
Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

An Investigation into Software Development Process Formation in
Software Start-ups

Gerry Coleman1 and Rory V O’Connor2

1 Department of Computing, Dundalk Institute of Technology, Dundalk, Ireland
gerry.coleman@dkit.ie

2 School of Computing, Dublin City University, Dublin 9, Ireland
roconnor@computing.dcu.ie

Abstract
Purpose This paper reports on the results of an investigation into how the software development
process is initially established within software product start-ups.

Methodology/Approach The study employs a grounded theory approach to characterize the
experiences of small software organizations in developing processes to support their software
development activity. Using the indigenous Irish software product industry as a test-bed, we examine
how software development processes are established in software product start-ups and the major factors
that influence the make up of these processes.

Findings The results show that the previous experience of the person tasked with managing the
development work is the prime influencer on the process a company initially uses. Other influencers
include the market sector in which the company is operating, the style of management used and the size
and scale of the company operations.

Practical implications The model has particular implications for start-up software product organisations
that wish to successfully manage their product development from an early stage.

Keywords Software product company, Software process, Process formation, Grounded theory

Paper Type Research Paper

Introduction

For many small and start-up software companies, implementing controls and structures to

properly manage their software development activity is a major challenge. Administering

software development in this way is usually achieved through the introduction of a software

process. A software process essentially describes the way an organisation develops its

software products and supporting services, such as documentation. Processes define what

steps the development organisations should take at each stage of production and provide

assistance in making estimates, developing plans and measuring quality. To simplify

understanding and to create a generic framework which can be adapted by organisations,

software processes are represented in an abstract form as software process models. A number

of different models including, Waterfall Development, Evolutionary Development and

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Component-based Development (Sommerville, 2007), exist as instantiations of how software

development can be undertaken.

Small software companies, and in particular start-ups, are creative and flexible in nature

and are reluctant to introduce process or bureaucratic measures which may hinder their

natural attributes (Sutton, 2000). In addition small and start-up companies have very limited

resources and typically wish to use these resources to support product development.

This research set out to explore the following research question:

• How are software processes initially established in a software company?

To attempt to answer this it was necessary to address two further questions:

• What software processes are software companies currently using?

• How do the operational and contextual factors, present in organisations, influence the

content of software processes?

Background

In many software start-ups, the founders are experts in application domains other than

software (Coleman Dangle et al., 2005). Even where the founders have software experience,

they often have very limited resources at their disposal and an absence of a business model

(Voas, 1999). Factors such as deciding what type of software business you are going to be

also arise (Bersoff, 1994). From a software process perspective, start-ups are ultimately

concerned with survival rather than establishing procedures. Bach (1998) describes the typical

start-up in which he worked as containing “a bunch of energetic and committed people

without defined development processes”. But overall, as Sutton (2000) states, “software start-

ups represent a segment that has been mostly neglected in process studies”. A trawl of the

literature confirms Sutton’s findings and reveals few accounts of how process is established in

software start-ups. Consequently, the research question posed by this study is important and

worthy of investigation.

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Many managers just decide to apply what they know, as their experience tells them it is

merely common sense (Nisse, 2000). In software companies, technical survival and success

can depend most heavily on the managers and executives who have responsibility for

technical strategies (Sutton, 2000). Baskerville and Pries-Heje (1999), in detailing the first

three years of business of a small software company, state that the Web and Internet

knowledge used in system development by the employees, had been gained through personal

interests, reading, experimentation, or exploration prior to them joining the company.

Similarly, the knowledge of the business and target market was brought to the company by

the founders.

Previous software process experience is often considered an indicator of success

(Humphrey et al., 1991). By contrast, previous negative experience of software process

improvement (SPI) can act as a de-motivator for practitioners towards implementing change.

Baddoo and Hall (2003) consulted practitioners across three groups, developers, project

managers and senior managers. Previous ‘Negative/bad experience’ was cited as an SPI de-

motivator by 33% of senior managers as opposed to 5% of developers. Alternatively, where

practitioners work, or have worked, in a non-process-driven environment, they need to be

convinced of SPI’s value. Armour (2001) describes the difficulties he encountered in trying to

persuade some managers in a successful innovative products company, who did not use

defined process models, of the benefits of SPI

In software start-ups many managers encourage all employees to be involved in all aspects

of development (Kelly and Culleton, 1999). Whilst numerous organisations retain this culture

of involvement, many large companies delegate responsibility for software process to a

dedicated process group. In smaller companies and start-ups senior management often allow

their developers to have a significant influence over the way they work. In relation to

software development, this concept of relinquishing power and placing trust in the ability of

the employees is raised in a number of instances in the literature. Humphrey (2002) urges

managers to trust their engineers claiming, “when you don’t trust them they are not likely to

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

trust you”. This view is echoed by Yamamura (1999) who reports on the success of an SPI

programme in the Boeing Corporation stating that employees were highly motivated, as

between themselves and company management there was a deep well of mutual trust. There is

evidence that empowering development practitioners, and allowing them to take ownership of

the processes they use, motivates SPI success (Baddoo and Hall, 2003).

Research Methodology

The investigation of software process in practice relies heavily on eliciting and

understanding the experience of those who use the software processes in situ and the

interpretation of these experiences and the reality of the situation under study. The study

therefore, naturally lends itself to the application of qualitative research methods, as they are

orientated towards how individuals and groups view and understand the world and construct

meaning out of their experiences. Also, a particular strength of qualitative research is its

ability to explain what is going on in organisations (Avison et al., 1999).

Of the qualitative methodologies available, we believed grounded theory (Glaser and

Strauss, 1967) offered the best mechanism for achieving the research objectives. The

emphasis in grounded theory is on new theory generation. This manifests itself in such a way

that, rather than beginning with a pre-conceived theory in mind, the theory evolves during the

research process itself and is a product of continuous interplay between data collection and

analysis of that data (Goulding, 2002). According to Strauss and Corbin (1998), the theory

that is derived from the data is more likely to resemble what is actually going on than if it

were assembled from putting together a series of concepts based on experience or through

speculation. As the objective with the methodology is to uncover theory rather than have it

pre-conceived, grounded theory incorporates a number of steps to ensure good theory

development. The analytical process involves coding strategies: the process of breaking down

interviews, observations, and other forms of appropriate data, into distinct units of meaning,

which are labelled to generate concepts. These concepts are initially clustered into descriptive

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

categories. The concepts are then re-evaluated for their interrelationships and, through a series

of analytical steps, are gradually subsumed into higher-order categories, or one underlying

core category, which suggests an emergent theory. We chose grounded theory as the method

of enquiry for the following reasons:

• Given the lack of an integrated theory in the literature as to how software processes

are formed, an inductive approach, which allowed theory to emerge based on the

experiential accounts of practitioners, offered the greatest potential.

• It has established guidelines for conducting inductive, theory-generating research.

• It is renowned for its application to human behaviour. Software development is

labour-intensive and software process relies heavily on human compliance for its

deployment.

• It is an established and credible methodology in sociological and health disciplines

(e.g. nursing studies, psychology), and a burgeoning one in the IT arena. This study

provided an opportunity to apply a legitimate and suitable methodology to the

software field.

Since the initial launch of grounded theory, the Glaser and Strauss alliance gradually

separated until each was developing a different version of the methodology. First in 1990

(Strauss and Corbin, 1990) and in a follow-up (Strauss and Corbin, 1998), Strauss, now in

conjunction with Corbin, created an updated version of grounded theory with extended coding

systems. As a result of these divergences, it is incumbent on every researcher using grounded

theory to indicate which implementation of the methodology they are using. This study

employed the Strauss and Corbin approach (Strauss and Corbin, 1998). For a fuller discussion

on grounded theory, the rationale behind its selection and how it was implemented in this

study please refer to Coleman and O’Connor (2007). A number of researchers have used

grounded theory to look at a diverse range of socio-cultural activities in IS. Baskerville and

Pries-Heje (1999) used a novel combination of action research and grounded theory to

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

produce a grounded action research methodology for studying how IT is practiced. Others

have used the methodology to examine, the use of ‘systems thinking’ practices (Goede and

De Villiers, 2003), software inspections (Seaman and Basili, 1997; Carver and Basili, 2003),

process modelling (Carvalho et al., 2005), requirements documentation (Power, 2002), and

virtual team development (Sarker et al., 2001; Qureshi et al., 2005). Hansen and Kautz (2005)

used grounded theory to study the use of development practices in a Danish software

company and concluded that it was a methodology well suited for use in the IS sector.

From a software process perspective, the role of individual actors, and their environmental

surroundings and conditions, weighs heavily on how the process is practiced. We believed

that grounded theory, whilst handling the contextual and situational factors, could facilitate

and support the gathering and analysis of those human experiences and highlight the

associated interrelationships with other human actors.

Study Setting

The context and scope for the study was set as follows: To ensure the participation of

software development professionals who would be familiar with the considerations involved

in creating a software process, we decided to limit the scope to software product companies.

In addition, given the geographical location of the researchers, we chose to confine the study

to indigenous Irish software product companies who naturally operate within the same

economic and regulatory regime. Furthermore, restricting the study to indigenous Irish

software product companies significantly increased the prospects of obtaining the historical

information required to understand process foundation and evolution which would not be the

case with non-Irish multinationals operating in the country, as their process would likely have

been initially developed and used within the parent company prior to being devolved to the

Irish subsidiary.

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Conducting the Grounded Theory Study

Despite the research questions being clearly defined, the theoretical sampling approach of

grounded theory means it is unclear in advance exactly the types of practitioners and

companies that need to be interviewed during a study to meet the research objectives. As a

result, the study was divided into 3 phases, a Preliminary phase to help frame the study and

test the interview guide and approach, a more detailed phase (Phase 1) which developed the

initial concepts and categories and enabled evaluation of the theoretical sampling process and

the final phase (Phase 2) which further developed the categories and concepts to produce the

grounded theory. In total, the three phases of the study involved 25 interviews with senior

company personnel across the 21 companies profiled in Table I.

Table I Subject Company Profile

Co. Market Sector Total no. of
employees

No. employees in
s/w development

Interviewee

1 Telecommunications 6 3 Development Manager

2 Company secretarial 50 20 Product Manager

3 Telecommunications 10 3 CEO

4 Telecommunications 70 30 CTO

5 Telecommunications 12 6 Development Manager

6 Compliance Management 100 40 Quality Manager

7 Enterprise 150 100 Product Manager

8 E-Learning 120 70 Development Manager

9 Information Quality 27 9 Development Manager

10 Telecommunications 15 12 Development Manager

11 Telecommunications 160 110 CTO

12 Financial Services 35 23 CTO

13 Financial Services 130 90 Product Manager

14 Interactive TV 60 40 Product Manager

15 Public Sector 150 90 Product Manager

16 Medical Devices 19 9 CTO

17 Telecommunications 70 35 CTO

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

18 Public Sector 3 3 CEO

19 HR Solutions 30 15 General Manager

20 Games Infrastructure 40 20 Product Manager

21 Personalisation 50 40 Technical Director

At the outset, to generate more detailed information on how the sampling process should

progress, a preliminary study phase, involving 4 interviews across companies 1-3 was

undertaken. This phase highlighted two issues in particular which would steer the

immediately subsequent sampling activity. Firstly, analysis of the software companies’ target

market indicated that the intended list of companies, in the full study, should incorporate as

many sectors as possible. Secondly, a specialist qualitative analysis tool, which supported the

grounded theory approach, was essential. Having investigated the range of tools which are

used for data management in qualitative research, Atlas TI (Muhr, 1997), a tool designed

specifically for use with grounded theory, was selected.

The next phase of the study (Phase 1) involved interviews with an additional 11 companies.

Though a number of theoretical concepts emerged during the early fieldwork, the researchers

decided to re-evaluate the study progress following the interview with Company 14. This

analysis indicated that the range of companies interviewed should be diversified. This

approach is in accordance with both Strauss and Corbin (1998) and Goulding (2002), who

advocate diversity in the data gathering and ‘staying in the field’ until no new evidence

emerges. We also believed that to conclude the sampling process at this point would

constitute premature closure, a mistake often associated with grounded theory (Glaser, 1992).

To achieve the necessary diversity amongst the study base we carried out an additional 10

interviews (Phase 2). Three of these interviews involved re-interviewing earlier participants, a

technique available to grounded theory studies and supported by (Goulding, 1999) as it allows

for a comprehensive checking and verification process of the data already analysed, and 7

additional companies. These 7 additional companies (Companies 15-21) were specifically

selected as their business sectors helped extend the scope of the study and ensured that

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

theoretical categories were not being established on an excessively narrow basis. Full

category saturation was reached on the conclusion of interview 25 as, in line with Goulding’s

(2002) assertion, similar incidences within the data were now occurring repeatedly and

proceeding would be unlikely to generate any further contrary data.

Results and Discussion

The grounded theory categories and the various relationships were then combined to form

the theoretical framework for Process Formation as shown in Figure 1.

Process Formation

Market requirements

Market sector

Background of software
development manager

Management styleBackground of founder

Process tailoring

Application type

Process Models

Reliability

Traceability

Documentation

Commercial SPI models
Contextual

issues

Software development process

Quality

Process Formation

Market requirements

Market sector

Background of software
development manager

Management styleBackground of founder

Process tailoring

Application type

Process Models

Reliability

Traceability

Documentation

Commercial SPI models
Contextual

issues

Software development process

Quality

Figure 1 Process Formation Network

Within the theoretical framework, each node is linked by a precedence operator, with the

node attached to the arrowhead denoting the successor. No relationship types other than

precedence are contained within the framework and the network is read from left to right. The

tildes (‘~’) represent codes that were renamed or merged with other codes during the analysis

process. The root node of the framework, Process Formation, is a conceptual theme and is

linked to several key conceptual categories.

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Theoretical categories

In relation to the factors influencing Process Formation, the study highlighted a number of

theoretical categories (Table II). Each of these categories can be linked to quotations within

the interviews and these provide support and rich explanation for the results.

Table II Process Formation – Main Theoretical Categories

Theme Category

Process Formation1 Background of Software Development Manager

Background of Founder

Management Style

Process Tailoring

Market Requirements

In the study companies, the title of the person with overall responsibility for software

process differed, from Software Development Manager to Chief Technology Officer (CTO),

Director of Engineering, or Product Development Manager. For reasons of simplicity and

clarity, the generic title Software Development Manager has been used in this study. The

Background of Software Development Manager determines the Process Model used as the

basis for the company’s software development activity and this Process Model is then subject

to Process Tailoring. The Background of Software Development Manager coupled with the

Background of Founder of the company creates an associated Management Style and this, in

conjunction with the tailored process model, creates the company’s initial Software

Development Process.

Background of the Software Development Manager

In some of the study software firms the founder has a software background and

occasionally acts as software development manager. In other cases the founder has no

software background with the result that someone who has the necessary expertise is hired to

lead the software development effort. As might be expected, in many of the organisations

1 From hereon, the categories produced by the study are denoted in italics

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

interviewed, the original software development manager had left or moved on to a new

position. In some instances, particularly in the smaller companies, it was possible to speak to

the original software development manager. In other cases, it was necessary to speak to the

person who hired or worked alongside the software development manager and who could

provide the necessary process information. In the remaining firms there was a reliance on

second-hand information from those close to the original process.

The majority of those interviewed had previously operated in a software development

manager, or similar, role prior to joining their current company. From all of the interviews, it

was clear that where the software development manager had worked before, what their

responsibilities were, what process and process improvement model was used, and the

company culture, shaped the process that the software development manager used in their

current company. This comment, from the development manager in company 8, is typical of

the responses as to why a particular process model was used. “For software development we

have used the Rational Unified Process (RUP). The reason is that the guy we took in to head

up our technology area brought that with him”.

If the managers had a prior positive experience with a particular process model and they

understood it particularly well, then they opted for familiarity rather than something novel.

This concept of bringing a particular model, or tool, with them was a common feature of the

managers interviewed. The software development manager in company 11 also brought the

RUP with him, the manager in company 12 brought eXtreme Programming (XP) to his

current organisation whilst the manager in company 9 brought a commercial project

management model.

Impact of Managerial Experience

In addition, all of the managers brought with them something less tangible, namely

‘experience’. This is defined within this study simply as ‘knowing what to do in a given

situation’. One manager when asked about how he managed to grow the software

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

development activity in his current organisation stated: “I guess a lot of it is our [previous

company] experience because we understood what we needed to do when we got to a certain

level.”

This factor was widespread across the interviews. The managers’ knowledge, and the fact

that they had encountered similar situations before, made them equipped to deal with the

situations they found when joining their current employers. This experience included setting

up a software process: “What the IT experience and the engineering experience gave me was

the information as to what sort of processes I wanted to put in place and why I wanted them”.

One company appointed a number of senior development staff simultaneously. They then

used the backgrounds of all of these individuals to determine their initial process. As the

software development manager pointed out: “At the beginning we looked at what sort of

environments people had worked in before, and what sort of process they used, and we tried

to import and adapt them”.

But beyond the Background of Software Development Manager, the impact of culture or

more specifically Management Style also dictates how the process is formed and

implemented. This Management Style as it affects process, is either the style favoured by the

software development manager or, as was often the case in the start-up companies, the style

of the founder and the software development manager combined.

Management Style

Background of Founder

The company founders’ backgrounds could be categorised as one of three different types,

Information Technology (IT), Academia/IT, Non-IT (Table III).

Table III Background of Founder

Background of Founder Company

IT 1, 4, 5, 6, 10, 11, 12, 13, 15, 18

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Academia (IT) 7, 16, 17, 20, 21

Non-IT 2, 3, 8, 9, 14, 19

It should be noted that those with an IT background were not all previously employed in

the software sector. Also, those from the academia/IT background were essentially

researchers within University IT departments who spun-off the company from research work.

Those with non-IT backgrounds included a builder, engineer, teacher, geophysicist, TV

executive, and HR executive. In a number of the companies (1, 4, 11, 12, 16, 17, and 21), the

founder or co-founder was acting as Chief Technology Officer (CTO). For a more detailed

discussion on the founder’s impact on management style please refer to Coleman and

O’Connor (2008).

Management Style and Process Formation

There was a sharp diversity between the Management Styles adopted within the different

study companies. Some companies tend to be more enforcing of process allowing little

deviation whilst others give the developers more latitude within it. During this study, whilst it

was clear that Management Style helped the initial formation of the process, it also had an

impact on how the process was implemented on an ongoing basis. From the extracts

therefore, it was not possible to divorce completely Management Style issues at Process

Formation from more recent management initiatives which influenced ongoing process

adherence. Nonetheless, there was one excellent example, from a manager in one of the larger

companies, which showed how Management Style affected the initial software process and

how it was managed: “A lot of that comes from the nature of the company. The company is

based around its engineering team. Engineers have a lot of prestige and they get a lot of

respect from C [the CEO] because he was the guy who originally wrote the code.”

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Management Approaches – ‘Command and Control’

In three of the Start-up companies, the Management Style is very directive, which can be

characterised for this study as a ‘command and control’ management approach, with strong

similarities to McGregor’s (1985) ‘Theory X’ style. This type of ‘command and control’ style

was illustrated by company managers who closely supervised their staff, lacked trust in their

staff’s abilities and made decisions without consultation. Some examples of how managers

exercised ‘command and control’ are illustrated by these interview extracts.

The Software Development Manager in Company 1 directed his staff on why they needed

to follow process: “So we were telling people this [process] is for the growth of the company

so it's for everybody's good to go along with it and embrace it.”

Company 3, one of the smallest interviewed, has a very ‘hands-on’ CEO who also adopts a

‘command and control’ Management Style and who stated: “If a guy isn't delivering, we just

don't want him in the company. You encourage him to leave or structure an exit for him.”

However, this form of strict management was not confined to the smallest companies.

Some of the larger organisations also had close management supervision of their developers.

The manager in Company 9, which was in a growth state of development, typified this thus:

“If [process non-compliance] is happening constantly, then every week it’s highlighted in the

team meetings and the staff member must explain why. And to be honest it's a bit brutal but if

you want to work here that's what you do.”

Within the field data, there is clear evidence of a lack of trust in the developers by several

company managers. The following, from the CEO in Company 3, represents many of the

responses: “If you end up with process-type activity, which is purely known to the developers

on the project, and is a language they speak among themselves, it becomes unhelpful, because

it can be used as a defence for not getting things done.”

Other managers also showed suspicion of developers within their teams as is evident in this

example quotation from the development manager in Company 5: “And any process within

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

the company shouldn't be designed to make software engineers' lives easier. If it does that as

a by-product then that's fine but it should be designed to achieve business aims.”

This posits the view that software engineers must conform to a business achieving its aims

and therefore the team must be kept under strict control. In these ‘command and control’

cases the staff have very little latitude in how the Software Development Process is

implemented. Limited process deviation is tolerated and adherence is closely monitored.

From the interviews, more flexible and developer-centred development methods, such as XP,

are held in suspicion by ‘command and control’ managers who wish to have project status

visible and developers in some way accountable.

Though Management Style has a major influence on Process Formation, there is no clear

indication from the study whether companies with this sort of directive style are more or less

successful, in general business terms, than those with a more consensual management

approach.

Management Approaches – ‘Embrace and Empower’

In opposition to ‘command and control’ structures, many company managers within the

industry operate what can be characterised for this study as an ‘Embrace and Empower’

regime, which has strong similarities to McGregor’s (1985) ‘Theory Y’ style. In this context

there is greater evidence of trust in development staff to carry out tasks with less direct

supervision, greater delegation of responsibility, and, a more generally, consensual

environment.

The quality manager in Company 6, one of the largest companies in the study, consults

widely with his staff in relation to process usage: “If our customers are recommending that

we change code review, I go away and send an email out to all my department saying we are

thinking of going this way, what do you think?”

Company 6 sells to the regulatory sector and requires very rigorous processes in its

software development activity. From the outset it sought ISO 9000 certification status and a

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

process to achieve this aim was put in place. The extract above shows that, even within a

defined and rigorous process, the Management Style can encourage discussion and

suggestions, which in turn allow the process to be improved or implemented differently. In

this way the developers can have an influence over the process used and often feel more

empowered than those working in ‘command and control’ companies.

Agile methods such as XP, with its advocacy of self-empowered teams and shared

ownership, is more associated with an ‘embrace and empower’ style of management. Senior

engineers have more status in an organisation like this, as this extract from the CTO in

Company 12 shows: “If you have 1 guy working on a piece of consultancy with 15 years

experience, he understands the principles of how we work. He doesn't need someone else

interfering. So you may as well just let him do the job.”

This level of trust in the developers is in stark contrast to the ‘command and control’

approach taken by some of the other start-ups. However, as companies grow, these

Management Styles become less polarised, as those in charge early in the company’s

formation, especially the founder, have reduced influence.

Market Requirements

The Market Requirements of the target market also have a fundamental effect on the

establishment and use of the software process in an organisation. Software companies release

products into specific Market Sectors. Within this research, Market Sectors are treated as a

subset of Market Requirements. For example, almost all applications used by companies in

regulated Market Sectors will have particular requirements and the nature of regulation means

that the process used to create these applications must guarantee this. Other Market Sectors

such as telecommunications also require applications which can meet high availability

demands. However, Market Requirements, such as a need for high Reliability, extensive

Documentation or, as is often the case, speed of delivery, can transcend multiple Market

Sectors.

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Process and Regulation

Probably the best example in this study of Market Sector influencing the process occurred

in the case of Company 6, whose products are bought by pharmaceutical companies and this

meant that its processes had to cater for this from day 1. The quality manager stated: “The

most important thing is the market we are producing to. We wouldn't sell without a good

quality process.”

Within the confines of this regulatory environment, Company 6 has very little latitude and

Flexibility in the process they can use, as the companies to whom they sell must, under Food

and Drug Administration (FDA) rules, audit their suppliers. The quality manager reports that:

“Because we produce for the pharmaceutical industry, every single client does a detailed 2-

day audit of our software processes, the quality of our products etc. So when they in turn are

audited, by the FDA, they will have an audit report to show them.”

This audit is conducted to satisfy regulatory compliance as the pharmaceutical companies

themselves must show, not only are their own products compliant, but also that how they are

made complies with the regulatory guidelines. It also means that the software producer in this

sector must have appropriate Documentation for all its products for all stages of the

development process. Any changes made during development must be recorded for

Traceability and subsequent audit purposes. This imposes a rigour on the process which other

companies may be able to avoid. Company 16 operate in the medical space and business

expansion plans will mean a move to a regulatory environment. As the CTO outlines: “Right

now we are developing the training product. And because it didn't require FDA approval, it

allowed us to get the core software technology built and develop an early revenue stream

before moving up the value chain into surgery where it did need FDA approval.”

Company 16 have used XP as their development methodology up to now. However, they

are aware of the fact that, as auditing may be a future fact of life for them, they are going to

have to adjust their development process and methods within it if they are to satisfy the

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

regulators. Had they been selling to the regulated market initially then their day 1 process

would have had to take account of this, thus affecting the formation of the process.

Process and Application Type

Beyond regulated industries, the Application Type may require the system to be constantly

available, thus placing a huge requirement on high Quality and Reliability. Sectors such as

telecommunications and banking can require such systems. The manager in Company 4, who

develop systems for the mobile telecommunications domain, best personifies this: “Telecoms

customers have different demands on quality and different demands on scalability. We had to

deal with sustaining existing customers, penalty clauses on delivery dates and bug levels, and

SLAs on services run on our product, and the sort of support requirements on that as well in

terms of technical support.”

As the comment makes clear, this industry imposes penalties on late delivery and demands

Service Level Agreements (SLAs). As a result any process, which produces products for this

sector, must take account of this from its inception. Another business area that has its own

unique demands is the public or governmental sector. Several companies have experienced

this with the following extract, from the development manager in Company 5, exemplifying

things best: “Take for example the system we are developing for the police force. They have

very strict documentation standards which we follow, and that involves a full functional spec,

a full UML design, a very tightened development process, and a testing process. So in that

case, they are putting certain demands on us, in terms not only of what we do, but the way we

do it.”

In summary, the above examples illustrate how the development process must be geared to

provide the necessary services required by the market.

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Process Tailoring

Though, in process terms, the software development manager brings with them a wealth of

experience to their new organisation, some of that may have been gathered in organisations

that were much different in nature, which means that some Process Tailoring, to reflect their

new environment, was necessary. The process models used in the study companies were

typically based on one of the standard industry development models, Waterfall or RUP, or the

development methodology XP. All of the companies tailored the model, generally by

dropping some of the practices contained within it and adding some new practices which

reflected their own particular operating context. Process Tailoring such as this leads to a

proprietary development model which, although possibly based on a standard, is considered

more suited to the company’s business. The product manager in Company 14 provides a good

example: “We took the RUP and at this stage probably very little of our process resembles it.

We didn't need all of the detail that was in it, so as a small company, we have changed it

around to suit our own needs.”

Process Tailoring – Influencing Factors

In every case however, Contextual Issues such as company and team size, project size,

team expertise, development environment etc., in addition to the Background of Software

Development Manager and the Market Requirements, were the main inputs to the tailoring

process. It is important to recognise that when using process models, as part of process

formation, most organisations scale down. Practices are routinely removed. The CTO in

Company 12 put it most succinctly: “With most methodologies and approaches, very few stick

to the letter of them and they are always adapted, so we adapted ours to the way we wanted it

to work for us, for our own size and scale.”

Despite its application to the initial software process a company uses, Process Tailoring is

something that occurs throughout the lifetime of the organisation concerned. On every

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

occasion that an improvement to the process is made, Contextual Issues act as inputs to the

improvement process.

Conclusions

This research has addressed factors which influence the formation of software process in

software product companies. How process is formed is primarily of relevance to start-up and

early-stage software firms. The study has revealed that in a start-up situation organisations

use whatever software process works to support their immediate business objective. The

resources are simply not available to explore the best way to develop software, for that

organisation, at that time. As a result start-ups depend largely on the experience of the person

acting as Software Development Manager whose expertise and know-how can help them

meet their deadlines and reach the next stage of development. Agile methods, such as XP, do

have a lot to offer such organisations. Start-ups are product-driven and, with very small

development teams, often developer-led. Agile methods too are product-driven and

developer-led. Because of the confluence of these two factors, we believe there is more value

in offering start-up companies ‘software practice improvement’ rather than software process

improvement. Then when companies have achieved something of a sustainable base, and

development approaches have somewhat stabilised, should the issue of software process

improvement be examined.

The findings of this research contain useful lessons for software entrepreneurs who need to

make decisions about process and process change within their organisations as they are

established and grow. Because the findings show that the initial process is determined by who

acts in the software development manager role, this has clear implications for the hiring

policy of the software start-up. Software founders and entrepreneurs must take cognisance of

the qualities required by the individual who will fill the development manager role. Whilst it’s

not essential that the development manager has previously worked in the hiring company’s

market sector, it would be of significant benefit if they fully understand the demands of that

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

market and the requirements for products sold in that market. For example, where companies

are entering a regulated market, such as one governed by the FDA, they will need to put in

place processes which reflect the compliance levels imposed by the regulator for auditability,

traceability and comprehensive documentation. It would therefore be a major plus for the

start-up if they employ a software development manager who has experience of

documentation-driven process models as, because there is a lesser process learning-curve for

this manager, the software process will meet compliance demands more seamlessly, and

competitive advantage can be gained.

Conversely, where there are no external standards or controls imposed, and the founder’s

desire is to have a product ready for market as early as possible, then employing a software

development manager who is familiar with ‘lean’ or agile product-driven development

approaches would likely achieve business objectives more quickly than someone from a plan-

driven development background. Managerial experience, which can help companies

overcome or avoid early process issues, the ability to successfully tailor a process, and

Management Style, which can create an appropriate organisational culture, should also be

factored into the recruitment decision. Thus, employing the ‘right’ software development

manager for a software start-up has far-reaching implications for that organisation and could

help determine its long-term health and potential success.

Limitations of the Study

Grounded theory as a qualitative research method, using semi-structured interviews,

centres on respondents’ opinions. This opinion is the respondents’ view or perception of what

is taking place, which of course may be at odds with reality. In many instances there may be

no supporting evidence to verify the opinion expressed. However, researchers must accept the

veracity of what respondents say during the study interviews (Hansen, and Kautz, 2005).

Notwithstanding the issues surrounding semi-structured interviews, the opinions of the

participants are vital. In this study, even though the reality of the situation could be potentially

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

different to that described, it is the managers’ perception of what is happening and it is on this

perception that they base their decisions. It is these actions and interactions, arising from the

participants’ opinions, beliefs and perceptions, which are essential to a grounded theory study.

Future Research

One of the contributions of this work is a grounded theory explaining how software process

is initially established in a software start-up. As the literature lacks a comprehensive

investigation of software process initiation, the opportunity arises therefore for other

researchers to explore this area to determine support for, or a challenge to, the generated

theory.

This study concentrated in one geographical location. A study which examines practices in

other countries would provide further validity for this research and indicate if the findings can

be replicated elsewhere or if they are peculiar to the Irish context. As much software is

developed outside the software product company domain, a study including a wider range of

software development from bespoke software solutions to the in-house software departments

of non-software companies could be counter-balanced against this work.

References

Armour, P.G., (2001), ‘Matching Process to Types of Teams’, in Communications of the
ACM, Vol. 44, No. 7, pp. 21-23.

Avison, D, Lau, F., Myers, M. and Nielsen, P. (1999). “Action Research”, Communications
of the ACM, 42(1), 94-97.

Bach, J., (1998), ‘Microdynamics of Process Evolution’, in IEEE Computer, February, pp.
111-113.

Baddoo, N. and Hall, T., (2003), ‘De-Motivators for Software Process Improvement: An
Analysis of Practitioners’ Views’, in The Journal of Systems and Software, Vol. 66, No. 1,
pp. 23-33.

Baskerville, R. and Pries-Heje, J. (1999), “Grounded Action Research: A Method for
Understanding IT in Practice”, Accounting, Management & Information Technologies, 9, 1-
23.

Bersoff, E, (1994), ‘Anatomy of a Software Start-up’, in IEEE Software, January, pp. 92-100
Carvalho L, Scott L and Jeffery R (2005), “An Exploratory Study into the Use of Qualitative

Research Methods in Descriptive Process Modelling”, Information and Software
Technology, 47 (2), 113-127.

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Carver, J. and Basili, V., (2003), “Identifying Implicit Process Variables to Support Future
Empirical Work”, Proceedings of 17th Brazilian Symposium on Software Engineering
(SBES 2003), October, pp. 5-18.

Coleman Dangle, K, Larsen, P, Shaw, M. and Zelkowitz, M.V., (2005), ‘Software Process
Improvement in Small Organisations: A Case Study’, in IEEE Software,
November/December, pp. 68-75.

Coleman G. and O'Connor R., (2007), “Using grounded theory to understand software
process improvement: A study of Irish software product companies”, Journal of
Information And Software Technology, Volume 49, Issue 6, pp. 531-694.

Coleman G. and O'Connor R., (2008), “The Influence of Managerial Experience and Style on
Software Development Projects”, International Journal of Technology, Policy and
Management, Vol. 8, No. 1, pp. 91-109.

Glaser, B. (1992), Basics of Grounded Theory Analysis: Emergence Vs Forcing. Mill Valley,
CA: Sociology Press.

Glaser, B. and Strauss, A. (1967), The Discovery of Grounded Theory: Strategies for
Qualitative Research. Chicago, IL: Aldine.

Goede, R. and De Villiers, C., (2003), “The Applicability of Grounded Theory as Research
Methodology in Studies on the Use of Methodologies in IS Practices”, Proceedings of the
Conference of the South African Institute of Computer Scientists and Information
Technologists, Gauteng, South Africa, pp. 208-217.

Goulding, C. (1999). “Grounded Theory: Some Reflections on Paradigm, Procedures and
Misconceptions”, Technical Working Paper, University of Wolverhampton, UK.

Goulding, C. (2002). “Grounded Theory: A Practical Guide for Management, Business and
Market Researchers”, Thousand Oaks, CA: Sage.

Hansen, B. and Kautz, K. (2005). “Grounded Theory Applied – Studying Information
Systems Development Methodologies in Practice”, Proceedings of 38th Annual Hawaiian
International Conference on Systems Sciences, Big Island, HI.

Humphrey, W.S., (2002), Winning With Software: An Executive Strategy, Addison Wesley,
Boston, MA.

Humphrey, W.S., Snyder, T. and Willis, R., (1991), ‘Software Process Improvement at
Hughes Aircraft’, in IEEE Software, July, pp. 11-23.

Kelly, D.P. and Culleton, B., (1999), ‘Process Improvement for Small Organisations’, in
IEEE Computer, October, pp. 41-47.

McGregor, D, (1985), The Human Side of Enterprise: 25th Anniversary Printing, McGraw-
Hill/Irwin.

Muhr, T. (1997). Atlas TI User’s Manual, Berlin, Germany: Scientific Software
Development.

Nisse, D., (2000), ‘Leadership, Army Style’, in IEEE Software, March/April, pp. 92-94.
Power, N. (2002). “A Grounded Theory of Requirements Documentation in the Practice of

Software Development”, PhD Thesis, Dublin City University, Ireland.
Qureshi, S, Liu M and Vogel D (2005) “A Grounded Theory Analysis of e-Collaboration

Effects for Distributed Project Management”, Proceedings of 38th Annual Hawaiian
International Conference on Systems Sciences, Big Island, HI.

Sarker S, Lau F and Sahay S (2001) “Using an Adapted Grounded Theory Approach for
Inductive Theory Building About Virtual Team Development”, The Data Base for
Advances in Information Systems, 32 (1), 38-56.

Seaman C and Basili V (1997) “An Empirical Study of Communication in Code Inspections”,
Proceedings of the 19th International Conference on Software Engineering. May, Boston,
MA. 17-23.

Sommerville, I., (2007), Software Engineering, 8th Edition, Addison Wesley, Reading MA.

Coleman G. and O'Connor R., Investigating Software Process in Practice: A Grounded Theory
Perspective, Journal of Systems and Software, Vol. 81, No. 5, pp 772-784, 2008.

Strauss, A. and Corbin, J.M. (1998). Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory (2nd Ed), Thousand Oaks, CA: Sage.

Strauss, A. and Corbin, J.M., (1990), Basics of Qualitative Research: Techniques and
Procedures for Developing Grounded Theory, 1st Edition, Sage Publications.

Sutton, S.M., (2000), “The Role of Process in a Software Start-up”, IEEE Software,
July/August, pp. 33-39.

Voas, J., (1999), ‘Advice for Those Bitten by the Startup Bug’, in IT Professional, May-June,
pp. 38-45.

Yamamura, G., (1999), ‘Process Improvement Satisfies Employees’, in IEEE Software,
September/October, pp. 83-85.

