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Application o f Multigrid M ethods to the Boltzmann
Equation

P.R.Hayden and M.M.Turner

School of Physical Sciences, Dublin City University, Dublin,
Ireland

ABSTRACT

A multignd solver was applied to the simple 1-D Boltzmann equation [21] for the 
linear case with no electron-electron collisions The findings from this were compared 
to those o f an existing direct solver for the same problem The Boltzmann problem was 
defined for a N2 plasma A basic Gauss-Seidel iteration was found to act as the best 
smoother for the multigrid solver The Galerkin method o f restriction was found to 
work, while the direct method failed Reasons for this are suggested An adaptive 
method was developed which may slightly improve performance m some cases It was 
found for 256 points that multigrid only used 20% of the Work Units required by the 
direct solver Given that the direct LU-decomposition solver requires V3N3 
manipulations, and the multigrid Vcycle uses ON^logN, the method has increasing 
advantage for larger systems The efficiency also improves with increasing dimension 
Another important advantage of multigrid is that there should be no considerable loss 
of efficiency when solving the non linear case which includes electron-electron 
collisions
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Introduction ( C h l )

Simulations of a high pressure gas discharge devices require the electron energy 

distribution The equation that describes this electron distribution for an isotropic 

plasma, with a constant applied electric field, and no applied magnetic field, is the 1- 

D dc Boltzmann equation (shown later as equation -(1 9)) The origin of this form of 

the Boltzmann equation as in equation -(1 9) will be briefly looked at When the 

Boltzmann equation is introduced, it is then the task to discuss how the discrete form 

of the Boltzmann equation can be more efficiently solved using a multigrid solver, as 

opposed to the previous direct method Thus the motivation behind multigrid theory 

will be looked at

Origin and Form of the Boltzmann Equation

The Maxwell-Boltzmann distribution, uses the probability distribution function, 

f(r,v,t) such that it descnbes either the number or probability of electrons at a specific 

position vector r(x,y,z), with velocity v(x,y,z), at time t The distribution function is a 

function of speed in an isotropic gas system, and thus we obtain an energy 

distribution for the electrons in a gas However, when external forces are applied, an 

equation of motion for the distribution function is now needed This is where the 

Boltzmann distribution comes into play This is now a six dimensional problem with 

time, since with time the number of electrons at dr3dv3 will change in accordance to 

the flow across the walls of this element in phase space The following equation 

describes the continuity of electrons in six dimensional phase space,

Rewriting, and also considering changes in f  which arise from collisions, we obtain 
the general form of the Boltzmann equation, more commonly written as,

df _  df 
dt 3t

+ 3f 3r 
3r 9t

+
3f 3v 
dv 3t

0 -(11)

-(12)

It is now necessary to determine the form o f the RHS term referred to as the collisional 

integral Considering the element dr^dv^, we know that at equilibrium that the rate of



processes into d r3dv3 is the sam e as the rate of processes out of this elem ent Using the 

differential scattering cross section da (0 )/d£ l, we can determine the flux in and out of 

d r3dv3 The rate o f change o f electrons in this elem ent can then be integrated over all 

position and velocity to give the implicit form of the collisional integral as [8]

In this equation, v is the velocity o f the particle under consideration and V| is the 

velocity o f the o ther before collision, v' and v ,' the velocities after F  is then the 

distribution function for the second particle This uses the assum ption that only binary 

collisions are im portant and that the mean distance between collisions is much larger 

than the range o f inter particle forces This is valid for all case except electron-electron 

collisions

An applied external electric field is then treated as a perturbation Rew riting the 

Boltzm ann equation in term s o f polar co-ordinates, and setting z axis as the direction 

o f the applied electric field, the distribution function is then expanded using Legendre 

Polynomials

On the RH S, fk has speed va as opposed to velocity Substituting this back into the 

Boltzm ann equation results in an equation with an infinite num ber o f term s Using the 

treatm ent by C herrington[8], these can be reduced to an infinite num ber o f equations, 

the general term  is given in the appendix B A nother Legendre Polynomial expansion is 

used for the collision integral on the RHS Som e discussion o f the m anipulation o f this 

set o f infinite equations by Cherrington[8] is shown in appendix B Rew riting the 

distribution in terms o f energy, and norm alizing by

S = J  d 3v, J  d Q [ f ( r , v ' , t ) F ( r , v ' , t )  - f ( r , v , t ) F ( r , v , t ) ]  x | v  - v ,|

-(1 3)

f(r,v,t) = I k=Q Pk (cose,) fk(va,r,t) -d  4)

-(1 5)

we get
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d r  e 2E 2£ df 
de 3 N a m de[ ]  + ^  - f [ e 2N o m(f„ + k T ^ - ) ]  = 0 -(1 6 )

M de de

where N is the density of the neutrals in question, and Gm is the cross section for 

elastic collisions As only the average velocity was taken into consideration, and as the 

plasma is assumed to have a uniform distribution m space, the six dimensional problem 

of equation -(3 3a) may be reduced to a one dimensional problem in average velocity 

(or energy) The above form of the Boltzmann equation applies to the case when 

elastic collisions dominate, and we have ignored inelastic collisions We can formulate 

the above equation in the similar manner, except this time include the appropriate 

collision integral term for the inelastic processes However we have assumed that 

electron-electron collisions have a negligible effect The equation is then given by 

Lowke, Phelps and Irwin[16] as

+ Sj [ ( e - e J) f ( e - e J) N * o J( e - e J) - e f (e )N * a  ,(£ )] = 0 - (1 7 )

where N* is the excited state density Equation -(1 7) can be rewritten using a different 
normalisation given by the relation

Obtaining a steady state solution for f(e) then enables other plasma parameters such as 

swarm parameters to be obtained These are necessary m order to generate a self 

consistent set of cross sections from this transport data following the approach of 

Rockwood [21] After further manipulation we obtain the one dimensional dc 

Boltzmann equation in finite difference form given by Rockwood [21]

d e 2E 2e df 
de 3N om de[

+ Ej [(e + e^fC e + e^ N cjjie  + e j) - ef(e)N O j(e)]

n(e) = f(e)e1/2 ne -(18)
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dt
-i nk-i + bk+i nk+i ~ (ak + bk) nk + X N s [Rsjk+mnk+m,, +

s J

^sk + m„ nk+m„ + 8lk ^Rgn nm — (Rsjk + R sjk + R sk ) nk]

with

2 N e V E \2  1 /  1
ak =

3m
/ E V  1 / 1 V + Ae>l Vk /'K T  2KT \
( n )  ^ U (£ £ + t ) + ^ ( — e I + ^ r £ i )  '

2 N e V E  V  1 (  1 V  + AeV  vk (  + K T , 2KT ^  
bk = •

-(1 9a)

where e k =kA e , ek = £ k., -(19b)

£  = (M f  SlorfeO • W = 2 ^ M )“£SfiM ,N m 7  ̂ m 7 s M s

-(1 9c)

Equation -(1 9) gives a set of k-coupled ordinary differential equations which were 

obtained by finite differencing the continuous form Energy space has been divided 
up into 2q - 1 points, where each k* point is separated by the energy interval As We 
can interpret ak as the rate at which electrons of mass m, charge e and energy ek are 

promoted to energy ek+l, while bk is the rate for demotion from ek to ek.[, due to 

applied constant field E The summation term on the right involves collisions Rsjk, 
R'sjk and R‘sk are rates at which electrons at energy ek suffer elastic collisions, super 

elastic collisions and creation through ionisation of the neutral molecules m the 

plasma The subscript j denotes excitation or de-excitation of the molecules NJS of 

species s to state j The cross section for momentum transfer from electrons at 
energy ek+ to molecules Ns of species s is denoted by o s(ek+), and qs is the mole 

fraction of species s Ms is the mass of species s and T is the gas temperature
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This ignores electron-electron collisions The distribution function n(e,t) then gives the 

number of electrons at energy e and time t Obtaining a steady state solution for n(e) 

then enables other plasma parameters such as swarm parameters to be obtained 

Among these include electron temperature, characteristic energy, drift velocity, 

diffusion coefficient and mobility From these it is then possible to generate a self 

consistent set of cross sections from this transport data following the approach of 

Rockwood [21]

The set of k-coupled equations can be written in matrix form as

where A is an NxN sparse matrix, n = n(e) is an Nxl vector giving the probability 

distribution, and n' is an Nxl vector giving the rate of change of n for different 

energies on the grid The existing solver, written in C on UNIX work stations, uses an 

implicit Euler algorithm, which effectively integrates forward in time to a steady state 

solution This uses the direct method of LU-Decomposition (LUD) However, 

multigrid grid can be applied to the steady state problem

Because the RHS is zero, there is an infinite series of solutions that differ to within a 
constant The direct LUD solver gives a solution as n(e)=0, for every point on the 

grid It cannot give a non zero solution unless there exists a non zero element on the 
RHS It is physically possible that n(e)=0 is a solution However, if the problem is 

given in terms of the normalization f(e) instead of n(£), it is not physically possible that 

f(£)=0 is a solution, because even thought there are no electrons m this system, there 

still exists a probability distribution, regardless of the number of free electrons m the 
plasma Thus for Af(E) = 0, there must be some non zero element on the RHS that 

prevents the non realistic LUD solution f(e)=0 from occurring The boundary 

conditions for the lower energy boundary of the grid must be non zero if f(e) is chosen 

However, the grid system only takes into consideration the 2q-l internal grid points, 
and not the actually boundaries of f(e) Appendix D gives the new version of equations 

-(1 9, 1 9a, 1 9b, 1 9c) written m terms of f(e) instead of n(e)

The first row by column multiplication of Af would be:

An = n' -(1 10)

An = n' = 0 - 0  11)

Vo + b2f2 - a .fi - b,f, + T = 0 -(1 12)
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where T is all other off diagonal elements associated with collisions

If we consider the k=l rate equation under the new normalisation, the very first term is 

a/g, which is not taken into consideration by the matrix or the boundaries, since 

equation -(D4a) (given m appendix D) for f(e), like -(1 9a) for n(e) gives a^O 

However, since electrons exist with no energy, or energies between the Oth and the 1st 

energy points, then it is physically possible that a,, may be non zero, ignoring the 

definition from equation -(D4a) This term can thus be transferred over to the RHS, 

making this non zero Equation-(1 12) would then become

b2f2 - a,f, - b,f, + T = -a/,, -(1 13)

Since this contains f0, we can set this boundary condition, and so fix f(e) such that it is 

non zero The mathematical effect of setting the first term on the right hand side to a 

non zero value is such to give a non zero solution Thus there are two possible systems 
to solve, the n(e) and the f(e) However, the difference between the results from these 

is quite small, as will be observed later

6



M otivation for using Multigrid

Simulations of high pressure gas discharge devices require a solution to the 1-D dc 

Boltzmann equation in finite difference form (given by equation -(1 9)) This equation, 

in matrix form as equation -(1 10) An = n' , is solved by an existing program which 

uses a direct method called LU-Decomposition Direct methods, of which Gaussian 

elimination is the prototype, determines a solution exactly (up to machine precision) in 

a finite number of arithmetic steps The main objective of the multignd approach is to 

reduce the computational work, and therefore reduce the time required to solve partial 

differential equations, exploiting the fact that the solution need not be exact In a finite 

difference problem, there is no advantage in reducing the error in the solution to 

smaller than that of the discretization error In the direct method, the error is reduced 

to below the size of the discretization error Relaxation methods however, as they 

converge onto the solution, gradually become more accurate with increasing iteration 

or cycle, and the method can be stopped when the error reaches the size of the 

discretization error Given that this is the main reason for the employment of a 

relaxation method, we will now introduce the multignd method, and the pnnciples 
behind its use

7



General Principles of Multigrid (Ch 2)

Poisson Equation

Many textbooks on multignd illustrate the method using the simple Poisson equation in 

one [7,12,18,23] or two [11,14,19] dimensions In order to discuss and introduce the 

method, it is better to briefly outline the Poisson system in one dimensions as

-u(x)" = f(x) = 0 -(2 0)

For simplicity, it is possible to divide the interval in x between boundary points u(0) 
and u(l) into N -l internal mesh points each of separation Ax=l/N The finite difference 

equivalent to equation -(2 0) is

-vM + 2v, - v1+1 = f(x,) (0 < i < N) -(2 1)

with x, = lAx and v, as the approximation to the solution u, at mesh position x, For 

simplicity we can set both boundaries u0 and uN to zero This system of i equations can 

be written as

Av = f  -(2 2)

This symmetric block tndi agonal sparse matrix can then be solved by several direct 

methods such as Gauss-Jordan Elimination, Gauss Elimination and LU Decomposition

[10,2] among others However, multigrid uses iterative methods, which will now be
discussed

Boundary Condition

As stated the simple boundary conditions u0 = uN = 0 are chosen first for simplicity 

However, other conditions can be considered The commonly seen Dinchlet boundary 

condition is uN = g or u0 = g The Neumann boundary condition involves the slope at 

the boundary, du/dx = g A mixed boundary condition may also be considered

auN + du/dxlN = g -(2 3)



where a is a constant

Discretization Error

The global error E can be defined as the difference between exact continuous solution 

and the solution to the finite difference problem

E = llu(x) - u, 11 • -(2 4)

Equation -(2 1) assumes that the higher terms in the Taylor expansion of equation - 

(2 0) can be ignored Hackbusch [12] has discussed the size of this in depth, but this 

agrees m general with simpler approach of Briggs and McCormick [18], which 

involves the truncation error t, given in the continuous equation,

Au(x) = Ax -2{ -u(x,_,) + 2u(x.) - u(x1+1) } + t, -(2 5)

A is the operator taken at position l on the continuous system If we assume that the 

exact solution u(x) admits a Taylor series expansion about x,, then t, may be written as 
[18]

t, = A x V ^ - f ’Cx',)) -(2 6)

where x', denotes a point between x,_j and x1+1 It is possible to bound f'(x) using B by,

II f'(x) II <= B II f II -(2 7)

We must assume f is sufficiently smooth Then it is possible to bound the truncation 
error by

lit, II <= (Ax2/12)B  Ilf II -(2 8)

Equation -(2 4) gives a relationship between the discretization error E and this 
truncation error t, as

AE = t, -(2 9)

which then gives E <= A 1 tj, which has been shown [18] to give

9



E <= C Ilf II Ax2/(12n2) -(2  10)

whereC~B This gives the bound for E as [1,7,18,23]

E <= 0(Ax2) -(2 11)

The general bound can be E <= O(AxP) [7] where p is the order of the differential 

equation in question

The two most commonly used 'classical' iterative methods can be found in most 

numerical, statistical and matrix mathematics texts These are the Jacobi and Gauss- 

Seidel iterations, which for about one century were the only tools for solving small 

linear systems iteratively These can be described as operating on a one dimensional 

system of matrix form Av = b, giving the ith term as

They are also called linear stationary methods [1,12,18] However, the difference 

between these methods is that the Jacobi method employs two separate v arrays and 

doesn't overwrite existing elements m the v array but the Gauss-Seidel does overwrite 

the previous elements in the v array as we sweep over l The storage required for 

Gauss-Seidel is only one v array and is thus less than that of the Jacobi These methods 
are also known as relaxation methods and involve an initial guess at the solution They 

then proceed to improve the current approximation by a succession of simple updating 

steps or iterations, e g sweeps over i for equation -(2 12) The sequence of 
approximations v which is generated, should converge to the exact solution u of the 

finite difference problem This convergence depends on whether a physical solution 

exists to the corresponding analytical system, which can be tested by the existence of 

A '1 Matrix A must be invertable if a solution is to exist Splitting or decomposing 

matrix A into upper, lower and diagonal parts giving U, L and D respectively, we have

Iterative Methods

i-1 N I

(0 < 1 < N) - (2  12)

Av = (D - L - U)v = b -(2  13)

10



Then the Jacobi condition for convergence can be found from

vnew = D 1 (L + U )v 0id + D ' b -(2 14)

with

Pj = D 1 (L + U) -(2 15)

where Pj is the Jacobi matrix If written m the form of

vm+i = vm '  ®(Avm - b) -(2 16)

then B is referred to as a preconditioner The subscript m denotes the iteration 

number The choice of preconditioner can then dictate the convergence properties [1] 

Equation -(2 15) must satisfy the condition [1,2,12,14,18,20,23]

II Pj II < 1 -(2 17)

where the Euclidean norm of the Jacobi matrix Pj is taken,

II Pj II = (2  21 Py I2 ) 1/2 t -(2 18)

Brambles [1] has ngourously shown using the smallest and largest eigenvalues that 
for this condition to be satisfied, the eigenvalues of P,, A,(Pj) must satisfy

I W j ) U  < 1 -(2 19)

where lX(Pj)lmax is the largest absolute eigenvalue and is called the spectral radius or 

the convergence factor [2,7] In a Similar fashion, the convergence condition for 
Gauss-Seidel is found from rewriting equation -(2 12) as

v <- (D - L ) ' U v + (D - L ) 1 b

or

v <- Pv + g -(2 20)

with

11



Pg = (D - L ) 1U -(2  2 1 )

where the arrow [ 1,2,7] indicates replacement of v, as we sweep over l in an iteration 

given by equation -(2 1) The requirement is again that

HPgll < 1 -(2 22)

or

a (P g)lmax <  1 -(2 23)

A hand waving argument for the conditions m equations -(2 17) and -(2 22) is given by 

Briggs [7] from the general form of equation -(2 20) which is, v^1) = Pv(°) + g where 

the superscript denotes the number of iterations This is the general form of methods 

referred to as 'basic iterative methods', to which the Jacobi and Gauss-Seidel belong 

The exact solution is u  and u - v(n> = is the error after n iterative steps Using 

equation -(2 20), we can write

u  = Pu + g -(2 24)

Subtracting -(2 20) from -(2 24) gives e(') = Pe(°), which after n iteration sweeps 

becomes,

e(") = p n e(°) -(2 25)

and thus we can write

lle^ll <= IIPIIn lle(°)H -(2 26)

This leads to the conclusion that if IIPII < 1, then the error is forced to zero as the 
iteration proceeds This leads to the definition of the contraction number z

[1,12,14,18,20,23], which is a function of iteration number n,

||e(n+D|| <= z (") lle(n)|l -(2 27)

12



If the limit of the norm IIPII with n goes to zero, then the method is convergent 

However, this is only a sufficient condition [2,23] A necessary condition is that the 

spectral radius of P is less than 1 [2,7,23] Other sufficient conditions are

1) Diagonal dominance [2]
la j > 2  la,jl -(2 28)

2) A is real and positive definite
xTAx > 0 -(2 29)

3) A is an M-matrix [2] (This was not used)

The Poisson matrix A wasn't diagonally dominant, was real positive definite and more 

importantly it's spectral radius was found to be less than 1 (as expected) The error in 

the approximation can be calculated after each iteration via u - v(n) = eW, and we can 

obtain an error norm

Hell2 = ( 2  le,l2 ) 1/2

and plot this against iteration as in figure -(2 0)

However, since we don't normally possess the solution u, it is more practical to obtain 

the residual norm llrll2 where the residual r  is defined in the residual equation

r  = Au - Av -(2 30)

Hackbusch [1] has demonstrated using the iteration matrix M, v = M(vm), that 
there is no fundamental distinction between convergence estimates for the error and 

those for the residual, thus calculation of the residual will suffice Different types of 
Jacobi or Gauss-Seidel iterations appear if we sweep over l backwards from N -l to 1, 

this will be referred to as a backward iteration, and the initial sweep as a forward 
iteration Alternating between these gives a symmetric iteration Another effective 

alternative in the case of the Gauss-Seidel is to update all the even components first by 

the expression

V2i = l/a2l2|{b21 - Za2lJvJ - 2a2lJvJ } and later sweeping over the odd points,

V 21+l =  1 / a 2 1+1 21+1 {^21+ 1  "  ^ ^ l + i j V j  "  ^ ^ l + l j V j  1

13



Thus all even points are updated first, then all the odd points are updated This is 

commonly referred to as a Red-Black iteration This has a clear advantage in terms of 

implementation on a parallel computer Thus forward, backward, Red-Black and 

ordinary/simple Gauss Seidel iterations can be combined together to give the 

optimum results

Forward Red-Black Gauss-Seidel gives the best reduction in the residual norm or 

error norm with increasing iterations Gauss-Seidel was chosen instead of Jacobi, 

because of lower storage cost, and other reasons that will be discussed later

Plotting the residual norm for 100 iterations (figure -(2 1) we see that after around 10 

or less iterations, the residual flattens, as does the error norm in figure -(2 0)

This is a limitation in most iterative methods By considering the Fourier aspects of 
the error as in the next section, we can develop ways to overcome this

Fourier Discussion

If we consider the basis set of eigenvectors of the difference equation matrix A, any 

function in the space defined by the problem can be written in terms of this basis 

The error or residual which are both linear, can be written in terms of these basis

14



Nearly all multignd texts [1,7,12,14,18,20,23] choose the Poisson case because it has 

the advantage that its basis vectors are well known, and most importantly they can be 

written as

v(x,) = I k sin(lkn/N) -(2 31)

where 1 is the point on the grid between 0 and N, and k is the mode This is in fact a 

straight forward sine series, and can be used to describe the error Fortunately, this 

corresponds to a sine Fourier analysis and from this we can see how the error behaves 

with iteration, or more precisely, the relative strength of each of these eigenvector 

elements can be observed with increasing iteration, due to the coincidence that these 

eigenvectors for the Poisson case are in fact a sine series Another reason the sine 

Fourier transform was chosen as opposed to the cosine or fast Fourier transform was 
because of the zero periodic boundary conditions, v0 = vN = 0 For the simple Poisson 

case, Briggs and McCormick [7,18] have exploited the fact that the exact solution is 

u(x)=0 for all mesh points Thus plotting v(x,) gives the error at each mesh point, 

shown in figure -(2 2), after 100 iterations (notice only the lowest mode remains, e g 

a sine wave)

F ractional Error Sine Fourier Transform  of Error

Figure -(2 2) shows the error at each grid point, and figure -(2 3) shows the sine Fourier 
transform o f the error, both after 100 iterations Both suggest that only the low frequency 
errors remain, the lowest being the strongest, (a simple sine wave)

The magnitude of each mode k is given by the sine Fourier transform function [10] 

(given in appendix A), and the result after 100 iterations is plotted in figure -(2 3), 

where an equal amount of each mode was initially present (seen m the Fourier



transform as a straight line) It is then possible to control the initial guess in terms of 

frequency content We can then set the initial guess to contain only one frequency We 

can then repeat this for all the frequencies or modes, and observe how each is reduced 

with increasing iterations Figure -(2 4) shows the number of iterations required to 

reduce the residual to 1 % of the original

Error Mode P resen t in Guess

Figure -(2 4) shows the number of iterations required to reduce the error, for each 
individual error mode separately Less iterations are required to remove the high frequency 
error modes, where as more are needed for the lower frequencies

From these figures, it becomes evident that the lower k modes or 'smooth' modes are 

difficult to remove, and this is in fact the reason why the residual or error fails to be 
reduced further, once the higher k modes or 'oscillatory' modes have been removed

Smoothing Properties

This property that-removes the high frequency modes but leaves the smooth, is 

referred to as the smoothing property Thus our concern would be to find a mechanism 

to reduce these smooth modes As we shall see later, this is achieved by the Coarse

16



Grid Correction Scheme Any iterative method that reduces the high frequency error 

more so than lower frequencies is referred to as a 'smoother' The Gauss Seidel is the 

most convenient and is often a very effective smoother [12] In order for the Jacobi 

method to perform as a smoother, it must be weighted or damped [7,12,18], that is, 

instead of replacing each new point v, with the new calculation, we add some of the 

new to the old approximation for this point It will be explained later why it is essential 

to have a smoother in a multi grid method Hackbusch [12] has defined a smoothing 
number gl which is close to the spectral radius, and can thus be used to approximate 

this for small iterations, as the eigenvalues are not readily known, and there calculation 

may prove as costly as the original problem This is a function of iteration number n,

a L(n) = sup IASI/|A | .(2 32)

Where S is a linear transform matrix such that, em+1 = S(em,b) Initially, o L(0) = 1 S 

can be obtained after several iterations, thus this should indicate after several iterations 

how the smoothing number decreases, as less high frequency modes are present A 
smoothing rate a b was introduced by Brandt [3], in terms of the kth eigenvalue A,k of 

S,

o b(n) = sup max{ l?ikl(n) N/2 + i < k < N -l } -(2 33)

This also has an original value of 1 and decreases with iteration

Coarse Grid Correction Scheme

So far we have established that many standard iterative methods posses the smoothing 
property However the objective is to eliminate all frequency elements in the error (and 
thus the entire error) A good initial guess could improve the relaxation scheme, and a 

well known technique for obtaining this is to perform some preliminary iterations on a 
coarse grid, and then use this as the initial guess on the fine grid

Instead of the sine founer transform, the fast fourier transform was used to described 

the error after m iterations as

2n-l

£ c ma e ,(j6a) with 0 a  =  7ta/n -(2  34)
a=0
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Orthogonality of {e'O^“)} [1,7,12,14,18,20,23] allows us to define an amplification 

factor [23] g(0a), between each mth iteration as

Cma = g(0a)cm' a  an<*

g ( 0 a )  =  e ' 0 9 « ) / ( 2 -  e ' 0 6 « ) ) - ( 2  3 5 )

Wesseling [23] reported that

lg(0«)l = (5 - 4cos0a) 1/2 -(2 36)

and giving the interval as h = 1/n

max'lg(0a)l = lg(0,)l = (1 + 20,2 + O(0,4) )m

= 1 -47t2h2 + 0 (h 4) -(2 37)

this is in general agreement with the spectral radius or convergence factor behaving as 

[7,12,18] l-0 (h 2) It is possible that Successive Over Relaxation (SOR) method may 

achieve maxlg(0a)l ~ l-O(h) for the Gauss-Seidel and Jacobi methods Both would then 

suggest increasing h would give better convergence Also, iterating on a coarser grid 

(with increased h) would prove less expensive since there are fewer unknowns to be 

updated Recalling that most relaxation schemes discussed, have the common flaw of 

preserving the low frequencies or smooth components in the error Assume that only 

modes below k = N/2 are left The even points on the fine grid would be described on 

the coarse grid as

This states that the kth mode on the fine grid (denoted by grid h) appears as low 

frequency or smooth on this grid, but the same kth mode appears as a higher frequency 

mode on the coarse grid (denoted by 2h) There was no reported advantage in using 

grid spacmgs with ratios other than two [7,23], between fine and coarse grids This 

ratio of two was found to be almost universal practice These higher frequency modes 

on the coarse grid can then be eliminated by iterating on that grid.

This reasoning gives the advantage of either starting on, or transferring down to a 

lower grid (restriction), and then transferring back to the fine grid (interpolation or

0 < k < N /2  -(2  38)
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prolongation) Both of these terms are common in numerical analysis However, 

should any high frequency modes remain after iterations on the fine grid, (k > N/2), 

they are misrepresented on the coarse grid 2h as the (N - k)th mode, in a phenomenon 

known as aliasing The effects of this can be later removed on the fine grid

We now make use of a very important relationship between the original problem, and 

the residual equation, which is that, relaxation on the original equation Av = f with an 

arbitrary initial guess is equivalent to relaxing on the residual equation Ae = r with the 

specific initial guess e = 0 [7,12,18,23] It was this connection that prompted the 

combination of this correction scheme and the transfer to the coarse grid

First, we iterate to remove high frequency modes then obtain the residual from f-Av = 

r We then proceed to transfer the fine grid equation Aheh = rh to the coarse grid to 

give A2he2h = r2h Further iterations on this equation will eliminate the high frequency 

modes on this coarse grid We then interpolate the error e2h back onto grid h as eh, and 

add it to the approximation v giving

vh = vh + eh -(2 39)

It now remains to be seen how we express or define grid transfer, both restriction to 

lower and interpolation to higher grids Linear or direct restriction would simply 

involve transferring all the even points of eh on the fine grid h to the points on the 

coarse grid 2h, to give e2h, diagramatically shown in figure -(2 5), taken from Briggs 

[7]
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The general routine for this procedure is given by the C function Restnct() in 

appendix A, which allows for the full weighting, or averaging between surrounding 

points on the fine grid h Two possible approaches are possible, and the differences 

will be discussed in the appendix C,

e2h, = >/4( vh,M + 2vh,, + vh,l+l ) 0 < i < N/2 -(2 40)

We can vary the degree of averaging of each of the surrounding points and this is 

known as weighted restriction

For transferring the error e2h from coarse to fine grid, the function In te rp o la tio n ) 

shown in appendix A, uses linear interpolation given by

eh2l = e2h, 0 <= i <= N/2 - 1 -(2 41)

eV n  = 1/r2( e2h, + e2h1+l ) -(2 42)

Briggs [7] has graphically illustrated this by figure -(2 6), where the black dots are e2h, 

and the white dots are the interpolated points on grid h

In order for this linear interpolation to work, it is important that eh should appear as a 

smooth vector on grid h with smooth modes as in figure -(2 7a), (black and white 

dots), since high frequency modes cannot be represented on the coarse grid 2h except
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by aliasing, and thus interpolation (between black points) would give a bad 

approximation (for where the white dots should be), as shown in figure -(2 7b) from 

Briggs [7]

We now need to define the coarse grid matrix operator A2h, which describes the finite 

difference Poisson problem on the coarse grid 2h From equation -(2 2), which 

describes the fine grid operator Ah, it becomes apparent that the interval Ax should 

change from h to 2h, e g effectively double, since there are now only N/2 - 1 internal 

mesh points on the grid 2h The grid on which a particular vector applies to is denoted 

m the superscript This approach simply calculates A2h as if it were the initial problem, 

except with interval 2h and N/2- 1 internal grid points This is referred to as the direct 
approach Another way of representing A on grid 2h is by the Galerkin

[1,7,12,18,19,23] representation This can be written in terms of functions as

A2h = Restnct(A h)Interpolate() -(2 43)

where the open brackets indicate that this operator will work on vector to the 

right This is more commonly written as

A2h _ i h2h Ah j2hh or .(2 44)

A2h = RAhP -(2  45)



where we have defined the two operators m matrix form, R and P for restriction and 

interpolation respectively This Galerkin method involves defining two matrices P and 

R, thus using up extra storage, but does not require redefining the whole problem 

matrix A on each level The Galerkin method may therefore costs less CPU time Since 

almost all of the non diagonal elements in the matrices P and R are zero, it may also be 

possible to make the product RAP an operation as opposed to matrix multiplication, 

thus further saving on CPU time

It is now possible to present a general form for the coarse grid correction scheme 

[1,2,8,52,53,54] using the Restricto and Interpolation() operators

1) Iterate V[ times on Ahfl1 = vh on the fine grid h, with the initial guess vh

2) Compute the residual for coarse grid 2h, r2h = Restrict(rh = f*1 - Ahvh)

3) Iterate v2 times (or in fact solve) A2he2h = r2h on the coarse grid 2h

4) Correct fine grid approximation, vh = vh + Interpolate(e2h)

5) Relax v3 times on Ahvh = f1 on the fine grid h

The three parameters v t , v2 and v3 can be chosen to give optimum performance as 

discussed later It is important to consider the advantage of such a scheme again 

Iterating on the fine grid will eliminate the oscillatory components of the error, leaving 

a relatively smooth error Assume that we cannot solve the residual equation exactly 
on the coarse grid 2h, but do obtain a good approximation at the error Since this error 

is smooth, interpolation will work very well and the error should be represented 
accurately on the fine grid

A program was written to implement a coarse grid correction scheme, and the results 

after three or more iterations on both grids, agreed with those of Briggs [7], if equal 

amounts of two initial modes are present
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The Vcycle and other Multigrid Cycles

While on the coarse grid 2h, it is possible to perform another nested coarse grid 

correction scheme, first finding the residual r2h, transferring this onto a coarser grid 4h, 

via the restriction operator, Restrict(r2h) We then perform several iterations on the 

equation A4he4h = r4*1 on the grid 4h We then interpolate the error, mterpolate(e4h) and 

add this to the approximation e2h, e2h = e2h + Interpolate(e4h) It may also be possible 

to solve e4h exactly, however this may not be necessary If nested coarse grid 

corrections are applied m this manner until we reach the coarsest grid we can then 

proceed upwards, continuously correcting the error on each level as above, until the 

fine grid is reached again This basic idea is referred to as the Vcycle

As discussed later, for large meshes, this will prove more efficient than solving exactly 

on the grid 2h Also it may not be necessary to descend to the coarsest grid Given a 

mesh with N = 2q, having 2q -1 internal grid points, each again of separation h, the 

coarser grid below this will have 2(q"l)-l points and a grid separation 2h, and so on as 

we descend down the grids The coarsest grid is given by Lh, with L = 2^Q_|), where Q 

> 1 The Vcycle procedure is the fundamental cycle in multigrid and can be found in 

most multigrid texts Briggs [7] has summarised the Vcycle procedure as follows,

Iterate on Ahvh = f*1 vx times on the fine grid h with the initial guess vh 

Compute r2h = Restrict(rh)

Iterate on A2he2h = r2h Vj times on the grid 2h with the initial guess e2h=0 

Compute = Restrict(A2he2h - r2h)
Iterate on A4he4h = v, times on the grid 4h with the initial guess

e4h=0 

Compute r*h = Restrict(A4he4h - r*)

Solve on ALheLh = rLh on the coarsest grid Lh with the initial
guess eLh=0

Correct e4h = e4h + Interpolate(e8h)

Iterate on A4he4h = r411 v2 times on the grid 4h with the corrected guess

e4h

Correct e2h = e2h + Interpolate^4*1)
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Iterate on A2he2h = r2h v2 times on the grid 2h with the corrected guess e2h

Correct vh = vh + Interpolate(e2h)

Iterate  on A h v h  = fh v2 times on the fine grid h with the corrected approximation vh

It is also worth noting that any given number of iterations can be performed on any 
particular grid, not just Vj while descending, and v2 while ascending It may be 

possible to find the best performance by comparing the results from the different 
combinations Before the Vcycle can be written recursively, the notation f2*1 will be 

used instead of r2h, and v2h instead of e2h We have now removed both e and r from 

the notation Defining the Vcycle function vh = V c y c le tv ^ .A 11), recursively the 

Vcycle has been written by Briggs [7],

vh = Vcycleiv*1,?1̂ 11)

1) Iterate Vj times on Ahvh = tf1 with a given initial guess vh

2) If this grid is the coarsest grid, then go to 4 
Else Ph = R estrict^  - Ahvh)

Set v2h =0 as initial guess
repeat v times (v2h = Vcycle(v2h,f2h,A2h))

3) Correct vh = vh + Interpolate^2*1)

4) Iterate v2 times on Ahvh = f*1 with initial correction vh

If v is 1, then a Vcycle results However if v is 2, a Wcycle results, so called because 

of its shape as it goes up and down the grids with time If we defined a four level grid 
system, the number of grid points would be given by figure -(2 8a) For this four level 

system, figures -(2 8b, c, and d) shows the Vcycle, Wcycle, and the Full Multignd 
Cycle, which we will now introduce

This Full Multigrid Cycle (or FMcycle) starts on the coarsest level, and consists of a

series of Vcycles at each level as we ascend to the fine grid This utilizes the idea of

starting on the coarsest grid, so as to obtain a rough initial guess for the higher grids 

Brandt [5] put forward this idea and has described the many advantages of this 
approach Bnggs [7] has written the algorithm as
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vh = FM cycleO h^A *1)

COMPUTE f^ph, ,

SET vh,v2h, to zero

v4h = v4h + Interpolate(v8h) 

v4h = Vcycle(v4h,f4h,A4h)
V2h _ v 2h + Interpolate(v4h) 

v 2h = Vcycle(v2h,f2h,A2h) 

vh = vh + Interpolate(v2h) 
vh = Vcycle(vh,f*\Ah)

This can be written recursively as

vh = FMcycle(vh,fh,Ah)

1) If this grid is the coarsest grid go to step 3 

Else f211 = R estrict^  - Ahvh)
Set v2h =0 as initial guess 
v2h = FMcycle(v2h,Ph,A2h)

2) Correct vh = vh + Interpolate(v2h)

3) vh = Vcycle(vh,ftl,Ah), v  tim es

Notice that this calls the Vcycle() function, as well as itself recursively For any 
discretized stationary PDE problem, a full multigrid cycle FMcycle() with Vj and v2 = 
3 is enough [19] to solve the equation Av = f  with v =1, each time Vcycle() is called 
It is now apparent that the coarse grid correction scheme is the key part m the 
Vcycle(), and the Vcycle() is the fundamental cycle in all multigrid cycles The way in 
which each of the different cycles ascends and descends the grids is referred to as the 
multigrid schedule [23] There is no universal 'Black Box' multigrid algorithm that 
works for all systems [12], so each of these methods may be tested, for any particular 
given problem in question, to observe which performs best

Solve or iterate on the coarsest grid
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Performance of the Poisson Equation

In order to discuss and compare the efficiency of all the above methods, both the direct 

and the iterative, we must consider how much CPU time each of this would roughly 

use It is common in multigrid literature to define a Work Unit (WU) [4,7,19] as the 

amount of computational work done, or CPU processing time, as the work required to 

compute one iteration or relaxation on the fine grid This has been put forward as the 

golden rule of computation by Brandt (1982) [3,4,6], although the WU can be defined 

differently As has been put forward a number of times by Brandt in a number of 

publications, the WU depends not only on the type of method to be used, but the 

choice of mathematical model used In general, many publications show that for a 

given equation Av = f, it will cost at least several WU's to solve [23] If we consider 

the Poisson equation for the simplest case, Av=0, with both boundaries set to zero, we 

can plot the log of the error norm or residual norm against cycle, or now in this case 

against the number of WU's performed

We will consider the computational cost of the WU's of for the Vcycle, Wcycle and the 

FMcycle in accordance to the rough guide given by Bnggs[7] Consider a Vcycle with 

v iterations on each grid while descending and ascending It is customary to neglect the 

cost of mtergrid transfer operations which could amount to 15-20 percent of the cost 
of the entire cycle (for the Poisson case) On the fine grid there are v iterations, or v 

WU's, then on the next coarse grid 2h there are 2_d times less, where d is the dimension 

of the mesh Similarly on the grid 4h there are 4‘d times less The grid ph has p_d times 

less Adding these together as an upper bound geometric series we get

1 Vcycle costs = 2v{l+  2"d + 2~2d + +2~nd} < 2v ( l-_d )  W U's -(2  46)

The factor of two arises because we stop on each level twice Similarly the cost of a 
FMcycle with v iterations can be roughly given from this guide If the cost of a Vcycle 

starting on the grid 2h is 2*d of the cost on the fine grid, then starting on grid 4h would 
cost 4 'd times as many WU's Any grid ph would then cost p 'd times less This results 

in the series

1 FMcycle = 2 v ( - j - -  7 ){l + 2"d + 2~2d + + 2 “nd} < 2 v (  ̂ 1 W U's -(2  47)
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It now becomes apparent that as the dimensions of the problem increase, we increase 

the performance of multigrid cycles Using the above guide, a FMcycle m 1 -D would 

cost 8 WU In 2-D the cost is about and m 3-D 5/2 In each case the definition and 

the amount of work by each WU is different, but WU can be used to compare different 

systems in this way

Using the above reasoning, it can be shown, that the series for the more complicated 

Wcycle is given by

1 Wcycle = 2v{l + 2d (2“d) + 22d (2”2d) + + 2nd (2“nd)} = 2v{n} W U's -(2  48)

For six levels, in 1-D, with a total of 26-l points, we roughly surmise,

Vcycle WU < 4v 

Wcycle WU ~ 12v 
FMcycle WU < 8v

The above has defined a work function as one iteration, which m turn is proportional 

to N, for the Poisson case For the Poisson equation, it is not necessary to operate on 

all the elements, only the tndiagonal elements It is known that all other elements are 

zero Thus the iteration is given by

which is obtained from equation -(2 1) If this is performed for every ith point on the 

grid, then it can be easily seen that for one iteration, we have two additions and one 

division, e g approximately 3N operations, counting multiplication, division, addition 
and subtraction as one operation

However, if it is not known what elements are zero throughout the matrix, or if there 

is no definite pattern, e g certain off diagonal lines are known to be non zero, then the 

general matrix form of the Gauss-Seidel iteration must then be used as given by 

equation -(2 12)

v, = V2( f(x,) + vM + vI+l) (0 < l < N) -(2 49)

i i N- 1

(0 < 1 < N) -(2  50)
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Using this equation, and looking in more detail at the number of mathematical 

manipulations required, one iteration now consists of

l 1
1) X ^ jVj having N/2-l multiplication and additions, gives N-2 manipulations

j= i

N- 1

2) ^ a  v having N/2-l multiplication and additions, gives N-2 manipulations
j= i+ i

l - l  N- 1

3) b, - ^ a ^ V j - £ a ljVj having two subtraction's for each ith term
j=i j=i+i

l 1 N 1

4) l/a. { b, - ^ a y V j - ^S yV j } giving one division for each ith term
j= i  j= i+ i

5) the above repeated for each ith term, (repeated N times)

Summing from 1) to 4) gives 2N-1 ~ 2N operations, and this procedure is then 

repeated for each ith term, e g  N times, indicating that one iteration is now 

proportional to N2, instead of the previous N for the Poisson case Equations -(2 46 - 

2 48) now give

Vcycle cost in WU's < 8vN2 manipulations

Wcycle cost in WU's ~ 24vN2 manipulations

FMcycle cost in WU's < 16vN2 manipulations

The storage considerations involve storage for the problem matrix A, the solution v 

and the RHS f  on all levels In this case, even though most of the elements m A are 

zero, we cannot identify a pattern as to which diagonals exist, why and where these 
will be in A, and thus cannot represent A by its diagonal elements Also, ionization 

causes a further problem, as its elements, unlike all others are placed in a row For 

these reasons, A was not represented by its diagonals, but left, as a sparse matrix

For a d dimensional problem, A has (N2)d or N2d elements, f  and v have both Nd 

elements The total is then N2d+2Nd, on the fine grid On the grid below this, this
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quantity is reduced to (N/2)2d +2(N/2)d, or 2 '2d(N)2d +2(2‘d)(N)d The storage cost for 

all levels can then be written as,

N 2d{l + 2~2d+ 2~ 4d + +  2~2nd} + 2 N d{l +  2 “d + 2 " 2d +  + 2 ' nd}

<  +  2 N i ( r - ^ )  - ( 2  51)

If w e consider the Poisson equation for the simplest case, A v=0, with both boundaries 

set to zero, we can plot the log o f  the error norm or residual norm against cycle, or 

now m this case against the number o f  WU's performed (figures -(2 9a)) The direct 

method o f  restriction was used W e also observe from this that the V cycle was most 

efficient, the W cycle next and then the FM cycle

H owever, such plots don't give any details o f  the norms during the cycle Briggs [7] 

has shown a very detailed plot o f  how these norms behave throughout a vcycle with 

v=l iterations at each level (figure -(2 9b))

Vcycle, Wcycle a n d  FMcycle ( y = l )

Work Units

Figure -(2.9a) shows how the fractional residual decreases for different cycles The direct 
method of restriction is used
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In general agreement with this for the same simple Poisson case, figures 2 lOa-c, show  

that if we increase n to 5, and then 10, the performance, or slope o f  the curves 

decreases The Galerkin method o f restriction was used, and this converges faster than 

figure -(2 9a) using the direct method (for the Poisson case)

As mentioned before, when writing the code for the Restnct() function, it became 

apparent that there were two possible ways to achieve this (ignoring the weighting 

effect) These are to be referred to as Restnct(Ah) and Restnct(A2h) The difference 

between them is discussed in the appendix C They give slightly different results, and 

this will be discussed later W e have now looked at how the multignd program works 

for our test Poisson problem Chapter one has introduced the form o f  the Boltzmann 

problem N ow  we consider the application o f the multignd method The same 

multignd algorithms will now be applied to the Boltzmann problem, and the results 

observed
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Performance Results for the Boltzmann Case (Ch 3)

Multigrid Program for the Boltzmann Equation

The program M ultignd_Study c was developed from existing code which solved the 

same plasma problem, except with a direct method, and by integrating forward in time 

steps until a steady state solution was found This program solved the steady state 

equations in matrix form given by A f=0 The program also explores the results o f  

setting different multigrid parameters or multignd settings, to observe the best 

convergence obtainable A  more detailed listing o f  these settings is given in the 

appendix C Such multignd parameters would be for example, whether the mechanism 

for restriction was weighted or linear, or if this was o f type AH or A2H  (Chapter 2) 

The type o f  cycle used could be Vcycle, W cycle or FM cycle The level to which this 

cycle descends to is referred to as the level, and how many iterations v  are performed 

on each level will all effect how the multignd method performs

The definition for the problem matrix A , can be given by either the direct approach, or 

the Galerkm method The direct approach involves redefining the matnx A  at each 

level for that given number o f  grid points, but with a different energy interval The 

Galerkm method calculates A  on the lower grids by the expression R A P  given in 

chapter 2 by the equations -(2 43,44,45)

The program contains macros for each of the corresponding settings These are all 

given in the appendix A If these macros are true, then the program adopts these 

settings If they are false, then the settings in question are not used

The program can repeatedly solve the problem for each different combination of 

multignd settings or parameters and present the best results obtained This is achieved 

by the Multigrid Operations section o f the code (discussed in appendix C)

The Main Program Procedural Flow

A  list o f  all the macro's related to the multignd aspects o f  the program is given in the 

appendix A  A list o f input and output files is given also It is possible to set exactly 

what the program does by setting macro's (m ost o f which are either set to 1 or 0). 

Ongmally a third data file was used for this, but it was found more simple and



workable to use macro's for this purpose Appendix A also gives a listing and brief 

explanation o f the prototypes o f all the functions in Multigrid_Study c and Cycles c

An overview o f the program flow is given here, and a more detailed account is 

presented in the appendix C The first o f the two data files, b l7  dat is read, which 

contains information regarding plasma parameters, and the size o f the problem q, 

which would give 2q -1 internal grid points Memory is then allocated for the vectors 

and matrices involved, whose size is now given The second data file xs dat is then 

read This contains the cross-sections for all the collisional processes between 

electrons and the neutrals, both elastic and inelastic The elements o f  the matrix A are 

now calculated, for each grid, in accordance to the multignd settings The boundary 

conditions are also set, where the RHS can be made non zero as in equation -(1 13) 

The problem is now defined, and the multignd solver now steps into play The set 

problem can be solved again for a range o f multignd parameters given The 

performance is then written to output files, indicating which multignd settings for the 

same given problem have performed the best Thus multignd methods are being 

compared, by experimentation, to find the optimum settings The simple flow  diagram 

given in appendix C shows how the above has been split into 7 blocks or sections of 

code These blocks are discussed m more detail in the appendix C

Code Testing

The LU D  solver, (achieved by the function Solve(), see appendix C), was tested on a 

3x3 matrix It was then tested for the unique Poisson case, An = n' = 0, with only one 

solution possible, n=0 only, given the two boundary conditions, n0=0 and nN=0 This 

was tested for different sized meshes In the multignd case, where a solution exists on 

each level, it was tested also The LU D  solver was then tested for different boundary 

conditions, and was found to function correctly

An effective method for testing the multignd code, is using cyclic reduction [2] This is 

possible for the Poisson case, and if full weighted restriction is used, the solution can 

be found by proceeding down and up the grids with zero error, or exactly zero 

residual There is no reason why any multignd solver should ever give such an exact 

result At first, it appeared that multignd was performing extremely successfully, but 

by coincidence, the mechanism o f  descending to the coarsest gnd with only one point, 

and then ascending back to the fine grid, using only red-black (one is sufficient), 

(forward or backward), Gauss-Seidel iteration on each level, and using weighted
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restriction o f type A2H, corresponds, mathematically to the process o f cyclic 

reduction This caused confusion However, this fact was used to test the multigrid 

code, since successful cyclic reduction indicated that the code is working correctly, in 

so far as the method o f descending and ascending to grids is correctly handled This 

was found to be a useful test, when ever important fundamental changes were made to 

the code The LU D solver could also be tested by inserting it at any level in the cyclic 

reduction process, and solving on that level instead o f proceeding down further to 

lower levels The residual still remained exactly zero The only explanation for this is 

that both LU D and multigrid processes were functioning correctly

Several functions have been tested, particularly Residual() (see appendix C) which 

calculates the residual in equation -(2 30), as this was vital in viewing the performance 

o f multigrid Similar functions were tested which calculated the error norms These 

were rewritten several times, using different methods, all o f  which gave the same 

result

The following notation will be used m the graphs, the number o f iterations on each grid 

v, and the lowest level (referred to as the level) which the given cycle descends to, will 

be denoted by, v , level ( e g  3,4 corresponds to v=3, level=4) The fine grid is level 6, 

which contains 26- l  internal grid points

If the type o f  restriction is not mentioned, it is to be assumed that it is o f  types AH and 

LINEAR, since these generally give the best results for the Boltzmann case Unless 

otherwise stated, it is to be assumed that the type o f Gauss-Seidel iteration is forward, 

and basic/ordinary (not red-black) The figures produced, unless otherwise stated, are 

the output o f the program M ultignd_Study c, which have been plotted by various EDL 

software programs These programs read m the data from the output files, and plot 

them accordingly

The Residual

It is almost universal practice in multigrid texts to use the residual as a measure o f the 

performance o f  the given solver in question Equation -(2 30) gives the expression for 

the residual However, if we consider the matrix problem A v = f  =  0, the absolute 

value o f  the residual is a factor o f the size o f the elements o f A , and f  If the boundary 

condition is set by making the first element f, on the right non zero, then the size of 

this also effects the size o f the absolute residual
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However, since the whole equation can be multiplied by any factor, then the size o f the 

absolute residual itself is of no significance to the success or failure o f the method This 

was the incentive for using a fractional residual, simply dividing the resulting absolute 

residual by the initial residual At first glance one could assume that there should not 

be any problem with this approach o f using fractional residual to monitor performance

The problem arises due to the observation that the residual results are not always 

reproducible after the same number o f multigrid cycles, only because o f the arbitrary 

boundary conditions and initial guess may be different It is not how close to the 

solution the initial guess is, as clearly this will mean less work for the solver, but the 

actual size or summation o f the elements in the initial guess It is found that fractional 

residual may be a function o f the boundary condition and the initial guess, but there is 

nothing to connect these two parameters, e g ,  for any given chosen boundary 

condition, there could be any arbitrary initial guess size (£ fguess), and visa versa By 

setting a boundary condition, this forces a unique solution, which m  turn suggests that 

the solution should sum to a given constant, Efsol (LUD) For the Boltzmann case, any 

such problem does not arise unless f, is non zero, and the boundary condition is large 

enough such that

I f sol (LU D ) > Xfguess -(3 0)

Multigrid however, for the Boltzmann case, even when a boundary condition is set, 

proceeds to solve the problem to within a constant o f the actual solution, given by 

LU D This is easily seen from figure -(3 0), which plots the multi grid and LUD  

solution This is the case if the boundary conditions at both ends are equal [23], but the 

left boundary has been set to non zero This is the case when both normalization's n(8) 

and f(e) are solved for For the time being the n(e) normalisation will be chosen 

Figures -(3 la-d) show that for the Boltzmann case, as the size o f  the initial guess 

becomes smaller than that o f the solution, from 1E+0 down to IE-6 o f  its size, the 

results becom e markedly worse (this is only seen in the levels lower than 5) The 

multigrid solution is no longer solving to within a constant, as seen m figure -(3 0) 

When the initial guess is IE-6 smaller than the solution, the shape o f  this curve as seen 

in figure -(3 0) cannot be superimposed onto the LU D shape, as it can when the initial 

guess is 1E+0 and 1E+6 the size o f  the LUD solution If the initial guess is 1E+6 larger 

than the size o f the LU D solution, multigrid is seen to solve to withm a constant, as 

figure -(3 0) clearly shows, and the corresponding fractional residual suggests that the
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solver is converging just as successfully as it did when the initial guess was the same 

size as the LUD solution This confirms equation -(3 0)

The problem is that if  the residual is not reproducible for different guess size, and since 

it depends on the relationship between two arbitrary parameters, the guess size and the 

solution size (dictated by the boundary condition), then from this we cannot depend on 

the residual to give a reliably account o f the performance However, equation -(3 0) 

gives that the residual is reproducible for the Boltzmann case, once the arbitrary guess 

size is larger than that o f  the solution This is criteria by which the performance results 

will proceed

Another indication o f performance is by setting a convergence criteria This will be 
discussed later, but this has its limitations

Different Size Initial Guess to that of Solution

Energy(grid pts)

Figure -(3 0) shows the multigrid solution when the initial guess size (Zfguess) 
is E+6, E+0, and E-6 that of the LUD solution size (EfS0,(LUD)) For E-6, the 
multigrid solution visibly appears different, and not withm a constant to the LUD 
solution
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This size indifference between the guess and solution, is solved by normalizing the size 

o f the approximation to that o f the solution after each cycle However, this defeats the 

purpose o f the objective, in that the solution is unknown to the multignd solver, as is 

its size (Efsol(LUD) ) It is found that by doing this, the residual will continue to 

decrease down to the order o f IE -15/-16 This will be discussed later

The Vcycle is the fundamental cycle in multignd, from which all the other cycles have 

be constructed from For this reason, we first consider its performance, as if this is bad, 

then the other cycles will tend to follow  suit

Figure -(3 2) shows results for the different types o f restriction (AH or A2H, LINEAR  

or WEIGHTED) From this we see that the CGCS (Coarse Grid Correction Scheme, 

e g Vcycle to level 5), denoted by 1,5, 2,5, and 3,5, gives the best performance If the 

multigrid method was working correctly, the cycles to lower levels should at least 

perform better than the CGCS However, level 4, 1,4, and 2,4 both fail, and 3,4 barely 

achieves anything better than that given by the Gauss-Seidel iteration (denoted by GS) 

This suggests that at least v=3 is required to give a reasonable improvement on the 

convergence o f the Gauss Seidel This is not in accordance with the general multignd 

theory The Vcycles 3,3 only converges if the restriction types are AH and 

W EIGHTED All other 3,3 Vcycles fail or tend to perform worse than the Gauss 

Seidel, and are thus clearly failing All cycles to lower levels fail Vcycles 3,4 A2H, 

LINEAR and 3,4 A2H, W EIGHTED also fail AH 3,4 LINEAR and WEIGHTED  

both converge, but not veiy convincingly The fact that the CGCS performance shown 

in figure -(3 3) is better than the previous figure -(3 2), and that the Vcycle fails on all 

lower levels indicates that multigrid is not performing in the correct expected manner

At this point, we could speculate that perhaps something is occurring wrong on the 

lower grids The code was tested, and was found to work for the Poisson, and the 

cyclic reduction testing as mentioned before This testing suggests that it is not the 

multignd code mechanism that is at fault This code is in fact doing what is asked o f it

Figure -(3 3) shows that AH, LINEAR 2,5 gives almost an identical result as AH, 

W EIGHTED 2,5, thus indicating that for CGCS, the types LINEAR and W EIGHTED  

have little or no significant effect on the results The type A2H  however may give a 

different result than that o f  AH Another concerning issue is the manner in which the 

residual seem s to flatten out in figure -(3 3), at around fres=10'6. This is not small 

enough to be o f  the order o f  the round o ff error that the double precision code uses 

The residual for the Poisson case has been observed to converge to 10'25 or more, and
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has not been seen flattening out in this manner The Gauss-Seidel iteration, if 

continued for several hundred iterations, will give a continuously decreasing residual, 

where flattening has not been observed as in the case o f CGCS or Vcycles to lower 

grids Thus the problem is definitely associated with the lower grids As the coding 

mechanism is functioning correctly, perhaps the representation o f the problem on the 

coarse grids is at fault in some way This was checked in great detail several times, and 

is believed to be representing the problem m the required manner in accordance to 

multigrid procedure

Vcycle, Type AH, A2H, Linear, and Weighted

Work Units

Figure -(3 2) showing the different types of restriction methods, for the Vcycle, for various 
different v and level of descent
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Vcycle, with different types of Restriction

Work U n it s

Figure -(3 3) showing the different types of restriction methods, for the Vcycle, for various 
different v and level of descent AH, LINEAR 2,5 gives almost an identical result as AH, 
WEIGHTED 2,5, thus indicating that for CGCS, the types LINEAR and WEIGHTED have 
little or no significant effect on the results

Figure -(3 4) shows that the nearest performance to the CGCS is the CCC1 cycle, 3,4  
which involve a Vcycle to level 4, follow ed by a Vcycle to level 5 Again this indicates 
that the problem o f the lower grids is apparent on level four
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CCC1 a n d  CVC, l e v e l  = 4

Work U nits

Figure -(3 4) shows the Vcycle, CGCS cycle and the CCC1 cycle The Vcycle gives the 
best results

Previously it was suggested that one solution to the residual problem is to normalize 

the approximation after each cycle to that o f the solution This defeats the purpose o f a 

black box solver, but, unexpectedly, this particular normalisation is seen to be 

extremely effective W e could normalize to any arbitrary constant, but the residual and 

(the observed result) is not as good as normalizing to the solution, as shown in figures 

-(3 5) and -(3 6) Figure -(3 5) shows that the cycles for 3,4 converge much more 

rapidly, especially the CCC1 cycle, which now converges better than the CGCS, 

shown in figure -(3 5), (V cycle 3,5)
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N o r m a l i z e d  to  LUD S o lu t i o n ,  v - 3, level  = 4

Work Units

Figure -(3 5) shows the different cycles with normalization after each cycle This shows 
the failure of the FMcycle and the Wcycle

N o r m a l i z e d ,  V c y c l e  C G C S  a n d  C C C 1  C y c l e

Work Units

Figure -(3 6) shows the CCCl Cycle, for different v and level, with normalization after 
each cycle



These results are not possible however, unless the solution (or its size is known) It is 

however not possible to find the size (£ fsol) without knowing the solution These 

results tell us that the multigrid solver is converging to within a constant, or that the 

solution is o f the wrong size to that dictated by the boundary condition The LUD size 

(S fso|(LUD)) is the exact size dictated to it by the boundary condition, and thus the 

size o f its solution gives the lowest possible residual, lower than any other size (Zfso!)

If the multigrid solver solves to within a constant, then if  we test the residual o f  its 

result with boundary condition equal to zero ( giving the infinite solution problem), or 

having f0=0, it could be expected to be better However, the residual result was 

identical to the case when f0 is non zero, because o f  the negligible effect that a non 

zero f0 had m the calculation o f the residual This suggests that the presence o f a non 

zero f0 has little or no effect on the multigrid solution (provided that we conform with 

equation -(3 0), and as a result, we cannot force the desired multigrid solution towards 

any size by setting the boundary conditions Thus the fractional residual can be 

changed by normalizing the solution This tells us that the actual values o f  fractional 

residual obtained, don't in fact indicate an exact measurement o f performance, but act 

just as a guide line H owever, following the criteria given by equation -(3 0), all 

fractional residual plots are reproducible, and their relative performances can be given 

by their relative values o f fractional residual in the plots Since multigrid can only solve 

to within a constant o f the LU D solution (which offers the best results), the multigrid 

solution must be normalized to that o f  the LU D m order to obtain the error norm, or 

maximum error The absolute value o f the error norm (or maximum) gives a realistic 

and quantitative assessment o f the performance

The above results, which indicate problems on the lower grids, acted as an incentive to 

recode the problem, such that it would solve for f(e), instead o f the previous 

normalisation n(e) Figure -(3 7) shows that when solving for f(e), the performance of 

the CGCS is identical as is the CCC1 cycle 3,4, to the n(e) choice H owever, one small 

insignificant difference was observed in that the CVC cycle 3,4, for f(e) is not as 

effective as it is for n(e) After observing other results, it was apparent that this 

recoding did not appear to remove the problem on the lower grids, as this problem was 

still present with the f(e) normalisation

In an attempt to improve the unexpected bad performance results so  far, several 

different adaptive iterations were considered, and the choice o f  ascending (forward) 

Gauss-Seidel was revised Red-black Gauss-Seidel is not as good a smoother as the 

basic or simple Gauss-Seidel, and ascending through the unknowns (forward) always
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appeared to give better results than the choice o f descending through the unknowns 

(backward)

If we consider the residual equation, this equation -(2 30) r = A v - f, depends on the 

size o f the solution v The exact LUD solution for v, for the choice o f energy interval 

de = 4ev with 26- l  internal points, (which has been used so far), scales 11 orders of 

magnitude

Solving for  f(e)

0 50 100 150
W ork U n it s

Figure -(3 7) solves for f(e) instead of n(e) The problem on the lower grid still remains

Figure -(3 0) shows that the first sixth o f the curve contains the mam peak o f electrons, 

and it is this larger part o f the solution that is more important in the residual equation, 

as this larger part dictates whether the fractional residual appears good or bad If we 

obtained a better solution for this region, the fractional residual would appear good, 

almost regardless o f how the multignd solution is behaving for the rest o f  the curve 

This point was tested by creating an iteration that updated this the first one sixth o f  the 

multignd approximation, and then proceeded to update the entire approximation Thus 

more emphasis was placed on this larger region o f the curve Figures -(3 8) and -(3 9)
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give the best illustration of the adaptive case, for the case o f some failing Vcycles 2,3, 

2,4, and 3,3, the adaptive iteration can improve the error norms (the fractional residual 

was in fact greater than unity, which clearly suggests failure m these cases) The 

adaptation o f updating approximately one sixth o f the points was found to give the 

best results This adaptation was only found to be really effective if implemented as the 

Vcycle ascends, and omitted as the Vcycle descends Also, a similar adaptation on the 

lower grids was found to give slightly better results, if one iteration consists of 

updating about one quarter o f the points, and then all the points, again putting more 

emphasis on the larger points, which in fact turn out to be in the same region o f  the 

curve as those on the fine grid More results from the adaptive case will be discussed 

later, but the adaptive case has not in any way eliminated the main problem as to why 

the multigrid solver fails when it incorporates the lower grids into the cycle

A dap tive  V cy c le s

 W o r k  U n i t s

Figure -(3 8) shows the Vcycles with the adaptive iteration , improving results, (compared 
to figure -(3 9) below) but not removing the problem occurring on the lower grid
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Non Adaptive Vcycles
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Figure -(3 9) shows that the same Vcycles as in figure -(3 8), but without the adaptive 
iteration
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The Galerkin Restriction method however, if used instead o f the previous direct method, 

shows more promising results The main difference being that this method doesn't require 

that the level be as high as 3 or 4, or that v  be as high as 2 or 3 Unlike the direct method, 

the CGCS is not the most or one o f the most effective results, e g Vcycles with level=5 

Multigrid theory clearly states that it is more beneficial to descend down to lower grids 

Figure -(3 10) shows that going down to level four or lower achieves a much better 

performance than the CGCS This was perhaps the major problem with the direct method 

There seemed no reason why a Galerkm method should work, while this should fail

RAP V cycle, u = l ,  vary in g  lev e l

W o r k  U n i t s

Figure -(3 10) shows that going down to level four or lower achieves a much better 
performance than the CGCS

When v = l ,  leve l= l, figure -(3 10) shows that the Galerkin method produces the best 

results This, (in contrast with the direct method), agrees with multigrid m general There 

is only the problem or question regarding the flattening out o f the residual, somewhere 

between IE-6 and IE-7 The error norm and maximum error also flatten out after the 

same number o f  W Us This will be addressed later The more appropriate question to ask



now, would be as to why the direct method appears to fail, while the Galerkin method 

succeeds The fact that both succeed as expected for the Poisson case, suggests that the 

code is functioning correctly This was looked into further, and this was in fact the case

No preferred method for restriction between either o f these had been previously suggested 

in any multignd text or publications, only that both would be expected to succeed for all 

problems, not one or the other

If we consider the direct method first, the problem matrix is defined for level q, for 2q -1 

points It is then defined on level q-1 for 2q' ‘ -1 points, and so on down to level 1 The 

data file, containing the cross sections, also contains the threshold energies, o f  which there 

are, for example, four in the case o f a plasma consisting o f N 2 m olecules, tw o electronic 

excitations, one vibrational and one ionisation The cross sections are-given in eV , and 

must be converted to points on the grid, which are equally spaced Thus, if the problem  

matrix is to be redefined on each level, corresponding thresholds must also be redefined 

for each level This was achieved in such a manner so as to obtain thresholds similar to 

those obtained if  the problem had been defined initially on that lower grid Given that there 

are four threshold energies in the data file, a one, three or seven grid system would only 

contain 1 or 2 o f  those four thresholds, thus the system would be different Also, the 

whole physical concept o f redefining the system with 1, 3 and 7 energy points is not quite 

convincing Clearly there are not enough energy points to make up a system which m any 

way represents the original one By redefining the problem with less points, because o f the 

thresholds, it is as though we are defining a different system In contrast to this, the 

Galerkin method simply manipulates the fine grid matrix A, by finding R A P (equation - 

(2 45)) to give A  for the next lowest grid, and so on down the lower grids The matrices R  

and P  contain simple fractions Threshold information is not lost in this manner Nothing is 

redefined for a smaller number o f points, and all the information that exists in the original 

problem is still preserved in A for the lower grids This is the suggested reason for the 

success o f the Galerkin method, and the failure o f the direct method

Figure -(3 10), also shows that there is little or no difference between descending to level 

1, 2 or level 3, although level 1 is slightly better These however perform better than level 

4 This seems to indicate that work done on grids 1 and 2 don't seem  to contribute much 

to the general scheme o f  things This does comply with multigrid theory
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V

A sub routine was incorporated into the program from Numerical Recipes in C [5], in 

order to obtain the eigenvalues for the matrix A  It first finds the inverse, using the Gauss 

Jordan method, and then proceeds to numerically calculate the eigenvalues Each 

eigenvalue corresponds to an eigenvector, and the set o f eigenvectors can define any error 

vector e, which gives the difference between the exact solution u, and the approximation 

v The effect o f  continuous Gauss Seidel iterations applied on the approximation v, for the 

problem A v=f, effectively remove the oscillatory or higher frequency eigenvector elements 

o f the error e This is the smoothing effect o f the Gauss Seidel iteration By calculating the 

eigenvalues for the problem matrix on all levels, it was found that for the particular choice 

o f  26- l  points, and with de= 4eV , the maximum eigenvalues for levels 4  or lower were in 

fact greater than unity This does not conform to the required convergence condition given 

by equation -(2 23), lA,(Pg)lmax < 1

This indicates that the Gauss Seidel iteration cannot converge on these grids, since the 

maximum eigenvalue is greater than unity Although it was not possible to obtain plots of 

the eigenvalues for each mode present in the error, or study the actual size o f  each 

eigenvalue element o f the error, we know that for the Gauss Seidel case the largest 

eigenvalue is given by the low est frequency mode [7] This is probably the case for the 

Boltzmann case, and if any o f the lower eigenvector modes have corresponding 

eigenvalues larger than one, this means that these eigenvector m odes (error elements) 

cannot be removed by the Gauss-Seidel iteration However, multigrid does not require 

that the lower frequency modes be completely removed, only on the coarsest grid, and this 

is perhaps the reason why multigrid works even though convergence is not possible on 

levels 4  or lower Recalling the observation that for the Boltzmann case, multigrid, 

regardless o f the fact that the boundary conditions force a unique solution, only solves the 

problem to withm a constant, we can speculate that if the low est frequency could not be 

removed by multigrid, then it would perhaps be observed as a smooth component, (we 

don't know the form or shape o f  this mode), and on a Log scale this could possibly appear 

as a constant value error, e g the muhtgnd solution appears to have solved to withm a 

constant, but perhaps this is in fact the lowest frequency mode, or a combination o f some 

low frequency m odes which could not be removed by multigrid because the maximum 

eigenvalues on levels four or lower are greater than unity

Figure -(3 11) shows the Galerkin method (using R A P, as in equation -(2 45)) for the 

Poisson case, with v = l ,  and level= l-5  There is definitely an advantage in descending 

down to the lower levels, in particular, the lowest level
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This is the type o f  multigrid behaviour we would expect in figure -(3 10), but there is no 

real advantage m descending below level 3 However, the slope o f these performances are 

better for the Boltzmann, for the first 25 W U or so, and then the fractional residual 

flattens out This behaviour is not seen in the Poisson case, again in this respect, w e would 

not expect this flattening out for multigrid behaviour Could it be possible to attribute 

these bad elements to the eigenvalue size on lower levels7

Figure -(3 12) shows that LINEAR restriction worked better than W EIGHTED, and when 

restriction type A2H  is used, the method fails completely The best results so far are then 

given in figure -(3 10), with 1,1 (v = l, leve l= l)
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RAP Vcycle, for B o l tz m a n ,  v - \

W o r k  U n i t s

F igure -(3 12) show s that for the B oltzm ann case, the V cycle w ith RAP (G alerkin m ethod 
o f  re s tr ic tio n ) , L IN EA R  restriction w orked better than W EIG H TED

Instead o f using either type A2H  or AH for restriction, the matrix operator R  can be 

employed [7,18,23] The matrix operator P can be used for interpolation Since, however 

most o f the elements in both these operators are zero, there is a lot o f  wasted calculation, 

compared to the previous AH and A2H  Figure -(3 13) shows that the results o f this are 

slightly better than figure -(3 10), where the fractional residual flattens out around 20 W U  

as opposed to 25
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RAP Vcycle,  f o r  B o l t z m a n n ,  v = l ,  l e v e l = l

Work Units

Figure -(3 13) shows R A P  (Galerkin m ethod) Vcycle, using R  and P  instead o f A H  or A2H 
m ethods

If the error norm or the maximum error is plotted instead o f fractional residual, as m figure 

-(3 13), w e see that the magnitude is o f the same order o f fractional residual A lso the 

behaviour is identical, e g both errors flatten out after exactly the same number o f W Us 

After this point, there seem s to be no advantage in continuing the method There is also no 

advantage m reducing the order o f the error smaller than the discretization error E <= 

0 (h p), [1 ,7 ,18,23], where p is the order o f  the differential equation, 2, and h is the size of 

the interval, such that all intervals add to 1 For the present q=6 case, h = l/6 3 , and E = O 

lO^-lO'5 Figure -(3 15) shows that to reduce the order o f the error, to 10^-105, requires 

around 6-9 W U It is not necessary to progress further than this, and from this point of 

view, the method is a success The problem o f the flattening out o f  fractional residual or 

error does not effect the practical application o f the result
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Figure -(3.14) show s the fractional residual after 15 W U 's, for different v. F igure -(3.15) 
shows (m ore clearly for 28- l  points), how  v = l is the best choice in agreem ent w ith the 
previous figure.

V - C y c le  v , l e v e l  = l ,  2* p t s ,  f o r  d i f f e r e n t  u

G a u s s  S e d i e l

- 6 L ^  i i i L , i i i I i i i i I i i— i— 1
0 5 10 15 20

Work Units

15 WUs, for  d i f f e r e n t  v

Vcycle, Wcycle a n d  FMcycle (2* pts)

F igure -(3.16) shows again that the V cycle offers a better perform ance than any other type 
o f cycle (for 28- l  points).
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Both the calculation of the maximum error and the error norm, involve knowledge o f the 

solution, which, o f coarse is not readily available Apart from calculating fractional 

residual, another, perhaps even less costly way of predicting the point where this flattening 

will occur is to calculate the fractional change in each f, on the approximation from its 

previous value, given by (fj-fj.j)/^, and continuing the method until this quantity is smaller 

than some suggested value,

(f1-f1. 1y f1 < p - ( 3 1)

Figure -(3 14) shows the residuals o f different v  after 4 Vcycles, 15 WU's The choice o f  

v = l is clearly the best for levels= l,2 ,3 ,4  The choice o f either level =1, 2 or 3 as 

mentioned before, appears to make little difference, only that all are better than descending 

to level 4  Figure -(3 15) also shows quite clearly that for around the first 30 WU's, with 

level= l, the best choice o f v  is 1 (more clearly seen for 28- l  points) This agrees with the 

Poisson case and that reported [1,7,18,23]

Figure -(3 16) shows that the Vcycle offers a better performance than any other type of  

cycle The poor performance o f  the fm la  and fm lb  FM cycles (exact definitions given in 

appendix C) is concerning, as most reports suggest that the full multigrid cycles are more 

efficient than the Vcycle The Vcycle was also found the most effective for the Poisson  

case, again not agreeing with Briggs, Brandt or W esseling [7,23,3]

Efficiency

The only solvers that in two or more dimensions can perhaps be comparable to the speed 

o f the multigrid solvers is the direct solver based on the Fast Fourier Transform, but these 

are more limited than multigrid and cannot be compared for very large meshes 

McCormick maintains that the efficiency o f full multigrid cycle attains the same efficiency 

for the general nonlinear, not necessarily elliptic problems as in the case o f the two  

dimensional Poisson equation, but for any boundary condition problems, eigen problems, 

and for problems including free surfaces, shocks, reentrant com ers, discountious 

coefficients and other singularities Unfortunately, the full multigrid cycle appears to be 

less effective than the Vcycle, so fast methods may be at least comparable to the multigrid
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method for the Boltzmann case. The Vcycle must be reapplied again and again until the 

desired accuracy is maintained.

The required reduction in error is such to give an error norm of around the same size as

the truncation error due to finite differencing with spacing h [1,7,18,23]

u - v = e ~ Kh2 = K(i/n)2 = K(i/2q)2 = K2"2q -(3.2)

where K is constant. The error norm e is to be reduced to around this amount for a q level

system with 2q points. Figure -(3.17) plots, (as we increase the number of points), the 

number of mathematical manipulations required to reduce the error norm in accordance to 

equation -(3.2). This curve is based on the calculation of 2N2 manipulations for one fine 
grid iteration (or 1WU), and just under 3WU's (6N2) for one Vcycle, (v= l, level=l), (A 

more accurate calculation will show that this is 2.66WU’s, however, we have neglected 

intergrid transfer work estimated at around 15% or more of 1WU, which will bring this to 

around 3WU's). The choice of K has little effect on this curve for the multigrid case. It can 

be seen that for q > 6, multigrid becomes cheaper than the direct LUD method.

Figure -(3.15) shows that for 2-3 Vcycles with v=l and level=l to 3, will reduce the error 

to the order of around lO^-lO'5. The direct LUD method requires >/3N3 manipulations, as 

opposed to the 2N2 required per iteration, which gives the definition of 1WU. The number 

of WU's required for the direct method then becomes around i/6N, for q=6, this is around 

10.5WU's. Two Vcycles costs less than 6WU's, and thus the multigrid method is cheaper 

once i/6N WU's in the direct method is larger than 6. This is little improvement on the 
LUD case of 10.5WU's.

The 6WU's required for two Vcycles takes into consideration the work required for inter­
grid transfer, which for the Boltzmann case is less than the estimate of around 15-20% of 

the work done per V-Cycle [7] for the Poisson problem, since the cost of one WU is more 
for the Boltzmann case. This is because of the there are more of diagonal matrix elements 

for the Boltzmann case.

If q=8, then */6N is around 42WU's. However, the truncation error is now 0 0 /256)2 ~10'5, 

and an error less than 1 O'5- 1 O'6 is now required, which in turn requires more WU's than for 

the q=6 case. The number of Vcycles required now becomes, 3-4, to reduce the error to 

1O'5- 10~6. This costs around 9-12 WU's (where WU is defined as one iteration on the fine
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grid with 28 - 1) For 2 '°- 1 points, this error becomes of order 106 However, it is still 

possible to achieve this before the residual flattens out Thus for q > 6, multignd has a 

clear advantage over the direct method, and more so as both the size N, and the number of 

dimensions of the problem increases

LU D ec o m p o s t io n  and Multigrid Vcycle

G rid  S iz e  q (N  = 2 ^ )

Figure -(3 17) shows, as we increase the number of points, the number of mathematical 
manipulations required to reduce the error norm in accordance to equation -(3 2)
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Conclusions

The residual was not reproducible after the same number o f multigrid cycles, only because 

o f the size (£ fguess) o f the initial guess relative to the size (Zfsol) o f the solution given by 

the LUD solver The fractional residual was only found to be reproducible once equation 

-(3 0) was satisfied

I f sol(LU D ) > -(3 0)

This is unlike the Poisson case Multigrid for the Boltzmann problem only solved to within 

a constant o f  the solution, regardless o f whether the problem had an infinite series solution 

or a unique solution However, multigrid only does this if  the equation -(3 0) is satisfied, 

otherwise it is clearly seen to fail for the Boltzmann case The direct method was looked at 

first for all four combinations o f  the restriction types AH or A2H and LINEAR or 

W EIGHTED The Coarse Grid Correction Scheme (CGCS, Vcycle descending only one 

level), was found to give the best performance Descending to lower grids decreased the 

performance, and for a 6 level system, descending below level 3, and in some cases 4 

resulted in failure o f the method A  value o f v = l also caused the method to fail, and 

neither o f  these observations agrees with multigrid theory All cycles appear to stop 

converging somewhere between a fractional residual o f  10'3 and 10"6

If the approximation is normalised to that o f the LUD solution after each cycle, this results 

in much faster convergence However, the size £ fsol (LUD) is then required, and thus the 

solution needs to be known, which then defeats the purpose Normalising to other sizes 

(unity for example) tended to give non reproducible results depending on both 

£ fsol(LUD), £ fguess, and did not result in the any reproducible improvement in 

convergence

Provided we conform to equation -(3 0), multigrid proceeds to converge to within a 

constant When the problem was defined for f(e) instead o f  n(e), the results were similar 

The problem o f a failing method on the lower grids still occurred

The ordinary Gauss Seidel forward iteration was found to be a better smoother than Red- 

Black Gauss Seidel, or backward iterations
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An adaptive iteration was developed which updated the first one sixth o f the multignd 

approximation, and then all the points on the approximation This focused more on the 

larger part o f the electron distribution, as this larger part dictates the results in the form of 

the fractional residual and the error norms This adaptive iteration improved convergence, 

but did not remove the problem on the lower grids This adaptation was only found to be 

effective if implemented as the Vcycle ascends and omitted as it descends Similar 

adaptations to the basic iteration for the two lower grids also improved performance

The Galerkm method o f restriction gives better convergence than the direct method for 

the Vcycle With the Galerkm method, the optimum choice o f  v = l  is in accordance with 

convergence estimates for similar second order differential problems Also, incorporating 

the lower grids into the cycle increases the performance for the Galerkm method, where as 

for the direct method, this reduces the performance, and if incorporating grid levels 3 or 

below, the method fails The Galerkm method is seen to behave as expected, apart from 

the flattening out o f the residual (where convergence stops)

The Galerkm method employing R and P worked better than AH /A2H  and 

LINEAR/W EIGHTED restriction methods, but uses more storage space

The value o f lX,(Pg)lmax for the iteration matrix Pg was found to be larger than unity for the 

Gauss Seidel iteration on the lower grids, indicating that the iteration can not converge on 

these levels It is suggested that lA,(Pg)lmax is probably the k = l eigenvalue or lA,(Pg(k=l))l 

This corresponds to the low est frequency eigenvector If this is the case, then it is this 

element o f the error that cannot be removed This is the suggested reason as to why 

multigrid for the Boltzmann stops converging, and the error norms or the fractional 

residual flattens out

The Vcycle performs better than any other cycle, including the FM cycle This is 

concerning as it is not in agreement with Briggs, Brandt and other texts [3,4,6,7,23] We 

might however expect the V cycle to perform better than the W cycle

Fortunately, multignd converges to the discretization error E <= 0 (2 '2q), before it stops 

or seizes to converge, for systems o f point size 2q- l ,  for q = 6 to 12 From this 

perspective, the method achieves what is asked o f it before it seizes to converge, as there 

is no benefit m converging to below the size o f  the discretization error Thus the problem 

o f the flattening out o f the residual docs not cffect the practical application o f the result
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Multigrid methods are more favourable than direct methods given the accuracy required 

for the Boltzmann problem For q>6 multigrid becomes cheaper than the direct LUD 

method, when just enough Vcycles are applied to converge down to the same size as the 

discretization error For a 26 points problem, multigrid only requires around 60% of the 

time needed by LUD For a 28 points problem, multigrid requires around 20%, and for 2 10 

points around 5 %  The reduction i n  work load is also seen with increasing dimension

The multigrid method is less specialised than existing fast solvers, and in the case of the 

Boltzmann problem has the advantage that the method can be manipulated to cope with 

the non-linear case involving electron-electron collisions This can then be solved, with no 
substantial loss in efficiency
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APPENDIX

Appendix A

This appendix contains more information about the C source code, and some 

guidelines for the program M ultignd_Study c A  macro listing is given, and the 

purpose o f each function is given beside each C function prototype A  program listing 

o f all the C source code, and header files is given on an attached disc, along with a 

makefile, used to com pile these source programs The original program reads from two 

input files, b l7  dat, which used the file pointer infile, and xs dat which used the file 

pointer xsfile The results file for the plasma properties is b l7  res, which uses the file 

pointer outfile All other files begin with fp, followed by the file name, and have the 

extension dat All file pointers also begin with fp and contain the same name as the 

files, omitting the dat extension Also, Write() functions should usually indicate by 

their name what file pointer they are using, and output file they are writing to

List of Multi grid Output Data Files

Below  is a list o f  multigrid output files, the purpose o f which to view multigrid 

performance under different settings

fpbc dat Records the area under the solution with the boundary condition

fpcoarse dat Records the solution and approximation at every grid level

fpcycle dat Records the fractional residual and other parameters

with increasing cycles, for all cycles chosen 

fpdfmax dat Records the maximum difference between the previous ith point

and the new ith point in the multigrid approximation, as the number 

o f cycles increases

fpfour dat Records the sine fourier transform o f the error, (fsol-f, where fsol is the

LU D solution and f  is the approximation) 

fpeedf dat Records the LUD solution and multigrid approximation, with energy

and grid point

fpeigen dat Records the eigenvalues o f the problem matrix A  for each grid level

It can also store this for different energy interval de 

fpminres dat Records the best multigrid performance



List of C Macros used in the Program

The following is a macro list for multigrid macro's in the main program 

M ultignd_Study c M ost macro's are tested for being either 1 (true), or 0 (false), by C 

statements The order o f the macro's is the same as in the program Multigrid_Study c

BO LT Z If true, then Boltzmann problem is set, if  false, Poisson problem

L IN E A R If true, linear restrict() is used

W EIG H T If true, weighted restnct() is used

W N O If true, a range o f  different weighting factors are used

A 2H If true, A2H  restrict() is used

A H If true, AH restnct() is used

R A P If true, then the Galerkin method is used If false, the direct

method or redefinition method

The program w ill scan through the range given for v , and level

M E W ST A R T The smallest number of iterations to perform on each grid

M E W FIN ISH The largest number o f  iterations to perform on each

grid

L E V E L ST A R T The lowest level to perform cycles to

L E V E L FIN ISH The highest level to perform cycles to

M IN R E S If true, then the function Minres() is executed

G R ID SO L N If true, then LU D  solutions are found for every level

If any o f  the following are true, then the program executes the multigrid cycle function 

corresponding to each one If they are false, then the functions are ignored

V C Y C LE

FM C Y C L E 1A

FM C Y C L E 1B

FM C Y C L E 2A

F M C Y C L E 2B

W C Y C L E

CCC1

CVC

ITS ( Gauss-Seidal iterations )
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IN _E LA STIC  If true, the problem is inelastic, if  false, elastic

LU D  If true, then the LUD method is employed on reaching the lowest level

m
the cycle instead o f Gauss-Seidel iterations If false, then the normal 

multigrid approach o f performing iterations on the lowest level is then 

employed

G A U SS_JO R D A N  If true, then the eigenvalues o f the problem matrix A  are found

using Gauss-Jordan elimination The Numerical Recipes [10] 

function gaussj() finds the inverse o f the problem matrix A  The 

functions hqr() and elm hes() [10], then proceed to find the 

eigenvalues o f A  If false, then none o f this is executed

PO SIT IV E _D E FIN IT E  Gives the option of calculating if  A is a positive definite

matrix

If true, the function M ode_Sweep() is executed, which sweeps 

over all the modes for the initial conditions for the Poisson case 

The modes (or eigen functions) are not known for the 

case

If true, each time the program is run, the energy interval 

by a fixed amount, thus allowing for results at different 

intervals without manually changing the interval 

The maximum number o f iterations or work cycles (WU's) 

performed each time the multigrid system is set 

The number o f times the second cycle is repeated in the CCC1 

cycle

M O D E

Boltzmann

D E JSW E E P

changes

energy

W U C Y C L E S

C Y C L ES2

List of C function Prototypes

The prototypes for the different functions in the program are given and an a brief 

explanation is given to the role o f each function

double N ew _de(m t total, double de),

R etu rn s  a  n ew  e n e rg y  in te rv a l de, w h ic h  h a s b e e n  in c re m e n te d  b y  1 /to ta l
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T his p r in ts  th e  re s id u a l re su lts  f r o m  a  ra n g e  o f  in itia l g u e ss  m o d e s  f o r  th e P o isso n  

b e tw een  m o d e _ s ta r t  a n d  m o d e _ fim sh  The p r o b le m  is  s e t  up f o r  N O o fW s d iffe re n t  

re s tr ic tio n  w e ig h tin g  f a c to r s

void Fourier(m t q, ITERATE *T),

O b ta in s  th e  s in e  f o u r ie r  tra n sfo rm  o f  th e e r r o r  b e tw e e n  th e so lu tio n  a n d  th e  m u ltig r id  

g u ess , a n d  p la c e s  b a c k  in  th e  s tru c tu re  T

void Alloc_Structures(INELASTIC **xsi,

ELASTIC **xse,

ITERATE **T,

M INIM UM  **mr,

FILL **F),

T h is fu n c tio n  a llo c a te s  m e m o ry  f o r  a  p o in te r  to  ea ch  o f  th e  f i v e  a r r a y s  o f  s tru c tu re s  in 

th e a rg u m e n t l is t

void A lloc_T(int qq, int *ngrid, ITERATE *T),

A llo c a te s  m e m o ry  f o r  th e c o n te n ts  o f  th e s tru c tu re  T  

void AlIoc_F(int qq, ITERATE *T, FILL *F),

A l l o c a t e s  m e m o r y  f o r  the c o n t e n t s  o f  the s t r u c t u r e  F  

void AUoc_mr(int qq, ITERATE *T, M INIM UM  *mr),

A llo c a te s  m e m o ry  f o r  th e  c o n te n ts  o f  th e  s tru c tu re  m r

void Set_T_F_m r(int qq, ITERATE *T, FILL *F, M INIM UM  *mr, double 

source),

S e t c e r ta in  m u ltig r id  p a r a m e te r s  in th e  s tru c tu re s  in a c c o r d a n c e  to  th e  m a c ro s

void Mode_Sweep(int qq, int NOofWs, int mode_start, int mode_fmish, ITERATE

*T),
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void W rite_fpm inres(M INIM UM  *mr, double de),

O u tp u ts  th e m u ltig r id  d e ta d s  o f  th e sm a lle s t  re s id u a ls  to  f i l e  fp m in r e s  d a t  T h is f i l e  

w ill  in d ic a te  th e b e s t  c y c le s  a n d  se ttin g s , a s  the n u m b er  o fW U 's  a re  in c re a se d

void W rite_fpeedf(m t q, ITERATE *T),

O u tp u ts  th e E E D F  o f  th e L U D  so lu tio n  a n d  th e m u ltig r id  a p p ro x im a tio n  to  f i l e  

f p e e d f  d a t

void W rite_fourier(int q, ITERATE *T),

O u tp u ts  th e  s in e  f o u r ie r  tra n sfo rm  o f  th e  e r r o r  b e tw e e n  th e  L U D  so lu tio n  a n d  the  

m u ltig r id  a p p ro x im a tio n  to  th e  f i l e  fp fo u r  d a t

void W rite_fpbc(double frhs, double norm),

O u tp u ts  th e b o u n d a ry  co n d itio n s , a lo n g  w ith  th e  a r e a  u n d e r  th e  L U D  so lu tio n  (the  

s ize  o f  the L U D  so lu tio n , E /io /)

void W rite_dfm ax(int i, double dfmax),

O u tp u ts  th e  m a x im u m  d iffe re n c e  b e tw e e n  th e p r e v io u s  ith p o in t  a n d  th e  n ew  ith p o in t  

in th e m u lt ig r id  a p p ro x im a tio n  f  a s  th e n u m b e r  o f  c y c le s  in c re a se s

void Set_fpcycle(ITERATE *T),

O p en s th e  f i l e  f p c y c le  d a t, w h ich  w il l  sh o w  re su lts  o f  th e  d if fe re n t c y c le s  

void Eigen(int qq, int *ngrid, double ***a),

C a lc u la te s  th e e ig e n  v a lu e s  o f  th e  m a tr ix  A  on  le v e l  q q , a n d  p r in ts  th e  re su ltin g  

e ig e n v a lu e s  to  th e  sc re e n

int CaI_TypeNo(void),

R etu rn s  th e  n u m b e r  o f  d if fe re n t c y c le s  th a t th e p r o g r a m  w il l  u se
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int Set_Wexecute(ITERATE *T),

R eturns the num ber o f  tim es the fo r  loop which contains it is repeated, depending on  

the two m acros L IN E A R  and  W EIG H T These give the option o f  w eighted restriction  

o r  linear (or both)

void Set_W eights(int wr, ITERATE *T),

Sets the m ultigrid  param eters inside the structure T, to either linear, weighted or  

both

int Set_Aexecute(ITER ATE *T),

Sets the num ber o f  tim es the nex t f o r  loop is repeated, depending on the two 

m acros A H  a n d  A2H , which correspond to the type o f  restriction discussed  

earlier

void Set_R estrict(m t ah2h, ITERATE *T),

Sets the type o f  restriction in the m ultigrid  structure T

void Set_M ew (int m ew, ITERATE *T),

Sets the num ber o f  iterations p e r  grid  v  into the structure

void wgas(FILE *file, ELASTIC *xse, int nxse),

O utputs som e gas param eters o f  the p lasm a to f i le  b l 7  res

void wheader(FILE *file ),

O utputs the header f o r  the f i le  b l 7  res

void wf(FILE * f i le , 

double * * f , 

double d e , 

double ne , 

mt *n grid ,
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intqq),

void wtran(FILE *file , 

double e b a r , 

double e k , 

double d if f , 

double mu , 

double v d , 

double a lp h a , 

double n u , 

double alphabar, 

double n ),

O utputs the p lasm a transport param eters to b 17 res

\

void wppart(FILE *file , 

double e f , 
double e s , 

double e e l , 

double em el, 

double eden ),

O utputs the pow er partition  in the p lasm a taken by both elastic and  inelastic

collisions

void wcparam(FILE *file , 

int *ngrid , 

double de , 

double d t , 
int nstep , 

double e b , 

double en , 

double t g , 
double n , 

int qq ),

Outputs the EEDF, with increasing energy to b 17 res

I

68



Outputs the grid  interval, energy conservation, gas tem perature and pressure

void evaIalpha(double *alphabar, 

double * a lpha , 

double *nu , 

double v d ,

ELASTIC *xse ,

INELASTIC * x s i , 

int nxsi ),

Involved  w ith the calculation o f  how  the energy is conserved

void evaldiff(double * d iff , 

double * * f , 

double n e , 

int * n g n d , 

double de ,

ELASTIC *xse , 

int n x s e , 

mt qq ),

Calculates the d iffusion coeffic ien t

void evaIrates(double * * f , 

int * n g n d ,

INELASTIC * x s i , 

int n x s i , 

double ne , 

int qq ),

Calculates the rate constants f o r  each o f  the d ifferen t co llisional p rocesses

double Ebal( int qq,

INELASTIC * x s i ,

ELASTIC * x s e , 

mt n x s i , 

double d e , 

double * n e ,



double * e f , 

double * e in e l, 

double * e e l , 

double *eden , 

double * e s , 

double *ebar,

ITERATE *T,

FILL * F ),

C alculates the energy conservation

void Fillc( in tq ,

INELASTIC *xsi,

ELASTIC *xse, 

mt nxsi, 

double dt, 

double de,

FILL *F,

ITERATE *T, 

mt f e ),

This calculates the elem ents o f  the prob lem  m atrix A

void datsort(ELA STIC * x s e , 

int nxse , 

double *density , 

char ** la b e l, 

int ns , 

double n ),

Sorts ou t the data, g iving  the cross-sections a t equal d istances C alculates the

densities

void Evalab( int q,

ELASTIC *xse, 

int nxse, 

double n, 

double en,
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double de, 

double tg 

FILL *F,

ITERATE * T ),

Calculates the trid iagonal elem ents used  fo r  the prob lem  m atrix A

void Evalab_fe( int q,

ELASTIC *xse, 

int nxse, 

double n, 

double en, 

double de, 

double tg,

FILL *F,

ITERATE *T),

Calculates the trid iagonal elem ents used  fo r  the prob lem  m atrix  A , only it g ives the

f ( t )  norm alization prob lem  instead  o f  the n(e)

void wrate(FILE *ou tfile ,

INELASTIC * x s i , 

int n x s i ,

ELASTIC *xse , 

int n x s e ),

O utputs the collisional rates betw een electrons and  neutra l ions f o r  each o f  the

d ifferent excita tions

void rxsfil(FILE *xsfile ,

INELASTIC * x s i , 

int * n x s i ,

ELASTIC * x s e , 

int * n x s e , 

int *ngrid , 

double d e , 

int ltype , 

int q q ),
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Reads in the collisional cross sections fo r  the d ifferent excitations fro m  the data file  

xs dat, and  p laces them  into the structures xse  and  xsi

void xserror(char error_text[] , 

char cross_section_nam e[], 

char species_nam e[]),

This fu n c tio n  is ca lled  in the even t o f  an error, shou ld  one arise in the m anagem ent o f  

the cross section data  I t p rin ts an error m essage to the screen

void rxs(FTLE * f ile , 

double e [ ] , 

double xs[] , 

int n p n t, 

char la b e l[] ,

char n am e[]) /* Read a number o f paired data points */,

This fu n c tio n  is em ployed  by rxsfil, to read in a p a ir  o f  data po in ts  fro m  the cross 

section f i le

void rdatfil(FELE * in file , 

char x sfiln am [], 

double *de , 

double * d t , 

double *en , 

double *n , 

double *ne , 

int *ns ,

double d en sity [], 

char ** la b e l, 

double *tg , 

int * ity p e , 

double * source , 

mt * q q ),

R eads in p la sm a  settings fro m  the d a ta file  b ! 7  dat
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ITERATE *allocitrn(int n l , 

int nh ),

A llocates m em ory space fo r  a po in ter to the structure T

M INIM UM  *allocm r(int n l , 

mt nh ),

A lloca tes m em ory space fo r  a  po in ter to the structure m r

FILL *aIlocF(int n l , 

int n h ),

A lloca tes m em ory space fo r  a p o in ter  to the structure F

char *fgetlin(char * s tr , 

mt len ,

FILE » f i le ),

E m ployed  by the fu n c tio n  rxs() to read in a  line fro m  a data  file , o f  a g iven  length

INELASTIC *allocxsi(int n l , 

mt n h ),

A lloca tes m em ory space fo r  a po in ter to the structure x s i

ELASTIC *allocxse(int n l , 

mt n h ),

A lloca tes m em ory space fo r  a po in ter to the structure xse  

char *cvector(int n ),

N um erica l R ecipe [10] function , which allocates m em ory fo r  an array o f  characters  

o f  size n

char **sarray(int n l , 

mt nh ,
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int length),

N um erical R ecipe [10] function , which allocates m em ory fo r  an m atrix  o f  characters  

o f  size nh by length

void free_sarray(char * * s , 

int n l , 

mt n h , 

int len g th ),

N um erica l R ecipe [ 10] function , which fr e e s  m em ory space a lloca ted  by the fu n c tio n  

sarray

void spline(double x [ ] , 

double y [ ] , 

int n ,

double yp l , 

double ypn , 

double y 2 [ ] ),

N um erica l R ecipe [10] function , which fo r  a " iven m athem atica l table fu n c tio n  y(x), 

calculates the second  order derivative

void xsinterp(double x a [ ] , 

double y a [ ] , 

double y 2 a [ ] , 

int n , 

double x , 

double *y , 

int lty p e ),

In terpolates the cross section data so tha t there is equal distance betw een the 

resulting cross sections In terpolation can be linear or cubic

void hidcm p(double * * a , 

int n , 

int *indx ,

- double * d ),
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N um erical Recipe [10] function , given an  mn m atrix a, it replaces a by the LU  

decom position o f  a rowwise perm uta tion  o f  itse lf This m ust be used  in conjunction  

with lubksbQ

void lubksb(double * * a , 

int n , 

int * m d x , 

double b [ ] ),

N um erica l R ecipe [10] function , used  a fter  the above function , w hich im plem ents 

backw ard substitution, and  outputs the solution into vector b, w hich is the solution to 

the m atrix  p rob lem  A b  = d

void thres(int n , 

mt *yh , 

int * y l , 

int qq ),

This fu n c tio n  is used  to calculate the energy thresholds f o r  the low er level, when the 

direct m atrix  redefin ition  m ethod  is employed, as opposed  to the G alerkin m ethod

void M atrix( int q , 

int qq , 

int *ngrid 

double h , 

double * * * a ),

Fills the prob lem  m atrix  A  fo r  the P oisson case

void M inres(double wu, 

int 1 ,

int totalwu, 

double res, 

int mew, 

int level, 

mt ah2h,

char TypeName[],
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M INIM UM  *m r),

Tests fo r  the best m ultigrid  perform ance, fro m  all cycles and  param eters used, with 

increasing W U  The cycle number, type, V, and  level is recorded fo r  each W U

void Solve( int q, ITERATE *T, int lud),

O btains the L U D  solution to the m atrix  problem , pu tting  the solution into f soi, inside 

structure T

void Set_M odes(int q, ITERATE *T),

Sets the in itia l guess f o r  the m ultigrid  approxim ation Can only se t m odes in the case 

o f  the Poisson prob lem  as the m athem atical expressions f o r  the m odes o f  the 

Boltzm ann prob lem  are unknown

void DoCycIe(int q, char TypeName[], ITERATE *T, M INIM UM  *mr),

Places a string TypeN am e[] containing the m acro nam e into the structure T

void A llCycles(int q, double wusum, ITERATE *T, M INIM UM  *mr),

Sets up the in itia l residual and  guess f o r  the problem , and  perform s the cycles  

dicta ted  by the m acros until a g iven num ber o f  W U  cycles has been perform ed, o r the 

convergence criteria  has been reached

double Cal_W U(int q, ITERATE *T),

Calculates roughly the num ber o f  W U  in each o f  the cycles, g iven the coarsest grid  

the cycle proceeds dow n to

The prototypes in the file Cycles h are given as follows

double N orm ( mt q, ITERATE *T, int NOrM),

N orm alizes the approxim ation, to that o f  the LU D  solution
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Calculates the m axim um  error elem ent o f  the error vector  

double Enorm( int q, ITERATE *T, double enorm_0),

U sed to f in d  the norm  o f  the error norm  between the norm alized  approxim ation and  

the LU D  solution

double Residual(int q, ITERATE *T, double res_0),

U sed to f in d  the residual norm  o f  residual equation  r = Av-f

double Resmax( int q, ITERATE *T, double resmax_0),

C alculates the m axim um  residual e lem ent o f  the residual vector

void Iterate_RB_R( int start,

mt finish,

ITERATE *itrn, 

int q),

Execute a red-black G auss Seidel iteration, which can start o r f in is h  a t the specified  

po in ts  on the g rid

void Iterate_RB_L(int start,

int finish,

ITERATE *itrn, 

int q),

Execute a  red-black G auss Seidel backw ard iteration, which can start o r  f in is h  a t the 

specified  po in ts  on the grid

void Iterate_GS_R(mt start,

mt finish,

ITERATE *itrn, 

mt q),

double Emax( int q, ITERATE *T, double emax_0),
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Execute a basic G auss Seidel fo rw a rd  iteration, which can start or fin ish  a t the 

specified  po in ts on the grid

void Iterate_G S_L (int start,

int finish,

ITERATE *itrn, 

int q),

Execute a  basic G auss Seidel backw ard iteration, which can start o r  f in is h  a t the 

specified  po in ts  on the g rid

void IterateSort(int rbr, 

mt rbl, 

int gr, 

int gl,

ITERATE *itrn, 

int adaptive, 

int q),

This fu n c tio n  is used  to m ake iteration calls easier I t  controls w eather o r  n o t the 

iteration is adaptive, and  w ill ca ll one o f  the above fo u r  fu n c tio n s

void Fix_fr(double *fr, int qq),

This fu n c tio n  is used  to se t how  the adaptive iteration w ill behave  

void W rite_fpcoarse(int q, ITERATE *T),

W rites the approxim ation and  the LU D  solution fo r  the low er grids to the f i le  

fp co a rse  da t

void CalcuIate_R_P(ITERATE *T),

Calculates the tw o m atrices R  and  P  used  fo r  restriction and  in terpolation  

void Calculate_G alerkin(ITER A TE *T);
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C alculates A  on the lower grids, using the G alerkin method, m ultip lying  the m atrices  

R A P

void R estrict RA P(int q, ITERATE *T),

Executes the G alerkin m ethod  o f  restriction, using the m atrix  R  fo r  restriction  

void Restrict(int q, ITERATE *T),

Executes d irec t restriction, which can be w eighted  or linear, a n d  o f  type A H  o r  A 2 H  

void Interpolate_R A P(int q, ITERATE *T),

E xecutes G alerkin m ethod  o f  interpolation, using the m atrix  P  fo r  in terpolation  

void Interpolate(int q, ITERATE *T),

Executes a  d irec t interpolation

void Vcycle(int q, int 1 , ITERATE *T),

Executes a Vcycle, descending  dow n to the specified  level 

void F M cycle lA (in t q, int 1 , ITERATE *T),

Executes a FM cycle, o f  type 1A

void F M cycle lB (in t q, int 1, ITERATE *T),

E xecutes a FM cycle, o f  type IB

void FM cycle2A (int q, int 1 , ITERATE *T),

E xecutes a  FM cycle, o f  type 2A

void FM cycle2B (in t q, int 1 , ITERATE *T),

E xecutes a  F M cycle, o f  type 2B



void C C C lcycle(in t q, int 1 , ITERATE *T), 

Executes a C C C ¡cycle  (defined  in appendix C) 

void CV C cycle(int q, int 1 , ITERATE *T), 

Executes a  CVCcycle, (defined  in appendix C)



Appendix B

Boltzmann Equation

Following from equation -(1 3), an applied external electric field is then treated as a 

perturbation to the plasma system and the distribution function is then expanded using 

Legendre Polynomials

f(r,v,t) -  I k=0 Pk (cos0,) fk(va,r,t) - (B l)

Substituting this back into the Boltzmann equation results in an equation with an infinite 

number o f  terms Using the treatment by Chem ngton[8], these can be reduced to an 

infinite number o f  equations, the general term is

d f k + (  k d f k.i + k + 1 d f k+1 \  _  e E  /  k ^k.t d  ( f k., / v k.,) 
a t  2 k - l  d z  2k  + 3 d z  '  m ^ 2 k - l  d v

k +  1 1 S ( v k+2fk+1) \  _  2 k + 1
)  = J  Pksdn,
J Att J k2k  + 3 v k+2 d v  '  471

■(B2)

The collisional terms on the RHS can also be expanded using Legendre Polynomials, and 

the first two S0 and S t given by Cherrington[8] correspond to the first tw o equations 

from the infinite set S0 and S t are expressed in terms o f  f0 and f\ The higher order terms 

in f, can be omitted, thus only f0 and fj are required For a steady state case, the time and 

position gradients present in equation -(B 2) disappear, and using this w e can substitute 

for f b the anisotropic part, in terms o f  the first order part f0 Rewriting the distribution in 

terms o f  energy, and Normalising by

w e get

|  e 1,2 f0(e)de = 1 -(B3)

81



d f  e 2E 2e df 1 2m d d f  2xt df 1
+ ""m ”  de + de *  °  - <B4>

where N is the density o f the neutrals in question, and a m is the cross section for 

elastic collisions
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Appendix C

Multigrid Parameters or Settings

The following gives a list o f all the different possible settings, the macros in the 

program that correspond to these, and also the different cycles

1) Whether the function Restnct() was weighted This is the averaging o f  a given point 

to be restricted with its surrounding points, as possible from the C function Restnct() 

In this case it is either full weighted as given by equation -(2 40)

e *  = l/4( vV , + 2vh21 + vh2l+1) 0 < i < N/2

or linear restriction involving no weighting or averaging o f surrounding points

e2h _  0 < i < n /2

2) Weather Restrict(AH) or (2AH ) was used, the difference between these is apparent 

when calculating the residual r2h from rh There are two possible approaches

AH is used to refer to the following

r2h = Restrict(rh = f 1 - Ahvh) = I ^ f * 1 - Ahvh)

where (f*1 - Ahvh) is calculated first and then the result is restricted to the lower grid 

2h

A2H is used to refer to when the restrict operator Ih2h works inside the brackets as 

follow s, and operates on the equation before rh is calculated

r2h = Restrict(rh = f 1 - Ahvh) = Ih2h(fh - Ahvh) = - Ih2hAhvh
= ph - A2hv2h

3) How low the cycle would progress to or what level the particular cycle would stop 

at before proceeding back up to finer grids This is referred to as the 'level'

4) The number o f  iterations v  performed on each grid

83



5) The definition for the problem matrix A, can be given by either the direct approach, 

or the Galerkin method The direct approach involves redefining the matrix A at each 

level for that given number of grid points, but with a different energy interval The 

Galerkin method calculates A on the lower grids by the expression R A P given in 

chapter 2 by the equations -(2 43,44 ,45) The program uses the macro RAP to decide 

which o f these two methods it will use If the macro is true, then the Galerkin method 

is used, if  false, the direct approach

6) The type o f  multigrid cycle used, e g Vcycle or FM cycle The program uses a 

choice o f  eight different cycles, and one o f  which is just m onognd Gauss-Seidel 

iterations, to which the others can be compared to The program tests the C macro for 

each cycle to see whether it is to proceed with that option o f cycle The C functions for 

the different cycles are given in the appendix A There are eight different cycles, A-H  

The cycles and their corresponding C macros are given

A) The Vcycle, which is executed by the C function Vcycle(), has the macro 

VCYCLE This cycle is the most basic fundamental o f all the multigrid cycles

B) A  full mulitgnd cycle o f type 1 A, given by the C function FM cycle 1A(), is tested by 

the macro FMCYCLE 1A This is first o f four different possible ways to define a full 

multigrid cycle As suggested initially by Brandt [3,4,5,6], this cycle could start by 

restricting down to the low est grid, without iterating on the way down It uses the fact 

that a better guess can more easily found on the coarsest grid, and thus the multigrid 

frequency removal mechanism need only start on this grid It was defined that for type 

1A, when the cycle reaches the finest grid for the first time, no more Vcycles are 

performed This is the cheapest o f  all four full multigrid types

C) A full multigrid cycle o f type IB, given by FM cyclelB (), and tested by the macro 

FM CYCLE1B This is the same as type 1A only that iterations are performed initially 

on descending down from the fine grid to the coarsest, at the start o f  the cycle The 

rest o f the cycle remains the same

D ) A  full multigrid cycle o f type 2A, given by FM cycle2A(), and tested by the macro 

FM CYCLE2A This is the same as type 1A only that when the cycle reaches the fine 

grid, an extra V cycle() is executed

E) A full multigrid cycle o f  type 2B , given by FM cycle2B(), and tested by the macro 

FM CYCLE2B This is the same as type IB only in that when the cycle reaches the fine
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grid, an extra Vcycle() is executed (as like 2A) This is the most costly type, and as it 

turns out, any improved performance o f this type will not warrant the extra 

computational cost

F) The W cycle is given by W cycle(), and tested by the macro WCYCLE

G) The cycle CCC1 consists o f Vcycles, but after any given number o f Vcycles, 

another Vcycle can be executed except the level to which the Vcycle progresses is 

different to the rest o f the Vcycles This cycle is given by the C function C C C lcycle(), 

and is tested by the macro CCC1

H) The cycle CVC consists o f two separate cycles, one after the other In the simplest 

case, both could be Vcycles, but the levels that the two Vcycles descend down to 

within the one CVC cycle differs This cycle is given by CVCcycle(), and tested by the 

macro CVC

Program Details

The program has 5 structures, xse defined as type ELASTIC, which provides storage 

for elastic cross section data, xsi defined as type INELASTIC, which holds inelastic 

cross section data The structure T holds the multignd problem itself, A f = frhs’ the 

solution fsol> the matrices R  and P  for Galerkin Restriction and Interpolation, and 

multignd parameters, most o f  which are set by the Macros at the start o f the program 

The structure mr defined as type M INIM UM , holds the parameters which the function 

Minres() tests to obtain the best results (low est fractional residual) The structure F 

defined as type FILL contains the elements a and b that are produced by the function 

Evalab() or Evalab_fe These elements are then placed in the problem matrix A  by 

Fillc() The parameter list o f most functions in the program was reduced by placing as 

much o f the data as possible into structures, which simplified the function calls 

dramatically Also, pointers to the structures were passed in the function calls which 

enabled any o f the contents in the structure to be altered by the function m question

All functions beginning with a capital letter are either new or have been completely 

altered from the original code

85



I

All file pointers apart from infile, and outfile, begin with fp, and are identical in name 

to the output files only that the output files contain the extension dat A list of output 

files and their purpose is given in appendix A

Program Flow

Diagram -(C l) shows a simple flow, where the main program is split up into 7 blocks, 

each of which is numbered

1

-(C l)
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The source code for the main program is given in Multignd_Study c The source file 

Cycles c contains the algorithms for all the cycles The prototypes for these are both 

given in the appendix A  The flow of the main program Multigrid_Study c is now 

discussed

Once the variable types and the five structures in main have been declared, main then 

opens the first data file (block 1), called b l7  dat The function rdatfil() then reads some 

plasma parameters, the most important being the size q, giving 2q- l  internal grid 

points

Memory is then allocated for the structures (block 2) xsi, xse, T, mr and F This is 

done by allocating a one dimensional array for each o f  the structures For the 

structures T, mr and F, an array o f  size one is allocated The reason an array of 

structures was allocated instead o f just a structure is to enable the contents o f  all these 

structures to be manipulated more easily by any functions which use them Allocating 

an array o f  structures offers easier notation in the function call than the other option of  

using a pointer to each structure in the function call, although this is a matter o f  

preference

All functions beginning with Alloc, are associated with memory allocation The 

functions Alloc_T(), Alloc_mr(), and Alloc_F actually allocate the memory for the 

contents inside each individual structure The contents o f  the xsi and xse structures is 

allocated when needed in the different functions as required later The function 

Set_T_F_mr() then fills or sets the arrays and values o f the contents o f the three 

structures

Input from the second file xs dat is then read by block 3 The function rxsfil() among 

other things reads the cross-sections from the data file xs dat into the tw o structures 

xse (elastic cross-sections) and xsi (inelastic) The function datsort() then alters the 

number and spacing o f the cross-sections in energy such that there are cross-sections 

given for each energy point on the grid The function also performs manipulations on 

the densities with a view to obtaining the specific mass ratios for each o f the different 

species and states present in the plasma, which are required for equation -(1 9)

Block 4  then proceeds to fill the contents o f  the problem matrix A , and also sets the 

boundary conditions, by assigning a value for the first element on the right hand side, 

as equation -(1 9) There is a simple 'if switch, testing as to what type o f  lower grid 

matrix redefinition is used, e g the Galerkin method (using full the operator matrices R
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and P) tested by the macro RAP. If RAP is not true (has a value of zero) then the 

second option of direct matrix redefinition for each level is then used. For every level q 

down to 1, the problem matrix A is defined. If the RAP is true, then A is found only 

for the fine grid, and the function Calculate_R_P() proceeds to find the matrices P and 

R for each level, and when calculated calls the function Calculate_Galerkin() which 

then calculates RAP for each level. The matrices for R and P are found in accordance 

to Briggs [7]. R has N/2 -1 rows and N-l columns, given N-l internal grid points in 

the system. P has N-l rows and N/2 -1 columns.

Block 4 tests for the option of either a Boltzmann problem or Poisson, and also gives 

the option (by testing the macro GAUSS_JORDON) to calculate the eigenvalues of 

the problem matrix A using the function Eigen(), which employs the C Numerical 

Recipes functions [10] gaussj(), elmhs() and hqr().

If the option of Boltzmann is chosen, the function Evalab() calculates the values for the 

coefficients a and b in equation -(1.9a). These are stored in the structure F (of type 

FILL). The function Fillc(), then uses these diagonal coefficients along with the cross- 

sections and other parameters to calculate and fill all the elements in the problem 

matrix A. As mentioned, there are two possible normalisations, one solving for n(e) 

and the other f(e). The function Evalab() and Fill(„,0) correspond to the first, n(e), 

where the last argument 0 that Fill() takes sets the function to the n(e) option. If the 

f(£) normalisation is required, the function Evalab() is replaced by Evalab_fe(), and the 

last argument of Fill() becomes 1 to give Fill(,„l).

If the Poisson option is taken, the function Matrix() calculates and fills the problem 

matrix A.

At the end of block 4, the system is now defined, all input information has been 

assimilated, and the multigrid aspect takes over.

The function Solve() at the start of block 5 obtains the LUD solution to the defined 
problem, and stores this separately from the multi grid solution. A results file is then set 

by Set_fpcycle(), which will record the performance of each different case scenario. 

This is then opened and left open for the duration of each case in block 5. A series of 

nested for loops is used to sweep through all the options. In the outer loop 

Set_Wexecute() sets the number of times this 'for' loop is repeated, depending on the 
two macros LINEAR and WEIGHT. These give the option of weighted restriction or 

linear (or both). Similarly, Set_Aexecute() sets the number of times the next 'for' loop
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is repeated, depending on the two macros AH and A2H, which correspond to the type 

of restriction discussed earlier The function Set_W eights() then sets the multigrid 

parameters inside the structure T, to either linear, weighted or both Similarly 

Set_Restrict() sets the type o f restriction in the multigrid structure T These functions 

were written to reduce the size o f the function main() in M ultignd_Study c

They enable all the different cycles and multigrid parameters to be attempted on the 

same set problem, so that the file fpcycle dat can contain all results from each different 

case This file could be used to compare the results, and plot any case against another 

This was the approach taken to observe multigrid performance (e g  by 

experimentation)

All functions beginning with Write, are new functions writing to files associated with 

the multigrid performances Those beginning with w, are original existing functions 

which have been manipulated, which output the plasma properties to the results file 

b l7  res

Code Testing of the Fourier Function

The Fourier() function which obtains the sine fourier transform o f a 1 x N - l vector, 

using the Numerical Recipes [10] function sineft(), has been tested by using the 

coincidence that the eigen functions or eigen modes o f the Poisson problem are in fact 

sine waves between the tw o end boundary points Thus by setting up the Poisson  

problem, solving it, then adding a particular eigen mode, which becomes the error, it is 

possible to treat this as an initial guess A  sine fourier transform o f  the error should 

reveal that frequency mode If all modes are present in equal amounts, then the fourier 

transform o f the error is a horizontal line
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Appendix D

Boltzmann Normalization

Equation -(1 9) gives the Boltzmann problem for the normalization n(e), which describes 

the number o f  electrons in the plasma at energy s, and is given by

J n ( s )  de = ne - ( D l )

where ne is the number o f  electrons in the plasma However, given the relation between 

fl ê) and n(e) as

n(e) = f(e) e1/2 rig -(D2)

then

J 81/2 f(e) ds = 1 - ( D 3)

Using the above equations w e can now rewrite the Boltzmann problem given by equation 

-(1 9) as,

= Ck-,fk-l + gk+1fk+! -(Ck + gk)fk + ZN» [Rsjk.m As'/2k'/2 f k+m,_ + R*Ijk. » A 1/îkl/ï fk %N̂ N s
dm 
dt

+ R ' A s1/2k ‘'2 fk+m. +  8 ik Z R ‘sinA e1/2k U2 f m- ( R sjlt + R-Sjk + R ,lk)AE1'2k 1/î f j

-(D 4)

where a, and b from equation -(1 9) become c, and g respectively, using the above 

relations, and also equations -(1 9a,b,c) W e can define c, and g (which correspond to a 

and b) as follows
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3m W  v; / VA e ^ “ ' 4 ' ~  ‘  ' 2 A e v T ~ 6‘ T ^ T
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2 N £ ( E y J _ / J _ \ /  Ae j y / 2 ^ , / 2 .  vk ( + KT 2KT \ V2 l/2
gk 3m V  4 (k 1} > * *  + ̂ Ek + Ae k

XN

2NeV  E y  1 / I

-(D4a)

where e ;= k A e  , e k = e ;., -(D4b)

W = ( v ) l'2? q-,J‘t ó )  ■ ■

-(D4c)

Equation -(D4b and c) remain the same
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