
ADDENDUM
NOT^S ON Tn.3 COLLECTION OF H I S I l  DATA

\s jias b e e n  s a li 1 a the n a r  text t He c o l l e c t i o n  of a c c u r a t e  and 

appr o p x a t e  >ata in I reland is a very u i f f i c j l t  ana teJioas tas r 

? a t a on s a r v i v a l  rates for the Iris ’ people in c^apte; four ”.as 

c o l l e c t e d  d u r i n g  t^e ’n t s r  of 1 ? G 5 ani .7 p r i n j 1 ? £ C He c o r a s  

c o n t a i n e d  in the C e n t r a l  S t a t i s t i c s  O f f i c c  ^ere not a l v a y s  

r e a d i l y  a v a i l a b l e  A l s o  m  n a n y instances t a e  access to records 

w h i c h  r e c o r d e d  t h e  a g e  o f  t h e  p o p u l a t i o n  a n d  t h e  n u i o e r  o f  d e a t h s  
w i t h i n  each age group of tne p opulation alth o u g h  a v a i l a b l e  were 

r e c o r d e d  in d i f f e r e n t  r e p o r t s .  Mo r e  d e t a i l s  o f  t h e  s p e c i f i c  
d i f f i c u l t i e s  e n c o u n t e r e d  a r e  d e s c r i b e d  m  c h a p t e r  4 One  m u s t  
a l s o  p o i n t  o u t  t h a t  o f t e n  t h e  c e n c u s  f i g u r e s  w e r e  r e c o r d e d  a t  
i r r e g u l a r  i n t e r v a l s  ( u s u a l l y  e v e r y  5 y e a r s  b u t  t h i s  w a s  n o t  
a l w a y s  t h e  c a s e )  a n d  t h a t  t h e  m o s t  r e c e n t  f i g u r e s  a v a i l a b l e  o n  
t h e  n u m b e r s  m  e a c h  a g e  g r o u p  w e r e  t o  be  f o u n d  i n  t h e  1 9 8 1  c e n s u s  
r e p o r t s
The  c o l l e c t i o n  o f  d a t a  on t h e  p r o p o r t i o n s  i mm u n i s e d  i n  e a c h  a g e  
g r o u p  >/ a s a l s o  v e r v  d i f f i c u l t  o o f f i c i a l  : 1 3  a r e s  ‘ e r e  a v a i l a o l e  
t o  lae,  n o ’v e v e r  I ras  v e r y  f o r t u n a t e  t o  h a v e  r e c e i v e d  i n f o r m a t i o n  
and a s s i s t a n c e  f r o m Co mmu n i t y  Ca r e  \ r e a  8 . T h i s  a r e a  k e p t  d e t a i l s  
o n  t h e  n u m b e r s  o f  c h i l d r e n  v a c c i n a t e d #  t h e  a g e  o f  e a c h  c h i l d  
v a c c i n a t e d  and t h e  t o t a l  n u mb e r  o f  c h i l d r e n  m  e a c h  a g e  g r o u p .
The  c o l l e c t i o n  o f  t h i s  i m m u n i s a t i o n  d a t a  o c c u p i e d  a l l  o f  Summer  
1 9 S 6  C o mmu n i t y  Ca r e  A r e a  8 h a d  a l l  t h e  a b o v e  d a t a  c o m m p u t e r 1 s e d  
f o r  t h o s e  c h i l d r e n  m  t h e  G e n e r a l  M e d i c a l  S e r v i c e  ( G . M. S . )  I t  
r e m a i n e d  f o r  me t o  c o m p u t e r i s e  t h e  r e m a i n i n g  c a s e s  o f  n o n  G. M. S.
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d a t a  T h i s  w a s  a c h i e v e d  b y  c o d i n g ,  f o r  u s e  w i t  a t h e  s t a t i s t i c a l  
p a c k a g e  SPSSX,  a l l  i m m u n i s a t i o n s  f o r m s  r e t u r n e d  b y  d o c t o r s  i n  t h e  
a r e a  I n  o r d e r  t o  b e  p a i d  f o r  a d n i m  s t e r  m g  t i e  v a c c i n e  a l l
d o c t o r s  nav. to cozipl e te aia r e t a n  t i e s e  f o n s  (A c o p y  of one 

sue! for:? is a t t a c h e d )  The d ̂ t 3 contained n  t m s  forn 7a s tien 

transcrioei onto a con pater data entry sieet (see attached) Tata 

f ron o v e r  ¿ 0 0 0  v a c c i n a t i o n s  Tas c o d e a  a * c o m p u t e r i s e d  in tnis 

v ay

As t h e  t o t a l  n u mb e r s  o f  c n i l d r e n  i n  e a c h  a g e  g r o u p  wa s  a v a i l a b l e  
I t h e n  e s t i m a t e d  t h e  p r o p o r t i o n s  v a c c i n a t e d  i n  e a c h  o f  t h e  a g e  
g r o u p s  I  m u s t  s t r e s s  t n a t  t  j i s  / o  a  1 d  n o t  n a v e  b e e n  p o s s i b l e  s  r  s  

i t  n o t  f o r  t h e  e x c e l l e n t  r e c o r d s  k e p t  w i t h i n  Co mmu n i t y  Ca r e  A r e a  
8 .

I wa s  v e r y  f o r t u n a t e  t h a t  I  c o u l d  e s t i m a t e  t h e  e x a c t  p r o p o r t i o n s  
s u s c e p t i b l e  t o  m e a s l e s  i n f e c t i o n  p r i o r  t o  ma s s  i m m u n i s a t i o n .  T h i s  
w a s  d u e  t o  t h e  f a c t  t h a t  u n v a c c i n a t e d  b l o o d  s a m p l e s  w e r e  
a v a i l a b l e  i n  t h e  D e p a r t m e n t  o f  M e d i c a l  M i c r o b i o l o g y  i n  U n i v e r s i t y  
C o l l e g e  D u b l i n  F r o m t h e  r e c o r d s  ma d e  a v a i l a b l e  t o  me I d r e w  a 
s a m p l e  o f  o v e r  1 4 0  b l o o d s  T n e s e  . rere  t a ^ e n  f r o m c h i l d r e n  o e t w e e n  
t r e  a j e s  o f  1  and 13 y e a r s  T ^ e s e  b l o o d  s a r p l  e s  / e r e  t i i e n  r e s t e d  
u s i n g  t h e  C r i t i c a l  F l i c k e r  F u s i o n  t e s t  ( O F F )  f o r  m e a s l e s  
a n t i b o d i e s .  The  p r o p o r t i o n s  s u s c e p t i b l e  m  e a c h  o f  t h e  a g e  g r o u p s  
wa s  t h e n  d e r i v e d  f r o m t h e  r e s u l t s  o f  t h e s e  t e s t s .  I  s h o u l d  p o i n t  
o u t  t h a t  a l t h o u g h  t h i s  i s  t h e  b e s t  w a y  t o  e s t i m a t e  t h e  p r o p o r t i o n  
s u s c e p t i b l e  t o  m e a s l e s  i t  i s  n o t  a l w a y s  p o s s i b l e  due  t o  t h e  f a c t  
o t h e r  c o u n t r i e s  h a v e  b e e n  i m m u n i s i n g  f o r  s e v e r a l  y e a r s  a nd  t h a t  
u n v a c c m a t e d  b l o o d  i s  u n a v a i l a b l e .  I n  s u c h  c a s e s  t h e  p r o p o r t i o n  
s u s c e p t i b l e  m u s t  b e  e s t i m a t e d  f r o m  c a s e s  n o t i f i c a t i o n s »  t h e s e

I
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h o w e v e r  a r e  n o t o r i o u s l y  u n r e l i a b l e
\ s  h  a s  b e e n  s a i d  a b o v e  t n e  c o l l e c t i o n  o f  d a t a  c a n  b e  a v e r y -  
l a b o r i o u s  and t i n e  c o n s  uni m s  t a s k ,  e s p e c i a l l y  w h e r e  r e c o r d s  a r e  
s c a r c e  o r  s n p l v  n o n  ¿ x i s t a n t  T h e r e f o r e  I a u s t  s t r e s s  t o  a l l  
i. e a 1 1 1  a u t h o r i t i e s  t n e  n e c e s s i t y  o f  e e p .l n ~ a c c u r a t e  and i e t a . l e i  
r e c o r d s  ( e s p e c i a l l y  o f  a ; e ) I m u s t  a l s o  c i J t i o r  o t i  s r 
n a t h e * a a t i c i a a s  H a t  w o r l n »  i t h  - n a t h e n a t i a c a l  m o d e l s  f o r  
d i s e a s e s  i n  I r e l a n d  c a n  b e  v e r y  d i f f i c u l t ,  o u t  I *nus t  s a y ,  a l s o  
v e r y  i n t e r e s t i n g ,  r e w a r d i n g  a n d  I h o p e  o f  s o me  b e n i f i t  t o  t h e  
c omrnu n 1 1  y
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ABSTRACT

The aim of this work is to establish a matnematical model for 
measles epidemics and to predict levels of vaccination coverage 
require! in Ireland in order to eradicate tne disease The
emphasis througnout has oeen to derive the parameters of the 
model using data collected in Ireland. To achieve this a non­
linear differential equation model first oroposed by Anderson 
R M. and May R.M. has been adopted and adjusted to meet our 
application

In Chapter 1 we introduce the concept of mathematically modelling 
the dynamics of an infectious disease and we also propose a 
simple constant parameter model We then move on in Chapter 2 to 
discuss what is known as ”the force of the infection". This is 
then calculated for Ireland by testing over 100 blood samples for 
measles antibodies.

In Chapter 3 we estimated the Irish interepidemic period using 
Hopf's bifurcation theorem. In Chapter 4 we move on to the more 
detailed model with age dependence. We also estimate the age 
dependent survival rate jj(a) for the Irish population.

Finally, in Chapters 5 and 6, we look at immunisation and the 
results predicted by the model. In Chapter 5 we derive c(a), the 
Irish age dependent vaccination rate This is accomplished by 
computerising over 4,000 immunisations.

We also predict how the reproductive rate, R , of the disease 
will change with vaccination. In Chapter 6 we numerically 
analyse the model with the Irish age dependent parameters and we 
predict the levels of vaccination required in order to eradicate 
measles in Ireland.



CONTENTS

Page

Chapter 1

Introduction to Epidemiology and 

Mathematical Modelling

Chapter 2

On the Force of Infection X(a) and 

Estimation for Irish Data ......

Chapter 3

On the Interepidemic Period and 

Estimation of T for Measles in Ireland * .

Chapter 4

Introducing the Age Dependent Model and 

the Mortality Parameter p(a) ..........

Chapter 5

On Immunisation and Estimation of c(a) , the 

Vaccination Rate in Ireland .......

Chapter 6

Numerical Results, Conclusions and 

Recommendations . . .  . . . . .

Numbe r

1

21

40

57

73



Preface

This research was motivated by the implementation of the measles 
vaccination program m  Ireland in October 1985 At that time 
there was much discussion and confusion over the safety and 
efficacy of vaccines With this m  mind Professor Alastair Wood, 
(Wescan Professor of Applied Mathematics), N I H E Dublin, and I 
decided to investigate the effects of the measles vaccination 
program on the Irish population.
This work was aided by the works and papers of R.M Anderson and 
R M May They have shown, by many practical examples how
mathematics can model endemic disesases such as measles and can
accurately predict future epidemiological parameters Throughout 
this thesis the aim has been to assess these population and
epidemic parameters for measles m  Ireland These parameters 
were then inserted into a mathematical model m  order to predict- 
a) future trends in measles epidemics in Ireland and b) the
levels of vaccination required m  order to eradicate the disease
It is hoped that this thesis will stimulate other mathematicians 
to tackle the problems of epidemiology m  a practical way It is 
also hoped that the results provided m  this work will assist 
those of the medical profession m  their difficult task of 
estimation and prediction of epidemiolocical parameters

Catherine Comiskey



CHAPTER 1 
INTRODUCTION TO EPIDEMIOLOGY AND 

MATHEMATICAL MODELLING

In the preface we discusseJ tie motivation for this 

particular research We shall now expand on this and show 

how matnematical modelling of eoidemics has evolved and 

developed We shall do this by giving, (a) a brief 

historical outline of mathematical epidemiology and (b) an 

account of the development of mathematical theories on the 

spread of epidemic diseases We shall then move on to 
discuss some more recent work, namely that of ri T.J. Bailey., 

who in a single work (o) describes in detail the 

mathematical basis of the population dynamics of infectious 

diseases We shall be looking mainly at his work on 

deterministic models and also at the information on the 

dynamics of a disease that can be gained from these models 

Finally we shall move on to introduce a non linear 

deterministic differential equation model by R. Anderson and 

R May We shall discuss this particular model in detail 
and shall see what we can learn from this simple constant 

parameter model

First recorded accounts of epidemics go back as far as 

the ancient Greeks of approximately 400 B C- Genuine 

progress in epidemiology was not made until the 19th 

Century This was due to the research of Pasteur(1822-1895) 

and Koch( 1843-1910) both of whom made great progress in the
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science of bacteriology Medical and vital statistics were 

first compiled as early as the 17th Century, at this stage 

it was still to early for any theory of epidemics Also, at 
this time, the necessary mathematical techniques were 

themselves then only in the process of development and no 

sufficiently precise hypotheses about the spread of disease 
suitable for expression m  mathematical terms had been 

proposed However m  1760 Daniel Bernoulli used a 

mathematical method to evaluate the effectiveness of the 

technique of variolation against smallpox with a view to 

influencing public health policy- Some curve fitting methods 

were used by Evans(1875) on the smallpox outbreak of 1871-2, but 

this met with little success.

By the end of the 19th century the general mechanism of 

epidemic spread as revealed by bacteriological research made 

possible some new developments- Hammer(1906) beleived that 

the course of an epidemic must depend on the number of 

susceptibles and the contact rate between the susceptibles 

and infectious individuals. The simple mathematical 

assumptions made by Hammer are oasic to all subsequent 
deterministic theories. Hammer by using these simple ideas 

deduced the existence of periodic recurrences These ideas 

were later taken up by Soper (1929) (2.0) • In the meantime 

Ross(1911) was working out a deterministic matnematical 

model for the transmission of malaria- From his model we can 

deduce the future state of the epidemic given the m i t a l

2



numbers of susceotiole and infectious individuals, together 

with the attack, Lecovery, birth and death rates For the 

first time it was possible to use a well organised 

mathematical theory as a research tool in epidemiology

More detailed and elaborate mathematical studies of the 

same type were later developed by Kermack and 

McKendnck ( 1927-1939 ) . These authors also considered the 

problems of endemic diseases. Their most important result 

was the well known threshold theorem, according to which the 

introduction of infectious cases into a community of 

susceptibles would not give rise to an epidemic outbreak if 

the density of susceptioles was below a certain critical 

value. If, on the other hand, the critical value were 

exceeded, then there would be an epidemic of sufficient 

magnitude to reduce the density of susceptibles as far below 

the threshold as it originally was above. We shall look 

closer at this critical value or threshold later in this 

chapter.

Work specifically associated with measles was carried out by 

Soper(1929). With his deterministic model he made tne very 

important discovery that the basic assumptions entailed, as 

far as recurrent epidemics were concerned, a damped train of 

harmonic waves. Published data on measles although 

exhibiting marked variations in incidence from year to year 

showed no tendency to damping We shall be looking at the
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mtereoidamc period of measles incidence in Ireland later m  

Chapter 3 First, let us examine some of the work of Bailey 

in, "The Mathematical Theory of Infectious Diseases", first 

puolished in 1957,(6)

In the above work Bailey introduces a simple 

deterministic model for recurrent epidemics. He models 

common infectious diseases such as measles, diseases which 

are really endemic, that is they are constantly with us 

although often presenting considerable fluctuation in 

prevalence Bailey introduces a basic deterministic model, 

which under appropiate conditions yields a steady state 

about which natural periodic oscillations are possible. 

However these oscillations are damped m  contradiction with 

observed epidemiological phenomena. This as we have seen was 

first observed by Soper

Bailey considers a community of  ̂ individuals comprising 

of at time t, X susceptibles, Y infectives m  circulation 

and Z individuals who are isolated, dead or recovered and 

immune. Thus X + Y + Z = N. The infection rate is 6 and 
the recovery rate is ^ so giving SXYAt new infections and ^Y 

At removals m  time At He further assumes that there is a 

continuous stock of new susceptibles. The basic set of 
differential equations is given by

4



dX

dt SXY

dY

dt = ¿XY “ y Y (11)

dZ "

dt = <rY

As the first two equations do not depend on Z we can consider 

the system

dX

dt = - BXY (1.2)

dY

dt = &XY - ^ Y

From this we can determine X(t) and Y(t) and we can obtain

Z(t) from the fact that N = X(t) + Y(t) + z (t )

We have from system (1.2)

dY = dY / _dX = 5XY - y Y = -l + JV b x 

dX dt / dt - SXY

whicn when separating the variables and integrating gives
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5̂

Y (x ) = Y0 + x0 “ x + (T/S X / \ 3 (1 3)

where X and Y are the initial numbers of susceptibles and o o
infectives and p = is the removal rate As we can see

from figure (1 1) Y(x) is an increasing function of x, that

is dY/dX > 0 for x < p and is decreasing for x > p also

Y(x ) = y > 0  Hence there exists a unique point x with o J o u
0 < x^ < xQ such that y(*u ) = 0
Since for y = 0, y 1 = x *  = 0 then the equilibrium points lie 

on the x axis. The conclusions drawn from this analysis and 

from figure (1.1) are that an epidemic will occur only if 

the number of susceptibles in a population exceeds the 

threshold value p = //£> and the disease dies out only for lack 

of infectives and does not stop for lack of susceptibles 

This leaves us at the Kermack and M c K endnck thresnold 

theorem, proof of which can be found in 3ailey(6) or 

Braun(8 ) .

In describing a deterministic model for the endemic 

measles infection Bailey returns to the model described 
above He introduces a birth parameter \i so giving pAt new 

susceptibles m  time At. He takes the population N to remain 

constant by assuming that the new susceptibles are balanced 
by an appropriately defined deatn rate Constructing the 

simple model he concentrates on the groups of susceptibles 

and infectives making the further assumption that the death
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FIGURE 1 1

ILLUSTRATION OF THE BASIC THRESHOLD THEOREM

Figure (1 1) showing the trajectories of the solution curves 

of the first order equation dY/dX = -1 + j/(p X)
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rate of susceptibles is negligible conoared to tnat of the 

infected population This is equivalent to assuming that on 

average the deaths of removed individuals are just balanced 

by the births of new susceptibles These assamptions lead to 

the following set of differential equations

dx = - 6xy + p

dt ( 1 4 )

= Sxy - fy

dt

By equating the differential equations to zero we find the 

equilibrium values xq = y

6

(1 5)
r

The equations for small departures from these e q u i l b n u m  

values are obtained by writing x = x q (1 + u )

y = y Q ( l + v )  ( 1 6 )

and substituting these into our system (1 4) above gives 

du =  -  iu +  V + uv) ( 1 7 )
dt

r dv = u (1 + u ) 
dt

where = yf r = 1

Byu ¡f
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By neglecting the oroduct uv^and eliminating u from the 

equations we obtain the second order differential equation 

in v ,

d 2v + dv_ + (_J_)v = 0
2 ^  ^dt dt ^ r  (18)

which has the solution

v e o t//2^Cos f t where ? = n

(1 9)

for a suitably chosen origin of time. We then obtain the 

solution for u given oy = v^ ( r e  ty/2^Cos(?t + V )  

where Cos^ = -JL (r/V/3“ 0 ^ ^ ^ (110)
2

These linearised solutions involve damped harmonic

trains of waves with period 2v . Soper believed that thevO'
allowance for an incubation period of 2 weeks, as is the 

case with measles, would remove the damping This, however, 

was found to be incorrect An important consequence of 

Baileys work is that while the additional^assumption of a 

constant fresh supply of new susceptibles accounts for the 

epidemic waves, it does not explain the damping down to a 

steady endemic state, which is not in accordance with 

observed epidemiological data We shall be looking at the 

I n s n  mterepidemic period in Chapter 3
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Moving ahead to some of the more recent work n  

mathematical epidemiology we shall now study tne 

deterministic models proposed by R M Anderson and R May, 

(1,2,3,4) They address many of the important 
epidemiological questions which still remain to be answered 

For example, what proportion must be immunised in order to 

eradicate the disease7 What reduction in disease incidence 

is to be expected given an age specific vaccination 

schedule9 What is the effect of vaccination on the average 

age at which individuals acquire infection and on the time 

between epidemics (termed the mterepidemic period)’

Anderson and May draw from both deterministic modelling 

theory and from the data that is available to them m  England 

and Wales to answer these and other related questions. We 

shall consider their work in relation to the Irish situation 

and Irish data We shall see what knowledge of the aetiology 

of measles in Ireland is to be found from an adaptation of 

one of their simple deterministic models.

In order to devise a mathematical model describing the 
dynamics of measles Anderson and May make several 

assumptions, these are as follows:
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(1) The population is divided into discrete classes where -

X(t) = the number of susceptibles at time t,

H (t) = the number of those who are infected out not yet

infectious,

Y(t) = the number of infectious and

2(t> = the number of recovered or immune

(2) The size of the population (or density) N remains 

roughly constant on a time scale appropriate to 

the pathology of the disease or at least changes 

on a time scale long compared with other time 

scales of interest. This is a reasonable 

assumption for the Irish population as can be seen 

from figures(l-2) Note also that N = X+H+Y+Z.

This assumption corresponds to the assumption that 

the net input of susceptibles into the population 

by birth is roughly equal to the net mortality pN, 

where p is the death rate and life expectancy is 

1/p.

(3) The net rate at which infections are acquired is 

proportîonal to the number of encounters between 

susceptible and infectious individuals, SXY S is 
called the transmission coefficent



FIGURE 1 2fo)
VARIATION IN POPULATION FIGURES IN THE 

0-4 AGE GROUP OVER THE PERIOD 1926 - 1981
POPULATION x lo3

YEARS

FIGURE 1 2 &
VARIATION IN POPULATION FIGURES IN THE 

5-9 AGE GROUP OVER THE PERIOD 1926 - 1981
POPULATION X IO*

YEARS
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FIGURE 1 2 £0 
VARIATION IN POPULATION FIGURES IN THE 

10-14 AGE GROUP OVER THE PERIOD 1926 - 1981

POPULATIONX/o*

YEARS

FIGURE 1 2(°0 
VARIATION IN POPULATION FIGURES IN THE 

15-19 AGE GROUP OVER THE PERIOD 1926 - 1981
POPULATION Xio*

YEARS



(4) Individuals pass from the latent state to the

infectious state at a per capita rate o' (such that 

the average latent period is \/ cf ) and recover to 

join the immune class at a per capita rate ^(where 
1 / y i s  the average infectious period) Estimates 

for these constant parameters are set out in table 

(1 1) below

Table 1.1

Infectious
Disease

Latent Period 

1 /6 (days)

Infectious Period 

1/y  (days)

Measles 6 to 9 6 to 7

(5) Immunity is lifelong. This is the case with measles

(6) Finally we assume homogeneous mixing

It is important to note at this stage that the 

assumption that the parameters 6, ^  and y are simple

constants is artificial but these parameters used as such in 

a time dependent model can provide useful and illuminating 

results. Using these assumptions we construct a set of four 

first order non linear differential equations,

14



dX

dt = jjN - pX - SXY

dH

dt = SXY - (p+ <T )rt (11 1 )

dY

dt = 6ft - (M+^) Y

dZ

dt = f  - pZ

Adding all four equations gives = 0, corresponding to

d t

the original assumption that N is constant We also note 

that this model does not incorporate any vaccination program 

that may be in operation. This is the case for Ireland from 

October 1985. We shall see in Chapter 5 how the above model 

can be developed to include such a program

A disease such as measles will maintain itself within a 

population provided the reproductive rate R, of the infection 

is greater than or equal to unity. This reproductive rate 

is defined as the expected number of secondary cases 

produced by an infectious individual in a population of X 

susceptibles. If R<1 the disease will die out even if there

15



are susceptible people in the community This concept oí 

the reoroductive rate is also discussed by Dietz(fo)

For the time dependent model above we Jef

R = 6 X_______

(<r + p )( y+ p ) (1.12)

This definition is biologically intuitive for we know that 

secondary infections are produced at a rate of 6X ,

(transmission coefficient by population of X susceptibles) 
throughout the expected lifetime, 1 , of an infectious

lf+ V

individual. Of these a fraction, or , will survive the

K +  p)
latent period to become the second generation of infectious 

individuals.

We have said that the reproductive rate must exceed

unity for the disease to establish itself within a

community That is to say that each infectious individual

must infect at least one susceptible This requirement is

equivalent to the criterion that the population of

susceptibles must exceed some threshold density, that is

X>Nt - This has been discussed m  great detail by Waltman
ip

( H )  We seen from (1 12) that N is defined asA>- 1

16



N = ( y r+ p ) ( ^ + u )  (113)T — *-------------  ->
6(T

we can now exoress equation (1 12) above

as R = _X_ . (114)

n t
For measles in developed countries the duration of the 

latent and infectious periods, \/£ and 1/^ is of the order of

a few days while 1/p is of the order of approximately 70 to

75 years

Under these circumstances equations (1.12) and (1.13) 

above can be approximated as R = fiX and NT = y  We

6
note here that the same threshold valve is derived in 

Baileys work aoove However we cannot as yet find estimates 

for these parameters because of the difficulty in estimating 

the transmission coefficent, 6.

We now introduce the important concept of the basic

reproductive rate of an infection, denoted R . This iso
introduced in order to illuminate further the ideas discussed 

above. For a directly transmitted viral infection Rq is 

defined as the average number of secondary infections

Footnote

(1) We shall see in Chapter 3 that at equilibrium 6 > 
0.00095, taking 1/f = 6 days l e ^ = 61 years gives us a 
threshold value of N > 64,211

1 7



produced when one infectious individual is introduced into a 

population where everyone is susceptible Equivalently it 

may be defined as the value of R in a disease free 

population The value of Rq depends both on biological 

factors related to the aetiology of the infection and on 

environmental and social factors, having to do with contacts 

among susceptible and infectious individuals.

Anderson and May (2) derive some interesting relations

between R of an endemic infection such as measles and the o
epidemiological parameters. Parameters are the fraction of 

the population that is susceptible and the average age of 

first infection. These they derive under the assumption 

they call 'weak homogeneous mixing' This says that the 

rate of appearance of new infections is linearly 

proportional to the number of susceptibles X. In their 

model the age structure is included, so that X is now a 

function of the two variables, age, a and time, t This is 

in contrast to what they call the assumption of 'strong 

homogeneous mixing', which assumes that the rate is 

proportional to both X and Y, that is 6XY Where X is

X (a t) da (1.15)t
the total number of susceptioles and Y is similarly defined.

Under the assumption of weak homogeneous mixing Anderson 

and May argue as follows As the infection becomes

(

18
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established the fraction of the copulation who remain 

susceptible will decrease The net fraction susceptiole may

be denoted x, where x = X . (1 16)

N

On average, under the assumption that the rate of 

appearance of new infections is linearly proportional to 

the number of susceptibles, the number of secondary 

infections will be diminished below the number occuring when 

all are susceptible by the factor "x That is, the value of 

the effective reproductive rate R is*

R = R0 IT (1.17)

If an infection is established at roughly steady 

equilibrium value, the effective reproductive rate will be 

unity. This is because at equilibrium each infection on 

average produces exactly one secondary infection This 

common sense result has been established rigorously by Nold 

(1^) m  1979. Therefore, at equilibrium, and the 

fraction susceptible 3c are related by*

x* = 1 (1 18)

This is a very useful result, for if the equilibrium

fraction of the population who are susceptible can be

determined from sereological data or otherwise w? can use

equation (1 18) above to estimate R We have establishedo
that at equilibrium Rq x = 1 In deriving this we have
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made no assumptions about now individuals acquire infection 

At equilionum before vaccination, susceptibility is lost 

only by natural infection, at equilibrium after a 

vaccination program is in place susceptibility can be lost 

either oy immunisation or by acquiring tne infection 

Provided no other social or environmental changes have ta^en 

place Rq will remain unaltered and equation (1.18) provides 

the surprising conclusion that the fraction of the 

population who are susceptible to infection will remain the 

same after a vaccination program has been implemented as it 
was before.

We shall explore further estimates of Rq and relate this 

parameter to Irish data m  our next chapter on X t the force 

of infection. We shall demonstrate the relationships 

between X, A, the average age of first infection and Rq . We 

shall also see, m  our chapter on mortality, the effect that 

the Irish mortality curve has on Ro
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CHAPTER TWO

ON THE FORCE OF INFECTION A (a ) AND ESTIMATION

FOR IRISH DATA

We shall now discuss the estimation of age related rates 

of infection from case notification and sereological data, 

with oarticular emphaisis on estimating the age related rate 

of infection or force of infection of measles m  Ireland 

This we shall estimate oy means of a sereological survey.

In a study of the transmission dynamics and epidemiology 

of measles or any such viral or oactenal infection of man, 

case reports and sereological data stratified according to 

age are an important source of information. Because the 

dimensions of age and time are equivalent, age-related 

changes can reflect temporal changes in the rate or force of 

disease transmission within a community Data from case 

reports have many limitations one of which is a possible 

age-related bias in case reporting It is believed that 

the probability of a case being reported in the very young is 

higher than that for the adult age class. Data from age 

stratified sereological surveys carried out before the 

implementation of a vaccination program can provide accurate 

information on the proportion of immunes

One of the earliest serological surveys was carried out

by Collins m  1924 and again in 1929 His analysis was

Co  uimS f 0
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based on an age specific "incidence rate" This was defined 

as the number of reported cases per unit of time in a given 

age class, divided by the total number of individuals m  

that age class Today this is termed the age specific 

"attack rate" and is often defined per 1,000 head of 

population This statistic has many limitations as it takes 

no account of the numbers m  each age class who are actually

susceptible to infection- A precise measure of the rate at

which susceptibles acquire infection was first proposed by 

Muench (1^) in 1959- He employed simple mathematical models 

to mirror age related changes in the proportion of 

individuals who had experienced infection Muench used a 

parameter termed nthe force of infection" defined as the 

instantaneous per capita rate at which susceptible 

individuals acquire infection It is this force of 

infection that we shall estimate for measles in Ireland.

This in turn will lead us to a further estimate of the

previously defined parameter, Rq
/

It is both interesting and illuminating to see how 

Muench developed the idea of "a force of infection" as the 

concept can be difficult to understand. Muench draws an 

analogy between a catalytic process in chemistry and the 

individuals in a population The simplest picture of a 

catalytic process in chemistry involves molecules of an 

original substance, this, he says, may be equated with 

individuals m  a population that has not yet been in contact
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with an infective force In chemistry, the original 

molecules are subjected to a contact with molecules of a 

catalytic substance, a contact between the two implies the 

creation of another substance Similarly the uninfected 

individuals of a population can be conceived as subjected to 

a force of infection which changes them to infected 

individuals. The basic rate at which molecules are changed 

depends on -
(a) the relative number of molecules of catalyst and

(b) the number of contacts made by each per unit time.

Thus (a) and (b) make a force which can be expressed as the 

number of effective contacts per unit time. The force of 

infection acting on the population can similarly be measured 

in terms of effective contacts per unit cime (usually a 

year) per individual "Effective contact” here has the 

meaning used by Wade Frost a contact sufficient to produce 

infection if the subject is susceptible

Muench proposes the following hypothesis in order to 

derive mathematically the force of infection We begin with 

a quantity of unchanged molecules or individuals This 

quantity we shall make equal to 1 and deal with the fraction 

changed at any time t. This fraction we designate y so that 
1 - y is the relative amount still left unchanged at time t 

This then is the part on which the catalytic or infective 

force can still work, at the rate of r effective contacts 

per individual per unit of time. The speed at which the
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reaction acts on will then be measure 3 oy

dy = r ( 1 - y ) (2 1)

dt

This is a simple linear differential equation which has tne 

general solution

This form of the equation describes the expected behaviour of 

a group of molecules, or persons, starting entirely 

unchanged, or susceptible at the beginning of observation or 

at birth (when t=0) and exposed to a continuous bombardment 

of catalysis or infection a constant rate of r effective 

contacts per individual per unit time.

In order to transfer the catalytic picture to a model of 

infection acting on a population it is necessary to include 
some assumptions, namely

(a) The population is entirely susceptible to infection 
at birth

(b) A constant force of infection to which t m s  

population is exposed

— rty = 1 + ce

*f we substitute y = 0 and t = 0 (l e starting at time
“ r twe have- y = 1 —  e t ((2 3)

(2.2)
0)
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(c) evidence which will show that infection has taken 

place, allowing the estimate of y, or the fraction 
infected at any time t This nay consist of 

positive histories or the results of laboratory 

findings

With regard to measles, assumption (a) is unfulfilled as 

it is believed that coildren possess their maternal 

antibodies up to the age of 6 months. However, we shall see 

that this can easily be overcome. We shall also see that 

the force of infection is in fact not a constant but rather 

a function of age. Finally, we shall look at the findings 

of our Irish sereological survey in order to estimate y, the 

fraction infected and subsequently A (or r) the force of 
infection

In order to estimate the Irish force of infection we 

shall follow some guidelines set out by B.T. Grenfell and 

R.M. Anderson (12) We have seen from the simple catalytic 

model of Muench that the proportion susceptible x(a) in age 
class a is given by

x(a) = exp( -Aa) (2.4)

More generally, if the force of infection X( a ) is

age-dependent then

(2 5)
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The proportion immune at age a, y(a) is simoly

y(a) = 1 - x (a ) # (2 6)

Equation (2 5) can be expressed in terms of the cumulative 

distribution function of age at infection, F(a) (the 

proportion o£ a cohort all of whom were susceptible at birth 

who nave experienced infection (i e. who are immune by age, 

a)̂  where

To account for maternally derived antibodies in children

be set to zero below a lower age threshold m (This is 

usually assumed to be in the region of 0 5 years for 

measles) We note at this stage that we have succeeded m  

modifying the 3 assumptions set out by Muench

used) to be constant and independent of host age Griffiths 

(13) noted in an analysis of the age distribution of

rise linearly with age between the ages of 0 and 10 years. 

Anderson and May (1) also discuss the estimation of A as a 

linear function of age In Grenfell and Anderson (12) we

F(a) = 1 - exp ds] (2.7)

born to mothers who have experienced the infection, X(a) can

Muench ( (/¿) as we have seen, assumed \(or r, as he

infection for measles in England and Wales that X  tends to

see that X can be expressed as a polynomial of degree K
where
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K
X(a) = 2 b  a 1 (m < a < u) (2 3)i O 1 “■
X (a ) = 0 (a < m )

where the upper age limit u denotes human life expectancy or 

the oldest age class Eor which data is available The lower 

age limit m represents the age to whicn a child is protected 

by the maternally derived antibodles

Table 2-1 below shows estimates for the force of 

infection from several studies (12). Co
as ,K GtaJiOd, bu a t,noM.o£ «LfcTXv* €* ^  ^  tkc
ôSa.rtkXjiJ'S [tL*. bt ' Llj like^4v®o4

We shall now look at an estimation of X  within an Irish

context As we have said the proportion infected by age can

be derived from two different sources One, case

notifications5as we have seen^can be biased^with cases being

reported more frequently among the younger age groups. In

Ireland there is the further problem in that before the

introduction of an extensive publicity campaign and

vaccination, measles was not considered to be a serious

infection Often children were not attending their 3.P

especially if more than one child m  the household had the

infection However, m  Ireland we had one major advantage

and that was the availability of unvaccmated blood samples

Data arising from age-stratif led sereological surveys

provide information on the proportion of immunes In the

absence of vaccination such data in principle correspond

directly to the proportion of infecteds



Table 2 1

Data
Source

Details of the Polynomial Relationships Between Force of Infection
and Age of Contacting Measles

Upoer Polynomial b b, b 0 b~ h
.  _  O  1 l J  LAge Degree
Limit

Mean Age at 
Attack/ Years

Baltimore 25
1905-15
Rural 20
Mary land 
1908-17
Aberdeen 15
1883-1902

England and 25
Wales
1948-68
Mew Haven 15
Sma 11 
Fami 1 le s
New Haven 15
La rge 
Fami1 Le s

-0 00594 0 0679 -0 00561 0 000122

0 0663 -0.0228 0 0102 0 000951 o 000261

0 429 0.325 -0 113 -0.0124

-0.0105 0.0864 -0 0411

-1 475 0 411 -0 021

-0 261 0.186 -0 0125

0 00042

6 72 

9 27

4 76

4 96

8 01

5 51
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The data that we shall use for our estimation of X was 

collected from childrens’ blood samples that were sent to the 

Department of Medical Microbiology, University College 

Dublin, for different kinds of tests There was nothing in 

the nature of these suspected diseases to render the

c m l d r e n  more or less likely (than the general age group) to

have had measles 145 samples were collected All of these 

samples were dated pre October 1985 (i.e. pre the 

implementation of the vaccination program) For each sample 
we found the age and the sex of the child. These samples 

were then tested for measles antibodies using the C ff test 

Figure (2 1) shows the age distribution of the samples

We can see from figure (2.1) that all samples used were 

taken from children more than 1 year old. This was to allow 

for the possible presence of maternally derived antibodies 

As there were more samples available for some ages samples 

were grouped into the following age categories, 1 year, 2 

years, 3 years, 4 years, the proportion susceptible at ages 

5, 6 and 7 years were grouped and the mean proportion 

susceptible for ages 6 years is expressed, ages 3, 9 and 10 
and 11, 12 and 13 were similarly grouped. A table of the 

grouped proportions susceptible is shown in tables 2 2 below

and a plot of these is shown in figures (2 2).
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FIGURE 2.1
SHOWING THE AGE DISTRIBUTION OF NUMBER OF 

AVAILABLE BLOOD SAMPLES
FREQUENCY

LOO

AGE



Table 2.2(a)

Age in Years Proportion Susceptible to Measles

1 0 37500
2 0 60000
3 0 33300
4 0 272700
5 0.230670
6 0 15000
7 0 33330
8 0.00000
9 0 142857

10 0.375000
11 0.33300
12 0.00000
13 0 00006

Table 2.2(a) showing the proportion susceptible to measles at 
each age from a sample of 145 bloods.

Table 2.2(b)

Age m  Years Proportion Susceptible

Grouped to Measles

1 0.37500
2 0.4oa00
3 0 33300
4 0.27270
6 0 22916
9 0.17390
12 0.15789

Table 2.2(b) as for 2.2(a) but data is grouped for ages 5 
to 13 years.
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Figures (2 2) showing the proportion of children 

susceptible to measles infection in Ireland A sample of

145 bloods was drawn from the records of the Medical 

Microoiology department at University College Dublin by kind 

permission of Professor Irene -lillary.

We see from Figure (2 2b) that tne proportion susceptible 

follows a negative exponential distribution from the age of 

two years. This is as expected from iMuencn' s original model 

where he expresses the fraction infected as 

y = 1 - e-rt

with exp(-rt) as the fraction susceptible.

However what is very unexpected is the fact that the 

proportion susceptible is still rising sharply between the 

age of 1 and 2 years. This would seem to imply that the 

maternal measles antibodies are still present in a large 

proportion of children at this age or else reflects the fact 

that measles epidemics are periodic For example, although 

a child may lose immunity at six months, there may not be a 

measles epidemic to infect that child for another 1 - 2  

years. (See section on the lnterepidemic period). As it is 

the policy to vaccinate children at the age of of 15 months 

it would appear that it is possible for the antibocies m  

the children's blood to destroy the virus and renaer the 

child susceptible to measles at a later date We snould
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also note that this age group constitutes the -argest number

of samples

We now utilise the above data to estimate the force of

infection, X vje know that the proportion susceptible is

given by

x ( a ) = exp [ - Jo \(s) ds] (2 9)

If we assume a linear force of infection we can fit a

function of the form.

x ( a ) 2exp[ra + sa] (2.10)

to the proportion susceptible. Using the method of least 
squares we hdve.

Several other methods^including fitting quadratics and 

cubics; can be shown not to yield such a close fit.

Note that the data for 1 to 2 year olds was not included 

in the estimation of this function . From the above 

estimation of the proportion susceptible we can compute X(a), 

the force oE infection We have

x(a) = e x p [0.0012439 a2 - 0.326783 a] (2 .1 1)



X  (a) = -0 0024878a + 0 326783, 

for 2 £ a £ 12

This is a linear function with a very small negative slope 

In Table 2 3 below we have set out the estimates for /\ (a ) at 

the various ages.

Table 2 3 

Age, a Years A (a)

2 0. 322

3 0.319
4 0 317

6 0.312

9 0 304
12 0.297

We can see from Table 2 3 that in Ireland the force of

infection is almost constant.

We have said that rfuench believed A to be independent of 

age Griffiths believed it to rise linearly with age and 

Anderson and Grenfell believed that A could be polynomial 

However, looking at figure 2 3 we see that \(a) in Ireland is 

almost constant. For measles in England and Wales of 1965 - 

1975Ci]X( a) was linear as can be seen from figure 2 4
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FIGURE 2.4 
A (a) FOR MEASLES IN ENGLAND AND WALES

1965 - 1975
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Having estimated \(a) Cor measles in Ireland we now can 

derive another very important parameter from this estimation 

The parameter in question is the average age at infection, A

This in turn will lead us to furtner estimates for R , theo
basic reproductive rate, of which we will see more later 

A is given by

(a ) x (a) da

£ Xls) x(a) da <212)
o
OO
j x {a ) da
o

From this we can derive the average force of infection^ A  

\  = I (2 13)

If we treat A  as independent of age we can relate it to the 

more observable A, If we know A from previous case studies, 

we have a rough estimate of X We have from equation

( 2 1 2 ) ~
A = lexp[ -j£ \(s) ds]

b 2V exp[0.0012439 a - 0.326783 a] da
o

Numerically integrating the above gives us the average age at 
infection for measles in Ireland, we have 

A = 3 14 years

r 38 months
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This would appear to oe very young in comparison with

other European countries The average family size in

Ireland oeing greater than other European countries could

also reduce the average age at infection (for example the

whole family is infected when the eldest child is exposed to

an epidemic at school). In England and Wales the average

age at infection was seen to be between 4 and 5 years

However, upon further research into regional measles

susceptibility surveys carried out in Ireland prior to
0 )

October 1985 we find that M. 0 1 Boyle carried out a survey m  

Waterford City. He questioned 2,132 children between the 

ages of 0 to 16 years He found that 65% of all cases 

occured in the pre-school group (under 4 years) also 92% of 

cases occured before the age of 6. However, wnat is most 

interesting about his survey is that he found the mean age of 

attack to be 41 months^ a difference of only + 3 months as 

predicted by our mathematical model and sereological survey.

We have successfully shown that the mathematical model 

can reflect and predict important epidemiological parameters. 

In our next chapter we snail discuss the interepidemic period 

of measles incidence in Ireland and we shall use the 

mathematical model along with parameter estimates to 

demonstrate and predict the interepidemic period for Ireland.

H O'1
ft ^ x lt c s d l O o u f'ru x -il, [)o l
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CHAPTER THREE

THE INTER-EPIDEMIC PERIOD OF MEASLES INCIDENCE IN IRELAND

Long term records of measles exhioit marked variation m  

incidence from year to year These fluctuations tend to be 

of a regular nature With measles a major epidemic is 

experienced every two to three years This interval between 

epidemics is termed the interepidemic period These 

fluctuations are influenced by the fact that the number of 

susceptible children decreases as immunity is acquired by 

recovering from infection^ then the number of susceptibles 

increases slowly as children are born*

We have seen m  Chapter One how compartment models 

consisting of systems of non linear differential equations 

can be used to describe the dynamics of the childhood disease 

measles. We shall now see how the fluctuations m  incidence 

can be found by analysing the equilibrium points of the 

system and their behaviour. We shall also see how the 

interepidemic period is related to the parameters that 

characterise the infectlon^such as the latent and infectious 

periods and the average age of infection. Figure 3 1 shows 

how the the 2 to 3 year cycle of measles can be seen m  data 

from case notifications in England and Wales
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Figure 3 1
Showing the Number of Cases of Measles in England and Wales 

from 1940 to 1980 (Note the 2-3 year lnterepidemic period)

Number of Cases

5 j<i5o 1^5^ i ^ o  H g oYear

Figures 3.2 show the fluctuations in the numbers of case 

notifications m  Irish data. The 2 to 3 year cycle is not as 

clear here due to inconsistencies in reporting

For a compartment model to mirror a real oscillating 

process it must possess stable limit cycle solutions of the 

equations Also the system must possess at least one 

physically realistic singular point We shall now examine 

our compartment model for such properties. 'XU
to t c h r e c ^ jt u  fc
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FIGURE 3.2a
SHOWING THE CYCLIC PATTERN IN MEASLES INCIDENCE

IN IRELAND FROM 1945 TO 1985
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FIGURE 3.2b 
SHOWING THE CYCLIC PATTERN IN

IN DUBLIN FROM 1945
MEASLES - DUBLIN

YEAR
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We have the system

dX
dt pH + pY + pZ - 6 XY (3 1)

dH
dt = SXY - ( p + cr )H (3 2)

dY
dt O' H - (p + ^)Y (3 3)

dZ
dt = yY - pZ (3-4)

The equilibrium points can be found by setting: 

dX/dt = dH/dt = dY/dt = dZ/dt = 0

This gives us the simple critical point (X,H,Y,Z)=(0,0,0,0). 

However we are looking for a physically realistic critical 

point. The existence of a limit cycle around the simple 

critical point would entail negative values of X,H,Y and Z 

that is susceptible, infected, infectious and immune.

Looking again at the system of equations we see that* 

N = X + H + Y + z  or X = N - B - Y - Z, substituting this 

into our system (3.1) to (3.4) we have

H = 6NY - BYH - SY2 - BZY - (p + cT)H (3.5)

Y = JB - (u + ^ ) Y (3.6)

Z = yY - pz (3.7)
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From (3 7) we see that at equilibrium Y = (p/^)z (3 8)

and we have in turn from (3 6) and (3 5) respectively

cry ~ (p + ) ( p + ^  ~ ^ + ^ \
Z = S^((p + J/)p + p^+^^) fi (3-10)

where E- is very small as it contains terms containing p
( 0

which is small m  comparison to other terms, also E^ < 0. 

We note here that Z is positive (and hence so is H and Y)

provided that:
2 ^P_ + P *

6 > <f N > 0.00095 (3. 10a)

Assuming this to be so we now have a physically 

realistic critical point of the system (3.5) to (3 7).

We consider the nature of this equilibrium point by 

looking at the Jacobian matrix of the system above. We have 

(H, Y, Z)
J = “S(H, Y, Z)

JSN - £H - SZ - 26Y

-(p + jf) 0 (3.11)

t

(0 1b, o[ fcLs

A 5



0 (3 12)

For simplicity we write the characteristic equation as 

a - X b c

d e - X 0

0 f g - X
with obvious definitions for a,b,c,d,e,f, and g

The characteristic polynommal is a cubic algebraic 

equation given by

X3 " (e + g + a ) X  ̂  + (9 a + ge + ae - d b ) X

+ (gdb - gae - cdf) = 0  ̂ (3 13)

which we write more simply as

X3 + p 2 X 2 + P x X +  PQ = 0 .  ( 3  1 4 )

We are interested in the nature of the roots of the 
above cubic. For the equilibrium point of the system to be 

unstable, at least one root of the above cubic must have a 

positive real part From the Routh-Hurwitz criterion we know 

that for all solutions of a cubic to have negative real parts 

three necessary and sufficient conditions must be satisfied 
they are

(l) ?2 >
(XI) o V

(ill) P 2?l
We consider

P 2 = 3p + v

o

(3 15)
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this is positive as all the terms are oositive. cooking at

condition ( u ) ; p > 0, we have

p = -i6N + (p + 1L  ̂ ^ 6 Z + 2^ ft ]£ Z
^ )r k

+ ( p + ^  ̂ 2 +  ̂P + ^)(P +  ̂ + s^ z
r

= - a £ N + < T & Z + t f ^ + 3 < 5 ' Z  + E 2  ̂ (3-16)
0)where is small as it is the collection of terms containing 

the parameter p. Also we can show that for current parameter 

estimate -1.44 < E^ < 0. By simple algebraic manipulations 

we see that pQ > 0 provided 6 > & y  - E^ = 0. 00095 (for 

current estimates)t 6 (M + 2E) (3.17)

<

Ve also know that this is always positive as both E^ and E^ 

are small compared to the other terms.

We now wish to consider condition ( i n )  of the Routh 

Hurwitz criterion, that is, is P2P]_ - pQ > 0, to do this we 

first examine the sign of p^. We have

p 1 = pftY + p(p+tf) + (p + ^ ) B Y  + (p + <*)(p +^) + p(p +¿0 +
[H + Z + 2Y] - ¿SN (3.18)

We know that Y = (p/^ 2^ therefore we have:

P l  = pfi fp/^Z + p ( p  +3-) + ( p  + ^ )  s fp/^3 2 + ( p  + s') ( p - j )  +
p ( p  + J) +fi*B [(¡j + y ) p  + 1  + 2 £] 2 -•s'BN ^

(3 19)

Which we write as ,

C l )  ^
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0]L = SZ + E3 - ( 3 20 )
10 . ,where contains all terms that contain a multiple of p. We

know that E^ is small and we can see that it is positive We

know from (3 10) that Z = N - 

write 

P

+ E^, we can therefore

1 = 6 j f +  + E1 ) + E3 -

= 6 E ̂ + E ̂ •

(3.21) 

( 3 22)

\fe see that p^ > 0 provided that |E^| > (s'GE^) * this is true

for the current parameter estimates Returning to condition

(ill), P2Pi “ P0 > 0 7 We have

?2pl - Po =
6 2 ( j j N  + E £) (TE. + 6[E, (jiN + E.£) + E.rt f+cT + 2(j) - 

r 1 r' * r  f
(«•N + 2<TE1 )] + E3(J+5-+ 2jj ) - (E2 -s'/)

We now have a quadratic in fi which we may write as:

F(B) = AS2 + BB + C 

where

A = <5"E, £  (N + E ) < 0
r  1

B = £ E3(N + Ex) + 6  E1(J'+ ¡J-+ 2p) - (*N + 2o'Ej) < 0
C = E 3 ( f + S +  2 ii ) - (E2 - >

(3.23)

( 3 24)

(3 25) 
(3.26) 
(3 27)

Bifurcation will occur at a critical value S > 0  defined byo 2

the equation

F (6) = 0 (3.28)

which has two solutions, but only one of them, namely

S o  = =  » B - 4AC

2 A
is positive Hence,

OjSte.
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F(B) > 0 if 6 > 6 an:o
F(S) < 0 if 0 < B < B (3.29)o
Consequently, the equilibrium point (H,Y,Z) is stable for

6 > B and unstable for 0 < 6 < 6 o o

We shall now prove that the conditions of the Hopf 

Bifurcation theorem are fulfilled at B = B . Namely, the 

characteristic equation has a pair of complex conjugate 

roots

X 2 ( 6 ) = <*( 6 ) + i w( f i )
X 3 (B) = (B ) -  iw(fi) (3.30)

and the conditions to be fulfilled are:

( 1 ) o( ( &q ) = o

(I I ) w (Bq ) > 0
(III) d <*(6)

dB

< 0 

B = B

Given that these conditions holdj then we know from the

Hopf Bifurcation theorem that there exist periodic orbits

around the equilibrium point (at least in the vicinity of the

bifurcation point 6 = 6 ) .o

/
The characteristic polynominal takes the following form for 
B = 6o

X 3 + P 2 ( V X 2 + ? 1  < V X +  P o ( V
= X3 + P 2 ( s o ) X 2 + p ^ B q ) X + p 2 ( s o ) p i ( b o ) ( 3  31 )
for at fi = 6o ; f(60 ) = d 2 (Bo )P i (6o ) - po (B) = 0
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Therefore our characteristic oolynominal evaluated at B = Sq 

takes the form

[ X -  X 1 ( s o n  [ X 2 + ( w ( 6 0 ) ) 2 ] ,
from this we know

A 1 (So ) = -p2 (Bc ) < o (3 32)

w 2 (g ) = p (fi ) = p (6 ) > 0o 1 o — o-- o—
P 2 (B0 ) (3 33)

Thus the conditions (1 ) and (1 1 ) are satisfied if:

W(V  =
and X 2 (60 } " and ^3 =

To investigate the requirement (i n )  we use the 

continuation of the root X2 in the neighbourhood of The

root ^ ( 6 )  satlsfles the equation-

tA2 { s ) 3 3 + P2(S) [ X2(6) ] 2 + p1CB) [ X2(fi)] + f. (p) t q

( 3 34)

for every B .

We require d o(( B ) 

dB dB

= Re d X 2(S) 
dB

Differentiating with respect to B we arrive at: 

d _ X 2i M  [3[^(fi)]2 + 2p2(6) A 2 (fi) + p 1(6)]
dB

+ [ \ 2 (B)]2 dp2 ( B ) + ( B ) dp^ (_B) + doQ (B) = 0

dB aS d&

(3.35)

( 3 36)
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As we have seen

\  2 ( S ) = * (p>) + i w ( 6 )
therefore Re d \ ̂ (6) d ̂  (6)

d6 fi d& fio o
and thus we have from equation (3 36) above

d Ax(ft)
dS So
- t A2 < s ) ) 2 d p 2(S)/d& - X .( 6 ) dp1(S)/dS - dpc (B)/dB

3 [ X 2(fi) ] 2 + 2 p 2 ( 6 ) X 2 (6) + P]l(6) 6o O  37)

if the above is less than zero than the third condition ofk
the Hopf Bifurcation theorem is satisfied and there will 

exist periodic orbits around the equilibrium point

We shall now prove that this is indeed the case.

We have seen in (3.15) that

P2(6) = 3p + ^  + d  + which when substituting in for Z

gives, p^s) = 2p + y + <r + /pN/^)S + E^p/^fi.

Differentiating with respect to B gives, 

dp2 ( 6) = ¿N + ]j_ > 0

(3.38)
We also have,

p-^(B) = ¿'BE^ + E^ which on differentiating gives, 

dp,(B) = ¿E + dE - (6) > 0 for S > 6
i  1   3---------  O

dB dS ( 3 39 )

5 1



p ( B) = -<?N&  ̂6 + d* J'+rfBZ + S2
When we substitute in for Z we have,

P ( f i )  = ¿ ' NB + 2 <5' E  B + E 2

Differentiating the above PQ (B) with respect to B gives,

dp (6) = 6 N + 2*E, + dEn(B) > 0, for 6 > B — ^o  1 — 2---- o
dB dB (3 ¿0)

Finally, we substitute equations (3 38) to (3 40) into (3 37) 

( CK txoncxG iV n^ owof fi\0- t j j d l  4-i

d*(B) 

dB Bo

4 °ie-<r + ̂ < ( 3 ) / ^

+ • \ ' y

Finally we have,

P-/5.

(3 ¿1)

fls p 1 (6Q ), [jjN + Eĵ jj] , [S'E + dE36] , fcfN + 2 6 E 1 + dEjB) ,

dB dB

and p 2 ^s0  ̂ are a H  positive, we have, 
d ¿*̂ (B) < 0

dB

and the third condition of the Hopf bifurcation theorem is 

fulfilled. Hence according to the Hopf bifurcation theorem^ 

there exist periodic orbits around the equilibrium point, at 

least in the vicinity of the bifurcation point B = B

Bq (3 ¿2)
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We have seen Laat the Hopf bifurcation t leo.am pLOvides 

us with the conditions necessary for the existence of real 

periodic solutions for a system of ordinary differential 

equations, 

dX = F (X , v ) ̂

dt (3 43)

where F and X(v,t) are n dimensional vectors and v a real 

parameter The theorem also provides us with the approximate 

period of the solution. We have.

Period, T = 2 Ti

w (3.44)

given that the characteristic equation of A(v) has purely 

imaginary roots ¿ LW' w ^ere
A(v) is the linearised matrix of (2 U3) aboot th*. singular 

point a(v), that is

A(v) = [7x F(X,v)]x=a(v) (3.45)

We have seen that w = Jp^CS^),

we have therefore from the Hopf bifircation theorem~an 

estimate of T. We have,

T = 4.2

We shall now compare t m s  with estimates from numoers of 

reported cases of measles m  Ireland and in Dublin from 1945 

to 1985. From figure 3.2a and figure 3 2b we can derive the 

average interepidemic period for measles These are set out 
m  Table 3.1 below

53



I

Table 3 1
Shows the Interepidemic Periods (in years) in Ireland and 

in Dublin between the years 1945 to 1985

I re land Dublin
2 2
2 2
3 3
2 2
2 5
3 2
2 3
3 4
4 2
2 6
4 3
5 6 
4
2

Average Interepidemic Average Interepidemic
Period Ireland Period Dublin

2.86 years 3.33 years

We see from Table (3.1) that the Hopf bifurcation

theorem estimate of tne interepidemic period is slightly

higher than the actual as derived from Irish records This

may be due to the fact that throughout our calculations

pertaining to the theorem we have been using a death rate of

\i = 1/75 years. For those in the 0 - 1 5  years old age

oracket this death rate may in fact oe lower.

We have succeeded in showing how the fluctuation in the 

incidence of measles in Ireland is reflected in the non­

linear differential equation compartment model by the study 

of the equilibrium points and their behaviour We have also 

successfully shown how the Hopf Bifurcation theorem provides 

an estimate for this lnterepidemic period
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APPENDIX

Throughout Chapter three we have used Ine following parameter 

e stimates

(I ) N = 64,000, this is the number of oirths in 1935 that 

is the total population of the cohort studied

(I I ) 1 / ^ i s  the average latent period, we have

1/6 = 9 days = 0 025 years, we have therefore 

6 - 41 years *

( i n )  1 / ^ =  6 days = 0.016 years which implies 

61 years ^

( i v )  1/p is the average life expectancy, we have 

1/p = 70 years which implies p = 0 014 years ^

(v) of equation (3 10) equals

- N,

for the parameter estimates given aoove we have 

S1 = -36.5

(vi) E2 of equation (3 16) equals

4 6 (p + jj Z + 2<5'£]j_ Z + 6 ]j_( p +K)Z + p2 + p5" + p*'
^  y * <r

Substituting in the parameter values gives us
E2 = 3198 186 - 4 48

We know from (3 10a) that 6 > 0.00095 for Z to be
positive, we have therefore 

E2 > -1 44 

^V11  ̂ E 3 equation ( 3 20 ) equals



2 2 2 u&j^Z + p + p + (p  + ^) 5pZ  + p + p 6 + p y  + p + p ^  +

{$ ft ( p + {) p + ¿£>2±i_)Z

<yOn substitution of parameter values we have,

E3 = 3006 2845S - 0.013 

Given that S > 0.00095 we have 

E3 > 2 843

( v m ) T h e  co-efficents of equation ( 3 24 ) are as follows*

A > -21,968 841 

B > -2776642.1 

C > 2792.51

U x )  The roots and 6q of equation (3.24) are as follows

B, > -126.39, fi > 0 001I o

56



CHAPTER 4

ON INTRODUCING THE AGE DEPENDENT MODEL AND THE 
MORTALITY PARAMETER p(a)

We have examined a time dependent model ana founa it 

useful in illuminating certain basic principles However the 

assumption that the parameters of the model are simple age 

independent constants is an over simplification

>

We can generalise the time dependent model to include 

the effects of age independence, particularly m  mortality 

rates, vaccination rates and transmission rates This will 

allow us to give a more rigorous discussion of Rq and later 

m  chapter 5, a more rigorous discussion of our vaccination 

policy.

Our analysis of the transmission of measles will involve 

a compartment model with age structure The population is 

again divided into discrete classes, at age a and at time t 

we have

X(a,t) = number susceptible, at age a, at time t

H(a,t) = number infected but not yet infectious

Y(a,t) = number infectious.

Z(a,t) = number recovered and immune.

The partial differential equations for this system are 

first order nonlinear They describe the rates of change of 

X, H, Y, Z with respect to ooth age a and time t They are
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~c> X (a , t) + = -Ip (a) +A(a,t) + c(a)] X (a,t)

~c> t a (41)

H ( a , t) + ~c*H (a , t) = X ( a , t ) X ( a , t ) - I m ( a ) + ) H ( a , t )

“S t  ^ a  (4-2)

~2>Y(a, t) + ~%Y ( a , t) = tfH(a,t) - [p(a) + ^ 1  Y(a,t)

^  t a (43)

^ 2  (a, t) + ~5Z(a, t) = yY(a,t) + c(a) X(a,t) - p (a ) Z(a,t)

^  t ^ a  (4.4)

with initial and boundary conditions, 

t = 0 specify X(a,t), H(a,t), Y(a,t), Z(a,t). 
a = 0 specify X(0,t) = N(0,t), bk*_ fefci f>of>»ktZn. <xJr 0,

that is all newborn individuals are susceptible to infection. 

This assumption can be modified to include protection from 

maternal antibodies

Also H (0,t ) = Y(0,t) = Z (0,t) = 0, for all t

The parameters y, the recovery rate and S', the rate of 

passing from infected to the infectious state are as before 

in Chapter 1 However we now assume that all individuals are 

subject to an age dependent mortality rate p(a) and that 

individuals are vaccinated at an age dependent rate c(a) We 
have also assumed, as before, that immunity is lifelong, as 
is the case with measles.

By considering the equilibrium state of this general 

mode 1 we can gain further understanding of the temporal

58



behaviour or dynamics of the general model To do this ¿e 

make the further assumption that births and deaths exactly 

balance That is, we are assuming that the population 

remains roughly constant on the time scale appropiate to the 

pathology of the disease This is not an unreasonable 

assumption for Ireland as can be seen from figures(4./) 
below, these show the population age structure of Ireland 

over several decades

At equilibrium the partial differential equations (4.1) 

to (4.4) reduce to. 

dX = - [X(a) + p (a ) + c (a ) ] X (a )

da (4 5)

dH = / \ ( a )  X( a ) -  [<5-+ p ( a ) ] H(a)
da (4.6)
dY = iTH(a) - [ ̂  + V(a) ] Y(a)

da (4 7)

dZ = jY(a) + c(a)X(a) - u(a) Z(a)

da (4 8)

where N(a) = X(a) + H(a) + Y(a) + Z(a), with initial 
conditions

X(0) = M(0), H (0) = Y (0) = Z (0) = 0

When discussing the time dependent model we assumed that 

all the parameters including mortality were independent of 

age We did this in order to make the mathematics of the
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model easier and more elegant ratner than because real 

populations have age independent death rates This 

assumption of age independence is frequently made and can oe 

found in the works of Dietz ( C1 ) , Bailey ( t ) and Anderson 

and May ( I ) We have also assumed that the population 

remains constant and that the birth rate equals the death 

rate. We shall now examine the mortality rate in Ireland and 

its dependence on age

Our aim is to derive an age dependent mortality rate for 

Ireland so that the model will represent the dynamics of the 

measles infection within the Irish population in a more 

realistic way. We shall finally in chapter six insert this 

realistic parameter back into the model and numerically solve 

the above equations (4.5) to (4.8) for X, H, Y and Z that is, 

susceptlbles, mfecteds, infectious and recovered and immune 

respectively.

To derive the age independent mortality rate we need to 

study the numbers and hence proportions of people remaining 

in various cohorts. These are set out in table 4 1 below.



Table 4 1

Proportion Remaining in Each Cohort Born from 1900 to 1981

Aqe ln Number Born Number Remaining Proport k
1981 into Cohort in each Cohort Rema m m «

m  each
Cohort

81 70453 0 8875 0 0 125970
80 70184.0 11537 0 0. 164240
79 71156.0 11150.0 0.156698
78 71541 0 12181.0 0.170266
77 72261.0 13521.0 0.187113
76 71427.0 15153.0 0.212147
75 72147.0 16 4 4 6.0 0.227951
74 7077 3.0 17631.0 0.249120
73 71439 0 18274.0 0.255799
72 7 2119.0 20288.0 0.281313
71 71774.0 22066 0 0.307437
70 71351 0 24879.0 0.348685
69 70835.0 25649.0 0.362095
6 8 70214 0 26583.0 0.378600
67 69097 0 26426.0 0 382448
66 67501.0 28444.0 0.421386
65 64814 0 26781 0 0 413198
64 61421 0 27214.0 0.443073
63 61092 0 24632.0 0 403195
62 61829.0 24471.0 0 395785
61 67015.0 29479.0 0 439887
60 61010.0 30470.0 0.499426
59 58849.0 29983 0 0.509490
58 61690 0 30499.0 0.494391
57 63402.0 29360 0 0.463077
56 62069.0 30275.0 0.487764
55 61176.0 29489.0 0 482035
54 60054 0 29823.0 0 496603
53 59176 0 28840.0 0.487360
52 58280 0 29945.0 0.51381351 58353.0 29942.0 0.51311850 57086.0 31130.0 0.545318
49 56240.0 29016.0 0.515932
48 57364.0 31320.0 0.54598747 57897.0 29761.0 0 51403446 58266 0 30337 0 0 52066445 58115.0 31416.0 0.54058344 56488 0 32781.0 0 58031843 56925.0 30911.0 0 54301342 56070 0 33103 0 0 59047641 56594 0 34811 0 0 61510140 56780 0 34313 0 0 604315
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Table 4.1 (Contd )

Proport ion Remaining in Each Cohort Born from 1900 to 1980

39 66117.0 33995 0 0 514164
38 64375 0 37676 0 0 585258
37 65425.0 38254 0 0.584700
36 66861 0 40333 0 0 603267
35 67922 0 43571.0 0 641486
34 68978.0 44343 0 0 642857
33 65930.0 46410 0 0 703928
32 64153.0 46976 0 0 732249
31 63565.0 46505 0 0.731613
30 62878.0 47724 0 0.758994
29 64631.0 46885 0 0 725426
28 62558.0 49713.0 0 794671
27 62534.0 48800.0 0.780375
26 61622.0 50584.0 0.820876
25 60740,0 50071.0 0.824350
24 61242.0 51945.0 0.848192
23 59510.0 52683 0 0.885280
22 60188.0 53832.0 0 894398
21 60735.0 57213.0 0.942010
20 59825.0 57308.0 0 957927
19 61782.0 59342.0 0. 960506
18 63246.0 60986 0 0.964267
17 64072.0 61779 0 0.964212
16 63525.0 61443.0 0. 967225
15 62215.0 60207 0 0 967725
14 61307.0 59386.0 0.968666
13 61004.0 59368.0 0.973182
12 62912.0 61217 0 0. 973058
11 64284.0 62643.0 0.974473
10 67551.0 65992.0 0.976921
9 68500.0 66937.0 0.977183
8 68700.0 67186.0 0. 977962
7 68900.0 67430.0 0 978694
6 67200.0 65862.0 0.980089
5 67700.0 66413.0 0.980990
4 68900.0 67665.0 0.982075
3 70300.0 69096.0 0.982873
2 72500. 0 71457 0 0.985610
1 74100.0 73213.0 0.988030

Table 4.1 shows the following.

a) The age of each cohort m  1981. 1981 was used as it was 

then the most recent census year We start studying
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conorts from 1900 on This raises some problems tnat 

are peculiar to Ireland Due to the partition of the 

country in 1921 records of oirths prior to this contain 

those for the 6 counties of Northern Ireland but death 

figures after this date do not contain the northern 

figures Hence we must subtract off individual figures 

for the 6 northern counties This is mentioned in order 

to show how politics can effect studies and one must 

keep this m  mind

b) The number of births in the Republic of Ireland in each 

year from 1900 to 1980-

c) The number of those aged 81 years down to those aged 1 

remaining in 1981. Some problems were also experienced 

at this stage We find that in the age range of 20 

years to 1 year there are more children remaining than 

were actually born1 It is possible that this is due to

the in-migration of families in the 1970's. However

this problem can be overcome by looking at, first, the 

number of deaths of those aged < 1 in 1961, those aged

< 1 and aged 1 in 1962, those aged < 1, aged 1 and those 

agedJ 2 in 1963 and so on until we find the number of 

deaths of those aged 20,19,18, .. l,and < 1 in 1981 

By performing this task we can find the correct number 

of deaths in the cohort born in 1961. These figures (on

deaths) can then be subtracted from the numbers born in

1961 up to 1981 to arrive at the correct numbers of 20 

year olds remaining in 1981 This can be repeated for
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each of the cohorts

d) The correct proportions remaining in each of the cohorts 

aged 81 years to 1 year

Once the correct proportion remaining in each of the 

cohorts is found we can plot the data and subsequently fit a 

suitable function to the resulting plot The above data was 

plotted using the dinitab statistical package. The shape of 

the curve can be seen m  figure (4.2) below

Figure (4.2_) shows the age dependent survival curve for 

Ireland in 1981. The age specific mortality rate p(a) is the 

logarithmic derivative of this curve with respect to a. We 

shall derive this result mathematically later in this 
chapter.

We can see from figure (4 Z) that most people survive up 

to the age of 25 years. After this there is a decline in the 

proportions remaining. This is most likely due to 

emigration rather than to death The data suggests that a 

suitable function for those remaining in the 1 year to 25 
year age bracket would be,

S (a)=1 a < 25 (4 9)

m  other words all survive up to and including the age of 25 

years A suitable function for the remaining data can be 

derived from Newtons Interpolating Formula for a polynomial
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of degree 3 Working from grouped averages we have table 4 2 

be low

Table 4.2

AGE(years) PROPORTION REGAINING

29. 5 

4 5.5

61.5

77.5

0.756017 

0.543876 

0.449806 

0.186688

Using Newtons method of divided differences we have

X f(x) f ^x l x 2  ̂ *2 x 3  ̂ f(x1x 2x 3x4 )
X x 29.5 0.756017 -0.0132588

X2 45.5 0.543876

X 3 61 5 0.449806

X 4 77.5 0.186688

0.0058793

-0.0164448

0.000230609

-0.0003017
0 000011089

Newton tells us that the required polynomial is of the form- 

P(x) = f(x) + f (x^ x2 )(x - x^) + f(x^ x^ x^)(x - x^)(x - x 2 )

+ f ( x ^  x 2 x 3 x4 ) ( x  -  x ( x -  X2 H x  -  x 3 )

This gives us:

P(x) = 0 756017 - 0.0132588 (x - 29 5)

+ 0.00023061 (x - 29.5)(x - 45 5)

- 0 0000111 (x - 29 5)(y - ¿5 5)(x - 61 5)
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We now have

S ( a ) = 1 
S(iO = ^ 3

for a ^ 25

3 2Where P(x) = Ax + Bx -1- Cx + D where

A = -1.0 X 10-5 B = 1 565 X 10 C = -8.785 X 10-2

D = 2.242

We shall see in chapter 5 how a generalisation of this 

survival curve will effect our immunisation policy. We said 

above that the age specific mortality rate p(a) is the 

logarithmic derivative of the age dependent survival curve 

S(a) We shall now prove this by looking closer at some 

basic reliability theory

Consider the compartment model with age structure We 

assume that individuals are subject to an age dependent 

mortality rate^j(a) in age class a. We also assume that the 

number of births equals the number of deaths. How then does 

the parameter xj (a) relate to reliability theory9

Let p(a) = age specific death rate.

S(a) = prooability of surviving to age a.

N(a) = the number in the population at age a

Consider (a, a + fa) , «fa small, tnen the number of deaths in 

(a, a+<fa) = p(a)*N(a)*^a 

For exainole
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The number of deatns in say the (12 months,18 months) age 

group that is the (12 months,12+6 months) age group would oe 

p (12)*N(12)* 6 montns, that is, (the death rate of those aged 

12 months) * (the number of 12 month olds) * (6 months)

The probaoility of death m  (a, a +£a) is 

(p ( a) *N ( a) *£a)/N (a) = p(a)Xa that is,

(expected number of deaths)/(number at risk), 

therefore the probabity of an individual alive at a, 

surviving to a +£a is

= probability (alive at a) * probability (survives from a to Q+ 

= S ( a )  * (1 - [ p (a) * 5 a ] )
that is

S ( a  + i  a ) = S ( a) * (1 -  [ p ( a )  * S a] ) .

Rearranging we get*

[S(a+fa) - S (a) ] / £a = -p(a) * S(a).

Letting ¿a — >0 implies dS/da = -p(a) * S(a)

Separating the variables we have, di/fta) = -p(a) * da

1 -  [ p ( a ) i a ]
J\)tfKX the probability of individual alive at a+£a, that 

is surviving to age a +ia 

= S(a+/a)

\
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Integrating from 0 to a gives us 1/S(a) dS = - p(a) da

which implies [In (S(a))] - [In (S (0) ) ) = - p(t) dt

But S (0) = 1, which implies In S(0), = 0 therefore we have

In S (a ) = - j p(t) dt

which implies S(a) = exp[-/ p(t) dt] .

We have related our survivor function to our compartment 

model parameter p(a) Can we perhaps derive tnis result in 

another way9 Consider the following

Let F(a) = probability of death before age a 

We know S(a) + F(a) = 1 therefore (**■ /0

F (a ) = 1 - exp [-jk p(t) dt]

In fact F(a) equals the cumulative distribution function 

of ages to death. From reliability theory we know

f(a) = dF(a) / da (j+ ix)

which equals the probability density function of ages to 
death. 6«,ccwse of aJr a) op
uf K “tf- U o e  f w = / w S w  Uvkjj ui«.
S f  W  =/< S(<v> (vqm (U It) n e  ko6w t U Jt ?'(&) - - S  (aj

— S I») = yU (a) SCqj uU.cL «4LS
= -[dS/da] / S ( a ) = -d[ln S(a)]/da —  yU(a) as ri2j^"W
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We have shown how the compa rtment parameter p { a ) relates 

to reliability theory and we have also snown that it is 

indeed the logarithmic derivative of: the survival curve We

shall now state the age specific mortality rate for Ireland 

using the survival curve derived above

We have from (4.10):

\i(a) = 0 a ^ 25 years,

¿.(c) = a  y J.S
a  a

In Chapter 6 we shall use the I n s n  mortality rate derived 

above to estimate the proportions of children susceptible, 

and immune to measles in the coming years.
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CHAPTER FIVE
ON IMMUNISATION AND ESTIMATION OF c(a), THE VACCINATION

RATE IN IRELAND

We snail now see how the introduction of the age 

dependent model with age dependent parameters enables us to 

give a more rigorous description of the values of A , Rq and 

Nt We snail also examine the effect of introducing 

immunisation into the model. We shall look at

I ) the prediction of the levels of immunity required to 

eradicate the disease given a specific vaccination program,

I I ) the effect of vaccination on A, the average age of 

infection,

I I I ) the effect of vaccination on the numbers of cases of 

measles and of measles encephalitis.

Prior to October 1985 no such program existed in Ireland, 

All newborn infants were and still are immune to infection 
as a consequence of the protection provided by their 

maternal antibodies, these are passed via the placenta into 

the blood stream of the baby during pregnancy. For measles, 

infants remain protected for roughly their first six months 

of life. The recommended age for vaccination is 15 months 

because it is believed that the rate of seroconversion is
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maximised at this age Vaccination at a lower age gives 

lower seroconversion rates due to the protection of the 

maternal antibodies The policy of vaccinating all children 

at this optimum age has oeen adopted by the Irish Health 

Boards

How then do we describe this oarameter7 Prior to 

October 1985 we had-

(a) C (a ) = 0 0 ^ a ^ L L = 10 years (5.1)
and from 1985 to the present it is hoped that:

(b) C ( a ) = 0 a < 15 months

1 a = 15 months (5.2)

0 a > 15 months

In other words no children are vaccinated before the

age of 15 months, all or most children are vaccinated at the 

age of 15 months and no children are vaccinated after this 

age. This is of course an ideal situation which will not 

occur In reality it does however give us many insights into 

the levels of immunity required to eradicate the disease if 

we adopt such a policy. This we shall discuss later First 

we consider the situation as it actually occurred in one 
Community Care Area of Dublin.

Community Care Area 8 in Dublin, lies on the northern 

outskirts of the city, it contains densely populated urban 

areas and rural areas with sparse population Prior to the 

introduction of the measles immunisation program, in October
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1985, a survey of J?3i.ch 1Id re n oe tween the ages of 1 and 5  

years was carried out The aim of this survey was to test 
for the proportions susceptible to measles and hence 

establish a target figure for the initial immunisations The 

results of this survey are set out in Table 5 1 below Some 
similar surveys were conducted in other parts of the country 

with the similar results.

p6v" tlfio-* - ^ P gxlQ fro&bf(eM
'taking Community Care Area 8 (C C A. 8) as a sample

ol̂ JL
population representative of the general population^ we 

examine the numbers of actual vaccinations at specific ages 

m  the area Assuming that the distribution of vaccinations 

is similar throughout the country we shall take this sample 

data and estimate C(a), the vaccination rate for all of 

Ireland

Patient files for children m  the General Medical 
Service in C C A.8 were computerised, this gave over 2,000 

medical card cases. From these we saw what proportions were 

immunised in the various age groups. Using immunisation 

forms returned by doctors in the area we computerised over 

2,000 immunisations of those in the non General Medical 

Service sector. This gives us over 4,000 records of 

children immunised in the various age groups. As the total

population figures were available for these age groups m
1this area the proportion immunised in each of the age groups 

was derived pfocaAS oc.c,Lpf̂ js( 2> tu_
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Tâbuc. 5.1

AGE Immunlsed Status Had Vacc Let t Re fused Contra- 0 1 h e r Row
l n Unknown Measles be fore Area Indica t Total
yea c s 1/10/8 5

1 12 11 6 2 0 0 0 1 32
37 5% 34 4% 18 8% 6 3% 0 0% 0 0% 0. 0% 3 1% 1 1%

2 315 225 107 22 34 1 1 4 709
4 4 4 % 31 7% 15 1% 3 1% 4 8% 0 1% 0 1% 0 6% 24 1%

3 298 209 168 18 36 2 2 10 743
4 0 U 20 n 2 2 6% 2 4% 4 Q% 0 3% 0 3% 1 3% 25 3%

4 270 194 309 20 51 1 1 5 851
31 7% 22 8% 36 3% 2. 4% 6 0% 0. 1% 0. 1% 0 6% 29 0%

5 158 145 244 7 38 1 3 5 601
26 3% 24 1% 40 6% 1 2% 6 3% 0 2% 0 5% 0 8% 20 5%

To ta I 1053 784 834 69 159 5 7 2 5 2936
3 5 9% 26 7% 28 4% 2 4% 5 4% 0 2% 0 2% 0 9% 100 0%

Results of survey carried out by Dr 2 Johnson in C C A 8 prior to the

introduction of measles vaccination

He finds that approximately 30% of children in the 1 - 5  year age group need to 

b e immu niseJ
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The results of this work are shown in Table 5 2 below

Table 5.2
^ge at Vaccination Proportion Vaccinated

(years)
1 0 410

2 0.387

3 0.333

4 0 233

5 0.115

Table 5.2 showing the proportion vaccinated in each age 

group for Community Care Area 8 from October 1985 to June 

1986.

A plot of the proportion vaccinated versus age can be 

seen m  figure 5*1 below

FIGURE 5 I 
PROPORTIONS VACCINATED IN C C A 8 

Vs AGE AT VACCINATION
PROPORTION VAC

AGE
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The method of least squares was used to fit as quadratic

to the original data on the proportions vaccinated giving 
2C (a ) = ra + sa + t

with r = -0.01686, s = 0 026743 t = 0 40083

A plot of the estimated proportion vaccinated versus age 

is given in figure 5 2 below

FIGURE 5
ESTIMATED PROPORTIONS VACCINATED IN C.C A 8 

Vs AGE AT VACCINATION
3T PROPORTION VAC

AGE
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The derived vaccination rate gives the following

estimates of proportions vaccinated

Table 5.3j
Age at Vaccination 

(yea rs)
Estimated Proportion 

Vacc m a t e d  (v

1 0.4 If

2 0. 3 8*',

3 0 329

4 0.238

5 0.113

Table 5.3 as for Table 5.2 but shows estimated 

proportions vaccinated

Since March 1986, we know that the Health Board*s policy 

has been to vaccinate all or most children at the age of 15 

months What are the effects of this vaccination and given 

this policy what proportion must we immunise in order to 

eradicate the disease9 Must we vaccinate all children9

Vaccination has two effects, first we have the obvious 

effect that those immunised are protected against infection. 

We also have a less oovious effect, that is that a 
susceptible child has less chance of acquiring the disease m  

a partially vaccinated community than in an unvaccmated 

one. This is because there are fewer people infectious in 
the community to give the disease to the child Therefore it 

is not necessary to immunise all children m  order to 

eradicate the disease



^s measles is endemic we can find some interesting

relations between R and the fraction of the population thato
are susceptible or the average age at first infection This 
in turn will allow us to discuss P, the proportion of the 

population immunised, in more detail

As the infection becomes established the fraction of the 

population who remain susceptible will decrease. The net 

fraction susceptible may be donated by *x, where 

x = X/N (5.3)

X is the total number of susceptibles and N is the total 

population. If we make the Anderson and iMay (2) assumption 

of weak homogeneous mixing, we are assuming that the rate of 

appearance of new infections is linearly proportional to the 

number of susceptibles. Therefore, on average the number of 

secondary infections will be diminished oelow the number 

occurring when all individuals are susceptible, by the factor 

IT. That is, the effective reproductive rate, R, is*

R ~ Rq x (5.4)

If the infection is established at a roughly steady 
equilibrium value the effective reproductive rate will be 

unity (at equilibrium each infection on average produces 

exactly one secondary infection), fis we scao ̂  ̂ a t equilibrium 

Rq and the fraction susceptible, x, are related by

V  = 1 (5.5)
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If the equilibrium fraction of the population who are

susceptible can be determined,equation (5 5) can be used to

estimate R (Estimates of R shall be discussed m  the nex o o
section and again in more detail in Chapter 6)

Equation (5.5) cannot be satisfied if the proportion of 

the population who are successfully vaccinated, p, exceeds 
some critical value As the fraction susceptible cannot 

exceed the fraction not successfully vaccinated (x<l-p) Lke 

equation can only be satisfied if RQ (l-p) exceeds unity. It 

follows that if the proportion vaccinated exceeds the value: 

p > 1 - 1/Rq (5.6)

then the effective reproductive rate of the infection will 

necessarily be less than unity and the infection will die 

out. In other words equation (5 6) gives a rough criterion 

for eradication of an infection by a vaccination program

We also see that infections with high R q values, as m  

the case with measles, require a higher proportion of 
children to be vaccinated in order to eradicate the disease.

Dietz (9,10) has derived the relation*

R0 = > L  = L (5.7)

A

or more realistically for a step function mortality curve 

(l e. everyone lives up to the age, L) we have

° ̂  ^  ̂ ft*' Q - f G - d i f  VfXCCiifiStJsL &ftop»lZ&. p U4p 0 ^rop .£ ^ _  Tnot oaLCCÎJzj (< £

U c  ^  K I' . t fe.cus'ô ««, e u  ^  ̂  k U t
f  7 I —  / ( l o  U y  O j - C l A i c h J C ^  o f  t k e .
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Rq = (L l^)/ ['1 - exp(-¿./fl'jl (5 8)

which approximates to

R = L (for A < L, as is the case witho —
A measles m  Ireland)

To give a feeling for these parameters, we consider some 

typical values for A, taking L = 70 years, we have Table 5 4 

below

Table 5.4

A R Po
(greater than) 

3 23.33 0 957

3 5 20 00 0 950

4 17 50 0 943

In areas^of lower age of acquiring infection, Rq will 

be larger, implying that a larger proportion of children 

should be immunised m  order to eradicate the disease This 

should be kept m  mind m  Ireland where we have both large 
urban and rural areas Higher levels of coverage may be 

fecjKj to eradicate the disease within these urban areas.

These figures are very high and will be very difficult to 

achieve in practice* In the United States of America where 

pre-school vaccinations is compulsory to the extent that a 

certificate of immunisation is an entry requirement for



school, measles nas virtually disappeared as more tnan 95% of

United Kingdom immunisation is not enforced by lav ana nigh 

levels of v a c cinatnn have proved difficult to acnieve

We have estimated the proportions we need to vaccinate 

given the values of p(a), A, and Rq before vaccination* We 

have seen the importance of Rq and A in determining these 

proportions We shall now address the questions, what 

nappens to this reproductive rate, R , of the disease if we 

immunise, will it increase or decrease9 Also, what happens 

to, A, the average age of acquiring the infection, after the 

introduction of an immunisation program9

To see this we return to our original set of 

differential equations given by

children are vaccinated before going entering school In the

dX = - ( X  + p (a) ) X (a)
da

dH = X X  - ( < r +  jj (a ) ) H (a)
da

dY = 5" H - ( f + jj (a) ) Y (a)

(5.9)

(5 10)

(5.11)
da

dZ = - P (a) Z (a )
da

(5 .1 2 )

By introducing the set of starred variables
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X (a) = X* (a) <|> (a) (5 13)
W h e r e

r °<j>(a) = exp [ - / p(s) ds] . (5 14)

QiB\. f y fj ot̂ cf X  (50 S-fij ,
We arrive at a set of equations identical to the above but 
with mortality factored out^

we now h a v e

X (a ) = X* (a) f> (a)

Hence. dX = - ( A + p ( a ) )  X*(a)^(a) (5.15)
da

But dX = d [X* (a) <j? (a)]

da da

— X 4> (a ) + if) (a ) X * L o c l & s k l t c u L - & — (5.16)
' ra Ui=bfc t tZ a

Also* <|>(a) = exp( - p(s) ds]

= exp [ - (U (̂a) - U l (o)))
which implies

<{> (a) = - p(a) exp[ - ĵ (s ) ds]

= - p(a) § (a) (5.17)

Therefore *

dX = X* (-p ( a ) <j> ( a ) ) + p (a) X*
da

But

dX = - ( A  + p ( a ) ) X* (a ) (j) ( a ) f rom (5 15)
da

Hence
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(5 18)

X* (- p(a)<j>(a)) + <j> (a) X* = - ( X  + p(a)) X*(a)^>(a)

which wnen both divided by ij>(a) gives 

-( \ +  p(a)) X* (a) = - p (a ) X* + X*'

On re-arranging

X*' = - X* (a) - p (a) X* + p (a) X*

which gives, on d iv id in3 by fo

dX* = - Xx* (a)  ̂ (5 . 19 )

da

Mortality has disappeared as required.

Introducing an age specific vaccination rate into our 

set of starred equations gives us-

dX* = - ( X + c (a ) ) X* (a) (5 . 20 )

da
I

dH* = Xx* - <f H*(a) (5 . 21 )

da

dY* = (S' H* - ^ Y* (a) (5 . 22)

da

d2* = ^ Y* + c (a ) Z* (a ) (5 . 23 )

da

here X is the^force o£ infection at equilibrium after the 

immunisation program is established. Also we are taking \
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independent of age for simplicity The above set of 

differential equations has boundary conditions

X* (0) = N ( 0 ) , H * (0) = Y*(0) = Z*(0) - O

We can easily find X*(a) from the above Using an integrating 

factor we have:
t f^X*(a) = N (o ) exp[~ \ a + c(s) ds] (5,24)

As X(a) = X*(a) <j>(a) we have the number of susceptibles at 

age, a f given by:

X(a) = N(o) exp[~ Xa + c(s) ds] ^ (a) (5.25)

and

N(a)  = N(o)  <j> (a)  ( 5 . 2 6 )

By integrating equation (5.25) for X(a) over all ages we

can compute X (the total number susceptible) for any specific

vaccination program c(a) and any mortality rate p(a). We can

then discover X  the fraction susceptible and we can find R .o

The policy for vaccination in Ireland is to vaccinate a 
proportion, P of children at age b, b being 15 months. C(a) 

in this case can be taken to be a Dirac-£ function centred on 

a = b Using such a e(a) we obtain.

X ( a ) = N(o) exp[ - \ a] | (a) a <C b

X(a) = (1 -p) N(o) exp[ - A a] <|)(a) a > b (5 27)
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Whe re
fa

^(a) = exp( - = 1
given that
p(a) = 0 for a < L , p(a) = -^ for a = L

03

The total number susceptible, X, is {kj oU

X(a) da = (1 - p) N (o ) exp[- -X a] da (5-28)

= (1 - p) N(o) (1/- A1 ) exp(-X'a) |b
= (1 - p) N(o) (1/- X* ) exp[- A L) - (1 - p) N(o)

(1/- X ) exp(- X* b)

= N(o) [(1 - p) exp (- V  b) - (1 - p) exp (- A* L) ] (5-29)

a~J «U -  ^  e x p i - X ' t ^  + Ai2L
A

y = jT , _  pa*p(_ X't) _  (S <tfa)

Using equation (5-29^) we can give estimates for the total

numbers susceptible under our given immunisation policy and 

the proportions actually vaccinated

We have seen above that*

Rq = 1/x , x = X/N which implies Rq = N/X, 
where N = N(q )L.

This now provides an estimate for the reproductive rate of 
the disease given our estimated Irish mortality curve and 

immunisation policy.

Ro = N = N f 0)L______

X N (0) [ 1 - p  e x p ( - X ^ )  -  ( 1 - p )  e x p i ^ V D ]  /A*
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- X l _____________________________________

(l-p exp(- X b) - ( 1 — p ) exp(- XL) ( 5 30 )

Various estimates of R given the Irish data areo
discussed in Chapter 6 Note we must keep in mind that we

require Rq to be oelow unity in order for the disease to die

out We should find that R decreases with vaccination, theo
extent of the decrease depending on P, the proportion 

immunised.

We have observed the effects of vaccination on the 

reproductive rate of the disease. We shall now look at the 

effects of vaccination on A, the average age of infection 

with measles. This average age A can vary greatly depending 

on the degree of urbanisation, being much higher in areas of 

dense population. In Ireland we believe A, to be in the 

range of 3 to 5 years this is in accordance with similar 

populations m  England and Wales. Direct estimates of A are 

best obtained from either serological surveys or case 

notifications, neither of which are ready available in 

Ireland and, where available, case notifications may be 

seriously underestimated.

Infection of any child with measles can lead to the more 
dangerous infection of measles encephalitis. The n s *  of 

measles encephalitis is a very serious one- Survivors often 

have permanent brain damage and mental retardation It is
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known tnat tne risk of: tois disease varies with age, the 

older child being at a higher r i S K  Wide spread immunisation 
within a community increases the average age A at v.hich an 

infection is acquired, therefore we must examine our 

vaccination policy with this in mind If we vaccinate a 

proportion P , P<1, of all children then there will remain a 

proportion, 1-P of cnildren at risk to infection These may 

develop the infection at a later age due to the fact that 

there will be fewer susceptible children in circulation and 

hence fewer infectious. Given this situation will more or 

less children m  Ireland develop measles encephalitis9 As 

yet there is no data available on the numbers of 

post-vaccination cases of measles encephalitis However in 

the coming years these should be carefully monitored in 

order to check that our immunisation policy is indeed a safe 

one and that our levels of coverage our adequate. Figure 

(5.3) below shows the number of cases of measles 

encephalitis in the years 1981 to 1985, prior to mass 

immunisation We shall discuss the effects of vaccination on 

the average age of first infection and on the numbers of 

cases of measles encephalitis when we examine our numerical 
results in Chapter 6,
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NUMBER OF CASES OF MEASLES ENCEPHALITIS 
IN THE YEARS 1981 TO 1985 
PRIOR TO MASS IMMUNISATION

NO OF CASES

AGE



C HAPTER SIX
N U M E R I C A L  R E S U L T S , C O NCLUSIONS AND RECO M M E N D A T I O N S

In the preceding chapters we introduced a constant 

parameter, time dependent model We saw now this simple 

model was useful in illuminating certain basic principles 

In particular providing us with estimates of.

(I ) The average age at infection, A.

(I I ) The basic reproductive rate, R .

(I I I ) The interepidemic period, T.

In chapters 2, 4 and 5 we found the age dependent force 

of infection, the mortality rate and the vaccination rate 

for Ireland We used this information to derive the average 

age at first infection in Ireland. We shall now use these 

parameters to derive the intrinsic reproductive rate before 

and after the advent of the Irish vaccination program. 

Finally, we shall estimate from the above the fraction of the 

population which must be vaccinated in order to eradicate 
measles in Ireland

In the second half of this chapter we shall present the 
model with Irish parameters. We shall numerically solve the 

system, (a set of non-linear differential equations) and we 

will show how the model predicts, (given certain specified 

initial conditions) tne proportion of a particular conort 

susceptiole to measles infection before and after the
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introduction of the Irish vaccination orogram

We have seen that the disease will maintain itself 

within the population provided the reproductive rate, R, of 

the infection is greater than or equal to unity R , is the 

expected number of secondary cases produced by one infectious 

individual m  a population of X susceptibles. The intrinsic 

reproductive rate of the disease Rq may be defined as the 

value of R in a disease-free population- We sL̂ H sea, fciv^R^ can 

be estimated from the relation:

RQ = 1 + L/A (6-0)
Where L is the human life expectancy and A is the average age 

at first infection-

For the model described in equations 4.3 to 4 8 we can 

use a result obtained by Dietz(9,10) and generalised by 

Anderson and May (2). They have*

00

j°°expi - [\(v) + p(v) + c ( v ) ] dv] da
o

For Ireland we have f<ot* 'fB,
p ( v ) = 0 ^  v <  70,

c ( v )  = - 0  0 1 6 8 6 v 2 + 0 . 0 2 6 7 4 3 v  + 0 . 4 0 0 8 3  
A( v)  = - 0  0024878V + 0 . 3 2 6 7 8 3  .

Looking at the simple case when all the rate parameters 

are constants and there is no vaccination program, equation 
(6- 1) reduces to
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= 1 + ( X / u ) , as the average age at first infection is A = 

1 / X and L = 1/p we have the simplified equation for Rq given 

1n (6.0) above

Let us now insert the Insh~parameters into (6.1) and

examine the instrinsic reproductive rate for Ireland We

have before the implementation of the vaccination program

c = 0 so giving 
r?o

Ro = Jq exp [0 ] da
r e x p  [ -  1 - 0 . 0 0 2 4 8 7 8 v  + 0 . 3 2 6 7 8 3  ] da
Jq J o

= 70

3.13711 = 22.3135.

We can now see that this figure for Rq is very close to our 

first approximation of Rq = 1 + L/A = 1 + 70/3 25 = 22.54.

After the implementation of our vaccination Drogram we have*

which implies that*

ro = i + a z M a r t + n  ¿u+oz- - io

The above estimate is based on c(v) as derived from our 

sample of vaccination rates. If we assume that all children 

up to the age of 6 years are vaccinated at a constant rate, 

c = 1 we have
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which implies,

Ro =

We can see from the above that the introduction oC

vaccination has reduced the intrinsic reproductive rate

considerably. However, we must remember that for the

eradication of measles m  Ireland we must ensure that R < 1.o

More generally if it is the policy to vaccinate a 

proportion of the population at a constant rate c while the 

remaining fraction 1 - p is not covered by the vaccination 

program it has been shown that the intrinsic reproductive

vaccination program and R q is the rate before, c = 1/v with v 

equalling the average age at vaccination.

If then we decide before the start of the vaccination 

program (by means of surveys etc ) that on average naif of 

our children have had measles and therefore we target our 

vaccination policy at p - 0 5 we shall have in Ireland after 
initial vaccinations

rate R0 ̂ Anderson and May {2\ is:
«

Ro = V  1 ~ CP/(C + ^ )]

where Ra is the intrinsic reproductive rate after the
(6.2)

o 22 3135 [1 - (1/2.6)(0.5)/(1/2 6)] 11 156

94



f

order to reduce R below unity7 From equations (o 0) ando
(6 2) we can prove that the fraction of the population that 

must be protected must exceed

p > 1 + v/L (6 3)
J

1 + A/L

where v is the average age at which individuals are 

vaccinated (i.e v = 1/c). Since p cannot oe greater than 1 

we see that eradication is possible only if A > v. This is 

an important result when we consider that in Ireland A = 3.16 

years. Irish children need to be vaccinated at an early age 

however immunisiation at too early an age can lead to poor 

seroconversion and hence loss of immunity.

We can estimate v from our sample data on vaccination we 

have v = 2.6 years Taking L = 70 years gives 

p > 0.9923

if we manage to reduce v to 15 months or 1.25 years we then 

have-

p > 0 9738

which is still a very large proportion. One of the main

reasons for this is our very low average age at first

infection On a still more pessimistic note it has been

found that outbreaks of measles can still occur even when

more than 99% of children have been vaccinated The reported

outbreak in question arose in Texas among school cnildren, 
the first bein^ a fifteen year old girl

What proportion tnen, need we immunise in Ireland in
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99% of the school c m l d r e n  were documented as having oeea 

immunised however upon measles antibody tests tney found that 

5% were not protected Vaccination may have failed for 

several reasons These include administering tne vaccine to 

infants under 15 months, administering it in conduction with 

immunoglobulin or improperly storing it For these reasons 

the I n s n  medical profession must be aware of the possibility 

of an outbreak even where all children have been vaccinated.

It is interesting to note the age of the girl in wnich 

the infection arose It is well known that vaccination 

increases the average age at infection. A susceptible has 

less chance of acquiring the infection in a partially 

vaccinated community than m  an unvaccinated population.

There are less infectious individuals around from whom one 

can contract the disease However, it is also well knownthat 

the risk of acquiring measles encephalitis as a complication 

is also higher amongst those who contract the disease at an 

older age

In Ireland the severity of the disease m  terms of 
mortality and morbidity has not changed m  20 years The 

rate of deaths to notification is 1 5 per 10,000. There has 

been 82 deaths in 15 years and at least 25 cases of encephalitis in 

10 years in Ireland However, we can take some comfort from 

the fact that Anderson and May have snown in (2) that 

vaccination at whatever level always acts to reduce the
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number of encephalitis cases Taking parameter values 

appropriate to the U K population i e A = 5 years, v = 2 2 

years and p = 0.5 they find that immunisation levels of 50% 

result in only a 25% reduction in tne number o t encephalitis 

cases A 90% coverage results in a 75% reduction, while 

higher levels of vaccination result in eradication The 

reduction in the number of cases in non linearly related to 

the proportion of the cohort immunised. This non-linear 

effect is important because substantial reductions m  the 

number of cases of encephalitis will only occur as the 

overall level of herd immunity begins to approach the 

cnticial level for eradication.

We have seen what proportion we need to immunise in 

order to eradicate measles m  Ireland We shall now return 

to the model We shall see what proportions of susceptible, 

infected, infectious and immunes the model will predict given 

the Irish age dependent parameters. These we shall compare 

with the results of our serlological survey.

We have the system as described in (4.5) to (4.8).

This system can be solved numerically for X, H, Y and Z given 

the following initial conditions-
(l) X(0 5) = 64,000. This is the number of births in 

1984. We choose this year as vaccination was 

introduced into Ireland in 1985 We shall be 

following the movement of this particular cohort m  

the model
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( n )  H (0 5) = Y(0 5) = Z (0 5) = 0 There are no

infected, infectious, recovered and immune at the 

age of 6 months We note nere that 

X + H + Y + Z = N a s  required

(in) We take p(a) = 0 as the death rate amongst those in the 

age range of interest i e 6 months to 10 years is 

neglig ble

( i v )  C(a) = 0  We wish to examine the proportions the 

model will predict as susceptible prior to the 

implementation of a vaccination program

(v) A(a) is a linear function for a>, 0.5 years. The

force of infection acts only on those not protected 

by the maternal antibodies These are thought to 
last for 6 months

(vi) Finally 0.5 £ a ^ 10 as most of the parameters

have been estimated for the younger age groups.

Also measles in Ireland is a childhood disease.

These parameter values are substituted into the program

below. (Note* the program below is a modification of an NAG
Library program).
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PROGRAM ODE SOLVER 
IMPLICIT RliAL*8(A-H,0-Z)
REAL *8 X, XEND, SSIZE, XI 
REAL *8 Y(4), Z ( 4)
N = 4
X = 0 5 DO 
XEND = 1 OD1 
SSIZE = 0. 5 DO 
Y (1) = 64 0D3 
Y (2) = 0 0D0
Y (3) = 0.0D0 
Y (4) = 0.0D0
WRITE (28,99) X,(Y(I),I = 1,N )
DO 100 I = 1,19
XI = X + SSIZE 
CALL GEAR (N,X,X1,Y)

X = X + SSIZE
WRITE (28,99) X,(Y(J), J = 1, N)

- 100 CONTINUE
99 FORMAT (/, ' T = ', D13 6,' Y(I) = ’ 4D13.6)

END

C
SUBROUTINE GEAR (N,X,XEND,Y)
IMPLICIT REAL*8 (A-H,0-Z)
REAL *8 TOL, X, XEND, OLDX 
INTEGER I, IFAIL, IW, J, N, NOUT 
REAL *8 W(4,22), Y (4)

C
EXTERNAL FCN 
IW = 22 
TOL = 1. OD-7 
IFAIL = 1 
OLDX = X
CALL D02EAF(X,XEND,N,Y,TOL,FCN,W,IW,I FAIL)
X = OLDX
IF (TOL.LT.O ODO) WRITE (6,99994)
WRITE (6,99996) IFAIL 

99994 FORMAT (/,' RANGE TOO SMALL FOR TOL ') 
99996 FORMAT (/,' IFAIL = II)

END
C

SUBROUTINE FCN (T,Y,F)
IMPLICIT REAL *8(A-H, O-Z)
REAL *8 T
REAL *8 Y (4), F(4)
ZLMDA = -2 4878D-3* T+3.26783D-1
ZMUA = 0.0D0
CA = O.ODO
SIGMA = 4 0. 5 5 6 DO
GAMMA = 60 8 33DO
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F(l) - - Y (1 ) 
F { 2 ) = - Y ( 2 ) 
F (3) = SIGMA 
F (4) = GAMMA 
RETURN 
END

( Z L M D A  + Z MUA + C A )
(SIGMA + ZMUA)+ ZLMDA * Y ( 1 ) 
Y (2) - (GAMMA + ZMUA) * Y (3) 
Y (3) + CA*Y(1) - ZMUA * Y (4)

This program uses the Gear method in order to solve the 

system The results can be seen in Table 6.1 and Table 6.1a 

below

TABLE (6.1a)

SHOWS THE PROPORTION SUSCEPTIBLE TO MEASLES OF THE 

ORIGINAL COHORT OF 64,000 CHILDREN, AT AGE a

Age
years

No. Susceptible No. Immune

0.5 64000.0 0.0
1 0 54403.3 8864.1
1.5 46274 4 17104.9
2.0 39384.5 24089.2
2.5 33541.4 30012.1
3.0 28583.0 35038.1
3.5 24372.7 39305.5
4.0 20795.5 42931.0
4.5 17754.4 46013.0
5.0 15167.4 48634.7
5.5 12965.4 50866.0
6.0 11090.1 52766.4
6.5 9491.8 54385.8
7.0 8129.0 55766.6
7.5 6966.2 56944.8
8.0 5973.4 57950.5
8.5 5125.3 58809.7
9.0 4400.3 59544.1
9.5 3780.2 60172.2
10.0 3249 6 60709.7

Proportion Susceptible

1 00000 
0.85005 
0.72304 
0.61538 
0.52408 
0.44661 
0 38082 
0.32493 
0.27741 
0.23699 
0 20258 
0.17328 
0.14831 
0.12702 
0.10885 
0 09333 
0.08008 
0.06875 
0.05907 
0.05077

Several important results should be noted from this table

(a) By the age of 10 years there are still over 3,000 

of the original cohort of 64,000 children, 

susceptible to measles infection
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TABLE 6 1

SHOWS THE PREDICTED NUMBERS OF SUSCEPTIBLE, INFECTED, 

INFECTIOUS AND RECOVERED AND IMMUNE AT AGE a

A

AGE

(years)

0. 500000D+00 
0.100000D+01 
0.150000D+01 
0.200000D+01 
0. 250000D+01 
0.300000D+01 
0. 350000D+01 
0.400000D+01 
0.450000D+01 
0-500000D+01 
0.550000D+01 
0 * 600000D+01 
0 650000D+01 
0. 700000D+01 
0 750000D+01 
0 800000D+01 
0 * 850000D+01 
0.900000D+01 
0 • 9 50000D+01 
0- 100000D+01

X

NO s 

SUSCEPTIBLE

0.640000D+05 
0.544033D+05 
0. 4 627 44D+0 5 
0.393845D+05 
0 * 335414D+05 
0.285830D+05 
0.243727D+05 
0.207955D+05 
0.177544D+05 
0. 15167 4D+0 5 
0.129654D+05 
0.110901D+05 
0.949184D+04 
0 812899D+04 
0 - 696616D+04 
0. 597 338D+04 
0.512527D+04 
0.440031D+04 
0.378025D+04 
0.324958D+04

H

INFECTED

0.000000D+00 
0 - 4 38 612D+03 
0.371633D+03 
0-315073D+03 
0* 267283D+03 
0.226880D+03 
0.192701D+03 
0.163770D+03 
0.139267D+03 
0.118502D+03 
0.100895D+03 
0.859553D+02 
0.732723D+02 
0-624986D+02 
0. 533414D+02 
0.455534D+02 
0-389261D+02 
0.332831D+02 
0.284753D+02 
0.242768D+02

Y

INFECTIOUS

0 000000D+00 
0,294018D+03 
0 2 49114D+03 
0,211196D+03 
0.1791590+03 
0.152073D+03 
0.129161D+03 
0.109768D+03 
0. 9 3 3428D+0 2 
0.794237D+02 
0 676 211D+02 
0 57 6074D+02 
0 491063D+02 
0.418851D+02 
0 357474D+02 
0.305276D+02 
0.260857D+02 
0.223037D+02 
0.190815D+02 
0.163348D+02

Z

RECOVERED/

IMMUNE

0 000000D+00 
0 886409D+04 
0, 171049D+05 
0-240892D+05 
0.300121D+05 
0.350381D+05 
0.393055D+05 
0.429310D+05 
0.460130D+05 
0.486347D+05 
0* 508660D+05 
0,527664D+05 
0.543858D+05 
0. 5576 6 6D=0 5 
0 569M8D+05 
0 579505D+05 
0 588097D+05 
0.595441D+05 
0.601722D+05 
0.607097D+05



FIGURE 6 1 
SHOWING PLOT OF NO SUSCEPTIBLE US AGE 

(WHERE C (a) = 0)
NO SUS

AGE

FIGURE 6 la 
SHOWING PLOT OF NO IMMUNE AT AGE A 

(WHERE C (a) = 0)

HO IMMUNE

1 0  1 5 2 0  2 5  3 0  3 5  4 0 4 5  5 0  5 5

AGE

102



^  , I

(b) Between tne ages of 3 and 3 5 years there is an 

average of 26,000 susceptible to infection This 

is a very large number when we consider the fact 

that the average age of infection is 3 25 years.

(c) The number of infected is always larger than the 

number of infectious This is due to the fact that 

the latent period is longer than the infectious 

period.

(d) At each age point X + H + Y  + Z = N ,  where N is the 

total population of the original cohort.

Figures (6.1) and (6.1a) show plots of the numbers 

susceptible at age a and numbers immune at age a. We see 

that there is a snarp decline in the numbers susceptible in 

the early years. This decrease then slows down in the older 

years. Similarly with the numbers of immune, these rise 

steadily up to the age of 6

How then do the pre-vacclnation results predicted by the 
model compare with the existing situation7 From our sample 

of 145 cases we have estimates of the proportions immune and 

susceptible to measles infection in Ireland before the 

introduction of the vaccination program The predicted 

proportions susceptiole at age a and the sample estimates of 

the proportions susceptible are given in Table 6 2 below.
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Table (6 2) shows tne predicted and estimated 

proportions susceptible to measles infection in Ireland prior 

to the introduction of the vaccination program in Octooer 

1985
TABLE 6 2

Age a in Years Sample Estimates Model Estimates

2 0.6 0 61538

3 0.33 0 44661

4 0 2727 0.32493

5 0.229 0.17328

As we can see the model predictions are extremely close 

to those proportions estimated from the sample.

We now take the model a step further by introducing 

vaccination into the model We adapt the above program to 

solve the system given the following m t i a l  conditions.

(l) We start at age a = 1 year as vaccinations start at 

the age of 15 months 

( n )  Some children will have contacted the disease

between the ages of 6 months (when the maternal 

antibodies start to wear off) and 15 months (when 

immunisation starts). We therefore do not have all 

of the original cohort of 64,000 susceptible We 

know from our predictions earlier that the force of 

infection acting on susceptibles from six months to
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1 year gives us the following numbers of 

susceptible, infected, infectious and recovered and 

immune respectively

1 X ( a ) = 54,403

H ( a ) = 439

Y(a) = 295

2(a) = 3,864

( m ) C ( a )  = -0.01686a2 + 0.026743a + 0.^0083 This is 

estimated from the sample vaccination program 

discussed m  chapter 5- Also 1 a 4 6 years.

These conditions with program (6.1) yield the following 

results. See Table (6.3).

TABLE 6.3

SHOW PROPORTIONS SUSCEPTIBLE TO MEASLES INFECTION 

AT AGE a GIVEN C (a) = QUADRATIC

Age
years

No. Susceptible No. Immune Proportion Susceptible

1.0 54403,0 8865.0 0.850047
1.5 37743.0 25746.2 0 589734
2.0 26357.8 37287.7 0 411841
2 5 18606.7 45144.8 0 290730
3.0 13333.7 50489.7 0 208339
3.5 9740.5 54131 7 0.152195
4.0 7284 3 56621.1 0 113818
4.5 5600.3 58327 9 0.087505
5.0 4445.0 59498.8 ' 0 069453
5.5 3657 7 60296.7 0 057152

We now note from Table (6 3) that

(a) The numoers susceptible are decreasing at a faster
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rate However, by the age 5 5 years tnere are

still over 3,500 susceptible to measles

(b) With regard to the proportions susceptible we see 
that at the age of 3 years there is still almost 

21% susceptible to measles^ Again this is a very 

high percentage given that the average age at 

infection is 3 25 years. It would be desireaole to 

reduce the proportion susceptible at this age 

considerably

TABLE 6.4

PROPORTIONS SUSCEPTIBLE BEFORE AND AFTER VACCINATION 

PRE-VACCINATION POST-VACCINATION
AGE PROPORTION SUS. AGE PROPORTION SUS
0.5 1.00000 1 0 0 850047
1.0 0.85005 1.5 0.589734
1.5 0.72304 2.0 0 411841
2.0 0 61538 2. 5 0.290730
2.5 0.52408 3.0 0 208339
3.0 0.44661 3.5 0.152195
3.5 0.38082 4.0 0.113818
4.0 0 32493 4.5 0.087505
4.5 0.27741 5.0 0.069453
5.0 0.23699 5. 5 0.057152
5.5 0.20258
6.0 0.17328
6.5 0.14831
7.0 0. 12702
7.5 0. 10885
8.0 0.09333
3.5 0.08008
9.0 0.06875
9.5 0.05907
10.0 0 05077

Comparing the proportions susceptible pre and post
vaccination we see in Table (6.4) and from Figure (6 2) 

(l) Vaccination reduces the proportions susceptible 

considerably Before vaccination 5% of the

t na t
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FIGURE 6 2a 
PROPORTION SUSCEPTIBLE BEFORE VACCINATION

PROPORTION SUS

AGE

FIGURE 6 2b 
PROPORTION SUSCEPTIBLE AFTER VACCINATION

PROPORTION SUS

AGE
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original cohort remained susceptible at the age of

10 With vaccination approximately 5% remain

susceptible by the age of 5 5 years This

represents a considerable improvement

( n )  In the earlier, younger age groups we see that

vaccination has reduced the number of 1 5 year olds

susceptible to measles by approximately 13%, the

numoer of 2 year olds by 20 5%, the number of 2 5

year olds by 22 5%, the number of 3 year olds by

approximately 23% and the number of 3,5 year olds

by 23%. These are not large improvements. The

current vaccination program should be aiming to

immunise the children at as young an age as

possiole for we have a very young average age at

infection We have seen earlier m  this chapter

that for the successful eradication of an

infectious disease such as measles V < A.

(n l )Vaccination raises the average age at infection and

hence reduces R . As we have seen for eradication o
Rq < 1. For our vaccination program to succeed we 

must increase our levels of coverage The 

required levels for eradication are in the region 
of 97%.

Finally, what then should be the aims of future policy and 

further research9 With regard to policy we should aim for

(a) Widespread immunisation with a coverage of 97% to
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(b) Immunisation at as young an age as possible, in

order to ensure tnat the average age at vaccination 

is less than tne average age at infection

(c) The reduction of to less than uni-ty If such 

were the case measles m  Ireland would die out.

(d) The collection and compilation of appropriate data.

There is an urgent need for the collection of

senological data (by surveys with fine age 

stratification) and vaccination data (also with age 

stratification) These are very important for the 

interpretation of epidemiological trends in disease 

incidence under the given vaccination policy.

With regard to future research we have in our model made 

the assumption of homogeneous mixing That is that the 

population mixes in a homgeneous manner, at a given point in 

time, each susceptible has an equal prooability of 

encountering an infectious person In natural communities 

there will be groups of individuals who are less at risk of 

exposure to infection than other groups. There is a need for 
further work on the impact of mhomogeneous mixing. Similart
comments also apply to vaccination coverage, since this is 

rarely uniform throughout the different regions of the 

country. Finally, our analysis is based on measles 

infection, the methods, however, can be applied to the 

epidemiological study of a wide variety of infectious

99%
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diseases in Ireland Provided the researcher is willing to 

apply his mathematical skills and collect the appropriate 

data, many useful results can be predicted for the common 

infectious diseases m  Ireland
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