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Abstract. This paper presents a comparison of local descriptors for
a set of 26 craniofacial landmarks annotated on 144 scans acquired in
the context of clinical research. We focus on the accuracy of the dif-
ferent descriptors on a per-landmark basis when constrained to a local
search. For most descriptors, we find that the curves of expected error
against the search radius have a plateau that can be used to character-
ize their performance, both in terms of accuracy and maximum usable
range for the local search. Six histograms-based descriptors were eval-
uated: three describing distances and three describing orientations. No
descriptor dominated over the rest and the best accuracy per landmark
was strongly distributed among 3 of the 6 algorithms evaluated. Order-
ing the descriptors by average error (over all landmarks) did not coincide
with the ordering by most frequently selected, indicating that a compar-
ison of descriptors based on their global behavior might be misleading
when targeting facial landmarks.

1 Introduction

We address the comparison of local geometry descriptors for highly accurate
localization of 3D facial landmarks, in the context of craniofacial research [1, 2].
In contrast to applications on facial biometrics, which emphasize robustness to
challenging conditions [3], medical applications tend to have a greater focus on
the highly accurate localization of landmarks, as they constitute the basis for the
analysis, often aimed at detecting quite small shape differences. Depending on
the author, localization and repeatability errors are considered clinically relevant
when they exceed 1 mm [4] or 2 mm [5]. Acquisition conditions are therefore
carefully controlled to minimize holes and other artifacts.

In this context, we aim to evaluate the performance of a variety of local
descriptors for the purpose of facial landmark localization. There are two key
elements that motivate an interest in such a study: 1) the popularity of local
descriptors for the detection of 3D facial landmarks, as opposed to global cues,
and 2) the fact that previous comparisons of 3D descriptors have been focused
on the detection and reproducibility of generic keypoints, rather than on the
accuracy of specific ones (e.g. landmarks).
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The first element derives from the difficulty in detecting individual points
globally on the human face. In general, facial landmarks can be distinguished
from their neighboring points based on some geometric properties. For example,
the nose tip can be detected as a curvature peak or cap, while eye corners are
pits or cups. However, the chin tip is also a peak and the mouth corners are also
pits [6, 7]. Unfortunately, as we will show, these coincidences are not exclusive of
simple descriptors, such as curvature, but they persist for more elaborate ones.
Thus, landmark descriptors do not work satisfactorily on a global basis and one
usually combines local search with higher level constraints based on the spatial
relationships between sets of landmarks [8–10]. Hence, it is of interest to assess
how different descriptors perform when constrained to a local search.

On the other hand, prior work on the evaluation of 3D descriptors has not
focused on the accuracy of specific points. It is common practice to report the
detection and reproducibility of keypoints defined generically as those that are
most distinct from the rest for the descriptor of choice. The number of detected
keypoints and their reproducibility are used as measures of quality [11]. Accu-
racy is secondary, indirectly addressed by means of the acceptance radius (the
maximum distance at which two different points are considered to match).

Bronstein et al. [12] put more emphasis on accuracy by evaluating the iden-
tification of dense correspondences with different keypoint detection algorithms.
They report the average geodesic distances to the true correspondences; this is
possible because they constrain the matching pairs to different instances of the
same object, after some synthetic transformations.

Closer to the present study are the evaluations reported by Romero & Pears
[14] and Creusot et al. [13]. However, in both cases the evaluation is performed
based on the joint search of all points under the global constraints provided by a
graph-matching scheme. Furthermore, descriptors are not compared individually
but, rather, combined together. While Creusot et al. provide the resulting weights
for the descriptor combinations using Linear Discriminant Analysis (targeting
14 landmarks on a set of 200 scans), these do not constitute an optimal criteria
to assess the performance of each descriptor individually.

In this work we present a comparison of local descriptors for a set of 26 facial
landmarks relevant in the context of craniofacial dysmorphology [1]. The evalua-
tion is performed on a per-landmark basis with a focus on the accuracy that can
be achieved when the descriptors are constrained to search in a local neighbor-
hood of the targeted landmark. We empirically show that, for a good descriptor,
the curves of overall accuracy against the search radius have a plateau that is
indicative of the descriptor’s accuracy and usable range (Section 2). The set of
descriptors that are evaluated are detailed in Section 3, results are presented in
Section 4 and conclusive remarks are provided in Section 5.

2 Analysis of local accuracy

We start from a set of annotated facial surfaces in 3D, organized in meshes
M described by sets of vertices and triangles. We will indicate that a vertex v
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belongs to the vertices of mesh M simply by v ∈ M. Evaluation will be based
on the (Euclidean) distance from a given vertex v to the ground truth (manual
location of the considered landmark) and will be denoted by d(v).

The model-instance of a descriptor for a given landmark will be referred to
as the template; for example, the average of the spin images [16] of the nose tip
(for a set of training scans) is a descriptor template for the nose tip using the
spin image descriptor. The value resulting from the evaluation of a descriptor
template at a given vertex v will be denoted as descriptor score s(v).

We define the expected local accuracy eL(rS) over the distances from vmax
i

(the vertices that obtain the maximum score in each mesh) to the ground truth
position of the targeted landmark, evaluated only on a neighborhood composed
of vertices whose distances do not exceed the search radius parameter rS ,

eL(rS) = E[d(vmax
i,rS )] (1)

vmax
i,rS = {v ∈ Mi | d(v) ≤ rS ∧

∀w �= v, d(w) ≤ rS ,w ∈ Mi : s(v) ≥ s(w)} (2)

where E[x] is the expected value of x. That is, given a target landmark, for
each mesh Mi we consider a neighborhood of radius rS around the ground
truth position of the landmark and select vmax

i as the vertex with the maximum
score in this neighborhood. We are interested in the expected distance of these
maximum-score vertices to the targeted landmark.

It is evident that eL(rS) ≤ rS . However, a useful descriptor should also beat
chance (i.e. random selection), which would be equivalent to a uniform distribu-
tion of the scores over the neighborhood (i.e. a fully uninformative descriptor):

erandL (rS) =

∫
A(rS)

r P (r) dA =

∫
A(rS)

r

A(rS)
dA

A(r) = πr2, dA = 2πr dr ⇒ erandL (rS) =

∫ rS

0

2πr2

πr2S
dr =

2

3
rS (3)

Hence, we require that eL(rS) < 2
3rS . Fig. 1 shows three examples of eL(rS),

selected to illustrate the different behaviors observed in the landmarks used for
this study:

• In the first example, eL(rS) initially increases with rS until reaching a flat
region or plateau. This means that, except for relatively small rS , the de-
scriptor produces, on average, a maximum score consistently at the same
distance from the target.

• In the second example, eL(rS) behaves similarly to the first example up to
a certain rS , after which there is a sudden increase, which typically reaches
a second plateau.

• In the third example, eL(rS) does not show any plateau (at least for the
range of interest). Although it is below the theoretical limit of 2

3rS , its value
constantly increases.
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The descriptor from the first example is the most useful one, because it
could be used for global search; however the second one is the most frequent.
The reason for this is the presence of highly similar points from the viewpoint
of the descriptor that is used. For example, both inner eye corners are evidently
similar to each other (twin points), hence when targeting one of them we will
find an increase in eL(rS) at the average distance between inner eye corners. Any
descriptor will show such an increase of the error due to twin points but there
can also be strong similarities between different landmarks (e.g. this is typical
between the mouth and nose corners).
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Fig. 1. Expected local accuracy, eL(rS), for some facial landmarks. The theoretical
value for random choice ( 2rS

3
) is also provided for reference.

The third example is the least useful one, because it indicates somewhat
erratic behavior: the descriptor finds confusing points roughly at any distance,
indicating that the targeted landmark is not distinctive enough.

Thus, the curves of expected local accuracy can be very informative about
the performance of a descriptor for a given landmark, allowing us to compare
between different alternatives. Nonetheless, proceeding this way would require
one plot per landmark, each containing several curves (one per descriptor). A
more practical solution is to focus on the analysis of the first plateau, which is
the most important part of the curve. This can be done with just three numbers:
the value of eL(rS) and the plateau limits, in terms of rS .

Two important considerations when identifying the plateau are the stability
of eL(rS) and the range of interest. Due to the presence of outliers, we used
the median to estimate eL(rS). Regarding the range of interest, it is evident
from the second example that we should focus our analysis before the transition
from the first to the second plateau (around 25 mm in this case), as it indicates
the presence of a strong source of false positives, possibly due to a twin point.
However, sometimes there is no plateau before this sudden increase, and it is
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useful to analyze the curve generated by the difference to the theoretical limit
(random choice), which we might regard as the accuracy gain, GL(rS):

GL(rS) =
2

3
rS − eL(rS) (4)

In general, the accuracy gain is a monotonically increasing curve. However,
in the presence of a sudden increase of eL(rS), the accuracy gain will drop and
we will find a local maximum. Therefore, the search for the plateau should be
constrained up to the first local maximum of GL(rS). Note that this criterion
applies only to curves like the one in example 2, as the curves in examples 1 and
3 will not produce local maxima on GL(rS).

3 Evaluated descriptors

In this section we briefly review the descriptors that were evaluated, including
the default parameters that were used in each case. We choose three descriptors
based on histograms of distances and three based on signatures of orientations
(histograms of relative orientations of the normal vectors).

The descriptors are computed for each vertex v, whose normal vector is nv,
considering a neighborhood Nv = {w | ‖w− v‖ ≤ rN}, namely all points within
a radius rN . Except for the spin image approach, the implementations used in
this paper are based on the Point Cloud Library [15].

Spin Images (SI) [16]: This descriptor is computed as a bi-dimensional his-
togram of distances. One axis encodes the unsigned distance to the normal vector
and the other encodes the signed distance projected in the direction of the nor-
mal vector. That is, the histogram is generated from the following pairs:

(
α, β

)
=

(√‖w − v‖2 − (nv · (w − v))2 , nv · (w − v)
)

(5)

By default, the histograms contain 15 × 15 bins and the contribution of each
point is calculated with bilinear interpolation. While this descriptor has been
proposed more than a decade ago, it is still very widespread and is often used
as an indicator of baseline performance.

3D Shape Contexts (3DSC) [17]: This descriptor is based on a 3D-histogram
computed on a spherical support region centered at the interest point, v, and
with its North pole oriented with the normal, nv. The default structure has 11
elevation bins and 12 azimuth bins, both uniformly spaced, and 15 radial bins
logarithmically spaced so that more importance is assigned to shape changes
that are closer to the interest point. Similar to spin images, these descriptors are
based on distances, as the value for each bin is based on the number of points
that fall within its boundaries. The contribution of each point is weighted by
1) the inverse of its local density (to account for uneven sampling) and 2) the
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inverse of the cube root of the bin volume, due to the large difference between
bin sizes, especially along radius and elevation.

As the spherical support region is defined based only on v and nv, there
is an ambiguity on the azimuth origin. This is dealt with by calculating as
many descriptors per point as the number of azimuth bins, covering all possible
shifts. The computation of multiple descriptors is done for the model (i.e. during
training), so that during matching only one descriptor is computed and matched
to multiple descriptors by choosing the one that yields the highest score.

Unique Shape Context (USC) [18]: This descriptor is analogous to the 3DSC
but without the ambiguity in the azimuth direction, thanks to the definition of
a local reference frame consisting of 3 unit vectors that replace the orientation
of the North pole with the normal and are computed by a distance-weighted
eigen-decomposition, followed by a sign disambiguation step [19].

The use of a local reference frame reduces the computational complexity dur-
ing point matching and might also improve accuracy by reducing false positives
due to spurious similarities that arise from inconvenient azimuth rotations (i.e.
those that make the descriptors of different points become too similar). Nonethe-
less, errors or instabilities in the computation of the reference frame (e.g. due to
noise) might impair the performance of this descriptor.

Signature of Histograms of OrienTations (SHOT) [19]: This descriptor
is based on a histogram of orientations, rather than distances as for the three
previously presented. A spherical domain is defined based on the local reference
frame as described above for USC, with a coarse and isotropic grid of 8 azimuth,
2 elevation and 2 radial divisions. For each of these grid divisions, an 11-bin
histogram is defined encoding the cosine of the angle between the normals of
points within the grid division and the reference point, v.

The use of the cosine, divided in equally spaced bins, results in a non-uniform
division of the angular space, favoring directions nearly perpendicular to nv.
Tombari et al. argue that such directions are more informative than those close
to nv, which are more likely to appear in nearly-planar regions (e.g. due to
noise). Quadrilinear interpolation is used to construct the local histograms to
avoid boundary effects and the whole descriptor is normalized to sum the unit
for robustness with respect to sampling density.

Point Feature Histograms (PFH) [20]: This descriptor is based on his-
tograms of 3 angles and, optionally, one distance (not used in this paper). Given
the points in the considered neighborhood w ∈ Nv, all possible pairs of points
are analyzed. For each pair (wi,wj), i �= j with normals (ni,nj), i �= j, the
following angles are computed:

α =
(
(wj −wi)× ni

) · nj , φ =
ni · (wj −wi)

‖wj −wi‖



Comparing 3D descriptors for local search of craniofacial landmarks 7

θ = arctan

(
ni ×

(
(wj −wi)× ni

)) · nj

ni · nj
(6)

The resulting angles are used to construct a three-dimensional histogram (5 bins
for each angle were used, yielding a descriptor of length 125). Note that, due to
the evaluation of all possible pairs within Nv, the computational complexity for
this descriptor is much higher than all other ones evaluated here.

Fast Point Feature Histograms (FPFH) [21]: This is the fast variant of
PFH, and is computed in two steps. Firstly, a Simplified Point Feature Histogram
(SPFH) is constructed for each point, as described for PFH but considering only
the relations between the reference point and each of the neighbors. Later on, this
estimation is refined to obtain the final descriptor by weighting the simplified
histograms by the inverse of their Euclidean distance to the reference point.
The authors also point out the sparseness of the resulting three-dimensional
histogram and propose, instead, to compute separate histograms for each of the
three angles and simply concatenate them (11 bins per angle are used, resulting
in a descriptor of length 33).

4 Performance comparison

4.1 Data

Our test dataset consisted of 144 facial scans acquired by means of a hand-held
laser scanner3. This type of scanner allows acquisition of a three dimensional
surface by smoothly sweeping a scanning wand over an object, in a manner
similar to spray painting. The whole facial surface was acquired, up to (and
including) the ears. Special care was taken to avoid occlusions due to facial hair.
There is some heterogeneity regarding the extent to which neck and shoulders
were included.

A unique surface is reconstructed by combining the different sweeps, which
allows coverage of multiple viewpoints. Thus, the complete facial surface can be
obtained irrespective of the head pose and possible self-occlusions. This is an
important advantage compared to single-view scanners used in other databases.

The dataset contains exclusively healthy volunteers acting as controls in the
context of craniofacial dysmorphology research. The mesh resolution varies be-
tween 1.2 and 2.4 mm and, on average, there are 24.2 thousand vertices per
mesh. Each scan was annotated with 26 anatomical landmarks, in accordance
with definitions in [22] (based on [23]), as indicated in Fig. 2.

4.2 Results

We computed the expected local accuracy curves, as defined in Section 2, for
each descriptor-landmark pair, varying the search radius rS from 1 to 200 mm.

3 Cobra Wand 192 (FastSCANTM , Colchester, VT, USA).
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Table 1. Expected local accuracy for neighborhood radius rN = 30 mm. If a plateau
is found, its value and limits are indicated, otherwise (n.p - no plateau) only the limit
based on the first peak of GL is indicated. For each landmark (rows), the best descriptor
is highlighted in boldface and those that do not differ significant from it are indicated
with an asterisk. The neighborhood radius for which we obtained the best performance
is also indicated with a symbol: 20 mm (↓), 30 mm (−) or 40 mm (↑).

Landmark SI 3DSC USC SHOT PFH FPFH

en 1.7 ↑ 2.2 ↑ 2.8 ↓ 6.2 ↓ 4.6 − 2.4 ↑
(2) (5 - 23) (5 - 24) (6 - 23) (8 - 21) (8 - 21) (5 - 23)

ex 4.0 ↑ * 3.8 − * n.p − 3.8 − 6.1 − 6.6 ↓
(2) (11 - 37) (11 - 86) (< 23) (6 - 23) (11 - 68) (14 - 52)

n 3.4 ↑ 1.9 ↑ 3.4 ↑ 3.1 − 5.1 ↓ 2.4 −
(6 - 200) (5 - 200) (6 - 18) (5 - 17) (7 - 200) (5 - 200)

a 1.5 − 1.6 ↓ * 2.5 ↓ 4.8 ↓ 6.2 ↓ 5.7 ↓
(2) (4 - 25) (3 - 27) (4 - 16) (6 - 26) (12 - 17) (9 - 14)

ac 2.5 ↑ 3.9 ↓ n.p − 4.3 ↓ 5.6 − 6.4 ↓
(2) (14 - 23) (10 - 25) (< 105) (6 - 21) (12 - 22) (13 - 22)

nt n.p ↑ n.p ↑ 13.2 ↓ 8.5 ↑ 7.6 ↓ 7.0 −
(2) (< 8) (< 9) (14 - 200) (15 - 200) (11 - 200) (12 - 200)

prn 2.8 ↑ 1.3 ↑ 1.9 ↑ 3.0 − 4.3 ↓ 1.8 −
(4 - 200) (2 - 200) (3 - 200) (4 - 200) (5 - 200) (3 - 200)

sn 2.0 − 1.7 − n.p ↓ 2.6 − 6.7 ↓ 2.6 −
(5 - 60) (3 - 200) (< 111) (4 - 200) (10 - 200) (5 - 200)

ch 2.7 ↓ 3.1 ↑ 3.4 − 2.2 ↓ 5.7 ↑ 3.7 ↑
(2) (8 - 23) (7 - 14) (12 - 30) (4 - 43) (10 - 24) (9 - 40)

cph n.p ↓ n.p ↑ 13.9 ↓ 8.5 ↑ * 7.9 − 8.3 − *
(2) (< 9) (< 10) (21 - 30) (16 - 39) (12 - 200) (15 - 200)

li n.p ↓ 2.7 ↑ 2.5 − 1.9 ↑ 8.1 − 5.1 ↑
(< 11) (12 - 42) (8 - 30) (4 - 49) (9 - 200) (7 - 200)

ls 10.8 ↑ 2.6 ↑ 10.5 ↑ 3.6 ↑ 5.0 − 4.1 −
(21 - 38) (13 - 200) (20 - 34) (13 - 123) (6 - 200) (8 - 200)

sto 6.3 ↑ 2.7 ↑ * 2.4 − 2.8 ↑ 6.1 − 5.3 ↑
(14 - 84) (7 - 58) (6 - 27) (7 - 15) (8 - 200) (9 - 200)

sl 9.4 ↑ 2.9 ↓ * n.p ↑ 2.6 ↑ 5.9 − * 6.3 − *
(13 - 21) (9 - 200) (< 16) (4 - 200) (10 - 97) (11 - 18)

pg 18.7 ↑ 4.7 ↑ 13.4 ↑ 5.3 ↑ * 7.1 − 4.9 ↑ *
(23 - 200) (9 - 200) (19 - 200) (9 - 200) (9 - 200) (12 - 200)

t n.p − n.p − n.p − 7.4 − 13.4 ↓ 8.1 ↓ *
(2) (< 58) (< 125) (< 142) (20 - 96) (23 - 89) (25 - 100)

oi 7.9 ↑ n.p − n.p − 12.3 ↑ 15.1 ↓ 9.1 ↑
(2) (17 - 22) (< 17) (< 129) (23 - 30) (25 - 37) (17 - 27)
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Fig. 2. The 26 landmarks used in this study: en = endocanthion; ex = exocanthion; n =
nasion; a = alare; ac = alar crest; nt = nostril top; prn = pronasale; sn = subnasale;
ch = cheilion; cph = crista philtrum; li = labiale inferius; ls = labiale superius; sto =
stomion; sl = sublabiale; pg = pogonion; t = tragion; oi = otobasion inferius [22].

Landmarks with bilateral symmetry (left and right) were merged together by
considering each as a separate instance of the same test.

The descriptor template for each landmark was computed as the median
descriptor from a training set, created by means of 6-fold cross-validation. To
compute the scores s(v), the descriptor template was compared with the one of
each vertex using (minus) the Euclidean distance (i.e. considering each descriptor
as a point in N -dimensional space, N being the descriptor length). The only
exception was the case of spin images, where we used the (2D) cross-correlation,
as suggested in the original paper [16]. Nonetheless, we should mention that
results using Euclidean distance (with the descriptor normalized to sum the
unit) were similar to those using cross-correlation.

Table 1 summarizes the results. Each cell describes the first plateau of the
expected local accuracy curve: the number on the top indicates its median value
and the ones below (in parentheses) indicate its limits. Recall that the plateau
is only searched for rS values below the first peak of GL. The plateau range was
determined as the region for which eL did not vary by more than 10%.

The best descriptor for each landmark is highlighted in boldface and those
not significantly different from it are indicated with an asterisk4. For example,
the best descriptor for the inner-eye corners (en) is SI; if we constrain the search
to a radius below 22 mm we can expect to locate each of the inner-eye corners at
1.7 mm from their correct (ground truth) position. Clearly, the great majority
of landmarks must be constrained to a local search range for all six descriptors
and only a few of them could be used globally (e.g. n, prn, pg, sn).

4 p > 0.05 on a paired Wilcoxon signed rank test.
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Fig. 3. Left: a facial scan with descriptor scores color-coded (red = high, blue = low)
for SI and FPFH, targeting the mouth corners (ch). Right: boxplots of the distances
of the highest-score vertices (for the whole set of 144 meshes) for different search radii,
rS . The expected local accuracy, eL is estimated as the median; the discontinuous lines
indicate the accuracy gain, GL.

It is interesting to analyze the consistency of the plateau ranges. We ob-
served strong agreement for the different descriptors on symmetric landmarks
for which the twin point is relatively nearby (e.g. en, a, ac), especially for the
upper limit, which is the most important one. On the other hand, symmetric
landmarks that are further apart showed significant variations in their plateau
limits across descriptors. This is due to the presence of strong sources of false
positives different from the twin points. To illustrate this, Fig. 3 shows the de-
scriptor scores obtained by SI and FPFH for the mouth corners (ch) color-coded
on a facial scan. While SI tends to produce high scores on the nose corners (ac),
which are approximately 20 mm apart from the mouth corners, FPFH does not
show high scores on the nose and the upper plateau limit is therefore extended
up to the twin point (the other mouth corner), at about 40 mm, as indicated
on the right of the figure. Note also that both descriptors show a peak of GL at
about 45 mm, but for SI there is an earlier one at 27 mm, in coincidence with
the narrower usable local range of the descriptor for this particular landmark.

We also explored the influence of the neighborhood size used for the compu-
tation of the descriptors, testing for rN = 20, 30 and 40 mm. Table 1 shows the
results for rN = 30 mm and, for each cell, it is also indicated whether that neigh-
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borhood size or one of the two other options was optimal (see table caption).
The full tables are available on-line5.

5 Conclusions

We present a comparison of local geometry descriptors for 3D facial landamrks
on a dataset of 144 scans at moderately high resolution, annotated with 26
anatomical points relevant for craniofacial research. To facilitate the analysis we
explored the patterns generated when computing the local accuracy at different
search radii. It was found that the most useful descriptors present a flat region
or plateau that can be used to characterize the descriptor’s behavior, both in
terms of accuracy and maximum range for the local search.

Six histograms-based descriptors were evaluated: three describing distances
and three describing orientations. No descriptor dominated over the rest. From
the point of view of the overall error (i.e. the average over all landmarks), 3DSC
was the best, followed by SHOT, FPFH, SI, USC and PFH. However, 3DSC was
best only for 5 out of 26 landmarks (+6 that did not differ significantly from
the best), while SHOT did so for 8(+3) landmarks and SI for 8(+2) landmarks.
This illustrates how a comparison of descriptors based on their global behavior
might be misleading if targeting facial landmarks.

Finally, while for some landmarks the expected accuracy was below 2 mm,
some others did not obtain satisfactory results for any of the six descriptors.
This is the case for the ear points (t and oi), typically difficult due to their very
complex geometry, but also for symmetric points very close to each otehr (nt, ls),
where the accuracy of the best descriptor was similar to the separation between
the twin points and therefore not good enough to distinguish between them.
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