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Finite Element Modelling and Simulation of Metal Flow In Bulge Forming

Mahiuddin Ahmed

ABSTRACT

The research and application of finite element methods in the area of material 
processing has increased rapidly in recent years Application of FEM is reported in 
the processing of most engineering materials including new materials like metal 
matrix composites In metal forming, FEM is mostly applied to conventional forming 
situations like forging and upsetting, extrusion, drawing, rolling, sheet metal forming, 
casting and moulding and machining Most of these forming operations are also well 
analysed by theories of plastic deformation like limit theorems, slip-line field theory 
etc In contrast, new and unconventional metal forming cases, which are often very 
complex, are relatively under-analysed either by the theoretical methods mentioned 
above or by numerical methods like finite element

This work is mainly devoted to computer simulation and study of one of the 
unconventional metal forming process called bulge forming There are various type of 
industrial products made by bulge forming process In some processes the main 
forming load is the hydrostaic pressure on the surface of the blank plate or shell 
While in others, an in-plane compressive load is also applied simultaneously with the 
pressure load Depending on the initial blank shape and final product shape, the 
simultaneous loading case becomes a complex forming situation This project has 
simulated the later category of bulge forming by finite element method

Number of such cases were simulated to cover initial blank shape viz flat 
circular plate, flat rectangular plate and initially curved shell In the latter category 
axisymmetric expansion of tubes, T-branch forming from straight cylindrical tubes 
and forming of box-sectioned elbow from cylindrical tubes were simulated In each 
case different loading and friction conditions were tried Distribution of stress and 
strain were studied for all the cases Companson were made between comparable 
forming conditions Response of certain parameter with respect to the changes of 
different forming variables of the process were also studied for most of the simulated 
cases In case of the bulging of flat circular plate, optimum forming condition were 
identified for different objective criteria Taguchi parameter design method was 
applied to transform the above optimum values to practicable engineering values All 
the simulations were carried out using well known commercial finite element 
packages Both static frontal solvers and explicit dynamic solvers were used for the 
simulations
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Chapter 1 

INTRODUCTION

1.1 Rationale

The use of computer aided analysis and design of metal forming has increased 

considerably in recent years. If one takes the number of published papers as a measure 

of activity in any field then surely one would discover rapid growth in the use of 

computer in simulation of metal forming by finite element method (FEM). In a recent 

review paper[l] on application of FEM on material processing with more than 1100 

listed references it was shown that during 1982-1992 period the number of published 

papers has grown more than three times. High computational speed and low cost of 

computers at desk top level are the main driving forces for much wider application. 

Besides, the development in computer graphics, new solution techniques and user 

friendly interactivity with computers have also contributed to more applications. The 

need for rapid product development has definitely provided a pull effect to the situation.

However, within the metal forming area, the application of computer in analysis 

and design is still mostly limited to common forming techniques. Authors of the review 

paper mentioned earlier have grouped the listed references according to different areas 

of metal forming. Figure 1-1 shows a pie chart of the groupings indicating the major 

application areas.

Legend:

GMF = General Metal Forming 
MFM = Metal Forming and Meshing 
FOU = Forging and Upsetting 
EXT= Extrusion 
DRW = Drawing,
ROL = Rolling 
SHF = Sheet Metal Forming,
PTM = Pipe and Tube Manufacturing 
CAM = Casting and Moulding 
NM = Non-metal Forming 
PM = Powder Metallurgy

Figure 1.1. Pie chart of FEM simulation studies in different metal forming areas

OGMF
□ MFM
□  FOU
□  EXT
■ DRW
□  ROL 
E9SHF
□  PTM
■ CAM
□  NM
□  PM
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The papers in the first two groups are related to theoretical aspects of FEM 

Metal forming processes exhibited m other groups are common industrial processes 

Probably demand from the industry is one of the reasons that these processes are more 

simulated and studied than others Besides, most of these processes can be simulated in 

two dimensions Considering the computer resources required for three dimensional 

finite element analysis, more complex metal forming operations requiring 3D treatment 

were so far been less simulated However, very recently this constraint has eased and 

the simulation of three dimensional metal forming process has become practical

There are many different types of complex metal forming processes which 

require simulation in three dimensions Most of these processes are very promising and 

can produce near net shape products Because of the complexity involved in these 

processes, they are relatively less analysed either by established analytical methods or 

by numerical methods Considering the importance of these innovative processes of 

metal forming and the availability of computational power it has become essential that 

these processes be analysed by numerical methods to understand the effect of the 

product and process variables on the process This would be helpful m designing better 

processes and thereby better products

1.2 Bulge Forming

Bulge forming is an innovative metal forming process by which many near-net 

shaped industrial parts are manufactured Deep vessels, T-branches, X-branches and 

other tubular components, stepped hollow shafts, bicycle wheel hub, rear axle casing of 

cars, axles, nozzles, metal bellows etc are typical parts made by bulge forming 

processes The products are either axisymmetric or asymmetric However, the basic 

process for either type of product is the same

Bulge testing is the most simple case of bulge forming In this process the 

material is biaxially stretched at the bulge by application of hydraulic pressure More 

complex bulge forming processes involve application of additional forces other than the 

pressure to supply material in the areas of bulging from other areas of the blank This is 

ne to enhance the formabihty of the process There are different arrangement of die- 

fixture for bulge forming Figure 1 2 shows cross-sectional view of one of the possible
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arrangements for the manufacture of tubular components The tube blank is placed 

between two die halves and tube ends are held by two plungers the tips of which act as 

punch The hydraulic fluid is pumped through holes in the plunger and pressure builds 

up inside the tube The plungers are pushed inwards to provide the axial compressive 

load Due to pressure and the axial load the branch starts forming Simultaneous 

application of these loads help to obtain large deformation in the process Prominence 

of any one type of loading leads to instability and thereby defects

There are two main modes of defects from process instability of bulge forming 

One is the defect by rupture which occurs due to excessive thinning of the bulge area

Figure 1 2 Diagram of bulge forming principle
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This situation is the result of dominant pressure loading Defects by buckling usually 

occurs in non-bulged areas when the axial compressive loading is excessive Thus an 

optimum loading condition avoiding these instabilities would also enable higher 

deformation in the process But to tread that path requires a good understanding of the 

deformation process Theoretical methods for plastic deformation analysis of bulge 

forming have generated limited understanding of the process Numerical analysis by 

simulation could provide much deeper understanding on the process and thereby 

promise better design of process machineries and eventual products

Hydrostatic pressure applied in bulge forming can be applied by solid medium 

instead of liquid medium as described earlier Soft metal or elastomers may be used for 

this purpose However, with these solid media it is very difficult to control the pressure 

on the tube which is very important for the stability of the process But generally, the 

solid medium produces better product provided a stable process can be maintained 

Both solid and liquid media have other operational advantages and disadvantages

Researchers and practitioners have long been studying and experimenting on 

bulge forming A survey of the theoretical and experimental works done on bulge 

forming is presented in the next chapter
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Chapter Two 

LITERATURE SURVEY AND SCOPE OF WORK

2.1 Simple Bulge Forming

2.1.1. Analytical and Experimental Studies

The most common case of bulge forming is the hydraulic bulge testing, an 

expenment to determine biaxial stress-strain characteristics of ductile materials up 

to large plastic strains In this experiment a thin circular sheet is clamped along its 

periphery and a uniform pressure is applied on one side of the sheet Under ideal 

conditions this gives rise to a non-umform strain distribution varying from in­

plane plane strain at the edge to balanced biaxial tensions at the pole [2] There 

are many experimental and analytical works on bulge testing Pioneering works of 

Brown and Sachs[3], Gleyzal [4], Brown and Thompson[5], Hill[6 ], Swift [7] and 

Mellor [8] must be mentioned in this regard

Many studies have since been published considering various aspects of 

bulge testing such as different materials, directional properties of matenals, 

geometry of the opening, geometry of the bulge etc References[9-13] may be 

mentioned as examples Most of these works on bulging concentrated on the pole 

region with much simplification of the process Little or no attention was given to 

the deformation behaviour at the periphery This was obvious due to the fact that 

the main objectives were either to characterise the stress strain behaviour of the 

material or to study the situation leading to instability at the polar region Even 

then the behaviour at the bulge forming periphery can not be ignored In this 

regard, the study by Atkinson [10] deserve special mention as it points out some 

issues related to bulging process itself In this paper the author questions the 

appropriateness of the usual assumptions that the bulge profile is circular and the 

pole area is uniformly strained According to Atkinson, due to the contribution of 

bulging, thinning and increasing strain gradation during bulging the relationships 

between different parameters of the process are rather complex
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For practical applications these information are definitely useful 

Additional information with respect to the effects of the die geometry at the 

opening, bulging of thick sheet and simultaneous in-plane load on the sheet on 

bulge forming could be equally useful for industrial bulge forming Incorporating 

these aspects in simple bulge forming could practically be not feasible but 

simulation by numerical methods could be an alternative way to gam more insight 

of the process

2 1.2. Numerical Studies

A number of works have been reported on simulation analysis of simple 

bulge forming of sheet metals or bulge testing Numerical analysis of bulge 

forming of circular sheet by finite difference method was done by Woo [14], 

Yamada and Yokouchi [15], Wang and Shammamy[16] and subsequently by Ilahi 

et al [17] and Ilahi and Paul [11]

The first finite element solution of bulge testing was done by Iseki et al 

[18] They formulated the problem using elastic-plastic material law and updated 

Lagrangian formulation They compared their results with experimental values 

At the pole of the bulge both the simulated and the experimental results showed 

quite good match but they diverged at the periphery of the bulge Iseki et al [19] 

also analysed elliptical and rectangular metal diaphragms by the same 

formulation Comparison of experimental results with simulation shows similar 

trend

Kobayashi and Kim [20] formulated a finite element analysis technique 

using rigid-plastic material characteristics They verified their formulation by 

simulating bulge forming problem analysed by Iseki et al [18] and compared the 

results Kim and Yang [21] formulated a more general finite element solution 

method applicable to axisymmetric cases also using the same rigid-plastic material 

model They also compared their results with that from Iseki et al [18] Wifi [22] 

also analysed bulge forming by a generalised correction formulation of finite 

element method He also compared his findings with that of Iseki et al [18]
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All the above simulations were earned by modelling a circular sheet 

clamped at the edge Although their illustrations show a die with some edge 

radius, the simulations did not consider this peripheral boundary conditions of the 

sheet with the die Keck et al [23] simulated the simple bulge forming problem 

using an elastic-plastic formulation and took the peripheral boundary condition 

into account They found that their simulation results agree very well with the 

experimental results of Iseki et al [18] According to Keek et al significant 

differences exist between this analysis and the simplified model that was used by 

Iseki et al [18] and Kim and Yang [21] Lange et al [24] of the same research 

group simulated bulging through elliptical dies with edge boundary conditions 

included in the model and got good agreement with experimental results

Recent fimte element simulation work on bulge forming of sheets were 

reported by Li et al [25] and Cronin et al [26] In the former work , the authors 

observed from simulation the influences of various material parameters on bulge 

forming They obtained an empirical relation linking average limit thickness strain 

with material hardening and rate sensitivity parameters by regression fitting of the 

simulation results In the second work by Cronin et al a general purpose FE code, 

ABAQUS was used for simulation They studied the influence of varying mesh 

size and element type together with the variation of normal anisotropy of the 

material From the simulation results they found that (i) beyond certain mesh 

density the results are unaffected, (11) the continuum elements predicted better 

results than the shell elements and (111) normal anisotropy of the sheet induces 

more uniform strain distribution on bulging Predictions were verified by 

experimental results Both these works modelled the sheet to be clamped at the 

periphery thereby disregarding the contact and friction conditions between the 

sheet and the die

Practical bulge forming of a circular cup to a certain shape and height was 

simulated by Lee and Ma [27] The simulation result predicted shape and limiting 

height of the cup that can be formed from particular blank geometry without 

failure and the strain distribution Experimental verification showed good 

agreement with predicted results They considered all contact and interface 

boundaries in modelling the problem
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In all of the above studies circular blanks of different diameter and 

thickness were used for bulging It is understandable because of the fact that the 

objectives of most of these studies were to evaluate finite element formulations 

Therefore, the focus was mostly on the deformation behaviour at the pole Bulging 

for some practical end product like deep vessels or cups could necessitate different 

blank geometry like rectangular or square sheet for operational reasons 

Unfortunately, no such effort was evident either from the academia or from 

industry For the same reason, perhaps, there was no effort to see what happens if 

blanks are pushed in towards the bulge while forming Obviously, this has merit 

when the objective is to maximise the bulge height This is very much in practice 

in bulge forming of tubular components like tee or cross branches or other 

industrial parts from straight tubular blanks

2.2 Bulge Forming of Industrial Parts and Components

2 2 1 Analytical and Experimental Studies

The first work on bulge forming applying pressure and axial load on tube 

blanks was reported as early as 1939 in a patent by Grey et al [28] The patented 

process was described as upsetting a copper tube blank of approximately tee shape 

with the application of internal hydraulic pressure and axial load at the blank ends 

Crawford [29] descnbed an applied process wherein a soft metal was poured in 

copper tube blank and endwise pressure was applied to both the filler metal and 

tubing whilst they were restrained in the die An improved method of the process 

was patented by Stalter[30] to increase the productivity of the process and to 

remove the disadvantages caused by shrinking of the filler metal on pouring 

Remmerswall and Verkaik [31] successfully formed axisymmetric conical 

products from deep drawn cylindrical blanks Ogura and Ueda[32] reported 

procedures to form both axisymmetric and asymmetric components by 

simultaneous application of axial compressive load and hydraulic internal 

pressure AI-Qureshi et al [33] reported axisymmetric bulging of thin-walled 

metal tubes of widely different work hardening characteristics They used
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polyurethane rod to apply the internal pressure and the friction between the tube 

bore and the rod provided the axial load on the tube Al- Qureshi [34] presented 

experimental evidence showing the difference between axisymmetric bulge of 

thin-walled tubes using the rubber forming technique and hydraulic forming 

technique He found greater circumferential expansion and longitudinal drawing 

with rubber forming technique than by hydraulic forming technique

Woo [35] presented a numerical solution for tube bulging under axial 

compressive force and internal hydraulic pressure assuming that the whole length 

of the bulged tube was in tension Expenment results presented show reasonably 

good agreement with the numerical results

Limb et al [36, 37] reported their experimental works on hydraulic bulge 

forming of tubes using combined axial compressive load and internal hydraulic 

pressure Both axisymmetric and asymmetric components were formed from 

various blank material and geometry For axisymmetric bulging Limb et al [38] 

also developed a theoretical analysis method of the process and suggested the 

manner in which the internal pressure and the axial load must be varied during the 

process

Kandil [39] reported experimental works in which tubes of different 

material were bulge formed axisymmetncally under hydraulic pressure only The 

experimental results were used to denve empincal relationships between pressure, 

stress and the die and tube geometry

Sauer et al [40] published their theoretical and experimental work on 

axisymmetric bulging of tubes by internal pressure and axial load They assumed 

that a constant ratio of the meridional to circumferential stress in the tube wall is 

maintained during bulging They developed a computer program to determine the 

bulge shape when load increments are specified on a step by step basis Woo and 

Lua [41] extended their earlier theoretical work[35] by introducing anisotropy of 

tube material and considered bulge forming under internal pressure only

Woo[42] presented an experimental technique of bulge forming closed 

ended deep vessels from deep drawn tubular blanks which were formed out of 

circular sheet metal blanks Both hydraulic pressure and axial load were applied in 

the process Lukanov et al [43] reported an experimental technique of bulge
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forming of double tee-joints out of a single tubular blank by controlled internal 

hydraulic pressure

Super-plastic forming of tee-joints from tubular blanks was reported in 

reference [44] In this process pressurised hot air was used to bulge tubes of lead- 

tin alloy material Approximate analysis was also given to predict the wall 

thickness of the formed components The analysts was based on those applicable 

to simple bulge forming of circular diaphragm

Hashmi[45] put forward an analysis for the prediction of the wall thickness 

around the circumference of the bulge formed tee brunch The analysis is based on 

the geometrical consideration of the bulging surface Experimental results 

indicated that the analysis over-estimated the thinning of the wall Hashmi[46] 

also reported an analytical method to predict height and thickness distribution of 

both the axisymmetncally and asymmetrically bulged products The analysis is 

based on the geometry of the forming bulge and equilibrium conditions The 

analysis considered variation of the stress ratio at the bulge However, the key 

parameters like internal pressure, friction, comer radius of the die etc were not 

taken into consideration for the analysis Later, Hashmi and Crampton[47] 

presented comparison of experimental results with predictions by the analytical 

method in reference [46] They found that the theory generally overestimates the 

thickness of the formed components

Hutchinson et al [48, 49] studied the effect of plunger shape and size (Fig 1) , 

lubrication and blank material on bulge forming of tubular components using 

internal hydraulic pressure and axial compressive load They found that all of 

these factors have considerable effect on bulge shape and size as well as on the 

forming load

Ueda [50,51] reported a process of manufacturing differential gear casing 

for automobiles from a single tubular blank by the liquid bulge forming technique 

with sliding type dies The sliding die components compress the ends of the tube 

without any relative movement between the tube and the die components thereby 

reducing friction

Filhof and Qureshi [52] developed and tested an experimental machine for 

the bulge forming of tee joints using elastomer rod They developed theoretical
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expressions for total forming load prediction and verified them with experimental 

forming loads with good agreement

Dohmann and Klass[53] reported axisymmetric bulging of tubes with 

sliding dies The sliding dies push the tube ends giving the axial compressive 

forming load without fnction between die and tube They used hydraulic pressure 

inside the tube as other forming load

Murata et al [54] reported developing a new machine for axisymmetric 

tube bulging which initially puts a deflated rubber membrane into a work tube and 

while forming, the internal pressure is applied on the membrane which in turn 

presses the tube wall With this machine they experimentally examined the effects 

of tube end condition and tube length on the deformed shape and the strain 

distribution therein

Thiruvarudchelvan and Travis[55] reported axisymmetric bulging of 

copper tubes to bottle shaped products They used urethane rods of different 

hardness as pressure medium and applied different conditions of lubrication 

Thiruvarudchelvan with Lua [56] developed a machine for axisymmetric tube 

bulging that can apply axial compressive force proportional to the internal 

hydraulic pressure They experimented bulging of copper tubes with this machine 

and reported an optimum ratio of axial load to internal pressure for which 

maximum bulging was achieved

Dohmann and Hartl [57] presented a flexible die system for tube bulging to 

both axisymmetric and asymmetric products The die system with adjustable 

segments can expand, displace or reduce the tube blank resulting in various shapes 

of end products The same authors later presented the procedure and methods to 

develop process controls and the significance of the control for the quality of 

bulge forming products in reference [58]

Filho et al [59] have done theoretical analysis of the bulge forming of tee 

junction using elastomor rod The slab method was used to obtain equilibrium 

equation for different zones of deformation They solved the equations 

simultaneously by finite difference method to determine the axial compressive 

load required for the process
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Thiruvarudchelvan [60] reported theoretical analysis of initial yield 

conditions for axisymmetric tube bulging with internal urethane rod He [61] also 

put forward an approximate theory for determining initial yield pressure and the 

final forming pressure needed on an internal urethane rod to bulge a tube

Sheng and Tonghai [62] reported experimental research result on forming 

asymmetric products by bulge forming In addition to internal pressure and axial 

load, they used counter pressure on the bulged part According to them, this 

method greatly improved the stress state and raised the forming limit An upper- 

bound analysis was done to estimate power requirements In the analysis they 

considered a uniform velocity of material around the whole circumference of the 

tube

Tirosh et al [63] reported an upper-bound analysis of axisymmetric 

bulging of tubes by internal pressure and axial compression Guided by their 

formulation they experimentally tried to find an optimum loading path that would 

give maximum bulging strain without early failure by buckling or necking

In bulge forming process of tubes, one area of concern is the instability In 

almost all experimental and analytical studies it was observed that excessive 

amount of either of the loads (pressure or axial) relative to one another causes 

instability of the process resulting in necking or bucking Many researchers 

worked in determining the instability of thin walled tubes Mellor [64] presented 

an analytical solution to determine the strain at instability of thin-walled tubes In 

his analysis he assumed that the circumferential to axial stress ratio remains 

constant and positive throughout the straining process Jones and Mellor [65] later 

experimentally showed that their theoretical solution in [64] was in satisfactory 

agreement with expenmental values In the experiment they tried to maintain a 

constant axial load/pressure ratio (obtained from theoretical calculation) to 

achieve constant stress ratio but could not maintain the constant stress ratio when 

either the pressure or the axial load reached a maximum

Felgar[6 6 ] also analysed instability of pressure vessels subjected to internal 

pressure and tensile axial load He analysed both thin-walled and thick-walled 

vessels for constant circumferential and axial stress ratio From experimental 

results he found that his theoretical prediction of instability pressure is pretty
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accurate However, the prediction of instability strains were in gross disagreement 

with the expenmental results

Weil[67] theoretically analysed tensile instability of thin-walled cylinders 

of finite length His analytical results showed that burst pressures increase 

progressively as the length/diameter ratio of the cylinders is reduced from infinity 

to lower values His analysis considered a constant ratio of the principal stresses 

during deformation

All of the above instability studies of cylinders and other similar studies 

found in secondary references considered a tensile axial loading of the cylinders 

In bulge forming by pressure and compressive axial load the forming regime is at 

a totally different strain quadrant Sauer et al [40] developed a theoretical 

necking cntenon for axisymmetric bulging of thin shell tubes They found that the 

effective strain before necking depends on pre-strain in the matenal and 

circumferential stress/axial stress ratio at the point of necking They have 

concluded from their necking criterion that if the stress ratio could be maintained 

less than or equal to -1, infinitely large effective strain before necking may be 

attained Thiruvaraudchelvan and Lua [56], following similar assumptions and 

procedure, have also noted that when compressive mendional stress is equal to the 

tensile hoop stress, the instability condition will never be reached for work 

hardemng material however high the strain is

Tirosh et al [63] experimentally tned to attain the so called “infinite strain” in 

axisymmetric bulge forming of thin-walled tubes From their experiments they 

could get products free of either buckling or bursting only in the stress ratio range 

from -1/5 to 0 The experience of Manabe et al [6 8 ] is almost similar However, 

Tirosh et al has not ruled out the possibility of getting closer to stress ratio of -1 to 

attain an infinite strain forming situation

Eldred et al [69] reported a different kind of tube manipulation system 

suitable for manufacturing complex tubular components for the automobile and 

other industries The process patented as “vari-form” uses internal hydraulic 

pressure to a pre-bent tube to create structural tubular components of varying 

cross section, complete with mounting holes

13
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Apart for tube bulging, bulge forming technique has been utilised in 

forming spherical pressure vessels [70, 71] In this process an integral polyhedron 

is made by joining flat pentagonal and hexagonal blank sheets of metal in a 

specific pattern The polyhedron is then bulged by internal hydraulic pressure

2.2.2 Simulation Studies

Bulge forming of industrial components is usually a complex process 

involving multidirectional forming load The geometric shape of most products 

warrant three dimensional finite element analysis Until recently finite element 

analysis of metal forming in three dimension was very computer resource 

intensive But development of faster computer processors at lower prices and the 

availability of dynamic explicit finite element programs have made it a possibility 

to numerically analyse complex metal forming problems At present most 

applications of three dimensional FEA are in sheet metal forming sector- specially 

products related to automobile industry In comparison, analyses m other metal 

forming processes requiring three dimensional treatment are negligible In bulge 

forming it is even rare

Most finite element analysis of bulge forming processes are done for 

simple bulging of circular diaphragms Various studies of this nature have been 

presented in the previous section Lange et al [72] have presented a simulation 

study of axisymmetric bulging of tubes Taking advantage of axisymmetry, the 

analysis was done in two dimension using implicit codes of their own They have 

simulated the process for three different load characteristics defining the relation 

between the pressure load and the axial load For moderate axial load, the 

simulation results agreed quite well with expenmental results However, for 

higher axial load, substantial difference between the simulated results and 

experimental results were observed

Bauer[73] reported finite element simulation of a process that bulge a 

hollow cam shaft from pipe The process, termed as interior high pressure process, 

involves forming of a pipe by very high internal pressure and simultaneous force 

in the axial direction In this process cams are fitted with the shafts and bearing
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surfaces are formed simultaneously Essentially a three dimensional simulation 

was done A commercial explicit FE code, LS-DYNA3D, was used for the 

purpose Two loading situations viz pressure load with axial compression and 

pressure load without any axial compression were simulated It was found that 

cams are better fit and bearing surfaces well developed by pressure load and axial 

compression Residual stress in the shaft and fitted components were also less for 

this loading Also, forming by pressure loading only reduces the thickness of the 

pipe wall thereby affecting the shaft strength Comparison of simulated 

displacements and stress results with those obtained by extensive measurements 

on formed cam shafts_showed that the agreement is generally very good

Michino et al [74] presented a 3D finite element analysis of forming 

elbows from straight tubes by internal pressure and axial loading They used 

commercial implicit code, MARC, for the analysis The process involves little 

bulging but the deformation induces large strains The prediction of the total load, 

distribution of strain and configuration of the elbow by FE simulation agreed well 

with the experimental findings

In available literature no other simulation study of tube bulging could be 

found However, a couple of simulation studies on bulging of a different kind 1 e , 

bulging of an integral polyhedron to a spherical vessel was reported Zhang and 

Wang [75] presented the 3D simulation of a part of 32- petal polyhedron taking 

advantage of the repeated pattern of the polyhedron An implicit finite element 

method was used The FE analysis results are reported to be in good agreement 

with those from experiments Hashemi and Zhang [76] presented a 3D finite 

element analysis of the full polyhedron using commercial code ABAQUS The 

simulation, according to the authors, helped understand the mechanics of the 

process in detail Also the simulation predicted the bulging pressure with 

reasonable accuracy and showed accurate patterns of stress distribution

2.2.3 Relevant Studies

Generally bulge forming is a large deformation and large strain forming 

process From this perspective, deep drawing of sheet metal is similar to bulge
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forming although the loading method and pattern is completely different Also, the 

initial blank is curved in bulge forming as opposed to flat sheet m deep drawing 

Large number of simulation studies in deep drawing available m literature Recent 

studies include asymmetric product analysis in three dimensions Most studies are 

done assuming thin shell behaviour of the sheet which is sharply in contrast with 

bulge forming of tubes However, for the sake of completeness of the survey, some 

recent 3D studies of deep drawing are presented in the following

Honecker and Mattiasson [77] evaluated the commercially available FE 

codes viz implicit ABAQUS and explicit DYNA3D by simulating deep drawing 

of automotive parts The authors concluded that explicit codes are primarily 

suitable for large scale 3D problems which could hardly be performed by implicit 

code Mattiasson et al [78] also simulated and evaluated deep drawing of 

cylindrical cups and rectangular boxes by using DYNA3D code They found that 

the agreement between the numerical and experimental results has been good and 

indicated that explicit dynamic code like DYNA3D offers an efficient and robust 

means to simulate forming of large scale 3D products

Rebelo et al [79] also simulated deep drawing of an oil pan by commercial 

FEA code, ABAQUS They used both implicit and explicit module of ABAQUS 

for comparison They also concluded that for practical large scale problems the 

explicit method offers considerably more potential than the implicit method Yoo 

et al [80] simulated deep drawing of cylindrical, elliptical and hemispherical cup 

and a clover type cup by using their own implicit FE code involving continuous 

contact treatment and membrane elements with bending effects Their 

computation results have been shown to be in good agreement with available 

experimental and analytical results

Teodosiu et al [81] simulated can-making process They treated the sheet 

as thick shell and used solid elements for analysis Using semi-implicit FE code of 

their own, the authors confirmed the good performance of solid elements in very 

accurate analysis of through- thickness stress

The above studies most of which were done using commercially available 

codes indicate that complex three dimensional problems can be simulated by these 

packages with satisfactoiy results Some of the complex bulge forming simulation

16



studies cited in the previous section also showed the capability of the packages in 

obtaining good results

2 3 Optimisation Studies

Analysis of metal forming is a product as well as a process study Thus 

both the product and process variables affect the metal flow Naturally, a certain 

combination of these variables would result in a better performance measure of 

the product than other combinations The process of finding the best combination 

of variables is thus a logical pursuit Experimental studies to obtain better metal 

forming condition by varying variable values are common This study, however, 

concerns with analytical optimisation studies at design stage of metal forming 

analysis This is a relatively new area of study informally termed by some as 

computational design optimisation This involves integration of finite element 

simulation program with mathematical optimisation technique(s) m such a manner 

that a repeated sequence of ‘simulation5, ‘evaluation’ and ‘variation’ are carried 

out until an optimum condition is reached

There are three areas of computational design optimisation One is 

structural design optimisation where in the deformation is withm the elastic limit 

of the material The other area is metal forming where the state of deformation is 

essentially m the plastic region And the third kind is the optimisation of the 

thermo- fluid and other problems in engineering design There are many studies on 

structural design optimisation Arora [82] and Cohn[83] in their review paper on 

design optimisation, have listed a representative collection of such studies

Comparatively, few studies are done on design optimisation of metal forming No
\

such work on bulge forming could be found in the literature However, 

optimisation studies in other metal forming processes are considered to be 

relevant and, therefore, presented in the following

Kusiak and Thompson [84] reported optimisation of extrusion die shape by 

minimising the ram force Becker and Kopp[85] presented an algorithm of 

optimisation and cited successful application to flat rolling and drop forging by 

minimising the power and strain gradient respectively Joun and Hwang [86-88 ]

17



have presented an algorithm using a simulation module of penalty ngid- 

viscoplastic finite element method and optimisation module involving design 

sensitivity and gradient projection method They applied the algorithm to the 

optimal design of an extrusion die profile by minimising the forming energy Han 

et al [89] have presented design of intermediate die shapes for plane strain and 

axisymmetric forging Their approach is based on backward deformation finite 

element simulation and shape optimisation techniques Shu and Hung [90] 

presented optimisation of sprmgback reduction m U-channel formed by double 

bend technique They used ABAQUS code for finite element simulation and 

MOST, an optimisation program The two programs are appropriately interfaced 

for the work The results are compared with experimental data in literature and 

found good agreement

Kusiak[91] described a non-gradient optimisation technique that can be 

coupled with commercial FE programs for metal forming He substantiated his 

algorithm by finding an optimum die shape for axisymmetric closed die forging 

where uniform distribution of the austenite grams in the material of the forged 

piece is chosen as the optimisation criterion

Fourment and Chenot [92] formulated a shape optimisation method for 

non-steady state metal forming process A finite element method with remeshmg 

capability and unconstrained optimisation method were used in the formulation 

Fourment et al [93] applied this formulation to the shape optimisation of the pre­

forming tools for forging

Roy et al [94, 95] formulated and used a genetic algorithm for 

optimisation Using that algorithm and a FE package, NIKE2D they optimised the 

process variables of multi-pass wire drawing, multi-pass cold drawing of a tubular 

profile and cold forging of an automotive outer race

Most of the design optimisation algorithms consider the design variables to 

be continuous m the design space But in practical engineering , the design 

variable values are discrete As such values obtained from a design optimisation 

exercise may have to be approximated to nearby discrete values This might result 

in loss of the optimality Park et al [96] has used Taguchi parameter design
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method to obtain discrete design variables by post processing a structural

optimisation solution In metal forming no such exercise could be found

i

2.4 Summery of the Literature Survey and Possible Scope of Work

From the literature cited and described in the previous section, the

following points may be noted

I Analysis of simple bulge forming mainly focused on the pole region 

ignoring the situation at the periphery But studies suggest that end 

behaviour influence the deformation at the pole

II No expenmental or analytical study was found for bulging of rectangular 

or square sheets to cylindncal bulging with compound loading

in Most fimte element simulations of simple bulge forming ignored the

peripheral boundary conditions As a result poor agreement with 

expenmental results were observed specially at the penphery Some 

studies that included proper boundary condition provided better simulation 

results

iv Many experimental studies were done on both axisymmetric and 

asymmetnc bulging of tubular blanks These studies covered a wide vanety 

of process vanables such as different matenal, tube size, pressure medium 

and also different die configurations

v Also quite a good number of analytical studies were done on axisymmetric 

bulging of tubes Studies were done for both hydraulic or solid pressure 

media The studies enabled prediction of bulging deformation and forming 

loads

vi Comparatively, very few analytical studies were done on asymmetnc 

bulging of tubes Few studies that were done predicted deformation, 

thickness and forming load These analyses were done based on the study 

of the geometry of the deformed configurations Process parameters like 

internal pressure or the matenal characteristics were not considered in 

these analyses
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vn Instability m a tube undergoing bulging by internal pressure and axial 

tensile load (by keeping the ends fixed) was analysed and verified 

experimentally Analytical study of bulging of tubes with internal 

pressure and axial compressive load suggest that if  the compressive axial 

stress could be maintained equal to the tensile hoop stress in the bulge, 

then infinitely large effective strain could be attained in the bulge 

However, no experimental exercise could achieve that stress ratio, let 

alone maintain that The reason for this is not yet known from the 

literature

vm Very few finite element simulation studies were found on bulge forming of

tubular components One or two studies were done on axisymmetric bulge 

forming Asymmetnc bulge forming o f tubular components which are 

more complex and need 3D treatment were not simulated so far Fimte 

element simulation of this type of problems could be immensely helpful 

in understanding the stress and strain patterns in the products as well as in 

the design of dies and determination of failure free operating parameters 

for a variety of blank materials and geometry 

ix New manufactunng processes are developing based on bulge forming

principle These new processes are used for manufacturing parts and 

components for important industrial sectors like automobile These new 

processes may be simulated for better product and process design 

xi Computational design optimisation is a new area of research which

demand extensive computer resources Good number of studies were 

reported in the areas of structural optimisation Comparatively, 

optimisation of metal forming is far less explored Studies that were 

reported dealt optimisation of two dimensional axisymmetric cases like 

extrusion and forging Optimisation of axisymmetric bulge forming cases 

are worth exploring
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2 5 Objectives of this Work

Various scopes of work identified in the previous section mainly defined 

the objectives of this project Generally, the work was on the finite element 

simulation and analysis of different bulge forming processes Different forming 

conditions varying the loading ratio, blank size, blank matenal, friction condition 

etc were simulated Besides, some forming situations were simulated using two 

different solution procedure Pattern of metal flow, nature of deformation, stress 

and strain distribution, changes of thickness, development of stress or strain in any 

particular area of the formed product etc were the general focus of attention 

Specific cases of simulation that were undertaken in this project are

I Simulation of the bulge forming of a circular plates using pressure and in- 

plane compressive load with or without restraining load on the forming 

bulge

II Optimisation of the bulge forming of a circular plate using pressure and in­

plane compressive load

in Simulation of bulging a rectangular plate in the middle

iv Simulation of axisymmetnc bulging of a cylindncal tube using internal 

liquid pressure and axial compressive load

v Optimisation of axisymmetric bulging of a cylindrical tube

vi Simulation of asymmetnc bulging of a cylindncal tube to a T-branch by 

using internal liquid pressure and axial compressive load

vn Simulation of the failure T-branch forming process

vin Simulation of the forming of a box-shaped elbow from a circular tube

Simulation of these cases has been earned out using two commercial FE 

packages viz ANSYS and LS-DYNA3D Some of the simulation results have 

been verified with expenmental results available in the literature to establish the 

acceptability of the simulation results
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2 6 Brief Description of the Project

The work of the project started with a 486 PC with 16MB of memory and 

480MB hard disk space Relatively simpler and computationally less intensive 

modelling and simulation of axisymmetric bulge forming of circular plates was 

taken up with this computer ANSYS package licensed for limited model size was 

used for this work Soon it was realised that this computer would not be suitable 

for modelling and analysis in three dimension Therefore, a pentium PC with 

64MB memory and 2GB hard disk space was bought and the limited version of 

ANSYS was installed for further work Three dimensional analysis of bulging 

rectangular plate and forming of T-branch from tube were earned out with this 

configuration But these analyses could not be earned out with intended full load 

because of the limitation on model size imposed by the analysis package, ANSYS 

Also the computation time for the solution of even a limited model of these 

problems was unusually high, for the simulation of T-branch forming it took 

several weeks At this point of the project the need for a faster solver was felt 

Going through the literature it was found that direct and implicit solvers like 

ANSYS are good for relatively smaller size problems Most large size problems 

are analysed by explicit solvers So, an explicit solver, LS-DYNA3D for PC was 

procured This package was installed in another pentium of 32MB memory and 

1GB hard disk space DYNA3D is a public domain software and LS-DYNA3D is 

a commercial version of it Although it is widely used FEA package, the PC 

version of it is relatively new The pre-processor coming with this version is not 

very well developed to build complex finite element models It is also very poor in 

post-processing, very basic features are available at the moment Nevertheless, 

modelling and simulation of the failure of T-branch forming and bulge forming of 

an elbow were done with this package These simulations were done using shell 

elements as applying pressure load to brick elements was a difficulty mainly 

because of its poor pre-processing capability These simulations provided good 

learning opportunity to this package which later proved to be very useful

In the mean time ANSYS was in the process of incorporating LS- 

DYNA3D solver in its package as an add-on Towards the end of the project this
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add-on facility was procured and installed in the 64MB memory pentium used 

earlier for ANSYS This could be used with the existing ANSYS pre and post 

processor This coupled with the experience obtained earlier on LS-DYNA3D 

solver enabled simulation of the aimed complex cases fairly quickly The 

simulations of axisymmetric bulging of tubes and T-branch forming at different 

forming conditions were carried out in this newly installed configuration The hard 

disk space (2GB) of the computer run out of space very quickly Another 5GB of 

space was added to the computer

Looking back to the project some points may be jotted down 

i when the project started in 1993 the pentium PCs were not available 

in the market,

11 also, the explicit solvers were not available at the PC level,

in there was limitation on financial resource to procure workstations

and the softwares

iv the computing capacity at PC level was growing very fast,

v computation intensive engineering analysis packages were adapting

to the growing computing power at the PC level

Given this constraints and opportunities it was probably better to develop as the 

need arises specially for computational engineering research projects like this It is 

reckoned that the project was done with much less cost than investing on higher 

end computers at the beginning
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Chapter Three 

FINITE ELEMENT METHOD - THEORETICAL 

BACKGROUNDS

3 1 Finite Element Method

Finite element method is quite an involved subject both m terms of 

mathematical theory and in terms of application in engineering analysis This section 

does not delve into the details of finite element method Instead, a basic theoretical 

outline of the method will be presented drawing mostly from references[97, 98]

The basic steps in the finite element method are

1 Discretise the region of interest . Divide the problem domain into a number of 

finite subdomains each of simple geometry Each subdomain called element has 

a number of nodal points, the locations m space of which are given m co­

ordinates relative to a set of global axes The shape of each element is defined in 

terms of these co-ordinates by interpolation or shape functions

2 Assume a vanation of the unknown An interpolation function is proposed for 

the variation of the unknown (eg  displacement, temperature) inside each 

element in terms of values at the nodes These interpolation functions in many 

cases are the same as the shape functions used to describe the element shape

3 Find element response matrices For each element, coefficient matrices which 

describe the response characteristics of the element are determined In solid 

mechanics applications, for example, a matrix of stiffness coefficients is 

computed In order to determine the stiffness matrix the matenal behaviour has 

to be defined

4 Assemble the element matnces . To find the stiffness matrix of the whole 

problem domain, the stiffness matnces of the individual elements are combined 

This forms a matrix equation expressing the behaviour of the entire solution 

region
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5 Solve the system of equations : In most problems the number of equations is 

large, thus special solution techniques are employed After solution the values of 

the dependant variables at all the nodes of the domain are known

6 Determine other variables Using the nodal values and interpolation functions, 

other parameters such as strain, stress etc inside each element may be 

determined

3.1 1 General Theory

The governing differential equations of equilibrium for finite element method 

can be derived directly by equilibrium considerations on differential elements of the 

body or by using the stationary condition of the total potential of the body An 

equivalent approach to express the equilibrium of the body is to use the principle of 

virtual displacements This principle state that the equilibrium of the body requires 

that for any compatible, small virtual displacements which satisfy the essential 

boundary conditions imposed onto the body, the total internal virtual work is equal to 

the total external virtual work That is, for a general three-dimensional body with 

body forces f8, surface traction fs and concentrated forces F1 resulting in virtual 

displacements U, virtual strain e and stress t,

J i s } ̂r {T w  = J { 0 } T { /  V  + J {U s yr {f } d s  + % { U } TF' (1)
v v s

where,

{̂ } -  [ £ x V £  Y Y  6  Z Z  Y  X Y  7  Y Z  7  Z X  ]

{ U } T = [ U V W ]  U , V and W are displacement in global

directions

superscript S indicates surface

{ F  '} = [ F xl F  y F  1 ] superscript 1 indicates points
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The internal virtual work is given on the left side of (1) and is equal to actual stresses 

{t} going through the virtual strains {e} The external work is given on the right side 

of (1) and is equal to the actual forces {f6}, {f8} and {F1} going through the virtual

displacement {U } In the above, the displacements considered should be continuous 

and compatible and should satisfy the displacement boundary conditions, and the 

stress should be evaluated from the strains using the appropriate constitutive relations 

Although Equation 1 is written in the global co-ordinate system X, Y, Z of the body, it 

is equally valid in any other system of co-ordinates

In finite element analysis the problem domain is approximated as an 

assemblage of discrete finite elements with the elements being interconnected at 

nodal points on the element boundaries The displacements measured in a local co­

ordinate system x, y, z within each element are assumed to be a function of the 

displacements at the N finite element nodal points Therefore, for element m

u i m) ( x , y , z )  = H {m) { x , y , z )  U (2)

where H(m) is the displacement interpolation matrix or shape function, the superscript
A

m denotes element m and U is a vector of three global displacement components Ul5 

V, and W,  at all nodal points, including those at the supports of the element
A

assemblage, 1 e , U is a vector of dimension 3N, and is expressed more generally as,

u T = [ U XU 2U  3 u N ] (3)

where it is understood that Ul may correspond to a displacement in any direction, 

which may not even be aligned with a global co-ordinate axis, and \Jl may also 

signify a rotation when beams, plates or shells are considered
A

Although all nodal points displacements are listed in U , it should be realised 

that for a given element only the displacements at the nodes of the element affect the 

displacement and strain distributions within the element With the assumption on the 

displacements in (2 ) corresponding element strains can now be evaluated as,

£ <m } ( x , y  , z )  = B l m) ( x , y , z ) U  (4)
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where, B(m) is the strain-displacement matrix, the rows of B(m) are obtained by 

appropriately differentiating and combining rows of the matrix H(m) By using (2) and

(4), the assemblage process of the element matrices to the whole structure matnces, 

refereed to as the direct stiffness method is automatically performed in the finite 

element application of the principle of virtual displacements

The stress within a finite element are related to the element strains and the 

element initial stresses by

T {m) = C {m) £ {m) + T 1{m)  (5)

where C(m) is the matrix relating strain to stress of element m and x r(m) are element 

initial stresses The matenal law specified in C(m) for each element can be that of an 

isotropic or anisotropic material and can vary from element to element

Using the assumption on the displacements within each finite element, as 

expressed in (2 ), equilibrium equations that correspond to the nodal point 

displacements of the assemblage of finite elements can now be derived Equation 1 

can be rewritten as a sum of integrations over the volume and areas of all finite 

elements, 1 e ,

where m = 1, 2 , k , k = number of elements

It is important to note that the integrations in (6 ) are performed over the element 

volumes and surfaces, and that for convenience different element co-ordinate systems 

may be used in the calculations Substituting (2)-(5) into (6 ) for the element 

displacements, strains and stresses,

/
(6)
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where the surface displacement interpolation matnces Hs(m) are obtained from the 

volume displacement interpolation matrices H(m) in (2) by substituting the element 

surface co-ordinates and F is a vector of the externally applied forces to the nodes of 

the element assemblage It may be noted that 1* component in F is the concentrated
A

nodal force, which corresponds to displacement component in U In (7) the nodal
A

point displacement vector U of the element assemblage is independent of the 

element considered and is therefore taken out of the summation signs

To obtain from (7) the equations for the unknown nodal point displacements, 

virtual displacement theorem can be used by imposing unit virtual displacements in
A

turn at all displacement components In this way U T = I (identity matrix) , and
A

denoting nodal point displacements by U, i e , letting U = U, the equilibrium 

equation of the element assemblage corresponding to the nodal point displacements 

are

K  U  = R (8)

where R = R b+ R s - R i + Rc

The matrix K is the stiffness matrix of the element assemblage,

K = y  [ B ( m ) r C ( m ) B { m) d V  (mJ (9)
"  J  V  ( m )  V Jtn

The load vector R includes the effect of the element body forces ,

R B = Z l v(m H (m)T f  B( m) d  V {m) ( 10)
m ( m )

the effect of the element surface forces

= Z  H S i "' )T f  S i m) d S  (m) ( 11)

the effect of element initial stresses,

R i = Z  ,T t  , ( m ) cl v  m ( 12)
m   ̂ ^

and the concentrated loads, Rc = F

It may be noted that the summation of the element volume integrals m (9) expresses 

the direct addition of the element stiffness matrices K(m) to obtain the stiffness matnx 

of the total element assemblage In the same way, assemblage body force vector RB is
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calculated by directly adding the element body force vectors, RB(m) Rs, Ri and Rc 

are obtained in similar manner

Equation (8) is a statement of the static equilibrium of the element 

assemblage In these equilibrium considerations, the applied forces may vary with 

time, in which case the displacements also vary with time and (8) is thus a statement 

of equilibrium for any specific point in time However, if in actuality the loads are 

applied rapidly, inertia forces need to be considered , l e ,  a truly dynamic problem 

need to be solved Using d Alembert s principle, the element inertia forces may 

simply be included as part of the body forces Assuming that the element 

accelerations are approximated in the same way as the element displacement (2 ), the 

contribution from the total body forces to the load vector R is

r b  = T  f HB  "  J V ( m )
i i  ( m ) r

V  ( m )
y  5(m) _ p (w>H fm> U d V (m) (13)

where f B(m) no longer includes inertial forces, U lists the nodal point accelerations, 

and p (m) is the mass density of the element m The equilibrium equations are, in this 

case,

M  U + K U = R (14)

where R and U are time dependent The matrix M is the mass matrix of the structure,

M  = Z  L  p (m)H im)T H (m)d V (m) (15)
m V  ^

In actually measured dynamic response of structures it is observed that energy is 

dissipated during vibration, which, in vibration analysis is usually taken account of 

by introducing velocity- dependent damping forces Introducing the damping forces as 

additional contributions to the body forces as additional contributions to the body 

forces are,

R = V  f HB ^  JV(m) 11
V { m )

y  B(m) _ p ( m) j-j (m) U — £*(m)^y(m) jj d V im) (16)

where U is a vector of the nodal point velocities and K (m) is the damping property 

parameter of element m The equilibrium equations then take the shape of,

M U  + C U + K U  = R (17)
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where C is the damping matrix of the structure and

C = y  f k  (m)H  (M)r H im)d V  (M) (18)"  JV (tn) 
m

In the above formulation it is assumed that the displacement of the finite element 

assemblage are mfinitesimally small and that the matenal is linearly elastic Also it is 

assumed that the nature of the boundary conditions remains unchanged during the 

application of the loads on the finite element assemblage

The above assumptions have entered the equilibrium equation in the following

forms

1 the fact that the displacement must be small has entered into the evaluation of 

the matrix K and load vector R, because all integrations have been performed 

over the original volume of the finite elements,

2 the strain - displacement matrix B of each element was assumed to be constant 

and independent of element displacements,

3 / the assumption of a linear elastic material is implied in the use of a constant 

stress-stram matnx C

4 the unchanged boundary conditions is implied by keeping constant constraint 

relations for the complete response

The above observations point to different kind of non-linearity that may anse 

in finite element analysis They are categorised as 

i Matenal non-hneanty

n Non-hneanty due to large displacements, large rotations, but small

strains

in Non-lmeanty due to large displacements, large rotations and large

strains

iv Non-lmeanty due to contact

3.1.2 Solution Methodology

The solution procedure for non-linear problems depends on the type of non- 

lmeanty and is part of the complete modelling process The basic problem in a
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general non-linear analysis is to find the state of equilibrium of a body corresponding 

to applied loads Assuming that the externally applied loads are described as a 

function of time, the equilibrium conditions of a system of finite element representing 

the loading under consideration can be expressed as

' R -  ' F = 0 (19)

where 'R lists the externally applied nodal point forces in the configuration at time t 

and the vector {F  lists the nodal point forces correspond to the element stresses at the 

same configuration *R and *F may respectively be expressed as,

‘ R = ' R  B + ‘ R s + ' R  c (2 0 )

and

' F  = Y  f ‘ B {m)T ' r  (w) ' d V (m) (21)“  J tv ( m )
m

where in a general large deformation analysis the stress as well as the volume of the 

body at time t are unknown

Equation (19) must express the equilibrium of the system in the current deformed 

geometry taking due account of all non-linearity Also in a dynamic analysis, the 

vector *R would include the inertial and damping forces

Considering the solution of the non-linear response, it is recognised that (19) 

must be satisfied throughout the complete history of load application Three basic 

choices need to be made for the solution of the large deformation problems They are,

i the type of the mesh

11 the kinematics description, i e , how the deformation is measured

in the kinetic description, i e , how the stresses are measured

Once these choices are made the solution process is effectively carried out using a 

step by step incremental analysis The basic approach in an incremental step by step 

solution is to assume that the solution for the discrete time t is known, and that the 

solution for the discrete time t+At is required, where At is a suitably chosen time 

increment Hence, at time t+At (19) can be rewritten as

/ + A /  R  _  /  + A , p  =  q  ^
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Since the solution is known at time t, it can be written that

' + A ' F  = ' F  + F (23)

where, F is the increment in nodal point forces corresponding to the increment of 

element displacements and stresses from time to time t to time ( t+ At )  This vector 

can be approximated using a tangent stiffness matrix, ' K,  which corresponds to the 

geometric and material condition at time t,

F  = ' K U (24)

where U is the vector of incremental nodal point displacements Substituting (24) and 

(23) in (22),

' K U = t+ A ‘R -  ‘F  (25)

and solving for U, an approximation to the displacements at time t+At can be

calculated,

' + A t U = ' U  + U (26)

The exact displacement at time t+At are those that corresponds to the applied loads 

i+AtR Only an approximate displacement is calculated by (25)

Having evaluated an approximation to the displacements corresponding to 

time t+At, an approximation for stresses and corresponding nodal point forces at time 

t+At can be obtained, and could then be proceeded to the next time increment 

calculations However, because of the approximation expressed in (25) such a

solution may be subject to very significant errors and, depending on the time or load

step sizes used, may indeed be unstable In practice, it is therefore frequently 

necessary to iterate until the solution of (2 2 ) is obtained to sufficient accuracy

Depending on the type of problem, different solution procedure is adopted for 

the solution of (25) For static non-lmear problems Newton-Raphson iterative 

procedure along with Gauss elimination method or other suitable method for the 

solution of the system of equations are employed For non-lmear dynamic problems 

also the same incremental formulation of finite elements and the same iterative 

solution procedure are used along with either explicit or implicit time integration 

method In this work the explicit time integration method was used for simulation of 

large problems Therefore, this method is briefly outlined bellow
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The most common explicit time integration operator used in non-lmear 

dynamic analysis is probably the central difference operator The equilibrium of the 

finite element system is considered at time t in order to calculate the displacements at 

time t+At Solution is sought for each discrete time step for the equilibrium equation

neglecting the effect of damping which may be expressed as,
/

M  U = *R -  l F  (27)

where the nodal point force vector *F is evaluated on the basis of the ways how the 

material and the geometric non-linearities are formulated This involves the choice of 

element type, kinematics and kinetic descriptions which are problem dependent The 

solution for the nodal point displacements at time t+At is obtained using the central 

difference approximation for the accelerations In this approximation it is assumed 

that

U = -  2 ' U  + l+*' U } (28)

Substituting (28) in (27),

- 2 ‘U )  (29)

Thus, if /_A/U and ' U are known t+AtU can be calculated from (29) The 

shortcoming in the use of the central difference method lies in the severe time step 

restriction for stability, the time step size At must be smaller than a critical time step, 

Atcr, which is equal to Tn/n, where Tn is the smallest period in the finite element 

system

In the present work two commercial finite element analysis packages, viz 

ANSYS and LS-DYNA3D were used ANSYS was used for the simulation of 

relatively simple static non-linear problems While LS-DYNA3D was used for 

complex three dimensional problems In the next two sections theoretical aspects of 

these packages with respect to element formulations and solution procedures and 

techniques will be presented

/
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3.2 ANSYS Theoretical Methods

ANSYS is a general purpose finite element analysis package It can simulate 

problems in area of structural mechanics, electromagnetic, heat transfer, fluid 

dynamics, acoustics and coupled problems In structural analysis it has the capability 

to analyse static or dynamic linear and non-lmear problems In addition, ANSYS has 

a design optimisation module based on non-lmear optimisation theories which m 

conjunction with finite element procedure can be utilised for the optimisation of 

structural linear or non-lmear problems The simulations carried out in this work are 

non-linear in nature Therefore, the theoretical procedures presented henceforth 

relates to non-lmear problems only The theoretical methods described in the 

following sub-sections are taken from the manuals of ANSYS [99]

3.2.1 Solution Procedures

In ANSYS Newton-Raphson procedure is used for iterative solution of the 

equilibrium equations presented in 3 1 Wavefront solvers or conjugate gradient 

solvers are used for the solution of the system of equation at each iteration

In Newton-Raphson procedure an iterative solution is sought for the equation 

(22) by defining an out-of-balance load vector AR^ i) as 

AH* d = {Fa} - {F H  (30)

where {Fa} is the vector of applied loads and {F™} is the vector of restoring loads 

corresponding to the element internal loads By the virtual displacement principle 

AR(! i) is related as

[K,T] {Au,} = ARfc.,) = {Fa} - {F” } (31)

and

{u1+1} = {uj + {AuJ (32)

Both [K,t ] and {F,nr} are evaluated based on the values given by {u,} The subscripts 

in the above equations refer to iteration numbers The final converged solution would 

be m equilibrium , such that the restoring load vector {F™} would equal to the 

applied load vector {Fd} or at least to within some tolerance If the analysis involves 

path dependent non-linearity such as plasticity, then the solution process requires that
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some intermediate steps be m equilibrium in order to correctly follow the load path 

This is accomplished effectively by specifying a step by step incremental analysis, 

l e ,  the final load vector {Fa} is reached by applying the load in increments and 

performing the Newton-Raphson iterations at each step

The incremental time is automatically determined by number of factors such 

as number of equilibrium iteration needed, time point at which element will have 

change of status allowable plastic strain increment etc Depending on the problem, 

different analysis tools such as adaptive descent and line search method is used to 

overcome convergence difficulties Convergence’s is assumed when vector norm

sR is  tolerance (default = 0 001) and Rref is reference values which is [[{Fa}]] by 

default The vector norm used in the analysis is the square root of the sum of the 

squares value of the terms expressed as,

3.2 2 Large Strain Theory

Large strain theory of ANSYS is used for elastic-plastic elements Let a body 

has a position vector {X} and {x} at its undeformed state and deformed state 

respectively Then the displacement vector {u} would be

The deformation gradient [F] includes the volume change, the rotation and the shape 

change of the deforming body [F] can be separated into a rotation and the shape 

change matrix using the right polar decomposition theorem

I M  } | |  < s  R R re (33)

(34)

(35)

{ u } = { X } -  { X  } (36)

(37)

where the symbol [] stand for matrix and [I] is the identity matrix
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[ F ] = [ / ? ] [ « /  ] (38)
where [R] = rotation matrix

[U] = right stretch (shape change) matrix

Once [U] is known, then the logarithmic strain measure can be obtained as 

[ F  ] = I n  [ U  ] (39)

Computationally, the evaluation of (39) is performed by one of the two methods using 

incremental approximation

Is ] = J d[e] »] (4°)
with

[ A * „ ] = I n  [ A  U „ ] (41)

where n refers to current time step and [AUn ] is the incremental stretch matrix 

computed from the incremental deformation gradient,

[A  F n ] = [A  R n ] [ A U  n ] (42)

where [AFn] is

[ A ^ „ ] =  [ 1 (43)

where [Fn] is the deformation gradient at the current time step and [Fn i] is at the

previous time step

Method 1 for evaluating (41) is

[ A * „ ] = X  l n ( A , ) { e , } { e , } r (44)
/ = 1

where, and {eL } are the eigen value and eigen vector for the pnncipal stretch 

increment of the incremental stretch matrix [AUn] This method is used for large 

strain solid elements For standard solid and shell elements an approximate method is 

used by evaluating the deformation gradient at the midpoint configuration

[ A £ „ ] = [ # 1/ 2] A £ n ] /? ! / 2 ] (45)

and

[A  £*„]  = [ 5 1 / 2] { A  w »} (46)

where, [Aun] is the displacement increment over the time step and [B1/2] is the strain 

displacement matrix evaluated at the midpoint geometry
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The computed strain increment {Asn} is then added to the previous strain 

{Ac^} to obtain the current total logarithmic strain

[A  e „]  = { s  + {A S „} - (47)

The strain is then used in the stress updating procedure in stress-strain relationship 

matrix

The element matrices and load vectors are derived using an updated

Lagrangian formulation The equilibrium equation of this form is

[ K , ] A u ,  = { F ^ }  -  { F ; r ) (48)

where {Fapp} is the is the applied force vector and {Fnr} is the force obtained from 

Newton-Raphson current trial solution 

The tangent matrix [kj has the form

[ * , 1  = J { B , Y [ D , \ [ B , \ d V  (49)

integrated over the element volume [BJ is the strain displacement matrix in terms of 

current geometry and [Di] is the current stress-strain matrix 

The Newton -Raphson restoring force,

F , nr = \ [ B , ] { a , } d V  (50)

where, {<r,} is the current Cauchi stress

There are different material models in ANSYS In the present work only 

isotropic hardening model was used This model uses the von-Mises yield criteria and 

associated flow rule The equivalent stress is given as

e = [ j - { S  } r } ] 1/2 (51)

where {S} is the derivative stress When a e is the equal to the current stress a k then 

the material is assumed to yield The yield criterion is,

F  = [ f  {S }  r { S } ] 1' 2 -  cr k = 0 (52)

For work hardening, a k is a function of the amount of plastic work done For 

isotropic hardening, a k is the equivalent stress corresponding to the equivalent plastic 

strain in uniaxial stress-strain curve
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3 2 3 Element Formulation

From the ANSYS element library two types of elements were used in the 

present analysis works These are two dimensional and three dimensional large strain 

viscoplastic elements In these elements the Newton-Raphson restoring force 

(equation 50) is modified by assuming a decomposition of the Cauchi stress into the 

deviatonc part plus the pressure part The pressure is separately interpolated to 

conveniently allow for enforcement of the mcompressibility constraint associated 

with large plastic strains The total Cauchi stress is calculated by finding the 

deviatonc part from the constitutive equations using the strains calculated from nodal 

displacements and subtracting the separately interpolated pressure

2-D elements have two integration points in each direction with standard 

shape functions for linear interpolation Similarly 3-D elements also have linear
j

shape functions and two integration points m each direction Gauss quadrature rule 

for numerical integration procedure is used to evaluate matrix integration required in 

finite element calculations

3 2.4. Contact Algorithm

For the ANSYS analyses m the present work, 2D point to surface and 3D point 

to surface contact elements were used These are imaginary spring line elements 

Kinematics of both of these elements are similar and based on pinball algorithm 

Therefore, the kinematics of 2D point to surface contact elements are presented 

Figure 3 1 shows several positions of a contact node with respect to a circle centred 

on the target surface (nodes I and J) The circle is referred to as “a pinball” When a 

contact node (k) is outside the pinball an ‘‘open” contact condition is assumed, 

irrespective of whether or not the contact node is above or below the target Contact 

or penetration can only occur if the contact node is inside the pinball The radius of 

the pmball is internally fixed to be 50% greater than the distance between the target 

nodes
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K(open)

Figure 3 1 Principle of Pinball Algorithm

The contact node k may be near to several target elements From Figure 3 2 it 

can be seen that node k may belong to either element If a clear distinction is not 

made, it is possible that contact overlaps or voids may appear To remove this 

potential difficulty, solid “pseudoelements” are formed that surround each target The 

elements are temporarily formed for each equilibrium iteration and provide a 

continuous mapping for each contact node that is in or nearly in contact with target 

As can be

Figure 3 2 Potential voids or overlaps at contact intersection
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Figure 3-3 Pseudo element of a target surface

seen from Figure 3 3 , the pseudo element mapping indicates that node k is uniquely 

assigned to the target element I -J'

<3

Figure 3 4 Location of contact node in local contact co-ordinates 

Figure 3 4 shows an element co-ordinate system The gap, g and projection 

point S* , defined in local s-n co-ordinates are

g = ( { X  k ) -  { X  , } T { n}  (53)

S ’ = -  1 + 2 [ { { X k } -  { X , } T {s}] / L (54)

where {Xk} = position vector of node k 

{Xi} = position vector of node I 

{n}= unit normal vector to target element I-J 

{S}~ unit tangent vector to target element I-J 

L= length of the target element I-J

Contact penetration is assumed to occur if the value of g is negative and an open 

condition is assumed when g is positive
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A penalty or a combined penalty plus Lagrange multiplier method is used for 

contact force calculation Penalty method is used for the analysis in this work for 

which the contact force fn is given as

/ „ = { * „  ' f g -  0 (55)

0 if g>0

where kn is the stiffness of the contact element kn is chosen by the user on the basis 

of matenal properties of the contacting surfaces and requires several trials to get good 

contact condition

Tangential forces are due to friction that anses as the contact node meets and 

moves along the target The algonthm allows three friction models fnctionless, 

elastic Coulomb friction and rigid Coulomb fnction Elastic Coulomb fnction 

condition is assumed in all analyses by ANSYS The tangential force for this friction 

condition is given as

f  s = k t u e s < F f  s if sticking (56)

= f s  if sliding

where kt= sticking stiffness,, ues = elastic tangential deformation, F = static/dynamic

friction factor and f s = sticking force limit = - j i  fn , \x = coefficient of sliding 

friction

3.2 5 Design Optimisation

The design optimisation module is an integral part of the ANSYS analysis 

program The optimisation process is a nesting process where in the analysis switches 

between finite element analysis and optimisation algorithm Figure 3 5 shows the 

process in schematic format
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i

Figure 3 5 Optimisation analysis process flow

A typical optimisation problem deals with three types of variables design 

variables, state variables and an objective function These vanables are represented by 

scalar parameters in ANSYS parametric design language Design vanables are the 

independent variable of the problem The vector of the design vanables is indicated 

by

X = [ Xj X2 X3 Xn ] (57)

where n is the number of design vanables

Each design vanable is subject to a constraint bound by its upper and lower limit, that

is,

lower limit, X  l< X l < upper limit, X,  (58)

The problems then can be defined as, 

minimise, f  = f  ( X ) 

subject to,
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g , ( X  ) < g , ( 1= U2,3, m , ) (59)

h , ( X  ) > h
-  1 ( 1 = 1,2,3, m2) (60)

w

1 *VI

r---\

**VI ( 1= 1,2,3, m3 ) (61)

and

X ^ X ^ X ,  ( i = l , 2 ,3 , n) (62)

where f  is the objective function

g„ h„ and wt = state variables containing the design, with underbar and overbar 

representing the lower and upper bounds respectively 

mi, m2, m3 = number of state vanables of different nature of limit

As illustrated in Figure 3 5, certain mimmum number of design sets are to be 

generated either by the designer or randomly by the computer to figure out the 

approximate functions of the objective variable and state variables by fitting curve to 

the data from the generated design sets Approximation of objective function and 

state variable functions are done by method of least square regression method using 

normalised design variable values Linear or quadratic or quadratic plus cross terms 

options are available for describe the approximated curves The quality of data fitting 

is assessed by weighted multiple regression coefficient

The minimisation problem stated earlier is now defined by the approximate 

functions The approximate problem may be expressed as, 

minimise, f c = f  6 ( X ) 

subject to,

8 • ( x  ) ^  g , + a  , ( i = 1,2,3,  m ! ) (63)

h , ( X  ) > h -  p  , ( 1= 1,2,3,  m2) (64)
- /

w ~ y t <. w ( X ) £ w f + y , 0  2, 3, m3 ) (65)

and

X  t<>Xt < X,  ( 1 -  1,2,3,  n )  (6 6 )
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This constrained problem is then transformed to an unconstrained problem by 

adding penalty functions to the objective function leading to the following statement, 

minimise,

in which P is the penalty function used to enforce design variable constraints, and G, 

H, W are penalty functions for state variable constraints The reference objective 

function value, f0 , is introduced in order to achieve consistent units Sequential 

unconstrained minimisation technique (SUMT) algorithm is employed to reach the 

minimum of the above approximate objective function The subscript k in the 

equation refers to the use of sub-iterations performed during the solution whereby the 

response surface parameter p  ̂ is increased in value (pi < P2 < p3 e tc ) in order to 

achieve accurate converged results The design vector that provide the minimum 

response function is then input for next finite element analysis The process continues 

until a convergence is reached or any termination condition is attained Convergence 

is assumed when either the present design set, XJ, or the previous design set, XJ_1, or 

the best design set, Xb, is feasible, and one of the following conditions is satisfied

where t and p, are objective function and design variable tolerances If neither of the 

above are realised, then termination can occur if either the number of iterations has 

reached the pre-set maximum or the number of infeasible designs has reached the pre­

set maximum number of sequential infeasible designs

In the optimisation process, the design vanables are considered to be 

continuous But in practice the design vanables have discrete values Thus optimum 

design values obtained by non-lmear optimisation technique are difficult to put in 

practice Although other optimisation techniques exist that give solutions with 

discrete values, they are not well suited for structural design optimisation[96]

n
F ( X , p k) = /  + f oPt £  W )  + Z G ( g , ) + £ //( /* , ) + I ^ ( " . )  (67)

(68)

(69)

X , J -  X / - 1 < p ,  ( i = l , 2,3, n) (70)

X  , J -  X  /  < p ,  (1 = 1 ,2 ,3 , n) (71)
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However, non-linear optimisation technique provides a good solution around which 

practical design can be sought Taguchi parameter design method is one such method 

to seek optimal solution with discrete design variable values This method was 

utilised for optimisation of certain simulation works of this project by post-processmg 

the ANSYS optimisation results This is not a part of ANSYS package

The method identifies the optimum level of design variables that give minimal 

variation of the objective figure of merit Each design variable is given different 

desirable values around the optimum solution obtained by non-lmear optimisation 

Each value is a level for that design variable A number of design factor-level 

combinations based on orthogonal design of experiment theory is adopted for trial 

runs The objective figure of merit values for the trial runs are analysed for optimum 

factor level combination A brief description of Taguchi method is presented in the 

Appendix

3 3 LS-DYNA3D Theoretical Methods

LS-DYNA3D is basically a vectorized, explicit three dimensional finite 

element code for analysing large deformation dynamic response of inelastic solids 

Metal forming is a quasi-state process Therefore, dynamic analysis process can be 

used for the simulation of metal forming process if the kinetic energy during the 

process does not become high compared to the internal energy This section presents 

the relevant theoretical methods for LS-DYNA3D analysis which are extracted from 

reference [100]

The equilibrium equation governing a dynamic problem and the solution 

process by central difference method was given in (27), (28) and (29) As mentioned, 

the time step size At is very important and must be smaller than a critical time step, 

Ate,, for stability This smallest time step ensures that the minimum time required for a 

shock wave to cross the smallest element is within this time In LS-DYNA3D, At is 

calculated from

A l = J —  (72)
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where 1 is the characteristics length of the smallest element and C is the some wave 

propagation velocity through the element material For reasons of stability a scale 

factor of 0 9 is used to decrease the time step in (72) The time step used in the 

program, therefore, is

4 1  = 0 9 —  (73)
C

For different elements 1 and C values are calculated differently For solid elements 1 is 

the smallest distance between two neighbouring nodes of the smallest element in the 

model For shell elements the value of 1 depends on the shape of the smallest element 

for regular rectangular elements, the value of 1 is the length of the shortest side of the 

element For irregular shaped elements the value of 1 is determined by dividing the 

area of the element either by its longest side or by its longest diagonal The sound 

wave propagation speed is determined as bellow

For solid elements, C =  |------— ——---  (74)
V (l+v)(l - 2 v ) p

For shell elements, C -  -------  —  (75)
V 0 “  v )P

3.3.1 Element Formulation

In simulation within this work two types of elements are used from LS- 

DYNA3D element library They are 8-node hexahedron solid elements and 

Belytschko-Lm-Tsay shell elements Volume integration of the elements is done using 

Gaussian quadrature principle Both reduced (one point ) and full integration 

procedure was used for the solid elements Shell elements are formulated for reduced 

integration procedure

The biggest disadvantage to one-point integration is the need to control the 

zero energy modes, called hourglassing modes that arise due to the reduced 

integration Undesirable hourglass modes tend to have periods that are typically much 

shorter than the periods of the structural response, and they are often observed to be 

oscillatory The zero energy or hourglass deformation mode m a two dimensional 

element is shown in Figure 3 5 The figure also illustrates a propagated hourglass 

mode The origin and the consequent computational implication of this mode is
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described in simple form by Hallquist and Benson [99] Adding illustration to their 

description the “hourglass” or “zero energy” mode of deformation would be if the 

nodes 1 and 3 of the element m Figure 3 5 are given a velocity o f +1 and the nodes 2 

and 4 are given a velocity of -1 in either Xj or X2 direction, then the velocity gradient 

of the element would be zero If the velocity gradient is zero, the element does not 

develop any stresses to oppose the velocities and the element may continue to deform 

in this mode without resistance These velocity distributions are referred to as 

“hourglass” or “zero energy modes”

X,

Xi
mode propagated in 
number of elements

Figure 3 5 “Hourglass” or “zero energy” deformation mode

One way of resisting the undesirable hourglassing is with a viscous damping 

or small elastic stiffness capable of stopping the formation of the anomalous modes 

but having a negligible effect on the stable global nodes The hourglass resisting 

force for a particular node in a particular co-ordinate direction is linked to the nodal 

velocity in that direction The resisting force in solid elements is defined as

f  i a   ̂ h  ̂i a  ^  a

where,

(76)

(77)

h , a = Z a k (78)

in which a  = number of hourglass mode Fak = hourglass shape vectors 

Xjk = velocity of node k in l-direction
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ve = element volume , c = material sound speed and Qhg is a constant usually set 

between 0 05 to 0 15

The hourglassing m shell elements is suppressed by adding hourglass viscosity stress 

to the physical stress at the local element level

3.3 3 Material Model

All models that were simulated used bilinear isotropic hardening plasticity 

with no strain rate dependence The yield stress a y is defined as [100]

<ry = (<r0 + E pe f )  (79)

where a G = initial yield stress

Ep = plastic hardening modulus = (E ^ y ^ -E ian )

seffp = effective plastic strain

Etan = tangent modulus

E = Young s modulus

3.3 3 Contact Algorithm

All models simulated using LS-DYNA3D employed surface to surface contact 

option The algorithm is based on penalty method as in ANSYS However, this 

algorithm uses different approach for contact searching as well as contact stiffness or 

interface stiffness The interface stiffness is chosen to be approximately the same 

order of magnitude as the stiffness of the interface element normal to the interface

Contact searching m LS-DYNA3D is done in two steps global and local 

search In global search the contact domain is subdivided into buckets, then the search 

is limited to the bucket where the contacting node is located The segment based 

search uses a total of minimum (NSN,5000) buckets with NSN being the number of 

nodes in the contact surfaces The search loop runs over the segments and for each 

segment over the buckets containing the segment Buck searchers are performed 

every five to fifteen cycles After the global search has located possible contact 

candidates, the local search checks for interpenetrating A node-to-segment algorithm 

is used to find the interpenetration
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When a slave node penetrates a master surface, a restoring force, f, 

proportional to the penetration depth, 1, acts to restore the node to the contact surface 

in the normal direction, n The restoring force may be expressed as,

f  = - k 1 n (80)

where k is the master surface stiffness which is independently calculated for each 

contact surface segment from the bulk modulus, K, and the volume and surface area 

of the element, V and A, respectively The stiffness is expressed as

k = s KA2/V (81)

where s is a scale factor the default value is 0 1, but it may be reset to higher values to 

increase the stiffness Higher values of stiffness might cause instability due to large 

point load from the contact elements

When the penetrator stays in contact with the target, it may either stick to the 

surface or slip along the surface In LS-DYNA3D fnction is provided for stick-slip 

situations by an algonthm tailored after the radial return method in plasticity The 

relative slip between the master and slave surfaces is calculated by keeping track of 

the isoparametric co-ordinates and master segment number for every slave node that 

is in contact with the master surface Any distance moved by the slave node is treated 

as a measure of strain and the radial return algonthm is used to return the tangential 

force to the yield surface The elastic modulus is the same as the master surface 

stiffness used for the normal force calculation in penalty method m equation (80)

LS-DYNA3D implements the penalty method in a symmetnc manner When 

the mesh grading vanes along the contact surfaces, or the surfaces are subject to large 

distortions, the best choice of master surface may vary along the contact surfaces The 

symmetry greatly increases the robustness of the contact algorithm by allowing each 

surface to act as both the master and slave surfaces
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Chapter 4 

SIMULATION AND ANALYSIS

One of the important steps in finite element simulation of deformation is the 

idealisation and modelling of the deforming body A good idealisation and modelling 

of the deforming body is paramount to obtain good solution Although the simulation 

cases undertaken in this work are genencally bulge forming with pressure and 

compressive end load, each case is different in terms of die geometry, blank 

geometry, contact, loading and discretisation Therefore, modelling for each 

simulation case is presented separately However, all cases are modelled using either 

ANSYS or LS-DYNA3D pre-processors In the case of complex geometrical models, 

AutoCAD, a computer aided design package was used with appropriate data exchange 

mechanism

4 1 Bulge forming from Circular Sheets

As outlined in chapter two a number of finite element simulations of simple 

bulge forming have been reported m the literature where only pressure load is applied 

to circular sheets clamped at the periphery No consideration to the modelling of the 

die and contact area was given In the following three subsections simulations of the 

bulge forming of circular sheets of different thickness, diameter and friction condition 

are presented Both pressure and in-plane compressive load are applied to all models 

In one model some restraining load on the top of the forming bulge is applied in 

addition to the pressure and in-plane compressive load Finally an optimisation 

analysis of one of the simulation cases is presented

4 1 1  Pressure and In-plane Compressive load.

Modelling

Basically circular blanks of two diametrical sizes were simulated for different 

thickness, friction conditions and loading patterns The die opening size and die
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x:

comer radius are same for all the cases Figure 4 1 shows the schematic of the 

forming situation showing the discretised sheet and loading Some node numbers are 

shown in the figure for discussion of results later Because of circular symmetry an 

axisymmetric model is developed

Two dimensional 4-noded axisymmetric solid elements are used for finite 

element discretisation of both the sheet and the die These elements are suitable for 

large strain and highly non-linear deformation behaviour Number of preliminary 

trials were done to locate high deformation and stress areas on the deformed sheet 

Based on the observations from these trials, the sheet was discretised in such a 

manner so that the mesh density is higher where there is more stretching and lower 

where the sheet is expected to experience less stretching

The trial solutions were also necessary to decide on the contact stiffness value 

A higher value poses convergence difficulties while a lower value allows easy 

penetration of contacting pairs Two dimensional point to surface contact elements 

were generated between the inner surface of the die and likely top surface of the 

sheet The contact zone is indicated by thick lines in Figure 4 1 Both the die and 

sheet surfaces behaved as master and slave surfaces so that a symmetrical contact was
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developed The principle of penalty function was assigned for the prevention of 

penetration An elastic Coulomb fnction law was assumed Elastic Coulomb 

behaviour allows both sticking and sliding conditions The sticking zone is treated as 

an elastic zone with a sticking stiffness, ks The tangential force is determined by 

multiplying the stiffness value with the elastic tangential deformation value As soon 

as the tangential force reaches the limiting value the contact node slides along the 

contact surface

The sheet was assigned bi-linear isotropic plastic material model Different 

parameters for the material are as below

Young s Modules = 207 GPa Yield strength = 280 MPa

Tangent Modulus = 920 MPa Poisson s ratio = 0 30

Friction factor = 0 15 Contact Stiffness = 243 kN/mm

The contact stiffness value was determined by trial solutions Different values based 

on the guidelines provided by the user’s manual [99] were tned The contact gaps or 

penetrations were checked for each solution The value for which the penetrations 

were negligible was chosen as the desired contact stiffness

The die was assigned an elastic matenal model All the nodes of the die were 

fully constrained to simulate as a rigid body Because of axisymmetry the nodes at the 

centreline of the sheet were fixed radially The nodes at the periphery of the sheet 

were constrained in Y-direction and prescribed displacement was administered in 

negative X-direction (inwards)

Results and Discussions

A total of 8 simulations were earned out to take different parameters into 

consideration Table 4 1 presents a summary of physical parameters of different 

simulation cases

Effect o f In-Plane Compressive Load

Simulation case II identifies the difference in deformation behaviour that a 

circular sheet experiences when in-plane compressive load is applied simultaneously 

with the pressure load as against Simulation I where a similar sheet was deformed
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with pressure load only Table 4 2 presents the main features of these two simulation 

results

Table 4 1 Parameters of different simulation cases

Simulation Blank Blank Die comer Cumulative pressure Cumulative displacement

Case radius thickness radius at load steps o f penphery at load steps

(mm) (mm) (mm) (MPa) (mm)

I 2 3 4 1 2 3 4

1 150 1 5 1 5
_

*f00 14? 7 - 0 0 0 0 0 0

II 150 1 5 1 5 50 100 150 158 17 1 0 2 0 3 0 3 0

III 150 1 0 1 5 50 97 88 - - 1 0 1 95 -

IV 15 0 1 0 1 5 50 99 90 - - 2 0 2 99 -

V 20 0 1 0 1 5 50 100 103 28 - 4 0 8 0 -

VI 20 0 1 0 1 5 50 100 - - 4 0 8 0 -

VII 20 0 1 0 1 5 50 100 103 94 - 6 0 6 0 6 157 -

vni 20 0 1 0 1 5 5 50 100 104 05 6 0 6 0 7 0 7 081

Table 4 2 Results summary of simulation cases I and II

Simulation After Bulge Max Eqv Stress Thickness at

load step height/ (MPa) (% of original)

bulge dia Value Location bulge crest under die

~ ~ r 1 0 162 ~ 471 34 around die 90 33 100 00

ii 1 0 257 469 12 around die 97 50 106 98

i 2 0 309 680 36 around die 73 19 100 0

u 2 0 392 626 45 around die 88 95 106 56

i 3 0 561 1252 0 crest t 35 09 100 0

i i 3 0 608 838 83 crest 55 12 102 0

i 4 - - - - -

ii 4 0 679 1099 0 crest 42 33 96 53

After the first load step where the pressure loads are equal in both cases but 

case II has 1 mm of peripheral inward displacement, the bulge height attained m case 

II was 5 14 mm as against 3 24 mm in case I The stress and strain developed in cases 

I and II are not very different The change in sheet thickness was apparent at this 

stage The bulge in case I has thinned by 2 5% Also, the sheet has thickened under 

the die in case II
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After the load step 2, the difference in bulge height has narrowed down to 1 66 

mm from 1 90 mm although case II was loaded with equal pressure to that of case I 

plus 2 mm of peripheral inward movement At this stage of loading, the stress and 

strain difference between cases I and II has just started to show Bulge crest thickness 

in case I is now down to 73% compared to 89% in case II These differences have 

become more pronounced in the next and final load step

The maximum pressure load that could be applied in loading case I in the last 

load step was 145 72 MPa Beyond this the sheet experienced a sharp rise in stress 

indicating the on onset of instability Figure 4 2 shows the development of principal 

strains in a node (node 44 in Figure 4 1) at the centre of the sheet in case I during the 

whole loading process Figure 4 3 shows the principal strains in the same node in case 

II where a maximum pressure load of 158 17 MPa could be applied It can be seen 

that the strain path followed by the node in case II is different from that in case I 

Sheet in case II thus had a different yield point thereby allowing more deformation

Figure 4 2 Development of principal strains in a central node of the bulge m case I

during the load steps
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Figure 4.3: Development of principal strains in a central node of the bulge in case II

during the load steps.
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Figure 4.4. Distribution of von-Mises stress in case I

Figure 4.4 illustrates the distribution of von-Mises stress in case I just before 

instability. Maximum bulge height attained at this stage is 11.23 mm. Figure 4.5 

shows the distribution of plastic strain in thickness direction in case I at the same 

stage of deformation as for Figures 4.4. From Figure 4.4 it can be seen that the crest 

region of the bulge has the maximum stress. Also the minimum thickness strain 

occurs at the same region. However, considerable thinning is also evident at the bend 

around the die. The crest of the bulge has on the average thinned down to about 35% 

of the original thickness of 1.5 mm.
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Pressure Bulge forming
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Figure 4.5: Distribution of strain in the thickness direction of the sheet in case I

Figure 4.6 illustrates the distribution of von-Mises equivalent stress in case II 

just before instability. Maximum bulge height attained in case II at this deformation 

stage was 13.59 mm.
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Figure 4.6: Distribution of von-Mises stress in case II

Figure 4.7 shows the thickness strain in case II at this stage. It is seen that the 

maximum stress is in the crest area of the bulge as in case I. However, the magnitude 

of stress is much less in case II than that in case I. From Figure 4.7 it is evident that 

the maximum thinning has occurred at the crest as in case I but the intensity of 

thinning is much less. The average thinning at the crest in case II is about 55% of the
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original thickness. The bend around the die has not thinned, rather it has slightly 

thickened.
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Figure 4.7: Distribution of strain in the thickness direction of the sheet in case II

From the above observations it could be seen that bulge forming of a circular 

sheet by pressure and in-plane compressive load gives higher bulge height, lower 

stress and strain and less thinning compared to bulging by pressure load only. Most of 

the differences appeared during the initial period of bulging. This is apparent from 

Figures 4.2 and 4.3 where differences in strain path has disappeared within the first 

load step. Also the difference in bulge height has minimised over the load steps 

although the periphery was pushed inwards right to the end of the loading in case II. 

Figure 4.8 shows the bulge height gain in case II over case I for the inward 

displacement of the periphery. It may be mentioned that pressure loading was equal 

for both.
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Figure 4.8: Trend of bulge height gain against peripheral inward push
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Although it appears from Figure 4 8 that the gam is lost very quickly but it 

masks the fact that due to the peripheral movement, the same sheet in case II has 

thinned less and was able to take more pressure load and eventually form a bulge of 

13 59 mm which is about 2 72 mm more than that formed in case I

Effect o f  Blank Thickness

Simulation case III deals with the same die-sheet configuration except that the 

sheet thickness is only 1 0 mm The loading pattern is same as in case II Table 4 3 

shows the comparative summary results of simulation cases II, III and IV Simulation 

cases III and IV are same except that case IV was given enhanced mward push at the 

periphery

Table 4 3 Results summaiy of simulation cases II, III and IV

Simulation Pressure Peripheral Bulge ht Maxm Eqv Stress Thickness at

(MPa) Displ /Bulge (MPa) (% of original)

(mm) dia Value Location Bulae crest Under die

II 50 cT ^  “  J Q 0 257 469 ~12~ around die 90 33” ~16o~d ~

III 50 0 1 0 0 286 508 28 around die

IV 50 0 2 0 0 349 552 02] around die 94 69 112 34

II 100 0 2 0 0 3927 626 45 around die 88 95 106 56

III 97 885 2 0 0618 11160 bulge crest 40 6 100 0

JV 99 9 3 0 0 660 1106 0 bulge crest 41 24 111 02

n 150 3 0 0 608 838 83 bulge crest + 55 12 102 0

around die
IA (jOU WJ rM

Because of the smaller initial thickness, the sheet in case III could only be 

loaded up to about 98 MPa before instability was reached However, the deformation 

was quite high compared to case II for similar loading The bulge height attained m 

case III was 12 36 mm at 98 MPa pressure and 1 96 mm mward peripheral 

displacement It was only 7 7 mm m case II at this state of loading Figure 4 9 

illustrates the von-Mises stress m case III The stress developed in case HI is high 

compared to that developed m case II (Figure 4 6 ) before it was unstable However, it 

should be pointed out that the sheet periphery in case III could not be pushed as much
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inward as it was possible in case II because of early instability. A different loading 

pattern was used to the same model which is described in the next paragraph. Figure 

4.10 shows the thickness strain developed in case III. The sheet has thinned most at 

the bulge crest area. The average thickness reduction in this region is about 40% of 

the original thickness.
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Figure 4.9: Distribution of von-Mises stress in case III
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Figure 4.10: Distribution of strain in thickness direction of the sheet in case III
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As mentioned earlier, the periphery of the sheet in case III could not be pushed 

inward sufficiently because of the dominant pressure loading which resulted in an 

early instability An enhanced peripheral displacement loading was given to the 

model of case III in simulation case IV The enhanced in-plane loading delayed the 

onset of instability slightly thereby affording more deformation Figure 4 11 shows the 

loading profile for cases III and IV The bulge height attained in case IV due to the 

enhanced displacement loading was 13 21 mm compared to 12 36 mm obtained in 

case m

IV

III

50 100

Pressure, MPa

Figure 4 11 Loading profile for simulation cases III and IV

Figure 4 12 History of stress in the central node in case III during loading

Figures 4 12 and 4 13 respectively show how the central node(44) in cases III 

and IV was stressed due to their different loading profile From these two figures it 

can be seen that the node experienced considerably different stressing pattern for
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initial 20% of the first load step Subsequently the rate of stressing in case IV was less 

than that m case III although the former experienced more forming load

T I M E
Pressure Bulye Tor ing

ANSYS 5 3 
JUH 7 1997
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XF - 5
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Figure 4 13 History of stress in the central node in case IV during loading

Effect o f  Friction

In simulation cases V and VI the sheet radius was increased to 20 mm The die 

was modified accordingly to cover the sheet surface in the axisymmetric model as 

before Frictionless contact was simulated in case V while case VI was simulated for 

elastic Coulomb fnction law The coefficient of friction was 0 15 Both of them were 

loaded identically as was presented in Table 4 1 before Table 4 4 presents the main 

features of the simulation result at different load steps

Table 4 4 Results summary of simulations cases V and VI

Simulation After pressure Bulge ht Maxm Eqv Stress Thickness at

(MPa)/Disp /Bulge dia (MPa) (% o f original)

(mm) (mm) Value Location bulge crest under die

V(no fnction) 50/4 ”0 466 666 29 around die 97 0 ~ 127 20

VI (friction) 50/4 0 460 655 39 around die 96 8 129 13

V(no friction) 100/8 0 863 965 86 around die + 57 51 154 35

bulge crest

Vl(fhction) 100/8 0 862 966 37 around die + 54 49 160 28

bulge crest
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From the summary of results in Table 4.4 it is seen that two simulation cases 

show not much differences. The bulge height, stress and strain are nearly equal for 

both simulation cases after each load step. The bulge height attained in cases V and 

VI after 100 MPa pressure and 8 mm inward push of the periphery was 17.26 mm and 

17.24 mm respectively. Figures 4.14 and 4.15 respectively show the von-Mises stress 

in cases V and VI after equal loading. Figures 4.16 and 4.17 respectively show the 

thickness strain distribution in cases V and VI at the same stage of loading. Although 

most stress in Figures 4.14 and 4.15 is in the bend region, the bulge crest region has

AHSYS 5.3 
JUH 7 1997 
13:27:02 
MODAL SOLtJTIOH 
TIME-2.066 
SEClV (AVG)
OMX -18.3 69 
SMX -1000
m  0111.158 
n p n  22 2 . 3 IS 

333.473 
i* I 444. 631 
^ 5  555.780

666.946 
778.104 
889.261 
1000

Figure 4.14: von-Mises stress in case V after full load.
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Figure 4.15: von-Mises stress in case VI after full load.
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stressed quite intensely at this stage. . Also, a larger area of the crest in case VI has 

stressed more compared to that in case V. From figures 4.16 and 4.17 it is apparent 

that the thinning pattern of these simulations are not significantly different. It is also 

evident that the thinning of the bulge crest and thickening under the die was little 

more in case VI than that in case V.
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Figure 4.16: Distribution of strain in the thickness direction of sheet in case V.
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Figure 4.17: Distribution of strain in the thickness direction of sheet in case VI.

In both these simulation cases the periphery was moved inward by prescribed 

displacement irrespective of friction. Therefore, the effect of friction was not 

reflected much in the above results. The main effect of friction is expected in the
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reaction loads at the peripheral nodes Total reaction load from the nodes at the 

periphery in case VI in X-direction was 38 52 kN after load step 2 On the other hand, 

for the same loading condition the total reaction load of the peripheral nodes in case 

V m X-direction was 32 63 kN As expected, the reaction load at the peripheral nodes 

in X-direction was higher for the case with friction than that without friction

Effect o f  Blank Diameter

Simulation cases IV and V were similar models except that the blank diameter 

was different The sheet diameter m case IV was 30mm while that m case V was 40 

mm Because of the higher diameter of the sheet in case V its periphery could be 

given more displacement Table 4 5 presents the comparative results of these two 

simulations

Table 4 1 5 Results summary of simulations IV and V

lulation Pressure Peripheral Bulge ht Maxm Eqv Stress Thickness at

(MPa) Displ /Bulge dia (MPa) (% of original)

(mm) Value Location bulge crest under die

IV 50 0 ~ 2 0 0 349 “"552 20™ around die ~ 94 69 112 34

V 50 0 4 0 0 416 666 29 around die 97 0 127 20

IV 99 9 3 0 0 66 1106 0 bulge crest 41 24 111 02

V 100 0 8 0 0 863 965 86 around die + 57 50 154 35

bulge crest

V 103 28 8 0 0 918 1000 0 bulge crest 46 09 150 5

It can be seen from the table that significant gam in bulge height could be 

attained due to the additional peripheral push of the sheet In fact the gam was little 

over 5 0 mm which was incidentally the additional peripheral displacement given in 

case V over case IV Pushing of more matenal in the bulge area has resulted in less 

stress and thinning at the bulge crest At the same time, there was considerable 

thickening of the bulge base under the die due to the extra radial displacement

64



Effect o f Loading

From the previous simulations it was observed that the loading pattern has 

marked influence on the deformation behaviour of the sheets. Simulation cases VII 

and VIII were designed to try two significantly different loading pattern on the same 

model. Simulation case V is also included in the subsequent discussion to have more 

variety in loading profile. All three simulations deal with sheets of equal diameter i.e. 

40 mm. Figure 4.18 shows pressure versus peripheral displacement loading for the 

three cases. Both pressure and displacement loads were increased uniformly at a 

particular step in loading. Most variation in loading was tried during the first 50 MPa 

pressure loading. This was done mainly due to the limited peripheral displacement 

that was available in the models. Also, it was thought that in-plane displacement at 

lower pressure would enable movement of more material to the bulging area from the 

periphery.

£
E

d.
C/5

5
<D
a,"C0)cu

Pressure, MPa

Figure 4.18: Loading pattern of simulation cases V, VII and VIII

Table 4.6 presents the major findings from these three simulation cases. From 

the table it is evident that after the completion of loading, the maximum bulge height 

along with minimum stress and strain were obtained in case V compared to the other 

two. A uniform displacement to pressure ratio was maintained in the loading in case 

V. This loading resulted in slightly less thinning of the crest before rupture. However, 

within the pressure step of 50 Mpa the deformation outcome was in favour of
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Table 4 6 Results summary of simulations V, VII and VIII

muiation Pressure Bulge ht / Maxm Eqv Stress Thickness at

(MPa) Bulge dta (MPa) (% o f original)

Value Location bulee crest under die

VIII 5 0 0 465“ 819 9 around die 95 56 156 50

V 50 0 0 466 666 29 around die 97 0 127 20

VII 50 0 0 574 789 81 around die 99 22 150 90

VIII 50 0 0 479 776 8 around die 96 52 145 63

V 100 0 0 863 965 86 around die 57 50 154 35

VII 100 0 0 709 806 87 around die 61 93 152 06

+ crest

VIII 100 0 0 723 956 647 around die 58 71 166 28

+ crest

V 103 3 0918 1000 0 crest 46 09 150 59

VII 103 95 0 809 1050 0 crest 43 81 150 4

v n i 104 05 0 803 1059 0 crest 43 82 162 05
nn

simulation case VII in terms of bulge height In this step, case V had displacement 

pressure ratio of 0 08, case VII had 0 12 and case VIII had 1 2 up to 5 MPa pressure 

and then slowly decreased to 0 12 Figure 4 19 presents the ratio of bulge height, 

maximum equivalent stress, and bulge crest thickness with respect to simulation case 

V values after the 50 MPa pressure step for all three simulation cases From Figure 

4 19 it can be seen that simulation case VII attained most bulge height although at the 

expense of slightly higher stressing However, it retained most of its thickness as can 

be seen from Table 4 6 Because of the dimensional limit of the models, the same 

ratio of loading could not be continued in the subsequent load steps The sheets in all 

three models eventually failed by rupture at a pressure of about 104 MPa It appears 

from the above that the pressure at which the bulge ruptures is the same irrespective 

of the loading profile Therefore the key to obtain a higher bulge is to push the ends 

keeping the pressure as low as possible so that no buckling occurs at the bulge root or 

bulge base The pressure on the sheet surface and the strain in the plane of the sheet 

at any instant seem to have influence on the buckling
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Figure 4.19: Ratio of bulge height, equivalent stress and crest thickness of simulation 

cases VII and VIII with respect V for different loading pattern.

A very low pressure-displacement ratio loading (as was done in case VIII) 

pushes the bulge away from the die wall. Figure 4.20 shows the situation for that kind 

of loading. Subsequent pressure loading, of course, brought much of the bulge back to 

the die wall, but by this time the bulge crest has reached the instability. This 

simulation also shows that enhanced in-plane displacement without adequate pressure 

does not give any better bulge deformation.

ANSYS S. 3 
JUN 12 1997 
10:57:49 
NODAL SOLUTION 
TIHE=3
SEqV (AVG)
DMX =9.588 
SMX =776.801

86.311 
p===j 172.623
■jfgj 258. 934 

! 345.245
SgS! 431.556 

517.868 
604.179 
690.49 
776.801

Figure 4.20: Deformation of an enhanced peripheral displacement case

Figure 4.21 shows the development of principal stresses in the central node of 

the bulge in case VII and Figures 4.22 and 4.23 show the same in the bulge of VIII 

and V respectively. It appears from these figures that the differences between the 1st

PEessuE« Bulge Coding
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and the 2nd principal stresses vanishes quickly at the early part of the first pressure 

load step in cases V and VII Although the difference continues in case VIII up to the 

end of the first pressure load step, but it was seen that the deformation behaviour in 

this was not favourable compared to others The third principal stress maintained 

negative value throughout the deformation period for all three simulation cases Both 

the 2nd and 3rd principal stresses in all the cases were strongly compressive at the 

start and then the compression eased out very quickly
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Figure 4 21 Development of principal stresses in the central node of the bulge in case
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Figure 4 22 Development of principal stresses in the central node of the bulge in case
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Figure 4 23 Development of principal stresses in the central node of the bulge in case

V

General observations

The development of stress and strain in the bulge crest as observed by the 

history of a central node in the bulge appears to be similar for all the cases with 

pressure and peripheral displacement loading Slight difference was observed 

presumably due to the intensity of peripheral displacement loading during the first 

load step With pressure load beyond 50 Mpa the stress development was identical for 

all cases although peripheral displacement loading were not similar However, 

because of model constraint, significantly different displacement loading could not be 

imparted at that stage Development of stress and strain in the bulge crest in case I 

where only pressure load was applied is slightly different from the cases with pressure 

and peripheral displacement loading

The history of the development of principal stresses in a node at the bulge 

crest suggests that the bulge crest experiences equal biaxial stresses from very early 

stage of loading This state of stress seems to reach when the pressure loading is about 

10% of the critical pressure, a pressure at which there is onset of instability (rupture) 

in the bulge crest Only exception to this general trend is found to be in the case of 

simulation VIII where the equal biaxial stress state was reached at about 17% of the 

critical pressure This is the case where in-plane compressive load was very high
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compared to the pressure load. But it was seen that this loading did not result in good 

deformation behaviour.

Pressure Bulge forcing
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Figure 4.24: Vector plot of total displacement of nodes of a circular sheet with

peripheral displacement loading

Figure 4.25 : Vector plot of total displacement of nodes of a circular sheet without

peripheral displacement loading

The absolute displacement of the nodes in all the simulation cases with in­

plane compressive load show similar pattern. Figure 4.24 illustrates the vector plot of 

absolute displacement of the nodes for one such simulation. It is seen that the nodes at 

the centre have moved the most. The in-plane inward push has induced some 

material movement towards the centre. This is evident when compared with Figure

4.25 where no in-plane inward displacement was applied. The slope of nodal

70



displacement vectors near the die in Figure 4.24 is higher compared to that on Figure

4.25 indicating a push towards the centre.

Since the sheets were pushed inwards it was obvious that there will be 

compressive circumferential strain in the bulge root specially under the die. Figure

4.26 shows the plastic strain in circumferential direction. All simulations involving 

in-plane compressive loading resulted in similar straining. It is seen from the figure 

that considerable compressive strain developed in the circumferential direction. The 

elements have been compressed circumferentially between 70-85% around the die 

bend. In reality this may or may not result in wrinkling at the bulge base since 

considerable thickening is also observed in this areas.

Figure 4.26. Distribution of circumferential strain in a peripherally displaced bulge.

Principal Strain 1

Figure 4.27: Plot of principal strains for different cases of simulation.

The plot of principal strains for different simulation cases at two stages of 

loading is presented in Figure 4.1.26. One is at a very early stage of loading and the 

other is at a stage just before instability in the bulge. It can be seen from the figure
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that although the strains at an early stage of the simulation cases differ very 

marginally, the instability in them starts at widely different state of straining It can 

be observed from the figure that more the peripheral displacement less the extent of 

straining that could be achieved in principal directions It is also evident from the 

figure that although the sheets in different simulation cases rupture at different strain 

values, the ratio between the principal strains are almost same as all the points appear 

to be on the same line

In all the above simulations, the die and the sheet maintained their interfaces 

as desired, 1 e , no penetration of the sheet or the die was observed Convergence was 

smooth for all the simulation cases This is also evident from the smooth development 

of stress and strain in the central node illustrated in the relevant figures for all the 

simulation cases

Summary Observations

From the various simulation cases of bulging a circular sheet by simultaneous 

pressure and in-plane compressive load the mam observations may be summarised as 

below

I) the bulge formation by simultaneous application of pressure and in-plane 

compressive load produces more height, less stress and strain, and the bulge 

crest thins less compared to the one formed by pressure load only

II) thinner sheets may be formed to comparable height with less pressure load But 

for same blank size, and bulge diameter, thicker sheets can be bulged to more 

height before instability is reached

III) Bulging of same blank size and same bulge diameter by same loading pattern 

but different friction condition (fnctionless and with friction) gives comparable 

bulge height and gives rise to comparable stress But strains in the bulges are 

different for changes m friction conditions Forming with friction induces more 

thickening at the bulge root and more thmnmg at the bulge crest compared to 

frictionless forming Also larger surface area of the bulge formed with 

friction has higher stress

i v )  Bulging from a sheet of larger blank diameter but same thickness allows more

bulging as more peripheral displacement is available It is seen that the gam in
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the bulge height is nearly equal to the additional penpheral displacement This 

also gives a thicker bulge

v) The ratio of pressure load to displacement load has marked influence on the 

bulge forming process Enhanced peripheral displacement without sufficient 

pressure pushes the bulge root away from the die rather than material to the 

bulge centre

vi) Direction of absolute displacement of the sheets nodes indicate that the nodes 

have deviated from the direction that they would have taken in case there were 

no m-plane compressive load on the sheet The deviation indicates a movement 

towards the bulge centre

vn) The sheet undergoes considerable circumferential compressive strain at the 

bulge root and base area At the same time these regions of the bulge have also 

thickened The net effect of straining in these regions is difficult to predict 

without simulating the problem m three dimensions 

vin) The bulge crest reaches equal biaxial stress when the pressure loading is about 

10% of the critical pressure For veiy accelerated m-plane compressive loading 

this state of stress in the bulge crest reaches at little higher pressure But if 

buckling at the bulge root area results for the enhanced compression, then the 

deformation behaviour is no better 

i x )  The instability in the bulge occurs at different state of strain for different 

loading condition It is seen that bulges that are formed with more peripheral 

displacement fails at lower state of biaxial strain

4.1 2 Bulge Forming of Circular Sheet With Restrained Loading

In the previous simulations the circular sheet was bulged with pressure and m- 

plane compressive load at the periphery keeping the sheet top free to bulge It was 

observed that the bulge formed by the combined load has higher height, has more 

uniform thickness and has less stress and strain It is expected that if the bulge is 

restrained at the top rather than allowing to form free, it might result in a bulge with 

longer cylindrical part which is more desirable from manufacturing point of view This 

section presents the results of the simulations where the cap of the forming bulge is

73



restrained in some form while applying pressure at the under surface and compressive load 

at the periphery of the sheet Results from the case without any restraimng load are also 

presented as comparison All simulations in this section were modelled and solved using 

ANSYS

Finite Element Model

Simulation was earned out on the similar model as in Section 4 1 1 The basic 

outline of the model is presented in Figure 4 28 In this model an adjustable restraining load 

is placed on the top surface of the forming bulge The restraining load is applied as a 

pressure proportional to the main bulging pressure applied at the under-surface of the sheet 

In the finite element model the restraining load is put on some central elements as 

illustrated m the figure A ngid form of restraint on the forming bulge may be imposed by 

physically obstructing the bulge after certain height is achieved Figure 4 29 shows a model 

with such an arrangement The sheet diameter and thickness in these models are 40 mm 

and 1 5 mm respectively The die opemng is smoothed by a 2 0 mm comer radius The 

advantage of symmetry was availed in modelling Discretisation of the sheet and the die 

was done utilising the knowledge from the previous analysis
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Figure 4 28 Schematic of restrained bulge forming model

74



Pressure

Figure 4 29 Schematic of bulge forming by rigid restraint

A bilinear isotropic elasto-plastic matenal model approximating the charactenstics 

of an annealed mild steel was adopted as sheet matenal The charactenstics parameters of 

the assumed matenal are

Young's Modulus = 207 GPa Yield strength = 280 MPa

Tangent Modulus = 920 MPa Poisson’s ratio = 03

The die matenal was assumed to an elastic matenal with an identical Young’s Modulus as 

the sheet matenal

The sheet and the die were modelled with 2-dimensional 4-node quadnlateral large 

strain solid elements This element is slightly different from the elements used in modelling 

the simulations in Section 4 1 1  However, this is also suitable for simulation of cases 

involving large deformation, large strain and plastic deformation The interface between the 

die and the sheet was modelled with general contact elements This is a 2 -dimensional 3- 

node point to surface type element Penalty function method was adopted to determine the 

contact forces An elastic Coulomb friction behaviour was assumed between the contacting 

surfaces The coefficient of friction between the die and the sheet was taken to be 0 25
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Loading and Solution

Because of axisymmetric modelling, the nodes at the central axis were restricted in 

X-direction Prescribed displacement was applied to the nodes at the periphery of the sheet 

Essentially, all the die nodes were totally fixed Pressure load was applied at the bottom 

surface of the sheet Adjustable pressure load was applied on the face of the three central 

elements at the top surface of the sheet as restraining load The magnitudes of the 

restraining pressure load varying between 10% and 25% of the under-surface pressure load 

were used and a number of models were tried with different ratios However, models with 

very close ratio of restraining load showed very similar deformation pattern Cumulative 

load histories of both restrained forming and free forming cases is presented m table 4 7 At 

each load step, the full load is applied m very small substeps Two loading conditions of 

adjustable restrained load forming will be referred to as model RFI and RFII respectively 

The rigidly restrained forming model will be referred to as RFIII The model without any 

restraint loading will be referred to as FF

Table 4 7 Cumulative load history for free and restrained bulge forming 

Load Step Load

Free Forming (FF) Restrained Forming (RFI)

Pressure = 50 MPa 
Inward Displ = 1mm

Pressure = 100 MPa 
Inward Displ = 2mm

Pressure = 50 MPa 
Inward Displ = 1mm 

Restraint Load = 5 MPa

Pressure = 100 MPa 
Inward Displ =2mm 

Restraint Load = 10 MPa

Restrained Forming 

(RFII)

Restrained Forming 

(RFI 11)

Pressure = 50 MPa Pressure = 50 MPa 
Inward Displ = 1mm Inward Displ = 1mm 
Restraint Load =12 5 

MPa

Pressure = 1 OOMPa Pressure = 100 MPa
Inward Displ = 2mm Inward Displ -  2mm 
Restraint Load -  25 

MPa

3 Pressure = 150 MPa Pressure = 150 MPa Pressure = 150 MPa Pressure = 150 MPa
Inward Displ = 3mm Inward Displ = 3mm Inward Displ = 3mm Inward Displ =3mm 

Restraint Load = 15 MPa Restraint Load = 37 5 (restraint active)
MPa

4 Pressure = 200 MPa Pressure = 200 MPa Pressure = 200 MPa Pressure = 200 MPa
(instability) (instability) (instability)

5 - - Pressure = 250 MPa

6 - - Pressure = 300 MPa
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Results and Discussion

All the simulation models except the case of RFHI became unstable at 4th load 

step. By the end of the 3rd load step the periphery of the models were pushed to possible 

maximum. In subsequent load steps only pressure was applied. The maximum pressure that 

could be applied to the cases of FF, RFI, and RFII were 155.85 MPa, 157.0 MPa and 

157.85 MPa respectively which are quite close. Since the bulge in the case of RFIII reached 

the obstruction by the end of the 3rd load step, it was possible to pressurise it without the 

onset of instability. However, after application of the pressure in the last step from 250 to 

300 MPa, no additional inflation of the bulge was noticed.

The shape of the bulges in the cases of FF, RFI and RFII just before the instability 

can be seen in Figures 4.30, 4.31 and 4.32 respectively. These figures also display the von- 

Mises stress in the bulges. It can be seen from the figures that the shapes of the bulges are 

not very different. The bulge height obtained at this stage in the cases of FF, RFI and RFII 

were 13.11 mm, 13.37 mm and 12.62 mm respectively. The pattern of stress distribution in 

the bulges is also very similar although the surface area for each stress range is slightly 

different. The maximum stress in the bulges are different; 1016 MPa for the case of FF, 

1085 MPa for the case of RFI and 974.6 MPa for the case of RFII.

Figure 4.30: von-Mises stress in the bulge for the case of FF.
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Figure 4.31: von-Mises stress in the bulge for the case of RFI.
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Figure 4.32: von-Mises stress in the bulge for the case of RFII.

The bulge in the case of RFIII had reached the rigid obstruction at the top during 

the 3rd load step. Therefore, the deformation behaviour in this case is supposed to be 

different from the others as the restraining load here will be in increasing ratio of the 

applied pressure load. Figure 4.33 shows the von-Mises stress in the case of RFIII after 3rd 

load step. The bulge shape is also apparent from the figure. Naturally, the bulge took a 

flatter shape. It can be seen from the figure that the top surface of the bulge touching the 

obstruction is being relieved of the stress because of the compression there. The stress

Comparative Analysis of Free and Restricted Bulge Forming
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concentration has moved towards the bulge root area as opposed to the crest area in other 

models. The root area now has a strong stress gradient.

ANSYS s.3
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Figure 4.33: von-Mises stress in the case of RFIII after load step 3.

Thickness of the bulges can be ascertained from the strain in the thickness direction 

of the sheet. Figures 4.34,4.35 and 4.36 show the distribution of the strain in the bulges for 

the cases of FF, RFI and RFII respectively just before instability. Again the pattern of 

distribution is very similar. However, the extent of thinning in the crest area is different. 

The crest in the case of FF has on the average thinned down to 48% of the original 

thickness of 1.5 mm. The corresponding figures for the cases of RFI and RFII are 45% and 

50% respectively.
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Figure 4.34: Distribution of strain in thickness direction of the sheet in the case of FF.
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Figure 4.35: Distribution of strain in thickness direction of the sheet in the case of RFI.

Figure 4.36: Distribution of strain in thickness direction of the sheet in the case of RFII.

It appears from the above that the effect of the adjustable restraining load in 

pressure form is not very distinctly apparent. In the case of RFII, however, a smaller bulge 

height is obtained, the stress has reduced and the thinning process slowed down compared 

to the cases of FF and RFI. Although the loading case of RFI has a restraining load, it 

seems that it does not put any appreciable counter load on the bulge. The effect of the 

counter load can be best observed from the deformation in the case of RFIII. The effect was 

evident in the shape and stress pattern in Figure 4.33. The effect can be further observed in 

Figure 4.37 which shows the strain in thickness direction for the RFIII loading case. The 

average thickness in the crest area is 77% of the original thickness. The best thickness 

obtained from adjustable restraining load was 50% for the case of RFII.
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Figure 4.37: Distribution of strain in the thickness direction of the sheet in the case of RFIII.

The development pattern of strain in the central node of the bulges (node 44) for the 

loading cases of FF, RFI and RFII are not very different. Figure 4.38, for example, shows 

the development of principal strains in node 44 for the case of RFII On the contrary the 

principal strain in the same node has developed very differently in the case of RFIII when 

the bulge faced the restraint. Figure 4.39 shows the strain history for this case. After the 

bulge touches the restraint, the strain in the node becomes steady during the 4th load step 

despite further increase in the pressure load. It seems that during this period the bulge crest 

was both stretched by the pressure and compressed by the restraint resulting in steady strain 

state. The balance was lost on further pressure loading when stretching took over the 

compression.

AM3TO S.3 
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Figure 4.38: Development of pnncipal strains in node 44 in the case of RFII loading period.
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Figure 4.39: Development of principal strains in node 44 in the case of RFIII.

The development of stress in the central node for the RFIII loading case is 

interesting specially after the bulge has touched the restraint. Figure 4.40 shows the stress 

history over the load steps. It can be seen that the node has undergone an unsteady state of 

stress when the bulge touched the restraint. This could be due to the contact and resulting 

impact on the bulge which stabilised quickly on further pressure loading. The bulge crest 

then continued to be stressed due to the stretching.

ANSYS 5.3 
JUL ZZ 1997 
L«:47:24 
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Figure 4.40: Development of stress in node 44 in the case of RFIII.

The bulge in the case RFIII could be further pressurised as there was no possibility 

of instability at the crest. It can be seen from figure 4.40 that the stress in main two
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directions in the crest seems to have become steady although the stress in the third 

direction (through-the-thickness) is getting compressive at an uniform rate. This indicates 

that the pressure load is just compressing the bulge without much stretching. This is also 

evident from figure 4.39 where it can be seen that the rate of increase of strains in main 

principal directions are much less than that in the thickness direction.

The shape of the bulge taken in the case of RFIII is nearly the shape of a cup. The 

peripheral displacement of the sheet has an important effect on the shape of the bulge. This 

observation is apparent when compared to the findings of Lee and Ma [27] on similar 

simulation. In their simulation they did not push the periphery. The shape of the bulge they 

got did not have any true vertical surface. The bulge did not touch the die recess wall while 

in the case of RFIII a good part of the bulge trunk has touched the die recess wall. In their 

simulation the maximum strain in the bulge were found to occur near the edge of the 

contact area between the sheet and the obstruction. Figure 4.41 shows the equivalent plastic 

strain distribution in the bulge in the case of RFIII. It can be seen from the figure that the 

maximum straining is at the same region as found by Lee and Ma. This is also conceivable 

given the fact that the bulge is now supported at the crest and the most likely area of 

straining and eventual failure is the unsupported region between the die vertical and 

horizontal walls.
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Figure 4.41: Distribution of equivalent plastic strain in the bulge of RFIII loading case

after 6 th load step.

83



4.1.3 Optimisation of bulge forming of circular sheet

So far the results of the simulation of bulge forming of circular sheets for different 

forming conditions have been presented. It was seen that bulge forming of such a component 

applying combined pressure and axial compressive load involves a number of variables. From 

the simulation analyses it was apparent that the variables influence the forming process 

differently. In the forming process, therefore, there is scope to vary different forming 

parameters and thereby improve certain characteristics of the bulge. Following that line of 

investigation two optimisation exercises were carried out on bulge forming of a circular sheet 

applying pressure and in-plane compressive load. This section presents the results from these 

exercises. Firstly, it was tried to maximise the bulge height with pressure (PRESS), in-plane 

compressive load in displacement form (DISP) and die comer radius (RAD) as design 

variables and constraining the problem by specifying the maximum equivalent stress 

(STRSMAX) in the bulge within certain limit values. Secondly, the same problem was tried 

for the minimisation of stress differential in the bulge with same design variables and 

additionally constrained by limiting the bulge height.

Modelling

The problem under consideration was bulge forming of the same 30mm diameter 

plane sheet of 1.5 mm thickness as in Simulation case II in section 4.1.1. The circular sheet 

was placed under a circular die with a 20 mm diameter opening. The die opening is smoothed 

with a comer radius. Advantage of axisymmetry of the structure was availed for the 

modelling. Meshing of the model was done based on the knowledge from the simulation in 

the previous section The model was developed parametrically using ANSYS parametric 

design language. Figure 4.42 exhibits the meshed model identifying the variables of the 

problem. These variables viz. RAD, PRESS and DISP are the parametric variables in the 

model.

A bilinear isotropic elasto-plastic material model approximating the characteristics of 

an annealed mild steel was adopted for the analysis. The characteristic parameters of the 

assumed material are - Young's Modulus = 207X103 MPa , Yield Stress -  280 MPa and 

Tangent Modulus = 920MPa.
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The sheet and the die were modelled with 2D four noded quadrilateral This element 

is suitable for large deformation and large strain analysis It is also designed for plasticity 

analysis Probable contact surfaces between the die and sheet were modelled with 3 - noded 

point to surface elements suitable for general contact analysis Penalty method of contact 

compatibility was adopted for the analysis The contact stiffness value of 2 43X103 kN/mm 

was taken from the previous analyses An elastic Coulomb friction condition was assumed 

and the value of the coefficient of fnction taken was 0 2 Symmetnc contact modelling was 

done making both the die and sheet interfacing surfaces as contact as well as target surfaces 

Because of axisymmetnc modelling of the structure the nodes at the central axis 

were restrained in X-direction All die nodes are restncted for all degree of freedom Pressure 

load was applied on the bottom surface of the sheet and in-plane compressive load was 

applied at the outer edge in the form of displacement Both types of loads were defined 

parametncally and applied in four equal sub-steps Depending on the iteration strategy the 

tnal load could vary from 0 2% to 2% of the sub-step load Full Newton - Raphson method 

was adopted along with line search technique for the solution of the finite element analysis
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The optimisation problem

An optimisation problem has to be defined by defining the objective function that 

relates a certain figure of merit with other relevant vanables of the problem In ANSYS this 

relationship and that between state vanables and design vanables are determined by 

regression analysis In defining the optimisation problem one has to decide on the design 

vanables, state vanables and objective figure of ment that adequately define the design 

problem One must keep in mind that all these vanables can be handled in the finite element 

analysis

A metal lorming problem may be optimised with respect to more than one aspect In 

bulge forming one of the pnme objective is to attain as maximum bulge height as possible 

The other objectives could be the minimisation of the unevenness of stress or strain 

distnbution in the bulge or minimising the m-plane compressive load etc The present 

problem was optimised on two aspects viz maximising the bulge height and minimising the 

difference between the maximum and minimum equivalent stress m the bulge Table 4 8 

presents different vanables of the above two optimisation problems Intermediate vanables 

were not active vanables of the problem but they defined some active vanables Limit values 

of the vanables and their tolerances are also presented in the table

Table 4 8 Vanables of the optimisation problems ______
Problem 1 (maximising the bulge height) Problem 2 (minimising stress differential)

Objective
variable

BLGHT = 50 - DEFL
tolerance = 0 01X initial value

STRSDIF -  STRSMAX -STRSMIN
tolerance = 0 01X initial value

Design
vanables

RAD, die comer radius 
limit, 1 5mm - 3 0mm 
tolerance, 0 01X limit range 
DISP, displacement of outer edge 
limit, 0 0 - 3  5mm 
tolerance, 0 01X limit range 
PRESS, pressure load 
limit, 50- 150 N/mm2 
tolerance, 0 01X limit range

RAD, die comer radius 
limit, 1 5mm - 3 0mm 
tolerance, 0 01X limit range 
DISP, displacement of outer edge 
limit, 0 0 - 3  5mm 
tolerance, 0 01X limit range 
PRESS, pressure load 
limit, 50 - 150 N/mm2 
tolerance, 0 01X limit range

State
vanables

STRSMAX, maximum equivalent stress 
limit, 400 -1000 N/mm2 tolerance,
0 01X limit range

STRSMAXM, maximum equivalent stress
limit, 600 - 1100 N/mm2 tolerance, 0 01X limit range
DEFL, Y-displacement of node 44
limit, 11 5 - 12 5 mm
tolerance 0 01X limit range

Inter
vanable

DEFL,Y-displacement of node 44 STRSMINM, minimum equivalent stress in the bulge
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The tolerances were used for the determination of feasibility and convergence of the 

solution The constants in the tolerance values were chosen by judging the reasonableness 

and acceptability of the minimum variation of the vanables The limit values for problem 1 

were taken from the knowledge of the previous analysis and those of problem 2 were adopted 

based on the results of problem 1

Quadratic plus cross term regression fit was opted for the approximation of both the 

objective and state vanable function The weightage to each design vector for the error 

function was based on their distance from the best design, difference of their objective 

function value from best value and their feasibility The options related to the determination 

of tnal design vector for the next loop of the process (Figure 3 5) were left with the default 

choices as they would provide a bias towards best design vector

Results And Discussion

The problem was first analysed for maximising the deflection of node 44 (DEFL) 

which is the through-thickness midpoint node of the bulge crest as shown in Figure 4 42 

Since ANSYS optimisation process only minimises the objective function the maximisation 

objective was modified to a minimisation problem by bnnging in the BLGHT as can be seen 

in Table 4 8 The analysis converged after 12 loops based on the objective function value 

tolerance between best and final design set Four initial loops were run interactively with 

chosen design vanable values to create data across the design space Subsequent loops were 

run with computer chosen vanables within limit Results of the optimum design set, design 

sensitivities, and correlation coefficients are presented in Table 4 9

Table 4 9 Summary results of the solution of problem 1
Sensitivity of obj function 

BLGHT=50-DEFL
Sensitivity of state 

vanable, 
STRSMAX

Optimum
solution

Multiple
correlation
coefficient

DEFL - - 12 12

STRSMAX - - 833 06 0 99786

BLGHT - - 37 88 0 99999

Design vanable DISP -1 237 -570 8 3 4924 -

Design vanable, PRESS -0 05155 18 06 149 77 -

Design vanable, RAD -1 699 -102 1 2 9956 -
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It appears from the correlation coefficient values in the table above that a good fit to a 

quadratic plus cross term surface achieved for both objective and state variable function. 

Design sensitivities, derivative of the approximate function with respect to each design 

variable at the solution point, of the objective function are all negative as can be seen in Table

4.9 indicating that DEFL value would increase for positive change in any design variable. Die 

comer radius, RAD is most sensitive followed by DISP, displacement of the outer edge of the 

sheet. Naturally, the values of the design variables were pushed to the upper limit for 

optimality. Sensitivity values of state variables in the table suggest that STRSMAX, the 

maximum equivalent stress in the bulge will increase for increase in PRESS but will 

decrease for a larger RAD or DISP.

. Figures 4.43 and 4.44 show how the values of different variables changed during the 

analysis. It can be seen that the design variables reached about their maximum limit and 

stabilised fairly quickly half-way through the looping process. DEFL and STRSMAX 

stabilised after 10th loop and converged thereafter.

From the results presented above it is apparent that optimality of the solution is not 

conclusive. However, the analysis provided a maximum achievable bulge height value that 

can be incorporated in some form while optimising from some other point of view. In fact in 

the second analysis of this presentation, DEFL was taken as a state variable with limits close 

to the value obtained in the first.
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Figure 4.43: Behaviour of STRSMAX and PRESS during the height maximisation analysis
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Figure 4.44: Behaviour of DEFL, DISP, RAD during the height maximisation analysis

The objective of the second analysis was to minimise the difference between the 

maximum and minimum equivalent stress in the bulge. The design variables remain the same 

as the first one. Table 4.8 presented earlier shows the variables and their limits and 

tolerances.

As in the first analysis, design variable values for four initial loops were provided 

manually to create data across the design space. The solution converged after 27 loops based 

on design variable tolerance between best and final design. Results of the optimum solution 

and sensitivity and coefficients of the approximate functions are presented in Table 4.10.

Table 4.1.10: Summary results of the second optimisation problem
Sensitivity of Objective 
Function, STRSDIF= 

STRSMAXM - STRSMINM

Sensitivity o f State Variables Optimum
Solution

Multiple
Correlation
Coefficient

STRSDIF

DEFL STRSMAXM

464.81 0.93788

DEFL - - - 11.501 0.99634

STRSMAXM - - - 834.33 0.98116

DISP 138.1 1.062 -263.0 3.3412 -

PRESS 12.40 0.08351 -2.285 145.12 -

RAD -249.40 -.4921 383.30 2.9969 -

D« s i Qfi S e t  Number
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It appears from the table above that the approximate function of quadratic plus cross 

term form are well fitted to the data points. Two design variables viz. inward displacement of 

the periphery and die comer radius have reached close to their upper limit values. As to the 

sensitivity, it can be seen that die comer radius is again the most sensitive variable for stress 

differential and second most for bulge height. Both the stress differential and bulge height 

will decrease for positive change of die comer radius. Stress differential will increase if the 

periphery of the sheet is pushed further inward. The sensitivity value of DEFL shows that 

positive changes in DISP and PRESS would increase the bulge height.
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Figure 4.45: Changes in DEFL, DISP and RAD during the stress differential minimisation
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Figure 4.46: Changes in STRSDIF, STRSMAXM, STRSMINM and PRESS during the stress

differential minimisation analysis
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Changes in the values of different variables can be seen in Figures 4.45 and 4.46. All 

the variable values except pressure were unstable until 19th loop. After 17th loop the 

minimum equivalent stress in the bulge has increased significantly thereby decreasing the 

stress differential very sharply. In fact the solution encouraged development of compressive 

stress in the structure. This has increased the overall stress in the bulge. Figure 4.47 shows the 

distribution of equivalent stress in the bulge for the above optimum solution. Figure 4.48 

shows the distribution of equivalent stress in an equivalent bulge where the pressure load 

applied was 150MPa and the peripheral displacement was 3.0mm. Comparing these two 

figures it is evident that the range of stress in the bulge is not very different, but the pattern of 

stress distribution is significantly different. In the optimised bulge the crest and the body are 

less stressed and the distribution is also more even compared to the non-optimised bulge.
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Figure 4.47: Distribution of equivalent stress in the optimised bulge
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Figure 4.48: Distribution of equivalent stress in an equivalently loaded non-optimised bulge

The difference is more apparent from the distribution of equivalent strain in the 

bulges. Figures 4.49 and 4.50 show the distribution in optimised and non-optimised bulge 

respectively. From the figures it can be seen that the optimised bulge as a whole has strained 

less by about 10% from the non-optimised bulge. Also, the distribution is much even in the 

optimised bulge. Of course, the bulge has a height less by about 3% from that attained in the 

non-optimised bulge. However, the better stress and strain condition in the optimised bulge 

are worthy of consideration.
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Figure 4.49: Distribution of equivalent plastic strain in the optimised bulge
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Figure 4.50: Distribution of equivalent plastic strain in an equivalent non-optimised bulge

As mentioned before, most of the design variable limits were chosen based on the 

analysis done on this structure earlier so that instability does not arise during the course of 

finite element analysis. It was found from the results that thickness ratio at the bulge crest, 

likely region of most thinning, was 0.593 for the second analysis. The bulge can thin up to a 

ratio of about 0.425 before the onset of instability as was observed before. From the above it 

appears that the bulge has not reached instability and further deformation is possible by 

changing the limit of suitable design variables based on the sensitivity values available from 

these analyses.

The mesh in the structure can not be modified although the geometry is changing 

from solution to solution. However, the changes in geometry is limited to the die in these 

analyses. The mesh density in the die region has changed but considering the limit of the 

comer radius it is expected that the analyses would give fairly reliable result. The results were 

checked for reliability by checking the load-displacement and stress-strain behaviour of the 

structure during deformation. It was found that these relationships were smooth throughout 

the deformation process.
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Discrete Optimum by Taguchi Method

Looking at the optimum solutions in Table 4 9 and Table 4 10 it can be seen that

the design variable values are precise up to 4 decimal places From engineering

implementation point of view the values are either difficult or impractical to manufacture

or control For ease of manufacture or control, discrete values of design variables are

always desirable Table 4 11 was developed with probable discrete values to the design

variables close to their optimum solution values keeping the manufacturing concerns in

mind and satisfying the simulation model constraints The sensitivities of the objective

function and the state variable with respect to each design variable in Table 4 9 and Table

4 10 were considered for respective cases and in possible cases taken care of to choose

the discrete values The values were chosen close to the optimal values so that the

probability of missing any local behaviour of the design space is minimal

Table 4 11 Chosen values of design variables at two levels

Design Bulge height maximisation Stress differential minimisation

vanable

level 1 level 2

2 75 3 0

3 25 3 5

144 0 145 0

Three factor-two level orthogonal array from Wu and Taguchi[102] was adopted 

for the design of the trial runs Table 4 12 presents the factor-level combination for the 

four trials runs to be simulated and analysed in this sub-section Each trial run was 

simulated by putting the corresponding design vanable values as input to the design 

optimisation algonthm Result from each run would give different performance 

characteristic values of the process

level 1 level 2

R A D , mm 2 75 3 0

DISP, mm 3 25 3 5

PRESS, MPa 149 0 150 0
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Table 4 12 Factor level combinations for the trial runs

Trial Run / Factor Factor levels

~ “r a d  ~ ~ PRESS DISP

1 1 1 1  

2 1 2  2
3 2 1 2

4 2 2 1

Results o f Bulge Height Maximisation

As outlined in the Appendix on Taguchi5 s method, the S/N ratio was calculated 

from the responses of the objective criterion for respective trial runs For the objective 

criterion of bulge height maximisation, Equation A-3 of the Appendix was used to 

calculate the S/N ratio Table 4 13 shows the bulge height and S/N ratio of different runs 

Table 4 14 presents the level-wise average bulge height and S/N ratio for each factor 

Figure 4 51 graphically shows the trend of average bulge height and S/N ratio due to 

change in the level of different factors

Table 4 13 Bulge height and corresponding S/N ratio for the trial runs

Run/Factor Factor values Bulge height,mm S/N ratio

RAD, mm PRESS,M Pa DISP, mm

1 2 75 149 0 3 25 11 8 21 43

2 2 75 150 0 3 5 12 15 21 69

3 3 0 149 0 3 5 12 041 21 61

4 3 0 150 0 3 25 11 855 21 47

Table 4 14 Level-wise average bulge height and S/N ratio for different factors 

Factors Average bulge height Average S/N ratio

level 1 level 2 level 1 Ievel~2

RAD, mm 11 975 11 948 21 56 21 54

PRESS, MPa 11 920 12 002 21 52 21 58

DISP, mm 11 827 12 095 21 45 21 65
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Figure 4.51: Trend of average bulge height and S/N ratio against factor levels

From Table 4.14 and Figure 51 it can be seen that the comer radius (RAD) value 

at level 1 gives slightly higher bulge height and S/N ratio. Pressure load (PRESS) at level 

2 also gives slightly higher bulge height and S/N ratio than that at level 1. Inward 

peripheral displacement (DISP) at level 2 gives higher bulge height and S/N ratio 

compared to that at level 1. The trend of change of bulge height is more significant in 

case of change in DISP level than those for the other factors viz. RAD and PRESS. 

Selecting the levels that give higher bulge height and higher S/N ratio as suggested by
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Taguchi method, the optimal combination that would give bulge height with minimal 

variability could be comer radius of 2 75 mm, 150 0 MPa pressure and 3 5 mm inward 

displacement of the sheet periphery

The solution set obtained by Taguchi method may be compared with that from the 

original optimum solution by ANSYS Table 4 15 presents both solution sets It can be 

seen from the table that the discrete solution gives almost equal bulge height to that of the 

ANSYS continuous solution Discrete design variable values except the comer radius are 

very close to the original solution The maximum stress in the bulge has almost remained 

the same

Table 4 15 ANSYS solution and solution by Taguchi method

Objective cntenon/Factor ANSYS continuous solution Taguchi method solution

Bulge height, mm 12 12 12 15

Maximum stress, MPa 833 6 835 55

Comer radius, mm 2 9956 2 75

Pressure load, MPa 149 77 150 0

Inward disp, mm 3 4924 3 5

Results o f Stress Differential Minimisation

For the above objective criterion, Equation A-2 of the Appendix was used to 

calculate the S/N ratio from the stress differential values obtained in the four simulation 

runs Table 4 16 presents the stress differential values and corresponding S/N ratio for 

each run Level-wise average stress differential and average S/N ratio is shown in Table 

4 17 Figure 4 52 shows the trend of average stress differential and average S/N ratio for 

changes in the level of each factor

From Table 4 17 and Figure 4 52 it is apparent that comer radius at level 2, 

pressure at level 2 and inward displacement at level 1 give lower stress differential and 

higher S/N ratio According to Taguchi method this factor-level combination would give 

stress differential in the bulge with least variability
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Table 4.16: Stress differential and corresponding S/N ratio of the trial runs

Run/

Factor

Factor values Stress differential, 

MPa

S/N ratio

RAD, mm DISP, mm PRESS, MPa

1 2.75 3.25 144.0 502.45 -54.02

2 2.75 3.5 145.0 543.86 -54.70

3 3.0 3.25 145.0 451.00 -53.08

4 3.0 3.5 144.0 546.89 -54.75

Table 4.17: Level-wise average stress differential and average S/N ratio for the factors

Factor Stress differential, MPa S/N ratio

level 1 level 2 level 1 level 2

RAD, mm 523.15 498.94 -54.36 -53.91

PRESS, MPa 524.67 497.43 -54.38 -53.89

DISP, mm 476.72 545.37 -53.55 -54.72
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Figure 4.52: Trend of average stress differential and S/N ratio against the factor levels
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The solutions by ANSYS and Taguchi method for stress differential minimisation 

case are presented in Table 4 18 for comparison The Taguchi optimum solution is not 

very different from the ANSYS solution but the former gives discrete design variable 

values Also, the stress differential in the bulge has slightly reduced keeping the bulge 

height almost close to the ANSYS solution value

Both ANSYS optimum solutions are almost at the edge of the design space As a 

result there was limited scope to consider sensitivity aspects in choosing the discrete 

values of the design variables For example, in bulge height maximisation case none of 

the chosen discrete values satisfy the direction as suggested by the sensitivity of the 

objective criterion but some conform to the sensitivity of the maximum stress In stress 

differential minimisation case the pressure values and displacement values conform to the 

sensitivity of the objective criterion and most conform to sensitivity of the maximum 

stress As a result, an equally optimal solution was obtained for bulge height and 

somewhat better solution was obtained for stress differential

The two analyses are actually the design of the same forming process but 

optimised for two different objectives However, the two approaches have resulted in two 

slightly different solution sets with respect to the pressure value 

Table 4 118 ANSYS solution and solution by Taguchi method

Objective fiinction/ Factor ANSYS solution Taguchi method solution

Stress differential, MPa 464 81 451 00

Maximum stress, MPa 834 33 852 19

Bulge height, mm 11 501 11415

Comer radius, mm 2 9969 3 0

Pressure load, MPa 145 12 145 0

Inward displacement, mm 3 3412 3 25

The design factors were assigned values at two levels in this work In normal 

design of experiment, two level experiments actually reveal limited behaviour of the 

process compared to experiment with more levels However, considering the fact that the 

design space has already been searched by another algorithm, the main purpose of the 

Taguchi method is to find a combination of discrete factor levels very close to the already 

found saddle point In this sense, two levels within a narrow range does not contradict 

the purpose
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4.2 Bulging a Rectangular Plate in the Middle by Pressure and In-Plane

Compressive Load

Simulation of bulging of a circular sheet with pressure and in-plane compressive 

load has shown that appropriate application of in-plane compressive load gives higher 

bulge height, lower stress and strain compared to forming by pressure load only 

However, in real forming the application of peripheral push on the sheet could be 

difficult More realistic forming situation would be to bulge a rectangular or square 

plate In such a case application of in-plane compressive load is much simpler This 

section presents the simulation of forming a rectangular plate ANSYS finite element 

package was used for the simulation

Modelling

The plate size to model was (107 X 75 77 XI 37)mm The bulge diameter that 

had to be formed was 24 mm Since the bulge was formed at the middle of the plate, the 

model required a three dimensional treatment One quarter of the whole problem was 

modelled taking advantage of quarter symmetry The finite element package used for 

the work had a limited node assignment facility The model size had to be limited to 

keep the wavefront size of the solver within limit This put a major constraint on the 

modelling of the problem The die covering the whole of the plate quadrant would 

increase the number of elements beyond the allowable limit So, modelling was planned 

considering the probable deformation the plate might undergo

It was planned that the in-plane compressive load would be given by pushing the 

longer side of the plate It was conceived that by keeping the end movement within 

certain limit, certain portions of the plate would not move into the bulge region This 

would enable to model the die covering a limited part of the plate With the above 

forming condition in mind the plate was modelled in four parts so that each part could 

be constrained independently Figure 4 53 shows the plate identifying the four parts as 

volumes The die was built on the top of volume 1 only A projection of the die is drawn 

on the plate in Figure 4 53 identifying the bulging region Volume 1 was so
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Figure 4 53 Schematic of the model in X-Y plane

approximated that the nodes at the surface between volume 1 and volume 2 would move 

at most by the amount the plate end would be pushed This would ensure that the nodes 

of volume 2 would not move into the bulging region which is a certain distance away 

from the interface of volume 1 and volume 2 Since the plate will be pushed at the end 

of volumes 2 and 3, it is almost unlikely that the nodes in volumes 3 and 4 would move 

m the bulging region

To keep the number of elements in the model low, a skinned volume of the die 

was built instead of a solid die block The die was built in five volumes mainly to 

facilitate contact modelling and to take care of the curvilinear part of the die The 

curvilinear part of the die consists of double curvature surfaces described by coons 

patches The die fillet radius was 3 mm

Both the plate and the die were discretised with 8 node brick elements with two 

integration points in each co-ordinate direction The plate was discretised with two 

elements across the thickness in order to have better deformation result in thickness 

direction Figure 4 54 shows the discretised plate and die Given the limitation on 

number of elements, the discretisation is rather coarse However, volume 1 of plate 

where most deformation is likely and the curvilinear part of the die were relatively 

densely meshed A total of 7512 elements were generated in the model These include 

the contact elements also The number nodes in the model was 564 Some mid-plane
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nodes of the plate are indicated in the figure for discussion of results. Nodes 3 and 4 are 

the nodes in volume 1 which would go to the bulging zone before any nodes in volume 2 

would go. Node 236 is the comer node on volume 1 which is likely crest point of the 

bulge.
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Figure 4.54: Discretised die and plate.

The plate is modelled with multilinear isotropic material model. Different 

parameters describing the material behaviour are:

Young's Modulus: 3.60xl03Mpa Poisson's ratio: 0.3 

Strain Stress(MPa)

0.005 18.3

0.50 220.0

2.0 465.0

The die was modelled with an elastic material of Young s Modulus of 2.07xl05 Mpa. 

The die was treated as rigid body by fixing its all degrees of freedom.

Three dimensional point-to-surface contact elements were used to model contact 

between the die and the plate. Selective surfaces of the plate and the die were used to 

define contact interface elements. All the under surfaces of the die and top surface of 

the volume 1 of plate were used to define the contact situation. Elastic Coulomb friction

Bulging of a Rectangular Flat Plate

1 0 2



model was assigned with a friction factor of 0 3 Symmetric contact elements were 

generated so that both the die and the plate become contact and target at the same time 

The stiffness of the contact elements was 9 15 kN/mm which was established after 

several trial runs when the penetration of contacting nodes at the interface were 

negligible

Loading and Solution

As mentioned, modelling of the problem was done with certain loading 

conditions that would compensate the absence of die on certain surfaces of the plate 

This was done by constraining the top surfaces of volume 2, 3 and 4 of the plate in their 

normal direction This is exactly what the die would do had it been in place The other 

nodes in those plate volumes were left free so that the interior material is free to deform 

m thickness direction

Other constraints put in the plate were the constraints for quadrant symmetry and 

constraints on the edge Planes of symmetry of the plate have been labelled in Figure 

4 53 All die nodes were totally fixed Displacement loading was given to the outer edge 

of the plate volumes 2 and 3 This loading was kept limited so that nodes in the plate 

volumes 2,3 and 4 do not move to the bulging region Pressure load was applied to all 

the under-surfaces of the plate Two simulations were done for the same model with 

different loading profile Figure 4 55 shows the loading profiles It can be seen from the 

figures that m both profiles displacement loading was same up to an intermediate 

pressure Displacement loading was continued in loading profile II along with pressure 

load while only pressure was built up in loading profile I Further displacement loading 

in loading profile I was given at a higher pressure

Displacement loading was given to only one free edge of the plate for a 

secondary objective Bulging a rectangular plate in the middle with this loading 

condition is nearly equivalent to bulging a tube to T-branch by pressure and end -push 

Since one of the component of this work is to simulate the bulge forming of T branch 

from tube, it was expected that the deformation behaviour m this model would provide 

some insight in to the situation of T-branch forming
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Figure 4.55: Two loading profiles in plate bulging

Newton-Raphson solution procedure with frontal solver was adopted with the 

control that load at each step could be divided into a maximum of 1000 substeps. This 

was done to ensure that load change can adequately cope with the non-linearities arising 

in the deformation process. This is also necessary to avoid any convergence difficulties 

during the solution.

Results

Figures 4.56 and 4.57 respectively show the deformed plate for loading profiles I 

and H The contour shows the total resultant displacement of the nodes. Loading profile 

I produced a bulge of height 18.6 mm while that developed by loading profile II was

21.4 mm. It may be pointed out here that the maximum pressure that could be applied 

by loading profile I before instability (rupture) at the bulge was 34.17 MPa. The end 

displacement applied at that stage was 14.0 mm. Corresponding values by loading 

profile II was 34.36 MPa and 12.0 mm. It is evident that a higher bulge could be 

attained by loading profile II than by loading profile I for a comparable pressure and 

smaller end displacement. However, it is also evident from the deformed figure that the 

bulge root by loading profile II has depressed down even though the end push was 

different. It is thought that this might have resulted from the enhanced push at the end 

while the pressure was lower than what was required.
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Figure 4.56: Deformed shape by loading profile I
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Figure 4.57: Deformed shape by loading profile II
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Figure 4.58: Displacement of nodes 3 and 4 by loading profile I.
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Figure 4.59: Displacement of nodes 3 and 4 by loading profile II.

Figures 4.58 and 4.59 show the displacement of nodes 3 and 4 in Z-direction of 

the model for loading profiles I and II respectively. Positions of node 3 and 4 was 

indicated in Figure 4.54. It is seen from Figure 4.59 for loading profile II that node 3 

was moving down when the pressure was building to 15 Mpa while the plate end was 

pushed by 12.0 mm. During the same period, the end push was maintained at 10.0 mm 

in I and pressure was building . Subsequent pressure in loading profile II was pulling up 

the plate but could not level it.

One of the concern from modelling was that the nodes in plate volumes 2,3 or 4 

must not enter the bulging region. Nodes 3 and 4 belong to plate volume 1. Node 3 is 

the nearest point to volume 2. Node 4 is one element-length away. Node 4 was 

originally about 14 mm away from the bulging zone. It can be seen from Figures 4.58 

and 4.59 that node 4 has moved about 8.0 mm and 12 mm in X-direction respectively. 

This means that the nodes in volume 2 of the plate for loading profile I are still at least 6 

mm away from the bulging zone. For loading profile II, they are at least 2 mm away 

from the bulging zone.

Figures 4.60 and 4.61 show the vector plot of total displacement of nodes. The 

vectors are proportional to their resultant displacement. It is evident from the figures 

that nodes in volume 2 and 3 have moved about equally. Therefore, nodes in volume 3 

also have not moved in the bulging region. Nodes in volume 4 have least movement. 

The nearest nodes in volume 4 from bulging zone were 10 mm away before
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deformation. Those nodes have maximum movement of 7 mm in loading profile II 

which implies they are still 3 mm away from the bulging zone. In loading profile I nodes 

in the above location had even less movement.

Figure 4.60: Vector plot of resultant displacement of nodes in the plate by I.
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Figure 4.61: Vector plot of resultant displacement of nodes in the plate by II.

It is also evident from Figures 4.56., 4.57, 4.60 and 4.61 that there is a dead zone 

in the plate. This zone is limited to the plate volume 4 for obvious reason. However, the 

area of the region found to be different for the two loading profiles. The area developed 

by loading profile II is approximately half the area developed by loading profile 1.
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Loading profile II induces more movement of materials from volume 4 towards the 

bulging region than that by loading profile I as evident from Figures 4.60 and 4.61.

It was seen that the nodes in plate volumes 2, 3 and 4 have not moved to the 

bulging zone. However, they experienced a pull effect due to the bulging in plate 

volume 1. The regions of the plate where the pull effect has reached are expected to thin 

while other regions are expected to thicken due to the compression from the end. 

Figures 4.62 and 4.63 show the plastic strain in the thickness direction of the plate for 

loading profiles I and II respectively. These figures, in fact, all contour figures in three 

dimensions, can not clearly display the contours because of the directional light used in 

the computer graphics. Changing the view point only move the shade from one area to 

another.

Figure 4.62: Distribution of strain in thickness direction of the deformed plate by

loading profile I.

From Figures 4.62 and 4.63 it can be seen that the flat part of the plate has 

largely thickened (positive strain) and the bulge body and crest has thinned (negatively 

strain). The transition region is at and around the bulge base where change in thickness 

is minimal. The maximum thickening in the flat area by loading profile I is about 135% 

of the original thickness. The bulge crest is thinned to about 49% of its thickness by 

loading profile I.
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Figure 4.63: Distribution of strain in thickness direction of the deformed plate by

loading profile II.

The flat part of the plate has thickened more by loading profile II. The maximum 

thickening is about 160% of the original thickness. The bulge crest, on the other hand, 

has thinned to about 46% of its original value by this loading profile. It seems that 

enhanced pushing in loading profile II has thickened the flat part of the plate as the 

depression (buckle) developed at the bulge base has prevented material to move inside 

bulging zone. The flat part of the plate has undergone considerable compression in its 

width direction as the side edges were fixed. In spite of this compression, the plate has 

not wrinkled longitudinally. The thickening has largely compensated the compression 

eliminating the possibility of wrinkling.

The ripple of the enhanced push has, however, reached the bulging area and has 

given rise to a different strain situation in the bulge which permitted more straining of 

the bulge by loading profile II and thereby more thinning and bulge height compared to 

loading profile I. Figures 4.64 and 4.65 show the history of principal strain of a node in 

bulge crest (node 236) for loading profiles I and II respectively. It can be seen from the 

figures that the node was strained differently in principal directions by the loading 

profiles. Sharp rise in strain values toward the end of loading indicates instability by 

both loading profiles. Figure 4.66 shows the development of strain in the same node in 

principal strain plot for loading profiles I and II. It can be seen that up to certain loading
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both had same strain path. After that they deviated and then maintained an approximate 

parallel path and eventually failed at different strain conditions. The bulge by loading 

profile I has failed at lower strain condition than that by loading profile II although more 

end displacement was given by loading profile I. This phenomenon was also observed in 

the cases of bulging circular plate by pressure and in-plane compressive load in Section

4.1.1.
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Figure 4.64: Development of principal strains in node 236 by loading profile I.
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Figure 4.65. Development of principal strains in node 236 by loading profile II.
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Figure 4.66: Strain path of node 236(in bulge crest) by loading profiles I and II on

principal strain plane
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Figure 4.67: von-Mises stress in the deformed bulge by loading profile I.
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Figure 4.68: von-Mises stress in the deformed bulge by loading profile II.
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Figures 4.67 and 4.68 show the von-Mises stress distribution in the bulged plate 

by loading profiles I and II respectively. The crest of the bulge has stressed most in both 

cases and the magnitude of stress is also very close. Apart from the crest, some stress 

concentration may be noticed in the bulge base area near the symmetry edge across 

breadth of the plate . This phenomenon is common for both loading profile. However, in 

the plate loaded by loading profile II the stress concentration is spread over more area 

than the other one. The flat part of the bulged plate by loading profile I is more or less 

uniformly stressed while that by loading profile II has a quite considerable stress 

gradient. The stress gradient developed at the flat part by loading profile II is thought to 

be due to the buckling at the bulge base.

The critical pressure that ruptures the bulge is the same for both loading profile 

as was observed in the case of bulging circular plates. Although loading profile II gave a 

higher bulge, the buckling resulting from the loading is undesirable. The probable 

situation leading to buckling in the flat part is when the stress in the direction of 

compression in the flat part is not tensile enough to counter the compressive strain in 

that direction. The pressure applied for bulging affects the stress mentioned above as is 

evident from Figure 4.69 and 4.70. These figures show the stress of nodes 3
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Figure 4.69: Development of stress in nodes 3 and 4 in X-direction over the load steps

by loading profile I.
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Figure 4.70: Development of stress in nodes 3 and 4 in X-direction over the load steps

by loading profile II.

and 4 in X-direction developed due to loading profiles I and II respectively. It can be 

seen from these figures vis-a-vis Figure 4.55 that whenever there was rise in pressure, 

the stress had a positive turn. Figures 4.71 and 4.72 show the strain in X-direction of 

nodes 3 and 4 for loading profiles I and II respectively. It may be mentioned here that X- 

direction is the direction of compressive load in this model. Nodes 3 and 4 were

ANSYS S. 3 
JTJL 25 1997 
12:21:24 
P0ST26

ZV -1.732 
*DIST=.7S 
*XF -. 5 
-YF -. S 
*ZF -.S 
CENTROID HIDDEN

Figure 4.71: Development of strain in nodes 3 and 4 in X-direction over the load steps

by loading profile I.
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Figure 4.72: Development of strain in nodes 3 and 4 in X-direction over the load steps

by loading profile II.

chosen as these nodes depressed down due to buckling by loading profile II. Looking at 

Figures 4.70 and 4.72 for loading profile II it can seen that at one point in time, node 3 

had peak negative stress and strain in X-direction. This is exactly the time when node 3 

was depressing down leading to the buckling. The stress and strain of node 3 in X- 

direction at that time were about -150 MPa and -2.1 respectively. The ratio of stress to 

strain at that time was 71.42. Comparatively, in loading profile I, node 3 also had a peak 

of negative stress and strain but at different point in time but there was no buckling. The 

stress and strain of node 3 at that instant by loading profile I were about -195 MPa and -

1.97 respectively. The ratio of stress and strain in this case was about 99. From the 

above it seems that by studying the stress and strain in the direction of compression it 

would be possible to figure out a load profile that would not give rise to any buckling 

before the pressure reaches its critical value. A likely loading profile is given in Figure 

4.73 along with the tried profiles. The predicted profile was not tried because of 

unusually long computer time required for the simulation of each run. It may be 

mentioned here that the computer time for simulation of this model was about 20 days 

for each profile.
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Pressure, MPa

Figure 4.73: A possible profile of loading that would give better bulging.

The development of stress or strain in the model were smooth and conforming to 

loading as was seen in different figures showing variation over the load steps or time. 

The contact between the plate and die was also satisfactory. Maximum of about one 

tenth of a millimetre penetration was reported in only three contact elements for both 

loading profile. This much penetration is not expected to affect the stress or strain 

results at the interfaces where these contact elements are located.
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4.3 Axisymmetric Bulging of Tubes

Analysis of axisymmetric bulging of tubes could be done in two-dimension by 

taking advantage of the axisymmetry However, in two-dimensional analysis certain 

aspect of forming like wrinkling or any unusual deformation due to buckling can not be 

detected Therefore a three dimensional analysis was aimed LS-DYNA 3D explicit 

solver was used for the three dimensional analysis ANSYS pre-processor was used for 

finite element model development After reviewing the results from three dimensional 

analysis a two dimensional analysis was taken up for optimisation with respect to strain 

m the bulge

4 3.1 Three Dimensional Analysis 

Modelling

k i l l  mm outer diameter tube of 50 mm length was adopted for bulging in the 

middle The span of the middle section that would be bulged was 20 5 mm The bulging 

surface was free at the top The die surrounded the tube where there was no bulging 

The die recess had a fillet radius of 2 mm Initially a 15° sector of one half of the full 

problem was modelled m cylindrical co-ordinate system using 8- node brick elements 

for explicit solution However, after obtaining the solution it was found that the 

elements are compressed to one edge of the model It seemed that the pressure was 

acting on the wrong face of the elements It was later discovered that the particular type 

of element does not work in models developed in cylindrical co-ordinate system Since 

this was the only elements available m the element library for this kind of analysis, the 

model was developed afresh in Cartesian co-ordinate system This time a quadrant of 

the full problem was modelled in order that the symmetry edges can be constrained in 

circumferential direction properly The die was modelled in three volumes One along 

the tube wall, one perpendicular to the tube wall( die recess wall) and the volume 

joining the two The last one comprises of double curvatured patches modelled by coon 

patches All the volumes were developed from bottom up The tube was modelled in 

single volume by extruding the cross-sectional area in the first attempt But it worked
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out to be problematic to assign the pressure load in proper face of the element. Later the 

tube was developed from bottom up from key points to lines, area and volume. The tube 

was discretised by 20 element divisions along its modelled length and circumference 

and 2 element divisions across the thickness. The die was discretised relatively coarsely 

but in reasonable proportion to tube element lengths. Figure 4.74 shows the discretised 

die and tube. A total of 950 elements describe the model of which 800 elements are in 

the tube and the rest are in the die. Some node numbers are labelled in the figure for 

discussion of results later.
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Figure 4.74: Finite element model of axisymmetric bulging of tube.

A bi-linear isotropic material model was assumed for the tube. The material 

parameters approximately represent Aluminium (A1 5052-0). Different parameters of 

the material are.

Young's Modulus = 69.3x103 MPa, Yield strength = 90 MPa,

Poisson's ratio = 0.33, Density = 2.68x10"6 kg/mm 3,

Tangent Modulus = 475 MPa,
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The approximate strain hardening exponent of the material is 0.223. The die was 

assigned an elastic material model and standard parameter values of mild steel was 

given. The die was modelled as a rigid body.

A surface to surface contact algorithm was chosen for interface modelling. 

Elastic Coulomb friction law was assumed and the coefficient of friction was 0.15. This 

solution process has an in-built algorithm to calculate the stiffness of the contact 

elements. The algorithm uses material properties of both the contacting surfaces.

Loading and Solution

The pressure load was applied at the inner surface of the tube and the inner layer 

of the elements were assigned for pressure loading. Pressure load was applied to the 

inner surface of the elements. The node connectivity of some of the elements of the tube 

inner layer was checked to find out the face of the element that would take the pressure 

load. It was thought that all the inner layer elements would have the same face to take 

the pressure load. But after the simulation it was apparent that all elements did not have 

the same face notation for the inner surface. As a result the pressure load was on proper 

face of some element and was on the wrong face for some other elements. Figure 4.75 

shows an example of deformation that occurred due to the wrongly placed pressure 

loading.

Figure 4.3.2: Consequence of wrong modelling
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After checking element by element it was found that there were few different 

element connectivity pattern. Then it was decided to build the tube volume from bottom 

up where the modeller can develop lines and areas in a consistent manner. This way all 

the inner layer elements had consistent connectivity and same surface notation of the 

elements could identify the tube inner surface.

After that, considerable difficulty was faced with contact condition at the quarter 

symmetry edges of the model. The edge nodes deformed in a very unusual manner. 

Initially it was thought that hourglass type deformation is taking place. As explained in 

section 3.3, hourglass type deformation is a zero energy mode deformation which is in 

fact a spurious deformation. But checking the tube surface removing the die, it was 

found that the deformation problem is limited to the symmetry edges. All possible 

contact parameters were changed but the behaviour remain unchanged. Then it was 

thought that at the edges there was no die node to harbour tube nodes to form a 

contacting pair. Subscribing to that idea, the die edges were extended a little further 

from the tube edges which can be seen in the finite element model in Figure 4.74. After 

that there was no problem of deformation at the edges.

After sorting out these problems, the first model was run with relatively high 

pressure so that an idea of the critical pressure could be obtained. From earlier 

simulation on bulge forming it was found that the pressure to rupture the bulge is same 

irrespective of the way the displacement loading is applied. Once the critical pressure is 

established then the pressure can be manipulated within that limit to suit the 

displacement loading. Accordingly subsequent models were run within that pressure 

limit. Two different loading patterns were tried as shown in Figures 4.76 and 4.77.

Figure 4.76: Loading pattern I Figure 4.77: Loading Pattern II
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In the first loading pattern, half of the pressure and axial displacement load was 

applied within the quarter of the simulation period In the second pattern the axial load 

is enhanced and the pressure load is delayed Three quarter of the axial load was applied 

within the first quarter of the simulation period while only one fourth of the pressure 

load was applied during the same period m the second loading pattern

The simulation time for the model was 0 01 seconds which is much shorter than 

the real time of the process This was necessary to reduce the computer time to solve the 

problem One possible outcome of shortening the time scale would be that the kinetic 

energy in the process might become unacceptably high This would be unrealistic from 

practical manufacturing point of view Therefore, it is always important to check the 

development of kinetic energy in the process Usually the kinetic energy should be veiy 

negligible compared to the internal energy of the system

The brick elements used in the model was opted for reduced integration 

Reduced integrated elements are prone to hourglass type deformation as explained in 

section 3 3 However, they are computer time efficient and generally give better results 

for metal forming provided the energy due to hourglass deformation mode is not high 

LS-DYNA developers[103] suggests that hourglass energy within 10% of internal 

energy is acceptable All the simulation models were checked for hourglass energy One 

particular model was run with full integration option for the elements mamly to 

compare with reduced integration results and thereby confirm the results from reduced 

integration options

Results and Discussion

As mentioned earlier, the model was initially subjected to high pressure to 

determine the pressure at which the bulge ruptures The point of rupture is assumed 

when a node in the highly stressed area is steeply stressed or strained Figure 4 78 shows 

a deformed state of the tube It can be seen that the tube has been expanded quite 

considerably in circumferential direction The maximum diameter in the expanded area 

is about 40 mm The original tube diameter (mid-plane) is 24 5 mm Therefore, the ratio 

of expansion is about 1 63 mm The thickness of the tube m the expanded zone has gone 

down to about 28% of the original thickness
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Figure 4.78: Excessively deformed bulge due very high internal pressure.

Figure 4.79 shows the development of principal strains in the node 1270 

(location identified in Figure 4.74). It can be seen from the figure that at about 0.0043 

seconds in the simulation time, the node started straining at a faster rate, which indicates 

the onset of necking. At the same time, the total internal and kinetic energy of the 

system also took an up turn and soon reached infinite values as can be seen from Figure 

4.80.

Figure 4.79: Principal strains of node 1270. Figure 4.80: Development of energy

The loading situation at this point in time can be seen from Figure 4.81. It is seen 

that a pressure of about 25.0 MPa was active at that time of simulation. The end 

displacement was about 3.72 mm. From Figure 4.80 it is also evident that hourglass
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energy of the system also picked up around the same time. Severe hourglass 

deformation is also evident in Figure 4.78. Almost all elements in the main branch and 

around the die bend have hourglass mode of deformation. This state of deformation is 

not reliable. Therefore, it may be concluded that the critical pressure identified earlier is 

expected to give rise to hourglass deformation. Accordingly a lower pressure of 20 MPa 

was administered in the subsequent trials of the model.

Figure 4.81: Loading pattern of the highly pressure loading simulation.

Figure 4.82 shows the deformed shape of the bulge formed at 20 MPa pressure 

and 8 mm end displacement by following loading pattern I in Figure 4.76. The figure 

also plots the distribution of displacement of nodes in radial direction. It can be seen 

from the displacement plot that a good length of the bulge has expanded parallel to the

axis.
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Figure 4.82: Deformed shape of the bulge by loading pattern I.
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The bulge actually has taken different shapes before it took the final shape 

shown in Figure 4.82. Figures 4.83 and 4.84 show the deformed shapes at quarter way 

and half way through the simulation. It can be seen that the bulge initially started like a 

hump near the die recess and then gradually the whole bulging zone inflated.
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Figure 4.83 : Intermediate shape taken by the bulge at 0.0025 seconds in the simulation

by loading pattern I.
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Figure 4.84 : Intermediate shape taken by the bulge at 0.005 seconds in the simulation

by loading pattern I.

Also, the elements in these figures have maintained regular shape meaning no 

hourglassing. This fact is more evident in Figure 4.85 where the ratio of hourglass 

energy to internal energy is plotted over the simulation time. The ratio is more or less

LS-DYNA3D user input.
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steady over the period maintaining a value within 0.005 which is almost negligible. The 

ratio of kinetic energy to internal energy is also plotted in the figure. After a initial kick 

which is quite plausible due to the movement of material from stationery condition, the 

kinetic energy has almost become negligible. Figure 4.86 shows the development of 

internal energy and total energy of the system over the simulation period. It is seen that 

the energy development in the process was steady.

Figure 4.85: Ratio of hourglass energy and kinetic energy to internal energy by loading

pattern I.

SIMULATION TIME. SEC.

Figure 4.86: Development of internal energy and total energy in the deformation process

by loading pattern I.
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Figure 4.87 shows the distribution of von-Mises stress in the bulged tube. The 

tube has more or less equally stressed at the cylindrical portion of the bulge. A stress 

gradient is observed at the die bend and at the main body of the tube. However a good 

part of this region has developed lower stress compared to the main bulge. This is a sign 

that this region which had undergone appreciable compression from the end was 

simultaneously relieved by the pull due to the pressure.
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Figure 4.87: von-Mises stress in the deformed bulge by loading pattern I.
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Figure 4.88: Development of stresses in node 1270 and node 605.

125



The above observation may be confirmed by looking at the stress development 

of a node in that region Node 605 is a node in the region whose location was indicated 

in Figure 4 74 This node is in the above mentioned region after the deformation Figure 

4 88 shows the development of stress in the node m the axial direction (bottom most 

curve) It can be seen from the figure that the stress in the node maintained a steady 

negative value almost half way through the simulation period although there was 

continuous end displacement loading during the period Subsequently the stress in the 

node seems to be going negative with a stick-slip effect which implies a push-pull 

situation At the end of the simulation period it seems that the node is experiencing a 

pull due to the pressure

The von-Miss stress and two principal stresses of node 1270 (a node at the half 

symmetry of the bulge) are also plotted in Figure 4 88 The stress in the node shows a 

steady and stable growth Looking at the state of stress development it appears that the 

bulge could continue to expand a little further However, since both the circumferential 

and the meridional stress are positive and increasing, the rupture instability would not 

be late According to theoretical works on axisymmetnc bulging of tubes[40,56] the 

instability strain is given as,

- 2 n J ( \ - a  + a  )
e = ---------------------  where, a  = gi/o2 and n is the strain hardening exponent

(1 + a )

Gi = the first principal stress and a 2 = the second principal stress 

The above relation implies that a negative stress ratio > -1 would raise the instability 

strain to even infinity In other words, it would be always desirable to maintain the stress 

ratio a  such that

-1 < a  < 0

From Figure 4 88 it can be seen that the ratio was negative until about half way through 

the simulation Then the ratio was positive as the second principal stress turned tensile 

from compressive Theoretically it would had been better if  the second principal stress 

could be maintained compressive That could have been done by giving higher level of 

axial loading But since the tube length in the model was limited, a higher ratio of axial 

loading to pressure loading was not possible for all over the simulation period Also a 

larger model was not an option because of the computer limitation However, a higher
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ratio of displacement loading was tried for a limited period of simulation which is 

discussed later.

The thickness strain distribution in the final shape of the bulge is shown in the 

Figure 4.89. From the figure it seems that strain distribution pattern is rather unexpected 

in the sense that the bulge is likely to thin uniformly over a length as in the stress pattern 

in Figure 4.87. This could be due to the movement of nodes from their angular position 

while the bulge was expanding. For a perfect bulging, the nodes should move radially 

keeping the same angular position as shown in Figure 4.90. Point A should maintain the 

same radial position by moving along the line of expansion.
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Figure 4.89: Distribution of thickness strain of the bulge by loading pattern I

Figure 4.90: Ideal mode of expansion of a point in tube bulging.
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But from Figure 4.91, where the distribution of displacement of nodes in 

circumferential direction was plotted it can be seen that the nodes have slightly deviated 

from their theoretical path. Theoretically they should have zero displacement in this 

direction. From the contour labels in the figure it can be seen that the magnitude of the 

deviation is at the most 0.038 mm. Still, this has resulted in variation of strain in the 

mid-region of the bulge in Figure 4.89. The quarter symmetry edge nodes were all 

constrained circumferentially. Therefore the edge nodes have not moved 

circumferentially. It can be seen in Figure 4.89 that the pattern at both edges of the 

model is same and, therefore, can be taken as what the actual pattern should be. In fact 

similar pattern is evident in the distribution of stress in the thickness direction of the 

bulge as illustrated in Figure 4.92. Accordingly, the bulge has thinned most about the 

middle section and very negligible thinning in the bend area. There is almost no 

thickening in the main tube part despite axial compression.
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Figure 4.91. Displacement of nodes in the circumferential direction of the bulge by

loading pattern I.
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Figure 4.92: Distribution of stress in thickness direction of bulge by loading pattern I.

Figure 4.93: Development of principal strains in nodes 1270 and 885.

Figure 4.93 shows the plot of principal strains of nodes 1270 and 885. The 

former is at the half symmetry edge of the bulge and the latter is somewhere about the 

middle of the modelled bulged part. Both nodes show similar history of straining. From 

the figure it can be seen that the strain in the axial direction is maintaining a steady 

compressive value while the strain in the hoop direction is increasing in tensile mode. 

This state of straining implies fast thinning of the bulge. If the loading pattern were
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continued the bulge would have ruptured. Theoretically [56] it is said that when the 

strain in thickness direction reaches the magnitude of strain hardening exponent of the 

material, the bulge will rupture. From the figure it can be seen that the strain in both 

nodes is close to the strain hardening value which is about 0.223 for the material.
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Figure 4.94: Vector plot of total displacement of nodes of the tube.

Figure 4.94 shows the vector plot of the total displacement of nodes. This 

illustrates the material movement in the deformation. It can be seen from the figure that 

the nodes even close to the half symmetry edge have moved axially towards the 

symmetry edge bringing the material in the central region of the bulge.

Although the hourglass energy of the simulation was observed to be very low 

(Figure 4.85), a simulation was run with fully integrated elements where there could be 

no hourglass mode of deformation. The result is almost identical in all aspects. Figure 

4.95 shows the deformed shape of the bulge with contour plotting of displacement of 

the nodes in radial direction. It can be seen that the shape of the bulge is almost the 

same and the maximum radial displacement is 8.524 mm as against 8.982 mm obtained 

by reduced integrated elements. Table 4.19 shows the summary of main results of the 

two simulations for comparison. Slight difference in displacement, stress and thinning is 

quite reasonable as the relatively stiffer fully integrated elements allow less deformation 

compared to the reduced integration elements.
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Figure 4.95: Deformed shape of the bulge simulated using fully integrated brick

elements.

Table 4.19: Comparison of results between simulations with fully integrated and

reduced integration brick elements.

Simulation Maxm radial Max"1 von-Mises stress Maxm thinning (% of Total energy

displacement (MPa) original thickness) after the end of

(mm) Value Location Value Location simulation

Fully

integrated 8.524 377.74 bulge mid­ 78 bulge mid* = 40,000

elements section section

Reduced

integration 8.982 380.59 bulge mid­ 75 bulge mid­ = 40,000

elements section section

History of development of stress and energy in the bulge is also nearly the same 

for both the cases. Figure 4.96 shows the stress development in nodes 1270 and 605 for 

fully integrated element simulation. Figure 4.97 shows the development of energy in the 

process for the same case. Comparing these two figures with Figures 4.88 and 4.86 

respectively it can be seen that pattern of development of stress and energy is very much 

similar although the rate of change at any instant could be little different. But the values 

at the end of the simulation are almost equal.
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Figure 4.96: Development of stress in nodes 1270 and 605 in simulation using fully

integrated brick elements.
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Figure 4.97: Energy development in the simulation using fully integrated brick elements.

Considering the above comparative results for fully integrated elements and 

reduced integration elements it was found that both of them give almost the same result. 

But the simulation with fully integrated elements take more than 3 times computer time 

than that taken by reduced integration elements. Therefore, it was decided that 

subsequent simulations of this forming process would be done using reduced integration 

elements.
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As mentioned, the same model was run for a different loading pattern called 

pattern II as was shown in Figure 4.77. This loading imposes a higher ratio of axial 

loading to pressure loading in the first quarter of the simulation period as compared to 

the loading in previous simulations. This enhanced axial loading has induced different 

forming situation. Figure 4.98 shows the deformed shape of the bulge with contours of 

the radial displacement of the nodes. It can be seen from the figure that the shape is 

quite different to that developed by previous simulations in which the bulge had taken a 

smooth change of shape from the main tube to the fully developed bulge. But in this 

case the shape is rather irregular. The transition region from the main tube to the full 

blown bulge has two humps. One is just near the recess and the other slightly away from 

the recess.

Figure 4.98: Deformed shape of the bulge by loading pattern II.

The reason for this state of deformation is related to the deformation shapes the 

bulge had taken at earlier stages of the simulation period. Figures 4.99 and 4.100 

respectively show the shapes of the bulge when the simulation was one fourth and one 

half way through the period. Comparing these two figures with Figure 4.83 and 4.84 

respectively it can be seen that bulge development was quite different in this case. In 

this case the initial hump was more prominent and continued to maintain the at half way 

through the simulation. In earlier simulation the hump had inflated and lost its shape
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when the simulation was half way. Though the hump went on inflating in the earlier 

simulation and eventually disappeared fully at the end of the simulation period, the 

hump in this case, in contrast, continued to maintain its shape until about three quarters 

way through the simulation period. After that the hump end near the die recess started 

inflating and continued and about 0.009 seconds through the simulation period the other 

end of the hump started inflating very fast. However, the ultimate bulge shown in Figure

4.98 could not eliminate the impression of the hump. The maximum radial displacement 

of the bulge was about 7.864 mm which is about 1.12 mm less than that obtained by 

previous loading pattern.
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Figure 4.99: Bulge shape by loading pattern II after simulation time of 0.0025 seconds.
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Figure 4.100: Bulge shape by loading pattern II after simulation time of 0.005 seconds.
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Figure 4.101: History of stress development in nodes 1270 and 605 by loading pattern II.

The different history of deformation due to different loading can be seen more 

clearly by observing the development of stress at some nodes in the tube. Figure 4.101 

shows the history of stress development in node 1270 and 605 for the present loading. It 

can be seen that the nodes did not pick up much stress until about 0.008 seconds in the 

simulation. This is the time about when the hump end started inflating as described
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before. In contrast, these nodes developed stress right from 0.005 seconds through the 

simulation as was shown in Figure 4.88. It is interesting to note the development of 

stress of node 605 in Figure 4.101 which is near the die bend after full loading. Unlike 

Figure 4.88 where the node had a stick-slip deformation, the node here continued to be 

in compressive stress state until about 0.0088 seconds in the simulation. After that the 

node suddenly came under tensile stress state when the far end of the hump started 

inflating exerting a pull at the tube end. At this point in simulation time, stresses in other 

nodes also started picking up very fast. The stress history indicates that the bulge was 

more or less in a balance between circumferential tensile stress and axial compressive 

stress that kept the stress in bulge steady. Towards the end the influence of pressure load 

started dominating the deformation over the axial load. Although there was no sudden 

change in either the pressure or the axial load, the deformation in the bulge took a 

sudden change in mode from predominant compression mode to predominant expansion 

mode. This change has caused sudden change in the kinetic energy of the process. 

Figure 4.102 show the ratio of kinetic energy to internal energy over the simulation 

period. It can be seen that after the initial kick the kinetic energy in the process built up 

suddenly at 0.009 seconds in the simulation. This is also the time that the bulge started 

expanding very fast as noted earlier. The increase in the kinetic energy was only about 2 

percent of the internal energy. It can also be seen from the figure that the bulge became 

stable immediately after it switched its mode and continued expanding.
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Figure 4.102: Ratio of kinetic energy to internal energy over the simulation period.

136



The deformation process described above suggests that if the loading in 

axisymmetric bulging is predominantly compressive due to higher level of axial loading, 

then the bulge will have a mode shape change as soon as the pressure loading takes 

over. In explicit dynamic solution process this type of situation is handled by system 

damping techniques within the solution process. However, it is always better to avoid 

this kind of temporary instabilities which might yield unreliable result specially if the 

system is not damped down soon. Observations from trial solutions would help the 

designer to avoid loading conditions that give rise to situations like this. It was observed 

in Figure 4.88 that the stress in node 605 suggested a stick-slip situation which indicates 

that the bulge is alternately under compression and expansion. But in Figure 4.101 it 

was found that node 605 was consistently developing compressive stress meaning that 

the expansion in the bulging region is not strong enough to pull the nodes towards the 

bulging region. This is a situation for potential mode change.
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Figure 4.103: Ratio of principal stresses of node 1270, 885 and 605 as developed due to

loading pattern II.

Figure 4.103 shows of principal stress ratio of nodes 1270, 885 and 605. These 

nodes are respectively at the bulge mid-section, at the hump developed during the 

process and at the main tube which eventually ended up at the die bend. The stress ratio 

indicates the ratio of axial stress to hoop stress in the nodes. It can be seen that the 

effect of enhanced axial displacement has reflected in the stress ratio of nodes 1270 and

SIMULATION TIME,  SEC.
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885 during the first quarter of the simulation period. After that these nodes have steady 

and stable ratio of axial stress to hoop stress even when the temporary instability was set 

in the structure. But the ratio of node 605 was decreasing all along and eventually with a 

sudden sign of relief in axial stress the temporary instability was set in the bulge.

This kind of instability does not result in sound deformation behaviour. It was 

already found that this simulation has resulted in a bulge with smaller radial expansion. 

In this kind of deformation the stress and strain in the bulge is expected to be higher and 

uneven than a smooth forming situation. Figure 4.104 shows the von-Mises stress in the 

bulge. The maximum stress in the bulge is in the cylindrical part as was the case with 

loading pattern I. But the magnitude of the stress is about 1.13 times higher than that 

developed by loading pattern I in the previous simulation. Figure 6.105 shows the 

distribution of strain in the bulge in thickness direction. Taking the strains at the quarter 

symmetry edge as representative pattern, as reasoned out earlier, it can be seen that the 

bulge has thinned out at two locations along the length. For full model this would be at 

four locations. The extent of thinning is about 80% of the original thickness. Unlike 

previous simulation, this simulation has resulted in slight thickening at the main tube.
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Figure 4.104: von-Mises stress in the bulge by loading pattern II.
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Figure 4.105: Distribution of strain in the thickness direction of the bulge by loading

pattern II.

Figures 4.106 and 4.107 show the axial displacement of some nodes along the 

length of the tube for loading pattern I and II respectively over the simulation period. It 

can be seen from Figure 4.106 that all nodes along the length except 1282 to 1286 have 

steadily moved in axial direction towards the bulge mid-section. Nodes 1282 to 1286 

have reversed their movement in axial direction at about half-way through the 

simulation. These nodes were pushed back to the die recess at that time and then again 

started moving towards the bulge centre. The situation due to loading pattern II is 

sharply different as can be seen in Figure 4.107. In this case almost all nodes except 

those very near the tube end and bulge mid-section have moved back sharply in the axial 

direction at about 0.0088 seconds in the simulation after a steady movement towards the 

bulge centre. At about 0.009 seconds in the simulation these nodes either stabilised or 

continued to move back but at a much slower rate.
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Figure 4.106: Axial movement of some nodes along the tube length due to loading

pattern I.
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Figure 4.107: Axial movement of some nodes along the tube length due to loading

pattern II.

Figures 4.108 and 4.109 show the strain path followed by nodes 1280, 1284, 

1292 and 1256 in the principal strain planes due to loading patterns I and II respectively. 

Finite element model in Figure 4.74 shows the positions of the nodes in the tube. In 

general, under loading pattern I, the tube initially deformed under bi-axial tension in the
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first quadrant and then quickly moved on to the second quadrant where the bulge 

experienced tension in the hoop direction and compression in the axial direction. Under 

loading pattern II, the initial and final forming condition are nearly the same but 

differences are observed during the intermediate period of deformation. Most striking

difference is observed in the strain path of nodes 1256 and 1284 in Figure 4.109 than 

that in Figure 4.108. The strain path of node 1256 by loading pattern II suggests that the 

bulge middle section experienced tension followed by compression and then again 

tension followed by compression in axial direction. Node 1284 which was initially 

under the die and ended up in the conical portion of the bulge experienced very weak 

compression until towards the end of the simulation.

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05

Minor Strain

Figure 4.108: Strain path of some nodes due to loading pattern I.
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Figure 4.109: Strain path of some nodes due to loading pattern II.
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Although it was not possible to identify a best loading pattern from the limited 

simulations, it can be said with certainty that the loading pattern I was better than the 

loading pattern II for the simulation problem Effort to identify an optimum loading 

pattern for the axisymmetric bulging of tubes is discussed in the next sub-section

4.3.2. Optimisation of Axisymmetric Bulging

It was illustrated in the previous section that the loading pattern has profound 

effect on the deformation of axisymmetric bulging process It would, therefore, require 

large number of tnal runs to establish a loading pattern that would result in desirable 

deformation behaviour during the bulging process With the present computer resources 

of the project it was a question of weeks to have good number of trials to determine an 

effective loading pattern In the three dimensional analysis it was found that within the 

prescribed load limits there was no unusual deformation like wrinkles or buckling 

beyond recoverable limit Therefore, it was thought that the axisymmetric two 

dimensional analysis of the process could be possible to undertake Accordingly a two 

dimensional analysis of the problem was tried and it was found that the solution 

converges within about 50% of the time for three dimensional analysis The results were 

also close to the three dimensional analysis It was, therefore, decided that an 

optimisation exercise will be carried out to determine a better loading pattern

Finite Element Model

Figure 4 110 shows half of the axisymmetric two dimensional model of the 

problem The geometrical dimensions of the tube and die are the same However, the 

tube here is modelled in two parts for the convenience of defining the optimisation 

problem and for the generation of contact elements Also, the discretisation of the tube 

is done slightly differently Part one of the tube is likely to undergo compression at the 

tube end and expansion at the other end Therefore, mesh size at the tube end are 

coarser than the other end The second part of the tube is meshed uniformly Contact 

elements were generated selectively by considering the likely surface of interaction 

Outside surface of the first part of the tube has contact elements with all of the inner
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Figure 4.110: Finite element model of the optimisation exercise

surface of the die. Since the outside surface of the second part of the tube would only 

come in contact with the die recess, the contact elements there were generated 

accordingly. The stiffness of the contact elements were determined by several trial runs. 

After each trial run the contact gaps were checked and the stiffness value was changed 

to suitable value until a negligible contact penetration was achieved. The final stiffness 

value assigned to the contact elements was 138.6 kN/mm. An elastic Coulomb friction 

model was assumed the friction factor was 0.15. Figure 4.110 also shows the pressure 

loading at the inner surface of the tube and displacement loading at the tube end. Y- axis 

is the axis of symmetry. All die nodes are totally fixed. Tube nodes at the half symmetry 

are fixed in Y-direction. The tube and die material are the same as in three dimensional 

analysis.

Optimisation Problem

The optimisation problem was set up based on the results from three 

dimensional analysis. In three dimensional analysis it was found that the deformation 

starts as a little hump somewhere in-between the die recess and the symmetry plane of 

the model. Depending on the loading pattern the ends of the hump either inflate or do
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not The ends can also behave independently It was, therefore, observed that the 

deformation behaviour on both sides of the initial hump could be different Accordingly, 

the tube in the finite element model was built in two parts The initial hump is expected 

to build up withm the second part of the tube near the interface of the two parts 

Therefore, the maximum stress is expected to develop in the second part of the tube and 

eventual rupture there In the optimisation problem, one of the state variable was 

defined to keep the stress in that part limited within the instability stress In three 

dimensional analysis it was found that the maximum equivalent stress in that region was 

around 400 MPa Accordingly the limit of the maximum equivalent stress in the nodes 

in the second part was defined as,

380 < A2NSMAX <400 

One of the objective of tube expansion is to obtain a certain minimum extent of 

radial expansion of the tube within the bulging region The conical part of the bulge 

(from main tube to full blown bulge) is expected to be formed from the first part of the 

tube Therefore, the nodes here will have widely different amount of radial 

displacement All of the second part, on the other hand, is expected to be the part of the 

full blown bulge The radial displacement of the nodes here should be as maximum as 

possible From the observations in three dimensional analysis the minimum radial 

displacement of the nodes in part two of the tube was defined as,

7 < A2NUXMIN < 10 

As in 3D analysis, the full pressure load applied was 20 MPa and the full axial 

displacement was 8 mm However, the load is applied in two load steps At the first load 

step a fraction of the full load was applied This fractions were considered as design 

variables For the pressure load, the factor was named PRESFACT and the limit was set 

as,

0 2 < PRESFACT < 0 8  

The displacement load factor was named as DISPFACT and the limit was set as,

0 < DISPFACT < 0 5

The limits were set based on the simulation experience in three dimensional analysis 

The limit of DISFPACT was explicitly kept within 50% of the full load to avoid 

instability The rest of the load after first load step was applied in the second and final 

load step
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An ideal condition of bulging any blank into a shape by internal pressure and m- 

plane compressive load would be pushing the material of the blank in the bulging region 

without any folding or wrinkling at the constrained region and without any buckling or 

rupture at the bulging region The state variables A2NSMAX and A2NUXMIN would 

take care of the latter criteria The former criteria of no folding or wrinkling could be 

attained if the constrained part could be just displaced without much straining Thus the 

strain in the constrained region could be kept at a minimum The first part of the tube 

model is in the the constrained region Therefore, it was thought that minimising the 

maximum strain in this part of the tube would provide the optimum loading pattern 

Accordingly, minimisation of the maximum equivalent strain in the node of the 

constrained part of the tube, A1NEPMAX, was set as the objective function of the 

optimisation problem The optimisation problem can be summarised as

Minimise A1NEPMAX = f  (PRESFACT, DISPFACT)

Subject to

380 < A2NSMAX (PRESFACT, DISPFACT) < 400 

7 < A2NUXMIN (PRESFACT, DISPFACT) < 10 

and

0 2 < PRESFACT < 0 8  

0 0 < DISFACT < 0 5  

After necessary post-processing the results of the initial trial run to define the 

optimisation problem, the optimisation solution process was started With the results 

from few more random trial runs within the limit of design variables, the solution 

progressed as dictated by regression curve of the objective criterion as a function of 

design variables A quadratic plus cross term fit was requested for the regression 

analysis for objective and state vanable functions

Results and Discussion

The optimisation solution converged after 7 optimisation iterations after about 

58 hours of computation time Solution converged to possible optimum based on design 

vanable tolerances between the best and final designs This means that the design
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variable values of the final design set are within the tolerance limit of the design 

variable values of the last best design Although the solution did not find an explicit 

optimum of the objective variables, it points to the fact that the optimum solution is 

hovering around a certain set of design variable values The design sets obtained from 

the optimisation exercise are presented in Table 4 20

Table 4 20 Different design sets obtained from the optimisation run

Vanable Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

A1NEPMAX (obj) 0 79096 0 74124 0 85917 0 79245 0 74152 ” 0 74244 0 77580

DISPFACT (DV) 0 20 0 42366 0 1943 0 26901 0 41385 0 42656 0 23764

PRESFACT (DV) 0 50 0 47431 0 61592 0 57075 0 48678 0 51888 0 50086

A2NSMAX (SV) 392 36 405 55 419 70 394 10 402 67 400 71 386 67

A2NUXMIN (SV) 8 0984 7 2743 8 8253 8 1240 7 3136 7 3535 7 9160

Figure 4 111 shows the variation of objective function and design vanables over 

various design sets produced during the solution process The graph shows 8 design sets 

although the optimum solution produced 7 sets with seventh one being the optimum 

The 8th set is a repeat of set 5 to restore results for analysis and presentation Actually 

the design set 5 gave the minimum objective figure of merit (strain in the first part of the 

tube) but discarded by the algorithm because the state variable A2NSMAX, the 

maximum equivalent stress in the second part of the tube, was slightly more than the set 

limit o f400 MPa This limit violation caused the solution set to be infeasible It may be 

mentioned here that the limits set on state vanables are based on tnal solutions and are 

approximate values It may be seen from Table 4 3 2 that A2NSMAX in set 5 is 402 67 

MPa which is very close to the limit value Therefore, design set 5 could be taken as the 

best available solution set

This design set suggests that 0 48678 part of the total pressure load of 20 MPa be 

applied along with 0 41385 part of the total axial displacement load of 8 mm at the first 

load step The ratio obtained from the optimisation exercise are close to the ratio of 

maximum available axial displacement to critical pressure which is approximately 0 40 

in this case It was also the experience from simulation of circular and rectangular plates 

that a ratio like this gives better results

146



1

Figure 4.111: Variation of objective function and design variables over the design sets.

Figure 4.112 shows the deformed shape of the bulge due to this optimum 

loading. It can be seen that the bulge has a maximum radial displacement of 8.95 mm at 

the mid-symmetry plane. Unlike the 3D analysis, the bulge here does not have a good 

cylindrical portion at the middle. However, the difference in radial displacement is only 

1 mm for a good portion of the bulge.

Figure 4.112: Deformed shape of the optimised bulge.

Figure 4.113 shows the bulge shape after the first load step. The shape is pretty 

much the same taken by the three dimensional analysis after the first quarter of 

simulation period by when an equivalent part of the full load was administered.

Figure 4.114 shows the thickness strain in the bulge. Maximum thinning is 

observed at the middle of the full bulge. The thickness there has reduced to about 75%
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of the original thickness. In three dimensional analysis similar thinning was also 

observed
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Figure 4.114 : Distribution of strain in the thickness direction of the optimised bulge.

The load ratio suggested by the optimum solution is due to a particular way of 

defining the problem. Keeping the basic reasoning same, the problem could be defined 

in some other ways. Also the problem could be broadened by inducing more variables. 

But that kind of trial would warrant very long computation time for the computer 

resources used in this work. However, such exercise is worth exploring if faster 

computer resources are available.
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4.4 Asymmetric Bulging of Tubes

It was stated in the introduction that asymmetric bulging of tubes is a very 

complex forming process Yet there are many different types of products made by this 

process This work involved simulation of the deformation of two types of products 

One is the forming of T- branch and the other is the forming of L-bend The former 

involved application of both the internal pressure and the axial compressive load while 

the later was formed with internal pressure only

Modelling and simulation of T-branch forming started with the limited ANSYS 

package The models developed with this package were somewhat restricted m number 

of elements However, good insight into the problem could be achieved from these 

simulations Later more satisfactory models were developed and simulated by acquiring 

LS-DYNA3D package Results from both analysis packages are presented Some 

simulations were done to analyse the failure mode of T-branch forming These were also 

done in LS-DYNA3D but with a different pre and post processor Forming of L-bend 

was also simulated with the latter package

4 41 ANSYS Simulation of T-branch Forming from a Tube

Modelling

For asymmetric forming specially T-branch forming, the die is a complicated 

part to model Serious difficulties arise to describe or develop the blending region 

between the die mam body and the die recess Figure 4 115 shows a rendered solid 

model of one quarter of the die which would be required to model for finite element 

analysis Apart from the blending region, the die had to be extended from its symmetry 

planes to address the problem of contact pairing mentioned earlier in section 4 3 This 

was particularly important for LS-DYNA3D model For ANSYS model extension of die 

was not required as its contact algonthm has some tolerance mechanism to extend 

symmetry surfaces
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Figure 4.116: Wireframe model of the die quarter.

Figure 4.116 shows a wireframe model of the die quarter. From the figure it can 

be seen that the blending region is at the junction of two double curvatured volumes. 

Therefore the surfaces to be blended are doubly curved. In addition, the blending radius 

is varying; at one end it has some radius but at the other end the radius is infinity. Also
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the surfaces at this end meet at a point which eventually may result in bad shaped 

element at that location unless very fine sized mesh is generated.

The ANSYS pre-processor can not develop such surfaces. It also does not have a 

translator to import CAD files in DXF format. It has an IGES translator but the CAD 

software available for the project did not have IGES translator. Although it was not 

difficult to develop the geometrical model in AutoCAD, the difficulty was to transfer it 

to ANSYS solid modeller. The other CAD models supported by ANSYS are Pro- 

Engineer, Unigraphics and SAT. None of them were available for the project. However, 

the difficulty were resolved in a different manner.

The ANSYS modeller can generate splines or B-splines with maximum of six 

points. It was decided that the four curves in Figure 4.116 describing the blending region 

will be generated by B-splines. Accordingly the data points for these four lines were 

extracted from the DXF files of the wireframe model developed by AutoCAD. Seventy 

two data points describe each curve. Out of them only six could be picked up for 

ANSYS modeller. Looking at the nature of the curves data points for six locations were 

chosen so that the curvature is well represented. The top two lines were to remove the 

degeneracy point (sharp prismatic comer of the solid model) by shifting them little 

upwards.

Figure 4.117: Solid model of the die and the tube.
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The die was then built up in four volumes. One volume described the lower half 

of the die main body; one described the upper half of the die main body which had the 

approximate curves at its one edge; the third volume is the blending region itself and the 

last part was the die recess. To keep the number of elements in the model minimum the 

die main body did not cover all of the tube surface.

The tube was modelled into four volumes to facilitate limited contact modelling. 

Figure 4.117 shows the solid model of the die and tube. Volumes 3 and 4 of the tube 

were kept out of the die and treated as rigid body between the die and the punch (please 

refer to Figure 1.2). The internal diameter of the die body and the recess was 12.06 mm. 

The length of the modelled part of the tube was 53.5 mm. The length of the tube 

covered by the punch was 20 mm. The thickness of the tube was 1.37 mm.

The die was discretised into 56 brick elements. The die thickness was covered by 

one element height. The tube was discretised with two layers of elements across its 

thickness. The total number of elements in the tube was 390. Figure 4.118 shows the 

discretised the die-tube model. Some of the die elements (green) or part of them are 

visible through the tube elements. This is due to the fact that when there is graphics on 

the same display area the computer displays the latest pixels of the graphics. In this 

particular picture some die elements’ graphic information was displayed after the tube 

elements resulting in the anomaly.
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Figure 4.4.4: Finite element model of the die and the tube
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Point to surface general contact elements were generated in different ways to see 

that the model size was within the limit After several trials contact elements were 

generated as below

1 tube volume 3 and 4 were treated as rigid body and thereby not included in

contact pairing

ii inner surface of die volume 1 and outer surface of tube volume 1 had 5

contact elements closest to the centroid of each target element face Both 

tube and die surfaces were alternately contact and target surfaces

in outer surfaces of the tube volume 1 and inner surfaces of die volume 2 and

3 had contact elements within 8 mm radius of each element face

i v  outer surfaces of the die volume 2 and inner surfaces of die volume 2 and 3 

had contact elements within 8 mm radius of each element face

v outer surfaces of tube volume 2 and inner surfaces of die volume 4 had 

contact elements within 8 mm radius of each element face

The tube was assigned a piecewise linear plastic material model The material 

data are

Young s Modulus = 3 66x10 3MPa Density = 8 9x10 6 kg/mm3 

Poission s Ratio=0 3

strain stress(MPa)

0 005 18 3

0 500 220 0

2 000 465 0

The die was assigned elastic material model and was treated as rigid body by fixing all 

its degree of freedom

Boundary Conditions, Loading and Solution

Since a quarter of the model was developed by taking advantage of symmetry, 

the tube nodes at the symmetry edges were restrained in appropriate directions Tube 

volumes 3 and 4 inner and outer surface nodes were restricted in X and Y directions 

restricting them to move radially and circumferentially but free to move axially The 

interior nodes in these tube volumes, however, were left free to move at any direction
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The pressure load was applied as surface load at the inner surface of tube 

volumes 1 and 2. The axial compressive load was applied as prescribed displacement of 

nodes at the edge of the tube end. First three simulations were done with pressure 

loading only. The tube ends were kept either fixed or free in these models. In 

subsequent simulations both pressure and axial loads were applied. In all cases the loads 

were ramped linearly. The maximum pressure load applied in the former simulations 

was 30 MPa. For the later cases it was 15 MPa and the axial displacement was 6 mm. 

The loading pattern is shown in Figure 4.119.

Load Step/Time 

Figure 4.119: Loading pattern of the simulation models.

Preconditioned conjugate gradient solver was used for the solution of the 

problems instead of wavefront solvers used in other previous solutions by ANSYS. This 

solver is faster and appropriate for large wavefront problems. This solver also requires 

less disk space than frontal solver as triangulation matrix by frontal solver is not needed. 

However, this solver uses more memory. In spite of all these, solution for each 

simulation was obtained after about 8 days of computation.

Results and Discussion

As mentioned, first three simulations of the forming process were done with 

pressure loading only. In the first case, the tube ends were kept fixed and in the second, 

they were left free to move. The friction factor assigned for the two simulations was 0.3. 

In the third simulation, the friction factor was reduced to 0.15 and the ends were kept 

free.
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Table 4.21 presents the comparative results of these three simulations. It can be 

seen from the table that there are not much difference between the simulations although 

the forming conditions were different. This is largely due to the high friction between 

the die-tube interface that prevents the tube to move towards the bulging region. It was 

found in the second simulation that the tube ends even moved in the other direction by a 

few hundredths of a millimetre. The effect of friction was slightly visible in the third 

simulation where friction was halved to 0.15. Here, the branch height is slightly high, 

the stress in the branch top is less and has thinned less. Very low friction is expected to 

improve above results but such simulation was not attempted because of very long 

computation time.

Table 4.21: Summary of results from simulations of T-branch forming by keeping

tube blank ends fixed or free

Simulation End Friction Maxm branch Max"1 eqv. stress Thickness at branch top 

Condition height (mm) (MPa) (% o f original thickness)

Value Location

I fixed 0.3 8.255 221.0 branch top 65.0

II free 0.3 8.266 221.8 branch top 66.3

III free 0.15 8.426 215.0 branch top 66.7
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AUG 12 1997 
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Figure 4.120: Deformed shape of the tube with radial displacement contoured.
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Figure 4.120 shows the deformed shape of the tube for the first simulation. It 

also displays the radial movement of nodes in the tubes. Results for other simulations 

are very much the same. Figure 4.121 shows the absolute movement of the nodes in the 

tube. It can be seen that the nodes originally at the bulge region moved radially. There 

is no sign of any movement of the nodes in the constrained regions. Also the nodes 

directly under the bulging region have not moved. For the other simulations the 

condition was very much the same. Results presented in the following are from the 

simulation where the friction factor was 0.3 and the tube ends were kept fixed.

WTSVS 3.3 
AUG 13 1997 
12 5 7 :3 1  
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\J
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Figure 4.121: Absolute displacement of the tube nodes.
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Figure 4.122: Distribution of von-Mises stress in the tube(ends were kept fixed).
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Figure 4.122 shows the von-Mises stress distribution in the deformed tube. The 

stress developed is maximum at the branch top gradually decreasing towards the bulge 

base. The main tube (excluding the location under the punch), has stressed the least. 

There are some pockets of low stress at the main tube. This is thought to be due to the 

coarse meshing. Due to coarse meshing the contact elements between the interfaces are 

also sparse. As a result, interfacing forces act at the locations of contact elements. It is 

as if the surfaces have asperities which come in contact first resulting in areas of higher 

and lower stress. The distribution of stress in other simulation was very similar.
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AUG 12 1997 
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Figure 4.123: Development of stress at the central node of the branch (ends fixed).

Figure 4.123 shows the development of equivalent stress and principal stress of a 

central node at the branch top. It can be seen that up to load step 7 when a pressure load 

of 30 MPa was applied, the stress development was steady. There were some 

undulations after that due to which results beyond 30 MPa were not accepted. All the 

results presented above, were up to load step 7. It can also be seen that the ratio of the 

first and the second principal stress were never constant although the pressure load was 

raised uniformly throughout the simulation.

Subsequent three simulations were done with pressure load and axial 

displacement for the same model. The only difference between these simulations was 

friction factor. The first one was for a friction factor of 0.3, the second one for 0.15 and 

the third one was for frictionless condition. The maximum pressure load applied in 

these simulations was 15 MPa. Further pressure load was not possible as contact
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elements were generated in a restricted manner Further loading actually resulted in loss 

of contact

Table 4 22 presents the summary of results from the above three simulations As can be 

seen from the table that the simulations have resulted in different branch height, stress 

and strain As expected, the fnctionless forming condition has allowed more material 

movement in bulging region allowing more deformation and stress but less thinning 

Comparing to the deformation by only pressure load it can be said that a comparable 

length of branch can be formed at much low internal pressure and the stress and 

thinning in the branch would be relatively less

Table 4 22 Summary of results from simulations of T-branch forming by pressure

and axial compressive load

Simulation Friction Max"1 branch Maxm eqv stress (MPa) Thickness at branch top 

height (mm) Value Location (% o f original thickness)

I 0 3 7418 185 71 at the middle region 

around Z-symmetry

87 0

II 0 15 8 279 203 76 at the middle region 

around Z-symmetry

88 0

n i 0 0 9 374 225 65 at the middle region 90

around Z-symmetry

The only commonality in the results of these simulations is the location of 

maximum stressing and thinning In all simulations the maximum stress occurred where 

the tube upper half meets the lower half near the Z-symmetry of the tube The location 

can be seen in Figure 4 124 which shows the distribution of von-Mises stress in the 

deformed tube according to the first simulation Apart from the region under the punch, 

the minimum stress has developed at the bend around the die which may be slightly 

inaccurate as this part has undergone some bending deformation which is not well 

accounted for by solid elements Prominent stress gradient is observed at the mam 

branch which is due to different contact modelling at the upper and lower half and also 

due to the coarse element mesh resulting in different normal and frictional contact 

forces This phenomenon in this region has also affected the stress distribution in the 

punched region The situation was not much different in the second simulation where
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the friction factor was 0.15. The absence of frictional force in the third simulation has 

largely smoothened the stress distribution as can be seen in Figure 4.125.

Figure 4.124: von-Mises stress distribution in the tube formed at higher friction

Figure 4.125: von-Mises stress distribution in the tube formed at frictionless condition.

Figure 4.126 presents the distribution of strain in the radial direction which 

shows the amount of thinning or thickening in the deformed tube. This figure illustrates 

the case for the frictionless forming condition. The pattern is more or less same for other 

friction condition although the magnitudes varied. Most thinning has occurred in the T- 

branch top. The main tube has thickened everywhere and most thickening is observed
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right opposite the T-branch at the lower half of the tube. Materials moved into this part 

due to the end push has not moved upwards causing most thickening there.

Figure 4.126: Distribution of strain in thickness direction of the tube formed at

frictionless condition.

Figures 4.127 and 4.128 show the absolute displacement of nodes in the tube for 

the first and third simulation respectively. There is considerable material movement due 

to the push at the end. The total displacement is more in frictionless forming as depicted 

in Figure 4.128 compared to that in Figure 4.127 where considerable friction is present. 

In both conditions there is some material movement from the lower half of the tube in 

the proximity of the bulging zone towards the bulge. Movement is more for frictionless 

condition. It may be mentioned here that there was no movement of material from the 

lower half of the tube in the case of bulging by pressure loading only although the 

pressure applied was double. It points to the fact that push from the end compelled 

material to move from the lower half of the tube to the bulging zone. However, the 

influence of bulging zone is only in the immediate vicinity.
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Figure 4.127: Absolute displacement of tube nodes in the case of higher friction.
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Figure 4.128: Absolute displacement of tube nodes in the frictionless forming case.

Finally, Figure 4.129 shows the development of stress over time in a central node 

at the T-branch top in frictionless forming condition. It is evident from the figure that 

the stress development pattern over the simulation period closely resembles the 

multilinear stress-strain relationship of the material indicating a good reliable solution.
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The stress ratio in the T-branch top seems to have varied while the deformation was in 

progress. Despite the axial compressive load and frictionless interface between the tube 

and the die, the axial stress in the bulge (third from top) has never been compressive. 

The pressure load was dominating the forming condition in the bulge.

Figure 4.129: History of stress development at the central node of the T-branch over the 

simulation period in frictionless forming condition.
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4.4.2 LS-DYNA 3D Simulation of T-branch Forming from a Tube

Modelling

The pre-processor used to develop the model for LS-DYNA 3D was the same as 

for ANSYS. Therefore, the same technique was used to develop the solid model of the 

die. However, the finite element model was different. Since LS-DYNA3D solver was 

free from any model size limitation except the computation time for the particular 

computer resources of the project, the solid model of the die was developed covering all 

of the tube. Also as LS-DYNA3D has different contact searching technique, there was 

no need to develop the tube in parts. Accordingly the tube was build in one volume. 

Figure 4.130 shows the solid model of a quarter of the die-tube assembly.

Figure 4.130: Solid model of the die and tube for LS-DYNA3D analysis.

This time the solid model could be discretised into more fine meshes. Figure 

4.131 shows the discretised finite element model of the problem. A total of 2565 brick 

elements describe the model out of which the tube comprises of 1900 elements. Total 

nodes in the model is 4537. The brick elements describing the model had one 

integration point at their centroid.
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LS-DYHA3D usee input.

Figure 4.131: Finite element model for LS-DYNA3D analysis.

The same soft material was used as in the previous section. Surface to surface 

contact elements were generated for all interfaces. Elastic Coulomb friction law was 

assumed for interface friction. Three simulations were carried out for two friction 

conditions. The friction factors were 0.0 and 0.3. The two loading conditions differing 

mainly in the rate of application of pressure load were simulated. The rate of axial 

displacement was same for all models. Each simulation took about 4 hours of 

computation time.

The deformation was given a quasi-static treatment in simulation as LS- 

DYNA3D is basically a explicit dynamic solver. For this purpose, the simulation period 

was made much shorter than the actual deformation time would be. However, the 

kinetic energy of deformation was kept on check so that the dynamic effect in the 

simulation is negligible.

Results and Discussion

First two models were run with same loading pattern as shown in Figure 4.132. 

They differed in friction conditions. The first one was run at frictionless condition while 

the second was run for a friction factor of 0.3. Figure 4.133 shows the deformed 

condition of the tube after application of full 30 MPa pressure at the inner surface of the
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tube and 20 mm axial displacement of the tube end. It can be seen that the elements are 

severely distorted. Hourglass mode of deformation is evident all over the deformed tube.

0 0.002 0.004 0.006 0.008 0.01
Simulation Time, Sec.

Figure 4.132: Loading pattern for the first and the second simulation
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Figure 4.133: Deformed shape of the tube after full time of simulation.

A check of the development of hourglass energy during the deformation in 

Figure 4.134 reveals that the energy started picking up at about 0.0090 seconds in the 

simulation period. Towards the end of the simulation period the hourglass energy 

suddenly shot up. Looking at the figure it is expected that deformation at 0.0085 seconds 

in the simulation would have acceptable level of hourglass type of deformation. Figure
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4.135 shows the deformed shape of the tube at this time. The pressure and axial 

displacement at this stage was 27.0 MPa and 17 mm respectively. The branch height 

attained by this load was about 20.6 mm.

SIMULATION TIME. SEC.

Figure 4.134: Ratio of hourglass energy and kinetic energy to internal energy of 

deformation over the simulation period.
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Figure 4.135: Deformed shape of the tube after 0.0085 seconds in the simulation.
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Figure 4.136: Distribution of von-Mises stress in the deformed tube at 0.0085 seconds in

the simulation.

The state of the equivalent stress in the deformed tube is shown in Figure 4.136. 

It can be seen that the region in the main tube right below the T-branch base has stressed 

most. The location of the maximum stress in this region is where the upper and lower 

half of the tube meets near the Z-symmetry plane of the model. This was also the 

location obtained in the simulations by ANSYS in the previous section. The magnitude 

of the maximum stress was about 272.8 MPa. The minimum stress in the deformed tube 

happened to be around the die bend. The deformation in this region is translational and 

bending. The brick elements do not have any rotational degree of freedom and thereby 

no stiffness in bending. Only the translational movement is accounted for in the 

solution. Likely bending in this region has not been taken care of resulting in relatively 

less stress. The branch top also has stressed to a high level compared to its base or trunk 

region. The main tube not under the T-branch has stressed uniformly.

Most thinning has occurred at the top of the T-branch as shown in Figure 4.137. 

The thinning there is about 77% to 64% of the original thickness of 1.37 mm. Thinning 

is observed until the base of the branch whereupon thickening started . All of the main 

tube including the part directly under the branch has thickened. The thickening in this 

areas is about 133% to 146% of the original thickness. The thinning at a particular axial 

position of the main tube is observed to be varying along the circumference. The top
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part of the tube that meets the die at its higher bend radius seems to have thickened 

more than the part immediately below. The thickening has increased at the lower part of 

the tube. This was a direct consequence of the material movement towards the bulging 

region form the main tube. The areas that thickened more faced more obstacles or 

resistance to movement.
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Figure 4.137. Distribution of strain in the thickness direction of the tube.
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Figure 4.138: Absolute displacement of the nodes in the tube.

Figure 4.138 shows the absolute movement of the nodes in the tube indicating 

the material flow pattern in the deformation. Material once entered in the bulging region

LS-DYNA3D u s a t  i n p u t
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from the ends moved towards the bulge developing at the top. Materials from a good 

part of the lower half of the tube under the T-branch moved upwards with this forming 

condition. However, there was different degree of movement along the circumference 

which is not very clear from the figure as there is overlapping due to the bent. Viewing 

the situation in virtual reality could clearly reveal the phenomenon. A zone at lower left 

comer exists where material has either not moved or moved only slightly in the axial 

direction and very little in the circumferential direction.
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Figure 4.139: Development of stress in the top central node of the T-branch.
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Figure 4.140: Development of strain in the top central node of the T-branch 

Figures 4.139 and 4.140 respectively shows the development of principal stress 

and principal strains of a node at the top central point in the formed T-branch. Figure
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SIMULATION TIME, SEC.
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4.139 also shows the equivalent stress in the node which has developed more or less 

steadily over the simulation period. The hoop stress was always tensile while the axial 

stress was compressive for a brief period and then switched to tensile state. Axial strain 

in the branch top was negative until about 0.005 seconds in the simulation and then 

turned positive maintaining an almost constant ratio with the hoop strain. Plotting the 

two principal strains in more popular form in Figure 4.141 it can be seen that the 

deformation at the top of the forming T-branch was continuing in the second quadrant 

with a gradient of almost -0.5 for a short period and then there was no straining in axial 

direction but strain in the hoop direction was growing. Eventually the deformation at the 

top ended up at the first quadrant with a gradient of almost 0.5. This means the T-branch 

top was elongating at a faster rate in the hoop direction than in the axial direction 

towards the end of the loading.
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Figure 4.141: Strain path of the top central node of the T-branch.
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Figure 4.142: Development of internal and total energy of deformation.
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The internal energy and the total energy in the deformation process shows a 

steady growth as shown in Figure 4.142. This implies a good and reliable simulation. 

Also the kinetic energy in the deformation was between 2 and 10% of the internal 

energy within 0.0010 seconds in the simulation time as can be seen in Figure 4.134 

presented earlier. The kinetic energy was almost negligible after this initial period.

The second simulation in this series was done for a high friction condition but 

with the same loading pattern as in Figure 4.132. The friction factor was 0.3 for this 

simulation. Figure 4.143 shows the state of deformation of the tube at 0.0085 seconds in 

the simulation when deformation was at an acceptable stage in frictionless forming. It 

can be seen that the tube end has almost collapsed mainly because of hourglass mode of 

deformation there. Because of high friction the material could not move axially despite 

the pull from the bulging region and push from the end. The deformation was limited to 

the bulge where it was free to expand and at the end because of prescribed 

displacement.

Figure 4.143: Deformed shape of the tube at 0.0085 seconds in the simulation.

Looking at Figure 4.144 which shows the development the hourglass energy and 

the kinetic energy as a ratio of internal energy it may be seen that the hourglass energy 

in the system started building up at around 0.007 seconds in the simulation. The 

deformation before that period is expected to be free of hourglass type of deformation . 

Figure 4.145 shows the deformed shape of the tube at 0.0065 seconds of simulation. The
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pressure and axial displacement applied up to that period was 23 MPa and 13 mm 

respectively; considerably lower than what could be applied in frictionless condition. 

Some hourglass mode of deformation is visible at the tube ends. The figure also 

illustrates the contour of radial displacement of the tube nodes. The maximum branch 

height obtained at this forming condition was about 11.8 mm; slightly more than half of 

that attained by frictionless condition.

§ § § ! § ! § § § § § §
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Figure 4.144: Ratio of hourglass and kinetic energy to internal energy during the

simulation period.

Figure 4.145: Deformed shape of the tube at 0.0065 seconds in the simulation.
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Figure 4.146 shows the state of the equivalent stress in the deformed tube. Most 

stress has developed at the bulge region and at the tube end. The area in-between these 

two regions has stressed moderately. The magnitude of maximum stress developed in 

this simulation was about 191 MPa. In the bulging region the maximum stress has 

occurred at the T-branch top and at the region where the bulge base meets the main tube 

at the Z-symmetry of the model. The latter location is similar to what happened in 

frictionless forming but at a slightly upper location. Understandably the magnitude of 

the stress in this forming condition is less than that in frictionless forming due to lower 

level of loading and thereby deformation.
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Figure 4.146: Distribution of von-Mises stress in the deformed tube.

Figure 4.147 shows the distribution of strain in thickness direction of the tube 

for this high friction forming. The location of maximum thinning is at the top surface of 

the formed T-branch as in the case of frictionless forming. The thickness at the top has 

reduced to about 65% of the original thickness; almost equal thinning as in frictionless 

condition. However, much less thinning was observed at the trunk and the base of the T- 

branch. The lower part of the tube under the T-branch have almost retained the original 

thickness of the tube. Thickness has gradually increased in the main branch towards the 

tube end in a zigzag pattern. This was due to varying degree of material movement at 

different circumferential position of the tube. Although the push at the end was equal, it

173



seems that the pull due to the bulging has not affected the nodes equally because of 

friction. Figure 4.148 shows the total movement of the nodes in the tube. It can be seen, 

although not very clearly, that the nodes in the middle have moved less axially than the 

nodes at upper or lower locations to them in the figure. Also, the nodes with no or little 

movement occupy a bigger area at the lower left comer than that in frictionless 

condition.
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Figure 4.147: Distribution of strain in the thickness direction of the tube.

Figure 4.148: Absolute displacement of nodes in the tube.
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Figure 4.149 shows the development history of equivalent stress and principal 

stress in a node at the centre of the top surface of the T-branch. Again the development 

was steady and smooth. The hoop stress was tensile all along and the axial stress was 

compressive for a very brief period at the beginning and then turned tensile. The ratio 

between these two stresses was always varying. Figure 4.150 shows the strain path in 

principal planes. It can be seen that the deformation was at the second quadrant for a 

very brief period at the beginning and then turned back to the first quadrant and then the 

gradient there indicates a faster growth in the tensile hoop strain than the axial strain.
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Figure 4.149: Development of stress in the top central node of the T-branch.
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Figure 4.150: Strain path of the top central node of the T-branch.
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The development of internal energy and total energy in the deformation is 

presented in Figure 4.151. The development was gradual until about 0.0085 seconds in 

the simulation. The kinetic energy was very negligible as can be seen as a ratio of 

internal energy in Figure 4.144 earlier.

SIMULATION Time. SEC

Figure 4.151: Development of internal and total energy of deformation over the

simulation period.

One of the main reasons for different deformation behaviour in the second 

simulation was high friction. In practical application the friction may not be as high as 

this but at the same time a frictionless forming condition is next to impossible. Higher 

friction causes higher resistance to movement of material in the axial direction. The 

resisting frictional force is proportional to the normal force at the interface. High 

internal pressure at the inner surface of the tube results in high normal pressure at the 

die-tube interface. The third simulation in this series was done keeping the same high 

friction condition but reducing the internal pressure during the initial period of 

simulation and keeping the previous rate of pushing the tube end. The idea is to push 

more material towards the bulging zone at lower pressure-lower frictional resistance 

regime. Figure 4.152 shows the loading pattern for this simulation.
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Figure 4.152: Loading pattern for the third simulation

This loading pattern could not continue the simulation any longer than the 

previous simulation. Hourglass deformation was prominent at the tube end after 0.0065 

seconds in the simulation as in the previous simulation. The pressure and axial 

displacement load at this time was 18 MPa and 13 mm respectively. The T-branch 

height developed by this loading was about 10 mm; lower than that developed by the 

previous loading. The pattern of equivalent stress distribution and thickness strain in the 

deformed tube is pretty much the same as in the previous loading. Figures 4.153 and 

4.154 show the von-Mises stress and thickness strain distribution of the deformed tube 

for this loading. Maximum thinning has occurred in the T-branch top and the thickness 

was reduced to about 76% of the original thickness.
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Figure 4.153. Distribution of von-Mises stress in the deformed tube.
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Figure 4.154: Distribution of thickness strain in the deformed tube.

The only visible difference due to the two loading pattern was observed in the 

strain path of the central node of the T-branch top surface. Figure 4.155 shows the strain 

path in principal strain plane for this loading. The deformation continued much longer 

in the second quadrant although most of it was growth of tensile hoop strain while axial 

strain was maintaining the same compressive state. The axial strain then turned tensile 

but the hoop strain was still dominating in terms of rate of increment.
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Figure 4.155: Strain path of the top central node of the T-branch.
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The main idea behind the lower rate of pressure loading was to keep the 

interface frictional force low so that material can move axially But this seemed to have 

not happened as can be seen in Figure 4 156 where the total energy and the internal 

energy of deformation is shown over the simulation period The difference between the 

total and internal energy which largely comprises of interface sliding energy appears to 

be the same as for enhanced pressure loading in Figure 4 151 shown before

| B § ^ 8 § ^ ^ 8 S § 8
i g g g s g i g g i i sC> cn i- <v> v

SIMULATIOK TIME 3EC

Figure 4 156 Development of internal and total energy of deformation

Table 4 23 Summary of the three simulations

Simui Loading pattern Final acceptable load T-branch Maxm eqv stress (MPa) Thickness at 

ation height the T-branch

press (MPa) disp (mm) (mm) value location (% o f onginal)

enhanced press

I initially, uniform 27 0 17 0

axial disp 

enhanced press

II initially, uniform 23 0 13 0

axial disp 

lower press 

HI initially, uniform 18 0 13 0

axial disp

middle region 

20 64 272 79 o f the Z- 64 0

symmetry 

same as above 

11 80 191 23 plus T-branch 65 0

top

10 04 173 88 same as II 76 0
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Table 4 23 shows the summary of results of the three simulations of this section 

Clearly, the frictionless forming condition provides the best result out of these three 

conditions It is better to lower the friction than to try different loading keeping the 

friction high Low friction gives better stress and strain distribution in the deformed 

product The gradient of thickness of the mam tube is also expected to be lower for low 

friction forming

4 4.3 LS-DYNA3D Simulation of T-branch Forming from Copper Tube

In the previous section the tube matenal was chosen arbitrarily Simulations in 

this series were done for copper tube The material parameters for the tube were taken 

from a compression test done by Hutchmson[104] for experimenting T-branch forming 

Three simulations were done The first two simulations had the same geometry and 

material but formed at different load The third one was done for a thinner tube but 

matenal remained the same

Modelling

The die and the tube solid model was the same as in the previous section for the 

first two simulations This time, however, the tube ends are put under a punch The 

punch was not modelled Instead, the nodes of the tube under the punch were restrained 

in radial and circumferential direction which would be equivalent to the punch in 

position This markedly reduced the model size Figure 4 157 shows the finite element 

model of the problem with boundary condition symbols The red arrow-heads at the 

right of the figure shows the length of the tube covered by the punch The length of the 

tube covered by the punch varied from model to model depending on the axial 

displacement value The model consisted of 765 die elements and 1800 tube elements
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Figure 4.157: Finite element model for the first two simulations

The third simulation of forming a thinner tube was done by using a different 

model of the die. This model was developed from a solid model by AutoCAD R13C-4. 

Using an IGES translator which was available late in the project period, the model was 

transferred to ANSYS solid modeller. IGES stands for Initial Graphics Exchange 

Specification which is an ANSI standard that defines a neutral format for the exchange 

of information between dissimilar CAD and CAM system. The version of IGES used by 

AutoCAD R-13 C4 was 5.2.

In the translation from AutoCAD solid model to IGES format a total of 4 

transformation matrices, 125 rational B-spline curves, 17 rational B-spIine surfaces and 

17 boundary entities were exchanged. The version of IGES translator in ANSYS pre­

processor was 5.1. All the entities transferred from AutoCAD model are supported by 

the IGES translator in ANSYS. However, the solid model reconstructed by ANSYS pre­

processor had many unwanted lines and surfaces which posed a problem for mapped 

meshing of the die volume. It was difficult to identify these entities. Therefore, all the 

surfaces were first deleted. Then the lines were checked one by one and the unnecessary 

lines were detected. Many duplicate lines and keypoints were found most of which were 

due to very small default tolerance (0.0001). All of them were merged within a 

tolerance of 0.005 mm. However, the basic outline of the model was satisfactory. After 

necessary cleaning operations some lines were added to the model and then areas and
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volumes were built in them. The model of the die consists of 6 volumes as shown in 

Figure 4.4.44. It may be seen in the figure that the blending region meets here at a line.
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Figure 4.158: Discretised solid model of the die for the third simulation.

The die had to be extended little further in the axial direction to take care of 

contact problems referred earlier. Volumes 5 and 6 define this extra thin strip of 

material. The die also had to be extended at the diametrical faces which is visible from 

the complete die-tube finite element model in Figure 4.159. The die was discretised into 

413 solid elements and tube into 800 solid elements. The die had one layer of elements 

while the tube had two layers.
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Figure 4.159: Discretised finite element model for the third simulation.
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In all models automatic surface to surface contact elements were generated 

during the solution process by special search techniques descnbed in theoretical chapter 

Elastic Coulomb friction law was assumed in all models with a friction factor of 0 15

The matenal properties of the tube were taken from Hutchinson[104] working 

on bulging of copper tubes as mentioned before The material data available there were 

generated by compression test Material parameter applied in these simulations were 

approximated from the available data The approximate data for a bi-hncar matenal 

model were as below

Young's Modulus = 124X103 MPa Yield strength = 160 MPa 

Tangent Modulus = 925 MPa Poisson s ratio = 03  

Density = 8 9X10"6 kg/mm3

The die and tube dimension for the first two models were same as in the models 

in previous section In the third model, the tube thickness was changed to 1 03 mm 

from 1 37 mm in earlier models The tube diameter and the die size remained the same 

The die and the tube dimensions were actually chosen from Hutchinson’s experimental 

studies[104] The die was considered as a rigid body The tube nodes at the symmetry 

edges were restrained in appropriate directions

Results and Discussion

The model for the first simulation was discretised with reduced integration point 

brick elements The loading values and patterns were adopted from Hutchinson s 

expenment [104] The loading pattern for the first simulation is shown in Figure 4 160 

Figure 4 161 shows the deformed shape of the tube after the full load The 

displacement contour of the nodes in the radial direction is also illustrated in the figure 

The maximum height of the T-branch was 9 747 mm The top is almost flat In fact 

much of the branch was formed right at 0 0025 seconds in the simulation when full axial 

load was already on The branch height was 9 374 mm at that stage Figure 4 162 shows 

the deformed tube at that stage It may be seen that the T-branch is off the die wall at 

this stage Subsequent pressure load actually pushed back the branch to the die wall to
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some extent. The elements are reasonably well shaped. Slight hourglass type 

deformation is visible at the edge of the punched part.

Simulation Time, Sec.

Figure 4.160: Loading pattern for the first simulation.
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Figure 4.161: Deformed shape of the tube at full load by first simulation.
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Figure 4.162: Deformed shape of the tube at 0.0025 seconds in the first simulation.

A check of the hourglass energy in Figure 4.163 shows very negligible hourglass 

energy; to the tune of about 0.8 percent of the internal energy. The kinetic energy of 

deformation was also negligible. The internal energy and the total energy of deformation 

developed mostly within the first quarter period of simulation time as shown in Figure 

4.164. The energy development was smooth and was conforming to the loading pattern.
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Figure 4.163: Ratio of hourglass energy and kinetic energy to internal energy in the first

simulation.
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SIMULATION TIME. SEC.

Figure 4.164: Development of internal and total energy of deformation over the first

simulation period.

The equivalent stress in the tube after full load is shown in Figure 4.165. The T- 

branch is relatively less stressed compared to the main tube. The most stressed area is in 

the Z-symmetry region of the main tube. This pattern is also observed in similar earlier 

simulations. The maximum stress developed in the region is about 745 MPa. In 

comparison the T-branch has stressed at most half of that value.
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Figure 4.165: Distribution of von-Mises stress in the deformed tube by the first

simulation.

186



AHSYS S. 3 
AUG IS 1997 
20:48:43 
HODAL SOLUTION 
S1P=1 
SUB -101 
TIME-.01 
EPPLX (AVGJ 
RSYS-1 
DHX -13.377 
SHN =-.186144 
SHX =.484147
I [ -.186144

-.111667 
gjgg -.03719 
^ 5  .037286
^ 5  .111763
^ 5  .18624

■ .260717
■ .335193
■ .40967

. 484147

Figure 4.166: Distribution of thickness strain in the deformed tube by the first

simulation.

At full load the branch has hardly thinned. Figure 4.166 shows the strain in the 

thickness direction of the tube. The minimum strain (negative) seen in the contour is 

surface contour as the contour is not visible across the thickness. Also the location of 

minimum strain is the location where the deformation is likely to be bending and 

translational. As such the strain shown here could be little inaccurate. The main tube has 

thickened quite a lot. The average thickening in the main tube was about 150% of the 

original thickness. There is variation of thickening a long the circumferential length of 

the tube. This was due to the difference in material movement. Materials at different 

circumferential position has moved differently towards the bulging region. Similar 

phenomenon was also observed in earlier simulations. Figure 4.167 shows the absolute 

movement of the nodes in the tube. The above mentioned difference in movement is 

somewhat evident from the figure. But since the figure depicts a cylindrical surface in 

two dimensions, much of the detail is blurred as stated earlier.
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Figure 4.167: Absolute displacement of tube nodes by the first simulation.

Figure 4.168 shows the development of equivalent stress and principal stress in 

the central node of the T-branch top surface. The stress development was erratic 

indicating a stick-slip type of deformation at the main tube. Although all of axial 

displacement was provided within the first quarter of deformation period, it seems the 

tube surface beyond the punch was sticking and slipping with the die due to pressure in 

the bulge. The ratio of the hoop stress and the axial stress was naturally very variable.
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Figure 4.168: Development of stress in the top central node of the T-branch over the

first simulation.

S IMULA T I O N  TIME, SEC.
LS—DYNJL3D user input

188



The principal strains in the central node of the T-branch top surface is shown in 

Figure 4 169 It can be seen from the figure that although the bulge started in biaxial 

tensile state the compressive axial load soon changed the state by pushing the state of 

deformation to the second quadrant The compression remained there m the bulge even 

at the end of the simulation period it seems that the hoop tension is dominant and 

further loading in the same manner would rupture the branch m axial direction of the 

tube This mode of rupture was evident m experiments [104]
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Figure 4 169 Strain path of the top central node of the T-branch by the first simulation

Hutchinson m his experiment 104] measured the thickness at different heights of 

the T-branch The thickness was measured along the plane of axial symmetry of tube 

exactly the symmetry plane of the FE model His experimental findings along with 

findings from the simulation is presented m Figure 4 170 The simulation results are 

from the average of thickness strains of three nodes across the tube thickness It can be 

seen from the figure that T-branch height obtained by simulation is nearly the same as 

that from experiment The thickness at the root of the T-branch and at the top area are 

very close Some difference is observed at the trunk part of the branch Thickness at this 

part obtained by simulation is lower than that from the experiment It was already 

pointed out that the simulation at this particular location is not truly representative due 

to the use of solid elements where some bending deformation actually takes place 

However, at the same time, it may be mentioned here that the die bend at that location
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has the smallest radius and gradually changes to higher radius along the circumference 

thereby keeping the bending mode of deformation to a very small area.
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Figure 4.170: Comparison of simulation results with experimental results of Hutchinson

[104].

The second simulation was done on the same finite element model but for a 

different load condition. Figure 4.171 shows the loads and their pattern of application. 

Both the pressure and the axial compressive load are high. This time the axial load is 

applied at a slower rate. The punch length was reduced to accommodate more axial load 

in this simulation.

Pressure, MPa

Displacement,
mm

Simulation Time, Sec.

Figure 4.171: Loading pattern for the second simulation.

Initially the simulation was tried with brick elements with reduced integration 

point. But severe hourglass deformation is observed at full load deformation. Figure
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4.172 shows the deformed state of the tube. The hourglass energy was also high. The 

deformed state of the elements at the edges does not suggest any strong shear stress due 

to frictional resistance. This was also checked by looking at the shear stress distribution 

at the circumferential plane. Few other options were tried but were of no good. So, the 

tube element properties were changed to fully integrated brick elements although they 

would be much stiffer in deformation.
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Figure 4.172. Deformed shape of the tube in the second simulation by reduced

integration elements.

Figure 4.173 shows the deformed tube at full load with fully integrated element 

properties. The elements at the deformed state are well shaped. The radial displacement 

of the nodes are also contoured in the figure. The maximum height of the T-branch was 

14.71 mm. The branch top is almost flat.
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Figure 4.173: Deformed shape of the tube in the second simulation.
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Figure 4.174: Distribution of von-Mises stress in the deformed tube by the second

simulation.

The equivalent stress in the deformed tube is illustrated in Figure 4.174. Most of 

the main tube except the position under the punch has stressed considerably. The 

distribution is relatively uniform. The maximum stress was 1039 MPa. The T-branch 

proper has stressed less than half of that in the main tube.
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Figure 4.175: Distribution of thickness strain in the deformed tube by the second

simulation.

The main tube has thickened considerably as shown in Figure 4.175. The range 

of thickening in the main tube except the portion under the punch was 141% to 188% of 

the original thickness. There was some variation of thickness at different 

circumferential position of the main tube as was observed earlier. The T-branch has 

slightly thinned at the top. The trunk area near the Z-symmetry has more or less 

maintained the original thickness while it has thinned near the die bend area. The 

thinning at this location is misleading because elements at this area has undergone large 

rotation deformation which is not well simulated by solid elements. The top has thinned 

at most to 88% of the original thickness. Figure 4.176 shows the thickness at different 

heights of the T-branch by the simulation and from experiment by Hutchinson[104]. The 

branch height obtained by the simulation was about 14.7 mm while that found in the 

experiment was about 18.0 mm. This suggests that there is less deformation in the 

simulation. The stiffer behaviour of the fully integrated brick elements could be one of 

the reason for less deformation. This less deformation has also affected the thickness at 

the branch top. However, the thickness at the root matches quite well with the 

experimental finding.
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Figure 4.176: Comparison of simulated result with experimental result from

Hutchinson[104].
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Figure 4.177: Development of stresses at the top central node of the T-branch.

The development of equivalent stress and principal stresses in the central node 

of the T-branch top shown in Figure 4.177 indicates a more or less smooth growth 

unlike the previous simulation. This was probably due to the slower rate of axial 

compressive load. Stick-slip phenomenon is there but not as prominent as was for the 

case in the previous simulation. The ratio of the hoop stress to axial stress was always 

variable throughout the simulation.

The strain path plot of the same central node of the T-branch top shown in 

Figure 4.178 indicates a brief biaxial tension followed by tension in hoop direction and
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compression in the axial direction. This continued in the T-branch top until the end of 

simulation. The slope there at the end suggests that the elements there are elongating 

faster in the hoop direction than they are compressing in axial direction. If the loading is 

continued in the similar manner the T-branch would rupture in axial direction of the 

tube. As mentioned, in practical tests this kind of rupture was observed [104].

Figure 4.178: Strain path of the top central node of the T-branch.

SIMULATION TIME. SEC.

Figure 4.179: Ratio of kinetic energy to internal energy in the simulation.

The kinetic energy of deformation was very low at the initial period. It was about 

0.5% of the internal energy initially up to 0.0009 seconds of the simulation and then 

decreased even further as seen in Figure 4.179. The development of internal energy and
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total energy of deformation was smooth and was conforming to the pattern of loading as 

presented in Figure 4.180.
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Figure 4.180: Development of internal and total energy of deformation in the simulation.

The third simulation in this series was done for the forming of a thinner tube of 

1.03 mm thickness. The load values and their pattern of application is shown in Figure 

4.181. The brick elements discretising the tube had fully integrated properties in this 

simulation. The die elements had reduced integration properties.

Pressure, MPa

Displacement,
mm

Simulation Time, Sec.

Figure 4.181: Loading pattern for the third simulation.

The deformed shape of the tube at full load is shown in Figure 4.182. The 

elements were in well shape. The T-branch top had taken a torospherical shape. The

196



branch trunk this time has conformed more to the die bend. The maximum height 

attained was 21.987 mm.
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Figure 4.182: Deformed shape of the tube at full load.
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Figure 4.183: Distribution of von-Mises stress in the deformed tube.

The main tube under the T-branch has stressed most as can be seen from Figure 

4.183. The maximum stress was about 1347 MPa located around the Z-symmetry edge. 

In comparison the T-branch has stressed much less; less than half of the stress in the 

main tube. Stress differential in the T-branch is considerably steep. But stress in the 

main tube is relatively uniform.
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The main tube directly under the T-branch and near the die bend has thickened 

to about 198% to 270% of the original thickness as indicated by Figure 4.184 illustrating 

the strain in the thickness direction of the tube. The side wall of the main tube near the 

punch edge did not thicken significantly. Much material has been drawn into the bulge 

region due to higher pressure load relative to tube thickness. The T-branch top has also 

thinned down to 80% of the original thickness. Again the high negative strain at the 

bend is not a proper representation. As reasoned earlier the elements at this area has 

undergone rotational deformation which was counted as displacement thereby 

increasing the compressive strain.
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Figure 4.184: Distribution of thickness strain in the deformed tube.

The development of equivalent stress and principal stresses in the central node 

of the T-branch top shown in Figure 4.185 indicates stick slip behaviour of deformation. 

The full pressure applied within the first quarter of the simulation time has increased the 

stress and subsequent axial compressive load has eased the tension in the bulge. The 

strain path followed by the node is shown in Figure 4.186. The compression from the 

tube end is still acting but the hoop strain is also developing. The elements at the branch 

top are elongating in the hoop direction and compressing in the axial direction. The rate 

of elongation is higher than the rate of compression. In the case of further loading the
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branch top is expected to rupture in the axial direction of the tube which is the usual 

experience from practice.
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Figure 4.185: Development of stresses in the top central node of the T-branch over the

simulation period.
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Figure 4.186: Strain path of the top central node of the T-branch.

The kinetic energy of deformation was very low; about 0.3% of the internal 

energy at the initial period and eventually became negligible as can be seen from Figure 

4.187. Figure 4.180 shows the development of internal and total energy of deformation. 

This shows a smooth gain in energy.

S I M U L A T I O N  T I M E, SEC.
C: \R13\BULGEX- IGS
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Figure 4.187: Ratio of kinetic energy to internal energy of deformation.

Simulation time. sec.

Figure 4.188: Development of internal and total energy of deformation in the third

simulation.

Figure 4.189 shows the T-branch thickness against height as found in simulation 

and in experiment by Hutchinson[104]. The height obtained in the simulation is slightly 

higher than that obtained by experiment. On average the simulated T-branch has higher 

thickness than that in the experimental one.
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Figure 4.189: Comparison of simulation result with the experimental results of

Hutchinson [104].

4.4.4 Simulation of Failure in T-branch Forming

In the simulation of T-branch forming it was observed that the relative pattern of 

the pressure load and axial compressive load has great influence on the formability of a 

good T-branch. A critical balance of these loading is essential for a stable process. 

Prominence of any one type of loading would lead to failure of the process. Two modes 

of failure are rupture and buckling. Rupture occurs when the pressure load is high 

compared to the axial compressive load. Buckling on the other hand, develops when the 

axial compressive load is dominant over the pressure loading.

In this series two simulations were done for a tube of particular material and 

thickness basically to find the situation at which these failure occurs. A third simulation 

was done applying a loading pattern determined from the experience of the simulation 

of the two failure modes.
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Modelling

The simulation in this series were done using LS DYNA3D package as before. 

But the finite element model was developed in a different pre and post processor. Half 

of the component was modelled. The die was built using the same technique as 

described in section 4.4.1. A CAD solid model was developed, and from that model the 

points on the line defining the blending region between the die proper and the die recess 

were extracted. The co-ordinates of these points were used in this pre-processor to 

develop the die surface.

The tube diameter was 24.12 mm and the length was 107 mm. The thickness of 

the tube was 1.37 mm. The tube was modelled in one surface. Figure 4.190 shows half 

of the discretised die and tube. Both the die and the tube was modelled with shell 

element. Belytschko-Wang-Chiang[105, 106] model of the shell element was assumed. 

Five integration points across the thickness of the tube was assumed. For die elements 

the number of integration points were three. A total of 3000 elements describe the 

whole model out of which 1200 elements are for the tube. The tube ends were restrained 

to simulate the effect of a punch over the ends.

imTTm.ttiifUJT

CURRENT PART | POOCOUOI ]

Figure 4.190: Finite element model of the failure simulation of T-branch forming.

A piecewise linear plastic material model was assumed for the tube. Different 

properties of the material are;

Young’s Modulus = 3.66X103 MPa Yield stress = 18.3 MPa
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Density = 8.9 X10‘9 tonne/mm3 

Strain 

0.005 

0.50 

2.0

Poisson’s ratio = 0.3 

Stress(MPa)

18.3

220.0

465.0

A failure strain of 1.0 was input in the material model which implies that when the 

logarithmic plastic strain in an element reaches that strain value then that element is 

assumed to have failed. The die was modelled with elastic materials and was given rigid 

body constraints.

A surface to surface contact algorithm was employed. The algorithm takes care 

of the shell thickness of both the die and the tube. It may be noted here that the die and 

the tube surfaces developed in the model represent their mid-surfaces. The thickness 

values supplied in the shell element property take care of the thickness of the actual 

bodies.

Results and Discussion

The first simulation was done with a loading pattern shown in Figure 4.191. A 

pressure load of 30 MPa was applied at the inner surface of the tube and the axial 

displacement of 29 mm was applied at both tube ends. The axial displacement was 

intentionally enhanced to permit creation of a buckling situation.

Pressure,
MPa
Displacement 
, mm

0 0.005 0.01

Simulation Time, Sec.

Figure 4.191: Loading pattern for the first simulation.
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SIMULATION TIME SEC

Figure 4.192: Development of kinetic energy and hourglass energy of deformation.

Figure 4.192 shows the development of the kinetic energy and hourglass energy 

of deformation. It can be seen from the figure that about 0.005 seconds in the simulation 

the kinetic energy started picking up and around 0.006 seconds both the kinetic energy 

and the hourglass energy was building very fast. This indicated a sudden change in the 

deformation mode.

Figures 4.193 and 4.194 shows the state of the deformed tube at 0.005 seconds 

and 0.006 seconds of simulation respectively. In Figure 4.193 there is some sign of 

buckling in the middle while the Figure 4.194 a prominent buckle has developed at that 

location. By 0.005 seconds about 15 MPa of pressure and 14.5 mm of end displacement 

were applied. The T-branch formed to a height of about 8.0 mm.
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Figure 4.193: State of deformation at 0.005 seconds in the simulation.
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Figure 4.194: State of deformation at 0.006 seconds in the simulation.

The available post-processor can not process the stress and strains for principal 

directions. As a result the stress or strain paths followed by the nodes at the region of 

buckling could not presented. However, the stress in co-ordinate directions can be listed. 

But while doing so the computer crashes after one data collection because of the low 

memory of the computer. It is not possible to present all the graphical plotting of stress 

at different time. Table 4.24 shows the stress values of element 3310 at 0.005 seconds 

and at 0.006 seconds. This element is at the middle of the buckling region. It can be 

seen from the table that the stress in Y-direction has changed quite sharply compared to 

the changes in other directions. The Y-direction for the element is nearly the radial 

direction. Suddenly the element has gone to strong compression in radial direction from 

almost no compression. Also the axial compression in the element was easing although 

compression at the tube end was on.

Table 4.24: Stresses of an element at the buckling zone before and after the onset

of buckling

Stress Stress (MPa) at the simulation time of

designation 0.005 sec. 0.006 sec.

Sx 57.26 42.6

Sy -4.83 -46.35

Sz -143.42 -131.03
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Figure 4.195: Plotting of displacement of the nodes in Y-direction at 0.005 seconds of

simulation.
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Figure 4.196: Plotting of displacement of the nodes in Y-direction at 0.006 seconds of

simulation.

The plotting of the displacement of nodes in Y-direction is shown in Figure 

4.195 at time 0.005 seconds in simulation. It can be seen from the figure that a portion 

in the middle has negative displacement red) of about -0.6 mm while the neighbouring 

region has positive displacement of about 1.23 mm (purple). This is a condition where 

buckling is obvious as the tube at that region is deforming at two different radial planes 

under an axial compressive load. Figure 4.196 shows the buckled tube at 0.006 seconds 

in the simulation.
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Figure 4.197 shows the development of equivalent strain in a node of element at 

the buckling region over the simulation. It is seen that the strain has gone up quite 

sharply after 0.005 seconds when buckling started. The strain in the node has reached 

close to the failure strain of 1.0 from the material model. The element must have been 

stretched due to buckling which is reflected in the upturn in its plastic strain.

Simulation Time, Sec.

Figure 4.197: Development of plastic strain of a node in the buckling region.

The next simulation was carried out for the same model applying the load in a 

pattern shown in Figure 4.198. Obviously the pressure load was hyped while the end 

displacement was suppressed to cause a rupture in deformation.

Pressure, MPa 

Displacement, mm

Simulation Time, Sec.

Figure 4.198: Loading pattern for the second simulation.

Figure 4.199 shows the development of the kinetic energy and the hourglass 

energy of deformation. A kick around 0.0025 seconds was due to the start of the end
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displacement which subsided immediately. Around 0.0038 seconds time the kinetic 

energy shot up and the process became unstable.

Figure 4.199: Development of kinetic energy and hourglass energy of deformation in the

simulation.

Figure 4.200 shows the mid-plane plastic strain in the deformed shape just 

before rupture. It can be seen that the strain in the bulge has reached about 0.842. Figure 

4.201 shows the development of this strain in a node at the bulge over the simulation 

period. It can be seen that the strain in the node had one sharper rise at 0.0025 seconds 

when the end displacement started. The strain was maintained at nearly a constant value 

until about 0.0036 seconds and then started rising again leading to rupture.

Figure 4.200: Mid-plane plastic strain in the tube just before rupture.
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Simulation Time, Sec.

Figure 4.201: Development of plastic strain at a node in the rupture zone.

Figure 4.202 shows the ruptured tube at 0.004 seconds time. The mid-plane 

plastic strain is also plotted in the figure. It can be seen from the legend that the plastic 

strain in the tube has reached the value of unity. Quite a few number of elements have 

failed by this time.

The tube has experienced a pressure of 30 MPa and an end displacement of about 5.0 

mm. The height of the T-branch developed at this load was about 9.0 mm.

Figure 4.202: Equivalent plastic strain in the ruptured tube.

The third simulation in the series was carried out with a loading pattern which 

applied the pressure load in a pattern same as in the 2nd simulation and the axial 

displacement load in a manner same as the first simulation with the hope that the
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deformation would continue for a longer time without any failure. Figure 4.203 shows 

the loading pattern for this simulation.

Pressure, MPa 
Displacement, i

Simulation Time, Sec.

Figure 4.203: Loading pattern for the third simulation.

The simulation indeed continued for a longer time. Figure 4.204 shows the 

development of the kinetic energy and the hourglass energy of deformation. It can be 

seen that after 0.0074 seconds both the energies built up fast. A pressure load of 30 MPa 

is already applied by this time. The T-branch has formed to the height of about 17.0 

mm.

SIMULATION TIME. SEC.

Figure 4.204: Development of kinetic energy and hourglass energy in the simulation.

Buckling seems to have started which is evident in Figure 4.205 where the Y- 

displacement of the nodes is plotted. Again a negative displacement of about -0.6 mm at
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the middle and positive displacement of about 1.3 mm in the neighbouring region 

indicates that the tube at the location is deforming at two different radial planes 

separated by a distance of about -2.0 mm.

Figure 4.205: Contour of displacement of nodes in Y-direction at 0.0074 seconds of

simulation.

The consequence is evident in Figure 4.206 plotting the Y-displacements of 

nodes at 0.0076 seconds of simulation time. The buckle is now well in the process and 

the contour shows more to follow.

Figure 4.206: Contour of displacement of nodes in Y-direction at 0.0076 seconds of

simulation.

Figure 4.207 shows the development of plastic strain in a node in the buckling 

region. It can be seen that the strain in the node was maintaining a value of about 0.5 for 

a long time starting from 0.0025 seconds to 0.0070 seconds. It seems that around that 

time further pressure load could have suppressed the buckling.
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Simulation Time, Sec 

Figure 4 207 Development of plastic strain in a node in the buckling region

4.4 5 Bulge forming of box sectioned elbow from circular tube

Apart from typical asymetncal tubular components, hollow structural 

components of different cross-sectional shape are manufactured from circular tubes by 

bulge forming process Structural components of automobile chassis or differential gear 

are examples of products that can be manufactured using bulge forming process In this 

process the tube blanks are usually bent to the desired shape of the structure before it is 

bulged to the cross-sectional shape of the component This section presents the 

simulation of the bulge forming of such products All the modelling and analyses 

presented m this section were done using LS-DYNA3D package

Modelling

Studying the process of manufacturing structural components of automobile 

chassis [69] it was apparent that unlike the manufacture of tubular components 

discussed earlier the tube blank here is not given any axial displacement loading while 

bulging Therefore, the deformation behaviour of a component at different locations 

along its length is supposed to be independent It was observed in earlier analyses that in 

the presence of friction at the die-tube interface there was almost no axial movement of 

tube along the die by bulging pressure As such, the forming of the component may be 

analysed by sectioning it to different parts For example, if a component has an L-bend
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followed by a 45°-bend, then the deformation at the L-bend can be simulated 

independent of the deformation at the 45°-bend since there will be no movement of 

material along the length of the component.

Accordingly, simulation in this section deals with bulging of an L-bend circular 

tube to a square-sectioned elbow which could be a section of a structural component. 

Figure 4.208 shows the finite element model of the half section of the die and the tube. 

Advantage of half symmetry was availed. Both the die and the tube were given a bend 

radius of 5 mm and 3 mm respectively at the outer and inner edges of the 90° bend. But 

the box comers of the die had sharp bend of zero radius. Each arm of the elbow was 100 

mm long. The cross section of the die was 22 mm square and the diameter of the tube 

was 20 mm. The thickness of the tube was 1 mm.

Figure 4.208: Finite element model of the half section of the die and tube

The die half is discretised into 253 elements and the tube half into 380 elements. 

Belytschko-Tsay [107] shell element properties were assigned to the elements. The tube 

elements have 5 integration points along the through-thickness direction. The die was 

treated as a rigid body. An automatic single surface contact algorithm [108] was 

employed. Two friction conditions were tried. One with a friction co-efficient of 0.15 

and the other with a friction coefficient of 0.05.
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The die material was assigned the properties of mild steel The material assigned 

to the tube closely conform to annealed aluminium alloy 2014 with the following 

properties

Elastic Modulus 72 4 GPa

Yield Strength 97 0 MPa

Tangent Modulus 278 MPa

Poisson’s Ratio 0 33

Density 2800Kg/m3

A maximum of 50 MPa or 100 MPa pressure load was applied at the inner 

surface of the tube and then it was brought down to zero Figure 4 209 shows the 

loading pattern against simulation time The ends of the elbow arms were left free to 

move along the die in one simulation case, while in the other case they were restricted

Figure 4 209 Load curve

LS-DYNA3D is an explicit dynamic solver by which dynamic forming situation 

may be simulated But the forming situation taken up here does not require dynamic 

treatment Therefore, a quasi-static analysis was done for both simulation cases by 

carrying out the simulation within a time period much smaller than the actual time 

would be However, the system was checked to ensure that any dynamic effect was not 

active
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Results and Discussion

As mentioned earlier, the simulation of two forming conditions viz. ends free 

and ends fixed were done. The results are presented in parallel for both cases for 

comparison. The results presented next are for a applied pressure load of 50 MPa 

which was subsequently brought down to zero. The coefficient of friction was 0.15.

Figures 4.210 and 4.211 respectively show the deformed state of the elbows 

formed keeping the ends free and ends fixed. Figure 4.120 shows both the die and the 

deformed tube. Some of the die pixels have surfaced up because of the way computer 

displays the graphics as explained before. These die patches may be ignored and 

considered as the tube surface. One clear difference between the two forming conditions 

is evident at the inner edge bend. The elbow with ends free has a sharp dent which can 

be seen in Figure 4.212 which is presented without the die. It may be seen in the figures 

that for both the forming conditions, the deformed tube has not conformed to the die 

configuration at the sharp comers.

'  MAX DtSPL 4 80198E+00 AT NODE 1535 SCALE FACTOR = 1 .OOOOE+OO

Figure 4.210: Deformed shape of the elbow formed with ends free

215



STEP 20 TIME = 1.0000001E-002

Y  * MAX DISPL 4.69735E+00 AT NODE 1534 SCALE FACTOR - 1  OOOOE+OO

Figure 4.211: Deformed shape of the elbow formed with ends fixed

From Figure 4.210 it is apparent that the nodes at the ends of the elbow formed 

with free ends have moved along the die. The movement is between 3-4 mm in the 

respective axial direction.

2.0707E+002

1 3411E+002

6 114SE+001

Figure 4.212: Distribution of von-Mises stress in the elbow formed with ends free
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BULGE FORMMG OF A SQUARE ELBOW 
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Figure 4.213: Distribution of von-Mises stress in the elbow formed with ends fixed

Figures 4.212 and 4.213 present the distribution of von-Mises stresses in the 

formed elbow for ends free and ends fixed forming conditions respectively. It can be 

seen that the maximum stress developed in the elbow formed with ends free is higher 

than that developed in the elbow formed with ends constrained although the location of 

the maximum stress is the same i.e. at the inner edge bend. Also, the elbow formed with 

fixed ends has more even distribution of stress compared to the other one. From Figure 

4.212 it can be seen that the elbow formed with ends free has a sharp dent at the inner 

edge of the bend which resulted in its higher stress even though the arms of the elbow 

are not as stretched as the elbow with constrained ends. It is apparent from the above 

that the elbow formed with ends fixed has better stress properties.

Figures 4.214 and 4.215 display the mid-surface plastic strain distribution for 

ends free and ends fixed forming conditions respectively. As expected, the strain 

gradient is much better in the elbow formed with ends restricted than the other one 

formed with free ends. Also, the latter elbow has strained more.
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BULGE FORMNG OF AN ELBOW 

STEP 20 TIME = 9 9999039E-003 
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Figure 4.215: Distribution of plastic strain in the mid-plane of the elbow formed keeping

the ends fixed
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Figure 4.214: Distribution of plastic strain in the mid-plane of the elbow formed keeping

the ends free

BULGE FORMNG OF A SQUARE ELBOW 

STEP 20 TIME = 1.0000001E-002 

PSTN(MID)

Figures 4.216 and 4.217 respectively show the thinning pattern in the elbows 

formed with ends free and ends fixed. The elbow formed with free ends has thickness 

ranging from 76% to 97% of the original thickness. In comparison, the elbow formed 

with ends fixed has thinned more. Its thickness range is form 70% to 91% of the original 

thickness. However, the location of maximum thinning for both elbows is the same i.e. 

at the elbow junction.
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BULGE FORMNG OF AN ELBOW 
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Figure 4.216: Distribution of thickness in the elbow formed with ends free
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Figure 4.217: Distribution of thickness in the elbow formed with ends fixed 

As mentioned, another simulation of the forming case with ends fixed was done 

at a lower friction condition. The friction factor employed in this case was 0.05. Figures 

4.218 and 4.219 show the distribution of total displacement of the nodes for high(0.15) 

and low (0.05) friction conditions respectively. It can be seen that the distribution is 

almost identical. The nodes have not moved much due to lower friction. The difference
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in the maximum total displacement values for the two friction conditions is only about

0.27 mm.
4 7170E .00U

4 24536+000

3.301 se+ooo
2 8302E+000
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D.OOOOE+000

STEP 15 TIME- 7.49991 B9E-003 

TOTAL DISPLACEMENT

Figure 4.218. Distribution of total nodal displacement of elbow formed at friction factor

of 0.15

Figure 4.219: Distribution of total nodal displacement of elbow formed at friction factor

of 0.05

Figures 4.220 and 4.221 show the distribution of von-Mises stress and plastic 

strain respectively in the bulge formed at lower friction condition. Comparing these 

figures with Figures 4.213 and 4.215 respectively it can be observed that there is more 

stress and strain localisation in the elbow formed with lower friction. Because of lower 

friction the elbow has strained slightly more thereby inducing little more stress

4.9875E-001
OOOOOE+OOO
OBOOOE+OOO
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compared to that formed at the higher friction condition. Higher stress and strain 

coupled with the stress and strain localisation phenomenon in low friction forming it 

appears that it is better to form at a moderate friction condition. Since the forming 

condition does not involve much movement of the tube along the die, the higher friction 

will not affect the forming load much differently.

Figure 4.220: von-Mises stress in the elbow formed at friction of 0.05
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Figure 4.221: Distribution of plastic strain in the elbow formed at friction of 0.05 

The thinning pattern in the elbow for low friction forming condition is shown in 

Figure 4.222. It is very much similar to that formed with higher friction condition shown 

in Figure 4.217. Most thinning is at the bends and at the comers. The magnitude of 

thinning is also very close for both forming conditions.
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Figure 4.222: Thinning in the elbow formed at lower friction

In this kind of forming the springback is usually a concern for the designers. In 

this particular forming condition the nodes at the bends and comers are more likely to 

show springback. Figures 4.223 and 4.224 respectively show the total displacement 

pattern of the nodes when the full load (50 MPa) was applied and when the load was 

completely withdrawn for ends fixed forming condition. It can be seen from the contour 

level values in the legend presented in the figures that there is little change in the 

magnitude of displacement. A more objective picture of springback may be obtained 

from the displacement values of certain nodes indicated in Figure 4.223. Table 4.25 

presents the displacement values of those nodes. It can be seen from the table that the 

nodes have moved very little. The retraction of the nodes in percentage of total 

displacement at full load is between 0.4 to 1.2 which may considered to be negligible.
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Figure 4.223: Total nodal displacements at full applied pressure of 50 MPa.
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Figure 4.224: Total nodal displacements after complete withdrawal of the pressure 

Table 4.25: Displacement values of certain nodes at full load and after load removal
Node
No.

Location in the 
elbow

Total 
displacement at 
full load (mm)

Total displacement 
after load removal 

(mm)

Difference
(mm)

percentage of 
total 

displacement at 
full load

1532 inner bend 4.67 4.6515 0.0185 0 396
1533 inner bend 4.6373 4.6149 0.0224 0.483
1534 inner bend 4.717 4.6973 0.0197 0.417
1587 outer bend 3.38S 3,3569 0.0281 0.83
1588 outer bend 3.5912 3.5523 0.0389 1.083
1238 midway along arm 2.5251 2.4958 0.0293 1.16
1415 midway along arm 2.6102 2.5791 0.0311 1.191
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In the above elbow forming simulations it was seen that the tube did not deform 

to the fullest extent at the box comers. It was not expected also mainly because of two 

reasons. Firstly, the die was modelled with zero comer radius which would theoretically 

require infinite straining of the tube material points meeting the die comer which is 

impractical. Secondly, the tube was discretised with elements having linear shape 

functions. This means that the element sides would not take any curvilinear shape on 

deformation. To conform to sharp die contour it is necessary either to use more number 

of elements at such critical locations or use higher order elements. The first choice is 

computer costly and the second choice was not there in the finite element package that 

was used for the simulation. Apart from the above two modelling constraint, a third 

possibility due to which the tube may not deform to the fullest extent is the insufficient 

pressure. Figures 4.225 and 4.226 show the total displacement of the elbow at an 

applied pressure of 50 MPa and 100 MPa respectively. The friction factor was 0.05 and 

the ends were fixed. It can be seen from the contour level values in the figures that the 

increase in maximum displacement was only 0.252 mm.

Figure 4.225: Total displacement of nodes at 50 MPa pressure.

STEP 9 TIME = 4.4999998E-003 

TOTAL DISPLACEMENT

2 9925E+000

4.9875E-001

O.OOOOE+OOO
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STEP 18 T IM E -8.9999214E-003 

TOTAL DISPLACEMENT

5.2395E+000

S.2395E+000

4.71S6E+000

4 191BE+000 

3.6677E+000 

3.1437E+000 

2.6198E+000 

2 0958E+000 

1 .5719E+000 

1 0479E+000

5 2395E-001 

O.OOOOE+OOO 

O.OOOOE+OOO

Figure 4.226: Total displacement of nodes at 100 MPa pressure.

Figure 4.227: Development of internal energy, total energy and sliding interface energy

of deformation during simulation.

Finally, it was stated before that a quasi-static analysis was done for the forming 

problem by using a duration of forming much smaller than the actual duration would be. 

In such analysis it is essential that the kinetic energy during the deformation remains 

low compared to the internal energy or total energy of
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Figure 4 228 Development of kinetic energy of deformation during the simulation

deformation Figure 4 227 shows the total energy, internal energy and sliding interface 

energy of deformation Figure 4 228 shows the kinetic energy of the system during 

deformation of a particular simulation The state of energy for the other simulation cases 

was similar It can be seen that the system has smoothly gained energy The kinetic 

energy was negligible compared to the internal energy or total energy
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Chapter 5 

CONCLUSIONS AND RECOMMENDATIONS

Finite element modelling and simulation of bulge forming of different blank 

shape and size, friction conditions and loading patterns were carried out in this work 

Three blank shapes v iz , plane circular sheet, plane rectangular plate and straight 

cylindrical tubes were considered for simulation In all cases the pressure and m-plane 

compressive load were applied for forming Simulations of forming from plane circular 

sheet were done m axisymmetric two dimensions Simulations of forming from all other 

blank shapes were done in three dimensions Two stand-alone pentium PCs with 32 MB 

and 64 MB memory were used in the project ANSYS and LS-DYNA3D finite element 

packages were used for the simulation works

The main list of simulations in this work are

i bulge forming of plane circular sheets in the middle at different loading

conditions and optimisation of the process,
i

n bulge forming of plane rectangular plate at the middle at different loading

conditions,

in axisymmetric bulge forming of straight cylindrical tube at different loading 

conditions and optimisation of the process,

i v  asymmetric bulge forming of straight cylindrical tubes to T-branches and 

simulation of the failures of the process,

v asymmetric bulge forming of an initially bent cylindrical tube to an L-bend 

at different loading and friction condition

Summary findings from each of these simulation categories are presented in the 

following under separate headings Any conclusion or recommendation from these 

findings is also presented
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5 1 Simulation of Bulge Forming of Plane Circular Sheets

Main Findings

In this axisymmetric 2D simulation the effects of the in-plane compressive load, 

blank thickness, friction, blank diameter and loading pattern were observed The main 

observations were

1 Bulge forming by simultaneous application of pressure and m-plane compressive

load produces more height, less stress and strain, and the bulge crest thins less 

compared to the one formed by pressure load only 

ii Thinner sheets may be formed to comparable height with less pressure load But 

for the same blank size, and bulge diameter, thicker sheets can be bulged to more 

height before instability is reached 

in Bulging of same blank size and same bulge diameter by same loading pattern but

different friction conditions (frictionless and with friction) gives comparable bulge 

height and gives rise to comparable stress But strains in the bulges are different 

for changes in friction conditions

i v  Bulging from a sheet of larger blank diameter but same thickness allows more 

bulging as more peripheral displacement is available It is seen that the gam in the 

bulge height is nearly equal to the additional peripheral displacement This also 

gives a thicker bulge

v The ratio of the pressure load to displacement load has marked influence on the 

bulge forming process Enhanced penpheral displacement without sufficient 

pressure pushes the bulge root away from the die rather than material to the bulge 

centre

vi The sheet undergoes considerable circumferential compressive strain at the bulge 

root and base area At the same time these regions of the bulge have also 

thickened The net effect of straining in these regions is difficult to predict without 

simulating the problem in three dimensions

vn The instability in the bulge occurs at different state of strain for different loading

• conditions It is seen that bulges that are formed with more peripheral 

displacement fails at lower state of biaxial strain
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vin Restrained forming by putting flexible load of up to 25% of the applied pressure 

load on the top of the forming bulge does not result m appreciable difference with 

respect to bulge shape and the stress and strain state compared to free forming 

However, rigid restraint on the forming bulge produce significantly different shape 

of bulge The pattern of stress and strain distribution also changes The onset of 

instability is delayed and moves to locations where the bulge is not supported 

i x  In the maximisation of bulge height in free forming, the process optimises when 

variables v iz , pressure, peripheral displacement and die fillet radius are maximum 

within their specified range In the stress differential minimisation of the same 

forming problem, the pressure and the displacement loads settled to values near 

the upper range while the fillet radius of the die settled to the specified maximum 

value

Conclusions and Recommendations

From the simulations of the bulge forming of a circular sheet it is apparent that 

sheets of higher thickness, larger diameter at lower friction condition and a balanced 

pressure to peripheral displacement ratio would result in a stable process The 2D 

simulations show considerable circumferential strain but can not show whether there is 

wrinkling at the bulge base A 3D simulation would be more appropriate to reveal that 

deformation phenomenon

5 2 Bulge forming of Plane Rectangular Plates

Mam Findings

The simulations m this forming case were done in 3D for two loading 

conditions In one loading condition the pressure load was kept dominant over the axial 

compressive load over certain period of loading, while in the other, the axial 

compressive load was kept dominant over the pressure load until certain point of 

loading The model was very limited m terms of element numbers and consequently m 

loading The mam observations from the simulations of this forming situation were
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i The dominant pressure loading produced a smooth bulge while the other

loading condition resulted in buckling at the base of the bulge which could 

not be recovered by the subsequent pressure loading although the 

magnitude of the pressure load was same for both the loading conditions

II The stress state in the bulge was nearly the same for both the loading 

conditions but the dominant displacement loading has caused more stress 

gradient at the unbulged flat part

III From the simulations it appeared that the ratio of stress and strain in the 

direction of axial compression was a determinant factor for the onset of 

buckling at the flat part of the plate For the pressure dominant loading 

where there was no incident of buckling, the ratio was 99 and for the 

displacement dominant loading the corresponding value was 71 5 which 

resulted in the buckling

i v  In spite of the buckling which acted as a barrier for the movement of 

material in the bulging zone, the displacement dominated loading 

produced a higher bulge

Conclusions and Recommendations

The simulations revealed that the in-plane compression is desirable to get a 

higher bulge at the same time it should not produce any buckling m the process which 

impedes material movement in the bulge region A desirable balance between the 

pressure load and the displacement load would be the one which does not produce 

buckling It was seen that the in-plane compressive stress to in-plane compressive strain 

ratio of 99 does not produce buckling while a ratio of 71 5 produced buckling Because 

of very long computation time it was not possible to try other loading patterns 

However, based on the two simulations, a loading pattern was suggested which was 

expected to result in higher bulge without buckling in the process In forming problems 

like this, more powerful computers and solvers are essential where more trials could be 

done to determine the desirable loading pattern
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5.3 Axisymmetric Bulge Forming of Straight Cylindrical Tubes

Main Findings

In this 3D simulation of tube expansion two loading patterns were tried In the 

first loading pattern the pressure loading was initially high compared to the axial 

displacement loading In the second loading pattern relatively intense axial 

displacement loading was tned during the initial period of simulation The main 

observations from the simulations were

I In both simulations the bulging started as a hump somewhere between the 

die recess and the Z-symmetry line With the first loading pattern the hump 

gradually inflated evenly at its both ends and eventually spread all over the 

bulging region In contrast, the hump continued to maintain the shape in 

the second loading pattern and at one stage the die end of the hump started 

inflating and the whole bulging region suddenly changed from 

compressive mode to tensile mode of deformation

II Because the deformation progressed in two different modes due to the two 

loading conditions, the deformed shape of the bulges were different For 

the first loading the bulge took a regular barrel shape for most of its length 

The bulge by the other loading had a rather irregular shaped barrel The 

impression of the initial hump could not be eliminated although at the end 

of the simulation the pressure load was equal

m The bulge produced by the second loading pattern was more stressed than

that by the first loading pattern although the latter induced more 

deformation and thereby more bulge diameter The principal stresses in the 

bulge indicated agreement with the relevant theory regarding instability in 

the bulge

i v  The bulge by the first loading pattern was thinned at most to 75% of the

original thickness of the tube and almost no thickening in the main tube 

while the bulge by the second loading thinned at most to 82% of the 

original tube thickness and thickened to 104% at the main tube
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v The principal strains m the bulges by both the loading pattern showed 

intense straining in hoop direction at the end of the loading This indicated 

that the bulge would eventually rupture along its length as is the 

experience from practical tube expansion

vi The axial movement of the nodes in the bulge over the loading period by 

the second pattern indicated a jolt in the bulge which settled down quickly 

But if the loading intensity were high at that moment, then the process may 

become unstable

vn The optimisation exercise of the process showed that about 50% of the 

pressure load and about 40% of the displacement load applied at the first 

quarter of the simulation period would result in minimising strain in the 

likely region of buckling which would ensure smooth development of the 

bulge

Conclusions and Recommendation

The simulations of axisymmetnc tube expansion showed that the stress and 

strain development in the bulge agree well with the theoretical understanding of the 

process as well as with the practical experience The simulations revealed that 

depending on the loading pattern a mode shape change in the deformation process is 

likely and might lead to instability Since axisymmetnc bulging as a structure is more 

flexible compared to other type of bulge forming, it is better to do a mode shape 

analysis to identify the critical loads so that m real forming such loads can be avoided

In the simulations of the axisymmetnc bulge forming the nodes in the bulge 

except those at the symmetry planes moved slightly in the circumferential direction 

which should not be the case This has resulted in a different strain distribution inside 

the bulge than that at the symmetry edges This problem can be addressed by fixing all 

the nodes in the circumferential direction In cylindrical co-ordinate system this could 

be achieved easily But in Cartesian co-ordinate system the movements of hundreds of 

nodes have to be restricted by coupling the movements by equations which is quite time 

consuming Alternately, the tube can be given the effect of some stiffeners along its
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length at some circumferential location fixing the circumferential freedom of the nodes 

at those locations

The optimisation problem was described in a particular way The problem may 

be described in some other way and more effective optimum solution could be possible

5 4 Bulge Forming of T-branches from Straight Cylindrical Tube

Main Findings

This forming process was initially simulated by a limited finite element model 

Then simulations of forming of T-branches from tubes were done with satisfactory finite 

element model Some simulation results were compared with available test results 

Simulation of the failure of the T-branch forming process were carried out The main 

observations from these simulations are listed bellow

I ANSYS static simulation of forming T-branches by pressure load only and 

keeping the tube end either fixed or free revealed that at high friction the 

deformation behaviour is hardly different This is because the high friction 

resists the material in the mam tube to move in the bulge region The T- 

branch formed are of almost equal height and the magnitude of stress and 

strain and their distribution pattern m the deformed tube are almost same 

The maximum stress and strain occurred at the branch top

II Simulation of T-branch forming by both the pressure load and axial 

displacement of the end at different friction condition yielded different 

results In frictionless forming condition the tube deformed most This 

condition produced maximum branch height and the thinning at the branch 

top was least However, the stress state in the deformed tube was highest 

for the frictionless forming The more the friction the less is the branch 

height, the less is the state of stressing and higher is the intensity of 

thinning at the branch top In all the friction conditions the maximum 

stress in the deformed bulge developed at the middle region around the Z- 

symmetry of the model although the magnitude were different for different 

friction

233



in In LS-DYNA explicit dynamic solution of the same forming situation as 

described in the previous point but at higher pressure and end 

displacement showed similar findings Because of the higher pressure and 

axial displacement more deformation of the tube could be obtained 

resulting in longer T-branch with more stress and strain in the bulge The 

top of the T-branch experienced compressive meridional stress for a short 

period and quickly turned to tensile The development of tensile hoop 

stress in the branch top was always at a faster pace than the meridional 

stress indicating a possible rupture in the axial direction of the tube In 

practice the rupture failure of T-branches also occur in the same mode

iv The effect of fnction was observed by simulating the process at a fnction 

of 0 3 and at frictionless condition In the simulation with friction, a much 

lower forming load could be applied as further loading caused wrinkling at 

the ends This resulted in a T-branch which is only 57% of the height of 

the T-branch formed in frictionless condition The T-branch top thinned 

almost equally for both the friction conditions, but the mam tube thickened 

differently In frictionless forming the main tube thickened uniformly to 

133% of its onginal thickness while m the forming with friction the mam 

tube developed considerable strain gradient and thickened to a maximum 

of 158% of its original thickness

v The simulation of T-branch forming from copper tubes were done for the 

same loading conditions as was done in the expenments by 

Hutchinson[104] The simulation results agreed reasonably well with the 

experimental results

vi The T-branch formed from thicker tubes had almost flat top while that 

formed from relatively thinner tube produced T-branch with torosphencal 

shaped top

vn The stress and strain distnbution in the T-branches formed from thicker

and thinner tubes also differed The stress gradient at the T-branch formed 

from a thinner tube is more prominent than that formed from a thicker 

tube This has happened as the thinner tube has deformed more compared
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to the thicker tube At equal state of deformation this difference is likely to 

disappear

vin The thicker tube was formed at 48 3 MPa pressure and 13 4 mm axial 

displacement as well as 62 1 MPa and 20 mm axial displacement These 

two forming load conditions naturally produced T-branch of different 

heights with different stress and strain But the pattern of distribution of 

the stress and strain in the deformed tube was quite similar The history of 

stress and strain development at the branch top during the simulation were 

different mainly because of the difference in the loading pattern 

i x  The simulation of the failure of the T-branch forming process by bulging 

showed that the rupture failure occurs at the top of the forming T-branch 

when the pressure load dominates the forming process The buckling 

failure occurs at the mam tube directly under the forming T-branch The 

buckling at the mam tube starts when two neighbouring region move 

axially at two different radial position of the tube High axial load and low 

internal pressure creates a loading situation comparable to compression of 

an imperfect slender column This kind of loading situation would 

naturally lead to buckling

Conclusions and Recommendation

The simulation of T-branch forming revealed the pattern of stress and strain in 

the formed component at different forming conditions The simulation showed that the 

lower the friction the better it is to overcome the problem of thickening in the main 

tube Also the stress and strain distribution in the formed component is more even for 

low friction forming

The simulation compared quite well with the experimental results This provides 

the necessary evidence that the results from the FEM simulation of this complex 

process can be accepted as nearly the realistic state of deformation of the process

It was found m the results that the distribution of stress and strain at a smaller 

part of the deformed component near the die bend was slightly erroneous It was also
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reasoned that the solid elements are not very suitable for the kind of deformation that 

takes place in this small region However, it can be taken care of by modelling this small 

region by thick shell elements in association with solid elements for the other part of the 

model

The bulge forming of T-branch by hydraulic pressure was simulated in this work 

T-branches can also be formed by using solid medium instead of liquid Simulation of 

such cases would make the model even larger as the solid medium has also to be 

modelled and consequent solution time would be longer However, such modelling and 

simulation can be taken up with powerful computers Also, due to the computer 

resource constraint forming of long T-branches could not be taken up which can be tried 

with more powerful computers

5.5 Bulge Forming of Box-Sectioned Elbow from Cylindrical Tube

Main Findings

In this simulation a cylindrical L-bend was bulged to a box-sectioned bend by 

applying pressure load only but at different forming conditions Simulations were 

carried out for different end conditions and friction conditions The main observations 

from the simulation results are listed bellow

I The simulation where the elbow ends were kept free developed a sharp 

dent at the L-bend and the length of the arms reduced by few millimetres 

In the case where the ends were kept fixed these deformation phenomena 

were not observed rather the L-bend was smooth Also, in the latter case 

the stress and strain distribution was more even compared to the former 

case In both cases the thinning pattern was similar although the case with 

ends fixed has thinned slightly more all over Also, spnngback was 

negligible for both the cases

II Simulations were carried out at friction factor values of 0 15 and 0 05 

keeping the ends fixed It was observed that there was more stress and 

strain localisation in the elbow formed with lower friction
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Conclusions and Recommendation

It was apparent from the simulations that in forming cases like this it is better to 

keep the ends fixed It was also apparent that because of low fnction more straining 

takes place in the bends and comers when the ends are kept fixed This results in higher 

stress and strain localisation Therefore, it is better to have moderate friction at the 

interface for such forming processes

The number of elements in the model were not sufficient specially at the comers 

Thus the deformation at the comers were not well represented The model can be 

developed with more elements at the comers to have more representative results

The simulation in this work started with an initially bent blank Simulation can 

be attempted to include the initial bending process or simultaneous bending and bulging 

process

5 6 Thesis Contribution

Bulge forming of tubular components is a relatively new forming process which 

is increasingly getting widespread application in industry The understanding of the 

process made so far has been limited to some aspects of the process In the case of 

complex forming of asymmetric components it is even poor The important aspects like 

flow pattern in the process for different forming condition, stress and strain conditions 

in the formed components, thinning and thickening behaviour within the component etc 

are largely unknown to the researchers as well as to the practitioners As a result the 

defects and failures m the process is a major concern for the industry Also, the design 

of machine tools for the process lacked sufficient knowledge and understanding of the 

process The simulations in this work will contnbute some knowledge in this largely 

unknown area of bulge forming In particular, the simulations in this work provided

1 the state of stress and strain in the formed bulge from plane circular sheet 

formed by pressure and m-plane compressive load Also, the pattern of 

metal flow in such forming has been identified An optimum set of process 

variables were identified to minimise the stress differential m the bulge 

while developing the bulge to a certain minimum height
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ii identified the pattern of stress and strain, thinning or thickening and metal

flow in the bulge forming of rectangular plates at the middle by pressure 

and in-plane compressive load on the shorter side of the plate Also, a 

possible loading pattern was suggested that would avoid any buckling in 

the flat part of the plate during forming 

111 the pattern of stress and strain, thinning or thickening and flow of metal in

the tube expansion process by bulge forming has been identified Some

observations were made as to the instability of the process due to the mode 

shape change during the forming process Also, an optimum loading 

pattern was identified that would eliminate buckling in the mam part of the 

tube

i v  the pattern of stress and strain, thinning and thickening and metal flow in

the complex bulge forming process of T-branches has been identified in

the simulations The simulations also identified the effects of friction,

blank material and blank thickness on the forming process Also, the 

locations and reasons for failure of the T-branch forming process have 

been found from the simulations

v the state of stress and strain and the pattern of thinning or thickening in the 

bulge formed elbow have been revealed in the simulations The springback 

behaviour of the elbow has also been identified

238



REFERENCES

1 N Brannberg and J Mackerle, “Finite element methods and material processing 
technology”, Engineering Computations, Vol 11, pp 413-455 , 1994

2 E Chater and K W Neale, “Finite plastic deformation of a circular membrane 
under hydrostatic pressure-1 rate independent behaviour”, Int J Mech S ci, 
Vol 25 No 4 pp 219-233, 1983

3 W Brown and G Sachs “ Strength and failure characteristics of thin circular 
membranes”, Trans ASME, Vol 70, pp 241-251, 1948

4 A Gleyzal, “Plastic deformation of a circular diaphragm under pressure”, J 
Appl Mech, Vol 15, pp 288-296 , 1948

5 W Brown and F Thompson “ Strength and failure characteristics of metal 
membranes in circular bulging”, Trans ASME, Vol 71, pp 575-585 ,1949

6 R Hill, “A theory of the plastic bulging of a metal diaphragm by lateral 
pressure”, Phil Mag(sec 7), Vol 41, pp 1133-1142,1950

7 H W  Swift, “Plastic flow under plane stress”, J Mech Phys Solids, Vol 1, 
pp 1-18, 1952

8 P B Mellor, “ Strength forming under fluid pressure”, J Mech and Phy of 
Solids, Vol 5, pp 41-56, 1956

9 D Rees, “Plastic flow in the elliptical bulge test”, Int J Mech S ci, Vol 37 
No 4, pp 373-389, 1995

10 M Atkinson, “Accurate determination of biaxial stress-strain relationship from 
hydraulic bulging tests and sheet metals”, Int J Mech Sci , Vol 39 No 7, pp 
761-769, 1997

11 M F Uahi and T K Paul, “Hydrostatic bulging of a circular soft brass 
diaphragm”, Int J Mech S ci, Vol 27 No 5, pp 275-280, 1985

12 D Rees, “ Instability limits to the forming of sheet metals”, J Mat Proc Tech, 
Vol 55, pp 146-153, 1995

13 M Atkinson, “Hydraulic bulging of near isotropic sheet metal through an 
elliptical aperture”, Int J Mech Sci, Vol 36, 1994

14 D M  Woo, “The analysis of axisymmetric forming of sheet metal and the 
hydrostatic bulging process” Int J Mech S ci, Vol 6, pp 303-317,1964

239



15 Y Yamada and Y Yokouchi, Seisan kenku (in Japanese), Vol 21 No 11, pp 
636,1969

16 N M Wang and M R Shammamy, “On plastic bulging of a circular diaphragm 
by hydraulic pressure” , J Mech Phys and Solid, Vol 17, pp 43-61,1969

17 M F Ilahi, A Parm arandPB Mellor, “Hydrostatic bulging of a circular 
alummium diaphragm”, Int J Mech, S c i, Vol 23 , pp 221-227, 1981

18 H Iseki, T Jimma and T Murota, “ Finite element method of analysis of the 
hydrostatic bulging of sheet metal(part 1)”, Bulletin of the JSME, Vol 17 No 
112, pp 1240-1246, 1974

19 H Iseki, T Murota and T Jimma, “Finite element method in the analysis of 
hydrostatic bulging of sheet metal (part 2)”, Bulletin of JSME, Vol 20 No 141, 
pp 285-291, 1977

20 S Kobayashi and J H Kim, “Deformation analysis of axisymmetnc sheet metal 
forming process by the rigid plastic FEM”, Proc of Symp in Mechanics of 
sheet metal forming ed D P  KoistenandNM  W ang,pp 341-363, 1978

21 Y J Kim and D Y Yang, “ A ngid-plastic finite element formulation considering 
the effect of geometric change and its application to hydrostatic bulging”, Int J 
Mech S ci, Vol 27 No 7/8, pp 453-463, 1985

22 A S Wifi, “ FE correction matrices in metal forming analysis with application to 
hydrostatic bulging of a circular sheet”, IJMS, Vol 24, No 7, pp 393-406(1982)

23 P Keck, M Wilhelm, K Lange and M Herrmann, “Compansion of different 
finite element methods for the simulation of sheet metal forming”, Proc of 
Numiform 89, pp 481-488, Balkema, Rotterdam, 1989

24 K Lange, M Herrmann, P Keck and M Wilhelm, “Application of an elasto- 
plastic finite element code to the simulation of metal forming process”, JM PT,

’ Vol 27, pp 239-261, 1991

25 Y Li, P Hu and J Lian, “Numerical study for influences of matenal parameters 
on hydrostatic bulging of metal sheet”, Acta Mechamca Solida Sinica (English), 
Vol 6 No 2, pp 133-144, 1993

26 R J Cronin, J Y Xia and D T Llewellyu, “Finite element modelling of 
hydraulic bulging during sheet metal forming”, Ironmaking and steelmaking,
Vol 21 No 1, pp 32-36,1994

27 W B Lee and Z R Ma, “Prediction of the limiting shape of a die height in the 
hydraulic bulge forming of a circular cup”, JMPT, Vol 51, pp 309-320,1995

28 J Grey, A D Devereaux and W Parker, Apparatus for making wrought metal 
Ts”, USA Patent office, Filed June 1939, Patent no 2203868

29 R Crawford, “Solder fitting” Industrial progress, pp 33-36, 1948

240



30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

J Stalter, “Method of forming complex tubing shapes” UK Patent office, Filed 
March 1968, Patent no 1181611

J Remmerswaal and A Verkaik, “Use of compensation forces and stress in 
difficult metal forming operations”, Int Conf on Manufacturing Technology, 
ASME, pp 1171-1180,1967

T Ogura and T Ueda, “Liquid bulge forming”, Metalworking Production, pp 
73-81, 1968

H A  Al-Qureshi, P B Millor and S Garber, “Application of Polyurethane to the 
bulging and piercing of thin-walled tubes”, Advances in Mach Tool Des Res 
318-338, Pergamon Press, 1969

H A Al-Qureshi, “Comparison between the bulging of thin walled tubes using 
rubber forming technique and hydraulic forming process”, Sheet Metal Industry, 
Vol 47, pp 607-612,1970

D M Woo, “Tube bulging under internal pressure and axial force”, J of 
Engineering Materials and Technology, pp 421-425,1978

Limb, J Chakrabarty, S Garber and P B Millor, “The forming of axisymmetric 
and asymmetric component from tube”, Proc 14th Int MTDR conf, PP 
799(1973)

Limb, J Chakrabarty, S Garber and W T Roberts, “Hydraulic forming of 
tubes”Sheet Metal Industries, PP 418-424(1976)

M Limb, J Chakrabarty and S Garber, “The axisymmetric tube forming 
process”, Int Inst for Prod Eng Research Conf,Tokyo, pp 280-283, 1974

S Kandil, “Hydrostatic metal tube bulging as a basic process”, Metallurgy and 
Metal forming, pp 152-155 , 1976

W J Sauer, A Goetra, F Robb and P Huang, “Free bulge forming of tubes 
under internal pressure and axial compression”, Trans of NAMRC VI, SME, 
pp 228-235, 1978

D M Woo and A C Lua, “Plastic deformation of anisotropic tubes in hydraulic 
bulging” , Journal of Engineering Materials and Technology, pp 421-425, 1978

D M Woo, “Development of a bulge forming process”, Sheet Metal Industries, 
pp 623-624 and 628, 1978

V L Lukanov, V V Klechkov, V P Shateev and L V Orlov, “Hydromechanical 
stamping of tees with regulated liquid pressure”, Forging and Stamping 
Industry, Vol 3, pp 5-7, 1980

A R Ragab, “Producing superplastic tubular tee joints by thermoforming”,
Proc Int MTDR Conf, pp 223-, 1980

241



45 M S J Hashmi, “Radial thickness distribution around a hydraulically bulge 
formed annealed copper T-joint experiments and theoretical predictions”, Proc 
of 22nd Int MTDR Conf, pp 507-516,1981

46 M S J Hashmi, “Forming of tubular components from straight tubings using 
combined axial load and internal pressure theory and experiment”, Proc of Int 
Conf of Dev of Drawing of Metals, Metals Society, pp 146-155, 1983

47 M S J Hashmi and R Crampton, “Hydraulic bulge forming of axisymmetric 
and asymmetric components comparison of experimental results and 
theoretical predictions” Proc 25 th Int MTDR Conf, pp 541-549, Birmingham, 
1985

48 M I HutchinsonR Crampton, W RushtonandM S J Hashmi, “Thehydraulic 
bulge forming of tubular components - the effect of altering the plungers 
applying compressive axial load”, Proc 6th Irish Manu Committe Conf, pp 
248-254, Dublin, 1989

49 M I Hutchinson,R Crampton,MS All andM S J Hashmi,“Thehydraulic 
bulge forming of tubular components - the effect of changing the tube blank 
material”, Proc 4th Nat Conf in Prod Res , pp 439-444, Sheffield, 1988

50 T Ueda, “Differential gear casing for automobiles by liquid bulge forming 
processes-part 1”, Sheet Metal Industries, Vol 60 part 3/4, pp 181-185, 1983

51 T Ueda, “Differential gear casings for automobiles by liquid bulge forming 
processes- part 2” Sheet Metal Industries, Vol 60 part 4, pp 220-224, 1983

52 L A M  Filho and H A Al-Qureshi, “Unconventional tee forming on metal 
tubes”, Trans ASME,J Eng Ind, Vol 107, pp 392-396, 1985

53 F Dohmann and F Klass, “Liquid bulge forming of tubular workpieces”, Strips 
Sheets Tubes, Vol 4(1), pp 7-10, 1987

54 M Murata, Y Yokouchi,K OnoderaandH Suzuki,“The hydraulic tube 
bulging of a tube-attached lining rubber membrane with axial compressive 
force”, JSME Int J , Series III, Vol 32 No l,p p  118-123,1989

55 S Thiruvarudchelvan and F W Travis, “Tube bulging with a Urethane rod”, 
JMPT, Vol 23, pp 195-209,1990

56 S Thiruvarudchelvan and A C Lua, “Bulge forming of tubes with axial 
compressive force proportional to the hydraulic pressure”, J Mat, Shaping 
Tech, Vol 9, pp 133-142, 1991

57 F Dohmann and C Hard, “Liquid bulge forming as a flexible production 
method”, JMPT, Vol 45, pp 377-382, 1994

58 F Dohmann and C Hard, “Hydroforming - a method to manufacture light 
weight parts”, JMPT, Vol 60, pp 669-676, 1996

242



59

60

61

62

63

64

65

66

67

68

69

70

71

72

L A M  Filho, J M enezesandHA Al-Qureshi, “Analysis of unconventional 
Tee forming on metal tubes” JMPT vol 45, pp 383-388,1994

S Thiruvarudchelvan, “A theory for initial yield condition in tube bulging with 
urethane rod”, JMPT, Vol 42, pp 61-74, 1994

S Thiruvarudchelvan, “A theory for the bulging of aluminium tube using 
urethane rod”, JMPT, Vol 41, pp 311-330,1994

S Sheng and W Tonghai, ‘‘Research into the bulge forming of a tube under 
axial -radial compound forces and its application”, JMPT, Vol 51, pp 346-357, 
1995

J Tirosh, A Neuberger and A ^Shinzly, “On tube expansion by internal fluid 
pressure with additional compressive stress”, Int J Mech S c i, Vol 38 No 8, 
pp 839-851,1996

PB  Mellor, “Tensile instability in thin-walled tubes”, J Mech Eng S ci, Vol 
4 No 3, pp 251-256,1962

B H Jones and P B Mellor, “Plastic flow and instability behaviour of thm- 
walled cylinders subjected to constant ratio tensile stress”, J Strain Analysis, 
Vol 2, pp 62-72, 1967

R P Felgar, “Plastic analysis of the instability of pressure vessels subjected to 
internal pressure and axial load”, Transec ASME, J Basic E ng, Vol 84, 
pp 279-286, 1962

N A Weil, “Tensile instability of thin-walled cylinders of finite length”, Int J 
Mech S c i, Vol 5, pp 487-506,1963

K Manabe, K Suzuki, S Mon and H Nishimura, “Bulge forming of thin- 
walled tubes by micro-computer controlled hydraulic press”, Proc of Adv 
Tech Plasticity, Vol 1, pp 279-, 1984

A D Eldred, R F Malkin and T Barringer, “Variform - a hydroforming 
technique for manufacturing complex tubular components”, Technische 
Mitteilungen Krupp (English), Vol l,p p  45-50,1994

J Hashemi, J Rasty, SD  L iandA A  Tseng, “Integral hydro-bulge forming of 
single and multi-layered spherical pressure vessels” ASME Journals of Pressure 
Vessels Technology, 1992

Z R Wang, T Wang, D C Kang, S H Zhang and Y Fang, “The technology of 
the hydrobulging of whole spherical vessels and experimental analysis”, Journal 
of Mech Work Technol, Vol 18, pp 85-94,1989

K Lange, M Herrmann, P Keck and M Willhelm, “Application of an elasto- 
plastic finite element code to the simulation of metal forming processes” JMPT, 
vol 27, pp 239-261, 1991

243



73

74

75

76

77

78

79

80

81

82

83

84

85

H Bauer, “FE simulation of the production process of builded camshaft”, 
Numerical Methods m Industrial Forming Processes, pp 595-600, Balkema, 
Rotterdam, 1992

M Michino, M Tanaka, M Koike, M Watanbe, K Sano and M Nonta, 
“Forming of elbows with zero bending radius”, In Concurrent Engineering 
Approach to Materials Processing, Ed Suren N Dwivedi, J Paul and F Robert 
Dax, The Minerals, Metals and Matenal Society, pp 291-303, 1992

S Zhang and Z R Wang, “FEM simulation of the hydrobulging process for a 32 
petal spherical vessel”, IJMS, Vol 36, No 1, pp 13-22, 1994

J Hashemi and Q Zheng, “ A three dimensional FEA of hydrostatic bulging of 
an integral polyhedron into a sphencal vessel”, Recent Advances m Structural 
Mechanics, ASME Winter Annual Meeting Proc , Vol 13, pp 113-117, 1993

A Honecker and K Mattiasson, “Finite element procedures for 3D sheet 
forming simulation”, Proc NUMIFORM ’89, pp 457-463, Balkema, 
Rotterdam, 1989

K Mattiasson, L Bemspang, A Samuelson, T Hamman, E Schedin and A 
Melander, “Evaluation of dynamic approach using explicit integration in 3-D 
sheet forming simulation”, Numerical Methods in Industrial Forming Processes, 
pp 55-67, Balkema, Rotterdam, 1992

N Rebelo, J Nagtegaal, LM  Taylor and R Passman, “Comparison of implicit 
and explicit FEM in the simulation of metal forming processes”, Numerical 
Methods m Industnal Forming Processes, pp 99-108, Balkema, Rotterdam,
1992

D Yoo, I Song, D Yang and J Lee, “Rigid-plastic FEA of sheet metal forming 
process using continuous contact treatment and membrane elements 
incorporating bonding effects”, Int J Mech Sc , Vol 36, pp 513-546, 1994

C Teodosin, D Daniel, H-L Cao and J-L Duval, “Modelling and simulation of 
the can-makmg process using solid finite elements”, JMPT, Vol 50, pp 133- 
143, 1995

J S Arora, “Computational Design Optimisation a review and future 
directions”, Structural Safety, Vol 7, pp 131-148,1990

M Z Cohn and A S Dinovitzer, “Application of structural optimisation”, J 
Struc Eng, Vol 120(2), pp 617-650, 1994

J Kusiak and E Q Thompson, “Optimisation techniques for extrusion die 
shape design”, Numiform 89, pp 569-574, Balkema, Rotterdam, 1989

M Becker and R Kopp “A new approach to optimisation of metal forming 
processes”, Numiform'89, pp 107-113, Balkema, Rotterdam, 1989

244



86

87

88

89

90

91

92

93

94

95

96

97

98

99

M S Joun and S M Hwang, “Optimal process design in steady-state metal 
forming by finite element method-1 theoretical considerations”, Int J Mach 
Tools Manu Vol 33, No 1, pp 51-61, 1993

M S Joun and S M Hwang, “Optimal process design in steady-state metal 
forming by finite element method-2 application to die profile design”, Int J 
Mach Tools M anu, Vol 33, No 1, pp 63-70, 1993

M S Joun and S M Hwang, “Application of FEM to process optimal design m 
metal extrusion”, Numerical Methods in Industrial Forming Processes, pp 619- 
624, Balkema, Rotterdam, 1992

C S Han, R V Grandhi and R Srmivasen, “Optimum design of forging die 
shapes using non-linear FEA”, AJAA Journal, Vol 31 No 4, pp 774-781,1993

J Shu and C Hung, “Finite element analysis and optimisation of sprmgback 
reduction the double-bend technique”, Int J Mach Tools Manu Vol 36,
No 4, pp 423-434, 1996

J Kusiak, “A technique of tool shape optimisation in large scale problems of 
metal forming”, JMPT, Vol 57, pp 79-84,1996

L Fourmant and J L Chenot, “Optimal design for non-steady state metal 
forming processes-I shape optimisation method”, Int J Num Meth Eng, Vol 
39, pp 33-50, 1996

L Fourmant and J L Chenot, “Optimal design for non-steady state metal 
forming processes-II application of shape optimisation in forging”, Int J 
Num Meth Eng, Vol 39, pp 51-65, 1996

S Roy, S Ghosh and R Shivpuri, “Optimal design of process variables in 
multipass wire drawing by genetic algorithm”, J Manu Sci Eng, Vol 118, pp 
244-251, 1996

S Roy, S Ghosh and R Shivpuri, “A new approach to optimal design of 
multistage metal forming processes with micro-genetic algorithms”, Int J 
Mach Tool Manu, Vol 3 7 No l,p p  29-44,1997

G Park, W Hwang and W Lee, “Structural optimisation post -process using 
Taguchi method”, JSME Int Journal, Series A, Vol 37 No 2, 1994

G Beer and J O Watson, “Introduction to finite element and boundary element 
methods for engineers” John Wiley and Sons, 1992

K-J Bathe, “Finite element procedures in engineering analysis”, Prentice Hall, 
1982

P Kohnke (ed ), “ANSYS User’s Manual, Rev 5 l,V ol 4, theory, Swanson 
Analysis Systems Inc , Houston, 1994

245



100 JO  Hallquist, “LS-DYNA3D Theoretical Manual”,Livermore Software 
Technology Corporation, California, USA, 1993

101 JO  Hallquist and D J Benson, “Explicit finite element methods for impact 
engineering”, Proceedings of the first Australasian Congress on Applied 
Mechanics, pp 11-16, Melbourne, 1996

102 Y Wu and S Taguchi, “Orthogonal Arrays and Linear Graphs”, American 
Supplier Institute Press, 1987

103 ANSYS, “ANSYS-LSDYNA Users5 Guide, 1st e d , ANSYS Inc , Houston,
1996

104 M I Hutchinson, “Bulge Forming of Tubular Components” , PhD Thesis, 
Sheffield City Polytechnique, Sheffield, 1988

105 T Belytschko, B L Wong and H Y Chiang, “Improvement in low order shell 
elements for explicit transient analysis”, Analytical and Computational Models 
of Shells, A K Noor, T Belytschko and J Simo (ed ), ASME, CED -Vol 3, pp 
383-398, 1989

106 T Belytschko, B L Wong and H Y  Chiang, “Advances in one point quadrature 
shell elements”, Computer Methods in Applied Mechanics and Engineering,
Vol 96, pp 93-107,1992

107 T Belytschko, J L m andC S  Tsay, “Explicit algorithms on non-linear 
dynamics of shells”, Computer Methods in Applied Mechanics and 
Engineering, Vol 42, pp 225-251, 1984

108 D J Benson and J O Hallquist, “A single surface contact algorithm for the post 
buckling analysis of shell structures”, Computer Methods m Applied Mechanics 
and Engineering, Vol 78 pp 141-163,1990

246



APPENDIX

Taguchi has developed an experimental method for determining the optimum 

values of product and process parameters called design variables which will minimise 

variation while keeping the mean value of the output parameter called the objective 

figure of merit on target In this method two category of design variables viz control 

factors and noise factors are identified by the designers either out of their experience 

or from brain storming sessions Control factors are those factors of the product or 

process which can easily be controlled Noise factors, on the other hand, are those 

variables of the product or process which are either difficult, or impossible, or 

expensive to control Each variable is assigned certain discrete values Number 

discrete values of a variable determines its levels Depending on the number of 

factors and number of levels of the factors an orthogonal array is chosen to conduct 

experiments The orthogonal array determines the factor-level combinations to be 

tried on the process A particular figup^of meritdecided by the designer is recorded

Taguchi Parameter Design Method

for each trial of the process determined by the orthogonal array The figure of merit
\

responses from the trials are then analysed to find the optimum factor-level 

combination

The principle of analysis is to determine the average response of the figure of 

merit and the average signal to noise (S/N) ratio at each level of the design variables 

and then check the trend of the average response and/or average S/N ratio for changes 

in the factor levels Depending on the problem type the level of a factor that give the 

maximum or minimum average response or minimum S/N ratio is the desired level 

for that particular factor There are some standard S/N ratio expressions The 

expressions for S/N ratio that are used widely are given bellow

A) for problem types where nominal value of the response is better

S/N = 10 log [ ( Sm - Ve )/ n Ve] (A-l)

where, Sm = ( £Y, )2 / n and Ve = [ ZY,2 - ( £Y, )2 / n ] / (n-1),

Y1 is an observation of the output characteristic and n is the number of 

observations

I



B) for problem types where smaller is the better response

S/N = 10 log [ (ZY, )2 / n ]

C) for problem types, where bigger is the better response

S/N = 10 log [ (Zl/Y ,2 ) / n ]

(A-2)

(A-3)

Taguchi method used in this project identified the optimum level of design 

variables that give minimal variation to the objective function value Each design 

variable was given two different desirable values around the optimum solution 

obtained by the non-1 inear optimisation A three factor-two level orthogonal array was 

chosen for trial runs Equations A-2 and A-3 were used for S/N ratio calculation
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