Metadata, citation and similar papers at core.ac.uk

Provided by DCU Online Research Access Service

DUBLIN CI1TY UNIVERSITY
FACULTY OF ENGINEERING AND DESIGN

DESIGN AND IMPLEMENTATION OF A TTCN
TO C TRANSLATOR

Author Kenneth Cunningham B Eng
Supervisor . Dr Tommy Curran
Date 29th July 1993

This thesis was submutted to the school of electronic
engineering of Dublin City Umiversity 1n fulfilment of the

requirement of Master of Engineering degree

https://core.ac.uk/display/16510277?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DECLARATION

I hereby certify that this matenal, which I now submut for assessment on the
programme of study leading to the award of Master of Engineering (M Eng) 1s
entirely my own work and has not been taken from the work of others save and to
the extent that such work has been cited and acknowledged within the text of my

work

\
Signed %MAX@Q“M. L ID No 91700965

Candidate)

Date July 1993

Acknowledgements (i)

I wish to take this opportunity to thank my supervisor, Dr Tommy Curran for
s guidance and suggestions throughout this project Also the staff at NETC
Eolas, 1n particular, Patrick Walsh and Des Keane for giving me the opportunity of
working on the CTS II bis project which enabled me to get up to speed with TTCN
and the conformance testing process wn a practical manner Finally, I wish to thank
my fellow post-graduates for their support over the past two years, and indeed for

some the past six

Abstract (i)

The conformance testing of a protocol implementation, may be logically
divided 1nto, the specification of the abstract test suite (ATS) from a formal
description of the protocol, and the subsequent derivation of the executable test
suite (ETS) from the ATS specification Our concern here 1s with the latter step, in
particular, the automatic derivation of an ATS expressed in the Tree and Tabular
Combined Notation (TTCN) to an executable C language equivalent This process
1s currently a manual one, and as a consequence 1s error prone, time consumung,
often repetinve and not necessanly consistent To overcome these problems, there
exasts the real need for a computer aided, and 1f possible, fully automatic solution

This study describes the design and implementation of a fully working TTCN
subset to C language translator, which takes a TTCN ATS and produces an
equivalent ETS, with a muntmal amount of manual intervention The methodology
used 15 logically divided into three stages direct TTCN to C language mappings,
implementation 1ssues, ncluding the generation of additional code to drive the
above mappings, and test system implementation 1ssues The system was tested
using parts of an ETSI ISDN LAPD ATS and the results showed considerable tume
savings against a similar manual implementation

In conclusion, suggestions are provided to the further development of the
TTCN to C translator system, and discussion 1s given to the application of this tool

to a complete conformance testing system

Table of Contents

Acknowledgements
Abstract
Table Of Contents

1. Introduction

2 Tree and Tabular Combined Notation (TTCN)

2 1 An Overview

2 2 Abstract test suite specification using TTCN

2 3 TTCN MP - the machine processable form of TTCN

24 TTCN editors

2 5 TTCN and Formal Description Techmques (FDTs)
251 Automatic generation of abstract test suites using FDTs
2 5 2 Valhidation of protocol behaviour using FDTs
2 53 FDT tools

26 TTCN - 1ts ments and 1ts hmutations

3 Derivation of Executable Test suites from Abstract Test suites
3 1 Introduction
3 2 Current approaches and tools for ETS derivation
3 3 Automatic derivation of ETSs from ATSs
3 3 1 Basic principles of translation
33 2 TTCN translation methodology - an overview
3 4 Introducing the TTCN to C translator

4. TTCN to C language mapping
4 1 Introduction
4 2 Subset of TTCN to be translated
4 3 Translation of TTCN declarations
4 4 Translation of TTCN constraints
4 5 Translation of TTCN dynamic behaviour
4 5 1 Lexical Analysis of TTCN dynamic behaviour
451 1Overview
4512 TTCN word recognition
451 3 Lex - A lexical analyser generator
4 5 2 Parsing of TTCN dynamic behaviour
4521 Overview
4522 TTCN Language definition
452 3 Yacc - A parser generator

30
30
32
35
41
44
44
44
45
47
52
52
52
54

5 Implementation of an Automatic TTCN to C Translator
5 1 Introduction
5 2 Miscellaneous TTCN to C semantic translations
52 1 TTCN data types
5 2 2 Timer management
5 2 3 Verdict processing
5 2 4 Appending default dynamic behaviour
5 2 5 Logging conformance test events
5 3 Symbol table management
S 4 Error handling
5 4 1 Error detection
5 4 2 Error recovery

6 Execution of the executable test suite
6 1 Introduction
6 2 DCT-S - An Overview
62 1 DCT-S - How 1t works

6 2 2 DCPL - The proprietary test language of ISDN technologies

6 3 Describing the test system interface

6 3 1 Interfacing TTCN statements

6 3 2 Interfacing TTCN timing events

6 3 3 Interfacing conformance logging events

6 3 4 Interfacing muscellaneous control constructs
6 4 Performing a conformance testing session

7 Conclusions and Recommendations

References
Appendix

60
60
61
61
62
63
64
65
65
67
68
69

71
71
71
75
76
77
79
81
82
83
84

86

(1v)
(v)

1. Introduction

The conformance testing of protocols 1s not concerned with performance or
efficiency 1ssues, but with the determination of the extent of adherence of protocol
mmplementations, to the standards that they claim to implement The importance of
conformance testing 1s paramount, since any vendor can implement a layer of a
protocol, and claim conformance for thewr product The work group ISO
TC97/SC21/WG 16-1 was formed to standardise all aspects of ISO protocol
mmplementations The Tree and Tabular Combined Notation (TTCN) arose from
this group, as the standardised abstract notation for the specification of abstract
conformance test suites TTCN 1s now a fundamental component n the
conformance testing process

The specification of abstract test suites (ATSs) in TTCN 1s, however, only half
of the conformance testing process ATSs wntten in TTCN are complete protocol
test specifications 1n their own right, but are wntten 1 a manner that 1s test system
independent The ATS must be then transformed 1nto an equivalent executable test
suite (ETS), which involves a translation and an implementation of the ATS on a
conformance test system, this step constitutes the second half of the conformance
testing process, and at present 1S a manual one Since ATSs are volumunous
specifications, the task of translating them manually 1s time consuming, repetitive
and error prone Therefore, to maintain consistency in ATS translations, to reduce
errors, and moreover, to reduce translation costs, there 1s a real need for
automation

This study seeks to provide a solution to the automatic derivation of ETSs
from therr corresponding ATSs In particular, 1t will outline a methodology, and
will implement a translator, to translate an ATS specified in TTCN to a C language

equivalent

Thus 1s a relatively new area of research, with study only beginming in the late
eighties, by work groups within Swedish Telecom and the NIST in the United
States, to name but two To date, less than a handful of papers on the subject of a
TTCN to C translator have been published Most development work seems to have
been for in-house, as opposed to commercial, translators In early 1992, the
ternational standardised version of TTCN became available, thus opening the way
for standardised tools for developing ATSs in TTCN, one such tool 1s the ITEX-
DE Current research into the development of TTCN to C utilities as part of many
of these tools, 1s still under way

The approach taken 1n this study 1s to design a TTCN translator for the LAPD
protocol of an integrated services digital network (ISDN) Ths target 1s merely a
starting point for further study on the application of the translator to higher layer,
and other, protocols The LAPD protocol provides a good basis for a wide
spectrum of TTCN constructs The required input to the TTCN to C translator 1s a
file of a standardised TTCN ATS in the machine processable format Output 1s 1n
the form of C files This generated C code 1s readable, modular, reusable, and
above all, executable All generated code 1s indented, and where possible maintains
the structure of the ongmal TTCN The system 1s built, such that extensions to the
TTCN subset chosen to implement the translator, may be made with a mummum of
programming overhead Where possible the translator 1s test system independent
The actual implementation of communication routines, tumers, etc 1s, however,
DCT-S test system specific If a test system other than the DCT-S was used to
implement these routines, then 1t 1s only the test system interface that would require
modification What exists 15 a complete TTCN to executable language mapping via
the C programming language

Chapter two introduces TTCN 1n both 1ts forms, and discusses tools for TTCN

ATS development The application of TTCN to the conformance testing process s

discussed, and research 1nto the application of formal description techniques (FDTs)
to conformance testing, and their application to TTCN, 1s considered Chapter
three discusses the derivatton of ETSs from ATSs A methodology for
automatically dertving ETSs, and 1ts application to the TTCN to C translator, 1s
described A model of the translator that remains the focus of the subsequent
chapters 1s illustrated at the end of chapter three Chapter four details the TTCN to
C mappings that are implemented in the translator, and a discussion of two tools
that were useful in the development of the translator 1s given Chapter five focuses
on the software needed to implement a working TTCN to C translator Further
mappings that are not necessarilly derivable from the ATS, but are nonetheless
prerequisites for execution of the ATS, are also discussed Chapter six then focuses
on the test system and the interface needed to communicate with it The TTCN to
C translator modules are then pulled together, and the translator model introduced
at the end of chapter three 1s expanded and discussed in the context of a
conformance testing session Chapter seven concludes the thesis, and provides
recommendations for further study in regard to this system, and indeed

conformance testing as a whole

2. Tree and Tabular Combined Notation (TTCN)
21 An Overview

The Tree and Tabular Combined Notation (TTCN) 1s an informal test notation,
standardised by the International Standards Orgamisation (ISO), for use mn the
precise specification of Open System Interconnect (OSI) abstract conformance test
suites It 1s an informal test notation with clearly defined semantics TTCN differs
from the more farmbiar formal description techniques (FDTs), having informally, as
opposed to formally, defined semantics

The conformance testing methodology and framework 1809646 [1] was
developed and standardised over a period of eight years It 1s a five part document
Part one defines conformance in the context of OSI, part two defines abstract test
suite (ATS) specification, and part three defines TTCN The other parts are
concerned with test realisation and test iaboratory procedures TTCN began with
the specification of the X 25 networking protocol, which proved that TTCN could
be effectively used to specify complex conformance test suites, in accordance with
the international standard

TTCN combines a tree notation with a tabular representation The tree
notation 1s used to describe the events which can occur as alternatives to a previous
event The tabular component 1s used to sitmphfy the representation of all static
elements such as data types, protocol data unit (PDU) and abstract service prumutive
(ASP) formats, timers, and the verdicts associated with test events, in the TTCN
ATS The dynamuc behaviour description addresses many important aspects of
conformance testing such as, modulanty support in terms of test cases, test steps,
and default dynamuc behaviour, sophisticated imer management etc The structure
and syntax of TTCN 1s entirely directed towards describing desirable sequences of

interactions between the entities involved in the conformance testing process

One mught ask , "why the need for another test notation ?" The mam
argument favouring TTCN 1s that 1t's primary focus 1s on testing TTCN boasts a
compact way of specifying dynamic protocol behaviour It 1s ideally suited to the
active testing of reactive systems, 1€ the techmque of putting a system under test
(SUT) 1nto a controlled environment and sending specific sumuli to 1t, aimed at
checking specific aspects of the system TTCN provides a test notation, that
standardises the representation of sequences of test events that make up test cases,
and subsequently the representation of test cases within standardised test suites, in a
way that 1s independent of test methods and protocol layers Moreover, TTCN

reflects the testing methodology described in 1ISO9646

22 Abstract test suite specification using TTCN

An abstract conformance test suite consists of a number of test cases which test
an implementation for conformance It 1s a top down hierarchical structure, the
central component of which 1s the test case Test cases may be grouped with other
test cases to form test groups Test groups may be subsequently grouped together
to form larger test groups Test cases may be decomposed into test steps and these
test steps 1nto test events This structure 1s ilustrated in figure 2 1 A test event
mught be the sending or receiving of a Protocol Data Unit (PDU) or possibly the
starting of a tmer Test steps aid in puttng the SUT 1into a state, suitable for
executing a test case and hence, returning 1t to a stable state once the test case has
been executed To mimpose order within an ATS, test cases sharing a sumular test
purpose, imtial testing state, or final testing state often form test groups

The TTCN ATS can be subdivided into the test suite overview, declarations,
constraints, and dynamic behaviour sections The test suite overview provides all
the information necessary for the general presentation and understanding of a

particular test suite This overview 1s compnsed of four tables, namely, the test

suite structure table, the test case index table, the test step index table and the
default index table The declarations part provides the defimitions of all the
components that comprise the ATS, 1 e abstract service primutives (ASPs), protocol
data umits (PDUs), imers etc The constraints part provides precise descriptions of
all messages exchanged between the tester and the SUT Finally, the dynamuc
behaviour tables specify test behaviour in terms of messages exchanged The tables
1n this section are test case Dynamuc behaviour tables, test step dynamic behaviour

tables, and default dynamic behaviour tables

Test Suite
BEIERIERIER - mmrm
'H i o
moT o TR
' libranes of common test steps
Test Groups © - - - S
Test Cases
T M
l 1 I
Test Steps 11
Test Events

Figure 2 1 Hierarchical structure of an abstract test suite

The formulation of any test case begins with an identification of the test
purpose 1 € what 1s the purpose of this test? To construct a meaningful test case, a
well composed and ordered senes of stumuli that will achieve this test purpose are
chosen All responses of the system, desirable and undesirable, and their associated
verdicts, should be anticipated Possible verdicts are pass, fail, inconclusive and test
case error A pass verdict implies that the test purpose has been reached A fal
verdict implies that an error has occurred An inconclusive verdict implies, that
although no error has occurred, something happened during the test procedure, that
prevented the test purpose from being reached Finally, a test case error verdict
imples, that one of the following occurred no verdict got assigned, a pass verdict
got subsequently assigned to a preliminary fal or inconclusive verdict, or an
inconclusive verdict got assigned to a prelimmary fail verdict Graphically, the
result 15 a tree-like structure with branching to cope with possible alternative
reactions from the testing entities, see figure 22 Indentation facilitates the
occurrence of test events 1n a time increasing order Successive test events get
indented once from the left, alternative events lie at the same levels of indentation
Verdicts get assigned at the furthest points to the nght along a particular branch
either 1n the test body or in some adjoining subtree

The test case 1s generally composed of three phases, namely, the preamble, the
test body, and the postamble The purpose of the preamble 1s to get the SUT 1nto a
state from whence the test case can be performed, the test body comprises the bulk
of the test case and the verdict assignment, and the postamble returns the SUT to a
former stable state, or to one where a subsequent test case may be performed A
vertfication phase may also be present to ensure that the IUT 1s indeed n the post-

transition state A typical transition test 18 1llustrated below 1n figure 2 3

Figure 22 Branching in TTCN

Preamble Initialization to pre-

transition state

Test Body Application of test
stimulus and confirmation

of response

Verification Confirmation of post
Transition state

Postamble Reset to Stable state
for next test

Figure 2 3 Structure of a transition test case for conformance testing

23 TTCN.MP - the machine processable form of TTCN

The second version of TTCN 1s the machine processable form (TTCN MP),
which serves as an exchange format for test suites In this linear form, TTCN 1s
machine independent TTCN MP 1s defined using syntax productions, which have
special keywords as termunal symbols, (all keywords are preceded by the string "$"
symbol) These productions replace the fixed lines and boxes charactenstic of the
graphical format Entries to the boxes of the graphical format are mapped
identically into the MP format Since TTCN is intended for information exchange,
more uniform and efficient storage, and for electronic transfer, its syntax 1is
necessanly formally defined Using some three hundred BNF (Backus Naur Form)
productions, TTCN MP defines the TTCN syntax This BNF 1s intended to be
directly processable by the LALR family of parsers, thus simplifying the task of
automatically translating TTCN to other notations and languages The semantics of
TTCN are operationally defined, using both natural language and pseudo-code
descriptions These descriptions though given 1n an algonthmic format were not
meant as a method of executing TTCN but rather as a means of explaining how the
TTCN machine should operate

In summary, the arguments for a second TTCN format are essentially

to provide a formal syntax for TTCN 1n BNF,
» to act as a transfer syntax by facilitating the electronic exchange of test suites,
» to ease 1n the derivation of ETSs from ATSs as test suites are generally complex
and voluminous,
 to facilitate further machine processing
Some of the differences between the graphical and machine processable forms
of TTCN are
» special tokens in TTCN MP serve as delumters, where boxes and lines are used

m GR

e where explicit indentation 1s used i1 MP, indentation 1s graphically represented
in GR,
» page and line continuation and page and line numberning of the GR format have
no significance in MP
e the MP format also contains an extra instance of the test suite 1denufier, thus
facilitating test case identification 1n an automated way
Concluding therefore, both the GR and the MP forms of TTCN are
semantically equivalent In other words, if an ATS 1s specified in the graphical
format, in compliance with the international standard, then there exists a unique
corresponding machine processable representation, with the same underlying syntax
Two representations of an ATS are deemed equivalent, if and only if, they share
identical operational semantics It must be stated, however, that the graphical ATS
15 the standardised test suite and, therefore, in the event of any conflict between the

two representations, the graphical format takes precedence

24 TTCN editors

The emergence of TTCN as a standardised notation has prompted the
development of software support tools to assist in the editing, distribution and
translation of abstract test suites Since the tabular specifications cannot be readily
developed on conventional editors, purpose-built TTCN editors are required This
n atself 15 one of the major drawbacks of a graphical test notation A schematic
form of editing, browsing etc 1s necessary, therefore, in the development of ATSs
using TTCN

Several TTCN editors exist Three of these are CONTEST-TTCN [2], TTCN
workbench [3] and ITEX-DE [4] All of these have similar capabilities, such as
TTCN MP to TTCN GR translation and vice versa, syntax and semantics checking,

and full test suite browsing facihties ITEX-DE the ITEX Development

10

Environment, was chosen by ISO as one of the standardised TTCN editors Its
internal layout 15 lustrated in figure 24 ITEX-DE 1s a commercial editor, for use
in the development and management of ATSs Over and above the features
outlined above, the ITEX-DE has plans to include mn later releases, both a
translation capability, where TTCN could be automatically translated into several
executable languages including C and Forth, and a vahdation facility, whereby

TTCN dynamuc behaviour could be validated against formal protocol specifications

FDT EXTRACTION
TTCN GR table
Table Generator I& EDITOR prmter
4) H:_LI
files
FILES
GR-> MP |9— —{ mr> r
/N
_ J

—H{ TTCN MP

Figure 2 4 Intemal structure of the ITEX-DE

25 TTCN and Formal Description Techmques (FDTs)
Standard definitions of many protocols are presently given 1n natural languages
Apart from bewng verbose, these defimtions may contain ambiguities and

imprecisions Out of this came the need for formal description techniques (FDTs)

11

ISO and CCITT encourage the specification of communications protocols and
services using FDTs Three such languages SDL (Specification and Description
Language), LOTOS (Language of Temporal Ordering Specification) and Estelle
(Extended State Transition Language) have been standardised ASN 1 (Abstract
Syntax Notation One) aimed at protocol data structure definition, and TTCN for the
specification of OSI conformance test suites, were also standardised FDTs provide
powerful modelling techmques by combining the control and data aspects of
systems They were intended for writing formal specifications for the OSI protocols
and services, to be used during the protocol development process

The three formal languages SDL, LOTOS and Estelle, and the methodology
and framework for conformance testing, developed separately There now exists
the need for convergence m these two fields Research 1s currently going on in the
application of FDTs to conformance testing By employing FDTs, to both describe
the protocol and the dynamuc test sequences, ambiguities i a protocol specification
and musunderstandings among protocol developers and test designers may be
elimnated, the effort of test designers reduced, and the automatic vahdation of
protocols may be made possible

FDTs already play a central role in the conformance testing process,
particularly in the specification of ATSs The specification of ATSs 1s presently
manually dernived from a formal description of a protocol 1e Q 921 describes layer
two of the LAPD protocol using SDLs ISO and CCITT are currently working on
longer term objectives to apply formal methods to the testing of protocol
implementations, which includes the automatic derivation of ATSs from formal
protocol spectfications TTCN 1s, nonetheless, simpler to implement and
understand than FDTs and 1s more suitable for the direct abstract specification of
tests by a human test specifier In developing formal approaches to conformance

testing, it will be necessary to relate test descriptions m TTCN to formal

12

specifications in FDTs It may be, therefore, necessary to extend TTCN to include
some selected FDT capabilities currendy not supported At present the semantics
of TTCN are informally expressed, there may now exist the need to formalise them
It must be noted, however, that if TTCN 1s to hold its ground, in the advance of
FDTs 1n the conformance testing field, then TTCN must retamn 1ts simplcity,

practicality and precision

2 5 1 Automatic generation of abstract test suites using FDTs

Although certain methods exist for automatically developing abstract test
suites, most test suites are still developed manually Methodologies and tools exist
to automatically generate and execute test sequences, but these tools tend to be
localised to one particular stage i the conformance testing process, be it basic
inter-connection, capability, behaviour or conformance resolution testing, but never
to all four The derntvation of tests for complex protocols 1s cumbersome, since all
of the functionality of the protocol must ultimately be checked Consequently, there
15 a real need for automation

TTCN 1s the umversal language of choice for the specification of test suites
since all standardised test suites have been, and currently are being, expressed mn
TTCN Tools now exist to translate FDTs into the TTCN notation Such tools will

be discussed later on 1n this chapter

2 5.2 Vahdation of protocol behaviour using FDTs

This section 1s concerned with the validation of TTCN abstract test suites
against their corresponding protocol specifications Since most ATSs are
developed manually, one can expect them to contain errors These errors should

ideally be detected and removed as early on in the conformance testing process as

13

possible, 1e before test case execution In particular, test case verdicts should be
consistent with the protocol specifications

A problem exists 1n the difficulty of comparing a test case wntten in TTCN to a
protocol specification wntten in some formal notation In order to automate such
comparnsons, 1t 1S necessary that first, the protocol be specified formally and
secondly, that the language used to specify the test case 1e TTCN, be comparable
to the language used in the formal protocol specification For example, if the
protocol specification 1s written in LOTOS then there must exist a means to relate
TTCN to LOTOS Two possible approaches exist [5]
(1) The TTCN test case 1s first translated to an equivalent LOTOS specification
(path 2), which may be then compared to the protocol specification (path 3)
(n) The TTCN test case 1s executed (path 4) and a comparison 1s made of the test
results with the protocol specification (path 5)

This configuration 1s illustrated below 1n figure 2 5

Test Case 3) Protocol
(LOTOS) Specification
78
(1) |
(2) I (5)
|
Test Case W (4)
Test Results
(TTCN) J ’t

Figure 2 5 Protocol Validation steps

(1) Checkmg consistency of test case with protocol specification

(2) Translation from TTCN to LOTOS

14

(3) As (1) but for test case described using LOTOS
(4) Execution of TTCN test case
(5) Analysis of test results against protocol specification

Method (u) 1s useful for conformance testing, or for testing non-standard test
cases 1¢ ones that do not contain standardised test verdicts, but not for protocol
validation, as 1t only considers a particular test trace, with particular interactive

parameters, at a particular point 1n time

2 5 3FDT tools
Two current areas of research include venfication of formal specifications and
the realizability of the conformance testing methodology One of the most powerful
tools that mmplement formal description techmques 15 FOREST (Formal
Environment for Systematic Testing) [6] FOREST implements three strategies
o the use of FDTs for their unambiguous formal semantics,
e a stepwise approach to generate appropriate test cases for the different test
stages,
o the systematic support of the testing process from test development to test
execution
The FOREST environment 1s made up of four distinct modules or subsystems,
these are a subsystem to generate test cases from a formal specification of the
behaviour of the protocol, a subsystem that generates test data from a protocol data
structures defimtion, 1t generates test data from the protocol data defimtion
specified In ASN 1, a tool to produce a test specification based on some
standardised formalism, 1t generates the TTCN format test sequence from the
specificaton described in SDL/PR, and a test execution system, which consists of

an upper and a lower tester, and a simulation of the communications medium

15

FOREST reduces the cost involved in the testing phase of OSI upper layer
software development It effectvely checks and highlights any insufficiencies
protocol specifications FOREST incorporates SDLs, ASN 1 and TTCN into a
system, based on the standardised methodology and framework Further research 1s
currently going on to provide support fory both the Estelle and LOTOS FDTs

A second tool performs semi-automatic test case generation from an Estelle
specification Here TTCN test steps are generated from Estelle transitions, from
which test cases may be obtained, by way of ordering, using control flow graphs
This tool has been tested with success on the LAPD protocol, and current research
1s ongoing, in the implementatton of an ASN 1 module, to facihitate higher layer
testing

Finally, a tool exists to translate in the opposite direction, in particular, from
TTCN to LOTOS The aim of this system 1s to obtain LOTOS specifications with
structures close to the original TTCN test case specifications, thus, simplifying the
task of protocol vahdation Results from this research showed, that errors in the
onginal protocol specifications were present, proving that even widely accepted and
standardised formal specifications were not free from errors This study proves that
the automatic checking of conformance test cases, with respect to the
corresponding protocol specification, 1s a useful and indeed necessary activity for
increasing the confidence in OSI conformance testing This 1s a practical tool for
the validation of conformance test cases, limited at present to the translation of
simple test cases

A point worthy of note 1s, that the automation of these activities 1s only
possible when a formal specification of the protocol 1s available Unfortunately, at
present there are only a limuted number of formal specifications of OSI protocols or
services, that have been generally recognised as faithful representations of the OSI

standards, that they claim to formally specify.

16

26 TTCN - 1its menits and 1ts hmitations
In pursuit of the ideal notation for describing interactive test sequences and
test suite structures, many proposals were forwarded These proposals included

time sequence diagrams, programming languages, formal description techniques, a

tree notation and a tabular notation The latter two were chosen on the basis of

understandability by botlh test specifiers and test operators What was to anse from
these two notations was one notation, that combined aspects of both, to naturally
produce the tree and tabular combined notation (TTCN)

Some of the advantages of TTCN over the other proposals of the time were
that

» the tabular form of TTCN 1s quite easy to both understand and learn,

« the value oniented nature of testing 1s well reflected in the power of TTCN to
deal with a variety of parameter and field representations, expressions and value
assignments,

» time sequence diagrams, while easy to understand lacked precision,

o programmung languages were felt to be too system dependent, where the desire
was for a notation that was independent of any test system,

» sets of formal test sequences or test cases are much simpler to describe than
entire systems or processes Thus, formal descniption techniques (FDTs) which
were designed to descnbe such systems and processes, were unnecessarily
awkward and complex for representing abstract test cases While FDTs were
well sutted to type specification, TTCN could better address the value oriented
nature of testing Furthermore, tmely changes to FDTs to meet the immediate
need for a test suite specification language would have been difficult to achieve
Finally, TTCN satsfied the immediate need for a test notation, where no

consensus existed as to the most appropriate FDT

17

What resulted, therefore, was a test notation, that had the power of a
programming language, the clanty of time sequence diagrams, and almost the
formality of an FDT, that 1s specified in a manner that 1s independent of test
architectures, test systems, and OSI layers

The following 1s a list of limutations 1n the development of abstract test suites

using TTCN

multi-party testing, as required 1n the testng of some protocols 1s not supported,

e TTCN has no formally defined semantics, thus requiring the use of some formal
description techniques to validate dynamc protocol behaviour,

o TTCN specifications cannot be readily developed using conventional editors,

o TTCN 1n either format 1s not readily executable,

» The specification of ATSs in TTCN requires that the test specifier learns a new

language

18

3. Derivation of executable test suites from abstract test
suites
31 Introduction

An abstract test suite (ATS) wrtten in TTCN 1s a complete test specification
with regard to the protocol standard from which 1t was denived The TTCN ATS 1s,
however, a generalised one, bearing no relationship to any particular executable test
suite, or moreover, to any test system that it may eventually be executed on TTCN
was never intended to be directly executable, rather 1t 1s intended to facilitate the
precise specification of abstract test suites, in a manner that ensures the
development of an executable test suite (ETS), which 1s a faithful implementation of
the ATS Test suites specified using TTCN are easily understood by the human
elements of the testing process What 1s not as readily apparent 1s the relative
d:fficulty involved 1n implementing test suites wrntten in TTCN

The execution of tests specified in TTCN 1s the final step in the design of
protocols and their conformance tests In order to implement an ATS, 1t 1§
necessary to translate the individual test cases of the ATS into a suitable executable
test language, supported by the test laboratory This imphes that a significant
proportion of the testing time and cost, 1s employed 1n the derivation of ETSs The

aim of the translation project 1s to produce a methodology, and ultmately a tool

that will

e reduce the ime and effort involved in performing manual translations,

e help to ensure a correct mapping between the TTCN test specification and the
executable test language,

¢ help ensure and maintain consistency between the ATS and the ETS

There 1s a desire, therefore, to simplify and where possible automate the derivation

of ETSs The advantages of automatic derivation goes further, automation helps to

19

maintamn the uniformuty of test sequence, test purpose and overall orgamsation of
the structure of test suites

The automatic derivation of executable test cases from their corresponding
abstract test cases has not, so far, received a great deal of attention within the
research commumity This may be attributed to the fact that the specification of
abstract test cases 1s stll in the developing stages, and that most test suites have
been wrntten directly in an executable format As TTCN receives greater
acceptance, one can expect accelerated growth 1n this research area

This chapter begins by introducing the current approaches and tools used in the
area of automatic ETS derivation A methodology 1s then introduced to take an
ATS specification and automatically denve an executable equivalent The chapter
concludes by introducing the TTCN to C translator that will be the subject of the

following three chapters

3 2 Current approaches and tools for ETS derivation

This section will compare the relative ments of two approaches to the problem
of ETS derivation The present situation 1n conformance testing 1s largely, to take a
formal specification of a protocol, and compile a set of tests, that will ensure that an
implementation of a protocol behaves in a manner, that 1s consistent with the
protocol specification These tests will then normally be taken one by one and
translated manually to a language of the test laboratory The results of these tests
will then often be correlated with the results of other test houses The two
approaches considered in this section will be a translation to an FDT, and the
execution thereof, and a translation to a directly executable proprietary test
language

Approach one builds upon research done 1nto the specification of tester bodies

using either Estelle alone or a combination of Estelle and ASN 1 [7] These Estelle

20

specifications were ongmally hand coded by test designers, based on their
knowledge of the protocol They did not derive their structure from any abstract
test case representation This meant that if the test architecture to be used in one
test was different than that used 1n the others, then a lot of changes were required to
code that particular test case Research in this area has enabled automatic
verification of Estelle test specifications against Estelle protocol specifications, and
the development of Estelle compilers to execute Estelle test specifications (8] This
compiler operates by producing C code templates for the Estelle interactions and a
fully coded machine(s) for the implementation In order for the implementation to
run, an interface to the external environment must be written Simular functionality
with regard to the LOTOS FDT 1s avalable in the FOREST environment, as
discussed 1n chapter two

The second approach involves translaing TTCN to ITL (Interactive Test
Language), a proprnetary test language of IDACOM, directly executable on the
PT500 protocol tester This approach enables users to generate and edit test scripts
on a workstation (having better editing faciittes than the PTS500) and then
download them to the protocol tester for execution This approach elimunates the
need for the application of FDTs by the test operator and, moreover, the need for an
external interface, as one already exists

Both approaches possess mernts, but selecton with the protocol i mund 1s
expected to simplify the testing process considerably The Estelle based method has
been proven to work for an OSI layer four protocol implementation, and the ITL

method on the LAPD protocol

The approach that will be taken n this research will be sumilar to the ITL
method, but will involve a translation to the C language The C code produced 1s
fully executable on an ISDN Technologies protocol tester The translation makes

use of a pre-defined C interface, that facilitates the execution of C scripts, as if they

21

had been wrtten i the test systems proprietary test language DCPL (Digital
Communications Programming Language) This approach has the added advantage
that the code generated should be readily executable on any test system based on

the C language, once the test system interface 1s redefined

33 Automatic derivation of ETSs from ATSs

This sub-section 1ntroduces a methodology for automatically translating
abstract test specifications written m TTCN to an executable language equivalent,
and a tool that performs the translation [9] It will begin with an identification of
the goals of automatic ETS denivation The basic principles of TTCN translations
will be discussed, and the tool that mught perform the task will be outlined This
section revolves around a formal methodology, that will be used as the model for
the TTCN to C translator system

The goals of the translator methodology may be summansed as follows

an 1dentificaton of the problems and issues involved in abstract test suite

translations,

e adefinition of a methodology that 1s both simple and practical for the automatic
translation process,

« the apphication of these techniques to a conformance testing system using a
variety of abstract test suites,

» the consequences of large and small scale abstract test suites to a system

developed using the above methodology

3 3 1 Basic principles of translation
TTCN like any other language has a syntax with corresponding semantics To
generate an executable equivalent, one must begin by translaung the TTCN

specification (syntax and semantics) to an executable equivalent This code will be

22

termed the transformation or core code Unfortunately, there 1S no reason to
assume that this code will, when translated, be executable, indeed if 1t were, there
would be no need to translate 1t in the first place Further code, both derivable and
non-denivable, must also be generated Denvable code includes all code that,
though not exphcitly stated in the ATS, 1s in some way derivable from it An
example mught be the requirement of ISO9646 that a conformance log be
maintained, to log all test events during test suite execution Non-denvable code, as
suggested by its' name, includes any code that 1s not, 1n some way, derivable from
the ATS This may be due to, either 1t having an unpredictable occurrence 1n the
ATS, or 1t requiring supplementary information from the ATS m order for 1t to
execute An example of non-derivable code mught be the following in a TTCN to
C translation of stnngs, C requires that the maximum length of the strings be
specified, this information 1s not normally explicitly stated in TTCN In general
Translation Code = Core code + Deriwvable code + Non-derivable Code

The problem of semantic translations 1s another uncontrollable one In a typical
translation, one has only himuted control over the implications of implementing a
particular test event 1n the executable language, 1€ even if the TTCN specification
1s correctly interpreted by the translator, the test system may be incapable of

mplementing the translation

33 2 TTCN translation methodology - an overview

The first step 1n defining a test system specification, 1s to determine a checklist
of all of the features in the source language This checklist 1s then completed by
checking whether the target language has support, either directly or indirectly for
these features Any restrictions to this support should be highlighted in the
specification, (fortunately, the target language C 1s a programming language with a

large pool of data types, data structures and Libraries). What should also be

23

considered is, the particular use of TTCN in the abstract test suite (i.e. the version,
are there nested constraints ? etc.), and the test system support for this particular
version of TTCN. Out of this, a subset of TTCN, applicable to the particular
protocol under test may be established. For example, in the case of the LAPD
protocol, there appears to be no need for the provision of ASN.l constructs; a
notation that finds true application in the testing of higher layer protocols. The next
step in the test system specification should detail the routines and data structures
that are supported by the test system, and which may appear as part of the code
produced by the translator. This is largely determined by the language in which the
test system interface is built.

Once the level of support of both languages, and the available transformations,
are determined, a mapping document may be established. This document details the
mappings of TTCN structures to equivalent C structures. Three types of
transformations may be identified:
 structural
* mechanical
e detailed syntactical.

In the category of structural transformations, one may include the mapping of the
overall structure of the ATS, the structure of the test groups, test steps or even
structured components within the test steps such as PDUs to the target language.
For example, the mapping of a TTCN test case to a C language function, or of a
TTCN PDU to a C language SIIUCE. Mechanical transformations include the
mapping of the various implicit and explicit mechanisms in TTCN (tree execution or
attachment, parameter passing, GOTOs etc.) to their executable equivalents.
Finally, detailed syntactical transformations include the transformation of events
(SEND, RECEIVE etc.) and pseudo events (timer operations) to equivalent
program language statements. The complexity of these transformations is also a

2

function of the simularity between TTCN and the target language, a point worthy of
note 1n deciding upon the opumum target language Any deviations of semantics
during these mappings should be highlighted to facilitate modifications at a later
date
Translation specification language

What 1s now required 1s a means of performing these mappings The language
chosen to perform this task should satisfy the following cnitena
o be onented towards the TTCN,
» be human readable,
» produce modulansed concise specifications,
» support mechanisms for generating additional code,
» have generalised access mechanisms to the TTCN tables and lists,
e have access to referenced items of these lists,
» be a umversal language supporting efficient code generation mechanisms,
« have basic language constructs such as I/O directives, conditionals etc

The translation specification language 1s responsible for both scanning the
source language and generatng the target language It must have facihities for
reading the source language on either a character, word or Line basis It must be
then capable of checking the nput for both syntactical and semantical correctness
Finally, 1t must be capable of generating an equivalent target language specification
One can thus expect this language to scan the TTCN MP file for instances of special
keywords or tokens of the language 1e $TC_Vardcl, $TestCaseld etc that set the
context for the mappings This step may be performed using regular expressions or
sumple string comparison mechanisms Once nstances of these tokens are found, a
parsing mechanism must be available to ensure that the surrounding context makes
grammatical sense Once this 1s ensured, a print statement capable of producing the

required target language code should be available. These steps must be then

25

repeated for all instances of that TTCN component, be 1t a test case vanable, a test
case etc , and then subsequently repeated for each component within the TTCN test
suite Finally, this code generated automatically from the TTCN specification
should be augmented with additional code to make 1t fully executable
Additional Code generation

Additional code, to include error detection, reporting and possibly recovery,
and statistics gathering (test piogress reporting, translation times etc) must be
supphed The language to access the TTCN tables may also be supplemented with
additional code of a derivable nature, to possibly perform event logging, or non-
dertvable code to possibly specify maximum string lengths etc Mechanisms to
access the PICS/PIXIT information may also be required to implement a fully
automatic translator

Translator Toolset

Translator Development - Executable Test case Environment

|

Translation l TTCN editor Abstract

Specification : and Parser Test Suite
l AIL
|

Scnpt : TTCN Data

Handler | Base
i Interface
| ili

Compiler ' Translator Executable

| Test Suite

Figure 3 1 Software components 1n Toolset

26

The completion of the methodology should include a description of the toolset
to implement the translation A typical toolset is ilustrated in Fig 31 The
transiation script handler 1s the user interface to the translator system, whose
capabilities include test suite browsing, editing, compiling and execution Execution
may be controllable on the basis of individual test cases, test groups or the complete
test suite The translation script compiler compiles the translated scripts into
executable code The script handler can then call upon the test scripts and execute
them as appropnate The final tool of the system is the translator interface Tius
tool provides read only access to the data base of TTCN scripts This data base 1s
only accessed during the translation of the ATS, and 1t 1s assumed that the ATS has
been fully edited and then parsed and all of the relevant TTCN MP data stored in

the TTCN data base by the system

3 4 Introducing the TTCN to C translator

This TTCN to C translator 1s pnmanly concermned with the implementation of a
conformance testing environment for the link access protocol on the D channel
(LAPD) of an ISDN The translator takes a TTCN ATS specification n TTCN MP
format and produces a C language equivalent that makes use of the functionality of
an ISDN Technologies protocol tester The system configuration 1s illustrated m
figure 32 It may be assumed that a tool like ITEX has been used to produce the
TTCN MP version of the TTCN GR ATS

Input to the parser 1s the TTCN MP ATS specification Output from the
parser 1s a set of C files These files must be then supplemented by two other forms
of input namely an interface hibrary to communicate with the ISDN technologies
protocol tester, and an additional code specification to fully implement an

executable version of the ATS The resulting code, the C code specification

27

produced m 1ts entirety may be then compiled to produce the ETS A prumary rate

interface card enables the system to interact with external entities

Abstract test
suite

TTCN MP
Parser

' Interface Additional
Library Code

C
Translator

AN V4
(Executable Test Suite)

N
ISDN Technologies
Test System

Figure 3 2 Structure of TTCN to C translator

To IUT

WV

What follows 1s a preview of the subsequent three chapters Chapter four will
discuss the subset of TTCN that was chosen to implement the testing environment
for the LAPD protocol The mappings for the three sections of TTCN will be
detailed A discussion of the translation specification language and the ments of
using translator development tools will be given Chapter five will then focus on the
aspects of translator design that are necessary to implement the mappings of chapter
four Further additonal code, derivable and non-derivable from the TTCN ATS but
nonetheless necessary for automatic translation, will be discussed These mappings
refer to the additional code facility of figure 32 Chapter six will then focus on the

actual test system, used to implement dynamuc conformance testing sessions Ths

28

completes the mappings of chapter four and five by providing the additional code
necessary to interface the already generated code to the test system Finally, the
pulling together of these modules 1s described and the system as 1t presently stands

1s discussed

29

4, TTCN to C language mapping
4 1 Introduction

This chapter focuses on the transformation of TTCN to the C language, in
particular, the transformation of the code that 1s directly derivable from the TTCN
abstract test suite (ATS) specification Discussion will begin with an introduction
to some of the concepts of compiler design and of their application to the
development of a working TTCN to C translator A formal description of the
TTCN subset, and the factors determining its selection will be detailled Having
ascertained the degree of support, either directly or indirectly, in the target language
C for the subset, and the set of data structures supported by the test system, the
complete TTCN subset to C language mappings may be established The remainder
of this chapter details these mappings and the techniques used to produce them

A compiler accepts a source program - a program Wwritten In some Source
language, and constructs an equivalent object program, possibly in assembler or a
binary language A translator accepts a source program as input, and generates an
equivalent program 1n some other source language This program should be both
syntactically and semantcally equivalent The steps involved in the translation

process, as 1n any compilation process, include the following four stages

word recognition

e grammar specification

language recognition
e code generation

Word recognition, 1s the process of extracting the tokens of the language, and
passing them on to a syntax checker A grammar defines a language, by descnibing
which sentences may be formed by the characters and words of the language Two
aspects constitute a language definition, namely, the syntax and the semantics The

syntax 1s concerned with the mechanical construction, whereas the semantics are

30

concerned with the meaming, of a language Semantics transform a sequence of
sentences to a single program Finally, code generation 1s the task of generating
equivalent source code i the target language The structures recognised by lexical
analysers and parsers, will be hitherto referred to as tokens or termunals, and non-
termunals, respectively There 1s considerable leeway in deciding what constructs
are to be recognised by the lexical analyser and what ones are to be recognised by
the parser The option chosen here, 15 to pass on to the parser stage only what 1s
actually needed The parser can thus remain blind to such things as comments,
white space, delimiting TTCN tokens etc
TTCN 1s logically divided into four sections, namely, the overview,
declarations, constrasnts and dynamic behaviour Section one 1s concerned with the
organisation of the test suite Section two, the declarations part, defines and
declares all of the constants, vanables, timers, abstract service primitives (ASPs)
and protocol data units (PDUs) (the message umts associated with a particular
protocol), that are used by the dynamic behaviour section Section three, the
constraints part constrains the use of PDUs and ASPs in the dynamic behaviour
section Section four, the dynamuc behaviour section 1s responsible for the actual
dynamic testing of the SUT This chapter will focus on the latter three sections
The translation process logically follows these three parts of the TTCN
specification All sections fortunately employ backward reference, thus making it
possible, for the most part, to generate equivalent C code, 1n the order that the
TTCN appears 1n the ATS specification
TTCN was developed as an abstract test notation, but its ulumate purpose was
to enable test houses to derive equivalent notations that were executable on real test
systems The task of derivation 1s, for the most part, a manual one The possibility
of automatcally performing this task, though probably envisaged, 1s not

unfortunately, as readily apparent Some key issues address questions and request

31

special attention. The comments column in TTCN specification tables is one such
example The problem lies in script writers use of it, as a way of specifying that
which is not part of the formalised test notation. TTCN is by definition an informal
test notation with informally defined semantics. This informality allows two TTCN
script writers to write different TTCN specifications for testing the same protocol.
TTCN is to a large extent a high level programming language with much of the
functionality of many of our lower level languages. In 1992 ISO produced 1SO
9646 part (iii) [1]; the standard that attempts to formalise TTCN. The study that
follows seeks to develop a TTCN machine within informally defined boundaries.
The programming language C, with its high functionality, large pool of
libraries, and widely used environment was chosen to translate the first two sections
of the TTCN ATS to its C equivalent. Two UNIX system tools Yacc (yet another
compiler compiler), and Lex (a lexical analyser generator), were employed to
translate the dynamic behaviour section. It was originally envisaged that C would
be used as the translation specification language for all three sections, but the
flexibility and fast development time of a Lex / Yacc combination discouraged this
path. As both of these UNIX tools were developed using a C environment, the task
involved in interfacing C code to these tools is significantly reduced. Furthermore,
both Lex and Yacc actions, invoked on recognition of either lexical or grammatical

constructs in the TTCN specification, are required to be written in the C language.

4.2 Subset of TTCN to be translated

The subset of TTCN that was chosen to be translated was strongly influenced
by the requirements of the ISDN lower layers protocol. A subset was chosen, that
would not only represent the notation as a whole but would, moreover, generate an
environment, in which real conformance tests for the LAPD protocol, could be

specified. As well as comprising the bulk of the TTCN language defined in

R

1S09646 part (iii), all elements of the language, including test events, programming
constructs, operators, operations, and statements, are more than adequately
represented in the selected subset. What follows is a description of this TTCN
subset.
Declarations

There are eleven different types of declarations, of which eight have been
successfully parsed and translated. Suggestions are provided for the remaining
three.
Constraints

There may be two types of constraints in a TTCN ATS: protocol data unit
(PDU) and abstract service primitive (ASP) constraints; of which only the former
was translated. The ASP declaration information are not necessary in the
implementation of a conformance testing environment for the LAPD protocol, as all
of the required information is specified in the PDU definitions.
Test events

The two fundamental TTCN test events, send and receive, are translated into
equivalent C functions that communicate with the system under test (SUT) via the
DCT-S test system interface. The send routine includes code to first build and then
send a PDU. The receive routine includes code to build a PDU, decode and analyse
an incoming PDU, and then compare the PDU built with the PDU just analysed. A
third test event that is also translated, is the IMEOUL test event that interrogates the
status of a timer. The only remaining TTCN test event is the Imp|IC|t send event,
but as this event represents no new translation construct, and is a relatively
uncommon test event, it was omitted from the subset.
Programming constructs

Within the category of TTCN programming constructs are the GOTO
ATTACH\ and REPEAT UNTIL constructs. Only the first two form part of the

3

chosen subset, as the latter 1s stmilar 1n both construction and implementation to the
GOTO The GOTO label construct 1s translated to its C equivalent - goto label
The ATTACH (+) construct represents the ability of test cases or test steps to call
upon other test steps Attaching was implemented as a C function call, with
facibuies to pass parameters
Pseudo events

TTCN pseudo events encompass the majonty of the mathematical and timung
operations required to implement a real conformance testing environment The
translated subset includes qualifiers, assignments, operators, conversion operations,
and timung operations The quahfier or Boolean conditional 1s translated to a simple
C if condition construct Assignments have a C equivalent, and are translated as
such The operators translated include the binary operators '+, '-' and MOD and the
unary operator NOT The complete set of relational operators '=','<',>''<="">="and
<> were all translated to therr C equivalents Parentheses, which facilitate the
grouping of expressions and the grouping of assignments on a single behaviour line,
were also translated as therr C equivalent. TTCN supports operations to switch
data between different data types These operations include HEX TO INT,
BIT TO_INT, INT _TO_HEX and INT TO BIT, of which the two former
operations were translated to routines which accept HEXSTRINGs and
BITSTRINGs as input respectively, and produce integer number equivalents as
output Finally, under this category are also the complete set of imung operations,
START, CANCEL and READ TIMER Each of these pseudo test events are
implemented as C functions which use the DCT-S test system interface
Miscellaneous

Over and above the features already mentioned, the various constructs that

dehmut test cases, the test case verdicts, the parameters necessary for the

34

communication between test steps, and the comments that explain the testing
behaviour, test case descriptions etc., all form part of the TTCN subset.

The chosen subset provides the user with the tools to develop and implement
conformance tests for the LAPD protocol. Any omissions to this subset represent
either no new construct, or have no part in the specification of tests for the ISDN
lower layers protocol. An example of the latter is the ASN.I notation. In essence,
the subset provides all of the testing capability required to implement parts of the

ETSI conformance testing specification, for layers two and three of an ISDN.

4.3 Translation of TTCN declarations

The C implementation part of the translator reads a TTCN.MP text file one line
at a time, and parses it on the basis of a pre-defined set of delimiters, using the C
parsing function Stl’tOk(). At all times, care has been taken to ensure that a correct
mapping, i.e. one that is both syntactically and semantically correct, is performed.
The generated C code is readable, thus giving the test system operator the option of
altering either the output C code or the original TTCN specification.
Simple type definitions

At the core of TTCN are the pre-defined data types, namely |NTEGER,
B|TSTR|NG, HEXSTR|NG, OCTETSTRING and the set of pre-defined character
strings (IA5string, NumericString, PrintableString etc.). Over and above these
types, is a feature of TTCN, that enables test suite writers to define subsets of these
existing data types. The definitions of these user types are made via the Simple
Type Definitions table, see figure 4.1 below. The table consists of a name, a full
definition and a comments field.

This high level structure has unfortunately no corresponding representation in
C. One solution lay in the possibility of using C++, but, as this was the first and
indeed the only instance of where ¢ might have its short-comings as the translation

(3

specification language, 1t was concluded that that did not jusafy a change in
implementation language for the remaining translattons A compromise was
reached, by allowing the new user-defined data types to assume the type of therr
base, 1¢ INTEGER i the below examples An array 1s maintained to store the
range of values permitted for a particular data type In the example, only two
values are acceptable to a vanable of type SAPI_RANGE, 1e 0 or 63, and any
values 1n the range 0 to 65536 are acceptable for vanables of type N RANGE

Simple Type Definition
Name Full Definition Comments
SAPI_RANGE INTEGER(0,63) Other values not considered in
this test suite
N_RANGE INTEGER(0 65536) Range of values for N(S) and
NR)

figure 4 1 A simple type definition

The automatically translated code makes use of the ANSI C typedef facility

The following code 1s produced as a result of figure 4 1

typedef INTEGER SAPI RANGE,
typedef INTEGER N_RANGE,
Thus, to declare a vaniable named SAPI to be of type SAPI_RANGE, and initialise 1t

to zero, only the following code 1s needed

SAPI RANGE SAPI,

SAPI =0,

When the translator encounters a vanable, a symbol table 1s consulted It 1s here
that all of the information pertaining to varables is stored If the variable type was
one of the simple type defimtions, then the array that holds the constraining
information 1s consulted before the assignment 1s made In the event of the nght

hand side of an assignment being a parameter or a vanable, 1€ where the value 18

36

not as yet known, then additional code in the form of an if statement 1S
automatically coded as part of the assignment For example, if SAP/ PARM 1s a
parameter that 1s to be assigned to the variable SAPI, then the following code would

comprise the translation

if ((SAPI_PARM==0) |l (SAPI_PARM==63)) SAPI = SAPI PARM,
else printf("\n Invalid assignment"),
User Operation Defimtions

The User Operation Definition table enables an ATS developer to specify n
Enghish what a specific function should do The international standard states that
this specification may optionally be given in a standard programm:ng language like
C or Pascal Here exists the first example where a more formally defined ATS
specification language would smoothen the automatic transition from TTCN to C
The very presence of this section requires that the ATS translator operator have an
intimate knowledge of TTCN, C, and indeed the translator system The most
elegant solution would be for the translator system to offer the user a window to a
text editor, through which they could enter the required C function This function
could be then linked at compile time to the other declarations
Test Suite Parameters

The purpose of this section 1s to declare constants derived from the PICS
and/or PIXIT which may be used to globally parameterize the test suite see figure
4 2 These constants are referred to as test suite parameters and are used as a basis
for test case selection and in the parameterization of test cases This section has
been the subject of study over the past number of years At present, 1t 1s usual for a
test operator to be prompted for parameter values for the particular system under
test (SUT), prior to a dynamuc testing session The type of parameters requested

mught be the wimdow size or, if the system has support for automatic

37

retransmussions The solution chosen for this task was to parse the table in due
course, omitung the value information for the present, 1€ to automatcally define
the parameters, but not declare them The user would be then prompted with the
name, the field type and the comments pertaining to the parameter, and requested
for the required parameter value, so that parsing could continue This value would

be then read and the parameter declaration made

TEST SUITE PARAMETERS
Name Type Value Comments
PC_Timer203 BOOLFAN L6/3 True if timer
T203 1s supported
K INTEGER LX2/8 window size

Figure 4 2 A test suite parameter declaration

Test Suite Constants and TTCN variables

These declarations, are responsible for the defimtion and imtialisation of the
constants and vanables that are used i the dynamic behaviour section Test suite
constants define and declare the set of names that are not derivable from the PICS
or PIXIT information, but remain constant for the duration of test suite execution
The techmque chosen to implement test suite constants 1s the ANSI const modifier
Test suite vanables are assigned values during test case execution, which are
maintained globally throughout the execution of the test suite Test case vanables,
however, are not defined for the test suite as a whole, but are unique within a test
case In other words, a separate copy of the variable 1s made available to each test
case The obvious translatons, and the chosen ones are, as global and local C
vaniables respectively The test suite variables are initialised before the execution of
section three takes place by calling a function 1init_globals() The local variables get
declared and mtialised at the beginning of each test case by calling the function

wnit_locals()

38

Timer Declarations

The declaration of a timer 1s simular to the declaration of a variable, where the
timer name 1s the vanable, and the value 1s the duration of the tmer Shown below
n figure 4 3 1s an example of a timer declaration In this example, TWAIT 1s a
variable that holds the value thirty seconds To mamntain a consistency of values, all
tumer durations are stored in centiseconds, which conforms to the specification of

the DCT-S test system timer

Timer Declarations
Timer Name Duration Units Comments
TWAIT 30 sec Max time for
IMPLICIT SEND
execution

figure 4 3 A umer declaration

The C production corresponding to the sample timer would be

mt TWAIT,
TWAIT = 3000,
With this declaration 1n place, a call to start a imer ticking for thirty seconds would
be
start_timer(TWAIT),
where start_timer() 1s a routine that expects one integer valued parameter The
actual implementation of timers will be discussed in more detail in chapter six when
we deal with the DCT-S system
PDU Type Declarations

At the core of the testing process 1s the ability of a tester to successfully
transmit and receive messages The defimtion of these PDUs appears in the

declarations section of the TTCN ATS The PDUs are split into fields according to

39

the specifications given mn the Q senes of recommendations Q 921 and Q 931

Shown below 1n figure 4 4 1s an example of a layer two I (information) frame

PDU Type Declarations
PDU Name 1 (Information) PCO Type PSAP Comments see table 5/1 441
and fig 5/1 44 11 frames,
command
PDU Field Information
Field Name Type Comments
EA_OCTET2 BITSTRING Ext addr bit
C BITSTRING Command bit
SAPI SAPI_ RANGE Service Access Point 1d
EA_OCTET3 BITSTRING Ext Addr bit
TEI TEI_RANGE Termial End point Id
CONTROL BITSTRING 1 control Field
N S N_RANGE Send Sequence number
| BITSTRING Poll Bit
N_R N_RANGE Receive Sequence Number
INFORMATION OCTETSTRING Layer 3 data
FCS_FIELD OCTETSTRING FCS field (2 octets)

Figure 4 4 A sample PDU declaration

Having considered many solutions to perform this translation, the one arrived at

was a most general one, and one that 1s as applicable to layer three packets as it 1s

to layer two frames The techmque 1s described using the example shown below

typedef struct |

BITSTRING EA_OCTET2,
BITSTRING C,
SAPI_RANGE SAPI,
BITSTRING EA_OCTETS3,
TEI_RANGE TEI,
BITSTRING CONTROL,
N_RANGE N_R,
BITSTRING P,

N_RANGE N_S,
OCTETSTRING INFORMATION,
OCTETSTRING FCS_FIELD,
HL

Using a C typedef mechanism, 1t 1s possible to buwld a structure / (information),

where each of 1t’s fields corresponds to the fields in the TTCN specification The

40

only drawback with this technique 1s, that no explicit reference 1s made to the type
of frame that is being sent or received, 1e whether 1t 1s an INFO, SABME or DISC
frame etc This problem is not a real one though, because when the test system
recogmises a particular protocol frame format it relays the frame type sent or
recewved to the console, which may be subsequently logged to a file for later

analysis

4 4 Translation of TTCN Constramts

The purpose of the constraints part 1s to precisely define the communication
message units that were defined in the declarations section A constraint 1s, mn
essence, an wnstance of a PDU or ASP defimition Let us recall the information that
was defined 1n the declarations section Firstly a name, and then the individual fields
within the PDU was specified No value or field length information (1e an
OCTETSTRING may hold any integer number of octets, or a BITSTRING may
hold any integer number of bits), and consequently overall message length
information, was specified The constraints section provides the translator with
much of this information

A constraint 1s declared by a name, parameters (if any) and the contents of each
of the PDU fields Continuing with the information PDU example of the last
section, a typical constraint mught be that shown n figure 4 5 below The first task
of the translator 1s to declare the constraint as an instance of the PDU name
I IN2dcl,
A "dcl” 1s appended to the constraint name to distinguish 1t from the actual
constraint name, which will be translated to a C function It 1s this function that
gets called in the dynamuc behaviour section when a constraint 1s specified Ths
leaves the translator free to make assignments to the individual fields of the PDU

For example

41

IN2dcl EA_OCTET2 = 0,0or IN2dcl C=CR_VALUE(Q),

where both EA_ OCTET?2 and C are members of the C struct IN2dcl

PDU Constraint Declaration

PDU Name I (Information) Constramt name
IN2(PBIT ,BITSTRING,NR ,NS INTEGER)
Field Name Yalue
EA_OCTET2 '0'B
C CR_VALUE()
SAPI 0
EA_OCTET3 '1'B
TEI CURRENT _TEI
CONTROL '0'B
N S NS_
P PBIT
N R NR_
INFORMATION RELEASE
FCS_FIELD FCS_VALUE
Comments

figure 4 5 A sample PDU constraint

To see how the constraint 1s actually built, 1t is necessary to consider a typical
call to the constraint as shown below
L ' IN2(PO,NS,NR)
This 1s a typical call in a test case to send an information frame that 1s constrained
by the constraint IN2, with the parameters PO, NS, and NR, where the parameters
imply that the P bit 1s set to zero and the send and receive sequence values are set to
the current values of N(S) and N(R) respectively The test event 1s a send event
from the tester to the SUT, denoted by the "' symbol, (the test event could
alternatively have been a receive or an imphcit send event) Thus, additional code
must be provided in the constraint to inform the tester of the action that it 1s
required to take Ideally, this action would be a call to a C function

IN2(PO,NS,NR), 1dentical to the already specified constraint This function would

42

first build then and then send the required frame to the SUT Using the example of
figure 4 5 the C function that automatically gets built 1s one with a prototype as

shown below This example 1s 1llustrated 1n full 1n the appendix

Int IN2(PBIT_NS_,NR)
BITSTRING PBIT,
N_RANGE NR_,NS_

{

}

code to build and then send/receive

A frame of data 1s an integer sequence of octets The CCITT standard Q 921
defines an information frame as the structure shown mn figure 4 6 A call m TTCN
to a constraint 1s translated as a command to build a frame into a template simular to
the one below This 1s achieved by a techmique of bit shifting and bitwise ORing of
the individual PDU fields To perform the required shifting, the maximum size of
each of the fields 1s required Where possible this 1s automatically obtatned, but 1n
some cases the user must be asked to provide this information In such cases the
user 1s prompted with the PDU name and the field name, and 1s asked to enter the
maximum size of the field in question The result of this call 1s the construction of

an integer number of contiguous octets, an array of unsigned chars

Octet 1 S A P I C/R | EA
0
Octet2 T E I EA
1
Octet 3 N (S) 0
Octet 4 N (R) P/F
Octet 5 IN|FO|RM|AT|IO]|N
Octet N-2 F C S_ F I E L D
Octet N-1
Octet N

Figure 4 6 Q921 spec For ISDN Layer 2 info frame

43

The final part of each constraint function 1s to perform the dynamic testing
aspect Depending on the type of test event, the frame will be sent across the ISDN
link (a send event), or will be compared to the frame at the head of the incoming
point of control and observation (PCO) (a receive event) If a call to the function 1s
successful, 1 € the frame gets successfully built and gets either subsequently sent out
over the link, or 1s identical to the frame at the head of the incoming PCO, then the

function returns a value of one, otherwise a value of zero 1s returned

4 5 Translation of TTCN dynamic behaviour
4 5 1 Lexical Analysis of TTCN dynamic behaviour
4511 Overview

The lexical analysis phase constitutes the first half of the analysis phase of
compiler design It 1s the process, which assembles termunal symbols, from the
unstructured sequence of input characters presented to the input Termunal symbols
may be categonsed into operators or short sequences of special characters,
reserved words or pre-defined sequences of letters, whose meaning does not vary,
user-defined symbols, encompassing user-defined constants, vanables etc which are
subject to specific syntax defimtions, and lastly blank space and comments, designed
to delimut other tokens and improve language readability It 1s usual to 1gnore white
space (blanks, tabs and newlines) during lexical analysis All other tokens are
passed on to the parsing phase using some nternal representation - typically small
integer constants Names, values, and scope information need to be stored in a
special table known as a symbol table, for later semantic analysis A generic
representation such as ID for an identifier, or TIMOP for a timer operation,
together with a reference to a table entry are normally passed on to the next phase

Though possible, 1t 1s unwise to solve lexical and syntactical 1ssues

simultaneously For example the production

44

stmt > 'T'F cond 'T'H'E'N' stmt

could appear as a production n the grammar for a simple if statement A better
solution 1s to pass higher level constructs than individual letters or digits, on to the
syntactical analysis phase, for example a production of the form

stmt -> IF cond THEN stmt

where IF and THEN are passed on as termunals of the language, and not the
individual characters that compose the words By employing this technique, one
eliminates a flood of grammatical conflicts and, prevents unnecessary lexical
mefficiency By separating the lexical task, one can hide within a single module, all
knowledge about the actual representation of the input of real world character sets,
and the time consuming aspects of manipulating them, moreover one can employ
specialised tools such as Lex The lexical analysis stage of the translator 1s
modelled as shown below mn figure 4 7, where the lexical analyser 1s a subroutine
within the syntax analyser The lexical analyser and syntax analyser are in effect

operating as a producer-consumer pair

Read
Char Symbol
N AN
Source Program rd Lexical 7 Syntax
in character
Analyser
V4 Z
Format < Analyser <
Push back Go get
Symbol
char

Figure 4 7 Scanner as a subroutine of syntax analyser

4512 TTCN word recogmtion

When discussing lexical analysis three terms "token", "pattern” and "lexeme" all
have a specific meaming A token 1s simply what we have been hitherto calling a
terminal It 1s the basic umt, recognised by the lexical analyser, that gets

communicated to the parser There 1s a set of strings in the input for which the

45

same token is produced as output. This set of strings is described by a rule called a
pattern associated with the token. A lexeme is the sequence of characters, in the
source program, that is matched by the pattern for a token. Inthe TTCN statement
START TWAIT
the substring START is a lexeme for the token TIMOP and the substring TWATT is a
lexeme for the token ID. Only TIMOP and ID would be required by the parser to
check for syntactical correctness against a production like:
st > TIMOP ID.
In TTCN an identifier is any letter followed by zero or more (*) letters or
digits, or more formally an identifier is a member of the set:
(A-Z] 1[a-z])([A-Z] V2] 1[0-9])".
Regular expressions (REs) like that one above, enable us to specify sets. They are
of practical interest since they can be used to specify the structure/syntax of the
tokens in a computer language. The task of the lexical analysis process is to specify
all of the REs that define the TTCN language, and to augment each of these
expressions with an action that is to be performed when the scanner identifies an
instance of the regular expression in the input. In particular, this action would be
responsible for writing a translated copy of the lexeme to an output C file, and for
returning an appropriate encoding of the lexeme, to the caller of the lexical analyser.
The lexical analysis phase of the TTCN to C translator outputs the bulk of the
translated TTCN code. Input to this stage is a file of TTCN.MP dynamic
behaviour, and output is in the form of C code and tokens. The C code is outputted
to C files that will later be compiled using an ANSI C compiler to generate the
required executables. Tokens are passed on to the second phase of the analysis,
namely, the parsing phase. These tokens ensure that the input TTCN.MP was
composed strictly, of only well formed correctly phrased sentences. These tokens

pass sufficient information onto the parser to establish grammatical sense.

It 1s common at this stage to ignore white space to simplify the translation
process, for example a+b, a +b, a + b, though lexically different are grammatically
the same In other words, however lexically simpler to process the above, more
rules would be required in the parser to adequately check for syntactical
correctness Another task of the lexical analyser 1s to count lines 1n the input for the

purposes of error recovery

4 5.1 3 Lex- A lexical analyser generator

The emphasis now shifts from the specification of, to the recognition of,
tokens The tool employed for this purpose 1s Lex - a lexical analyser generator
[10] A lexacal analyser 1s the classical application for the theory of state automata
Lex when invoked generates a generalised transition diagram called a determnistic
fimte automaton (DFA) whose specification language 1s regular expressions (REs)
Figure 4 8 illustrates the working of a transition diagram for a NUM token n the
TTCN notation, defined by the regular expression
[0-9]+ {NUM}
1€ one or more (+) consecutive digits In a transition diagram, the states are the
numbered nodes and the transitions are the branches labelled with the input

characters causing the transitions

_Dl_gn__> 1 _Othi_> Emt number
Digit
NZ
Other

o

—>

> Emit number

Digit

Figure 4 8 A transition diagram for gathering a TTCN nteger

47

To build a lexical analyser we need a convenient way to describe the finite
state automata corresponding to a lexical specificaion of TTCN, a compiler to
produce approprate tables from this description, and an interpreter to simulate the
finite state automata defined by the tables Lex presents us with such a package
Lex accepts as input, a table of patterns or regular expressions, and produces a table
driven C program, capable of recogmising nput strings satisfying these patterns, as
output Lex partitions the stream 1nto strings (lexemes) matching these expressions
As each string appears as mput to the Lex specification, a corresponding action
code fragment 1s tnggered In effect these C code actions are modifying the nput
to produce output When working in conjunction with a parser the last statement of
the C action code 1s normally return(token), where token 1s a termunal
representation of the data just scanned (lexeme) An example might be
(IA-ZMa-z))(1A-Z)a-z]I[0-9))* { ECHO,

return (ID), }
In this action, the identifier found 1s printed to the output (ECHO), and a token
indicating that an 1dentifier was found i the input is sent to the parser The default
action {,} imphes that the analyser 1s to 1gnore that input

The Lex generated DFA scans for all rules at the same time and in the case of
two rules matching, resolves ambiguity as follows
(1) longest match 1s selected,

(11) hagher up the rule in the 1nput specification, the higher the precedence

By virtue of these rules, TTCN keywords like MOD, AND, START etc are placed
higher up in the specification table than the more general rule for TTCN 1dentifiers
As 15 usually the case, a lexical analyser works i harmony with a parser The
parser generator Yacc (Yet another compiler compiler) expects a lexical analyser

routine named yylex(). In this configuration, see figure 4 9, the lexacal analyser 18

48

partitoning the mnput stream 1nto tokens, and the parser 1s 1mposing structure on

these tokens to check whether correct sentences of the language are appeanng as

mput
Lexical Grammar
Rules Rules
LCX yacc
A 74

Y

Input Yylex yyparse par sed input

Figure 4 9 Lex with Yacc

Several vanables are maintained by Lex, namely yytext, yyleng, yylineno,
yyless, yymore and yywrap Yytext 1s an array that holds the actual string (lexeme)
that matched the regular expression Yyleng holds the length of the lexeme 1e the
element yytext[yyleng-1] 1s the most recent character read Yylineno gets
incremented on seeing a newline character, a feature useful in error detection
Yyless and yymore are used to return already seen characters to the input, and tag
characters yet to be seen to the present yytext, respectively Finally, yywrap 1s the
routine that gets called when the end of a file 1s seen

Lex employs three routines that the programmer 1s free to redefine Input(),
which reads the next character from the input, output(c) which wrtes the character
c to the output, and unput(c) which pushes the character ¢ back onto the nput
stream, to be later reread by some other RE By default, these functions are defined

to marupulate standard input (keyboard) and standard output (console) It was

49

necessary, therefore, to redirect these routines, to read input from and replace input
to a MP file, and send output to an output C file

In general, four types of operations may be observed by the lexical analysis
stage The first operation 1s where mput 1s passed directly to the output without
modification, 1 e the plus (+) operator or a TTCN 1dentifier The second operation
1s where input gets modified, to be both syntactically and semantically equivalent to
the C implementation, 1e the MOD operator of TTCN to the "%" symbol in C
Thirdly, 1s input that gets silently 1gnored because 1t has no significance in C, 1€ the
token notation for the hines and boxes n TTCN Finally there are the detailed
syntactical translations, 1e the high level /PDU operation, that involve detailed C
operations, whereby a line of TTCN may translate into a C routine or possibly
multiple C routines In these translations, information like execution specific terms,
port numbers etc 1s not available from the TTCN specification and must be derived
elsewhere
Miscellaneous lexical translations

Other translations involve constructs, for example the GOTO and Boolean
constructs to their C equivalents Indentation 1s mapped to model the time varying
concept of dynamic testing All output 1s appropriately indented and the associated
verdicts assigned Though not explicitly stated, at each alternative to the stated
action 1s a default action, denoted in the header, additional code must be provided
to implement this alternative

A lme of TTCN GR maps into several lines n TTCN MP, where any number
of expressions or statements may appear on a line in the behaviour description The
semantic 1ssue of what 1s translated first often depends on the context of the
behaviour line It 15 necessary, therefore, to introduce a hierarchy of precedence, to
cater for the required ordering in the target language This problem 1s further

agitated by the optional positions for the label column in the dynamic behaviour

50

proformas The order of precedence 1s as follows A label 1s printed immedzately
when seen, 1t 1s a definite event A send event 1s performed immediately, provided
no assignment has to be performed or any Boolean qualifiers satisfied A receive
event 1s done immediately provided no Boolean expressions have to be satisfied
Otherwise, the TTCN 1s mapped, statement by statement, to its C equivalent The
techmque chosen to implement this 1s a buffering one, whereby flags are nserted
prior to each entry to indicate the type of TTCN statement that s currently being
processed This buffer 1s then accessed based on the intervening flags

As 15 often the case, the lexical analyser must scan many characters ahead to
ensure that the correct context 1s being seen This processing 1s expensive and 1s
avoided where possible All comments in TTCN are picked up and printed at the
earhiest opportunity in the output This option was favoured over one that ignores
comments, as the test suite translator may wish to modify the translated C code n
preference to the ongmnal TTCN The semantic actions 1n the lexical analyser also
updates the generated code with a semicolon if the full extent of the TTCN
specification has been seen and one 1s required

Lex, though not nearly as popular as its parser generator counterpart Yacc, mn
its assistance to compiler design, 1s nonetheless suited to the development of a
TTCN translator It 1s a powerful tool n its own right, that 1s based on the C
programmuing language, which 1s readily available on UNIX systems Lex produces
relatively fast recognizers The time taken by Lex to partitton an nput stream 1s
proportional to the size of the input and 1s independent of the number of rules or
regular expressions Processing time 1s, unfortunately a function, of the amount of
rescanning of the input that must be performed, 1 e if a pattern of characters 1s seen,
but later found to be an incorrect span, those unwanted characters must be returned
to the mput to be later scanned for some other rule As the subset of TTCN

extends so too can the existing mput specification with a minimum of programnung

51

overhead Moreover, should either the words or the meanings in TTCN change, the
regular expressions or actions alone may be changed, as Lex separates these two
aspects of the lexical analysis process, conceptually at least, into two modules Lex
1s, however, unfriendly to use with its often curt and cryptic error messages
Commentng of rules leaves a lot to be deswred with Lex having nc comment
convention Its main disadvantageous aspect 1s the size of recogmzers that 1t
produces which are considerably larger than therr C equivalents Lex 1s,

nonetheless, 1deal as a development tool

4.5.2 Parsing of TTCN dynamic behaviour
4.5.2 1 Overview

Two aspects constitute a language defimtion namely, syntax and semantics
Syntax deals with the mechanical aspects of a language, 1e whether a sequence of
words or letters constitutes a sentence of the language What the sentence means -
and often whether 1t 1s legiimate on that account 1s determined by the semantics of
the language Formal notations exist for descnbing both parts of the language
defimtion In TTCN only the syntax 1s defined 1n a formal manner A context free
grammar called Backus Naur Form 1s used to descrnibe the syntax, and a
combination of pseudo code and natural language descriptions 1s used to describe

the semantics, of TTCN

4.5.2 2 TTCN language defimtion

The first step 1n the building of a translator 1s the specification of the grammar
of the source language The grammar defines the language by describing what
sentences may be formed Rather than describing a language informally, which

tends to be verbose and open to musinterpretation, we use a precise definition

52

mecharism called context free grammars (CFGs) m particular, the Backus Naur
Form (BNF)
A CFG 1s simply a set of productions of the general form
A > BCD Z
A production represents the rule that any occurrence of the left hand side (LHS)
may be replaced by the symbols of the right hand side (RHS) More specifically, a
production of the form
<program> -> begmn <stmt list>end
implies that a program be a statement list delimited by a begin and an end

Two types of symbols may appear mn a CFG termunals and non-termunals
Non-terminals may appear on both the LHS and the RHS of productions, whereas
termunals may only appear on the RHS of productions During syntax checking, all
terminals must be replaced or rewnitten by a production having the appropriate non-
terminal on 1t's LHS When testing for proper syntax, we begin with an imtal
symbol called a start symbol which 1s a single non-termmal We then apply the
productions, replacing non-terrmunal symbols with termunals until only termunal
symbols remain Any sequence of termunals that can be produced by such a
sequence of actions 1s considered a valid sentence of the language Structure, as
well as syntax, can be defined using CFGs, for example associativity and operator
precedence rules

The semantics of a language are concerned with the meaning of a language
When static semantics are checked by semantic routines, semantic errors 1 a
syntactically valid program may be discovered The majority of such errors are
trapped by the actions in the lexical analyser, and not in the semantic actions of the
parser The reasons for this are that on the one hand, no information such as name,
type or value 1s directly communicated to the syntax analyser, and on the other, the

translator 1s merely acting as a C compiler pre-processor Embedded semantics of

53

the language, such as what an integer in TTCN means are handled using C typedefs
prior to the language recognition process These semantics are discussed in chapter
five

It 1s desirable to separate syntactical from semantical analysis Normally, when
the syntax analyser recognises a source language construct, 1t calls a semantic
routine which checks the construct for semantic correctness, for example, checking
that both sides of an assignment operation are compatible QOther forms of semantic
analysis include the handling of the indentation aspects of the dynamic testing

behaviour

452 3 Yacc - A parser generator

Once the grammar for the language of TTCN has been specified, attention is
turned to the task of language recognition So far, in place are the lexical analyser
or word recognizer, a tool to communicate tokens of the language to the syntax
analyser, a TTCN grammar, the formal description of what sentences may be legally
formed, and a symbol table, the place where all information, other than that passed
to the syntax analyser 1s stored What remains to be implemented 1s a system to pull
together and drive these individual modules This device 1s a parser - a device for
language recogmition Such a tool ts packaged under the name Yacc [11]

Yacc 1s a tool that generates a parser from a grammatical description of a
language Yacc provides us with a general tool to formally describe the input to a
computer program We specify the structure of the input, together with any actions
to be mvoked on recognition of this input Yacc then converts this specification
mnto a subroutine that handles the input process The input subroutine produced by
Yacc, calls a programmer supplied lexical routine called yylex() to return the next

basic nput item It 1s normal for the lexical analyser to return high level constructs

54

such as identifiers and numbers, rather than individual characters One may assume
that all of the urrelevant white space 1s removed by this point

What follows 1s a description of the stages of development of a parser built
using Yacc Fustly, a precise grammar 1s written, this specifies the syntax of the
language Yacc 1s used at this stage to highlight any conflicts in the grammar
Secondly, each rule or production 1s augmented with an action or a statement of
what 1s to be done when an instance of that rule 1s found 1n the input The 'what to
do’ part 1s written using C code, with conventions for connecting the C code to the
grammar This defines the semantics of the language Since a translator, and not a
compiler, 1s being built, an assurance that the sequence of symbols seen make
grammatical sense, some error detection and recovery, and the generated C code, 1s
all of the information that 1s required from the parser

A Yacc source program has three parts
declarations
%%
transiation rules
Po%
supporting C-routines
The declarations part may be used to declare two types of objects Firsdy there are
the ordinary C declarations or statements which are delimited by "%{" and "%}"
symbols These declarations are copied verbatim to the file y tab c, the program
generated as a result of a call to Yacc, see figure 4 10 Secondly, there are the
token declarations that will 1n conjunction with the non-terminal symbols comprise
the translation rules of part two The precedence and associativity information
associated wath these tokens may also be specified here The translation rules part
contains the grammar of the language to be translated, which 1s a shightly modified

version of the TTCN BNF that 1s specified 1n annex A of the international standard

55

Each rule consists of a production and its associated action A simple example 1s
the addition of a semicolon to the end of an assignment statement in TTCN

assmt ID assn expr {fprintf(yyout,”" \n"),}

Semantic actions are concerned here merely with providing the next stage, namely
the C compiler, with correctly syntaxed C code The supporning C routines part
defines the lexical analyser yylex(), required by Yacc to get the next token from the
1nput stream, a yyerror() routine that tells the translator what to do when an error in
the nput 1s found, and any other routines required to perform the parsing of the

language called from within the semantic actions

Yacc Yacc ytabc

Specification Compiler

A4

Figure 4 10 Generating the y tab c file from a Yacc specification

As already stated, the programmer must provide a lexical analyser to both read
the mnput stream and communicate tokens (with values if required) to the parser
These tokens are small integer constants that uniquely define the tokens of the
source language The lexical analyser 1s packaged within a single routine yylex(),
that when called returns the next token of the language These tokens are then
orgamsed according to user specified rules, called grammar rules When a rule has
been successfully recognised, an action (the default action 1s to do nothing) 1s
invoked These actions may return values, set flags, or make use of information
gathered from the rules For the purpose of the TTCN translator, no values are

required by the parser, as all operations, assignments, function calls etc are merely

56

translated from TTCN to their C equivalent to be subsequently compiled on a C

compiler This configuration 1s shown below 1n figure 4 11

TTCN Dynamic TTCN to C C C Executable
Compiler Dynamic
Behaviour Translator Code P
Behaviour

Figure 4 11 Generating an ETS from an ATS

The lexical analyser generator Lex was used to generate the required function
yylex() from a table of regular expressions The techmque used to interconnect the
tools Lex and Yacc was outhmned m figure 49 Yacc was designed to work
efficiently with a lexical analyser produced using Lex, thus a smooth communication
of tokens from the lexical analyser to the parser 1s possible Using a declaration of
the form
%token TOKENNAME
we can communicate TOKENNAME, a Lex termznal, to the parser without any further
declarations All that remains to be declared are the non-terminals

Without becomung too technical, the compiler generator operates as follows
Yacc turns the specification into a C program, which parses the input according to
the specificanon given The parser consists of a fimte state machine (FSM) and a
stack The parser can read the current token and the lookahead or next token The
current state 1s always at the top of the stack Imtally the machine 1s 1n state 0 and
no lookahead token 1s yet available Dunng parsing only five operations are
available to the parser, namely shyft, reduce, goto, error and accept A shift
operation means that the next token 1s acceptable in the current state The new
state 1s then pushed onto the stack and parsing continues with that state as the

present state A reduce operation means that the number of terminals and non-

57

termnals on the nght-hand side of a rule are popped off the top of the stack,1¢e a
rule has been fully recognised A goto operation sumply imphes that in the current
state a new state 1s pushed onto the top of the stack An error occurs when the
next termunal or lookahead symbol 1s unacceptable 1n the present state Finally, an
accept happens when the parsing has completed A move mn Yacc 1s done as
follows based on the current state, if a lookahead symbol 1s necessary to decide
upon the next course of action, yylex() 1s called upon to provide it, then using the
current state, and the lookahead token (if any), the parser decides upon the next
action, and performs 1t
Miscellaneous grammatical translations

What follows 1s a brief discussion of some of the other features implemented as
part of the translator There are mnstances that require the parser to ensure that the
correct span of a sequence of tokens have been seen before output can be made C
requires a semicolon to indicate the full context of a sentence The parser outputs
this when the full extent of an assignment or expression has been seen The parser
also remains vital in ensuning that all C expressions and statements are correctly
tabbed and begin on new lines Yacc has a facility to state the precedence of the
various operators This resolves any conflicts that may arise when different
operators appear in the same expression A declare before use rule 1s employed in
TTCN, an exception being 1n the defimtion of parameters Parameters are defined
at the point in the TTCN ATS that they are specified and not in the declarations
section Scope 1ssues are handled by the inclusion of test case parameters, test case
vanable etc 1n the headers of each test case The value stack available to Yacc 1s
not used, all vanables are handled by a value field in the symbol table All
defimtions, declarations and assignments are also wntten to the output, as the
symbol table dies after the parsing phase has fimshed It remains the task of the C

compiler to maintain consistency thereafter The grammar 1s concerned with

58

checking that sentences are correctly formed, and once this 1s ensured, the actions

are concerned with producing robust and readable C code Left recursive

grammars, that have been proven to reduce the size of the recognizer, are

implemented at all tmes

As well as being a C based unlity and one which 1s widely available, Yacc

supports the following features

The parsers that 1t generates are small efficient and easy to maintain, thus as the
TTCN subset grows so too can the grammar It supports the addition of rules
with a mummum of programmung effort

Yacc's semantic operations are left to the programmer, thus, conceptually at
least, the semantics analyser 1s 1solated from the syntax analyser

Yacc supports a precise and efficient mechamism for handling ambiguities and
conflicts It has been found that parsers with ambiguities, incorporating
disambiguating rules, produce faster and more streamlined recognizers Yacc
generates a parser even 1n the event of conflicts The current translator reports
eight such conflicts Yacc has a command line option that generates a file
y output, this file may be used to cheek a grammar to ensure that conflicts are
being resolved as expected

Yacc checks the grammar when building 1t, and reports any problems which may
render the recognizer unsuitable for language recogmitton The type of errors
that are reported are forgetting to define tokens, and incorporating non-
terminals and rules into the grammar that are waccessible to the first start

symbol

These features make Yacc an ideal unlity for the development of a TTCN to C

translator

59

5. Implementation of an Automatic TTCN to C Translator
5 1 Introduction

Thus chapter 1s concerned with the frameworks that must be put in place, and
the additional software needed, to implement a working automatic TTCN to C
translator Much of this chapter discusses the additional dervable and non-
derivable code needed to drive the translation process

Before establishing the TTCN to C language mapping, the building blocks of
TTCN, namely the data types and structures must be defined as thewr C equivalents
Also, the structures that are affected by the test system 1¢ PDUs, timers etc must
be implemented as C equivalents These preliminary translations set the context for
the mappings of chapter four To perform and monitor the dynamic testing process,
both a verdict processing and a conformance logging mechanism must also be put in
place A discussion of the techniques used 1s given All interpretations are based on
the natural language descriptions or pseudo code definitions given 1n annex B of the
international standard It will be seen that the translation technique chosen to
implement many of these translations 1s influenced by the test system chosen to
execute the test suite, whereas the mappings of chapter four were performed
independently of any test system

Moving away temporanly from the specific task of developing a TTCN to C
translator, there rematns two umportant aspects of general compiler design, hitherto
merely referenced, that must be implemented Farstly, a symbol table manager must
be built, and secondly and what 1s generally regarded as the most important aspects
of compiler design are, the mechanisms used to detect language specification errors,
and the steps subsequently taken to implement error recovery The various
techniques and routines used to implement these mechamisms are then discussed in

detail

60

5 2 Miscellaneous TTCN to C semantic translations
5.2.1 TTCN Data Types

Probably the most fundamental aspect of any language 1s the data types
Thus section concerns the translation of the existing data types n TTCN to therr C
equivalents The basic data types are INTEGER, BITSTRING, HEXSTRING,
OCTETSTRING and the set of character stnngs The above types were mapped
into, integer in the case of INTEGER and, either one or a set of contiguous
unsigned chars 1n the case of the others As the mapping indicates, an INTEGER in
TTCN 1s equivalent to an integer in C, the other data types require further
comment A BITSTRING in TTCN 1s an ordered sequence of one or more bits 1 e
'10'B 1s a TTCN representation of the number 2 As such, any BITSTRING of up to
eight bits (one byte) may be mapped into the C language unsigned char A
HEXSTRING 15 any string of hex digits 1e '100'H (decimal 256) Each hex digit
may be stored n 4 bits or a half byte, thus, two hex digits may also be stored 1n an
unsigned char For odd numbers of hex digits, the most sigmificant digit 1s stored n
the lower half byte, and the upper half byte of the octet is reset to zero
OCTETSTRINGs in TTCN are a subset of the HEXSTRING data type, with only
even numbers of hex digits supported 1e '0100'O (decimal 256) These are stored
using the same format OCTETSTRINGs and HEXSTRINGs provide the basic
data structure for protocol data umts (PDUs)

TTCN supports the defimtion and declaration of varnables without any
imtalisation This invanably causes problems during translation The solution has
been to minahse all pre-defined INTEGER or numeric string types to zero, and all

character strings to null strings

61

5 2 2 Timer Management

The actual specifics of the system timer will be discussed in more detail in
chapter six when we deal with the DCT-S test system This section 1s concerned
with the set of operations required to model the use of timers in the dynamuc
behaviour section There are three timer operations namely START, CANCEL and
READ TIMER

The START timer operation 1s used to indicate that a timer 1s to begin ticking
This operation 1s modelled as an integer valued function with a prototype
int start_timer(int timend)
The TTCN code that imtiates a tmer TWAIT 1s simply
START TWAIT
which implies that a amer 1s to run until TWAIT seconds has expired This TTCN

operation is translated to

if (START_TIMER(TWAIT))

{
Code to start a timer ticking for TWAIT centiseconds

}
If the operation 1s successful a value of one, otherwise a value of zero, 1s returned
The CANCEL timer operation 1s used to indicate that a tmer 1s to stop ticking
This operation 1s modetled as an 1nteger valued function with a prototype
mnt cancel_timer(int tmerid)
The TTCN code that cancels a timer TWAIT 1s simply
CANCEL TWAIT
which implies that a tmer, whether running or not, 1s to become mnactive The
internattional standard states that a log of all timers that have expired, 1s to be

maintained m a timeout st A CANCEL tumer operation 1s required to remove

62

from the umeout list any timeout entry for that particular timer, if one exists This
TTCN operation 1s translated to
if (CANCEL_TIMER(TWAIT))

{

Code to cancel a timer, and 1f 1t has expred,
code to remove 1ts name from the timeout hst

}
If the operation 1s successful a value of one, otherwise a value of zero, 1s returned

The READ TIMER event returns the amount of time expired since a timer
began ticking In the event of an nactive timer being read, a value of zero s
returned

One final timer operation 1s the T/MEQUT event, the purpose of which 1s to
interrogate the status of a tmer This event 1s only satisfied by the expiration of a
previously active timer The mechanics of the C function that checks for this
condition will be dealt with 1n detail in chapter six, as they deal with checking the
incoming pont of control and observation (PCO) to ensure that the expected frame

did not appear at the input

52 3 Verdict processing

In accordance with the international standard ISO9646 part (i), the processing
of TTCN verdicts 1s a twofold one Furstly, there are the prehiminary verdicts, which
are results recorded before the end of a test case, indicating whether the associated
part of a test case or step passed, failed or was inconclusive They are distinguished
from final verdicts by their surrounding parentheses In the event of no final verdict
being assigned during test case execution, the preliminary verdict becomes the final
verdict Secondly, there are the final verdicts, whose values may also be pass, fail,
or inconclusive In certain instances, a test case error 1s reported when no verdict

gets assigned, or a prelimunary or final pass verdict follows a previously assigned

63

prehmunary fail verdict The standard requires that whenever an entry n a
behaviour tree occurs, for which there 1s a corresponding entry in the verdict
column of an abstract test case, then that verdict column information 1s intended to
be recorded n the conformance log mn such a way that 1t 1s associated with the
record of that entry 1n the behaviour tree A strict set of rules govern the transitions
that a test case verdict may take during test case execution

The C implementation for verdict assignments 1s two C functions, namely
prelim_verdict() and final_verdict() These routines are called upon when a
verdict 1s specified in the verdicts column Both functions are responsible for

automatically updating the conformance log during test case execution

52 4 Appending default dynamic behaviour

Default dynamuc behaviour 1s the events and other TTCN statements which
may occur at any level 1n the associated tree A default behaviour specification 1s
optionally defined for each test case or test step in the TTCN ATS The Default
index table contains a complete List of all defaults in the ATS and the location of
each default behaviour table within the test suite herarchy The default dynamic
behaviour table specifies the actual sequence of test events that comprise the default
behaviour Default behaviour may optionally have parameters The international
standard requires that default dynamic behaviour be appended as the last alternative
to a sequence of responses as an OTHERWISE case Care must be taken to ensure
that the default behaviour 1s called as the last alternative Thus feature, implemented
as part of the working TTCN subset, may be categorised as derivable code, as the

behaviour, though not explicitly stated, 1s implied 1n the TTCN specification

52 5 Logging conformance test events
The International standard requires that a conformance log be automatically
maintained for the duration of a conformance testing session specified using TTCN
The information stored 1n the conformance log should include
« the sequence number of the event line (if any),
» the label associated with the event line (if any),
» the assignment(s) made (if any),
» the timer operation(s) made (if any),
 the verdict or preliminary result associated with the event line (if any),
e atime stamp

The technique chosen to implement this requirement 1s a call to a C routine
This routine make use of the DCT-S test system C interface to open a log file and
update 1t with the information outhined above The details of these interface
routines will be discussed 1n chapter six When executing a test suite on the DCT-S
test system, the techmque used to monitor the testing process 1s a scrolling console

This facihity 1s automatically enabled during a translated testing session

5.3 Symbol table management

A symbol table 1s the central place where the translator keeps all of the
information associated with user-defined names The information stored in the
symbol table includes the type, for usage venfication, the user-defined name, for
the purposes of searching, and the value, as no value stack 1s maintained for tokens
passed on from the lexical analyser

All symbol table elements are dynamucally linked together using linked lists
Access to the symbol table 1s via two routines lookup() and install) The routine
lookup() scans the symbol table in search of an entry of a particular name If

successful, a pointer to the table entry is returned, thus providing access to the type,

65

value etc The 1nstall() routine inserts a symbol table entry at the head of the lst
This new entry then points to the previous head of the list A linear search 1s
presently in operation, as the maximum number of entnies would normally be of the
order of tens and not hundreds An alternative searching techmque would be the
use of hashing The orgamsation of these files facilitates such a modification,
should the need arise

To successfully implement these two routines an auxiliary function emalloc() 1s
mmplemented Emalloc() makes use of the C library function malloc(), that checks
whether there 1s sufficient free memory available to install one further new entry If
successful the install operation 1s performed, otherwise an error message 1s
prompted at the console Imtally the symbol table 1s set to zero implying that it 1s
empty The symbol table 1s bult before the parsing of the declarations begins This
table 1s then dynarmically maintained during the remainder of the translation, and
access to 1t 1s through either the 1nstall() or lookup() routines

Two symbol tables, namely symbol and pdu, as opposed to one general symbol
table, exist The symbol table holds all of the test case and step identifiers, test suite
parameters, test suite constants, test sutte and case variables and umers The pdu
symbol table holds all of the PDUs constrained mn section two of the ATS The
need for the second symbol table 1s prompted by the variance in content between
the tables 1e an extra field 1s needed for the pdu table in order to determine
uniquely the correct field within a particular PDU, as 1denucal field names are often
common to many PDUs To search for a particular field within the pdu table and
subsequently within a PDU entry, the search must be carried out on the constraint
and the PDU field name

Normally local vanables would cease to exist once the sub-program m which
they were defined fimished execution, and the space occupied by them freed In the

case of TTCN, however, the same test case variables are available to each test case

66

The vanables are loaded once into the symbol table during the parsing of the
declarations section Only the defintion and imtialisation of these vanables at the
beginning of each test case 1s required to make these variables available to each test
step or case TTCN employs a declare before use rule, which facilitates simple
validity checking There are, however, exceptions to this rule Formal parameters
are encountered for the first tme in the dynamic behaviour section 1 e they are not
defined in the declarations section As such, the parameters life and scope are
restricted to the test case in which they were defined In a TTCN GOTO label
construct, there 1s no restriction on the positioning of the label relative to the
GOTO label statement In other words, a GOTO may be made to a point earlier or
later on 1n the file If a jump 1s made to a point that does not exist, then the C
compiler will pick this up when 1t 1s generating the object file Errors in the case of
declare before use violations, except in the above two exceptions, are picked up by

the semantic actions of the lexical analyser

5 4 Error Handhng

Error recovery 1s generally deemed to be one of the most important and
difficult sections of any translator or compiler to implement Any good translator
should assist the programmer 1n identifying and locating errors Errors may be
lexical, syntactical, semantical or logical Any error handler 1n a translator should at
a mmumum report the presence of each error clearly and accurately, recover from
each error quickly enough to be able to detect subsequent errors, and should not
sigmificantly slow down the processing of correct programs In the event of an
error, the error handler should report the place in the source where the error was
detected, because the likelithood 1s that the error occurred within the previous few

tokens read by the scanner

67

54 1 Error detection

All errors are reported as soon as they are detected For example, lexical
errors are reported by the lexical analyser and not by any subsequent stage A
translator that simply halts on finding an error 1s not as useful as 1t could be This
sort of interactive detection and correction techmque, which was useful during
translator development, was later replaced with a more robust error handler

The lexical analysis phase detects instances of where a character or sequence of
characters do not form any token of the language Syntax and semantic errors do,
however, comprse the bulk of the errors Errors where the token stream violates
the structure rules (syntax) of the language are determined at the syntax analysis
phase Finally during the semantic analysis phase the translator detects constructs
that, while having the correct syntactic structure have no meaning with regard to the
operation involved An example mught be the attempted addition of an identifier to
a test case name The first module in the error handler 1s an error detection
mechanism, which comes 1n three phases, the grammatical rules, and the semantic
actions of the lexical analyser and the parser

When building a parser using Yacc, a routine yyerror() 1s required, as 1t 1s this
routine that gets called when the parser encounters a syntax error This routine can
be as simple as one that prints "syntax error” and dies, or as complex as one that
makes an attempt to fix the error The yyerror() employed 1n this translator 1s one
which traps the location of the error and prints to a file the file name, number of the
error, line number, and the offending token For example
error 1, file "test mp" syntax error near '+' at line 1
would be the error message relayed for the erroneous 1nput
TMP =TMP ++ 1
Care 1s taken to ensure that the error location returned 1s not a blank space, tab or

newline character

68

Another class of error detection 1s semantic error detection Semantic
restrictons deal mainly with user defined objects It 1s possible for a sentence to be
syntactically correct, but still contain semantic errors Typical errors that are
trapped by this section include 'use before declare' rules, unrecognised labels, and
scope rule conflicts Common to all of these errors 1s the need for a symbol table
manager These errors are picked up 1n the C code actions following the regular
expressions 1n the lexical analyser The actions include code to lookup the relevant
symbol table and extract the relevant fields This 1s necessary since no information

about tokens, for example name or value 1s passed on to the parser

54 2 Error recovery

The error recovery mechanism, employed 1n the translator, makes use of Yacc's
built 1n features Yacc employs a simple yet reasonable means of error recovery
Yacc's solution 1s to build robust grammars using error symbols 1n the grammar
formulations These error symbols are incorporated into rules at points where one
anticipates errors to occur An alternative solution mught be to add illegal
formulations to the grammar The problem with this 1s, that 1t 1s almost impossible
to predict every conceivable incorrect input sequence The technique used thus
results 1n considerably shorter grammars

The error symbol 1s a special token available to the parser, but unlike all the
other tokens, 1s not returned from the lexical analyser Like all the other tokens,
however, this error token can be used 1n the grammar rules, thus enabling the
anticipation of 1nput errors, at key locations In effect, error symbols are placed at
points where errors are hkely to occur, and at points where error recovery may take
place In the event of an error, Yacc will attempt to use this production by

recogmsing the error as grammatically correct, and thus recover

69

When the parser executes an error operation in its transition matrix, after
prompting the user of 1ts presence, it remains n this error state untl three tokens
have been read and successfully parsed This process enables full error recovery to
take place, provided no errors are present during the parsing of three subsequent
tokens To avoid this three token lumut, Yacc provides the user with a yyerrok
action This 1s a butlt in function that leads the parser to believe that 1t has fully
recovered from the error It works by setting a flag in the parser that permuts 1t to
get back 1nto a sensible parsing state The parser 1s now ready to detect subsequent
errors immediately, thus overnding the three token limut

Schriener and Friedman 1 therr book [12] suggest positions 1n the
formulations, for both the error symbols and the yyerrok actions, to achieve
optimum error recovery Based on their experience, error symbols should be placed
as close as possible to the start of the grammar This provides a point to recover
from, that 1s low down 1n the stack, a point where the error can be accepted Error
symbols should be placed as close as possible to each termunal symbol in the
productions, thus skipping a mummum amount of subsequent code Yyerrok
symbols should be placed following termunal symbols that are followed by a
reasonably significant termunal symbol Their last recommendation 1s that no further
confhicts should be introduced as a result of these inclusions These suggestions

have been implemented and full error recovery in the translator is available

70

Y

6. Execution of the executable test suite
6 1 Introduction

Chapter four was concerned with the mapping of TTCN to the C language
The mappings chosen and the techniques used were outlined Chapter five detailed
the implementation requirements of a real automatic TTCN to C translator,
including the semantic actions requured to set the mappings of chapter four into
context What was omtted from these two chapters was a detailed description of
how and where the executable code would be configured on a real test system The
code that remains to be discussed 1s test system dependent and, moreover, 1s code
that forms part of the DCT-S (Digital Communications Tester - Sparc version) test
system software

This chapter will begin with an overview of the test system chosen to
implement these remaining tasks, and the test language used to control 1t The test
system C interface will be discussed, and those parts that are used to implement the
dynamuc testing aspect of the TTCN to C translator, will be detailed The final part
of the chapter 1s concerned with the pulling together of the individual modules that

comprise the translator

6 2 DCT-S - An Overview

The Digital Communications (DCT-S) tester 1s a special purpose digital
telephony tester, which 1s programmed using its own proprietary test language
DCPL (Digital Communications Programming Language), and runs under the
UNIX operating system It 1s designed to be useful in both the development and
test cycles of data communications protocols The DCT-S has available to 1t, all of
the resources of a powerful general purpose computer, and fully automatic state
machines for the lower layers of the OSI reference model, thus when testing at the

higher layers, the DCT-S automatically looks after all operations at the lower layers

71

During protocol conformance testing, the DCT-S 1s configured to termunate the
target equipment on one or more ports A comprehensive suite of test scripts 1s
wrntten i DCPL to determine if an IUT 1s a faithful implementation of a protocol
The DCT-S acts as the opposing network or termunal termunation, generates
signalling traffic according to the protocol specifications and checks for the correct
responses from the target equipment Any breaches of the specificatons may be
noted 1n a result or log file for later analysis Prior to a testing session, a suite of
anti-test scripts may be written, so that the main test scripts may be tested on a back
to back basis, by directly connecting two or more ports of the DCT-S Once a
consistent set of scripts and anti scripts have been developed, the bench mark has
been established, and real target test equipment may be tested

DCT-S refers to the complete test system which includes both standard and
custom hardware and software The standard hardware and software consists of a
Sparc workstation running the UNIX operating system The custom hardware 1s a
a special card called a timeslot controller (TSC) which 1s inserted into the back
plane of the workstation and a physical interface controller

The TSC 1s a special purpose computer, designed to control lhigh speed senal
data, having 1its own mucro-processor, memory, high speed 1/O controllers and
circuitry for communication with the Sparc workstation Each TSC card can
control and monitor two active data ports and 1s controlled by the main computer
The physical interfaces take encoded data off a telephone line and extract the
control streams to be processed by the TSCs The physical interface controller may
be a primary rate interface (PRI) or a basic rate interface (BRI) A typical hardware

configuration 1s shown below 1n figure 6 1

72

4 N\

Sparc Workstation
SBUS
tty a
senal TSC e
\port abc Y,
logical
device 1 Debug port
SN Y]

ntrl

PRI INTERFACE
Codec A B

@ — U

30 channel/E1/2 04 Mbit's

Figure 6 1 Typical hardware configuration of the DCT-S

Although software may be downloaded to the TSC card, the bulk of the
custom software which makes up the DCT-S run-time software, is run on the mamn
processor under control of UNIX When a session on the DCT-S 1s invoked, a
process called Ddrwver 1s started This process 1s the system controller and 1s used
to start up the other DCT-S processes, monitor their well-being, and properly direct
keyboard input There are four other processes invoked, namely, a display handler,
an encoder, dtestlo, and dmacro The display handler 1s the highest level of Ddriver
with which the user interacts It interprets input, recerves and edits commands
which are passed on to Ddriver, and receives output from the decoder a sub-
module of the display handler, that takes encoded data to be displayed, converts

layer 2 and layer 3 frames back into protocol dependent units, and places them on

73

the appropnate part of the screen The encoder performs the opposite task, 1t takes
protocol dependent units and converts them to free frames The drestlo module 1s
the overall controlling process for a DCT-S test session Finally, the dmacro

module 1s a general purpose macro pre-processor, custom designed for the DCT-S

system
DCPL
Source
TTCNto C DCPL to C
Translator Translator
\(; C Code {
I Dct
Libraries l
Compulers
and
Linkers
Sparc Executable 68302 (TSC) executable

Figure 6 2 Software configuration of the DCT-S
incorporating the TTCN to C translator

Input to the DCT-S system may be from a terminal (interactive) or from a disk
file (compiled), with facilities for switching between modes Output from the DCT-
S may be from a termuinal (interactive), to a disk file, or a combination of both The

mput syntax may be specified in the DCPL language, or a general purpose language,

74

or an arbitrary muxture of the two Scripts may be executed interpretively via the
include command, or from compiled files via a read command The output syntax
may be human onented, using the on-line display, or machine oniented, using disk
files, which are suitable for more complex tests and post test performance analysis
UNIX's powerful text mamipulation tools may be employed to construct customised
log files from these output files The DCT-S has faciities to imut or turn off
completely the display, thus, enabling maximum throughput of incoming data during
high traffic situations

The software configuration of the DCT-S allows test suite scripts to be written
n either the proprietary test language DCPL or the C programming language The
DCT-S also supports a large pool of libraries and utilities, one of which 1s the DCT-
S ddc compiler, which translates DCPL to C, and then compiles the generated C
code 1nto an executable format The compiler may, as a result, be used as a
standard C compiler as 1t expects either C or DCPL code as input The code
produced as output from the compiler may optionally be Sparc or TSC (68302)
executable The software configuraton of the TTCN to C translator within the

DCT-S 1s illustrated in figure 6 2

621 DCT-S - How it works

The version of the software for the DCT-S used i this TTCN to C translator
tests the functions found on the D channel of the CCITT I and Q series ISDN
standards (I1420) The 1420 D channel 1s a 16 Kbut/s full duplex link, primarily
running a lap level protocol named LAPD The emphasis 1s on the those portions of
the protocol which map 1nto Ddriver statements and constructs The 1420 data
stream 1S encoded n the international format known as HDLC (hugh level data link
control), 1€ sequences of eight bit characters (octets) called frames This format

has conventions for flagging frames, and flag sequence checking known as frame

75

check sequences (FCSs) or cyclic redundancy checks (CRCs) The DCT-S system
automatically performs both of these tasks

The following command invokes a session on the DCT-S system for testing the
LAPD protocol using two active ports
ddriver -misdn -bla,1b -mtty -d1
where the command line options are from left to night -m(the protocol to be tested)
-b(the board number followed by the data port 1e on board 1, port 1 1s linked to
data port a etc) -m(the tty protocol used for diagnostic testing on a UNIX device
driver) -d(the device number) When mitialisation 1s complete, code has been sent
to the TSC card informung 1t of the protocol to be run The ports are now ready to
both send and receive data To begmn a testing session, the DCT-S 1s required to
know which side of the circuit to emulate 1e a digital termunal or telephone,
specified using a fe command, or a telephone network, specified using an nr
command When the system comes up ready for testing 1t 1s expecting testing at
layer two, should layer three testing be required, the command /ayer 3 must be
entered The last specificanon to be made 1s what terminal endpoint identifiers
(TElIs) are to be used, and on what service access point identifiers (SAPIs) they are
to be on To send a frame out on a particular TEI, the Ddriver system variable &te1
1s set to that value All of this information 1s not specified explicitly in a TTCN

ATS, so a routine that imtialises the DCT-S to the required values must be invoked

6 2 2 DCPL - The proprietary test language of ISDN technologies

DCPL 1s a human onented test language that facilitates rapid proto-typing
When using 1t as the input syntax to the test system, 1t 1s compiled using the DCT-S
ddc compiler This compiler takes the DCPL code and translates 1t to C code,
which 1s subsequently compiled on a C compiler to generate executable code The

syntax for DCPL 1s specified using a modified version of the Backus Naur Form

76

Like TTCN, DCPL has a formally defined syntax and informally defined semantics
DCPL has many distinct sub-languages, whereby, the mput format 1s a function of
the protocol, OSI layer etc

At the lowest level of DCPL are the rules for forming keywords, identifiers and
numbers Next up are the control constructs that are used to control the sequencing
of test events What follows 1s a brief discussion of some of the features of DCPL
To control the input / output tasks, are the commands read and write To comment
files and direct text to the console, are commands like comment, prompt and /' The
bulk of the language 1s control commands, that are used to create testing scenarios
and react to external actions There are commands to stop execution and wait for
events, looping structures, input/output commands, conditional expressions and
commands to set the context of a testing session DCPL supports a comprehensive
bibrary of expression evaluators and operators Fnally, DCPL supports both
general and special variables All string vanables are prefixed with a ‘%' symbol and
all numenc vanables with a '&' symbol These prefixes are used for both DCPL

system variables and user-defined vanables

6 3 Describing the test system mterface

Up to now we have discussed two forms of communication with the DCT-S,
namely, interactive and compiled The system 1s built upon the C language Any
DCPL script compiled using the ddc compiler 1s first translated to C, and then
compiled on a standard C compiler The suggestion 1s, that there must be a way to
communicate with the system at a lower level, than via DCPL The DCT-S
provides the user with such a facility, by defining a dtestlo C lhibrary interface This
nterface was wrtten to enable users to write parts of their test scripts in a lower

level programming language than DCPL By incorporating this interface into the

77

TTCN to C translator, 1t 1s therefore possible to completely control the DCT-S
using the C language

The code produced and discussed thus far has made no reference to any
particular test system, indeed this code 1s applicable to any test system built upon
the C language The discussion in chapter four and five on the implementation of
test events has been left at a call to some routine that interfaces the translated event
to the test system This section will now deta:l these routines Should a test system
other than the DCT-S be employed, then 1t 1s sumply these interface routines that
require modification These tasks were purposely modularised to facilitate such
changes

An alternative to using the test system interface would be to translate the
dynamic aspects (sending, recewving, timers etc) of the TTCN statements to
equivalent DCPL statements Indeed another option would be to translate the
complete TTCN ATS to an equivalent DCPL ATS Though apparently simpler to
perform, 1€ both languages share a simular focus on testing and are defined n a
simlar manner (formal syntax informal semantics), there are many disadvantages to
such an approach Firstly, the DCPL language 1s not as well endowed mn data
structures, hibraries etc as the C language, secondly, such a translation would be
considerably less portable, thirdly, the translation path would nvolve one further
step 1e TTCN to DCPL to C as opposed to TTCN to C, and finally, it would
require that the test operator become famuliar with yet another programmung
language

To 1ncorporate the drestlo C interface into the translator system, the header file
"dtestinc h" must be included This file contans all of the function prototypes,
constants, vanables and data structures required to interact with the DCT-S system
Each of the interface routines 1s defined as an integer valued function with a set of

parameiersie

78

mt Dname(parm1 parmtypel,parm2 parmtype2)
The return value of a successful invocation 1s zero All of the routines begin with a
capital "D", thus distinguishing them from DCPL commands The technique chosen
1s to "wrap" each of these functions nside another function, 1n other words, a parent
function 1s written that gathers all of the information required to make a successful
call to the interface function The return values get echoed back through this parent
function to the translator

What follows 1s a discussion of the interface routines employed to complete the
translation from TTCN to C The interface routines may be categonsed into four
classes those to implement TTCN test events 1e "!" (send) and "?" (receive), those
to umplement the timing operations, those to generate and update the conformance
log, and finally the muscellaneous routines to set the context of the translation and
generally control a DCT-S session The set of wrapper functions are defined in the
file conform ¢, which gets linked at compile tme to the other translated files to

complete the TTCN to C translator

6.3 1 Interfacing TTCN statements

The single two most important test operations 1n any protocol testing scenario
are the send and receive test events Let us recall what translations have been
implemented thus far for these two events When a PDU constraint 1s specified n
TTCN, a C struct 1dentical to the constraint 1s built This structure 1s a contiguous
sequence of octets comprising the fields of a frame A constraint implies that the
structure must be then sent out on the D channel, 1n the case of a send, or the frame
that came 1in must be identical to the structure defined in the constraint, in the case
of areceive How the frame 1s sent, or on what port 1t 1s sent, 1s information that 1s
test system dependent, of a semantic nature, and not derivable from the ATS The

prototype of the C interface routine to perform a send event 1s

79

int Dsend(int portnum, FUNNYSTR * frame, int show)
1in other words, to perform a send event on the DCT-S, the information required 1s
the port on which the frame 1s to be sent, the contents of the frame that 1s to be sent
(a FUNNYSTR 1s a contiguous stream of octets defined in dtestinc h as a C struct
with two fields, a data field of unsigned chars and a length field), and a flag to state
whether the frame 1s to displayed on the console even in quiet mode The wrapper
function that invokes a send 1s
int send_I2(FUNNYSTR *frm)
Once the frame has been successfully built into the required structure, a call to
Dsend will then send out that frame on the required port The parameter portnum
may be then assigned the value of &portin a Ddriver system numeric variable that
holds the value of the port that the last frame was received on To fetch this
variable from the Ddriver system a call to the interface function
int Dfetch(int portnum, char *name, int subscr, unsigned short *location)
with
Dfetch(1, "portin”, NOT_ARRAY, &currport)
will fetch the value of &portin and place 1t in the vanable currport NOT_ARRAY
simply tells the interface routine that the value 1s a simple numeric vanable and not
an array

The receive event in TTCN 1nvolves a check of the incoming PCO to venfy
whether or not the last frame that arrived was the one specified in the constraint In
terms of the translator, 1t involves checking whether the frame that came n was

identical to the one just bullt The C interface action that performs a receive event

1S
int Dwait(FUNNYSTR *frame, int time)
This routine waits until the next frame comes n, or the duration specified in time

expures The contents of what comes n 1s stored in frame If time 1s set to zero,

80

then the ime waited for 1s &timeout seconds a system numeric vanable that holds a
centiseconds value of how long the system 1s to wait for a particular event to
happen Let us recall a typical test scenario to send out a SABME frame and wait
T1 seconds for a UA response
ISABME

STARTTI1

WA

Making use of, setting the value of fime to zero, 1t 1s possible to assign a value (T1
centiseconds) to &timeout via the C interface command
int Dassign(int portnum, char *name, int subscr, unsigned short value)
The prototype of the wrapper function for receiving frames 1s
it rec_I2(FUNNYSTR *frm)

One final test event 1s the "TIMEOUT timerid event that checks if a tmer has
expired This event evaluates to true if no frame 1s present at the head of the PCO
queue This condition 1s satisfied by the condition

if (frame -> length = =0)

6 3 2 Interfacing TTCN timing events

There are two TTCN tmung events that require access to the DCT-S system
timer, namely, START timerid and CANCEL timerid To examine how these two
events are implemented on the test system, one must consider the two DCT-S
system variables &tme and &nimeout &timeout 1s a static variable that when
assigned a value, forces the system to wait for that period of time for an event to
happen &tume 1s a dynamic vanable, specified in centiseconds, that has direct
access to the system timer One 1s free to reset this vanable When a value 1s
assigned to &timeout, the &tume variable will increment for that period of ime, and

then send a signal on expiration These two TTCN test events are controlled by

81

assigning values to the vanable &tumeout The interface function used to assign a
value to a Ddriver vanable 1s

Dassign(int portnum, char *name, int subscr, FUNNYSTR *frame)

Thus to set a imer ticking for thirty seconds would require

Dassign(1, "Timeout", NOT_ARRAY, 3000)

The cancel timer routine uses the same interface function, only 1t sets the variable

&timeout to zero

6.3 3 Interfacing conformance logging events

The international standard requires that a conformance test log file be
maintained of all test events that occur during a dynamuc testing session In thas file
one expects to see, the name of the test case or step, the imestamp associated with
each test case event, and a test case verdict if one gets assigned as a result of a
particular system response One requures, therefore, a means to first open a log file,
a means to log the various test events and their associated timestamp, and a means
of closing the file

The DCT-S provides the user with all of the above facilities, via the following
three interface commands
int Dopenlog(char *filename, int append)
int Dlog(int portnum, FUNNYSTR *message)
int Dclose()
The Dlog routine sends messages to the log file The entry to the log file for the
receipt of a UA command maght be
12/2,1,1/ r tm 002 1 $020173,
which 1s not very readable Fortunately, however, the DCT-S has a pretty print
facility called dctprint This program takes as nput, a file of log entnies like the one

above and converts them 1nto more readable format like the one below

82

00000 021f2 r wva f ($020173) te1=0

6 3 4 Interfacing miscellaneous control constructs

Section 6 2 1 gave an overview of the list of DCPL commands required to set
up a test session at layer two, validate te1 O on sap: 0, and prepare the system to
both receive and send frames In summary, these commands in DCPL are
nt
layer 2
vahd Oon 0
&te1=0
The following C interface commands are used to automatically configure the test
system as above
int Dassign(int portnum, char *name, int substr, unsigned short value)
int Dlayer(int portnum, int value)
it Dvalid(int portnum, 1nt value, int dasstieline)
The Dassign() command 1s used mtially to set the vanable &side to emulate the
network side The Dlayer() command 1s then used to set up the system at layer 2
Finally using Dassign, the LAP may be established by setting &sap: and &ter to the
required values

Over and above the commands already mentioned that control the testing
process are the various other interface commands to clear the console screen, to
display messages on the console, stop execution and termunate a session on the
DCT-S system In effect, the complete DCPL language may be replaced and,
moreover, the complete DCT-S system may be controlled using the full set of
interface routines The complete set of interface commands are defined in the file

conform c

83

6.4 Performing a conformance testing session

This section will conclude the discussion on the TTCN to C translator tool.

The complete configuration is illustrated below in figure 6.3

BNFof
TTCN

Interface
Library

DCPL to C
Pre Processor

Abstract test
suite (ATS.MP)

TTCN.MP
Parser

Library of
C rou?l/nes

Complete C code
spec. (ATS.C)

\/

C
Compiler

(Executable Test Suite ~

\/
ISDN Technologies
Test System

Operational

Semantics of TTCN

Additional
Code

Test selection
procedure

TolUT

Figure 3.2 Structure of TTCN to C translator

The main component of the translator is the TTCN.MP parser. This parser

was automatically built from a slightly modified version of the TTCN BNF and the

operational semantics outlined in the international standard. The semantics of

TTCN were described using C code specifications. Output from the parser is a
library of C files. The complete TTCN to C code specification, the ATS.C, includes

84

this code plus additional C code plus the test system interface code The test
system nterface specificabon must undergo a C compiler pre-processor to
supplement the code with additional low level communications software One
further specification, the test case selection module, must be added at this point to
complete the C code specification All test cases and steps are implemented as C
functions with names identical to theirr TTCN 1dentifiers The appendix 1illustrates
an example of a full test step translation This test selection procedure module
simply selects and orders the test cases and steps as a file of C function calls The
complete specification may be then compiled and hinked to produce the TTCN ETS
The final step in the conformance testing process 1s the itiation of the test system
to prepare 1t to send and receive frames This step 1s performed simply by invoking
the test system to configure itself for the required protocol, OSI layer, and number
of ports that frames may be sent to and received from Once configured a sumple
call to the file that selects the tests to be run will imtiate the conformance testing
sesston Output from the conformance testing session 1s a log file of the complete

dynamic behaviour that passed between the tester and the SUT

85

7. Conclusions and recommendations

This study sought to provide a solution to the problems involved in
automatically deriving executable test suites (ETSs) from their corresponding
abstract test suites (ATSs) The need for this study was prompted by the time, cost,
errors, and repetition mnvolved n manually performing ATS translations The result
was, the development of a TTCN to C translator system, from a formal
specification, supplemented with the operational semantics, of TTCN, that was
capable of taking a TTCN ATS specification and automatically producing an
equivalent ETS specification in the C programming language The translator system
produced requires a minimal amount of manual intervention This study proves that
the function of TTCN (1e what 1t 15 frying to express) may be transposed to the
functionality of a real programming language

The translator system operates by taking a file of a TTCN ISDN layer two or
three ATS and automatically producing a set of semantically equivalent C files
These files include code, to make the translated specification fully executable on a
DCT-S protocol tester and, to automatically monitor and log the conformance
testing process The bulk of the code, with the exception of the test system
interface code, 1s test system independent All code 1s modular, readable, and
programmed to model a C code specification, that was manually derived from an
ATS

The system translates at a rate of approximately forty test cases, steps or PDUs
per second, and at a significantly higher rate for declarations (test case varnables,
tmers etc) This imphes that a typical test suite of four hundred test cases could be
translated i under one munute (excluding the time needed to perform manual
interventions), which compares very favourably to the several man months involved
in implementing a similar manual translation What 1s more, the translated code

would now exist n an ANSI C code format that could be used to test protocol

86

mplementations at dufferent test sites and on different test platforms with only
munor adjustments

The approach taken n this study 1s one of several possibiliies to make TTCN
executable This C translation option transforms TTCN to ANSI C, which 15 a
highly portable, widely used, and operationally fast programming language Other
options included the translation of TTCN to either FDTs (LOTOS, SDLs etc) or
proprietary test languages (ITL for the IDACOM PT500 or DCPL for the ISDN
Technologies DCT-S etc) A TTCN to FDT translator may facilitate direct
protocol validation, but would be more difficult and time intensive to 1implement
And 1n order for the implementation to run, unless a test system like the DCT-S was
used, an mnterface to the external environment would be required to be written A
TTCN to proprietary test language translator, though probably simpler to
implement, would be restricted to the test system that the proprietary language was
written to communicate with The TTCN to C translator built, as a result of not
being fully automatic, does require, however, that the test supervisor have a basic
knowledge of TTCN, C, the translator and indeed the test system

Possible enhancements to the system rmmght begin with an extension of the
exising TTCN subset This would facilitate the translation of ATSs for other
protocols, for example, the addition of an ASN 1 module would enable the
translation of higher layer protocols Such an enhancement would only require
minor modificanons to the existing system, as the addinon of further TTCN
grammatical constructs may be made without altering the existing grammar
Another possible system modification would be the removal of test system
dependencies from the back end of the system, thus making the system applicable to
any protocol test environment running on the C language One final logical
enhancement, would be the integration of the translator into a complete

conformance testing system Typical existng conformance testing environments

87

have modules to validate protocol behaviour against formal descriptions of
protocols, automatically generate TTCN test specificaions from protocol
specifications and, automatcally select test cases that are appropriate to the
protocol under test This enhancement would produce a complete conformance
testing environment, whereby a formal description of a protocol could be
automatically transposed to a TTCN test specification which could be subsequently
automatically executed on a protocol test system

This study set out to determune if an automatic method existed for the
dertvation of ETSs from their corresponding ATSs One does exist, or at least one
exists that only requires a mwmmal amount of manual ntervention (The
interventton required 1s mamly for the purposes of completing TTCN
specifications) This tool has the potential to dramatically reduce the time, effort
and cost involved 1n the latter half of the conformance testing process - a worthy

solution to the derivation of ETSs from their corresponding ATSs

88

References (iv)

[1] IS /9646-3, OSI Conformance Testing Methodology and Framework, part 3
The Tree and Tabular Combined Notation

[2] S Eswara, B Sarikaya, Test specification in TTCN using interactive editor,
Information and Software Technology, Vol 32 No 9 November 1990 pp 613-24

[31 RL Probert, L Trudel, TTCN workbench a protocol engineering test tool,
Technical Report, University of Ottawa, Canada, 1990, p 8

[4] Swedish Telecom Teletest, The ITEX test suite development environment an
introductory overview, (1989)

[5] M Dubuc, GV Bochmann et al, Translation from TTCN to LOTOS and
Validation of Test Cases, Formal Description Techmques, III Procs of the IFIP
TC/WG6 1 3rd intl conf on FDTs for Dist Sys & comm prot 6-9/11/90 Madnd
pp 141-55

[6] K Satsuyama, F Sato et al, Strategic Testing Environment with Formal
Description Technmiques, IEEE Transactions on Computers, Vol 40, No 4 Apnl
1991 pp 514-25

[71 B Forgham, B Sankaya, Semi-Automatic test suite generation from Estelle,
Software Engineening Journal, July 1992 pp 295-307

(81 User guide for the NBS Prototype Compiler for Estelle, Report No
ICST/SNA - 87/3 October 1987

[9] A Wiles, Automatic Derivation of ETSs from ATSs, Conformance Testing and
certification 1n Information Technology and Telecommunications (1990), 10S press
pp 366-76

[10] 1990 Sun Microsystems inc, Lex - a Lexical Analyser Generator,
Programmers Overview Utihties & Libraries

[11] 1990 Sun Microsystems inc, Yacc - Yet Another Compiler Compiler
Programmers Overview Unlines & Libraries

[12] AT Schnener, HG Frnedman,Jr, Introduction to compiler construction with
UNIX, Prentice-Hall, Inc , Englewood Cliffs, NJ 07632

[12] R L Probert, O Monkewich, TTCN The international notation for specifying
tests for communications systems, Computer Networks and ISDN Systems 23
(1992) pp 417-38

[14] B Sankaya, A Wiles, Standard conformance test specification language
TTCN, Computer Standards & Interfaces 14 (1992) pp 117-144

[15] S Eswara, T Berriman et al, Towards execution of TTCN test cases, Protocol
specification, testing and vernification, X procs of the IFIP WG6 1 10th intl symp
12-15/6/90 Canada pp 99-112

[16]A V Aho, R Sethi, JD Ullman, Compilers Principles, Techniques, and
Tools, Addison-Wesley publishing company

Appendix (v)

This appendix shows the translation of the dynamuc behaviour corresponding to
an ISDN layer two preamble As can be observed the test step 1s translated to a
voird C function and one of 1ts corresponding constraints to an integer valued C

function
Test Step Dynamic Behaviour
Reference ISDN/PREAMBLE/PRE_S71
Identifier PRE_S71
Objective To bring the IUT 1n state S71 Rej recovery
Default DEF2
Behaviour Description L | Cref vV |C
+PRE_S70 (1)
L'l_send (TMP =(NS+1) MOD 128) IN2(PO,NR, TMP)
START TAC)
L7REJ_R_rec CANCEL TAC RJR(FO,NS) ® |3
"TIMEOUT TAC F
Extended Comments (1) Bning IUT 1n state 7 0 V(S) =V(a) and no Iframes 1in queue

(3) IUT 1sin state 7 1

(2) This message has a N(S) error and invokes a REJ message

PDU Constraimnt Declaration

PDU Name I (Information) Constraint name
IN2(PBIT_,BITSTRING,NR_,NS_ INTEGER)
Field Name Value
EA_QOCTET?2 '0'B
C CR_VALUE()
SAPI 0
EA_OCTET3 '1'B
TEI CURRENT _TEI
CONTROL '0'B
N S NS_
P PBIT_
N R NR_
INFORMATION RELEASE
FCS_FIELD FCS_VALUE

Comments I

void PRE71()
{

/*To bring the IUT 1nto state s71 Rej recovery*/

mt x,
PRE_S70(),
/* 1%/
eventype = 'S’,

(TMP=(NS+1) % 128),
if (IN2(PO,NR,NS) {
if start_timer(TAC) {
/2%
eventype = R’,
x = Dwait(P_Frmin,0),
if (x 1=0) {
prntf(*\nTest system recerve error"),
retum,
}
if RIR(FO,NS)) {
if (cancel_Timer(TAC)) {
prelim_verdict('P"),
[¥3%/
)
else DEF2(),
}
else if (hmeout(TAC)) |
final_verdict('F),
retumn,
}
/* (1) Bnng IUT in state 7 0 V(S) = V(A) and no I frames in queue
(2) This message has a N(S) error and invokes a REJ message
(3)IUT1sinstate 7 1 */
else DEF2(),
}
else DEF2(),

}
else DEF2(),

}

int IN2(PBIT_,NR_,NS)
BITSTRING PBIT_,
INTEGER NR_,NS_,

{

FUNNYSTR *P_Frm,Frm,
extern char eventype,
mnt L.,

P_Frm = & Frm,
IN2dc1 EAOCTET?2 =0,
IN2dcl C=0,
IN2dcl SAPI =0,
IN2dcl EA_OCTET3 =1,
if ((CURRENT_TEI >=0) && (CURRENT_TEI <= 127))
IN2dcl TEI = CURRENT_TEI,
else printf ("Invalid assignment value out of range"),
IN2dcl CONTROL =0,
f ((NS_>=0) && (NS <=127)) IN2dcI N_S=NS_,
else pnntf ("Invalid assignment value out of range"),
IN2dcl P =PBIT_,
If (NR_>=0) && (NR <= 127)) IN2dcl N_R =NR_,
else printf ("Invalid assignment value out of range"),
L= RELEASE length,
for (1=0, 1<L,1++) IN2dcl INFORMATION DATA[1] = RELEASE data[1],
IN2dcl FCS_FIELD data{0] = 255,
IN2dcl FCS_FIELD data[1] = 255,
P-Frm->data[0] = (IN2dcl EA_OCTET2 << 0) | (IN2dcl C << 1) | IN2dcl SAPI << 2),
P-Frm->data[1] = (IN2dcl EA_OCTET3 << 0) | (IN2dcl SAPI << 1),
P-Frm->data[2] = (IN2dc] CONTROL << 0) { IN2dcI1 N_S << 1), ,
P-Frm->data[3] = (IN2dcl P << 0) | (IN2dcl CN_R << 1},
P-Frm->data[4] = (IN2dcl INFORMATION data[0]),
P-Frm->data[5] = (IN2dcl INFORMATION data[1]},
P_Fm->data[6] = (IN2dcl FCS_FIELD data[0]),
P_Frm->data[7] = (IN2dcl FCS_FIELD data[1]),
P_Frm->length = 8,

if eventype =='S) |
if (send_12(P_Frm)) return 1,
}
else if eventype == R") {
if rec_I2(P_Fm)) retumn 1,
}
else return 0,
return O,

}

