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ABSTRACT

Studies on the development of assay methods for the 

measurement of proinsulin.

Veronica Doyle, School of Biological Sciences, Dublin City University, 

Glasnevin, Dublin 9

The recent ava ilab ility  of synthetic human prom sulin through 

recombinant DNA technology has permitted detailed studies of its actions 

on metabolism to be undertaken, as well as giving researchers the 

opportunity to develop methods for measurement of proinsulin in various 

metabolic conditions Imtally, this project focussed on the use of rat 

hepatocytes as a model system for investigating the effect of proinsulin 

on 3-hydroxy-3-methylglutaryl coenzyme A reductase, the rate limiting 

enzyme controlling endogenous cholesterol synthesis An ‘in v itro ’ 

bioassay technique, based on the effect of proinsulin on enzyme activity, 

was developed to compare the level of proinsulin in serum from non- 

diabetic subjects with that from a group of diabetic patients Higher levels 

of serum proinsulin were observed in the latter group Subsequent work 

investigated the contribution of biologically active proinsulin to total 

immunoreactive proinsulin in these patients A two-site enzyme linked 

immunosorbent assay was developed using commercial anti-insulin and 

anti C-peptide immunoglobulins to determine serum proinsulin The level 

of immunoreactive proinsulin in diabetic patients was shown to be 

approximately three-fold higher than the level of bioactive proinsulin as 

obtained by the bioassay technique The advantages and disadvantages 

of both these methods will be discussed
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CHAPTER 1 

INTRODUCTION



Interest in the study of proinsuiin stems from the potential importance of 

this peptide in the pathophysiology and treatment of diabetes Originally, 

proinsuiin was seen as a contaminant in insulin preparations with little 

useful action Indeed, great efforts were undertaken to remove this 

substance from beef- and pork-insulm preparations Now, that it is 

ava ilab le in large enough quantities through recom binant DNA 

technology, it is possible to study and compare its metabolic effects with 

those of insulin

While several studies have shown short term effects of proinsuiin on 

aspects of carbohydrate metabolism relatively few have shown effects on 

lipid metabolism and, in particular, on cholesterol metabolism A possible 

relationship between proinsuiin and cholesterol metabolism was raised 

by a recent study showing a link between increased concentrations of 

circulating proinsulin-like material and cardiovascular risk factors such 

as total cholesterol, high density lipoprotein cholesterol and triglyceride 

levels in non-insulm-dependent diabetic patients (Nagi e ta l, 1990)

Most of the proinsuiin assays that have been developed to date have had 

to await the development of immunoradiometnc assays However, their 

sensitivity is barely adequate for the accurate determination of intact 

proinsuiin in fasting normal subjects. Moreover, assays based on the use 

of 125l as an antibody label and cellulose solid phase are not ideal for 

the analysis of large numbers of samples In order to avoid the frequent 

lodinations necessitated by the use of 125l-labelled reagents, enzyme- 

linked immunosorbent assays were developed The first such assay was 

however noticeably lengthy and suffered from the disadvantage of not 

detecting proinsuiin in fasting type 1 diabetic subjects (Hartling et al,
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1986) One of the aims of this study was to determine the effect of 

proinsulin on 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase, the 

rate-lim iting enzyme controlling cholesterol biosynthesis Isolated rat 

hepatocytes were chosen as a useful model for examining the effect of 

proinsulin on this enzyme In view of the difficulty of measuring circulating 

proinsulin, the possibility of being able to measure proinsulin in serum by 

making use of its biological activity was considered worthy of 

investigation Hence this study set out to develop a bioassay for intact 

proinsulin based on its effect on the activity of HMG CoA reductase 

Bioassays were constructed to determine the concentration of intact 

proinsulin in serum samples obtained from non-diabetic and diabetic 

patients

It has been known for some years that c ircu la ting pro insu lin  

concentrations are elevated in non-insulin-dependent diabetes and it 

has been proposed that this finding may be used as a marker of 13 cell 

injury Whether increased proinsulin levels in diabetic patients reflect 

abnormal proinsulin processing or enhanced synthesis is not yet fully 

understood Furthermore,whether elevated levels of immunoreactive 

proinsulin also reflect increased levels of biologically active intact 

proinsulin has not been studied before Hence, an investigation of the 

proportion of intact proinsulin to total immunoreactive proinsulin in non- 

diabetic and type 2 (non-insulin-dependent) diabetic patients formed the 

third major aim of this study

Thus, a study of the effect of proinsulin on HMG CoA reductase activity in 

isolated rat hepatocytes, construction of a bioassay based on its 

metabolic effect, comparison of the concentrations of biologically active 

intact proinsulin in serum samples from fasting non-diabetic and type 2
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diabetic patients and development of a rapid and sensitive two site 

ELISA suitable for immunoreactive proinsulin measurement in serum 

form the basis for the work described in this thesis

1 1 Proinsulin biosynthesis, trafficking and processing in the pancreatic

B-call.

The discovery of proinsulin in 1967 by Steiner and Oyer was one of the 

most important milestones in the study of peptide biosynthesis A great 

deal of subsequent work dealing with the formation of many bioactive 

peptides eventually led to the recognition that the biosynthetic pathway of 

insulin might serve as a model for the processing of secretory 

polypeptides in general.

Insulin is synthesised as a precursor prepromsulin, in the rough 

endoplasmic reticulum of the pancreatic 0 cell The biosynthesis of 

insulin is typical of a general mechanism whereby larger, inactive 

precursors undergo successive limited proteolysis in three major stages, 

i) Prepropeptides are synthesised on the nbosomes through 

translation of their respective messenger RNA's 

n) The prepropeptides are transformed into propeptides via loss of a 

signal peptide

iii) Propeptides are sequentially converted to active peptides via

proteolytic cleavage, to be stored in secretory granules until released 

Analogous synthetic schemes have been shown fo r parathyroid 

hormone, corticotrophin and other protein hormones Thus, hormone 

release from a secretory cell in response to a secretagogue is but the last 

in a cascade of events leading from transcription of the gene to 

exocytosis of secretory granule contents These events must be well 

regulated and coordinated to ensure appropriate cellu lar function 

Clearly, the functional status of the insulin-producing 3 cell in the
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pancreas is central to the well being of an individual, as exemplified by 

the profound metabolic dysregulation and long term complications of 

diabetes mellltus. The first section of this introduction will review the 

synthesis, trafficking and processing of proinsulin in the pancreatic 3 cell.

1.1.1 The human insulin gene

The 3-cell response to physiological stimuli is fundamentally related to 

the insulin gene and the intranuclear events regulating its expression 

(Bell et al, 1980). Detailed knowledge of these processes could 

conceivably chronicle the events causing both qualitative and 

quantitative defects in insulin secretion in diabetes. This knowledge 

might allow the development of genetic interventions to correct these 

defects or to restore the process of insulin synthesis in patients who are 

insulin deficient.

The human insulin gene is now known to be located within the short arm 

of chromosome 11(Owerbach et al, 1981). Containing 1789 base pairs, it 

is considerably longer than would be necessary simply for the production 

of the cytoplasmic mRNA coding for the precursor peptides of insulin. The 

unexpected length is at least partly accounted for by two intervening 

nucleic acid sequences not represented in the mature mRNA. These 

sequences interrupt the 5’ untranslated segment of the gene, as well as 

the region coding for the C-peptide (Fig 1.1). The two introns (179 and 

786 base pairs in length, respectively) indicate that newly transcribed 

mRNA must undergo modification with removal of the intervening 

segments and ligation of the nucleic acid sequences represented in the 

mature mRNA. Base pairs at the beginning and end of the sequences- 

common to other mammalian genes with such sequences-are probably 

markers of the junctional areas, pinpointing the regions to be ‘cut ’ and
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Figure 1.1: The human insulin gene and the 
intranuclear events regulating its expression
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‘spliced’ (Kruger et at, 1982) Thus, the complementary, overlapping 

bases at the ends of the loops must identify the segments that will be 

spliced together The removal of the sequences and splicing of the RNA 

base segments may then occur as a concerted process 

After the removal of the sequences from the proinsulin mRNA precursor, 

the mature form is transported from the nucleus to the cytoplasm The 

mature mRNA contains a 5 ’,7-methylguanosine ‘cap’ and an extended 

polyadenylated ‘tail’ This completely processed mRNA then binds to the 

ribosomes of the rough endoplasmic reticulum and directs preproinsulin 

biosynthesis

1 1 2 Biosynthesis of preproinsulin

Translation of mature mRNA is initiated by interaction between a signal 

recognition particle (SRP), a polypeptide -RNA complex and ribosomes 

involved in the synthesis of secretory proteins (Walter et al, 1981) The 

ribosome-bound SRP then arrests the elongation of the nascent 

polypeptide, presumably via linkage to the signal sequence of the 

em erging chain (Walter and Blobet,1981) The initial product of 

translation of insulin mRNA is a 12000-dalton preproinsulin ( a peptide 

ordered as prepeptide, B chain, C peptide, A chain) of which the first 20 

to 25 ammo acids constitute the signal or leader sequence (Halban, 

1990). This region is characteristically rich in hydrophobic residues and 

is responsible for directing the nascent polypeptide through the 

membrane of the rough endoplasmic reticulum (RER)

The preproinsulin-RNA-SRP complex binds to a receptor on the rough 

endoplasmic reticulum membrane, termed ‘docking protein’, thus lifting 

the inhibition of chain elongation Polypeptide synthesis will now be 

completed on the RER membrane At the same time, the SRP dissociates
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and recycles into the cytosol (Walter and Blobel, 1981)

1 1 3 Synthesis of proinsulin.

Once this sequence has penetrated the RER membrane, it is rapidly 

cleaved off to form proinsulin (the insulin A -and - B chains linked by C 

peptide) This occurs for the most part before translation of the entire 

preproinsulin molecule has been completed Once within the lumen of 

the RER, proinsulin and its conversion products (insulin and C peptide) 

will always be enveloped by a limiting membrane until released from the 

B cell or degraded within it

1 1 4 The regulation of proinsulin synthesis

Glucose is, as for secretion, the primary stimulus The short term effects of 

glucose on preproinsulin synthesis are restricted to a stimulation of 

translation, and this occurs within minutes of raising ambient glucose 

(Welsh ef al, 1986) Glucose increases the rate of initiation and 

elongation of the preproinsulin chain and facilitates interaction between 

the SRP and the docking protein thereby allowing completion of the 

polypeptide Over a longer time period, glucose is thought to stimulate 

transcription (Giddings et al, 1985) and to stabilise mRNA (Meyer et al, 

1982) Acting together, these mechanisms may result in a more than 20- 

fold rise in the rate of insulin biosynthesis.

1 1 5 From the Rough endoplasmic reticulum to the Golai complex 

Proinsulin is transported from the RER to the cis-elements of the Golgi 

complex in smooth m icrovesicles Although poorly understood, the 

mechanism of transport is ATP-dependent Both GTP, and cytosolic 

factors, including a recently characterised N-ethylmaleimide-sensitive 

fusion protein are believed to be involved also (Beckers etal, 1989)
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Passage of proinsulin from one Golgi stack to the next is assured by a 

discrete population of vesicles typified by the presence of a protein coat 

on the cytosolic face of their limiting membrane. The coat has not yet 

been

characterised, but is known not to be clathrin. The movement of vesicles 

from one stack to the next is well orchestrated, and must involve a 

targetting system to ensure delivery of a vesicle to its correct destination. 

As for RER to Golgi transport, both the N-ethylmaleimide-sensitive fusion 

protein and GTP are again required for inter-Golgi stack transport (Orci 

et al, 1989). The non-clathrin coat is lost just before the vesicles fuse with 

a Golgi membrane (Orci et al, 1989).

1.1.6 Regulated versus constitutive release

It has recently been suggested that there are two pathways for the 

release of a secretory product, namely the regulated and constitutive 

pathways (Kelly, 1985). The constitutive pathway is probably common to 

most cells in the body. This pathway involves transport of products from 

the trans-Golgi in smooth vesicles followed by fusion with the plasma 

membrane, with a transit time of about 10 minutes. The rate of transit and 

fusion are not influenced by the environment and there is no major 

storage compartment (Csorba, 1991) (Fig 1.2).

Highly specialised secretory cells such as the 6 cell have not only the 

constitutive pathway but also a regulated pathway that is the hallmark of 

their differentiated status. The regulated pathway involves packaging 

products into secretory granules, conversion of a proprotein to the native 

protein where appropriate, and release by exocytosis in response to a 

stimulus. The secretory granules represent a well-defined storage

8



Figure 1.2 : Proinsulin trafficking and 
processing events in the pathway of insulin 
production by the pancreatic B cell 
(Csorba,1991).
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compartment, and, in marked contrast to products employing the 

constitutive pathway, their contents can spend hours or even days in 

transit between the Golgi complex and the plasma membrane (Fig 1 2)

1 1 7 Targetting of proinsulin to secretory granules.

The trans-most cisternae of the Golgi complex are the site for sorting of 

products destined for the constitutive or the regulated secretory pathway 

(Orci et al, 1987) In the latter case, the products must be directed 

towards nascent secretory granules Proinsulin was shown to be 

intimately associated with the inner face of membrane domains of the 

Golgi complex, probably by receptors (Orci ,1982 and Orci etal, 1985) 

Although these receptors are not yet charactensed, it is now thought that 

the mechanism of proinsulin targetting to secretory granules may be 

receptor- mediated and may be sim ilar to the mannose 6-phospate 

receptor -mediated pathway involved in the targetting of enzymes fom the 

Golgi complex to the lysosome

Whatever the mechanism, it is remarkably efficient, since >99% of newly 

synthesised proinsulin in normal 0 cells is directed towards the regulated 

pathway (Rhodes and Halban, 1987). Therefore, very little proinsulin is 

released via the constitutive pathway under normal circumstances

The earliest detectable form of the secretory granule carries a partial 

clathrin coat and contains proinsulin (Orci ,1982 and Orci etal, 1985). 

This is the immature or coated granule It is formed by ATP-dependent 

pinocytosis of the clathrin-coated domains of the trans Golgi. The 

immature granule is itself mildly acidic, acidification having been initiated 

within the trans- Golgi
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1 1 8 Proinsulin conversion to insulin.

Three events occur in parallel in the coated granule, underlying the 

central role of this organelle in insulin production (Fig 1 2 inset) These 

events are

i) progressive acidification of the granule 

n) proinsulin to insulin conversion 

in) clathrin uncoating

Granule acidification is due to to the action of an ATP-dependent proton 

pump Although the pH of immature granules is mildly acidic, mature 

granules are markedly so (Orci etal, 1985) This progressive acidification 

appears to be critical for proinsulin to insulin conversion It has been 

reported that by using a pH probe 3-(2,4-dinitroanilino)-3,am ino-N- 

methyldipropylamine (DAMP), the generation of immunoreactive insulin 

occurs in conjunction with the acidification of coated secretory vesicles 

(Anderson et al, 1984) This study suggests that there is a critical pH 

required for the conversion of proinsulin to insulin, estimated to be pH5 5 

(Orci etal, 1986) This is in good agreement with the earlier work which 

showed that the pH optimum for the enzymes thought to process 

proinsulin is approximately pH5 5 (Docherty etal, 1982)

The enzymes responsible for conversion have been studied for over 20 

years, but identified and partially characterised only recently Processing 

of human proinsulin is believed to occur by endoproteolysis at the 

junctions of amino acids 32 and 33 and 65 and 66 to yield respectively 

32-33 and 65-66 split proinsulin Removal of the pairs of basic amino 

acids thereby exposed at the new C-terminal positions is thought to be 

carried out by a carboxypeptidase and produces respectively des-31-32- 

and des-64-65-proinsulin (Fig 1 3)

11



Figure 1.3 : The enzymes involved in the 
pathway of conversion of promsulin to insulin: 
Endopeptidase I and II and Carboxypeptidase 
(CP) (Hutton, 1989).
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The difficulty in characterising these enzymes over the years was in part 

related to the findings that endopeptidases are very fastidious in regard 

to the ir ionic and pH requirements and are rapidly inactivated by 

conditions previously used to extract tissue Also, in most preparations 

used to date, their activity is obscured by the presence of non-specific 

proteases of lysosomal origin This is where, the availability of highly 

purified subcellu lar fractions from insulinom a tissue has proved 

invaluable Assays for

processing activity in subcellular fractions prepared from insulinoma 

tissue have demonstrated that the secretory granule compartment is a 

major intracellular site of concentration of the converting enzymes, 

(Davidson e ta l, 1987)

Proinsulin is converted to insulin by the excision of the Arg Arg sequence 

at positions 31,32 and the Lys Arg sequence at positions 64,65 in the 

molecule (Fig 1 3) Conversion appears to involve initial attack by 

endoproteases on the C-terminal side of these dibasic sequences 

followed by the action of an exopeptidase specific for C-termmal basic 

am ino acids Reaction products include both insulin and the 

intermediates des 31,32 proinsulin and des 64,65 proinsulin which are 

formed by cleavage at one or other of the basic sites followed by 

carboxypeptidase H action These intermediates are also produced in 

intact 6 cells and correspond to the major circulating forms of proinsulin 

immunoreactivity (Given etal, 1985)

Further analysis reveals that at least three different catalytic activities are 

involved in the conversion process These are designated type 1 

endopeptidase, type 2 endopeptidase and carboxypeptidase H 

(Davidson eta l, 1988) Type 1 endopeptidase cleaves exclusively after

13



the Arg31-Arg32 sequence at the B-C chain junction, type 2 cleaves 

preferentially after the Lys64-Arg65 sequence of the A-C chain junction 

Carboxypeptidase H works equally well with substrates extended C 

terminally by Lys or Arg residues albeit at different rates (Davidson and 

Hutton 1987) The activities of these enzymes appear to be regulated by

com part mental pH and Ca++, which provides a simple mechanism

whereby different dibasic sites within the one protein can be cleaved in 

different subcellular compartments (Davidson eta l, 1988) Modulation in 

intragranular pH in the range of 4 to 7 could provide a means of 

regulating their activities Typel activity (Arg Arg-specific) is virtually 

abolished at pH7, and the type2 enzyme (Lys Arg -specific) retains about 

thirty percent of its activity The carboxypeptidase enzyme is markedly 

reduced at neutral pH, however, even at five percent of its maximal 

activity, it still vastly exceeds the maximal rate of endoproteolytic 

cleavage (Hutton, 1989) The enzymes involved in proinsulin processing 

require metal ions for activity The carboxypeptidase is a classic Zn

metalloenzyme, while the endopeptidases are activated by Ca++ the

type l enzyme requires calcium in the millimolar range for half-maximal 

activation, type2 requires an approximate 25-fold lower concentration 

However, the concentration of calcium in the compartments through 

which proinsulin passes prior to reaching the granule is unlikely to reach 

the levels that support type l activity This is because, firstly, the overall 

content of calcium is lower and secondly, more calcium will be in a 

complexed form due to a more alkaline pH of these compartments This 

dual control exerted by calcium and pH ensure that the final conversion 

of the single chain precursor does not occur until it reaches the granule 

compartment This is important since insulin is considerably less soluble 

than proinsulin (Grant et at, 1972) Another unusual property of the
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endopeptidases particularly the type2 enzyme, is that they are 

irrevers ib ly  inhibited by monovalent anions. The activ ity of the 

endopeptidases is probably the rate limiting step in the overall process of 

conversion and, thus, the regulatory effects of pH, calcium and anions 

documented in vitro may have relevance in the intact cell. Pulse chase 

labelling experim ents in which insu lin-re la ted peptides are firs t 

immunoprecipitated and then analysed by HPLC show that the principal 

product of typel endopeptidase cleavage, des 31,32 proinsulin, appears 

in parallel with insulin after a thirty minute delay (Davidson et al, 1988). 

This coincides with the transfer from newly coated granule to uncoated 

granule compartment and its acidification (Fig 1.2). The des 64,65 

intermediate, however, appears earlier, at a point in time when the 

precursor is distributed within the trans Golgi network and in the newly 

formed coated vesicles. This is consistent with the findings that the type2 

enzyme activity can operate at a more neutral pH and at lower calcium 

concentrations than ty p e l.

Whereas the relationship between granule acidification and conversion 

is apparant, that between these two events and clathrin uncoating is 

more obscure. Nevertheless, Halban (1990) reported a series of 

experiments that did suggest a relationship between conversion and 

uncoating. In this study, 8 cells were Incubated with analogues of 

arginine and lysine. These became incorporated into newly synthesised 

proinsulin and prevented conversion to insulin since the sites for 

endopeptidase cleavage no longer contained pairs of the native amino 

acids. However, in addition to blocking conversion, it was found that the 

modified proinsulin accumulated in coated granules. This suggests that 

granule uncoating is dependent on conversion.
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1 1 9 Role of proinsulin structural domains in taraettina to aranules_.and 

conversion to insulin 

It is apparent that two central events in insulin production are the binding 

of proinsulin to the ‘regulated pathway targetting receptor’ in the trans 

Golgi and cleavage by the proinsulin conversion enzymes Specific 

proinsulin structural domains involved in these events have now been 

characterised by Halban (1990) by the use of recombinant DNA 

technology The approach has been to modify the insulin gene by site- 

directed mutagenesis and to then transfect the mutant gene into 

transformed secretory cells equipped with the regulated pathway and to 

see whether there is regulated or constitutive release of proinsulin or 

insulin The cell line of choice was AtT20, which consists of transformed 

pituitary corticotrophs. Fig 1 4 is a model proposed by Halban (1990) to 

predict the consequences of changes to the structural domains of 

proinsulin that are critical for targetting to granules and conversion to 

insulin It is presumed that the ‘targetting’ and ‘conversion’ domains are 

separate Native proinsulin is targetted to granules by interaction with a 

putative trans-Golgi receptor Conversion to insulin occurs within 

granules following cleavage by converting enzymes. The net result is the 

regulated release of insulin In Mutant A, the structural domain 

recognised by the Golgi receptor has been modified, leading to 

constitutive release of the mutant proinsulin (Fig 1 4) An example of such 

a mutant was demonstrated in one case of familial hyperproinsulinaemia 

in which the histidine at position 10 of the insulin B-chain was replaced 

by an aspartate This led to partial diversion of the mutant proinsulin from 

the regulated to the constitutive pathway In Mutant B, a change has 

occurred that enables targetting to granules but prevents conversion (Fig 

1 4) This mutant proinsulin will be released by the regulated pathway 

Most other cases of familial hyperproinsulinaemia in which one basic
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Figure 1.4: A model predicting the 
consequence of changes to the structural 
domains of promsulin that are critical for 
targettmg to granules and its conversion to 
insulin (Halban,1990).
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amino acid at one of the cleavage sites has been replaced as a result of 

a mutation fall into this category

1 1 10 The mature .granule and the insulin crystal.

The removal of C peptide from proinsulin during its conversion to insulin 

results in profound physicochemical alterations (Emdin e ta i , 1980) The 

C peptide contains a relatively high proportion of charged amino acids 

Proinsulin, like insulin, can exist as a hexamer in the presence of Zn++ It 

is currently assumed that proinsulin exists as the Zn hexamer in 

immature granules, with conversion resulting in mature granules Thus, 

the mature granule contains crystalline insulin, an equimolar amount of C 

peptide in soluble form, and, some residual, non converted proinsulin 

Once within the mature granule, insulin can be stored, released by 

exocytosis, or degraded by fusion with lysosomes (Orci etal, 1985)

1 1.11 Biological activity of oroinsulin 

Effects on carbohydrate metabolism

While the major fate of proinsulin is to be processed to insulin in the 

pancreatic 3 cell, much effort has indeed gone into investigating the 

metabolic effects of the proinsulin portion that is not processed. The 

recent successful application of recombinant-DNA techniques to the 

manufacture of human proinsulin has made the hormone available in 

pure form for investigations of its biological activity.

Studies of its effect on carbohydrate metabolism showed that it could 

suppress glucose output from the liver in preference to stimulating 

peripheral tissue uptake of glucose (Revers et al, 1984) The suppression 

of glucose output from the liver by proinsulin was found to be long- 

lasting and reflected the reduced clearance and longer half-life of
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proinsulin as compared with insulin. The glucose- lowering effect of 

proinsulin was due mostly to its suppression of hepatic glucose output. 

Subsequent studies showed that proinsulin could inhibit glycogenolysis 

and glycogen phosphorylase in rat hepatocyte cultures.The half-maximal 

effective concentration was shown to be -26  times greater than insulin 

(Hartmann etal, 1987) (Fig 1.5). Other studies on the effect of proinsulin 

on intermediary carbohydrate metabolism have shown that proinsulin

can stim ulate both 14C-glucose incorporation into glycogen and 

glycogen synthase activity but with a relative biological potency of 3% 

compared with that of Insulin (Ciaraldi and Brady, 1989). The biological 

activity of proinsulin is probably related to the compound's structural 

similarities to insulin, allowing some specific but weak receptor binding. 

A recent study showed that proinsulin had 3% (on a molar basis) of the 

potency of porcine insulin for displacing radiolabelled insulin from 

receptors (Ciaraldi and Brady, 1989). Thus, it would appear that if the 

actions of proinsulin are to be compared with insulin, far greater amounts 

of proinsulin, on a molar basis must be used. More recently, a proinsulin 

effect different to that of insulin, was demonstrated on lactate and 

pyruvate metabolism in man (Davis e ta l, 1991).The net decrease In 

blood lactate levels during proinsulin infusion was attributed to a greater 

rate of lactate utilization compared with glycolytic production.

Effects on lipid metabolism

One of the earliest studies on the effect of proinsulin on lipid metabolism 

in type 2 diabetes showed a significant reduction in plasma triglycerides 

and HDL3 cholesterol and an increase in HDL2 cholesterol compared 

with insulin- treated patients (Drexel et al, 1988). A later study also 

showed that proinsulin therapy lowered trig lycerides and VLDL- 

cholesterol In type 2 diabetic patients to a greater extent than insulin
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Figure 1.5: Inhibition of glucagon-activated 
glycogenolysis by insulin and proinsulin 
(Hartmann etal, 1987).
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(W inocour e t  a l, 1991). However, the reduction in trig lycerides was 

balanced by an increase in LDL-cholesterol concentration. In one third of 

the patients with hyperlipidemia, postprandial triglyceridemia not only 

decreased, but fasting trig lyceridem ia  and VLDL cho leste ro l 

concentrations were lower and LDL cholesterol concentrations were 

higher after HPI treatment than after insulin treatment. A possible 

explanation for this is that proinsulin may preferentially suppress the 

production of triglyceride-rich lipoproteins in type 2 diabetes. A lower 

VLDL cholesterol level may arise if proinsulin altered the ratio of protein 

to lipid in the VLDL particle, thereby affecting its catabolism to the extent 

that it was cleared more quickly from the circulation. It was suggested that 

VLDL clearance may occur as a result of enhanced hepatic lipase activity 

rather than enhanced lipoprotein lipase activity.

To conclude, studies In normal individuals have shown that proinsulin is 

an intermediate acting, soluble insulin agonist with a potency varying 

between 5-20% that of insulin. It has a longer half-life than that of Insulin 

and therefore a slower metabolic clearance rate. It suppresses hepatic 

glucose production more than it stimulates peripheral glucose disposal, 

and has an hepatic specific effect. Proinsulin exhibits metabolic control in 

patients with diabetes by lowering blood glucose and plasma 

triglycerides and may be more effective than insulin in normalising the 

lipid profiles of patients with non insulin-dependent diabetes mellitus.

1.2 Regulation of. hvdroxvmethvlqlutarvl Coenzvme A (HMG CoA^ 

reductase.

The enzyme HMG CoA reductase catalyses the rate controlling step in 

the biosynthesis of cholesterol. Specifically, it catalyses the reductive 

deacylation of s-HMG CoA to R-mevalonate by two equivalents of
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NADPH (Rodwell e t  a l, 1976) (Fig 1.6). HMG CoA reductase is an 

integral glycoprotein of the smooth endoplasmic reticulum (Liscum e t a l ,

1983). Functionally, the enzyme is composed of two non-covalently 

linked subunits of Mr= 98KDa (Edwards e t a l ,  1985). Each subunit can be 

divided into two domains: a catalytic cytoplasm ic domain and a 

membranous domain. The cytoplasmic domain can be released by the 

action of a leupeptin sensitive protease as a soluble active enzyme with 

Mr = 50-55 KDa (Liscum e t  a l, 1983).The membranous domain with 

seven membrane spanning regions projects into the lumen of the 

endoplasmic reticulum and plays a key role in the regulation of enzyme 

degradation (Liscum e t  a l , 1985). The amino acid sequence of HMG 

CoA reductase obtained from a Chinese hamster ovary cell line indicates 

a po lypep tide  of 887 am ino acids.The N -te rm ina l region 

(residues 1-267) is extremely rich in hydrophobic amino acids and is 

therefore thought to anchor HMG CoA reductase to the microsomal 

membrane (Chin e t  a l, 1984 ). The enzyme’s active site is presumed to 

be located in the more hydrophilic portion of the enzyme nearer to the C - 

terminus (Chin e t a l ,  1984 ).

1.2.1 Enzvme release.

Microsomal membranes subjected to a slow freeze-thaw cycle release 

their HMG CoA reductase activity with high efficiency (Brown e t  a l ,  

1978).This release results from the freeze-fracture of the lysosomes that 

contam inate most m icrosomal preparations.The freed lysosomal 

proteases liberate from the microsomal membrane a soluble catalytically 

active albeit proteolytically degraded lower molecular weight fragment of 

the enzyme. Recently the undegraded native form of the HMG CoA 

reductase has been solubilised in the presence of proteolytic inhibitors 

using non ionic detergents e.g. polyoxyethylene ether Type W-1
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Figure 1.6: The reaction catalysed by HMG Co A reductase 
(Rodwell etal, 1976)

OH O OH
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(Kennelly eta l , 1983 ).

1.2.2 Structure and Kinetic Properties.

The enzyme in Chinese hamster ovary cells is a glycoprotein with a 

subunit size of 97kDa. By applying radiation inactivation of both 

microsomal and primary hepatocyte enzymes, it was determined that the 

in  s itu  form of the enzyme had a molecular mass of 200kDa (Edwards 

e t a l , 1985). They concluded that rat liver HMG CoA reductase in  s itu  is 

a non-covalently linked dimer of the 97kDa subunit. The Km for dl-HM G

CoA is between 4-5x10‘ 5M. The molecular weight of the in  s itu  enzyme

is 2.3x105. For the particulate form, the pH optimum was within pH 7.3- 

7.7, whereas that of the partially purified enzyme was lower, at pH 7.0. 

Activity was rapidly lost at temperatures above 40°C.

1.2.3 Thiol Dependence.

Rat liver microsomal HMG CoA reductase is an allosteric enzyme 

undergoing conformational changes in response to alterations in thiol 

concentrations. Several reports have shown an increase of the activity of 

this enzyme in the presence of thiols, especially glutathione and 

dithiothreitol (Roitelman and Shechter, 1984). The latter has reported that 

rat hepatic thiol-deficient microsomal HMG CoA reductase exists in a 

latent inactive form that can be easily activated by the addition of thiols. 

Thus, reduction of the enzyme by thiols is essential for reaction. At low 

thiol concentrations microsomal HMG CoA reductase displays sigmoidal 

NADPH-dependent kinetics indicating positive cooperativity in binding 

NADPH to the enzyme’s catalytic site (Roitelman and Shechter, 1984). At 

high thio l concentrations the sigmoidal NADPH-dependent kinetics 

gradually shift toward classical Michaelis-Menten hyperbola. It is of
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interest that these phenomena were not observed with the freeze-thaw 

solubilised reductase which displayed classical Michaelis-type NADPH- 

dependent kinetics regardless of the thiol concentration used for it’s 

activation The kinetic studies involving physiological concentrations of 

NADPH and thiols showed for the first time that cholesterol synthesis as 

determined by the activity of HMG CoA reductase is tightly coupled to the 

“reductive state” of the cell

1 2.4 Other Mechanisms Underlying Enzvme regulation.

Apart from thiol dependent modulation of activity, further mechanisms of 

con tro l have been proposed These invo lve  phosphory la tion 

(inactivation) and dephosphorylation (activation) of the reductase protein, 

( Ingebntsen e t a l ,  1979), the effects of membrane lipids (Orci e t a l ,  1984) 

and changes in the rates of enzyme synthesis (Clarke e t  a l , 1984) and 

degradation (Marrero e t a l ,  1986)

i)  T h e  E f fe c ts  O f  M e m b r a n e  L ip id s .

Our knowledge of the structural organisation of HMG CoA reductase in 

the endoplasmic reticulum membrane allows an appreciation of how 

adjacent lipids and proteins may affect the activity of the enzyme An 

increase in the cholesterol content of the membranes decreases the 

flu id ity and tends to displace proteins toward the surface of the 

membrane. The carboxy terminal domain siting the active site of HMG 

CoA reductase is projected further into the cytosolic space so that it is 

more exposed to proteases and other enzymes that modulate enzyme 

activity An increase in degradation of HMG CoA reductase in UT-1 cells 

(a cell line of Chinese hamster ovary cells that has been chronically 

starved of cholesterol as a result of growth in the presence of compactin, 

an inhibitor of reductase) was shown to be correlated with endocytosis of
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LDL and selective aquisition of cholesterol by endoplasmic reticulum 

(Orci e t  a l , 1984). HMG CoA reductase activity was also found to be 

dim in ished in the liver m icrosomal fraction of rats fed a diet 

supplemented with cholesterol. Moreover, the activity of the enzyme 

varied as a function of incubation temperature in a manner quite distinct 

from rats fed a normal diet. The experimental results were attributed to an 

increase in the concentration of cholesterol in the vicinity of the enzyme.

ii) D iu r n a l  R h y th m n .

In addition to the regulation exerted by diet and drugs, rat liver reductase 

exhibits a diurnal rhythm of activity, the peak occuring at the middle of the 

dark cycle (Clarke e t  a l, 1984). Studies into the control mechanisms 

involved in the activity cycle have suggested that reductase mRNA 

production and enzyme synthesis are required for the expression of the 

diurnal rhythm.This theory is further supported by reports showing that 

the diurnal rhythm of reductase mass and activity is closely paralleled by 

the level of its mRNA in rat liver (Clarke e t a l ,  1984). In intact animals the 

diurnal rise in HMG CoA reductase activity during feeding is attributed 

principally to an increased rate of synthesis of reductase (elevated mRNA 

coding for reductase) and a diminished rate of degradation of the 

enzyme. This pattern is reversed as starvation ensues. However, the 

diurnal feeding cycle is also under endocrine influence as depicted by 

changes in the phosphorylation state of HMG CoA reductase (Easom 

and Zammit, 1985). The mechanism of HMG CoA reductase degradation 

is not simply an impairment of reductase synthesis. Mevalonate has been 

shown to be an effective repressor of HMG CoA reductase in several cell 

lines and whole rat liver (Brown and Goldstein, 1980). This metabolite, 

together with LDL completely represses the expression of the gene of 

HMG CoA reductase in cells treated with compactin, an inhibitor, of

26



enzyme activity. However a faster-acting mechanism of enhanced 

decrease of enzyme activity was suggested by Marrero e t  a l  (1986). 

These workers proposed that phosphorylation of HMG CoA reductase 

induced by mevalonate accelerated its rate of degradation in isolated rat 

hepatocytes. Thus, it would appear that an increase in phosphorylation of 

HMG CoA reductase heralds degradation of the enzyme.

Hi) R e v e r s ib le  P h o s p h o r y la t io n  - D e p h o s p h o r y la t io n .

HMG CoA reductase exists in interconvertible active and inactive forms. 

This interconversion of HMG CoA reductase is accomplished by covalent 

phosphorylation and dephosphorylation of the enzyme. Fig 1.7 illustrates 

a bicyclic kinase/phosphatase system controlling HMG CoA reductase. 

This system in  v iv o  is a physiologically important mechanism of 

regulatory control. The appropriate use of protein kinase and protein 

phosphatase inhibitors and of HMG CoA reductase phosphatases 

permits measurements of both the quantity of HMG CoA reductase 

molecules present and the proportion of these that are in the active, 

dephosphorylated form. This methodology was investigated to examine 

whether insulin and glucagon, hormones known to regulate sterol 

biosynthesis do so by altering the phosphorylation state of HMG CoA 

reductase in  v iv o  (Ingebritsen e t  a i, 1979). They observed that rapid 

alterations in the fraction of enzyme in the active form occured after 

treatment of rat hepatocytes with these hormones. A rapid response to 

physiological concentrations of these hormones thus precluded a 

change in the total activity of HMG CoA reductase. It has been proposed 

that phosphorylation-déphosphorylation of HMG CoA reductase allows 

cells to rapidly adjust their rate of cholesterol synthesis often prior to a 

subsequent adjustment in the quantity of enzyme protein present - a 

major mechanism of long term regulatory control. It is of interest that two
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Figure 1.7: Bicyclic system for modulation of 
HMG Co A reductase through reversible phosphorylation.
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Key: (a) Active enzym e
(b) Inactive en zym e.
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other regulatory enzymes that participate in ce llu la r cholesterol 

homeostasis, acyl-CoA: cholesteroi-o-acyltransferase and cholesterol 7- 

alpha hydroxylase appear to be regulated by phosphorylation- 

déphosphorylation mechanisms (Scallen and Sanghvi, 1983). This 

suggests  tha t coord inate  regu la tion  of these  enzym es by 

phosphorylation-déphosphorylation may play an important role in 

m a in ta in ing  appropria te  levels of uneste rified  cho lestero l. A 

physiological role for changes in the phosphorylation state of hepatic 

HMG CoA reductase in  v iv o  has been established through 

demonstration that this parameter varies markedly in response to the 

diurnal feeding cycle of the rat (Easom and Zammit, 1984). It has been 

suggested that diurnal variations in the circulating insulin concentrations 

may be involved in the generation of the diurnal cycles observed for both 

total HMG CoA reductase activity and the expressed / total activity ratio of 

the enzyme (Easom and Zammit, 1985).

1.2.5 The effect of insulin and proinsulin on HMG CoA reductase.

An important role for insulin in the regulation of the activity of HMG CoA 

in the liver has been evident for a considerable length of time. It has been 

demonstrated that administration of insulin to normal or diabetic rats 

resulted in an increase in hepatic HMG CoA reductase activity and rate of 

cholesterogenesis even if the treatment was performed in the middle of 

the light period and in animals that did not have access to food 

(Lakshmanan e t  a l , 1973). Activity was maximal after 2h and decreased 

to pretreatment levels by 6h. Although reductase activity was low in 

diabetic rats, injection of insulin produced maximal reductase activities 

which were comparable to those in normal animals (Lakshmanan e t  a l, 

1973). In effect, diabetes appears to abolish the diurnal rhythm. Daily 

injections of a slowly released form of insulin restores essentially normal
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peak and nadir reductase activity and hence a normal rhythm 

Administration of a rapidly released insulin to a 7-day diabetic rat, 

restored activity to about the levels anticipated in a normal rat at that time 

of day (Nepokroeff e t  a l, 1974) Similarly it has been established that 

streptozotocm-induced diabetes in rats results in a marked decrease in 

the total activity of HMG CoA reductase in the liver (Lakshmanan e t  a l ,  

1973 and Young e t  a l ,  1982) Studies have been undertaken to 

investigate the possible role of insulin in modulating the fraction of HMG 

CoA reductase in the active form i e in altering the phosphorylation state 

of the enzyme It has been reported that in isolated hepatocytes the 

expressed / total HMG CoA reductase activity ratio was increased by the 

inclusion of insulin in the incubation medium (Ingebritsen e t  a l, 1979) 

The effect of diabetes on the expressed and total activities of HMG CoA 

reductase in rat liver in  v iv o  was also investigated Streptozotocm- 

induced diabetes resulted in a marked decrease in total activity of HMG 

CoA reductase and in the fraction of the enzyme in the active form. 

Intravenous infusion of insulin into diabetic rats resulted in a rapid and 

total déphosphorylation of the enzyme in  v iv o  without any change in total 

activity However long term (4h) treatment with insulin produced a rapid 

increase in expressed/total HMG CoA reductase activity to approximately 

90% followed, after a lag of 2-3h, by a 5-6 fold increase in total activity 

(Easom and Zammit, 1985) The stimulation of reductase by insulin is 

partially blocked by glucagon and is also blocked by dietary cholesterol

1 3 Measurement in pharmacology.

It is necessary to have reliable methods for measuring drug effects ,in 

order to be able to compare quantitatively the effects of a given 

substance under different circumstances . It is also necessary to be able 

to measure the concentration of drugs and other substances in, say,
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blood or other body fluids The first of these requirements is met by the 

techniques of bioassay, the second requirement may be met by highly 

specific and sensitive biological or chemical assay techniques Although 

bioassays are steadily being displaced by quicker and more accurate 

chemical assays, it is of interest to note that The British Pharmacopoeia 

(1980) still lays down bioassay as the official method for estimating the 

activity of a number of substances, such as corticotrophm, insulin and 

heparin The purpose of this section is to discuss the principles 

underlying the main types of bioassay that are particularly useful in 

pharmacological studies

1.3 1 Quantitative bioassav.

Bioassay is defined as the estimation of the concentration or potency of 

a substance by measurement of the biological response that it produces 

There are five main uses of bioassay in pharmacology

i) To measure the pharmacological activity of new or chemically 

undefined substances

ii) To measure the concentration of known substances. 

hi) To investigate the function of endogenous mediators

iv) To measure the clinical effectiveness of a form of drug treatment

v) To measure drug toxicity

It is an essential technique in the development of new drugs. The first 

stage in assessment of any new compound is usually to compare its 

b io log ica l activ ity  in various test system s w ith that of known 

compounds The choice of suitable test systems for this prelim inary 

bioassay is important and not always easy Many assays are carried out 

on whole animals which can throw up false positive or negative results, 

unlike assays on isolated systems which can have better predictive 

value Parallel bioassays are used to identify unknown mediators in a

31



biological system. For example, if the biological activity of a sample is 

thought to be due to serotonin, then measurements of the relative 

potency of the sample, assayed against authentic serotonin, ought to 

give the same result, irrespective of what assay system is used. If a range 

of assay systems is used, and the relative potency of serotonin and the 

unknown substance is the same in ail of them, then it is likely that the 

activity is due to serotonin. If, on the other hand, in one or more assay 

systems the relative potency is not found to be the same, it must be 

concluded that the biological activity is not wholly due to serotonin, but 

partly at least to other substances.

1.3.2 In  V iv o  Assays.

This classical technique, is now less widely used. Because a whole 

animal contains such a complexity of tissue, the results gained from such 

an assay are often subject to interference from various sources present in 

circulation or in tissue fluids of the animal. For example, the response 

recorded is dependent not only on the bioactivity of the hormone, but 

also on the rate of absorption of the hormone from the site of 

administration and the half life of the hormone in circulation. The 

definition of a standard organism to any extent is impossible, and 

therefore the difference between individuals in a bioassay must be taken 

into account. Despite the inherent variability involved, in  v iv o  bioassays 

are still the method of choice of the WHO Expert Committee on biological 

standardisation for defining a standard hormone preparation (1982). For 

instance, various insulin preparations are assayed by estimation of the 

decrease in blood sugar levels caused by subcutaneous injection of the 

preparation into intact rabbits, and are thus standardised. In addition to 

the quantitative assay described, qualitataive identification is also 

required by the Food and Drug Administration (FDA) regulation. This
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assay involves demonstration that convulsions induced in rabbits by 

subcutaneous injection of high doses of the preparation are relieved by 

the intravenous injection of dextrose solution (Rossi, 1985) Accuracy is 

very important in standardisation procedures, as for example, in the case 

of insulin, discrepencies in the order of 10% from the required dose may 

result in severe adverse reactions in the diabetic patient (Rossi, 1985) 

Although in  v itro  techniques have been shown to give more accurate 

results in general than in  v iv o  assays, their use has not to date been 

accepted fo r  standardisation

1 3 3 Tissue Preparation

Many bioassays have been developed using a preparation of the target 

tissue of the hormone as a test system. This minimises the interference 

with hormone bioactivity which may occur in circulation en route from the 

site of administration to its specific receptors on the target tissue One of 

the first insulin assays was developed using the rat diaphragm 

(Vallance-0wen and Hurlock, 1954) The response was measured in 

terms of diaphragm dry weight which represented insulin -induced 

glucose uptake and conversion to gycogen

D is p e r s e d  c e lls :

Cell dispersion is brought about by treatment with enzymes such as 

trypsin and/or collagenase, or chelating agents (EDTA) The use of fresh 

dispersed cells in bioassays is one way of overcoming the problems 

caused by variation between tissues of different animals. The response 

measured is generally secretion of a biologically important product 

Dispersed cell bioassays are in general more sensitive than methods 

described previously but there is the possibility of damage being caused 

to cells by enzymic dispersion However bioactivity of damaged,
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dispersed cells can be maintained if cultured in 5% C 02 at 37 °C for 1-2 

days. Cells will remain active in suspension or attached to a solid surface 

for up to two weeks (Talbot e t  a l, 1987). Permanent or immortalised cell 

lines (often from tumours) can be maintained for very much longer 

periods, considerably reducing the use of whole animals.

1.3.4 Cvtochemical Bioassav.

This perhaps is the most sensitive bioassay, and has been developed for 

relatively few hormones to date. It relies on hormone induced changes in 

some intracellular event for example, activation of an enzyme. The 

sensitivity and precision of this system are higher than the methods 

mentioned previously, but lacks technical simplicity and high sample 

throughput. In some cases however, this is the only means of examining 

low physiological levels of biologically active hormone, for example 

parathyroid hormone, in unextracted plasma (Klee e t a l ,  1988).

1.3.5. Design of bioassavs:

A bioassay can estimate the dose of an unknown test sample (T) that will 

produce the same biological effect as that of a known dose of a standard 

(S). There are two types of bioassay, namely direct and indirect. The aim 

of the direct bioassay is to determine the dose of standard and unknown 

that produce the same response. For example, the concentration of 

digitalis in an unknown test sample may be determined by injecting a 

standard preparation of digitalis into each of a group of frogs and 

determining the dose required to stop the heart. A similar experiment on 

another group of frogs is carried out with the unknown. Calculation of the 

ED50 values ( i.e the dose required to produce a response in 50% of the 

subjects tested) enables the potency ratio, M, of T to S to be given by:
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M =

ED50 standard 

ED50 unknown test

In an indirect bioassay, no attempt is made to achieve exactly matching 

responses to standard and unknown Instead, comparisons are based on 

analysis of dose-response curves and the matching doses of standard 

and unknown are calculated rather than measured directly Such 

calculations become much simpler if the dose response curves are 

linear In many cases this can be achieved by using a loganthmic dose 

scale The amount of unknown preparation required to produce an effect 

equal to that produced by a certain amount of standard will be inversely 

proportional to their relative potencies (Rossi, 1980 and 1985) Their 

relative potency is determined by the distance between the two curves 

(Fig 1 8) It is worth noting that a comparison of the magnitude of the 

effects produced by equal doses of S and T does not provide an estimate 

of M, because the ratio of the effects produced by S and T will vary 

according to the dose chosen

A convenient design is a 2+2 assay in which two doses of unknown and 

two doses of standard are examined If all the activity recorded in the 

unknown sample is due to the same substance in the standard solution, 

then the dose response lines would be perfectly parallel and the potency 

ratio of standard to unknown would simply equal the horizontal distance 

(M) between the lines (Fig 1.8) (Crossland,1980) However, in practice, 

the points rarely fall on two parallel lines and therefore, the following 

calculations are employed 

The log of the activity ratio, M is given by 

M=v/m

where v = vertical separation of the two curves
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Figure 1.8: Data for a 2+2 Bioassay 
(Crossland, 1980)
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m = mean slope of lines 

v is given by

v ^ i p y s o  + o y s a ) ]  
m is given by

m «[(S2-S1) + (T2-T1)]/2d

where d = the differences between the log (dose)’s of standard and 

test preparation

i e d = logX2 - logX1

[ O V S ^  + O y S g f ld
Hence M =   Equation 1

( S 2-S-j) + (T2-T i )

If the doses for the unknowns and the standards is not the same, the 

above equation (1) becomes

[ O V S ^  + O y S g J l d  S!
M = ______________________

(S2-S1) + (T2-Ti ) T1

These simple calculations allow more accurate interpretation of bioassay 

data, and minimization of human error involved in drawing the best-fit 

lines If the lines are not parallel, it is not possible to define the relative 

potencies of S and T unambiguously in terms of a simple ratio

An example of a typical 2+2 bioassay has been illustrated by Rang and 

Dale (1987) (Fig 1 9) This is a 2+2 bioassay of an unknown test sample 

extract versus a standard pituitary extract on an isolated rat uterus. Two 

doses of unknown (T1 and T2) and two doses of standard (S 1 and S2) 

were tested They were chosen to give responses of similar magnitude,
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Figure 1.9: An example of a 2+2 bioassay of 
an unknown versus a standard pituitary extract 
on an isolated rat uterus (adapted from Rang 
and Dale, 1987)
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and with T - , ^  equal to for convenience in analysis In this assay, 

log10 M =0 20, M=1 58 Since the standard contained 400mU/ml, the 

unknown was estimated as 400 /1 58 =252mU/ml The precision of the 

bioassay depends both on the inherent variability of the test system and 

on the steepness of the log-dose response curve The steeper the curve 

and the lower the variability of the test system, the more precise will the 

assay be

1 4 Alternative methods for measurement of hormone concentration 

In the 1960's, the development of the principle of enzyme immunoassay 

and methods for the labelling of antibodies or antigens with enzymes 

provided a whole new surge of interest in immunoassay procedures

There are various ways in which immunoassays systems can be 

classified One simple way is to divide enzyme immunoassays into two 

categories, heterogenous (ELISA) and homogenous (EMIT). In the 

heterogenous assay antigen-antibody com plexes are physica lly 

separated from free antigen and antibody using some type of solid phase 

system In homogenous enzyme-immunoassay no such separation is 

necessary and the elimination of this step is an advantage Here the 

binding reaction of antigen and antibody modifies the activity of the 

enzyme label The extent of this modification is proportional to the 

amount of binding and hence the concentration of material being 

measured.

Recently ELISA techniques have been developed for the measurement 

of human proinsulin (HPI) in serum each varying in sensitivity and the 

type of capturing or signalling antibody employed Prior to reviewing the 

methods that have been used for the measurement of proinsulin, this
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section will address the design of ELISA assays, including the solid 

phase support and enzyme-labelled detection.

1.4.1 The competitive ELISA method

Enzyme-linked immunosorbent assays may be classified into two main 

types, competitive and non-competitive assays. Competitive assays as 

their name implies measure competition in binding to antibody between 

a fixed amount of labelled antigen and an unknown quantity of 

unlabelled antigen, ‘the sample’. Fig 1.10 shows a competitive ELISA for 

measuring antigen concentration. There are many variants and the assay 

can, of course, be reversed and used to measure the competition of 

labelled and unlabelled antibody for antigen. Competitive techniques are 

more demanding in terms of accuracy with which the different reagents 

need to be dispensed and purity of the labelled ligand. They are easier to 

quantitate and can be less influenced by contaminants. There are 

several types of competitive ELISA assays, competitive ELISA for 

measurement of antigen as described above (Fig 1.10) and competitive 

ELISA using enzyme labelled antibody to measure antibody and antigen 

levels (Fig 1.11).This type of assay involves the immobilization of the 

antigen onto the solid phase. Enzyme labelled antibody and antibody in 

the sample then compete for binding to the antigen. This assay measures 

the level of specific antibody present in the sample, and has been used 

for detecting antibodies to disease-causing organisms e.g. HIV virus in 

AIDS (Felber e t  a l, 1988). As in competitive enzyme-labelled antigen 

ELISA tests, the amount of product formed is inversely proportional to the 

concentration of standard or sample antibody (Fig 1.11). A variation that 

is also extensively used involves firstly the immobilisation of the antigen 

onto a solid phase. A solution of enzyme-labelled antibody and samples 

containing standard or unknown antigen concentrations are then added. 

The greater the level of antigen in the added sample the smaller the
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Figure 1.10: Competitive ELISA for 
measunng antigen concentration (O'Kennedy 
et al, 1990).
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( 3 )  Antigen binds and unbound antigen is 
removed by washing

( 4 )  Incubate with enzyme substrate and 
measure enzyme product formation
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Figure 1.11. Competitive ELISA using 
immobilised antigen and enzyme- labelled 
antibody (O'Kennedy et al, 1990)

( 1 )  Immobilise antigen on solid phase and wash

( 2 )  Incubate with enzyme-labelled and unlabelled 
antibody

( 3 )  Antibodies bind to antigen and unbound antibodies 
ore removed by washing

( 4 )  Fo llo w in g  a d d itio n  o f su bstra te  th e  amount of 
coloured product form ed  is  in ve rse ly  p ro po rtio n a l 
to stan d a rd  and te s t  sam p le  antibody le v e ls
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number of enzyme-labelled antibodies available fo r binding to the 

immobilised antigen The amount of enzyme product formed is inversely 

proportional to the concentration of antigen in the standard or test 

solutions (Fig 1 12)

Many of the above systems employ a two-step assay using a second 

enzyme-labelled anti-immunoglobulin antibody (Fig 1 13) The second 

antibody is raised in a different species from the first antibody The 

advantages of this are that one labelled second antibody will bind to the 

primary antigen-specific antibody This will amplify the signal produced 

The other main advantage is that the use of the second antibody 

removes any problems associated with the production of a range of 

labelled antigen-specific antibodies Although it does introduce an extra 

step in the assay, the extra sensitivity achieved more than compensates 

for this

1.4 2 Non competitive assays

In non-competitive assays only one component, the sample, is present at 

a limiting concentration Thus errors in dispensing other reagents have 

little or no effect on the result. This type of assay will normally be easier to 

control and yield acurate results but is more likely to be influenced by 

cross reactions and non-specific binding (Kemeny,1991) Non­

competitive assays involve the use of either immobilised antibody or 

antigen.

( i )  Im m o b i l is e d  a n t ib o d y

In these assays the antibody is immobilised onto the solid phase 

Following washing , the antigen solution (standard and test samples) is 

added. Labelled antibody is then added After the substrate is added the 

level of colour product formation is then measured and this is 

proportional to the amount of antigen present in the standard and test
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Figure 1.12: Determination of antigen 
concentration using a competitive binding 
antigen-enzyme-labelled assay 
(O' Kennedy et al, 1990)
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Figure 1.13: Use of enzyme-labelled anti­
immunoglobulin antibody (O'Kennedy et al, 
1990)

Enzyme -  labelled
anti-immunoglobulin antibody

Antibody to antigen

Immobilised antigen nm rrm m rm jirm r
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samples. These assays are often called sandwich assays or two-site 

ELISA’s due to the use of immobilised antibody, antigen and labelled 

antibody (Fig 1.14(a)). An amplification system, involving the use of 

enzyme-labelled antibody may be used.

( i i)  Im m o b i l is e d  a n t ig e n .

It is also possible to have the antigen immobilised on the solid phase. 

Any antibody specific for that antigen, in the standards or test solutions, 

will bind to it. A second enzyme-labelled antibody specific to this 

antibody is then added. The amount of enzyme activity is again directly 

proportional to the antibody levels in the samples. This type of assay is of 

great importance in relation to the screening of hybridomas for antibody 

production to specific antigens (Fig 1.14(b)).

1.4.3 Immobilisation of antibodies and antigens to solid phases for 

enzvmeimmunoassav.

Before setting out to develop any immunoassay system, it is necessary to 

be fully aware of the advantages and disadvantages of the various 

phases and methods of immobilisation that can be used. Equally, it is 

very important for each new assay to optimise parameters such as the 

concentration of antigen or antibody immobilised, concentrations of 

detergents/washing solutions, number of washing steps etc.The solid 

phase chosen needs to bind the reactants with high capacity, give 

reproducible binding characteristics, have little dissociation on washing 

etc, orientate the antibody with the Fab portion available for binding and 

be flexible in its use and configuration forms (e.g. plastics which are 

available as plates, strips, tubes, beads or sticks; nitrocellulose sheets; 

glass etc). By far the most popular solid phase is plastic with plates, 

either polystyrene or polyvinyl chloride (PVC), being very widely used.
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Figure 1.14 (a): Non competitive enzyme assay 
using immobilised antibody (O'Kennedy et al, 1990)

(1) Antibody is immobilised on solid phase

(2 )  Antigen (< Q )” containing solutions are then added

(3 ) A second enzyme-labelled antibody to the antigen Is added. 
This antibody reacts with a different epitope to the first 
antibody

( 4 )  Enzyme activity Is measured following addition of 
substrate



Figure 1.14(b): Use of second enzyme-labelled 
antibody in non-competitive assays.
(O'Kennedy et al, 1990)

Enzyme-Labelled antibody against second 
antibody

Second antigen-specific antibody 

Antigen
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Proteins can adsorb directly onto plastic, at high pH, though the exact 

mechanism is not fully clear and depends on the nature of the protein, 

the plastic, the buffer (pH, ionic strength), temperature, time of incubation, 

and concentration of protein used To optim ise and standardise 

immobilisation, it is necessary to use the appropriate concentration of 

antigen, standardise assay conditions and wash extensively (often at 

least six times between assay steps to remove loosely bound 

immunoreactants) The reliability and sensitivity of ELISA is dependent 

upon the concentration and stability of the adsorbed protein, as for 

example in screening hybridomas for the production of specific antibody 

Too high concentrations of antigen may produce weak protein-protein 

interactions Too low a concentration of antigen will give poor sensitivity 

and low affinity antibodies may not be detected To determine the 

optimum amount of antigen for coating, chequer board titration studies 

and peroxidase saturation studies are necessary In order to prevent non­

specific binding of antibodies to antigens and to plates, mainly by 

electrostatic and hydrophobic interactions, it is generally necessary to 

use a blocking solution such as 0 1-1% (w/v) bovine serum albumin, 

gelatin or other protein solution Antigen coated plates are incubated with 

this in solution for approximately 1hour at 37°C or overnight at 4°C. It is 

also useful to include a mild detergent such as Tween-20 (0 05-0 1 %v/v) 

in all wash solutions and dilutents to further reduce non-specific binding 

of antibodies This detergent does not affect antigen -antibody binding 

but recent reports have suggested that it may remove antigens from 

nitrocellulose during washing procedures in western blotting It is, 

therefore, recommended that the use of any detergent be carefully 

monitored and tested in all immunoassay procedures 

Detergents such as Tween and Triton X-100 should never be used

49



during initial antigen coating procedures as they compete with protein for 

binding to the solid phase. In relation to all enzyme immunoassays 

involving plates, it is essential to have a quality control procedure that 

identifies intrinsic errors in plates that lead to lack of reproducibility in 

assays. These include ‘‘edge effects”, whereby the wells at the edges of 

the plates have different binding characteristics and well-to-well variation 

in optical properties and binding. Some of these effects are due to 

surface characteristics of the plastic, manufacturing methods, and 

temperature gradients during coating. To design an assay with optimal 

sensitivity, it is essential therefore to choose an antiserum of highest 

possible affinity, to use incubation times that allow an equilibrium 

between antigen and antibody, use lower concentrations of antigen and 

antibody and longer times for colour development.

Therefore with these factors taken into account the sensitivity of the 

ELISA assay is comparable to that of radioimmunoassay. It can be 

concluded that, except for very low affinity antibody, ELISA is a capacity 

assay unlike a radiobinding assay which is influenced by both antibody 

concentration and affinity. The former assay is thus best suited to 

detecting low affinity antibody whereas the latter is more efficient in the 

presence of low levels of high affinity antibody (Sodoyez e t  a l, 1991).

1.4.4 Selection and conjugation of enzvmes.

i)  C h o ic e s  o f  e n z y m e s .

There is no one enzyme with all the ideal properties for enzyme 

immunoassay. The ideal properties of an enzyme label for immunoassay 

are the follow ing: high turnover number, high stability, low cost, 

easy detection, high purity, ease of conjugation, no in terfering 

compounds/conditions in samples (e.g. enzyme inhibitors, extremes of
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pH etc) and no endogenous enzyme activity in samples. This would give 

high background effects. Those that possess many of these properties 

include glucose oxidase, B-galactosidase, alka line phosphatase, 

peroxidase and urease. These five are by far the most utilised, with 

a lka line phosphatase and peroxidase being the most popular. 

Peroxidase, alkaline phosphatase and glucose oxidase are very widely 

used in immunohistochemistry and have a variety of different substrates 

available. This is important, because substrates that give soluble and 

insoluble enzyme reaction products are required, the former for solution 

assays and the latter for histochemistry. The substrate p-nitrophenyl 

phosphate (p - NPP) is used as a substrate for alkaline phosphatase. It is 

easy to use and produces linear colour development with time. This 

substrate is stable, safe and available commercially in convenient tablet 

form. Enzyme activity doubles between 25°C-37°C but hydrolysis of the 

substrate occurs at temperatures above 30 °C. The rate of colour 

development with alkaline phosphatase can be increased by using an 

amplified substrate system. In this technique, the labelling enzyme first 

reacts with a substrate such that the product of this reaction then starts 

a second enzym e-m ediated cycling reaction, resulting in the 

accumulation of coloured product.

O-phenylene diamine (OPD) is the most widely used chromagen for 

horse radish peroxidase (HRP). However, the rate of generation of colour 

is not always linear, usually if an incorrect amount of HRP substrate has 

been used. The pH too is critical and this can change when the 

chromagen salt (OPD) is dissolved in substrate buffer. The hydrogen 

peroxide concentration is also critical- too much and the enzyme product 

is inactivated, too little and the sensitivity is lost. Substrate should be 

made up no earlier than 10 minutes before use and the peroxide added
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just prior to use. OPD is also light sensitive. If samples do not possess 

endogenous peroxidase activity then peroxidase is a very cheap, easy 

and useful enzyme for conjugation.

ii) C o n ju g a t io n  o f  E n z y m e s .

The conjugation of antibody or antigen (hapten) to the enzyme is 

fundamental to enzyme immunoassay. The ideal conjugation process 

would give very high yields of conjugate, be cheap, easy to perform, and 

produce little loss in enzyme activity or immunoreactivity. Generally for 

homogenous assays, a 1:1 ratio (1 enzyme molecule per antibody or 

antigen) conjugate is required. However, for other assay systems the 

idea is to maximise the amount of enzyme conjugated while retaining full 

activity of the antibody and the enzyme. By far the most common form of 

conjugation involves chemical linkage. If this is the chosen method it is 

im portant to take into consideration the theoretical and practical 

considerations that will affect the conjugation step such as the 

concentrations of reactants, pH, ionic strength, concentration of coupling 

agent, purity of buffers, protection of active groups with biological activity, 

site of conjugation and formation of polymers.

G lutaraldehyde has been used extensively as a homobifunctional 

crosslinking reagent because of its ease of use, low cost, and 

effectiveness with certain proteins. It is useful for alkaline phosphatase 

conjugations but less so for glucose oxidase or peroxidase.

For the conjugation of glycoproteins, periodate (N a l0 4) is a very useful 

reagent. There are a number of periodate methods. The original method 

was devised by Nakane and Kawaoi (1974) for conjugating HRP to 

antibodies, but more recent methods give better results in terms of ease, 

extent of conjugation and activity of conjugates (Tijssen and Kurstak,
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1984) The carbohydrates (about 20%) of horse radish peroxidase are 

oxidised with sodium periodate, producing aldehyde and carboxyl 

groups. The aldehyde groups then form Schiff bases with the amino 

groups of the added antibody or antigen (Fig 1 15)

There is a range of other bifunctional reagents that can be used for 

con juga tion  e g p-benzoquinone fo r peroxidase The use of 

he terob ifunctiona l reagents fo r conjugation may provide be tte r 

con juga tes m the long term  N -succ im m idyl-3 -(2 -pyridy ld ith io )- 

proprionate (SPDP) has been used for conjugation although the results 

obtained were not always satisfactory for immunoassays

In all cases conjugates need to be purified, the removal of conjugating 

agents, hapten free enzymes and in particular, free antibody being 

essential to maximise enzyme immunoassay sensitivity Generally this is 

achieved by a combination of precipitation, gel filtration and affinity 

chromatographic techniques The purity of the preparation may be tested 

by gel filtration, SDS-PAGE or HPLC which provides an ideal method for 

fast analysis of the purity of conjugate preparations such as enzyme- 

linked antibodies. Conjugate preparations need to be stored carefully 

and the conditions (e g buffers, ionic strength etc) are dependent on the 

nature of the enzyme, antibody or hapten Peroxidase is sensitive to 

microorganisms and to antimicrobial agents such as sodium azide and 

methanol and can be inactivated by plastic, although the latter can be 

prevented by the addition of Tween 20 to the dilutent Peroxidase

conjugate should therefore be stored at -20°C in 75% glycerol and all 

buffers and wash solutions should be free of sodium azide Alkaline 

phosphatase conjugates are normally stored at 4°C  in buffer containing
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Figure 1.15: Original NaI04 method of direct 
conjugation of peroxidase to antibody (IgG)
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1-2% w/v protein, 75% glycerol and azide and can, under these 

conditions, be stored at -20°C (Kemeny, 1991). Enzymes may also be 

conjugated to antibodies or other molecules using biotin-avidin or biotin- 

streptavidin bridges. This may allow the conjugation of a very large 

number of enzyme molecules per molecule of immunoglobin thus giving 

far greater sensitivity in the assay.

1.4.5 Advantages of enzvme immunoassays

The two-site assay exemplifies some of the best features of ELISA. The 

main advantages are (i) high sensitivity, (ii) high specificity, (iii) assays 

are relatively cheap and require small amounts of reagents, (iv) assays 

are rapid and can give both qualitative and quantitative results, (v) 

detection is either performed by using special readers or visually, (vi) 

results are reproducible, (vii) automated, high throughput and manual 

methods are available, (viii) very versatile (ix) no problems with radiation 

or disposal of waste and (x) both polyclonal and monoclonal antibodies 

can be used.

One of the earliest ELISA assays developed for monitoring circulating 

proinsulin was among the most sensitive but was still not sufficiently 

sensitive enough to measure concentrations expected from diabetic 

subjects in the fasting state (Hartling e t  a l, 1986). In spite of this the 

method proved useful in characterising 8 cell function in stimulated 

situations, as well as in the diagnosis of insulinoma. The method varies 

from radioimmunoassays in several aspects: (i) the use of stable enzyme 

labelled antibody, (ii) the low demand for sample volume, (iii) high 

sensitiv ity and (iv) large capacity w ithout previous separation of 

proinsulin from other plasma components. More recent methods have 

attempted to improve the sensitivity of this ELISA. An amplified ELISA for
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proinsulin in serum has been described using a polyclonal antibody 

raised in guinea pig against intact proinsulin. A sandwich was formed 

with proinsulin using a monoclonal antibody against C-peptide labelled 

with alkaline phosphatase (Dhahir e t  a l , 1992). This demonstrated 

considerable improvement in sensitivity. It enabled the estimation of the 

low concentration of proinsulin and its partially processed intermediates 

in fasting normal individuals, some diabetics and in other pathological 

conditions. A sensitive immunoenzymometric (IEMA) assay for insulin 

and proinsulin using an alkaline phosphatase-labelled monoclonal 

antibody and an amplification system for measurement of the label was 

recently developed which achieved greater sensitivity than that observed 

in immunoradiometric assays (Alpha e t a l ,  1992).

1.4.6 A review of methods used for the measurement of proinsulin. 

Assay methods initially developed to measure proinsulin-like compounds 

(PLC) in serum or plasma were based on an indirect approach. Soon 

after its discovery, proinsulin was demonstrated in plasma by taking 

advantage of both its higher molecular weight and cross reactivity with 

insulin. On fractionating plasma samples by gel chromatography, 

proinsulin eluted prior to insulin as shown by the distribution of its 

immunoreactivity (IRI) (Roth e t  a l , 1968). Another approach was the use 

of an insulin-specific protease which destroyed insulin but not proinsulin. 

After enzymatic destruction of proinsulin, significantly higher levels of 

PLC were observed in type II diabetic patients (Duckworth and Kitabachi, 

1972). Immunoprécipitation methods were later used in an indirect 

approach to quantify proinsulin in serum by measuring the C-peptide 

activity of precipitates produced after treatment of sample with insulin 

antibod ies, (Hedlng, 1977). W hereas C-peptide activ ity  in the 

supernatant is due to free C-peptide,that in the precipitate corresponded
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to PLC. A similar approach was taken by Ward e t  a l  (1986) who 

extracted plasma proinsulin with antiserum to human C-peptide. 

Subsequently, proinsulin was dissociated from the immunoprecipitate 

using antiserum to insulin and assayed for IRI, using proinsulin 

standards. Unfortunately, any contamination of the immunoprecipitate 

with free C-peptide would result in falsely elevated proinsulin levels. It 

has been reported that this type of assay measures proinsulin much less 

well than proinsulin conversion intermediates (Gray e t  a l , 1984). Cohen 

e t  a l, (1985) were the first to use biosynthetic human proinsulin in a direct 

assay. Using affinity chromatography, they extracted a large plasma 

sample for proinsulin-like material, then quantitated it with a polyclonal 

antibody against the BC junction. This method measured intact proinsulin 

and its Arg65Gly66-split derivative. When antibodies against both the BC 

and AC junctions were used in a simultaneous assay, both Arg32Gly33 

and Arg65Gly66-split derivatives were detected, (Cohen e t  a l  , 1986). 

Deacon and Conlon (1985) attempted to simplify the procedure by 

extracting only 1ml of serum with ethanol. Their assay was capable of 

detecting 4pM human proinsulin. Yoshioka e t  a l  (1988) also used a 

specific RIA to study serum proinsulin levels. Although they were only 

able to get proinsulin-specific antiserum in one guinea pig among six 

immunised animals, the antiserum did not recognise human insulin nor 

C-peptide, but cross reacted with derivatives of human proinsulin. In 

order to improve the assay sensitivity, they incubated serum samples and 

antiserum for 3 days before adding labelled proinsulin and attained a 

sensitivity of 2pM.

Side by side with the developments of proinsulin radioimmunoassay 

methods, a new methodology was being developed to take cognisance 

of some of the deficiencies of the RIA. The discovery of proinsulin, the
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demonstration that PLM exist in human plasma and the realisation that 

promsulin reacts like insulin in many insulin radioimmunoassays served 

to question  the spec ific ity  and va lid ity  of p lasm a insu lin  

radioimmunoassays The problem of specificity is unlikely to be serious 

in the assay of insulin in plasma from normal subjects, in which it has 

been estim ated that PLM accounts for only 10-20% of the 

immunoreactive insulin in plasma However, in plasma where PLM are 

present in higher concentrations, their presence may interfere with the 

interpretation of RIA measurements of insulin The principle of 

immunoradiometry, the new methodology devised by Miles and Hales 

(1968) to measure insulin, is that the compound to be measured is 

assayed directly in combination with specific labelled antibodies in 

excess With antibody excess, all the unlabelled antigen will be bound, 

unlike in RIA where an antigen must compete with a labelled antigen for 

a limited number of antibodies Hence the IRMA will be more sensitive 

than the RIA Moreover, while low molecular weight polypeptides often 

cannot be labelled to high specificity, the large molecular size of 

antibodies allows the preparation of relatively undamaged purified 

radiotracers with high specific actvity Increased specificity was achieved 

with the development of a two-site IRMA, where the antigen is extracted 

with a specific captunng antibody, coupled to a solid phase The bound 

antigen is next reacted with another labelled signalling antibody directed 

against a second epitope Since the resulting product reflects antigen 

uptake by the immunosorbent or solid phase in the first reaction, 

radioactivity attached to this complex during the second incubation will 

be a measure of antigen concentration Synthesis of intact and split 

proinsulins by recombinant DNA technology (Frank e t a l  1981, 1984) in 

com bination with the monoclonal antibody technique (Kohler and 

Milstein, 1975) has allowed unlimited production of highly specific
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antibodies directed against insulin, promsulm, 65-66 split and 32-33 split 

proinsulins This permitted the development of a direct two-site IRMA by 

Sobey e t a l  (1989) which superceded the originally developed indirect 

two-site IRMA (Beck and Hales,1975) Novel methods utilizing a senes of 

monoclonal antibody- based two site immunoradiometric assays for 

insulin, proinsulin and two split proinsulins have now become available 

as a result of the work carried out by Gray e t  a l  (1987) and Sobey e t  a l  

(1989) The more recent assays were sensitive enough to detect the 32- 

33 split proinsulin as one of the major PLM present in serum Thus, 

IRMA may enable the specific assay of insulin and of the PLM for the first 

time and be of value in determining the true insulin status of individuals 

and in the search for abnormalities of insulin synthesis and processing

While several immunological methods for measuring PLM in serum 

samples have now been published, there have been few reports of these 

methods being capable of distinguishing between the split- and des- 

form s, probably because it is d ifficu lt to develop s ite -specific  

im m unoassays that can distinguish between the small structural 

differences in the various proinsulin conversion products Recently 

however, a reverse-phase high-performance-liquid chromatographic 

(RP-HPLC) method capable of separating insulin, proinsulin and its four 

major intermediates was reported (Linde e t  a l , 1991) The method 

required an evaluation of several stationary-mobile phase combinations 

in order to achieve the desired separation It was possible to separate all 

six components using Nucleosil 300-5C4 as the stationary phase and 

0 1% trifluoracetic acid-acetomtrile as the mobile phase Serum samples 

from normal subjects and patients with non insulin-dependent diabetes 

m ellitus which were immunopunfied prior to chromatography and 

analysed by an ELISA were shown to contain both intact proinsulin and
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des-proinsulin intermediates (Linde e t a l ,  1991) The inability of current 

immunological methods to distinguish between the split- and des-forms 

may account for 32-33 split proinsulin being perceived as the major 

proinsulin intermediate detected in human serum Furthermore, work has 

shown that transformations of split forms to the corresponding des forms 

did not occur during chromatography

As mentioned previously, possible mechanisms for the increase of 

proinsulin in serum in diabetic patients may be enhanced synthesis and 

secretion from 3 cells or defective proteolytic conversion of proinsulin to 

insulin in storage granules One method for determining if proteolytic 

conversion of proinsulin is defective in diabetes might be to determine 

the ratios of intact proinsulin to total proinsulin in diabetic patients and 

non-diabetic patients Thus, the objective of this project was to determine 

the proportion of total immunoreactive proinsulin (intact, split and des 

form intermediates) that was biologically active in fasting serum samples 

from non -diabetic and type 2 (non-insulin-dependent) diabetic patients 

This was achieved by determining the concentrations of biologically 

active intact proinsulin by cytochemical bioassay Measurement of intact 

proinsulin levels depended on examining its effect on HMG CoA 

reductase activity and comparing the doses of unknown serum that gave 

the same response as standard intact proinsulin doses In addition, a 

novel two-site enzyme-linked immunosorbent assay based on the 

sequentia l use of anti C-peptide IgG and anti-insulin IgG was 

investigated for momtonng total immunoreactive proinsulin
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CHAPTER 2 

MATERIALS AND METHODS



2 1 Chemicals

The following materials were purchased from Riedel de Haen Chemical 

Company (IRL) Sodium carbonate, sodium bicarbonate, sodium 

tartarate, copper sulphate pentahydrate, tns, hydrated magnesium 

chloride, potassium chloride, ethanol, ethylene-diamine-tetracetic acid 

di-sodium salt dihydrate (EDTA), potassium dihydrogen orthophosphate, 

dipotassium hydrogen orthophosphate, sodium hydroxide, sulphuric 

acid, benzene and acetone

The following were purchased from Sigma Chemical Company Ltd

(Poole, Dorset, UK) 3-mcotinamide adenine dinucleotide phosphate (B-

NADP), glucose-6-phosphate monosodium salt, glucose-6-phosphate 

dehydrogenase (Torula Yeast), collagenase, bovine serum albumin, 

tricine, Hank's Balanced Salt solution (HBSS), Swim’s S-77 medium 

powder, horseradish peroxidase, sephadex G25, sodium borohydride, 

dialysis tubing, pig-lnsulin IgG antiserum, anti-insulin IgG commercial 

conjugate and o-phenylenediamine (OPD)

Glucose and Folin’s Ciocalteau phenol reagent, were obtained from 

Koch-Light Ltd (Suffolk, UK) Dithiothreitol (DTT), from Aldnch Chemical 

Company Human biosynthetic proinsulin, was obtained from the Lilly 

Research Centre Ltd (Surrey,UK) Anti-Human C-peptide guinea pig 

serum and human insulin were obtained from Novo Nordisk, Dublin 

Sodium azide was obtained from Merck Phosphate buffered Saline 

tablets was obtained from Oxoid 4ml capacity reservoirs, fnts (20jim pore 

size for 4ml reservoirs, 3/8 diameter), and unbonded silica gel were 

obtained from Jones Chromatography (UK) Silica gel thin layer 

chromatography plates 60A LK6D were obtained from Whatman (US)
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Ready Value scintillation cocktail was obtained from Beckman (Ireland)

Sodium Penodate, Acetic acid, sodium salt, [2-14C], 3-HMG CoA, DL-3 

[glutaryI-3-14C] [54 2 mCi/mmol) and [3H]-Mevalomc Acid (25Ci/mmol) 

from Du Pont NEN Research Products (Boston, Mass 02118) All solvents 

used were BDH laboratory grade

2 1 1 Equipment

A Waters Protein PAK 300SW-10|im HPLC column, 7 8x300mm, was 

supplied by Waters, Chromatographic division, Millipore Corporation, 

Milford, Mass 01757 The system used a Shimadzu, UV-vis spectrometer 

ELISA absorbances were read on a Titertek TwinreaderPlus 

Son/all RC-5B Centrifuge (Du-Pont Instruments)

L8-70M Ultracentrifuge (Beckman)

Labofuge 6000 (Hereus Christ)

LS-7500 Liquid Scintillation Counter (Beckman)

Labsomc U Somprep (Braun 2000)

2.1 2 Animals

Male Wistar rats (200-300g) were used in all experiments The rats were 

fed a d  lib itu m  and were housed at 21 °C in windowless rooms under 

reversed lighting conditions (lights on 4pm-4am, lights off 4am-4pm) 

Rats were killed at least 6h after beginning of dark cycle
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2 2  Methods

2.2 1 Rat hepatocvte preparation.

Rats were killed by cervical dislocation An incision was made in the 

abdominal region and continued to the thorax Intestines were moved to 

one side before perfusion of the liver with collagenase by a modification 

of the method of Berry and Friend (1969)

Initially, 600ml modified Hank’s buffer, pH7 4 containing 25mM sodium 

bicarbonate (7 5% w/v) and 5 56mM glucose, was perfused via a 

cannula through the hepatic portal vein and then discarded, in order to

remove blood and Ca2+ ions from the liver Bicarbonate-free modified 

Swim’s S-77 medium pH 7 4 containing 1 5% (w/v) bovine serum 

albumin, 50mM tricine and 22 2mM glucose was then perfused to ensure 

complete removal of the Hank’s buffer from the liver Collagenase (30mg) 

dissolved in 150ml bicarbonate-free modified Swim’s S-77 medium was 

then perfused through the liver for 10-15 mins The liver was removed 

and cut into 5mm slices (approx ) with scissors and suspended in the 

Swim’s S-77 medium containing collagenase After incubation for 15 

mins at 37°C on a shaking water bath S8-16 (Techne) at mark 5, the 

suspension was left to settle for a further 10 mins The liver was then 

filtered through muslin cloth to gently separate the cells from connective 

tissue Gravity sedimentation on ice for 10 mins was carried out three 

times to yield a suspension of parenchymal cells

2 2.2 Preparation of microsomes from hepatocvtes.

Hepatocytes were pelleted by centrifugation at 1000g for 5 mins and the 

buffer discarded 3ml of hypotonic medium pH 7 4 containing 1 5mM Tris, 

10mM KCI,10mM M gC^ 6 H2O and 18mM EDTA were added and the 

cells disrupted by somcation on ice using a Mason Somprep 1500 MSE
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for 2 mms, with a 15 sec break between each 30 sec somcation 7ml 

fractionation buffer, pH7 2, containing 100mM sucrose, 50mM KCI, 40mM 

KH2P 04 and 30mM EDTA was added and mitochondria and cell debris 

removed by two centnfugations at 800g for 10 mins followed by 15000g 

for 20 mins at 4°C, using a Sorval RC-5B centrifuge (Du-Pont 

Instruments) The supernatant was then ultracentrifuged at 104000g for 

60 min at 4°C using L8-70M Ultracentrifuge (Beckman) to pellet the 

microsomes The pellets were frozen at -70°C until assayed

2 2 3  Determination of cell viability and cell count.

Cells were diluted to 1 5 with modified Swim’s S-77 buffer containing

1 5% (w/v) bovine albumin, and suspended in an equal volume of trypan 

blue (0 05%v/v) solution When viewed under a light microscope, those 

cells that excluded trypan blue were considered viable Cell counts were 

carried out using a haemocytometer

2 2 4  Hepatocvte incubation.

Four 9ml aliquots of cells were incubated with 1 ml aliquots of either 

0 154M NaCI solution or human biosynthetic proinsulin at the following 

concentrations 2 7-270 pM

In the case of the bioassay four 9ml aliquots of cells were incubated with

one of the following

i) 0 5ml of 12pM human proinsulin

n) 1.0ml of 12pM human proinsulin

m) 0 5ml of human test serum

iv) 1 0ml of human test serum

Incubations were in an atmosphere of 5% C02 at 37°C for 2h followed by 

a viability check and cell count

Serum was obtained from 7 Control (non-diabetic) subjects (fasting
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blood sugar range 4 22-6 67mM) and 14 type 2 (non-insulin dependent) 

diabetic subjects (fasting blood sugar range 7 0-16 9mM) respectively

2 2 5  Preparation of microsomes from rat liver.

Rat liver was homogenised in 50mM potassium-phosphate buffer, 

pH7 4, containing 30mM EDTA, 250mM CaCI2 and 1 OmM DTT, at 0°C 

The microsomes were pelleted by three successive centrifugations as 

described above The pellets were frozen at -70°C until assayed

2.2.6 HMG CoA reductase assay

The assay for HMG-CoA reductase activity was a modification of the 

method described by Shapiro e t  a i, (1974) Incubations were performed 

in plastic eppendorf tubes in a total volume of 148^1 Microsomal pellets 

were resuspended in assay buffer pH 7 4, (50mM phosphate buffer 

containing 30mM EDTA, 250mM CaCI2 and 1 OmM DTT) and 100|j.l 

transferred to each tube After 5 mm preincubation at 37°C, 40p.l of

cofactor solution was added (450 nmoles of NADP+, 4 5 (¿moles of

glucose-6-phosphate, 0.3 I U of glucose-6-phosphate dehydrogenase) 

and a further 5 min incubation followed The reaction was initiated by the 

addition of substrate, 52nmoles of DL-hydroxymethyl [3-14C]-glutaryl CoA 

(specific activity 3000 dpm/nmole) and incubated at 37°C for 30 mins, 

covered and shaken at mark 5 on a shaking bath S8-16 (Techne) 25(il of 

10M HCI was then added to terminate the reaction, followed by 4 jil of [5-

3H] mevalonic acid (specific activity 19684 dpm/pmole) as internal 

standard A further incubation at 3 7 ° C  for 30 mins allowed the mevalonic 

acid to lactomse The denatured protein was sedimented by a 5 min 

centrifugation on a labofuge 6000 (Hereus Christ). The mevalonate 

product was resolved by either of two chromatographic techniques
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described below

2 2 7  Enzvme blank assay.

The assay procedure used for examining enzyme blanks is similar to the 

one described in section 2 2.6 above Microsomal pellets were 

resuspended in assay buffer pH 7 4 and 100|o.l transferred in triplicate to 

eppendorf tubes After 5min preincubation at 37°C, 40|il cofactor was 

added to the tubes These were incubated for 5min at 37°C 2 5 \ i \  of 10M 

HCL was then added to the tubes to terminate the reaction followed by a 

further 5min incubation at 37°C. 8|il of substrate as descnbed previously 

was then added and the tubes were incubated for 30min at 37°C 

followed by the addition of 4(il of [5-3H] mevalonic acid as an internal 

standard The mevalonate product was resolved by solid phase 

extraction The enzyme blank was shown to represent 18-25% of 

mevalonate produced in an active microsomal preparation This may be 

attributed to either non-enzymatic hydrolysis of the 14C -labelled HMG 

CoA, resulting in degradation product of similar polarity to the 

3H mevalonate It could also be due to suboptimal performance of the

column resulting in elution of a fraction of 14C -labelled substrate along 

with 3H -labelled internal standard

2.2 8 Substrate blank assay.

Microsomal pellets were resuspended in assay buffer pH 7 4 as 

descnbed previously and 100|i.l transferred to eppendorf tubes in 

triplicate After 5mm incubation at 37° C, 40(il of cofactor was added to the 

tubes which were then incubated for 5min at 37°C followed by the 

addition of 8|il of H20  instead of substrate The tubes were then 

incubated for 30min at 37°C 25[il of 10M HCL was then added to

66



terminate the reaction, followed by the addition of 4|a.l of [5-3H] mevalonic 

acid as internal standard The mevalonate product was resolved by solid 

phase extraction The substrate blank was shown to represent 4-5% of 

the mevalonate produced in an active microsomal preparation

2 2 9 Separation of mevalonate

i) b y  th in  la y e r  c h r o m a to g r a p h y  (T L C )

120|il of the supernatant solution was applied to activated silica gel thin 

layer chromatography plates (60 A LK6D, Whatman) and developed in 

benzene acetone (1 1) (v/v) until the solvent front reached a mark 

14 1cm from the base The plate was then scored horizontally at lengths 

equivalent to Rf values of 0 2, 0 34, 0 5, 0 64, 0 78 and 1 0 (Fig 2 1)

Each section was scraped using a razor blade into mini-scintillation vials 

with 5ml Ready-Value scintillation cocktail (Beckman)

ii)  b y  s o l id  p h a s e  e x tra c t io n .

Columns were set up using 4ml capacity reservoirs (Jones 

Chromatography, UK) A fnt (20 |im pore size, 3/8” diameter) was placed 

in the column The column was then filled with 2g of unbonded silica gel 

(Jones Chromatography) Another fnt was then placed on top of the gel 

The column was then placed over a mini-scintillation vial (Beckman) and 

pre-equilibrated with 1ml toluene acetone (3 1) (v/v) 120|il of the 

supernatant solution was then applied to the columns A small amount of 

pressure was applied using a 1 ml synnge to load the samples onto the 

column This was left for 30-45 minutes to ensure that the sample has 

entered the column 2ml of toluene acetone (3 1) (v/v) was then added 

and collected as it ran through the column The 2ml fraction collected 

was designated as the first vial The column was then transferred to a 

second mini-scintillation vial and 1ml of toluene acetone (3 1) (v/v) was
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Figure 2.1 TLC chrom atogram  illu stra tin g  
th e  m ethod of plate scoring after  
developm ent in benzene aceton e (1 1. v /v )
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added This was allowed to run through into the second vial The column 

was then transferred to a third mini-scintillation vial and 4ml of 

toluene.acetone (3 1) (v/v) was added This was allowed to run into the 

third vial The column was then transferred to a fourth mini-scintillation 

vial and 2ml of toluene acetone (3 1) (v/v) was added This was allowed 

to run into the fourth vial The vials were dried down to a volume of 300]llI 
using a Haake Buchler Vortex Evaporator (Gallon-Kamp, UK) Each vial 

was then filled with 5ml of Ready-Value scintillation cocktail 

Counting was performed using an LS 7500 liquid scintillation counter 

(Beckman) The amount of product produced was calculated using the 

following equation

nmoles mevalonate produced per 30 mins per 100|il protein=

dpm [14C]mevalonate recovered x dpm [3H] mevalonate added

specific activity [14C[HMG] CoA dpm [3H] mevalonate recovered 
(3000dpm/nmole)

2 2 1 0  Estimation of microsomal protein content

Microsomal pellets were assayed by the method of Lowry e t a l , (1951).

Triplicate aliquots of microsomal fractions were diluted to 1ml with

distilled water. Protein standards containing 0-1 mg/ml bovine serum

albumen and a control containing 1 ml distilled water were also set up in

triplicate 5ml of fresh reagent containing 50ml of 2% (w/v) sodium

carbonate in 0 1M sodium hydroxide, 0 5ml of 0 5% (w/v) copper 

sulphate pentahydrate and 0 5ml of 1% (w/v) potassium tartarate were

added to each tube The tubes were mixed and left in the dark room for

10 min 0 25ml of Folin Ciocalteau phenol reagent (1 3) (v/v) was added 

and the tubes left in the dark for a further 25min. Absorbance was read at 

600nm and the protein concentration of the microsomal fractions was
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read from the standard curve Standard curves were found to be linear 

within the range used (Fig 2 2)

2 3 Development of ELISA for proinsulin.

This involved characterisation of two antibodies (anti C-peptide IgG, and 

anti insulin IgG) with respect to (a) the determination of their working 

dilutions, (b) the determination of their cross reactivities and (c) the 

determination of optimum incubation times for each step in the assay 

The following buffers, stocks and substrates were used 

1 Carbonate buffer 0 05M Na2C 0 3 , pH9 6

2. Blocking buffer 1% BSA in carbonate buffer.

3. Wash buffer 0 05% Tween 20 in PBS

4 HRP substrate 40mg O-Phenylenediamine per 100ml citrate 

phosphate buffer, pH5 0 and 0 003% H20 2

5 Human proinsulin stock, 25mg/ml

6. Anti-insulin IgG, 3 1 mg/ml

7 Anti C-peptide IgG, 5mg/ml.

2.3.1 Comuaation of anti-insulin IgG to Horse Radish Peroxidase (HRP) 

using the periodate method.

Anti-insulin IgG was conjugated to horse radish peroxidase (HRP) using 

the penodate method as descnbed by (Tijssen and Kurstak, 1984) (Fig 

1 15) 2mg of HRP was dissolved in 0.5ml of 0.1 M Na2 C0 3  and placed in 

a foiled covered scintillation vial. 0 5ml of 8mM sodium periodate was 

added and the mixture left for 2h at room temperature 5mg of the punfied 

commercial IgG, in sodium carbonate buffer following dialysis was 

added, along with a small amount of Sephadex G25 (3mg approx), and 

the mixture left for 3h at room temperature After this period, the 

conjugate was eluted from the Sephadex by passing it through a glass
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pasteur pipette packed with glass wool, and was immediately stabilised 

with 1/20 volume of sodium borohydride (5mg/ml in 0.1 mM NaOH, freshly 

prepared). After 30 min, 3/20 volumes of sodium borohydride was added 

and the conjugate left for one hour or stored at -20°C. The conjugate was 

subsequently characterised by HPLC.

2.3.2 Characterisation of the conjugate.

20|il samples of the prepared conjugate, 0.1 M HRP, and anti insulin IgG 

were applied to a Waters Protein Pak 300 SW column for analysis. The 

flowrate was 0.5ml/minute and the running buffer was 0.1 M sodium 

phosphate, particle and gas-free. A Shimadzu uv-vis spectrophotometer 

was used to detect absorbance at 280nm (F ig 's  2.3(a) and 2.3(b)).

These figures demonstrate that when 20^1 of HRP solution was injected it 

had a retention time of 18.10 min. When 20|il of both anti-insulin IgG and 

HRP were injected the retention time for anti-insulin IgG was shown to be 

16.93 min and that for HRP was 18.04 min. When 20(il of the prepared 

conjugate and anti-insulin IgG were injected the retention times for the 

conjugate and anti-insulin IgG were shown to be 14.53 and 16.82 

minutes respectively. The conjugate has a shorter retention time (14.45 

minutes) than that of anti-insulin IgG or HRP thus demonstrating that the 

procedure for conjugation was successful (Fig 2.3(a)).

2.3.3 Determination of the protein concentration of the capturing (anti- 

C-oeDtide IqG }  and signalling (anti-insulin IgG conjugated 

antibodies bv the Bio Rad assay

Standards in the range 0 to 0.05mg/ml were prepared using phosphate 

buffered saline (PBS) as diluent and BSA as protein standard. 200fil of 

diluted Bradford reagent was dispensed into a series of wells in a
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Figure 2.3 (a): HPLC chromatogram of anti- 
insulin IgG -HRP conjugate and HRP
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Figure 2.3 (b): HPLC chromatogram of anti- 
msulrn IgG and HRP conjugate and anti-insulin 
IgG and HRP.
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microtitre plate followed by 20fj-l of each sample or 20|il of each standard 

in duplicate Some fractions were diluted first using PBS to bring them 

within the range of the standard curve A cover was placed over the plate 

and the contents of each well mixed thoroughly by moving the plate 

backwards and forwards and from right to left on the bench. Between 5 

and 60 minutes after mixing, the absorbance of each well was recorded 

at 595nm using PBS as a blank (Fig 2 4)

2 3 4  Charactensation of the antibodies.

a )  D e te r m in a t io n  o f  th e  w o rk in g  d ilu t io n  o f  th e  a n t ib o d ie s  

A checkerboard titration was performed, wherein serial dilutions of 

proinsulin were immobilised on a plate, and senal dilutions of the purified 

antibodies were reacted against the immobilised antigen to give a 2- 

dimensional result (Fig 2 5 and 2 6) One plate was performed for the 

anti-C-peptide IgG, and one for the anti-insulin IgG-HRP conjugate The 

former required the inclusion of a third (commercial conjugate) for 

detection, while the latter did not. 200^1 of the proinsulin dilutions were 

added in duplicate to 2 microtitre plates, which were incubated at 37°C 

for 2h, washed (x3) in wash buffer, and blocked (250|il of blocking buffer 

added to wells), followed by incubation at 37°C for 2h and washing (x3) 

in wash buffer The anti C-peptide IgG dilutions were added in duplicate 

to each of the proinsulin concentrations on one plate, and the anti-insulin 

IgG-HRP dilutions to the other Both plates were incubated for 2h at 37°C, 

following which, the wells were washed (x3) in wash buffer To the plate 

containing the anti-C-peptide IgG 100|il of commercial conjugate was 

added at its working dilution This plate was then incubated for 2h at 

37°C, and washed (x5). 100^1 of fresh substrate was added, and the 

plate incubated for 30mm at 37°C The reaction was stopped by the
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Figure 2.4: Standard curve of protein 
concentration ((ig/ml) as a function of 
absorbance 595nm.
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Figure 2.5: A checkerboard titration to 
determine the working dilution of anti C- 
peptide IgG.
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Figure 2.6: A checkerboard titration to 
determine the working dilution of anti-insuiin 
IgG-HRP conjugate.
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addition of 50(il 2M sulphuric acid and the absorbances read at 492nm 

The plate containing the anti insulin IgG-HRP conjugate did not receive 

the commercial conjugate but had substrate added directly

b )  D e te r m in a t io n  o f  th e  c ro s s -r e a c t iv it ie s  o f  e a c h  a n t ib o d y  

id Cross-reactivitv of anti-C-peptide laG with human insulin 

Human proinsulin and human insulin stock solutions were each diluted 

from 0 1 mg/ml serially to 0 1 ng/ml 200fil of each dilution was added to 

the wells of a microtitre plate, followed by incubation at 37°C for 2h and 

washing (x3) The plate was subsequently blocked as described, and 

100(11 of the anti-C-peptide IgG added at its working dilution, followed by 

2h incubation at 37°C and washing (x3) 200|il of commercial conjugate 

at its working dilution was then added to each well and the plate 

incubated at 37°C for 2h, followed by washing (x5), substrate addition, 

and the reading of absorbances at 492nm

ii) Cross reactivity of anti insulin laG with C-peptide.

This assay was performed exactly as was (1) above, except that instead 

of the commercial conjugate, the prepared anti-insulin IgG-HRP 

conjugate was added This was incubated at 4°C overnight in order to 

mimic better the conditions in the completed assay (see below) The 

cross reactivities of insulin (1-1000ng/ml) and C-peptide (0 01-20^g/ml) 

using these concentration ranges were also examined in the complete 

assay

(c) D e te r m in a t io n  o f  th e  o p t im u m  in c u b a t io n  t im e s  fo r  e a c h  s te p  in  th e  

a s s a y

1 Adsorption of anti-C-peptide laG to the wells.
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100(j.l of anti-C-peptide IgG at its working dilution was added to the wells 

of 5 microtitre plates, which were incubated at 37°C for 1,2,6,8 and 10 

hours respectively The plates were subsequently blocked, and 100|il of 

commercial conjugate at its working dilution added, followed by 

incubation for 2h at 37°C, addition of 100|il of fresh substrate, and the 

reading of the absorbances at 492nm

2 Binding of oroinsulin bv anti C-peptide laG

Proinsulin stock was diluted to 10ng/ml in carbonate buffer and 10Oul 

added to the wells of 3 microtitre plates, which were then incubated at 

37°C for 2h, and were subsequently washed (x3) and blocked 100(il of 

anti C-peptide IgG diluted to its working dilution in blocking buffer was 

added to each well, and the plates were incubated for 1,2 and 3h, 

respectively, at 37°C, following which they were each washed (x3) and 

100)11 of commercial conjugate at its working dilution was added to each 

well The plates were incubated for 2h at 37°C, washed (x5), and 100jil of 

substrate was added to each well, following which the absorbances at 

492nm were read

3 Binding of oroinsulin bv anti-insulin IgG

This study was performed exactly as was (2) above, except that 

incubation times of 2,4,6,8 and 10 hours for the conjugate were 

performed, and the addition of the commercial conjugate was not 

required

2 3 5 The completed assay- standard curves, cross reactivities, and 

analysis of patient serum samples 

100|il of anti C-peptide IgG diluted to its working concentration in
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carbonate buffer was added to the wells of a microtitre plate, and the 
plate incubated at 37°C for 2h, following which the wells were washed 
(x3), and the plate blocked as described previously 100jal of 
appropriately diluted proinsulin stock (for standard curves), insulin and 
C-peptide stock (for cross reactivity assays), or patient serum samples, 
were added in triplicate to the wells, followed by incubation at 37°C for 
2h The wells were subsequently washed (x3), and 1 00(liI of anti-insulin 
IgG-HRP conjugate was added, and the plate incubated overnight at 4°C 
Following incubation, the wells were washed (x5) in wash buffer, lOOfil of 
freshly prepared substrate was added to each well, and the plate 
incubated for 30 min at 37’C The reaction was then stopped with 50|il of 
2M sulphuric acid, and the absorbances at 492nm read after a further 5 
min at room temperature

Sum m ary o f ELISA method fo r proinsulin.

1 Add 100|o.l anti C-peptide IgG to wells
2 Incubate at 37°C, 2h
3 Wash, block
4 Add 1 00|llI serum, or proinsulin standards to wells 
5. Incubate 37°C, 2h
6 Wash
7. Add 1 OOjulI anti-insulin IgG-HRP conjugate 
8 Incubate 4°C overnight
9. Wash
10. Add 100pJ substrate
11. Incubate 30min at 37° C
12 Stop rxn with H2S 0 4 
13. Read absorbance 492nm
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CHAPTER 3

CHARACTERISATION OF HEPATOCYTES AND HEPATOCYTE

REDUCTASE ASSAY



Prior to the use of isolated rat hepatocytes for the study of the direct effect 
of proinsulin, it was necessary to characterise both the test system and 
the biological response being examined
Therefore suitable critena for characterising the method of hepatocyte 
preparation and their viability were determined Anticipating that each 
bioassay would require the assay of four cell aliquots in triplicate for 
reductase activity and protein, it was decided to determine the optimal 
conditions for the assay of HMG CoA reductase activity and, in view of 
the number of samples to be assayed at any one time, the most suitable 
method of product isolation

3.1 Heoatocvte yield and viability
The hepatocyte yield from rats weighing on average 250-300g was 
typically 3-4x108, the approximate wet weight of cells after liver perfusion 
being 5-7g. This allowed for multiple enzyme assays to be carried out on 
each cell preparation The bioassay format, as descnbed in Chapter 2 
required that the total cell yield be divided into four equal aliquots pnor to 
incubation with either hormone or serum. Therefore, for every enzyme
determination, 10ml cell suspensions containing approximately 7 5x107 
cells were harvested after incubation for 2h to yield microsomal fractions 
The average protein yield from each microsomal pellet was 3 6+0 09 
mg/ml (mean ±SD)
The viability of hepatocytes as determined by the trypan blue exclusion 
test ranged between 80-90% before and after 2h incubation penod at 
37°C in 5% C 02

3 2 Optimization of standard assay conditions
Prior to the estimation of HMG CoA reductase activity in microsomal
fractions of rat hepatocytes, assay conditions for the measurement of the
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enzyme with respect to the concentration of substrate required, length of 
incubation time with substrate and concentration of protein were 
established In these experiments, 14C mevalonate was separated from 
reactants by direct application of the deprotemised, acidified incubation 
mixture to thin layer chromatography plates
Mevalonate synthesis as a function of incubation time is shown in Fig 3 1 
100(il aliquots of a suitably diluted rat hepatocytes and intact rat liver 
fractions, containing 830p.g and 430jig protein respectively were
incubated with 8|j.l of [14C ] HMG CoA (corresponding to 52nmoles per 
assay) for varying lengths of time between 0 and 60mm at 37°C 
Although microsomal enzyme activity after 30min was markedly lower in 
hepatocytes (3 7 nmol/mg) relative to intact liver (17 5 nmol/mg), activity 
was linear with time of incubation up to 60min for hepatocytes and 30min 
for the intact rat liver

Fig 3 2 depicts mevalonate synthesis as a function of intact liver and 
hepatocyte microsomal protein concentration 100|_il aliquots of a suitably 
diluted hepatocyte and rat liver microsomal fraction containing between 
0 and 800|ig and 0 and 400|ig of protein respectively were assayed for 
HMG CoA reductase Although reductase activity from rat hepatocytes 
and intact rat liver was observed to be linear with protein concentration 
within the range tested it is apparent that the specific activity of HMG CoA
reductase in hepatocytes (100 pmol mm'1 mg'1) was approximately 
six fold lower than that observed in intact liver microsomes (639 pmol 
min"1 mg'1)
Having established the linearity of the assay with regard to protein and 
time, the enzyme as expressed in liver and hepatocytes was then studied 
vis a vis its kinetic parameters The assay conditions with respect to 
protein concentration per I00|il and length of incubation time with
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Figure 3 1 Activity of HMG CoA reductase  
(n m o l/m g )  as a function of tim e (min)

Time (mm)

84



Figure 3 2 Activity of HMG CoA reductase  
(p m o l/m in )  as a function  of protein  
co n cen tra t io n  (/¿g /tube)

Protein Qxg/tube)
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substrate that were adopted for the determination of Km and Vmax of 
HMG CoA reductase were 0.43 mg and 60min respectively at 37°C in rat 
hepatocytes and 0.4mg and 30min at 37°C in rat liver. Fig 3.3 shows the 
specific activity of HMG CoA reductase (pmol. min'1. mg protein'1) as a 
function of substrate concentration (nmol hydroxymethylglutaryl CoA per 
assay). Analysis was by the standard method except for the indicated 
changes in the concentration of substrate (specific activity 3000 d.p.m. 
/nmol). Maximal enzyme activity in both fractions was obtained using 52 
nmoles of substrate per assay. Increasing the substrate concentration by 
a factor of 2 did not greatly alter the specific activity of HMG CoA 
reductase in rat liver (272 pmol. min'1. mg protein '1). It is apparent 
however that halving the substrate concentration reduced the specific 
activity of the enzyme in rat liver by approximately 20% (Table 3.1). The 
values of Km and Vmax for HMG CoA reductase activity in rat 
hepatocytes and intact liver are shown in Table 3.2. The data were 
extrapolated from Lineweaver Burk plots as shown in Fig 3.4. The 
concentration of DL-hydroxymethylglutaryl CoA used (52 nmoles / assay  
or 3.466 x10'4M) exceeded the Km values by a factor of 5 in 
hepatocytes and 3.8 in rat liver. It is however apparent that the specific 
activity of the enzyme in rat liver microsomal pellet fraction had 
decreased relative to that observed in the same rat liver pellet when 
assayed fresh for determining the time and protein courses of the 
enzyme assay. This reflected the lability of the enzyme after storing at -
20°C and subsequent thawing of a microsomal pellet suspension.

3.3 Comparison of solid phase extraction and direct thin
layer chromatography as methods for separation of mevalonic acid. 

Fig 3.5 shows that the specific activity of HMG CoA reductase determined
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Figure  3 3 Specific  a c tiv ity  of HMG CoA reductase 
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TABLE..,3 .J.

The effect of hydroxymethylglutaryl Co A concentration on reductase activity

[HMG CoA] Specific activity of HMG CoA reductase
(nmoles/assay) (pmol rnin"1 mg*1)

Intact liver Hepatocytes

13 162 0 86
26 226 5 114
52 277 6 126
78 272 0

TABLE 3 2

Kinetic constants of HMG CoA reductase in microsomal fractions of rat liver
and hepatocytes.

HMG CoA reductase
Km (mM) Vmax(pmol min'1 m g'1)

Intact liver 0 090 334 3
Hepatocytes 0 067 153 0
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Figure 3.4: Lineweaver-Burk plot of 1/V of 
HMG Co A reductase (pmol.mm-1.mg*1) versus 1/S (mM) in liver and hepatocytes.

1/S (mM)

#  Hepatocytes 
V Liver
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Figure 3 5 C om parison of the specific activity  of 
HMG CoA red u c ta se  obtained when using colum n  
chrom atography or thin layer chrom atography

UCO
(0
0  0
«U
1  •
o

825

800

775
02  -  750
1  ' S
° £ 725

o
5  |  700
g *
o

o
V
a
co

675

650

0
0 • Thin Layer

O Column

-
o

_

- 0 • -

- • -
— -

90



after solid phase extraction (768 45±17 1 pmol min’1 mg protein'1) was 
not markedly different to that observed following direct thin layer 
chromatography (705 5+17 4 pmol min"1 mg '1) The reproducibility of 
the solid phase extraction method is also evident, the coefficient of 
variation being 4 9% This was the method chosen for all subsequent 
work as it proved less tedious and resulted in a greater recovery of 
mevalonate The percentage recovery of mevalonate for solid phase 
extraction was 62±2 2% (n=21) and for thin layer chromatography 
55±8 88% (n=6) (mean±SD)
Table 3 3 demonstrates the repeatability of the assay in freshly prepared 
hepatocytes using solid phase extraction as assessed  by determining 
reductase activity in three equal aliquots of cells prepared by a single 
liver perfusion Specific activity ranged between 223 and 266 8 pmol 
min'1 mg protein-1, the % coefficient of variation (CV) being 8 9%

3 4 Lability of HMG CoA reductase.
Table 3 4 shows the decrease in specific activity of HMG CoA reductase 
observed after storage of microsomal fractions of rat liver at -20°C for 
three days Specific activity of reductase in unfrozen freshly prepared 
microsomal fractions was approximately 5.4 times higher than that 
observed in frozen fractions Anticipating a practical difficulty with 
measunng the specific activity of the enzyme in microsomal pellets 
obtained from rat hepatocytes on the same day as their isolation, all 
microsomal pellets were frozen at -70°C, as an unsuspended fraction 
prior to enzymatic assay

To conclude, the assay procedure described in Chapter 2 permitted 
analysis of microsomal preparations with widely different reductase 
activities as expressed by hepatocytes and intact liver
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TABLE 3.3

Specific activity of HMG CoA reductase in a rat hepatocyte microsomal 
fraction obtained from a rat killed in the middle of the dark cycle. HMG CoA 
reductase activity was measured three times.

First assay 
Second assay 
Third assay

HMG CoA reductase, 
(pmol. min ‘1 . mg *1)

266.8
249.8
223.0

TABLE; 3,4

Specific activity of hepatic HMG CoA reductase (pmol. min *1. mg -1)
(Mean ± SD, n=2) as obtained from intact rat.

Storage period HMG CoA reductase Coefficient of
(days) (pmol. min ' 1 . mg *1) Variation (%)

0 810±55 (2) 6.7
3 149126 (2) 17.5
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CHAPTER 4

EFFECT OF PROINSULIN ON HMG CoA REDUCTASE ACTIVITY



It has been known since the early 70's that hepatic cholesterol 
production in the rat increases following injection of pharmacological 
doses of insulin However it was not until some time later when simplified 
in vitro systems had been established that it could be ascertained 
whether changes in the activity of HMG CoA reductase were mediated 
directly by fluctuations in pancreatic hormone concentrations To date, 
insulin and glucagon are the only pancreatic hormones that have been 
shown to directly affect the activity of the rat liver enzyme Since 
proinsulin constitutes 10-20% of the measurable circulating 
immunoreactive insulin in humans, the relative biological activity of 
proinsulin on reductase activity is of obvious interest This chapter 
describes the effect of proinsulin on the activity of HMG CoA reductase in 
freshly prepared hepatocytes

4 1 A comparison of the effects of oroinsulin and insulin on HMG CoA 
reductase activity 

Hepatocytes obtained from rats, killed in the middle of the dark period
were incubated at 37°C in standard medium either alone or in the 
presence of insulin (72nM) or proinsulin (50nM) The dose of insulin that 
was chosen represented the concentration shown previously to produce 
a significant increase in reductase activity (Gibbons e ta l ,  1984) Fig 4 1 
depicts the specific activity (pmol min'1 mg protein'1) of HMG CoA 
reductase (mean±SD) obtained from cells incubated with insulin 
( 199±17 92 (3)), proinsulin (217±17 34(3)) and saline (control)
(125±7 51(3)) Insulin stimulated reductase activity by 59% while 
proinsulin produced an even greater stimulation 73% (Fig 4 1)
Thus it is apparent that proinsulin, like insulin can exert short term 
hormonal control of hepatic HMG CoA reductase activity in the rat
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Figure 4.1: Specific activity of HMG Co A 
reductase (pmol.mur1 mg'1) in isolated 
hepatocytes maintained in culture with saline, 
insulin (72nM) and pro insulin (50nM)
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4 2 Establishment of a dose-resoonse curve for promsulin 
In an attempt to determine if proinsulin concentration in biological 
samples could be measured by a bioassay technique based on the effect 
of proinsulin on HMG CoA reductase activity, it was necessary to 
examine the proinsulin response over a range of concentrations likely to 
be expected.
Hepatocytes were incubated for 2h in the presence of vanous 
concentrations of proinsulin (2 7-270pM) Fig 4 2 demonstrates a 
standard curve relating specific activity of HMG CoA reductase with log10 
proinsulin concentration Reductase activity was observed to increase 
approximately 68 8% as the concentration of proinsulin increased 100 
fold from 2 7pm to 270pM Specific activity of HMG CoA reductase
(pmol min'1 mg protein '1) in cells incubated with 1 ml of 2 7pM, 27pM 
and 270pM proinsulin were 114±9, 140±10 5 and 191 ±5 respectively 
Thus a biological response was observed over a proinsulin 
concentration range that closely approximated to that observed for serum 
proinsulin in different physiological and pathological conditions

4 3 The effects of serum and insulin on the biological response of 
proinsulin

The effects of serum and insulin on the proinsulin response were 
subsequently investigated by incubating hepatocytes with 2 7pM 
proinsulin alone and with either insulin (100pM) or 10% (v/v) human 
serum Fig 4 3 shows that the specific activity of HMG CoA reductase was 
significantly elevated (p<0 05) when serum was present with proinsulin 
in the medium compared with when proinsulin alone was present
(714±251 pmol mm"1 mg protein'1 vs 160±4 98 pmol min'1 mg
protein '1) Substitution of serum with insulin produced a 157%increase
in reductase activity (252±44 11 pmol min'1 mg protein1) though not as
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Figure 4 2 Specific a c t iv ity  of HMG CoA reductase  
as a fu n c tio n  of Log l 0  hum an p ro in su lin  
concen tra tion  (pM) (m ean ± SEM, n=2)

Log l 0  P ro insu lin  (pM) i
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Figure 4.3: Specific activity of HMG Co A 
reductase after adding serum and 
msulin(lOOpM) to incubation medium 
containing pro insulin (2.7pM) 
(Mean±SD,n=3).
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great as the serum effect (446%) (Fig 4 3)
It was apparent from this study that the biological activity of proinsulm at a 
concentration as low as 2 7pM could be detected However, its biological 
activity was lower than that in the presence of either insulin or serum

4 4 Establishment of suitable volumes for a promsulin bioassav.
In order to construct a proinsulm bioassay it was necessary to determine 
the most suitable volumes of hormone to add to cells Hepatocytes were 
incubated for 2h in the presence of different volumes of a 12pM 
promsulin standard solution, a concentration chosen apropos it being 
close to the maximum level of circulating proinsulm that has been 
observed in humans under normal physiological conditions and also 
because it was on the linear portion of the graph showing the 
relationship between specific activity and log10 promsulin concentration 
(Fig 4 2)

Fig 4 4 depicts the specific activity of HMG CoA reductase as a function of 
volume of 12pM standard Although a higher level of activity was 
obtained when 2ml of standard was added to cell medium, the extent of 
the increase did not match the 1 7-1 8 fold increase reported on adding 
0 25ml, 0.5ml and 1ml of proinsulm standard The magnitude of this 
biological response was thought to be suitable for a bioassay and hence 
the volumes of standard chosen for the construction of a 2+2 bioassay 
were 0 5ml and 1 0ml This experiment did however suggest that there 
may be a critical volume of Swim's S-77 medium required for cell 
maintenance over 2h since addition of 8ml of cell medium represents at 
least a 12 5% decrease in concentration of cell medium components 
relative to other test hepatocyte incubations

98



Sp
eci

fic
 

ac
tiv

ity
 

of 
HM

G 
CoA

 
re

du
ct

as
e

F i g u r e  4 4 Q u a n t i t a t i v e  e f f e c t  of  p r o i n s u l i n  
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4 5 2+2 Bioassav for proinsulin.
The previous section reported on the effect of incubating proinsulin with 
hepatocytes „A linear biological response with respect to its effect on 
hepatocyte HMG CoA reductase was observed over a wide 
concentration range of proinsulin This constituted the first step in the 
development of a proinsulin bioassay This section reports on the results 
obtained after construction of a 2+2 bioassay for serum samples 
obtained from 7 non-diabetic subjects and 14 diabetic patients 
Hepatocytes were prepared by perfusion of rat liver with collagenase as 
described in Chapter 2 Four 9ml aliquots of cells were incubated as 
described previously with one of the following 1ml of proinsulin standard 
(12pM), 0 5ml of proinsulin standard (12pM), 1ml of serum or 0 5ml of 
serum After harvesting, microsomal fractions were prepared which were 
subsequently assayed for HMG CoA reductase activity 
Fig 4 5 is an example of a 2+2 bioassay of an unknown control serum 
sample versus standard proinsulin on isolated rat hepatocytes (Bioassay 
No 1) Equal doses of sera (T1 and T2) and standards ^  and S2) were 
chosen for convenience in analysis Fig 4 5 demonstrates the specific
activity of HMG Co A reductase (pmol min'1 mg protein '1) as a function 
of log io  proinsulin in microlitres Specific activity after incubation of cells 
with 0 5ml (S^ and 1.0ml (S2) of proinsulin standard increased 38%
from 71 ±11 pmol mm'1 mg protein'1 to98±6 4 pmol min'1 mg protein*1
respectively Doubling the dose of unknown resulted in a 24% increase 
in reductase specific activity However, it is apparent from Fig 4 5 that the 
two lines in this bioassay are of similar slope (the difference in slopes of 
these lines was not significant) suggesting that the response to altering 
the volume of serum sample in the medium was similar to that of altering 
the volume of standard proinsulin preparation In this bioassay, M, the 
potency ratio of standard to unknown, and a parameter that is dependent
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F ig u re  4  5 T w o - p lu s - t w o  b io a s s a y  o f a n  u n k n o w n
( c o n t r o l )  v e rs u s  a s ta n d a r d  h u m a n  p r o in s u lm  o n
is o la te d  r a t  h e p a to c y te s  (m e a n  ± SEM,  n = 3 ) .

Log 1Q Proinsulin (/zl)

In this bioassay Logl0M = 0.456; M = 2 85  
Since the standard was 12pM the unknown 
was estim ated  as 12/2 .85 = 4.21pM
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on the vertical distance between the lines and the mean slope of the 
lines, was calculated to be 2 85 using equation 1 (Chapter 1) Since the 
standard hormone concentration was 12pM, the concentration of 
proinsulin in the unknown serum sample was estimated as 4 21 pM, i e 
the concentration of standard divided by the potency ratio, M 
Fig 4 6 is an example of a bioassay obtained for an unknown serum 
sample from a diabetic patient versus standard proinsulin (Bioassay 
No 16) The vanation between batches of hepatocytes prepared at 
different times is immediately apparent Enzyme specific activity after 
incubation of cells with 0 5ml (S^ and 1 0ml (S2) standard was 105±8 4 
and174±12 7 pmol nmn'1 mg protein'1 respectively Doubling the dose 
of unknown and standard resulted in a 57% and 66% increase 
respectively in reductase activity The potency ratio, M in this bioassay 
was calculated to be 1 37 Since the concentration of standard was 
12pM, the concentration of proinsulin in the serum sample was 
calculated to be 8 76pM

Data relating to the values of S i , S2, T1 and T2 and the calculated 
potency ratio obtained for each bioassay is shown in Table A in the 
Appendix Five of the twenty one bioassays ( Bioassays 2,3,4,7 and 8) 
set up were considered unsuitable for calculation of serum proinsulin 
due to an absence of effect on enzyme activity by incubating cells with 
proinsulin These bioassays (along with Bioassays 6,10,11,12,15,18 
and19) showed a significant difference in the mean slope of the lines for 
standard and unknown and so were omitted from the final calculations 
Although the rest of this section describes nine 2+2 parrallel bioassays 
which yielded a value for proinsulin, data is given which highlights 
specific and undesirable characteristics of the bioassay work which 
render validation extremely difficult Chapter 6 of this thesis will attempt to
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evaluate these shortcomings and those which are most likely to have 
contributed to the failure of the remaining bioassays

Fig 4 7 shows the mean specific activity of HMG CoA reductase obtained 
when hepatocytes in 9 bioassays were incubated with 0 5ml and 1 0ml 
of proinsulm standard Mean specific activity increased significantly 
(p<0 05) from 69 44±8 13 pmol min*1 mg protein'1 to 103 11 ±12 54 pmol 
min'1 mg protein'1 (Mean ±SEM), (Fig 4 7) However, the %increase in 
specific activity obtained upon doubling the volume of proinsulm in any 

individual bioassay ranged between 16% and 70% (Mean= 43%) (Table 
A, appendix)
Fig 4 8 shows the specific activity of microsomal HMG CoA reductase 
obtained when cells were incubated with serum from control and diabetic 
patients Specific activity in cells incubated with 0 5ml serum was similar 
in both groups (93 5±18 5 (2) vs 94 85±18 (7) pmol min'1 mg protein'1
(Mean±SEM) Doubling the dose of diabetic serum added to hepatocytes 
increased reductase activity by 39% from 94 85±18 pmol min'1 mg 
protein'1 (T^ to 131 71 ±16 19 pmol min'1 mg protein'1 (T2) The % 
increase when the volume of control serum was doubled approximated 
to 35% from 93.5±18.5 pmol min'1 mg protein*1 (T^ to 126±13 pmol 
min*1 mg protein*1 (T2) (mean±SEM)
Fig 4 9 shows that serum proinsulm concentration as measured by 
bioassay correlated very significantly with M, the potency ratio of 
standard hormone preparation to the unknown test sample, r=-0 97, 
p<0 001 The vertical distance (v) between lines correlated significantly 
with serum proinsulm concentration Fig 4 10 shows a negative 
correlation between (v) and proinsulm concentration, r= -0 689, p<0 02 A 
positive correlation though not significant existed between the mean
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Figure 4.7: Average specific activity of 
microsomal HMG Co A reductase obtained in 
9 bioassays when cells were incubated with 
0.5ml (Sj) and 1.0ml (S2) of human pro insulin
standard (Mean +SEM, n=9)



Figure 4 8  Average sp ec ific  a c t iv ity  of m icrosom al HMG CoA 
reductase obta ined in 7 bioassays when cells were 

incuba ted  w ith  0 SmlO^) and 1 0m l(T2) of human 
serum  (NIDDM) (mean ± SEM, n=7)
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(n = 9).
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slope of the lines and proinsulin concentration, r= 0 55, p<0 06 (Fig 4 11)

Fig 4 12 demonstrates the results obtained using this approach to 
measure the proinsulin concentration in serum obtained from 2 non- 
diabetic subjects and 7 type 2 non insulin dependent diabetic patients A 
higher level of biologically active proinsulin was observed in serum from 
diabetic patients (7 77± 0 5 (7) pM) compared with control non-diabetic 
subjects (4 16±0 05 (2) pM) ( Mean ±SEM (n))
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CHAPTER 5

DEVELOPMENT OF AN ENZYME-LINKED IMMUNOSORBENT 

ASSAY (ELISA) FOR PROINSULIN



The latter half of the 80's saw a resurgence of research interest in 
immunoassay procedures for proinsulin determination This arose largely 
as a result of the availability of biosynthetic human proinsulin by 
recombinant DNA technology

This chapter describes progress made in the development of a non­
competitive sandwich assay using two antibodies, an anti-C-peptide IgG 
and an anti-insulin IgG The former antibody provided the lower layer in a 
sandwich immunoassay, the upper layer being composed of an anti 
insulin IgG-horse radish peroxidase conjugate

5 1 Determination of the working dilutions of the commercial antibodies 
A checkerboard titration was performed wherein serial dilutions of 
proinsulin were immobilised on a plate and serial dilutions of the 
antibodies were reacted against the immobilised antigen to give a 2- 
dimensional result. The working dilution of the anti-insulin IgG-HRP 
conjugate prepared as described in Chapter2 was determined using 
three different coating concentrations of proinsulin, 0 025jj.g/ml,
0 25|iig/ml and 2.5|ig/ml The concentration ranges chosen for 
optimisation and characterisation studies had previously been 
investigated using punfied antibodies in this laboratory (O'Farrell and 
Devery, 1992) Fig 5 1 indicates that the appropriate working dilution of 
the anti-insulin IgG-HRP conjugate was in the order of 1 10 Although a 
slightly higher titre may have been satisfactory for detection of proinsulin 
concentration greater than or equal to 2 5|ig/ml, it was decided however 
that, for the range of concentration the assay was expected to detect that 
a 1 10 dilution was the maximum which would be effective 
The working dilution of the anti-C -peptide IgG to be used in the ELISA 
was determined by adding three different concentrations of proinsulin,
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0.025|ig/ml, 0.25(ig/ml and 2.5(ig/ml to microtitre plates. After incubation, 
washing and blocking as described previously in Chapter 2, anti-C- 
peptide IgG dilutions (1:100 to 1:2000) were added to the immobilised 
proinsulin. Fig 5.2 shows that a working dilution of between 1:100 and 
1:1000 would be effective for the anti C-peptide IgG. The 1:2000 dilution 
gave an absorbance reading that did not differ from that obtained by the 
1:1000 dilution. The 1:250 dilution did not produce a significantly greater 
response than the 1:500 dilution to justify its use. On account of the 
scarcity of the anti-C-peptide IgG, it was decided to use a 1:500 dilution. 
This is the equivalent of a 10|ig/ml solution for the signalling antibody 
which is within the standard range for coating antibodies.

5.2 Determination of the optimum incubation times for each steo 
in the assay.

The following three graphs show time courses o f :
i) anti C-peptide IgG adsorption to a microtitre plate(Fig 5.3),
ii) anti C-peptide IgG binding to immobilised proinsulin (Fig 5.4)
iii) anti-insulin IgG binding to immobilised proinsulin (Fig 5.5).
100|il antiC-peptide IgG diluted 1:500 was added to the wells of 
microtitre plates for varying lengths of time as described in Chapter 2. It is 
apparent from Fig 5.3 that an incubation time of 2h at 37°C is optimal for 
the adherance of the anti C-peptide to the wells of a microtitre plate.
The binding of proinsulin (10ng/ml) by anti C-peptide IgG was 
investigated as described in Chapter 2. Fig 5.4 shows that binding was
completed after a 2h incubation at 37°C. However, a much longer 
incubation time of 8h at the same temperature was required for the 
binding of proinsulin to anti insulin IgG conjugate (Fig 5.5). This 
requirement was verified by the performance of assays after 2h, 4h and 
6h. In each of these assays absorbance readings did not rise significantly
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Figure 5.4: Time course of anti C-peptide IgG 
binding to immobilised proinsulin.
Time(h) versus OD 492nm.

Time Incubation (h) '
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Figure 5.5: Time course of anti Insulin IgG 
conjugate binding to immobilised proinsulin. 
Time (h) versus OD 492nm.

Time of in cu b a tio n  (h)
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above background for the proinsulin concentration (10ng/ml) examined 
The longer incubation at 37°C was thought to affect the stability of the 
conjugate Binding of an equivalent amount of proinsulin (10ng/ml) to 
anti-insulin IgG followed by overnight incubation at 4°C produced similar 
absorbance readings (absorbance=0 449±0 03) to that obtained after 8h 
at 37° C (absorbance=0 424±0 01 )

5 3 Optimisation of ELISA
To ensure the reproducibility of the ELISA a series of positive and 
negative controls were examined All combinations of antigens and 
antibodies (primary and secondary) were assayed as described in 
Chapter 2 Table 5 1 shows the absorbance values at 492nm in a series 
of positive control assays that were set up to optimise the assay In assay 
no 1, all the ELISA steps as outlined in the protocol in Chapter 2 were 
earned out, i e in the presence of pnmary antibody, antigen (proinsulin), 
secondary antibody, and substrate, absorbance was 0 526+0 008 In 
assay no 2, in which the plate was coated with C-peptide (10|ig/ml), and 
blocked prior to addition of anti C-peptide IgG and commercial conjugate 
the absorbance was 0 516 ±0 02 In assay no 3, the plate was coated 
with insulin (10|ig/ml), and blocked pnorto the addition of anti-insulin 
IgG, prepared conjugate and substrate This yielded an absorbance of 
0 359±0 025 In assay no 4, after coating the plate with proinsulin 
(lOjig/ml), and blocking the plate with BSA prior to addition of anti-insulm 
IgG-HRP conjugate and substrate, the absorbance reading was 
0 243±0 043 Table 5 2 shows the absorbance values at 492nm m a 
series of negative control assays that were set up to optimise the assay 
In the absence of antigen and anti C-peptide IgG (assay no 1), anti 
insulin IgG-HRP conjugate (assay no. 2), substrate (assay no 3), 
conjugate and substrate (assay no 4) or antigen, conjugate and
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TABLE 5 . 1
S e r i e s  o f  p o s i t i v e  c o n t r o l s  f o r  o p t i m i s a t i o n  o f  ELISA

Assay Number

1 2 3 4

Primary Antibody 
A n ti C Peptid* IgO

♦ ♦

Block
BSA

♦ + + ♦

Pro insu lin ♦ ♦

Secondary Antibody 
Anti-Insulin IgO 

IRP-Conjugate

♦ ♦ ♦

A n ti- In s u lin  IgO ♦

In su lin ♦

Co«*reial Conjugate 
Ooat Antl-Oulnaa-Plg IgQ 

■JtP-Coa j  ugata

♦

C-P«ptid« ♦

Substrat« ♦ ♦ ♦ ♦

O.D. (  492na 
Mean ± 8.D.

• »« i 0 11« t 0 01 • »» i 0 11) t 0 so
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TABLE 5.2
Series of negative controls for optimisation of ELISA

Assay Humber

1 2 3 4 5

Primary Antibody 
A nti C-peptide 

XgO

■f + ♦ +

Block BSA + + + ♦ -

Antigen:
Proinaulin

- ♦ ♦ + -

Secondary Antigen 
A n ti Xnaulin IgC- 

HRP Conjugate

♦ m ♦

Subatrate •f * - - -

0 .0. t  492na 
Mean t  8.D.

0 001 t « 0001 0 001 1 0 0001 0 00} t 0 0001 •0 001 0 000
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substrate (assay no 5), absorbance at 492nm was negligible The data 
clearly indicate that each step in the ELISA is necessary for colour 
development and that absence of either pnmary or secondary antibodies, 
antigen or substrate gave near zero readings These results demonstrate 
that all of the steps for the ELISA as outlined in the protocol are 
necessary to obtain absorbance values within a workable range The 
data demonstrate the reactivity of the conjugate, the specificity of the 
antibodies towards C-peptide, insulin and proinsulin Although the 
absorbance values obtained when a plate was coated with insulin (assay 
no 3) were higher than when the plate was coated with proinsulin (assay 
no 4), the absorbance readings in both assays were lower than those 
obtained using the complete assay protocol Overall, the values obtained 
for the positive controls are 300-500 fold higher than those obtained for 
the negative controls

5 4 Cross reactivity with structurally related peptides 
The basis of the sandwich immunological assay of proinsulin descnbed 
above is the recognition of both an insulin and a C-peptide antigenic 
epitope by signalling and capturing antibodies The extent to which these 
antibodies were capable of distinguishing between C-peptide, insulin 
and proinsulin was investigated by determining the cross reactivities of 
each antibody as described in Chapter 2 The absorbance readings at 
492nm obtained upon the incubation of anti-insulin-IgG with proinsulin 
(0 1-12.5ng/ml) and with C-peptide (0 1-12 5(ig/ml) are shown in Tables 
5 3 and 5 4 respectively From these data, it can be seen that human C- 
peptide cross reacted with anti insulin IgG only at relatively high 
concentrations of the C-peptide Cross reactivity of 37 71% occurred in 
the presence of 12.5|ig/ml C-peptide , equivalent to 4.1|iM (Table 5.5) 
However this decreased to 1 71% when C-peptide concentration
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TABLE 5,2

Table of OD values obtained using anti-insulin IgG (300^g/ml) against a 
range of proinsulm concentrations (12 5(j.g/ml - 0 1ng/ml).

Proinsulin concentration_______________OD 492nm
12.5|ig/ml 0 297±0.004
5^g/ml 0.212±0 003
1|j.g/ml 0.19710 004
O.l^ig/ml 0 175±0 002

TABLE 5.4

Table of OD values obtained using anti-insulin IgG (300|ig/ml) against a 
range of C-peptide concentrations.

C-peptide concentration________________ o p  492nm
12.5|ig/ml 0.112±0.004
5|j.g/ml 0.073±0 002
1|j.g/ml 0.017±0 003
0 1 |ig/ml 0 00310.0001
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TABLE 5.5

Table of cross reactivities obtained between anti-insulin (300ng/ml) and C- 
peptide (12 5(ig/ml - 0 l^g/ml)

C,-peptide concentration____________ %Cross reactivity
12.5ng/ml 37 71
5|ig/ml 34 43
1 jig/ml 8 63
0.1|ig/ml 171
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decreased to 0.1|ig/ml equivalent to 0.033|iM. Thus it can be seen that 
even a supraphysiological concentration of C-peptide is not measured in 
the assay. The effect of insulin, normally present in much greater 
concentration than proinsulin was subsequently investigated.

Tables 5.6 and 5.7 demonstrate the absorbance readings at 492nm 
obtained upon the incubation of anti C-peptide IgG with proinsulin 
(0.1ng/ml to 10|ig/ml) and with insulin (0.1ng/ml to 10|ig/ml) respectively. 
From their relative absorbances, it can be seen that cross reactivity 
between insulin and anti -C-peptide decreased from 65.2% to 0.5% as
the concentration of insulin decreased 105 fold. However at insulin 
concentrations lower than 1ng/ml, cross reactivity with the anti C-peptide 
IgG was less than 3.6% (Table 5.8).
Table 5.9(a) and 5.9(b) show the cross reactivities for insulin and C- 
peptide in the complete assay. Insulin and C-peptide demonstrated less 
than 10% cross reactivity at levels below 50ng/ml for insulin and 10|ig/ml 
for C-peptide respectively.

5.5 Assay characteristics.
A standard curve for human proinsulin constructed under these 
conditions is shown in Fig 5.6. The data represent the composite 
standard curve obtained from six separate assays relating log10 
proinsulin concentration (pg/ml) with absorbance at 492nm. The lowest 
detectable absorbance value above the mean zero response was 
0.08±0.02. The detection limit of the assay was 1pg/ml (0.11pM), as 
assessed  by the response representing the mean plus three times the 
standard deviation of the lowest detectable absorbance (absorbance 
reading =0.08+3(0.02) =0.14). The assay was linear up to 500pg/ml 
(55.5pM) which provided a suitable working range for detecting
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TABLE 5.6

Table of OD values obtained using anti C-peptide (10|ig/ml) against a  range 
of proinsulin concentrations (10 |ig/ml - 0 1ng/ml)

Proinsulin concentration OD 492nm
10fig/ml 0 305±0 009
1|ig/ml 0 274±0.003
0.1 ng/ml 0 229±0 001
10ng/ml 0.228±0 005
1ng/ml 0.223±0 004
0 1 ng/ml 0.191±0.005

TABLE 5.7

Table of OD values obtained using anti C-peptide IgG (10|ig/ml) against 
range of insulin concentration (10jig/ml - 0 1 ng/ml)

Insulin concentration OD 492nm
10(ig/ml 0 199±0.007
1 |ig/ml 0.121±0.004
0.1 ng/ml 0 067±0 001
10ng/ml 0 021 ±0 001
1 ng/ml 0 008±0.0001
0.1 ng/ml 0 001 ±0 0001
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TABLE-5,8

Table of % cross reactivities obtained between anti C-peptide IgG (10|ig/ml) 
and insulin (10ng/ml - 0.1ng/ml)

Insulin concentration % Cross reactivitv
10ng/ml 65 24
l^g/ml 44 26
0 1 jig/ml 29 35
10ng/ml 9.21
1ng/ml 3.58
0.1ng/ml 0 50
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TABLE 5.9(a)

Table of cross reactivities obtained for insulin (ng/ml) for the complete assay  
(mean±SD, n=3)

Insulin OD 492nm % Cross reactivity
(ng/ml)

1000 0.14010 004 40
50 0 024±0 007 9 5
20
10
5
1 —

TABLE 5 9(b)

Table of cross reactivities obtained for C-peptide (ng/ml) for the complete 
assay (mean±SD, n=3)

C-peptide OD 492nm % Cross reactivity
(ng/ml)

2 0 , 0 0 0
1 0 , 0 0 0

0 098±0 003 
0 011±0.005

38 8 
4.3
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proinsulin in human serum The interassay coefficient of variation (CV) 
was determined from the mean of triplicate estimations in a limited 
number of assays (n=6) Interassay CV was 3 6% at a proinsulin 
concentration of 10pg/ml, 4 1% at a proinsulin concentration of 250pg/ml 
and 2 6% at a proinsulin concentration of 500pg/ml

5 6 Analysis of serum samples.
Sera from 8 non-insulin-dependent diabetic (NIDDM) patients and 4 non- 
diabetic control subjects were assayed in tnplicate Serum samples had 
been stored at -20°C prior to assay and each sample was assayed in 
undiluted form Serum proinsulin was within the assay range for all 
samples In healthy control subjects, the serum proinsulin concentration 
(Mean±SD) was 13 67±1 58 pM It was significantly elevated in patients 
with diabetes (23 21 ±1 14pM, p<0 01) (Fig 5 7)
Table 5 10 demonstrates the reproducibility of results obtained for serum 
proinsulin concentration from 2 non-insulin-dependent diabetics and 2 
control subjects In each case the values obtained were shown to vary 
between 2-3% indicating good reproducibility.
Table 5 11 demonstrates the relative accuracy of the assay system for 
proinsulin measurement A series of known concentrations were 
examined. The results obtained indicate that the assay returned values 
which were within 5% of those expected
Significantly higher levels of proinsulin were recorded for both controls 
and type 2 diabetic subjects using the ELISA technique as compared 
with the values obtained employing the bioassay method (Fig 5 8)
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Figure 5 7 Serum  p roinsu lin  c o n c e n tr a t io n  
(pM) in 4 con tro l non d ia b etic  su b je c ts  and  
8 NIDDM p atien ts
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TABLE 5 10

Reproducibility of results obtained for serum proinsulin (pM) measurement in 
two diabetic patients (J W and M H ) and two non-diabetic subjects (J D and 
M M )

Patient Assay 1 Assay2 Mean ±SD % Variation

JW 23 9 24 9 24 4±0 73 2 9
M H 271 25 6 26 3±1 10 4 1

J D 109 11 6 11 2±0 47 41
MM 165 173 16 8±0 53 3 1

TABLE 5 11

Relative accuracy of results obtained for proinsulin measurement

Expected Concentration % Deviation from
Concentration Calculated expected result

(pg/ml) (pg/ml)

220 209 4 4 82
550 560 6 1 89
2100 2210 9 5 02
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CHAPTER 6  

D ISC U SSIO N



This study dealt with two types of assay procedure, namely bioassay and 
immunoassay for the measurement of proinsulin in serum. While several 
problems were encountered with the former, I shall nevertheless discuss 
the rationale for the work described above and attempt to explain the 
difficulties experienced with establishing a reliable proinsulin bioassay. 
The bioassay involved quantitating the response which followed the 
addition of proinsulin to rat hepatocyte culture medium and comparing it 
with the response produced by addition of test serum sample to an 
equivalent aliquot of hepatocytes. Freshly prepared isolated rat 
hepatocytes were chosen as the biological system largely as a result of 
proinsulin having been shown by Revers e ta l  (1984) to be preferentially 
taken up by the liver. The response was the change seen in the specific 
activity of HMG CoA reductase, an enzyme located in the endoplasmic 
reticulum of liver cells. Since all bioassays are comparative, 
experimental design had to ensure that variation in the biological system  
was minimised.

The first approach taken to minimise biological variation was to select 
groups of rats which were matched as closely as possible with regard to 
gender, weight and age. It was apparent from Chapter 3 that the 
hepatocyte yield from male Wistar rats weighing on average 250-300g 
was typically 3-4x108 per animal, the approximate wet weight of cells 
after liver perfusion being 5-7g. The ability to control the cellular 
environment is an obvious major advantage in investigations with 
isolated cell systems compared to studies with intact animals. The ability 
to perform numerous comparative studies on hepatocytes derived from 
one liver is also advantageous due to variations between different 
animals. ThG viability of hepatocytes as determ ined by the trypan blue 
exclusion test ranged between 80-90% before and after 2h incubation
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period at 37°C in 5% C 02> demonstrating relatively low contamination 
with disrupted cells The high cell number and the % viability that was 
obtained as a result of collagenase perfusion and hepatocyte 
preparation/purification suggested that hepatocytes maybe a suitable 
choice of test system for studying hepatic metabolism As an average of
3-4x108 cells was obtained from each rat, one animal could be used for
a number of assays, reducing costs and making possible a comparison 
of the effects of proinsulin on a standard test system over a number of 
experiments. Therefore, for every enzyme determination, 10ml cell
suspensions containing approximately 7 5x107 cells were incubated for 
2h prior to harvesting for enzyme assay

Another condition that was considered important in the design of the 
bioassay for minimising biological variation was the length of time the 
animals were kept under reverse lighting conditions HMG CoA 
reductase activity is known to vary under widely diverse physiological 
conditions. Low activities were observed in rats killed in the middle of the 
light cycle, while higher activities were observed in rats killed in the 
middle of the dark cycle (Clarke e t a/,1984) This diurnal rhythm of 
enzyme activity has previously been explained as the result of diurnal 
modulation by insulin of both total activity of HMG CoA reductase and 
the ratio of expressed to total enzyme in vivo (Easom and Zammit, 1985) 
The latter workers also showed that the peak in the diurnal cycle in 
circulating insulin concentrations in vivo coincided with that of the 
diurnal rhythm of dephosphorylated/total HMG CoA reductase In view of 
several previous reports showing that HMG CoA reductase exhibits a 
circadian rhythm with maximum levels at midnight (middle of the dark 
period) and basal levels during much of the light period, all animals used 
in this study were maintained under a reversed light -dark cycle for a
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minimum of 21 days prior to killing in the middle of the dark cycle.
A further restriction in design of the bioassay was the establishment of 
controlled optimal assay conditions for measuring the specific activity of 
HMG CoA reductase The determination of activity in hepatocytes 
required characterising the substrate requirements of the assay, the 
length of time for substrate incubation and the optimum amount of protein 
concentration per assay tube The substrate concentration used in the 
assay (52nmoles) was approximately five fold higher than the value of 
Km (0 067mM) that was obtained for the hepatocyte enzyme (Table 3 2) 
Increasing the substrate concentration by a factor of 1 5 or halving the 
concentration of the substrate did not greatly alter the activity of the 
microsomal HMG CoA reductase observed (Table 3 1). In the case of the 
time course experiment, enzyme activity was shown to be linear up to 
60min for rat hepatocytes and 30min for intact rat liver at which times 
HMGCoA reductase activity was found to be 6 7nmoles/mg protein and 
17 5 nmoles/mg protein respectively (Fig3 1) The activity profile for rat 
liver is similar to that of Shapiro et at (1974) who found enzyme activity 
to be linear up to 30min, at which point HMG CoA reductase activity was 
found to be15-25 nmoles/mg protein Enzyme activity was shown to be 
linear up to 830ug of protein per assay tube for rat hepatocytes and 
400|ig of protein per assay tube for intact rat liver (Fig3 2) Reductase 
activity in rat liver is slightly lower than that obtained by Shapiro et al 

(1974) who showed enzyme activity to be linear up to 600ug of protein 
per assay tube.

Having established optimal conditions for the assay, attempts to improve 
the assay in terms of time were investigated Chapter 3 described an 
assay method for HMG CoA reductase activity, that was a modification of 
that described by Shapiro eta I  (1974) Of late, the latter was the most
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widely used assay to measure reductase activity. Separation of 
mevalonate as the mevalonolactone involved direct application of the 
deproteinised reaction mixture to TLC plates. This in itself was less 
tedious and resulted in a greater recovery of mevalonate and therefore 
assay sensitivity than many previously reported methods that involved 
extraction of radioactive mevalonolactone from the incubation mixture 
into ether (Brown etal, 1973), before separation by thin layer 
chromatography (TLC). The modified assay described here used a solid 
phase extraction step to separate the more polar HMG CoA from 
mevalonate. The [14C]-labelled HMG CoA and the HMG CoA breakdown 
products formed during incubations are sufficiently polar so that they are 
quantitatively retained on the solid phase and are therefore not detected 
on scintillation counting. Fig 3.5 compares separation of mevalonate from 
HMG CoA by TLC on silica gel plates and by solid phase extraction. The 
silica gel plates were developed in benzene acetone (1:1) (v/v) as 
described in chapter 2, and the mevalonate was found to have an Rf 
value between 0.5 and 1.0 which was sufficiently resolved from HMG 
CoA which had an Rf of beween 0 and 0.2 as described in chapter 2 
(Fig 2.1).This study demonstrated that the TLC method was quite a 
prolonged procedure and limited the separation on one plate to a 
maximum of five samples in triplicate and one blank. Variability in 
recovery can be attributed to the liklihood of loss of silica powder by 
scraping of the plate, and during transfer of the scraped silica to 
scintillation vials. Loss of mevalonate can also occur during the spotting 
procedure if sufficient time is not allowed for each spot to dry. In an 
attempt to circumvent the above limitations of TLC the use of mini­
columns containing silica to resolve the mevalonate product was 
investigated. Using the same separation principle as TLC mevalonate 
was preferentially eluted from the columns using a low polarity
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toluene : acetone mixture (3:1 v/v). The number of steps prone to 
operator error are reduced, and the tedious extraction of mevalonate by 
scraping is removed. The solid phase extraction method resulted in a
specific activity of 768.45±17.1 pmol.min*1.mg'1. The above mentioned 
limitations of the TLC procedure may account for the slightly lower 
specific activity of 705.5± 17.4 (mean ± SEM) (n=2) found in rat liver 
microsomes (Fig 3.5). The coefficient of variation was found to be 4.9% 
using solid phase extraction and 3.4% using the TLC procedure (Fig 
3.5).These values, being less than 5% are still comparable to those 
obtained by Shapiro e ta I  (1974) using the TLC procedure. These results 
serve to illustrate the reproducibility of the assay method as they 
represent results of independent determinations carried out on a 
microsomal fraction using two different methods of product 
separation.Table 3.3 demonstrates the repeatability of the assay method 
for measuring HMG CoA reductase in hepatocytes. Specific activity was 
measured in microsomal fractions from three batches of hepatocytes 
obtained from a single rat. The mean ± SD value of activity was observed
to be 246.5±22 pmol.min'1.mg'1. The % coefficient of variation was 8.9%. 
The activity of HMG CoA reductase was significantly reduced after 3 days 
of freezing (Table3.4). Furthermore, on the day of isolation, the variation 
encountered was only 6.7% from the mean (811± 55 pmol.min‘1mg'1). 
However the variation was greater after 3 days freezing at -20°C at 17% 
(149±26 pm ol. min'1.mg‘1). This may be due to proteolysis of the 
enzyme as encountered before with freeze - thaw solubilisation 
procedures (Roitelman and Shechter, 1984).

The time, protein and substrate profiles of enzyme activity in rat liver 
microsomal extracts show that the assay permitted reliable quantitation of 
HMG CoA reductase. However a wide range of activity was found
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depending on whether the microsomal pellet was prepared from 
hepatocytes or intact liver and on how it was stored prior to assay  
HMG CoA reductase activity in microsomal preparations from whole 
livers was comparable with those previously reported by others using 
similar assay techniques However, in freshly isolated hepatocytes the 
measured activity of this enzyme was much lower than the activity found 
in the intact liver Furthermore, the data reported in Chapter 5 show that 
isolated hepatocytes that were incubated for two hours showed even a 
greater loss of enzyme activity This makes accurate measurements very 
difficult This loss of activity is a very commonly observed phenomenon 
and may reflect the method of preparation and isolation of hepatocytes 
(Prof M. Berry, personal communication EuroHUG Meeting '93, York) It 
would appear from this study that there is a time scale over which 
enzyme activity is lost, the earliest detectable time point being 
approximately 70min when the entire cell isolation and washing 
procedure had been completed The liver is a complex three dimensional 
organ composed of more than one cell type As a result of liver perfusion 
and the method of hepatocyte preparation the liver is dissociated into 
single cells that are devoid of polanty The importance of cell-cell contact 
to the expression of many hepatic functions is in evidence from work 
earned out by Shephard eta l  (1993) Induction of cytochrome P450 
monooxygenase system, a clearly defined differentiated function in liver, 
does not occur in isolated rat hepatocytes unless they are cocultured with 
rat epithelial cells which divide until contact with hepatocytes is made in 

vitro It is conceivable that the method of isolation could be a tngger that 
underlies the altered expression of many hepatic functions. The method 
of cell isolation and maintenance as described here may cause oxidative 
stress, thereby altenng cell-cell communication systems Although not 
investigated it is possible that the decreased HMG CoA reductase activity
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in hepatocytes as measured throughout this study could be a down 
stream measure of an initial event which may be an alteration of the 
signal transduction mechanism between cells involving protein kinase 
activity The sole cntenon used for assessing cell viability in this study 
was the degree of trypan blue exclusion by cells An assessm ent of the 
metabolic integrity of the cells would have yielded more valuable 
information with a view to assessing the biochemical function capacity of 
the cells. Measurement of gluconeogenesis, glycolysis or the capacity of 
the cells to synthesise urea, would have afforded suitable tests for 
assessing cytoplasmic and mitochondnal function of isolated cells 
Furthermore, it is plausible that changes in either redox potential or the 
phosphorylation potential of cells markedly affect HMG CoA reductase 
activity. Earlier work by Kennedy and Rodwell, (1985) showed that HMG 
CoA reductase undergoes conformational changes in response to 
alterations in the reductive state If the reductive state is high, the enzyme 
becomes activated showing Michaelis -Menten kinetics whereas if the 
environment is in a low reductive state, the enzyme is in a latent inactive 
form. Furthermore, changes in the concentration of ATP, ADP, P, and even 
intracellular pH are quite likely to have happened if the metabolic status 
of the cells has been altered. This could influence the actual free energy 
charge for ATP hydrolysis Thus, the phosphorylation potential of 
hepatocytes prepared as descnbed in Chapter 2 may have altered from 
that of intact liver cells and this may significantly affect the degree of 
phosphorylation of enzymes such as HMG CoA reductase whose rate of 
degradation is increased by covalent phosphorylation. Clearly, this study 
has shown that additional studies are needed to optimise the 
experimental conditions, to charactense isolated cell systems and to 
explore more fully the potential of hepatocyte suspensions and or 
pnmary cultures
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An important role for insulin in the regulation of the activity of HMG 
CoA reductase in the liver has been evident for a considerable time, 
insulin has been shown to increase the activity of HMGCoA reductase 
in liver in vivo and in the isolated rat hepatocyte (Ingebritsen etai,

1979, Feingold etai, 1982 and Easom and Zammit, 1985 ). However, 
no information is available on the role of its precursor, proinsulin or its 
intermediate forms which might also have a biological effect on 
reductase activity. The recent availability of synthetic human 
proinsulin through recombinant DNA technology has allowed detailed 
studies of its actions on metabolism to be undertaken and given 
researchers the opportunity to develop methods for the measurement 
of proinsulin under various conditions.

Having characterised the hepatocyte test system and the conditions for 
the assay of reductase activity, the effect of proinsulin could be 
determined. It is apparent from Fig 4.1 that proinsulin, like insulin can 
exert short term hormonal control of hepatic HMG CoA reductase activity 
in the rat. HMG CoA reductase activity was significantly higher (p<0.05)
in cells incubated with insulin [199 ± 17.92 (3) pmol. min. *1. mg '1] and 

proinsulin [217 ± 17.34 (3) pmol. min *1. mg '1] compared with placebo 

[125 ± 7.51 (3) pmol. min *1. mg *1]. The results of this study, showing a
59% increase in HMG CoA reductase activity in hepatocytes maintained 
in culture for 2h with insulin (72nM) are consistent with previously 
reported work showing that insulin (at a concentration equivalent to 
104|iU/ml i.e. 72nM) produced an approximate 40% increase in HMG 
CoA reductase in hepatocytes (Gibbons etai, 1984). The study has also 
shown that proinsulin at a concentration of 50nM produced a 73%
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stimulatory effect on the rate limiting enzyme of cholesterol biosynthesis 
in rat hepatocytes (Fig 4 1) A possible explanation for this sinking result 
may be that binding of promsulin to the insulin receptor is a 
concentration-dependent process A previous study investigating the 
inhibitory action of insulin and proinsulin on basal and glucagon- 
activated glycogenolysis in cultured rat hepatocytes showed that the 
amount of glucose formed by hepatocytes that were incubated with either 
100nM insulin or proinsulin was quite similar unlike when cells were 
incubated with 1nM of each hormone (Hartmann etal, 1987) However, 
that study did report an approximate 3.3 fold higher half-maximal 
effective concentrations of proinsulin (5nM) relative to insulin (0 15nM) in 
inhibiting glyogen phosphorylase activity Similar differences in potency 
were observed for these hormones in the release of glucose and lactate 
from radiolabelled glycogen in hepatocytes (Hartmann et al, 1987) Thus, 
it appears that a 50nM proinsulin concentration may bind more effectively 
and mediate effects on target enzymes more effectively than a ten-fold 
lower concentration By contrast with the number of studies showing an 
effect of proinsulin on carbohydrate metabolism, similar type studies 
have not heretofore been earned out to determine the relative effects of 
proinsulin and insulin on lipid metabolising enzymes.

Having obtained a clearly measurable response, its relationship to the 
proinsulin dose had to be established Fig 4 2 shows the log dose- 
response of proinsulin on specific activity of hepatocyte HMG CoA 
reductase activity Both the slope of the line and its position on the X-axis 
were used as indices of the sensitivity and the detection range of the 
assay respectively It is apparent from Fig 4 2 that rather wide detection 
limits characterised the response The lower limit of 2.7pM corresponded 
with that found in other radioimmunoassay methods, the upper limit 
approached levels previously reported in insulinoma patients Ideally, the
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detection limits should not be so wide as to restnct the sensitivity Activity 
was shown to increase 68 8% over the 100-fold concentration range 
Since a bioassay is an indirect approach to the measurement of potency, 
it required analysis of the log dose -response curves for both standard 
and test sample to calculate the dose of unknown that matched the 
standard For convenience in analysis, the volumes of serum to be used 
in the assay should match those of the proinsulin standard which showed 
a measurable response Fig 4 4 showed that addition of 250p.l, 500(il and 
1000|il of 12pM standard to the incubation medium resulted in an 
approximate doubling of enzyme activity (1 7-1 8 fold) Therefore, the 
volumes of serum that were chosen for testing were 0 5ml and 1 0ml The 
ratio between the two doses was the same for standard and unknown 
Pnor to constructing a bioassay to measure the level of proinsulin in 
serum, an examination of the effect of serum and insulin at a single 
physiological concentration on reductase activity was carried out It is 
apparent from Fig 4 3 that a concentration of at least 100pM insulin can 
stimulate HMG CoA reductase while incubation with serum resulted in a 
massive 440% increase in activity That the presence of both insulin 
(100pM) and proinsulin (2 7pM) in the incubation medium produced a 
greater response in hepatocytes than proinsulin alone suggests that 
insulin at that concentration is more biologically active than proinsulin. It 
should however be borne in mind that the absence of a control study in 
this experiment hinders the interpretation of the proinsulin effect. The 
presence of analytes in serum capable of stimulating reductase activity 
need not necessanly affect the result of a parrallel proinsulin bioassay 
since cells are incubated with two doses of intact proinsulin standard. By 
comparing the relative responses to doubling of the volume of standard 
and of serum, a measure, though indirect, of the potency of intact 
proinsulin in serum can be obtained
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A total of twenty one bioassays was constructed in toto However five 
(Bioassay N o 's  2,3,4,7 and 8) see Appendix, showed negligible 
response to proinsulin standard A possible explanation for this might 
reside in the possibility of structural damage to these cells as a result of 
the perfusion technique The digestion of the proteins on the surface of 
hepatocytes could conceivably occur in the presence of impure 
collagenase Perfusion with impure collagenase (purity was not assesed) 
could have markedly affected the structural integrity of cell surface 
receptors such as the insulin receptor resulting in a diminished biological 
response of isolated rat hepatocytes The remaining sixteen bioassays 
demonstrated the relative potency of the serum to proinsulin standard by 
altering HMG CoA reductase activity Each two-plus-two bioassay was
set up as follows' four 9ml aliquots (0 5x107 cells /9ml) were incubated at 
37°C in an atmosphere of 5% C 02 with one of the following, 0 5ml or 
1 0ml of 12pM human proinsulin standard, 0 5 or 1 0ml of control 
/diabetic human serum After 2h the cells were harvested for microsomal 
preparation and for assay of HMG CoA reductase activity as descnbed in 
Chapter 2. In general, the response in the sixteen bioassays was 
positive, associated with increased activity of the stimulus. While enzyme 
activity was very variable between hepatocyte batches, the doses chosen 
gave responses in almost all bioassays lying on the linear part of the 
dose response curve (Fig 4 4), i e between 44 and 140 pmol.min'1 mg
protein-1 Of the sixteen bioassays that showed a response to the 
proinsulin standards, nine were parallel type bioassays i e the log dose- 
response curves for both standard and unknown were of similar slope 
(as attested to by the Student t-test), indicating that the activity in the 
unknown sample is due to the same substance as the standard solution 
Microsomal enzyme activity was approximately 48% higher in cells that
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were incubated with 1ml standard hormone preparation (12pM) 
compared to cells incubated with 0 5ml hormone preparation (Fig 4 7) It 
is apparent that incubation of cells with 0 5ml human serum from either
the control (93 5±18 5 pmol min '1 mg protein'1) or diabetic patient

(94 85±18 pmol min *1 mg protein ‘1) groups resulted in higher
microsomal enzyme activity than incubation of cells with 0 5ml standard
alone (69 44±8 13 pmol min'1 mg protein '1) (Fig 4 8) The remaining
seven bioassays, in which the plots of the log-test sample at the two 
doses were not parallel to the plots of the standards at the same volumes 
were those in which a greater increase in specific activity was found on 
adding 1 ml of serum to the cell incubation medium suggesting an 
element of crossreactivity As mentioned previously, both insulin and 
serum can cause marked increases in enzyme activity The possibility 
that insulin or even biologicaly active proinsulin-like intermediate forms 
may be present in these sera must await similar 2+2 bioassay studies 
using insulin, split-or des-intermediate standards Fig 4 9 shows the 
correlation between serum promsulin as measured in nine bioassays 
with the value M, the potency ratio. A strong correlation was observed 
(r=-0.97, p<0 001) between the potency ratio and the serum proinsulin 
concentration that was calculated. This correlation was also reflected in 
the two parameters on which M is dependent, i e v, the vertical distance 
between the two lines and m, the mean slope of the two lines It is 
apparent from the strong correlation (r=-0 689, p<0.02)) between v and 
serum proinsulin concentration, that as the vertical distance between the 
lines decreases the potency of the unknown serum sample increased 
(Fig 4 1 0 ) and that as the mean slope of the lines increased that serum 
proinsulin concentration also increased (r=+0 55, p<0 06) (Fig 4 11) The 
latter however did not reach statistical significance
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Fig 4.5 is a example of a two - plus - two parrallel bioassay of a control 
subject versus a standard human proinsulin on isolated rat hepatocytes. 
Two doses of unknown (T.| &T2) and two doses of standard (S-) & S2) 
were tested. They were chosen to give responses of similar magnitude, 
and with equal to S 1/S 2 for convenience in analysis. This figure 
illustrates the specific activity of HMG CoA reductase (pmol. min'1.mg ‘1) 
as a function of log10 proinsulin volume (}il). The potency ratio, log10M 
(which is equivalent to the ratio of the activity of proinsulin in the 
unknown sample to the standards) is dependent on two parameters, (v) 
the vertical distance between the curves and (m) the mean slopes of the 
lines. In this bioassay log10 M=0.47; M=2.85. Since the standard was 
12pM, the unknown proinsulin concentration was estimated as 12/2.86 = 
4.21 pM. Fig 4.6 is an example of a two - plus - two bioassay for a 
diabetic subject. In this case however the potency ratio (log-, 0 M) of 
unknown versus the standard was calculated to be =1.37 and therefore 
the proinsulln concentration was estimated to be 8.76pM. Cross 
reactivity with insulin or derivatives of proinsulin did not occur since the 
two lines in each case are of similar slope. This is in contrast to previous 
findings demonstrating cross reaction in radioimmunological assays, 
although not with insulin, but with derivatives of proinsulin (Cohen etal, 

1985, Yoshioka etal, 1988).

The results of this study showed that a higher level of biologically active 
proinsulin was observed in serum from type 2 (non-insulin- dependent 
diabetic ) patients (Fig 4.12). However, there would be little difficulty in 
concluding that the levels of proinsulin were significantly higher in type 2 
diabetics relative to the controls if there were assurances that 
metabolically active cells expressing measurable, reproducible amounts 
of HMG CoA reductase had been prepared. Furthermore, the extent of
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cross reactivity between proinsulm and insulin as suggested in the non 
parrallel bioassays poses serious difficulties to the validation of the 
bioassay as a suitable method for proinsulin measurement The values 
observed for proinsulin concentration in control (4 16±0 05pM, n=2) and 
diabetic (7 77±0 5pM, n=7) subjects using the bioassay method are 
however within the physiological concentration ranges previously 
recorded by radioimmunoassay, [5.8±3 3 pM (controls) and 12 6±7 5 pM 
(NIDDM)] (Yoshioka etal, 1988) The main advantage of a reliable 
bioassay over methods used previously to measure proinsulin is that it 
determines the biological activity of proinsulin As mentioned in 
Chapterl, widely used radioimunoassay procedures are in themselves 
limiting due to cross reactivity of structurally similar components A 
reliable bioassay for proinsulin would have several important 
applications For example, proinsulin is often regarded as a contaminant 
in the production of human insulin by the proinsulin route (Wetzel et al, 

1981) Inefficient processing of the prohormone may lead to higher 
levels of proinsulin in human insulin preparations. This would be 
particularly undesirable in view of recent findings by Nagi e ta l  (1991) 
who demonstrated that the elevated concentrations of intact proinsulin 
and 32-33 split proinsulin in subjects with type 2 diabetes are associated 
with deletenous changes in levels of recognised cardiovascular nsk 
factors. The level of contamination could be assessed  using a reliable 
bioassay. More importantly a bioassay for measurement of human 
proinsulin levels in fasting and post-prandial serum would be of great 
importance in the treatment and study of diabetes, insulinoma and other 
disorders involving abnormalities of 8 cell dysfunction, insulin production 
and secretion
The next step in this study was to develop an immunometric assay for 
proinsulin that would permit comparison of the relative concentrations of
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serum immunoreactive proinsulin in non-diabetic and type 2 diabetic 
patients and which, in combination with the bioassay method, would 
allow an assessm ent of the proportion of total immunoreactive proinsulin 
that is biologically active in these patients.
Measuring proinsulin accurately has been difficult, in part because its low 
concentration in the circulation requires a very sensitive assay and in 
part because most antisera raised against proinsulin cross react with 
insulin and C-peptide. Since single-site immunoassays for proinsulin can 
cross - react with both insulin and C-peptide, and proinsulin metabolites 
also known as split proinsulins, can cross - react in assays for proinsulin, 
it was necessary to establish a two - site ELISA (enzyme-linked- 
immunosorbent assay).

In the process of establishing the configuration of this assay it was 
necessary to consider the very wide range of concentrations of insulin 
and its related peptides and C-peptide in serum. A solid phase antibody 
preparation that expressed a very high binding capacity should be used 
to avoid its saturation by potentially cross reacting materials. A method is 
described here wherein proinsulin was conveniently estimated by a 2- 
site technique using a capturing antibody that recognised some part of 
the C-peptide moiety of proinsulin. The sandwich was completed with an 
enzyme-labelled antibody specific for the insulin moiety of the proinsulin 
such that the only possibility for the sandwich formation was when the 
intact proinsulin molecule and/or one or both of its split forms was 
present. Even if in the assay proinsulin conversion fragments did cross 
react with the antibodies this would not be considered a major liability 
because such products are probably secreted under biological 
conditions similar to those in which intact proinsulin is secreted. Enzyme 
activity was measured following the addition of substrate (OPD), the
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amount of colour developed being proportional to the amount of 
proinsulin in the sample. Conjugation of anti-insulin IgG to horse radish 
peroxidase (HRP) was carried out using periodate and the prepared 
conjugate was characterised using HPLC as previously described in 
chapter 2. The conjugation performed on the anti-insulin IgG was 
successful as attested to by HPLC (Chapter 2) and by subsequent 
assays performed, which indicated that the conjugate had retained 
biological activity.

In order to perform an ELISA the optimum working conditions of the 
antibodies in question had to be first determined. Characterisation of the 
antibodies involved determination of the working dilutions, cross 
reactivities and the optimum incubation times for each step in the assay  
as previously described in Chapter 2. Fig 5.1 indicated that the working 
dilution of the anti-insulin IgG conjugate was in the order of 1:10 
corresponding to 300|ig/ml. Fig 5.2 illustrated that the optimum working 
dilution for anti-C-peptide that would be effective was a 1:500 (10|ig/ml), 
which is within the acceptable coating concentration for a capturing 
antibody (Kemeny, 1991). Fig 5.3 showed that an incubation time of 2h at 
37°C was optimal for the adherence of the anti C-peptide IgG to wells of 
a microtitre plate. Similarily incubation for 2h at 37°C was also sufficient 
for anti C-peptide to bind immobilised proinsulin (Fig 5.4). Initally the 
optimum incubation time for anti-insulin IgG HRP conjugate at 1:10 
dilution was shown to be 8h (Fig 5.5). However it was thought that the 
long incubation time of 8h at this high temperature (37°C) is likely to 
have adverse effects on stability, in particular on the conjugate, which in 
turn could adversely affect the sensitivity of the assay. We therefore 
examined the effect on assay sensitivity of a longer incubation time at a 
lower temperature (24hours at 4°C) (Abs492nm=0.449±0.03 n=3). Since
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incubation at 4°C  overnight gave similar absorbance readings as those
at 37°C for 8h (Abs 492nm = 0 424 ±0 01) employing the same assay
conditions as described in Chapter 2, we choose to carry out all 
subsequent assays using the longer incubation time at the lower 
temperature to prevent any likely diminishment of stability

Fig 5 6 demonstrates the composite standard curve from six separate 
assays, relating proinsulin concentration (log10 pg/ml) with absorbance 
492nm The standard curve was linear in the range (1-500 pg/ml), i e 
(0.1 - 55 55 pM) The 0 1pM sensitivity for proinsulin combined with a 

wide range of detection makes this method comparable with the enzyme 
amplification technique described by Dhahir e ta l  (1992) The linear 
range of the assay included the range of concentration of serum 
proinsulin reported previously using immunoradiometric assays Values 
ranging from 5 8pM (control) subjects to 12 6pM (type 2 non- insulin - 
dependent) diabetic patients were reported for the radioimmunoassay 
descnbed by Yoshioka e ta l  (1988) Another radioimmunoassay making 
sequential use of antisera to C-peptide and insulin returned a value of 
15pM as the fasting proinsulin concentration in non diabetic control 
subjects and 32pM in patients with type 2(non-insulin-dependent) 
diabetes mellitus (Ward et al ,1987) More recently a mean value for 
intact proinsulin in sera from 25 type 2 diabetic subjects was noted as 23 
pM with values ranging from (2 4-52 pM) (Nagi etal, 1990) A reference 
range between 1 2-13 pmol/l with a median of 4 1 pmol/l was found in 38 
healthy fasting subjects using the ELISA method developed by Hartling 
etal, (1986) However a wider operating range (between 0-160 pmol/l) 
was reported for this latter method So it would be useful to extend the 
operating range of the ELISA descnbed here so as to incorporate values 
from patients with insulinomas or islet cell tumours where values for
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proinsulin may be as high as 263 pmol/l

Since proinsulin is composed of both insulin and C-peptide moieties one 
would expect that antibodies that react with proinsulin will also cross 
react with insulin and C-peptide However cross reactivity was observed 
in this assay but only at high concentrations with negligible cross 
reactivity at the lower concentrations Interference in this assay by C- 
peptide even in supraphysiological amounts is negligible The high 
binding capacity of the antibody-coated solid phase as shown in Fig 5 4 
suggests that C-peptide concentration in normal subjects and in almost 
all known pathological conditions would not be so greatly in excess of 
the proinsulin concentration as to have any marked effect on the 
proinsulin concentration By incubating the serum sample in the coated 
well and then removing it and washing the well before adding the 
labelled anti-insulin IgG, interference by binding of insulin in the serum 
sample to the labelled antibody is precluded Insulin and C-peptide did 
not cross react in this assay at levels below 1ng/ml and 0 1(ig/ml 
respectively. This result correlates well with those obtained from the study 
on cross reactivity in the complete assay, where it was demonstrated that 
human insulin and C-peptide did not cross react at levels below 50ng/ml 
and 10|ig/ml respectively (Table 5 9(a) and 5.9(b)) Different assay 
conditions (i e. immobilised proinsulin and the involvement of only one 
antibody type) may account for the slightly higher cross reactivities 
observed for the separate antibodies relative to those values obtained 
for cross reactivities from the complete assay. However higher cross 
reactivities have been reported in the literature The ELISA assay  
descnbed by Hartling e ta l{ 1986) showed that insulin in samples did not 
interfere at concentrations below 400 pM while human C-peptide in the 
amplified ELISA descnbed by Dhahir e ta I  (1992) did not cross react
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even at 10,000 pM

The reproducibility of the assay system for promsulin measurement was 
determined by assaying serum from two fasting NIDDM patients and two 
control subjects in tnplicate on two separate occasions The serum
samples had been stored at -20°C pnor to assay, and each sample was 
assayed in undiluted form on both occasions (Table 5 10) The results 
demonstrated good reproducibility with the values varying by 2-3% A 
series of known proinsulin concentrations were also assayed to give an 
indication of the relative accuracy of the results obtained for the 
unknowns Table5 11 demonstrates the expected concentrations and the 
results actually obtained The results show that the assay returned values 
which were within 5% of those expected
The assay described here, a two-site (non competitive) ELISA using 
antisera to C-peptide and insulin, represented an improvement in 
sensitivity for the assay of proinsulm by 10- fold over previous 
techniques (Hartling e t a l , 1986 and Sobey e t a l , 1989) and yet was as 
sensitive as the amplified enzyme-linked immunoassay described by 
Dhahir e ta l  (1992) The method enabled the estimation of the low 
concentration of promsulin expected in fasting normal individuals In 
addition, it was sensitive enough to detect circulating promsulin levels in 
type 2 (non-insulin-dependent) diabetic patients Serum from 8 fasting 
diabetic patients and 4 control subjects was assayed in tnplicate The
samples were stored at -20°C pnor to assay and were assayed in 
undiluted form Fig 5 7 demonstrates that the level of promsulin 
concentration in type2 non- insulin- dependent diabetic patients [23 21 + 
1 14 pM (8), mean + SEM (n)] was significantly higher (p<0 01) relative to 
the control subjects [13 67 ± 1 58pM (4)]

I
152



In summary, the assay described is a relatively simple and specific 
micro - ELISA showing no cross reactivity with physiological levels of 
insulin and C-peptide The assay required low sample volume (100[il
serum) frozen at -20°C It is faster than other immunoassays (1 5 days vs 
7 days) and employs an enzyme -labelled antibody that is stable

The bioassay and ELISA techniques discussed may offer researchers 
the opportunity to measure both the biological activity of circulating 
proinsulin and also the immunoreactive proinsulin levels using anti C- 
peptide and anti-insulin immunoglobulins Both methods demonstrated 
similar results in so far as higher levels of serum proinsulin were 
observed in the serum of diabetic patients compared with non-diabetic 
subjects. However Fig 5 8 demonstrates that the values obtained using 
the ELISA technique are higher than those obtained using the bioassay 
technique for both control [13 67 ± 1 58 pM (4) Vs 4 16±0.05 pM (2),
mean ± SEM (n)] and the diabetic patients [23.21 ±1 14 pM (8) vs
7 77±0 5 pM (7); mean±SEM (n)] The lower values obtained in the 
bioassay compared with the ELISA are possibly a result of the fact that 
only bioactive intact proinsulin is measured in the bioassay, while in the 
case of the ELISA all immunoreactive proinsulin is detected In addition, 
assuming that the bioassay measured total intact proinsulin, then 27% of 
the total proinsulin-like material in control serum was made up of intact 
proinsulin Though not significant, intact proinsulin represented a slightly 
higher percentage (31%) of total immunoreactive proinsulin in diabetic 
serum than control serum The fact that a complete match of data for sera 
assayed by the bioassay and ELISA was not possible (due to the 
difficulties associated with the bioassay) does render however these 
figures somewhat abstract since they are based on the means of the two
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groups studied.

In conclusion, two techniques, an in vitro bioassay and an 
immunological ELISA technique were investigated with respect to their 
suitability for measuring intact proinsulin and total im mu no reactive 
proisulin. Both were sensitive enough to detect serum proinsulin 
concentrations at physiological levels for both fasting non diabetic 
subjects and type 2 (non-insulin-dependent) diabetic patients. However, 
of the two techniques, the bioassay was a less robust assay to perform 
than the ELISA, largely as a result of it lacking technical simplicity and 
the inter bioassay variation in the biological response of isolated rat 
hepatocytes. Until the extent of biological variation is minimised further, 
there seem s to be little justification for developing a bioassay based on 
the effect of proinsulin on HMG CoA reductase. Moreover, a more 
pronounced biological response that is unique to proinsulin would 
greatly facilitate the setting up of a more reliable bioassay. However, if a 
range of cytochemical bioassay systems is used and the relative potency 
of standard proinsulin and unknown serum is the same in all of them, 
then it is likely that the activity is due to proinsulin. If, on the other hand, in 
one or more assay systems the relative potency is not the same, it must 
be concluded that the biological activity is not wholly due to proinsulin, 
but partly at least to other substances. By contrast, the ELISA was a more 
user- friendly procedure to employ. Although the cross reactivities of des­
and split proinsulins in this ELISA were not determined, the assay did 
however exhibit remarkably low cross reactivity with both human insulin 
and C-peptide. Using the ELISA system several unknown serum 
samples can be assayed at the same time, where as in the case of the 
bioassay only one sample can be examined per assay.
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As to the mechanism of the increase in serum proinsulin in Type 2 
diabetes the most plausible possibility is that relatively more proinsulin 
as compared to insulin is secreted from the 13 cells in this condition It is 
conceivable that one mechanism to explain an increase in proinsulin 
secretion would be enhanced stimulation of 13 cells by glucose This 
would accelerate synthesis and release of insulin which may result in 
mobilisation of younger secretory granules that have insufficient time to 
undergo full maturation and are consequently richer in proinsulin The 
release of immature secretory granules containing relatively more 
biologically active proinsulin than mature granules may account for the 
higher amount of proinsulin observed in non-insulin dependent diabetic 
patients Measurement of proinsulin in post-prandial samples might 
have provided useful information with respect to insulin proinsulin 
secretion patterns Another mechanism of an increase in proinsulin could 
be a decreased conversion of proinsulin to insulin by some unknown 
mechanism during metabolic derangement of diabetes (Saad etal,

1990) Notwithstanding that data from the bioassay could only produce a 
result on 2 serum samples from the non- diabetic patient group and on 7 
from the type 2 diabetic group, and that the bioassay did not return 
values on all the sera samples assayed by the ELISA, the somewhat 
similar proportions of intact proinsulin to total proinsulin as determined 
from the means of both these groups could suggest that enhanced 
synthesis and secretion and not decreased conversion as a result of 
defective proteolysis accounts for the higher amount of proinsulin 
observed in diabetic patients Clearly, an alternative approach involving 
either HPLC as reported by Linde e ta l  (1991) or a series of monoclonal 
antibody-based assays specific for insulin, intact proinsulin, split and des 
proinsulms is needed to investigate the mechanism of proinsulin 
secretion in type 2 (non-insulin-dependent) diabetes
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APPENDIX
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S u m m a r y  of v a lu e s  o b t a i n e d  for  each  p a r a m e t e r  
in  t h e  d e v e lo p m e n t  of a b i o a s s a y  for s e r u m  p r o i n s u h n  
m e a s u r e m e n t  (pM) in  c o n t r o l  s u b je c t s  ( b i o a s s a y  No 1 - 7 )  
a n d  Type 2 d i a b e t i c s  ( b io a s s a y  No 8 - 2 1 )
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Bioassay No 1

T w o -p lu s-tw o  bioassay of an unknown (control) versus a
standard h um an  proinsulin on isolated rat h epatocvtes
(mean ± SEM, n=3)
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In this b ioassay  Log1QM = 0 456, M = 2 86
Since the standard was 12pM the unknown
was est im a ted  as 1 2 /2  86 = 4 21pM
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Bioassav No 2,

Two-plus —two b ioassay of an unknown (control) versus a
standard hum an prom sulm  on isolated rat hepatocytes
(m ean ± SEM, n - 3 )
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In this b ioassay Log1QM = 0 419, M= 2 63
since the standard was 12pM, the unknown
was estim ated  as 1 2 /2  63 = 4 56pM

hi



Bioassay No 3

T w o -p lu s-tw o  b ioassay of an unknown (control) \e r su s  a
standard hum an prom sulin  on isolated rat hepatocytes
(m ean ± SEM, n = 3)
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In this b ioassay Log1Q = 0 814, M = 6 52
Since the standard was 12pM, the unknown
was estim ated  as 1 2 /6  52 = 1 84pM
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Bioassay No 4

Two —plus —two bioassav of an unknown (control) versus a
stan d ard  hum an promsulin on iso lated  rat hepatocytes
(m ean  ± SEM, n=3)
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In  th is  b io a ssa y  Log1QM =  0 807, M =  6 42
S in ce  th e  s ta n d a rd  was 12pM, th e  un kn ow n
was e s t im a te d  as 1 2 /6  42  = 1 87pM
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B ioassay No 5

T w o - p lu s - t w o  b ioassay  of an  u n kn ow n (c o n tro l)  versus a
s ta n d a r d  h u m a n  p r o in s u l in  on iso la ted  r a t  h ep a to cy tes
(m e a n  ± SEM, n = 3 )
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In  th is  b ioassay Log1QM =  0 463, M = 2 91
s ince th e  s ta n d a rd  w as 12pM, the unkn ow n
was e s t im a te d  as 1 2 / 2  91 =  4 l l p M
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Bioa.ssay No 6

(m e a n  ± SEM, n = 3)

Two —p lu s  two b io a s s a y  of  an u n k n o w n  ( c o n t r o l )  v e i s u s  <x
s t a n d a r d  h u m a n  p r o in su l in  on  i s o l a t e d  r a t  h e p a t o c v t e s
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In t h i s  b i o a s s a y  Log1QM = 0 6 1 3 ,  M = 4 1 1
S i n c e  t h e  s t a n d a r d  was 12pM, t h e  u n k n o w n
w a s  e s t i m a t e d  a s  1 2 / 4  11 = 2 92pM
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B io a s s a y  No7

T w o - p l u s - t w o  b i o a s s a y  o f  a n  u n k n o w n  ( c o n t r o l )  v e r s u s  a
s t a n d a r d  h u m a n  p r o i n s u l m  on  i s o la t e d  r a t  h e p a t o c y t e s
( m e a n  ± SEM, n = 3)
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In th i s  b io assay  Log1QM = 0 744, M = 5 55 
Since t h e  s t a n d a r d  was 12pM, th e  unknown 
was e s t im a te d  as  12 /5  55 = 2 16pM
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Bioassay No 8

T w o -p lu s-tw o  b ioassay of an unknown (NIDDM) versus a
standard hum an proinsuhn on iso lated  rat hepatocvtes
(m ean ± SEM, n=3)

Log10 Promsulin (yu.1)

In this bioassay Log1QM = 0 232, M = 1 71
since the standard was 12pM, the unknown
was estim ated  as 12 /1  71 = 7 OlpM
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Bioassav No 9

T w o -p lu s - tw o  bioassay of an  unknow n (NIDDIvO versus a 
s t a n d a r d  hum an  pro insu l in  on isolated  ra t  hepa tocy tes  
(m e a n  ± SEM, n=3)

Log10 Proinsulin  (fi\)

In th is  bioassay Log1Q M = 0 152, M =1 42 
Since the s tan d a rd  was 12pM, th e  unknown 
was es t im ated  as 12/1 42 = 8 45pM



B io a s s a y  No 10

T w o - p l u s - t w o  b i o a s s a y  of  a n  unknown(NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o m s u l i n  o n  i s o l a t e d  r a t  h e p a t o c v t e s
( m e a n  ± SEM, n = 3 )
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In t h i s  b i o a s s a y  Log10M = 0 130, M = 1 35
S i n c e  t h e  s t a n d a r d  w a s  12pM, t h e  u n k n o w n
w a s  e s t i m a t e d  a s  1 2 / 1  3 5  = 8 88pM

XI



B i o a s s a v  No 1 1

T w o - p l u s - t w o  b io a s s a y o f  an  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o m s u l i n  o n  i s o l a t e d  r a t  h e p a t o c y t e s
( m e a n i  SEM, n = 3 )
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Log10 Promsulin (¿¿1)

In t h i s  b i o a s s a y  Log1QM = 0 3 1 3 ,  M = 2 0 6
S i n c e  t h e  s t a n d a r d  w a s  12pM, t h e  u n k n o w n
w a s  e s t i m a t e d  a s  1 2 / 2  0 6  = 5 82pM
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B i o a s s a v  No 12

T w o - p l u s - t w o  b i o a s s a v  of  a n  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o m s u l i n  o n  i s o la t e d  rat  h e p a t o c y t e s
( m e a n  ± SEM, n =  3)
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Log10 Prom su lin  (¿d)

In t h i s  b i o a s s a y  L og1Q M =  0 143, M = 1 39
S i n c e  t h e  s t a n d a r d  w a s  12pM, t h e  unk now n
w a s  e s t i m a t e d  a s  1 2 / 1  3 9  =  8 63

XIII



Bioassav No 13

T w o -p lu s - tw o  bioassay of an unknown (NIDDM) versus a 
s t a n d a r d  h u m an  prom sulin  on isolated r a t  hepatocytes  
(m ean  ± SEM, n=3)
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Logj0 P r o m s u l i n  (//.I)

In th is  b ioassay Log1QM = 0 204; M = 1 60
Since the standard was 12pM, the unknown
was est im a ted  as 12 /1  60 = 7 50pM
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B io a s s a v  No 14

T w o - p l u s —two b i o a s s a y  of a n  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o in s u l i n  o n  i s o l a t e d  r a t  h e p a t o c y t e s
( m e a n  ± SEM, n  = 3)
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Log10 P r o m s u h n  (/ul)

In t h i s  b i o a s s a y  L og1QM = 0 146, M = 1 4 0
S in c e  t h e  s t a n d a r d  w as  12pm , t h e  u n k n o w n
w as  e s t i m a t e d  a s  1 2 / 1  4 0  =  8 57pM
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B i o a s s a y  No 15

( m e a n  ± SEM, n = 3 )

T w o - p l u s - t w o  b i o a s s a y  o f  a n  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o i n s u h n  o n  i s o l a t e d  r a t  h e p a t o c y t e s
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Log10 P r o m s u lm  (/zl)

In t h i s  b i o a s s a y  L og1QM = 0 3 6 1 ,  M = 2 30
S i n c e  t h e  s t a n d a r d  w a s  12pM, t h e  u n k n o w n
w a s  e s t i m a t e d  a s  1 2 / 2  3 =  5 22pM
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B i o a s s a y  No 16

T w o - p l u s - t w o  b i o a s s a y  of  an  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o m s u l i n  on  i s o l a t e d  ra t  h e p a t o c y t e s
( m e a n  ± SEM, n = 3 )

Log10 Proinsulm (/2.1)

In t h i s  b i o a s s a y ,  L og10M = 0 136  , M = 1 37
S i n c e  t h e  s t a n d a r d  w a s  12pM, t h e  u n k n o w n
w a s  e s t i m a t e d  t o  a s  1 2 / 1  3 7  =  8  76  pM
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B io a s s a v  No 17

T w o - p l u s  —tw o b io a ssa v  of  an  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o i n s u l i n  on  i s o la t e d  rat  h e p a t o c y t e s
( m e a n  ±  SEM, n = 3)
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Log10 Pro insu l in  (/xl)

In t h i s  b i o a s s a y  Log1QM = 0 28 5 ,  M = 1 93
S i n c e  t h e  s t a n d a r d  was 12pM, t h e  u n k n o w n
w a s  e s t i m a t e d  a s  1 2 / 1  93  =  6 22pM
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B io a s s a y  No 18

T w o - p l u s - t w o  b i o a s s a y  of  a n  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o m s u l m  o n  i s o la t e d  r a t  h e p a t o c y t e s
( m e a n  ± SEM, n = 3 )
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Log10 Pro insu l in  (fj. 1)

In th i s  b i o a s s a y  L og1QM = 0 33,  M = 2 14
S in c e  t h e  s t a n d a r d  w as  12pM, t h e  u n k n o w n
w a s  e s t i m a t e d  a s  1 2 / 2  14 =  5 60pM
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B i o a s s a y  19

Two-plus-two bioassay of an unknown (NIDDM) versus a 
standard human proinsulin on isolated rat hepatocytes 
(mean ± SEM. n=3)
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In this bioassay Log1QM = 0.220; M = 1.66. 
Since the standard was 12pM, the unknown 
was estim ated as 12 /1 .66  = 7.23pM.
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Bioassay No 20

Two-plus-two bioassay of an unknown (NIDDM) versus a
standard human proinsulin on isolated rat hepatocytes
(mean ± SEM, n=3)
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In this bioassay Log1QM = 0315 , M = 2 07 
Since the standard was 12pM, the unknown 
was estim ated as 12/2  07 = 5 79pM
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B i o a s s a y  No 21

T w o - p l u s  two b i o a s s a y  o f  a n  u n k n o w n  (NIDDM) v e r s u s  a
s t a n d a r d  h u m a n  p r o i n s u l i n  o n  i s o la t e d  r a t  h e p a t u c v t e s
( m e a n  ± SEM, n = 3 )
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Log P ro insu l in  (y. 1)
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In t h i s  b i o a s s a y  L og1QM = 0 117, M = 1 31
S in c e  t h e  s t a n d a r d  w a s  12pM, th e  u n k n o w n
was e s t i m a t e d  a s  1 2 / 1  31 =  9 15pM
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