

geometrical structures which span all length scales Fractal structures appear in a 

variety of physical systems in nature, from the pattern in snowflakes to the 

distribution of galaxies, Feder (1988) It has been demonstrated that fractals can 

be explained by SOC, where size distributions have a power-law or multifractal
1 5

form Examples of physical phenomena displaying fractality include turbulence 

Here the energy is clearly not dissipated uniformly in space but intermittently 

through cascades at all length scales, Family and Vicsek (1991)

Another example of a system demonstratmg SOC is that of the energy-frequency 

relation of earthquake occurrence, which is related to the Gutenberg-Richter 

(power) law, Gutenberg and Richter (1944) An interesting aspect of earthquakes 

is their self- similarity It  has been found that a power-law distribution of size 

exists not only for individual earthquake events within a system over time but also 

for each earthquake event itself Both short-range and long-range temporal 

correlation of fractal behaviour is, therefore, observed In particular, the 

occurrence of large earthquakes tends to occur in temporal clusters, Kagan and 

Jackson (1991), where the seismographic analysis of the event shows the energy 

distribution at the stationary critical state, to be similar to that for SOC, Creutz 

(1994) 1

3.2 Sandpile Automata and SOC

3.2.1 Basic Sandpile Driven Model
3.2.1.1 Discrete Driven Models
The original one-dimensional sandpile model introduced by Bak et al 

(1987)(1988), has subsequently given rise to many variants The simple model is 

a cellular automaton with each site i  on a line of sites characterised by an integer 

variable hj giving the height of the pile The local slope of a site is given as

zi = - h1+1 (3 2 1)
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A sand grain added on a randomly chosen site 1 results in dropping movement
t

z l —» z l +1 (3 2 2)
z1 —> z t_i -1 (3 2 3)

Grams topple when neighbourmg sites have a local slope or gradient difference 
larger than some critical value, zc, (zc =2 in ID models) Excess grams are then
transferred to its nearest neighbourmg sites according to

Zj —> Zj - 2 (3.2 4)
Zj+1 —» Zj+i + 1 (3 2 5)

The neighbours affected by the toppling can topple agam, thus resultmg in a cham 
reaction, or so-called avalanche During the avalanche, no more grams are added 
Separate time scales are mvolved m the dynamic evolution of the pile, one m 
terms of the addition of grams and the other is in terms of relaxation of grams in 
the pile The avalanche ends when the system reaches a stable state with z, < zc
(for all i), and another gram is added accordmg to Equns 3 2 2 and 3 2 3 until a
new avalanche is started After a transient period, with duration dependent on the
initial conditions, the system reaches a critical state, where for all i, z l = zc This
state is a fixed pomt smce the system returns to this stable state after any 
perturbation Further additions of a gram results in grams falling down the slope 
and finally off the pile This state is critical in the sense that the avalanches have 
no characteristic size The fixed pomt is an attractor for the dynamics, no matter 
which way the sandpile is built up However, this state has no spatial structure, 
and correlation functions are trivial The ID sandpile is shown in Fig 2 11□

height height

□
Fig 2 11 BTW 1-D sandpile model with closed and open boundary 

for the left and right boundaries
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1

The situation is different for the two-dimensional model where parallel rules are 
applied The 2D sandpile model is typically considered for a square lattice, with 
each lattice site (i,j) characterised by an integer z ^  (where i,j = 1,2, L) The 
integer Z(, ^ can be taken to represent a dynamical variable such as height, slope
etc for a site (i,j) in a spatially extended system Sand is added one gram at a time 
to a randomly chosen site, thus increasing the dynamical variable by one unit, z ^
—> z^ j) + 1 Whenever the dynamical variable exceeds a threshold value z ^  > zc,
at a given site, then the whole column of sand is redistributed among the 
neighbours, leadmg to a series of topples which may give rise to an avalanche and 
which subside after a finite period of time The simple dynamical rules satisfy 
local conservation through

z0 , j ) ^ z( i j ) - 4 <3 2 6 )

z ( i± l j ± l )  z (i± l,j± l)  +1 ( 3  2  7 )
The pile eventually achieves a statistically steady state and any additional sand 
gram will fall off the open boundary This is a dissipative relaxation mechanism 
since it is accompanied by loss o f energy through the boundary 
Here we show a sequence of toppling events m a very small system for illustration, 
(Fig 2 12) The number m the squares represents the heights If a grain o f sand is 
added to a site with height 3, it causes that site to topple Eventually, as toppling 
diminishes, the system comes to rest There are nine sites toppling m the example 
shown, so the avalanche has size s=9 for this particular perturbation The total 
duration time, the number o f update steps, t=7 of the avalanche

'A

45



1 2 0 2 3
2 3 2 3 0
1 2 3 3 2
3 1 3 2 1
0 2 2 1 2

1 2 0 2 3
2 3 ,2 3 0
1 2 M i 3 2
3 1 3 2 1
0 2 2 1 2

1 2 0 2 3
2 3 3 3 0
1 3 0 iH 2
3 1 iH 2 1
0 2 2 1 2

1 2 0 2 3
2 3 3 4 0
1 3 2 0 3
3 2 0 1
0 2 3 1 2

1 2 0 3 3
2 3 0 1
1 3 2 2 3
3 2 1 0 2
0 2 3 2 2

1 2 1 3 3
2 ■ 0 1 1
1 3 3 2 3
3 2 1 0 2
0 2 3 2 2

1 3 1 3 3
3 0 1 1 1
1 3 2 3
3 2 1 0 2
0 2 3 2 2

1 3 1 3 3
3 1 1 1 1
2 0 ¡¡¡1 2 3
3 3 1 0 2
0 2 3 2 2

1 3 1 3 3
3 1 2 1 1
2 1 0 3 3
3 3 2 0 2
0 2 3 2 2

<

Fig 2 12 Illustration of topping avalanche in a small sandpile in a BTW 2-D model 
Within the avalanche of size 9, one site has toppled twice The black squares 
indicate the eight sites that toppled

For the 2D sandpile, the critical state for which all sites have exactly the critical 
slope is not stable any more due to small perturbations An avalanche would 
spread into two directions on the lattice with more than one gram falling off the 
pile, and it is not a fixed pomt as m ID However, after a transient period, the 
system through a self-organizing process reaches a stable critical state where, on 
average, the rate of flow mto the system equals the rate o f flow out o f the system 
across the boundary The stationary state then responds to the addition o f a sand 
gram with an avalanche This is o f unpredictable size, (number o f toppled sites), 
and duration, (number of iterations needed to reach the stable state), so that size 
and lifetime distributions vary over large scales Statistically, the probability 
distributions of the size s and lifetime t averaged over a large number of 
perturbations have been observed to follow power-laws

P(s) ~ s1’1 (3 2 8)
P(t) ~ t b' (3 2 9)

where t and b' are defined to be the size and lifetime exponents respectively, with
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no characteristic time and length scales If we define P(s, L) is the distribution 
function of avalanches s for a system of size L, then we have

P(s,L) = LpF(s/LY) (3 2 10)
where p is a decay exponent, (3= y (i-1) (x defined by Equn(3 2 8)) y  is a critical
index which represents how the cutoff scales with system size and F is a scaling•?
function When L—>oo, the avalanche size distribution becomes independent of the 
system size L, and when s/LY—>0, F approaches a power law and decays very 
quickly for s »  LY, Tang (1988)

3.2.1.2 Catalogue ofSandpile Models
Many sandpile automata models have been studied to date In the critical height 
model, the integer variable z represents the height of the sand column at the site 
(i,j), i e is dependent on zero derivatives o f the local sand height function being 
equal to zero The critical slope model is defined to depend on the first derivatives 
of the local sand height function, i e strictly is a local gradient rather than overall 
slope and the critical Laplacian Model is dependent on the second derivatives of 
the local sand height function, Manna (1991) Of the various sandpile models the 
height version in particular has been intensively studied because of its intuitive 
form and the simplicity o f its mathematical structure, Lubeck and Usadel (1996) 
However, the critical slope model even the local gradient version behaves in a 
way which is much closer to a real sandpile Formulation of the model is similar 
to Equn (3 2 6) but differs in that if the local slope in any direction exceeds the 
critical slope, then the sandpile topples Early studies, e g Manna (1990), Ruskin 
and McCarren (1994) failed to find evidence for simple power-law behaviour, so 
that scaling in the avalanche cluster and duration distribution function does not 
appear to be satisfied Here "scaling" means that distribution and correlation 
functions for all dimensionless quantities are constant in tune For additional work 
on the slope model see, e g Puhl (1992), Frette (1993) and references within 
For the critical Laplacian model, studies by Kadanoff et al (1991) have shown, 
through a scaling analysis, that the exponents are different from the critical height 
model, and the model thus belongs to a different "universality" class The key 
equation is
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L(i,j) = 4h (y) - h(l+1 J} - h(lJ+1) -h(l. ld) -h(lJ_1} (3 2 11)
where L (ij) is the local Laplacian
Zhang (1989) proposed a different stochastically driven continuous energy model 
He considered a real number E ^j) represented at each site (i,j) on a square lattice
The system is perturbed randomly by adding an amount to a randomly chose site, 
i e E (y ) — +8E If the value at any site exceeds the threshold value E(1?j) > 
Ec, the system relaxes according to

e is an exponent for energy dissipation Similar to the 2D BTW model, when 
e=0 25, the system is conservative and dissipation occurs only at the boundary, 
where the number of nearest neighbours is less than 4 Zhang has studied systems 
with Ec =1 and 8E chosen uniformly in the interval [0,0 5], and found that the
same universality class as that for the BTW model applies, (i e values of critical 
exponents are in agreement with those obtained for the 2D BTW model)
Another continuously driven dynamical system  was introduced by Olami et 
al(1992) (OFC) in terms o f earthquake modelling Though the dynamics of 
earthquakes are very complex, the event is driven by slow relative motion of 
tectonic plates, and the occurrence o f abrupt shocks is intermittent There are two 
time scales involved m the process, one is related to the stress accumulation, 
while the other is associated with the duration of the abrupt releases of stress

3.2.2 Current Studies on Sandpile and SOC
3.2.2.1 Theoretical Results

" t5jjSandpiles with SOC have also been studied by several theoretical approaches 
Mean-field theory has been used to neglect the effects of the fluctuations so that 
local variables are replaced by statistically averaged values, Tang and Bak (1988), 
Christensen et al (1993) One fundamental question of the mean-field approach is 
that of the upper critical dimension, l e the spatial dimension above which mean- 
field results are valid In most SOC models, this dimension seems to be 4, 
Obukhov (1988), Diaz-Guilera (1994)

E(i± l,j± l) -^E(i± l,]± l) +eE(i,j)
E (i,j) -> o

(3 2 12)
(3 2 13)
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Theoretical work by Ding et al (1992) on alternative models with stochastic slide, 
however, has led to the conclusion that small and large sandpiles belong to 
different universality classes This also provides some explanation for the 
apparent discrepancy observed with former experimental work, Held et al (1990) 
Another approach has been to investigate sandpile models where the rules are 
more suitable for obtaining analytic results, e g Abelian sandpile model, Dhar
(1989), Creutz (1994) The renormalization group method is widely used in 
critical phenomena where the lack of characteristic scales is demonstrated 
frequently, Pietronero et al (1994)
There has been a lot o f interest in constructing differential equations to describe 
the scale invariance o f cellular automata models For example, anomalous 
diffusion equations with singularities have been considered for studying the 
deterministic dynamics o f the avalanches reached in the critical state, Carlson et 
al (1990), Chau and Cheng (1994), Kadanoff et al (1992) Additionally, nonlinear 
stochastic differential equations have been used by the dynamic renormalization 
group to analyse the earthquake models, Hwa and Kardar (1989), Grinstein et al
(1990), Diaz-Guilera (1993)

3.2.2.2 Experimental Results
Real sandpiles o f course present very complex behaviour so that they are difficult 
to explain fully in terms of simple interaction rules For example it has been found 
that the existence o f SOC in real sandpiles depends on how the pile is built Two 
distinct types of experiments have been performed
Jaeger et al (1989) used the method of rotating a semi-cylindrical drum partially 
filled with sand' at a low constant velocity In this experiment, the drop number 
(defined to be no of grams tumbling at one tune stepVTwas found to be 
approximately periodic in time Held et al (1990) considered the case of critical- 
mass fluctuations m an evolvmg sandpile, through an experimental study where 
the sandpile was built up to a steady state and then subsequently perturbed by the 
addition of a smgle gram at a time After each gram was added, the size of the 
resulting avalanche was recorded Repeated perturbations showed that avalanches 
were not predictable m terms either of their individual size (weight) or of their 
duration
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Held and his co-authors discovered that sufficiently small sandpiles showed broad 
scale-invariant distributions for avalanche sizes For larger sandpiles, the
avalanche distributions become sharply peaked, and the scale-invariance breaks

%
down demonstrating finite-size scaling and the existence o f SOC Experiment 
shows that a single gram of sand can cause avalanches rangmg from the 
extremely small to the system’s finite limit
However, the observed behaviour indicates that inertial effects play an important 
role, Dhar (1992), Prado and Olami (1992) Inertial effects lead to a nonlocal 
process, whereas m the numerical models, only the local geometry determines the 
dynamics The relationship between the drop number o f sand grams measured m 
experiments and the avalanche size measured in numerical models is unclear 
Moreover, the work of Rosendahl et al (1993) deals with gram-by-gram 
quiescent perturbation of real sandpiles of various sizes for which it appears that 
power law behaviour is valid for all system sizes Mehta and Barker (1994) have 
recently reviewed theoretical and experimental dynamics o f granular material, 
which deals with some of these questions t*
An experiment to mvestigate the relaxation dynamics o f a sandpile was performed 
by Jaegeret et al (1989) In their work, sandpiles initially at a given angle of 
repose were vibrated with varying degrees o f mtensity, and the relaxation of the 
average slope o f the pile was monitored It was found that for large intensities of 
vibration, the slope of the pile decayed to zero such that its relaxation was 
proportional to the logarithm of the time, whereas for smaller intensities, the slope 
of the pile stayed finite and the relaxation appeared slower than logarithmic 
In a more recent experiment, Frette et al (1996) have observed the mternal 
dissipated energy m a slowly driven one-dimensional ID rice pile It was shown 
that the occurrence of SOC depends on details m the gram-level dissipation 
mechanism With spherical grams, a stretched-exponential distribution was 
observed, implying a characteristic scale, and is mconsistent with SOC However, 
with more elongated grams, the dynamics were dominated^by sliding grams 
These mduced higher friction, and a power-law distribution of avalanche sizes 
was found This provides the first experimental results o f SOC behaviour m 
slowly driven granular systems Theoretical models o f rice piles are related to a
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variety of different physical systems which share the same universality class, 
Paczuski and Boettcher (1996)

3.2.2.3 Computer Simulation Results
The study o f sandpiles and related systems exhibiting SOC has to a great extent 
been based on simulations that use cellular automata models Several factors 
which affect the behaviour exhibited by sandpile models have already been 
discussed Unsurprisingly, these factors together with the sample size (no of 
events or trials in the simulation) under various dynamics all have a direct bearing 
on the nature and precision o f the results obtained, Manna (1990) (1991), Ruskin 
(1993)
As a final point, it is worth noting that both theoretical and simulation studies to 
date confine themselves to grains of a uniform size, whereas in a real pile the 
gram size is irregular leadmg to a virtually continuous avalanche o f the finest 
grams when the sandpile approaches the critical pomt
We now consider some specific examples of sandpile automata that we have 
implemented under various conditions and automata rules These illustrate 
behaviour corresponding to a variety of applications Systems sizes range from L=
256, where L is the linear dimension of pile, to L=1024 *\!
3.3 Studies of Sandpile Models

3.3.1 Simple Sandpile Height Models and SOC
We have looked m what follows at two versions of sandpiles namely (i) the 
simple height model with toppling rules as described m Section 3 2 1, (n) the 
direct random model, where directed refers to ther fact that toppmg is m a 
preferred direction and sharmg is random (as m (i)) This also use the height 
dynamics
For the direct sandpile height model, we have used the square lattice with steady 
height values o f a site equal to 0, 1, 2, 3 and critical height hc =4 (Here we use
height variable h mstead of z) Thus for hc >4 the site topples Simple feature s of
simulation have been varied namely lattice size = L2 and No ' o f trials (samples)

VThe range of L was 32 to 1024 at which size storage was already a problem for
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the larger number of trials, which range from 10000, to 50000 and 100000 These 
examples were implemented on both VAX and UNIX systems available in DCU 
The dynamics of the directed model (m) may be described similarly to those of 
the simple undirected model, Equns ( 3 2 7 - 3 2 8 )  with an integer variables h(lj) 
associated with each site Again these are discrete and diffusive but are now 
supplemented by the preferred direction condition so that if any site h(lj) > hc, it 
will topple only if the direction o f toppling is allowed The local height h(lj) is then 
decreased We have again built the sandpile on a square lattice where =2, so 
that the two neighbouring forward sites j± = j± [l± (-l)1]/2 are increased by 1

h0 j)  h( i j ) ' hc(ij) (3 3 1)

h(i+l, j±) h(i+l,j±) +1 3 2)
i e when i = odd,

h(i+1, j) -> h(i+1 j) + 1 (3 3 2a)
h(i+l, j-l) h(i+lj-i) +1 (3 3 2b)

when l = even,
h(i+l, j+1) -> h(i+l,j+l)+1 (3 3 2c)
h(i+1, j) h(i+1 j) + 1 (3 3 2d)

Starting with random initial conditions, a particle is added at one randomly chosen 
site at a given row of the lattice If at that site the condition is,satisfied, then two 
particles slide to the two nearest neighbours at the next row,’where the toppling 
condition may be fulfilled again, leading to more topples and so on We follow an 
avalanche until the system regams its stability, and then the next particle is added 
at the randomly chosen site Sand grams are allowed to leave the system when the 
avalanche reaches the boundary

3.3.2 Results and Conclusions
The form of the size and time distributions o f avalanches is shown in Figs 3 3 1- 
3 3 2 for modest system size L=512, as an example Similar results are obtamed 
for different systems we discussed above These show clearly that a scaling region 
exists, corresponding to the linear part o f distribution of avalanche size, l e log 
D(s) vs log s We observe that as the lattice size mcreases, the linear part is
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smoother and increases in length for larger No of trials, permitting more precise 
estimation of the exponent, Equns (3 2 8-3 2 9), before degenerating into chaotic 
or noisy behaviour for very large avalanche sizes The largest avalanches 
observable are directly related to the number of particles in the sandpile so that a 
small sized sandpile necessarily limits the observation of large avalanches 
Averaging over a large No of trials or samples is clearly desirable in order to 
improve the statistics and we note that both No of trials and lattice dimension L 
are modest in this work The behaviour of the lifetime distribution vs log t is 
similar to that shown for size
We illustrate for L=512 and 10000 trials in Figs 3 3 1-2 Our estimates of the 
exponents x and b' are given to be x=l 81, b'=0 45 Comparing these with those 
quoted by Bak et al (1989), X=2 0, b'=0 43, Manna (1990), x=8/7, the simple 
decay exponent b'=19/15, Ruskin (1993) x= 1 016 to 1 093, b'=0 423 to 0 457, 
and b'= 1 012 to 1 119 for a perturbation of size 1 for L variable, (perturbation 
also variable, Ruskin (1993)), it seems clear that we have good agreement with 
previous results with respect to the lifetime exponent However, our value for x is 
rather high, compared to more recent results, but agrees reasonably well with the 
initial theoretical sandpile models, Bak et al (1987), Dhar et al (1989) which made 
rather simplistic assumptions on the fimte-size effect This discrepancy may be 
due therefore to the size o f the system which we have studied, compared to 
previously
More recently, Lubeck and Usadel (1997) have considered the directed BTW 2D 
sandpile model in a large scale, up to system size o f L=4096 They also introduce 
a new method for statistically analysing the data to reduce the fimte-size effects 
and obtain results, x=2 293 and b =1 48, which are in agreement with the results 
obtained by renormalization group approach, Pietronero et al (1990)
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Log s

Fig 3 3 1 Distribution of avalanches size with L=512 and No of trials =10000

0 0 5  1 1 5  2 2 5  3 3 5  4

Log t
Fig3 3 2 Distribution of avalanches lifetime t with L=512 and No of tnals=10000

*•

3.3.3 The Directed Sandpile Model with Holes: Introduction for a Preliminary 
Note
We have also studied for a small system, the directed critical height model on a 
2D square lattice m which a fraction o f sites p are considered as holes Thus the
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system is additionally dissipative The sand grains may also leave the system 
through these holes during the dynamic evolution The distribution of defect sites 
or holes is random and can be considered as either annealed (increasing the 
system temperature, for example to reach an energetically more stable 
configuration in which the free energy is minimized) or quenched, (quickly 
reducing the temperature o f a system, for example to trap a state favourable only 
at high temperatures) For the sandpile system, annealed defects arise when the 
probability p that a defect may occur at each lattice site is fixed only for a single 
event The distribution of defects is generated randomly for each event, and is not 
memorised for the next event Quenched defects arise when a distribution of 
defect sites is generated for each concentration p and held fixed during all events 
For the directed height model with holes, Figs 3 3 3-4 illustrate size and duration 
distributions for a typical No of tnals= 10000, where the first 10 % of trials are 
left for the system to reach the steady state It has been shown, Dhar et al (1989), 
Tadic et al (1992) that the existence o f a preferred direction should lead to a new 
universality class, compared to the undirected model previously discussed It is 
evident that our results differ from those obtained in the first model, (Section 
3 3 2) No clear linear region is obtamed, particularly in the size distribution andj
this supports the view that directed and undirected models do; not follow similar 
scaling laws In fact, the evidence for scaling is weak from our effort in the 
directed case, but this work considered small-sized simulations only (even 
compared to the undirected case) and consequently, the statistics are poor 
Tadic et al (1992) noted that power-law behaviour for size and time with 
exponents T=0 43 and b’=0 30 It is less clear, however, how hole concentration 
affects this behaviour Our very small systems consider L=128, with concentration 
of defects (holes) given by p=0 and p=0 05 and p=0 2 Results obtained for the 
low concentration are similar to these for p=0 (no holes), but the systematic 
deviations m the numeric values compared to the limiting law of form 
(Equns(3 3 4-5)) are due to the finite duration o f the simulation imposed by the 
holes, l e  distributions are truncated Tadic et al (1992) argued that the self- 
organised critical state is lost in the presence of defects if the modified dynamic 
rules violate locally the height conservation %
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As a preliminary look at dissipative systems, we considered the Tadic et al Model 
of introducing holes into the board It is unlikely that small sandpiles under such 
restrictions can show the same wide range o f fluctuations, since as noted for 
simple piles, (Section 3 2 2 2), large and small pile can behave very differently 
Our limited study thus indicates that a crossover from SOC to non-SOC for a

i
defective system is reached rapidly for small system size, but provides little 
qualification of this or comment on Equn (3 2 10) An extended investigation, 
however, should include a wider range o f p values
For more complex defect cases, Tadic and Ramaswamy (1996) have studied in

'i*detal three models of driven sandpile type automata in the presence of quenched 
random defects These models are termed the random site, random bond and 
random slope
models and when the dynamics are conservative, the concentration-dependent 
exponents are nonuniversal In the case o f nonconservative defects, the asymptotic 
state is subcritical

Ln s

Fig 3 3 3 Distribution of avalanches size s for directed sandpile model with L=128, and 
No of tnals= 10000
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Ln t

Fig3 3 4 Distribution of avalanches lifetime t for the directed sandpile model with 
L=128, No of tnals=10000

3.4 Dissipative Sandpile Models

3.4.1 Nonconservative Sandpile Model
The origmal sandpile CA models are noise driven models in that the sand grams 
are added to randomly chosen sites m a pile, and either the local dynamics are 
conserved (i e no energy loss durmg the toppling) or the local dynamical law is 
conserved The BTW relaxation rules conserve the dynamical,variable z except at 
the boundary Earlier studies have shown that conservative interaction rules are 
essential for obtammg SOC m the sandpile models, Manna et al (1990), and are 
also obeyed e g  m the earthquake model, Hwa and Kardar (1989) Further 
investigation has shown that only those nonequilbnum systems with either a 
conservation law or a special contmuous symmetry, demonstrate scale-invariance 
Grinstem et al (1990) However, more work on deterministic models, e g of 
earthquakes, demonstrates the existence of SOC without a conserved quantity and 
is intriguing as it suggests a different mechanism for overall scale-invariant 
structures, Christensen and Olami (1993), Olami et al (1992), Janosi and Kertesz 
(1993) The nonconservative model also demonstrates SOC, m the sense that the 
probability for energy release durmg an earthquake is a power law However, the 
model is found to be nonuniversal in the sense that exponents change contmuously



as a function of the parameters of the models Interest has also been directed to 
systems with uniform driving of the dynamics, Grassberger (1994) The evidence 
supports the view that scale-invariance holds for deterministic models of 
earthquakes, forest fires, and sandpiles, Middleton and Tao (1995), but not for 
others, e g  a stochastic height sandpile model on the Bethe Lattice, Markosava 
(1995) It seems clear that the intrinsic features of dissipative systems and the real 
origin of SOC merits further exploration in view of these findings 
We have, therefore, considered some further examples of dissipative systems in 
more details The dissipative sandpile models in what follows, exhibit no local 
conservation of energy with fixed perturbation Sand is still randomly added to a 
site, generally resulting in avalanches in which the redistribution of sand grams is 
accompanied by energy loss according to local dynamical rules Grams reachmg 
toppling conditions at the boundary will ultimately fall out of the system

3.4.2 Various Dissipative Models
3.4.2 1 BTW and Zhang Dissipative Models
Two simple types o f dissipative models were initially proposed, one driven by 
random discrete BTW model and the other the contmuous-energy Zhang model 
under local nonconservative conditions
Of interest is whether the BTW model retams critical behaviour when mtroducmg 
nonconservative dynamics m the interior of the system. The simple way to 
consider this is to change rule Equn (3 2 6), for example, to

z(i,j)^z(i,j) '5 (3 4 1 >
with Equn (3 2 7) remammg unchanged, This means one gram of sand is lost or 
dissipated for every topple In the stationary state, the average rate of dissipation 
equals the average rate of flow into the system. Thus, <s> = l/P Zc where PZc is the
probability o f adding a gram to a site with zc units, causmg an avalanche This 
probability approaches a constant value when L—>°o, which means <s> will 
achieve a finite value It is obvious that such a system cannot display SOC The 
avalanche size distribution decays exponentially with a characteristic avalanche 
size, regardless o f the system size, and avalanches seem to be localized
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With £<0 25 is chosen in Equns(3 2 11-3 2 12), the dynamics of the Zhang model
t

are nonconservative When 8E is chosen in the range [0 1,1], the nonconservative 
relaxation rule again produces a characteristic avalanche size This model is also 
noncritical in the presence o f nonconservation, Diaz-Guilera (1994), Vespignani 
et al (1995)

3.4.2.2 CA and CML Dissipative Models
In a two-dimensional conservative sandpile CA model, all the space, time and 
state variables are integer (Equns (3 2 2-3 2 3)) However, for the dissipative 
height sandpile model, this may not be the case since the local dynamics lead to 
changed values of local energy Using both CA and coupled map lattice (CML) 
models, (Kaneko (1989)), for a nonconservation system with both discrete and 
continuous fixed dynamics respectively, a parameter a  is introduced for the 
former which gives local energy loss during the toppling events, 0 < a  <1, with

s
a=0 equivalent to no loss Therefore, in a two-dimensional model, Equn (3 2 5)

<

will be modified to be
h(i±lj±l) = h (i±l,j±l) + ( ! - a ) (3 4 2)

We choose the same value for a  for all the neighbouring sites of (i,j), and allow 
the neighbouring sites to topple simultaneously This fixed discrete amount of 
energy loss accompanymg gram toppling, results m avalanches which occur 
slowly compared to those for the nondissipative model, l e  the lifetimes are 
longer The higher the value of a , the more energy is lost during the evolution 
For the contmuously driven dissipative model, i e the so-called CML model, we 
choose contmuous state variables Fn(i) in the lattice which evolve under a non­
linear function map f(x) to describe determmistically the loss of the local energy 
durmg a topple In contrast to the dissipative CA model, the corresponding 
toppling rule m a two-dimensional CML model may be given by

V
h(i±l,j±l) = h(i±lj±l)+Fn(i±l,j±l) ’ (3 4 3)

where we define Fn+1(i)=f(Fn(i)), (F0(i)= l) Smce the local energy loss must be
less than or equal to the whole local energy available, the corresponding values 
Fn(i) must satisfy 0 <Fn (i) < 1, and correspondingly 0 < f(x) <1
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We have chosen to use two different function maps f(x) representing different 
dissipation patterns which are either parabolic (non-periodic) or periodic 
respectively, 1 e

here a is a constant, 0< a <1 and when a=0, f(x)=l, and Fn(i)= l, local conservation
holds The toppling and avalanche procedures in the CML models are similar to 
those of CA models, but the subsequent toppling energy distribution is influenced 
by the current toppling energy loss The dynamics o f this CML model resemble in 
some sense the continuous stick-slip earthquake model which has been discussed 
in Christensen et al (1992)
It is obvious that the dissipative pattern observed depends on the choice of 
function f(x) Our choice reflects, to some extent, extreme conditions satisfymg 
sand transport, (Fig 3 4 1) Clearly, functions which correspond to more complex 
local dynamics can also be chosen In what follows, we investigate whether local 
conservation is either a necessary and/or sufficient condition for a dissipative 
system to exhibit SOC in both CA and CML dissipative models for various values 
of a  and different choices o f f(x) respectively ''

3.4.3 Results for CA and CML models
Boundary conditions are taken to be open only here, consistent with those in the 
non-dissipative models Periodic boundary conditions are considered in detail 
elsewhere, Middleton and Tao (1995) The mam influence o f the open boundary is 
to lead to contmuous loss o f the sand to its neighbourmg sites

3.4.3.1 Dissipative sandpile, CA model
We have implemented the discretely driven dissipative CA model, Equns (3 4 2), 
with values of a =  0 03, 0 3, 0 5, 0 8 respectively Distributions o f size, s, and 
lifetime, t, are shown m Figs 3 4 2-3 4 3 We observe that distributions are 
qualitatively similar for the different values o f a  The increasing dissipation m the 
CA model causes a decrease m the quantity o f avalanches^ Multiple toppling 
events do not occur any more due to the mtroduction of dissipation, and the

f(x)=l-ax2
f(x)=l-asm(x)

(3 4 4) 
(3 4 5)
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distribution displays no fixed power-law dependence It seems clear that the 
dissipative CA model does not exhibit SOC unlike the nondissipative model, This 
agrees with results on the fundamental importance o f the conservation law in 
demonstrating SOC, Manna et al (1990)

3.4.3.2 Dissipative sandpile; CML models
Simulation results for the dissipative CML models, with different choice of f(x), 
(Equns (3 4 4) and (3 4 5)), are shown in Figs 3 4 4-3 4 7 respectively Several 
different values o f a have been chosen to examine the influence o f f(x) m these 
models
Choosing a=0 03, 0 3, 0 5, 0 8, for the CML model with f(x) given by 
Equn(3 4 4), we obtain very similar distribution results to those obtained 
previously, (Figs 3 4 6-3 4 7) above, where dissipation leads to rapid truncation 
with respect to both s and t Avalanches take a long time to occur because 
individual toppling events happen slowly, and this is more obvious for a large 
dissipation Again, there are no long-range correlations to indicate scale- 
mvariance of the avalanches, i e no evidence to support the existence o f SOC for 
any value of a chosen
For very small energy dissipation, i e 0<a<0 1 with f(x) as above, we chose 
a=0 0003, 0 003, 0 03, 0 05 and 0 1 to examine the sensitivity o f the threshold 
However, size and time distributions are effectively the same so that even small 
interior energy loss in the CML model appears to cause the whole system to lose 
its original properties of SOC
However, for the dissipative CML model with f(x) of periodic form, Equn(3 4 5), 
we have observed some surprising and interesting simulation results, (Figs 3 4 4- 
3 4 5 for the size and time distributions respectively) It is clear that these 
quantities follow the power-law distributions which are characteristic of SOC 
Exponents obtained are roughly, x =2 25 and b '-  1 25 We illustrate for a= 0 1, but 
similar behaviour has been observed for a chosen to be any value in the range 
0<a<l The evidence supports the view that that SOC does exist where the 
dissipative pattern of energy loss is represented by periodic and continuous local 
dynamics However, the exponents are qualitatively different for the cases of local
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nonconservation and conservation models
Recently, several authors have attempted explanations on the nature of SOC in 
these dissipative systems, Strocka et al (1995), Ah (1995) From our numerical 
simulation results, it appears that, for a dissipative model, SOC depends, at least 
in part, on the nature of the local dynamics rather than the conservation law
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Fig 3 4 1 The continuous variables F(x) of site x for two types of function f(x) 
(non-penodic and periodic respectively) representing local energy dissipation 
Both chaotic (non-penodic) and periodic behaviour are often seen m many 
physical systems
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Fig 3 4 2 Distribution of avalanches with size s for the dissipative CA model
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0 0 4  0 8  12  1 6

Fig 3 4 3 Distribution of avalanche lifetimes t for the dissipative CA model

Fig 3 4 4 Distribution of avalanches size s for the dissipative CML model, with 
dissipation dynamic given by continuous function f(x)=l-asin(x)

Fig 3 4 5 Distribution of avalanche lifetime t for the dissipative CML model with 
dissipation dynamic given by continuous function f(x)=l-asm(x)
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0 0 5  1 15  2

Fig 3 4 6 Distribution of avalanche size s for the dissipative CML model with 
dissipation dynamic given by continuous function f(x)=l-ax2

0 0 4  0 8  1 2 1 6

Fig 3 4 7 Distribution of avalanche lifetime t for the dissipative CML model with 
dissipation dynamic given by continuous function f(x)=l-ax2

3.4.3.3 Conclusion
We have studied both discretely and continuously driven dissipative sandpile 
models, (CA and CML type respectively), under the height dynamic From the 
simulation results obtamed, we find no evidence for the existence o f SOC when 
dissipation is introduced mto the BTW, Zhang, and CA model Thus, a necessary 
and sufficient condition for SOC appears to be that the conservation law should 
hold, m agreement with fmdmgs of former authors However, SOC is apparently 
exhibited by some dissipative CML models, with results,from our limited 
investigation supportmg the view that local dynamics rather than local
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conservation determine whether the phenomenon is observed This conclusion is 
in agreement with that for a deterministic dissipative model, Middleton and Tao
(1995), but not with findings for a stochastically driven dissipative model on the 
Bethe lattice, Markosava (1995) Exponents for the avalanche distributions for s 
and t are quantitatively different for the local conservation and nonconsrevation 
models

3.5 SOC and Complex Systems

Most models for which we have discussed SOC are discrete in both space and 
time, they are cellular automata or some variants of CA More realistic models 
might involve infinities o f coupled differential equations, but for very many 
elements, it is unlikely that the discretization affects the asymptotic behaviour, 
w r t  time and space in which we are interested Moreover, cellular automata 
seem particularly suited to systems with many metastable states, as in many of the 
complex systems that we considered
Sandpile models clearly provide considerable and often contradictory insight into 
the phenomena of SOC Bak and Chen (1991) have concluded that the theory of 
SOC can be described in terms of many composite systems naturally evolving to a 
critical state, in which a minor event starts a chain reaction that can affect any 
number of elements in the system Although composite systems produce more 
minor events than catastrophes, cham reactions of all sizes are an integral part of 
the dynamics According to this theory, the mechanism that leads to minor events 
is the same one that leads to major events Furthermore, comp'osite systems never 
reach equilibrium but instead evolve from one metastable state to the next This 
theory clearly has attractions in terms of describing natural events, such as 
earthquakes The simplicity o f the models suggest that the phenomenon of SOC 
could be universal Certainly possibilities have been scrutinised by many 
researchers in various fields so far, e g statistical mechanics, condensed matter 
physics, geophysics, biology, and economy An interesting aspect is that the 
dynamics of SOC systems are intermittent, with avalanches of activity separating 
periods of relative quiescence
Another important point is that avalanches are predictably displayed in long-term 
patterns, although it is impossible to predetermine when a system will reach
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instability and how much adjustment is required to regain stability except on a 
short-term basis, Kagan and Knopoff (1987) Overall avalanches observed display 
a log-linear relationship for a real system, in agreement with that observed in 
earthquakes by Gutenberg and Richter (1956) These authors found a straight line 
with a slope (critical exponent) between -1 25 and -1 50 from earthquake model, 
depending on the fault under study
The presence of defects in 2D directed sandpile automata leads to some interesting 
effects For the case of random defects, some concentration-dependent scaling 
exponents have been obtained, It appears that varying the concentration of defects 
is a mechanism for continuously tuning the local rules o f relaxation, which may 
finally lead to a phase transition between metastable states with different 
properties >
In a slowly driven or evolving system, the physical time between lattice updates is 
very short when avalanches are propagating and very long when the system is 
being perturbed In the Zhang model, the transfer o f energy depends on the energy 
of the lattice, whereas it is a fixed quantity for the BTW models When 
introducing nonconservative relaxation rules into the stochastically driven BTW 
and Zhang models, the distribution of avalanche sizes decays exponentially with a 
characteristic avalanche size The systems are subcritical However, the 
occurrence o f criticality in some nonconservative models, e g continuous 
determimstically driven OFC model and CML models, is very intriguing since it 
suggests a different mechanism for the generation of the scale invariance (OFC 
model is an earthquake model, see Olami et al (1992)) Since moreover, the 
majority o f natural phenomena are nonconservative, the SOC behavior of 
nonconservative systems is probably more important to understand than the 
corresponding behavior of conservative systems

3.6 In Summary

In this chapter, we consider the problems involved in simulation methods applied 
to physical and related systems with few constraints Examples o f cellular 
automata modelled "sandpiles" and their applicability to real world systems have 
been described and the phenomenon o f SOC discussed. Recent theoretical
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developments axe presented and assessed in terms of findings from experimental 
investigations Results of our implementations o f those models for both 
conservative and nonconservative systems are also given
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Chapter 4 Cellular Network Models

Our second computer simulation application deals with a class o f non-equilibrium 
systems with underlying disordered patterns known as cellular networks 
Materials with cellular structure appear in nature in a disparately wide range of 
fields, such as engineering, physics, geology, metallurgy, biology, ecology and so 
on, and their statistical behaviour can be investigated by monitoring the network 
evolution through time
In what follows, we investigate the evolutionary behaviour and the statistical 
properties of a typical cellular network model, the 2D soap froth model, which 
provides valuable insight into the behaviour o f complex disordered cellular 
systems The computer methods of constructing 2D froth models have been 
introduced We concentrate in particular here on details o f the direct simulation 
method for various different system sizes with both ordered and disordered initial 
conditions The different stages related to the concentration of defects or amount 
of disorder during froth evolution have also been analysed and results are 
discussed
The original form o f the programme for direct simulations, which we have used, 
is due to Weaire and Kermode (1983b) (1984), Kermode and Weaire (1990) 
Various adaptations and modifications which we have made are detailed briefly in 
this chapter and the full code is given in Appendix E (diskette) together with 
supplementary programmes for illustrations of the froth evolution etc Further 
general points on comparative simulation techniques for this type o f problem are 
discussed in Chapter 5.

4.1 Background and Introduction

4.1.1 Cellular Structures
411.1  Introduction
Many materials occurring in nature possess a cellular network, which means they 
have structures composed of either two or three-dimensional polygonal compact 
domains separated by well-defined sharp boundaries For example, consider the 
pattern formed by a soap froth confined between two transparent plates The

68



geometric structure o f this system consists of a tiling of the plane by domains or 
cells o f nearly polygonal shape In the three-dimensional case, the domains 
assume polyhedral-like shapes which are almost homogeneous and are separated 
by thin boundaries One of the oldest such patterns can be found in the Giant’s 
Causeway in North Ireland, Bulkley (1693) Samuel Foley (1694) first calculated 
the distribution function for a two dimensional network of grams A particular 
class of cellular structures, (which evolve either m time or as some external 
parameter is changed and for which an energy is associated with the boundaries), 
has become a subject of much mterest over recent decades Models of such 
patterns can be found in a wide range o f fields, e g soap froths, foams, magnetic 
bubbles m garnets, polycrystalline metals, alloys, and branches of physics such as 
hydrodynamics, Glazier and Weaire (1992)
The applications of cellular network models have covered a wide range of areas 
For mstance, foams are beautiful examples of heterogeneous materials, with 
properties closely related to their structural characteristics The structures of 
foams are varied liquid foams, such as those made of the soap bubbles familiar to 
all, solid foams such as m cellular materials and so on The use o f foams ranges 
from transport o f granular media m pipes to fire suppression and explosion 
attenuation Thus the geometry of soap bubble arrangements m confined 
environments is an emergmg research subject, where several mtrigumg phase 
transitions have been recently observed, such as those with bamboo-like or spiral 
structures The problem of foam stability is more specific to liquid foams, 
however, and is connected with the important issue o f emulsion stability, 
Exerowa et al (1992), Aveyard (1995) We concentrate here on the studies of dry 
froth m which the liquid fraction is ignored, (1 e no Plateau borders), m order to 
demonstrate a direct approach to computer simulation of such systems 
Computational implications for extendmg these simulations to wet froths are 
briefly noted m final chapter
Weaire and Rivier (1984) first mtroduced the type of cellular network problem 
described above, and this has motivated further developments on many aspects of 
cellular systems A more recent review, Stavans (1993), has put emphasis on the 
scalmg exponents characterising the time dependence o f the average scale of 
cellular structures m evolution Some specialised reviews also deal with important 
aspects o f particular systems, e g the geometric properties of biological tissues,
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Dormer (1988), and the chemical application of solid foams and liquid foams, 
Goldfarb et al (1988)
In contrast to the cellular system models, discussed in last chapter, any small 
perturbation in cellular network models will have an influence on all network 
elements, 1 e local adjustment will be related not only to nearest-neighbours, but 
also to second nearest-neighbours

4.1.1.2 History
The soap froth as an ideal model o f a cellular network has attracted considerable 
attention in that it provides valuable insight into the behaviour o f several complex 
disordered systems Many efforts have been made to connect the soap froth model 
to other models in biology, metallurgy, ecology and so on As long ago as (1925) 
(1928) (1931), Lewis studied froth and living cells in an experiment on cucumber 
He recorded ordered and disordered patterns and gave an empirical relation 
between the number of sides of a cell and its area Some years later, Thompson 
(1942) noted the analogy between froth bubbles and cells o f biological organisms 
In particular, he quoted the similarity between grain growth in molluscan shells 
and a model of a crystal growing in albumin Bragg and Nye (1947) first proposed 
that froth could be used to model gram growth m metals, but had not deduced that 
the individual bubbles may be considered similar to atoms in whole crystal grams 
Later, Smith (1952) (1954) discovered that the soap froth represented the closest

jiapproach m an experimental system to ideal gram growth in a metal From this 
observation, his analysis shown that each separately oriented gram was analogous 
to one bubble m the froth and that gram boundaries m a metal corresponded to 
soap films Population biologists have further considered the influence o f cellular 
patterns during evolution For example, ecologists deal not only with behaviour 
withm a single habitat but also with the mteraction between an ensemble o f them, 
as for instance in the territorial competition m fish and other species, Hasegawa 
and Tanemura (1976)
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4.1.2 Applications: Soap Froth Model
4.1 2.1 Basic Geometrical Relations and Topological Process

i
The dynamics in a cellular structure are driven by surface tension or surface 
energy forces The structure consists of a network of boundaries on a surface, 
which has the property that three boundaries meet at every mtersection or vertex 
for the two-dimensional case A two-dimensional cellular structure embedded on 
the Euclidean plane consists o f a tiling of non-intersectmg polygonal cells or 
faces, whose boundaries are formed by curved edges impinging on vertex points 
According to Euler’s theorem, in general form, the relationship between the 
number of faces F, edges E and vertices V of a polygonal domain can be 
expressed as

F - E +V= % (4 1 1 )
where % is the Euler characteristic Then % =0 for a network on the surface o f a 
torus (or for a planar network subject to periodic boundary conditions) and %=2 
for a network on the surface of sphere in which case the network is topologically 
equivalent to a convex polyhedron, (the original application o f the result) Then 
%=1 corresponds to a finite network on the infinite plane The 'fundamental nature

i

of Euler’s theorem for topology comes about because the invariant it represents 
specifies the topological type o f the surface on which the network is drawn The 
network is built o f polygonal domains whose boundaries join at vertices with co­
ordination number equal to three in cellular structures Applymg this theorem to 
large networks, we have that the average number of sides per polygonal domain is 
equal to six
During the evolution of a cellular structure, there are changes in the local 
connectivity o f the edge network These changes can be broken down into 
elementary processes or transformations, which obey the topological constraints 
There are two basic types o f topological rearrangements which have been 
observed in soap froths, foams and metallurgical gram aggregates, namely, T1 
and T2 processes, which preserve topological properties by effecting changes m 
the number of sides of the cells mvolved m the transformation The T1 and T2 
processes are shown m Figure 4 1 1 (a), (b) and (c), where for the T1 case two 
cells lose one side each and two others gam one For the T2 process, a cell with 
more than three sides can vanish through a series of T1 processes, to make it
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three-sided, for example, in (b), the three-sided cell disappears with each 
neighbour losing a side, in (c), the four-sided cell disappears with the number of 
sides of two neighbours remaining constant while that o f the other two decreases 
by one Similarly, for the five-sided cell, the number o f sides of two neighbours is 
left constant, two other neighbours lose one side each and the fifth neighbour 
gams a side And so on for six, seven and higher order cells

(b)

(c )

Figure 4 11 Elementary Topological Processes
(a) Side Swapping or T1 process
(b) Disappearance of a three-sided bubble or T2(3) process
(c) Disappearance of a four-sided bubble or T2(4) process

It is noted that four-sided cells have two possible decay configurations m contrast 
to three -sided cells whose decay state is unique Smce the classic work of Smith 
(1952) on soap froth, it has been conventional wisdom to think that T2 processes 
of four-cells do not occur Accordmg to Smith, the vanishmg of four sided 
bubbles is mediated by T1 processes m which bubbles become three sided first 
and then decay directly by shrinking This claim has not been vmdicated, 
however, by experiments on froth or m other cellular structures, where direct 
vanishmg o f four- and five-sided cells is observed, Glazier et al (1987) 
Theoretical support for the experimental results has been provided by Fradkov et
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al (1993) The authors pointed out that the decay configuration which a fourfold 
or fivefold vertex will adopt, from all those possible in a particular situation, is 
determined by system-dependent characteristics such as the physical size o f the 
boundaries with respect to the system thickness They argue that this may endow 
the evolution with a stochastic character

4.1.2 2 Von Neumann’s Law and Scaling State
In cellular network systems, a balance o f forces imposes restrictions on the angles 
between boundaries at each vertex Generally speaking, in a real case, it proves 
impossible to satisfy these restrictions unless boundaries are curved Evolution is 
driven by mechanisms that relax this curvature and thus minimise boundary 
length The simple and elegant theoretical basic to describe the dynamics of 
curvature-driven cellular network structure is due to Von Neumann (1952) and 
was supported by the original soap froth experiments o f Smith (1952)
Von Neumann showed that the rate o f change of area with time of an individual 
cell and its number o f sides n are related by the expression

dA/dt = k(n-6) (4 1 2)
Here A is the area of an n-sided cell and k a constant which depends both on the 
solubility o f the gas which diffuses through the soap film and the thickness of the 
latter However, a possible variant of Von Neumann’s law was recently proposed 
by de Icaza-Herrera and Castano (1995), which took into account the effect of 
cell's area as well, given as

dA/dt = kA(n-6) (4 1 3)
We compare these equations of froth coarsening from different initial>
configurations in due course t
Clearly, Equn (4 1 2) means that only a cell with less than six sides shrinks, while 
that with more than six sides grows A cell with six sides neither grows nor 
shrinks, although it may change its shape, as diffusion proceeds, until such time as
it is involved in a topological change, when it no longer has six sides This is
shown in Fig 4 1 2  and is particularly important in relation to transient behaviour 
since we can regard diffusion as occurring during the topological transformation 
processes according to equation (4 1 2)
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(a) (b) (c)
Fig 4 1 2  Typical shapes of cells as function of their number of sides n in an 
equilibrated system (a) cell with n<6 have boundaries bulging outwards

(b) cell with n=6 have straight boundaries '
(c) cell with n>6 have boundaries bulging inwards

The only pattern that is stable under Von Neumann’s law is the perfect hexagonal 
network Even the existence of only a smgle defect pair will result m the collapse 
and eventual disappearance o f all the cells m the network As the average length 
scale grows contmuously with tune, we are mterested m the dynamic properties of 
the system, measured by statistics such as the distribution of the number of the 
cell sides, f(n), and the second moment o f f(n), \i2, which would be expected to be 
constant, if the froth attams dynamic equilibrium, 1 e reaches a scaling state

4.1.2 3 Lewis and Aboav-Weaire Laws
The correlation functions o f mterest are those between area, (or diameter), and 
number of sides, usually known as Lewis Law, and correlations between the 
number of sides o f neighbourmg bubbles, (the Aboav-Weaire law)
Lewis (1928) observed the foliowmg linear relationship between the average area 
of an n-sided bubble <An> and n

where k and a  are constants dependent, respectively, on the average area of all 
bubbles and on the bubble pattern This relation is valid for a large class of 
cellular structures provided n is large enough
Aboav (1974) found that the topological correlation effect among different cells is 
then described by

<An >= k (n -a) (4 14)

m(n) =(6-a) + (6a+|_i2)/n (4 15)
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where a is a constant (a- 1 2), and m(n) is the average number o f sides o f the 
neighbours of an n-sided bubble This is known as Aboav’s Law and for the 
special case of a = l, is usually called the Aboav-Weaire law

4.1.2.4 Simple Soap Froth M odel

The soap froth is the simplest and most familiar structure which has the 
characteristic o f surface-energy-mimmisation, 1 e each cell is of some constant 
predetermined area (in two-dimensions) and the system is in equilibrium when the 
total length of all cell edges is a minimum with respect to any small distortion It 
represents the closest analogy to an experimental system with ideal growth A 
soap froth has all boundaries equivalent, with its evolution driven by a transfer of 
gas between neighbourmg bubbles and governed by Von Neumann’s law This 
constraint can be satisfied only if the boundaries are curved We focus on an ideal

tdry froth, where the balance of forces gives all internal angles o f the network 
equal to 120° and the mean number of sides <n> =6 Evolution is through T1 
processes (neighbour switching) and T2 processes (cell vanishing), (Fig 4 11)  
From Equn (4 12), we obtain the average area o f a bubble <A> to be proportional
to the time, t, i e asymptotic linear scaling of the froth, <A> ~ t a  Also, it can be 
predicted that in a scaling state, the average length scale, <d>, has the form <d> ~ 
tP, where (3 is the growth exponent The pattern of the froth is also characterised 
by a single length scale, the mean cell radius <r>, (<d>= 2<r>) The average size 
of the cell is a function of tune, m the sense that it gets smaller or larger as time 
goes on
Further a random structure can be characterised in terms of the distribution 
functions o f its properties, namely the probability that a given bubble has a given 
area relative to the mean area, <A>, o f the pattern and the topological distribution

lj'function f(n), the probability that a bubble in the pattern has n sides Thus, 
moments are given by

(416)

By definition from equation (4 1 6), (j,0 =0, |i, =0 The dispersion and skewness of 
the distribution is measured as usual by the second and third moments In the 
evolution of a froth, the value o f the second moment |H2 is a fundamental quantity
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4.2 Current Studies of Froths

4.2.1 Experimental Studies and Results
The first experiments on coarsening of soap froth were carried out by Smith

V(1952), based on some photographs taken during the evolution’ of a froth, initially 
non-uniform which was observed to evolve from a few thousand tiny bubbles to a 
few hundreds While Smith found that soap froth mimics grain growth in metals, 
the former does not include the complexities of gram boundaries with orientation- 
dependent energies Smith’s analysis suggested that long-term asymptotic 
behaviour was just a change o f scale, with no change o f the side distribution He 
also found that dynamic scalmg properties can be characterised after initial 
transience by system statistics such as the second moment, |i2 =1 5 and the 
average area o f a bubble <A> dependent on an exponent, as mdicated previously, 
with a =  1 There was a tendency towards a fixed, time-independent distribution 
of number o f sides and relative sides He concluded that only three-sided bubbles 
could disappear directly, however, as noted earlier, whereas four-and five-sided 
bubbles could not, but evolve through T1 processes to become three-sided first, 
then vanish directly via a T2 process
Smith’s conclusions were challenged by an analysis published by Aboav (1980), 
based on a different set of photographs o f Smith, usmg an alternative 
experimental method, where the initial bubbles were formed with roughly 
uniform size Evolution was agam followed from thousands of cells to hundreds 
of cells From the statistical data, Aboav found that no stable limiting distribution 
of sizes existed and the second moment |u2 ~ <d>, (roughly from 0 64-2 86), 
increased with average linear mtercept <d>, where <d> ~ <A>1/2, i e a=2  
Much later, Glazier et al (1987) carried out a set o f experiments and found that T2 
processes could mclude direct disappearance of four- and five-sided bubbles 
without any prior side-sheddmg Several types o f initial condition both ordered 
and disorder were considered In the ordered case, large ordered domains of six- 
sided bubbles are separated by dislocations formed by pairs o f five- and seven­
sided bubbles As t mcreases, five-sided bubbles shrink while seven-sided ones 
grow As the five-sided bubbles disappear, they affect the number o f sides o f the 
neighbouring hexagonal bubble and the spatial extent of the ordered regions
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steadily decrease Once all the ordered domains disappear, evolution proceeds 
with disordered configurations A relaxation region is thus found followed by 
power-law behaviour Glazier et al (1987) found that, irrespective o f the nature of
the initial conditions, froth evolution behaved asymptotically as <A>~ta  with 
a=0 59±0 11 The difference with the expected value a = l was traced later, to the 
fact that the experiments were performed with a fixed amount o f fluid 
Stavans and Glazier (1989) studied the long-term scaling regime in terms of the■i
distribution f(n) and its dispersion in both ordered and disordered froths Within 
experimental error, f(n) remains unchanged during the evolution after transient 
states have died out A more precise measurements of f(n) is also given, 
comparing results from a number of systems, they observed that f(5) is higher 
than f(6) They also provided evidence for the validity o f the Aboav-Weaire law, 
with the second moment ]i2 =1 4, and obtained excellent agreement with the 
measured dependence o f m(n) on n.

4.2.2 Theoretical Results
Several theoretical analytical methods have been used to describe the evolution of 
cellular networks from various aspects
(I) Mean-Field Theory
Flyvbjerg and Jeppesen (1991) derived a time-independent equation for the 
normalised distribution by introducing a generating function and solving 
analytically the partial differential equation obtained Furthermore, Flyvbjerg 
(1992) has obtained a master equation, which is very similar to that o f Fradkov et 
al (1988), but without assuming a maximum entropy distribution of the area A 
numerical solution was obtained for the distribution of the number of sides 
without any free parameters
Stavans et al (1991) pursued from the onset a two-track approach separating the 
calculation o f areas from that of purely topological properties They wrote 
dynamical equations for the variables without including T1 processes as a first 
step The form of the equations neglected the appearance o f two-sided cells They 
found a line o f fixed points instead of a unique fixed point as one would naively 
expect Results here support the asymptotic tune-independent behaviour of froth 
Recently Segel et al (1993) extended the approach o f Stavans et al to the
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calculation o f area-related properties Their results are in agreement with 
experiment for all values of n and Lewis’s law is valid for large values o f n
(II) Maximum Entropy Method
Eeenakker (1986) used a hybrid approach to describe the evolution of a froth He 
derived a dynamic equation for the area distribution function He argued that 
scaling behaviour is not exhibited in the solution Instead, some cyclic behaviour 
is obtamed, whereas disordered configurations collapse into ordered ones, 
consisting mostly o f six-sided cells Then evolve to disordered again No such 
behaviour has been seen in any experiment so far
De Almeida and Iglesias (1988) have studied maximum entropy to calculate the 
topological functions Their predictions for side distribution f(n) is in agreement 
with those obtamed from froth experiments, corresponding to the second moment, 
\i2 =1 5 However, the area distributions do not match experimental data for any
value considered
(III) Topological Model
Levitan (1994) first proposed a topological model to implement the rearrangement 
of the froth by random T2 processes He considered the froth m terms of the areas 
of the bubbles and constructed an approximate topological realisation of the froth 
structure by labelling sites of the bubble lattice to create an adjacency matrix of 
nearest-neighbour connectivity His model was used to solve von Neumann’s 
equations on a geometrically realistic network of bubbles up to the pomt when the 
first bubble disappears Since a T2 process is selected randomly, the neighbouring 
bubbles change their topological classes corresponding to the adjacency matrix 
changes This model has also been unsuccessfully applied to the analysis o f a 
smgle defect m a hexagonal network, Section 4 3 2 Recently, Levitan and 
Domany (1995) (1996) have proposed subsequent, revised versions o f this 
topological model to correct the former results Some extra assumptions have 
been taken to apply to the ongmal model One such, takes mto account the effects 
of the areas o f the topological classes o f the neighbouring bubbles on the results 
of a T2 process Lengths o f the sides of 4-sided and 5-sided bubbles are calculated 
to obtam specified rectangles and pentagons of bubbles The obvious advantage of 
these topological models is that they can deal with the macroscopic evolution of a 
froth with a very large system size They have also been used to observe the
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behaviour of the remaining bubbles, (so-called survivors) in some detail, Levitan 
and Domany (1997) A system size of over 40,000 bubbles has been studied so 
far However, results and conclusions obtamed by those topological models seem 
in poor agreement with those by experiment and simulation methods Some 
details are given in the following section
(IV) Logistic Map Theory
Rivier (1985) first suggested describing the froth network using a logistic map, 
which means a space-filling pattern consisting of a central cell surrounded by 
concentric layers of cells For detailed definitions and proofs, see Rivier and Aste
(1996), Aste et al (1996) Applying this dynamic map to the froth structures, Aste 
and Rivier (1997) studied the topological properties o f physical froths, which are 
cellular networks with homogeneous shape and sizes They have found that in 2D, 
the logistic map has one parameter, given as a function of the average topological 
properties o f the cells in the layers The curvature of the space tiled by the froth

•y*1can also be obtamed from their calculations
From this shell structure map, a clear illustration is also provided of diversity 
between cellular networks and simple cellular systems While both consist of 
simple cells, the difference m the evolution laws is mtrmsic Connectivity 
relations between cells m the network are widespread and pervasive as opposed to 
local Any cell can be influenced by the disturbance m the network even it is far 
away from the central cell and the network adjustment take place mstantly 
Whereas only the nearest neighbour sites of the cell can be affected m a simple 
cellular system m the first step, i e the connectivity is local However, cellular 
automata rules govern transitions between these simple elements As we 
described earlier m Section 2 4 the local adjustment occurs simultaneously, while 
the whole system is adjusted m subsequent time steps

4.2.3 Computer Simulation Algorithms and Early Results 
î

Investigating a 2-D froth gives us the opportunity to observe the details of the 
structure smce it is easier to visualise and model than a 3-D one Generally 
speaking, four methods to date have been used to simulate froths These are (i) 
direct simulation (n) the Monte Carlo method (m) the vertex model (iv) the Potts
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model (variant of MC) We discuss these alternative approaches briefly in what
follows, concentrating on (1) for specific studies described later in the Chapter

i,4.2.3.1 Direct Simulation
Weaire and Kermode (1983b) (1984), Kermode and Weaire(1990) proposed a 
2D-FROTH program to investigate the equilibrium properties This program 
creates a finite sample o f the froth network model with periodic boundary 
conditions and equilibrates it by an iterative procedure The pattern reaches 
equilibrium by a repeated cycle of local adjustments The soap froth is a strictly 
chaotic system, so the detailed evolution of the pattern may depend on the 
sequence in which adjustments are made The program distinguishes between 
topological and diffusive adjustments
Most studies so far assume that the cellular network is incompressible, and in the 
case o f a froth, attempts to compress it simply minimise the surface energy of the 
soap film at all tunes The radius of curvature of each side is

r= c(P ,-P 2)-' (4 2 1)
Iwhere Pj and P2 are the pressures in the two adjacent cells and c is a constant 

related to the surface tension T by
c=2T (4 2 2)

These conditions are satisfied for each cell area
Assuming that the rate of diffusion R of gas across each side is proportional to the 
length / of that side and to the pressure difference across it

R=kl(P1 -P2) (4 2 3)
where k is a constant According to Equn (4 1 2), only the cells whose number of 
sides n^6 contribute to froth evolution The cells with fewer than six sides will 
shrink and those with more than six sides will grow
The local variables chosen to relax at each step, are the position o f a vertex and 
the pressures o f the three surrounding cells Although two arcs with the same 
curvature can be drawn to connect two vertices, it is assumed that it is always the 
smaller arc that occurs in the network, (also supported by the experimental 
evidence)
Equations expressing the dependence o f the vertex angles and their neighbouring 
cells areas are given by
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nwhere p i, p2, p3 are pressures and x,y are vertex co-orduiates

V

so Equns (4 2 4) as a function of the five variables are approximated by a linear 
form, and numerical differentiation is used to determine the coefficients The 
angles and areas change as the froth equilibrates (i e angles optimum at 120°), 
and area adjustments involve vertices o f other cells also
Since the topological changes (T1 and T2) are the essential mechanism of froth 
evolution, direct simulation implements these topological rearrangements in a 
direct way This means that after each local relaxation o f a vertex, the first step is 
to test the possibility o f a T1 process then specify the adjustment by solving the 
equations If the proposed displacement is D, and R, are vectors linking the vertex
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in equation to its nearest-neighbours, then a T1 process takes place if the following 
is satisfied

D • R, >R, • R, (4 2 5)
The T2 process only occurs in two cases Firstly, and most frequently, is in the 
diffusion procedure where changes of area are calculated A T2 process will take 
place if the target area is zero or negative Secondly, wherever it is convenient for 
a cell to disappear, then the target area is designed to have a small positive value 
The existence o f very small cells can cause some problems in the program, so any 
cell with area less than 0 1% of unit area, is forced to disappear (convergence)
As noted above, the diffusion process involves a transfer gas across boundary The 
net rate of diffusion for a cell is given by Equn (4 1 2) and governs the cell area 
The total area remains the same and the average number of cell sides is six, see 
Section (4 1 2  1)

The 2D FROTH program structure is as follows
PROGRAM FROTH

CALL SETUP // Create Voronoi network
CALL INPUT // Input parameters 
CALL STAT //Initialise

//Start evolution loop //
DO 10 1=1,IJSTEP // Increment step number 

ISTEP=ISTEP+1 
CALL DIFFUS //Diffuse network
CALL EQUIL //Equilibrates the network
CALL STAT //Performs statistical calculations

10 CONTINUE
CALL OUTPUT 
CALL STAT
CALL EXITFR //Exit the program
END

Early results showed that for small system size equal to 100 cells, the simulated 
froth did not reach a scaling state, and \x2 increased (roughly) in a linear fashion 
with time For several samples of 500 cells, with differing initial structures, Weaire 
and Lei (1990) obtained the asymptotic value of |ll2 =1 42±0 05 Simulations
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starting from ordered configurations showed an early increase of |12 followed by a
decrease and eventual achievement of a steady state value Initial configurations 
characterised by different degrees o f disorder were allowed to evolve and in all 
cases scaling was achieved Herdtle and Aref (1991) using a similar method to 
Weaire and Kermode, however, obtained |i2 =1 2 for a system of size 1024 cells
The difference hes mainly in the way the structure is relaxed towards equkbrium, 
which Kermode and Weaire (1990) specified as a sequence of'local adjustments of 
pressures and vertices, whereas Aref and Herdtle considered all these variables to 
be adjusted simultaneously in each iteration

4.2.3.2 Monte Carlo Method
The Monte Carlo method depends on representing the solution of a problem as a 
parameter of a hypothetical population, and using a random sequence of numbers 
to construct a sample o f the population, from which statistical estimates of the 
parameter can be obtained Wejchert et al (1986) discussed the Monte Carlo 
simulation of the evolution of a two-dimensional soap froth, based on 
discretization o f the problem These authors used a triangular lattice which has six 
nearest neighbours in two-dimensional space ( le  has a hexagonal dual) Two 
neighbouring lattice points with different assigned integers are automatically 
separated by a cell boundary A clustered group of lattice points labelled with an 
integer k, represents a particular bubble k
This method incorporates explicitly the rapid equilibration o f boundaries present in 
soap froths All cells involved are of uniform same size and shape This 
equilibration was also performed under the constraint o f constant bubble area, 
which was built into the interaction Hamiltonian

H=1/2N Z 2  8a(ljW(lV| - 1 +  WN X (ak - a k)2 (4 2 6)
i j  neighbours l j  cell k

where k indexes the bubbles and each bubble present in the network at any time 
has a different integer label, is determined target area for the M i bubble
accordmg to Von Neumann’s law, andA is a constant This Hamiltonian relaxes to 
the surface energy case, (which refers to the creation of pressure differences that 
result in gas diffusion), with the constraint that each bubble has a fixed target area
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The target areas were updated accordmg to von Neumann’s law, equn(4 1 2), 
reproduced here for convenience

dak/dt = k(nk - 6) (4 2 7)
Starting from a disordered Voronoi distribution of cells, the results of Wejchert et
al are in agreement with the computational results by direct simulation and are 
compatible with experimental values of Smith (1952) An asymptotic regime was 
found for which the gram growth exponent m the soap froth simulation is 
(3=0 49±0 03 After an initial transition period, the second moment reached an 
average steady state value o f |a,2 =1 6± 0 1 This kmd of disparity between the |i2 
values appears to reflect dependence on initial structure, system size etc

4.2.3.3 Topological Analysis (Vertex Model)
Kawasaki et al (1989)(1990) constructed vertex models m which the topological 
properties o f the boundary o f a froth are retamed In this case, when bubbles meet, 
the vertices are treated as pseudo-particles, and are subjected to forces determined 
by the positions o f the neighbourmg vertices The connections between the vertices 
are assumed to be straight and deviations from 120° angles are used to determine 
an effective curvature The vertices move to minimise bond length accordmg to 
equations of motion of the form

X Dy (Vl +Vj/2)= - o  E (rr  r ,) / 1 r, -rj | (4 2 8)
where r, is the position of the ith vertex, v, is its velocity, o  >0 is a surface tension, 
and D,j a tensorial friction coefficient associated with boundary motion The sum is 
over all vertices j linked to vertex i by a bond The enormous reduction m variables 
makes this method computationally very efficient so that very large systems can be 
simulated However, the morphology of the configurations so generated is 
somewhat different from that o f many real systems due to the very nature of the 
model The extreme simplicity o f the model is difficult to relate to the real physics 
of a froth structure Kawasaki (1990) and co-workers found that scaling behaviour 
was obtained after short transient period with (3 = 0 5, but did not obey von 
Neumann’s law, and their scalmg state distributions generally differ remarkably 
from experimental results This may be due to the assumption that all boundaries 
are straight lines regardless o f the effect of mterfacial curvature
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The Potts model is a generalisation of the Ising model in which spins on a lattice 
have q possible equivalent states The simulation of the Potts model takes a quasi- 
microscopic view of froth evolution The surface energy of the Potts model on a 
lattice is proportional to the total length o f grain boundary in the system. The 
Hamiltonian describes the energy that results from various interactions Each 
grain is defined as the region of a lattice in which vertices have a given value of 
spin (i,j) and the Hamiltonian is simply the surface energy due to spins that do not 
interact

H = - Z  Z  S  CKijp (¡¿) - 1 (4 2 9)
ij  neighbors i ,f

In a zero temperature simulation, a site is selected at random and assigned a new 
spin if the change reduces the energy This may be extended to a standard finite 
temperature Monte Carlo simulation (see e g Binder (1986)) The lattice has a 
surface energy that depends on boundary orientation We characterise the 
anisotropy of the lattice by the ratio o f the highest to the lowest surface energy per 
unit length
There are two basic differences between the Potts model and the real experimental 
soap froth The diffusion time o f gas across a soap film is much slower than the 
equilibration time of the film along its length, while in the Potts model and most 
metals the two times are the same Thus, soap froths are closer in shape to true 
equilibrium surfaces than are gram boundaries m the Potts model and metals 
Furthermore, the Potts model has lattice anisotropy while the soap froth is entirely 
isotropic
Glazier (1990) has presented a comparison between a next-nearest-neighbour q=°° 
Potts model on a square lattice and the experimental evolution o f a two- 
dimensional soap froth Starting from identical initial conditions and comparing 
the pattern evolution, dynamics, distribution functions and correlations of the two, 
the basic agreement between them is excellent The Potts model is able to 
reproduce reasonable distribution functions, reach a scalmg state with (3 =0 5 and 
|ii2 =1 5 +0 3 and achieves nearly perfect agreement on the correlation functions 
for the Aboav-Weaire law There are, however a few systematic deviations which 
may be due to the influence of subtle anisotropy and equilibration effects In the

4 2.3.4 The Potts model 1
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Potts model, highly anisotropic lattices, (where e g the relative distances to 
neighbours are in the ratio 1 24 1), produce frozen patterns and the scaling states 
of moderately anisotropic lattices (e g with ratio 1 15 1) have distribution 
functions which are flatter and broader than those of the soap froth, e g  |l2 =2 4
rather than the 1 5 Also, the disordering process takes more time than in the soap 
froth and the gram boundaries do not have uniform curvature
Glazier et al (1989) with a Potts model simulation have observed that the area for 
cells with few sides is larger than that predicted by Lewis’s hypothesis Many-sided 
cells are smaller than predicted as well, and the distributions of normalised area are 
constant The correlation seems to be mdependent of the degree of equilibration of the 
froth and would appear to depend on local rather than long range equilibration For 
example, a very large number of cells with few sides can rapidly change sides by T1 

' processes without havmg to wait for cells to disappear

4.3 2D Froth Models- Implementations via Direct Simulation 
Methods

4.3.1 2D Froth with Voronoi Network 

4 3.1.1 Voronoi Network
Voronoi construction has been used to form the initial condition o f a disordered 
network, Boots (1982) The Voronoi network is that network formed by convex cells 
whose boundaries are determined by all the perpendicular bisectors of all the lines 
jommg a set of n-tuples, Grunham and Shephard (1987) Smce it automatically 
creates a controlled amount of disorder, the Voronoi network was used for most 
initial configurations m the early investigation o f froth evolution, Weaire and 
Kermode, (1983)(1984), Weaire and Lei (1990) In order to compute the network, we 
can use its dual, the Delauney tessellation This is the division of space mto a set of 
triangles whose apices belong to the set of initial pomts, where, for each triangle, no 
other pomt exists mside the circumscribed circle of that triangle The Delauney 
tessellation is shown m Fig 4 3 1
A Voronoi network can be constructed by random generation o f a set o f initial 
pomts, l e  the simplest case is where the bubbles form a tiling o f the plane 
produced from a number of seed pomts scattered over the domain These bubbles
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arise by associating with each seed the set o f points in the plane that are closer to 
it than to any other seed Each vertex in such a tiling is trivalent except for 
degeneracies due to symmetry The angles in the Voronoi pattern are not in 
general 120°, but these angles can be obtamed by allowing the Voronoi tiling to 
relax elastically If we impose constraints on the distribution of initial seeds, then 
we obtain special patterns, for example, two seeds subject to the condition that 
these are a certain minimum distance apart leads to the so-called hard-disk or 
hard-core Voronoi setup, Weaire and Rivier (1984) It has been noted that 
Voronoi patterns with a hard core tend to have lower values of the second 
moment than those with no constraint, Herdtle and Aref (1992) The hard-core 
one can be used to set up a more regular network but still with some random 
structure

4.3.1.2 Voronoi Froth Models- Large Scale Systems
We have constructed Voronoi networks for froth systems with several hundred 
bubbles by direct simulation methods, and have also extended the simulations to 
larger systems which would be more realistic for the investigation of true 
randomised froth structures System sizes range up to several thousands of 
bubbles In particular, we report on the scaling properties for a hard-disk Voronoi 
network for a system of 3000 cells, (Fig 4 3 2)
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Fig 4 3 2 2D froth with a hard-disk Voronoi Network

4.3.2 Defective 2D Froth Models: The Simple Case
i

4.3.2 1 Ordered and Disordered Froth "
Some difficulties exist in the hterature as to what is meant by ordered  initial 
conditions Different underlying structures (monodisperse and polydisperse) have 
been specified, which correspond apparently to the same initial value of (4,2 Since 
this comes from a summation over the non-hexagonal side distribution, Equn 
(4 1 5), there are several possible configurations for a froth with the same (1 2 , 1  e 
for the same distribution f(n) This is irrespective o f whether the area distribution 
is uniform or non-uniform, or whether the defects are randomly distributed or 
clustered Equally, (I2 may be the same despite different f(n) reflecting very 
different froth structure It seems clear that |i2 alone is insufficient to quantify the 
degree o f disorder and that more specific details o f the initial structure are 
required This is hardly surprising, given the elusive nature o f the concept, and 
has been implicitly recognised by a number of authors
The simplest local topological dislocation is defined as a pentagon-heptagon 
construction in an otherwise hexagonal structure, Weaire and Rivier (1984), 
where this construct satisfies Euler’s law, (Equn (4 11) and Fig 4 3 3) 
Alternatively, the dislocation may be formed by forcing  a T1 or T2 process, 
leading to a paired pentagonal-heptagonal dislocation, (Fig 4 3.4 (a) and (b)).
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Defining an ordered  initial froth to be a uniform hexagonal, (monodisperse), 
network, then a highly ordered froth consists of such a network with one or a few 
“seeded” defects present in what is essentially still a regular structure A 
disordered froth is non-ordered and is taken to be a non-uniform (polydisperse) 
network with random localised topological dislocations A highly disordered froth 
is thus clearly non-uniform hexagonal in structure and can have a large number of 
these dislocations Yoronoi networks are in some ways typical o f disordered 
structure
Froth reversibility was discussed by Weaire and Lei (1990), and Herdtle and Aref 
(1992) In mathematical terms reversing froth evolution involves writing -k 
instead of k in Von Neumann’s law Equn (4 1 2) Distinction between so-called 
ordered and disordered froths can be made on the basis of this property In an 
ordered froth, the dislocation can be made to disappear through a series of T1 
processes, resulting in a final structure which is uniform hexagonal 
(monodisperse, (0,2 =0) In a disordered froth, however, some topological 
dislocations always exist although their location will change after one or more T1 
processes The froth thus remains a polydisperse network with a minimum value 
of (j-2 (jll2>0) The irreversibility o f a polydisperse froth is implicitly considered in 
previous work of Weaire and Lei (1990), and Herdtle and Aref (1992))

Fig 4 3 3 A topological dislocation with a pentagonal-heptagonal cell pair
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Fig 4 3 4 (a) (b) A topological dislocation ,
(a) with pentagonal-heptagonal cell pairs formed by a T1 process,
(b) with a pentagonal-octagonal cell formed by a T2 process

From these definitions o f order and disorder, it seems clear that Smith (1952) 
described a highly disordered system whereas Aboav (1980) mvestigated one 
which was highly ordered m that its underpinning was the hexagonal form. Both 
ordered and disordered initial conditions were considered m Glazier et al (1990) 
whereas Weaire and Lei (1990) discussed disordered systems only Investigations 
of froth behaviour when a smgle defect is present m a highly ordered system are 
due to Levitan (1994), Ruskin and Feng (1995) We consider details of froth 
evolution for a range o f different initial conditions in what follows

4.3.2.2 Single Defect 2D Froth Model
,1The question of initial conditions was raised m earlier work cited above It is 

known that a system with only hexagonal patterns is m full equilibrium with 
regard to diffusion, l e  a perfect ordered froth However, it is o f mterest to 
examine quantitatively the mtroduction of disorder mto such a system. We 
consider initially the smgle defect case
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The initially transient behaviour of a relatively ordered froth has been interpreted 
in terms o f the growth of individual topological defects The study of this growth 
was first taken up by Levitan (1994), who considered the insertion of a single 
such defect into a froth of hexagonal cells He used an approximation which is 
attractive in that it offers the potential to simulate larger, closer-to-asymptotic 
systems, but results obtained were in disagreement with previous tentative 
conclusions, (Wearre in Blackman and Taguena (1989)) We have re-examined 
this problem by direct simulations which are more extensive than those previously 
undertaken
Levitan’s method first forces a T1 topological process, to take place in a group of 
cells and follows this with a T2 process, for which the probabilities of a triangle, 
square and pentagon being formed are the same In fact, the first T1 process gives 
rise to two five-sided cells and two seven-sided cells in the network, (Fig 
4 3 4(a)) Levitan used a mean field theory to show that the topological 
distribution associated with a single defect approaches a fixed asymptotic form, 
with a high peak f(6) = 0 6  This implies that |J.2 attains a different and stable 
value in conflict with previous predictions
We have implemented a 2D dry froth with a single topological defect, based on a 
perfect hexagonal network to ensure correspondence with Levitan’s original 
construction The defect is based on a symmetrical arrangement of two pairs of 
pentagonal and heptagonal cells with minor discrepancies m the areas of the 
component cells and with all hexagonal cells surrounding the defect having the 
same area, (Fig 4 3 4(a)) Additionally, we consider another type of topological 
defect, where the distortion is achieved by suppressing an edge in the original 
network giving an eight-sided cell with two symmetrical five-sided cells amongst 
its nearest neighbours (Fig 4 3 4(b)) We have also used another ordered 
construction to create a third kind of defect, in which the areas of the defect and 
its neighbouring cells have been adjusted, (detailed Figs are shown in Appendix 
C) Periodic boundary conditions are used but, for convenience, the defective cell 
is centrally placed in the network, smce the system is size limited, so that we can 
monitor the evolution for as long as possible Calculations are not pursued beyond 
the stage where the defect impacts on the boundary
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4.3.3 Multiple Defects in an Ordered / Disordered Froth
A froth with multiple defects is an extension of the single defect example where now 
increased amounts o f disorder are considered to be introduced into the initial 
hexagonal network We also consider initial structures for the froth network which 
are both ordered and disordered (p89) before insertion of the defects 
Direct simulation is again used to investigate froth evolution for different system 
sizes and initial set-ups in order to obtain information directly on each time step 
during the whole evolution Defects which are sparse in the froth as a whole 
evolve naturally before impacting on each other after a long period o f time We 
consider systems of size up to 1600 cells and initial structures which range from 
highly ordered  to highly disordered

f

4 3.3.1 Multiple Defects in an Ordered Froth
From our definition, an ordered froth is based on the hexagonal network, where 
for any value o f n, all cells have roughly the same initial area For a highly 
ordered hexagonal network, we have introduced a number o f defects, d, as a pair 
of pentagon-heptagon dislocations,
(i) d=4 in a system of size 400 cells (|i2=0 05),
(u) d = l  in a system of size 900 cells, (|i2 ~0 03),
For a hexagonal network with low order, we have introduced,
(m) d=30 m a system of 400 cells, (|i2 =0 3),
(iv) d=60 in a system of 900 cells (|i2 =0 27)

4 3 3.2 Multiple Defects in a Disordered Froth
sij

In a disordered froth  normally obtained from the Voronoi network, the area of an 
n- sided cell may vary considerably and |U2 provides an indicator o f the degree and 
nature of disorder arising from increased dispersion in f(n) For a highly 
disordered froth, we have considered the evolution of
(v) a system of 900 cells with initial JU2 =1 2,
(vi) a system of 1600 cells with initial |i2 =1 6, (f(4)=0 12, f(5)=0 25, f(6)=0 28, 

f(7)=0 09, f(9)=0 02, f(10)=0 01)
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in a polydisperse network, we have considered
(vu) a system of 900 cells with initial [4,2 ~0 22 (minimum),
(vrn) a system of 1600 cells with initial \h  =0.28, (f(5)=0 13, f(6)=0 74, f(7)=0 12, 

f(8)=0 01)

SUBROUTINE SETUP 
//This subroutine sets up a 2D hexagonal lattice with a number 
of defects The dimensions are given by NX*NY, the number of 
vertices m  the x and y directions respectively. ,

DO 2 0 1=1,NX 
IT=MOD(1,2)
DO 10 J =1,NY 
N=I+(J-l)*NX 
NT=MOD(1+J,2)
X(N)=FLOAT(1-1)*RT32+RT34 j*
IF(NT.EQ 0)THEN 
Y (N)=FLOAT(J-1)*1 5+1 0 
NN(N,1)=I+MOD(J,NY)*NX 
NN (N, 2 ) =MOD (1-2 +NX, NX) +1+ (J-l) *NX 
NN(N,3)=MOD(I,NX)+1+(J-l)*NX
NC(N,1) = (MOD(1-2 +NX,NX)+2-IT+MOD(J-2+NY,NY)*NX)/2 
NC(N,2)=(N+IT)/2
NC(N,3) = (MOD(1-3 +NX,NX)+1 + IT+(J-l)*NX)/2 
ELSE
Y (N)=FLOAT(J-l)* 1 5 + 0 5 
NN(N,1)=MOD(I-2+NX,NX)+1+(J-l)*NX 
NN(N,2)=I+MOD(J-2+NY,NY)*NX 
NN(N,3)=MOD(I,NX)+1+(J-l)*NX 
NC(N,1)=(I+IT+MOD(J-2+NY,NY)*NX)/2 
NC (N,2) = (MOD(1-2 +NX,NX)+2-IT+(J-l)*NX)/2 
NC(N,3)=(MOD(I-3+NX,NX)+1+IT+MOD(J-2+NY,NY)*NX)/2 

END IF 
10 CONTINUE 
2 0 CONTINUE 

NTOT=NX*NY 
NT2=NTOT/2 
DO 50 K=l,NTOT-Il

For a froth with less disorder, formed by reverse diffusion, corresponding to low \ii
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DO 51 J=1,3
IF(NN(K,J).GE.Nl.AND.NN(K,J).LE N2)THEN 
NN(K,J)=NN(K,J)-1 

ELSEIF(NN(K,J) GT N2)THEN 
NN(K,J)=NN(K,J)-2 

ELSEIF(NN(K,J).EQ.N2.AND.K.LT (N2-1))THEN 
NN(K,J)=NN(K,J)-1 

ELSEIF(NN(K,J) EQ N2 AND K GE.(N2-1))THEN 
NN(K,J)=NN(K,J)-2 

END IF
IF(NC(K,J).GE,N3)THEN 
NC(K,J)=NC(K,J)-1 
END IF 

51 CONTINUE 
50 CONTINUE 

NTV=NTOT-11 
12=11/2 
NTC=NT2-I2

DO 3 0 K=1,NTOT 
IVLIST(K)=K 

3 0 CONTINUE
RT32=RT32*3.0 
DO 40 K=1,NT2 

ICLIST(K)=K 
NCELL(K)=6 
VOL(K)=RT32 
P(K)=0 0 

40 CONTINUE 
NCELL(435)=7 
NCELL(466)=7
NCELL (436) =5 'f
NCELL(465)=5
RS1=(SQRT(10.0)-2 )/2.
VOL(435)=RT32+RT34 
VOL(436)=5*RT34 
VOL(465)=RT32-RT34 
VOL(466)=RT32+RT34 
X(931)=X(931)+0.5*RT34 
Y(931)=Y(931)+5./8.
X (932)-X(932)-0 5*RT34 
Y(932)=Y(932)-5./8.
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END IF
R ETURN
END

We give detailed results for some of these models in the next Section as examples An 
example is also shown on the diskette in Appendix E

4.4 Results and Discussion

4.4.1 Voronoi Disordered Froth
4.4.1.1 Additional Notes on Direct Simulation Implementation- Performance
For direct simulation, it is possible to specify the precise geometrical description 
of the structure and its evolution We note that Kermode and Weaire (1990) used 
the routines F04ARF and F04ATF in the NAG library to solve the matrix 
equation, but these are not available in the NAG library version available on the 
VAX cluster in DCU We have, therefore, modified the programme by using 
instead the Gauss method The external library CALCOM is also unavailable, so 
that for the current preliminary studies we have omitted the 2D-Froth graph 
plotting routine and substituted our own, written in C A copy o f this program is 
given on diskette together with 2D-Froth program in Appendix E 
For the largest system considered size 3000 cells with initial disordered Voronoi 
network set-up, the volume of information to be stored is considerable and run 
tunes are of the order of several hours for each stage o f the simulation due to the 
large number of complicated network checks and continuously iterated 
calculations A 3000-cell system appears to be the practical limit for the 
computing power o f the hardware configuration that we have used for this 
sequential approach For 1000 and 3000 cell systems, the first runs required more 
than 5 and 12 hours respectively, and succeeding runs about 2 and 7 hours on the 
VAX cluster available in DCU We concentrate on specific distributions of 
interest in what follows “
The tune steps are small in our simulation so that it is easy to observe detailed 
topological distributions and related behaviour exactly for each step Here the 
number of tune steps relates to the number o f diffusion and equilibration
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processes which have taken place, with the evolution time, T, measured in units of 
<AQ>/k, where < A0> is the initial average area over all cells, and k is the constant 
in Von Neumann’s Law, and may be arbitrarily chosen, (Kermode and Wearre
(1990)) i

4.4.1.2 Results o f  Froth Simulation

We examine the distributions o f number o f sides and area, and the respective 
correlations For the systems of 1000 and 3000 cells, we obtain the values of the 
second moment, |i2 =1 5 and ^  =1 63 respectively, where the later one is high
compared to values quoted by previous authors with the exception of Wejchert et 
al (1986) This in part may be ascribed to the much larger network, so that more 
cells are involved in a knock-on effect from a given topological change and partly 
to a choice of different scale factors and hence the handling o f small cells as noted 
earlier, (Section 4 2 3 2) Nevertheless, clear equilibrium behaviour is established 
In Fig 4 4 1-2, the distribution functions f(n) and the second moment, |i2, for a 
system of 3000 cell are shown Equn (4 1 2) suggests that the,rate of area change 
is the same for all n-sided cells, irrespective o f the nature o f neighbouring cells In 
a real system, the large cells are more likely to touch the boundary o f a finite area 
than the small cells, so that we have a systematic bias against the inclusion of very 
large cells in our distribution function Also, we know that rate o f growth of a cell 
is dependent on its shape, l e  is only affected by the number o f sides o f the 
original cell configuration Therefore, it is unnecessary to calculate all the side 
lengths and sum the diffusion across each side in order to determine the rate of 
growth for a cell
We have also looked at the correlations between area or diameter, <An>, (or d),
and number o f sides, n, (Lewis’s Law), and correlations between n and m(n), the 
number of sides of neighbouring bubbles, (Aboav-Weaire law) Results are shown 
in Figs 4 4 3-4 For the former, we expect a linear relation between the cell area 
and the number o f sides, where <An> and n are recorded at various stages during

'"I’I?the evolution of the soap froth Agreement is obtained with Lewis Law, also with 
the Aboav-Weaire Law, but a is not normally quoted values o f 1 or 1 2, (a = 0 7)
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Also deviations from Lewis Law appear to be more marked for the smaller 
system, 1 e system size of 1000, although departure from linearity is small
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Fig 4.4 3 Lewis Law for a system of size 3000
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Fig 4 4 4 Aboav-Weaire Law for a system of size 3000

Precise geometrical description o f the structure and evolution of the froth are 
presented m an example given in Appendix D for a system of size 900 We have 
extended such calculations to hundreds or even thousands o f cells, and obtamed 
results from the simulations which show that scaling laws durmg the evolution of 
a froth are m reasonable agreement with experiment, and previous simulation 
studies

4.4.2 Froth with a Single Defect
jift

We have implemented the froth with a single defect, (Fig 4 3 3 and Appendix C), 
for systems of size 100, 400 and 900 cells respectively We give details of the 
results for a system o f size 400 cells as an example Similar results are found for 
all system sizes used
If we define an approximately circular “front” o f disturbance surrounding the 
large defective cell and mcludmg cells which have undergone a single topological 
change, the circular “front” will mclude these (plus other cells which impmge on 
the circle m part, but which have not yet undergone change) Levitan (1994) 
similarly defmes a “cluster”, which refers to the “front” used in our simulations 
plus a boundary of hexagonal cells The slight modification we have used does 
not affect the behaviour of |i2, or the side distribution but enables us to consider 
separately (4,2 in the front
Figs 4 4.5 show the evolution withm the front at specific time, steps for different 
initial defect types, corresponding to Fig 4 3 4(a) We can see that the number of



area of the disturbance For the defect formed by edge suppression, starting from 
the ordered non-Voronoi network set-up (see Fig 4 3 4(b)) and ordered Voronoi 
network (see Appendix C), we have observed very similar behaviour in the froth 
evolution We give detailed results for the initial structure shown in Figs 4 3 3 (a)

5
and (b) as follows -
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(c)
Fig 4 4 5 (a) (b) (c) Evolution of a froth with a single defect in a 

hexagonal network with time steps of 0 ,4 0  and 100 respectively

The topological distribution f(n) inside the fron t, is shown in Figs 4 4 6 (a) and 
(b), at specific tune steps for the different defect topologies (Figs 4 3 3 (a) and (b) 
respectively) We find that there tends to be a peak at n=5 in the front as evolution 
time increases, as opposed to the overall network of a normal froth which has a 
peak with n=5 and n=6, Herdtle and Aref (1992) However, the distribution f(n) is 
now, of course markedly right-skewed These features are not extraordinary as 
movement of the front results in continual incrementation of the number of sides 
of the large defective cell
From our results, the second moment, |0,2 continues to change with tune without 
reaching a fixed limit Figs 4 4 7(a) and (b) show how the second moment, |i2, in 
the overall network changes vs time, T The range o f T includes about 200 
diffusion and equilibration processes m our simulation Topological and diffusive 
adjustments are made sequentially within each time step and considerable details 
of the evolution may be observed
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(a)

n

(b)
Fig 4 4 6(a) (b) Topological distribution f(n) in tht front with time step 
of 60(A), 120(0), and 160(o) Initial set-up Fig 4 3 3 (a) (b) respectively

Fluctuations in the value of |0,2 around the underlying trend can be explained 
directly in terms of the T1 and T2 processes, with a high \i2 corresponding to the 
defect surrounded by a number o f three- or four-sided cells, and a sudden 
decrease in |i2 associated with the disappearance o f one of these cells During 
growth in area of the defect, \ii keeps a relatively stable value until the next T1 
occurs Clearly, as more cells are involved in the evolution and the number of 
sides o f the defect increases, the value of \i2 overall changes more rapidly and is 
dominated by the contribution of the defective cell Over the whole range o f T, (0-2 

~ T  ̂ appears to describe the observed behaviour, with (3 >1 However, few 
changes take place initially, relative to the evolution as a whole, and for the upper 
range o f T, ¡12 vs T is roughly linear, although it is not clear that a true asymptote 
is attained
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(a)

T

(b)
Fig 4 4 7(a) (b) p.2 in the overall network vs time T for a froth of 

400 cells Initial set-up Fig 4 3 3 (a) (b) respectively

For a simple theoretical model o f a large defect with N sides surrounded by N  
small cells, newly converted side lengths of the small cells will be characteristic 
of the whole network, 1 e N  ~ A(d)°5, with A(d) the area o f the defect Then, m 
the asymptotic limit, Von Neumann’s law becomes dA(d)/dt = kA(d)05, 1 e A(d) 
~ T Similarly, in the front, the topological distribution will be dominated by the 
defect, so that |12 (d) ~ N2 with N ~ T, 1 e (-I2 (d) ~ T2
Furthermore, the defect gradually mvolves more and more cells m the overall 
network, so that asymptotically the exponents for the front and the overall 
network should be the same From our simulations, we find fo r  the defect that 
A(d) mcreases with T at the expense o f other cells distorted by topological 
changes If we define the mcreased area AA(d) = A(d) - A(d)0, where A(d)0 is the
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original area of the defect, for the defect formed by edge suppression, e g Figs 
4 3 3(b), we obtain roughly AA(d) ~ T2 after the initial period of evolution, with 
the radius o f the rough perturbation circle, r ~ T approximately, Figs 4 4 8 (a) and 
(b) illustrate for the set-up of Fig 4 3 3 (b) Furthermore, we find that |J,2 (d) 
changes roughly linearly with the average intercept, <d>, where <d> equals the 
square root of the average cell area in the front, Fig 4 4 9

(a)

(b)
Figs 4 4 8 (a) (b) Increase m defective area AA(d) vs time, T, for a 
froth of 400 cells Initial structure Fig 4 3 3 (a) and (b) respectively

Fig 4 4 9 112(d) m the front vs average intercept, <d>
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It seems clear that the behaviour of a froth with a single defect in a uniform 
hexagonal network does not lead to a normal scaling state as found for the non­
defective froth by numerical simulation and as predicted by theory We find that 
f(n) in the front tends to develop a long tail extending to large values o f n and 
with a peak at n=5 This is in agreement with Aboav (1980), who also quotes a  
=2 for the area growth exponent However, the suggestion that \i2 overall varies 
linearly with time (comment by Weaire and Kermode (1983a) on Aboav’s work), 
is not wholly supported by our findings and is in conflict with the predictions of 
the simple model It is only with hindsight that it has been suspected that Aboav 
was dealing with a transient system with defects, characterised by different values 
of the growth exponents Our own results are probably not in the asymptotic 
region since the maximum number of sides achieved by any defect is N=44 at the 
late stage. Nevertheless, they are supported by recent work o f Jiang et al (1995)
In summary, we find that there is some similarity between the behaviour of our 
system and that of Levitan (1994), but we do not agree with a fixed  form for f(n) 
as obtained by Levitan The value o f \x,2, whether for the front or for the overall 
network, does not reach a steady-state after initial fluctuations at this system size, 
unlike normal froth evolution

4.4.3 Monodisperse and Polydisperse
4.4.3.1 Results and Discussion
Similar behaviour is observed for initial conditions noted in section 4 2 3, for 
example (1) and (n), and also for example (m) and ( iv ) ,  results are thus discussed in 
detail for (n) and (iv) only
For the ordered  froth, (defined p89), the side distribution, f(n), is illustrated in 
Figs 4 4 10 (a) and (b) for specific time steps Since a single time step consists of 
the number o f diffusion and equilibrium processes which have occurred, the 
evolution time, t, is measured in units o f <A0>/k, as previously with k a constant 
defined in Equn (4 1 2) The second moment, [i2, vs time and the average area, 
<A> vs time are shown in Figs 4 4 11-12 Agreement with the Aboav-Weaire 
law is shown in Fig 4 4 13, where a is approximately constant (a ~ l  05)
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(a)

n

(b)
Fig 4 4 10(a) (b) The side distribution, f(n) at time steps of 0, 120, 260 for a highly (n) and a low 
ordered froth ( iv), the heavier dark line represents f(n) in the quasi-scaling scaling state

(a)
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(b)
Figs 4 4 11 (i2 vs tune in an ordered froth with initial set-ups 

(a) (11), (b) (iv) respectively

(a)

t

(b)
Figs 4 412 The average area of all cells, <A> vs time 

with initial set-ups (a) (11), (b) (iv) respectively
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Fig 4 4 13 Aboav-Weaire Law m a low ( -A ) and highly (0) ordered froth
If considering the alternative illustration, l e nm(n) vs n (as shown 
in Fig 4 4 4), the line corresponds to constant a -1 05

For a highly ordered froth, we observe that the side distribution f(n) is markedly 
right-skewed with the long tail reflecting the presence of many-sided cells, (Fig 
4 4 10(a)) The second moment grows indefinitely with time, |i2 ~t, as a result, 
(Fig 4 4 11(a)) Therefore, if the system size is large enough, we expect that |i2 

will continue to increase as larger many-sided cells are formed Our findings for [Lz 
vs t and also for the average area of all cells <A> ~ t “, a  =2 are in agreement with 
those of a single defect as discussed in Section 4 4 2
The scaling state is reached when both f(n) and \i2 attain time-invariant values and 
obviously does not apply for a highly ordered froth, where neither f(n) nor \±2 tend 
to a fixed form However, if we truncate f(n) at n = n *, (n* < 12), we find that the 
side distribution f(n*) is effectively fixed after the initial period of evolution, (see 
e g Fig 4 4 10(a), f(4)=0 08, f(5)=0 37, f(6)=0 35, f(7)=0 09) Such a froth may be 
said to be in a quasi-scaling state, although clearly \iz for all n continues to 
increase This suggests, additionally, that a more appropriate measure of the froth 
structure might well be the third or fourth moment of the distribution, f(n)
The emergence of a quasi-scaling state in the highly ordered froth, however, does 
not tend to wholly support the view that Aboav’s results describe a transient stage, 
but requires focus on the later time-evolution, which is not provided. In fact, ten 
percent of the initial 5000 cells remained for the value of \iz given in this work, 
Aboav (1980) An alternative explanation, that the long-term evolutionary 
behaviour of a highly ordered froth reaches partial equilibrium at best, obtains

9 -|------------------------------------------------------------------------------
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some support from the results presented here and is examined further in the next 
Section
In contrast, for the low ordered froth, (initial conditions as in ( i v ) ,  Section 4 3 3 1, 
1 e seeding the hexagonal structure with defects), (Fig 4 4 10(b)), the side 
distribution f(n) does tend to a fixed form, e g f(5)=0 31, f(6)=0 30, f(7)=0 26, and 
the second moment |J,2 vs t exhibits one notable peak before finally reaching a 
stable value of [iz ~1 5 after initial fluctuations (Fig 4 4 11(b)) The average area
of the cells now behaves as <A>~ ta , where 1< a  <2 These scaling properties are 
consistent with those obtained by experiment (Stavans and Glazier (1989)) We 
also find that there may be two peaks before |J,2 reaches a stable value e g in (vi)

1with clustered defects Furthermore, the Aboav/Aboav-Weaire law is obeyed in a 
high/low ordered froth respectively in Fig 4 4 13, with a ~ 1 05 
It appears, then, that normal as opposed to quasi-scaling in an ordered froth 
depends on the initial side distribution f(n), le  the number of defects, d, or 
concentration dN, (=d/N0, N0=the initial system size), with a corresponding 
threshold or critical value \x,i(d') partially determining the degree of disorder 
Froths with initial defects of various types (see Section 4 3 for example), either 
randomly seeded or clustered, may correspond to the same |J,2, but exhibit different 
evolutionary behaviour before a final state For example, one or more peaks may 
be observed for |i2 vs t in the low ordered froth depending respectively on whether 
defects are seeded randomly or clustered Nevertheless, if the system size is large, 
the ordered froth will tend to either a quasi-scaling or scaling state, regardless of 
the initial conditions Otherwise, transient behaviour only may be observed (see 
next Section) Moreover, our results suggest that while ¡iiid'j'is low, (e g around 
0 2 for a system up to a thousand cells), this value increases for large system size 
indicating that the proportion or density of defects in the overall froth determine 
the threshold value
For the disordered froth (starting from the non-hexagonal structure as defined p89) 
with initial conditions of (v) to (vrn), we give detailed results for examples (vi) and 
(vm), since behaviour is apparently similar under similar initial conditions 
Figs 4 4.14(a) (b) illustrate the topological distribution, f(n), at tune steps of 0, 
120, 260, corresponding to the initial, middle and final evolution stage for the
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disordered Yoronoi structure Figs 4 4 15-16 show how the second moment |i.2 and
i

average area <A> change with time for examples (vi) and (vm) respectively For 
the correlation laws, e g  the Aboav (Aboav-Weaire) law, we found that the 
constant a does not have the value of 1 or 1 2 as for the normal case, but has a 
different value of a ~ 0 6~0 7 roughly, shown in Fig 4 4 17

n

(a)

n

(b)
Figs 4 4 14 The side distribution, f(n) at time steps of 0, 120, 260 for 

(vi) a high disordered and (vm) a less disordered froth, 
the heavier dark line represents f(n) m the scaling state
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(a)

(b)
Figs 4 4 15 |i.2 vs time in a high and low disordered froth with 

initial set-ups (a) (vi), (b) (vm) respectively

t

(a)
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t

(b)
Figs 4 4 16 The average area of all cells, <A> vs time, with 

initial set-ups (a) (vi), (b) (vm) respectively

n

Fig 4 4 17 Aboav-Weaire law in a high ( A  )and low (0) disordered froth 
If considering the alternative illustration, l e nm(n) vs n(as shown 
in Fig 4 4 4), the line corresponds to constant a =0 6~0 7

For high or low disordered froths, (Figs 4 4 18-20), the side distribution f(n) 
always tends to a fixed form, (e g f(5)=0 32, f(6) =0 35, f(7)=0 18), with a stable 
value of ¡12 ~1 4 Thus the disordered froth in the scaling state relates the average
area of all cells with t through <A>~ta , with a = l Neither the Aboav or Aboav- 
Weaire law has constant a as previously (p 73) according to our simulation results 
and in agreement with previous work for disordered froth evolution, e g Smith 
(1952), Weaire and Lei (1990), Herdtle and Aref (1992) However, “ordered” 
initial condition (|j,2 <0 4) obtained by reverse diffusion in the previous work of 
Weaire and Lei (1990), Herdtle and Aref (1992), in fact, is a less disordered
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structure by our definition The semantic distinction here, can be confusing, but 
relates to whether the original structure can be defined as ordered (in the sense of 
p 89) or disordered A good definition remains elusive1
Consequently, our results support the existence of a universal scaling state, 
irrespective of system size, for a disordered froth, based on a Voronoi 
construction We find that (I2 vs t has either a lower peak value, (¡12 <2 0), than 
that observed for an ordered froth (Fig 4 4 15(b)) or increases monotomcally (Fig 
4 4 19(b)) While there appears to be agreement as to the location of the \x,2 peak 
during ordered and disordered froth evolution, it seems likely that it is merely a 
coincident surface phenomena since the peak values are different (For example, 
we obtain a high peak, (such as (12 >3 0) for the ordered froth, (under condition
(iv)), whereas for the disordered froth we observe either a small peak (|i2 <2 0) or 
none) This agrees with former work, Stavans and Glazier (1989), and Weaire and 
Lei (1990), where |i2 was found to rise rapidly to a maximum (|i2 =2 65 and |i2 

=19 respectively), then dropped to the constant value (12 =1 4 Furthermore, the 
phenomenon of more than one peak for ¡12 vs time (see Glazier et al (1990)), 
appears to be a peculiarity of the ordered froth and we find no evidence for 
multiple peaks for any disordered system we have simulated

4.4.3.2 Conclusions on Single/Multiple Defect(s)
For a froth with a single defect, our results for the behaviour of the front are in 
agreement with the original experimental work of Aboav (1980), and indicate that 
a different scaling relation applies in an ordered froth, (1 e a quasi-scaling state at 
best) Regardless of the defect type and initial configuration, for a single defect, 
d= 1, there are some grounds for supporting the suggested system behaviour put 
forward by Levitan (1994), but the overall results are in conflict with his 
predictions for the quantities characterising the long-term evolution For a froth 
with multiple defects, <¿>1, we have reconciled apparent discrepancies in the 
scaling properties describing the froth evolution In particular, our findings support 
the view that again a quasi-scaling state at best is achieved in a highly ordered 
froth, where the side distribution, f(n*) (n*<12) tends to have a fixed form whereas 
f(n) for all n has long tail corresponding to the unlimited growth of [I2. These
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remarks must be qualified of course by noting that only finite systems to moderate 
size can be simulated directly A universal scaling state is, however, attained for 
both the disordered and low ordered froth, where f(n) has a fixed form 
corresponding to a system-invariant asymptotic value of ju.2 =14 Additionally, we 
offer an alternative explanation on the early result of Aboav(1980) indicating that 
the ordered froth may progress beyond transience or, alternatively, exhibits a 
prolonged transient region This is further discussed in what follows We also find 
that the Aboav (or Aboav-Wearre) law has different values of constant a in the 
ordered and disordered froth

4.4.4 A Note on Stages of Evolution in a 2-D Froth
From the above, it appears that the evolutionary process of 2D froth consists of 
two regions involving several distinct stages, which are characterised by the froth 
structure In particular, transient behaviour which reflects initial levels of froth 
disorder can be varied both in its nature and duration The final stage of froth 
evolution is associated with a few remaining bubbles, which change relatively 
slowly, unlike the many, frequent changes originally associated with transience 
Thus, late configurations do not affect achievement of scaling, but influence the 
rate at which it is attained
The studies of ordered 2-D froths with single/multiple defects provide some 
examples for length of transition period, which appears! to be related to 
concentration of defects, and highly ordered systems with few defects exhibit an 
anomalous approach to the scaling state The question of the way in which these 
factors influence the length of the transient and other stages is discussed here 
In many areas of statistical physics, the evolutionary time T—» as N—> °°, but
scales are not interchangeable, since two distinct regions are involved, (a) 1 «  T 
«  T(N), and (b) T »  T(N), where for some T > T(N), finite size-effects operate 
This is demonstrated also in zero-temperature simulations of Potts models, Derrida 
et al (1996), which may be relevant to recent bubble growth experiments, Tam et 
al (1997) Consequently, any discussion of froth evolution must include behaviour 
in both regions (a) and (b)
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The key factor in transience, as originally described, appeared to be that the early 
evolution in region (a) involved a large number of bubbles in topological changes, 
producing considerable variation in the form of f(n) and value of |li2 Actual time 
taken is thus dependent on system and simulation characteristics are difficult to 
quantify precisely Clearly, as the number of bubbles decreases, the sizes of the 
remainder tend to increase so that the number of bubbles remaining, (or 
"survivors" - expressed as a percentage of the initial number), is then crucial as an 
indicator of the potential for further change and in the determination of T(N) For a 
large system where scaling is achievable, transient effects would normally be 
expected to occur for a relatively large number of survivors, le  T «  T(N) 
However, defects are known to affect the nature of transient behaviour It seems 
clear, therefore, that duration of any stage in the froth evolution depends on the 
concentration of defects and their distribution, (whether clustered or random) 
Some illustrative evidence can be provided in support of this view as follows 
For a random Voronoi structure used as a sample of disordered froth, early 
numerical studies for very small system size (N=100) recorded initially rapidly 
changmg behaviour, even though scaling could not be observed, Weaire and 
Kermode (1983b) This is due to the fact that the transient effects are rapidly 
overtaken by the finite size of the system In subsequent studies on larger systems 
of several hundreds of bubbles, the nature of the early evolution was variable but a 
unique final state was achieved with a fixed form side distribution, corresponding 
to a stable value of |i2, irrespective of the amount of disorder in the initial froth
structure, Weaire and Lei (1990), 1 e the scaling state was observed, (region (a) as 
usual) However, this result does not hold for special cases of disorder, e g the 
occurrence of a single defect in an otherwise ordered froth, where the scaling state 
is not observed at all for moderate system size (See section 4 4 2 earlier)
In an ordered froth, the behaviour varies considerably with the number of defects 
introduced The anomalous case for a single initial topological dislocation reduces 
evolution of the froth to that of a single large bubble or single compound bubble 
cluster, which proceeds to grow until the froth is consumed Thus |i2 for the whole
system grows indefinitely with tune, (region (b)) The nature of the initial 
topological dislocation is reflected in the configuration achieved by the froth in the
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final stages of evolution, (examples are given in Ruskin and Feng (1995)) 
However, the side distributions f(n) are similar except for the presence of several 
large bubbles, (forming a compound cluster in the dislocation caused by a T1 
process), which have the effect of reducing the extreme skew in f(n) Furthermore, 
for few defects, an intermediate stage in region (a) is observed, which neither 
reflects the many, rapid changes associated with transience nor the final fixed 
value of scaling This "quasi-scaling" or slow approach to true scaling, has been 
noted for moderate system size, (N=400), and is characterised by a relatively stable 
"local pattern”, with fixed side distribution f(n*) and |i2 (n*) f°r n*<12, see 
Section 4 3 3, Fig 4 4 18 shows |X2(n*) vs survivor percentage for one defect

survivor percentage

Fig 4 4 18 The local second moment, p2(n*) vs survivor percentage for one defect 
For increased disorder, the number of defects (d > 2), or concentration of defects,
dN, (=d/N0, N0=the initial system size), determine transient characteristics, (region

h(a)) For a large, initially ordered, system with d or dN small, (and defects 
clustered), the situation is essentially similar to that of the one defect case, 
although more large bubbles in the compound cluster imply further limitation on 
the skew in f(n) For randomly seeded defects, the growth of (i2 continues 
unchecked until such time as the growth of one defect impinges on another, when 
it slows down An intermediate stage is again observed with stable |H2(n*), (=0 76,
e g for N0 =900 with d=4), attained early in the evolution, despite |i2 increasing 
For a system which is sufficiently large, the evolution will still achieve 
equilibrium, (region (a)) for dN small Thus |i2 would be expected to reach its peak
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value and start to decrease at a rate which depends on the system characteristics
-iTo some extent, this argument is supported by results obtained for a system of 

N0=40,000 bubbles with d=500 defects (dN =0 0125), Levitan and Domany (1996) 
A protracted intermediate period again appears to be a feature of the low 
concentration of defects since the authors found that, from 40,000 to 1000 bubbles, 
(0 025N0), the second moment, \l2, continued to grow, whereas from around 600 
bubbles to 200 bubbles remaining, (0 015N0 to 0 005N0), 1i 2 decreased and a stable 
value was obtained Here, all the evolutionary period, prior to obtaining a fixed 
value for 1i 2 is described as transient, even though it is clear that the percentage of 
bubbles remaining to take part in topological changes, is very small, so that finite 
size effects might be expected to operate here, (T —> T(N)) It seems likely that the 
increase in overall |i2 therefore predominantly reflects a large number of changes 
for relatively few large bubbles It is arguable whether the transient period should 
thus be defined as time taken to reach the point at which \i2 shows no further 
increase, (apart from local fluctuations) or, strictly, as the time taken for fi2 to
reach a fixed final value Either definition allows for early stage anomalies such as 
those found for the final case considered below, but fails to provide much 
information on changes in the internal froth structure
For the case of the ordered froth with a high density of defects, the transience is 
clearly confined to the early stages of the evolution, (in region (a)), and is much 
more variable in form than found for low dN, with behaviour dependent on
different initial conditions For example, |i2 vs time may have one, two or more
peaks While rate of approach to scaling is affected, therefore, achievement of the 
scaling state is not Examples of the effect of varying amounts of disorder on 
behaviour and length of transience have been crudely quantified, but (i2 alone is
not a particularly satisfactory criterion here A more reasonable quantity is clearly 
the concentration of defects, dN The evidence suggests that the critical 
concentration of randomly seeded defects, below which scaling is not observed for 
finite froth systems, is around 1% of the initial number of bubbles, (based on a 
survey of current results) In this sense, T(N) can be roughly defined as that time it 
takes the froth to evolve to the point where only 0 01N0 bubbles remain For very
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few survivors and an effectively infinitely large system, the evolution of the froth 
becomes that of the large bubbles, ((region (b) and no scaling)
Fig 4 4 19 illustrates changes m the second moment |i2 vs time, t for different 
defect concentrations, dN =0 05, 0 2 and 0 4 in a system size of 2500 (This is 
modest compared to Levitan and Domany (1996) 40,000 bubbles) For dN <0 05, it 
is clear that the speed of \i2 increase will be more slower, i e it takes even longer 
to observe the scaling stage In contrast, for d^ >0 4, the transient period is much 
shorter A similar effect to that shown in Fig 4 4 19 is also observed for nucleation 
when raindrops form out of supersaturated vapour and different laws apply 
depending on whether a number of drops grow simultaneously or one drop 
consumes all the vapour, McGraw and Laaksonen (1996)

Fig 4 4 19 the second moment, \x2, of the whole system vs time,‘t, for defect 
concentrations dN = 0 05, 0 2 (mid-dark line) and 0 4 (dark-lme) respectively 
For dN <0 05, ^  tends to have a short right-skew, e g a long transient period, 
for dN >0 4 , 1̂ 2 has a long right-skew

In summary, for a disordered 2D froth, transient and scaling stages in the evolution 
are easily identifiable, with \i2 rapidly achieving stability For an ordered froth,
stages in the evolution are less clear and are highly dependent on the defect 
concentration, dN For dN large, early evolutionary behaviour is variable, but the 
situation is essentially as for the disordered froth For very small dN, the period to 
scaling is protracted and, based on |0,2 alone, appears to correspond to long 
transience However, this quantity is less informative about topological changes
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taking place in the system than [i2(n*) This suggests that the period of many, rapid 
changes is relatively short and that the majority of the system stabilises fairly 
rapidly The final constant value of (i2 will be obtained only if the initial system is
very large This suggests a critical concentration of defects for finite systems, 
below which scaling is not observed The concentration of defects also appears to 
determine the length of the transient period f

118



Chapter 5 MC Simulations and other Considerations

5.1 System Simulation with MC: Introduction

There are clearly practical limitations in extending simulations on cellular networks 
such as 2D froths by direct methods given the sequential nature of many of the 
original algorithms and limited hardware The available options thus include 
parallelization or vectorization of the algorithms and alternative simulation 
methods, which deal with system statistics as aggregates rather than as detailed 
topological alternatives One other option would be changes of hardware but this 
of course calls for massive investment The performance of distributed systems 
may offer alternatives to super computers
With respect to the development of parallel algorithms, this would seem to offer a 
better option, although for some of these complex systems, notably the froth 
networks, such development offers a whole new project in itself, Heermann and 
Burkitt (1991) Neither is parallelization always appropriate for systems of 
complex type and also of course generates its own problem, for example load 
balancing algorithms, Hegarty et al (1996) Nevertheless, in subsequent section of 
this chapter we discuss some of the implications for a parallel approach The third 
options of simulations which deal with the statistics of a hypothetical population 
which in some sense mirrors the real one, is considered first in what follows 
In particular, if we continue with the example of 2D froth, we note that direct 
simulation of the evolution of several thousand cells on the system used on VAX in 
DCU takes of the order of two days (system size = 3000 cells) It appears, 
therefore, that this approach is limited for systems consisting of large numbers of 
cells It is also not clear that the direct method will be sufficiently flexible to 
modify easily for other related cellular systems, e g grain growth, in particular 
where an increase in scale influences both the effects observed and the time taken 
for them to stabilise In what follows, we therefore consider alternative simulations 
of Monte Carlo type for these systems
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5.1.1 Simple Systems
The Monte Carlo (MC) approach (introduced Section 2 5) has been used 
successfully on a number of problems on surface behaviour for simple cellular 
systems, e g cellular automata (CA) models, spin systems, and percolation models, 
Hammersley and Handscomb (1964), Binder (1986), Stauffer (1991), (and also 
Jain (1992)) Long-term large-scale effects for those systems can be investigated in 
terms of a large number of discrete rather than continuous samples The generation 
of random numbers is used to determine whether or not an event relating to, for 
example, an atom or energy change takes place The system is then allowed under 
certain criteria to move to a new configuration

5.1.2 MC for Froths: General Points
Wejchert et al (1986) provided an alternative simulation method for studies of 
froth evolution Based on discretization of the froth, each bubble is assumed to 
consist of a cluster of hexagonal cells, (samples), of the same size and shape Early 
MC studies were used to investigate the effect of the area constraint, X, on time 
taken to achieve froth equilibrium
Given that froth coarsening involves the loss by a T2 process of n-sided bubbles 
with n less than six, then disappearance initially involves gradual bubble area 
shrinkage The mechanism of this MC simulation is thus to model basic hexagonal 
cells flipping in bubbles which have no of sides n less than six in every MC trial, 
where each bubble consists of an aggregation of these basic cells As a cell flip is 
"allowed", so the bubble’s area shrinks till it eventually disappears The MC 
approach can thus also be used to investigate the influence on froth evolution of 
bubble area, area difference, neighbouring cells and so on
The total energy of a 2D froth is given by E= 2a  dX lv where a  is surface tension,
(or surface energy), which creates pressure differences These result in gas 
diffusion and the summation is over all bubble walls, of length, lp i e the boundary
lengths of all bubbles To minimise the surface energy of the cells in the network, 
the total energy Equn (4 2 6) reproduced here for convenience, is given by

120



(1 j) (i'jO bubble k

where cell (i',/) is the nearest neighbour of cell (i,j), so is the length of
bubble side, (i e length, /¿), where 1S surface tension between cell (i,j)
and ( i ' , j ' )  So, S g ^ g ^ y )  =0 if cell (i,j) and its neighbour cell (i',j') belong to the 
same bubble, but otherwise =1 The total No of bubbles = N, Aact and AKir are 
actual area and target area of bubble k, with Aact determined by Equn (4 1 2), and 
X, a constant that specifies the strength of the area constraint

5.1.3 Implementation for 2D Froth
!

Conventional MC simulation using the Metropolis method involves steps which for 
a soap froth, may be represented for one MC trial by
(I) Start with a Voronoi network of bubbles consisting of hexagons from which a 
cell is randomly chosen
(II) Randomly select a new cell from one of its six nearest-neighbours 
(m)Calculate change in surface energy AE, Equn(5 1 1)
(iv)For AE<0, accept new configuration (Typically AE depends on control 
parameters,
(v) For AE>0, retain the old configuration

We illustrate cell flipping for one MC trial in Fig 5 11, where the following 
sequence applies If a randomly chosen cell (l, j) of a bubble k l is in the boundary 
of an nl-sided bubble kl and an n2-sided bubble k2, then randomly select one of 
six nearest neighbours of cell (i,j) If the new cell, either cell (i+l,j) or (i,j+l), 
shown in Fig 5 11, satisfies the condition of AE<0, (step(iv)), the cell (i,j) will flip 
from bubble kl to its neighbour k2, irrespective of whether bubble side No , nl is 
less than, equal to, or greater than n2 Then the area difference between bubble kl 
and k2, AA, will update due to the actual area, Aact of bubble k l and k2 having 
changed, while the target area, Atar of bubble k l and k2 will stay the same

H=(1/2N)ZE5 o (lj)a (l,/ r l + (VN)X (Aact - A J 2 (5 1 1)
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Fig 5 1 1 An example of Cell flipping in MC simulation

A more complex example is to consider a cell at the boundaries of three bubbles, 
or more, see Fig 5 1 2 and 5 1 3 If cell (il,jl) occurs at the boundaries of three 
bubbles k l, k2 and k3, (with notation similar to the two bubble case), then, if any 
one of the nearest-neighbour cells ((il+ l,jl), (il,jl+ l), or ( il- l,jl+ l))  satisfies the 
cell flipping condition, AE<0, then cell (il,jl) in bubble k l may flip to either bubble 
k2 or k3 across the boundary The choice of nearest-neighbour again is random 
Area difference, AA will update to give, A A j^A A ^+l, and AAk=AAk -1 (k= 
either k2 or k3), and again, the target area of bubbles, k l, k2, and k3, (Atar (kl, 
k2, k3)) remain the same

Fig 5 12 Cell flipping between three bubbles
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Fig 5 1 3 Cell flipping between four or five bubbles

For a T2 process, simulated by MC, energy changes, AE, (cell by cell reduction or 
flipping), will be negative for small bubble cells However, AE depends on the 
nearest-neighbour of a given cell chosen, the parameter A. and so on We also need 
to know the characteristics of recipient bubble, n, <A>, AA The evolution time is 
measured by Monte Carlo Step (MCS), which refers to the repetition of one MC 
trial until all cells have been considered
5 In initial simulations, we choose the area difference, due to bubble diffusion 
between actual and target area, AA, to be 5% of the average area of a 5-sided or 
7-sided bubble, 1 e AA=-(n-6)*5%*<A0>, where AA=Aact-Atar, <A0> is the initial 
average area of bubble in the system Thus, AA=0 for a six-sided bubble, AA>0 for 
a n-sided (less than six) bubble, and AA<0 for a n-sided (greater than six) bubble 
Froth equilibrium is achieved for the total average area difference less than the 
given maximum difference
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5.1.4 Froth Coarsening 

5.1.4.1 Notes by MC

(i) CPU time is affected by A,, but also by value of control parameter, 
(temperature equivalent, T=0 always for step (i) to (v) in a single trial) 
Also affected most importantly by A A,

(u) No of sides, n, of a nearest-neighbour bubble will change with a bubble 
disappearance (Euler’s law) Thus, A ^ , AA for nearest-neighbours of a 
disappearing bubble must be updated instantaneously before next MC trial

In what follows, we consider the importance of the choices of X, AA, <A> for an 
efficient and realistic MC simulation following Wejchert et al (1996)
From the procedure described it seems clear that achievement of a “scaling-state” 
should depend on the environment of a disappearing bubble, (i e large or small 
neighbour), and therefore on percentage reduction in target area, Atar, AA as
might be expected, (e g 2% average area will cause less cell flipping in one MCS, 
whereas large neighbours make cell flipping more likely, since energy difference, 
AE, condition more likely to be satisfied) and so on
However, the final disappearance of a "bubble" may be slow since the last cell can 
take a long time to flip When a cell is the only cell in a 3-sided-,bubble, it must flip 
to nearest-neighbours, possibly taking many MC trials because it is a stochastic 
procession) This final disappearance also implies a reduction in the No of sides n 
of bubbles k2, k3, and k4 Both Aact and Atar for k2, k3 and k4 will update
instantaneously, and hence area difference, AA will change to AA', where AA'= - 
(n-6)*5%*<Al>, given our choice of area difference above This applies equally 
for a 4-sided or a 5-sided bubble So, for any n-sided (n<6) bubble, when the last 
cell in the bubble flips to one of its nearest-neighbours, bubble disappearance will 
occur accompanied by the reduction of the number of sides in nearest-neighbour

As a further series o f points on the MC simulation, we note the following
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bubbles This leads to the typical fluctuations in fj,2 m froth coarsening, which we 
have noted earlier, Section 4 2

The mam structure by MC method is given as follows, (for further details see 
Appendix E)

// Froth Program by MC Method//
CALL input // input data
CALL setup // Initial Configuration (Voronoi network) 
CALL Eguil // Equilibrium 
do 10 i=l,n
CALL Diffus // diffusion
CALL Equil // Equilibrium implemented by MC trials
i = i + l
CALL OUTPUT 

10 continue
CALL OUTPUT 
END

SUBROUTINE Cflip //MC trial
Itime= Itime +1 //time step
Ocell=ga(î,j) // a cell (i,d)
iel=iel+l // calculate the first term of

initial energy of a cell 
N e w k = m t  (ran ( 1 ) *6)+1 //random choose one of the six

neighbours of cell(1 ,3 ) 
ie2=lambda(dvl*2+dv2 *2 )//calculate the second term

of initial energy 
fel=fel+l // supposed a cell is flipped,

calculate its first term of energy 
fe2=lambda(dv3*2+dv4*2) //calculate its second term

of energy
oldenergy=iel+ie2 //the sum of energy before flipping 
newenergy=fel+fe2 //the sum of energy after flipping

if (newenergy.le. oldenergy)then 
//energy difference greater than 0 ,) 

make= true. // accept the new configuration 
else // Continue MC trial if temperature>0
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if(temp.g t .0)then
if(exp(-(newenergy-oldenergy)/temp) gt r a n (1))then
make= true
endif
endif *1,

endif
END

5.1.4.2 Performance under Different Choices fo r  <A> and X
From the mechanism described in the last Section, it seems that whether a cell (i,j) 
flips or not may be dependent on the initial environment We have implemented 
froth evolution with two different Voronoi networks for a 2D froth of size 1600 
bubbles with 400* 400 cells Here we measure the evolution time in terms of a 
Monte Carlo Step (MCS), which is defined as previously, (Section 5 1 3), l e the 
repetition of the sequence for one MC trial until all cells in the system have been 
considered
In Fig 5 1 4-5, we show variation of CPU time on MCS with the effect of refining 
A. and choice of area difference, AA In Fig 5 1 4, we show the effect of varying 
the choice of area difference AA (2% and 5% respectively) on the second moment,
H-2 time (measured in MCS’s) In Fig 5 15, the effect on CPU tune (again in 
MCS’s) vs A. is shown where the interest is in refining A, to produce greater 
response for reasonable time taken For any value of A, much beyond 0 4, however, 
CPU time escalates rapidly, in agreement with the similar result obtained by 
Wejchert et al (1986) The CPU time is clearly longer due to slow energy change 
for large values of parameter X, Equn (5 1 1), Fixing the area difference as 2% of 
mean area <A> (Section 4 13) leads to a smooth evolution of |12 vs time This is 
not surprising since ]Xj is sensitive to bubble disappearance at the lower 
percentage, thus it is less difficult to get flipping, and changes are less drastic 
Results for quantities of interest are in good agreement with those obtained by 
previous simulation methods
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Fig 5 1 4 the second moment changes vs time (MCS)
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Fig 5 15 Time (MCS) taken vs X

51.4.3 Performance of Bubble Area
The initial bubble area A also appears to influence bubble disappearance Consider, 
e g a three-sided bubble with different n-sided nearest- neighbours, (n= 4, 5, 6, 7) 
For a small value of X, it is clear that the energy difference for all n-sided bubbles 
satisfies the condition AE <0, while for large X, AE will vary with different no 
bubble sides, e g for n=6,7, AE<0, for n<6, AE >0 The actual value of E 
depends, of course, on the Equn (5 11)
In particular, we are interested here in the influence of bubble area on bubble 
disappearance We consider the influence of initial area distribution for two types 
of Voronoi network, (l) no hard disk version, where the initial area distribution is 
non-uniform, or polydisperse, with (J.2 = 1 87 (u) hard-disk modification, where
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the initial area distribution is not the same as (1), but still poly disperse, with |i2 = 
1 09, (111) hard-disk, where the initial area distribution is different, roughly

i,uniform, or monodisperse, with 112 =0 97, closer to (11)
For different Voronoi setups considered, the evolutionary behaviour for both 
polydisperse froths, initial conditions (l) and (n), is similar, and indicates a rapid 
decrease in the No of bubbles with time, which is more marked for the froth with 
higher initial disorder or less uniformity of bubble area However, for roughly 
uniform area, initial condition (in), the decrease in the No of bubbles with time is 
much slower, although long-term behaviour is again similar to the previous cases 
((i) and (n)) We show the change in the No of bubbles disappearing with time in 
Fig 5 1 6

time (MCS)

Fig 5 1 6 No of bubbles vs time

In previous experimental work, Glazier et al (1987) also note that the apparent 
rate of shrinkage of bubbles with few sides is smaller than that predicted by a pure 
linear fit If Von Neumann’s law holds m unmodified form, the evolutionary 
behaviour of froth with initial conditions, as for (n) and (m), l e roughly the same 
side distribution, but totally different area distributions, should be the same 
However, we find that there are differences at the early transient stage, implying 
that initial bubble areas influence the rate or nature of froth evolution This might 
be taken to suggest that a modified form of Von Neumann’s law by Icaza-Herrera 
and Castano (1995), which accounts for area distribution, should apply to the early 
evolution. A possible form has been conjectured to be:
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dA/dt= kAa (n-6) (5 1 2)
where k and a  (0< a<  l)are constants, a=0 when Von Neumann’s law holds in 
unmodified form, and a = l for a normal froth, Icaza-Herrera and Castano (1995) 
From Equn (4 4 1), for the uniform area case, dA/dt ~ (n-6) applies A modified 
law for different area distributions also gains some support, however, from e g 
Herdtle and Aref (1992), who demonstrated some anomalous evolution results for 
bubble disappearance Such anomalies appear, however, to relate to the early stage 
of evolution and Von Neumann's law is appropriate for the evolution as a whole 
In contrast to direct simulation, the MC method is able to model large system size 
for less CPU time, (even though here only give an example of system size of 1600 
bubbles) Moreover, the direct simulation program is much more complex and less 
flexible than MC methods MC has been used to study other network pattern 
problem, e g gram growth, Anderson et al (1989) However, the disadvantage by 
MC is also obvious, e g the detailed information of evolution procedure obtained 
by the direct method is not available to anything like the same extent although MC 
results are fully acceptable on an average basis

5.1.4.4 Summary
• i

In summary, considerable effect on the froth evolution is obtamed by varying the 
control parameters of a MC simulation of 2D froth In particular, the construction 
appears to emphasise the importance of the environment on the flipping of a 
component cell of an n-sided bubble (n<6) and hence on that bubbles 
disappearance In particular, we consider the important of the environment on the 
flipping of a component cell for a bubble with n<6 and hence on that bubble’s 
eventual disappearance It is obvious that a large target area, AUir and area
difference, AA, in this context implies that the scaling state is achieved more 
rapidly during froth coarsening Additionally, A modified Von Neumann’s law best 
appears to after an alternative explanation of the influence on early transient effect 
of area
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5.1.5 Technical Implications of Froth
5.1.5.1 Theoretical Implication

A realistic froth must include 3D and a few attempts to address the 3D case have 
been made so far Clearly, such a cellular network is both more challenging and 
complicated and thus, is very difficult to describe using a direct model as in 2D Of 
the approaches tried for a froth to date, Frost et al (1988) used a discrete 
description of the structural elements themselves, while Nagai et al (1990), 
considered only vertex points joined by straight lines as in the,topological model, 
(Section 4 2 3 3) Other aspects of the problem have been considered, e g by 
Weaire and Glazier (1993) who give a relation between volume and number of 
faces in coarsening cellular patterns, and by Weaire and Phelan (1994) who have 
obtained a more efficient space-filling structure of 3-D froth which challenges 
Kelvin’s original structure More recently a logistic map formulation has been 
considered by Aste and Rivier (1996) For a recent review, see Weaire and Phelan 
(1996)
It is instructive to consider some of the reasons why a three-dimensional cellular 
network is so much harder to simulate than its two-dimensional counterpart, 
despite the fact that we can theoretically define very many dimensions in 
computational terms The factor of computer time is crucial for simulation in 3D, 
because although the fraction of the volume affected by edge effects is much larger 
than in 2D, the time taken for equilibration to take place makes the simulation of 
large systems prohibitive The memory storage and computation time required for 
such simulations is huge, limiting severely the size of system that can be simulated, 
and therefore making it difficult to obtain reliable information about scaling states 
which apply in the asymptotic limit
In addition to these common technical difficulties the simulation of our specific 
cellular network, namely the realistic 3D froth present some additional problems, 
which are intrinsic to the nature of the problem These include the fact that 
distribution functions which are fundamental to the statistics are more difficult to 
obtain since not all the structural details can be accessed simultaneously and with
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ease Furthermore, the theory of the 3D froth faces an even more serious obstacle 
in that the basic equations for 2D froths, (e g Von Neumann’s law, Euler’s rule), 
both fail in three dimensions Polygonal cells in 2D are separated by circular arcs 
with constant mean curvature that meet at equal angles of 120° In contrast, 
polyhedral cells in 3D are separated by minimal surfaces with uniform mean 
curvature, three faces meet at equal dihedral angles along each cell edge, and four 
edges meet at each cell vertex at equal tetrahedral angles of cos 4 (-l/3) =109 47°
In fact, the average number of faces, <f> of bubbles in a three dimensional froth 
can vary considerably, though most experiments yield a value near f=14 Instead 
the relation given by Nagai et al (1990) is

<n>=6 - 12/<f> (5 1 3)

This implies that two parameters (i e n and f) are needed to characterise a cell in a 
three dimensional cellular structure as opposed to one (=n) in 2D In the case of 
n=5, f=12, corresponds to the pentagonal dodecahedron, which is an important 
structure
The elementary topological transformations also occur in rather different ways 
compared with 2D A T1 process whereby the vertices common to an edge 
coalesce creating a new side, and a T2 process by which cells disappear directly by 
shrinking are shown in Fig 5 1 7(a) (b). It is still not known however, how many 
different types of T2 processes there are because the average surface curvature of 
a bubble with tetrahedral angles 109 5° is not determined solely by its number of 
sides
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(a)

(b)
Fig 5 17 Elementary topological transformations m 3D 

(a) T1 process or switching, (b) T2 process

The minimum information needed to determine the growth rate is also not known 
Rivier(1982) has suggested “patching up” with the relation

dAf /dt = k(< f>  - / )  (5 14)
where f is the number of faces of the bubble or gram, Ay its volume, and <f> is the 
mean for all grams This equation is reminiscent m form to Von Neumann’s law, 
but there are subtle differences between them Equn(5 1 4) describes the evolution 
of an ensemble of cells instead of that of an individual cell Furthermore it cannot 
be integrated to obtam the dependence of A j on time The topological network
models in 3D, such as Equn(5 1 4), would appear to be no more difficult to handle 
than those m 2D, but there are ten or more types of disappearing bubbles 
Recently, Rivier(1985) derived a three-dimensional version of,(the Aboav-Weaire 
law

mj{n)=c+l/n [f(5 -c )+ (c -ll) ]  (5 1 5)
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where mf(n) is the average number of sides of the neighbouring faces of an n-sided 
face belonging to an f-faceted cell, and c is a constant Computational verification 
of this result is still lacking
Durian et al(1990) performed a systematic experimental study of coarsening in 
three-dimensional foams By monitoring the optical transmission of shaving cream 
foam over time, they found that the average bubble size in the bulk increases as a
power law tP with (3 = 0 47± 0 05 Observations of foamj surface by optical 
microscopy showed that the dynamic processes consist of structural 
rearrangements of bubbles which differ from T1 processes in both nature and 
timescale These rearrangement events are possibly due to the high liquid content 
of the foams used in the experiment In fact, the examination of the microscope 
pictures shows nearly spherical bubbles The origin, scaling behaviour and effects 
of these rearrangements upon the coarsening were not studied 
Computationally the question of computing capability and power available is 
closely linked to these difficulties of pinning down the underlying mechanisms and 
structures Some successes have been recorded For example, the Potts model can 
be extended to three dimensions provided that sufficient computer time is 
available Anderson et al (1989) have run simulations on a 100*100*100 lattice 
For lattices with different anisotropy, these authors made a variety of distribution 
function measurements, obtaining <f> =12 9 The agreement' with experimental 
values for metal grains is good, with the residual discrepancy compatible with 
anisotropy effects
Glazier (1993) indicated that the coarsening behaviour of the 3D Potts model 
depends on grain topology, and concluded that a similar but weaker law holds for 
ensembles of bubbles in 3D An expression corresponding to that found by Durian 
et al (1990) for shaving foam (section 5 1 4), was given by Glazier to be

V-i/3 dV/dt = k(f-f0) (5 1 6)
where k is a diffusion constant, f  is the number of faces of a gram, f0 is a constant, 
and V is the volume of a gram havmg f faces Equn(5 1 6) shows that the average 
canonical growth rate of a gram depends linearly on its number of faces and is 
dependent on its volume, which is analogous to the modified Von Neumann’s law
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of Icaza-Herrera and Castano, which we have given in Equn(4 1 2) However, 
those equations only hold, of course, on average The growth rate of any 
individual grams need not depend on its number of faces, for example, some 16- 
faced grams grow, while others shrink Sire (1993) has also addressed the reason 
why only an average growth law holds m 3D Glazier has postulated a corrected 
average value for <f> based on this work with f0=15 8, and subsequently found to 
obey an expression

f0=<f> (l+ |i2/<f>2) (5 1 7)
(Weaire and Glazier (1993)), with <f> the average no of faces Further Potts 
model simulation results gave <f>=13 7 and f0=15 8 ±0 4, m agreement with the
result of Glazier (1993) The evidence then supports the view that the averaged 
growth rate in the Potts model is a linear function of the number of faces Equn 
(5 1 7) will apply to any other coarsening system, which has similar connections 
between growth rate v and f The accumulating evidence therefore continued to 
favour the use of statistical of simulation methods to further explore 3D froth 
features

5.1.5.2 Technical Implications for Froth by MC Method
The optimal structure for a monodisperse foam has been a subject of mterest for 
centuries The question is what spacmg filling arrangement of cells of equal volume 
has minimum surface area Kelvm (1887) proposed a truncated octahedron as a 
likely candidate for the optimal arrangement Weaire (1994) suggested two 
cathedral structures as a natural choice for mtermediate values of liquid content 
These occur m the chemistry of tetrahedrally-bonded materials and there is a close 
analogy between tetrahedral structures and the froth or foam problem In a recent 
breakthrough, Weaire and Phelan (1994) have given a counter-example to that of 
Kelvm which has a significantly lower surface energy The method used the surface 
Evolver software, (developed by Brakke (1992) (1995)), to minimise surface area, 
subject to the constramt of fixed cell volumes, for successively finer tessellations of 
the ongmal cell faces In this way, the curvature of the surface can be progressively 
approximated with mcreasmg accuracy It is found that the final Weaire-Phelan
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structure, consisting of six fourteen-sided polyhedra and two liTegular pentagonal 
dodecahedra, has surface energy which is approximately 0 3% less than that of 
Kelvin’s solution
Weaire and Glazier (1994) also developed a simple construction based on the 
Kelvin and the Williams partitions that generates periodic or quasipenodic 3D 
partitions It has been used to distinguish the mmimal-area structure under 
conditions of equal volume and equal pressure
Given that the precise relationship between the topology and the rate of growth of 
a bubble for the 3D froth is not well-understood, most algorithms developed so far 
have concentrated on the whole structure level rather than the level of an 
individual bubble However, MC simulation appeared to offer reasonable 
possibilities of extension to the 3D case since dealing with an ensemble of cells is 
an intrinsic mechanism of the approach
Paralleling the 2D froth method, we considered the discretization of bubble volume 
by a cluster of samples (units) Given that the number of a given bubble’s faces and 
that of its neighbours are more complex than for 2D, we consider initially a simple 
basic structure 1 e the cubic cell, so that aggregates of cubes would form the 
network bubbles Implementation of cell flipping in cubic structure is a 
generalisation of the 2D case, but allocation of a flipped cell to nearest-neighbour 
bubbles is much more complicated Clearly, a bubble’s disappearance again 
depends on whether all constituent cells have flipped to one or more nearest- 
neighbour bubbles
Since the energy of the 3D system is related to the bubble’s surface energy, 1 e the 
length of boundaries or of all bubbles’ face, a cell-flipping will affect either one or 
the other The energy would be expected to have an equation which crudely 
parallels that for 2D, given e g by

H=(1/2N)££S + (X/N)Z (V ,a - V urP  (5 ! 8)

( i j J c )  ( i ' j ' J O  b u b b l e  k

Here, the analogy to the basic unit of the hexagonal cell in the 2D case is now a 
cubic cell, (i',j’,k') is one of the nearest-neighbours of cell (i,j,k) and summation is 
over all faces The maximum no of choices for bubble assignment in cell-flipping is
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now 7, as opposed to 5 in 2D; clearly a single MCS will include more complex MC 
trials.
For a 3D Voronoi network configuration, Equn (5.1.6) could be used as the 
approximate equivalent of Von Neumann’s law in the 2D case. Assuming the 
volume difference due to bubble diffusion between actual volume and target 
volume, AV, to be 5% of the average volume of all bubbles, and the average No. 
of faces, <f> equal to 14, we can implement a cell flipping by MC method on 3D 
froth. Similar to 2-D froth, assumed for a 14-faced bubble, AV =0, for an n-faced 
bubble, (n<14), AV >0, for n>14, AV <0. Choosing the same volume difference 
for all the non-14-faced bubbles will obviously, however, introduce a bias in the 
3D froth evolution.

5.2 Other Techniques

Both cellular automata and molecular dynamics techniques have also been used to 
study some cellular network models, in particular, grain growth and solid foam.

5.2.1 CA for Grain Growth
Grain growth, as an example of a cellular structure, is of great interest since it is 
one of the most important features in the control of micro structure. The energy of 
grain boundaries at equilibrium and topological requirements are two important 
factors in modelling grain growth, Atkinson (1988). Theoretical, experimental and 
simulation models have all been used to investigate system properties and in 
particular, the MC method has been successfully used to solve this problem Based 
on the transition probability, MC methods have been applied to simulate processes 
of recrystallization, normal grain growth and abnormal grain growth, (Srolovitz et 
al. (1984), Anderson et al. (1989)). For a recent review, see Weaire and McMurry 
(1996).
Similarly to the froth, grain growth is one of the natural structure-evolving 
processes. Since the grain boundary network has similar patterns and characteristics 
to those of biological cells and ecological territories, cellular automata (CA) would 
seem to be applicable to their study. Hesselbarth and Gobel (1991) first applied a
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CA model in primary recrystallization simulations and Liu et al (1996) further 
developed a formal CA model with further assumptions for the grain growth 
problem
Using Von Neumann’s definition of neighbourhood for a CA model, Wolfram 
(1984), Liu et al (1996) have given the transition process as

x(i,],t)= F[x(i,j,t),x(i,j+l,t),x(i+l,j,t),x(i-l,j,t),x(i,j-l,t)]' (5 2 1)
where x(i,j,t) represents the states of (i,j) cell at time t The function F is the 
transition rule, which can be defined in a various way The dynamics of CA are 
governed by local rules, (as we have described in Section 2 3), so that the locality 
of the dynamical rules allows efficient and flexible treatment of complex 
geometries Thus, whether the final state of the system after a given period of time 
is homogeneous, chaotic or complex, depends on the definition of the transition 
rule The Game of Life is a well-known example exhibiting variety and complexity 
in the development of CA even for simple rules, Vichmac (1986), but much more 
complexity is possible
Liu et al (1996), for example, have modified the transition rule Equn(5 2 1) to 
implement gram boundary migration due to curvature effect A gram boundary is
associated with a positive surface energy and migrates m some way to lower

ienergy, e g two cells with different states are separated by a minimum unit length 
of gram boundary The results of Liu et al (1996) on gram size distribution and 
growth kinetics are m agreement with those obtained from theory, experiment and 
MC simulation
In general, the basic difference between the Monte Carlo (MC) method and CA 
lays m the transition between states of a cell m the system In the MC method, the 
state transition is realised by randomly taking a number m the state of N=1 to Q, 
then puttmg it m the cell which is ready to change, calculating the energy 
difference, AE, between the old and new configuration and giving the probability 
of transition For AE<0, a new configuration is accepted, with the probability P=l, 
for AE >0, with P = exp(-AE/kT) Usually, the probability, P, is different from cell 
to cell m the MC simulation model In contrast, for a CA model, the new state of a
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cell comes from its neighbour cells, so for every cell, there is constant energy 
barrier, which must be overcome in a state transition with the same probability

5.2.2 Molecular Dynamics on Wet Foam
Durian (1995) discussed wet foam by focusing on entire bubbles rather than 
vertices, and proposed a simulation model, which has been constructed for the 
molecular dynamics approach (Section 2 5) In terms of structure and dynamics at 
the bubble scale, the model has been shown to reproduce the hall mark behaviour 
This approach also allows reliable study of formations and flows at length scales 
greater than the average bubble size However, the weakness of this method is that 
it can only be used in wet foam, not dry foams since no degrees of freedom are 
introduced for the bubbles shapes Gardiner et al (1997) also used molecular 
dynamics to analyse the scaling behaviour of 3D solid foam

5.3 Computer Simulation Implementation

5.3.1 Simulation Approaches
Evolutionary dynamical systems have attracted considerable attention in recent 
years Many efforts have been made to investigate their properties Computational 
modelling techniques have provided new and valuable insight into the studies of 
these complex systems, both in terms of testing microscopic theories as well as 
practical methods for modelling processes as a whole Although some current 
programs are less sophisticated than those of commercial software, a wide variety 
of techniques and computational environments have been used Our aim has been 
to investigate several simulation approaches as a means of examining the 
dynamical behaviour in complex systems
Traditional modelling and simulation has tended to concentrate on mathematical 
representations of complex physical and other systems with strong reliance on both 
numerical modelling and discrete methods For more complex systems, there are 
two strategies available One is to improve theory at higher levels which usually 
means improving on an approximate form and another is to simulate the behaviour 
of mam elements Theory thus tries to resolve computational difficulty by reducmg

138



detailed information to a few degrees of freedom For example, the objective of 
statistical mechanics is to observe not only the underlying state itself, but also the 
probability of the system being in any particular state
It appears that indirect simulations, e g MD, MC are less information rich than 
direct simulation (e g froth example) It is obvious that direct simulation can 
specifically provide us with more detailed information during the evolution on 
hundreds or, better, thousands of cells However, it is far from ideal to try to 
obtain a scaling index from simulations limited by time and scale, so that 
improvements in the algorithms and their efficiency are clearly needed for fixed 
hardware provision In contrast, the MC approach appears to offer the better 
general method for proceeding on a variety of associated questions e g gram 
growth and other similar networks

5.3.2 Languages Requirement i,
<3-

Currently, the most popular languages for computational scientists are Fortran 77, 
(Fortran 90), C and C++ Fortran, through the most popular for many years, 
however, does not allow the programmer to structure programs so that they reflect 
the logical order of idea mvolved m addressing a problem, and it is often 
complicated to delineate new contributions and modifications to existing large 
scientific Fortran codes Due to inflexibility, Fortran appears to be losmg ground, 
although Fortran 77 is much easier to use than C and C++, which is growmg m 
popularity From a computer science pomt of view, there is little difference 
between C and Fortran, except that C has marginally better facilities for structuring 
programs than the ongmal Fortran 77 Far more differences exist between the 
various styles of parallel programming, where these differences are already havmg
a big impact on software development for computational science and makes

rmcreased familiarity inevitable f
Frequently, because of the longer development time of the language, Fortran 
compilers are more robust and efficient for scientific applications m particularly for 
supercomputers, although special version of C may perform as well or better on 
some massively parallel machines Graphics and visualization are almost entirely 
done in C/C++ although FORTRAN implementations are possible It is also

139



possible to use Fortran subprograms in C/C++ codes For scientific programmes, 
we can take advantages of both languages, e g keeping theA numerical Fortran 
routines for difficult number crunching and designing the software package with an 
object oriented language In recent years, some of the more popular commercial 
numerical routine libraries have also been released in C version 
Computer languages keep evolving rapidly, and it is possible to discern a trend 
toward formal languages A wide array of routines accomplishes a range of tasks 
from elementary to very complicated For most users, programming will be limited 
to the connection of such routines by using graphical or verbal syntax More 
recently, visualization packages in physical and other scientific applications have 
enjoyed a tremendous surge of interest For instance, Surface Evolver has now 
become the standard software for computing the geometry of foams, Kraymk and 
Reunelt (1996)

5.3.3 Algorithms Limitation
It is known that the application of algorithms to the behaviour of very large 
systems would not have been possible, without highly optimised programs that 
reduce the memory requirements and the execution time Even with the current, 
relatively advanced technology and sophisticated algorithms, most simulations are 
limited to a relatively small range of scales They are prone to various types of 
error, and require a long time to implement Choosing simplified mathematical 
models is an accepted option to understand and solve the various computational 
problems with a view to improving the system representation 
Much work here has been concerned with two-dimensional simulations and 
experiments as a simplification of naturally occurring systems Each approach 
considered, however, has its limitations For example, in the 3D froth model, the 
main difficulties of the MC method he in the fact that the number of possible 
configurations of each bubble becomes enormous with a large number of degrees 
of freedom which must be simultaneously handled System size limitation could be 
another problem for all simulation approaches Further developments for both 
software and advanced hardware resources are required Coding methods such as 
multi-spin coding can normally be extended to the three-dimension problems and
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also apply for the froth case. However, the large number of variables, and 
operations might not provide easy implementation and the memory is another 
factor.

5.3.4 Limitation of Simulation Methods
Simulations themselves are not necessarily reliable since they also generate 
different errors intrinsic to the simulation method. For example, statistical errors 
occur in drawing a finite number of partially correlated samples, numerical errors 
occur in the algorithms, and round-off errors arise from finite-size effects. In spite 
of this, the simulated behaviour of the model gives an approximate analogy of a 
system’s actual behaviour. The real difficulty lies in determining the level of error, 
aggregated from those various causes and the degree to which it affects the realism 
and accuracy of the system representation. There is, of course, no single answer to 
this question and for the majority of simulation work, there is a need to perform 
may trials and repetitions of the same experiment to test the limits of the simulation 
and observe carefully end effects. Also, of course, to test vs. known results as a 
control on the simulation veracity.
Considerable effort has been spent in the development of computational problem­
solving environments for physical and related systems. Some attempts have been 
made to integrate various software components into a unified system hiding the 
underlying complexity from the user. This is an "idealised" improvement, with the 
goal of solving all aspects of a problem including simulation, data analysis and 
visulaization. Unfortunately, such systems tend to provide very poor performance 
on large problems even if performance is reasonable for commercial applications. 
Consequently, they are generally unsuitable for scientific computation.
However, the idea of providing integration of simulation and data analysis is an 
interesting one. The approach must clearly emphasise transparency rather than 
attempting to create a highly sophisticated package with over-elaborate 
interfacing. In short, tools should be simple to use, offer high performance, be 
maintainable across a wide variety of machines rather than get in the way of 
research on a limited subject. In particular, the following features are needed to 
measure the development of simulation software in scientific applications.
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• Performance and memory efficiency
• Extensibility
• Support of existing code

More advanced developments include controlling applications with scripting
language, rather than relying solely on compiled languages, such as C or Fortran

' ‘i *The use of interpreted scripting language for dealing and interacting with physics
application has been the subject of recent exploratory work by computational
science researchers The idea is quite simple, providing a high-level interface, such
as Matlab Using this package, users can control physics and other applications
interactively by entering commands, writing receipts and adding additional function
lists in the interface language, without having to modify the underlying code The
software package, the Surface Evolver, is one such package which is applicable to
a variety of practical problems and has been mentioned earlier in relation to 3D
froth work
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6.1 Introduction

Nature provides many examples of systems which have an essentially single or 
network cellular structure The statistical properties of their long-term behaviour 
can be investigated by e g monitoring the occurrence of specific "events" or 
network evolution through time Insight on changes ranging from the minor to the 
catastrophic can be gained through computational models
The goal of scientific investigation is to understand how nature works Originally, 
two options were available to do this, namely experiment and theory The 
traditional approach consisted of modelling system equations directly and then 
solving these equations, either manually or by computer routines Unfortunately, 
this breaks down where analytical solutions are not available* or where technical 
difficulties prohibit numerical solution or when the system being studied is not 
theoretically well understood
Algorithms or computer programs, which directly model the phenomena under 
investigation have increased in popularity This thesis presents a general overview 
of simulation methods for studies of complex physical and related systems which 
are of current interest Most importantly, it provides a description and application 
of some fast and efficient simulation modelling techniques and their potential for 
further development, together with our implementation of and results on a 
selection of these cellular system models

6.2 Techniques Implementation

We have implemented several different computer simulation techniques in this 
work, including direct methods, cellular automata, Monte' Carlo, and have 
introduced others, such as molecular dynamics, which have not been explicitly 
used for the work presented here These provide an overview of current popular 
methods used in investigating scientific computing problems Generally speaking, a 
number of different techniques may be applied to a given problem, but the choice 
depends on the aspect of interest In the direct modelling of the 2D froth in 4, for

Chapter 6 Conclusions and Comments
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example, interest focused on the detailed structural changes, as well as on the 
long-term behaviour, particularly when following the influence of defects Thus 
direct simulation methods, for initial studies anyway, provide an obvious choice 
However specifying a certain system so precisely incurs penalties, in terms of 
adaptability of the code, together with limitation on the size of the system which 
can be simulated, when so much detail is being retained Consequently, adaptation 
to other complex systems which share common features, requires additional effort, 
even though this may well be considered worthwhile A close analogy to the soap 
froth, for example, is provided by the metallic grain growth problem, Weaire and 
McMurry (1996), yet there are distinct differences, notably in the shape of the 
gram boundaries, which can be far from the ideal minimal surfaces found m the 
soap froth, and also m the inherent lattice anisotropy This latter feature is of 
particular mterest, smce it influences the rate of transition between order and 
disorder, which is much slower than for the corresponding froth, Holm et al
(1991) and refs therein
Far less rigidity of codmg is evmced for applications which 'can be reduced to

‘i t
mteractions between fundamental and similar elements, where each of these can be 
m one of a finite number of states For this type of system, the cellular automata 
approach is a natural choice Its flexibility is reflected m the wide range of 
problems which CA have been used to model Here we have considered a CA 
approach to the modelling of dissipative systems, represented by loss of sand 
grams mduced by perturbation of a quiescent sandpile The sandpile automaton 
here serves as a model for transport phenomena m general CA methods may be 
used to directly model the behaviour of the elements or indirectly to approximate 
them, e g as m immunological CA, Stauffer and Pandey (1992)
Features of the CA codmg mclude its simplicity and massive iteration The 
dynamics of a model typically mclude very few relations, with traditional parallel 
updatmg Additions and multiplication can be represented by arithmetic additions 
and multiplications with manipulation at bit level, allowing more efficient code to 
be provided Examples are given m Appendix B of multi-bit (multi-spin) operation 
and this has been implemented for the dissipative sandpiles discussed in Chapter 3 
and program Appendix E This represents a "cheap" method of incorporating
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parallelism into the implementation but is obviously inadequate for very large and 
very complex systems Practical limitations on the use of multi-spin coding do not 
extend beyond its use for fluid hydrodynamics, although surprisingly good results 
have been achieved for lattice gas simulation, e g Wolf-Gladrow and Vogeler
(1992) Unfortunately, massively parallel computers are not generally accessible, so 
that most researchers have to make do with general purpose computers with only

1 vone or at most a few processors It is worth noting that’; multi-spin coding 
(instruction-level) is the lowest of four levels of parallelism, according to Kohring 
(1991) Others include statement level or chaining, loop level (or strip mining) and 
process level, where this last separates SIMD and MIMD machines and is a feature 
of many molecular dynamics simulations Even at multi-spin level, choice of 
language and availability of machines limits performance and we have briefly 
discussed these factors in Chapter 3 Performance tests for lattice gas automata in 
two or three-dimensions, coded in FORTRAN and C with reference to bit 
operations and integer arithmetic are also reported upon by Wolf-Gladraw and 
Vogeler (1992)
Clearly, sandpile models, such as those considered here, are of interest, not only in 
their own right, but in terms of understanding other complex systems with many 
degrees of freedom. Sandpile automata have proved surprisingly successful in the

4investigation of intrinsically puzzling phenomenon, such as SOC 
MC methodology provides a level of further abstraction when compared to CA 
modelling and is a stochastic method which relies on good statistical 
measurements Thus, any problem related to the probability of an event occurring 
can be investigated through MC in theory Unfortunately, the abstraction of the 
fundamental problem is not always straightforward, since the more complex the 
system, the more information is required for accurate statistics Thus, knowledge 
of Hamiltonian components is very important in terms of successful simulation, 
since otherwise systematic errors rapidly become very large This is illustrated in 
the froth case, Chapter 5, where for 2D froth, simulations are fairly successful, 
whereas for the 3D case, choice of parameter values and level of approximations 
used, crucially affect simulation performance. One way to overcome these 
difficulties is clearly to perform an extensive sensitivity analysis across a range of
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parameters and parameter values, with a view to estimating the amount of 
variability and bias Some recent 3D froth work, Weaire and Phelan (1996), 
provides guidelines on which such an analysis might be based In general, the 
algorithm which we have used involves a more complex Hamiltonian than that 
used for example by Glazier et al (1990) for the Potts model variant Nevertheless, 
Potts model simulations which correspond closely to the gram growth problem 
(see previously this section), have proved successful and suggest that a sensitivity 
analysis such as that proposed should provide further msight on the importance of 
the volume component of the Harmtoman in Equn(5 1 8)
With the mcreasmg availability of high speed general-purpose computers, many 
formerly prohibitively complex problems have become tractable by simulation 
techniques However, even fast programs running for many hours still do not yield 
satisfactory results m all respects for problems m complex systems, due to practical 
limitations of time and number of events to be simulated So simulation techniques 
are inevitably limited at some stage by computer hardware and software The 
choice of different language and compiler during simulation may be particularly 
important

6.3 Cellular systems and Phenomena Exhibited ,
?fe

6.3.1 SOC and Simple Systems
It is known that laws governing the evolution of "universes" are often similar and 
simple Nevertheless, behaviour observed can be highly diverse and several new 
concepts have been proposed to explam and explore these phenomena, such as 
chaos, SOC and complexity
A SOC system is a class of nonequihbnum system which seem to be capable of 
generatmg complexity of its own accord Cellular automata as a computational 
paradigm m computational sandpiles, (described m Chapter 3), have been used to 
demonstrate self-organised cnticahty, (SOC) The nature of the constramts, either 
global or local has been considered for various model dynamics Many natural 
phenomena exhibit SOC, mcludmg earthquakes, fractals, extmction events m 
biological evolution, landscape formation and so on The characterisation of spatio-
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temporal processes in general, has received considerable impetus from the 
investigation of these simple cellular systems, first introduced by Bak et al (1987) 
In particular, early interest focused on providing an explanation for 1/f noise, 
through the establishment of scaling laws
Different dynamical rules, reflecting deterministic or stochastic perturbation, on 
both continuous and discrete systems, have been used to demonstrate the existence 
of SOC in CA and CML models Several universality classes have been shown to 
exist Models with different dynamics have been found in our work to exhibit SOC 
for both local and global conservation laws in continuous CML models, whereas 
SOC is not observed if the conservation law is violated locally in CA models 
While investigations are limited, they provide a basis for further work, both in 
stochastic systems and on deterministic systems where the nature of the dissipation 
is dependent on the local environment and/or choice of loss function While SOC is 
widely prevalent, it may not provide a universal picture

6.3.2 Cellular Networks
Cellular patterns, such as froth and foams, are similar in many biological systems, 
although the underlying dynamics of the pattern formation is completely different 
Soap froths are of interest because they are considered to evolve by a similar 
mechanism to that which governs gram growth m metals and other materials (see 
previous section) It is reasonable to assume that the essential mechanism of this 
evolution, (intercellular diffusion resultmg m a reduction of surface energy), 
governs the behaviour of the soap froth without any significant additional factors 
It therefore offers us an ideal model system, the study of which provide 
fundamental insight to the theory of network evolution A typical bubble growth 
process begms with a nearly ordered configuration and gradually evolves mto a 
completely disordered pattern with time-invariant topological distributions The 
studies of froth, m particular, provide an elegant illustration of the evolutionary 
behaviour of a cellular network Much of the work presented here has 
concentrated on the problem of the 2D soap froth, where mterest has focused m 
particular on numerical studies of the froth structure and evolution under various 
levels of order/disorder or defect concentration
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Direct simulation methods have proved particularly valuable in terms of obtaining 
detailed information on changes in the network, although are inevitably limited as 
to size of system studied Results on abstraction of the problem, or modelling it 
indirectly via MC methods have been mixed In the 2D case, the network 
information obtained has been useful although system sizes have not been sensibly 
extended In 3D, results have been disappointing In part, this is due to the level of 
detail retained and in part due to a weaker theoretical background for 3D networks 
in general Nevertheless, a prototypical implementation has been achieved, (see 
programmes, Appendix E), and provides some basis for extension to other 
network systems, such as the metallic gram growth problem, e g Holm et al 
(1991)

6.3.3 Common Features

We have discussed properties of two different types of cellular-structure models 
From the analysis and detailed discussions, it is clear that these systems share some 
common characteristics Both are e g non-equihbnum systems, which evolve 
accordmg to mternal or external forces Nevertheless, distinctive differences exist, 
not least m the level of interaction considered, and consequently, give rise to 
diverse behaviour Much of the work here has been concerned with dissipative 
effects and their influence on the evolution of these many-cell systems havmg 
different spatial dependence It is conjectured that a dissipative system keeps its 
structure at the expense of energy flowing, either from the local dynamics rule, or 
from the open boundary, or both Further, the new structure can possess either 
coherent or chaotic behaviour 1 e m the long-term, distinctive asymptotic 
behaviour must occur One obvious and immediate question arising from the work

1so far is thus whether SOC can occur m cellular networks7 Some early studies on 
froth rheology have conjectured the existence of SOC on avalanching m froth under 
stress, Hutzler et al (1995)
Other network models apart from soap froth, also appear to exhibit SOC For 
example, considermg domain wall motion m disordered ferromagnets driven by an 
external field, Bak and Flyvbjerg (1991) have presented a random neighbour

i
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model, representing domains in a 2D film, where motion exhibits SOC. Tadic 
(1996) has also discussed statistical and scaling properties in Barkhausen noise in 
2D ferromagnets.

6.4 Suggestions for Future Work

For the sandpile automaton (discussed in Chapter 3), it is relatively easy to 
incorporate additional features by extending the number of states or changing the 
dynamics rules, but clearly to be useful these must relate to some class of physical 
or other systems, i.e. have a real-world application or alternatively, seek to explore 
the computational mechanics of the CA models and the efficiency of the algorithm 
Our studies represent a modest step in exploring these, by incorporating 
continuous variable selection corresponding to the CML models. These have 
application to systems with continuous loss function and are further extendable in a 
number of ways not least in the context of the immunological CA models 
mentioned in the Section 6.2, where incubation period and progression of disease 
may be more appropriately represented by sampling from known lifetime 
distributions, such as the Weibull, Ruskin (1993).
Suggestions for further consideration on the studies of dissipative sandpile models, 
therefore, include choice of alternative functions to represent the energy loss in 
dissipative CA and CML models. In addition, different specifications of the board 
should be considered in order to simulate "sinks" in the environment, i.e. 
dissipation holes or wells, (Section 3.3.3). These should be considered at different 
concentrations of holes p on the board and for random and clustered 
concentrations, (reminiscent of the "seeded" defects for the froth case). This would 
provide some insight on how global behaviour of the system is affected during 
both in the short and long term.
Better understanding of SOC systems and their behaviour may help us to explore 
general principles of complex system dynamics. The physical interaction processes 
are varied, so that they cannot be ascribed to any single mechanism or force. 
Instead, there seems to be some underlying "logical dynamics" in charge of the 
interrelationship of the degree of freedom of the system. Some effort has been 
made here to examine scaling behaviour in both space and time in an extended
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system The simplest model systems which show power law behaviour can be 
further elaborated to have more complex internal states, inhomogeneous updated 
rules, adaptive rules and unfixed spatial coordinated memory or non-local 
interactions Many of these find parallels in real-world applications, such as 
formation of landscapes, Bak (1996)
A clear understanding of the general connection between stationarity and criticality 
in spatially extended dynamical systems is still lacking, although SOC may provide 
a partial explanation However, SOC, as an indicator of 1/f noise may be applicable 
only to certain system classes as noted in Chapter 3 Similarly, network "noise" or 
topological change provides an interesting basis for further study of complexity via 
simulation tools The robustness or otherwise of such features and their 
accessibility to computer modelling opens up many challenging problems for the 
future A current major area is the development of more efficient and sophisticated 
software to model the structure of solid foams and relate this to the physical 
properties The Brakke software, discussed by Weaire and Phelan (1994) has 
recently been used to look at the modelling of minimal surfaces in this context 
Further work can also be done in the 2D froth case, including e g an examination 
of the computational implications for extending the direct simulation of dry froth 
to wet froth, investigating the influence of control parameters during evolution, 
e g temperature and stress following the early work of Tam and Szeto (1996) 
Also, there are sound grounds for examining the indirect approach via MC in more 
detail, in particular by considering a sensitivity analysis in 2D and 3D of the 
principal parameters, as indicated earlier in this chapter Adaptation of the code for 
analogous 2D problems should also be considered Of course, 3D froth is currently 
a "hot topic" and some progress has been made on solid and wet foams, Durain 
(1995) However, it is clear that the simulation challenge alone is a fascinating one, 
even before further useful results can be obtained on the statistical and physical 
properties In the short term, specific programs developed to investigate froth by 
MC methods, can hopefully be used to establish the viability of alternative 
simulation approaches in terms of obtaining reasonable parameter estimates for 
real froth and analogous cellular networks Extended work on the 3D froth model 
is clearly indicated, using 2D as a blueprint to the stability of the approach Further
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comparisons with performance by direct modelling are also required together with 
implications for parallelism and limitations of the statistics
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1 lie evolution of a two-dimensional soap froth with a single 
defect

H  I R u s k i n  a nd  Y  f e n g

S l Ihh  I o l ( i in p u tc r A p p lie  ii io n s  H u h lm  C it y  U n iv e rs it y  D u b lin  9 I re h n d

K m i ' u l  M Si | k ml 11 I

Ahslr u I ihe direti mmiu I Jhon nu.tlu>d of ^ e  nre ind Kirino It %vi consider ihe probk m
i med In I m i  in of a 2 D hoih with a single defect We ha\e found that for a single defect in
jn  ideal hexagonal network the tccond moment m  of Ihe distribution of Ute number of celt
sides fo r  (he rcfion o f  the dtfcci doe« not tend to  a constant as ch»ncd by Lown/> Some reasons
I i iht v imnj.  i i  iuIummhv driwn bv different 'milmrs iboui thi^ pioblcm ire i lso discussed

I h e  s n i p  f i o i h  as in ulc ii m o d e l  o f a c e l l u l a r  n e t w o i k  has a t i n c t c d  c o n s i d e r a b l e  a t te n t io n  

in d  h »s be e n  s tu d ie d  th e o re t ic  i l ly in d  e x p e r i m e n t a l l y  in r e c t n t  j e a r s  (s ee  W e a n c  a n d  R i v i e r  

M 9 8 H  G l j / i t i / / / / / ( 19 X 7 )  \ \ l j i i c  in d  l e i  ( 1 9 9 0 )  ( i l d s i e r  a n d  W e a n c  ( 1 9 9 2 )  H e r d l l e  in d

A i c l  ( l ^ : i  etc i I tile i t  si h is p r i m  u i l \  fo c u s e d  o n  sc ih ng  p r o p e r t ie s  o b i  m u d  t h r o u g h  the

e v o l u t i o n  o t i l ic h o t h  w i i h  tu n c  I o n g  te r m  b e h i v i o u r  is c h i t  i c t e n / e d  b> s y s te m  s t i t i s t ic s  

su ch  is the d t s i i i b u t i o n  ( i n )  o l  the n u m b e r  o f  ce l l  s ides  a n d  the  s e c o n d  m o m e n t  o f

th is  d i s t r ib u t i o n  / />  M  J  ( n )  There is c o n s i d e r a b l e  e x p e r i m e n t a l  th e o r e t i c a l

in d  t o m p u l  tt io n  il e v i d e n c e  th it / m  U m l s  to i f in i te  h u n t  { i p p i o x t m  i t c l \  1 1) w h i c h  is 

e h t i a c i t  r is f t i  o f  / lie tv) m p l o t i c  se »ling st l i t  o f  the / fo lh

I h c  iruti  i lls l i a n s i e n t  b e h a v i o u r  o f \ rcl  i t i v e l y  o td e r e d  f r o t h  I n s  K e n  i n te r p r e t e d  in 

te r m s  of ih e  g t o w t h  o |  i n d i v i d u a l  to p o lo g ic a l  dc fe c ts  T h e  s tudy  of this g r o w t h  ha s  b e e n

ta k e n  up  l \  I e v i t  in ( 1 9 9 4 )  w h o  c o n s i d e r e d  the  inse r t ion  o f i s in g le  l o c a l  t o p o lo g ic a l

d c l e c l  i n to  i f i o t h  o f h c \  igon il t e l l s  H e  us ed  an a p p r o x i m a t i o n  w h i c h  is i t t r a c t i v e  in  th it

i ( o f f e r s  f l i t  p o tc n f i  il to  s m iu l  tfc I trgcr c lo s e r  to  a s y m p to t ic  sys te m s  bu t  resu l ts  o b t a i n e d

w e r e  in  dis i ^ n c m e n t  u i t h  f>rt vi<>tis tent i t i ve  c o n c lu s io n s  ( W e a i r e  in  B l a c k m a n  a n d  T a e u e n a  

1 9 9 1 )  W e  h iv e the  i t  lo re  re c x a n u n e d  this  p r o b l e m  b \  d i r e c t  s im u l  it ions  w hie h ire m o u  

e x t e n s iv e  t h i n  thos e p i t v i o u s l y  u n d e r ta k e n

l e v  it hi  s m e t h o d  lu s t  l o r c e s  i T I  t o p o lo g ic a l  proc ess ( n e i g h b o u r  s w i t c h i n g )  lo  l a k e  

p i  ice in i g r o u p  of c e l l s  m d  f o l l o w s  th is  w i t h  a 1 2 p rocess ( i c l l  e l i m i n a t i o n )  fo r  w h i c h  th e  

p i o b d h i h t i c s  o f i i n i n j . l t  stjit ne  in d  p i n t  ig o n  b e in g  f o r m e d  are  th e  s u n e  > 1 1  fa c t the  first 

f I p r o c i s s  g iv e s  rise to  t w o  l i \ e  s id e d  t e l l s  m d  t w o  s ev en  s id e d  c e l ls  in the  n e t w o r k  

( h g u r e  I )  l e v  it m  us ed  1 m e  1 1 1  f i e ld  l l ieorv  to  s h o w  that the  to p o lo g te  d d i s t r ib u t i o n  

i s s o u  H i d  w i t h  1 s in g le  d e le c t  i p p t o i c h c s  a f i x e d  a s v m p l o t i c  l i ' i m  w i t h  a h i g h  pc ik  

/  (i>) -■ O b  I Ims  i m p l ie s  th il / /  i l l 1 1 1  > 1 d t f f t  o i l  uu l  \ u i b l t  v i lu t in c o n f l i c t  w i t h  

pie v lows p j i  d u  l io n s

I ' s m g  t h e  c l u e d  s i m u h t i o n  t p p r o j t h  o f  W e  m i  a n d  K i r m o d t  ( | 9 * U b  I 9 F 1 )  m d

s u h s e i j u e n l  w o t k  w e  h  i \ c  u n |  le m e  t i l e d  i 2 l ) d i v  f i o l f i w i t l i  t s i n g l e  l o p o l o g i c  d  d e f e c t  

b  » s c d  ( ' i i  1  | u  l e e l he  x  i* o n  i l  m  t w  o i k  l<> c i i m h c  e o r r c s p o n d e n t  t w  i t l i  I  e  v i t  i n  s o r i g i n  d  

e o u s t  1 l i e I i o n  I I k  t ie f e e l  i s h  ise d  1 mi \ sv i i m u  t i  le i l  i t  r t n j_e m e  i l l  o f  t w o  p u t s  o !  p c  n t  u _ o n  i!

x >v 1 l»s \ «*n si 1 sn t 1 *S |( l| | M) |, |tmj_ | t<I I SSI



L̂ 54 fof/w rdifoi

} i l , i i r i  I T li t  <Il feelivt_ '* U fro th  network corresponding to  L e v it in  s method o f  inserting  a 
Mii{_k tic ft c l b \ fo te in^  j  n  p io te 's  in in ic lc il hexngonal frn lh

i iE » ir r  2 \  d e fc tM 't 2 I)  fm ih  m lw o rk  The nc lw o rk  keeps the lic x a g o m l b is is  in d  i l l  the
imn ik  fi (.11vt n i l s  in  of llii. s imc 'h  ip i m il M/e

a m i  h e p t a g o n  i l  c e l t s  w i t h  m i n o r  d i s c r e p  m c i c s  i n  t h e  a r e a s  o f  t h e  c o m p o n e n t  c e i l s  a n d  w i t h  

a l l  h e x a g o n  i l  c e l l s  s u i i o u n d i n g  t h e  d e f e c t  h  i v i n g  t h e  s a m e  a r e a  ( f i g u r e  1 )  A d d i t i o n a l l y  w e  

c o n s i d e r  a n o t h e r  t > p t  o f  t o p o l o j _ i c  i l  d e f e c t  w h e r e  t h e  d i s t o r t i o n  i s  a c h i e v e d  b y  s u p p r e s s i n g  

a n  e d g e  i n  t h e  o r i g i n a l  m l w n r k  g i v i n g  a n  e i g h i  s i d e d  c e l l  w i t h  t w o  s y m m e t r i c a l  f i v e - s i d e d  

c e l l s  i m o n g s t  i t s  n e a r e s t  n e i g h b o u r s  ( f i g u s c  2 )  W e  h a v e  a l s o  u s e d  a n  o rdered  V o r o n o i  

c o n s t r u c t i o n  t o  t  r c  H e  i  t h u d  k i n d  o f  d c f c c t  ( f i g u r e  i n  w h i c h  t h e  a r e a s  o f  t h e  d e f e c t  a n d  

i t s  n e i g h b o u r i n g  t e l l s  l i n e  b e e n  l d j u s t c d  a s  s h o w n  P e r i o d i c  b o u n d a r y  c o n d i t i o n s  a r e  u s e d  

b u t  f o r  c o m m i t  ne t  t h e  d c k c t n c  c e l l  i s  c c n t i  i l l v  p l a c e d  i n  t h e  n e t w o r k  C i l c u l a t i o n s  a r e  

n o t  p u r s u e d  b c v o n d  t h e  s t  i g c  w h e r e  t h e  i l c l e c t  i m p a c t s  o n  t h e  b o u n d a r y

W e  h a v e  i m p l e m e n t e d  t h e  f r o t h  \ u t h  s i n g l e  d e f e c t s  a s  s h o w n  ( f i g u r e s  I  2 ,  a n d  f o r  

s y s t e m s  o f  1 0 0  4 0 0  m i l  9 0 0  c e l l s  i c s p c c t i v e l y  W e  g i v e  d e t a i l s  o f  t h e  r e s u l t s  f o r  a  s y s t e m  

o f  4 0 0  c e l l s  ^  m  t v  i m p k  S i m i l  t i r e s u l t s  u c  f o u n d  f o r  a l l  s y s t e m  s i z e s  u s e d

l - ig u i i  ^ \  i k k e h 'c  2  I )  fro th  network w ith  in  o n k re d  V oronoi s i l  up (E a ih  vertex o f  an
11j.Ih M i k d  <.< II mid I'M* l o i  miIuI  n I k  «s i i t n t r e  o f  i u i e i m m r i b c i t  e m l c  l i n t  l o n e ^ p o m k  lo  

Uh I K \ imn' U mJI uttm \
II wi t i t  11 mc in  i p p i o x i m  H e  1 > t n t t i l i i  f i o n t  o f  d i s l u i b a n c i  s u r t o u n t h n g  t h e  l u g e  

d e f e c t i v e  t e l l  u n i  m t l u d m j .  c t l K  u l m h  h a v e  u n d c t g o n t  \ s i n g l t  t o p o l n g i c  i l  e h  i n g e  t h e  

c i r c u l a r  l i o n t  " i l l  m c l u d c  t h e s e  ( p l u s  u t h e i  c e l l s  w h i c h  i m p i n g e  o n  t h e  c i r c l e  i n  p  i r t  b u t  

w h i c h  h  i v c  m o i \ c i  u n d e r g o n t  i  h  m g r )  I  e \  i t  i n  ( 1 9 9 4 )  s i m i l a r l y  d e f i n e s  a  c l u s t e r  w h i c h  

r e f e r s  l o  t h e  l i o n i  n s i d  i n  o u i  M t m i l  i t i o n s  p l u s  i  b o u n d  t r y  o l  h e x i g o n i l  c e l l s  T h e  s l i g h t



F ig u re  4 . Th e  evo lu tion  o f a froth  w ith  a single defect F ig u re  5. The evo lu tion  o f a froth  w ith  a single defect

in a hexagonal netw ork w ith  num bers o f  tim e steps o f in  a hexagonal netw ork w ith  num bers o f  tim e  steps o f

(<j) 4 0  and (It) 100 ( In it ia l structure figu te  I . )  (a )  40  and (/>) 100 (In it ia l structure figure 2 )

(</>

F ig u re  6 . Th e  evo lu tion  o f a froth  w ith  a single defect in  a 

hexagonal netw ork w ith  num bers o f  lim e  steps o f  ( « )  4 0  and ib )  
100 respectively ( In it ia l structure figure ' )

modification we have used does not affect the behaviour of 2 <)r ihc side distribution, but 
enables us to consider separately /12 *'» //ir f ront.  Figures show the evolution within 
the front at specific time steps for different initial defect types, corresponding to figures I, 
2. and 3 respectively. Here the number of time steps relates to the number of diffusion and 
equilibration processes which have taken place, with the evolution time. 7\ measured in 
units of </1n)/AT. where Mo) is the initial average area over all cells, and K is the constant
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n

n
F ig u re  7. ii< ) ami (/» I «how Ihc topo log ica l d is tribu tion  f  ( n )  in  ihe f r o n t  w ith  num bers o f  lim e  

Mops o | («0 ( , \ I .  12(1 (C ). am i l(>() ( ) (In it ia l «el up figure« I and 2 resp ectively )

in Von Neumann's law. and may be arbitrarily chosen (Kennode and Weaire 1990). We 
can see that the number of sides of the large defective cell increases with time, as does 
the perturbation front area of the disturbance For the defect formed by edge suppression, 
starting from the ordered non-Voronoi network set-up (figure 2) and ordered Voronoi network 
(figure 3). «e  ha\e observed very similar behaviour in the froth evolution (figures 5 and 6) 
We give detailed results for the initial structure shown in figures I and 2 as follows.

The topological distribution / ( « )  in side the front,  is shown in figures 7(a) and 7(/j), 
at specific numbeis of lime steps for the different defect topologies (figures I and 2 
respectively). We find that there tends to be a peak at n =  5 in the front as evolution 
time increases, as opposed to the overall network of a normal froth which has a peak with 
n =  5 and n =  ft (Herdtle and Aref 1992). However, the distribution f(n) is now, of 
course, markedly right-skewed. These features are not extraordinary as movement of the 
front results in continual incrementation of the number of sides of the large defective cell.

From our results, the second moment, f i j .  continues to change with time without  
reaching a fixed limit. Figures 8(«) and 8(/)) show how the second moment, H i ,  in the 
overal l  network changes versus time, T  (for initial set-ups in figures I and 2). The range of 
T  includes about 21)0 diffusion and equilibration processes in our simulation Topological 
and diffusive adjustments arc made sequentially within each time step and considerable 
details of the evolution may be observed Fluctuations in the value of n 2 around the 
underlying trend can be explained directly in terms of the Tl and T2 processes, with a high 
li 2 corresponding to the delect surrounded by a number of three- or four-sided cells, and
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T

T

F ig u re  8 . (<i) and (/>) show m  in (tic in r m l l  netw ork  versus tim e 7 for a fro th  o f 4 0 0  cells  

( In it ia l set up liyu ies  I and 2 iespectivel> )
a sudden decrease in //2 associated with the disappearance of one of these cells During 
growth in the area of the defect, /i 2 keeps a relatively stable value until the next Tl occurs. 
Clearly, as more cells are involved in the evolution and the number of sides of the defect 
increases, the value of /t 2 overal l  changes more rapidly and is dominated by the contribution 
of the defective cell. Over the whole range of 7 , ~  appears to describe the observed
behaviour, with ft >  I. However, few changes take place initially, relative to the evolution 
as a whole, and for the upper range of T,  /ii versus T  is roughly linear, although it is not
clear that a true asymptote is attained.

For a simple theoretical model of a large defect with A; sides surrounded by N  small
cells, newly converted side lengths of the small cells will be characteristic of the whole 
network, i.e. /V — /\(</)°\ with A i d )  the area of the defect Then, in the asymptotic 
limit. Von Neumann's law becomes dA( d) / i \ t  =  k A i d ) 1̂ ,  i.e. A i d )  T 2. Similarly, in 
the front,  the topological distribution w ill be dominated by the defect, so 112( d )  ~  N 2 with 
N  7 . i e n : i d )  '■ 7 \  l-’urthermoie. the defect gradually involves more and more cells in 
the overall nctwoik. sn asymptotically the exponents for the front and the overall network 
should be the same. I rom our simulations, we find f o r  the defect that A ( d )  increases 
with 7 at the expense of other cells distorted by topological changes If we define the 
increased area A A i d )  =  A i d )  -  A i d ) 0 . where A i d ) 0 is the original area of the defect, for 
the defect formed by edge suppression (figures 2 and 3), we obtain roughly & A { d )  ~  T 2 
after the initial period of evolution, with the radius of the rough perturbation circle, r T
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T

T

F ig u re  9. (< i) T h e  increase in  d e fec tive  area A A (tl)  versus tim e . 7 (b ) Th e  radius r  versus

lim e . I . fo r a f io ih  o f  4 0 0  ce lls  ( In it ia l structure figure 2 )
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F ig u re  10. /« :(< /)  in the fro n t  versus the average intercept. {</). ( In it ia l structure figure 2 )

approximately; figures 9(<j) and 9( h)  illustrate tor the set-up of figure 2 Furthermore, we 
find that n i i d )  changes roughly l inearly with the average intercept, (d) ,  where {d) equals 
the square root of the average ccll area in the front (figure 10).

It seems clear that the behaviour of a froth with a single defect in a uniform hexagonal 
network docs tun lead to a normal scaling state as found for the non-defective froth by
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numerical simulation (and as prtdk ltd bv theory) Wc find th it f i n )  in (he front tends 
to develop a long tail extending to |jrj.e v dues of n and with a peak at n =  5 This is 
in agreement with Aboav (1980) who also quoted or =  2 for the irca growth exponent 
However the suggestion that //•> o \ t r a i l  v ints linearly with tune (see the comment by 
We ure and Kermode (19H3a) on Abow s work) is not wholly supported by our findings 
and is in conflict with the predictions of the simple model It is only with hindsight that it has 
bten realized that Aboav was dealing with a transient system with defects characterized by 
different values of the growth exponents Our own results are prob ibly not in the asymptotic 
region since the maximum number of suits achieved b) any defect is A' = 4 4  (for the set up 
in figure 2) Nevertheless thty ire supported by recent work by Glaner (1995) We also 
find that there is somt simil inly bttweui the behaviour of our system and that of Levitan 
(1994) bui we do not igrec with i p u d  form for f i n )  as obtained by Levitan The value 
of (whether for the front or tor the overall network) does not re ith t  steady snte alter 
initial fluctuations at this system si/e unlike normal froth evolution

Our results lor the behav iour of the Iront are in agreement with the original experimental
work of Aboav (1980) and retent simul tlions of Glazier (1995) indicating that a different 
scaling relation applies thctc Reg irdless of the defect type and initial configuration 
there are some grounds for support of the suggested system behaviour put forward by 
1 evitan (1994) but the overall results ut in conflict with his predictions for the quantities 
ch »ratteri/ing the long term evolution
We should like to tlnnk Piolcssor IKnis We urt for sever d interesting distussions and for 
mtrodutmg us (o the froih problem
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Scalin g  properties for o id e ied /d iso rd ered  2 -D  
dry froths

H J Ruskin',  Y I'eng
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Ahstr ict
Wc mvcstig i te  i l k  evo lu t ion i r>  behaviour o f  1 2 I )  dry Iroth w ith  in i t ia l  ordered disordered 

condit ions corresponding respectively to monodispersc polvdisperse topo logical  network« Using 
ihc di rect s u m ih t io n  approach we discuss the scal ing properties ol the cc l l  side d is tr ibu t ion  
J ( n )  i n d  Us second moment j i? for various svslcm sizes md i t u l i i l  structures Pur the case o f  
a highly ordered network ll ie in troduc l ion o f  disorder n n y  he viewed in k m i s  o f  seeding the 

I froth system w i th  i monlni o f  defects </ where lo r  </ I previous \eork In s  shown t h i l  st ible 
condit ions l i e  not achieved We hnd that the l im it in g  behaviour  here depends on the amount o l 

' disorder where this is quanti fied by the proport ion of  non un i fo rm  n u t i i l  a l l s  md the p i t t c rn  
ol seeding O ur  f indings support the v iew that i qu is i  scal ing s t i te  exists to r the h igh ly  ordered 
Iroth in con tns t  to the universal scal ing s t i le  o f  the disordered and low ordered froth In the 
l igh t o f  these results we brief ly reconsider the question ol trmsience for the car l)  results o f  

Aboae (1980)

I Introduction

M a t c m l s  w i t h  c e l l u l i r  s i ru e tu ie  appear  in in  inv gu ises  m  f ie lds  o f  g e o lo g y  m e t  

a l l u r g v  b i o l o g y  and so on  The sonp t ro th  as an  id ea l m o d e l  o f  i c c l l u l n r  n e t w o r k  

has a t tr ac ted  c o n s id e r  i b l c  a t te n t io n  p i o v i d m g  v i l u  ih le  in s ig h t  i n to  the h c l u v i o u r  o f

i l lese c o m p le x  d i s o u lc r c d  sys tems O r i g u n l  s tu d ie s  o l  2 O  f i o t h  s t rue tu res  are du e  to

S m i t h  | l |  a n d  «ubscc |ucn t lv  A b o a v  | 2 ]  and h a v e  M im u l  i t c d  m u c h  t h e o re t ie a l  e xpe r t  

m e n t i l i  m d  c o m p u te !  s i m u l i t i o n  w o r k  o v e r  recent  vears e g  I4J  lor  r e v ie w s  see

I I s  I H |

( Kill spi mllll). mill I
IM7X 4 1 7 1  9(, SIS l»(l ( o p v i k h t  $  » l lW(> I I o m  S u u u e  11 V \ l l m h i  k u m .I

I’ll S 1 H 7 X  H  7 | ( -)(, ) 0 0  |  |  |  :
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\  soip troth lias ill hound irics equivalent with its evolution diivcn by i trmslcr 
«»I uis between nciiibbouimi» bubbles md uovcined hy Von Nunn mn s I n\

tf \ »It k i n f>) ( I )

w I i i . i l  f ts the «lie. i o l  in n  s id ed  ee l l  and  A "» 0  is a eons!  int  We c o n c c n t r i t e  on

in ide i l  ( o i  t i t \  ) 11 h w i t h  i l l  m l c t n i l  . ing les  o l  the n c t w o i k  cc ] t i i l  l o  120 and  the

m e m  n u m b e i  o t  s ides  ( n )  () w h e ie  e v o l u t i o n  is t h i o u g h  T l  processes ( n e ig h b o u r

s w i t c h i n g )  m d  12 p io c c s s c s  ( e e l l  v a n i s h in g )  O l  m te ie s l  a rc  the d v n m u e  s c a l in g  

p io p e i t i e s  o l  the s v s i t i n  m e a s u ie d  by s t i t i s t ie s  sueh is ihe d i s l r i b u t i o n  o l  the n u m b e r  o l  

the e e l l  s id es  f i n )  m d  i t s  seeond  m o m e n t  //■< ~  V  f [ n ) { n  6 ) '  w h i c h  is cx p e e te d  to 

i l l  m i  i sc. l ie n n  m a n t  va lue  O t h e r  p ro p c i  t ics  sueh is the  e o r i c l a t c d  side  d i s t r i b u t i o n

(s ide d i s t r i b u t i o n  o l  ce l ls  n e \ t  lo  i n  s id ed  ce l ls  in lhe s e l l i n g  s t i l e )  t lso  d e m o n s t r a te

n n i \  e is  i l i t \  | 1 ^ j

O n  the b i s i s  o l  p l i o l o m  ip hs  s h o w in g  in m i t i  i l  t h s o i i U n t i  f i o t h  w h i c h  e v o l v e d  l i o m  

i h o u s in d s  l o  h u n d i c d s  o f  b u b b le s  S m i t h  j l ]  suggested  tha l l o n g t e r m  a s y m p t o t i c  be ­

ll i \ u i u i  w is |us| i e l n n g e  o l  se l ie w i t h  n o  c h m u e  o l  the side d i s t n b u t i o n  l i e  a lso  

Io u n d  f t  ^  I ^ i l t c i  m i l l  i l  t i m s i e n c e  m d  the ivc r iL ie  ee l l  ire I l o  be d e p cn

den t on  t im e  is ( i )  / '  w i t h  the g i o w t l i  e x p o n e n t  7 I A  ( / i f f t n i i l  set o f  p h o -  

I i l i  ip hs  b i s e d  o n  an d l e i n i t i v c  m e th o d  w i t h  i m t i d  r o u g h l y  n n i f n u n  b u b b le s  w  is 

m d w d  bv  \ b o  n  | 2 [  w h o  i o u n d  n o  st ib le  l i m i t i n g  d i s t u b u t u m  / < # i) b u t  ^  ( i l )  
w h e ie  i l )  "  1 I ) 1 is the i v e i i g e  l ine  il m te ic e p t  of  i l l  b u b b le s  S i m i l u  c x p u i m e n t s  

l n \ c  l l so  s u bse quen l lv  been p e r lo t m e d  lo i  the we t  l i o t h  |5  6 )  m d  i s e l l i n g  state 

i c h i c v c d  ( / / _  1 4 )  h ie s p e e 1 1ve o l  the a m o u n t  o l  o t d c i m g  d e s e i ib e d  b v  the m i ­

l l  il c o n d i t i o n s  S p e e i l ie a l lv  these i i i t l i o r s  h u e  suugested  t l i  i t A b o  i \  s I m d m g s  re fe r  

to I he l i o l l i  ec | t i i l ib i  i l i n n  p c i i o d  l e  d ia l the la p id  g i o w t h  o f  /m  is t l i  in s ic n t  ef - 

lee I o l  I he c u l v  st ige o l  e v o l u t i o n  (see i l so  | I 6  1 7 1 > A b o a v  a lso  Io u n d  tha t ihe 

n u n ih c t  o t  s ides  o l  in n  s id ed  e e l l  is t e l i l e d  to  (he a v e r i g e  n u m b e i  o l  s ides  o f  its 

n e i g h b o u is  m i n )  bv / / / ( / / )  ( 6  a )  \ ( 6 a  \ f t  ) n  w h e ie  <i is i cons t  int  ( a  =

I 2 )  l l i i s  i e I it io n  is k n o w n  is \ h o i v  s I iw | 2 |  o i l o i  a  1 the A b o a v  W c a i r e  

I iw | 1 S |
( o m p u l e i  s i m u l i t i o n s  o l  ihe 2 I )  d iv  l i o t h  h i v e  been p e i l o m i e d  bv i n u m b e i  o l  

in t ho i s hut  m m  11 st i  tie tm e s  m d  s\  s k n i  s i / e s  h i v e   ̂ t i l e d  eon s id e i  ib ly  J 7 14 1 V a lu e s  

l e p o i t e d  11>i the seeond  m o m e n t  w e ie  n  I 12 m d  I 2 rcs p c e t iv e lv  l o i  i n i t i a l l y  

d i s o id e ie d  f i o t h  b i s e d  on  N o i o n o i  s t iu e t u ie s  o f  s i / e  M)() «md 1024 ce l ls  (12  14] m d  

w h i le  t u i t h e i  w o i k  g e n u  d k  s t ip p o i t s  these ( m d m g s  10 \h c ie  ate so n ic  \ p p u e n t  

i l  i s i k  p me ie s l o i c s i n i p l c  //  \ s  t i i i i c n i i v  e x h ib i t  i pe tk b c l o ie  st » bd ism g  it i l o w e r  

v due  I f t  2 0 )  112 J o i in  iv i p p i o u . i l  ihe i s v m p t o k  s m o o l h k  | I 4 |  I u i t l i e n n o r e  a 

s1111*Ic d e le c t  m in  o l h c i w i s c  u m l o i m  l i o t h  n c t w o i k  le ids  to  m i p p u e u t  loss o l  ihe 

i i i ' i m  il ve d i n e  p io p e i t i e s  | 19 2 2 1 It  h is i l so  been o b s e iv c d  i l l  it m u l t i p l e  d e le c ts  lc id

t "  sust l ined  Ll ow (Il i l l  l t int  I oi  i l l  lie t w o i k w i t h  /< I e le 11 m i l  I i l l  I \  I l i i l i l  11 il the I 111 il

si iLe o t  e v o l u t i o n  f i  1 4^ | 14|

In t i l l s  p i p e l  we eon s id e i  m  m o te  de l i l l  the e lie e t o l  i ni t  I il  c o n d i t io n s  on  the t ro th

( . \ o l u l i o n  lo i  l i m i t e d  sv ste in  s i / e  W e  d ls | in i»u ish  c s p c c i d l v  b e tw e en  s s s le in s  w i t h



H  I l i n  k i n  J / i i | / / / / h i n /  I t ‘> I / 1 ¡ t  '

lo ca l t o p o lo g ic a l  d is lo ca t io n s  in  o the rw ise  m n / o r i n  n c l w o i k s  ( m o n o d i s p c is c  h o t h s )  m i l  

ih osc  w h i c h  .ne  in tr in s ic  i l ls  d i s o rd e re d  ( p o l u h s p c r s c  h o l h s )

I I

>n
2  O r d i r  am !  d iso rd e r  n i i  f r o t h

lc

lit
( Some co n  I usi on  ippc n s to  c x ist in the l i tc i  i t u i c  is lo  \\  h it is me int  I n  in <n ilt i t  t f
^  m i l l  i l  c o n d i t io n  | 2  h 12 14 1 S t i m u l u s  m i )  h i s p e c i f ie d  u n i t  s i n n l i i  s ide d is h  ih u l i o n

/ ( / / )  ind  sec o n d  m o m e n t  f i  bu l w i l h  \ c t \  i l i f l c i e i i l  t ie » d ish  i l m h o i i s  I i j u a l h  t io l h s

 ̂ w i t h  d i f l c i c n l  f i n )  111 iv lu n e  the s im e /t  * It seem s eie n th  i l  / i  done  is in s u lh c i c n t

to c ) i n n l i l \  l l ic  d c u ic c  o l  chso idc i m d  th it m o ie  s p e d i l e  del  i l l s  o f  the i n i l u l  s t iu c ln te

ite i c ( | i i n c d

 ̂ I Ile s im p le s !  loc i l  l o f u t / m i i i t i l  i / l \ h>(  d l l i n i  is ile l l l l c d  is i pen t m o n  l l cp t  11*011 c o i l

s l i u c l i o n  in .111 t i the i v\ isc, h c x a g o n i l  s l i u c lu i c  J l ^ l  w h e ic  th is  c o n s t r u c t  s i t i s h e s

( I u lc i  s I iw see I iu  H i )  A l l e i n  i t n c k  the d i s lo c  1I 1011 n n \  he fo r m e d  b> f o u n u i
a I I  pi  oc css k  ichng to  \ p  »ned pen t  ig o n  d hep t ie.on d d i s lo c a t i o n  ( I i g  1 ( b ) )  D c l m

mi* in t n d m t f  m i t i  it l i o t h  to  be a u n i l o r m  h c x i g o n d  (o t  m o n o d is p c r s c  I n e t w o rk  

and l o i c i n g  one 01 m o ie  I I  p ioccsses  d ins  s \ s i c m  itie d l \  m c ie  iscs the i m o i m t  o l

seeded  d i s o rd e r  p icscn t  in  u h  i t is essenti  t i l )  si i f I \ u j j u h r  str lie. ture. \  <//sííi

< / ( ) ( ( /  f i o l i i  is l i k e n  to  he » non  u n i f o r m  ( p o lv d is p c r s e  ) n e f w o t k  w i t h  r m d o m  lo ca l i se d  

to p o lo g ie  i l  d i s lo c  »t ions w h ic h  m  i \  o r  in  i )  no i be o l  I ig  H i )  l \ p c  bu i ue  n o i  o l  

1 ig  1 (b )  l \ p e  V o i o i u n  n e tw o rk s  used e g  in |S  10 12 I l |  l ie in  son ic  u » ) s  t \ p  

ic il o l  d is o rd e re d  s t ruc tures  and can be c o n s t ru c te d  h \  1 m d o m  u c n c r a t io n  o l  1 sci 

o l  m i t i l i  p o in t s  suh|cct  to  the c o n d i t io n  t i n t  these 11c 1 e c i i t m  m i n i m u m  d i s t m c c

ip  u t

I ro l l i  i ( f ( i \ i h i h t \  w is discussed b )  [ 12  l l j  m d  111 m  i t h c m  Hie i l  t e n u s  i m o h c s

w i l t i n g  A instead o l  A in V o n  N c u m  11111 s I i u  I q  ( I )  D i s t i n c t i o n  b e tw e e n  the

so c t i l e d  o u h u t l  and t i i s o n h m f  h o l h s  can be  in  u le  on  the bas is  o l  t in s  p r o p c r t \  

In m  t m i i  m l  l i o t h  the d is lo c  »l ion c m  he m ade l o  d i s i p p c i r  t h io u u h  1 scr ies o l  I I

U I

(a) <h)
I I I \  I i i It in .  11 i li  11 t il i li I i I u  l i l i  i |H III n  i II i I I k  i 1 i h 'I II j <11 in I 11 I u  n i l  |*i ni i n i l

K p i  11. • II 11  ̂V II |> IH I I I IK  il l>\ I I I  I ' I l

r
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processes r e s u l t in g  in  a f in a l  s t ru c tu re  w h i c h  is u m l o t m  h c x i g o n a l  ( m o n o d is p c r s e  / ¿ 2  =  

0 )  In  i ( I t s o n l t  i t  </ I t o l h  I tovvcvc i som e  t o p o lo g ic a l  d i s lo c a t io n s  c x i s t  l l t h o u g h

t h e i i  loe u i o n  w i l l  c l u n u c  i l l c i  o i k  o r  n i o i c  I I  p rocesses  I he f r o t h  thus  r e m a in s  

i p o l> t i i s p c rs c  n e t w o r k  w i t h  i m i n i m u m  \ a lu e  o l  ft-* { f t  0 )  I l i e  n i e v c r s i b i h t y  

o l  i p o h d i s p c r s e  l i o t h  is u n p h u t l v  e o n s id e ie d  m  p r e v io u s  w o r k  b y  i n u m b e r  o l  

a u l l i o i s  112 14 1 I l o i n  these d e f i n i t i o n s  o t  < m h  i m i l  d i s o i d i  / H seem s ele u t i n t  S m i t h  

| l |  i le scubcc l i h i g h l y  d i s o id e r c d  s ys te m  w h e n  is A b o  i \  | 2 |  m v e s t i g  i t e i i  on e  w h ic h  

w ts h ig h ly  o u l c i e i l  R o th  o u l c r c i l  a n d  d i s o id e r c d  i n i t i a l  c o n d i t i o n s  w e ie  c o n s id e r e d  in  

I*' 6 I 7» 14) w I iL ie  is d i s o id e ie d  s \  s tem s  o n l y  w e ie  d iscussed  in  | f 2 1 I n v c s t i g  i t i o n s  o l  

t i o l h  b e h i v i o u r  w h e n  i s in g le  t h f u t  ( o r  t o p o lo g ic a l  d i s l o c a t i o n )  is in t r o d u c e d  in to  

m  o th e r w is e  h i g h l y  o r d e i c d  n e t w o i k  h a v e  re c e n t ly  e m p h a s is e d  the i n i p o i t a n c c  o f  the  

i n i t i a l  s t ruc tu re  m  i c l u c v t n g  s tab le  c o n d i t io n s  | | 9  21 2 2 ]

In  w l n t  f o l l o w s  w e  in v e s t ig a te  I ro t l i  e v o l u t i o n  l o r  d i l l c r c n t  m i l n l  se t -u p s  a n d  s ys te m  

s i / e s  u s in g  d i re c t  s im u l  i t i o n  m e th o d s  |7  8 ]  I n l o r m i t i o n  on  the I t o t h  s t r u e tu i c  is thus  

o b t  l i n e d  e x p l i c i t l y  at c ic h  t im e  step  d u r i n g  the e v o l u t i o n  D e fe c ts  w h i c h  are spa rse ly  

seeded in  the f ro th  is a w h o le  e v o l v e  n a t u r a l l y  b e fo r e  i m p a c t i n g  o n  c  i c h  o t h e r  a f te r  a 

l o n g  p e r io d  o l  t u n c  W e  c o n s id e r  sys tem s  o f  size u p  t o  160 0  c e l l s  a n d  m i t n l  s t iu c tu re s  

w h i c h  r u i g c  I r o m  In g h l v  o id c re d  to  h ig h ly  d iso rd e re d

*  R e s u l t s

I m m  o u r  d e f m t t i o n  in  o n h n d  f r o th  is b i s c d  o n  the h c x i g o n a l  n e t w o r k  w h e re  

lo» my v i l u c  o l  //  a l l  ce l ls  have  r o u g h l v  the same in i t i a l  i rea I o i  a h i i f h l \  m d m d  

h e x m o n i l  n e t w o i k  we  h i v e  m l i o d u c i d  i n u m b e r  of  d e fe c ts  </ is i p a n  o f  p e n ta g o n  

hep t ig o n  d i s lo c a t io n s  ( i )  </ 4 in  i s ys te m  o l  s i / c  4 0 0  ce l ls  ( f i 2 ~  0 0 5 )  and

(ii) d  7 in  i s y s te m  o t  s i / c  9 0 0  ce l ls  ( / o ~  0  01) l o r  \ h e x a g o n a l  n e t w o r k  w i t h  

Ami <mU) v\c  have  i n t r o d u e c d  ( m )  d  -  "W in  a sys te m  o f  4 0 0  c e l l s  (//-> — 0 3 )  and  

( iv  ) d  -  6 0  m  a s \ s l c i n  <4 9 0 0  c e l l s  ( / i - * « 0 2 7 )  S i m i l a r  b e h a v io u r  is o b s e rv e d  f o r

e \ u n p l c s  ( i )  t iuf  ( i i )  n id  a lso  f o r  e x i m p l c s  ( m )  in d  ( i v )  i c s u l l s  l i e  t h u s  d iscu sse d

in  de l i l l  lo r  ( n ) a n d  ( iv ) on ly

l o r  the o i d a n i  I r o t l i  ( i n i t i a l  c o n d i t i o n s  ( n )  m d  ( i v )  r e s p e c t i v c i v ) the  s id e  d is t r i

h u t  io n  / ( ; ; )  is i l l u s t i  Ucd in  h g s  2( i )  an d  ( b )  fo i  s p e c i f i c  t im e  s teps  H e r e  a s in g le  

tu n c  s tep cons is ts  o f  the n u m b e r  o l  d i f l u s io n  u id  e q u i l i b r i u m  p io c c s s c s  w h i c h  h a v e  

o c e u r r c d  I he e v o l u t i o n  tu n c  f  is m c t s u i c d  in  u n i ts  o l  ( I ,,)/A w i t h  k  co n s ta n t  and

d e f in e d  in  I c| ( I )  ( s c e | l l | )  I l ie s econ d  m o m e n t  / /  v s  tu n c  a n d  the a v e i a g e  area

( I  vs n ine  uc  s h o w n  in  I igs  ^ m d  4 A g r e e m e n t  w i t h  the \ b o i v  W e  m e  I i w  is

s h o w n  in I m  *  w h c i c  </ is i p p i o x m n l c l y  const  m l  ( < / = s | ( ) S )

In  i d t ^ o u h u d  I m i / i  ob t l i n e d  l i o m  tfie V o i o n o i  n e t w o r k  the He i o l  m  / » s id e d

t e l l  m  i \  v uv  c o i is ide  f ib lv  m d  ; /  p i o v u le s  m m d ic  i t o r  of  the d e g ie c  m d  i n l i n e  o f

d i s o id e i  i i i s m u  l i o m  m e te  ised d i s p e i s i o n  in  f i n )  I o i  a h t t i h f  \ t h s o u h m i  f m l h  w e

h i v e  e o n s id e ie d  the e v o l u t i o n  o l  ( v )  a s ys te m  o t  9 0 0  ce l ls  w i t h  m i l  i i l  / j  ^ 1 2  and

( \ i ) i s \  s k i l l  o l  I 6 0 0  l c  l l s  w 11h m i l l  i l  f (  1 6  ( /  ( 4  ) 0  12 M  ^ ) 0  2 ^  /  ( 6  )
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I i l  2  l i M  I lu. i<k d i ' t r i h i i l n  ri / l / i )  il  l i m e  s l ip  <1 0  lot  ( n i  i h i ^ l i K  n t d i r c d  n id  ( t \ )

i l<m /M»lb f t  i ) k  I j i i v n r  d i f k  ! / ik  f i p f i s u i i s  / 1 n ) in  i l a  i jn  is) si  ih n j .  i r m  j I i m l

t i k

0  2X / ( 7 )  1 )09  / ( 9 )  - 0  02 / ( 1 0 ) ~ 0 0 l )  I o r  <i I tn t h  w i t h  A \ s  íA w i / íA  i ( l o m i c d

l n  r c v c is e  ^ i l l u s i o n  t o r r c s p o n d in u  to  lo w  ft-» in  i p o l v d is p c is c  n e t w o r k )  w e  have  c o n ­

s id e re d  ( \  n ) \ s\  ste in  o l  9 0 0  ce l ls  w i l h  in i t ia l  / j  5- 0  22 ( m i n i m u m  ) a n d ( v i i i )  i  s vs tem

01 l f . 0 0  ce l ls  w i t h  m i t i  i l  /I  \ - 0  28 ( M M - O H  /  ( 6 ) ^  0 7 4 / ( 7 ) ^ 0 1 2  M R )  0 0 1 )  

A f i l l i  we t i l s e d e t u l c d  ic s u l ts  lo t  ex  im p les  ( \ i )  in d  ( \ m )  o n h  sinec K h i \ m u r  is

i p p n c n l k  s í m i l  n li ik Il i  s i u n h i  i n i l n l  c o n d i t io n s

l i t i s  (ì( i ) im i  <l>) i l h i s l i  ile the topo log ie  i! d i s t r i b u t i o n  f i n )  i t O n u  s k p s  of 0 120 2 i>0 c o r n . s p o iu lu m  to  ll ie m i t i  d m u id le  nu l Im  il e v o l u t i o n  st ige lo i  the d is -  

o ï d e i e d  \ o i o n o i  st i ui. tu ie  I l l ' s  7 , ind  S ( i )  m d  ( h )  show h o w  the s econ d  m o m e n t  

f i  n u l  i \ u  igc ire i ■ I '  el l  inge  w i t l i  t im e f o r  c \ im p ie  s ( v i ) nu l ( M i l )  r c s p c c l i v c l )

n u l  I iu  9 i Must i l ies I he p o o l  m ic e  m i  i l l  w i lh c i t h e i  the \ b o  i \  o i  \ b o  i \  \ \  e l i re  I iw

( i i h >t e o n s i  m l )
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4 Di scuss i on

loi i hnih/\ niiUml both we obseivc that the suk distribution tin) is matkedly 
light skewed with lia long 1 ill rellcelnig the piescnce ol nianv sided tells ( I ig 2(a))
I he second idddihiI gums indcliinlek with tune ft ■>  ̂ l ,is i result (Hg 3(a))
1 I lei  e lo i  L i l  the s \ s te i n  m / c  is l u g e  e n o u g h  w e  e x p e c t  t i n t  // w i l l  c o n t in u e  to  

me le  »si. is l u m i  in  m \  s n i d i  ee l ls  t ie lo i t n e d  O u i  l i n d i n i i s  lo i  /< ss i  in d  a ls o

lo i  t i n  i \ i i  i n .  in .  i «’ I i l l  t i l l s  I i  i  2 m .  in  i t  tee m e  n l  w i t h  those o l

I - I * - I I
I ile se I II ML st He Is ic le lied w Ile II bulli (in) md // ¡U I ill tuile lii\ h i ml \ lilies «Ilici 

oluioiixk does not ippk loi i liii/hh inthi i i/ 11 olii wheie ncithii /(;;) nor ft ■> tend 
to i lived loim llowevci il we huticile tin) it n n in' 12) we lliul til it 1 lie.
side dislnhtilioii fin ) is ellcctivelv ll\ed i Me i I lie mitili puiod ol evolution (see e g
I î . 2(0 /(4 l (MIS /(S)=-()^7 fib) =- (t ^ / ( 7 ) = 0 09 I Sue h i both may be
sud lo lu in i (fihiw '•miniti \itih »llhomjh ik ilk ft loi nil n coutumes to increase
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I l a  e m e  i l i L i n  e  ol i t | i i  is i  m  l i m e  s l . i k  n i  i l a  l n g h l v  o i d e i c d  f i  o l i i  h o u e \ e t  d o c s  n o i  

kml l o  suppoil l l i L  \ i e u  ih it \ b o i v  s re Mills d e s e n b e  i ti inMcnl s t u o i e  |6 16 \7 20) 
I n  I i c l  o n l \  1 0 '  n f  u n i i  i l  M ) ( ) 0  c e l l s  i c i ì ì  m i c c i  l o i  l l i c  \  ì l u c  o l  / / _  g i \ c n  i n  l l u s  u o i k  

12 ] \ n  i l k m i l n e  c \ p l i n i t i o n  i h  il I h c  I o n e  t e m i  c \ o l n t i o n i t y  beh ìmout o l  a l u g h l y  

o r c i c ieli lioth le iiliis pumi c q u i l i h i m m  il 1v_M oblimi some snppoil ( i o n i  Ihe lesulls 
p i e s e O k d  b e l i

I or thè /-m ih./i Ui/ ti olii (mitili umilinolî  .»s m (i\)) (liy 2(h)) 1 he siile dis
I I ibttlion f i n )  doe*' tend lo i f i\ed loi in l  g  /  ( ^  ) '  I M I  /  ( 6  ) - ( M 0  /  { 7 ) 0  2 6

md thè seeoud moment /i \s / e\llibils one noi ible pe ik beloie h n  ili\ leiehinu i 
si ihlc V line ol II I  ̂ iltei mitili lineili ilioiis ( I m Mb)) Mie i\eiiLe nei o! ihe 
eells imu he h i\ e ̂  i'' I1 l ubere I / 2 Illese se ìllliu piopeMies n e eonsislelll 
uilh ihose obtniud In e\peliment |ii| \\ e il-o hnd ih it llieie ili l\ he tuo pe lks he 
loie fi le le he s i M ihlt \ lille U ¿! III (M| uitli illtsftiitl deleets limile noi shou n )
I n r l h e  M i i o i  e l l i e  \ b o u  \ b i >  i \  \ \  e m e  I i u  i^ o b e \ e d  i l i  i l i h f l i  / m i  m i / i n  </ I m l l i  

l e ^ p e e  l l \  e 1 \  i l i  \ i> s'
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i Im il si iic ! «>t L\impk ont oi morc pt.iks inj> lu obscivcd ioi /<•> \s i in iIil 
low oidLied Iroili dLpLndm̂ . kspllIi\lI) on uliLthir deluls ni sLidid r mdomk or 
ilusiuid NlvliiIilIlss il Mil svsiciii si/l is hmn iftL nrdind heilt will IliuI lo t i l hc r  
,i quisi sl llniL ot sl iIiml st iIl il̂ i ndkss ol IIil min il loudilimis (IiIiuuim Ii insitnl 
IhIiuumii will lu oI>sli\hI Moilolli oui IlsuIis st il ul s| ili ii wliil». f, (,( \ is uound
0  2  l l » l  I s V  s i e  (11 l i p  l o  I l l i o i l s  l l l d  ( . l I I s  l l l l s  \  l I l l L  I I I L K I S L S  | ( H  I l f l L  S \  s l u i l  M / L

u i d t L  i l m ^ .  ( l u l  ( h e  p i o p o i l n m  o i  d ^ u M l s  u l  d e k U s  m  iIk t " . u  i l l  l i o i h  < k k i n n i K  d u .

lliiLvhold \ ihn.
in Lonlrisi )<>i hitfh oi /oh liisoithini 11 otli". (Iijjs <■ S) iIk suk dMi ihnlion

/  ( / ; )  i l w  i\ s I I  i k I s  io i 11 \ l  d lorni I l  y / 1 ^ I ( H 2  /  (<' I  0 /  ( 7 ) '  (I 1 ,K )

will» i si ihk \ i I u l  ol // i  I 4 I liiis i I k  disoukud hodi m  du m  iIuil' sl i r  i l
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\ h<> i \  no i (he \ h i ) i \  W e n n  h u  »ppI \  h e n  i c c o r d m ^  to  ou i mmhi I i l i o n  k  M i l ls  

nul in i i i i e c i i k i i t  w i t h  p n u o i i s  u o i k  (or ihstmU u  tf l i o l h  e v o l n l i o n  | l  (> 10 12 I l[ 
l l o u i _ \ e i  ih«, so e i l l c d  o u l e n d  m i t i l i  c o n d i t i o n  ( / /  0 4 )  o h i  m ie d  b \  n v e i s c

d i l h i s i o i i  | I 2  I -41 m I k  t is i k s s  , / im h </t 1 1 </ no t  \ n i l  s U l k t n i c  l>\ on»

de I in 11 k m

C on^ c ip ie n O v  m u  n M i l t s  M ip p o i t  tin.  i x i s i u i u  ot i m m c i s i l  s e l l i n g  si u l  u n s p c i  

l i \ e  o l  s s s i t i n  s i / l  lo i  i i i i M H i U  i t  t !  I i o t h  h iscd o n  i \  o r o n o i  c o n s t r u c t io n  \ \ c  l ind

til il a  \ s  i  h i s  e i l l i c i i / " ' i ( /  pe ik \  dm.  ( f t  2 0 )  ih in ili il o h s u v i d  loi  in

i m / (  i , i l  I m i h  { I ij_ M h ) ) o i  nu  le ises m o n o t o n i e  i l ls ( I n  7 ( h ) )  W h i l e  i l i a c  ippc i ls

10 I k  n _ ie e n ien (  is to the loe it io n  o l  the / / pe ik d m  It iL <»/ </< i i d  nu l  </ /v  > / . / , ;  c ti l u  ' ill

c \ o h i l i o n  H ' e t i n s  11 k e l \  t l l i l  it is n ie le lv  I c o u k  i d e a l  s u i t  lee pi le n o o k  n o n  M i k e  the

pe d V i l iu  s in. di l l i ,  l e n i  | 2 t  2 11 ( I oí  e \  im p l e  u  c o h i  ni l  i I n l  I» pe ik ( sin li is ¡ i

Ì  0  ) Ini Ole <>> il, >t 11 11 otti t l inde l condit ion ( l \  ) ) w l i e n  is lot the i l l \oi  th n  <1 Id  ill I \ u

ol ire i V e e n h o  l MU ill pe ik ( /I 2 0  ) Ol not le ) I Ills i l k  es w ith  lorn le I u o i  k u In  i c

11 u  h  f o u n d  t o  u s e  r  i p i d h  l o  i m  i \ i t n u t n  ( / »  2  n " '  i n d  ;< I 9  i c s p e c i n  l I \  )
t l u i l  d o p p i l i  l o  d i e  i  O l l s t  n i l  \  l i l l e  f l  I I | ( > I 2 |  f ( l l l l l C  1 l l l o K  i l k  p l k  I l O l l l e  III >11
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i»t moli, ili in mie pc ik  l o r  n vs tinic < ippe i ts  to  (k i p e c u l i  u i i \  o (  thè o n / i m /  

l i o t h  m d  \ \ c  lu u l  no  e \ u t e n t e  lo r  m u l l i p k  pc ik s  |oi  m \  ì / i mh «/< n ti v | \ / c m  u c  l i  u t  
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Appendix B t£f
This introduces the CA approach to scientific computing problems through 
a short illustration
Examples of Sequential and Mutli-spin coding methods for cellular 
automata methods are given as follows
Program Sequential uses sequential updating and the most recent value of 
the neighbour spins and, as such, is not strictly CA methodology as it is 
generally realised for very many similar elements, since it is inefficient, 
More usually, cellular automata use simultaneous or parallel updating, 
where each spin at time t+1 takes its neighbour values at time t
Program Multi2 uses multi-spin updating (details see Section 2 2 3 3) for 
square lattice A second index J is introduced besides the index I Many 
loops run over I and J A single logical function, OR is used here to 
implement that a spin is up if at least one of its four neighbours is up, and 
the OR rule is over all the four neighbours This achieved computing 
speeds which are much improved compared to the sequential method

PROGRAM SEQUENTIAL 
PARAMETER L=960,LP1=L+1)
INTEGER MAX,ISEED,IP,IBM,I,ITIME,MAG 
LOGICAL N(O.LPl)
REAL*4 P
READ(*,*)P,MAX,ISEED
IP=(2.0 *P-1 0)*2147483648.0
IBM=2 *ISEED-1
DO 10 1=1,L

IBM=IBM*16807 
N (I)=IBM.LT IP 

10 CONTINUE
DO 100 ITIME=1,MAX 

MAG=0
DO 20 1=1,L

IF(N(I)) MAG=MAG+1
2 0 CONTINUE

WRITE(*,*)ITIME,MAG 
IF(MAG.EQ.L OR MAG EQ.0)STOP 
N (0)=N(L )
N(LP1)=N(1)
DO 30 1=1,L

N(I)=N(I-1) OR N(I+1)
3 0 CONTINUE
100 CONTINUE

STOP
END
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PROGRAM MULTI2
INTEGER L ,L W l ,LW,NBIT,NB,MAX,ISEED,IP,IBM,I, 

J,ITIME,IDOWN,LTEMPl,LTEMP2

PAR A M E T E R (LW=3 0 ,LWl=LW+l,N B I T = 3 2 ,L=LW*NBIT,LPl=L+l) 
INTEGER N (0 LP1,0:LW1)
INTEGER M (L ,L W )
RE A L *4 P
I S H F T C (I ,K ) = I O R (I S H F T (I ,K) ,I S H F T ( I', K-NBIT) ) 
R E A D (*, *)P,MAX,ISEED 
I P = (2 0*P-1.0)*2147483648.0 
IBM=2*ISEED-1 
DO 2 0 1=1,LW 

DO 10 J = 1 ,L 
N(J , I)=0 

10 CONTINUE
2 0 CONTINUE

DO 5 0 N B = 1 ,NBIT 
DO 40 1=1,LW 

DO 3 0 J = 1 ,L
N (J ,I )=I S H F T ( N (J ,I ),1)
IBM=IBM*16807
I F (IBM.LT.IP)N(J,I)=IOR(N(J , I ) ,1) 

CONTINUE 
CONTINUE 

CONTINUE
DO 2 00 ITIME=1,MAX 

IDOWN=0 
DO 12 0 1=1,LW 

DO 110 J = 1 ,L
I F ( N O T (N(J , I )).N E .0)IDOWN=IDOWN+l 
I F (IDOWN EQ 0)STOP 

CONTINUE 
CONTINUE
W R I T E (9,*)IT I M E ,IDOWN 
DO 13 0 1=1,LW 

N( 0 , I)=N(L,I)
N (L P l ,I )= N (1,1)

CONTINUE 
DO 140 J = 1 ,L

N (J , 0)= I S H F T C ( N (J,LW),NBIT-1)
N(J,LWl)=ISHFTC(N(J,1),1)

CONTINUE 
DO 160 1=1,LW 

DO 150 J = 1 ,L
LTE M P l = I O R ( N (J ,1-1),N(J,1+1)) 
LTEMP2=IOR(N(J-l,I),N(J+l,I))
M (J , I )=IOR(LTEMPl,LTEMP2)

r

CONTINUE

30
40
50

110
120

130

140

150
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160

170
180
2 0 0

CONTINUE 
DO 180 1=1,LW 

DO 170 J=1,L 
N(J,I)=M(J,I) 

CONTINUE 
CONTINUE 

CONTINUE 
STOP 
END
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Appendix C
The various initial conditions of 2D froth with a single defect
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(b)

Figs C-3 (a)(b) later stage o f froths evolution 
Note (a) initial structure is pairs of pentagonal-heptagonal
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Appendix D

Some detailed results obtained from direct simulation

We include here example outputs of a system of size 900 cells After creating a 
Voronoi network containing 900 cells, the final network is given with statistics 
showing the distribution of the number of the cell sides with \i2 ~l 38 We only 
give the database obtained during time steps o f 80-160, the second moment, |l2, is 
thus approaching its final stable value

The results we obtained compared well with the results of Kermode and Weaire 
(1990) and overall agreement on the evolution was achieved with only minor 
difference in values quoted by those authors This was partly due to the fact that 
the values o f convergence CNVRMS and CNVRSD and scale factor SCALER 
were not the same (SCALER is the function of the long diagonal used in the 
hard-disk formulation in subroutine VSETUP, equivalent to the area perturbation 
scale in the further subroutine SETUP, see programme disk Appendix E)

D -l gives the results for vertices o f each cell o f the network, and the value o f 
pressure and area o f each cell and the area change value during the evolution The
total area and pressure are also given VI£

Tables D-2, D-3 and D-4 show the distribution of the cells with n sides, and 
calculate the second moment, and show the distributions of average area o f n- 
sided cells and average number of sides of neighbouring cells to n-sided cells 
They are used to test correlation laws due to Lewis and Aboav (Aboav-Weaire)



STEP 1 6 0  
VERTEX

NO NEAREST VERTICES NEAREST CELLS FL X-COORD Y-COORD
1 6 6 13 3 1 109
2 6 1 3 64 3 109 15 7
3 4 2 1 109 1
4 3 5 9 3 5 1 2 5 5
5 59 4 12 1 4 7 8

12 5 13 16 82 4 7 8
13 15 12 1 1 1 0 6
1 4 1 6 15 77 6 9 1 17 2
15 13 7 0 14 6 9 1 82
16 19 12 14 82 1 7 2
1 8 2 4 59 19 4 7 8 5 0 4
19 18 16 23 17 2 5 0 4
22 2 8 23 7 2 2 172 3 8 8
23 18 2 6 58 2 1 6 89 2
2 6 2 4 27 3 2 1 4 5 2 1 6
27 23 3 1 26 1 4 5 5 0 4
2 8 29 22 96 3 8 8 7 0 6
29 3 0 28 1 1 3 7 0 6 7 7 7
30 29 35 3 1 42 8 5 6
3 1 27 3 0 34 42 14 5
3 2 4 4 26 34 14 5 47 9
3 4 32 3 1 36 42 47 9
3 5 1 2 4 3 6 30 42 7 7 7
3 6 39 34 35 42 3 1 1
39 3 6 12 3 40 25 0 47 9
40 4 1 39 7 2 4 25 0 5 9 4
4 1 44 40 42 5 9 4 4 5 1
42 46 4 1 8 5 4 59 4 10 3
4 4 48 32 4 1 4 7 9 4 5 1
4 6 42 8 7 1 47 36 4 5 1
47 4 8 46 50 36 51 3
48 53 44 47 4 5 1 51 3
5 0 5 1 47 6 3 0 36 7 8 4
5 1 5 0 6 2 6 52 3 7 6 51 3
5 2 5 1 55 53 122 51 3
5 3 — ^ 4 8 52 58 12 2 2 1 6
5 5 6 2 3 56 52 122 3 7 6
5 6 60 57 55 122 40 6
57 59 58 56 12 2 2 5 5
5 8 53 57 24 89 2 2 1 6

2 4 3 2 4 2 2 4 4 2 5 3 8 68 2
2 4 4 1 1 2 2 1 1 2 9 2 4 3 8 4 1 0
2 4 6 2 5 0 2 6 1 2 4 1 13 2 3 4 7
2 5 0 2 5 1 2 4 6 2 4 2 34 7 68 2
2 5 1 2 5 2 2 5 9 2 5 0 16 68 2
2 5 2 2 5 3 2 6 8 2 5 1 3 1 6 68 2
2 5 3 2 5 2 2 4 3 1 1 3 3 8 46 3
2 5 9 2 6 5 2 6 0 2 5 1 16 3 1 6

1 0 6 14  2 3 5 7 8 5 23  9 1 1 7 8 3
7 7 6 1 4  8 6 2 4 4 4 2 6  9 0 5 4 4 9
1 5 7 15 3 7 6 7 9 7 2 5  2 2 4 6 6 3
15 7 1 6  6 4 0 1 9 6 2 4  9 0 4 9 0 0
2 5 5 16  9 8 1 8 6 3 2 3  0 0 0 4 0 8

1 1 6  4 2 5 5 0 5 22  5 8 8 6 9 0
82 14  5 1 5 1 3 2 23  1 5 7 7 4 7
82 1 4  4 2 3 8 5 0 2 0  9 3 3 3 1 7

1 0 6 13 6 6 5 3 8 2 2 2  0 0 5 4 4 0
4 7 8 1 6  4 9 6 3 8 2 2 1  8 2 7 1 0 8
89 2 17 7 4 8 8 4 2 22  1 3 2 5 1 7
4 7 8 1 6  9 9 3 9 8 4 2 1  5 8 7 9 1 7
8 5 6 15 9 6 8 5 0 2 18  5 0 5 5 8 1
50 4 18  7 9 5 8 1 3 2 1  8 0 7 2 9 3
5 0 4 19  3 5 9 3 1 2 19  4 1 1 8 5 4
8 5 6 18 9 8 7 6 3 3 19 0 9 1 4 4 4
8 5 6 1 6  0 2 5 3 6 0 1 6  9 4 3 3 4 2
8 5 6 17 0 1 5 6 1 0 16  2 2 9 1 2 0
77 7 19  3 0 8 0 8 3 17 2 3 3 7 4 6
85 6 19 5 1 4 8 2 4 17 8 8 9 3 6 6
2 1 6 2 0  1 1 7 7 7 5 1 8  9 5 0 6 7 2
1 4 5 19 7 4 2 0 6 0 17 8 9 5 3 4 4
3 1 1 1 9  7 2 4 1 0 0 1 6  9 6 8 4 7 7
47 9 19 9 9 3 6 6 8 17 1 6 0 5 4 0
3 1 1 2 1  2 7 0 6 7 4 1 6  3 3 1 9 0 5
47 9 22 4 1 3 2 5 6 1 6  6 2 7 1 9 3
47 9 2 2  7 8 3 4 8 9 1 8 . 7 5 4 5 8 3
4 5 1 23 8 0 7 7 0 3 19 4 7 0 9 8 9
2 1 6 2 1  6 8 9 4 2 6 19 5 4 7 4 2 6
10 3 23  8 6 2 8 2 7 2 0  5 4 5 9 1 8
4 5 1 2 3  2 0 4 5 3 8 2 1  2 9 5 2 2 3
2 1 6 2 1  9 8 9 8 6 2 2 1  0 2 0 2 1 2
51 3 2 3  7 5 7 2 0 2 2 2  7 9 5 8 8 1
7 8 4 22 6 5 8 4 8 2 2 3  9 8 7 2 3 6
3 7 6 2 0  9 7 8 9 1 0 2 3  5 6 9 7 9 8
51 3 20  6 1 2 0 5 3 22  5 6 5 6 1 5
40 6 19  8 5 3 8 1 7 2 4  9 0 0 9 2 7
2 5 5 19 5 3 9 1 3 5 2 4  8 6 7 8 3 4
89 2 1 8 . 7 7 0 4 2 4 2 3  0 4 1 7 0 8
12 2 19 2 2 6 2 8 6 22  4 3 4 1 9 1
4 1 0 6 4 6 2 6 4 4 3 6  6 3 9 7 7 1
7 3 6 6 3 1 7 1 9 0 3 8  4 3 3 0 2 5

16 7 8 3 2 2 9 8 3 4  2 3 7 3 5 4
16 7 4 1 5 3 5 3 3 4  4 7 1 5 2 3

3 1 6 5 8 4 3 4 2 5 33  6 0 4 5 3 4
46 3 4 9 4 8 9 4 5 3 4  1 1 8 9 6 1
68 2 4 8 7 0 4 5 0 3 5  6 3 5 2 1 2
6 4 2 5 7 8 1 8 1 3 32  4 9 3 8 3 2



ITERATION 6
CELL

NO NS PRESSURE AREA
1 6 -- 7 3 4 5 7 1 E - 0 1 4 9 2 1 4 2

3 6 0 4 4 6 8 2 8 E - 0 1 2 0 5 7 8 5
4 5 - 4 0 9 7 0 4 E - 0 1 4 2 4 8 6 2
7 5 0 3 9 9 7 7 7 0 5 7 2 3 3 5
8 7 - 1 4 0 4 5 8 9 1 7 2 0 0

10 4 0 4 5 9 7 5 9 0 9 2 6 2 4 7
11 6 - 2 5 1 9 0 0 E - 0 1 4 8 5 2 9 5
12 6 - 7 8 0 2 1 8 E - 0 1 4 5 1 5 9 5
1 4 6 - 9 0 0 6 2 6 E - 0 1 4 4 8 5 9 4
16 6 - 9 8 6 0 5 4 E - 0 1 4 1 6 6 9 0
22 9 - 2 2 6 3 8 7 1 1  3 7 6 8
23 5 0 3 0 3 5 7 1 0 7 2 3 3 3 2
2 4 6 - 1 0 9 8 5 9 2 2 8 5 5 9
2 6 8 - 2 4 4 1 3 5 1 1  9 5 3 2
2 7 5 0 4 8 1 5 2 9 E - 0 1 2 1 0 1 4 0
2 8 5 0 2 3 9 3 5 2 0 7 5 4 7 9 1
30 7 - 1 8 6 5 0 4 10  2 7 2 7
32 7 - 1 7 2 0 3 2 5 2 2 0 5 8

''^3 6 6 - 3 6 6 4 5 1 E - 0 1 3 3 8 4 4 1
39 7 - 1 9 0 8 5 7 9 6 4 7 5 1
42 5 0 3 2 8 2 0 8 0 4 2 8 8 1 2

1 6 5 6 - 8 0 3 3 2 8 E - 0 1 4 7 3 2 0 8
1 6 7 5 0 1 8 6 7 0 9 1  5 9 1 3 7
1 7 0 7 - 1 9 2 0 7 4 4 6 7 6 0 9
1 7 2 7 - 1 1 6 5 2 4 7 3 9 9 1 8

D -l

CHANGE 
0 5 3 7 4 6 3 E - 0 3
0 6 6 7 4 2 1 E - 0 4
-  1 3 6 3 3 7 E - 0 2
-  1 0 4 7 5 6 E - 0 3
-  2 2 8 3 6 0 E - 0 2
-  4 4 2 7 0 2 E - 0 3
0 5 7 8 9 8 0 E - 0 3  
0 4 1 8 4 4 4 E - 0 3
0 9 8 9 7 7 7 E - 0 4
0 4 1 9 4 2 1 E - 0 2
-  9 5 9 5 4 8 E - 0 4  

0 5 4 2 4 7 9 E - 0 3
-  1 7 5 2 9 8 E - 0 2  

0 2 2 6 2 2 1 E - 0 2
-  5 4 3 9 5 0 E - 0 4  

0 1 0 2 1 0 5 E - 0 3  

0 1 9 7 3 4 3 E - 0 3
-  6 2 7 2 3 2 E - 0 5
-  1 0 1 5 8 3 E - 0 2
-  1 6 0 6 7 1 E - 0 2
-  2 4 5 2 9 6 E - 0 3

-  1 3 0 4 9 7 E - 0 3
-  8 8 4 2 0 9 E - 0 3
-  2 9 2 1 1 8 E - 0 3  

0 3 3 1 4 8 1 E - 0 6



2 6 0 2 7 6 2 6 1 2 5 9 16 64 2 37 7 6 9 7 6 8 4 6 3 1  5 9 6 1 9 3
2 6 1 3 2 1 2 4 6 2 6 0 16 3 7 7 13 2 7 4 7 1 1 7 1 3 1  7 4 1 1 3 1 1 7 3
2 6 5 2 5 9 2 6 7 2 7 1 5 8 4 6 4 2 3 1 6 4 0 6 2 2 0 8 3 1  7 1 1 3 9 5
2 6 7 2 7 4 2 6 5 2 6 8 3 1 6 5 5 0 58 4 3 5 7 1 7 5 9 32  0 1 0 9 8 6 1 7 4
2 6 8 2 6 7 2 5 2 26 9 4 6 3 55 0 31 6 3 5 0 4 6 0 4 33  2 0 5 0 4 4
2 6 9 1 1 9 2 2 6 8 1 1 8 8 46 3 8 3 2 55 0 2 2 5 1 6 4 2 33 8 2 8 0 9 4 1 7 5
28 2 2 9 1 2 8 4 2 8 1 39 7 8 8 0 2 8 0 7 7 7 5 9 3 3 27  5 7 5 9 9 3 18 8
2 8 4 2 8 5 2 8 2 3 1 4 2 8 0 57 0 39 7 8 3 9 2 8 7 2 2 8  7 4 0 2 2 1
2 8 5 2 8 4 3 2 1 2 7 6 3 7 7 3 9 7 57 0 7 5 2 6 3 4 2 3 0  7 6 0 2 4 1 18 9
2 8 6 2 8 1 2 7 8 2 8 8 77 3 8 8 0 81 3 5 2 2 9 8 3 0 27  1 8 2 6 8 4
2 8 8 2 8 6 2 9 8 2 8 9 84 3 8 8 0 7 7 3 5 3 4 6 9 9 9 2 5  8 0 6 3 4 3 19 0
2 8 9 2 8 8 2 9 5 3 0 2 84 0 8 8 0 843 6 2 3 7 4 8 5 2 5  3 7 1 2 6 9
2 9 1 3 0 2 3 1 5 2 8 2 2 8 0 8 8 0 87 5 8 2 8 4 8 7 7 2 6  7 9 7 7 0 5 1 9 1
2 9 5 3 0 1 2 8 9 2 9 7 84 3 3 1 4 84 0 6 1 4 9 0 6 1 2 4  4 0 0 8 6 2
2 9 7 2 9 8 2 9 9 2 9 5 3 1 4 8 4 3 90 0 5 2 1 5 4 9 2 23  9 9 7 9 5 2 19 2

1 7 0 7 1 7 0 8 1 6 6 0 1 7 0 6 98 7 4 4 8 1 0 38 0 5 6 2 7 4 12  3 0 1 3 7 9 8 6 5
1 7 0 8 1 7 0 7 1 6 9 7 1 6 5 1 2 3 7 8 1 0 74 4 37  8 5 4 0 7 6 12  5 2 9 1 3 5
1 7 1 0 1 7 0 6 1 7 0 3 1 6 9 7 3 5 1 7 4 4 193 38 4 5 2 9 2 7 13 0 8 9 3 0 1 86 7
1 7 1 1 1 7 1 4 1 7 0 3 1 7 1 2 1 9 3 6 5 6 40 8 4 0  3 5 1 8 2 2 15  3 8 5 7 3 6
1 7 1 2 1 3 4 6 1 3 4 7 1 7 1 1 6 5 6 19 3 7 5 1 41 7 1 6 4 9 9 14  9 9 2 0 1 9 8 6 8
1 7 1 4 1 7 1 8 1 7 1 9 1 7 1 1 4 0 8 6 5 6 6 3 3 4 0  3 3 9 6 5 7 1 5 . 7 8 6 5 4 9
1 7 1 6 1 7 0 3 1 7 1 9 1 6 9 4 24 9 3 5 1 40 8 39 6 1 8 0 1 1 15 5 4 4 5 1 9 8 6 9
1 7 1 8 1 7 1 4 1 3 4 7 1 7 2 0 7 7 5 6 3 3 65 6 4 0  9 1 4 4 9 4 1 6  1 5 0 9 4 0
1 7 1 9 1 7 2 2 1 7 1 6 1 7 1 4 4 0 8 6 3 3 2 4 9 39 9 2 8 7 6 4 15  9 3 1 3 8 5 87 2
1 7 2 0 1 7 1 8 1 6 2 2 1 7 2 1 49 0 63 3 7 7 5 40  7 5 6 3 2 5 17 4 7 7 0 6 6
1 7 6 2 1 7 6 8 9 9 5 1 7 6 3 2 5 4 8 6 1 49 1 4 8  0 6 2 0 6 5 1 0  6 4 1 7 1 0
1 7 6 3 1 7 5 8 1 7 6 4 1 7 6 2 8 6 1 2 5 4 1 2 1 47 4 0 6 7 1 5 1 1  2 9 5 6 5 1 8 8 8
17 64 17 63 1 3 4 9 1 3 6 3 8 9 1 8 6 1 1 2 1 4 5  1 2 8 1 5 9 1 1  4 0 1 8 4 5
1 7 6 6 1 7 6 7 1 3 5 6 1 7 7 0 5 2 7 6 0 4 8 6 1 45 1 9 2 1 5 4 8 6 6 8 9 0 5 8 8 9
1 7 6 7 1 7 6 8 1 7 6 6 1 7 7 1 6 0 4 7 3 7 8 6 1 4 6  4 0 0 4 5 5 8 2 5 2 0 3 1
1 7 6 8 1 7 6 7 9 8 1 1 7 6 2 4 9 1 8 6 1 7 3 7 47 9 6 5 1 6 4 9 2 2 4 2 9 0 8 9 1
1 7 6 9 1 3 4 9 1 7 6 0 1 3 3 7 5 7 7 18 9 1 2 1 4 6  9 1 9 7 5 8 1 4  1 6 8 5 9 1
1 7 7 0 1 3 7 6 1 3 8 3 1 7 6 6 6 0 4 52 7 5 3 0 44 8 9 5 8 8 2 8 3 1 4 5 3 7 8 9 2
1 7 7 1 1 7 6 7 1 3 8 3 1 7 8 8 3 4 8 7 3 7 6 0 4 46  1 2 3 4 0 9 6 9 0 9 4 6 6
1 7 7 4 1 2 1 2 9 7 6 1 7 7 5 5 5 6 7 2 0 7 56 51 8 8 3 0 4 5 4 7 8 3 6 0 0 8 9 5
1 7 7 5 1 7 7 4 1 7 7 6 1 7 7 8 4 2 8 7 2 0  ' 5 5 6 5 1  0 6 4 6 6 7 4 4 4 9 3 1 0
1 7 7 6 9 8 2 1 7 7 9 1 7 7 5 4 2 8 5 5 6 7 3 7 49 7 1 5 0 2 7 5 3 9 0 6 5 4 8 9 6
1 7 7 8 1 2 1 1 1 7 7 5 1 4 6 8 4 2 8 5 8 8 7 2 0 5 1  0 8 3 3 7 8 3 9 9 0 7 2 3
1 7 7 9 1 7 7 6 1 7 8 8 1 4 6 7 1 5 8 4 2 8 7 3 7 48 2 5 9 8 8 4 4 6 7 9 5 5 8 8 9 7
1 7 8 0 1 4 6 0 1 4 6 1 1 2 1 0 8 6 8 5 8 8 489 5 1  1 0 5 1 5 6 0 67 4 7 6 7
1 7 8 8 1 7 7 1 1 3 9 1 1 7 7 9 1 5 8 7 3 7 3 4 8 46 7 5 2 8 9 2 5 3 9 5 4 9 8 8 9 8
1 7 8 9 1 1 6 0 1 1 3 8 1 1 4 6 63 5 5 8 3 8 4 5 1  7 4 2 7 5 2 39  3 2 2 7 0 8
1 7 9 4 1 7 9 7 1 3 8 0 1 6 7 0 19 2 2 6 8 4 4 7 39 1 1 1 5 6 8 5 9 4 8 7 9 1 9 0 0
1 7 9 7 1 3 8 7 1 7 9 4 1 6 7 4 2 6 8 5 4 2 447 39 2 3 9 1 5 9 5 4 2 9 9 3 5

TOTAL AREA 2 3 3 8  27 TOTAL PRESSURE 0 6 8 5 4 5 3 E - 0 6



5 0 2 4 4 2 8 9
6 0 1 2 3 7 9 7 E
6 -  17 2 8 2 9 E -
7 -  1 2 6 8 5 7  

5 0 3 0 2 5 2 7
4 0 4 9 0 2 1 6
8 -  2 1 8 7 8 8
5 0 1 5 6 5 8 7
5 0 40 3 6 9 5 E -
6 -  1 5 7 1 7 3  

8 -  2 4 7 0 3 8
7 -  1 4 3 5 6 7

6 -  1 2 7881 6 1 3 4 3 6  

0 5 7 8 8 4 6  

-0 1  2 5 1 0 6 0
•01 3 8 6 9 6 4

5 6 8 8 3 1  
0 3 8 9 2 1 8  

0 6 3 8 7 8 4  

13 1 5 6 9  

1 1 6 6 5 9  

0 1  2 6 4 2 9 0
4 2 6 3 7 8  

9 6 2 4 5 1  

8 5 8 8 9 2

-  2 8 3 4 6 3 E - 0 4  

0 3 3 7 3 7 3 E - 0 3  

0 2 6 4 9 1 5 E - 0 2
-  4 7 9 7 7 3 E - 0 4
-  4 5 7 8 0 8 E - 0 4
-  7 6 7 1 3 9 E - 0 4
-  7 1 3 8 2 0 E - 0 3
-  1 5 5 6 9 6 E - 0 4  

0 9 4 0 5 0 9 E - 0 3
-  3 8 7 2 3 7 E - 0 4
-  8 8 6 6 8 0 E - 0 3
-  3 4 7 7 3 3 E - 0 2

0 3 7 8 2 7 2 E -0 2

6 -  1 3 3 1 6 2  8 7 7 7 5 3
6 0 3 9 0 2 8 6 E - 0 2  3 9 9 8 0 6
5 0 2 1 8 2 3 5  0 9 8 9 0 1 1
5 0 1 4 7 7 9 4  1 2 6 6 4 4
8 -  2 5 6 3 4 2  9 0 2 7 0 7-
8 -  1 8 9 7 7 8  1 1  6 2 1 6
6 -  4 4 9 8 6 1 E - 0 1  3 4 6 7 7 4
6 -  7 8 9 6 1 6 E - 0 1  2 3 6 3 6 5
7 -  1 5 5 4 8 3  1 1  6 6 8 8

-  2 1 4 5 1 3 E - 0 2  

0 1 2 2 7 8 8 E - 0 2  

0 9 6 4 9 2 7 E - 0 6  

0 9 1 3 1 4 2 E - 0 4  

0 6 1 4 6 8 5 E - 0 3  

0 7 0 8 2 3 0 E - 0 4  

0 7 1 5 6 2 0 E - 0 4  

0 7 4 7 7 6 0 E - 0 3
-  4 5 8 8 8 5 E - 0 2

NUMBER CELLS REMAINING 50 9
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IN IT IA L  CONFIGURATION 60  BY 3 0  SYSTEM ------- > 1 8 0 0  VERTICES , 9 0 0  CELLS
CONVERGENCE (EQUIL) -  0 5 0 0 0 E - 0 2  TOLERENCE (DIFFUS) -  0 OOOOE+OO

OPTIONS --------> 0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  0 ,  2 ,  0 ,  0 ,  0 ,  0
NUMBER STEPS PERFORMED -  1 6 0  FINAL CELL COUNT -  5 0 9  NUMBER OF TOPOLOGICAL CHANGES----------- > T1 -  3 4 2  T2 - 1 8 1

PROGRAM R O U T E  > SYSTEM PERIODIC /IN PU T  -  FOR 3 1  DAT /EQUIL CALLS -  80  DIFFUS CALLS -  84
STATISTICS - - - - - - - - - - - -  TABLE A

D i s t r i b u t i o n  o f t h e  n u m b er  o f c e l l s w i t h  n s i d e s  o v e r 1 6 0  s t e p s s h o w i n g 80 p o i n t s
STEP I 3 4 1 5 1 6 1 7 1 8 1 9 1 10 1 1 1  1 12 I TOTAL 1 NO T1 MU2

8 1  1 0 33 1 2 0 9 1 2 5 1 1 1 3 5  1 45 1 1 1 1 3 1 1 1 0 1 68 8 1 3 1 2 0 3
82 1 0 29 1 2 1 4 1 2 4 7 1 1 3 6  1 43 1 11 1 3 1 1 1 0 1 6 8 4 1 5 1 1 8 4
83 1 0 27 1 2 1 4 1 2 4 7 1 1 3 5  1 43 1 10 1 3 1 1 1 0 1 6 8 0 1 4 1 1 6 5

1 1 9  1 0 29 1 19 0 1 2 0 2 1 1 3 0  1 39 1 9 1 2 1 1 1 0 1 60 2 1 14 1 2 1 3
1 2 0  1 1 27 1 1 8 8 1 2 0 1 1 1 3 3  1 39 1 7 1 2 1 1 1 0 1 59 9 1 7 1 1 9 2
1 2 1  1 0 28 1 18 7 1 2 0 2 1 1 2 8  1 42 1 6 1 2 1 1 1 0 1 5 9 6 1 7 1 1 8 5
1 2 2  1 2 24 1 18 8 1 2 0 0 1 1 3 0  1 39 1 7 1 2 1 1 1 0 1 5 9 3 1 6 1 1 9 4
1 2 3  I 0 24 1 1 9 0 1 2 0 0 1 1 2 8  1 41 1 5 1 2 1 1 1 0 1 5 9 1 1 0 1 1 5 1
1 2 4  1 1 22 1 192 1 19 7 1 1 2 7  1 42 1 5 1 2 1 1 1 0 1 58 9 1 5 1 1 6 5
1 2 5  I 0 2 1 1 1 9 2 1 2 0 0 1 1 2 5  1 42 1 4 1 2 1 1 1 0 1 5 8 7 1 1 1 1 2 8
1 2 6  I 1 19 1 1 9 1 1 2 0 1 1 1 2 2  1 42 1 4 1 2 1 0 1 1 1 58 3 1 6 1 14 9
1 2 7  1 0 17 1 19 3 1 1 9 9 1 1 1 8  1 42 1 4 1 2 1 1 1 0 1 5 7 6 1 7 1 1 1 1
1 2 8  1 2 14 1 1 9 4 1 19 7 1 1 1 9  1 42 1 4 1 2 1 1 1 0 1 5 7 5 1 3 1 1 2 7
1 5 4  1 0 26 1 1 6 0 1 1 8 0 1 1 0 9  1 37 1 7 1 2 1 0 1 0 1 5 2 1 1 3 1 1 8 2
1 5 5  1 1 25 1 1 6 0 1 1 8 0 1 1 0 7  1 3 8 1 6 1 3 1 0 1 0 1 5 2 0 1 2 1 2 1 2
1 5 6  I 2 25 1 1 5 8 1 18 3 1 98  1 39 1 10 1 2 1 0 1 0 1 5 1 7 1 16 1 2 6 1
1 5 7  1 0 25 1 1 5 8 1 1 8 5 1 99 1 37 1 9 1 2 1 0 1 0 1 5 1 5 1 0 1 2 0 0
1 5 8  1 1 24 1 15 7 1 18 7 1 96  1 38 1 8 1 3 1 0 1 0 1 5 1 4 1 2 1 2 2 6
1 5 9  1 1 22 1 15 9 1 1 8 5 1 9 8  1 36 1 8 1 3 1 0 1 0 1 5 1 2 1 3 1 2 0 7
1 6 0  I 0 20 1 1 6 1 1 1 8 5 1 98  1 34 1 9 1 2 1 0 1 0 1 50 9 I 2 1 1 5 5
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STATISTICS - - - - - - - - - - - -  TABLE B
Distribution of the average area of n-sided cells over 160 steps showing 80 points

STEP 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 10 1 11 1 12
8 1 10 OOOOE+OO 1 0 4 3 2 2 1 1 42 8 1 3 3 3 4 1 5 3 0 6 1 7 3 6 6 1 8 57 3 1 10 84 1 14 09 0 00 E + 0 0
82 10 OOOOE+OO 1 0 4 6 4 4 1 1 42 3 1 3 3 6 9 1 5 3 6 0 1 7 3 8 3 1 8 61 7 1 10 90 1 14 16 0 00 E + 0 0
83 10 0 0 0 0 E + 0 0 10 5 6 7 7 1 1 419 1 3 3 9 5 1 5 3 7 3 1 7 46 4 1 8 7 2 4 1 10 94 1 14 20 0 0 0 E + 0 0
8 4  10 0 0 0 0 E + 0 0  10 5 7 1 1  I 1 40 9  I 3 3 9 6  I 5 3 8 8  I 7 6 3 0  I 8 8 8 6  I 10  2 5  I 14  3 1  0 0 0 E + 0 0

89 10 OOOOE+OO 10 6 1 1 7  I 1 4 1 1  I 3 4 2 4  I 5 5 0 2  I 7 5 1 5  I 9 6 4 1  I 10  5 1  I 14  65  10 OOOOE+OO I
1 3 8 10 OOOOE+OO 1 0 4 4 9 8 1 1 72 2 1 3 9 7 5 1 6 78 7 1 9 6 1 0 1 10 30 1 17 27 10 0 0 0 0 E + 0 0 1
13 9 10 OOOOE+OO 10 3 7 9 1 1 1 7 5 5 1 3 9 7 5 1 6 82 2 1 9 43 4 1 10 39 1 17 38 10 0 0 0 0 E + 0 0 1
1 4 0 10 2 1 1 8 E - 0 1 1 0 5 2 1 0 1 1 81 7 1 4 0 1 4 1 6 7 7 1 1 8 9 5 1 1 11 53 1 16 43 1 0 0 0 0 0 E + 0 0 1
1 4 1 1 0 8 1 1 3 E - 0 1 10 4 0 2 7 1 1 80 0 1 4 0 4 0 1 6 7 7 2 1 9 8 6 0 1 11 46 1 16 70 1 0 0 0 0 0 E + 0 0 1
14 2 10 8 2 9 1 E - 0 3 10 5 5 3 2 1 1 809 1 4 04 9 1 6 8 4 0 1 9 8 1 9 1 12 29 1 14 54 10 0 0 0 0 E + 0 0 1
14 3 10 OOOOE+OO 10 6 0 3 7 1 1 807 1 4 06 5 1 6 8 8 8 1 9 9 8 1 1 12 06 1 16 87 10 0 0 0 0 E + 0 0 1
14 4 10 1 4 5 1 E - 0 1 10 6 9 9 2 1 1 819 1 4 02 8 1 6 9 3 0 1 10 06 1 11 63 1 16 90 10 0 0 0 0 E + 0 0 1

1 5 1 10 OOOOE+OO 1 0 7 3 4 9 1 1 869 1 4 0 7 2 1 7 13 9 1 10 27 1 12 86 1 17 44 10 0 0 0 0 E + 0 0 1
15 2 1 0 OOOOE+OO 1 0 7 1 4 7 1 1 85 8 1 4 07 2 1 7 14 9 1 10 29 1 12 89 1 17 48 10 0 0 0 0 E + 0 0 1
1 5 3 10 OOOOE+OO 10 8 2 9 7 1 1 9 0 0 1 4 06 0 1 7 12 7 1 10 34 1 12 51 1 17 51 10 0 0 0 0 E + 0 0 1
1 5 4 10 OOOOE+OO 10 8 4 7 8 1 1 909 1 4 0 6 3 1 7 09 4 1 10 28 1 12 94 1 17 54 10 0 0 0 0 E + 0 0 1
1 5 5 1 0 2 4 2 1 E - 0 1 10 8 5 0 3 1 1 8 8 8 1 4 0 9 6 1 7 10 6 1 10 28 ■ — 

* 
h* iti 23 1 15 7 1 10 0 0 0 0 E + 0 0 1

1 5 6 10 2 2 8 9 E - 0 1 10 7 5 8 1 1 1 86 3 1 4 2 1 1 1 7 2 2 5 1 9 9 1 4

1 <N 
1 H 
1t- — 

■
I111

3 8 1 17 87 10 0 0 0 0 E + 0 0 1
15 7 10 OOOOE+OO 1 0 7 3 2 7 1 1 85 0 1 4 2 2 1 1 7 2 3 3 1 10 26 1 12 81 1 17 93 10 0 0 0 0 E + 0 0 1
1 5 8 10 2 1 0 9 E - 0 1 10 7 9 4 5 1 1 84 8 1 4 2 4 7 1 7 2 4 0 1 10 22 1 13 2 6 1 15 12 10 0 0 0 0 E + 0 0 1
1 5 9 1 0 3 7 8 1 E - 0 1 10 8 2 3 8 1 1 8 5 8 1 4 2 4 5 1 7 3 0 1

1 O 
I 

1 H 
l 

1 
l 

t- — 
- 

1

32 1 12 84 1 16 48 10 0 0 0 0 E + 0 0 1
1 5 0 1 0 OOOOE+OO 10 8 7 7 5 1 1 867 1 4 2 5 4 1 7 40 7 1 10 43 1 12 94 1 18 09 10 OOOOE+OO 1
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STATISTICS TABLE C
Distribution of the average number of sides of cells neighbouring n-sided cells over 160 steps showing 80 points

STEP I 3 I 4 I 5 I 6  I 7 I 8  I 9 I 10  I 11  I 12
8 1 10 OOOOE+OO 1 6 8 7 1 1 6 432 1 6 2 0 3 1 6 0 2 8 1 5 9 0 6 1 5 8 0 8 1 5 63 3 1 5 4 5 5 0 0 0 0 0 E + 0 0

82 10 OOOOE+OO 1 6 879 1 6 430 1 6 1 9 8 1 6 0 3 4 1 5 8 8 1 1 5 7 9 8 1 5 6 3 3 1 5 45 5 10 OOOOE+OC
83 10 OOOOE+OO 1 6 9 2 6 1 6 417 1 6 1 9 8 1 6 0 3 1 1 5 8 9 0 1 5 7 8 9 1 5 5 6 7 1 5 4 5 5 1 0 0 0 0 0 E + 0 0
84 10 OOOOE+OO 1 6 9 5 5 1 6 4 1 5 1 6 2 0 0 1 6 0 2 4 1 5 9 0 5 1 5 8 1 5 1 5 5 5 0 1 5 45 5 1 0 OOOOE+OO
85 10 0 0 0 0 E + 0 0 1 6 9 6 3 1 6 413 1 6 1 9 7 1 6 0 2 6 1 5 9 0 2 1 5 8 1 5 1 5 5 5 0 1 5 4 5 5 1 0 OOOOE+OO

8 6 10 0 0 0 0 E + 0 0 1 6 9 7 2 1 6 413 1 6 1 9 4 1 6 0 2 0 1 5 90 9 1 5 8 4 0 1 5 6 0 0 1 5 4 5 5 1 0 0 0 0 0 E + 0 0
87 10 0 0 0 0 E + 0 0 1 6 96 3 1 6 41 6 1 6 1 9 5 1 6 0 2 0 1 5 89 9 1 5 83 3 1 5 6 0 0 1 5 45 5 1 0 0 0 0 0 E + 0 0

8 8 1 7 0 0 0  11 6 9 4 4 1 6 424 1 6 1 9 6 1 6 0 2 5 1 5 9 0 5 1 5 889 1 5 6 0 0 1 5 4 5 5 1 0 OOOOE+OO

1 3 2 10 0 0 0 0 E + 0 0  11 7 0 2 1 1 6 399 1 6 1 9 3 1 5 9 8 9 1 5 9 3 8 1 5 7 6 2 1 5 9 0 0 1 5 54 5 1 0 OOOOE+OO

1 3 3 1 8  0 0 0  11 7 1 1 5 1 6 409 1 6 2 1 0 1 5 9 9 2 1 5 9 3 6 1 5 7 7 8 1 5 8 0 0 1 5 5 4 5 1 0 OOOOE+OO
1 3 4 10 OOOOE+OO 11 7 0 0 0 1 6 393 1 6 2 0 2 1 5 9 9 2 1 5 9 0 8 1 5 7 6 4 1 5 8 3 3 10 OOOOE+OO 1 0 OOOOE+OO
1 3 5 10 0 0 0 0 E + 0 0  1 7 0 2 1 1 6 3 9 1 1 6 2 0 0 1 5 9 9 2 1 5 9 0 2 1 5 7 6 4 1 5 8 3 3 10 0 0 0 0 E + 0 0 1 0 OOOOE+OO

1 5 0 10 OOOOE+OO 1 6 91 2 1 6 44 4 1 6 1 8 4 1 5 9 9 0 1 5 8 9 6 1 5 7 6 2 1 5 8 5 0 10 OOOOE+OO 1 0 OOOOE+OO
1 5 1 10 0 0 0 0 E + 0 0  1 6 893 1 6 456 1 6 1 8 0 1 5 9 9 9 1 5 8 7 8 1 5 7 4 6 1 5 8 0 0 10 0 0 0 0 E + 0 0 1 0 0 0 0 0 E + 0 0

1 5 2 10 OOOOE+OO 1 6 89 3 1 6 45 6 1 6 1 8 0 1 5 99 9 1 5 8 7 8 1 5 7 4 6 1 5 8 0 0 10 OOOOE+OO 1 0 OOOOE+OO
1 5 3 10 0 0 0 0 E + 0 0  1 6 927 1 6 46 5 1 6 1 8 1 1 6 0 0 4 1 5 87 9 1 5 7 5 0 1 5 8 0 0 10 OOOOE+OO 1 0 OOOOE+OO
1 5 4 10 0 0 0 0 E + 0 0  I 6 90 4 1 6 466 1 6 1 8 3 1 6 0 0 8 1 5 8 7 8 1 5 7 6 2 1 5 8 0 0 10 OOOOE+OO' 1 0 0 0 0 0 E + 0 0
1 5 5 1 8  3 3 3  I 6 9 4 0 1 6 4 6 6 1 6 18 7 1 6 O i l 1 5 8 8 5 1 5 7 4 1 1 5 8 3 3 10 OOOOE+OO 1 0 OOOOE+OO

1 5 6 1 7 8 3 3  I 6 9 6 0 1 6 470 1 6 2 1 1 1 6 0 1 6 1 5 8 6 5 1 5 7 4 4 1 5 8 0 0 10 OOOOE+OO 1 0 OOOOE+OO
1 5 7 10 0 0 0 0 E + 0 0  I 6 9 3 0 1 6 462 1 6 19 9 1 6 0 0 6 1 5 8 6 5 1 5 7 4 1 1 5 8 0 0 10 0 0 0 0 E + 0 0 1 0 OOOOE+OO

1 5 8 1 8  0 0 0  I 6 9 7 9 1 6 464 1 6 1 9 8 1 6 0 1 0 1 5 8 7 5 1 5 7 6 4 1 5 7 3 3 10 OOOOE+OO 1 0 OOOOE+OO
1 5 9 1 8  0 0 0  I 6 943 1 6 459 1 6 1 9 6 1 6 01 3 1 5 8 6 5 1 5 7 5 0 1 5 8 0 0 10 OOOOE+OO 1 0 OOOOE+OO

1 6 0 10 0 0 0 0 E + 0 0  I 6 9 3 8 1 6 4 4 8 1 6 1 8 6 1 6 0 0 9 1 5 8 6 0 1 5 7 6 5 1 5 8 0 0 10 0 0 0 0 E + 0 0 1 0 OOOOE+OO
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Appendix £

Diskette A
Sandpile for — Sandpile Model program 

Dissand for — Dissipative Sandpile Model program
Zz for  Direct Simulation program
Plan c ------Graphics program
Me fo r  MC method program
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