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Abstract (ii)

The conformance testing of a protocol implementation, may be logically 

divided into, the specification of the abstract test suite (ATS) from a formal 

descnption of the protocol, and the subsequent derivation of the executable test 

suite (ETS) from the ATS specification Our concern here is with the latter step, in 

particular, the automatic derivation of an ATS expressed in the Tree and Tabular 

Combined Notation (TTCN) to an executable C language equivalent This process 

is currently a manual one, and as a consequence is error prone, time consuming, 

often repetitive and not necessarily consistent To overcome these problems, there 

exists the real need for a computer aided, and if possible, fully automatic solution 

This study descnbes the design and implementation of a fully working TTCN 

subset to C language translator, which takes a TTCN ATS and produces an 

equivalent ETS, with a minimal amount of manual intervention The methodology 

used is logically divided into three stages direct TTCN to C language mappings, 

implementation issues, including the generation of additional code to drive the 

above mappings, and test system implementation issues The system was tested 

using parts of an ETSI ISDN LAPD ATS and the results showed considerable time 

savings against a similar manual implementation

In conclusion, suggestions are provided to the further development of the 

TTCN to C translator system, and discussion is given to the apphcation of this tool 

to a complete conformance testing system



Acknowledgements ( 1 )
Abstract ( 11)
Tab le O f Contents ( m )

1. Introduction 1

2 Tree  and Tab u lar Combined Notation (T T C N ) 4
2 1 An Overview 4
2 2 Abstract test suite specification using TTCN 5
2 3 TTCN MP - the machine processable form of TTCN 9
2 4 TTCN editors 10
2 5 TTCN and Formal Description Techniques (FDTs) 11

2 5 1 Automatic generation of abstract test suites using FDTs 13
2 5 2 Validation of protocol behaviour using FDTs 13
2 5 3 FDT tools 25

2 6 TTCN - its ments and its limitations 27

3 Derivation of Executable Test suites from  Abstract Test suites 19
3 1 Introduction 19
3 2 Current approaches and tools for ETS derivation 20
3 3 Automatic derivation of ETSs from ATSs 22

3 3 1 Basic principles of translation 22
3 3 2 TTCN translation methodology - an overview 23

3 4 Introducing the TTCN to C translator 27

4. T T C N  to C  language mapping 30
4 1 Introduction 30
4 2 Subset of TTCN to be translated 32
4 3 Translation of TTCN declarations 35
4 4 Translation of TTCN constraints 41
4 5 Translation of TTCN dynamic behaviour 44

4 5 1 Lexical Analysis of TTCN dynamic behaviour 44
4 5 11  Overview 44
4 5 12 TTCN word recognition 45
4 5 13 Lex - A lexical analyser generator 47

4 5 2 Parsing of TTCN dynamic behaviour 52
4 5 2 1 Overview 52
4 5 2 2 TTCN Language definition 52
4 5 2 3 Yacc - A parser generator 54

Table of Contents (lii)



5 Im plem entation of an Automatic T T C N  to C  Translato r 60
5 1 Introduction 60
5 2 Miscellaneous TTCN to C semantic translations 61

5 2 1 TTCN data types 61
5 2 2 Timer management 62
5 2 3 Verdict processing 63
5 2 4 Appending default dynamic behaviour 64
5 2 5 Logging conformance test events 65

5 3 Symbol table management 65
5 4 Error handling 67

5 4 1 Error detection 68
5 4 2 Error recovery 69

6 Execution of the executable test suite 71
6 1 Introduction 71
6 2 DCT-S - An Overview 71

6 2 1 DCT-S - How it works 75 
6 2 2 DCPL - The proprietary test language of ISDN technologies 76

6 3 Descnbing the test system interface 77
6 3 1 Interfacing TTCN statements 79
6 3 2 Interfacing TTCN timing events 81
6 3 3 Interfacing conformance logging events 82
6 3 4 Interfacing miscellaneous control constructs 83

6 4 Performing a conformance testing session 84

7 Conclusions and Recommendations 86

References
Appendix

( i v )
( V )



1. Introduction
The conformance testing of protocols is not concerned with performance or 

efficiency issues, but with the determination of the extent of adherence of protocol 

implementations, to the standards that they claim to implement The importance of 

conformance testing is paramount, since any vendor can implement a layer of a 

protocol, and claim conformance for then* product The work group ISO 

TC97/SC21/WG 16-1 was formed to standardise all aspects of ISO protocol 

implementations The Tree and Tabular Combined Notation (TTCN) arose from 

this group, as the standardised abstract notation for the specification of abstract 

conformance test suites TTCN is now a fundamental component in the 

conformance testing process

The specification of abstract test suites (ATSs) in TTCN is, however, only half 

of the conformance testing process ATSs wntten in TTCN are complete protocol 

test specifications in their own right, but are wntten in a manner that is test system 

independent The ATS must be then transformed into an equivalent executable test 

suite (ETS), which involves a translation and an implementation of the ATS on a 

conformance test system, this step constitutes the second half of the conformance 

testing process, and at present is a manual one Since ATSs are voluminous 

specifications, the task of translating them manually is time consuming, repetitive 

and error prone Therefore, to maintain consistency in ATS translations, to reduce 

errors, and moreover, to reduce translation costs, there is a real need for 

automation

This study seeks to provide a solution to the automatic denvation of ETSs 

from their corresponding ATSs In particular, it will outline a methodology, and 

will implement a translator, to translate an ATS specified in TTCN to a C language 

equivalent
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This is a relatively new area of research, with study only beginning in the late 

eighties, by work groups within Swedish Telecom and the NIST in the United 

States, to name but two To date, less than a handful of papers on the subject of a 

TTCN to C translator have been pubhshed Most development work seems to have 

been for in-house, as opposed to commercial, translators In early 1992, the 

international standardised version of TTCN became available, thus opening the way 

for standardised tools for developing ATSs in TTCN, one such tool is the ITEX- 

DE Current research into the development of TTCN to C utilities as part of many 

of these tools, is still under way

The approach taken in this study is to design a TTCN translator for the LAPD 

protocol of an integrated services digital network (ISDN) This target is merely a 

starting point for further study on the apphcation of the translator to higher layer, 

and other, protocols The LAPD protocol provides a good basis for a wide 

spectrum of TTCN constructs The required input to the TTCN to C translator is a 

file of a standardised TTCN ATS in the machine processable format Output is in 

the form of C files This generated C code is readable, modular, reusable, and 

above all, executable All generated code is indented, and where possible maintains 

the structure of the original TTCN The system is built, such that extensions to the 

TTCN subset chosen to implement the translator, may be made with a minimum of 

programming overhead Where possible the translator is test system independent 

The actual implementation of communication routines, timers, etc is, however, 

DCT-S test system specific If a test system other than the DCT-S was used to 

implement these routines, then it is only the test system interface that would require 

modification What exists is a complete TTCN to executable language mapping via 

the C programming language

Chapter two introduces TTCN in both its forms, and discusses tools for TTCN 

ATS development The application of TTCN to the conformance testing process is
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discussed, and research into the application of formal descnption techniques (FDTs) 

to conformance testing, and their application to TTCN, is considered Chapter 

three discusses the derivation of ETSs from ATSs A methodology for 

automatically deriving ETSs, and its application to the TTCN to C translator, is 

described A model of the translator that remains the focus of the subsequent 

chapters is illustrated at the end of chapter three Chapter four details the TTCN to 

C mappings that are implemented in the translator, and a discussion of two tools 

that were useful in the development of the translator is given Chapter five focuses 

on the software needed to implement a working TTCN to C translator Further 

mappings that are not necessarily derivable from the ATS, but are nonetheless 

prerequisites for execution of the ATS, are also discussed Chapter six then focuses 

on the test system and the interface needed to communicate with it The TTCN to 

C translator modules are then pulled together, and the translator model introduced 

at the end of chapter three is expanded and discussed in the context of a 

conformance testing session Chapter seven concludes the thesis, and provides 

recommendations for further study in regard to this system, and indeed 

conformance testing as a whole
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2. Tree and Tabular Combined Notation (TTCN)
2 1 An O verview

The Tree and Tabular Combined Notation (TTCN) is an informal test notation, 

standardised by the International Standards Organisation (ISO), for use in the 

precise specification of Open System Interconnect (OSI) abstract conformance test 

suites It is an informal test notation with clearly defined semantics TTCN differs 

from the more familiar formal description techniques (FDTs), having informally, as 

opposed to formally, defined semantics

The conformance testing methodology and framework IS09646 [1] was 

developed and standardised over a penod of eight years It is a five part document 

Part one defines conformance in the context of OSI, part two defines abstract test 

suite (ATS) specification, and part three defines TTCN The other parts are 

concerned with test realisation and test laboratory procedures TTCN began with 

the specification of the X 25 networking protocol, which proved that TTCN could 

be effectively used to specify complex conformance test suites, in accordance with 

the international standard

TTCN combines a tree notation with a tabular representation The tree 

notation is used to describe the events which can occur as alternatives to a previous 

event The tabular component is used to simplify the representation of all static 

elements such as data types, protocol data unit (PDU) and abstract service primitive 

(ASP) formats, timers, and the verdicts associated with test events, in the TTCN 

ATS The dynamic behaviour description addresses many important aspects of 

conformance testing such as, modularity support in terms of test cases, test steps, 

and default dynamic behaviour, sophisticated timer management etc The structure 

and syntax of TTCN is entirely directed towards describing desirable sequences of 

interactions between the entities involved in the conformance testing process
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One might ask , "why the need for another test notation r ' The main 

argument favouring TTCN is that it’s primary focus is on testing TTCN boasts a 

compact way of specifying dynamic protocol behaviour It is ideally suited to the 

active testing of reactive systems, 1 e the technique of putting a system under test 

(SUT) into a controlled environment and sending specific stimuli to it, aimed at 

checking specific aspects of the system TTCN provides a test notation, that 

standardises the representation of sequences of test events that make up test cases, 

and subsequently the representation of test cases within standardised test suites, in a 

way that is independent of test methods and protocol layers Moreover, TTCN 

reflects the testing methodology descnbed in IS09646

2 2 Abstract test suite specification using T T C N

An abstract conformance test suite consists of a number of test cases which test 

an implementation for conformance It is a top down hierarchical structure, the 

central component of which is the test case Test cases may be grouped with other 

test cases to form test groups Test groups may be subsequently grouped together 

to form larger test groups Test cases may be decomposed into test steps and these 

test steps into test events This structure is illustrated in figure 2 1 A test event 

might be the sending or receiving of a Protocol Data Unit (PDU) or possibly the 

starting of a timer Test steps aid in putting the SUT into a state, suitable for 

executing a test case and hence, returning it to a stable state once the test case has 

been executed To impose order within an ATS, test cases sharing a similar test 

purpose, initial testing state, or final testing state often form test groups

The TTCN ATS can be subdivided into the test suite overview, declarations, 

constraints, and dynamic behaviour sections The test suite overview provides all 

the information necessary for the general presentation and understanding of a 

particular test suite This overview is composed of four tables, namely, the test
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suite structure table, the test case index table, the test step index table and the 

default index table The declarations part provides the definitions of all the 

components that comprise the ATS, 1 e abstract service primitives (ASPs), protocol 

data units (PDUs), timers etc The constraints part provides precise descriptions of 

all messages exchanged between the tester and the SUT Finally, the dynamic 

behaviour tables specify test behaviour in terms of messages exchanged The tables 

in this section are test case Dynamic behaviour tables, test step dynamic behaviour 

tables, and default dynamic behaviour tables

Test Suite

Figure 2 1 Hierarchical structure of an abstract test suite
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The formulation of any test case begins with an identification of the test 

purpose 1 e what is the purpose of this test7 To construct a meaningful test case, a 

well composed and ordered senes of stimuli that will achieve this test purpose are 

chosen All responses of the system, desirable and undesirable, and their associated 

verdicts, should be anticipated Possible verdicts are pass, fail, inconclusive and test 

case error A pass verdict implies that the test purpose has been reached A fail 

verdict implies that an error has occurred An inconclusive verdict implies, that 

although no error has occurred, something happened dunng the test procedure, that 

prevented the test purpose from being reached Finally, a test case error verdict 

implies, that one of the following occurred no verdict got assigned, a pass verdict 

got subsequently assigned to a preliminary fail or inconclusive verdict, or an 

inconclusive verdict got assigned to a preliminary fail verdict Graphically, the 

result is a tree-like structure with branching to cope with possible alternative 

reactions from the testing entities, see figure 2 2 Indentation facihtates the 

occurrence of test events in a time increasing order Successive test events get 

indented once from the left, alternative events he at the same levels of indentation 

Verdicts get assigned at the furthest points to the nght along a particular branch 

either in the test body or in some adjoining subtree

The test case is generally composed of three phases, namely, the preamble, the 

test body, and the postamble The purpose of the preamble is to get the SUT into a 

state from whence the test case can be performed, the test body compnses the bulk 

of the test case and the verdict assignment, and the postamble returns the SUT to a 

former stable state, or to one where a subsequent test case may be performed A 

verification phase may also be present to ensure that the IUT is indeed in the post- 

transition state A typical transition test is illustrated below in figure 2 3
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Figure 2 2 Branching in TTCN

Preamble Initialization to pre- 
transition state

\ /
Test Body Application of test

stimulus and confirmation
of response

Ns
Verification Confirmation of post

Transition state

Ns
Postamble Reset to Stable state

for next test

Figure 2 3 Structure of a transition test case for conformance testing
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2 3 T T C N .M P  - the machine processable form  of T T C N

The second version of TTCN is the machine processable form (TTCN MP), 

which serves as an exchange format for test suites In this linear form, TTCN is 

machine independent TTCN MP is defined using syntax productions, which have 

special keywords as terminal symbols, (all keywords are preceded by the stnng "$" 

symbol) These productions replace the fixed hnes and boxes characteristic of the 

graphical format Entries to the boxes of the graphical format are mapped 

identically into the MP format Since TTCN is intended for information exchange, 

more uniform and efficient storage, and for electronic transfer, its syntax is 

necessarily formally defined Using some three hundred BNF (Backus Naur Form) 

productions, TTCN MP defines the TTCN syntax This BNF is intended to be 

directly processable by the LALR family of parsers, thus simplifying the task of 

automatically translating TTCN to other notations and languages The semantics of 

TTCN are operationally defined, using both natural language and pseudo-code 

descriptions These descnptions though given in an algorithmic format were not 

meant as a method of executing TTCN but rather as a means of explaining how the 

TTCN machine should operate

In summary, the arguments for a second TTCN format are essentially

• to provide a formal syntax for TTCN in BNF,

• to act as a transfer syntax by facilitating the electronic exchange of test suites,

• to ease in the derivation of ETSs from ATSs as test suites are generally complex

and voluminous,

• to facilitate further machine processing

Some of the differences between the graphical and machine processable forms 

of TTCN are

• special tokens in TTCN MP serve as delimiters, where boxes and hnes are used

m GR
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• where explicit indentation is used in MP, indentation is graphically represented 

in GR,

• page and line continuation and page and line numbenng of the GR format have 

no significance in MP

• the MP format also contains an extra instance of the test suite identifier, thus 

facilitating test case identification in an automated way

Concluding therefore, both the GR and the MP forms of TTCN are 

semantically equivalent In other words, if an ATS is specified in the graphical 

format, in compliance with the international standard, then there exists a unique 

corresponding machine processable representation, with the same underlying syntax 

Two representations of an ATS are deemed equivalent, if and only if, they share 

identical operational semantics It must be stated, however, that the graphical ATS 

is the standardised test suite and, therefore, in the event of any conflict between the 

two representations, the graphical format takes precedence

2 4 T T C N  editors

The emergence of TTCN as a standardised notation has prompted the 

development of software support tools to assist in the editing, distribution and 

translation of abstract test suites Since the tabular specifications cannot be readily 

developed on conventional editors, purpose-built TTCN editors are required This 

in itself is one of the major drawbacks of a graphical test notation A schematic 

form of editing, browsing etc is necessary, therefore, in the development of ATSs 

using TTCN

Several TTCN editors exist Three of these are CONTEST-TTCN [2], TTCN 

workbench [3] and ITEX-DE [4] All of these have similar capabilities, such as 

TTCN MP to TTCN GR translation and vice versa, syntax and semantics checking, 

and full test suite browsing facilities ITEX-DE the ITEX Development
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Environment, was chosen by ISO as one of the standardised TTCN editors Its 

internal layout is illustrated in figure 2 4 ITEX-DE is a commercial editor, for use 

in the development and management of ATSs Over and above the features 

outlined above, the ITEX-DE has plans to include in later releases, both a 

translation capability, where TTCN could be automatically translated into several 

executable languages including C and Forth, and a validation facility, whereby 

TTCN dynamic behaviour could be validated against formal protocol specifications

FDT EXTRACTION
\/

Table Generator EDITOR

GR -> MP £

F IL E S

TTCN GR table 
printer

files

MP -> GR 
 ---------

TTCN MP

Figure 2 4 Internal structure of the ITEX-DE

2 5 T T C N  and Form al Description Techniques (FD Ts)

Standard definitions of many protocols are presently given in natural languages 

Apart from being verbose, these definitions may contain ambiguities and 

imprécisions Out of this came the need for formal description techniques (FDTs)
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ISO and CCITT encourage the specification of communications protocols and 

services using FDTs Three such languages SDL (Specification and Description 

Language), LOTOS (Language of Temporal Ordenng Specification) and Estelle 

(Extended State Transition Language) have been standardised ASN 1 (Abstract 

Syntax Notation One) aimed at protocol data structure definition, and TTCN for the 

specification of OSI conformance test suites, were also standardised FDTs provide 

powerful modelling techniques by combining the control and data aspects of 

systems They were intended for writing formal specifications for the OSI protocols 

and services, to be used during the protocol development process

The three formal languages SDL, LOTOS and Estelle, and the methodology 

and framework for conformance testing, developed separately There now exists 

the need for convergence in these two fields Research is currently going on in the 

application of FDTs to conformance testing By employing FDTs, to both descnbe 

the protocol and the dynamic test sequences, ambiguities in a protocol specification 

and misunderstandings among protocol developers and test designers may be 

eliminated, the effort of test designers reduced, and the automatic validation of 

protocols may be made possible

FDTs already play a central role in the conformance testing process, 

particularly in the specification of ATSs The specification of ATSs is presently 

manually derived from a formal descnption of a protocol 1 e Q 921 descnbes layer 

two of the LAPD protocol using SDLs ISO and CCITT are currently working on 

longer term objectives to apply formal methods to the testing of protocol 

implementations, which includes the automatic derivation of ATSs from formal 

protocol specifications TTCN is, nonetheless, simpler to implement and 

understand than FDTs and is more suitable for the direct abstract specification of 

tests by a human test specifier In developing formal approaches to conformance 

testing, it will be necessary to relate test descriptions in TTCN to formal

12



specifications in FDTs It may be, therefore, necessary to extend TTCN to include 

some selected FDT capabilities currendy not supported At present the semantics 

of TTCN are informally expressed, there may now exist the need to formalise them 

It must be noted, however, that if TTCN is to hold its ground, in the advance of 

FDTs m the conformance testing field, then TTCN must retain its simplicity, 

practicality and precision

2 5 1 Autom atic generation of abstract test suites using FD Ts

Although certain methods exist for automatically developing abstract test 

suites, most test suites are still developed manually Methodologies and tools exist 

to automatically generate and execute test sequences, but these tools tend to be 

localised to one particular stage in the conformance testing process, be it basic 

inter-connection, capability, behaviour or conformance resolution testing, but never 

to all four The derivation of tests for complex protocols is cumbersome, since all 

of the functionality of the protocol must ultimately be checked Consequently, there 

is a real need for automation

TTCN is the universal language of choice for the specification of test suites 

since all standardised test suites have been, and currently are being, expressed in 

TTCN Tools now exist to translate FDTs into the TTCN notation Such tools will 

be discussed later on in this chapter

2 5.2 Validation of protocol behaviour using FD Ts

This section is concerned with the validation of TTCN abstract test suites 

against then* corresponding protocol specifications Since most ATSs are 

developed manually, one can expect them to contain errors These errors should 

ideally be detected and removed as early on in the conformance testing process as

13



possible, 1 e before test case execution In particular, test case verdicts should be 

consistent with the protocol specifications

A problem exists in the difficulty of comparing a test case written in TTCN to a 

protocol specification wntten in some formal notation In order to automate such 

comparisons, it is necessary that first, the protocol be specified formally and 

secondly, that the language used to specify the test case 1 e TTCN, be comparable 

to the language used in the formal protocol specification For example, if the 

protocol specification is wntten in LOTOS then there must exist a means to relate 

TTCN to LOTOS Two possible approaches exist [5]

(1) The TTCN test case is first translated to an equivalent LOTOS specification 

(path 2), which may be then compared to the protocol specification (path 3)

(n) The TTCN test case is executed (path 4) and a companson is made of the test 

results with the protocol specification (path 5)

This configuration is illustrated below in figure 2 5

Figure 2 5 Protocol Validation steps

(1) Checkmg consistency of test case with protocol specification

(2) Translation from TTCN to LOTOS
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(3) As (1) but for test case described using LOTOS

(4) Execution of TTCN test case

(5) Analysis of test results against protocol specification

Method (u) is useful for conformance testing, or for testing non-standard test 

cases i e ones that do not contain standardised test verdicts, but not for protocol 

validation, as it only considers a particular test trace, with particular interactive

parameters, at a particular point in time

2 5 3 F D T  tools

Two current areas of research include verification of formal specifications and 

the realizability of the conformance testing methodology One of the most powerful 

tools that implement formal description techniques is FOREST (Formal 

Environment for Systematic Testing) [6] FOREST implements three strategies

• the use of FDTs for their unambiguous formal semantics,

• a stepwise approach to generate appropriate test cases for the different test

stages,

• the systematic support of the testing process from test development to test 

execution

The FOREST environment is made up of four distinct modules or subsystems, 

these are a subsystem to generate test cases from a formal specification of the 

behaviour of the protocol, a subsystem that generates test data from a protocol data 

structures definition, it generates test data from the protocol data definition 

specified in ASN 1, a tool to produce a test specification based on some 

standardised formalism, it generates the TTCN format test sequence from the 

specification described in SDL/PR, and a test execution system, which consists of 

an upper and a lower tester, and a simulation of the communications medium

15



FOREST reduces the cost involved in the testing phase of OS I upper layer 

software development It effectively checks and highlights any insufficiencies in 

protocol specifications FOREST incorporates SDLs, ASN 1 and TTCN into a 

system, based on the standardised methodology and framework Further research isi
currendy going on to provide support for both the Estelle and LOTOS FDTs

A second tool performs semi-automatic test case generation from an Estelle 

specification Here TTCN test steps are generated from Estelle transitions, from 

which test cases may be obtained, by way of ordenng, using control flow graphs 

This tool has been tested with success on the LAPD protocol, and current research 

is ongoing, in the implementation of an ASN 1 module, to facilitate higher layer 

testing

Finally, a tool exists to translate in the opposite direction, in particular, from 

TTCN to LOTOS The aim of this system is to obtain LOTOS specifications with 

structures close to the original TTCN test case specifications, thus, simplifying the 

task of protocol validation Results from this research showed, that errors in the 

original protocol specifications were present, proving that even widely accepted and 

standardised formal specifications were not free from errors This study proves that 

the automatic checking of conformance test cases, with respect to the 

corresponding protocol specification, is a useful and indeed necessary activity for 

increasing the confidence in OS I conformance testing This is a practical tool for 

the validation of conformance test cases, limited at present to the translation of 

simple test cases

A point worthy of note is, that the automation of these activities is only 

possible when a formal specification of the protocol is available Unfortunately, at 

present there are only a limited number of formal specifications of OSI protocols or 

services, that have been generally recognised as faithful representations of the OSI 

standards, that they claim to formally specify.
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In pursuit of the ideal notation for describing interactive test sequences and 

test suite structures, many proposals were forwarded These proposals included 

time sequence diagrams, programming languages, formal descnption techniques, a 

tree notation and a tabular notation The latter two were chosen on the basis of

understandabihty by both test specifiers and test operators What was to anse from
!

these two notations was one notation, that combined aspects of both, to naturally 

produce the tree and tabular combined notation (TTCN)

Some of the advantages of TTCN over the other proposals of the time were

that

• the tabular form of TTCN is quite easy to both understand and learn,

• the value onented nature of testing is well reflected in the power of TTCN to 

deal with a vanety of parameter and field representations, expressions and value 

assignments,

• time sequence diagrams, while easy to understand lacked precision,

• programming languages were felt to be too system dependent, where the desire 

was for a notation that was independent of any test system,

• sets of formal test sequences or test cases are much simpler to descnbe than 

entire systems or processes Thus, formal descnption techniques (FDTs) which 

were designed to descnbe such systems and processes, were unnecessanly 

awkward and complex for representing abstract test cases While FDTs were 

well suited to type specification, TTCN could better address the value onented 

nature of testing Furthermore, timely changes to FDTs to meet the immediate 

need for a test suite specification language would have been difficult to achieve 

Finally, TTCN satisfied the immediate need for a test notation, where no 

consensus existed as to the most appropnate FDT

2 6 TTCN - its merits and its limitations

17



What resulted, therefore, was a test notation, that had the power of a 

programming language, the clarity of time sequence diagrams, and almost the 

formality of an FDT, that is specified in a manner that is independent of test 

architectures, test systems, and OSI layers

The following is a list of limitations in the development of abstract test suites 

using TTCN

• multi-party testing, as required in the testing of some protocols is not supported,

• TTCN has no formally defined semantics, thus requiring the use of some formal 

description techniques to validate dynamic protocol behaviour,

• TTCN specifications cannot be readily developed using conventional editors,

• TTCN in either format is not readily executable,

• The specification of ATSs in TTCN requires that the test specifier learns a new 

language
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3. Derivation of executable test suites from abstract test 
suites
3 1 Introduction

An abstract test suite (ATS) written in TTCN is a complete test specification 

with regard to the protocol standard from which it was derived The TTCN ATS is, 

however, a generalised one, bearing no relationship to any particular executable test 

suite, or moreover, to any test system that it may eventually be executed on TTCN 

was never intended to be directly executable, rather it is intended to facilitate the 

precise specification of abstract test suites, in a manner that ensures the 

development of an executable test suite (ETS), which is a faithful implementation of 

the ATS Test suites specified using TTCN are easily understood by the human 

elements of the testing process What is not as readily apparent is the relative 

difficulty involved in implementing test suites wntten in TTCN

The execution of tests specified in TTCN is the final step in the design of 

protocols and their conformance tests In order to implement an ATS, it is 

necessary to translate the individual test cases of the ATS into a suitable executable 

test language, supported by the test laboratory This implies that a significant 

proportion of the testing time and cost, is employed in the derivation of ETSs The 

aim of the translation project is to produce a methodology, and ultimately a tool 

that will

• reduce the time and effort involved in performing manual translations,

• help to ensure a correct mapping between the TTCN test specification and the 

executable test language,

• help ensure and maintain consistency between the ATS and the ETS

There is a desire, therefore, to simplify and where possible automate the denvation 

of ETSs The advantages of automatic denvation goes further, automation helps to
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maintain the uniformity of test sequence, test purpose and overall organisation of 

the structure of test suites

The automatic derivation of executable test cases from their corresponding 

abstract test cases has not, so far, received a great deal of attention within the 

research community This may be attributed to the fact that the specification of 

abstract test cases is still in the developing stages, and that most test suites have 

been written directly in an executable format As TTCN receives greater 

acceptance, one can expect accelerated growth in this research area

This chapter begins by introducing the current approaches and tools used in the 

area of automatic ETS derivation A methodology is then introduced to take an 

ATS specification and automatically denve an executable equivalent The chapter 

concludes by introducing the TTCN to C translator that will be the subject of the 

following three chapters

3 2 C urrent approaches and tools for E T S  derivation

This section will compare the relative ments of two approaches to the problem 

of ETS derivation The present situation in conformance testing is largely, to take a 

formal specification of a protocol, and compile a set of tests, that will ensure that an 

implementation of a protocol behaves in a manner, that is consistent with the 

protocol specification These tests will then normally be taken one by one and 

translated manually to a language of the test laboratory The results of these tests 

will then often be correlated with the results of other test houses The two 

approaches considered in this section will be a translation to an FDT, and the 

execution thereof, and a translation to a directly executable proprietary test 

language

Approach one builds upon research done into the specification of tester bodies 

using either Estelle alone or a combination of Estelle and ASN 1 [7] These Estelle
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specifications were originally hand coded by test designers, based on their 

knowledge of the protocol They did not derive their structure from any abstract 

test case representation This meant that if the test architecture to be used in one 

test was different than that used in the others, then a lot of changes were required to 

code that particular test case Research m this area has enabled automatic 

verification of Estelle test specifications against Estelle protocol specifications, and 

the development of Estelle compilers to execute Estelle test specifications [8] This 

compiler operates by producing C code templates for the Estelle interactions and a 

fully coded machine(s) for the implementation In order for the implementation to 

run, an interface to the external environment must be written Sirrular functionality 

with regard to the LOTOS FDT is available in the FOREST environment, as 

discussed in chapter two

The second approach involves translating TTCN to ITL (Interactive Test 

Language), a proprietary test language of IDACOM, directly executable on the 

PT500 protocol tester This approach enables users to generate and edit test scripts 

on a workstation (having better editing facilities than the PT500) and then 

download them to the protocol tester for execution This approach eliminates the 

need for the application of FDTs by the test operator and, moreover, the need for an 

external interface, as one already exists

Both approaches possess merits, but selection with the protocol in mind is 

expected to simplify the testing process considerably The Estelle based method has 

been proven to work for an OS I layer four protocol implementation, and the ITL 

method on the LAPD protocol

The approach that will be taken in this research will be similar to the ITL 

method, but will involve a translation to the C language The C code produced is 

fully executable on an ISDN Technologies protocol tester The translation makes 

use of a pre-defined C interface, that facilitates the execution of C scripts, as if they
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had been written in the test systems proprietary test language DCPL (Digital 

Communications Programming Language) This approach has the added advantage 

that the code generated should be readily executable on any test system based on 

the C language, once the test system interface is redefined

3 3 Autom atic derivation of ET S s from  A TSs

This sub-section introduces a methodology for automatically translating 

abstract test specifications written in TTCN to an executable language equivalent, 

and a tool that performs the translation [9] It will begin with an identification of 

the goals of automatic ETS derivation The basic principles of TTCN translations 

will be discussed, and the tool that might perform the task will be outlined This 

section revolves around a formal methodology, that will be used as the model for 

the TTCN to C translator system

The goals of the translator methodology may be summarised as follows

• an identification of the problems and issues involved in abstract test suite 

translations,

• a definition of a methodology that is both simple and practical for the automatic 

translation process,

• the application of these techniques to a conformance testing system using a 

variety of abstract test suites,

• the consequences of large and small scale abstract test suites to a system 

developed using the above methodology

3 3 1 Basic principles of translation

TTCN like any other language has a syntax with corresponding semantics To 

generate an executable equivalent, one must begin by translating the TTCN 

specification (syntax and semantics) to an executable equivalent This code will be
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termed the transformation or core code Unfortunately, there is no reason to 

assume that this code will, when translated, be executable, indeed if it were, there 

would be no need to translate it in the first place Further code, both derivable and 

non-denvable, must also be generated Derivable code includes all code that, 

though not exphcidy stated in the ATS, is in some way denvable from it An 

example might be the requirement of IS09646 that a conformance log be 

maintained, to log all test events during test suite execution Non-denvable code, as 

suggested by its' name, includes any code that is not, in some way, denvable from 

the ATS This may be due to, either it having an unpredictable occurrence in the 

ATS, or it requiring supplementary information from the ATS in order for it to 

execute An example of non-denvable code might be the following in a TTCN to 

C translation of stnngs, C requires that the maximum length of the stnngs be 

specified, this information is not normally exphcidy stated in TTCN In general 

Translation Code = Core code + D envable code + N on-denvable Code 

The problem of semantic translations is another uncontrollable one In a typical 

translation, one has only limited control over the implications of implementing a 

particular test event in the executable language, 1 e even if the TTCN specification 

is correctiy interpreted by the translator, the test system may be incapable of 

implementing the translation

3 3 2 TTCN translation methodology - an overview

The first step in defining a test system specification, is to determine a checklist 

of all of the features in the source language This checklist is then completed by 

checking whether the target language has support, either directly or indirectly for 

these features Any restnctions to this support should be highlighted in the 

specification, (fortunately, the target language C is a programming language with a 

large pool of data types, data structures and libranes). What should also be
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considered is, the particular use of TTCN in the abstract test suite (i.e. the version, 

are there nested constraints ? etc.), and the test system support for this particular 

version of TTCN. Out of this, a subset of TTCN, applicable to the particular 

protocol under test may be established. For example, in the case of the LAPD 

protocol, there appears to be no need for the provision of ASN.l constructs; a 

notation that finds true application in the testing of higher layer protocols. The next 

step in the test system specification should detail the routines and data structures 

that are supported by the test system, and which may appear as part of the code 

produced by the translator. This is largely determined by the language in which the 

test system interface is built.

Once the level of support of both languages, and the available transformations, 

are determined, a mapping document may be established. This document details the 

mappings of TTCN structures to equivalent C structures. Three types of 

transformations may be identified:

• structural

• mechanical

• detailed syntactical.

In the category of structural transformations, one may include the mapping of the 

overall structure of the ATS, the structure of the test groups, test steps or even 

structured components within the test steps such as PDUs to the target language. 

For example, the mapping of a TTCN test case to a C language function, or of a 

TTCN PDU to a C language struct. Mechanical transformations include the 

mapping of the various implicit and explicit mechanisms in TTCN (tree execution or 

attachment, parameter passing, GOTOs etc.) to their executable equivalents. 

Finally, detailed syntactical transformations include the transformation of events 

(SEND, RECEIVE etc.) and pseudo events (timer operations) to equivalent 

program language statements. The complexity of these transformations is also a
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function of the similarity between TTCN and the target language, a point worthy of 

note in deciding upon the optimum target language Any deviations of semantics 

dunng these mappings should be highlighted to facilitate modifications at a later 

date

Translation  specification language

What is now required is a means of performing these mappings The language 

chosen to perform this task should satisfy the following catena

• be onented towards the TTCN,

• be human readable,

• produce modularised concise specifications,

• support mechanisms for generating additional code,

• have generalised access mechanisms to the TTCN tables and lists,

• have access to referenced items of these lists,

• be a universal language supporting efficient code generation mechanisms,

• have basic language constructs such as I/O directives, conditionals etc

The translation specification language is responsible for both scanning the 

source language and generating the target language It must have facilities for 

reading the source language on either a character, word or line basis It must be 

then capable of checking the input for both syntactical and semantical correctness 

Finally, it must be capable of generating an equivalent target language specification 

One can thus expect this language to scan the TTCN MP file for instances of special 

keywords or tokens of the language 1 e $TC_Vardcl, $TestCaseId etc that set the 

context for the mappings This step may be performed using regular expressions or 

simple stnng companson mechanisms Once instances of these tokens are found, a 

parsing mechanism must be available to ensure that the surrounding context makes 

grammatical sense Once this is ensured, a pnnt statement capable of producing the 

required target language code should be available. These steps must be then
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repeated for all instances of that TTCN component, be it a test case variable, a test 

case etc , and then subsequently repeated for each component within the TTCN test 

suite Finally, this code generated automatically from the TTCN specification 

should be augmented with additional code to make it fully executable 

Additional Code generation

Additional code, to include error detection, reporting and possibly recovery, 

and statistics gathering (test pi ogress reporting, translation times etc) must be 

supplied The language to access the TTCN tables may also be supplemented with 

additional code of a derivable nature, to possibly perform event logging, or non- 

den vable code to possibly specify maximum stnng lengths etc Mechanisms to 

access the PICS/PIXIT information may also be required to implement a fully 

automatic translator 
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The completion of the methodology should include a description of the toolset 

to implement the translation A typical toolset is illustrated in Fig 3 1 The 

translation script handler is the user interface to the translator system, whose 

capabilities include test suite browsing, editing, compiling and execution Execution 

may be controllable on the basis of individual test cases, test groups or the complete 

test suite The translation scnpt compiler compiles the translated scnpts into 

executable code The script handler can then call upon the test scnpts and execute 

them as appropnate The final tool of the system is the translator interface This 

tool provides read only access to the data base of TTCN scripts This data base is 

only accessed dunng the translation of the ATS, and it is assumed that the ATS has 

been fully edited and then parsed and all of the relevant TTCN MP data stored in 

the TTCN data base by the system

3 4 Introducing the TTCN to C translator

This TTCN to C translator is primarily concerned with the implementation of a 

conformance testing environment for the link access protocol on the D channel 

(LAPD) of an ISDN The translator takes a TTCN ATS specification in TTCN MP 

format and produces a C language equivalent that makes use of the functionality of 

an ISDN Technologies protocol tester The system configuration is illustrated in 

figure 3 2 It may be assumed that a tool like ITEX has been used to produce the 

TTCN MP version of the TTCN GR ATS

Input to the parser is the TTCN MP ATS specification Output from the 

parser is a set of C files These files must be then supplemented by two other forms 

of input namely an interface library to communicate with the ISDN technologies 

protocol tester, and an additional code specification to fully implement an 

executable version of the ATS The resulting code, the C code specification
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produced in its entirety may be then compiled to produce the ETS A primary rate 

interface card enables the system to interact with external entities

Figure 3 2 Structure of TTCN to C translator

What follows is a preview of the subsequent three chapters Chapter four will 

discuss the subset of TTCN that was chosen to implement the testing environment 

for the LAPD protocol The mappings for the three sections of TTCN will be 

detailed A discussion of the translation specification language and the ments of 

using translator development tools will be given Chapter five will then focus on the 

aspects of translator design that are necessary to implement the mappings of chapter 

four Further additional code, derivable and non-denvable from the TTCN ATS but 

nonetheless necessary for automatic translation, will be discussed These mappings 

refer to the additional code facility of figure 3 2 Chapter six will then focus on the 

actual test system, used to implement dynamic conformance testing sessions This

28



completes the mappings of chapter four and five by providing the additional code 

necessary to interface the already generated code to the test system Finally, the 

pulling together of these modules is described and the system as it presentiy stands 

is discussed
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4. TTCN to C language mapping
4 1 Introduction

This chapter focuses on the transformation of TTCN to the C language, in 

particular, the transformation of the code that is directly derivable from the TTCN 

abstract test suite (ATS) specification Discussion will begin with an introduction 

to some of the concepts of compiler design and of their application to the 

development of a working TTCN to C translator A formal description of the 

TTCN subset, and the factors determining its selection will be detailed Having 

ascertained the degree of support, either directly or indirectly, in the target language 

C for the subset, and the set of data structures supported by the test system, the 

complete TTCN subset to C language mappings may be established The remainder 

of this chapter details these mappings and the techniques used to produce them

A compiler accepts a source program - a program wntten in some source 

language, and constructs an equivalent object program, possibly in assembler or a 

binary language A translator accepts a source program as input, and generates an 

equivalent program in some other source language This program should be both 

syntactically and semantically equivalent The steps involved in the translation 

process, as in any compilation process, include the following four stages

• word recognition
/V

• grammar specification

• language recognition

• code generation

Word recognition, is the process of extracting the tokens of the language, and 

passing them on to a syntax checker A grammar defines a language, by descnbing 

which sentences may be formed by the characters and words of the language Two 

aspects constitute a language definition, namely, the syntax and the semantics The 

syntax is concerned with the mechanical construction, whereas the semantics are
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concerned with the meaning, of a language Semantics transform a sequence of 

sentences to a single program Finally, code generation is the task of generating 

equivalent source code in the target language The structures recognised by lexical 

analysers and parsers, will be hitherto referred to as tokens or terminals, and non

terminals, respectively There is considerable leeway in deciding what constructs 

are to be recognised by the lexical analyser and what ones are to be recognised by 

the parser The option chosen here, is to pass on to the parser stage only what is 

actually needed The parser can thus remain blind to such things as comments, 

white space, delimiting TTCN tokens etc

TTCN is logically divided into four sections, namely, the overview, 

declarations, constraints and dynamic behaviour Section one is concerned with the 

organisation of the test suite Section two, the declarations part, defines and 

declares all of the constants, variables, timers, abstract service primitives (ASPs) 

and protocol data units (PDUs) (the message units associated with a particular 

protocol), that are used by the dynamic behaviour section Section three, the 

constraints part constrains the use of PDUs and ASPs in the dynamic behaviour 

section Section four, the dynamic behaviour section is responsible for the actual 

dynamic testing of the SUT This chapter will focus on the latter three sections 

The translation process logically follows these three parts of the TTCN 

specification All sections fortunately employ backward reference, thus making it 

possible, for the most part, to generate equivalent C code, in the order that the 

TTCN appears in the ATS specification

TTCN was developed as an abstract test notation, but its ultimate purpose was 

to enable test houses to derive equivalent notations that were executable on real test 

systems The task of derivation is, for the most part, a manual one The possibility 

of automatically performing this task, though probably envisaged, is not 

unfortunately, as readily apparent Some key issues address questions and request
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special attention. The comments column in TTCN specification tables is one such 

example The problem lies in script writers use of it, as a way of specifying that 

which is not part of the formalised test notation. TTCN is by definition an informal 

test notation with informally defined semantics. This informality allows two TTCN 

script writers to write different TTCN specifications for testing the same protocol. 

TTCN is to a large extent a high level programming language with much of the 

functionality of many of our lower level languages. In 1992 ISO produced ISO 

9646 part (iii) [1]; the standard that attempts to formalise TTCN. The study that 

follows seeks to develop a TTCN machine within informally defined boundaries.

The programming language C, with its high functionality, large pool of 

libraries, and widely used environment was chosen to translate the first two sections 

of the TTCN ATS to its C equivalent. Two UNIX system tools Yacc (yet another 

compiler compiler), and Lex (a lexical analyser generator), were employed to 

translate the dynamic behaviour section. It was originally envisaged that C would 

be used as the translation specification language for all three sections, but the 

flexibility and fast development time of a Lex / Yacc combination discouraged this 

path. As both of these UNIX tools were developed using a C environment, the task 

involved in interfacing C code to these tools is significantly reduced. Furthermore, 

both Lex and Yacc actions, invoked on recognition of either lexical or grammatical 

constructs in the TTCN specification, are required to be written in the C language.

4.2 Subset of TTCN to be translated
The subset of TTCN that was chosen to be translated was strongly influenced 

by the requirements of the ISDN lower layers protocol. A subset was chosen, that 

would not only represent the notation as a whole but would, moreover, generate an 

environment, in which real conformance tests for the LAPD protocol, could be 

specified. As well as comprising the bulk of the TTCN language defined in
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IS09646 part (iii), all elements of the language, including test events, programming 

constructs, operators, operations, and statements, are more than adequately 

represented in the selected subset. What follows is a description of this TTCN 

subset.

Declarations

There are eleven different types of declarations, of which eight have been 

successfully parsed and translated. Suggestions are provided for the remaining 

three.

Constraints

There may be two types of constraints in a TTCN ATS: protocol data unit 

(PDU) and abstract service primitive (ASP) constraints; of which only the former 

was translated. The ASP declaration information are not necessary in the 

implementation of a conformance testing environment for the LAPD protocol, as all 

of the required information is specified in the PDU definitions.

Test events

The two fundamental TTCN test events, send and receive, are translated into 

equivalent C functions that communicate with the system under test (SUT) via the 

DCT-S test system interface. The send routine includes code to first build and then 

send a PDU. The receive routine includes code to build a PDU, decode and analyse 

an incoming PDU, and then compare the PDU built with the PDU just analysed. A 

third test event that is also translated, is the timeout test event that interrogates the 

status of a timer. The only remaining TTCN test event is the implicit send event, 

but as this event represents no new translation construct, and is a relatively 

uncommon test event, it was omitted from the subset.

Program m ing constructs

Within the category of TTCN programming constructs are the GOTO, 

ATTACH\ and REPEAT UNTIL constructs. Only the first two form part of the
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chosen subset, as the latter is similar in both construction and implementation to the 

GOTO The GOTO label construct is translated to its C equivalent - goto label 

The ATTACH (+) construct represents the ability of test cases or test steps to call 

upon other test steps Attaching was implemented as a C function call, with 

facilities to pass parameters 

Pseudo events

TTCN pseudo events encompass the majority of the mathematical and timing 

operations required to implement a real conformance testing environment The 

translated subset includes qualifiers, assignments, operators, conversion operations, 

and timing operations The qualifier or Boolean conditional is translated to a simple 

C if  condition construct Assignments have a C equivalent, and are translated as 

such The operators translated include the binary operators V , a n d  MOD  and the 

unary operator NOT  The complete set of relational operators '=7<7>7<=7>-and 

<> were all translated to their C equivalents Parentheses, which facilitate the 

grouping of expressions and the grouping of assignments on a single behaviour line, 

were also translated as their C equivalent TTCN supports operations to switch 

data between different data types These operations include HEX TO INT, 

BIT TO INT, INT TO HEX and INT TO_BITy of which the two former 

operations were translated to routines which accept HEXSTRlNGs and 

BITSTRINGs as input respectively, and produce integer number equivalents as 

output Finally, under this category are also the complete set of timing operations, 

START, CANCEL and READ TIMER Each of these pseudo test events are 

implemented as C functions which use the DCT-S test system interface 

M iscellaneous

Over and above the features already mentioned, the various constructs that 

delimit test cases, the test case verdicts, the parameters necessary for the



communication between test steps, and the comments that explain the testing 

behaviour, test case descriptions etc., all form part of the TTCN subset.

The chosen subset provides the user with the tools to develop and implement 

conformance tests for the LAPD protocol. Any omissions to this subset represent 

either no new construct, or have no part in the specification of tests for the ISDN 

lower layers protocol. An example of the latter is the ASN.l notation. In essence, 

the subset provides all of the testing capability required to implement parts of the 

ETSI conformance testing specification, for layers two and three of an ISDN.

4.3 Translation of T T C N  declarations

The C implementation part of the translator reads a TTCN.MP text file one line 

at a time, and parses it on the basis of a pre-defined set of delimiters, using the C 

parsing function strtok(). At all times, care has been taken to ensure that a correct 

mapping, i.e. one that is both syntactically and semantically correct, is performed. 

The generated C code is readable, thus giving the test system operator the option of 

altering either the output C code or the original TTCN specification.

Sim ple type definitions

At the core of TTCN are the pre-defined data types, namely INTEGER, 

BITSTRING, HEXSTRING, OCTETSTRING and the set of pre-defined character 

strings (IA5string, NumericString, PrintableString etc.). Over and above these 

types, is a feature of TTCN, that enables test suite writers to define subsets of these 

existing data types. The definitions of these user types are made via the Simple 

Type Definitions table, see figure 4.1 below. The table consists of a name, a full 

definition and a comments field.

This high level structure has unfortunately no corresponding representation in 

C. One solution lay in the possibility of using C++, but, as this was the first and 

indeed the only instance of where C might have its short-comings as the translation
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specification language, it was concluded that that did not justify a change in 

implementation language for the remaining translations A compromise was 

reached, by allowing the new user-defined data types to assume the type of their 

base, l e INTEGER in the below examples An array is maintained to store the 

range of values permitted for a particular data type In the example, only two 

values are acceptable to a variable of type SAPI RANGE, 1 e 0 or 63, and any 

values in the range 0 to 65536 are acceptable for variables of type N R  ANGE

Simple Type Definition
Name Full Definition Comments

SAPLRANGE INTEGER(0,63) Other values not considered in 
this test suite

N_RANGE INTEGER(0 65536) Range of values for N(S) and
W )

figure 4 1 A simple type definition

The automatically translated code makes use of the ANSI C typedef facility
j

The following code is produced as a result of figure 4 1

typedef INTEGER SAPIJIANGE, 
typedef INTEGER N RANGE,

Thus, to declare a variable named SAPI to be of type SAPI RANGE, and initialise it 

to zero, only the following code is needed

SAPIRANGE SAPI,
SAPI = 0,

When the translator encounters a variable, a symbol table is consulted It is here 

that all of the information pertaining to variables is stored If the variable type was 

one of the simple type definitions, then the array that holds the constraining 

information is consulted before the assignment is made In the event of the nght 

hand side of an assignment being a parameter or a variable, i e where the value is
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not as yet known, then additional code in the form of an if  statement is 

automatically coded as part of the assignment For example, if SA P I P A R M  is a 

parameter that is to be assigned to the variable SA P I, then the following code would 

compnse the translation

if ( ( SAPI_PARM = = 0 ) II ( SAPI_PARM = = 63 ) )  SAPI = SAPI_PARM, 
else pnntf("\n Invalid assignment"),

User Operation Definitions

The User Operation Definition table enables an ATS developer to specify in 

English what a specific function should do The international standard states that 

this specification may optionally be given in a standard programming language like 

C or Pascal Here exists the first example where a more formally defined ATS 

specification language would smoothen the automatic transition from TTCN to C 

The very presence of this section requires that the ATS translator operator have an 

intimate knowledge of TTCN, C, and indeed the translator system The most 

elegant solution would be for the translator system to offer the user a window to a 

text editor, through which they could enter the required C function This function 

could be then linked at compile time to the other declarations 

Test Suite Param eters

The purpose of this section is to declare constants denved from the PICS 

and/or PIXIT which may be used to globally parameterize the test suite see figure 

4 2 These constants are referred to as test suite parameters and are used as a basis 

for test case selection and in the parameterization of test cases This section has 

been the subject of study over the past number of years At present, it is usual for a 

test operator to be prompted for parameter values for the particular system under 

test (SUT), prior to a dynamic testing session The type of parameters requested 

might be the window size or, if the system has support for automatic
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retransmissions The solution chosen for this task was to parse the table in due 

course, omitting the value information for the present, 1 e to automatically define 

the parameters, but not declare them The user would be then prompted with the 

name, the field type and the comments pertaining to the parameter, and requested 

for the required parameter value, so that parsing could continue This value would 

be then read and the parameter declaration made

TEST SUITE PARAMETEFts
Name Type Value Comments

PC_Timer203 BOOLEAN L6/3 True if timer 
T203 is supported

K INTEGER LX2/8 window size
Figure 4 2 A test suite parameter declaration

Test Suite Constants and T T C N  variables

These declarations, are responsible for the definition and initialisation of the 

constants and variables that are used in the dynamic behaviour section Test suite 

constants define and declare the set of names that are not derivable from the PICS 

or PIXIT information, but remain constant for the duration of test suite execution 

The technique chosen to implement test suite constants is the ANSI const modifier 

Test suite variables are assigned values during test case execution, which are 

maintained globally throughout the execution of the test suite Test case variables, 

however, are not defined for the test suite as a whole, but are unique within a test 

case In other words, a separate copy of the variable is made available to each test 

case The obvious translations, and the chosen ones are, as global and local C 

variables respectively The test suite variables are initialised before the execution of 

section three takes place by calling a function init_globals() The local variables get 

declared and initialised at the beginning of each test case by calling the function 

init_locals()
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The declaration of a timer is similar to the declaration of a variable, where the 

timer name is the variable, and the value is the duration of the timer Shown below 

in figure 4 3 is an example of a timer declaration In this example, TWAIT is a 

variable that holds the value thirty seconds To maintain a consistency of values, all 

timer durations are stored in centiseconds, which conforms to the specification of 

the DCT-S test system timer

Timer Declarations

Tim er Declarations
Timer Name Duration Units Comments

TWAIT 30 sec Max time for 
IMPLICIT SEND 

execuUon

figure 4 3 A timer declaration

The C production corresponding to the sample timer would be

int TWAIT,
TWAIT = 3000,

With this declaration in place, a call to start a timer ticking for thirty seconds would 

be

start_timer(TWAIT),
where start_timer() is a routine that expects one integer valued parameter The 

actual implementation of timers will be discussed in more detail in chapter six when 

we deal with the DCT-S system 

PDU Type Declarations

At the core of the testing process is the ability of a tester to successfully 

transmit and receive messages The definition of these PDUs appears in the 

declarations section of the TTCN ATS The PDUs are split into fields according to

39



the specifications given in the Q series of recommendations Q 921 and Q931 

Shown below in figure 4 4 is an example of a layer two I (information) frame

PDU Type Declarations
PDU Name I (Information) PCOType PSAP Comments see table 5/1441 

and fig 5/144 11 frames, 
command

PDU Field Information
Field Name Type Comments

EA OCTET2 BITSTRING Ext addr bit
C BITSTRING Command bit

SAPI SAPI RANGE Service Access Point id
EA OCTET3 BITSTRING Ext Addr bit

TEI TEI RANGE Terminal End point Id
CONTROL BITSTRING I control Field

N S N RANGE Send Sequence number
P BITSTRING Poll Bit

N R N RANGE Receive Sequence Number
INFORMATION OCTETSTRING Layer 3 data

FCS FIELD OCTETSTRING FCS field (2 octets)
Figure 4 4 A sample PDU declaration

Having considered many solutions to perform this translation, the one arrived at

was a most general one, and one that is as applicable to layer three packets as it is

to layer two frames The technique is descnbed using the example shown below

typedef struct {
BITSTRING EA_OCTET2,
BITSTRING C,
SAPI_RANGE SAPI,
BITSTRING EA_OCTET3,
TEI.RANGE TEI,
BITSTRING CONTROL,
N_RANGE N_R,
BITSTRING P,
N_RANGE N_S,
OCTETSTRING INFORMATION,
OCTETSTRING FCS_FIELD,
H,

Using a C typedef mechanism, it is possible to build a structure I (information), 

where each of it’s fields corresponds to the fields in the TTCN specification The
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only drawback with this technique is, that no explicit reference is made to the type 

of frame that is being sent or received, 1 e whether it is an INFO, SAB ME or DISC 

frame etc This problem is not a real one though, because when the test system 

recognises a particular protocol frame format it relays the frame type sent or 

received to the console, which may be subsequently logged to a file for later 

analysis

4 4 Translation of T T C N  Constraints

The purpose of the constraints part is to precisely define the communication 

message units that were defined in the declarations section A constraint is, in 

essence, an instance of a PDU or ASP definition Let us recall the information that 

was defined in the declarations section Firstly a name, and then the individual fields 

within the PDU was specified No value or field length information (1 e an 

OCTETSTRING may hold any integer number of octets, or a BITSTRING may 

hold any integer number of bits'), and consequendy overall message length 

information, was specified The constraints section provides the translator with 

much of this information

A constraint is declared by a name, parameters (if any) and the contents of each 

of the PDU fields Continuing with the information PDU example of the last 

section, a typical constraint might be that shown in figure 4 5 below The first task 

of the translator is to declare the constraint as an instance of the PDU name 

I IN2dcl,
A "del" is appended to the constraint name to distinguish it from the actual 

constraint name, which will be translated to a C function It is this function that 

gets called in the dynamic behaviour section when a constraint is specified This 

leaves the translator free to make assignments to the individual fields of the PDU 

For example
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IN2dcl EA_0CTET2 = 0, or IN2 del C = CR_VALUE(),
where both EA_OCTET2 and C are members of the C struct IN2dcl

PDU Constraint Declaration
PDU Name I (Information) Constraint name 

IN2(PBIT ,BITSTRING,NR ,NS INTEGER)
Field Name Value

EA OCTET2 'O'B
C CR_VALUE()

SAP1 0
EA OCTET3 TB

TEI CURRENT TEI
CONTROL ’O'B

N S NS
P PBIT

N R NR
INFORMATION RELEASE

FCS FIELD FCS VALUE
Comments

figure 4 5 A sample PDU constraint

To see how the constraint is actually built, it is necessary to consider a typical 

call to the constraint as shown below 

L » IN2(P0,NS,NR)
This is a typical call in a test case to send an information frame that is constrained 

by the constraint IN2, with the parameters P0, NS, and NR, where the parameters 

imply that the P bit is set to zero and the send and receive sequence values are set to 

the current values of N(S) and N(R) respectively The test event is a send event 

from the tester to the SUT, denoted by the ",n symbol, (the test event could 

alternatively have been a receive or an implicit send event) Thus, additional code 

must be provided in the constraint to inform the tester of the action that it is 

required to take Ideally, this action would be a call to a C function 

IN2(P0,NS,NR), identical to the already specified constraint This function would

42



first build then and then send the required frame to the SUT Using the example of 

figure 4 5 the C function that automatically gets built is one with a prototype as 

shown below This example is illustrated in full in the appendix

lnt IN2(PBIT_,NS_,NRJ 
BITSTRING PBIT,
N_RANGE NR_,NS_
{ code to build and then send/receive

A frame of data is an integer sequence of octets The CCITT standard Q 921 

defines an information frame as the structure shown in figure 4 6 A call in TTCN 

to a constraint is translated as a command to build a frame into a template similar to 

the one below This is achieved by a technique of bit shifting and bitwise ORing of 

the individual PDU fields To perform the required shifting, the maximum size of 

each of the fields is required Where possible this is automatically obtained, but in 

some cases the user must be asked to provide this information In such cases the 

user is prompted with the PDU name and the field name, and is asked to enter the 

maximum size of the field in question The result of this call is the construction of 

an integer number of contiguous octets, an array of unsigned chars

Octet 1 S A P I C /R EA
0

Octet2 T E I EA
I

Octet 3 N ( S ) 0
Octet 4 N ( R ) P /F
Octet 5 IN F 0 R M A T I O N

- - - - - - - - -
Octet N-2 F C S_ F I E L D
Octet N-l
Octet N

Figure 4 6 Q921 spec For ISDN Layer 2 info frame
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The final part of each constraint function is to perform the dynamic testing 

aspect Depending on the type of test event, the frame will be sent across the ISDN 

link (a send event), or will be compared to the frame at the head of the incoming 

point of control and observation (PCO) (a receive event) If a call to the function is 

successful, 1 e the frame gets successfully built and gets either subsequently sent out 

over the link, or is identical to the frame at the head of the incoming PCO, then the 

function returns a value of one, otherwise a value of zero is returned

4 5 Translation of T T C N  dynamic behaviour 

4 5 1 Lexica l Analysis of T T C N  dynamic behaviour 

4 5 1 1  O verview

The lexical analysis phase constitutes the first half of the analysis phase of 

compiler design It is the process, which assembles terminal symbols, from the 

unstructured sequence of input characters presented to the input Terminal symbols 

may be categorised into operators or short sequences of special characters, 

reserved words or pre-defined sequences of letters, whose meaning does not vary, 

user-defined symbols, encompassing user-defined constants, variables etc which are 

subject to specific syntax definitions, and lastiy blank space and comments, designed 

to delimit other tokens and improve language readability It is usual to ignore white 

space (blanks, tabs and newlines) during lexical analysis All other tokens are 

passed on to the parsing phase using some internal representation - typically small 

integer constants Names, values, and scope information need to be stored in a 

special table known as a symbol table, for later semantic analysis A generic 

representation such as ID for an identifier, or TIMOP for a timer operation, 

together with a reference to a table entry are normally passed on to the next phase

Though possible, it is unwise to solve lexical and syntactical issues 

simultaneously For example the production
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stmt -> T  'F  cond T  H’ E' *N* stmt

could appear as a production in the grammar for a simple if  statement A better 

solution is to pass higher level constructs than individual letters or digits, on to the 

syntactical analysis phase, for example a production of the form 

stmt -> IF  cond THEN stmt

where IF and THEN are passed on as terminals of the language, and not the 

individual characters that compose the words By employing this technique, one 

eliminates a flood of grammatical conflicts and, prevents unnecessary lexical 

inefficiency By separating the lexical task, one can hide within a single module, all 

knowledge about the actual representation of the input of real world character sets, 

and the time consuming aspects of manipulating them, moreover one can employ 

specialised tools such as Lex The lexical analysis stage of the translator is 

modelled as shown below in figure 4 7, where the lexical analyser is a subroutine 

within the syntax analyser The lexical analyser and syntax analyser are in effect 

operating as a producer-consumer pair

Read

Figure 4 7 Scanner as a subroutine of syntax analyser

4 5 12  TTCN word recognition

When discussing lexical analysis three terms "token", "pattern" and "lexeme" all 

have a specific meaning A token is simply what we have been hitherto calling a 

terminal It is the basic unit, recognised by the lexical analyser, that gets 

communicated to the parser There is a set of strings in the input for which the
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same token is produced as output. This set of strings is described by a rule called a 

pattern associated with the token. A lexeme is the sequence of characters, in the 

source program, that is matched by the pattern for a token. In the TTCN statement 

START TWAIT

the substring START is a lexeme for the token TIMOP and the substring TWATT is a 

lexeme for the token ID. Only TIMOP and ID would be required by the parser to 

check for syntactical correctness against a production like: 

stmt -> TIMOP ID.
In TTCN an identifier is any letter followed by zero or more (*) letters or 

digits, or more formally an identifier is a member of the set:

([A-Z] I [a-z])([A-Z] I [a-z] I [0-9])*.
Regular expressions (REs) like that one above, enable us to specify sets. They are 

of practical interest since they can be used to specify the structure/syntax of the 

tokens in a computer language. The task of the lexical analysis process is to specify 

all of the REs that define the TTCN language, and to augment each of these 

expressions with an action that is to be performed when the scanner identifies an 

instance of the regular expression in the input. In particular, this action would be 

responsible for writing a translated copy of the lexeme to an output C file, and for 

returning an appropriate encoding of the lexeme, to the caller of the lexical analyser.

The lexical analysis phase of the TTCN to C translator outputs the bulk of the 

translated TTCN code. Input to this stage is a file of TTCN.MP dynamic 

behaviour, and output is in the form of C code and tokens. The C code is outputted 

to C files that will later be compiled using an ANSI C compiler to generate the 

required executables. Tokens are passed on to the second phase of the analysis, 

namely, the parsing phase. These tokens ensure that the input TTCN.MP was 

composed strictly, of only well formed correctly phrased sentences. These tokens 

pass sufficient information onto the parser to establish grammatical sense.
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It is common at this stage to ignore white space to simplify the translation 

process, for example a+b, a +b, a + b, though lexically different are grammatically 

the same In other words, however lexically simpler to process the above, more 

rules would be required in the parser to adequately check for syntactical 

correctness Another task of the lexical analyser is to count lines in the input for the 

purposes of error recovery

4 5.1 3 Lex- A lexical analyser generator

The emphasis now shifts from the specification of, to the recognition of, 

tokens The tool employed for this purpose is Lex - a lexical analyser generator

[10] A lexical analyser is the classical application for the theory of state automata 

Lex when invoked generates a generalised transition diagram called a deterministic 

finite automaton (DFA) whose specification language is regular expressions (REs) 

Figure 4 8 illustrates the working of a transition diagram for a NUM token in the 

TTCN notation, defined by the regular expression 

[0-9]+ {NUM}

l e one or more (+) consecutive digits In a transition diagram, the states are the 

numbered nodes and the transitions are the branches labelled with the input 

characters causing the transitions

1
Other v , ,V Kmit nnmhpr

Digit
s /
2 Other F.mit numhpr

Digit

Figure 4 8 A transition diagram for gathering a TTCN integer
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To build a lexical analyser we need a convenient way to describe the finite

state automata corresponding to a lexical specification of TTCN, a compiler to

produce appropriate tables from this description, and an interpreter to simulate the

finite state automata defined by the tables Lex presents us with such a package

Lex accepts as input, a table of patterns or regular expressions, and produces a table

driven C program, capable of recognising input strings satisfying these patterns, as

output Lex partitions the stream into strings (lexemes) matching these expressions

As each string appears as input to the Lex specification, a corresponding action

code fragment is triggered In effect these C code actions are modifying the input

to produce output When working m conjunction with a parser the last statement of

the C action code is normally return(token), where token is a terminal

representation of the data just scanned (lexeme) An example might be

([A-Z]l[a-z])([A-Z]lIa-z]II0-9])* { ECHO,
return (ID),}

In this action, the identifier found is printed to the output (ECHO), and a token 

indicating that an identifier was found in the input is sent to the parser The default 

action {,} implies that the analyser is to ignore that input

The Lex generated DFA scans for all rules at the same time and in the case of 

two rules matching, resolves ambiguity as follows

(I) longest match is selected,

(II) higher up the rule in the input specification, the higher the precedence

By virtue of these rules, TTCN keywords like MOD, AND, START etc are placed 

higher up in the specification table than the more general rule for TTCN identifiers 

As is usually the case, a lexical analyser works in harmony with a parser The 

parser generator Yacc (Yet another compiler compiler) expects a lexical analyser 

routine named yylexQ. In this configuration, see figure 4 9, the lexical analyser is
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partitioning the input stream into tokens, and the parser is imposing structure on 

these tokens to check whether correct sentences of the language are appearing as 

input

Lexical Grammar
Rules Rules

Figure 4 9 Lex with Yacc

Several variables are maintained by Lex, namely yytext, yyleng , yyhneno, 
yyless, yymore and yywrap Yytext is an array that holds the actual string (lexeme) 

that matched the regular expression Yyleng holds the length of the lexeme 1 e the 

element yytext[yyleng-l] is the most recent character read Yyhneno gets 

incremented on seeing a newline character, a feature useful in error detection 

Yyless and yymore are used to return already seen characters to the input, and tag 

characters yet to be seen to the present yytext, respectively Finally, yywrap is the 

routine that gets called when the end of a file is seen

Lex employs three routines that the programmer is free to redefine Input(), 

which reads the next character from the input, output(c) which writes the character 

c to the output, and unput(c) which pushes the character c back onto the input 

stream, to be later reread by some other RE By default, these functions are defined 

to manipulate standard input (keyboard) and standard output (console) It was
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necessary, therefore, to redirect these routines, to read input from and replace input 

to a MP file, and send output to an output C file

In general, four types of operations may be observed by the lexical analysis 

stage The first operation is where input is passed directly to the output without 

modification, 1 e the plus (+) operator or a TTCN identifier The second operation 

is where input gets modified, to be both syntactically and semantically equivalent to 

the C implementation, 1 e the MOD operator of TTCN to the "%" symbol in C 

Thirdly, is input that gets silently ignored because it has no significance in C, 1 e the 

token notation for the hnes and boxes in TTCN Finally there are the detailed 

syntactical translations, 1 e the high level fPDU operation, that involve detailed C 

operations, whereby a line of TTCN may translate into a C routine or possibly 

multiple C routines In these translations, information like execution specific terms, 

port numbers etc is not available from the TTCN specification and must be derived 

elsewhere

M iscellaneous lexical translations

Other translations involve constructs, for example the GOTO and Boolean 

constructs to their C equivalents Indentation is mapped to model the time varying 

concept of dynamic testing All output is appropnately indented and the associated 

verdicts assigned Though not explicidy stated, at each alternative to the stated 

action is a default action, denoted in the header, additional code must be provided 

to implement this alternative

A line of TTCN GR maps into several hnes in TTCN MP, where any number 

of expressions or statements may appear on a line in the behaviour description The 

semantic issue of what is translated first often depends on the context of the 

behaviour line It is necessary, therefore, to introduce a hierarchy of precedence, to 

cater for the required ordering in the target language This problem is further 

agitated by the optional positions for the label column in the dynamic behaviour
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proformas The order of precedence is as follows A label is printed immediately 

when seen, it is a definite event A send event is performed immediately, provided 

no assignment has to be performed or any Boolean qualifiers satisfied A receive 

event is done immediately provided no Boolean expressions have to be satisfied 

Otherwise, the TTCN is mapped, statement by statement, to its C equivalent The 

technique chosen to implement this is a buffering one, whereby flags are inserted 

prior to each entry to indicate the type of TTCN statement that is currently being 

processed This buffer is then accessed based on the intervening flags

As is often the case, the lexical analyser must scan many characters ahead to 

ensure that the correct context is being seen This processing is expensive and is 

avoided where possible All comments in TTCN are picked up and printed at the 

earliest opportunity in the output This option was favoured over one that ignores 

comments, as the test suite translator may wish to modify the translated C code in 

preference to the original TTCN The semantic actions in the lexical analyser also 

updates the generated code with a semicolon if the full extent of the TTCN 

specification has been seen and one is required

Lex, though not nearly as popular as its parser generator counterpart Yacc, in 

its assistance to compiler design, is nonetheless suited to the development of a 

TTCN translator It is a powerful tool in its own right, that is based on the C 

programming language, which is readily available on UNIX systems Lex produces 

relatively fast recognizers The time taken by Lex to partition an input stream is 

proportional to the size of the input and is independent of the number of rules or 

regular expressions Processing time is, unfortunately a function, of the amount of 

rescanning of the input that must be performed, 1 e if a pattern of characters is seen, 

but later found to be an incorrect span, those unwanted characters must be returned 

to the input to be later scanned for some other rule As the subset of TTCN 

extends so too can the existing input specification with a minimum of programming
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overhead  M oreover, should either the words or the meanings in TTC N  change, the 
regular expressions or actions alone may be changed, as Lex separates these tw o 
aspects o f the lexical analysis process, conceptually a t least, into tw o m odules Lex 
is, how ever, unfriendly to use with its often curt and cryptic e rro r m essages 
C om m enting o f rules leaves a lo t to be desired with Lex having no com m ent 
convention Its main disadvantageous aspect is the size o f recognizers that it 
p roduces which are considerably larger than their C equivalents Lex is, 
nonetheless, ideal as a developm ent tool

4.5.2 Parsing of TTCN dynamic behaviour
4.5.2 1 Overview

T w o aspects constitu te a language definition namely, syntax and sem antics 
Syntax deals with the m echanical aspects o f a language, i e w hether a sequence o f 
w ords or letters constitutes a sentence of the language W hat the sentence m eans - 
and often w hether it is legitim ate on that account is determ ined by the sem antics o f 
the language Form al notations exist for describing both parts o f the language 
definition In T T C N  only the syntax is defined in a form al m anner A con tex t free 
gram m ar called Backus N aur Form  is used to describe the syntax, and a 
com bination o f pseudo code and natural language descriptions is used to describe 
the sem antics, o f TTC N

4.5.2 2 TTCN language definition
T he first step in the building o f a translator is the specification o f the gram m ar 

o f  the source language The gram m ar defines the language by describing w hat 
sentences may be form ed R ather than describing a language inform ally, which 
tends to be verbose and open to m isinterpretation, we use a precise definition
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m echanism  called con tex t free gram m ars (CFG s) in particular, the B ackus N aur 
Form  (BN F)
A  C FG  is sim ply a set o f productions o f the general form  
A ->  B C D  Z
A production  represents the rule that any occurrence o f the left hand side (LH S) 
m ay be rep laced  by the symbols o f the righ t hand side (R H S) M ore specifically, a 
production  o f the form  
<program > ->  begin <stm t list>  end
im plies that a program  be a statem ent list delim ited by a begin and an end

T w o types o f symbols may appear in a CFG  term inals and non-term inals 
N on-term inals may appear on both the LHS and the RHS of productions, w hereas 
term inals may only appear on the RHS of productions D uring syntax checking, all 
term inals m ust be replaced or rew ritten by a production having the appropriate non
term inal on it's LHS W hen testing for proper syntax, we begin w ith an initial 
symbol called a start symbol which is a single non-term inal W e then apply the 
productions, replacing non-term inal symbols w ith term inals until only term inal 
sym bols rem ain Any sequence o f terminals that can be p roduced  by such a 
sequence o f actions is considered a valid sentence o f the language S tructure , as 
well as syntax, can be defined using CFGs, for exam ple associativity and opera to r 
precedence rules

The sem antics o f a language are concerned w ith the m eaning of a  language 
W hen static sem antics are checked by sem antic routines, sem antic errors in a 
syntactically valid program  may be discovered The m ajority o f such errors are 
trapped  by the actions in the lexical analyser, and not in the sem antic actions o f the 
parser The reasons fo r this are that on the one hand, no inform ation such as name, 
type o r value is directly com m unicated to the syntax analyser, and on the  o ther, the 
transla to r is m erely acting as a C com piler p re-p rocessor Em bedded sem antics o f
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the language, such as w hat an integer in TTC N  means are handled using C typedefs 
p rio r to the language recognition process These sem antics are d iscussed in chapter 
five

It is desirable to separate syntactical from  sem antical analysis N orm ally, when 
the syntax analyser recognises a source language construct, it calls a sem antic 
routine which checks the construct for semantic correctness, fo r exam ple, checking 
tha t both sides o f an assignm ent operation are com patible O ther form s o f sem antic 
analysis include the handling of the indentation aspects o f the dynam ic testing 
behaviour

4 5 2 3 Yacc - A parser generator
O nce the gram m ar fo r the language o f TTC N  has been specified, attention  is 

tu rned  to the task  o f language recognition So far, in place are the lexical analyser 
o r w ord recognizer, a tool to com m unicate tokens o f  the language to the syntax 
analyser, a TTC N  gram m ar, the formal description o f w hat sentences may be legally 
form ed, and a symbol table, the place w here all inform ation, o ther than tha t passed 
to the syntax analyser is stored W hat rem ains to be im plem ented is a system  to pull 
to gether and drive these individual m odules This device is a parser - a device for 
language recognition  Such a tool is packaged under the nam e Y acc [11]

Y acc is a too l that generates a parser from  a gram m atical description o f a 
language Y acc provides us with a general tool to formally descnbe the input to a 
com puter p rogram  W e specify the structure o f the input, together w ith any actions 
to be invoked on recognition o f this input Y acc then converts this specification 
into  a subroutine that handles the input process The input subroutine p roduced  by 
Y acc, calls a program m er supplied lexical routine called yylexO to return  the next 
basic inpu t item  It is norm al for the lexical analyser to return  high level constructs
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such as identifiers and num bers, rather than individual characters O ne may assum e 
that all o f the irrelevant white space is rem oved by this point

W hat follow s is a description of the stages o f developm ent o f a parser built 
using Y acc Firstly, a precise gram m ar is written, this specifies the syntax o f  the 
language Y acc is used a t this stage to highlight any conflicts in the gram m ar 
Secondly, each rule or production is augm ented with an action or a statem ent of 
w hat is to be done when an instance of that rule is found in the input The ’w hat to 
do ’ p a rt is w ntten  using C code, with conventions for connecting the C code to the 
gram m ar This defines the semantics o f the language Since a translator, and no t a 
com piler, is being built, an assurance that the sequence o f symbols seen m ake 
gram m atical sense, som e erro r detection and recovery, and the generated  C  code, is 
all o f the inform ation that is required from  the parser 

A Y acc source program  has three parts
declarations
Wo
translation rules
Wo
supporting C-routines

The declarations part m ay be used to declare tw o types o f objects Firsdy there are 
the ordinary C declarations or statem ents which are delim ited by "% {" and "%}" 
sym bols T hese declarations are copied verbatim  to the file y tab c, the program  
generated  as a result o f a call to Yacc, see figure 4 10 Secondly, there are the 
token declarations that will in conjunction with the non-term inal sym bols com prise 
the translation rules of part tw o The precedence and associativity inform ation 
associated with these tokens may also be specified here The translation rules p a rt 
contains the gram m ar o f the language to be translated, which is a  slightly m odified 
version o f the T T C N  B N F that is specified in annex A o f the international standard
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Each rule consists o f a production and its associated action A simple exam ple is 
the addition o f a sem icolon to the end of an assignm ent statem ent in TTCN  
assm t ID a ssn ex p r { fpnn tf(yyou t,",V ),}
Sem antic actions are concerned here merely with providing the next stage, namely 
the  C com piler, w ith correctly syntaxed C code The supporting C routines part 
defines the lexical analyser yylexO, required by Yacc to get the next token from  the 
input stream , a  yyerrorO  routine that tells the transla tor w hat to do when an e rro r in 
the input is found, and any o ther routines required to perform  the parsing o f  the 
language called from  within the semantic actions

Y acc
S pec ifica tion

F ig u re  4 10 G enera ting  the  y tab c file  from  a Y acc sp ec ifica tio n

As already stated, the program m er m ust provide a lexical analyser to both read 
the input stream  and com m unicate tokens (with values if required) to the parser 
T hese tokens are small in teger constants that uniquely define the  tokens o f the 
source language The lexical analyser is packaged within a single rou tine yylexO, 
tha t w hen called returns the next token of the language T hese tokens are then 
organised according to user specified rules, called gram m ar rules W hen a rule has 
been successfully recognised, an action (the default action is to  do  nothing) is 
invoked T hese actions may return values, set flags, o r m ake use o f inform ation 
gathered  from  the rules For the purpose o f the T T C N  translator, no values are 
required  by the parser, as all operations, assignm ents, function calls etc are merely

Y acc y t a b c  v
C om piler
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translated from  T T C N  to their C equivalent to be subsequently com piled on a C 
com piler This configuration is shown below  in figure 4 11

Figure 4 11 Generating an ETS from an ATS

The lexical analyser generator Lex was used to generate the required function 
yylexO from  a table of regular expressions The technique used to in terconnect the 
tools Lex and Y acc was outlined in figure 4 9 Y acc was designed to  w ork 
efficiently  w ith a lexical analyser produced using Lex, thus a sm ooth com m unication 
o f tokens from  the lexical analyser to the parser is possible U sing a declaration of 
the form
%token TOKENNAME

we can com m unicate TOKENNAME, a Lex term inal, to the parser w ithout any further 
declarations A ll that rem ains to be declared are the non-term inals

W ithout becom ing too  technical, the com piler generator operates as follow s 
Y acc turns the specification into a C program , which parses the input according to 
the specification given The parser consists o f a finite state m achine (FSM ) and a 
stack The parser can read the current token and the lookahead or next token The 
curren t state  is always at the top o f the stack Initially the m achine is in state 0 and 
no lookahead token is yet available D unng parsing only five operations are 
available to the parser, namely shift, reduce, goto, error and accept A  shift 
operation  m eans that the next token is acceptable in the curren t state  T he new 
state  is then pushed onto  the stack and parsing continues w ith tha t state as the 
p resen t state  A reduce operation means that the num ber o f term inals and non
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term inals on the right-hand side o f a rule are popped  off the top o f the stack, 1 e a 
rule has been fully recognised A goto operation simply implies that in the curren t 
state a new  state is pushed onto the top of the stack An error occurs w hen the 
nex t term inal o r lookahead symbol is unacceptable in the presen t state Finally, an 
accept happens when the parsing has com pleted A m ove in Y acc is done as 
follow s based on the current state, if a lookahead symbol is necessary to decide 
upon the next course o f action, y y le x () is called upon to provide it, then using the 
curren t state, and the lookahead token (if any), the parser decides upon the next 
action, and perform s it 
Miscellaneous grammatical translations

W hat follow s is a brief discussion o f som e of the o ther features im plem ented as 
p a rt o f the transla tor There are instances that require the parser to ensure tha t the 
co rrec t span o f  a sequence of tokens have been seen before ou tp u t can be m ade C 
requires a sem icolon to indicate the full contex t o f a sentence The p arser outputs 
this w hen the full extent o f an assignm ent or expression has been seen The parser 
also rem ains vital in ensuring that all C expressions and statem ents are correcdy  
tabbed and begin on new lines Yacc has a facility to state the precedence o f the 
various operators This resolves any conflicts that may anse  w hen different 
operators appear in the same expression A declare before use rule is em ployed in 
T T C N , an exception being in the definition o f param eters Param eters are defined 
at the po in t in the T T C N  ATS that they are specified and not in the declarations 
section Scope issues are handled by the inclusion o f test case param eters, tes t case 
variable etc in the headers of each test case The value stack available to Y acc is 
n o t used, all variables are handled by a value field in the symbol table All 
definitions, declarations and assignm ents are also w ntten  to the ou tpu t, as the 
sym bol table dies after the parsing phase has finished It rem ains the task  o f  the C 
com piler to  m aintain consistency thereafter The gram m ar is concerned  with
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checking that sentences are correctly form ed, and once this is ensured, the actions 
are concerned w ith producing robust and readable C code L eft recursive 
gram m ars, tha t have been proven to reduce the size o f the recognizer, are 
im plem ented at all times

As well as being a C based utility and one which is widely available, Y acc 
supports the follow ing features
• The parsers that it generates are small efficient and easy to m aintain, thus as the 

T T C N  subset grow s so too can the gram m ar It supports the addition o f rules 
with a m inim um  o f program m ing effort

• Y acc’s sem antic operations are left to the program m er, thus, conceptually  at 
least, the sem antics analyser is isolated from  the syntax analyser

• Y acc supports a precise and efficient m echanism  for handling am biguities and 
conflicts It has been found that parsers w ith am biguities, incorporating  
disam biguating rules, produce faster and m ore stream lined recognizers Y acc 
generates a parser even in the event of conflicts The curren t transla to r reports 
eight such conflicts Y acc has a com m and line option that generates a file 
y output, this file may be used to cheek a gram m ar to ensure that conflicts are 
being resolved as expected

• Y acc checks the gram m ar w hen building it, and reports any problem s w hich m ay 
render the recognizer unsuitable for language recognition The type o f errors 
tha t are reported  are forgetting to define tokens, and incorporating  non
term inals and rules into the gram m ar that are inaccessible to the first start 
symbol

These features m ake Yacc an ideal utility fo r the developm ent o f  a T T C N  to C 
transla to r
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5. Implementation of an Automatic TTCN to C Translator 
5 1 Introduction

This chapter is concerned with the fram ew orks that m ust be p u t in p lace, and 
the additional softw are needed, to im plem ent a w orking autom atic T T C N  to C 
transla to r M uch o f this chapter discusses the additional derivable and non- 
derivable code needed to drive the translation process

B efore establishing the TTC N  to C language m apping, the building blocks of 
T T C N , namely the data  types and structures m ust be defined as their C equivalents 
A lso, the structures tha t are affected by the test system  i e PD U s, tim ers etc m ust 
be im plem ented as C equivalents These prelim inary translations set the con tex t for 
the m appings o f chapter four To perform  and m onitor the dynam ic testing process, 
both a verdict processing and a conform ance logging m echanism  m ust also be p u t in 
place A  discussion o f the techniques used is given All interpretations are based on 
the natural language descriptions o r pseudo code definitions given in annex B o f the 
international standard  It will be seen that the translation technique chosen to  
im plem ent m any o f these translations is influenced by the tes t system  chosen to 
execute  the test suite, w hereas the m appings of chap ter four w ere perform ed 
independently  o f any test system

M oving away tem porarily from  the specific task o f developing a T T C N  to C 
translator, there rem ains tw o im portant aspects o f general com piler design, h itherto  
merely referenced, that m ust be im plem ented Firstly, a symbol table m anager m ust 
be built, and secondly and w hat is generally regarded as the m ost im portant aspects 
o f com piler design are, the mechanisms used to  d e tec t language specification errors, 
and the steps subsequendy taken to im plem ent e rro r recovery  The various 
techniques and routines used to  im plem ent these m echanism s are then d iscussed  in 
detail
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5 2 Miscellaneous TTCN to C semantic translations 
5.2.1 TTCN Data Types

Probably the m ost fundam ental aspect o f any language is the da ta  types 
This section concerns the translation o f the existing data  types in TTC N  to their C 
equivalents The basic data  types are INTEGER, BIT ST RING, HEXSTRING, 
OCTETSTRING and the set o f character strings The above types w ere m apped 
into , in teger in the case o f INTEGER and, either one o r a set o f  contiguous 
unsigned chars in the case o f the others As the m apping indicates, an INTEGER in 
T T C N  is equivalent to an integer in C, the o ther data  types require further 
com m ent A BITSTRING in TTC N  is an ordered sequence o f one or m ore bits i e 
'10'B  is a TTC N  representation of the num ber 2 As such, any BITSTRING  o f up to 
eigh t bits (one byte) may be m apped into the C language unsigned char A 
HEXSTRING is any string of hex digits l e  '100’H (decimal 256) Each hex digit 
may be stored in 4 bits o r a half byte, thus, tw o hex digits may also be sto red  in an 
unsigned char For odd numbers o f hex digits, the m ost significant d ig it is sto red  in 
the low er half byte, and the upper half byte o f the octe t is rese t to zero 
O C T E T ST R IN G s in TTC N  are a subset o f the H E X ST R IN G  data  type, w ith only 
even num bers o f hex digits supported i e 'OlOO'O (decim al 256) T hese are stored 
using the same form at O C T E T ST R IN G s and H E X ST R IN G s provide the basic 
data  structure fo r protocol data  units (PDUs)

T T C N  supports the definition and declaration o f variables w ithout any 
initialisation This invariably causes problem s during translation The solution has 
been to initialise all pre-defined IN TEG ER  or num eric string types to zero, and all 
character strings to null strings
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The actual specifics o f the system  tim er will be discussed in m ore detail in 
chap ter six w hen we deal with the DCT-S test system  This section is concerned 
w ith the set o f operations required to model the use o f tim ers in the dynam ic 
behaviour section There are three tim er operations namely START, CANCEL and 
READ TIMER

T he START tim er operation is used to indicate that a tim er is to begin ticking 
This operation is m odelled as an integer valued function with a prototype 
int start_tim er( int t im e n d )
The T T C N  code that initiates a tim er T W A IT is sim ply 
START TWAIT
which implies that a tim er is to run until T W A IT  seconds has expired This T T C N  
operation  is translated  to

if (STARTJTIMER(TWAIT))
{

Code to start a timer ticking for TWAIT centiseconds
}

If the operation is successful a value of one, otherw ise a value o f zero, is returned 
The CANCEL tim er operation is used to indicate that a tim er is to stop  ticking 

This operation is m odelled as an integer valued function with a prototype 
in t cancel_tim er( int t im e n d )
T he TTC N  code that cancels a tim er T W A IT is sim ply 
CANCEL TWAIT
w hich implies that a tim er, w hether running or not, is to becom e inactive The 
international standard states that a log of all timers that have expired, is to be 
m aintained in a tim eout list A CANCEL tim er operation is required to rem ove

5 2 2 Timer Management
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from  the tim eout list any tim eout entry fo r that particular tim er, if one exists This
T TC N  operation is translated to
i f  ( C A N C E L _ T I M E R ( T W  A I T ) )

{
Code to cancel a Umer, and if it has expired, 

code to remove its name from the timeout list 
I

If  the operation is successful a value o f one, otherw ise a value o f zero, is returned 
T he READ TIMER event returns the am ount o f tim e expired since a tim er 

began ticking In the event o f an inactive tim er being read, a value o f zero is 
retu rned

O ne final tim er operation is the TIMEOUT event, the purpose o f which is to 
in terrogate  the status o f a tim er This event is only satisfied by the expiration o f a 
previously active tim er The mechanics of the C function that checks for this 
condition will be dealt with in detail in chapter six, as they deal w ith checking the 
incom ing point o f control and observation (PCO ) to ensure that the expected  fram e 
did  not appear at the input

5 2 3 Verdict processing
In accordance with the international standard IS 0 9 6 4 6  p a rt (m), the processing 

o f T T C N  verdicts is a tw ofold one Firstly, there are the prelim inary verdicts, which 
are results recorded  before the end o f a test case, indicating w hether the associated 
pa rt o f a test case or step passed, failed o r was inconclusive They are distinguished 
from  final verdicts by their surrounding parentheses In the event o f no final verdict 
being assigned during test case execution, the prelim inary verdict becom es the final 
verdict Secondly, there are the final verdicts, w hose values may also be pass, fail, 
o r inconclusive In certain instances, a test case erro r is repo rted  w hen no verdict 
gets assigned, o r a prelim inary or final pass verdict follows a previously assigned
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prelim inary fail verdict The standard requires that w henever an entry  in a 
behaviour tree  occurs, for which there is a corresponding entry in the verdict 
colum n o f an abstract test case, then that verdict colum n inform ation is in tended to  
be recorded  in the conform ance log in such a w ay tha t it is associated with the 
record  o f  that entry  in the behaviour tree A strict set o f rules govern the transitions 
that a test case verdict m ay take during test case execution

T he C im plem entation for verdict assignm ents is tw o C functions, namely 
prelim _verdict( ) and final_verdict( ) These routines are called upon when a 
verdict is specified in the verdicts colum n Both functions are responsible for 
autom atically  updating the conform ance log during test case execution

5 2 4 Appending default dynamic behaviour
D efault dynamic behaviour is the events and o ther T T C N  statem ents which 

m ay occur a t any level in the associated tree A default behaviour specification is 
optionally defined fo r each test case or test step in the T T C N  ATS The D efault 
index table contains a com plete list o f all defaults in the ATS and the location o f 
each default behaviour table within the test suite hierarchy The default dynam ic 
behaviour table specifies the actual sequence of test events that com prise the default 
behaviour D efault behaviour may optionally have param eters T he international 
standard requires that default dynamic behaviour be appended as the last alternative 
to a sequence o f responses as an OTHERWISE case Care m ust be taken to ensure 
that the default behaviour is called as the last alternative This feature, im plem ented 
as p a rt o f the w orking TTC N  subset, may be categorised  as derivable code, as the 
behaviour, though not explicitly stated, is im plied in the TTC N  specification
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T he International standard requires that a conform ance log be autom atically 
m aintained fo r the duration of a conform ance testing session specified using T T C N  
The inform ation stored in the conform ance log should include
• the sequence num ber of the event line (if any),
• the label associated with the event line (if any),
• the assignm ent(s) m ade (if any),
• the tim er operation(s) m ade (if any),
• the verdict or prelim inary result associated with the event line (if any),
• a tim e stam p

T he technique chosen to im plem ent this requirem ent is a call to a C routine 
This routine m ake use o f the D CT-S test system  C interface to open a log file and 
update  it w ith the inform ation outhned above The details o f these interface 
routines w ill be discussed in chapter six W hen executing a test suite on the D CT-S 
tes t system , the technique used to m onitor the testing process is a scrolling console 
This facility is autom atically enabled during a translated testing session

5.3 Symbol table management
A symbol table is the central place w here the transla tor keeps all o f  the 

inform ation associated with user-defined names The inform ation sto red  in the 
symbol table includes the type, for usage verification, the user-defined nam e, for 
the purposes o f searching, and the value, as no value stack is m aintained fo r tokens 
passed on from  the lexical analyser

All symbol table elem ents are dynamically linked together using linked lists 
A ccess to the symbol table is via tw o routines lookupO  and înstallÇ) T he routine 
lookupO  scans the symbol table in search of an entry o f a particu lar nam e If 
successful, a pointer to the table entry is returned, thus providing access to the type,

5 2 5 Logging conformance test events
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value etc The installO routine inserts a symbol table entry  a t the head o f the list 
This new entry  then points to the previous head of the list A linear search is 
presently in operation , as the maximum num ber o f entries w ould normally be of the 
o rder o f tens and no t hundreds An alternative searching technique w ould be the 
use o f  hashing The organisation o f these files facilitates such a m odification, 
should the need arise

T o successfully im plem ent these tw o routines an auxiliary function em allocO  is 
im plem ented EmallocO makes use o f the C library function mallocO, tha t checks 
w hether there is sufficient free mem ory available to install one further new  entry  If 
successful the install operation is perform ed, o therw ise an e rro r m essage is 
p rom pted  a t the console Initially the symbol table is set to zero im plying tha t it is 
em pty The symbol table is built before the parsing o f the declarations begins This 
table is then dynamically m aintained during the rem ainder o f  the translation, and 
access to it is through either the installO or lookup() routines

T w o symbol tables, namely symbol and pdu , as opposed to one general symbol 
table, ex ist The symbol table holds all o f the test case and step identifiers, tes t suite 
param eters, test suite constants, test suite and case variables and tim ers The pdu 
symbol table holds all o f the PD U s constrained in section tw o o f the A TS The 
need fo r the second symbol table is prom pted by the variance in con ten t betw een 
the tables l e  an ex tra  field is needed for the pdu table in order to determ ine 
uniquely the co rrec t field within a particular PD U , as identical field nam es are often 
com m on to many PD U s To search fo r a particular field within the pdu  table and 
subsequendy within a PD U  entry, the search m ust be carried o u t on the constrain t 
and the PD U  field  nam e

N orm ally local variables w ould cease to exist once the sub-program  in which 
they w ere defined finished execution, and the space occupied by them  freed In the 
case o f T T C N , how ever, the same test case variables are available to each tes t case
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The variables are loaded once into the symbol table during the parsing o f the 
declarations section Only the definition and initialisation o f these variables a t the 
beginning o f each test case is required to m ake these variables available to each test 
step or case TTC N  em ploys a declare before use rule, which facilitates simple 
validity checking T here are, how ever, exceptions to this rule Form al param eters 
are encountered  for the first time in the dynamic behaviour section 1 e they are not 
defined in the declarations section As such, the param eters life and scope are 
restric ted  to the test case in which they were defined In a T T C N  GOTO label 
construct, there is no restriction on the positioning o f the label relative to the 
GOTO label statem ent In o ther w ords, a GOTO may be m ade to a po in t earlier o r 
later on in the file If a jum p is m ade to a point that does no t exist, then the C 
com piler will p ick this up when it is generating the object file E rrors in the case of 
declare before use violations, except in the above tw o exceptions, are picked up by 
the sem antic actions of the lexical analyser

5 4 Error Handling
E rro r recovery  is generally deem ed to be one o f the m ost im portan t and 

difficult sections o f any translator or com piler to im plem ent Any good translator 
should assist the program m er in identifying and locating errors E rrors may be 
lexical, syntactical, sem antical or logical Any error handler in a transla tor should at 
a m inim um  report the presence o f each erro r clearly and accurately, recover from  
each e rro r quickly enough to be able to de tec t subsequent errors, and should not 
sigm ficandy slow dow n the processing o f correct program s In the event o f an 
error, the e rro r handler should report the place in the source w here the e rro r was 
detected , because the likelihood is that the erro r occurred  within the previous few 
tokens read by the scanner
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All errors are reported  as soon as they are detected  For exam ple, lexical 
errors are reported  by the lexical analyser and not by any subsequent stage A 
transla to r that simply halts on finding an erro r is no t as useful as it could be This 
so rt o f interactive detection and correction technique, which was useful dun n g  
transla tor developm ent, w as later replaced with a m ore robust error handler

T he lexical analysis phase detects instances o f w here a character o r sequence of 
characters do not form  any token of the language Syntax and sem antic erro rs do, 
how ever, com pnse the bulk o f the errors Errors w here the token stream  violates 
the structure rules (syntax) o f the language are determ ined at the syntax analysis 
phase Finally dunng  the sem antic analysis phase the transla tor detects constructs 
that, w hile having the correct syntactic structure have no m eaning with regard  to the 
operation  involved An exam ple m ight be the attem pted addition o f an identifier to 
a tes t case nam e The first m odule in the error handler is an erro r detection  
m echanism , which com es in three phases, the gram m atical rules, and the sem antic 
actions o f the lexical analyser and the parser

W hen building a parser using Y acc, a routine yyerror() is required, as it is this 
routine tha t gets called when the parser encounters a syntax erro r This rou tine can 
be as simple as one that pnn ts "syntax e n o r"  and dies, o r as com plex as one that 
m akes an attem pt to fix the erro r The yyerror() em ployed in this transla to r is one 
w hich traps the location o f the error and prints to a file the file nam e, num ber o f the 
error, line num ber, and the offending token For exam ple 
error 1 , file "test mp" syntax error n e a r '+' at line 1 

w ould be the error m essage relayed for the erroneous input 
TMP = TMP ++ 1

C are is taken to ensure that the erro r location returned is n o t a blank space, tab or 
new line character

5 4 1  Error detection
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A nother class o f erro r detection is semantic erro r detection  Sem antic 
restrictions deal mainly with user defined objects It is possible fo r a sentence to be 
syntactically correct, but still contain semantic errors Typical errors that are 
trapped  by this section include 'use before declare' rules, unrecognised labels, and 
scope rule conflicts Com m on to all o f these errors is the need fo r a sym bol table 
m anager T hese errors are picked up in the C code actions follow ing the regular 
expressions in the lexical analyser The actions include code to lookup the relevant 
symbol table and ex tract the relevant fields This is necessary since no inform ation 
about tokens, for exam ple nam e or value is passed on to the parser

5 4 2 Error recovery
The error recovery m echanism , em ployed in the translator, m akes use o f Y acc’s 

built in features Y acc em ploys a simple yet reasonable means o f erro r recovery 
Y acc's solution is to build robust gram m ars using error symbols in the gram m ar 
form ulations T hese error symbols are incorporated into rules at points w here one 
anticipates errors to occur An alternative solution m ight be to add illegal 
form ulations to  the gram m ar T he problem  with this is, th a t it is alm ost im possible 
to pred ict every conceivable incorrect input sequence The technique used thus 
results in considerably shorter gram m ars

The error symbol is a special token available to the parser, bu t unlike all the 
o ther tokens, is no t returned from  the lexical analyser Like all the o ther tokens, 
how ever, this error token can be used in the gram m ar rules, thus enabling the 
anticipation o f input errors, a t key locations In effect, error sym bols are placed at 
points w here errors are likely to occur, and at points w here e rro r recovery may take 
p lace In the event o f an error, Yacc will a ttem pt to use this p roduction  by 
recognising  the error as gram m atically correct, and thus recover

69



W hen the parser executes an error operation in its transition m atnx , after 
prom pting the user o f its presence, it remains in this e rro r state until three tokens 
have been read  and successfully parsed This process enables full e rro r recovery to 
take p lace, provided no errors are present during the parsing o f three subsequent 
tokens T o avoid this three token limit, Y acc provides the user w ith a yyerrok 
action  This is a built in function that leads the parser to believe that it has fully 
recovered  from  the erro r It w orks by setting a flag in the parser that perm its it to  
get back  in to  a sensible parsing state The parser is now  ready to de tec t subsequent 
errors im m ediately, thus overriding the three token lim it

Schnener and Fnedm an in their book [12] suggest positions in the 
form ulations, fo r both the error symbols and the yyerrok actions, to achieve 
optim um  error recovery  B ased on their experience, error sym bols should be p laced 
as close as possible to the start o f the gram m ar This provides a po in t to  recover 
from , that is low dow n in the stack, a point w here the erro r can be accep ted  Error 
sym bols should be placed as close as possible to each term inal symbol in the 
productions, thus skipping a minimum am ount o f subsequent code Yyerrok 
sym bols should be placed following term inal symbols that are fo llow ed by a 
reasonably significant term inal symbol Their last recom m endation is that no further 
conflicts should be introduced as a result o f these inclusions T hese suggestions 
have been im plem ented and full error recovery in the translator is available
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6. Execution of the executable test suite
6 1 Introduction

C hapter four was concerned with the m apping o f T T C N  to  the C  language 
T he m appings chosen and the techniques used were outlined C hapter five detailed 
the im plem entation requirem ents o f a real autom atic T T C N  to C translator, 
including the sem antic actions required to set the m appings o f  chapter fou r into 
con tex t W hat was om itted from  these tw o chapters was a detailed description o f 
how  and w here the executable code would be configured on a real test system  The 
code that rem ains to be discussed is test system  dependent and, m oreover, is code 
tha t form s p a rt o f the D CT-S (Digital Com m unications T ester - Sparc version) test 
system  softw are

This chap ter will begin with an overview  o f the test system  chosen to  
im plem ent these rem aining tasks, and the test language used to contro l it T he test 
system  C  interface will be discussed, and those parts that are used to im plem ent the 
dynam ic testing aspect o f the TTC N  to C translator, will be detailed T he final part 
o f  the chap ter is concerned with the pulling together o f the individual m odules that 
co m p o se  the translator

6 2 DCT-S - An Overview
The Digital Com m unications (D CT-S) tester is a special purpose digital 

telephony tester, which is program m ed using its own proprietary test language 
D C PL  (Digital Com m unications Program m ing Language), and runs under the 
U N IX  operating system  It is designed to be useful in both the developm ent and 
tes t cycles o f data  com m unications protocols The D CT-S has available to it, all of 
the resources o f a pow erful general purpose com puter, and fully autom atic state 
m achines fo r the low er layers o f the O SI reference m odel, thus w hen testing a t the 
h igher layers, the DCT-S autom atically looks after all operations at the low er layers
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D u n n g  protocol conform ance testing, the DCT-S is configured to term inate the 
ta rge t equipm ent on one or m ore ports A com prehensive suite o f test scripts is 
w ritten in D C PL  to determ ine if an IU T is a faithful im plem entation o f a pro toco l 
The D C T-S acts as the opposing netw ork or term inal term ination, generates 
signalling traffic according to the protocol specifications and checks fo r the co rrec t 
responses from  the target equipm ent Any breaches o f the specifications may be 
no ted  in a resu lt o r log file for later analysis Prior to a testing session, a suite o f 
an ti-test scripts m ay be w ritten, so that the m ain test scripts m ay be tested  on a back 
to  back basis, by directly connecting tw o o r m ore ports o f the D CT-S O nce a 
consisten t set o f scripts and anti scripts have been developed, the bench m ark has 
been established, and real target test equipm ent m ay be tested

D C T-S refers to the com plete test system  which includes both standard  and 
custom  hardw are and softw are The standard hardw are and softw are consists o f a 
Sparc w orkstation running the U N IX  operating system  The custom  hardw are is a 
a special card called a tim eslot controller (TSC) which is inserted into the back 
p lane o f  the w orkstation and a physical interface controller

The T SC  is a special purpose com puter, designed to control high speed serial 
data, having its own m icro-processor, m em ory, high speed I/O  controllers and 
circuitry fo r com m unication with the Sparc w orkstation Each T S C  card can 
contro l and m onitor tw o active data  ports and is controlled by the main com puter 
T he physical interfaces take encoded data off a telephone line and ex tract the 
contro l stream s to be processed by the TSCs The physical interface contro ller may 
be a prim ary rate interface (PRI) or a basic rate interface (B R I) A typical hardw are 
configuration is show n below  in figure 6 1
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Figure 6 1 Typical hardware configuration of the DCT-S

A lthough softw are may be dow nloaded to the T SC  card, the bulk o f the 
custom  softw are which m akes up the DCT-S run-tim e softw are, is run on the main 
processor under control o f U NIX W hen a session on the D CT-S is invoked, a 
process called Ddriver is started  This process is the system  contro ller and is used 
to start up the o ther D C T-S processes, m onitor their well-being, and properly  direct 
keyboard  input There are four other processes invoked, namely, a display handler, 
an encoder, dtestlo, and dmacro T he display handler is the highest level o f Ddriver 
with which the user interacts It interprets input, receives and edits com m ands 
which are passed on to Ddriver, and receives ou tpu t from  the decoder a sub- 
m odule o f the display handler, that takes encoded data  to be displayed, converts 
layer 2 and layer 3 frames back into protocol dependent units, and places them  on
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the appropriate  part o f the screen The encoder perform s the opposite  task, it takes 
p ro toco l dependent units and converts them  to free fram es The dtestlo m odule is 
the overall controlling process fo r a D CT-S tes t session Finally, the dmacro 
m odule is a general purpose m acro pre-processor, custom  designed fo r the D CT-S 
system

F ig u re  6 2 S o ftw are  con fig u ra tio n  o f  the  D C T -S  
inco rpora ting  the  T T C N  to  C  tran sla to r

Inpu t to the D CT-S system  may be from  a term inal (interactive) o r from  a disk 
file (com piled), w ith facilities for switching betw een m odes O u tp u t from  the D CT- 
S m ay be from  a term inal (interactive), to a disk file, o r a com bination o f both The 
input syntax m ay be specified in the D CPL language, o r a general pu rpose  language,
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or an arbitrary m ixture o f the two Scripts may be executed interpretively via the 
include com m and, or from  com piled files via a read com m and The ou tp u t syntax 
may be hum an oriented, using the on-line display, o r m achine o nen ted , using disk 
files, which are suitable for m ore com plex tests and p o s t tes t perform ance analysis 
U N IX 's pow erful tex t m anipulation tools may be em ployed to construct custom ised 
log  files from  these ou tpu t files The D CT-S has facilities to lim it o r turn off 
com pletely the display, thus, enabling m axim um  throughput o f incom ing da ta  dunng  
high traffic situations

The softw are configuration o f the DCT-S allows test suite scripts to be w ritten 
in either the proprietary test language D C PL or the C program m ing language T he 
D CT-S also supports a large pool of libraries and utilities, one o f w hich is the D CT-
5 ddc com piler, which translates D C PL to C, and then com piles the generated  C 
code into an executable form at The com piler may, as a result, be used as a 
standard C com piler as it expects either C or D C PL code as input The code 
p roduced  as ou tpu t from  the com piler may optionally be Sparc o r T S C  (68302) 
executable The softw are configuration of the TTC N  to C transla to r w ithin the 
D C T-S is illustrated in figure 6 2

6 2 1 DCT-S - How it works
The version of the softw are for the DCT-S used in this TTC N  to C translator 

tests the functions found on the D channel o f  the C C IT T  I and Q  senes ISD N  
standards (1420) The 1420  D channel is a 16 Kbit/s full duplex link, primarily 
running a lap level protocol nam ed LAPD The em phasis is on the those portions o f 
the p ro toco l which m ap into Ddriver statem ents and constructs T he I 420 data 
stream  is encoded in the international form at know n as H D LC (high level da ta  link 
contro l), l e sequences of eight bit characters (octets) called fram es This form at 
has conventions fo r flagging fram es, and flag sequence checking know n as fram e

75



check sequences (FCSs) or cyclic redundancy checks (C RCs) The D C T-S system  
autom atically  perform s both of these tasks

The fo llow ing com m and invokes a session on the D CT-S system  fo r testing  the 
LA PD  pro toco l using tw o active ports 
ddriver -m isdn - b la , lb  -m tty -d l
w here the com m and line options are from  left to n g h t -m (the p ro toco l to be tested) 
-b(the board num ber follow ed by the data po rt 1 e on board 1 , po rt 1 is linked to 
da ta  p o rt a e t c ) -m ( the tty protocol used for diagnostic testing on a U N IX  device 
driver) -d( the device num ber) W hen initialisation is com plete, code has been sent 
to the T S C  card inform ing it o f the pro toco l to be run The ports are now  ready to 
both send and receive data To begin a testing session, the D CT-S is required  to 
know  which side o f the circuit to em ulate l e  a digital term inal o r telephone, 
specified using a te com m and, or a telephone netw ork, specified using an nt 
com m and W hen the system  com es up ready fo r testing it is expecting  testing at 
layer tw o, should layer three testing be required, the com m and layer 3 m ust be 
en tered  The last specification to be m ade is w hat term inal endpoint identifiers 
(T EIs) are to be used, and on w hat service access point identifiers (SA PIs) they are 
to be on T o send a fram e out on a particu lar TEI, the Ddriver system  variable &tei 
is set to tha t value All o f this inform ation is not specified explicitly in a T T C N  
A TS, so a routine that initialises the DCT-S to the required  values m ust be invoked

6 2 2 DCPL - The proprietary test language of ISDN technologies
D C PL  is a hum an onen ted  test language that facilitates rapid p ro to ty p in g  

W hen using it as the input syntax to the test system, it is com piled using the D CT-S 
ddc com piler This com piler takes the D C PL code and translates it to  C code, 
which is subsequently com piled on a C com piler to generate executable code The 
syntax fo r D C PL  is specified using a m odified version o f  the B ackus N aur Form
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Like T T C N , D C PL  has a formally defined syntax and informally defined sem antics 
D C PL  has many distinct sub-languages, whereby, the input form at is a function o f 
the pro tocol, O SI layer etc

A t the low est level o f D CPL are the rules fo r form ing keyw ords, identifiers and 
num bers N ext up are the control constructs that are used to control the sequencing 
o f tes t events W hat follows is a b n ef discussion of som e o f the features o f  D C PL  
T o contro l the input /  ou tpu t tasks, are the com m ands read and write T o com m ent 
files and d irect tex t to the console, are com m ands like comment, prompt and ? The 
bulk o f  the language is control com m ands, that are used to create  testing scenarios 
and react to external actions There are com m ands to stop execution and w ait for 
events, looping structures, input/output com m ands, conditional expressions and 
com m ands to set the contex t o f a testing session D C PL supports a com prehensive 
library o f expression evaluators and operators Finally, D C PL  supports both 
general and special variables All string variables are prefixed with a symbol and 
all num eric variables w ith a symbol These prefixes are used for both D C PL 
system  variables and user-defined variables

6 3 Describing the test system interface
Up to now we have discussed tw o form s o f com m unication with the D C T-S, 

nam ely, interactive and com piled The system  is built upon the C language Any 
D C PL  script com piled using the ddc com piler is first translated to C, and then 
com piled on a standard C com piler The suggestion is, tha t there m ust be a way to 
com m unicate with the system  at a low er level, than via D C PL  T he D CT-S 
provides the user with such a facility, by defining a dtestlo C library interface This 
interface was w ritten to enable users to w n te  parts o f their test scripts in a low er 
level program m ing language than D CPL By incorporating this interface into the
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T T C N  to C translator, it is therefore possible to com pletely contro l the D CT-S 
using the C language

The code p roduced  and discussed thus far has m ade no reference to any 
particu lar test system , indeed this code is applicable to any tes t system  built upon 
the C language The discussion in chapter four and five on the im plem entation of 
test events has been left a t a call to some routine that interfaces the translated event 
to the test system  This section w ill now detail these routines Should a test system  
o ther than the DCT-S be em ployed, then it is simply these interface routines that 
require m odification T hese tasks were purposely m odularised to facilitate such 
changes

An alternative to using the test system  interface w ould be to translate the 
dynam ic aspects (sending, receiving, timers e t c ) o f the TTC N  statem ents to  
equivalent D C PL  statem ents Indeed another option w ould be to translate  the 
com plete TTC N  ATS to an equivalent D C PL ATS T hough apparendy sim pler to 
perform , 1 e both languages share a similar focus on testing and are defined in a 
sim ilar m anner (form al syntax informal sem antics), there are many disadvantages to 
such an approach Firstly, the D C PL language is no t as well endow ed in data 
structures, libraries etc as the C language, secondly, such a translation w ould be 
considerably less portable, thirdly, the translation path w ould involve one further 
step 1 e  T T C N  to  D C PL to  C  as opposed to T T C N  to  C, and finally, it w ould 
require tha t the test operato r becom e familiar with yet ano ther program m ing 
language

To incorporate the dtestlo C interface into the transla tor system , the header file 
"dtestinc h" m ust be included This file contains all o f the function p ro to types, 
constants, variables and data structures required to interact w ith the D C T-S system  
Each o f  the interface routines is defined as an integer valued function with a set of 
param eters 1 e

78



int D nam e(parm l parm typel,parm 2  parm type2 )
T he re tu rn  value o f a successful invocation is zero All o f the routines begin with a 
capital "D", thus distinguishing them  from  D CPL com m ands The technique chosen 
is to "wrap" each o f  these functions inside another function, in o ther w ords, a paren t 
function is w ritten that gathers all o f the inform ation required to m ake a successful 
call to the in terface function The return values get echoed back through this paren t 
function  to the translator

W hat follow s is a discussion of the interface routines em ployed to com plete the 
translation from  T T C N  to C The interface routines may be categorised  into four 
classes those to im plem ent TTC N  test events 1 e (send) and (receive), those 
to im plem ent the tim ing operations, those to generate and update the conform ance 
log, and finally the miscellaneous routines to set the contex t o f the translation and 
generally control a D CT-S session The set o f w rapper functions are defined in the 
file conform  c, which gets linked at com pile time to the o ther translated files to 
com plete the T T C N  to C translator

6.3 1 Interfacing TTCN statements
The single tw o m ost im portant test operations in any p ro toco l testing scenario 

are the send and receive test events Let us recall w hat translations have been 
im plem ented thus far for these tw o events W hen a PD U  constrain t is specified in 
T T C N , a C struct identical to the constraint is built This structure is a contiguous 
sequence o f  octets com prising the fields o f a fram e A constrain t implies that the 
structure m ust be then sent ou t on the D channel, in the case of a send, o r the fram e 
tha t cam e in m ust be identical to the structure defined in the constrain t, in the case 
o f a receive H ow  the fram e is sent, or on w hat p o rt it is sent, is inform ation th a t is 
test system  dependent, o f a sem antic nature, and not derivable from  the ATS The 
pro to type o f the C interface routine to perform  a send event is
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int D send( int portnum , FU N N Y STR  * fram e, m t show)
in o ther w ords, to perform  a send event on the D C T-S, the inform ation required is 
the po rt on w hich the fram e is to be sent, the contents o f the fram e tha t is to be sent 
( a FU N N Y ST R  is a contiguous stream  o f octets defined in dtestinc h as a C struct 
w ith tw o fields, a data  field o f unsigned chars and a length field), and a flag to state 
w hether the fram e is to displayed on the console even in quiet m ode The w rapper 
function that invokes a send is 
int sen d J2 (F U N N Y S T R  *frm)
O nce the fram e has been successfully built into the required structure, a call to
D send will then send out that fram e on the required po rt The param eter portnum
m ay be then assigned the value o f & portin a Ddriver system  num eric variable tha t
holds the value o f the p o rt that the last fram e was received on To fetch this
variable from  the Ddriver system  a call to the interface function
int D fetch(in t portnum , char *name, m t subscr, unsigned short ^location)
with
D fe tch (l, "portin", N O T_A R R A Y , & currport)
will fetch the value o f & portin and place it m the variable cu rrport N O T _A R R A Y  
simply tells the interface routine that the value is a simple num enc variable and not 
an array

The receive event in TTC N  involves a check o f the incom ing PC O  to verify 
w hether or not the last fram e that arrived was the one specified in the constra in t In 
term s o f the translator, it involves checking w hether the fram e that cam e m was 
identical to the one ju s t built The C interface action that perform s a receive event 
is
m t D w ait(FU N N Y ST R  *frame, m t time)
This routine waits until the next fram e com es in, o r the duration specified in time 
expires The contents o f w hat com es m is stored in frame  I f  time is set to zero,
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then the tim e w aited for is & tim eout seconds a system  num eric variable that holds a 
centiseconds value o f how long the system  is to w ait fo r a particular event to  
happen L et us recall a typical test scenario to send out a SA B M E fram e and w ait 
T1 seconds fo r a U A  response
»SABME

START T1 
9UA

M aking use of, setting the value of time to zero, it is possible to assign a value (T1
centiseconds) to &  tim eout via the C interface com m and
int D assign(m t portnum , char *nam e, int subscr, unsigned short value)
The proto type of the w rapper function for receiving fram es is 
m tre c J2 (F U N N Y S T R  *frm)

O ne final test event is the ?TIMEOUT timerid even t tha t checks if a tim er has 
expired This event evaluates to true if no fram e is present a t the head o f the PC O  
queue This condition is satisfied by the condition 
if (fram e -> length = =0)

6 3 2 In te r fa c in g  T T C N  tim in g  even ts
There are tw o TTC N  timing events that require access to the D CT-S system 

tim er, namely, START timerid and CANCEL timerid To exam ine how  these tw o 
events are im plem ented on the test system, one m ust consider the tw o D CT-S 
system  variables & tim e and Sctimeout & tim eout is a static variable th a t when 
assigned a value, forces the system  to w ait fo r that p en o d  o f tim e fo r an event to 
happen &&me is a dynamic variable, specified in centiseconds, that has direct 
access to the system  tim er One is free to reset this variable W hen a value is 
assigned to & tim eout, the & tim e variable will increm ent fo r that p en o d  o f  tim e, and 
then send a signal on expiration These tw o TTC N  test events are controlled by



assigning values to the variable & tim eout The interface function used to assign a 
value to a Ddriver variable is
D assign( in tp o rtn u m , char *name, int subscr, FU N N Y STR  *fram e)
Thus to set a tim er ticking for thirty seconds w ould require 
D assig n (l, "Tim eout", N O T .A R R A Y , 3000)
T he cancel tim er routine uses the same interface function, only it sets the variable 
& tim eout to zero

6.3 3 Interfacing conformance logging events
T he international standard requires that a conform ance test log  file be 

m aintained o f  all test events that occur dunng  a dynam ic testing session In this file 
one expects to see, the nam e o f the test case or step, the tim estam p associated with 
each test case event, and a test case verdict if one gets assigned as a resu lt o f a 
particular system  response O ne requires, therefore, a means to first open a log file, 
a m eans to log  the various test events and their associated tim estam p, and a means 
o f closing the file

The D C T-S provides the user with all o f the above facilities, via the follow ing 
three interface com m ands 
int D openlog(char ^filenam e, int append) 
int D log(in t portnum , FU N N Y STR  ^m essage) 
int D c lo se ()
The D log routine sends m essages to the log file The entry  to the log file fo r the 
receip t o f a UA com m and m ight be 
1 0 /2 ,1 , 1 /  r tm  0 02 1 $020173,
which is n o t very readable Fortunately, how ever, the D C T-S has a pretty  prin t 
facility called dctprint This program  takes as input, a file o f log entries like the one 
above and converts them  into m ore readable form at like the one below
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00000 021f2 r ua f  ($020173) tei = 0

6 3 4 Interfacing miscellaneous control constructs
Section 6 2 1 gave an overview o f the list o f D C PL  com m ands required  to set 

up a tes t session at layer tw o, validate tei 0 on sapi 0, and prepare the system  to 
both receive and send fram es In sum m ary, these com m ands in D C PL are

nt
layer 2 
valid 0 on 0 
&tei = 0

The follow ing C interface com m ands are used to autom atically configure the test 
system  as above
int D assign(in t portnum , char *nam e, int substr, unsigned short value)
int D layer(int portnum , in t value)
in t D valid(int portnum , int value, int dasstiehne)
The DassignO com m and is used initially to set the variable & side to em ulate the 
netw ork  side The DlayerO com m and is then used to set up the system  at layer 2 

Finally using D assign, the LAP may be established by setting & sapi and & tei to the 
required values

O ver and above the com m ands already m entioned that control the testing 
p rocess are the various o ther interface com m ands to clear the console screen, to 
display m essages on the console, stop execution and term inate a session on the 
D C T-S system  In effect, the com plete D C PL language may be replaced and, 
m oreover, the com plete D CT-S system  may be controlled using the full set of 
interface routines The com plete set o f interface com m ands are defined in the file 
conform  c
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6.4 P e rfo rm in g  a  c o n fo rm an ce  te s tin g  session
This section will conclude the discussion on the T T C N  to C transla tor tool. 

The com plete configuration is illustrated below  in figure 6.3

BNFof
TTCN

Abstract test 
suite (ATS.MP)

TTCN.MP
Parser

Operational 
Semantics of TTCN

Additional
Code

Interface
Library

DCPL to C 
Pre Processor

Library of 
C routines

Complete C code 
spec. (ATS.C)

\ /
C

Compiler

(  Executable Test Suite ^
\ /

ISDN Technologies 
Test System

Test selection 
procedure

ToIUT
>

Figure 3.2 Structure of TTCN to C translator

The main com ponent o f the translator is the T T C N .M P parser. This parser 
was autom atically built from  a slightly modified version o f the T T C N  B N F and the 
operational sem antics outlined in the international standard. The sem antics of 
T T C N  w ere described using C code specifications. O utpu t from  the parser is a 
library o f C files. The com plete TTCN  to C code specification, the A T S.C , includes
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this code plus additional C code plus the test system  interface code The test 
system  interface specification m ust undergo a C com piler p re-processor to  
supplem ent the code with additional low level com m unications softw are O ne 
further specification, the test case selection m odule, m ust be added a t this po in t to 
com plete the C code specification All test cases and steps are im plem ented as C 
functions w ith names identical to their TTC N  identifiers The appendix illustrates 
an exam ple o f a full test step translation This test selection procedure  m odule 
simply selects and orders the test cases and steps as a file o f C function calls T he 
com plete specification m ay be then com piled and linked to produce the T T C N  ETS 
The final step in the conform ance testing process is the initiation o f the tes t system 
to prepare it to send and receive fram es This step is perform ed simply by invoking 
the tes t system  to configure itself fo r the required pro tocol, O SI layer, and num ber 
o f ports that fram es may be sent to and received from  O nce configured a simple 
call to the file that selects the tests to be run will initiate the conform ance testing 
session O u tpu t from  the conform ance testing session is a log file o f the com plete 
dynam ic behaviour that passed between the tester and the SU T
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7. Conclusions and recommendations
This study sought to provide a solution to the problem s involved in 

autom atically denv ing  executable test suites (ETSs) from  their corresponding 
abstract test suites (A TSs) The need for this study w as prom pted  by the time, cost, 
errors, and repetition involved in manually perform ing ATS translations T he result 
w as, the developm ent o f a TTC N  to C transla tor system , from  a form al 
specification, supplem ented with the operational sem antics, o f T T C N , tha t was 
capable o f taking a TTC N  ATS specification and autom atically producing an 
equivalent ETS specification in the C program m ing language The translator system  
produced requires a m inim al am ount of manual intervention This study proves that 
the function o f T T C N  (i e w hat it is trying to express) may be transposed to the 
functionality  o f a real program m ing language

The transla tor system  operates by taking a file o f a T T C N  ISD N  layer tw o or 
three ATS and autom atically producing a set o f sem antically equivalent C  files 
T hese files include code, to m ake the translated specification fully executable on a 
D C T-S p ro toco l tester and, to autom atically m onitor and log the conform ance 
testing process The bulk o f the code, w ith the exception o f the test system  
interface code, is test system  independent All code is m odular, readable, and 
program m ed to m odel a C code specification, that was manually derived from  an 
ATS

The system  translates at a rate of approxim ately forty test cases, steps or PD U s 
per second, and at a sigmficandy higher rate for declarations (test case variables, 
tim ers etc ) This im plies that a typical test suite o f four hundred tes t cases could be 
translated  in under one m inute (excluding the time needed to perform  m anual 
in terventions), which com pares very favourably to the several m an m onths involved 
in im plem enting a similar manual translation W hat is m ore, the translated  code 
w ould now  exist in an A N SI C code form at that could be used to tes t pro toco l
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im plem entations at different test sites and on different tes t p latform s with only 
m inor adjustm ents

The approach taken in this study is one o f several possibilities to m ake T T C N  
executable This C translation option transform s TTC N  to A N SI C, which is a 
highly portab le , widely used, and operationally fast program m ing language O ther 
options included the translation of TTC N  to either FD Ts ( L O T O S, SD Ls e t c ) o r 
p roprietary  tes t languages (ITL for the ID A CO M  PT500 or D C PL  for the ISD N  
T echnologies DCT-S etc ) A TTC N  to FD T transla tor may facilitate direct 
p ro toco l validation, but w ould be m ore difficult and tim e intensive to im plem ent 
A nd in order fo r the im plem entation to run, unless a test system  like the D C T-S was 
used, an interface to the external environm ent w ould be required to be w ritten A 
T T C N  to proprietary test language translator, though probably sim pler to  
im plem ent, w ould be restricted  to the test system  that the proprietary  language was 
w ritten to com m unicate with The TTC N  to C translator built, as a result o f no t 
bem g fully autom atic, does require, how ever, that the test supervisor have a basic 
know ledge o f TTC N , C, the translator and indeed the test system

Possible enhancem ents to the system  m ight begin with an extension o f the 
existing T T C N  subset This w ould facilitate the translation o f A TSs fo r o ther 
pro toco ls, fo r exam ple, the addition of an A SN  1 m odule w ould enable the 
translation o f higher layer protocols Such an enhancem ent w ould only require 
m inor m odifications to the existing system, as the addition o f fu rther T T C N  
gram m atical constructs may be m ade w ithout altering the existing gram m ar 
A nother possible system  m odification would be the rem oval o f  tes t system  
dependencies from  the back end of the system, thus m aking the system  applicable to 
any p ro toco l tes t environm ent running on the C language O ne final logical 
enhancem ent, w ould be the integration o f the transla tor into a com plete 
conform ance testing system  Typical existing conform ance testing  environm ents
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have m odules to validate protocol behaviour against form al descriptions of 
protocols, autom atically generate TTC N  test specifications from  pro toco l 
specifications and, autom atically select test cases that are app ropna te  to the 
p ro toco l under test This enhancem ent w ould produce a com plete conform ance 
testing  environm ent, whereby a form al description o f a p ro toco l could be 
autom atically transposed to a TTC N  test specification which could be subsequently 
autom atically  executed on a protocol test system

This study set out to determ ine if an autom atic m ethod existed fo r the 
derivation o f  ETSs from  their corresponding ATSs O ne does exist, o r a t least one 
exists that only requires a minimal am ount o f manual intervention (The 
intervention required is mainly for the purposes o f com pleting T T C N  
sp ec ifica tio n s) This tool has the potential to dram atically reduce the tim e, effort 
and co st involved in the latter half o f the conform ance testing process - a w orthy 
solution to the denvation  of ETSs from  their corresponding A TSs
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Appendix (v)
This appendix shows the translation o f the dynam ic behaviour corresponding to  

an ISD N  layer tw o pream ble As can be observed the test step is translated  to a 
void C function and one of its corresponding constraints to an in teger valued C 
function

Test Step Dynamic Behaviour
R e f e r e n c e  I S D N / P R E A M B L E / P R E _ S 7 1  
I d e n t i f i e r  P R E _ S 7 1
O b j e c t i v e  T o  b r i n g  t h e  I U T  i n  s t a t e  S 7 1  R e j  r e c o v e r y  
D e f a u l t  D E F 2
B e h a v i o u r  D e s c r i p t i o n L C r e f V C
+ P R E  S 7 0 ( 1)

U I _ s e n d  ( T M P  = ( N S + 1 )  M O D  1 2 8 )  
S T A R T  T A C

I N 2 ( P 0 , N R , T M P
)

( 2)

L ? R E J  R  r e c  C A N C E L  T A C R J R ( F O , N S ) (P) ( 3 )
‘̂ T I M E O U T  T A C F

E x t e n d e d  C o m m e n t s ( 1 )  B r i n g  I U T  i n  s t a t e  7  0  V ( S )  = V ( a )  a n d  n o  I f r a m e s  m  q u e u e
( 2 )  T h i s  m e s s a g e  h a s  a  N ( S )  e r r o r  a n d  i n v o k e s  a  R E J  m e s s a g e
( 3 )  I U T  i s  i n  s t a t e  7  1

PDU Constraint Declaration
P D U  N a m e  I  ( I n f o r m a t i o n ) C o n s t r a i n t  n a m e

I N 2 ( P B r r _ , B I T S T R I N G , N R _ , N S _  I N T E G E R )
F i e l d  N a m e V a l u e

E A  O C T E T 2 ' O ' B
C C R _ V A L U E ( )

S A P I 0
E A  O C T E T 3 T B

T E I C U R R E N T  T E I
C O N T R O L ’O ' B

N  S N S
P P B I T

N  R N R
I N F O R M A T I O N R E L E A S E

F C S  F I E L D F C S  V A L U E
C o m m e n t s  |



void PR E 71()
{
/*To bring the IUT into state s71 Rej recovery*/ 

int x,

PR E _S70(),
/* 1*/
eventype = 'S’,
(TMP=(NS+1) % 128), 
if(IN2(P0,NR,NS) { 

if start_timer(TAQ {
1*2*1

eventype = R’, 
x = Dwait(P_Frmin,0), 
if(x»=0) {

pnntf(’\nTest system receive 611100, 
return,
}

if RJR(F0,NS)) {
if (canceLTuner(TAC)) { 

prehm_verdictCF),
1*3*1
}

else D EF2(),
}

else if (timeout(TAC)) { 
final_veidict(’F ), 
return,
}

/* (1) Bnng IUT in state 7 0 V(S) = V(A) and no I frames in queue
(2) This message has a N(S) error and invokes a REJ message
(3) IUT is in state 7 1 */

else DEF20,
}

else DEF20,
}

else D EF2(),

}



i n t  IN2(PBir_,NR_,NS_)
B I T S T R I N G  P B I T _ ,
I N T E G E R  N R _ , N S _ ,
{
F U N N Y S T R  * P _ F r m , F r m ,  
e x t e r n  c h a r  e v e n t y p e ,  
i n t  L , i ,

P F rm  = & Frm,
I N 2 d c l  E A 0 C T E T 2  =  0 ,
I N 2 d c l  C  =  0 ,
I N 2 d c l  S A P I  =  0 ,
I N 2 d c l  E A _ O C T E T 3  =  1 ,
i f  (  ( C U R R E N T T E I  > = 0  )  & &  ( C U R R E N T T E I  < =  1 2 7 )  )

I N 2 d c l  T E I  =  C U R R E N T _ T E I ,  
e l s e  p n n t f  ( " I n v a l i d  a s s i g n m e n t  v a l u e  o u t  o f  r a n g e " ) ,
I N 2 d c l  C O N T R O L  =  0 ,
i f  (  ( N S _  > =  0  )  & &  ( N S  < =  1 2 7 )  )  I N 2 d c l  N _ S  =  N S _ ,  
e l s e  p n n t f  ( " I n v a l i d  a s s i g n m e n t  v a l u e  o u t  o f  r a n g e " ) ,
I N 2 d c l  P  =  P B I T _ ,
i f  (  ( N R _  > =  0  )  & &  ( N R  < =  1 2 7 )  )  I N 2 d c l  N _ R  =  N R _ ,
e l s e  p n n t f  ( " I n v a l i d  a s s i g n m e n t  v a l u e  o u t  o f  r a n g e " ) ,
L =  R E L E A S E  l e n g t h ,
f o r  ( i = 0 ,  i < L , i + + )  I N 2 d c l  I N F O R M A T I O N  D A T A [ i ]  =  R E L E A S E  d a t a [ i ] ,
I N 2 d c l  F C S _ F I E L D  d a t a [ 0 ]  =  2 5 5 ,
I N 2 d c l  F C S . F I E L D  d a t a [ l ]  =  2 5 5 ,
P - F r m - > d a t a [ 0 ]  =  ( I N 2 d c l  E A _ O C T E T 2  «  0 )  I ( I N 2 d c l  C  «  i )  I I N 2 d c l  S A P I  «  2 ) ,  
P - F r m - > d a t a [ l ]  =  ( I N 2 d c l  E A _ O C T E T 3  «  0 )  I ( I N 2 d c l  S A P I  «  1 ) ,
P - F r m - > d a t a [ 2 ]  =  ( I N 2 d c l  C O N T R O L  «  0 )  I I N 2 d c l  N _ S  «  1 ) , ,
P - F r m - > d a t a [ 3 ]  =  ( I N 2 d c l  P  «  0 )  I ( I N 2 d c l  C  N _ R  «  1 ) ,
P - F r m - > d a t a [ 4 ]  =  ( I N 2 d c l  I N F O R M A T I O N  d a t a [ 0 ] ) f  
P - F r m - > d a t a [ 5 ]  =  ( I N 2 d c l  I N F O R M A T I O N  d a t a [ l ] ) ,
P _ F r m - > d a t a [ 6]  =  ( I N 2 d c l  F C S _ F I E L D  d a t a [ 0 ] ) ,
P _ F r m - > d a t a [ 7 ]  =  ( I N 2 d c l  F C S _ F I E L D  d a t a [ l ] ) ,
P _ F r m - > l e n g t h  =  8,

if e v e n t y p e  = = ' S ' )  {
if ( s e n d _ 1 2 ( P _ F r m ) )  r e t u r n  1 ,  
}

e l s e  if e v e n t y p e  —  R ’ )  {
if r e c _ 1 2 ( P _ F r m ) )  r e t u r n  1 ,
}

e l s e  r e t u r n  0, 
r e t u r n  0,

}


