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gr of 1233 ani rin3 1807 Zecorcs
coztained 11 the CLentzal Ctatistics Office vJere not alvays
readi1ly available Also 1n mnany instances tne access to records
which recorded the age of the population and the nunver of deaths
w.thin each age group of tz2e sopalatior althoaglh available were
recorded 1n different reports, '"ore details of the specific
drfficulties encountered are described i1n chapter 4 One must
also point out that often the cencus figures were recorded at
irregular 1ntervals (usunally every 5 years but this was not
always the case) and that the most recent figures available on
the numbers 1n each age group were to be found i1n the 1981 census
reports

The collection of data on the proportions imnunised 1n each age
grots was also very d1fficalt o official f131res rere availaole
to me, novever I 7as very fortunate to have received 1nformation
and assistance from Community Care irea 8. This area kept details
on the numbers of children vaccinated, the age of each child
vaccinated and the total number of children 1n each age group.
The collection of this i1mmunisation data occupied all of Summer
1986 Community Care Area 8 had all the above data commputerised

for those children 2n the Gemeral Medical Service (G.M.S.) It

remained for me to computerise the remaining cases of non G.M.S,



data ~his was achieved by coding, for nse wita the statistaical
package SPSSX, all immunisations forms returned by doctors 1n the
area In order to be paid for administering tle vaccine all
doctors a2a. to coanplete aia retarn tnese foras (A copy of one

suct foro 1s attached ) The d-ta coataineld 11 tais fornm vas tien

transcrioel onto a coupater data 21try sieet (sze attacaed) CTata
fron over 4097 vaccinations ’'as codeac a ¢ cornuterised 11 tais
Yay

As the total numbers of cnildren 1n each asze group was available
I then estimated the proportions vaccinated 1n each of the age
sroups I zust stress taat tazs soald not zave been possible were
1t not for the excellent records kept within Community Care Aresa
8.

I was very fortunate that I could estimate the exact proporttrons
susceptible to measles i1nfection prior to mass immunisation. This
was due to the fact that ununvaccinated blood samples were
available 1n the Departmeat of !fedical Microbiology 1n University
College Dublin From the records made available to me I drew a
sample of over 140 bloods Taese were tacen from children setween
tre aces of 1 aand 13 years Trese blood sarples sere tnen tested
usiag the Craitical Flicser Fusion test {(CTZ) for aeasles
antibodies. The proportions susceptible 1n each of the age groups
was then derived from the results of these tests. I should point
out that although this 1s the best way to estimate the proportion
susceptible to measles 1t 1s not always possible due to the fact
other countries have been immunising for several years and that

unvaccinated blood 1s unavailable, In such cases the proportion

susceptible must be estimated from cases notifications, these



1Y

however are notoriously unreliable

As has been said adbove tne collection of data can be a very
laborious and t.me consuming taskx, especially where records are
scarce or s172ly non 2x1stant Therefore I aust stress to all
ealts autior:ities tane necessity of eep.i; accurate and deta.leld
recoras f{espnpzcrally of agse) I nust also caastior otier
nathematiciaas t71at worli1g with =nathemnatiacal models for
diseases 1n Ireland can be very di1ffircult, out I must say, also
very interesting, rewarding and I hope of some benifit to the

community
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ABSTRACT

The aim of this work 1s to establish a matnematical model for
measles epidemics and to predict levels of vaccination coverage
required 1n Ireland 1n order to eradicate tne disease The
emphasis througnout has oeen to derive the parameters of the
model using data collected i1n Ireland. To achieve this a non-
linear differential equation model first oroposed by Anderson

R M. and #May R.M. has been adopted and adjusted to meet our
application

In Chapter 1 we 1ntroduce the concept of mathematically modelling
the dynamics of an 1nfectious disease and we also propose a
simple constant parameter model We then move on 1n Chapter 2 to
discuss what 1s known as "the force of the infection™. This 1s
then calculated for Ireland by testing over 100 blood samples for
measles antibodies.

In Chapter 3 we estimated the Irish interepidemic period using
Hopf's bifurcation theorem. 1In Chapter 4 we move on to the more
detailed model with age dependence. We also estimate the age
dependent survival rate u(a) for the Irish population.

Finally, in Chapters 5 and 6, we look at immunisation and the
results predicted by the model. In Chapter 5 we derive c(a), the
Irish age dependent vaccination rate This 1s accomplished by
computerising over 4,000 immunisations.

We also predict how the reproductive rate, R_, of the disease
will change with vaccination. In Chapter 6 we numerically
analyse the model with the Irish age dependent parameters and we
predict the levels of vaccination required 1in order to eradicate
measles 1in Ireland.
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Preface

This research was motivated by the implementation of the measles
vaccaination program in Ireland in October 1985 At that time
there was much discussion and confusion over the safety and
efficacy of vaccines With this 1in mind Professor Alastair Wood,
(Wescan Professor of Applied Mathematics), N I H E Dublin, and I
decided to 1investilgate the effects of the measles vaccination
program on the Irish population.

This work was aided by the works and papers of R.M Anderson and
R M May They have shown, by many practical examples how
mathematics can model endemic disesases such as measles and can
accurately predict future epidemiological parameters Throughout
this thesis the aim has been to assess these population and
epidemic parameters for measles in Ireland These parameters
were then inserted 1nto a mathematical model in order to predict-
a) future trends 1in measles epidemics in Ireland and b)) the
levels of vaccination required 1n order to eradicate the disease

It 1s hoped that this thesis will stimulate other mathematicians
to tackle the problems of epidemiology in a practical way It 1s
also hoped that the results provided in this work will assist
those of the medical profession in their difficult task of
estimation and prediction of epidemiolocical parameters

Catherine Comiskey



CHAPTER 1
INTRODUCTION TO EPIDEMIOLOGY AND
MATHEMATICAL MODELLING

In the preface we discussed tie motivation for this
particular research We shall now expand on this and show
how matnematical modelling of epidemics has evolved and
developed We shall do this by giving, (a) a brief
historical outline of mathematical epidemiology and (b) an
account of the development of mathematical theories on the
spread of epidemic diseases We shall then move on to
discuss some more recent work, namely that of & T.J. Bailey,
who 1n a single work (6) describes i1in detail the
mathematical basis of the population dynamics of i1nfectious
diseases We shall be looking mainly at his work on
deterministic models and also at the information on the
dynamics of a disease that can be gained from these models
Finally we shall move on to introduce a non linear
deterministic differential equation model by R. Anderson and
R May We shall discuss this particular model 1in detail
and shall see what we <can learn from this simple constant

parameter model

First recorded accounts of epidemics go back as far as
the ancient Greeks of approximately 400 B C. Genuine
progress 1n cpldemiology was not made until the 19th
Century This was due to the research of Pasteur(1822-1895)

and Koch(1843-1910) both of whom made great prozress 1n the



science of bacteriology Medical and vital statistics were
first compiled as early as the 17th Century, at this stage
1t was sti1ll to early for any theory of epidemics Also, at
this time, the necessary mathematical technigues were
themselves then only 1n the process of Jevelopment and no
sufficiently precise hypotheses about the spread of disease
sultable for expression i1n mathematical terms had been
proposed However in 1760 Daniel Bernoulli used a
mathematical method to evaluate the effectiveness of the
technique of variolation against smallpox with a view to
influencing public health policy. Some curve fitting methods
were used by Evans(1875) on the smallpox outbreak of 1871-2, but

this met with little success.

By the end of the 19th century ghe general mechanism of
epidemic spread as r=vealed by bacteriological research made
possible some new developments. Hammer{(1906) beleived that
the course of an epidemic must depend on the number of
susceptibles and the contact rate between the susceptibles
and infectious 1ndividuals. The simple mathematical
assumptions made by Hammer are pasic to all subsequent
deterministic theories. Hammer by using these simple 1deas
deduced the existence of periodic recurrences These 1deas
were later taken up by Soper(1929)(20). In the meantime
Ross(1911) was working out a deterministic matnematical
model for the transmission of malaria. From his model we can

deduce the future state of the epidemic given the 1nital



numbers of susceotiole and i1nfectious i1ndividuals, together
with the attack, recovery, birth and death rates For the
first time 1t was possible to use a well organised

mathematical theory as a research tool 1n epidemiology

More detailled and elaborate mathematical studies of the
same type were later developed by Kermack and
McKendrick(1927-1939). These authors also considered the
problems of endemic diseases. Their most important result
was the well known threshold theorem, according to which the
introduction of infectious cases i1nto a community of
susceptibles would not give rise to an epidemic outbreak :if
the density of susceptioles was below a certain craitical
value. 1If, on the other hand, the critical value were
exceeded, then there would be an epidemic of sufficient
magnitude to reduce the density of susceptibles as far below
the threshold as 1t originally was above. We shall look
closer at this critical value or threshold later in this

chapter.

Work specifically associated with measles was carried out by
Soper(1929). With his deterministic model he made tne very
important discovery that the basic assumptions entailed, as
far as recurrent epidemics were concerned, a damped train of
harmonic waves. Published data on measles although

exhibiting marked variations in i1ncidence from year to year

showed no tendency to damping We shall be looking at the



wmnterenideruc period of measles 1ncidence 1n Ireland later 1n
Chapter 3 First, let us examine some of the work of Bailey
in, "The tathematical Theory of Infectious Diseases", first

ounlished 1n 1957, (6)

In the above work Bailey introduces a saimple
deterministic model for recurrent epidemics. He models
common 1nfectious diseases such as measles, diseases which
are really endemic, that 1s they are constantly with us
although often presenting considerable fluctuation in
prevalence Bailey i1ntroduces a basic deterministic model,
which under appropiate conditions yields a steady state
about which natural periodic oscillations are possible.
However these oscillations are damped 1n contradiction with
observed epidemiological phenomena. Thls as we have szen was

first observed by Soper

Bailey considers a community of V7 individuals comprising
of at time t, X susceptibles, Y infectives in circulation
and 2 i1ndividuals who are 1solated, dead or recovered and
immune. Thus X + Y + Z = N. The infection rate 1s 8 and
the recovery rate 1s y SO giving BXYAt new i1nfections and JY

ot removals 1n time At He further assumes that there 1s a
continuous stock of new susceptibles. The basic set of

differential equations 1s given by



dt = - BXY

ay '

dt = ISXY—A/Y {1 1)
az ’

dt = JY

As the first two equations do not depend on Z we can consider

the system

dXx

dt = - BXY (1.2)
ay

dt = RBXY - XY

From this we can determine X(t) and Y(t) and we can obtain

Z(t) from the fact that N = X(t) + Y(t) + Z{(t)

We have from system {1.2)

dy = dY / dX = B8XY -yY = -1+ )/6X

dXx dt / dt ~ BXY

whicn when separating the variables and integrating gives



Y(x) = y +x - x + /8 InX/x, (1 3)

where Xo and Yo are the initi1al numbers of susceptibles and
infectives and p = y¥/8 1s the removal rate As we can sce
from figure (1 1) Y(x) 1s an increasing function of x, that
1s dY/dX > 0 for x < p and 1s decreasing for x > p also
Y(xo) =Yy 2 0 Hence there exists a unigue polnt X, with

0 < X, < Xg such that y(xu) =0

Since for y = 0, y' =%X' = 0 then the equilibrium points lie
on the x axis. The conclusions drawn from this analysis and
from figure (1.1) are that an epidemic will occur only 1f
the number of susceptibles 1n a population exceseds the
threshold value p =4/8% and the disease dies out only for lack
of 1nfectives and does not stop for lack of susceptibles
This leaves us at the Kermack and McKendrick thresnold
theorem, proof of which can be found i1n Bailey(6) or
Braun(8).

In describing a deﬁérmlnlstlc model for the endemic
measles infection Bailley returns to the model described
above He 1ntroduces a birth parameter y so giving paAt new
susceptibles 1in time at. He takes the population N to remain
constant by assuming that the new susceptibles are balanced
by an appropriately defined deatn rate Constructing the
simple model he concentrates on the groups of susceptibles

and 1nfectives making the further assumption that the death
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FIGURE 1 1

ILLUSTRATION OF THE BASIC THRESHOLD THEOCREM
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Figure (1 1) showing the trajectories of the solution curves

of the first order equation dY/dX = -1 + J/st)



rate of susceptibles 1s negligible cormoared to taat of the
infected population This 1s eguivalent Lo &ssuming that on
average the deaths of removed 1ndividuals are just »alanced
by the births of new susceptioles These assumptions lead to

the following set of differential equat.ons

dx = - 8xy +

dt (1 4)
dy = Sxy -y

dt

By equating the differential equations to zero we find the
equllibrium values X, T K

8

Yo = fij_ (1 5)

The equations for small departures from these equilbrium

values are obtained by writing x = Xs (1 + u)

Yy =Yg (1 + v) (1 6)

and substituting these 1into our system (1 4) above gives

oodu = - (y + v + pv) (1.7)
dt

r dv = u (1 + u)
dt



o~d u”

By neglecting the oroduct uv, and eliminating v from the

equations we obtain the second order differential equation

in v,
dzv + (1) dv + (1 )v =0
5
gt ? dt 5t (1 8)

which has the solution

e—t/zf 1 /2

o g Iy s

1= Y, Cos $t where §

]
——
|-
|

{1 9)

for a suitably chosen origin of time. We then obtain the
solution for u given oy v, = v_ (rﬁf)l/z e—t/2{(os(?t +4)
where Cosy = -1 (r/s)™ 0 ¢ ¢g 7 (1 10)
2

These linearised solutions involve damped harmonic
trains of waves with period gg;. Soper believed that the
allowance for an incubation égrlod of 2 weeks, as is the
case with measles, would remove the damping This, however,
was found to be 1incorrect An important consequence of
Baileys work 1is that while the additional_ assumption of a
constant fresh supply of new susceptibles accounts for the
epidemic waves, 1t does not explain the damping down to a
steady endemic state, which 1s not 1n accordance with

observed epidemiological data We shall be looking at the

Irisn interepidemic period 1n Chapter 3



Moving ahead to some of the more recent work 1in
mathematical epidemiology we shall now study tne
deterministic models proposed by R M Anderson and R tilay,
(1,2,3,4) They address many of the i1mportant
epldemiological questions which still remain to be answered
For example, what proportion must be i1mmunised 1n order to
eradicate the disease? What reduction in disease 1ncidence
1s to be expected given an age specific vaccination
schedule? What 1s the effect of vaccination on the average
age at «hich individuals acquire infection and on the time
between epidemics (termed the interepidemic period)?
3nderson and May draw from both deterministic modelling
theory and from the data that i1s available to them 1n England
and Wales to answer these and other related questions. We
shall consider their work 1n relation to the Irish situation
and Irish data We shall see what knowledge of the aetiology
of measles 1in Ireland 1s to be found from an adaptation of

one of their simple deterministic models.

In order to devise a mathematical model describing the

dynamics of measles Anderson and May make several

assumptions, these are as follows:

10



(2)

(3)

The population 1s divided 1nto discrete classes where -

X{t) = the number of susceptibles at time t,

H(t) = the number of those who ars 1nfected out not yet
infectious,

Y(t) = the number of infectious and

Z(t) = the number of recovered or i1mmune

The si1ze of the population (or density) N remains
roughly constant on a time scale appropriate to
the pathology of the disease or at least changes
on a time scale long compared with other time
scales of 1nterest. This 1s a reasonable
assumption for the Irish population as can be seen
from figures(l.2) Note also that N = X+H+Y+Z.
This assumption corresponds to the assumption that
the net input of susceptibles into the population
by birth 1s roughly equal to the net mortality uN,
where p 1s the death rate and life expectancy 1is

1/p.

The net rate at which infections are acquired is
proportional to the number of encounters between
susceptible and i1nfectious individuals, BXY 8 1s

called the transmission coefficent

11



FIGURE 1 2)
VARIATION IN POPULATION FIGURES IN THE
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FIGURE 1 2 «
VARIATION IN POPULATION FIGURES IN THE
10-14 AGE GROUP OVER THE PERIOD 1926 - 1381
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(4) Individuals pass from the lateat state to the
infectious state at a per capita rate o7 (such that
the average latent period 1s 1/0°) and rzscover to
join the 1mmune class at a per capita rate X(where
1/}/15 the average 1nfectious period) Estimates

for these constant parameters are set out 1in table

(1 1) below
Table 1.1
Infectious Latent Period Infectious Period
Disease 1/6 (days) l/Jf(days)
Measles 6 to 9 6 to 7

(5) Immunity 1s lifelong. This 1s the case with measles

(6) Finally we assume homogeneous mixing

It 1s 1mportant to note at this stage that the
assumption that the parameters %, & , y and p are simple
constants 1s artificial but these parameters used as such 1n
a time dependent model can provide useful and 1lluminating
results. Using these assumptions we construct a set of four

first order non linear differential equations,

14



dt = gN - pX - BXY

g

dt = BXY - (p+ s )H (1 11)
ay

dt = §H - (p+)/) Y

dz

dt = ]Y - pZ

Adding all four equations gives dN = 0, corresponding to
dt
the original assumption that N 1s constant We also note
that this model does not incorporate any vaccination program
that may be in operation. This 1s the case for Ireland from
October 1985. We shall see 1n Chapter 5 how the above model

can be developed to include such a program

A disease such as measles will maintain 1tself within a
population provided the reproductive rate R, of the infection
1s greater than or equal to unity. This reproductive rate
is defined as the expected number of secondary cases
produced by an 1infectious individual 1n a population of X

susceptibles. If R<1 the disease wi1ll die out even 1f there

15



are susceptible peonle 1n the community This concept of

the reoroductive rate 1s also discussed by Dietz(io)

For the time dependent model above we ﬁe@ne

R = o8 X

(6 + p)(K+ g (1.12)

This definition 1s biologically intuitive for we know that

secondary infections are produced at a rate of 8X ‘

(transmission coefficent by population of X susceptibles)

throughout the expected lifetime, _1 , of an infectious
o

individual. Of these a fraction, ¢ , will survive the
(+ u)

latent period to become the second generation of 1nfectious

individuals.

We have said that the reproductive rate must exceed
unity for the disease to establish i1tself within a
community That 1s to say that cach infectious 1ndividual
must i1nfect at least one susceptible This requirement 1is
equivalent to the criterion that the population of
susceptibles must exceed some threshold density, that 1s
X>NT' This has been discussed in great detail by Waltman

i
(19) We seen from (1 12) that NT 1s defined as
4%



N_oo= (y+ p)(-//+u)) (1 13)

B85
we can now exoress equation (1 12) above

as R = X% {1 14)

NT
For measles in developed countries the duration of the
latent and i1nfectious periods, 1l/5 and 14T 1s of the order of

a few days while 1/p 1s of the order of approximately 70 to

75 years

Under these circumstances egquations (1.12) and (1.13)
- _ (1)
above can be approximated as R = BX and NT = I . We
y B
note here that the same threshold valve 1s derived in
Ballefs work apove However we cannot as yet find estimates

for these parameters vecause of the difficulty 1n estimating

the transmission coefficent, K.

We now introduce the important concept of the basic
reproductive rate of an infection, denoted Ro. This 1s
introduced in order to illuminate further the ideas discussed
above. For a directly transmitted viral infection RO 1s

defined as the average number of secondary infections

Footnote

(1) We shall see 1n Cnhapter 3 that at eguilibrium 8 >

0.00095, taking 1/y = 6 days 1 e ¥ = 61 years gives us a

threshold value of NT > 64,211



produced when one 1nfectious 1ndividual 1s 1introduced 1nto a
population where everyone 1s susceptible Equivalently 1t
may be defined as the value of R 1n a disease free
vopulation The value of RO depends both on biological
factors relatea to the aetiology of the infection and on
environmental and social factors, having to do with contacts

among susceptible and infectious individuals.

Anderson and May (2) derive some interesting relations
between RO of an endemic i1nfection such as measles and the
epidemiological parameters. Parameters are the fraction of
the population that 1s susceptible and the average age of
first 1nfection. These they derive under the assumption
they call ‘'weak homogeneous mixing' This says that the
rate of appearance of new infections 1s linearly
proportional to the number of susceptibles X. 1In theair
model the age structure 1s included, so that X 1s now a
function of the two variables, age, a and time, t This 1is
1n contrast to what they call the assumption of '‘strong
nomogeneous mixing', which assumes that the rate 1is

proportional to bggh X and Y, that 1s BRY Where X 1s
defined as ikt) = S X(alt) da (1.15)

o

the total number of susceptioles and Y 1is simllarly defined.

Under the assumption of weak homogeneous mixing Anderson

and May argue as follows As the 1nfection becomes

18



established the fraction of the population who remain
susceptible wi1ll decrease The net fraction susceptiole may

be denoted X, where X = X (1 16)

Z|

On average, under the assumption tihat the rate of
appearance of new 1nfections 1s linearly oproportional to
the number of susceptibles, the number of secondary
infections will be diminished below the number occuring when
all are susceptible by the factor x That 1s, the value of
the effective reproductive rate R 1s-*

R = R_ X (1.17)

If an i1infection 1s established at roughly steady
equllibrium value, the effective reproductive rate will be
unity. This 1s because at equilibrium each infection on
average produces exactly one secondary infection This
common sense result has been established raigorously by Nold
(1#) 1n 1979. Therefore, at equilibrium, R, and the
fraction susceptible X are related by-

RO X = 1 (1 18)

This 1s a very useful result, for 1f the equilibrium
fraction of the population who are susceptible can be
determined from sereological data or otherwise w2 can use
equation (1 18) above to estimate RO We have established

that at equilibrium Roi = 1 In deriving this we have

19



made no assumptions about now 1ndividuals acqguire 1nfeccion
At equiliorium hefore vaccination, susceptidility 1s lost
only by natural i1nfection, at equilibrium after a
vaccination program 1s 1n place susceptibility can be lost
elther oy 1mmunisation or by acqguiring tne 1nfection
Provided no other social or environmental changes have taxaen
place RO w1ll remain unaltered and equation (1.18) provides
the surprising conclusion that the fraction of the
population who are susceptible to infection will remain the
same after a vaccination program has been 1mplemented as 1t

was before.

We shall explore further estimates of Ro and relate this
parameter to Irish data 1n our next chapter on A , the force
of i1nfection. We shall demonstrate the relationships
between N\, A, the average age of first infection and Ro. We
shall also see, in our chapter on mortality, the effect that

the Irish mortality curve has on RO

20



CHAPTER TWO
ON THE FORCE OF INFECTION A(a) AND ESTIMATION

FOR IRISH DATA

We shall now discuss the estimation of age related rates
of 1infection from case notification and sereological data,
with particular emphaisis on estimating the age related rate

of 1nfection or force of infection of measles in Ireland

This we shall estimate oy means of a sereological survey.

In a study of the transmission dynamics and epidemiology
of measles or any such viral or oacterial infection of man,
case reports and sereological data stratified according to
age are an important source of information. Because the
dimensions of age and time are equivalent, age-related
changes can reflect temporal changes 1n the rate or force of
disease transmission within a community Data from case
reports have many limitations one of which 1s a possible
age~related bias i1n case reporting It 1s believed that
the probability of a case being reported i1n the very young 1s
higher than that for the adult age class. Data from age
stratified sereological surveys carried out before the
implementation of a vaccination program can provide accurate

information on the proportion of immunes

One of the earliest serological surveys was carried out

"
oy Collins 1n 1924 and again 1n 1929 His analysis was

® COLLIMSI S0 (lqgfb
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based on an age specific "incidence rate" This was defined
as the number of reported cases per unit of time i1n a given
age class, divided by the total number of i1ndividuals 1in
that age class Today this 1s termed the age specific
"attack rate” and 1s often defined per 1,000 head of
population This statistic has many limitations as 1t takes
no account of the numbers in each age class who are actually
susceptible to i1nfection. A precise measure of the rate at
which susceptibles acquire infection was first proposed by
Muench (14) 1n 1959. He employed simple mathematical models
to mirror age related changes 1in the proportion of
1ndividuals who had experienced infection Muench used a
parameter termed "the force of infection”™ defined as the
instantaneous per capita rate at which susceptible
individuals acquire infection It 1s this force of
infection that we shall estimate for measles i1n Ireland.
This in turn wi1ll lead us to a further estimate of the
previously defined parameter, RO

It 1s both i1nteresting and 1lluminating to see how
Muench developed the 1dea of "a force of infection" as the
concept can be difficult to understand. Muench draws an
analogy between a catalytic process 1n chemistry and the
individuals 1n a population The simplest picture of a
catalytic process 1n chemistry i1nvolves molecules of an
original substance, this, he says, may be equated with

individuals in a population that has not yet been in contact
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with an 1nfective force In chemistry, the original
molecules are subjected to a contact with molecules of a
catalytic substance, a contact between the two implies the
creation of another substance Similarly the uninfected
individuals of a population can be conceived as subjected to
a force of infection which changes them to i1nfected
individuals. The basic rate at which molecules are changed
depends on -

(a) the relative number of molecules of catalyst and

(b) the number of contacts made by each per unit time.

Thus (a) and (b) make a force which can be expressed as the
number of effective contacts per un:it time. The force of
infection acting on the population can similarly be measured
1n terms of effective contacts per unit time (usually a
year) per individual "Effective contact” here has the
meaning used by Wade Frost a contact sufficient to produce

infection 1f the subject 1s susceptible

Muench proposes the following hypothesis 1n order to
derive mathematically the force of infection We begin with
a gquantity of unchanged molecules or individuals This
quantity we shall make equal to 1 and deal with the fraction
changed at any time t. This fraction we designate y so that
1 - y 1s the relative amount still left unchanged at time t
This thnen 1s the part on which the catalytic or infective
force can still work, at the rate of r effective contacts

per individual per unit of time. The speed at which the
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reaction acts on will then be measuresi oy

dy = (1l -y) (2 1)

This 1s a simple linear differential egquation which has tne

general solution

y =1 + ce—rt’ (2.2)
If we substitute y = 0 and t = 0 (1 e starting at time = 0)
we haver y=1-—¢e It (2 3)

This form of the equation describes the expected behaviour of
a group of molecules, or persons, starting entirely
unchanged, or susceptible at the beginning of observation or
at birth {when t=0) and exposed to a continuous bombardment
of catalysis or infection a constant rate of r effective

contacts per i1ndividual per unit time.

In order to transfer the catalytic picture to a model of
infection acting on a population 1t 1s necessary to incluae

some assumptions, namely

(a) The population 1s entirely susceptible to infection

at birth
(b) A constant force of infection to which tnis

population 1s exposed
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(c) £Cvidence which will show that i1nfection has taken
place, allowing the estimate of y, or the fraction
infected at any time t This may consist of
positive histories or the results of laboratory

findings

With regard to measles, assumption (a) 1s unfulfilled as
1t 1s believed that cnildren possess their maternal
antibodies up to the age of 6 months. However, we shall sce
that this can easily be overcome. We shall also see that
the force of i1nfection 1s 1n fact not a constant but rather
a function of age. Finally, we shall look at the findings
of our Irish sereological survey 1n order to estimate y, the
fraction infected and subsequently A,(or r) the force of

infection

In order to estimate the Irish force of infection we
shall follow some guidelines set out by B.T. Grenfell and
R.M. Anderson (12) We have szen from the simple catalytic
model of Muench that the proportion susceptible x{a) 1n age

class a 1s given by
x(a) = exp( -Aa) (2.4)

More genzrally, 1f the force of infection X(a) 1s
age-dependent then

x(a) = expl —_L A(s) ds] (2 5)
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The proportion i1mmune at age a, yf(a) 1s simoly

y{a) = 1 - x(a), (2 6)
Equation (2 S5) can be expressed 1n terms of the cumulative
distribution function of age at infection, F(a) (the
proportion of a cohort all of whom were susceptible at birth

who nave experienced infection (i1 e. who are immune by age,

a))where
a
F(a) =1 - exp [ - }LX(S) ds] (2.7)

To account for maternally derived antibodies 1n children
born to mothers who have experienced the infection, A(a) can
be set to zero below a lower age threshold m (This 1s
usually assumed to be 1in the region of 0 5 years for
measles) We note at this stage that we have succeeded 1in

modifying the 3 assumptions set out by Muench

Muench (l4) as we have seen, assumed )(or r, as he
used) to be constant and independent of host age Griffiths
(13) noted 1n an analysis of the age distribution of
infection for measles 1n England and Wales that )_tends to
rise linearly with age between the adés of 0 and 10 years.
Anderson and May (1) also discuss the estimation of A as a
linear function of age In Grenfell and Anderson (12) we

see that N can be expressed as a polynomial of degree K

where
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K
N(a) = Zblal (m < a < u) (2 8)
X(a) = 0 (a ¢ m)

where the uosper age limit u denotes human life expectancy or
the oldest age class for which data 1s available The lower
age limit m represents the age to whicn a child 1s protected

by the maternally derived antibodies

Table 2.1 below shows estimates for the force of

inad
infection from several studies (12). The coeflicints “QQ'OLEua

as i G“MFQQQI b QSSuNu:S o 'olnovuo.o Jlim& (:a\‘ F(C\J and esmﬂ tk&
fofarle,te)’s [th_ 's) L:l MON ML M ‘uke(rl\oool

We shall now look at an estimation of X within an Irish

‘4

context As we have said the proportion infected by age can
be derived from two different sources One, case
notificationsyas we have seen,can be biased,with cases being
reported more frequently among the younger age groups. In
Ireland there i1s the further problem 1n that before the
introduction of an extensive publicity campaign and
vaccination, measles was not considered to be a serious
1nfection Often children were not attending their 3.P
especially 1f more than one child in the household had the
infection However, 1in Ireland we had one major advantage
and that was the availability of unvaccinated blood samples
Data arising from age-stratified sereological surveys
provide information on the proportion of 1mmunes In the
absence of vaccination such data 1n principle correspond

directly to the proportion of infecteds
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Table 2 1

Details of the Polynomial Relationships Between Force of Infection
and Age of Contacting Measles

Data Upper Polynomial bo b1 b2 b3 b4 Mean Age at
Source Age Degree Attack. Years
Limit s oEeRE
& 72
Baltimore 25 3 -0 00594 0 0679 -0 00561 O 000122 -
1905~-15S
9 27
Rural 20 4 0 0663 -0.0228 0 0102 0 000951 0 000261
aryland
1308~-17
4 76
Aberdeen 15 4 0 429 -0.325 -0 113 -0.0124 0 00042
1883-1902
4 96
England and 25 2 -0.0105 0.0864 -0 0411 -- _
Wales
1948-68
New (faven 15 2 -1 475 0 411 -0 021 - - 8 ol
Small
Families
S 51
New Haven 15 2 -0 261 0.186 -0 0125 -— -
Large
Famillies -
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The data that we shall use for our zstimation of N was
collected from childrens' blood samples that were sent to the
Department of Medical Microbiology, University College
Dublin, for different kinds of tests There was nothing 1n
the nature of these sispected diseases to render the
cnildren more or less likely (than the general age group) to
have had measles 145 samples were collected All of these
samples were dated pre October 1985 (1.e. pre the
implementation of the vaccination program) For each sample
we found the age and the sex of the child. These samples
were then tested for measles antibodies using the CFF test

Figure (2 1) shows the age distribution of the samples

We can see from figure (2.1) that all samples used were
taken from children more than 1 year old. This was to allow
for the possible presence of maternally derived antibodies
As there were more samples available for some ages samples
were grouped 1nto the following age categories, 1 year, 2
vears, 3 years, 4 years, the proportion susceptible at ages
5, & and 7 years were grouped and the mean proportion
susceptible for ages 6 years 1s expressed, ages 38, 9 and 10
and 11, 12 and 13 were similarly grouped. A table of the
grouped proportions susceptible 1s shown 1n tables 2 2 below

and a plot of these 1s shown 1in fiqures (2 2).
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FIGURE 2.1
SHOWING THE AGE DISTRIBUTION OF NUMBER OF

AVAILABLE BLOOD SAMPLES
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Table 2.2{a)

Age 1n Years Proportion Susceptible to Measles
1 0 37500
2 0 60000
3 0 33300
4 0 272700
S 0.230670
6 0 15000
7 0 33330
8 0.00000
9 0 142857

10 0.375000
11 0.33300
12 0.00000
13 0 00006

Table 2.2(a) showing the proportion susceptible to measles at

each age from a sample of 145 bloods.

Table 2.2(b)

Age 1n Years Proportion Susceptible

Grouped to Measles
Lrouped

0.37500
0.60a00
0 33300
0.27270
0 229816
0.17390
2 0.15789

O OV W N

Table 2.2(b) as for 2.2(a) but data 1s grouped for ages 5

to 13 years.
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Figures (2 2) showing the proportion of children
susceptible to measles infection 1n Ireland A sample of
145 bloods was drawn from the records of the Medical
Microoiology department at University College Dublin by kind

permlssion of Professor Irene Hillary. .

We see from Figure (2 2b) that tne proportion susceptible
follows a negative exponential distribution from the age of
two years. This 1s as expected from Muencn's original model
where he expresses the fraction infected as
1 -rt

y=1 - e

with exp(-rt) as the fraction susceptible.

However what 1s very unexpected 1s the fact that the
proportion susceptible 1s still rising sharply betseen the
age of 1 and 2 years. This would seem to imply that the
maternal measles antibecdies are still present i1n a large
proportion of children at this age or else reflects the fact
that measles epidemics are periodic For example, although
a child may lose 1mmunity at six months, there may not be a
measles epidemic to infect that child for another 1 - 2
years. (See section on the 1nterepidemic period). As 1t 1s
the policy to vaccinate children at the age of of 15 months
1t would appear that 1t 1s possible for the antibocies 1in
the children's blood to destroy the virus and renasr the

child susceptible to measles at a later date We snould
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also note that this age group constitutes the ‘argest number

of samples

We now utilise the above data to estimatz the force of

infection, A We know that the prooortion susceptible 1is
given by

a
x(a) = exp [ - J;>\(s) ds) (2 9)

If we assume a linear force of infection we can fit a

function of the form.

x{a) = exp[ra2 + sal (2.10)

to the proportion susceptible. Using the method of least
squares we have.

x(a) = exp(0.0012439 a® - 0.326783 a) . (2.11)

Several other methods,including fitting quadratics and
cubics,can be shown not to yield such a close fit.

Note that the data for 1 to 2 year olds was not i1ncluded
1n the estimation of this function . From the above
estimation of the proportion susceptible we can compute Aa),

the force of infection We have

34



N (a) = -0 00248782 + 0 326783,

for 2 ¢ a ¢ 12

This 1s a linear function with a very small negative slope
In Table 2 3 below we have set out the estimates for A(a) at

the various ages.

Table 2 3
Age, a Years A (a)
2 0.322
3 0.319
4 0 317
6 0.312
9 0 304
12 0.297

We can see from Table 2 3 that 1in Ireland the force of

infection 1s almost constant.

We have said that ruench believed A to be independent of
age Griffiths believed 1t to rise linearly with age and
Anderson and Grenfell believed that \ could be polynomial
However, looking at figure 2 3 we see that X(a) in Ireland 1s
almost constant. For measles 1n England and Wales of 1965 -

197§U]X(a) was linear as can be seen from figure 2 4
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Having estimated X(a) for measles 1n Ireland we now can
derive another very 1mportant parameter from this estimation
The parameter 1n guestion 1s the average age at infection, A
This 1n turn will lead us to furtner estimates for Qo’ the
basic reproductive rate, of which we will see more later

A 1s given by

A = Ja >\(a) x(a) da

o0

)
gXb)x(a) da {2 12)

s}
= l x{a) da

e

From this we can derive the average force of 1nfectlonjtk

—

\ =1 (2 13)

>

If we treat A as 1ndependent of age we can relate 1t to the

more observable A. If we know A from previous case studies,

we have a rough estimate of X We have from equation
(2 12) , o
A = S;exp[ —JL X(s) ds)
* 2
= Sexp[0.0012439a - 0.326783 a)] da

o

Numerically integrating the above gives us the average age at
infection for measles 1n Ireland, we have

A

3 14 years

1

38 months
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This would appear to ve very younqg 1n comparison with
other EBuropean countries The average family size 1n
Ireland oeing greater than other Zuropean countries could
also reduce the average age at infection (for example the
whole family 1s i1nfected when the eldest child 1s exposed to
an eoidemic at school). In England and Wales the average
age at i1nfection was seen to be between 4 and 5 years
However, upon further research into regional measles
susceptibirlity surveys carried out 1n Ireland prior to
October 1985 we find that M. OF Boyléncarrled out a survey in
Waterford City. He questioned 2,182 children between the
ages of 0 to 16 years e found that 65% of all cases
occured 1n the pre-school group (under 4 years) also 92% of
cases occured before the age of 6. However, wnat 1s most
interesting about his survey 1s that he found the mean age of
attack to be 41 monthsy, a difference of only + 3 months as

predicted by our mathematical model and sereological survey.

We have successfully shown that the mathematical model
can reflect and predict important epidemiological parameters.
In our next chapter we snall discuss the 1interepidemic period
of measles incidence 1n Ireland and we shall use the
mathematical model along with parameter estimates to
demonstrate and predict the i1nterepidemic period for Ireland.

@ 0'Boqle, M ((925)
\RlsL ﬁullmﬂ :f;ur'MQ, Sqlal’o.mkuf l)o! -7‘2/ f\)o 9
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CHAPTER THREE

THE INTER-EPIDEMIC PERIOD OF MEASLES INCIDENCE IN IRELAND

Long term records of measles exhioit marked varration in
incidence from year to year These fluctuations tend to be
of a regular nature With measles a major epidemic 1s
experienced every two to three years This 1nterval between
epidemics 1s termed the interepidemic period These
fluctuations are influenced by the fact that the number of
susceptible children decreases as 1mmunity 1s acquired by
recovering from lnfectlon)then the number of susceptibles

increases slowly as children are born.

We have seen in Chapter One how compartment models
consisting of systems of non linear differential equations
can be used to describe the dynamics of the childhood disease
measles. We shall now see how the fluctuations in 1ncidence
can be found by analysing the equilibrium points of the
system and their behaviour. We shall also see how the
interepidemic period 1s related to the parameters that
characterise the 1nfect10n)such as the latent and i1nfectious
periods and the average age of infection. Figure 3 1 shows

how the the 2 to 3 year cycle of measles can be seen in data

from case notifications i1n England and Wales
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Figure 3 1

Showing the Number of Cases of Measles 1n England and Wales

from 1940 to 1980 (Note the 2-3 year interepidemic period)
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FigureS 3.2 show

notifications in Irish data.

the fluctuations 1in the numbers of case

The 2 to 3 year cycle 1s not as

clear here due to 1nconsistencies 1n reporting

For a compartment model to mirror a real oscillating

process i1t must possess stable limit cycle solutions of the

equations

physically realistic singular point

our compartment model for such properties.

Also the system must possess at least one

We shall now examine

The

non Mo l’Le
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SHOWING THE CYCLIC PATTERN IN MEASLES INCIDENCE

FIGURE 3.2a

IN IRELAND FROM 1845 TO 1985
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FIGURE 3.2b
SHOWING THE CYCLIC PATTERN IN
IN DUBLIN FROM 1945
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We have the system

dx
dt = pH + pY + p2 - B XY (3 1)
dH
dt = ®XY - (y +5)H (3 2)
dy
dt = oH - (p + {)Y (3 3)
dz
dt = yY - pz (3.4)

The equilibrium points can be found by setting:
dx/dt = dH/dt = 4Y/dt = dz/dt = 0

This gives us the simple critical point (X,H,Y,Z)=(0,0,0,0).
However we are looking for a physically realistic critical
point. The existence of a limit cycle around the simple
critical point would entail negative values of X,H,Y and Z
that 1s susceptible, infected, infectious and immune.
Looking again at the system of equations we see that-
N=X+H+ Y+ %2 or X=N-H-Y- Z, substituting this

into our system (3.1) to (3.4) we have

H = BNY - 8YH - 5Y2 - BZY - (p + o)H (3.5)
Y = gH - (u +)/)Y (3.6)
7 = EY - u2 (3.7)
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From (3 7) we sce that at equilibrium Y :(U/()Z (3 8)

and we have 1n turn from (3 46) and (3 5) respectively

(p + ﬁ)g Z
°Y
H = (3 9)
B;Nga/—(p + 5) (y +\,}/)o’}/ = N—_Y_ +El
7 = Be((p +yly + s+ S ) 3 (3.10)
where El 1s very small as 1t contains terms containing y

()
which 1s small in comparison to other terms, also El < 0.

We note here that 7 1s positive (and hence so 1s H and Y)

provided that:

uz Ty + py + 5y
U J
g > ¢ N > 0.00095 (3.10a)

Assuming this to be so we now have a physically

realistic critical point of the system (3.5) to (3 7).

We consider the nature of this equilibrium point by

looking at the Jacobian matrix of the system above. We have

-

D(H, ¥, Z)

Q = 'D(Hl Y, Z) =

- BY - (p +9) 8N - 8H - R2Z - 2RY -RY
g -(p + ) 0 (3.11)
0 —y

¥

{*) Te dolids of ths Q@“f"mr@'\ Ma\JI be foond o P&a,o. 55
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For simnlicity we write the characteristic equation as

a - ) b c
d e ~ A 0 = 0 (3 12)
0 £ g - A

with obvious definitions for a,b,c,d,e,f, and g

The characteristic polynominal 1s a cubic algebraic
equation given by
)} - (e + g + a) )2 + (ga + ge + ae - db) X

+ (gdb - gae - cdf) = 0 | (3 13)
which we write more simply as
3 2
N o+, N+ Ntp =0 (3 14)

We are 1nterested 1n the nature of the roots of the
above cubic. For the equilibrium point of the system to be
unstable, at least one root of the above cubic must have a
positive real part From the Routh-Hurwitz criterion we know
that for all solutions of a cubic to have negative real parts
three necessary and sufficient conditions must be satisfied

they are

(1) P, >0

(11) P, > 0 and

(111) PoPy ~ Py ? 0
We consider first condition (1) °, > 0. We have

Py =3+ y+r o+ sugl (3 15)
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this 1s Dposi1tive as all the terms are oositive. vooking at

condition {11) p > 0, we have

o
poz—o’BNJréfS (H+a<) HZ+6£SZ+2<BP_Z
o ¥ X
+BE(U +a/)Z+(p +5 ) (u +a/) + 34 2
v
= —SBN-b6524-5J+ sdz-+82 , (3.16)
0]
where E, 1s small as 1t 1s the collection of terms containing

2

the parameter p. Also we can show that for current parameter
estimate -1.44 < 82 < 0. By simple algebraic manipulations
we see that Py 2 0 provided B8 > gy - E, = 0.000°5 (for
current estimates), 5(N + 2E) (3.17)

(

We also know that this 1s always positive as both E, and E

1 2

are small compared to the other terms.

We now wish to consider cond:ition (111) of the Routh
durwitz criterion, that 1s, 1s PyPy T Py 0, to do this we
first examine the sign of Py- We have
pl = pBY 4+ p(p+ &) + (p +5f)sy + (p +s)(p +&0 + plyp +J) +

S3[H + 72 + 2Y] - 6”N (3.18)

We know that Y = @/K)Z)therefore we have:
Py = WSR2 + wp +9) + (p o+y) Sy T+ (o +a) (p =) 4

plp +p) +68 (@ +y)p + 1+ 2 p) 2 - SBN
6
J

J
(3 19)

Which we write as,

(1) See fo]b 55
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“y

= g - 7 2
Ol o’d+ RZ + E3 BN {3 0)
w

where E3 contains all terms that contain a multiple of p. We

know that 53 1s small and we can see that 1t 1s positive We

know from (3 10} that 2 = N - y/s + El, we can therefore

write

Py = S+ FB(N - y/8 + E)) + E; - S6N (3.21)

3

= 6B El + E3.

We see that p, > 0 provided that ]E3| > IfsEl!{ this 1s true

(3 22)

for the current parameter estimates Returning to condition
(111), PPy = Py > 0 2 We have
pzpl - pO =
2 5 -
8 (Eg + El_%)diﬁ + 5[53 (Hg + EL%) + Elf(3r+J + 2p)
{(sN + 26'El)] + E3(§+ S+ 2u) - (Bz-—f,) (3.23)

We now have a quadratic i1n 8 which we may write as:
2

F(R) = AR“ + BR + C (3 24)
where

A = dEl % (N + El) <0 (3 25)
B =.% E3(N + El) + 551(5+:5+ 2p) - (4N + 26 El) <90 (3.26)
C = 33(64-(+ 2u) - (B, - (() >0 (3 27)

Bifurcation will occur at a critical value Bo > 0 defined by
the equation
F (B) =0 (3.28)

which has two solutions, but only one of them, namely-

& = - -JB2 - anc

o

24

1s positive Hence,
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F(B) > 0 1f 8 > BO ani
F(8) < 0 1f 0 < B < B (3.29)
Consequently, the equilibrium point (H,Y,2) 1s stable for

B > So and unstable for 0 < 8 (< 60

We shall now prove that the conditions of the Hopt
Bifurcation theorem are fulfilled at 8 = Bo. Namely, the

characteristic equation has a pair of complex conjugate

roots
>\2 (B) =o&(B) + 1w(8)
XB (B) = &«(BR) — 1w(B) (3.30)

and the conditions to be fulfilled are:
(1) 0((50) =0

{(11) w(Bo) >0

(111) d«(8) <0 .

ds B

1}
»

Given that these conditions hold, then we know from the
Hopf Bifurcation theorem that there exist periodic orbits
around the equilibrium point (at least in the vicinityef the

bifurcation point B = SO).

The characteristic polynominal takes the following form for
B = B
o
N+ 8 0N% v o, (8) N+ p_(5)
2° 70 Pp 857 AT Pylthy
- \3 2
A+ D (8 ) N7+ p (B ) N+ py(8 )y (B) (3 31)

for at & = BO )f(ﬁo) = 92(50)91(50) - po(ﬁ) =0
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Therefore our characteristic oolynominal evaluzted at B = 8

o
takes the form
2 2
(A= A B 0] TN+ (w(B )7,
from this we know
Ap(B) = -p,(B) <O (3 32)
2 — —
W (60) = pl(Bo) = p (ﬁol > 0
Py (60) (3 33)

Thus the conditions (1) and {(11) are satisfied if:

and )2(60) = 1w(s_) and X3 = —1w(s )

To 1nvestigate the requirement (111) we use the
continuation of the root Az in the neighbourhood of BO. The
root AZ(B) satisfies the equation-

(A, (817 + po(8) L A, (8)1% + o ()L A, (8)) + R (p) = 0

(3 34)
for every R8.
We require d X(B8) = d[Re XZ(E)]
ds B ds 8
o o
= Re d Xzigl
dg 8 (3.359)
Differentiating with respect to B we arrive at:
2
d X, (8) [3LA(8)1% + 2p,(8) A (8) + p (8))
dg
2
# U A,(8)1% dp,(8) + A(8)dp,(8) + o (8) = 0
ds af dg (3 36)
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As we have scen
Xz(ﬁ) ==W(F) + 1w(BR)

therefore Re<ix (B)

5 = d« (B)

B ds B

ds o o

and thus we have from equation (3 36) above
dhl(g) =
dg 1

o

- [),46)1% dp,(8)/ds - )\, (8) dp (8)/d8 - dp (&)/ds

3UN,(8)1% + 2p,(8) A, (8) + p,(8) 8 (3 37)

tl\a fr.o—Q fo"t DF
1fkthe above 1s less than zero than the third condition of
the Hopf Bifurcation theorem 1s satisfied and there will

exist periodic orbits around the equilibrium point

We shall now prove that this 1s i1ndeed the case.

We have seen 1in (3.15) that
pz(B) = 3p + X + 6 + rs(p/g)z, which when substituting i1n for 2

gives, pJB)= p r y +a +[pN4{)S + Eléu&)s.

Differentiating with respect to B gives,

dp,(8) = pN + E p >0
¥

ds ¥ (3.38)
We also have,
p,(8) = 5551 + E5 which on differentiating gives,
dp,(8) = JE, + dE_(B) > 0 for B > 8

11— 1 —3-— o -

ds dg (3 39)
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Finallv we have,

p,(B) = - oNB + 6B2 + SY+EBRT + g,

When we substitute i1n for Z we have,

- -
P (B) = §NB - Ty+ 268,58 + E,

Differentiating the above oo(s) with respect to B gives,

Iy

~

dp {B8) = o N + 2631 + 922(6) > 0, for 8 > BO

ds dR (3 ¢0)
Finally, we substitute equations (3 38) to (3 40) into (3 37)
Ca Eéna,Q[saj ond l’al(a,i B veol fw[’ m\j:l QU
ax(s)

dg B

(o]

{—F\‘ME/N/ ¥+ E.—/*/ﬂ - oy Lo E,+dE@ldp]-[oN +26e +0|51<B){4E>]}

/{‘QF(F’) * %"(M]ﬁ}”:—“} - ra‘ =

(3 ¢1)
-~ Ve 4
As Py (B, [%ﬁ + Eypl, By + dESB), (N + 26E; + dE,B],
¥ J
48 dg

and pz(ﬁo) are all positive, we have,
a & (B) < 0

ds 8 ) (3 22)

and the third condition of the Hopf bifurcation theorem 1is
fulfilled. Hence according to the Hopf bifurcation theorem

there exist periodic orbits around the equilibrium point, at

least 1n the vicinity of the bifurcation point 8 = B
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we have seen taat the Hopf bifurcation tieo.2m provides
us with the conditions necessary for the existence of real
peri1odic solutions for a system of ordinary differential
ecquations,
ax = F(X,v)
dt (3 43)
where © and X(v,t) are n dimensional vectors and v a real
parameter The theorem also provides us with the approximate
period of the solution. We have.
Period, T = 27

w (3.44)

given that the characteristic equation of A(v) has purely
1magilnary roots +iw, where
A(v) 1s the linearised matrix of {23 L3) absd ¢the singular
point a(v), that 1is

A(v) = [Vx F(X,v)] (3.45)

x=a(v)
We have seen that w = pl(ﬁo), and

we have therefore from the Hopf bifircation theorem-an
estimate of T. We have,

T = 4.2

We sha{l now compare tnis with estimates from numoers of
reported cases of measles 1n Ireland and in Dublin from 1945
to 1985. From figure 3.2a and figure 3 2b we can derive the
average 1interepidemic period for measles These are set out

in Table 3.1 below
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Table 3 1
Shows the Interepidemic Periods (in vears) 1in Ireland and
1n Dublin between the years 1945 to 1985

Ireland Dublin
2 2
2 2
3 3
2 2
2 5
3 2
2 3
3 4
4 2
2 6
4 3
S 6
4 -
2 —
Average Interepidemic Average Interepidemic
Period Ireland Period Dublin
2.86 years 3.33 years

We see from Table (3.1) that the Hopf bifurcation
theorem estimate of tne 1nterepidemic period 1s slightly
higher than the actual as derived from Irish records This
may be due to the fact that throughout our calculations
pertaining to the theorem we have been using a death rate of
p = 1/75 years. For those in the 0 - 15 years old age

oracket this death rate may 1n fact oe lower.

We have succeeded 1n showing now the fluctuation 1i1n the
incidence of measles i1n Ireland 1s reflected i1n the non-
linear differential equation compartment model by the study
of the equilibrium points and their behaviour We have also
successfully shown how the Hopf Bifurcation theorem provides

an estimate for this i1nterepidemic period
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APPENDIM

Throughout Chapter three we have used Lne {ollowing parameter
estimates

(1) N = 64,000, this 1s the number of oirths 1n 1385 that

1s the total population of the cohort studied

(11) /g 1s the average latent period, we have

i

1/6

V]

9 days = 0 025 years, we have therefore

41 years '

(111) 1/6’= 6 days = 0.016 years which implaies
a’= 61 years—l
(1v) 1/p 1s the average life expectancy, we have
1/p = 70 years which implies p = 0 014 years—l
(v) By of equation (3 10) equals
Nd‘£ - N,
JJ% (p2+p(+pf)
for the parameter estimates given aopove we have
El = -36.5
(vi) E, of equation (3 16) equals

s8(p +;) B Z + 258y 2 + B p(yp +{)z + p2 + pg o+ pd
g ¥ g §

Substituting in the parameter values gives us

Ez = 3198 188 ~ 4 48

We know from (3 10a) that 8 > 0.00095 for 2 to be

positive, we have therefore

E2 > -1 44

(viy) E; of equation (3 20) eguals

w
w



upyZ + uz tpe +{pt+y) BpZ + u2 + pe + uy + u2 + MY +

¥ 3
(B8(p+ylp + 582p)2
S &

On substitution of parameter values we have,

E3 = 3006 28458 - 0.013

Given that B8 > 0.00095 we have

E3 > 2 843

(vi11)The co~-efficents of equation (3 24) are as follows-

(1x)

A > -21,968 841

B > —-2776642.1

C > 2792.51

The roots 61 and 8 of equation (3.24) are as follows

Bl > -126.39, Bo > 0 001
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CHAPTER 4
ON INTRODUCING THE AGE DEPENDENT MODEL AND THE
MORTALITY PARAMETER p(a)

We have examined a time dependent model ana founa 1t
useful in 1lluminating certain basic principles However the
assumption that the parameters of the model are simple age
independent constants 1s an over simplification

We can generalise the time dependent model to 1nclude
the effects of age independence, particularly in mortality
rates, vaccination rates and transmission rates This will
allow us to give a more rigorous discussion of Ro and later
1n chapter 5, a more rigorous discussion of our vaccination

policy.

Our analysis of the transmission of measles will 1nvolve
a compartment model with age structure The population 1is

again divided into discrete classes, at age a and at time t

we have

X(a,t) = number susceptible, at age a, at time t
H(a,t) = number infected but not yet 1nfectious
Y(a,t) = number infectious.

Z(a,t) = number recovered and immune.

The partial differential equations for this system are
first order nonlinear They describe the rates of change of

X, B, Y, Z with respect to ooth age a and time t They are
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+

OxX(a,t) DX(a,t) —[pla) + Aa,t) + c(a)] X (a,t)

Dt "o a (4 1)

1t

DH(a,t) + OH(a,t) Ala,t) X(a,t) -{pla) + o) H(a,t)

ot Da (4.2)
2Y(a,t) + “af(a,t) = GH(a,t) - [p(a) +y) Y(a,t)

et Qa (4 3)
22(a,t) + 2Z(a,t) = y¥(a,t) + cla) X(a,t) - wla) Z(a,t)

>t Da (4.4)
with 1nital and boundary conditions,

t = 0 specify X(a,t), H(a,t), ¥(a,t), Z(a,t).

0 specify X(0,t) = N(0,t), the A POfUEL;N “k'“ﬁz 9,

]

a
that 1s all newborn individuals are susceptible to infection.
This assumption can be modified to i1nclude protection from
maternal antibodies

Also H(O,t) = Y(0,t) = 2(0,t) = 0, for all t

The parameters X, the recovery rate and s, the rate of
passing from i1nfected to the infectious state are as before
1n Chapter 1 However we now assume that all individuals are
subject to an age dependent mortality rate p(a) and that
1ndividuals are vaccinated at an age dependent rate c(a) We
have also assumed, as before, that immunity 1s lifelong, as
1s the case with measles.

By considering the-equlllbrlum state of this general

model we can gain further understanding of the temporal
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behaviour or dynamics of the general model To do this we
make the further assumption that births and deaths exactly
balance That 1s, ~2 are assuming that the population
remains roughly constant on the time scale appropiate to the
pathology of the diseese This 1s not an unreasonable
assumption for Ireland as can be seen from figures(4.1)
below, these show the population age structure of Ireland

over several decades

At equilibrium the partial differential equations (4.1)

to (4.4) reduce to.

dX = - [Ma) + p(a) + c(a)] X(a)

da (4 3)
dH = A\(a) X(a) - [+ p(a)) H(a)

da (4.6)
dY = sH(a) - [y+ pla)] Y(a)

da (4 7)
4z = dY(a) + c(a)X(a) - u(a) Z(a)

da (4 8)

where N{a) = X(a) + H(a) + Y(a) + Z(a), with 1nitial
conditaions

X(0) = N(0), H(Q0) = Y(0) = Z2(Q) =0

When discussing the time dependent model we assumed that
all the parameters including mortality were independent of

age We did this 1n order to make the mathematics of the
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FIGURE 4 1
POPULATION CLASSIFIED BY AGE GROUP AT
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FIGURE 4 1
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model easier and more elegant ratner than vecause resal
populations have age i1ndependent death rates This
assumption of age i1ndependence 1s frequently made and can oe
found 1n the works of Dietz (¢ ), Bailey (&) and anderson
and May (] ) We have also assumed that the population
remains constant and that the birth rate equals the death
rate. We shall now examine the mortality rate i1n Ireland and

1ts dependence on age

Our aim 1s to derive an age dependent mortality rate for
Ireland so that the model will represent the dynamics of the
measles infection within the Irish population 1n a more
realistic way. We shall finally in chapter six insert this
realistic parameter back into the model and numerically solve
the above equations (4.5) to (4.8) for X, H, Y and Z that 1is,
susceptibles, infecteds, i1nfectious and recovered aznd immune

respectively.

To derive the age independent mortality rate we need to
study the numbers and hence proportions of people remaining

1n various cohorts. These are set out 1n table 4 1 below.
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Table 4 1

Proportion Remaining 1n Each Cohort Born from 1900 to 1980

Age 1n Number Born Number Remaining Proportion
1981 into Cohort 1n each Cohort Remaining
in each
Cohort
81 70453 0 8875 0 0 125970
80 70184.90 11537 0 0.164240
79 71156.9 11150.0 0.156698
78 71541 0 12181.0Q 0.170266
77 72261.0 13521.0 0.187113
76 71427.90 15153.0 0.212147
75 72147.0 16446.0 0.227951
74 70773.0 17631.0 0.249120
73 71439 0 18274.0 0.255799
72 72119.0 20288.0 0.281313
71 71774.0 22066 0 0.307437
70 71351 0 24879.0 0.348685
69 70835.0 25649.0 0.362095
68 70214 0 26583.0 0.378%00
¥i 69097 O 26426.0 0 3824483
66 67501.0 28444.0 0.421386
65 64814 0 26781 0 0 413198
64 61421 0 27214.90 0.443073
63 61092 0 24632.0 0 403195
62 61829.0 24471.0 0 395785
61 67015.0 29479.0 0 439887
60 61010.0 30470.0 0.499426
59 58849.0 29983 0 0.5094990
58 61690 0 30499.0 0.494391
57 63402.0 29360 O 0.463077
56 62069.0 30275.0 0.487764
55 61176.0 29489.0 0 482035
54 60054 0 29823.0 0 496603
53 59176 0 28840.0 0.487360
52 58280 0 29945.0 0.513813
51 58353.0 29942.0 0.513118
50 57086.0 31130.0 0.545318
49 56240.0 29016.0 0.515932
48 57364.0 31320.0 0.545987
47 57897.0 29761.0 0 514034
46 58266 0 30337 0 0 520664
45 58115.0 31416.0 0.540583
44 56488 0 32781.0 0 580318
43 56925.0 30911.0 0 543013
42 56070 0 33108 O 0 590476
4] 56594 0 34811 0 0 615101
40 56780 Q 34313 0 0 604315
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Table 4.1 (Contd )

Proportion Remaining 1n Each Cohort Born from 1900 to 1980

39 66117.0 33995 0 0 514164
38 64375 0 37676 0 0 585258
37 65425.0 38254 0 0.584700
36 66861 O 40333 0 0 603267
35 67922 0 43571.0 0 641486
34 68978.0 44343 0 0 642857
33 65930.0 46410 O 0 703928
32 64153.0 46976 0 Q0 732249
31 63565.0 46505 0 0.731613
30 62878.0 47724 0 0.758994
29 64631.0 46885 0 0 725426
28 62558.0 49713.0 0 794671
27 62534.0 48800.0 0.780375
26 61622.0 50584.0 0.820876
25 60740.0 50071.0 0.824350
24 61242.0 51945.0 0.848192
23 59510.0 52683 0 0.885280
22 60188.0 53832.0 0 894398
21 60735.0 57213.0 0.942010
20 59825.0 57308.0 0 957927
19 61782.0 59342.0 3.960506
18 63246.0 60286 0 0.964267
17 64072.0 61779 0O 0.964212
16 63525.0 61443.0 0.967225
15 62215.0Q 60207 0O 0 967725
14 61307.0 59386.0 0.968666
13 61004.0 59368.0 0.973182
12 62912.0 61217 0 0.973058
11 64284.0 62643.0 0.974473
10 67551.0 65992.0 0.976921
9 68500.0 66937.0 0.977183
8 68700.0 67186.0 0.977962
7 68900.0 67430.0 0 978694
6 67200.0 65862.90 0.980089
5 67700.90 66413.0 0.980990
4 68900.0 67665.0 0.982075
3 70300.0 69096.0 0.982873
2 72500.0 71457 0 0.985610
1 74100.0 73213.0 0.988030
Table 4.1 shows the following.
a) The age of each cohort in 1981. 1981 was used as 1t was

then the most recent census year We start studying
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b)

c)

conorts from 19970 on This ralses some problems tnat
are peculiar to Ireland Due to the partition of the
country 1n 1921 records of oirths orior to this contain
those for the 6 counties of Northern Ireland but death
figures after this date do not contain the northern
figures dence we must subtract off individual figures
for the 6 northern counties This 1s mentioned 1n order
to show how politics can effect studies and one must
keep this 1in mind

The number of births 1n the Republic of Ireland 1n each
year from 1900 to 1980.

The number of those aged 8l years down to those aged 1
remaining in 1981. Some problems were also experienced
at this stage We find that 1n the age range of 20
years to 1 year there are more children remaining than
were actually born' It 1s possible that this 1s due to
the 1n-migration of families 1n the 1970's. However
this problem can be overcome by looking at, first, the
number of deaths of those aged < 1 in 1961, those aged

< 1 and aged 1 1n 1962, those aged < 1, aged 1 and those
aged” 2 1n 1963 and so on untll we find the number of
deaths of those aged 20,19,18, .. 1l,and < 1 1n 1981

By performing this task we can find the correct number
of deaths 1in the cohort born in 1961. These figures (on
deaths) can then be subtracted from the numbers born 1in
1961 up to 1981 to arrive at the correct numbers of 20

year olds remaining in 1981 This can be repeated for
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each of the cohorts
d) The correct proportions remaining i1n each of the cohorts

aged 81 years to 1 year

Once the correct proportion remaining 1n each of the
cohorts 1s found we can plot the data and subsequently fait a
sultable function to the resulting plot The above data was
plotted using the ilinitab statistical package. The shape of

the curve can be seen 1in figure (4.2) below

Figure (4.2) shows the age dependent survival curve for
Ireland 1n 1981. The age specific mortality rate p(a) is the
logarithmic derivative of this curve with respect to a. We
shall derive this result mathematically later in this

chapter.

We can see from figure (4 2) that most people survive up
to the age of 25 years. After this there 1s a decline 1in the
proportions remaining. This 1s most likely due to

emigration rather than to death The data suggests that a
sultable function for those remaining in the 1 year to 25

year age bracket would be,

S(a)=1 a < 25 (4 9)

1n other words all survive up to and including the age of 25
years A sultable function for the remaining data can be

derived from Newtons Interpolating Formula for a polynomial
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of degree 3 Working from grouped averages we have table 4 2

below

Table 4.2

AGE(years) PROPORTION RE{AINING

29.5 0.756017
45.5 0.543876
61.5 0.449806
77.5 0.186688

Using Newtons method of divided differences we have

X f(x) f(x1 x2) f(xl X, x3) f(x1x2x3x4)
Xl 29.5 0.756017 -0.0132588
X2 45.5 0.543876 0.000230609
~0.0058793 -0 000011089
X3 61 S 0.449806 -0.0003017
-0.0164448

X4 77.5 0.186688

Newton tells us that the required polynomial 1s of the form-

P(x)

n

f(x) + f(xl x2)(x - xl) + f(x1 X x3)(x - xl)(x - x2)
+ f(xl X, %5 x4)(x - Xl)(x - Xz)(x - X3)

This gives us:

P{x) = 0 756017 - 0.0132588 (x - 29 5)

+ 0.00023061 (x ~ 29.5)(x — 45 5)

- 0 0000111 (x - 29 S)(»r - 45 5)(x - 61 5)
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We now have

S(a) =1 for a ¢ 25
Sy = f)(-*) a 7y A8
Where P(x) = Ax3 + sz + Cx + D where
A =-1.0%X 1072, B=1565X10°,C=-8.785 X 102,
D = 2,242

We shall see 1n chapter 5 how a generalisation of thas
survival curve will effect our 1mmunisation policy. We said
above that the age specific mortality rate p(a) 1s the
logarithmic deraivative of the age dependent survival curve
S(a) We shall now prove this by looking closer at some

basic reliability theory

Consider the compartment model with age structure We
assume that i1ndividuals are subject to an age dependent
mortality rate wm(a) 1n age class a. We also assume that the
number of births equals the number of deaths. How then does

the parameter ma(a) relate to reliability theory?

Let p(a) = age specific death rate.
S(a) = prooability of surviving to age a.
N(a) = the number 1n the population at age a

Consider (a, a +§a), ga small, tnen the number of deaths 1in
(a, a+da) = y(a)*n(a)*fa

For examnle
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rpaE

The number of deatns i1n say the (12 months,18 months) age
group that 1s the {12 months,12+6 months) age group would oe
p(12)*N(12)*6 montns, that 1s, (the death rate of those aged

12 months) * {the number of 12 month olds) * (6 months)

The probaoility of death 1n (a, a +§a) 1s
(p(a)*N(a)*ég/N(a) = p(a)fa that 1s,
(expected number of deaths)Anumber at risk),
therefore the probabity of an i1ndividual alive at a,
surviving to a +fa 1s

1 - (p(a)fal

- New. the probability of individual alive at a+§a, that
1s surviving to age a +a

= s(a+da)
= probability (alive at a) * probability (survives from a to a+5a>
= S(a) * (1 - (p(a) *§al)
that 1s

S(a +§a) = S(a) * (1 - (u(a) *§al).

Rearranging we get-

[s(a+fa) - s(a)] / §a = -p(a) * s(a).
Letting Ja =0 implies dS/da = -p(a) * S(a)

Separating the variables we have, d§/5@) = -pla) * da
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which 1mplies (1ln (S(a))] - (1ln (S(0})] = -‘lij(t) dt

But S(0) = 1, which implies 1n S(0), = 0 therefore we have
Qa

In S(a) = —j; p(t) dt

Q
which 1mplies S(a) = exp[—jg p(t) dtl.

We have related our survivor function to our compartment
model parameter p(a) Can we perhaps derive tnis result 1n

another way? Consider the following

Let F(a) = probability of death before age a
We know S(a) + F(a) = 1 therefore (& 1)

Fla) = 1 - exp [—VLap(t) dt]

In fact F(a) equals the cumulative distribution function
of ages to death. From reliability theory we know
f(a) = dF(a) / da th;)
which equals the probability density function of ages to

death. Becavse F(a)z{lofokolal.k‘ of o’-h[uﬂ ok ag 0) (Prokauuq of s»ru;wﬁ
vpb aae 05/ e have  Fua = ue)Se Usw\\s\ (4 12) ve can
saq  Fla = p@S@ ond Feon (W 1) ne knos Hof Flo = —S'(a)
We Ao howe |
-5 = p@ St@ whid wplies
= —-[ds/da] / S(a) = -dlln S(a))/da= ula) oS mﬂvaJ



We have shown how the compartment parameter p(a) relates
to reliability theory and we have also snaown that 1t 1s
1indeed the logarithmic derivative of the survival curve We
shall now state the age specific mortality rate for Ireland

using the survival curve derived above

We have from {(4.10):

pla) =0 a ¢ 25 years,
pla) = _d & R ay a5
30

In Chapter 6 we shall use the Irisn mortality rate derived
above to estimate the proportions of children susceptible,

and i1mmune to measles 1n the coming years.
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CHAPTER FIVE
ON IMMUNISATION AND ESTIMATION OF c(a), THE VACCINATION

RATE IN IRELAND

We snall now see how the 1introduction of the age
dependent model with age dependent parameters enables us to

give a more rigorous description of the values of A4, Ro and

NT We snall also examine the effect of 1introducing
immunlsation 1nto the model. We shall look at
1) the prediction of the levels of immunity required to

eradicate the disease given a specific vaccination program,

11) the effect of vaccination on A, the average age of

infection,

111) the effect of vaccination on the numbers of cases of

measles and of measles encephalitis.

Prior to October 1985 no such program existed 1n Ireland.
All newborn 1nfants were and still are i1mmune to infection
as a consequence of the protection provided by their
maternal antibodies, these are passed via the placenta 1nto
the blood stream of the baby during pregnancy. For measles,
infants remain protectted for roughly their first six months
of life. The recommended age for vaccination 1s 15 months

because 1t 1s believed that the rate of seroconversion 1s
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max1imised at this age Vaccinaticon at a lower age gives
lower seroconversion rates due to the protection of the
maternal antibodies The policy of vaccinating all children
at this optimum age has ozen adopted by the Irish Health

Boards

How then do we describe this oarameter”® Prior to
October 1985 we had-

(a) C(a) = 0 0 £ a

g £ L L = 70 years (5.1)

and from 1985 to the present it 1s hoped that:

(b)Y Cla) = 0 a < 15 months
1 a = 15 months (5.2)
0 a > 15 months

In other words no children are vaccinated before the
age of 15 months, all or most children are vaccinated at the
age of 15 months and no children are vaccinated after this
age. This 1s of course an 1deal situation which will not
occur In reality 1t does however give us many insights into
the levels of immunity required to eradicate the disease 1if
we adopt such a policy. This we shall discuss later First

we consider the situation as 1t actually occurred 1in one

Community Care Area of Dublin.

Community Care Area 3 1in Dublin, lies on the northern
outskirts of the city, 1t contains densely populated urban
areas and rural areas with sparse population Prior to the

introduction of the measles immunisation program, i1n October
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1985, a survey of a%3bchildren oetween the ages of 1 and 5§
years was carried out The aim of this survey was to test
for the proportions susceptible to measles and hence
establish a target figure for the 1nitial 1mmunisations The
results of this survey are set out 1n Table 5 1 below Some
similar surveys were conducted 1n other parts of the country
with the similar results.
For (hoe veasons ire an,O E)SLFM_Q‘ I

taking Community Care Area 8 (C C A.8) as a sample

ond.

population representative of the general population, we
examine the numbers of actual vaccinations at specific ages
1n the area Assuming that the distribution of vaccinations
1s similar throughout the country we shall take this sample

data and estimate C(a), the vaccination rate for all of

Ireland

Patient files for children in the General Medical
Service 1n C C A.8 were computerised, this gave over 2,000
medical card cases. From these we saw what proportions were
immunised 1n the various age groups. Using immunisation
forms returned by doctors 1in the area we computerised over
2,000 immunisations of those i1n the non General redical
Service sector. This gives us over 4,000 records of
children immunised 1n the various age groups. As the total
population figures were availlable for these age groups 1n

this area the proportion 1mmunised 1n each of the age groups

was derived Ls ,@/\M/m‘oams OCM/J/Q.J 3 nolls . Ea
Suﬂmua 1984
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Tasee 5.1

4GE  Immunlsed Status Had Vacc Left Refused Contra- Other Row
1n Unknown Measles before Area Indicat Total
vears 1/10/85
1 12 11 6 2 0 0 0 1 32
37 5% 34 4% 18 8% 6 3% 0 0% 0 0% 0.0% 3 1% 1 1%
2 31% 225 107 22 34 1 1 4 7009
44 4% 31 7% 15 1% 3 1% 4 8% 0 1% 0 1% 0 6% 24 1%
3 298 209 168 18 36 2 2 10 743
40 1% 28 1% 22 6% 2 1% 4 8% 0 3% 0 3% 1 3% 25 3%
4 270 194 309 20 51 1 1 5 851
31 7% 22 B% 316 3% 2.4% 6 0% 0.1% 0.1% 0 6% 29 0%
5 158 145 244 7 38 1 ’ 3 ) 601
26 3% 24 1% 40 6% 1 2% 6 3% 0 2% 0 5% 0 8% 20 5%
fotal 1053 784 834 69 159 5 7 25 2936
35 9% 26 7% 28 1% 2 4% 5 4% 0 2% 0 2% 0 9% 100 0%

Results of survey carried out by Dr 2 Johnson in C C A 8 prior to tLhe

introduction of measles vaccination

He [inds Lhat approximately 30% of children in the 1 - 5 year age group need Lo

be tmmunised
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The results of this work are shown 1n Table 5 2 bhelow

Table 5.2
Age at Vaccination Proportion Vaccinated
(years)
1 0 410
2 0.387
3 0.333
4 0 233
5 0.115

Table 5.2 showing the proportion vaccinated i1n each age
group for Community Care Area 8 from October 1985 to June

1986.

A plot of the proportion vaccinated versus age can be

seen in figure 5.1 below

FIGURE 5 |
PROPORTIONS VACCINATED INC C A 8
Vs AGE AT VACCINATION

PROPORTION VAC
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The method of least squares was used to fit as quadratic
to the original data on the proportions vaccinated giving
C(a) = ra’ + sa + t

with r = -0.01686, s = 0 026743 t = 0 40083

A plot of the estimated proportion vaccinated versus age

1s given 1n figure 5 2 below

FIGURE 5
ESTIMATED PROPORTIONS VACCINATED IN C.C A 8
Vs AGE AT VACCINATION
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The derived vaccination rate gives the following

estimates of proportions vaccinated

Table 5.3
J
Age at Vaccination Estimated Proportion
(years) Vaccinated (i)
1 0.41h
2 0.38% ¢
3 0 329
4 0.238
5 0.113

Table 5.3 as for Table 5.2 but shows estimated

proportions vaccinated

Since March 1986, we know that the Health Board's policy
has been to vaccinate all or most children at the age of 15
months What are the effects of this vaccination and given
this policy what proportion must we 1mmunlise 1n order to

eradicate the disease? Must we vaccinate all children®

Vaccination has two effects, first we have the obvious
effect that those i1mmunised are protected against i1nfection.
We also have a less oovious effect, that 1s that a
susceptible chi1ld has less chance of acquiring the disease 1in
a partially vaccinated community than 1n an unvaccinated
one. Thls 1s because there are fewer people 1nfectious 1in
the community to give the disease to the child Therefore 1t
1s not necessary to 1mmunise all children 1n order to

eradicata the disease

() ConFrcdonca Intzonll o estoutisl proporCa. voccmadsl o age (
cr = p-(Nyy¥SE) 6 palny x5 5*”"}%/5/;
Ve have p=onlt, n=3062  S& < 0 000079/

Ci = o#uo? b D yua 79

e i < Qm.a[ AZZ MO( oy &
Ao the sanple sips o very Longe and B sbidocd eorors ey sucedl



As measles 1s endemlc we can find some 1nteresting
relations between RO and the fraction of the population that
are susceptible oF the average age at first infection This
1n turn will allow us to discuss P, the proportion of the

population immunised, 1n more detail

As the infection becomes established the fraction of the
population who remaln susceptible will decrease. The net
fraction susceptible may be donated by X, where
X = X/N (5.3)
X 1s the total number of susceptibles and N 1s the total
population. If we make the Anderson and May (2) assumption
of weak homogeneous mixing, we are assuming that the rate of
appearance of new i1nfections 1s linearly proportional to the
number of susceptibles. Therefore, on average the number of
secondary infections will be diminished oelow the number
occurring when all i1ndividuals are susceptible, by the factor
X. That 1s, the effective reproductive rate, R, 1s-

R = ROI (5.4)

If the i1nfection 1s established at a roughly steady
equilibrium value the effective reproductive rate will be
unity (at equilibrium each infection on average produces

clop@ /
exactly one secondary infection). HSuzsmoznﬂat equilibrium
R and the fraction susceptible, ?, are related by

Rox =] (5.5)
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If the equilibrium fraction of the population who are
susceptible can be determined, equation (5 5) can be used to
estimate Ro (Estimates of RO shall be discussed 1n the next

section and again 1n more detail in Chapter 6)

Equation (5.5) cannot be satisfied 1f the proportion of
the population who are successfully vaccinated, p, exceeds
some critical value As the fraction susceptible cannot
exceed the fraction not successfully vaccinated (X<l-p) the
equation can only be satisfied 1f Ro(l-p) exceeds unity. It
follows that 1f the proportion vaccinated exceeds the value:
p> 1~ 1/Ro* (5.6)
then the effective reproductive rate of the infection will
necessarily be less than unity and the infection will dae

out. In other words equation (5 6) gives a rough criterion

for eradication of an infection by a vaccination program

We also see that infections with high Ro values, as in
the case with measles, require a higher proportion of

children to be vaccinated 1n order to eradicate the disease.

Dietz (9,10) has derived the relation-

R, = AL

1
Il

(5.7)

o4

Oor more realistically for a step function mortality curve

(1 e. everyone lives up to the age, L) we have

¢ e & a ver mfw‘fa:i' vesult Fsr the reslicol) pre SSI6n

DL :}?;:“'O' o&_", < | Q,I’o_ollc_cxrﬂ\\ ﬁnfn. ;F e Vacein a
Profo\' F Lo weQ_O o O /roforf:?\ )-f) not umcuwﬂ re x = ,-f
YY) require K. [;_F) <1, ‘J e (e’w-ro_,\qq_ bhus e seq bhat

P 7 ’ - '/Qo {5\/ GJ’Q_A(CAR oF‘ t/\o_ nicelion
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Reg 7 (L/Q),/ 1 - expéL/Am (5 8)
which approximates to

R = L (for A < L, as 1s the case with

A measles 1in Ireland)

To give a feeling for these parameters, we conslder some

typical values for A, taking L = 70 years, we have Table 5 4

below
Table 5.4
A R P
o
(greater than)
3 23.33 0 957
35 20 00 0 950
4 17 50 0 943

In areas of lower age of acquiring infection, Ry will
be larger, implying that a larger proportion of children
should be immunised in order to eradicate the disease This
should be kept 1n mind in Ireland where we have both large
urban and rural areas Higher levels of coverage may be
ﬂL?ufﬂLJD to eradicate the disease within these urban areas.
These figures are very high and will be very difficult to
achieve 1n practice. In the United States of Bmerica where
pre-school vaccinations 1s compulsory to the extent that a

certificate of i1mmunisation 1s an entry requirement for
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school, measles nas virtually disappeared as more taan 95% of
children are vaccinated before going entering school In the
United Kingdom i1mmunisation 1s not enforced by law an2 nigh

levels of vaccinati»sn have proved difficult to acnieve

We have estimated the proportions we need to vaccinate
given the values of 1p(a), A, and RO before vaccination. Ve
have seen the importance of R0 and A 1n determinlng these
proportions We shall now address the questions, what
nappens to this reprodg;tlve rate, Ro' of the disease 1f we
immunlise, will 1t increase or decrease® Also, what happens
to, A, the average age of acquiring the i1nfection, after the

introduction of an immunisation program?

To see this we return to our original set of

differential equations given by

dX = -(X\+ p(a)) X (a) (5.9)
da
dH = AX - (¢ + p(a)) H (a) (5 10)
da
dY = 6H - (y+ula)) ¥ (a) (5.11)
da
dz = Y - w(a) 2(a) (5.12)
da

By 1ntroducing the set of starred variables
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X (a) = X* (a) ¢>(a)
Where

a
¢ (a) = enpl - Jg p(s) ds] .

UtH\ yt H* od 7\* oLQ.Ple_A Mo%JGUS/_Q_‘j,

(5 13)

(5 14)

We arrive at a set of equations 1identical to the above but

with mortality factored out,

we now have

X(a) = X*(a) $ (a)
Hence. dX = =-(A+ p(a)) X*(a) § (a) (5.15)
da
But  dX = d(x*(a) $(a))
da da
= X* 4>'(a) + :P(a) x* Libkere JMAE J.{Ffmlm (5.16)
a w wapect o a
Also- ?(a) = expl - ~£ u(s) ds]
= expf{ - (Uﬂé)— U, (o))}
which 1mplies
$'(a) = - p(a) expl - Lau(s) ds)
= - p(a)cfa(a) (5.17)
Therefore-
dx = x* (~p(a)q>(a)) +4P(a) X*
da
But
dX = ~( A+ p(a)) x*(a) ¢ (a) from (5 15)
da
Hence
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K@ ban s $ ) xr = —Chrpia)) X*(a) § (a)

which wnen both divided by &(a) gives
‘

S( A+ pla)) X*(a) = - pla) X* + X*

On re-arranging

x*' = - x* (a) - p(a) X* + p(a) X*

which gives, on dividing by 4a(a) o

ax* = - Ax* (a)

da

Mortality has disappeared as required.

(S 18)

(5.19)

Introducing an age specific vaccination rate into our

set of starred equations gives us-

aX* = - (X + c(a)) X* (a)
da

dg* = XX* - ¢ H*(a)

da

dy* = & g* "JY* (a)

da

4z* = { Y* + c(a) z2*(a)
da

(5.20)

(5.21)

(5.22)

(5.23)

here A 1s the¥force of 1nfection at equilibrium after the

lmmunisation program 1s established.
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independent of age for simplicaity The above set of

differential equations has boundary conditions
X* (0) = N(Q), H*(0) = Y*(0) = z2*(0) = O

We can easlly find X*(a) from the above Using an 1ntegrating
factor we have:

X*(a) = N{o) expl~ \ a + j:c(s) gs) (5.24)
As X(a) = X*(a) @(a) we have the number of susceptibles at

age, a, given by:

. a
X(a) = N{o) expl~ Na + JQ c(s) ds] ? (a) (5.25)
and

N(a) = (o) @ (a) (5.26)

By i1ntegrating equation (5.25) for X(a) over all ages we
can compute X {the total number susceptible) for any specific
vaccination program c(a) and any mortality rate p(a). We can

—
then discover X the fraction susceptible and we can find RO.

The policy for vaccination in Ireland 1s to vaccinate a
proportion, P of children at age b, b being 15 months. ¢(a)

1n thls case can be taken to be a Dlrac—g‘functlon centred on

a=> Using such a «¢(a) we obtain.
X{a) = N(o) expl - N alq)(a) ag b
X(a) = (1 -p) N(o) expl - /\'a](p(a) a>b (5 27)
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Where
a

(P(a) = exp{ - jo p(s) ds] =1

glven that

It
-

y(a) = 0 for a < L, yp(a) =-9Ofor a

The total number susceptible, X, 1s Qroan B:l ,EX(O) da uL»e}
L L 1
Jg X(a) da = Jé (1 - p) N(o) exp[—l} al da (5.28)
= (1 - p) N(o) (/- )) exp(-XNa) |
= (1 - p) R(o) (1/- N ) expl- A’ L) - (1 - p) N(o)

(1/- N ) exp(- A b)

N(o) [(1 - p) exp (= XM b) = (1 - p) exp(- A L)) (5.29)
AL ,

a-na} QXCQ) ola NX(TQ’ exlo(-—)\B> + L\-)\T(OL

- new have )? = '\—)f.ﬂ-[l— FQ*P{“ X\o)— (}-r)o.xp('— /\'L)] (5 &ala)

Using equation (5.2% we can give estimates for the total

N

numbers susceptible under our given i1mmunisation policy and

the proportions actually vaccinated

We have seen above that-
FaY

R, = 1/X , X = X/N which implies R, = N/X,

where 5 = N(Q)L.

This now provides an estimate for the reproductive rate of
the disease given our estimated Irish mortality curve and
immunisation policy.

Ro = = N'O)L

N(O) [ l-p exp(~Ab) - (1-p) exp(- ML)l / )

>t o=
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= AL

‘1-p exp(~ \b) - (1-p) exp(- AL) (5 30)

Various estimates of RO given the Irish data are
discussed 1n Chapter 6 Note we must keep 1n mind that we
regqulra Ro to be celow unity 1in order for the disease to dae
out We should find that Ro decreases wlth vaccination, the
extent of the decrease depending on P, the proportion

immunised.

We have observed the effects of vaccination on the
reproductive rate of the disease. We shall now look at the
effects of vaccination on A, the average age of infection
with measles. This average age A can vary greatly depending
on the degree of urbanisation, being much higher in areas of
dense population. In Ireland we believe A, to be 1in the
range of 3 to 5 years this 1s in accordance with similar
populations in England and Wales. Direct estimates of A are
best obtained from either serological surveys or case
notifications, neither of which are ready available 1n
Ireland and, where available, case notifications may be

seriously underestimated.

Infection of any chi1ild with measles can lead to the more
dangerous infection of measles encephalitis. The risx of
measles encephalitis 1s a very serious one. Survivors often

have permanent brain damage and mental retardation It 1s
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known tnat tne risk of tnls disease varies with age, the
older chi1ld being at a highec risx Wide spread 1mmunisation
withlin a community 1ncreases the average age A at which an
infection 1s acquired, therefore we must examine our
vaccination policy w;th this 1n mind If we vaccinate a
proportion P, P<1, of all children then there will remain a
proportion, 1-P of cnildren at risk to i1nfection These may
develop the 1nfection at a later age due to the fact that
there wi1ll be fewer susceptible children 1n circulation and
hence fewer infectious. Given this situation will more or
less children 1n Ireland develop measles encephalitis?® As
vet there 1s no data available on the numbers of
post-vaccination cases of measles encephalitis However 1in
the coming years these should be carefully monitored 1in
order to check that our immunisation policy is 1ndeed a safe
one and that our levels of coverage ocur adequate. FfFigure
(5.3} below shows the number of cases of measles
encephalitis i1n the years 1981 to 1985, prior to mass
immunisation We shall discuss the effects of vaccination on
the average age of first infection and on the numbers of
cases of measles encephalitis when we examlne our numerical

results 1n Chapter 6.
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NUMBER OF CASES OF MEASLES ENCEPHALITIS
IN THE YEARS 1984 TO 4985
PRIOR TO MASS IMMUNISATION

NO OF CASES
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CHAPTER SIX
NUMERICAL RESULTS, CONCLUSIONS AND RECOMMENDATIONS

In the preceding chapters we 1ntroduced a constant
parameter, time dependent model We saw now tnis simple
model was useful 1n 1lluminating certain basic principles

In particular providing us with estimates of.

(1) The average age at i1nfection, A.
(11) The basic reproductive rate, R,-

(1112) The interepidemic period, T.

In chapters 2, 4 and 5 we found the age dependent force
of 1nfection, the mortality rate and the vaccination rate
for Ireland We used this i1nformation to derive the average
age at first 1nfection 1n Ireland. We shall now use these
parameters to derive the intrinsic reproductive rate before
and after the advent of the Irish vaccination program.
Finally, we shall estimate from the above the fraction of the
population which must be vaccinated in order to eradicate

measles i1n Ireland

In the second half of this chapter we shall present the
model with Irish parameters. We shall numerically solve the
system, (a set of non-linear differential equations) and we
w1ll show how the model predicts, (given certain specifiea
1nitial conditions) tne proportion of a particular conort

susceptinle to measles 1nfection before and zfter the
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introduction of the Irish vaccination orogram

We have seen that the disease will maintain 1tself
within the population provided the reproductive rate, R, of
the infection 1s greater than or equal to unity R, 1s the
expected number of secondary cases produced by one infectious
individual 1n a population of X susceptibles. The intrinsic
reproductive rate of the disease RO may be defined as the
value of R 1n a disease-free population. WesLd(ugthRo can
be estimated from the relation:

Ry =1 + L/A (6.0)
Where L 1s the human life expectancy and A 1s the average age

at first infection.

For the model described in equations 4.3 to 4 8 we can
use a result obtained by Dietz(9,10) and generalised by

Anderson and May (2). They have-

E’ a
Ro = Jexpl - § {p(v) + c(v)ldv] da (6.1)

> o .

Sxéxp{

-}

For Ireland we have fou fﬁ?'?g»

(o}
L [A(v) + p(v) + c(v)] dv} da

p(v) =0, v < 70,

P)
-0 01686v> + 0.026743v + 0.40083

c(v)

A(v) = -0 0024878v + 0.326783
Looking at the simple case when all the rate parameters

are constants and there 1s no vaccination program, equation

(6.1) reduces to
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R, = 1 + (Mu), as the average age at first 1nfection 1s A =
1/Xxand L = 1/y we have the simplified equeation for RO given

in (6.0) above

Let us now insert the Irish parameters into (6.1) and
examine the 1nstrinsic reproductive rate for Ireland We
have before the implementation of the vaccination program
c = 0 so giving

Ro

3o
_é exp {0] da

)#O Q
v{ exp i- “L -0.0024878v + 0.326783 ] da
(0]

I

19
3.13711 = 22.3135.
We can now see that this figure for RO 1s very close to our

first approximation of RO =1+ L/a =1+ 70/3 25 = 22.54.

After the 1mplementat10n of our vaccination orogran we have-

Jexp[* j Cw ofu-_] da +J€xp£~f C @ Cltfjolq +§e)tp[ j C(U)oltr] da

v Q

SO ex F[‘S A J,\r -—i 0) Jﬂcjo -+ &Texf[- So )(u)du'-sl c(v) dr]o[a + lo,xf[— ‘i Mo)dv '§‘ clv) Juja(q

which implies that-

R, = {+39929 +18 auoz = |0 ¥39g38
0 853308+l 02249+ 1382%9

The above estimate 1s based on c(v) as derived from our
sample of vaccination rates. If we assume that all children
up to the age of 6 years are vaccinated at a constant rate,

¢ = 1 we have
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0 b
Ro i—l:te\p{ —~£;Q)dvl]da + jL expCngcw)ijtiq

Jo

[4
'fol’{exp[O 0012439a° - 1.326783al{da + js exp[~§/\(o)clu-—fc(ojol.;lo(g
) o

which 1mplies,

R, = 15890 B -

b

We can see from the above that the 1ntroduction of
vaccination has reduced the i1ntrinsic reproductive rate
considerably. However, we must remember that for the

eradication of measles 1n Ireland we must ensure that Ro < 1.

More generally 1f 1t 1s the policy to vaccinate a
proportion of the population at a constant rate ¢ while the
remaining fraction 1 - p 1s not covered by the vaccination
program 1t has been shown that the intrinsic reproductive
rate R:)Anderson and May (2) 1s:

R = Ro[ 1 - cp/(c + p)) (6.2)
where R; 1s the intrinsic reproductive rate after the
vaccination program and Ro 1s the rate before, c¢c = 1/v with v

equalling the average age at vaccination.

If then we decide before the start of the vaccination
program (by means of surveys etc ) that on average nalf of
our children have had measles and therefore we target our
vaccination policy at p = 0 5 we shall have 1n Ireland after
1niti1al vaccinations

Ro = 22 3135 {1 - (1/2.6)(0.5)/(1/2 6)] = 11 156
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What proportion tnen, need we immunise 1n Ireland in
order to reduce R, below unity? From equations (6 9) and
(6 2) we can prove that the fraction of the population that
must be protected must exceed
p > 1+ v/L (6 3)

1 + AaA/L

where v 1s the average age at which 1ndividuals are
vaccinated (i1.e v = 1/c). Since p cannot pe greater than 1
we see that eradication is possible only 1f A > v. This 1s
an 1mportant result when we consider that in Ireland A = 3.16
years. Irish children need to be vaccinated at an early age

however immunisiation at too early an age can lead to poor

seroconversion and hence loss of immunity.

We can estimate v from our sample data on vaccination we
have v = 2.6 years Taking L = 70 years gives
p > 0.9923
1f we manage to reduce v to 15 months or 1.25 years we then
have-
p > 0 9738
which 1s still a very large proportion. One of the main
reasons for this 1s our very low average age at first
infection On a still more pessimistic note 1t has been
found that outbreaks of measles can still occur even when
more than 99% of children have been vaccinated The reported

outbreak 1n question arose 1n Texas among sc'ool cnildren,

the first beiny a fifteen year old gairl
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99% of the school cnildren were documented as having oDeen
immunised however upon measles antibody tests taey found that
5% were not protected Vaccination may have failed for
several reasons These 1nclude administering tne vaccine to
infants under 15 months, administering 1t 1n conjuction with
immunoglobulin or improperly storing 1t For these reasons
the Irisn medical profession must be aware of the possibility

of an outbreak even where all children have been vaccinated.

It 1s interesting to note the age of the girl in wnich
the 1nfection arose It 1s well known that vaccination
increases the average age at infection. A susceptible has
less chance of acquiring the 1nfection 1n a partially
vaccinated community than in an unvaccinated population.
There are less infectious 1ndividuals around from whom one
can contract the disease However, 1t 1s also well knowathat
the risk of acquiring measles encephalitis as a complication
1s also higher amongst those who contract the disease at an

older age

In Ireland the severity of the disease 1n terms of
mortality and morbidity has not changed 1n 20 years The
rate of deaths to notification 1s 1 S per 10,000. There has
been 82 deaths 1in 15 years and at least 25 cases of encephalitis 1in
10 years 1n Ireland However, we can take gome comfort from
the fact that Anderson and May have snown 1in (2) that

vaccination at whatever level always acts to reduce the
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number of encephalitis cases Tak11g parameter values
appropriate to the U K population 1 e A = 5 years, v = 2 2
years and p = 0.5 they find that i1mmunisation levels of 50%
result 1n only a 25% reduction in tne number of encephalit:is
cases A 90% coverage results 1n a 75% reduction, while
higher levels of vaccination result 1n eradication The
reduction 1n the number of cases 1n non linearly related to
the proportion of the cohort immunised. This non-linear
effect 1s i1mportant because substantial reductions in the
number of cases of encephalitis will only occur as the
overall level of herd immunity begins to approach the

criticial level for eradication.

We have seen what proportion we need to immunise 1n
order to eradicate measles 1n Ireland We shall now return
to the model We shall see what proportions of suscegtible,
infected, 1infectious and i1mmunes the model will predict given
the Irish age dependent parameters. These we shall compare
with the results of our seriological survey.

We have the system as described in (4.5) to (4.8).

This system can be solved numerically for X, H, Y and 2 given
the following 1nitial conditions-
(1) X(0 5) = 64,000. This 1s the number of births 1in

1984. We choose this year as vaccination was

introduced 1nto Ireland 1n 1985 We shall be

following the movement of this particular cohort 1in

the model
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(11) H(O 5) = ¥Y(0 5) = Z(0 5) = 0 There are no
1nfected, infectious, recovered and i1mmune at the
age of 6 months We note nere that

X+ H+ Y + 2 =N as required

0 as the death rate amongst those 1in

1

(111) We take p(a)
age range of interest 1 e 6 months to 10 years 1is
neglig ble

(1v) C(a) = 0 We wish to examine the proportions the
model wi1ll predict as susceptible prior to the

implementation of a vaccination program

(v) A(a) 1s a linear function for ay 0.5 years. The
force of infection acts only on those not protected
by the maternal antibodies These are thought to

last for 6 months
(vi) Finally 0.5 ¢ a ¢ 10 as most of the parameters
have been estimated for the younger age groups.

Also measles i1n Ireland 1s a childhood disease.

These parameter values are substituted into the program

the

below. (Note- the program below 1s a modification of an NAG

Library program).
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PROGRAM ODE SOLVER
IMPLICIT REAL*8(A-4,0-2)
REAL *8 X, XEND, SSIZE, X1
REAL *8 Y(4), Z(4)

N = 4

X =90 5D0
XEND = 1 0Dl
SSIZE = 0. 5DO
Y(1) = 64 0D3
Y(2) = 0 0DO
Y(3) = 0.0D0
Y(4) = 0.0DO

WRITE (28,99) X,(Y(I),I = 1,Y)
DO 100 I = 1,19
Xl = X + SSIZE
CALL GEAR (N,X,X1,Y)
X = X + SSIZE
WRITE (28,99) X,(Y(J), J =1, N)
100 CONTINUE
99 FORMAT (/, ' T = ', D13 6,' Y(I) = ' 4D13.6)
END

SUBROUTINE GEAR (N,X,XEND,Y)
IMPLICIT REAL*8 (A-H,0-2)

REAL *8 TOL, X, XEND, OLDX
INTEGER I, IFAIL, IW, J, N, NOUT
REAL *8 W(4,22), Y(4)

EXTERNAL FCN
IW = 22
TOL = 1. OD-7
IFAIL = 1
OLDX = X
CALL DO2EAF(X,XEND,N,Y,TOL,FCN,W,IW,IFAIL)
X = OLDX
IF (TOL.LT.O ODO) WRITE (6,99994)
WRITE (6,99996) IFAIL
99994 FORMAT (/,' RANGE TOO SMALL FOR TOL ')
99996 FORMAT (/,' IFAIL = ', I1)
END
C
SUBRQUTINE FCN (T,Y,F)
IMPLICIT REAL *8(A-H, 0-2)

REAL *8 T

REAL *8 Y(4), F(4)

ZLMDA = -2 4878D-3* T+3.26783D-1
ZMUA = 0.0DO

CA = 0.0DQ

SIGMA 40.556D0

GAMMA = 60 833DO
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F(l) = -Y(1) * (2LMDA + 2ZMUA + CA)

F(2) = =-Y(2) * (SIGMA + ZMUA)+ ZLMDA * Y{1)
F(3) = SIGMA * Y(2) - (GAMMA + ZMUA) * Y(3)
F(4) = GAMMA * Y(3) + CA*Y(1) - ZMUA * Y(4)
RETURN

END

This program uses the Gear method 1n order to solve the
system The results can be seen 1n Table 6.1 and Table 6.1la
below
TABLE (6.1la)
SHOWS THE PROPORTION SUSCEPTIBLE TO MEASLES OF THE

ORIGINAL COHORT OF 64,000 CEILDREN, AT AGE a

Age No. Susceptible No. Immune Proportion Susceptible
years

0.5 64000.0 0.0 1 00000
10 54403.3 8864.1 0.85005
1.5 46274 4 17104.9 0.72304
2.0 39384.5 24089.2 0.61538
2.5 33541.4 30012.1 0.52408
3.0 28583.0 35038.1 0.44661
3.5 24372.7 39305.5 0 38082
4.0 20795.5 42931.0 0.32493
4.5 17754.4 46013.0 0.27741
5.0 15167.4 48634.7 0.23699
5.5 12965.4 50866.0 0 20258
6.0 11090.1 52766.4 0.17328
6.5 9491.8 54385.8 0.14831
7.0 8129.0 55766.6 0.12702
7.5 6966.2 56944.8 0.10885
8.0 5973.4 57950.5 0 09333
8.5 5125.3 58809.7 0.08008
9.0 4400.3 59544.1 0.06875
9.5 3780.2 60172.2 0.05907
10.0 3249 6 60709.7 0.05077

Several i1mportant results should be noted from this table
{a) By the age of 10 years there are still over 3,000
of the original cohort of 64,000 children,

susceptible to measles i1nfection
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SHOWS THE PREDICTED NUMBERS OF SUSCEPTIBLE,

TABLE 6 1

INFECTIOUS AND RECOVCRED AND IMMUNE AT AGE a

A
AGE

(years)

0.500000D+00
0.100000D+01
0.150000D+01
0.200000D+01
0.250000D+01
0.300000D+01
0.350000D+01
0.400000D+01
0.450000D+01
0.500000D+01
0.550000D+01
0.600000D+01
0 650000D+01
0.700000D+01
0 750000D+01
0 800000D+01
0.850000D+01
0.900000D+01
0.950000D+01
0.100000D+01

X
NO s

SUSCEPTIBLE

0.640000D+05
0.544033D+05
0.462744D+05
0.393845D+05
0.335414D+05
0.285830D+05
0.243727D+05
0.207955D+05
0.177544D+05
0.151674D+05
0.129654D+05
0.110901D+05
0.949184D+04
0 812859D+04
0.696616D+04
0.597338D+04
0.512527D+04
0.440031D+04
0.378025D+04
0.324958D+04

H

INFECTED

0.000000D+00
0.438612D+03
0.371633D+03
0.315073D+03
0.267283D+03
0.226880D+03
0.192701D+03
0.163770D+03
0.139267D+03
0.118502D+03
0.100895D+03
0.859553D+02
0.732723D+02
0-.624986D+02
0.533414D+02
0.455534D+02
0-389261D+02
0.332831D+02
0.284753D+02
0.242768D+02
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Y

INFECTIOUS

0 000000D+00
0.294018D+03
0 249114D+03
0.211196D+03
0.179159D+03
0.152073D+03
0.129161D+03
0.109768D+03
0.933428D+02
0.794237D+902
676211D+02
576074D+02
491063D+02
.418851D+02
357474D+02
0.305276D+02
0.260857D+02
0.223037D+02
0.190815D+92
0.163348D+02

OO OO0

INFECTED,

A
RECOVERED/

IMMUNE

0 000000D+00Q
0 886409D+04
0.171049D+05
0.240892D+05
0.300121D+05
0.350381D+05
0.393055D+05
0.429310D+05
0.460130D+05
0.486347D+05
0.508660D+05
0.527664D+05
0.543858D+05
0.557666D=05
0 569448D+05
0 579505D+05
0 588097D+05
0.595441D+05
0.601722D+05
0.607087D+05
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1 ! ] % 1 £ 1 1 4 1 | 1 i 1 1 1 1 1 1 1
G 0 9 Q9 9 0 H 0 H Q9 HD O H QI H QI H QO H o

NN LT TR 25 6 6 6 A A G B9 0.0
AGE
FIGURE 6 1a

SHOWING PLOT OF NO IMMUNE AT AGE A
(WHERE C (a) = 0]

NGO  IMMUNE

60 000

50 000

40 000

30 000

20 000

10 000

T

T

102



(b) Between tne ages of 3 and 3 S5 years there 1s an
average of 26,000 susceptible to 1infection This
1S a very large number when we consider the fact

that the average age of 1i1nfection 1s 3 25 years.

{c) The number of i1nfected 1s always larger than the
number of infectious This 1s due to the fact that
the latent period i1s longer than the infectious

period.

(d) At each age point X + H + Y + Z = N, where N 1s the

total population of the original cohort.

Figures (6.1) and (6.1a) show plots of the numbers
susceptible at age a and numbers i1mmune at age a. We see
that there 1s a snarp decline in the numbers susceptible 1n
the early years. This decrease then slows down 1in the older
years. Similarly with the numbers of 1mmune, these rise

steadily up to the age of 6

How then do the pre-vaccination results predicted by the
model compare with the existing situation? From our sample
of 145 cases we have estimates of the proportions immune and
susceptible to measles 1nfection 1n Ireland before the
introduction of the vaccination program The predicted
proportions susceptionle at age a and the sample estimates of

the proportions susceptible ares given 1n Table 6 2 below.
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Table (6 2) shows tne predicted and estimated
proportions susceptible to measles infection 1n Ireland prior

to the 1ntroduction of the vaccination program 1n Octooer

1985
TABLE 6 2
Age a 1n Years Sample Estimates Model Estimates
2 0.6 0 61538
3 0.33 0 44661
4 0 2727 0.32493
5 0.229 0.17328

As we can see the model predictions are extremely close

to those proportions estimated from the sample.

We now take the model a step further by introducing
vaccination into the model We adapt the above program to

solve the system given the following intial conditions.

(1) We start at age a = 1 year as vaccinations start at
the age of 15 months

(11) Some children will have contacted the disease
between the ages of 6 months (when the maternal
antibodies start to wear off) and 15 months (when
1immunisation starts). We therefore do not have all
of the original cohort of 64,000 susceptible We
know from our predictions earlier that the force of

infection acting on susceptibles from si1x months to
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1 year gives us the following aumbers of
susceptible, 1nfected, infectious and recovered and

1mmune respectively

a =1 X(a) = 54,403
H(a) = 439
Y(a) = 295
z(a) = 8,864
(111)C(a) = —0.01686a2 + 0.026743a + 0.40083 This 1s

estimated from the sample vaccination program

discussed 1in chapter 5. Also 1l ¢ a ¢ 6 years.

These conditions with program {(6.1) yield the following
results. See Table (6.3).
TABLE 6.3
SHOW PROPORTIONS SUSCEPTIBLE TO MEASLES INFECTION

AT AGE a GIVEN C (a) = QUADRATIC

aAge No. Susceptible No. Immune Proportion Susceptible
years

1.0 54403.0 8865.0 0.850047
1.5 37743.0 25746.2 0 589734
2.0 26357.8 37287.7 0 411841
25 18606.7 45144.8 0 290730
3.0 13333.7 50489.7 0 208339
3.5 9740.5 54131 7 0.152195
4.0 7284 3 56621.1 0 113818
4.5 5600.3 58327 9 0.087505
5.0 4445.0 59498.8 "0 069453
5.5 3657 7 60296.7 0 057152
We now note from Table (6 3) that

(a) The numpers susceptible are decreasing at a faster
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rate However, by the age 5 S years tnere are
still over 3,500 susceptible to measles

(b)Y With regard Lo the proportions susceptible we see
that at the age of 3 years there 1s still almost
21% susceptible to measles. Again this 1s a very
high percentage given that the average age at
infection 1s 3 25 years. 1t would be desireaole to
reduce the proportion susceptible at this age
considerably

TABLE 6.4

PROPORTIONS SUSCEPTIBLE BEFORE AND AFTER VACCINATION

PRE-VACCINATION POST-VACCINATION

AGE PROPORTION SUS. AGE PROPORTION SUS
0.5 1.00000 10 0 850047
1.0 0.85005 1.5 0.589734
1.5 0.72304 2.0 0 411841
2.0 0 61538 2.5 0.290730
2.5 0.52408 3.0 0 208339
3.0 0.44661 3.5 0.152195
3.5 0.38082 4.0 0.113818
4.0 0 32493 4.5 0.087505
4.5 0.27741 5.0 0.069453
5.0 0.23699 5.5 0.057152
5.5 0.20258

6.0 0.17328

6.5 0.14831

7.0 0.12702

7.5 0.10885

8.0 0.09333

8.5 0.08008

9.0 0.06875

9.5 0.05907

10.0 0 05077

Comparing the proportions susceptible pre and post
vaccination we see 1n Table (6.4) and from Figure (6 2) tnat
(1) Vaccination reduces the proportions sudascepntihle

considerably Before vaccination 5% of the
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original cohort remained susceplible at the age of
10 With vaccination approximately 5% remain
susceptible by the age of 5 5 years This
reoresents a considerable i1mprovement

{11) In the earlier, younger age groﬁps we see that
vaccination has reduced the number of 1 5 year olds
susceptible to measles by approximately 13%, the
numoer of 2 year olds by 20 5%, the number of 2 5
year olds by 22 5%, the number of 3 year olds by
approximately 23% and the number of 3.5 year olds
by 23%. These are not large improvements. The
current vaccination program should be aiming to
imnunise the children at as young an age as
possiole for we have a very young average age at
infection We have seen earlier in this chapter
that for the successful eradication of an
infectious disease such as measles V < A.

(111)Vaccination raises the average age at infection and
hence reduces RO. As we have seen for eradication
Ro < 1. For our vaccination program to succeed we
must increase our levels of coverage The
required levels for eradication are 1in the region

of 97%.
Finally, what then should be the aims of future policy and

further research® with regard to policy we should aim for

(a) Widespread i1mmunisation with a coverage of 97% to
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99%

(b) Immunisation at as young an age as possible, 1n
order to ensure tnat the average age at vaccination
1s less than tne average age at 1nfection

(c) The reduction of Ro to less than unxty If such
were the case measles 1n Ireland would die out.

(d) The collection and compilation of appropriate data.
There 1s an urgent need for the collection of
seriological data (by surveys with fine age
stratification) and vaccination data (also with age
stratification) These are very 1mportant for the
interpretation of epidemiological trends 1in disease

1ncidence under the given vaccination policy.

With regard to future research we have 1in our model made
the assumption of homogeneous mixing That 1s that the
population mixes 1n a homgeneous manner, at a given point 1n
time, each susceptible has an equal prooability of
encountering an 1nfectious person In natural communities
there will be groups of 1ndividuals who are less at risk of
exposure to i1nfection than other groups. There 1s a need for
further work on the impact of 1nhomo%eneous mixing. Similar
comments also apply to vaccination coverage, since this 1s
rarely uniform throughout the different regions of the
country. Finally, our analysis 1s based on measles
infection, the methods, however, can be applied to the

epidemiological study of a wide variety of infectious
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diseases 1n Ireland Provided the researcher 1s willing to
apply his mathematical skills and collect the appropraiate
data, many useful results can be predicted for the common

infectious diseases i1n Ireland
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