
A Configurer for Parallel Programs

AUTHOR NASSER SULEIMAN KARABASH

SUBMITTED FOR THE AWARD OF
MASTER OF ENGINEERING

SUPERVISOR Sean Marlow Ph D

School of Electronic Engineering
Dublin City Umevsity

MARCH 1991

The contents of this thesis are based on my own research

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/16510442?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Contents

CONTENTS

Acknowledgments v
Abstract ... 1
Introduction .. 2
Chapter 1 : Processor Networks 5

1-1 Introduction 5
1-2 Static connection topologies 6

1-2-1 Rings 7
1-2-2 Meshes 7
1-2-3 Binary trees 7
1-2-4 Fully connected 8
1-2-5 Hypercubes 8

1-3 Routing algorithms 9
1-3-1 Rings 9
1-3-2 Meshes 9
1-3-3 Binary trees 10
1-3-4 Fullly connected 10
1-3-5 Hypercubes 10

1-4 Dynamic connection topologies 11
1-4-1 Switching networks 11

1-4-2-1 Crossbar networks 11
1-4-2-2 Single and multistage

interconnection networks 12
1-5 Transputer networks 14

1-5-1 The Occam programming language 14
1-5-2 The transputer 15

Contents

1-5-3 Message passing techniques 17
1-5-3-1 Through routing 17
1-5-3-2 Channel multiplexing 18
1-5-3-3 Dynamic link reconfiguration 19

1-5-4 Transputer networks topologies 19
1-5-4-1 Static topologies 20

1-5-4-1-1 Rings 20
1-5-4-1-2 Meshes 21

1-5-4-2 Dynamic topologies 22
1-5-4-3 Mixed topologies 24

Chapter 2 : Configuring Parallel Programs 29
2-1 Introduction 29
2-2 Parallel program configuring stages 29

2-2-1 Parallelism spotting (partitioning) 29
2-2-3 Process assigning 29
2-2-4 Communication channels assigning 31
2-2-5 Interprocessor connection implementation 31

2-3 Configuring parallel programs under the TDS 31
2-3-1 TDS2 transputer development system 31
2-3-2 TDS configuring procedure 32
2-3-3 MMS2 module motherboard software 33

2-3-3-1 Using the MMS2 34
2-3-4 Case study 34

Chapter 3 : A Configurer for Programs Running Under
the TDS2 on the IMS B008 38

3-1 Introduction 38
3-2 The environment 38

Contents

3-3 Implementing message passing techniques on
the IMS B008 38

3-3-1 Through routing 38
3-3-2 Channel multiplexing 39
3-3-3 Dynamic links reconfiguration 39

3-4 The configurer 42
3-4-1 What is requisted from the configurer .. 42
3-4-2 The configurer general description 43
3-4-3 The general algorithm 45
3-4-4 The configurer requirements m the

input program 45
3-4-5 Special cases 47

3-4-5-1 Three non-neighbouring processes ... 47
3-4-5-2 All the processes need four links .. 48
3-4-5-3 No loading route from the Root TRAM 4 8

3-4-6 The configurer program 49
3-4-6-1 Network detecting 49

3-4-6-1-1 The program on T2 (controller) . 49
3-4-6-1-2 Network detecting procedure

(Host) 51
3-4-6-2 Searching for the program source

fold 54
3-4-6-3 Reading the program source 54
3 _4_6 - 4 Processes and channels mapping and

placing 58
3-4-6-4-1 Phase I 58
3-4-6-4-2 Phase II 61

- iii -

Contents

3-4-6-4-3 Phase III 74
Chapter 4 : Using the Configurer 80

4-1 Introduction 80
4-2 A program requiring a hypercube topology ... 80
4-3 A program requiring a mesh topology 81
4-4 A program requiring a binary tree topology . 82
4-5 A program requiring a user defined topology 83
4-6 Configuring the network 85

Chapter 5 : Improvements and Further development 87
5-1 Introduction 87
5-2 Improvements on the configurer program 87

5-2-1 Handle larger number of processes and
processors 87

5-2-2 Handle replicated PLACED PAR construct . 88
5-2-3 < Mixed transputer types 88
5-2-4 Unlimited number of processes 88
5-2-5 Use the configurer instead of the MMS2 . 90
5-2-6 Channels protocols check 90
5-2-7 User friendly 90

Conclusions ... 91
References .. 92
Appendix A
Appendix B
Appendix C
Appendix D
Appendix E

Acknowledgment:

I would like to thank Dr. S. Marlow for his support and

I encouragement, which helped me to complete this work.

My gratitude to the Scientific Studies and Research Centre (SSRC)

in Syria for it’s guidance and sponsorship.

i
- V -

Abstract

Abstract:

Making parallel systems easy to use, and parallel programs easy to write and run,
are two major aims for parallel systems designers.

This work describes an automatic configurer which attempts to lessen the effort a
user should put to configure and run a parallel program on a network of parallel
processors

The configurer configures the program, as required by the operating system and
produces the configured source of the program

The network is also configured by the configurer to meet the communication
requirements of the configured program

- 1 -

Introduction

Introduction:

Developments on parallel programming languages are
directed to help the programmer to write a parallel program
without having to know how the concurrent processes are
going to be distributed on the processors or how they are
going to communicate with each other.

Parallel architectures provide a high level of
computing power although ordinary processing elements are
used [1] . Different topologies are being used in parallel
architectures but no single one has proved to be better
than all the others. Each topology is good for a specific
type of problems but may be bad for others.

Performance problems, possibly caused by bad
partitioning of a program, result in a very big amount of
communication between the different partitions (concurrent
processes). In the worst case, running problems like long
waiting times or even deadlocks may occur.

The maximum performance is got if all the processors
are kept busy as much as possible. To achieve that, a
balance in the computational and communication load between
all the processors should be achieved, which is not an easy
task. Predicting or estimating the required computation
time of a process is not an easy task [21].

To configure a program to run on a processor network is
to assign the concurrent processes of the partitioned
program to the processors and assign the communication
channels between the processes to the processors' links.

- 2 -

Introduction

Information about how many processors there are in the
network, how the processors are connected, how the messages
are passed between the processors, how many parallel
processes there are, and the communication requirements
between these processes should be known to enable the
configurer to distribute the processes in an efficient way.

This project addresses the detection of the
processors in the network and the parallel processes in
the program, the generation of the communication map
between the processes, the assigning of the parallel
processes to the processors (transputers) in the network,
the creation of the required interconnections between the
processors to meet the interprocess communication needs,
and generates a new source program with all the correct
configuration data added.

In Chapter One, different interconnection methods
used m parallel processing machines are discussed to
show the relationship between the applications and the
processor network topology. A general idea about the
Occam programming language and the transputer is then
given. Different message passing techniques used in
transputer networks are discussed. Some transputer based
systems of different types of topologies are described.

In Chapter Two the procedure of configuring a program
to run on a processor network is discussed, and then the
TDS configuring procedure is described followed by a case
study to clarify the problem the project is trying to

- 3 -

Introduction

solve.
Chapter Three discusses the design of the configurer

m detail.
Chapter Four contains the results of configuring

programs requiring different types of topologies by the
configurer program. This chapter shows how to use the
configurer and demonstrates the facilities it provides.

In Chapter Five suggested improvements and further
work are mentioned followed by the conclusions.

- 4 -

Chapter 1

Processor Networks

1-1 Introduction:
Partitioning a program into parallel processes and

defining the communication pattern between the processes
are the steps which come before the configuring step.

Different types of interconnection schemes used in
parallel machines are described to show the relationship
between the machine architecture and the application
program partitions. Selected transputer based architecture
examples are mentioned separately to show the variety of
network architectures that could be build using the
transputer as the basic processing block.

This chapter gives parallel programs designers
information which will help them in chosing algorithms,
processor network topologies and communication techniques.

Two categories of topologies could be distinguished:
1 - Static connection topology.
2 - Dynamic connection topology.

Static topologies are suitable for applications whose
communication pattern can be reasonably predicted. Dynamic
topologies, although they are more expensive, are suitable
for a wider class of applications.

Static topologies machines are special purpose because
high performances on these machines are achieved when
dealing with specific problems depending on the match
between the topologies and the algorithms being used in

- 5 -

Chapter 1

solving these problems.
1-2 Static connection topologies:

A static network topology is one in which none of it's
connections can be changed after the machine is built. The

simplest connecting scheme is a ring (Figure 1-1-a). On
the other hand, the most complicated but powerful and ideal

connecting scheme is the all-to-all scheme Figure (1-1-d).

(C | Tree

(d) Co»ple te ly (e) 3-cube (f) 4-cube
connected

1

Figure (1-1 a-h) [7]

Different static configurations have been used in
parallel systems with an intermediate number of nearest

neighbours taking into consideration that the choice of the
connection scheme is compromise between wireability and

- 6 -

Chapter 1

performance [9] .
Special purpose systems with a relatively large number

of computing nodes are expected to give good performance
results when dealing with problems which could be divided
into parts which have light and predictable communication
patterns, normally data exchanges among neighbouring nodes.
1-2-1 Rings:

The nodes are arranged in a closed line "Necklace"
where adjacent nodes are connected. Nodes are of degree
2, Figure (1-1-a) illustrates this scheme. Ring topology
is used in systems like the ZMOB [13], which was designed
to support image processing [14] and artificial
intelligence [15] applications.

1-2-2 Meshes:
The nodes are arranged in a mesh of N dimensions. The

interior nodes are of 2N degree and the degree(s) of the
nodes at the edges and the corners differs from machine
to another. Figure (1-1-b) illustrates a 2-dimensional
mesh scheme. Array processors like the MPP and DAP [3]
provide a large computing power required for massive
computing applications, e.g large matrix operations.

1-2-3 Binary Trees:
The nodes in the basic binary tree are arranged in

levels, each level contains double (or half depending on
the direction) the number in the previous level. The
interior nodes are of degree 3, the root nodes are of
degree 2 and the leaves are of degree 1. Figure (1-1-c)

- 7 -

illustrates this scheme for three levels. The scheme is
'used in Reduction machines like FFP [16] and expert
systems machines like DADO [17].

1-2-4 Fully connected:
Each node is directly connected to all the others in

the network which means all the nodes are of degree N-l
in a network containing N nodes. The total number of
connections needed in this scheme is N(N-l)/2 connection.

Figure (1-1-d) illustrates an all-to-all network for
;N=8.

1-2-5 Hypercubes:
It is a mesh scheme but has a special way of

* (
connecting and numbering the nodes. An n-dimensional|
Hypercube will contain number of nodes N=2 where n isI
;the node degree also. If the nodes are numbered starting
from 0 to N-l, by using the binary representation of thel
nodes numbers and connecting the nodes whose numbers
differ by a power of 2, the result will be an n-
dimensional Hypercube. Figure (l-l-e,f) illustrates a 3D
and a 4D cubes respectively. The Connection Machine which
uses a 12-dimensional hypercube [18] is suitable for a
broad class of computational problems and knowledge
processing.

Many other schemes are used like the Linear Array, the
Systolic Array, the Chordal Ring, Shuffle-Exchange and many
others. New schemes are always expected to appear trying to

i

increase the performance of the machines and to meet the

Chapter 1

Chapter 1

requirements of new applications.
1-3 Routing algorithms:

Packet switching is used m all of the topologies
i

mentioned above. A routing algorithm will be suggested to
find a path between node A and node B for data routing.
1-3-1 Rings:

In a ring of N node clockwise numbered from 0 to N-l
the minimal length path from A to B could be found
depending on the table:

Conditions Length CW/CCW
(A>B) AND ((|B-A|)>N/2) N - |B-A| CCW
(A>B) AND ((|B-A|)<N/2) | B-A | CW
(A<B) AND ((|B-A|)>N/2) N - |B-A| CW
(A<B) AND ((j B-A|)<N/2) |B-A| CCW
|B-A| = N/2 (N is even) 1 B-A | SAME

1-3-2 Meshes:
Routing on a mesh of K dimension is performed one

dimension at a time. In a 3D mesh suppose A has the

path from A to B is constructed from three paths each of
these paths is parallel to one of the dimensions so the
route will move along the first dimension to reach the
node coordinated at (x,b,c) then it will move along the
second dimension to reach the node coordinated at (x,y,c)
1and then the last part of the path is to move along the
i
third dimension to reach the destination B at (x,y,z).

iIIII - 9 -

Chapter 1

1-3-3 Binary Trees:
The simplest way is to start from A and then up the

tree until the first ancestor of B is found, then down to
iB. This algorithm can be implemented simply depending on
the numbering system of the nodes.

One way of numbering is to assign a number to the
node, say (n) , and assign the numbers (2n) to it's left
child and (2n+l) to it's right child and the root is
given the number (1) . The path from A to B due to the
above algorithm depends on finding an ancestor of B
starting from A. Using the binary representation of the
numbers of A and B, the number of the first ancestor of B

!i (starting from A) is the result of a chain of logical
I
shift right operations on both A and B until they are
■equal. Going down to B, after reaching the ancestor, is
easy by ignoring the ancestor number in B (from the MSBs)
,and going down one level for each bit left. Going Right
or left depends on the bit; if it is 1 go right and if it
is 0 go left. When all the bits are used B will be
reached.i

1-3-4 Fully connected:
All the nodes have direct paths with all the others,

Figure (1-1-d).
1-3-5 Hypercubes:

Since the hypercube is a special case of mesh where
t
i

jeach dimension contains only two nodes, the binary
Inumbers of the nodes are actually the coordinates of the

Chapter 1

Inode and each bit represents a dimension. In order to
I
;make use of this property, performing an Exclusive OR
,between the numbers A and B will result in a number which
contains a 1 in precisely the dimensions along which the
Iidata must move.
t

1-4 ! Dynamic connection topologies:
A dynamic topology network is one in which all

connections can be changed after the machine is built. The
iI

goal of using a dynamic topology is to provide the
possibility of connecting any node to any other one
directly, using circuit switching, without the need to pass
through other nodes which have nothing to do with the data
being transferred.I

1-4-j 1 Switching networks:
1 Multiple segments communication path interconnected by

switches are used to make complete paths between the nodes,
these paths are changed as necessary to cope with the
communication traffic among the nodes.
1-14-2-1 Crossbar networks:

A crossbar network enables any node to have a direct
,path with any other non-busy node at any time with a
constant delay which is basically the switching time of
■one switching element. Crossbar networks have an
advantage over the all-to-all network in that the
connections it needs are of order N not N . The
i
jdifficulty with crossbar networks is the number of the
i
j

prosspoint switches. N crosspoint switches are needed

- 11 -

Chapter 1

for a network of N nodes and that complicates the design
of the crossbar and makes the producing cost high rather
than putting limits on the size of the crossbar.

Using current technology, designing large systems
with large number of nodes is not yet feasible [10].

1-4-2-2 Single and Multistage interconnection networks:
In order to solve the problem of providing fast,

reliable and efficient communications in large parallel
processing systems at a reasonable cost many different
networks were designed to replace the crossbar. The
replacement can be constructed from single or multiple
stages of small and cheap crossbar switches.

-In a single-stage network data (messages) may have to
be passed through the switches several times before
reaching their final destinations. In a multistage
network only one pass through the stages is needed, the
function of a multistage network can be performed by a
single-stage network and the delay will still be the same
but in the single-stage network a new wave of messages
could not be accepted before the preceding wave has done
all the needed passes which is not the case in the
multistage networks where a new wave is accepted each
time the preceding wave has moved on to the next stage.

The Omega network is an example of the multistage
networks based on the shuffle-exchange permutations [19].

The network consists of 2X2 crossbar switches, each
of the crossbars can perform four passing functions:

- 12 -

Chapter 1

1) Straight-through, Figure (1-2-a).
2) Criss-cross (swap), Figure (1-2-b).
3) Upper broadcast, Figure (1-2-c) .
4) Lower broadcast, Figure (1-2-d).

Straight Swap Lower Upper
Broadcast Broadcast

Figure (1-2) [11]

The switches are arranged in an array of N/2 rows by
Log2 N columns and are interconnected in a perfect
shuffle. The switching method is packet switching where
messages are sent through the network in the form of data
plus an address which is read by each switch and then the
packet is forwarded to the next appropriate switch
according to some control scheme until it arrives at it's
destination.

The Omega network uses a distributed control scheme
that takes advantage of a simple message touting
algorithm which is suitable for both SIMD (synchronous)
operation because many different permutations could be
performed m a short time and MIMD (asynchronous)
operation m which connection requests are issued
dynamically.

Many other networks are discussed in [11] and [12] in

- 13 -

Chapter 1

some detail.
1-5 Transputer networks:

1-5-1 The Occam programming language:
Occam is a high level programming language designed

to support concurrent programming [30].
As a concurrent programming language an Occam program

is built from a number of processes running sequentially,
concurrently or m parallel. In the case of concurrent
and parallel processes inter-process communications are
done through Occam channels.

Occam has three primitive processes :

Process function Operator Process Format
Assignment = : var. := exp.
Output to channel i chn. 1 exp.
Input from channel chn. ? exp.
Where var. is a variable name,

exp. is an expression,
chn. is a channel name.

To form constructs Occam processes could be combined
m three different ways depending on the execution timing
relationship between the processes, these ways are :

Timing Relationship Operator
Sequentially SEQ
In Parallel PAR
Alternatively ALT

Parallel processes could be executed in parallel if

- 14 -

Chapter 1

they are assigned (placed) to different processors
otherwise they will be executed concurrently on the same
processor (pseudo-parallel execution).

Alternative execution performs one process out of a
number of processes guarded by inputs. This process is
the one guarded by the ready input.

Inter-process communication in Occam is synchronous,
and can only be done through channels as shared memory is
not allowed in Occam. The communication will only take
place if both the sender and the receiver are ready to
communicate; other-wise the ready to communicate process
will be suspended till the other process is ready to
communicate [31].

Concurrent programming languages have two major
categories of applications. The first is designing multi­
tasking programs for single processor systems. The second
is designing programs for multi-processor systems where
the program processes will run in parallel. Occam
supports both categories and is used in the
implementation of parallel algorithms [32], [33] in many
fields like FFT, signal processing, image processing and
display, industrial control, process automation, and
simulation.

1-5-2 The transputer:
The transputer is. a programmable VLSI device designed

to support the Occam model of concurrency.
To run an Occam program which could be constructed

- 15 -

Chapter 1

from concurrent processes, the transputer has to provide
concurrency run-time functions like process scheduling,
queue manipulation, context switching, process suspending
and releasing. These functions are directly supported by
the transputer's hardware and microprogram.

Concurrency is achieved on a single transputer by
sharing the processor time between the concurrent
processes.

The IMS T800 (Figure 1-3) integrates a 32-bit
microprocessor, a 64-bit floating point unit, four
standard transputer communications links, 4K Bytes of on-
chip RAM, a memory interface and peripheral interfacing
on a single chip using a 1.5 CMOS process [22].

The 64-bit floating point unit provides single and
double length operations according to the ANSI-IEEE 754-
1985 standard for floating point arithmetic and is able
to perform it's operations concurrently with the
processor. The transputer uses a DMA block transfer
mechanism to transfer messages between the memory and
another transputer product via an INMOS link. The link
interfaces and the processor all operate concurrently
allowing the processing to continue while data is being
transferred. The 4K Bytes of on-chip RAM provide a
maximum data rate of 80 MBytes/Sec with access from both
the processor and the links. The external data and
address buses are multiplexed on one bus and provides
data at rate up to 26.6 MBytes/Sec.

- 16 -

Chapter 1

The IMS T800 has a microcoded graphics capabilities
for block moving at the speed of memory.

Floating Point Unit

 z

System
Services

Timers

4k bytes of
On-chip

RAM

32N M

External j
Memory 32
interlace ' "V

32

32 bit
Processor

Link
Services

32

32

Link
Inter* ace

32

Link
Interface

32

Link
interface

Lrnx
Interface

Event

Figure (1-3) Transputer architecture [22]

1-5-3 Message passing techniques:
1-5-3-1 Through routing:

This way of message routing would allow processes
running on non-neighbouring processors to communicate.

{
A routing process is allocated on each processor in

the network and has the map of the whole network to be
able to forward the messages on the right route.

Buffering is essential for this method because the
messages are not being received by the destination. In
the Occam model, sending and receiving are synchronous

- 17 -

Chapter 1

events between the source process and the destination
process, while here the sending process can proceed
without the message being received by the real
destination because the message is received by the
routing process. How long the message will take to
arrive to the destination, depends on how much the
routing processes along the route from the source to
the destination are loaded.

To avoid the proceeding of the sender before the
message being received by the destination, the sender
is blocked waiting for an acknowledgment message to
come from the destination. The time the sender speds
waiting for this message to come is obviously wasted
and still the synchronization is not restored [37]
because the destination will proceed.

1-5-3-2 Channel multiplexing:
In the cases where the four channel-pairs of the

transputer are not enough and more channels are needed,
channels could be multiplexed onto transputer links.

A multiplexing process and a demultiplexing process
are required for each link. This method is useful when
more than one independent process is running on the
same transputer and have to communicate with other
processes on another neighbour transputer. The problem
of losing synchronization is still there because the
messages are still being received by a process other
than the destination. The acknowledgment technique

- 18 -

Chapter 1

could be used to guarantee message arrival.
1-5-3-3 Dynamic link reconfiguration:

Synchronization is only granted when the sender and

the receiver are communicating directly.
A solution to the problem created by the limited

number of transputer links and the communication

between processes on non-neighbour processors is the
dynamic topology [24], [28] where the processes can

request from the topology controller to create a
connection with the other process on the other
transputer. This technique enables any process on any

transputer to communicate with any other process within
the Occam model.

Routing algorithms should always avoid deadlocks by

providing the required precautions. Deadlocks are out of

the focus of this thesis; refer to [20] for a detailed
design of deadlock free networks.

1-5-4 Transputer network topologies:
A transputer network consists of a number of

transputers interconnected via the serial links of the
transputers. Transputer networks need less hardware to be
implemented because the communication links are serial
and need only two wires (tracks on PCBs) one for input

and one for output. Also transputers can be directly

connected via the links without any additional hardware
(driving or interfacing).

As a powerful processor and very suitable for

- 19 -

Chapter 1

parallel architectures, Transputer based parallel
processing systems are being used in a wide range of
applications.

Transputer based systems with all types of
topologies, Static, Dynamic, and Mixed are available.
1-5-4-1 Static topologies:

1-5-4-1-1 Rings:
- Kilonode:

The Kilonode system [4] is expandable modular
and the maximum configuration contains up to 1000
transputer based modules. The interconnection
scheme used in the Kilonode is a ring where all the
nodes (modules) are connected via the links of the
transputers. The system consists of a host computer
running the application, a large disk, an SCSI or
ethernet interface to the host and the Kilonode.

Figure (1-4) [4]

Figure (1-4) shows the architecture of the

- 20 -

Chapter 1

system where SBC is a very fast Single Board
Computer which accesses the disk to read the data
and automatically apportion it among the nodes. The
data is passed to the nodes from the SBC through
the links. Through routing technique is used for
data exchange. The system supports ultra-large
computing problems like matrix inversion, FFT,
circuit analysis.

1-5-4-1-2 Meshes:
- IBM Vector multi-processor:

The interconnection scheme used in the Vector
family of transputer based multi-processor
systems is 2D mesh. Figure (1-5) shows the
overall architecture of the system.

Figure (1-5) [23]
The V16 is the smallest containing 16 nodes

- 21 -

Chapter 1

and V256 is the largest m the family containing
256 nodes and a total of 1G Bytes of memory. The

V256 is partitionable. Four concurrent users
and a superuser could share the system each has
his own isolated partition. A user can own a
host, an arbitrary shaped multi-processor piece
of the network and one graphics node. Special
hardware is used to prevent users from
interfering with each other. The 16 disk nodes
are owned by the superuser and act as servers,
handling all file-system requests from the users
[23] . The nodes are built around the IMS T800
transputer and communicate with each other via
the transputers' links. Messages are passed using
the through routing. Large knowledge bases is one
of the system's applications.

1-5-4-2 Dynamic topologies:
All the interprocessor connection can be changed

in this type of topology. The network may be
configured for a certain application before the
execution of the program onto the network starts and
during the execution the topology may remain as it
was configured or changes may occur during the
execution (Run-time) to meet the communication
requirements at the different stages of the
execution.

- 22 -

Chapter 1

- DI0XP2 card:
A transputer based add-in board was designed to

work as an accelerator to the HP 9000-300 series of
engineering workstations to increase the
capabilities of three dimensional modeling of solid
objects (computationally intensive task). Figure
(1-6) shows the DIOXP2 card and its relation with
the workstation [24].

Figure (1-6) [24]

Algorithms being used for the modeling require
different operations to be done on identical copies

- 23 -

Chapter 1

of the object data which is primarily expressed as
double precision floating point numbers. To
decrease the time consumed in sending the data to
the processors the design provides a data
broadcasting facility which is able to send the
data to some or all the transputers simultaneously.
The broadcasting of the data is achieved by using
dual ported memory for each transputer and the host
has access to all these memories and can only write
to all or some of them at the same address.
Communications between the processes running on the
transputers are done via the transputers' links
which are connected to a crossbar switch controlled
by the workstation through special circuity.

Messages could be passed between the
transputers using packet switching as well as
circuit switching because the system allows run­
time topology reconfiguration of the transputer
network by enabling the user's application to
access the crossbar switch control circuity.

1-5-4-3 Mixed topologies:
- The ParSiFal system:

The ParSiFal (Parallel Simulation Facility) has
a modular architecture, a fully configured system
contains to 1024 transputers each of it with 1M or
2M Bytes of external RAM. The transputers are
installed on boards each contains four IMS T800.

- 24 -

Chapter 1

Sixteen of these boards comprise one module called
the T-Rack machine which was designed as a step in

the ParSiFal project [27], Figure (1-7). The T-Rack
machine has 64 transputers connected together by

links 0 and 1 to form a processor pipe, LinkO of

the first transputer is connected to Link3 of the
Root transputer (IMS T414) on the interface board

Figure (1-7) [27]

with the host computer (Sun 3/160) and Linkl of the
last (which could be connected to LinkO from
another T-Rack) is connected to Link2 of the Root
transputer. The rest of the links (2,3) are taken
to a crossbar switch controlled by a separate board
called the Control board. The user program can

control the crossbar switch via a Link connects the

interface transputer to the control transputer. The

T-Rack has a Byte-wide monitoring bus appearing as
a register in the address space of each transputer

- 25 -

Chapter 1

and as an array of registers in the address space
of the switch control transputer, this bus provides
the mean of communication between the application
transputers and the crossbar control transputer
(the dynamic topology control transputer). During
the Run-Time a process running on a transputer may
need to communicate with another process running on
a non-neighbour transputer. A message is sent to
the control transputer, through the monitoring bus,
asking for the required connection [28] . The system
is used for parallel architectures simulation.

- IMS B008 module motherboard:
The IMS B008 is an IBM-PC plug-in Transputer

Module motherboard, Figure (1-8) . It provides the
interface between the PC and the transputer based
system. The board can accommodate 10 transputer
modules (TRAMs). A processor pipe is formed by
connecting Links 1 and 2 of each TRAM. The rest of
the links (0,3) are taken to a software controlled
32X32 crossbar switch, the IMS C004 [22], to allow
a variety of topologies to be implemented. The

board is cascadable to allow a multi­
motherboard system to be built, Figure (1-9).

The structure of the IMS B008 is similar to the
structure of the T-Rack with a major difference
which is the absence of the monitoring bus.

- 26 -

Chapter 1

I8M PC bus (8 bfis but uses AT style connectors}

Base{0 3)

Slave

UP(Resei etc) o

Base(i3]

InterrvfX
logic

Base[i2)

TO
log*

IR03 5 OTSo 1 3

Rsmi
logc

Switches OMA channel (0 ' of 3)
Ba sepO tt) Interrupt ctannel (3 or 5)

Bod'd base address (Hei 150 200 300 Of none)
Lit* speed all TRAMs (10 Mbps or 2C *>t>ps)
Link speed T212 link 0 (S 10 or 20 fcfcps)

JP1

SWKj
ctock

r— Reset e te to TRAMC -

MS
C012

Reset

! N/l
0 aicM m hi^

S b i3 t « * 2 -

StC* 4 I nfc 1 -

- Subsystem from TRAM 0 -

Sbt 0

These Itnks <* a ea, f O g c S d r iv e n fQ, j(nhs

BM bus

T fese 1in*s rl
boaro tur

oowe
•ror- iBM bus

(24 pm
OIL

^eaaer >

P>p6 head

Sbt 2
O J O JP2

Reset etc
to TRAMs i 10 9
and IMS T212

power-on
rese'

Stot 9

IMS COO* tm fr s w tc r i
Conlig

7

IM S T ? 1 2

> Down (Rese* etc)

$ubsystem(Resei etc)

—) PpeTa*

-a— <z>

- o ContigDo*r\

PC bus

>4^

< = > fcio-jQht *o 3* way 0 co r>r>ei-

Figure (1-8) [29]

BOARD 1 *

| SuBS’ S’ EM

BOARO 2
S DOWK op'

BOARD 3

BOARD 4 BOARDS BOARD 6

Figure (1-9) [22]

- 27 -

Chapter 1

For more details please refer to [29],[36].

The transputer efficiency and the simplicity of
implementing transputer based architectures give
transputer systems an advantage on other processors
based parallel architectures.

As we have seen static topologies are special purpose
and to get high performances on such machines, restrictions
should be imposed on the programs structures to achieve a
kind of match between the program and the machine. Dynamic
topologies flexibility allow a wide range of topologies,
message passing techniques to be implemented (chapter 4)
and that makes it more general purpose.

In the next chapter the procedure of configuring
parallel programs to be fitted onto the parallel processor
network is described, then the configuring procedure of the
TDS (Transputer Development System) to run a program on a
transputer network is discused in detail.

- 28 -

Chapter 2

Configuring Parallel Programs

2-1 Introduction:
The design of parallel programs passes through several

stages before it could be compiled and run. Configuration

is last where the processes are located at the processors
and the communication links are located at the

interprocessor connections.
2-2 Parallel program configuring stages:

Figure (2-1) represents the configuring procedure.
2-2-1 Parallelism spotting (Partitioning):

This stage is extremely important because the next
stages are strongly depend on its results.

In fact most of the computing applications (e.g.
real-time systems) are inherently parallel in nature. An
application behavior could be described by a collection
of concurrent processes, each describing the behavior of
a particular aspect of the implementation. Running these
processes in parallel and enabling them to communicate
together will give an actual representation and better

response to the events in real-time. A match between the
program structure and the target parallel processor
network architecture should be made to achieve high
performances.

2-2-3 Processes assigning:
Each concurrent processes is assigned to an

individual processor if possible. Often there will be

- 29 -

Chapter 2

Figure (2-1)

more processes than the available processors. In such
cases groups of processes are assigned to individual
processors. Processes are grouped according to their
expected computation time, and communication relations.

The balance of the computational load between the
processors increases the system performance, but it is
not the only factor. In some applications where the
communication traffic is heavy, the communication system
efficiency determine the overall system performance.

Computational load balance, and short paths between

- 30 -

heavily communicating processes are major factors in
process distributing [21].

2-2-4 Communication channels assigning:
After the processes are assigned the communication

channels between the processes could be assigned to the
interprocessor connections depending on the processes
places and the routing algorithm.

2-2-5 Interprocessor connection implementation:
If the system has a dynamic or mixed (dynamic and

static) topology, the processor network is configured to
meet the previous stages requirements.

2-3 Configuring parallel programs under the TDS:
2-3-1 TDS2 The transputer development system:

The TDS2 is an integrated development system designed
to support the development of Occam programs for
transputer networks applications. The TDS2 consists of
two parts; one contains the editor, the compiler and
other utilities. This part runs on a transputer based
plug-in board like the IMS B004 or IMS B008. The other
part provides the access to the host filling system and

<■ the console (screen, keyboard) . This part runs on the
host system.

Occam programs can be edited, compiled, and run from
within the TDS2. Programs to run on a transputer network
could be developed as well. The TDS2 has many other
utilities like parallel programs debugger, transputer
networks tester, mathematical library, Input/Output

Chapter 2

- 31 -

Chapter 2

functions library, and others [34].
2-3-2 TDS configuring procedure:

In order to configure a program constructed from a
number of parallel processes under the TDS, a number of
steps should be done. These steps are [34]:

1: Each process to be allocated to a transputer
should be contained within a fold of type SC.

2: All the SC folds should be collected into a fold
of type PROGRAM.

3: Configuration statements are added to the PROGRAM
fold, these statements place the processes each at
a transputer and describe the interconnections
between the processes by mapping the external
channels onto the links of the transputers using
special constructs.

4: Compile the program and then extract all the code
produced by the compiler into on code fold.

5: Before the network could be loaded with the
executable code of the configured program the
connections between the transputers should be
implemented (Dynamic topology) using the proper
hardware or software (if the network can be
configured by software).

The programmer needs to know some details about the
target network to be able to configure a program and to
implement the required topology.

In our case where the target hardware is the IMS B008

- 32 -

Chapter 2

[29], configuring a program passes through the same steps
using the MMS2 [35] for step 5.

2-3-3 MMS2 The module motherboard software:
This package is supplied by INMOS to enable users of

the IMS B008 module motherboard to configure the
transputer network to meet their programs communication
requirements. The MMS2 requires two files as input files,
one to describe the new connections the user wants to
create, and one to describe the hardwired connections of
the board, this file is supplied by INMOS [29]. To write
the softwired connections description file, the
programmer has to know at which slots, on the board, the
TRAMs (Transputer Module) are installed.

The MMS2 runs independently from the TDS2 and from
outside the TDS2. If the TDS is suspended and the MMS2 is
run, the system can't return back to the TDS. That means
the network should be configured before running the TDS
and then run the TDS and load the network with the code
of a configured program. The whole process must be
repeated to run another program which requires a
different topology.

The MMS2 is able to create bootable files to
configure the network without the need to run the MMS2
every time the network needs to be configured [35]. This
file should be used to configure the network before
running the TDS.

- 33 -

Chapter 2

2-3-3-1 Using the MMS2:
The following steps describes the use of the MMS2

to configure a transputer network on the IMS B008:
1: Draw the topology and name (number) the links.

2: Write the softwired connections description

file.
3: Run the MMS2 using his file as the first input

file and the hardwired connections description
file as the second input.

4: If the topology is going to be frequently used,
it's better to produce a bootable file. Reset the
subsystem, and initialize the C004s (the crossbar
switch), before setting the C004.

5: The TDS could be run now and the network could
be loaded with the program code.

2-3-4 Case study (Configuring an example program):
Suppose a program of five parallel processes, is be

configured to run on a network of five transputers,
(stages a & b, Figure (2-1), are already done).

The processes external channels are as in Table 2-1,
and the required network topology to run the program is
illustrated in Figure (2-2) . The first step is to place
(assign) the concurrent processes to the available

processors (transputers), Figure (2-1,c). Under the TDS

special configuring instructions are added to the program
source to place the processes at the transputers. Numbers
are given to the transputers, but they have no relation

- 34 -

Chapter 2

with the actual numbers of the TRAMs they represent.

Process name Input channels name Output channels name
process.0 from.1.to.0 from.0.to.1
process.1 from.0.to.1

from.2.to.1
from.3.to.1
from.4.to.1

from.1 .to.0
from.1.to.2
from.1.to.3
from.l.to.4

process. 2 from.1.to.2
from.3.to.2
from.4.to.2

from.2 .to.1
from.2.to.3
from.2.to.4

process.3 from.1.to.3
from.2.to.3
from.4.to.3

from.3.to.1
from.3.to.2
from.3.to.4

process.4 from.1.to.4
from.2.to.4
from.3 .to.4

from.4.to.1
from.4.to.2
from.4.to.3

Table (2-1)
The external channels are placed at the transputers'

links using a supposed placing of the processes at the
SLOTs (the process placed at PROCESSOR 0 m the previous
step is placed at the first occupied SLOT after SLOT 0).

After the external channels are placed the softwired
links description file is written to be used by the MMS2
to configure the network. The following is the contents
of the softwired file:

SOFTWIRE
SLOT 1, LINK 3 TO SLOT 6, LINK 0
SLOT 1, LINK 3 TO SLOT 5, LINK 0
SLOT 5, LINK 3 TO SLOT 6, LINK 3

END
-Softwire description file for Figure (2-2) topology

- 35 -

Chapter 2

Now the program is configured and could be compiled
and extracted. The network should be configured before
loading it with program executable code.

Appendix A contains the configured program listing.

— : Softwired links
= : Hardwired links

Figure (2-2)

For a network of small number of transputers this
procedure could _ done by the programmer, but for larger
networks it will become complicated and will consume a
long time.

These difficulties are not faced when working on a
sequential machine or developing a sequential program
which we are accustomed to. I believe that the job of
parallel machines users should end after writing their

- 36 -

Chapter 2

programs, which are parallel processes communicate with
each other. The lesser the restrictions put on programs
writing, the closer to a user friendly easy to use
parallel machine we are.

Why not have the configuration done by the computer?
The next chapter describes a configurer for programs
developed under the TDS and will run on the IMS B008.

- 37 -

Chapter 3

A Configurer for Programs Running Under
the TDS2 on the IMS B008

3-1 Introduction:
Attempts to design a transparent parallel machine and

to make the already available ones transparent to the

programmer are on going, and the need for that is growing

as the number of such machines' users is becoming bigger
and bigger.

The IMS B008 is made transparent to the users by the
configurer described below. All hardware related work is

carried out by the configurer.

3-2 The environment:
The program was designed and tested on the IMS B008

under the TDS2 operating system, hosted by an IBM PC-AT.

3-3 Implementing message passing techniques on the IMS B008:
3-3-1 Through routing:

This technique is applied to a static topology
network. A communication handling process (router) should
be placed at each transputer either by adding the process
to the program before the compilation or by designing a

general routing process. This process is placed at each

transputer. Before loading the network with any program
code, the routing processes should be fed with the

processes map and their links, this maybe done by another

process running on the host. After that the network could
be loaded with the executable code of the program.

- 38 -

Chapter 3

The "neighbours identification" operation should be

done at first by all the routers and each routing process

should have complete information about which process is

running on which transputer. Packet switching is used so

each message should contain information about it's
length, source identity, and destination. The router will

accept any message on any link and then the message will
be redirected to another transputer via the proper link
according to the process map of the network.

3-3-2 Channel multiplexing:
Similar to the Through-routing from the

implementation point of view except that communication

handling processes multiplex and demultiplex channels on

the appropriate link. In this technique each process

should know its neighbours only, unless both techniques,

Through-routing and Channel multiplexing, are used

together where it becomes necessary for the communication
processes to know the process map of the whole network.

3-3-3 Dynamic links reconfiguration:
The IMS B008 is very similar to the T-Rack machine

but on a small scale and with a very important difference
which is the absence of the monitoring bus.

The monitoring bus plays the major role in the run­

time link-switching in the T-Rack machine where it

carries the processes requests for links switching to the

controller where it is dealt with. Something else should
play the role of the monitoring bus in the T-Rack machine

- 39 -

Chapter 3

on the IMS B008. In the IMS B008 two links from each TRAM
are connected to software controlled crossbar switch, and
two are used to form the processor pipeline. To configure
the network, the configuration data are sent on the
configure input of the crossbar switch (IMS C004) via
Link3 of the IMS T212 (refer to [29] for more details).

Each TRAM has two links connected to the crossbar
switch (LinkO and Link3) except TRAMO where Link3 only is
connected to the crossbar switch. By sacrificing one of
these links of each TRAM, say LinkO and lets call it
"configure link", this link will take the place of the
monitoring bus of the T-Rack machine. The other link,
Link3, of each TRAM is called "flexible link".

A process is allocated at each TRAM and called the
"Organizer", its 3 0b will be described later, and another
process running on the IMS T212 is also needed. This
process acts like a telephone exchange operator. The
process is called the "Controller".

Any process, no matter on which TRAM it is running,
wanting to communicate with any process which is not
running on a neighbour TRAM (processes running on
neighbour TRAMs are accessible via Linkl and Link2), will
send a message to the organizer of it's TRAM. The message
contains information about the channel the process wants
to communicate on and the direction (send or receive). In
the case of receiving, the organizer keeps the channel
number (channels are numbered to ease the searching task)

- 40 -

Chapter 3

and the process is then blocked on a message from the
organizer to resume. In the case of sending, the
organizer sends a message to the controller (on T212) via
the configure link requesting a linkage with the TRAM on
which there is a process waiting to receive a message on
the same channel.

The controller scans all the configure links
continuously, and on receiving a message from an
organizer it sends searching messages to all the
organizers looking for the process waiting to receive on
the wanted channel (blocked on a message from the local
organizer). If the process is found, the organizer on the
TRAM on which the process waiting to receive was found,
sends a message to the controller. Then the controller
connects the flexible links of both TRAMs (if not already
in use) and inform both organizers. Both organizers will
then send a resume message to both processes and the
communication take place in the conventional way. After
the message is sent the sending process should inform the
organizer that it finished and the organizer in it's turn
informs the controller which disconnects the flexible
links. The organizer process is identical on all TRAMs.

This design was tried on a simple example which
contains four processes running on four TRAMs excluding
the Host.

As we saw, this method requires some modifications on
the processes to insert the handshaking between the

- 41 -

Chapter 3

processes and the organizers. Another problem is caused
by the size of the controller process which should fit m

the internal memory of the T212 because it has no
external memory on the IMS B008. For these reasons and
specially the first one this technique, dynamic link
reconfiguring, was not used in the configurer.

The choice of which technique to use is left to the
user. The configurer adds no new restrictions on programs
to be configured (other) than the TDS restrictions.

3-4 The configurer:
3-4-1 What is requisted from the configurer?

The configurer should be able to do the following:
1: Discover the target transputer network.
2: Discover the structure of the program (parallel

processes).
3: Map and place the processes at the transputers

and then place the channels at the links.
4: Configure the network (set the crossbar switch)

to meet the required topology.
5: Produce the configured output as an acceptable

input to the TDS compiler.

This version of the configurer is able to configure a
program constructed from a number of processes less than or
equal to the number of the available TRAMs on one IMS B008.

Each process could have a number of external channels

- 42 -

Chapter 3

less than or equal to the number of the available links of
the TRAM of both input and output. The configurer does not
support the replicated PAR instruction m this version.

The program deals with one IMS B008, but with some
modifications on some parts of it, the program would be
able to deal with a number of cascaded IMS B008 boards.
3-4-2 The configurer general description:

The program consists of two programs running in
parallel. The first runs on TRAMO, and accesses the file
system of the host computer (PC) and does the most of the
3 0b. The second runs on the IMS T212 (T2) controls the
crossbar switch according to messages sent by the first.
Figure (3-1) shows the major flowchart of the configurer.

The program starts with discovering the network to
define the number of the installed TRAMs and the slots
they occupied using the crossbar switch.

After that the configurer searches for the source of
the input program (the program to be configured). If the
source was found, the program reads the information
required in the configuration process. This information
in addition to the network information is then used to
configure the program.

The configurer has three phases. In the first phase
the configuring data is checked. If the data is valid,
the next phase is performed through which the processes
and their external channels are mapped on the network.

The network is then configured if the mapping was

- 43 -

Chapter 3

Figure (3-1), Configurer general flowchart

- 44 -

Chapter 3

successful. At this point the configurer program could be
stopped if the configured output is not required (the
configurer could be used to configure the network to run
a pre-configured program). The configurer outputs have
all the required configuring instructions added.

3-4-3 The general algorithm:
The general algorithm is actually the summary of the

previous paragraph.
Begin;

Detect the available TRAMs in the network.
Search the program source for processes.
FOR each found process

DO:
Get the process name.
Read the external channels information.
Check the channels declarations.
Check the number of the channels.
Check input and output channels matching.

Place the processes at the TRAMs.
Place the channels at the links.
Configure the network.
If required
Produce the configured output.

End;
3-4-4 The configurer requirements in the input program:

The input program should be a foldset of type PROGRAM
and fulfil the following points:

- 45 -

Chapter 3

1: A fold literally called "EXTERNAL CHANNELS
PROTOCOLS" which contains the declarations of all
protocols of the external channels.

2: Each process should be contained within an SC
type foldset including the process which will run
on the host.

3: Each process should contain a fold of type
COMMENT and literally called "PROCESS <the process
name> EXTERNAL CHANNELS" contains the declarations
of the external channels of the process. This fold
should preced the outer PROC statement of the
process.

4: External channels should be declared, in the
previous fold, using the same format of Occam, but
with an addition which is the direction of the
channel (input or output) using the format:

CHAN OF <protocol> <channel name,,,> <?/*>:
"?" indicates input channels and indicates
output channels.

5: A fold literally called "CONFIGURE" contains a
PLACED PAR instruction and the process's calling
statements starting with the call statement of the
host process (the process which has access to the
system) . The indentation of all the above folds
should be zero relative to the PROGRAM fold (please
refer to [27] for details about the folds types and
indentation).

- 46 -

Chapter 3

3-4-5 Special cases:
Sometimes the conditions of the configurer are

fulfilled by the program but the configuration failed. If
that happened it will be caused by the IMS B008 design as
will be discussed.

Because of the hardwired links on the board some
difficulties may be encountered while configuring a
program and sometimes the required topology could not be
implemented on the IMS B008.
3-4-5-1 Three non-neighbouring processes:

Figure (3-2-a) shows the required topology for a
program, but because two links of each TRAM are
hardwired the topology could not be implemented using
this distribution of processes.

: Could not be implemented.

= : Possible links.
P : Process.

Figure (3-2)

- 47 -

Chapter 3

In Figure (3-2-b) P5 has been shifted to the end of
the pipe to make use of the pipetail link through the
edge connector. This solution is avoided by the program
because of the complexity of it's implementation if
cascaded boards are used. The program makes use of the
pipetail link in the case where the number of the
processes is equal to the number of the TRAMs number.

3-4-5-2 All the processes need four links:
In the case where all the processes need four links

and the number of the processes is less than the number
of the TRAMs the topology is impossible on the IMS
B008. A channel at least should be cancelled to make
the topology implementable.

3-4-5-3 No loading route from the root TRAM:
The loader sends all the code to the root TRAM to

be distributed from there. In some cases like the one
illustrated in Figure (3-3) the network could not be
loaded and a loader failure message will be sent.

x : No channels are placed at these links.

Figure (3-3)

In such cases the configurer adds a channel and
places it at the proper links to connect the loading

- 48 -

Chapter 3

route, this channel is called "JUST.FOR.LOADING". That
could happen once in the topology because the host TRAM
has two links only.

3-4 - 6 The configurer program:
The configurer design tries to minimize the work the

the programmer has to do to configure a program. All the
programmer has to do before configuring a program (apart
from writing the processes) is to add the external
channels declaration folds to each process in the way
described above, and after the configuration is done he
(she) has to make the output folds as foldsets, all the
other requirements are TDS requirements.
3-4-6-1 Network detection:

This task is carried out by the two parallel parts
of the configurer.
3-4-6-1-1 The program on T2 (controller):

The program runs on the T2 controls the crossbar
switch which is connected to the T2 via Link3 refer
to Figure (2-1).

The controller receives messages from the program
running on the host via Linkl and sends control data
(configure data) to the crossbar switch via Link3.

The controller could be easily modified to act as
a worm program for applications where cascaded IMS
B008s are used. Figure (3-4) is the general flowchart
of the controller program.

At the beginning, the program on the host resets

- 49 -

Chapter 3

^Controller^

Define t)
LINH (hoi

le parent
t link)

Loop until
t e r m n a t received

/ Get c 3 w i n d I

Connect
Linkx to Linky

Disconnect
Linkx and Linky

Activate
Configuring data

Reset
crossbar switch

Termnate
run = FALSE

CASE on c o m a n d
L.. J

Figure (3-4), Crossbar switch controller flowchart

- 50 -

Chapter 3

the subsystem which includes T2 and the crossbar
switch, then it boots T2 with the controller code.

When the controller starts to run it waits for a
number to be sent on any link, this link will be
defined as the host link. After that the controller
enters a loop which is the body of the program. This
loop starts with receiving a command from the host
and then a CASE construct on the command is executed.

No processing is done by the controller to keep
it's size as small as possible to fit in the internal
memory of T2. The program is needed twice for the
configuration, firstly to discover the network, and
secondly to set the crossbar switch (configure the
network).

The program supports all the IMS C004 commands
except the enquiry command, but only four commands
are actually used:

1: Connect Link<x> to Link<y>.
2: Disconnect Link<x> and Link<y>.
3: Activate the configuring data.
4: Reset, all the outputs are disconnected.
x,y are IMS C004 links numbers [14].

When the configuration is done, the host sends a
terminating command to terminate the controller.

3-4-6-1-2 Network detecting procedure (Host):
The configurer starts by calling this procedure

"network" to define the number of the available TRAMs

- 51 -

Chapter 3

Figure (3-5), Network detector flowchart

- 52 -

Chapter 3

in the network and the slots they are occupying,
Figure (3-5) . The number of the TRAMs is kept in the
variable "nTransputers" and the occupied slots are
kept in the Boolein array "slots".

The procedure starts with initializations and
then gets the transputer type from the user (T4 or
T8). After that the subsystem (network) is reset and
the code of the controller is got from a file called
"C004byT2.cpr" by the local procedure "read.T2.code".
Then T2 is booted with the controller code. If
everything goes well, the length of the controller is
sent to T2 to enable the controller to identify the
host link on which the communication will take place.
A trial command is then sent to the controller to
assure that every thing there is OK, the local
procedure "is.loaded" is used for that. Then the
network discovering process starts with resetting the
crossbar switch to cancel any previous connections.

The slots are then scanned by connecting Link3 of
the host (slotO) to Link3 of each slot in turn, by
sending the appropriate commands and data to the
controller. A poke operation trying to write anything
in the internal memory of the transputer at a certain
address is then performed followed by a peek
operation to read the contents of the same address.
If the read value is the same written value a TRAM is

- 53 -

Chapter 3

known to be installed at that slot, "nTransputers" is
incremented and the corresponding item of "slots" is
set to TRUE. After that the links are disconnected
(Link3 of slotO and Link3 of the tested slot) and a
connection is done with Link3 of the next slot and so
on until the whole slots are tested. Then the number
of TRAMs found is displayed on the screen and the
network discovering phase is finished.

3-4-6-2 Searching for the program source fold:
The program looks for the source in the first fold

of the bundle which should be a foldset of type
PROGRAM. Procedure "search.for.source" is used for
that.

At first the procedure gets the number of the folds
m the bundle to check if there is any or not. If the
number is one or more the attributes of the fold are
read and checked where the acceptable attributes are:

TYPE : foldset or voidset.
CONTENT : fc.occam2.prg.
If the attributes are accepted then the attributes

of the first fold are read to check it's contents which
should be "fc.source.text". If it is, then
"prog.source.found" is set to TRUE and the search
process succeeded, otherwise the procedure report on
the screen with an error message.

3-4-6-3 Reading the program source:
The program requires special information folds to

- 54 -

Chapter 3

Figure (3-6), Input program source read

- 55 -

Chapter 3

be added by the programmer to the program m order to
decrease the needed amount of processing. The program
only reads the folds which contain the information
necessary for configuring, which is found in the added
external channels folds and the configure fold. Missed
folds, if any, are reported and the programs stops.

Procedure "source.read" is used to read the
required information from the source of the program to
be configured, Figure (3-6).

The procedure tries at first to open the first fold
for reading, if it failed an error message is sent to
screen and the program stops. If it passed, some
initializations are done and the program enters the
reading loop contains a CASE construct which forms the
core of the procedure. The reading loop ends on
reaching the end of the opened fold, or an error
occurred during the reading. Using some library
procedures for folds reading, the program source is
read. Special processing is done when a "top crease" or
a "bottom crease" and if a record is the next item to
be read.

On reaching a "top crease" the comment of the fold
is read and checked to see whether this fold contains
configuration data or not.

If the fold is an external channels fold, the
process name of which the external channels fold was
found is obtained from the comment using the local

- 56 -

Chapter 3

procedure "get.proc.name" which keeps the process name
in the byte array "proc.names" and the length of the
name in bytes m the integer array "proc.names.lens".
The Boolean "comment.read" is set to TRUE to indicate
to "read.record" procedure to put the contents of the
current fold into the buffer. The current value of the
buffer pointer is saved m the integer array
"ext.chn.ptr" to indicate the offset of the start of
the external channels information of the current
process in the buffer.

If the fold is the configure fold (the fold
contains the processes calling statements), the
Boolean "configure.read" is set to TRUE to indicate to
"read.record" procedure to put tne contents of the
current fold into the buffer. The current value of the
buffer pointer is saved in the integer array
"ext.chn.ptr" to indicate the offset of the start of
the calling statements in the buffer.

If the fold is the external channels protocols
declaring fold, the boolean "ext.protocol.read" is set
to TRUE to indicate the availability of the fold.

On reaching a "bottom crease" a check is done to
find out if the end of a configuring data fold is
reached or not depending on the depth of the fold,
which is increased on entering a fold and decreased on
exiting. If an end is reached the appropriate boolean
is set to FALSE and the current value of the buffer

- 57 -

Chapter 3

pointer is saved in the integer array "ext.chn.ptr" to
indicate the offset of the end of the external channels
information of the current process or the calling
statements. If the end was of an external channels
fold the processes counter "sc.number" is incremented.

The procedure "read.record" is used to read record
 ̂items from the source, but it adds the record to the
buffer only if "comment.read" or "configure.read" is
TRUE and the record itself is not a comment record.

The procedure "source.read" will report any missed
configuring fold. Any process does not have an external
channels fold will not be regarded by the configurer.

3-4-6-4 Processes and channels mapping and placing:
The configurer divided this 30b into three tasks,

each task is carried out by a special procedure called
Phase.
3-4-6-4-1 Phase I:

After the available configuration data is read
from the program source, the configurer enters a new
phase which includes checking major points in the
read data. These points are checked by the procedure
"phase.I" which itself is consisted of a number of
procedures each checks a different point, Figure (3-
7) .

The points checked during this phase are:
1: "PLACED PAR" instruction.
2: For each called process there is an

- 58 -

Chapter

Chapter 3

external channels fold which holds the same
process name.

3: The number of the called processes with the
number of the available TRAMs.

The procedure starts with checking the number of
the SC type folds found during the reading operation
as there is no point to go on if there is nothing to
place. After that the procedure "CONFIGURE.inst" is
used to look for the "PLACED PAR” instruction in the
data read from the fold called "CONFIGURE”. If the
instruction was found (step 1) the names of the
called processes (to be placed) are obtained from the
calling statements by the procedure
"get.called.sc.name" and then compared to those
previously got while reading the source by the
procedure "match.sc.name”. The names matching
operation is done for each calling statement in turn.
During the names matching the number of the called
processes is updated every time a called process
passed the check, this number is then compared with
the number of the available TRAMs, and the order in
which the processes are called is also saved. Error
messages are issued on each error to help the user to
identify the error. These error messages are as
specific as possible. Phase one according to the
configurer is now over and data required for phase
two to be executed is available (but not checked).

- 60 -

Chapter 3

3-4-6-4-2 Phase II:
This phase is the major phase m the program and

most of the job is done here, Figure (3-8) . At first
the channels definition information of each process
are got from the read data, then the channels map of
the processes is produced, then the possibility of
accessing all the processes from the host is checked.
After that the processes map is produced to be used
in the next step which is placing the processes
followed by mapping the channels on the TRAMs links
and the last step is configuring the network
according to the results of the previous two steps.

Phase two starts with getting the channels'
names, protocols, and directions for each process
from the external channels data of that process. The
input channels and the output channels are separated
and counted for checking. A process could have up to
four input and four output channels (except the host
process can have two of each) and should have one of
each at least (what is the point of a parallel
process without input or output?). The procedure
"channels.names" does all the checking on the
channels m addition to some syntax checking on the
channels declaration statements.

After that the procedure "lo.or.i.or.o" is called
to produce the channels map. The procedure tries to
find the match input channel for each output channel,

- 61 -

Chapter 3

Figure (3-8)

- 62 -

Chapter 3

and checks that the channels are not already used to
match different channels, either the input or the
output channel. If the output channel is already used
for another input channel, the procedure reports a
duplicated input channel and a duplicated output
channel.

The last check before the channel is mapped or
put in the channels map is that the channel is not
connected to the same process it belongs to (I could
not find a reason to connect two links of the same
TRAM, together).

After passing all the previous checks the channel
is mapped and after the procedure "lo.or.i.or.o"
finishes, the channels map is ready unless there is a
mistake of some kind in the external channels data.

Figure (3-9)

- 63 -

Chapter 3

The channels map "chn.map" is a three dimensional
array and could be seen in the way illustrated in
Figure (3-9) which shows the part of the array of
process number <n>. The output and the input channels
are numbered within the processes from 0 - 3 .

Another three dimensional array is also used to
keep the destinations (for the output channels) and
the sources (for the input channels) for each
process. The array called "connected.to" is used, the
array structure is similar to the one of the array
"chan.map" but each process has eight elements (the
first four are used for the output channels and the
last four are used for the input channels of the
process) instead of the four in "chan.map". Figure
(3-10) shows one element of the array which describes
the channels of process <n>.

Depending on the channels map, the procedure
"loading.route" detects inaccessible processes
(processes which could not be accessed from the host
TRAM). These processes's channels will pass all the
previous checks without being discovered that they
are isolated. The procedure starts with the host
process and marks it as an accessible process, then
depending on the channels map, it marks each process
connected to the host process (by any output) as an
accessible process.

- 64 -

Chapter 3

Figure (3-10)

After that the processes are scanned and all the
processes connected to a marked process are marked as
well. At the end a check is done to see if there is
any unmarked process which is, if found, reported.

- 65 -

Chapter 3

The next step which is the last step before
placing the processes is producing the channels map
and defining the number of processes each process is
connected to and the number of links it needs.

The procedure "num.proc.conn.to" is now executed
to produce the processes map "proc.proc.map" which is
a two dimensional array and during that another two
dimensional array "processes.n.links.n" is used to
keep the number of the different processes connected
to each process and the number of links it uses. An
element of the processes map array (for one process)
can be seen as in Figure (3-11) where (-1) is the
initial value of all "with.proc.n".

Figure (3-11)

The procedure uses the array "connected.to"
created with the channels map. At first the outputs
of the process are scanned, and for each used output
all the inputs (of the same process) are scanned
trying to find an input from the same process to
which the output is connected. By this means the
input and the output of each link between two

- 66 -

University
of Ulster

at Jordanstown

with Compliments

Professor M. Elizabeth C. Hull, b .sc., Ph.D., c.Eng., f .b .c .s .

Head of Department of Computing Science

Newtownabbey Co. Antrim BT37 OQB Northern Ireland Telephone Belfast (0232) 365131

Chapter 3

processes will be used if possible. If an input was
found, both the output and the input are marked
(cancelled from the array) and a link is reserved.
The array "link.with.proc" is used to keep the number
of the required links between all the processes. The
structure of "link.with.proc" is identical to the
structure of "chan.map" replacing the outputs with
the links. After all the outputs of the process are
scanned, the inputs are scanned looking for any input
left. A link is reserved in the three possible cases,
input and output, output only, or input only. Each
time a link is needed (for input, output, or both)
the processes number is updated (incremented) if this
is the first link with this process. After the
channels of a process are scanned, the procedure
checks the number of the different processes to which
the current process is connected, and the number of
links required. If any of these numbers exceeds the
allowed number an error message is issued.

The data required for placing the processes are
now ready and correct and there should be no problem
in placing the processes unless a special case (like
the one mentioned above) occurred.
Processes placing algorithm:

The processes placing algorithm, which is the
core of the configurer, was designed to suit the
IMS B008 design and the extensibility of the

- 67 -

Chapter 3

system.
In a fully dynamic (reconfigurable) topology

system where all the links are flexible, the needed
processes placing algorithm is simple. The
complexity of the algorithm grows as the
restrictions on processes placing grow. As
described earlier, any topology to be implemented
on the IMS B008 should consider the hardwired links
between the TRAMs.

The algorithm is relatively simple and could be
used for placing a large number of processes at a
similar number of TRAMs. The processes are placed
one after another to form a chain "necklace" of
processes similar to the processors chain on the
board(s). Starting with the Host process (the
process which access the system) placed on the Host
TRAM (TRAMO on the first IMS B008, which has two
free links only) and then the other processes are
placed on the other TRAMs which have four free
links each.

The algorithm depends on the number of links
needed by each process. Processes needing larger
number of links are placed at first in the proper
place to make the processes chain as long as
possible.

The terms "last process" indicates the last
placed process, "next process" indicates the next

- 68 -

Chapter 3

process to be placed, and "N links process"
indicates a process which uses N links. At the
beginning the host process is the last process. The
next process is chosen from the processes connected
to the last process according to the number of
links it needs and to the position of the TRAM, at
which it will be placed, in the processor chain.

A cut in the processes chain could happen if
two processes are neighbours but they have no
connections between them, in this case the next
process could not be a four links process. A cut in
the processes chain is discovered by checking the
processes connected to the last process, if all of
them are placed, then there is a cut in the
processor chain.

The procedure "place.processes", Figure (3-12)
handles the task of placing the processes according
to the algorithm. Starting from the host process
which is placed at the host TRAM (TRAMO) and
considered the last process, the next process is
defined by the procedure "define.nect.process"
which selects the next process from the processes
connected to the last process. The next process
definition is done as follows: the processes
connected to the last processes are known from the
processes map and the numbers of links each of them
required are known from the array

- 69 -

Chapter 3

Figure (3-12), Processes placing procedure

- 70 -

Chapter 3

"processes.n .links.n".
Two possibilities are faced here: is there a

cut m the processes chain or not?
If the chain is cut (a special Boolean variable

"cut" is set to TRUE) the maximum number of links
the next process could have is three. If the next
process is a three links process, and it is going
to be placed after a cut, the possibility of all
the processes, to which the next process is
connected, being already placed should be
considered. If they are, the next process could not
be a three links process unless it will be placed
at the last TRAM in the processor chain, where it
could use the pipetail link. A two link process or
a one link process could be placed without any
problem expected.

If there is no cut, a four links process is
preferable, then a three links process, then a two
links process, then a one link process.

The Boolean function "all.are.placed" is used
to check if the processes chain is cut after each
placing, except when the last process is a one link
process where the chain is definitely cut.

When a cut occurred and the next process could
not be defined by "define.next.process", it returns
a failure message (FALSE) to "place.processes"
which goes back in the chain to the already placed

- 71 -

Chapter 3

processes trying to find a process connected to
them and not yet placed. Unless a process is found
the procedure keeps going back until the host
process is reached where a process should be found
because all the processes have passed the loading
route test. The used TRAMs (at which the processes
were placed) are marked using the Boolein array
"assigned”, where the corresponding element of the
array is set to TRUE if a process was placed at
that TRAM.

After placing the processes, the used links
number(s) of each TRAM should be defined to be used
by the next step, which is configuring the network.

The procedure "define.links" defines the links
to be used to connect the TRAMs using the results
of "num.proc.conn.to" and "place.processes".

The procedure tries at first to use the
hardwired links on the IMS B008 (Linkl and Link2 of
each TRAM) before using the other links (LinkO and
Link3). The elements of the array "assigned" are
scanned to detect the used TRAMs. If a process was
placed at a TRAM, the links of this process are
checked. Using the array "link.with.proc" to see
with which process a link is needed. The TRAM at
which the other process is placed, is then defined
by the procedure "at.which.tram.is" . The two TRAMs
are now known, the procedure "connect.T 1 .T2 " is

- 72 -

Chapter 3

used to define which link from each TRAM should be
used to make the connection. The procedure
considers the hardwired links when selecting the
links. LinkO and Link3 are used if the TRAMs are
not neighbours or Linkl (of the first) and Link2
(of the second) are used. In the case where TRAMO
is involved, Link3 is the only option. The pipetail
link is used if the TRAM is the last m the
processor chain. The results are kept in the array
"tram.link" which is a three dimensional array.
Figure (3-13) illustrates an element of
"tram.link".

Figure (3-13)

The last step in phase two is configuring the
network according to the results of the previous

- 73 -

Chapter 3

steps (the required topology).
Procedure "network.connector" reads the array

"tram.link" produced by the previous step and makes
the new connections (not hardwired). If LinkO or
Link3 is used in a TRAM, a new connection should be
made to connect this link to the appropriate link
in the other TRAM (LinkO or Link3). The first thing
which should be done before the connection could be
made is to define at which slots the TRAMs are.
Procedure "at.which.slot.is" defines the slot which
accommodates the TRAMs, then the links of the
crossbar switch are defined, and after that the
configure data is sent to the controller process on
the T2 to set the crossbar switch.

3-4-6-4-3 Phase III:
The last phase of configuring a program is

optional. This phase produces the configured output
folds which should be made foldsets before being
compiled, Figure (3-14) .

The first one contains the program processes, the
external channels declarations, the protocols of the
external channels, and the required configuring
statements.

The second fold contains the host process, the
external channels declaration of the host process,
the protocols of the external channels, and the
configuring statements.

- 74 -

Chapter 3

Figure (3-14)

- 75 -

Chapter 3

The first fold should be made of type "PROGRAM"
and the second fold should be made of type "EXE" by
the "make.fold.set" utility of the compiler.

The execution of this phase was made optional to
allow the user to configure the transputer network
before running previously configured programs (by the
configurer) because any time the program is used to
configure a program the results will be same unless
the program source was changed.

The configurer will copy the source of the
processes only, even if they were compiled, to make
sure that everything is checked before the network is
loaded with the executable code of the configured
program. The creation time and the date of the output
folds are added to the folds comment to help the user
to differentiate between the outputs of multiple
times of configuring for the same program, although
the TDS adds the new created folds to the end of the
bundle. The external channels placing step was made a
part of phase three because there is no point in
placing the channels if the output is not required.

The phase starts with getting the date and the
time from the host system by creating a new file and
reading it's characteristics, which includes the time
of creation and the date, and then the file is
deleted. The procedure "date.time" is used to get the
date and the time. After that the comment and the

- 76 -

Chapter 3

attributes of the fold contains the program source
are read to be used for creating the output folds.

Two fold are then created to contain the
configured output. The source of the input program is
then read and the contents are copied to the proper
new fold.

Then the procedure "place.channels" places the
external channels at the links of the transputers.

The channels are placed on the links which was
defined earlier by "define.links". The array
"tram.link" describes the link connections between
the TRAMs, and the array "chn.map" describes the
channel connections between the processes. From both
arrays in addition to "assigned" array, the channels
of the processes are placed at the links. The results
of the channels placing are kept in two arrays, one
for output channels "o.channel.at.link" and for input
channels "i.channel.at.link", both arrays are two
dimensional, the first dimension is the transputer
number, and the second dimension is the link number,
at which the output or input channel number of the
process placed at that transputer is placed.

After the input source is read, both the new
folds will contain a copy of the fold called the
"EXTERNAL CHANNELS PROTOCOLS". The first will also
contain a copy of the source of each process. The
second will also contain a copy of the host process.

- 77 -

Chapter 3

The configuring statements are now added to both
folds. A fold contains definitions of the links
output and input placing values, to be used instead
of the values which are meaningless, Figure (3-7).

Then a fold contains the declarations of the
channels used by the process(es) contained in the
fold is added.

{{{ Links
VAL LmkOOut IS 0
VAL LmklOut IS 1
VAL Link20ut IS 2
VAL Link30ut IS 3
VAL LinkOln IS 4
VAL Linklln IS 5
VAL Link2In IS 6
VAL Link3ln IS 7
}}}

The values of the links output and input parts.

Figure (3-7)

The procedure "place.EXE.ext.chnls" adds the
placing statements of the host process external
channels, written in a fold called "channels
placing", to the second fold.

The procedure "PROGRAM.prog.body" adds the
configuring statements to the first fold. For each
processor (transputer) used, the placing statements
of the external channels of the process placed at
that processor's links are added in a fold called

- 78 -

Chapter 3

"channels placing" followed by a fold containing the
calling statement of the process placed at that
processor, Figure (3-8).

{{{ program body
PLACED PAR

{{{ processor 0
PROCESSOR 0 T8

{{{ channels placing
PLACE channel name AT
PLACE channel name AT

LmkxOut:
LinkyOut:

PLACE channel name AT Linkxln :

}}}{{{ process calling
process.name (calling
}}}

}}}
processor 1

parameters§)

processor n
}}}

x,y are links numbers.
§ All the process external channels should be among the

calling parameters.
Contents of the program body fold after configuring

Figure (3-8)

- 79 -

Chapter 4

Using the Configurer

4-1 Introduction:
The program was tried out on experimental programs in

order to prove it's correctness. Four different programs
requiring four different topologies are discussed as
examples of using the program to configure programs to run
on the IMS B008.

4-2 A program requiring a hypercube topology:
The required topology is illustrated in Figure (4-1)

where the numbers are the processes numbers (names) and the
hypercube consists of the processes 1,2, 3,4,5,6,7,8.

Process 0 is the Host process. A channel from process 8
to process 0 was added.

Figure (4-1)

From the configured output (program) of the configurer

- 80 -

Chapter 4

the processes were placed at the TRAMs as illustrated in
Figure (4-2) .

P: Process
S: Slot

Figure (4-2)

Refer to Appendix B for full listing of the input
program and the configured outputs.

4-3 A program requiring a mesh topology:
The required topology is illustrated in Figure (4-3).

Figure (4-3)

Chapter 4

the processes were placed at the TRAMs as illustrated in
Figure (4-4) .

Pipetail

Figure (4-4)

In this example the pipetail (link 2 of the last TRAM)
was used to implement the required topology and it supposed
to be connected to the crossbar switch through the edge
connector using the link EDGE 0.

Refer to Appendix C for full listing of the input
program and the configured outputs.

4-4 A program requiring a binary tree topology:
The required topology is illustrated in Figure (4-5) .
This example shows clearly the difficulties imposed by

the hardwired links, which made these links unusable in
this topology. A look at the configurer results (Appendix
D, D-l-1-2) will tell that Link 0 is used in process 5,7,9
although the processes have only one external channel. That
indicates that the process pipe were cut three times during
the mapping of the processes on the TRAMs. The effect of
the hardwired links could have been stronger if more than

- 82 -

Chapter 4

one link is required between two processes.

Figure (4-5)

From the configured output (program) of the configurer
the processes were placed at the TRAMs as illustrated in
Figure (4-6).

P: Process
S: Slot

Figure (4-6)

4-5 A program requiring a user defined topology:
The required topology is illustrated in Figure (4-7).
The topology divided the processes into two parts each

- 83 -

Chapter 4

part is connected to the host process and not there is no
connection between the two parts.

Figure (4-7)

The loader will fail to send the executable code to one
of the parts (the one placed far from the host) no matter
how the processes are mapped on the TRAMs. To avoid the
loader failure the configurer adds a channel called "JUST
FOR LOADING" and places it so that the two parts are
connected. Appendix E contains the input program and the
configured outputs. The loading channel was added to
process 4 and process 7 and was placed at the hardwired
link.

From the configured output (program) of the configurer
the processes were placed at the TRAMs as illustrated m

- 84 -

Chapter 4

Figure (4-8).

P: Process
S: Slot

Figure (4-6)

The user at this stage should make the fold marked with
(program) a Foldset of type PROGRAM and the fold marked
with (exe) a Foldset of type EXE and then follow the TDS
procedure of compiling and running a program on a network.

4-6 Configuring the network:
The program could be used to configure the transputer

network before running a program previously configured by
the configurer. Any number of programs could be run from
within the TDS even if they require different topologies.

All the user should do to get the system tailored to
his program requirements is to run the configurer with its
input being the program he/she would like to run.

Modifications on the program processes are highly
expected during the development stages of any program, but
these modifications will not affect the configurer results,
and that eliminate the need to configure the program each
time it is modified.

- 85 -

Chapter 4

Modifications on the external channels require
reconfiguring as it will definitely change the configurer
results. Changing the calling order of the processes may
change the configurer results, so its advisable to
reconfigure the program if such modification is done.

The program was run many times on the above examples
and the results were the same for each of them each time
the configurer was run on it.

- 86 -

Improvements and Further Development

Improvements and Further Development

5-1 Introduction:
Designing and improving parallel programs configuring

facilities will always be required to ease the use of
parallel machines and make parallel programs writing as
simple as possible.

The way is now opened for anyone who wants to improve
the configurer or even to design a new one, with a
different strategy, using the available configurer as a
starting point.

Improvements could be done on the configurer to
increase it's ability to deal with larger programs, and
larger networks, to support replicated PLACED PAR
constructs, to deal with networks of mixed transputer
types, and to be more friendly to the user.

5-2 Improvements on the configurer program:
5-2-1 Handle larger number of processes and processors:

In its first version the configurer is able to deal
with relatively small number of processes and small
network size, which could run on one IMS B008. With some
modifications on parts of the program, it will be able to
deal with larger number of processes and processors.

Parts like the network detector, the network
connector, and the links definer needs to be modified m

order to achieve a configurer for larger programs.

- 87 -

Improvements and Further Development

5-2-2 Handle replicated PLACED PAR construct:
The configurer at this time does not accept a

replicated "PAR" construct, which is essential for some
applications, where identical processes should run m

parallel (on different processors). A suggestion to solve
this problem is to have a procedure which translates the
replicated "PLACED PAR" construct into a number of
process calling statements, after reading the program
source. Another procedure is required to re-build the
replicated "PLACED PAR" construct to be written m the
output fold.

5-2-3 Mixed transputer types:
To make the configurer able to deal with a transputer

network which contains mixed transputer types, the
network detecting procedure should be modified to detect
the transputer type while detecting the network. That
may create new problems to the user in cases like when a
process should run on a specific transputer type, because
of it's capabilities (eg floating point). The programmer
has then to specify in the program the processor type
required for specific process(es) which will complicate
the processes placing algorithm.

5-2-4 Unlimited number of processes:
To make the system hardware more transparent to the

user, the configurer should be able to use with an
unlimited number of processes (i.e., the number of
processes is not related to the number of transputers in

- 88 -

Improvements and Further Development

the network). This will be at the price of real
parallelism which is not acceptable for some applications
where time is a crucial factor. To achieve that, the
configurer will have to combine (group) some processes,
according to their communication requirements and if
possible to their computational requirements (short
processes), m one process. The combined processes will
run concurrently sharing the time of one processor.

Another difficulty will also be faced in this
approach. This is placing the external channels of the
combined processes on the transputer links. In general
the transputer links will not be enough, and that leads
to the use of a message passing technique (discussed in
chapter 4). Using any message passing technique requires
new processes to be added, by the configurer, to the
program to handle the message passing between the
processors. This will achieve the transparency goal but,
it also has the disadvantages of the technique used, and
may decrease the performance of the application program,
even if it uses a very good and efficient parallel
algorithm.

To make the process grouping approach more efficient,
the user could be asked, by the configurer, to define the
processes to be grouped. This will increase the
efficiency of the system but will not get rid of the used
message passing technique disadvantages.

- 89 -

Improvements and Further Development

5-2-5 Use the configurer instead of the MMS2:
The configurer configures the transputer network from

within the TDS. This facility, if made accessible to the
user (as an option), will allow the user to configure the
network as desired, for programs which are not configured
by the configurer.

5-2-6 Channels protocols check:
To avoid compiler error messages about unmatched

protocols, protocols of channels connected together could
be checked.

5-2-7 User friendly:
To give the user more confidence, the configurer

could show (on the screen) the network while it is being
configured or after being configured. The TRAMs could be
drawn as boxes and then the configurer will draw lines
between the boxes to represent the links. The names of
the processes and the channels could also be placed at
the boxes and the lines to give the user a realistic
image of the network.

Some other improvements could also be done, but these
were my next steps.

- 90 -

conclusions

Conclusions

The configurer program was used to configure a number of
different programs and proves to be efficient.

Configuring a program by the configurer results in two
folds. The first fold, which should be made a Foldset of type
PROGRAM, contains the processes of the input program placed
at the transputers and the channels placed at the transputers
links. The second fold, which should be made a Foldset of
type EXE, contains the host process and the channels placed
at the links of the host transputer. The network is also
configured to meet the communication requirements of the
configured program processes. All the special cases mentioned
in chapter three were tried and the configurer gave the
expected results. All errors which could affect the progress
of the configuring process were also tried, and the
configurer proved it's ability to discover and report them.

The configurer detects and reports most of the expected
syntax errors in the specific folds which contain the
configuration data. The configurer could be used to configure
the network before running a program which was previously
configured by the configurer because multiple runs of the
configurer on the same input file gave always the same
results. Programs written in any languge could be configured.

- 91 -

References

References:

[1] - D. Aspinall " Structures for parallel processing ", Computing & Control

Engineering Journal, JAN. 1990.

[2] - Brian Oakley " The limits to growth in IT ", Computing & Control

Engineering Journal, JAN. 1990.

[3] - D. Parkinson "The Processing Array Approach", Major Advances in Parallel

Processing, pp 120-129, Edt. Chris Jesshope, Technical Press 1987.

[4] - F.H. Schlereth, B.F. Schlereth " KILONODE A Transputer Based Parallel

Com puter", Transputer Research And Applications 1, pp 82-88, IOS Press

1990.

[5] - J . Clifton Hughes " ParSiFal - the Parallel Simulation Facility ", Major

Advances in Parallel Processing, pp 146-154, UNICOM 1987.

[6] - INM OS Ltd. " The Transputer Development and iq Systems Databook ", pp

98-101, INMOS Ltd. 1989.

[7] - Almasi/Gottlieb "Highly parallel computing", The Benjamin/commings 1989.

[8] - C. Rieger, J. Bane, R. Trigg "ZMOB: a highly parallel multiprocessor",

Proceedings of the Workshop on Picture Data Description and Management,

page 281, Aug. 1980.

[9] - Charles L. Seitz "Concurrent VLSI Architectures", IEEE Trans, on computers,

Vol C-33, No 12, Dec. 1984.

[10] - Howard Jay Siegel,William Tsun-Yuk Hsu "Interconnection Networks",

Computer Architecture Concepts and Systems, pp 225-264, Edt. Veljko M.

Milutinovic, North-Holland 1988.

[11]- Angel L. DeCegama "THE TECHNOLOGY OF PARALLEL

PROCESSING, Parallel Processing Architectures and VLSI Hardware,

- 92 -

References

Volume 1", Prentice Hall, 1989.

[12] - Reed,D., Grunwald,D., "The performance of multiprocessor interconnection

networks", Computer, pp 63-73, Vol 20, No 6, June 1987.

[13] - Bhuyan,L., Yang,Q., Agrawal,D. "Performance of multiprocessor

interconnection networks", Computer, pp 25-37, Vol 22, No 2, Feb 1989

[14] - Rieger C "ZMOB A mob of 256 cooperative Z80-based microcomputers",

Proc of the DARPA Image Understanding Workshop, Los Angeles, CA, 1979

[15] - Rieger C, et al "ZMOB A new computing engine for AI", Proc Seventh

International Joint Conference on Artificial Intelligence, UCAI, pp 955-960,

Aug 1981 [16] - G. Mago "A Cellular Computer Architecture for Functional

Programming", IEEE COMPCON, pp 179-187,1980

[17] - S. J. Stolfo and D. P. Miranker "DADO A parallel Processor for Expert

Systems", IEEE International conference on parallel processing, pp 74-82,

1984

[18] - W. Daniel Hillis "The Connection Machine", MIT press 1985.

[19] - D. H. Lawrie "Access and Alignment of Data in Array Processor", IEEE

Trans, on Computers, pp 55-56, Jan. 1976.

[20] - Martin Shumway "Deadlock-Free Packet Network", Transputer Research and

Applications 2, pp 139-177, IOS Press 1990.

[21] - Dick Pountain "Configuring parallel programs", Byte pp 349-352, Dec. 1989

[22] - INMOS L td ." The Transputer Databook ",INMOS Ltd. 1989.

[23] - D.G.Shea, R.C.Booth, D.H.Brown, M.E.Giampapa, G.R.Irwin,

T.T.Murakami, F.T.Tong, P.R.Varker, V.W.Wilcke and D.J.Zukowski,

- 93 -

References

"Monitoring and Simulation of Processing Strategies for Large Knowledge

Bases on the IBM Victor Multiprocessor”, Transputer Research and

Applications 2, pp 11-26, IOS Press 1990.

[24] - Mark Smith, Jonathan Yen, and Susan Spach, "A Transputer Based

Architecture for Data Broadcasting", Transputer Research and Applications 1,

pp 67-72, IOS Press 1990

[25] - Thomas B.Henderson, Jerome J.Symanski, and Keith Bromley, "Software

Development on the Video Analysis Transputer Array", Transputer Research

and Applications 1, pp 88-97, IOS Press 1990.

[26] - Jack Harper "Variable Topology Parallel Processing on the Sun A Graphics

Based, Mouse Driven Approach", Transputer Research and Applications 1, pp

98-105, IOS Press 1990

[27] - Peter C.Capon, and Alan E.KnowIes "Using Algorithmic Parallilism in the

Manchester ParSiFal Syatem", Transputer Research and Applications 1, pp 57-

66, IOS Press 1990.

[28] - Peter Jones, and Alan Murta "The Implementation of a Run-Time Link-

Switching Environment for Multi-Transputer Machines", Transputer Research

and Applications 2, pp 107-122, IOS Press 1990.

[29] - INMOS "IMS B008 User guide and reference manual", INMOS June 1988.

[30] - INMOS L td ." Occam 2 Reference Manual", PRENTICE HALL 1988.

[31] - David May " The Transputer", Major Advances in Parallel Processing, pp 33-

43, Technical Press 1987.

[32] - Alan Burns " Programming In Occam 2", Addison-Wesley 1988

- 94 -

References

[33] - Jon Kerridge " Occam Programming' A Practical Approach ", Blackwell

Scientific Publications 1988

[34] - INMOS "Transputer development system", PRENTICE HALL, 1988

[35] - INMOS "Module motherboard software", INMOS 1988

[36] - INMOS "The Transputer Application Notebook, systems and performance",

INMOS 1989.

[37] - Manas Mandal, Prasad Vishnubhotla, Kalluri Eswar, and Chandrasekhar

Gollamud, "ALPS on a transputer network Kernel Support for Topology-

Independent Programming", Transputer Research and Applications 2, pp 229-

252, IOS Press 1990

- 95 -

Appendix A

The text in italic is the text added for configuring the

example program in chapter 2.
A-l Program listing with configuring instructions:

External channels protocols declaration fold
Paralle processes fold

{{{ External channels declaration
CHAN OF <protocol.name> from.0.to.1
CHAN OF <protocol.name> from.1.to.0
CHAN OF <protocol.name> from.1.to.2
CHAN OF <protocol.name> from.l.to.3
CHAN OF <protocol.name> from.1.to.4
CHAN OF <protocol.name> from.2.to.1
CHAN OF <protocol.name> from.2 .to.3
CHAN OF <protocol.name> from.2 .to.4
CHAN OF <protocol.name> from.3.to.1
CHAN OF <protocol.name> from.3.to.2
CHAN OF <protocol.name> from.3.to.4
CHAN OF <protocol.name> from.4.to.1
CHAN OF <protocol.name> from.4.to.2
CHAN OF <protocol.name> from.4.to.3
}}}
PLACED PAR

PROCESSOR 0 T8
{{{ process.1 external channels placing
PLACE from.l.to.0 AT LinklOut:
PLACE from.l.to.2 AT Link20ut:
PLACE from.1.to.3 AT LinkOOut:
PLACE from.1.to.4 AT Link30ut:
PLACE from.0.to.1 AT Link1In:
PLACE from.2.to.1 AT Link2ln:
PLACE from.3.to.1 AT LinkOIn:
PLACE from.4.to.1 AT Link3ln:
}}}
process.1 (External channels of the process, ...)

PROCESSOR 1 T8
{{{ process.2 external channels placing
PLACE from.2.to.1 AT LinklOut:
PLACE from.2.to.3 AT Link20ut:
PLACE from.2.to.4 AT Link3Out:
PLACE from.1.to.2 AT Linklln:
PLACE from.3.to.2 AT Link2ln:
PLACE from.4.to.2 AT Link3ln:
}}}
process.2 (External channels of the process,

PROCESSOR 2 T8
{{{ process.3 external channels placing
PLACE from.3.to.1 AT LinkOOut:
PLACE from.3.to.2 AT LinklOut:

A-l

Appendix A

PLACE from.3.to.4 AT Link20ut:
PLACE from.1.to.3 AT LinkOIn:
PLACE from.3 .to.3 AT Lxnklln:
PLACE from.4 .to.3 AT Link2ln:
}}}
process.3 (External channels of the process, ...)

PROCESSOR 3 T8
{{{ process.4 external channels placing
PLACE from. 4 . to. 1 AT L m k O O u t :
PLACE from.4.to.2 AT Link30ut:
PLACE from. 4 .to. 3 AT L m k l O u t :
PLACE from.1.to.4 AT LinkOIn:
PLACE from.2.to.4 AT Link3In:
PLACE from.3.to.4 AT Link1 In:
}}}
process.4 (External channels of the process, ...)

A-2 Host program listing with configuring instructions:
External channels protocols declaration fold
Host program processes

{{{ Host external channels declaration
CHAN OF <protocol.name> from.0 .to.1:
CHAN OF <protocol.name> from.1 .to.0:
}}}
{{{ process.1 external channels placing
PLACE from.0.to.1 AT Link20ut
PLACE from.1 .to.0 AT Link2ln:
}}}

Host program body

A-2

Appendix B

HYPERCUBE

For simplicity all the channels have the same protocol
(ANY), but any other protocol could be used.
B-l The required part of the program source:

... EXTERNAL CHANNELS PROTOCOLS
{{{ PROCESSES
{{{ SC process.0
{{{ COMMENT PROCESS process.0 EXTERNAL CHANNELS
CHAN OF ANY from.O.to.l ,

from.0.to.8 1 : — output channels from 0
CHAN OF ANY from.l.to.O ,

from.8.to.0 ?: — input channels to 0
}}}
{{{ process.0
PROC process.0 (...)

process body
In
}}}
{{{ SC process.1
{{{ COMMENT PROCESS process.1 EXTERNAL CHANNELS
CHAN OF ANY from.l.to.O,

from.1.to.2,
from.1.to.3,
from.1.to.5 !:

CHAN OF ANY from.O.to.l,
from.2 .to.1,
from.3.to.1,
from.5.to.1 ?:

}}}{{{ process.1
{{{
PROC process.1 (...)

process body
in
}}}
}}}
{{{ SC process.2
{{{ COMMENT PROCESS process.2 EXTERNAL CHANNELS
CHAN OF ANY from.2.to.1,

from.2.to.4,
from.2 .to.6 !:

CHAN OF ANY from.l.to.2,
from.4.to.2,
from.6.to.2 ?:

}) }

B-l

Appendix B

{{{ process.2
{{{
PROC process.2 (...)

process body
}}}
}}}
}}}
{{{ SC process.3
{{{ COMMENT PROCESS process.3 EXTERNAL CHANNELS
CHAN OF ANY from.3.to.1,

from.3. to.4,
from.3.to.7 1 :

CHAN OF ANY from.l.to.3,
from.4.to.3,
from.7.to.3 ?:

}}}
{{{ process . 3
{{{
PROC process.3 (...)

process body
in
}}}
}}}
{{{ SC process.4
{{{ COMMENT PROCESS process.4 EXTERNAL CHANNELS
CHAN OF ANY from.4.to.2,

from.4.to.3/
from.4 .to.8 !:

CHAN OF ANY from.2.to.4,
from.3.to.4/
from.8.to.4 ?:

}}}
{{{ process. 4
{{{
PROC process.4 (...)

process body
i n
}}}
}}}
{{{ SC process.5
{{{ COMMENT PROCESS process.5 EXTERNAL CHANNELS
CHAN OF ANY from.5.to.1,

from.5.to.6,
from.5.to.7 !:

CHAN OF ANY from.1.to.5,
from.6.to.5,
from.7.to.5 ?:

}}}
{{{ process.5
{{{
PROC process.5 (...)

B-2

Appendix B

process body

h i
}}}
}}}
{{{ SC process.6
{{{ COMMENT PROCESS process.6 EXTERNAL CHANNELS
CHAN OF ANY from.6.to.2,

from.6.to.5,
from.6.to.8 1:

CHAN OF ANY from.2.to.6,
from.5.to.6,
from.8.to.6 ?:

}}}{{{ process.6
{{{
PROC process.6 (...)

process body
I,.
}}}
}}}
{{{ SC process.7
{{{ COMMENT PROCESS process.7 EXTERNAL CHANNELS
CHAN OF ANY from.7.to.3,

~from.7.to.5,
\^from. 7 . to. 8 1 :

CHAN OF ANY from.3.to.7,
from.5.to.7,
from.8.to.7 ?:

}}}{{{ process. 7
{{{
PROC process.7 (...)

process body
i»
}}}
}}}
{{{ SC process.8
{{{ COMMENT PROCESS process.8 EXTERNAL CHANNELS
CHAN OF ANY from.8.to.0,

from.8.to.4,
from.8.to.6,
from.8.to.7 !:

CHAN OF ANY from.0.to.8,
from.4.to.8,
from.6.to.8,
from.7.to.8 ?:

}))
{{{ process.8
{{{
PROC process.8 (...)

process body

B-3

Appendix B

}}
}}
}}
}}
{{{ CONFIGURE
PLACED PAR

process.0
process.1
process.2
process.3
process.4
process.5
process.6
process.7
process.8

}}}

— Host process should be the first

B-l-1 The configurer results:
B-l-1-1 The configured program:

{{{ EXTERNAL CHANNELS PROTOCOLS
{{{ protocol declaration
PROTOCOL REAL.ARRAY IS INT::[]REAL64:
}}}
}}}
{ { { PROCESSES
... SC process.1
... SC process.2
... SC process.3
... SC process.4
... SC process.5
... SC process. 6
... SC process.7
... SC process.8
}}}
{{{ Links
VAL LinkOOut IS 0
VAL LinklOut IS 1
VAL Link20ut IS 2
VAL Link30ut IS 3
VAL LinkOIn IS 4
VAL Linklln IS 5
VAL Link2In IS 6
VAL Link3In IS 7
}}}
{{{ external channels declaration
CHAN OF ANY from.0.to.1:
CHAN OF ANY from.0.to.8:
CHAN OF ANY from.8.to.0:
CHAN OF ANY from.8.to.4:
CHAN OF ANY from.8.to.6:
CHAN OF ANY from.8.to.7:

B-4

Appendix B

CHAN OF ANY from.1.to.0:
CHAN OF ANY from.1.to.2:
CHAN OF ANY from.1.to.3:
CHAN OF ANY from.1.to.5:
CHAN OF ANY from.2.to.1:
CHAN OF ANY from.2.to.4:
CHAN OF ANY from.2 .to.6:
CHAN OF ANY from.3 .to.1:
CHAN OF ANY from.3.to.4:
CHAN OF ANY from.3 .to.7:
CHAN OF ANY from.4 .to.2:
CHAN OF ANY from.4.to.3:
CHAN OF ANY from.4.to.8:
CHAN OF ANY from.5.to.1:
CHAN OF ANY from.5.to.6:
CHAN OF ANY from.5.to.7:
CHAN OF ANY from.6.to.2:
CHAN OF ANY from.6.to.5:
CHAN OF ANY from.6.to.8:
CHAN OF ANY from.7.to.3:
CHAN OF ANY from.7.to.5:
CHAN OF ANY from.7 .to.8:
}}}
{{{ program body
PLACED :PAR

{ { { processor 0
PROCESSOR 0 T8

{{{ channels placing
PLACE from.l.to.O AT LinklOut:
PLACE from.l.to.2 AT Link20ut:
PLACE from.l.to.3 AT LinkOOut:
PLACE from.l.to.5 AT Link30ut:
PLACE from.O.to.l AT Linklln:
PLACE from.2.to.l AT Link2ln:
PLACE from.3.to.1 AT LinkOln:
PLACE from.5.to.l AT Link3ln:
}}}{{{ process calling
process.1 (any)
}}}

}}}
{{{ processor 1
PROCESSOR 1 T8

{{{ channels placing
PLACE from.2.to.l AT LinklOut:
PLACE from.2.to.4 AT Link20ut:
PLACE from.2.to.6 AT LinkOOut:
PLACE from.l.to.2 AT Linklln:
PLACE from.4.to.2 AT Link2ln:
PLACE from.6.to.2 AT LinkOln:
}}}
{{{ process calling
process.2 (any)
}}}

B-5

Appendix B

}}}{{{ processor 2
PROCESSOR 2 T8

{{{ channels placing
PLACE from.4.to.2 AT LinklOut:
PLACE from.4.to.3 AT LinkOOut:
PLACE from.4.to.8 AT Link20ut:
PLACE from.2.to.4 AT Linklln:
PLACE from.3.to.4 AT LinkOln:
PLACE from.8.to.4 AT Link2ln:
}}}{{{ process calling
process.4 (any)
}}}

}}}{{{ processor 3
PROCESSOR 3 T8

{{{ channels placing
PLACE from.8.to.O AT LinkOOut:
PLACE from.8.to.4 AT LinklOut:
PLACE from.8.to.6 AT Link20ut:
PLACE from. 8. to. 7 AT Lmk30ut:
PLACE from.0.to.8 AT LinkOln:
PLACE from.4.to.8 AT Linklln:
PLACE from.6.to.8 AT Link2ln:
PLACE from.7.to.8 AT Link3ln:
}}}{{{ process calling
process.8 (any)
}}}

}}}
{{{ processor 4
PROCESSOR 4 T8

{{{ channels placing
PLACE from.6.to.2 AT LinkOOut:
PLACE from.6.to.5 AT Link20ut:
PLACE from.6.to.8 AT LinklOut:
PLACE from.2.to.6 AT LinkOln:
PLACE from.5.to.6 AT Link2ln:
PLACE from.8.to.6 AT Linklln:
}}}
{{{ process calling
process.6 (any)
}}}

}}}
{{{ processor 5
PROCESSOR 5 T8

{{{ channels placing
PLACE from.5.to.l AT LinkOOut:
PLACE from.5.to.6 AT LinklOut:
PLACE from.5.to.7 AT Link20ut:
PLACE from.l.to.5 AT LinkOln:
PLACE from.6.to.5 AT Linklln:
PLACE from.7.to.5 AT Link2ln:

B-6

Appendix B

}}}
{{{ process calling
process.5 (any)
}}}

}}}
{{{ processor 6
PROCESSOR 6 T8

{{{ channels placing
PLACE from.7.to.3 AT Link20ut:
PLACE from.7.to.5 AT LinklOut:
PLACE from.7.to.8 AT LinkOOut:
PLACE from.3.to.7 AT Link2In:
PLACE from.5.to.7 AT Linklln:
PLACE from.8.to.7 AT LinkOln:
}}}{{{ process calling
process.7 (any)
}}}

}}}{{{ processor 7
PROCESSOR 7 T8

{{{ channels placing
PLACE from.3.to.l AT LinkOOut:
PLACE from.3.to.4 AT Link30ut:
PLACE from.3.to.7 AT LinklOut:
PLACE from.l.to.3 AT LinkOln:
PLACE from. 4.to. 3 AT Lmk3ln:
PLACE from.7.to.3 AT Linklln:
}}}
{{{ process calling
process.3 (any)
}}}

}}}
}}}

B-l-1-2 The host program:
... EXTERNAL CHANNELS PROTOCOLS
... SC process.0
{{{ Links
VAL LinkOOut IS 0:
VAL LinklOut IS 1:
VAL Link20ut IS 2:
VAL Link30ut IS 3:
VAL LinkOln IS 4:
VAL Linklln IS 5:
VAL Link2In IS 6:
VAL Link3ln IS 7:
}}}
{{{ external channels declaration
CHAN OF ANY from.0.to.1
CHAN OF ANY from.o.to.8
CHAN OF ANY from.8.tO.0
CHAN OF ANY from.l.to.0

B-7

Appendix B

}}}
{{{ channels placing
PLACE from.O.to.l AT Link20ut:
PLACE from.0.to.8 AT Link30ut:
PLACE from.1.to.0 AT Link2ln:
PLACE from.8.to.0 AT Link3ln:
}}}
{{{ program body
SEQ

{{{ process calling
process.0 (any)
}}}

}}}

B-8

Appendix C

MESH

For simplicity all the channels have the same protocol
(ANY), but any other protocol could be used.
C-l The required part of the program source:

... EXTERNAL CHANNELS PROTOCOLS
{{{ PROCESSES
{{{ SC process.0
{{{ COMMENT PROCESS process.0 EXTERNAL CHANNELS
CHAN OF ANY from.0.to.1 ':
CHAN OF ANY from.l.to.0 ?:
}}}
{{{ process.0
PROC process.0 (...)

process body
h .
}}}
{{{ SC process.1
{{{ COMMENT PROCESS process.1 EXTERNAL CHANNELS
CHAN OF ANY from.l.to.0,

from.1.to.2,
from.1.to.3,
from.1.to.6 !:

CHAN OF ANY from.0.to.1,
from.2 .to.1,
from.3.to.1,
from.6.to.1 ?:

}}}
{{{ process.1
{{{
PROC process.1 (...)

process body
in
}}}
}}}
{{{ SC process.2
{{{ COMMENT PROCESS process.2 EXTERNAL CHANNELS
CHAN OF ANY from.2.t0.1,

from.2.to.3,
from.2 .to.5,
from.2 .to.8 1:

CHAN OF ANY from.l.tO.2,
from.3.to.2,
from.5 .to.2,
from.8.to.2 ?:

}}}

C-l

Appendix C

{{{ process.2
{{{PROC process.2 (...)

process body
in
}}}
}}}{{{ SC process.3
{{{ COMMENT PROCESS process.3 EXTERNAL CHANNELS
CHAN OF ANY from.3.to.l,

from.3.to.2,
from.3.to.4,
from.3.to.9 1:

CHAN OF ANY from.l.to.3,
from.2.to.3,
from.4.to.3,
from.9.to.3 ?:

}}}
{{{ process . 3
{{{
PROC process.3 (...)

process body

in
} }}
}}}{ {{ SC process.4
{{{ COMMENT PROCESS process.4 EXTERNAL CHANNELS
CHAN OF ANY from.4.to.3,

from.4.to.5,
from.4 .to.6,
from.4 .to.9 !:

CHAN OF ANY from.3.to.4,
from.5.to.4,
from.6.to.4,
from.9.to.4 ?:

}}}{{{ process. 4
{{{PROC process.4 (...)

process body
in
}}}
}}}
{{{ SC process.5
{{{ COMMENT PROCESS process.5 EXTERNAL CHANNELS
CHAN OF ANY from.5.to.2,

from.5.to.4,
from.5.to.6,
from.5 .to.8 ':

CHAN OF ANY from.2.to.5,
from.4 .to.5,

C-2

Appendix C

from.6.to.5,
from.8.to.5 ?:

}}}
{{{ process.5
{ { {
PROC process.5 (...)

process body

in
} } }
}}}
{{{ SC process.6
{{{ COMMENT PROCESS process.6 EXTERNAL CHANNELS
CHAN OF ANY from.6.to.l,

from.6.to.4,
from.6.to.5,
from.6.to.7 !:

CHAN OF ANY from.1.to.6,
from.4.to.6,
from.5.to.6,
from.7.to.6 ?:

}}}
{{{ process.6
{{{
PROC process.6 (...)

process body

in
}}}
}}}
{{{ SC process.7
{{{ COMMENT PROCESS process.7 EXTERNAL CHANNELS
CHAN OF ANY from.7.to.6,

from.7.to.8,
from.7.to.9 !:

CHAN OF ANY from.6.to.7,
from.8.to.7,
from.9.to.7 ?:

}}}
{{{ process. 7
{{{
PROC process.7 (...)

process body

in
}}}
}}}
{{{ SC process.8
{{{ COMMENT PROCESS process.8 EXTERNAL CHANNELS
CHAN OF ANY fr0m.8.t0.2,

from.8.to.5,
from.8.to.7,
from.8.to.9 !:

CHAN OF ANY from.2.to.8,

C-3

Appendix C

from.5 .to.8,
from.7.to.8,
from.9.to.8 ?:

}}}
{{{ process.8
{{{
PROC process.8 (...)

process body

; »
}}}
}}}
{{{ SC process.9
{{{ COMMENT PROCESS process.9 EXTERNAL CHANNELS
CHAN OF ANY from.9.to.3,

from.9.to.4,
from.9.to.7,
from.9.to.8 1:

CHAN OF ANY from.3.to.9,
from.4.to.9,
from.7.to.9,
from.8.to.9 ?:

}}}
{{{ process. 9
PROC process.9 (...)

process body

}}}
}}}
}}}
{{{ CONFIGURE
PLACED PAR

process.0 (any)
process.1 (any)
process.2 (any)
process.3 (any)
process.4 (any)
process.5 (any)
process.6 (any)
process.7 (any)
process.8 (any)
process.9 (any)

}}}
C-l-1 The configurer results:

C-l-1-1 The configured program:
{{{ EXTERNAL CHANNELS PROTOCOLS
{{{ protocol declaration
PROTOCOL REAL.ARRAY IS INT::[]REAL64:
}}}
}}}
{ {{ PROCESSES

C-4

Appendix C

SC process.1
SC process.2
SC process.3
SC process.4
SC process.5
SC process.6
SC process.7
SC process.8
SC process.9

}
{{{ Links
VAL LinkOOut IS 0
VAL LinklOut IS 1
VAL Link20ut IS 2
VAL Link30ut IS 3
VAL LinkOln IS 4
VAL Linklln IS 5
VAL Link2ln IS 6
VAL Link3ln IS 7
}}}{{{ external channels declaration
CHAN OF ANY from.0.to.1:
CHAN OF ANY from.8.to.2:
CHAN OF ANY from.8.to.5:
CHAN OF ANY from.8.to.7:
CHAN OF ANY from.8.to.9:
CHAN OF ANY from.1.to.0:
CHAN OF ANY from.1.to.2:
CHAN OF ANY from.1.to.3:
CHAN OF ANY from.1.to.6:
CHAN OF ANY from.2.to.1:
CHAN OF ANY from.2.to.3:
CHAN OF ANY from.2.to.5:
CHAN OF ANY from.2.to.8:
CHAN OF ANY from.3.to.1:
CHAN OF ANY from.3 .to.2:
CHAN OF ANY from.3 .to.4:
CHAN OF ANY from.3 .to.9:
CHAN OF ANY from.4.to.3:
CHAN OF ANY from.4.to.5:
CHAN OF ANY from.4 .to.6:
CHAN OF ANY from.4.to.9:
CHAN OF ANY from.5 .to.2:
CHAN OF ANY from.5.to.4:
CHAN OF ANY from.5.to.6:
CHAN OF ANY from.5.to.8:
CHAN OF ANY from.6.to.1:
CHAN OF ANY from.6.to.4:
CHAN OF ANY from.6.to.5:
CHAN OF ANY from.6.to.7:
CHAN OF ANY from.7.to.6:
CHAN OF ANY from.7.to.8:
CHAN OF ANY from.7.to.9:
CHAN OF ANY from.9.to.3:

C-5

Appendix C

CHAN OF ANY from.9.to.4
CHAN OF ANY from.9.to.7
CHAN OF ANY from.9.to.8
}}}{{{ program body
PLACED PAR

{{{ processor 0
PROCESSOR 0 T8

{{{ channels placing
PLACE from.l.to.0 AT LinklOut:
PLACE from.l. to. 2 AT Lmk20ut:
PLACE from.l.to.3 AT LinkOOut:
PLACE from.l. to. 6 AT Lmk30ut:
PLACE from.O.to.l AT Linklln:
PLACE from.2.to.l AT Lmk2ln:
PLACE from.3.to.1 AT LinkOln:
PLACE from.6.to.1 AT Link3ln:
}}}
{{{ process calling
process.1 (any)
}}}

}}}
{{{ processor 1
PROCESSOR 1 T8

{{{ channels placing
PLACE from.2.to.l AT LinklOut:
PLACE from.2.to.3 AT Link20ut:
PLACE from.2.to.5 AT LinkOOut:
PLACE from.2.to.8 AT Link30ut:
PLACE from.l.to.2 AT Linklln:
PLACE from. 3. to. 2 AT Lmk2ln:
PLACE from.5.to.2 AT LinkOln:
PLACE from.8.to.2 AT Link3ln:
}}}
{{{ process calling
process.2 (any)
}}}

}}}
{{{ processor 2
PROCESSOR 2 T8

{{{ channels placing
PLACE from.3.to.l AT LinkOOut:
PLACE from.3.to.2 AT LinklOut:
PLACE from.3.to.4 AT Link20ut:
PLACE from.3.to.9 AT Link30ut:
PLACE from.l.to.3 AT LinkOln:
PLACE from.2.to.3 AT Linklln:
PLACE from.4.to.3 AT Link2ln:
PLACE from.9.to.3 AT Link3ln:
)}}
{{{ process calling
process.3 (any)
}}}

}}}

C-6

Appendix C

{{{ processor 3
PROCESSOR 3 T8

{{{ channels placing
PLACE from.4.to.3 AT LinklOut:
PLACE from.4.to.5 AT Link20ut:
PLACE from.4.to.6 AT LinkOOut:
PLACE from.4.to.9 AT Link30ut:
PLACE from.3.to.4 AT Linklln:
PLACE from.5.to.4 AT Link2ln:
PLACE from.6.to.4 AT LinkOln:
PLACE from. 9.to. 4 AT Lmk3ln:
}}}
{{{ process calling
process.4 (any)
}}}

}}}{{{ processor 4
PROCESSOR 4 T8

{{{ channels placing
PLACE from.5.to.2 AT LinkOOut:
PLACE from.5.to.4 AT LinklOut:
PLACE from.5.to.6 AT Link20ut:
PLACE from.5.to.8 AT Link30ut:
PLACE from.2.to.5 AT LinkOln:
PLACE from.4.to.5 AT Linklln:
PLACE from.6.to.5 AT Link2ln:
PLACE from.8.to.5 AT Link3ln:
}}}
{{{ process calling
process.5 (any)
}}}

}}}
{{{ processor 5
PROCESSOR 5 T8

{{{ channels placing
PLACE from.6.to.1 AT LinkOOut:
PLACE from.6.to.4 AT Link30ut:
PLACE from.6.to.5 AT LinklOut:
PLACE from.6.to.7 AT Link20ut:
PLACE from.1.to.6 AT LinkOln:
PLACE from.4.to.6 AT Link3ln:
PLACE from.5.to.6 AT Linklln:
PLACE from.7.to.6 AT Link2ln:
}}}
{{{ process calling
process.6 (any)
}}}

}}}
{{{ processor 6
PROCESSOR 6 T8

{{{ channels placing
PLACE from.7.to.6 AT LinklOut:
PLACE from.7.to.8 AT Link20ut:
PLACE from.7.to.9 AT LinkOOut:

C-7

Appendix C

PLACE from.6.to.7 AT Linklln:
PLACE from.8.to.7 AT Link2ln:
PLACE from.9.to.7 AT LinkOln:
}}}
{{{ process calling
process.7 (any)
}}}

}}}
{ { { processor 7
PROCESSOR 7 T8

{{{ channels placing
PLACE from.8.to.2 AT LinkOOut:
PLACE from.8.to.5 AT Link30ut:
PLACE from.8.to.7 AT LinklOut:
PLACE from.8.to.9 AT Link20ut:
PLACE from.2.to.8 AT LinkOln:
PLACE from.5.to.8 AT Link3ln:
PLACE from.7.to.8 AT Linklln:
PLACE from.9.to.8 AT Link2ln:
}}}
{{{ process calling
process.8 (any)
}}}

}}}
{{{ processor 8
PROCESSOR 8 T8

{{{ channels placing
PLACE from.9.to.3 AT LinkOOut:
PLACE from.9.to.4 AT Link30ut:
PLACE from.9.to.7 AT Link20ut:
PLACE from.9.to.8 AT LinklOut:
PLACE from.3.to.9 AT LinkOln:
PLACE from.4.to.9
PLACE from.7.to.9
PLACE from.8.to.9
}}}
{{{ process calling
process.9 (any)
}}}

}}}
}}}

AT Link3ln:
AT Link2ln:
AT Linklln:

-- pipe tail

— pipe tail

C-l-1-2 The host program:
EXTERNAL CHANNELS PROTOCOLS

{{{
SC process
Links

.0
VAL LinkOOut IS 0:
VAL LinklOut IS 1:
VAL Link20ut IS 2:
VAL Link30ut IS 3:
VAL LinkOln IS 4:
VAL LinklIn IS 5:
VAL Link2In IS 6:

C-8

Appendix C

VAL Link3ln IS 7:
}}}
{{{ external channels declaration
CHAN OF ANY from.0.to.1:
CHAN OF ANY from.1.to.0:
}}}
{{{ channels placing
PLACE from. O.to.l AT Lmk20ut:
PLACE from.1.to.0 AT Link2ln:
}}}{{{ program body
SEQ

{{{ process calling
process.0 (any)
}}}

}}}

C-9

Appendix D

BINARY TREE

For simplicity all the channels have the same protocol
(ANY), but any other protocol could be used.
D-1 The required part of the program source:

... EXTERNAL CHANNELS PROTOCOLS
{{{ PROCESSES
{{{ SC process.0
{{{ COMMENT PROCESS process.0 EXTERNAL CHANNELS
CHAN OF ANY from.O.to.l ■:
CHAN OF ANY from.1.to.0 ?:
}}}{{{ process.0
PROC process.0 (...)

process body
in
}}}{{{ SC process.1
{{{ COMMENT PROCESS process.l EXTERNAL CHANNELS
CHAN OF ANY from.l.to.0,

from.1 .to.2,
from.1.to.3 1:

CHAN OF ANY from.O.to.l,
from.2.to.1,
from.3.to.1 ?:

}}}
{{{ process. 1
{{{
PROC process.l (...)

process body
i n
}}}
}}}
{{{ SC process.2
{{{ COMMENT PROCESS process.2 EXTERNAL CHANNELS
CHAN OF ANY from.2.to.l,

from.2 .to.4,
from.2.to.5 1 :

CHAN OF ANY from.l.to.2,
from.4 .to.2,
from.5.to.2 ?:

}}}
{{{ process.2
{{{
PROC process.2 (...)

process body

D-1

Appendix D

}}}
}}}
}}}{{{ SC process.3
{{{ COMMENT PROCESS process.3 EXTERNAL CHANNELS
CHAN OF ANY from.3.to.l,

from.3 .to.6,
from.3 .to.7 !:

CHAN OF ANY from.1.to.3,
from.6.to.3,
from.7.to.3 ?:

}}}
{{{ process.3
{{{
PROC process.3 (...)

process body
in
}}}
}}}
{{{ SC process.4
{{{ COMMENT PROCESS process.4 EXTERNAL CHANNELS
CHAN OF ANY from.4.to.2,

from.4 .to.8,
from.4 .to.9 ':

CHAN OF ANY from.2.to.4,
from.8 .to.4,
from.9.to.4 ?:

}}}
{{{ process.4
{{{
PROC process.4 (...)

process body
}}}
}}}
}}}
{{{ SC process.5
{{{ COMMENT PROCESS process.5 EXTERNAL CHANNELS
CHAN OF ANY from.5.to.2 !:
CHAN OF ANY from.2.to.5 ?:
}}}
{{{ process.5
{{{
PROC process.5 (...)

process body
i n
}}}
}}}
{{{ SC process.6
{{{ COMMENT PROCESS process.6 EXTERNAL CHANNELS
CHAN OF ANY from.6.to.3 !:

D-2

Appendix D

CHAN OF ANY from.3.to.6 ?:
}}}
{{{ process . 6
{{{
PROC process.6 (...)

process body

}}}
}}}
}}}
{{{ SC process.7
{{{ COMMENT PROCESS process.7 EXTERNAL CHANNELS
CHAN OF ANY from.7.to.3 !:
CHAN OF ANY from.3.to.7 ?:
}}}
{{{ process.7
{{{
PROC process.7 (...)

process body

in
}}}
}}}
{{{ SC process.8
{{{ COMMENT PROCESS process.8 EXTERNAL CHANNELS
CHAN OF ANY from.8.to.4
CHAN OF ANY from.4.to.8 ?:
}}}
{{{ process.8
{{{
PROC process.8 (...)

process body
in
}}}
}}}
{{{ SC process.9
{{{ COMMENT PROCESS process.9 EXTERNAL CHANNELS
CHAN OF ANY from.9.to.4 !:
CHAN OF ANY from.4.to.9 ?:
}}}
{{{ process.9
PROC process.9 (...)

process body
in
}}}
}}}
{{{ CONFIGURE
PLACED PAR

process.0 (any)
process.l (any)
process.2 (any)
process.3 (any)

D-3

Appendix D

process.4 (any)
process.5 (any)
process.6 (any)
process.7 (any)
process.8 (any)
process.9 (any)

}}}
D-l-1 The configurer results:

D-l-1-2 The configured program:
... EXTERNAL CHANNELS PROTOCOLS
{{{ PROCESSES
... SC process.1
... SC process.2
... SC process.3
... SC process.4
... SC process.5
... SC process.6
... SC process.7
... SC process.8
... SC process.9
{{{
VAL

Links
LinkOOut IS 0

VAL LinklOut IS 1
VAL Lmk20ut IS 2
VAL Lmk30ut IS 3
VAL LinkOln IS 4
VAL Linklln IS 5
VAL Link2ln IS 6
VAL Link3ln IS 7
}}}
{{{ external channels declaration
CHAN OF ANY from.0.to.1
CHAN OF ANY from.1.to.0
CHAN OF ANY from.1.to.2
CHAN OF ANY from.1.to.3
CHAN OF ANY from.2.to.1
CHAN OF ANY from.2.to.4
CHAN OF ANY from.2 .to.5
CHAN OF ANY from.3.to.1
CHAN OF ANY from.3.to.6
CHAN OF ANY from.3 .to.7
CHAN OF ANY from.4.to.2
CHAN OF ANY from.4 .to.8
CHAN OF ANY from.4.to.9
CHAN OF ANY from.5 .to.2
CHAN OF ANY from.6.to.3
CHAN OF ANY from.7 .to.3
CHAN OF ANY from.8.to.4
CHAN OF ANY from.9.to.4
}}}

D-4

Appendix D

{{{ program body
PLACED PAR

{{{ processor 0
PROCESSOR 0 T8

{{{ channels placing
PLACE from.l.to.O AT LinklOut:
PLACE from. 1. to. 2 AT Lmk20ut:
PLACE from.l.to.3 AT LinkOOut:
PLACE from.O.to.l AT Linklln:
PLACE from.2.to.1 AT Lmk2ln:
PLACE from.3.to.l AT LinkOIn:
}}}
{{{ process calling
process.1 (any)
}}}

}}}
{{{ processor 1
PROCESSOR 1 T8

{{{ channels placing
PLACE from.2.to.l AT LinklOut:
PLACE from.2.to.4 AT Link20ut:
PLACE from.2.to.5 AT LinkOOut:
PLACE from.l.to.2 AT Linklln:
PLACE from.4.to.2 AT Lmk2In:
PLACE from.5.to.2 AT LinkOln:
}}}
{{{ process calling
process.2 (any)
}}}

}}}{{{ processor 2
PROCESSOR 2 T8

{{{ channels placing
PLACE from.4.to.2 AT LinklOut:
PLACE from.4.to.8 AT Link20ut:
PLACE from.4.to.9 AT LinkOOut:
PLACE from.2.to.4 AT Linklln:
PLACE from.8.to.4 AT Link2In:
PLACE from.9.to.4 AT LinkOln:
}}}
{{{ process calling
process.4 (any)
}}}

}}}
{{{ processor 3
PROCESSOR 3 T8

{{{ channels placing
PLACE from.8.to.4 AT LinklOut:
PLACE from.4.to.8 AT Linklln:
}}}
{{{ process calling
process.8 (any)
}}}

}}}

D-5

Appendix D

{{{ processor 4
PROCESSOR 4 T8

{{{ channels placing
PLACE from.9.to.4 AT LinkOOut:
PLACE from.4.to.9 AT LinkOln:
}}}{{{ process calling
process.9 (any)
}}}

}}}{{{ processor 5
PROCESSOR 5 T8

{{{ channels placing
PLACE from.5.to.2 AT LinkOOut:
PLACE from.2.to.5 AT LinkOIn:
}}}{{{ process calling
process.5 (any)
}} }

}}}{{{ processor 6
PROCESSOR 6 T8

{{{ channels placing
PLACE from.3.to.l AT LinkOOut:
PLACE from. 3. to. 6 AT Lmk20ut:
PLACE from. 3. to. 7 AT Lmk30ut:
PLACE from.l.to.3 AT LinkOln:
PLACE from. 6. to. 3 AT Lmk2ln:
PLACE from.7.to.3 AT Link3ln:
}}}
{{{ process calling
process.3 (any)
}}}

}}}
{{{ processor 7
PROCESSOR 7 T8

{{{ channels placing
PLACE from.6.to.3 AT LinklOut:
PLACE from.3.to.6 AT Linklln:
}}}
{{{ process calling
process.6 (any)
}}}

}}}
{{{ processor 8
PROCESSOR 8 T8

{{{ channels placing
PLACE from.7.to.3 AT LinkOOut:
PLACE from.3.to.7 AT LinkOln:
}}}
{{{ process calling
process.7 (any)
}}}

}}}

D-6

Appendix D

}}}D-l-1-2 The host program:
... EXTERNAL CHANNELS PROTOCOLS
• • • SC process. 0
{{{ Links
VAL LinkOOut IS 0
VAL LinklOut IS 1
VAL Link20ut IS 2
VAL Link30ut IS 3
VAL LinkOln IS 4
VAL Linklln IS 5
VAL Link2ln IS 6
VAL Link3ln IS 7
}}}
{{{ external channels declaration
CHAN OF ANY from.O.to.l:
CHAN OF ANY from.l.to.O:
}}}
{{{ channels placing
PLACE from.O.to.l AT Lmk20ut:
PLACE from.l.to.O AT Link2ln:
}}}
{{{ program body
SEQ

{{{ process calling
process.0 (any)
}}}

}}}

D-7

Appendix E

USER DEFINED

For simplicity all the channels have the same protocol
(ANY), but any other protocol could be used. E-l The
required part of the program source:

... EXTERNAL CHANNELS PROTOCOLS
{{{ PROCESSES
{{{ SC process.0
{{{ COMMENT PROCESS process.0 EXTERNAL CHANNELS
CHAN OF ANY from.O.to.l,

from.0.to.6 1:
CHAN OF ANY from.l.to.0,

from.6.to.0 ?:
}}}
{{{ process.0
PROC process.0 (...)

process body
! »
}}}
{{{ SC process.1
{{{ COMMENT PROCESS process.l EXTERNAL CHANNELS
CHAN OF ANY from.l.to.0,

from.1.to.2,
from.1.to.4,
from.1.to.5 1:

CHAN OF ANY from.O.to.l,
from.2.to.1,
from.4 .to.1,
from.5.to.l ?:

}}}{{{ process.l
{{{
PROC process.l (...)

process body

>}}
}>}
{{{ SC process.2
{{{ COMMENT PROCESS process.2 EXTERNAL CHANNELS
CHAN OF ANY from.2.to.1,

from.2 .to.3,
from.2.to.5 !:

CHAN OF ANY from.l.to.2,
from.3.to.2,
from.5.to.2 ?:

}}}

E-l

Appendix E

{{{ process.2
{{{PROC process.2 (...)

process body

in
}}}
}}}{{{ SC process.3
{{{ COMMENT PROCESS process.3 EXTERNAL CHANNELS
CHAN OF ANY from.3.to.2,

from.3 .to.4,
from.3.to.5 !:

CHAN OF ANY from.2.to.3,
from.4.to.3,
from.5.to.3 ?:

}}}
{{{ process.3
{{{
PROC process.3 (...)

process body
i n
}}}
)}}
{{{ SC process.4
{{{ COMMENT PROCESS process.4 EXTERNAL CHANNELS
CHAN OF ANY from.4.to.1,

from.4.to.3,
from.4.to.5 !:

CHAN OF ANY from.l.to.4,
from.3.to.4,
from.5.to.4 ?:

}}}
{{{ process. 4
{{{PROC process.4 (...)

process body
in}}}
}}}
{{{ SC process.5
{{{ COMMENT PROCESS process.5 EXTERNAL CHANNELS
CHAN OF ANY from.5.to.l,

from.5.to.2,
from.5.to.3,
from.5.to.4 1:

CHAN OF ANY from.1.to.5,
from.2.to.5,
from.3.to.5,
from.4.to.5 ?:

}}}
{{{ process.5

E-2

V
Appendix E

{{{
PROC process.5 (...)

process body

{{{ SC process.6
{{{ COMMENT PROCESS process.6 EXTERNAL CHANNELS

, CHAN OF ANY from.6.to.O,
from.6.to.7,
from.6.to.8,
from.6.to.9 !:

CHAN OF ANY from.0.to.6,
from.7 .to.6,
from.8.to.6,
from.9.to.6 ?:

}}}
{{{ process.6
{{{
PROC process.6 (...)

process body
i n
}}}
}}}
{{{ SC process.7
{{{ COMMENT PROCESS process.7 EXTERNAL CHANNELS
CHAN OF ANY from.7.to.6,

from.7 .to.8,
from.7.to.9 ':

CHAN OF ANY from.6.to.7,
from.8.to.7,
from.9.to.7 ?:

}}}
{{{ process.7
{{{PROC process.7 (...)

process body
in
}}}
}}}
{{{ SC process.8
{{{ COMMENT PROCESS process.8 EXTERNAL CHANNELS
CHAN OF ANY from.8.to.6,

from.8.to.7,
from.8.to.9 ':

CHAN OF ANY from.6.to.8r
from.7.to.8,
from.9.to.8 ?:

} })
{{{ process.8
{{{

E-3

Appendix E

PROC process.8 (...)
process body

in
}}}
}}}
{{{ SC process.9
{{{ COMMENT PROCESS process.9 EXTERNAL CHANNELS
CHAN OF ANY from.9.to.6,

from.9.to.7,
from.9.to.8 ':

CHAN OF ANY from.6.to.9,
from.7 .to.9,
from.8.to.9 ?:

}}}
{{{ process . 9
PROC process.9 (...)

process body
in
}}}
}}}
{{{ CONFIGURE
PLACED PAR

process.0 (any)
process.1 (any)
process.2 (any)
process.3 (any)
process.4 (any)
process.5 (any)
process.6 (any)
process.7 (any)
process.8 (any)
process.9 (any)

}}}
E-l-1 The configurer results:

E-l-1-1 The configured program:
{{{ EXTERNAL CHANNELS PROTOCOLS
{{{ protocol declaration
PROTOCOL REAL.ARRAY IS INT::[]REAL64:
}}}
}}}
{{{ PROCESSES
... SC process. 1
... SC process . 2
... SC process . 3
... SC process . 4
... SC process . 5
... SC process . 6
... SC process . 7
... SC process. 8

E-4

Appendix E

}}}
SC process.9

{{{ Links
VAL LinkOOut IS 0
VAL LinklOut IS 1
VAL Link20ut IS 2
VAL Lmk30ut IS 3
VAL LinkOln IS 4
VAL Linklln IS 5
VAL Link2ln IS 6
VAL Link3ln IS 7
}}}
{{{ external channels declaration
CHAN OF ANY from.O.to.l
CHAN OF ANY from.O.t0 . 6
CHAN OF ANY from.l.to.O
CHAN OF ANY from.l.to.2
CHAN OF ANY from.l.t0 . 4
CHAN OF ANY from.l.to.5
CHAN OF ANY from.2.to.l
CHAN OF ANY from.2.to.3
CHAN OF ANY from.2.to.5
CHAN OF ANY from.3.to.2
CHAN OF ANY from.3.to.4
CHAN OF ANY from.3.to.5
CHAN OF ANY from.4.to.l
CHAN OF ANY from.4.to.3
CHAN OF ANY from.4.to.5
CHAN OF ANY from.5.to.1
CHAN OF ANY from.5.to.2
CHAN OF ANY from.5.to.3
CHAN OF ANY from.5.to.4
CHAN OF ANY from.6 .to.O
CHAN OF ANY from.6 .to.7
CHAN OF ANY from.6 .to . 8
CHAN OF ANY from.6 .to.9
CHAN OF ANY from.7.to . 6
CHAN OF ANY from.7.to . 8
CHAN OF ANY from.7.to.9
CHAN OF ANY from.8 .to . 6
CHAN OF ANY from.8 .to.7
CHAN OF ANY from.8 .to.9
CHAN OF ANY from.9.to . 6
CHAN OF ANY from.9.to.7
CHAN OF ANY from.9.to . 8
CHAN OF ANY JUST.FOR.LOADING: — added for loading }}}
{{{ program body
PLACED PAR

{{{ processor 0
PROCESSOR 0 T8

{{{ channels placing
PLACE from.l.to.O AT LinklOut:
PLACE from.l.to.2 AT LinkOOut:
PLACE from.l.to.4 AT Lmk30ut :

E-5

Appendix E

AT Link20ut:
AT LinkOOut:

PLACE from.l.t0.5 AT Link20ut:
PLACE from.O.to.l AT Linklln:
PLACE from.2.to.l AT LinkOln:
PLACE from.4.to.1 AT Link3ln:
PLACE from.5.to.l AT Link2ln:
}}}{{{ process calling
process.1 (any)
}}}

}}}{{{ processor 1
PROCESSOR 1 T8

{{{ channels placing
PLACE from.5.to.l AT LinklOut:
PLACE from.5.to.2
PLACE from.5.to.3
PLACE from.5.to.4 AT Link30ut:
PLACE from.1.to.5 AT Linklln:
PLACE from.2.to.5 AT Link2ln:
PLACE from.3.to.5 AT LinkOln:
PLACE from.4.to.5 AT Link3ln:
}}}
{{{ process calling
process.5 (any)
}}}

}}}{{{ processor 2
PROCESSOR 2 T8

{{{ channels placing
PLACE from.2.to.l AT LinkOOut:
PLACE from. 2. to. 3 AT Lmk20ut:
PLACE from.2.to.5 AT LinklOut:
PLACE from.l.to.2 AT LinkOln:
PLACE from.3.to.2 AT Link2ln:
PLACE from.5.to.2 AT Linklln:
}}}
{{{ process calling
process.2 (any)
}}}

}}}{{{ processor 3
PROCESSOR 3 T8

{{{ channels placing
PLACE from.3.to.2 AT LinklOut:
PLACE from.3.to.4 AT Link20ut:
PLACE from.3.to.5 AT LinkOOut:
PLACE from.2.to.3 AT Linklln:
PLACE from.4.to.3 AT Link2ln:
PLACE from.5.to.3 AT LinkOln:
}}}
{{{ process calling
process.3 (any)
}}}

}}}

E-6

Appendix E

{{{ processor 4
PROCESSOR 4 T8

{{{ channels placing
PLACE from.4.to.l AT LinkOOut:
PLACE from.4.to.3 AT LinklOut:
PLACE from.4.to.5 AT Link30ut:
PLACE JUST.FOR.LOADING AT Link20ut:
PLACE from.l.to.4 AT LinkOln:
PLACE from.3.to.4 AT Linklln:
PLACE from.5.to.4 AT Link3ln:
}}}{{{ process calling
process.4 (any)
}}}

}}}{{{ processor 5
PROCESSOR 5 T8

{{{ channels placing
PLACE from.7.to.6 AT Link20ut:
PLACE from.7.to.8 AT LinkOOut:
PLACE from.7.to.9 AT Link30ut:
PLACE from.6.to.7 AT Link2ln:
PLACE from.8.to.7 AT LinkOln:
PLACE from.9.to.7 AT Link3ln:
PLACE JUST.FOR.LOADING AT Linklln:
} } }
{{{ process calling
process.7 (any)
}}}

}}}
{{{ processor 6
PROCESSOR 6 T8

{{{ channels placing
PLACE from.6.to.0 AT LinkOOut:
PLACE from.6.to.7 AT LinklOut:
PLACE from.6.to.8 AT Link20ut:
PLACE from.6.to.9 AT Link30ut:
PLACE from.0.to.6 AT LinkOln:
PLACE from.7.to.6 AT Linklln:
PLACE from.8.to.6 AT Link2ln:
PLACE from.9.to.6 AT Link3ln:
}}}
{{{ process calling
process.6 (any)
}}}

}} }
{{{ processor 7
PROCESSOR 7 T8

{{{ channels placing
PLACE from.8.to.6 AT LinklOut:
PLACE from.8.to.7 AT LinkOOut:
PLACE from.8.to.9 AT Link20ut:
PLACE from.6.to.8 AT Linklln:
PLACE from.7.to.8 AT LinkOln:

E-7

Appendix E

PLACE from.9.to.8 AT Link2In:
}}}{{{ process calling
process.8 (any)
}}}

}}}
{{{ processor 8
PROCESSOR 8 T8

{{{ channels placing
PLACE from. 9. to. 6 AT-Link30ut:
PLACE from.9.to.7 AT LinkOOut:
PLACE from.9.to.8 AT LinklOut:
PLACE from.6.to.9 AT Link3ln:
PLACE from.7.to.9 AT LinkOln:
PLACE from.8.to.9 AT Linklln:
}}}
{{{ process calling
process.9 (any)
}}}

}}}
}}}

E-l-1-2 The host program:
... EXTERNAL CHANNELS PROTOCOLS
• • • SC process. 0
{{{ Links
VAL LinkOOut IS 0
VAL LinklOut IS 1
VAL Link20ut IS 2
VAL Link30ut IS 3
VAL LinkOln IS 4
VAL Linklln IS 5
VAL Link2ln IS 6
VAL Link3ln IS 7
}}}
{{{ external channels declaration
CHAN OF ANY from.O.to.l:
CHAN OF ANY from.0.to.6:
CHAN OF ANY from.l.to.O:
CHAN OF ANY from.6.to.0:
}}}
{{{ channels placing
PLACE from.O.to.l AT Link20ut:
PLACE from.0.to.6 AT Link30ut:
PLACE from.l.to.O AT Link2ln:
PLACE from.6.to.0 AT Link3ln:
}}}
{{{ program body
SEQ

{{{ process calling
process.0 (any)
}}}

}}}

E-8

