
UNSUPERVISED IMAGE SEGMENTATION BASED ON THE 

MULTI-RESOLUTION INTEGRATION OF ADAPTIVE LOCAL 

TEXTURE DESCRIPTORS 

Dana E. Ilea
1
, Paul F. Whelan

1
 and Ovidiu Ghita

1
  

1 Centre for Image Processing & Analysis (CIPA), Dublin City University, Glasnevin, Dublin 9, Ireland 

{danailea,ghitao,whelanp}@eeng.dcu.ie 

Keywords: Texture segmentation, multi-resolution integration, image orientation, texture distribution. 

Abstract: The major aim of this paper consists of a comprehensive quantitative evaluation of adaptive texture 

descriptors when integrated into an unsupervised image segmentation framework. The techniques involved 

in this evaluation are: the standard and rotation invariant Local Binary Pattern (LBP) operators, multi-

channel texture decomposition based on Gabor filters and a recently proposed technique that analyses the 

distribution of dominant image orientations at both micro and macro levels. These selected descriptors share 

two essential properties: (a) they evaluate the texture information at micro-level in small neighborhoods, 

while (b) the distributions of the local features calculated from texture units describe the texture at macro-

level. This adaptive scenario facilitates the integration of the texture descriptors into an unsupervised 

clustering based segmentation scheme that embeds a multi-resolution approach. The conducted experiments 

evaluate the performance of these techniques and also analyze the influence of important parameters (such 

as scale, frequency and orientation) upon the segmentation results. 

1 INTRODUCTION 

Texture-based image segmentation represents a 

major field of research in the area of computer 

vision that has been intensively investigated for 

more than three decades. This has been motivated by 

the fact that the robust detection of texture 

primitives in digital images plays a key role in the 

identification of the constituent image regions. 

Taking into consideration the large spectrum of 

applications based on texture analysis, an impressive 

number of approaches has been published in the 

computer vision literature. As indicated in several 

reviews on texture-based segmentation (Tuceryan 

and Jain, 1998; Materka and Strzelecki, 1998) the 

existent techniques can be classified into four major 

categories: statistical, model-based, signal 

processing and structural. From these approaches 

most attention received the statistical and signal 

processing texture extraction methods. 

Statistical methods are based on the evaluation of 

the spatial distributions and relationships between 

the pixel intensities in the image. Relevant statistical 

texture analysis techniques include the 

autocorrelation function (Haralick, 1979), texture 

energy features (Laws, 1980), grey-level co-

occurrence matrices (Haralick, 1979) and Local 

Binary Patterns (Ojala and Pietikainen, 2002). Based 

on the studies detailed in relevant papers focused on 

statistical texture analysis it can be concluded that 

these methods return adequate results when applied 

to synthetic images, but their performance is limited 

when applied to complex textured images.  

To address some of the limitations associated 

with standard statistical texture analysis techniques, 

a non-parametric approach that analyses the texture 

at micro-level based on the calculation of the Local 

Binary Patterns (LBP) has been introduced by Ojala 

and Pietikainen, 1999. This approach attempts to 

decompose the texture into small texture units where 

the texture features are represented by the 

distribution of the LBP values. In (Ojala and 

Pietikainen, 2002) the authors extended the initial 

LBP approach to address its sensitivity to rotation by 

introducing a new multi-resolution rotational 

invariant LBP texture descriptor whose performance 

was evaluated on standard texture databases.  

The signal processing methods represent another 

important category of texture analysis techniques. 

These techniques were developed as a consequence 
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of the psychophysical investigations that indicated 

that the human brain performs a frequency analysis 

of the image perceived by the retina. Building on 

this concept, the signal processing techniques 

formulate the texture extraction in terms of the 

frequency information associated with the texture 

primitives present in digital images. Representative 

methods that belong to this category are: spatial 

domain filtering, Fourier analysis, Gabor filtering 

and Wavelet analysis. 

Early signal processing methods attempted to 

analyse the texture with respect to its Fourier 

spectrum that samples the directionality and 

periodicity of repeated textured patterns. These 

techniques have been primarily applied to image 

classification tasks and the experiments indicate that 

their performance in texture discrimination is poor. 

These results were motivated by the fact that the 

spatial information plays no role in the extraction of 

the texture features in the frequency domain.  

There is a widely accepted consensus among 

vision researchers that filtering an image with a bank 

of Gabor filters represents an optimal approach for 

texture analysis (Bovik et al, 1990; Jain and 

Farrokhnia, 1991; Randen and Husoy, 1990). This 

approach implements a multi-channel texture 

decomposition and it is achieved by filtering the 

input image with 2D Gabor filter banks. (Bovik et al, 

1990) used quadrature Gabor filters to segment 

images defined by oriented textures. The main 

conclusion resulting from their investigation is that 

the spectral difference sampled by narrow band 

filters provides sufficient information for texture 

discrimination. (Jain and Farrokhnia, 1991) followed 

a similar approach and developed a multi-channel 

Gabor filtering technique that was applied for image 

segmentation. In their paper, each filtered image was 

subjected to a non-linear transform and the energy 

was calculated within a pre-defined window around 

each pixel in the image. The energy features were 

afterwards clustered using a standard algorithm to 

obtain the segmented image. This approach was 

further advanced by (Randen and Husoy, 1990) 

while noting that filtering the image with a bank of 

Gabor filters or filters derived from Wavelet 

transform is computationally intensive. In their 

paper they proposed a new methodology to compute 

optimised filters for texture discrimination that 

requires a reduced number of filters than the 

standard implementation developed by Jain and 

Farrokhnia. A different segmentation strategy is 

proposed by (Hofmann et al, 1998) where the texture 

segmentation is formulated as a data clustering 

problem. In their approach the dissimilarities 

between pairs of textured regions are computed from 

a multi-scale Gabor filtered image representation. 

The resulting unsupervised segmentation scheme 

was successfully applied on both Brodatz textures 

and natural images. 

Recently a novel hybrid statistical-structural 

approach was proposed where the texture is 

described in terms of the distribution of edge 

orientations calculated at micro and macro-level for 

all pixels in the image (Ilea et al, 2008; Ghita et al, 

2008). The quantitative evaluations were conducted 

on standard texture databases and the results 

indicated that the local image orientation based 

descriptor has a high discriminative power in the 

context of texture classification. In this study we will 

investigate its discrimination when applied to the 

unsupervised segmentation of complex textural 

arrangements.  

The unsupervised segmentation process is in 

particular challenging since the texture attributes are 

not uniformly distributed within image areas defined 

by similar objects and often the strength of the 

texture can vary considerably from image to image. 

In addition to this, complications added by the 

uneven illumination, perspective and scale 

distortions make the process of identifying the 

homogeneous image regions with similar texture 

characteristics extremely difficult. The quantitative 

evaluation of the texture extraction techniques 

investigated in this paper was carried out using a 

segmentation framework similar to the one proposed 

in (Ilea and Whelan, 2009). The selection of this 

clustering-based segmentation technique for texture 

segmentation is justified as it provides an attractive 

platform for generalization and it also performs a 

global data optimization.  

The selection of the texture analysis techniques 

evaluated in this study (the Local Binary Pattern 

Operators, texture decomposition using Gabor 

filtering and local orientation-based texture 

descriptor) is also justified, as they allow an adaptive 

texture analysis (at micro and macro-level) when 

integrated into an unsupervised clustering approach. 

The adaptive approach considered in this paper 

provides a robust scenario for texture segmentation 

and together with a comprehensive numerical 

evaluation of the above mentioned methods it 

represents a contribution of this paper in the study of 

texture features segmentation.   

This paper is organised as follows. Section 2 

briefly introduces the texture analysis methods 

investigated in this study and discusses the 

motivation behind their selection. Section 3 

describes the experimental setup and presents the 



 

numerical evaluation followed by a discussion of the 

obtained results. Section 4 concludes the paper. 

2 EVALUATED TEXTURE 

EXTRACTION METHODS 

The Standard LBP/C Operator - The LBP 
operator (Ojala and Pietikainen, 1999) is a powerful 
texture descriptor as it analyses the texture at micro-
level, but at the same time the macro characteristics 
of texture can be sampled by the distribution of the 
LBP values. The LBP texture unit is calculated by 
thresholding the values of the pixels in a 3×3 
neighbourhood with respect to the value of the 
central pixel, while the LBP value is calculated by 
multiplying the elements of the texture unit with 
binomial weights (that are powers of 2 with respect 
to the position of the pixels in the neighbourhood) 
and summing the result. 

To further improve the robustness of the LBP 
operator and allow the sampling of the illumination 
offsets between different textures, the standard LBP 
operator is used in conjunction with the contrast 
operator, C. The contrast measure C is calculated as 
the difference between the average grey-level of the 
pixels with values 1 and the pixels with values 0 
contained in the 3×3 texture unit. The main 
advantage of analysing the texture using the 
distribution of LBP/C values is given by the fact that 
they can be used to discriminate textures in the input 
image regardless the region size. The distribution of 
the LBP/C values calculated over an image region 
represents the texture spectrum that can be defined 
as a joint histogram of size (256 + bins), where the 
first 256 bins are required by the distribution of the 
LBP values and bins represents the number of bins 
employed to sample the contrast measure. Based on 
the experiments performed by Ojala and Pietikainen, 
the best results are obtained when the contrast 
distribution is quantised into 4 to 16 bins. The 
optimal selection of the number of bins is a difficult 
issue since for low values of bins the histogram will 
lack resolution, while for high values of bins the 
histogram will become sparse and unstable. Based 
on experimentation it has been demonstrated that a 
quantisation of the contrast measure in 8 bins returns 
the best results.  

The Rotation Invariant LBP Operator (LBP
ri
) 

- The standard LBP values calculated for each 

texture unit are sensitive to texture orientation. This 

is motivated by the fact that the elements of the 

texture unit uniquely encode the position of each 

pixel in the 3×3 neighbourhood. To remove the 

sensitivity to rotation, the texture descriptor is 

calculated within a circular neighbourhood and the 

texture is evaluated in terms of uniformity. To 

improve its discriminative power, the LBPri value is 

complemented with the contrast measure that is 

calculated as the variance of the pixels situated in 

the LBP mask. For more details regarding the 

calculation of the LBP operators, the reader can refer 

to (Ojala and Pietikainen, 1999; 2002).  

Texture decomposition using Gabor Filters is 

an approach that implements a multi-channel texture 

decomposition and is achieved by filtering the input 

image with a two-dimensional (2D) Gabor filter 

bank that was initially suggested by (Daugman, 

1998) and later applied to texture segmentation by 

(Jain and Farrokhnia, 1991). The 2D Gabor function 

that is used to implement the even-symmetric 2D 

discrete filters can be written as follows: 

( )ϕπ
σ

ϕσ +
+

−= '2cos)
2

''
exp(),(

2

22

,, fx
yx

yxG f  
 

(1) 

In equation (1) θθ sincos
'

yxx += , 

θθ cossin
'

yxy +−= , σ is the scale parameter of the 

Gabor filter, θ  is the orientation and f is the 

frequency parameter that controls the number of 

cycles of the cosine function within the envelope of 

the 2D Gaussian (ϕ  is the phase offset and it is 

usually set to zero to implement 2D even-symmetric 

filters). The parameters of the Gabor filters are 

chosen to optimise the trade-off between spectral 

selectivity and the size of the bank of filters. 

Typically, the central frequencies are selected to be 

one octave apart and for each central frequency is 

constructed a set of filters corresponding to four (00, 

45
0
, 90

0
, 135

0
) or six orientations (0

0
, 30

0
, 60

0
, 90

0
, 

120
0
, 150

0
). 

Texture extraction using the dominant image 

orientation at micro and macro-levels is an 
approach defined in terms of the distribution of the 
dominant edge orientations at micro and macro-level 
and was introduced in (Ilea et al, 2008; Ghita et al, 
2008). In this regard, the orientation for each pixel in 
the image is extracted using the partial derivatives of 
the Gaussian function (G) while the main focus is 
centred on the evaluation of the local dominant 
orientation. 

An important parameter is the scale (σ) of the 
Gaussian function and its role is to control the 
amount of noise reduction. After the calculation of 
the partial derivatives, the weak edge responses were 
eliminated by applying a non-maxima suppression 
procedure (Canny, 1986) and the edge orientation is 
calculated. As indicated in (Ilea et al, 2008), the 
problem of analysing the texture orientation at a 
given observation scale is not a straightforward task 



 

as the orientation of textures may be isotropic at 
macro-level but having a strong orientation at micro-
level. Therefore, we propose to evaluate the 
dominant orientation of the texture calculated at 
micro-level for all texture units that are defined as 
the local neighbourhood around each pixel in the 
image, while the distribution of the dominant 
orientations calculated for all texture units is 
employed to capture the dominant orientation of 
texture at macro-level. 

In this implementation, the orientation of the 
texture is determined by constructing the histogram 
of orientations for all pixels in the local 
neighbourhood and the dominant orientation is 
selected as the dominant peak in the histogram as 
follows, 
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In equations (2) and (3), Θ is the local 

orientation, the symbol o defines the convolution 
operation, yGGy ∂∂= / , xGGx ∂∂= / , f(x,y) is the 
pixel value at position (x,y) in the original image, i is 
the orientation bin, D defines the orientation domain, 

ΘH (x,y) is the distribution of the local orientations 
calculated around pixels situated at positions (x,y) 
and Θd is the dominant texture orientation in the 
neighbourhood w×w. The dominant orientation at 
macro-level (HΘd) is estimated by the distribution of 
the dominant orientations that are determined over 
the region of interest as follows, 

ΓΘ=
∈ Γ

×
Θ ∫ diyxH

Di

ww
dd U )),,((  δ  

 

(4) 

where Γ is the image domain. In equation (4) it 
should be noted that the texture orientation is 
sampled at a pre-defined observation scale that is 
controlled by the size of the neighbourhood w×w.   

The dominant orientation is not robust in 
sampling the difference between textures that are 
subjected to illumination variation. Thus, the local 
texture orientation is augmented with measures such 
as local orientation coherence and contrast (C) that 
are calculated in the local neighbourhood w×w 
where the dominant orientation of the texture has 

been estimated. The contrast measure (C) is sampled 
by the mean grey-scale value calculated in the w×w 
neighbourhood and the orientation coherence (Θc) is 
calculated using the weighted standard deviation of 
the edge orientation of all the pixels in the 
neighbourhood. 

3 EXPERIMENTS AND RESULTS 

In this paper, we have modified the computational 

architecture of the segmentation framework 

proposed in (Ilea and Whelan, 2008) in order to 

provide a robust scenario for texture segmentation. 

The main steps of the proposed texture segmentation 

algorithm are illustrated in Figure 1. It is important 

to mention that the texture features are 

independently extracted from the luminance 

component of the input image to exclusively 

evaluate the texture information.  
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Features
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Figure 1: Overview of the texture segmentation algorithm. 

 
The Adaptive Spatial K-means (ASKM) 

clustering is the main component of the 
segmentation method. The main idea behind ASKM 
is to minimise an objective function JT based on the 
fitting between the local texture distributions 
calculated for each pixel in the texture image and 
global texture distributions calculated for each 
cluster as follows, 
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In equation (5), k is the number of clusters, s×s 

defines the size of the local window, ),( yxH
ss

T
× is the 

local texture distribution calculated for the pixel at 

position (x,y) and i
TH  is the texture distribution for 

the cluster with index i respectively. The number of 

clusters k is automatically calculated in conjunction 

with the number of textures in the image as indicated 

in (Ilea and Whelan, 2008). The similarity between 

the local texture distribution and the global texture 

distribution of the clusters is evaluated using the 

Kolmogorov-Smirnov (KS) metric (Rubner et al, 



 

2001). The fitting between the local texture 

distributions and global texture distributions of the 

clusters is performed adaptively for multiple 

window sizes in the interval [3×3] to [25×25]. While 

textures in the image are not uniform, the multi-

resolution approach detailed in this paper offers an 

attractive scheme for texture segmentation as it 

allows the variation of the window size until the best 

fit between the global and local texture distributions 

is achieved. 

Experimental Setup - Since the ground truth data 
associated with complex natural images is difficult 
to estimate and its extraction is highly influenced by 
the subjectivity of the human operator, the texture 
segmentation evaluation was performed on mosaic 
data where the ground truth is unambiguous. 
Therefore, the segmentation algorithm described in 
the previous section was applied to a database of 33 
mosaic images (image size 184×184) that were 

created by mixing complex textures from MIT 
VisTex and Photoshop databases. The mosaics used 
in these experiments consist of various texture 
arrangements that also include images where the 
borders between different regions are irregular. The 
suite of 33 mosaic images is depicted in Figure 2.  

The quantitative measurements were carried out 
using the Probabilistic Rand Index (PR) 
(Unnikrishnan and Hebert, 2005) that measures the 
agreement between the segmented result and the 
ground truth data and takes values in the range [0, 
1]. A higher PR value indicates a better match 
between the segmented result and the ground truth 
data. The PR Index is defined in the appendix of this 
paper. In this study, for every analysed texture 
analysis technique, the PR mean and standard 
deviation were computed for all images in the 
database. 

 

 

Figure 2: The database of 33 mosaic images used in our experiments.

 

The construction of the texture vectors is 
illustrated in Figure 3. It can be noticed that the 
feature vectors are defined either by the LPB/C 
joint distributions or by the joint distributions 
calculated from the responses obtained after 
filtering the image with the multi-channel filter 
bank (the intensity values of the filtered images 
were normalised in the interval [0, 255] so the size 
of the feature vector is 256×number of filters in the 
filter bank). For the edge orientation-based 
technique, the texture vector is given by the joint 
distribution defined by the dominant orientation 
(Θd), the contrast (C) and the orientation coherence 
(Θc). 
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Figure 3:  The calculation of the texture distributions. 

3.1    Results Returned by the LBP     
Technique 

The first set of tests evaluates the segmentation 
performance when using the standard Local Binary 
Pattern (LBP) and the rotation invariant LBP

ri
8,1, 

LBPri
16,2, LBP

ri
24,3 texture descriptors. As indicated 

above, the experiments were performed on a 
database consisting of mosaic images and the 
numerical results are illustrated in Table 1 (the 
LBPri

P,R defines the rotation invariant LBP 
operator where P is the number of pixels in the 
LBP mask and R is the radius of the mask ). 

 

Table 1: Quantitative results when the LBP/C texture 

descriptors were evaluated in the proposed segmentation 

framework. 

Method PRmean PRstandard_deviation 

LBP/C  0.84 0.12 

LBP
ri
8,1/C 0.80 0.11 

LBPri
16,2/C 0.82 0.09 

LBP
ri
24,3/C 0.82 0.12 



 

The results illustrated in Table 1 indicate that 
the LBP/C operator provides better discrimination 
in its standard form than the rotation invariant 
LBPri

8,1, LBP
ri
16,2, LBP

ri
24,3 descriptors. 

The LBP/C operator returned the highest PR 

values for 21 out of 33 mosaic images, while the 

LBPri
8,1 operator returned the lowest PR values for 

13 images out of 33. The drop in segmentation 

accuracy for rotation invariant LBP descriptors 

indicates that the invariance to rotation is attained 

at the expense of the loss in discriminative power. 

This conclusion is justified since the LBP uniform 

patterns are not able to sample the directional 

characteristics of the texture. 

3.2    Results Returned by the Gabor 
Filtering Technique 

In order to evaluate the multi-channel texture 
decomposition scheme based on Gabor filtering, 
the input image has been processed with a small 
bank of filters with four (0

0
, 45

0
, 90

0
, 135

0
) and six 

(00, 300, 600, 900, 1200, 1500) orientations. The 
central frequency and the scale parameters were 
also varied. The standard deviation (scale) 
parameter was set to the values 1.0, 2.0 and 3.0 
respectively, while the central frequency parameter 
was varied by setting it to the following values 
1.5/2π, 2.0/2π and 2.5/2π, respectively.  
 
Table 2: Quantitative results when the Gabor filtering 

(GF) technique was evaluated in the proposed 
segmentation framework. 

 

Scale 

(σ) 

 

Method 

 

PRmean 

 

PRst_dev 

GF f = 1.5/2π, 4 angles 0.46 0.24 

GF f = 2.0/2π, 4 angles 0.61 0.17 

GF f = 2.5/2π, 4 angles 0.81 0.12 

GF f = 1.5/2π, 6 angles 0.50 0.26 

GF f = 2.0/2π, 6 angles 0.62 0.18 

 

 

 σ= 1.0 

GF f = 2.5/2π, 6 angles 0.81 0.12 

GF f = 1.5/2π, 4 angles 0.65 0.17 

GF f = 2.0/2π, 4 angles 0.83 0.10 

GF f = 2.5/2π, 4 angles 0.85 0.08 

GF f = 1.5/2π, 6 angles 0.65 0.17 

GF f = 2.0/2π, 6 angles 0.84 0.09 

 

 

σ = 2.0 

GF f = 2.5/2π, 6 angles 0.85 0.08 

GF f = 1.5/2π, 4 angles 0.78 0.13 

GF f = 2.0/2π, 4 angles 0.85 0.08 

GF f = 2.5/2π, 4 angles 0.85 0.11 

GF f = 1.5/2π, 6 angles 0.79 0.12 

GF f = 2.0/2π, 6 angles 0.84 0.08 

 

 

σ = 3.0 

GF f = 2.5/2π, 6 angles 0.86 0.08 

The experimental tests were conducted on the 
mosaic database depicted in Figure 2 and the mean 
segmentation errors and the corresponding 
standard deviations of the PR values are depicted 
in Table 2. Table 2 indicates that the best results 
are obtained when the texture features are 
extracted using Gabor filter banks with six 
orientations and the central frequency is set to 
large values. These results are justified since by 
lowering the value of the central frequency the 
high frequency components from the texture 
spectrum are filtered out. This confirms that the 
local orientation is an important texture property 
that is better sampled when the central frequency 
of the Gabor filters is set to large values.  

3.3    Results Returned by the Local 
Orientation-based Texture 
Descriptor  

In (Ilea et al, 2008; Ghita et al, 2008) a texture 

descriptor based on the evaluation of the dominant 

image orientation calculated at micro and macro-

level was proposed. In this section, experimental 

results that quantify the performance of the image 

orientation based texture descriptor in the 

segmentation process are provided. For these 

experiments the value of the parameter σ (that sets 

the scale of the derivative of the Gaussian 

function) is set to 0.5 and 1.0. The experimental 

results illustrated in Table 3 indicate that the 

optimal results are obtained when the scale 

parameter σ is set to 0.5. These results are in 

agreement with those reported by (Ilea et al, 2008). 

There are two reasons behind the selection of this 

value for the σ parameter. The first is motivated by 

the fact that with the increase in the value of the 

scale parameter the edges derived from weak 

textures are eliminated and the second reason 

consists in the requirement to increase the size of 

the derivative of the Gaussian filters with the 

increase of the scale parameter σ. The feature 

vectors for the edge orientation technique are 

formed by the joint distributions (see Figure 3) 

constructed using the dominant orientation, the 

contrast and the orientation coherence. The 

experiments were conducted on the mosaic 

database when the size of the texture unit w×w is 

varied. Quantitative results are shown in Table 3. 

 

 



 

Table 3: Quantitative results for the local orientation 

based texture extraction technique when the window size 

is varied. 

Scale 

(σ) 

Window 
size 

PRmean PR 

standard_deviation 

3×3 0.83 0.12 

7×7 0.82 0.11 

 
σ  = 0.5 

11×11 0.82 0.12 

3×3 0.81 0.12 

7×7 0.81 0.12 

 

σ  = 1.0 

11×11 0.81 0.11 

The experimental data shown in Table 3 indicates 

that optimal performance is obtained when the 

texture orientation is sampled in small texture units 

and these results are motivated by the fact that the 

texture orientation is best analysed at micro-level.  

4 CONCLUSIONS 

The aim of this paper was to evaluate the 
performance of a number of statistical and signal 
processing texture analysis techniques when 
applied to image segmentation. The techniques 
evaluated in this study are: the LBP/C operators, 
multi-channel texture decomposition based on 
Gabor filter banks and a recently proposed texture 
analysis technique based on the evaluation of the 
image orientation at micro and macro-level. The 
main novelty associated with this work resides in 
the evaluation of the analysed texture descriptors 
in a multi-resolution framework offered by the 
proposed texture segmentation algorithm and in 
the evaluation of the experimental results when the 
parameters associated with these techniques are 
varied. Our experiments show that the method 
based on texture decomposition using Gabor filters 
outperformed the other analysed techniques. The 
experimental data reinforced the concept that 
texture is an important attribute of digital images 
and it also indicates that the local orientation is the 
dominant feature that provides the primary 
discrimination between textures. 
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APPENDIX 

The Probabilistic Rand index (PR) was proposed in 
(Unnikrishnan and Hebert, 2005) with the aim of 
obtaining a quantitative evaluation of the 
segmentation result when compared to one or more 
ground truth (manual) segmentations. Let Stest be 
the segmented image that will be compared against 
the manually labelled set of ground truth images 
{S1, S2,…, SG} (where G defines the total number 
of manually segmented images). The segmentation 
result is quantified as appropriate if it correctly 
identifies the pairwise relationships between the 
pixels as defined in the ground truth 
segmentations. In other words, the pairwise 
labels testS

il and testS
jl  (corresponding to any pair of 

pixels xi, xj in the segmented image Stest) are 
compared against the pairwise labels GS

il and 
GS

jl in the ground truth segmentations and vice 
versa. Based on this principle, the PR index is 
defined as follows:  
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In equation (6) N is the total number of pixels 
in the image, ( )testtest S

j

S

i ll =Ι  denotes the probability 
that the pair of pixels xi and xj have the same label 
in Stest and pij represents the mean pixel pair 
relationship between the ground truth images.  
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(7) 

The PR index takes values in the interval [0, 1] 
and a higher PR value indicates a better match 

between the segmented result and the ground truth 
data. The PR index takes the value 0 when there 
are no similarities between the segmented result 
and the set of manual segmentations and it takes 
the value 1 when all segmentations are identical. 
 

 


