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The major aim of this chapter is to detail the technology associated with a 
novel industrial inspection system that is able to robustly identify the visual 
defects present on the surface of painted slates. The development of a 
real-time automated slate inspection system proved to be a challenging 
task since the surface of the slate is painted with glossy dark colours, the 
slate is characterised by depth profile non-uniformities and it is transported 
at the inspection line via high-speed conveyors. In order to implement an 
industrial compliant system, in our design we had to devise a large number 
of novel solutions including the development of a full customised 
illumination set-up and the development of flexible image-processing 
procedures that can accommodate the large spectrum of visual defects 
that can be present on the slate surface and the vibrations generated by 
the slate transport system. The developed machine vision system has 
been subjected to a thorough robustness evaluation and the reported 
experimental results indicate that the proposed solution can be used to 
replace the manual procedure that is currently used to grade the painted 
slates in manufacturing environments.  
 
 
$.1 Introduction  
 
Over the past three decades the deployment of vision-based solutions in 
the development of automatic inspection systems has witnessed a 
substantial growth. This growth was motivated in part by the increased 
flexibility attained by the vision-based industrial inspection solutions when 
applied to the classification of the manufactured products with respect to 
their aesthetical and functional characteristics and equally important these 



systems opened the opportunity to control the production process by 
evaluating the statistics that describe the efficiency of the overall 
manufacturing process. In this context it is useful to mention that slate 
manufacturing is a highly automated process where product inspection 
being the solely task that is still performed by human operators. In this 
process, the human operators analyse the slates visually when they 
emerge via a conveyor from the paint process line and they make a 
judgement whether the produced units have a surface finish of acceptable 
quality or not. If defective slates are detected during visual inspection, they 
are removed from the production line and put aside for rework or rejection. 
Although the in-line manual inspection generates accurate results when 
applied to product quality assessment, it is highly reliant on the pictorial 
information perceived by the human visual system (HVS) [1-3] and as a 
consequence it is critically influenced by the experience and the acuity of 
the human operator. In addition to this, it is important to note that the 
performance of the human operator is not constant and moreover the 
manual inspection represents a monotonous work that cannot be used in 
conjunction with high-speed product manufacturing lines. In this context, 
Tobias et al [3] list some of the key factors that justify the adoption of 
machine vision systems in industry. These are increased productivity, 
improved product quality, absence of human inspectors performing dull 
and monotonous tasks, high-speed inspection (matched by high-speed 
production) and reduced human labour costs. In particular we would like to 
stress that the incorporation of automation in manufacturing industry is not 
necessarily about the displacement of labour, but more as an answer to 
the expectation of an increasingly educated labour force and the 
compliance to the recent realities of the world economy [4].   
 
However, the design of industry compliant machine vision systems is far 
from a trivial task as several issues including the mechanical design, 
development of an appropriate illumination set-up, optimal interfacing 
between the sensing and optical equipment with the computer vision 
component have to be properly addressed in order to accommodate all 
challenges that are encountered in a typical industrial environment [5-
7,27]. In this regard, the aim of this chapter is to detail the development of 
fully integrated machine vision system that has been specifically designed 
to assess the surface quality of the painted slates. In this chapter we will 
discuss in detail the design choices that were made in the development 
phase of the proposed vision sensor and we will also describe the 
algorithmic solutions that were implemented to accommodate the large 
variation of the structural and paint defects that are present on the surface 
of the painted slates. This chapter is organised as follows. Section $.2 
discusses the related systems that have been documented in the 
literature. Section $.3 provides a description of the typical slate defects 
and the discussion is continued in Section $.4 with the brief presentation of 
the developed slate inspection system. In Section $.5 the adopted 
illumination set-up is detailed. Section $.6 details the image processing 



inspection algorithm, while in Section $.7 the challenges introduced by 
factory conditions are analysed. Section $.8 presents the experimental 
results, while Section $.9 concludes this chapter.  
 
 
$.2 Related vision-based inspection systems 
 
Although the application of machine vision solutions in the development of 
industrial systems is a well-documented topic of research, we were not 
able to identify any relevant work on the inspection of painted slates. 
However, following a detailed search on the specialised literature we were 
able to find a large number of approaches that have been proposed to 
address the automatic inspection of ceramic tiles [3,8-11,13,23,24], which 
are products that have several common characteristics with painted slates. 
Thus, although the manufacturing processes for slates and ceramic tiles 
are different, both products have rectangular shapes, have textured 
surfaces and they are transported at the inspection point via conveying 
means [2]. Also, the defects associated with ceramic products resemble 
characteristics that are common with the visual defects that are specific for 
painted slates, but the range of defects (types and sizes) for ceramic 
products is substantially reduced when compared to the large variety of 
slate defects.   
 
The works in the field of ceramic tile inspection reviewed in this chapter 
employed a large spectrum of different imaging sub-systems and 
processing techniques to detect the visual defects that may be present on 
the surface of the product. One issue that has to be accommodated during 
the development phase of the developed inspection systems was the 
relative large range of structural and paint defects that can be encountered 
during the manufacturing process. In order to address this challenging 
scenario, the advantages associated with the multi-component inspection 
process start to become apparent. In this regard, the vast majority of 
reviewed systems approached the inspection process in a modular fashion 
where each component has been customised to identify a specific 
category of defects. To further improve the performance of the defect 
identification module, a critical issue was the adoption of appropriate opto-
mechanical and sensorial equipment and the optimisation of the 
illumination set-up. Thus, most ceramic inspection systems employed line 
scan cameras to minimise the spatial non-uniformities during the image 
acquisition process and this option was also motivated by the fact that 
conveying means were invariable used to transport the products to the 
inspection line. (The use of standard array CCD/CMOS cameras was 
rarely noticed and this imaging solution has been primarily employed in the 
development of prototype systems.) The use of line scan cameras has 
alleviated to some extent the requirement to devise complex illumination 
arrangements, as the light intensity has to be maintained uniform only 
along a narrow stripe area (that is imaged by the line-scan sensors). To 



this end, the ceramic inspection systems examined in our review employed 
either diffuse [8-12] or collimated lighting set-ups [1,2,11-12]. 
   
In line with the optimisation of the opto-mechanical components, the 
development of robust image-processing procedures to detect the visual 
defects proved to be a key element to the success of the overall inspection 
system. Our survey on ceramic tile inspection revealed that two 
approaches were dominant, namely approaches that perform the 
identification of the visual defects using either morphological techniques 
[1,12-17] or inspection solutions based on texture analysis [2,18-23]. From 
these approaches, the morphological-based implementations proved 
prevalent as they offer efficient implementations that are capable of real-
time operation. In this regard, Boukouvalas et al [9] employed 1D 
convolvers in the horizontal and vertical directions to identify the line and 
spot defects on the surface of the coloured ceramic tiles. In their 
implementation, the filter coefficients are tuned to capture a narrow range 
of line widths and this fact substantially complicates the generalisation of 
this approach if it will be re-engineered to encompass the wide variety of 
visual defects present on the surface of the slates. This work was further 
developed by the authors in [10,11] where they developed more involved 
techniques that have been applied to inspect the coloured and patterned 
ceramic tiles. In [10] the authors introduced a clustering approach that has 
been applied to segment the image data captured from a patterned tile into 
background and foreground information. In this study, the authors were 
particularly concerned with the development of a simple correction 
procedure that aimed to alleviate the spatial and temporal non-constancies 
that were inserted by the imperfections in the illumination set-up and non-
linearity response of the imaging sensor. Although the authors did not 
provide numerical results to quantify the accuracy of the proposed 
approach, this paper is a good example that illustrates the range of 
problems that need to be addressed in the implementation of machine 
vision systems. A different approach was proposed in [9] where the 
authors discussed the application of Wigner distributions to the inspection 
of patterned tiles. Although this approach is interesting as it can be applied 
to the inspection of a large palette of ceramic products, it has less 
relevance to slate inspection as the surface of the painted slates is 
characterised by a mild non-regularized texture. Peñaranda et al [8] 
proposed an alternative approach that has potential to be applied to slate 
inspection. In their paper, the authors proposed an inspection algorithm 
that evaluates the local gray-scale intensity histograms as the main 
discriminative feature in the process of identifying the defective image 
regions. Unfortunately, when we applied this solution to slate inspection, 
this approach proved unreliable since we found out that the grayscale 
distributions vary considerable from slate to slate when they emerge from 
the paint line. In addition to the inter-slate grayscale intensity variation, the 
low statistical impact of the small defects on the profile of the intensity 
distributions precludes the use of a priori patterns that are able to 



encompass the variations within image regions of acceptable finish quality. 
A related approach was proposed by Boukouvalas et al [11] where colour 
histograms have been employed to sample chromato-structural properties 
of patterned ceramic tiles. In this work the authors attempted to address a 
large range of issues including the evaluation of robust similarity metrics, 
spatial and temporal colour normalisation and the development of a 
computationally efficient hierarchical colour representation scheme. A few 
years later, this approach was further developed by Kukkonen et al [23] 
where they extracted 10 local features from the local distributions 
calculated in the hyper-spectral domain. The main motivation to use hyper-
spectral data resides in the fact that it samples in a more elaborate manner 
the spectral properties of the ceramic tiles than the standard RGB data 
[25], but the experimental results reveal that the best performance was 
achieved when normalised rgb chromaticity values were used for 
classification purposes.  
 
As mentioned earlier, a distinct area of research was concerned with the 
application of texture-based approaches in the development of product 
inspection systems. Approaches that are included in this category include 
the work of Tobias et al [3], Ojala et al [26], Mäenpää et al [18] and 
Mandriota et al [22]. These methods addressed a large range of industrial 
inspection applications and the most promising technique when evaluated 
in conjunction to the inspection of painted slates was the local binary 
pattern (LBP) approach that was initially developed by Ojala et al [26]. To 
this end, in a recent publication [2] we have developed an automatic slate 
inspection system where the texture and tonal (grayscale) information  
were adaptively combined in a split and merge strategy. The experimental 
results proved the effectiveness of this approach (99.14 per cent), but the 
main limitation was the large computational time required to process the 
slate image data.  
 
From this short literature survey we can conclude that the development of 
a robust algorithm for slate inspection is a challenging task since a large 
number of issues relating to the opto-mechanical design and the selection 
of appropriate image processing procedures have to be addressed. During 
the development phase of the proposed prototype we were forced to adopt 
a modular approach as the slate’s grayscale information shows a 
heterogeneous distribution with substantial inter-slate intensity variations. 
Moreover, in our design we had to confront other challenging issues 
including the depth profile variations (slate bowing) and vibrations that 
were introduced by the slate transport system. 
 
$.3 Description of the visual defects present on the surface of painted 
slates 
 
     The slates are manufactured using a mix of raw materials including 
cement, mineral and synthetic fibres and after they are structurally formed 



and dried, they are automatically painted on a high-speed line. While the 
primary function of the slates is to prevent water ingress to the building, 
they also have certain aesthetical functions. Consequently, the 
identification of visual defects is an important aspect of the slate 
manufacturing process and to answer this requirement inspection 
procedures are in place to ensure that no defective products are delivered 
to customers. Currently, the slates are manually inspected by human 
operators and they make a decision as to whether each individual product 
is defect free and remove the slates that are not compliant to stringent 
quality criteria. To this end, the products meeting the quality criteria need 
to be correctly formed (having an undistorted rectangular shape with minor 
deviations from a planar surface) and their top surface should be uniformly 
painted in dark grey with a high gloss finish (the characteristics of the 
manufactured slates are listed in Table 1).  
 

Dimension Nominal Tolerance 
Length 600 mm ±3 mm 

Width 300 mm ±3 mm 

Thickness 4.0 mm ±0.1 mm 

Local flatness profile ±0.1 mm ±0.1 mm 

Concavity ±0.05 mm ±5 mm 

Convexity ±0.05 mm ±5 mm 
 

Table 1. The main characteristics of the manufactured slates. 
 
 
An interesting aspects associated with the manual slate inspection is to 
evaluate the frequency of the minor and repetitive faults that may occur 
when the slates are painted. This information can be used to correct the 
improper settings of the high-speed paint line and to allow the efficient 
sorting of the finite products into batches with uniform characteristics.  
 
As the slate manufacturing process entails two major production stages, 
namely the slate formation and slate painting, the visual defects can be 
divided into two broad categories: substrate and paint defects. Thus, 
substrate defects include incomplete slate formation, lumps, depressions 
and template marks, whereas paint defects include no paint, insufficient 
paint, paint droplets, orange peel, efflorescence and paint debris. The 
substrate and paint defects may have arbitrary shapes and their sizes 
range from 1 mm2 to hundreds of square mm. Table 2 details a 
comprehensive list of most common visual defects present on the surface 
of defective slates, where for each defect type a brief description is 
provided.  
 



No. Defect type Defect size Description 
1 Lumps 2.0 mm < {L,W} < 50 mm   

±0.1  <  H  <  ±3.5 mm 
Excess material on 
surface. Often conical 
shape. 

2 Depressions 2.0 mm < {L,W} < 50 mm   
±0.1  <  D  <  ±3.5 mm 

Insufficient material on 
surface.  Often inverse 
conical shape. 

3 Holes φ = 4.5 mm Holes are present to 
assist insertion of nails.  
Absence indicates fault.  

4 Incomplete slate Any W ≠ 
Wexpected±3.0mm 

Any L ≠ Lexpected±3.0mm 

W, L dimensions not 
conforming to production 
specification. 

5 Poor quality edge W = 0.2 mm * L > 10 mm Edge not straight or 
having a feathery feel. 

6 Template mark 0.5 < {L,W}< 600 mm 
0.1 < {D,H} < 3.0 mm. 

Excess material on the 
slate surface caused by 
damage to forming 
template.  

7 Template mark II  1.0 mm < d  < all slate Texture variation on the 
slate surface, usually 
roughness. 

8 Insufficient paint 20 mm < {W, L}  < all 
slate 

Shade variation due to 
insufficient paint usage. 

9 Missing paint 2 mm < {W, L}  < all slate No paint or incomplete 
painting. 

10 Droplet 2 mm < {W, L}  < 15 mm  
0.05 mm <  D  <  0.5 mm 

Excess paint on surface, 
dried and cracked. 

11 Efflorescence Area > 25 mm2 Contaminant on surface 
preventing the correct 
adherence of paint. 

12 Paint debris 2 mm < {W, L} < 50 mm Dried paint debris 
encrusted on slate 
surface giving a rough 
texture. 

13 Orange peel 20 mm < {W, L}  < all 
slate 

Shade variation caused 
by overheating the slate. 

14 Barring W = 10±5 mm 
20 < L < 600 mm 

Shade variation caused 
by uneven heating of 
slate. 

15 Spots 1 mm < {W, L ø} < 5 mm Small areas presenting 
shade variation. 

16 Nozzle drip W = 10±5 mm 
  20 mm < L < 600 mm 

Shade variation caused 
by uneven paint delivery 
from nozzle. 

17 Wax mark 5 mm < {W, L} < 50 mm Splash of wax on top 
surface. 

 
Table 2. A brief description of the visual defects. (Notations: L- length, W – 

width, φ - diameter, D – depth, H - height).  



To further aid the reader in the process of interpreting the variability of the 
visual defects that may occur during the slate manufacturing process, a 
number of representative paint and substrate defects are depicted in 
Figures $.1 and $.2, where Figure $.1(a) illustrate a defect-free slate 
image section. 
 

 

 
(a) Reference 

 
(b) Template mark 

 

 
(c) Burn mark 

 
(d) Template mark 

 
(e) Template mark 

 
(f) Burn mark 

 
(g) Lump 

 
(h) Edge fault 

 
(i) Lump 

 
(j) Template mark 

 
(k) Incorrect formation 

 
(l) Depressions 

 
Figure $.1. A selection of representative substrate defects including 
template mark, lump, depressions, burn mark and incorrect slate 
formation. (a) Defect-free slate section. (b-l) Defective slate section. 



 
(a) Efflorescence 

 
(b) Barring 

 
(c) Insufficient paint 

 
(d) Paint debris 

 
(e) Paint droplet  

 
(f) No paint  

 
(g) Shade variation 

 
(h) Efflorescence 

 
(i) Spots 

Figure $.2. A selection of representative paint defects including 
efflorescence, no paint, insufficient paint, paint droplet, shade variation, 
paint debris, barring and spots. 

 
 
$.4 Overview of the developed slate inspection system 
 
In order to devise a flexible machine vision solution, we have adopted a 
modular approach in our design. The prototype slate inspection system 
was built to closely replicate the manufacturing environment and consists 
of three main modules. The flowchart detailing the logical connections 
between constituent modules is illustrated in Figure $.3. All modules of the 
developed inspection systems are controlled by an industrial PC which is 
also the host of the image processing software that has been designed to 
perform the classification of the slates into acceptable and defective 
products.  
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Figure $.3. Overview of the designed slate inspection sys

 
 
The first module consists of the part feeding and the mechanic
(slate transport system). In our implementation we have emplo
metre long belt-driven industrial conveyor manufactured by
Conveyors and Elevators (Ireland) that has been constructed 
the vibrations during the slate transport. An important issu
selection of the belt material that minimises the amount of ref
arriving back of the camera. After a careful selection, we hav
belt that is coated with a matte black rubber material that has lo
properties. To minimise the lateral drifts and slate rotations, a
placed on one side of the conveyor.  
 
The second module of the slate inspection system is represe
optical and sensing equipment. In the development of our slate
sensor we have used a Basler L102 2K-pixel line-scan came
fitted with a 28 mm standard machine vision lens (aperture set 
line-scan camera operates at a scan frequency of 2.5 KHz. 
facile calibration of the sensing equipment with the illuminatio
line-scan camera was attached to a micropositioner that 
adjustments to the camera view line with respect to the xyz c
The camera set-up is illustrated in Figure $.4. The interface b
camera and the industrial PC computer was facilitated by a Eur
grabber. Another important component of the optical and sens
is represented by the illumination set-up. In our implementatio
design a collimated light arrangement that relies on the stron
properties of the slate’s surface (full details about the implem
the illumination set-up used in our design will be provided 
section of this chapter). The last component of this module is r
by a proximity sensor which has the role to trigger the image
process prior to the arrival of the slate at the inspection line. 
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Figure $.4. The Basler-2K line scan camera mounted on a xyz 
micropositioner that facilitates fine adjustments of the camera line view.  
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The final module of the system performs the identification of the visual 
defects in the image data captured by the line-scan camera. While the 
development of a single procedure to identify all types of defects detailed 
in Table 2 was not feasible, the proposed inspection algorithm has been 
also designed in a modular fashion where each component has been 
tailored to identify one specific category of defects (the proposed 
inspection algorithm will be detailed in Section $.6). The developed 
prototype slate inspection system is illustrated in Figure $.5. 

 
 

$.5 Illumination set-up 
 
The strategy used to image the slate relies on the strong reflecting 
properties of the slate surface. In our experiments we have tested several 
illumination set-ups involving diffuse and collimated lighting arrangements. 
Initially, diffuse lighting techniques were explored as this illumination 
technique generates a uniform wide light band that will offer a facile 
camera calibration. Thus, the first experiments were carried out using an 
aperture fluorescent light system with a cylindrical focusing lens (TSI 
Model AFL9000), where light is dispersed equally in a 60° arc. One 
important aspect when designing our set-up was the identification of the 
lamp angle of incidence that generates the strongest optical signal that is 
reflected back to the line-scan camera. In our experimental trials we have 
discovered that the optimal optical response was achieved when the lamp 
angle of incidence was set at 40° and the camera was symmetrically 
located at 40° relative to the slate position. With this arrangement the 
camera exposure time was set to 2ms and at this setting the moving 
direction pixel resolution was approx. 2 mm when the conveyor was 
operated at production line speeds. This resolution is not sufficient to 
identify the small and medium sized visual defects and our additional tests 
confirmed that the light intensity produced by diffuse lighting techniques is 
substantially lower than that required to properly image the slates at the 
inspection line speed. Consequently, our efforts were concentrated on the 
development of an alternative illumination set-up that involves a 
customized collimated lighting approach.   
 
     The collimated illumination solution adopted in our implementation is 
building on the fact that the paint defects have reduced gloss levels 
(except paint droplets) than the slate areas of acceptable quality. 
Substrate defects are associated with errors in slate formation and the 
resulting appearance of these visual defects also results in a reduction of 
the light arriving at the line-scan sensing element. The illumination 
arrangement comprises two Fostec DCR III 150W lamp controllers, a 
Fostec 30’’ fiber optic light line and a cylindrical lens. A schematic 
description of the devised illumination set-up is illustrated in Figure $.6. 
The lamp angle of incidence has been set to 45° and the camera view 
angle was located symmetrically to 45°. The lamp intensity level was set to 



approx. 80% with respect to the maximum level and the camera exposure 
time was set to 400 µs at a scan frequency of 2.5 KHz. This setting allows 
us to image the slate with a cross pixel resolution of 0.221 mm and a 
moving pixel resolution of 0.244 mm. This pixel resolution is sufficient to 
properly image the entire range of defects that are present on the surface 
of the painted slates.    
 

 
 

Figure $.6. Schematic detailing the developed illumination set-up. 
 
 
Although the illumination set-up detailed in Figure $.6 generates sufficient 
illumination levels required for image acquisition at production line speeds, 
one issue that we encountered was the narrow band of the focused 
collimated light. Indeed, when we positioned the lens to attain perfectly 
focused collimated light, the resulting light band was only 5 mm wide (see 
Figure $.6) and the process required to align the camera line view for a 
distance of 30’’ requires adjustments with a precision of less than one 
degree (δθ < 1°). To facilitate such adjustments we mounted the camera 
on a micropositioner as indicated in Section $.4.  However, the alignment 
of the camera line view to the longitudinal axis of the light band was not 
the only issue we had to confront during the development phase of the 
illumination set-up. One of the most challenging problems was the 
variation in depth profiles across the slate due to slate bowing that is 
sometimes associated with slates that have acceptable quality with respect 
to inspection criteria. The small slate bowing was found to range from 
negligible to 5 mm over the slate length and up to 2 mm along the slate 
width. Although the variation in depth profile does not affect the 
functionality of the product, it has introduced a substantial challenge that 
has to be accommodated by the proposed illumination solution. While the 
depth profile non-uniformities raises and lowers the absolute position of 



the projected light band with respect to the camera line view, this 
practically compromises the image acquisition process. To give some 
insight into the problem generated by slate bowing, if we consider that the 
incidence of the light band and the camera view angle are set 
symmetrically to 45° as illustrated in Figure $.6, if the slate raises the light 
band with 1 mm, then the reflected light is shifted to 1.5 mm in opposite 
direction with respect to the camera view line. Since the slate possesses 
some elasticity, a pneumatic solution that forces the slate into an uniformly 
planar shape during inspection would be feasible. However, there are 
several disadvantages associated with such mechanical solutions that are 
used to force the slate into the nominally flat shape. The first is related to 
fact that the painted surface can be easily damaged when the pneumatic 
device is operated at high production line speeds, and secondly the 
development of such mechanical system would be problematic taken into 
consideration the non-smooth characteristics of the underside of the slate. 
As a mechanical solution to force the slate into a uniform flat position 
proved unfeasible, we elected to defocus the lens that is used to collimate 
the light generated by the Fostec fiber optic light line. This produces a 
wider light band but this is achieved at the expense of reduced collimation. 
To compensate for the reduced intensity levels caused by de-collimation, 
we used the spare capacity in the lamp controller. Following a simple 
trigonometric calculation, the lens has been defocused to generate a 25 
mm wide light band, an increase that is sufficient to accommodate the 
slate bowing effects in the range [0, 5 mm] and the vibrations caused by 
the slate transport system.  
 
The last issue that we confronted during the development of the 
illumination set-up was the development of software routine that was 
applied to compensate for the non-linearities in the horizontal profile 
(longitudinal axis) of the light band. As the fiber optic is 30’’ long, the profile 
of the light band shows stronger illumination levels towards the central 
position when compared to the intensity level supplied at the left and right 
extremities of the slate. This is illustrated in Figure $.7(a) where the 
unprocessed horizontal light profiles for three reference slates are 
depicted. To compensate for this uneven response of the illumination unit, 
we have subtracted the mean intensity level (calculated from all reference 
slates that are used to train the system) from the unprocessed data and 
the obtained results are averaged with respect to each pixel position to 
compute the light compensation map. This light compensation map 
encodes the deviations from the expected mean intensity level and it is 
directly used to linearise the unprocessed horizontal profile (see Figure 
$.7b). The application of the horizontal profile linearisation reduced the 
light variation in the horizontal direction from 20 per cent to 2.5 per cent. 
The linearisation of the response of the illumination unit in the moving 
direction was deemed unnecessary, as the light intensity variation in the 
vertical axis shows negligible variation due to de-collimation.   
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(a) 

Compensated horizontal profiles
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(b) 

 
Figure $.7. Compensation for the non-linearities in the response of the light 
unit along the horizontal direction. (a) Unprocessed horizontal light profiles. 
(b) Compensated horizontal light profiles.   
 
 
$.6 Slate inspection algorithm  
 
As indicated in Section $.4 the slate inspection algorithm has been 
designed in a modular fashion where each component has been optimised 
to identify one category of visual defects. This approach was appropriate 
as the modular architecture allows facile system training and more 
importantly the parameters that need to be optimised for each component 
can be easily adjusted if changes are made on the specification of the 



finite product. To this end, the proposed algorithm involves five distinct 
computational strands that were tailored to address specific inspection 
tasks. Full details about each image processing component of the 
developed inspection algorithm will be provided in the remainder of this 
section.  
 
 
$.6.1 Segmentation of slate from image data and nail hole verification 
procedure 
 
 The first step of the slate inspection algorithm involves the segmentation 
of the slate from the image data. The identification of the slate boundaries 
was facilitated by cutting slots in the conveyor base and ensuring that the 
width of the belt is less than that of the slate. This design choice was 
implemented to ensure that no light arrives back at the line-scan camera 
when the slate is not imaged and to provide a sharp rise in the optical 
signal when the slate arrives at the inspection line. Thus, a simple 
threshold operation is sufficient to robustly segment the slate data and the 
segmentation process is followed by the identification of the edges and the 
four corners of the slate. To avoid computationally expensive procedures 
required to optimise the image acquisition process, a proximity sensor was 
employed to activate the line scan sensor prior to the arrival of the slate at 
the inspection point.  
 
Once the corners of the slate are identified, the next operation verifies if 
the nail holes are correctly positioned with respect to slate boundaries. The 
nail hole detection involves a threshold-based segmentation technique 
since the intensity of the optical signal associated with the nail hole is 
substantially lower that that given by the slate surface. The developed nail 
hole checking procedure starts with the identification of the hole that is 
located on the left hand side of the slate surface. The detected xy co-
ordinates of the nail hole are compared to pre-recorded values and if the 
procedure passes inspection conditions then the algorithm proceeds with 
the verification of the remaining two nail holes that are located close to the 
right-hand side top and bottom slate corners. If the nail checking 
procedure triggers the absence of a nail hole or an incorrect nail hole 
placement with respect to slate boundaries, the slate is classed as 
defective and put aside for rejection or re-work. If the nail holes are 
correctly positioned, then the algorithm fills them with adjacent slate 
surface pixel information to prevent the identification of visual faults when 
the slate data is subjected to the automatic inspection process. Figure $.8 
describes graphically the nail verification procedure.  
 
 



  
 

  
 

Figure $.8. Nail hole verification procedure. (Top row) Slate that passes 
the nail hole verification test. (Bottom row) Slate that fails the nail hole 
inspection procedure. In the last column the images resulting after the nail 
hole inspection procedure are displayed. Note that the image that passes 
the nail hole verification test has the nail hole areas filled with pixels 
information from adjacent slate surface data to be ready for defect 
inspection.    
 
 
$.6.2 Identification of the visual defects 
 
Prior to the development of the computational modules for visual defect 
identification, we have analysed the grey level signals associated with 
reference and defective slates. The experimental trials indicated that the 
mean grey levels associated with acceptable slates from similar production 
batches can vary up to 20 grey levels where the overall mean value is 167. 
To clarify the source of this grayscale variation among reference (non-
defective) slates we evaluated the intensity data using different image 
acquisition approaches. From these experiments we concluded that these 
variations were not caused by the imperfections in the sensing and optical 
equipment but rather due to an acceptable variation in the slate surface 
paint colour. Thus, the image processing procedures that will be 



investigated have to sufficiently robust to accommodate this level of inter-
slate grayscale variation. In order to identify the computational 
components of the inspection algorithm we have analysed the gray level 
signals associated with paint and substrate defects and a summary of the 
test results is shown in Table 3. This analysis allowed us to analyse the 
impact of the visual defects on the overall intensity data distribution. Our 
study revealed that the vast majority of defects have a negligible influence 
on the overall slate intensity data distribution and this finding clearly 
indicates that it would be desirable to inspect the slate image in small 
subsections, as the relative impact of the defect on the grey level statistics 
is substantially increased. To this end, the slate image was divided into 
segments of 128×128 pixels and each segment need to be individually 
processed.   
  
 
No. Defect type Overall slate  

grayscale  mean  
Defect grayscale 

value 
1 Lump 1 186 150 

2 Lump 2 180 140 

3 Lump 3 184 125 

4 Lump 4 182 135 

5 Lump 5 191 160 

6 Insufficient paint  181 136 

7 Paint debris  172 80 

8 Paint droplet 179 150 

9 Spots  184 150 

10 Barring 181 166 

11 Orange peel  181 127 

13 Efflorescence 1 181 135 

14 Efflorescence 2 175 150 

15 No paint  180 100 

16 Shade variation  180 150 

17 Template mark 1 177 145 

18 Template mark 2 189 140 

19 Template mark 3 179 120 

20 Template mark 4 180 150 

22 Template mark 5 181 150 
 

Table 3. The gray level values associated with a representative sample of 
visual defects. 



Based on the analysis of the grayscale values associated with reference 
and defective image sections, we have devised an algorithm which 
consists of four distinct computational strands - in this approach each 
component has been designed to strongly respond to a narrow category of 
visual defects. The block diagram of the developed slate inspection 
algorithm is depicted in Figure $.9 and the main components can be 
summarised as follows: 
 

• Global mean threshold method 
• Adaptive signal threshold method 
• Labeling method 
• Edge detection and labeling method. 

 
Each component depicted in Figure $.9 is applied to each 128×128 
segment of the slate image and the results are compared to experimentally 
determined thresholds. Each component of the slate inspection will be 
detailed in the remainder of this section.  
 

 
 

Figure $.9. Overview of the slate inspection algorithm. 
 
 
$.6.3 Global mean threshold method 
 
This component has been developed to evaluate the mean gray level of 
the image section with the aim of identifying the gross defects that may be 
present on the surface of the slate. In this regard, the mean value for each 
subsection is compared to an experimentally determined mean value and 
this approach proved to be effective in detecting a range of defects 
including missing paint, orange peel, efflorescence, insufficient paint and 
severe shade variation.  



   
 

  
 

  
 

  
 

  
 

Figure $.10. Gross defects identified by the global mean threshold method. 
(Left) Images showing a reference slate section and slate sections 
exhibiting gross visual defects. (Right) The corresponding grayscale 
distributions. From top to bottom, reference (non-defective) slate section, 
slate section detailing an insufficient paint defect, slate section detailing an 
orange peel defect, slate section detailing an efflorescence defect and 
slate section detailing a shade variation defect.  



In spite of its simplicity, this method proved the be the most reliable in 
detecting defects that cover large areas of the slate surface, defects that 
have a dramatic impact on the grayscale distribution when evaluated at 
local level (see Figure $.10). To increase the robustness of the proposed 
method a global mean threshold has been employed to identify defects 
such as missing paint and orange peel and grade specific thresholds were 
experimentally determined for the identification of low contrast defects 
such as efflorescence, insufficient paint and shade variation.  
 
 
$.6.4 Adaptive signal threshold method 
 
Our experimental measurements indicated that the slate texture induces a 
grayscale variation for non-defective image sections in the range [mean – 
30, mean + 30]. When analysing the 128×128 image sections for visual 
defects, to avoid the occurrence of false positives we need to locate the 
paint and substrate defects outside the range [mean – 40, mean + 60]. By 
thresholding the image data with these values a relative large category of 
visual defects can be robustly identified. The defects detected by this 
method include missing paint (where less than 50 per cent of the image 
section is defective), localised paint faults such as paint debris, droplets 
and spots and structural defects generated by an improper slate formation.  
 

    
 

    
            (a)                         (b)                          (c)                           (d) 

 
Figure $.11. Visual defects identified by the adaptive signal threshold 
method. (a,c) Defective slate sections. (b,d) Resulting images after the 
application of the adaptive signal threshold method. Top row - paint 
defects such as paint droplets and insufficient paint. Bottom row - 
substrate defects such as burn mark and template mark. 



 
This method has not been found useful in detecting low contrast visual 
defects such as barring and elongated depressions whose gray levels are 
within the grayscale variation generated by the slate texture. 
Representative paint and substrate defects that are detected by the 
adaptive signal threshold method are depicted in Figure $.11.  
 
  
$.6.5 Labeling method 
 
The aim of this method is to identify the visual defects that cover a relative 
small area with respect to the overall size of the analysed 128×128 image 
section. This method consists of several steps that are illustrated in Figure 
$.12.  
 

 
 

Figure $.12. Overview of the labeling method. 
 

 
The first step of the labeling method converts the image corresponding to 
the analysed slate section into the binary format by applying a local 
adaptive threshold operation [28]. The aim of this step is to identify the 
relative bright and dark regions with respect to the local gray mean value. 
The second step involves the application of a binary opening operation 
with the aim of removing the small unconnected regions that are caused 
by the non-regularized slate texture and the image noise. The third step 
involves the application of the labeling by area operation [28,29] to provide 
an unique label for each disjoint white blob in the image resulting from the 
morphological opening step. Since the small blobs are often associated 
with the slate texture, the largest blobs are of interest as they are generally 
caused by visual defects. Thus, to reduce the impact of the randomly 
distributed blobs that are generated by the slate texture, we compute the 
area of the ten largest blobs and this feature is used to discriminate 
between reference and defective image sections. This method proved 
effective in identifying high contrast defects such as droplets, paint debris, 
spots, efflorescence and template marks.  A small collection of visual 
defects that are identified by the labeling method is depicted in Figure 
$.13. 



      
 

    
 

    
             (a)                        (b)                          (c)                         (d) 
 
Figure $.13. Visual defects identified by the labeling method. (a,c) 
Defective slate sections. (b,d) Resulting images after the application of the 
labeling method. Top row - paint defects such as shade variation and paint 
droplets. Bottom row - substrate defects (template marks). 
 
 
$.6.6 Edge detection method 
 
The last component of the inspection algorithm has been designed to 
specifically detect the narrow elongated defects, as the previously 
described methods were not sufficiently accurate in identifying this type of 
slate faults. As this defect identification method is based on the application 
of first order derivative operators (Sobel edge detector), prior to edge 
extraction the image data is subjected to median filtering. The 
experimental measurements carried out during the development phase 
revealed that narrow defects such as depressions and elongated substrate 
marks have a shallow intensity profile and as a result gaps are present in 
the resulting edge structure. To compensate for this issue a morphological 
closing operator is applied and the resulting data is labeled by area for 
further analysis. Similar to the approach used for labeling method, the 
largest ten components were retained and their collective area is used as 
a discriminative feature to grade the slate section under analysis as 
acceptable or defective. Figure $.14 depicts some representative defects 
that are identified by the edge detection method.  
 



    
 

    
 
Figure $.14. Visual defects identified by the edge detection method. (Top 
images) Paint defects. (Bottom images) Structural defects.  

 
 
$.7 Effect of slate bowing on slate inspection 
 
The slate inspection algorithm detailed in Section $.6 performs the 
identification of the visual defects on each 128×128 segment of the slate 
image. To facilitate the tiling of the slate image into sub-sections, the slate 
was approximated with a rectangle that is obtained by connecting the 
corners of the slate that have been identified during the slate segmentation 
process (see Section $.6.1). This procedure worked very well when 
applied to flat slates, but generated false triggers when applied to slates 
that are affected by depth profile variations (slate bowing). These false 
positives are caused by the displacements between the straight edge 
obtained by connecting the slate corners and the curved edge of the 
imaged slate. This slate edge positioning errors lead to an incorrect image 
tiling and this generates situations when the 128×128 image segments 
include non-slate image data (background information), while on the 
opposite side of the slate there are sections of the slate that are not 
investigated by the inspection algorithm (see the shaded area in Figure 
$.15). This is illustrated in Figure $.15 where the problems caused by slate 
bowing are illustrated. An example that shows the occurrence of false 
positives due to slate bowing is depicted in Figure $.16.  
 
To address this issue, the procedure to identify the slate edges has been 
modified in order to accommodate the deviations that occur from the 
straight edge when imaging slates that are affected by depth profile 
variation. In this regard, the edge that is generated by connecting the slate 



corners is divided into shorter lines with 30 mm length and the location of 
these short segments is identified with respect to the segmented slate 
data. Using this approach, the image tiling process ensures that the image 
sub-sections are placed adjacent to these segments and as a result no 
slate data will be missed by the inspection algorithm or false positives 
generated by the incorrect positioning of the image sub-segments with 
respect to the real edge of the slate.   
 

 
 

Figure $.15. False defects generated by slate bowing.  
 
 

 
 

Figure $16. Example illustrating the false defects caused by slate bowing 
effects. 
 



$.8. Experimental results 
 
The conveyor was set at 38 m/min and the camera exposure was set to 
400 µs giving a scan frequency of 2.5 KHz. The variability of the conveyor 
speed has been measured by imaging a reference slate in succession and 
the experimental results indicate that the variation profile of the conveyor 
speed induced a 0.8 per cent variation in the pixel resolution in the moving 
direction [1]. The variation in the pixel resolution due to inconstancies in 
the conveyor speed has negligible effects on the image acquisition 
process and it was found that it has no negative effects on the inspection 
results. 
 
Since the inspection algorithm detailed in Section $.6 entails the 
optimisation of a large number of threshold parameters, the system has 
been trained using 400 slates. The developed slate inspection system has 
been tested on 300 unseen slates that are sampled from different 
production batches. The 300 slates used in the experimental activity were 
graded into acceptable and defective units by an experienced operator 
based on a comprehensive visual examination. The proposed system was 
able to correctly grade the acceptable slates with an accuracy of 99.32 per 
cent (148 slates) and the defective slates with an accuracy of 96.91 
percent (162 slates). A detailed performance characterisation is provided 
in Table 4. To qualitatively and quantitatively illustrate the performance 
attained by the proposed system, in Table 4 the detection rate for each 
category of defects listed in Table 2 is provided. 
 

Type Undetected Detected Accuracy 

Missing paint 0   4 100% 
Insufficient paint 0   9 100% 
Efflorescence 0 15 100% 
Shade variation 0 12 100% 
Nozzle drip 0 14 100% 
Droplets 0   8 100% 
Dust 0   4 100% 
Wax 1   7   87.5% 
Template marks 2 33   94.28% 
Template marks II 0   5 100% 
Lumps 0 13 100% 
Depressions 1   3   75% 
Bad edge 0 18 100% 
Misc. types 1 12   92.30% 

TOTAL 5 157  96.91% 
 

Table 4. Summary of detection rate for each category of visual defects. 



  
 

  
 

  
 

  
 
Figure $.17. Identification of the visual defects on a selection of defective 
slates that exhibit a large variety of paint and substrate defects.  



As indicated in Table 4 the lowest performance of the slate inspection 
system was achieved in the identification of depressions which is a 
subclass of substrate defects. The system failed to identify a defective 
slate containing a shallow depression that was positioned parallel to the 
moving direction axis. To fully clarify the impact of these defects on the 
inspection results, we imaged the slate with the short edge facing forward 
(slate rotated with 90°). Using this slate orientation, the system was able to 
identify the defect as it produced sufficient contrast when compared to 
adjacent non-defective areas of the slate. We envision that the detection 
rate for this type of substrate defect can be substantially increased if the 
slate is imaged in two orthogonal directions. The inspection system was 
also not able to identify two small template marks with an area of approx. 1 
mm2. These defects were missed as their statistical impact on the gray 
scale distribution of the 128×128 slate segment was very limited and the 
relaxation of threshold conditions for labeling method was not an option 
since it will lead to a substantially increase in the number of false positives. 
Typical inspection results are depicted in Figure $.17 where white boxes 
are used to mark the defective image sections. Additional results are 
illustrated in Figure $.18 where reference and defective image sections are 
depicted and the images resulting after the application of the four 
computational strands of the inspection algorithm are also shown (for the 
sake of completeness, the pixel count for each method of the inspection 
algorithm is provided).  
 

 

Figure $.18. Output of the inspection algorithm for a small set of reference 
and defective slate sections. 



$.9 Conclusions 
 
The major objective of this chapter was the introduction of a machine 
vision system that has been developed for the automated inspection of 
painted slates. Since the development of an industry compliant inspection 
system requires the identification of optimal solutions for a large spectrum 
of problems relating to opto-mechanical and software design, in this 
chapter we provided a comprehensive discussion about each component 
of the system and we emphasized the difficulties that we had to confront 
during the development phase of the inspection sensor. The illumination 
set-up proved in particular challenging as we had to devise a solution that 
is able to provide sufficient illumination intensity that allows imaging the 
slate at production line speeds, but at the same time it is able to 
accommodate non-idealities such as slate depth profile variations and 
vibrations that are introduced by the slate transport system.  
 
The experimental data indicates that automatic slate inspection can be 
achieved and the installation of the proposed inspection system in a 
manufacturing environment is a realistic target. The evaluation of the 
inspection prototype in a factory-style manner was an important part of the 
development process, as it allowed us to sample, address and optimize a 
large number of hardware and software design choices that are required 
for robust slate inspection. The proposed inspection system attained 96.91 
per cent overall accuracy in detecting the visual defect present on the slate 
surface and this level of performance indicates that the devised machine 
vision solution can be considered as a viable option in replacing the 
existing manual inspection procedure.  
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